Convert dwarf2-frame.c to type-safe registry API
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 65const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 66
8da61cc4 67/* Floatformat pairs. */
f9e9243a
UW
68const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71};
8da61cc4
DJ
72const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75};
76const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79};
80const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83};
84const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87};
88const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91};
92const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95};
96const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99};
100const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103};
104const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107};
108const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111};
b14d30e1 112const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
b14d30e1 115};
8da61cc4 116
2873700e
KS
117/* Should opaque types be resolved? */
118
119static int opaque_type_resolution = 1;
120
121/* A flag to enable printing of debugging information of C++
122 overloading. */
123
124unsigned int overload_debug = 0;
125
a451cb65
KS
126/* A flag to enable strict type checking. */
127
128static int strict_type_checking = 1;
129
2873700e 130/* A function to show whether opaque types are resolved. */
5212577a 131
920d2a44
AC
132static void
133show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
134 struct cmd_list_element *c,
135 const char *value)
920d2a44 136{
3e43a32a
MS
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
139 value);
140}
141
2873700e 142/* A function to show whether C++ overload debugging is enabled. */
5212577a 143
920d2a44
AC
144static void
145show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
7ba81444
MS
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
920d2a44 150}
c906108c 151
a451cb65
KS
152/* A function to show the status of strict type checking. */
153
154static void
155show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159}
160
5212577a 161\f
e9bb382b
UW
162/* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
c906108c
SS
165
166struct type *
fba45db2 167alloc_type (struct objfile *objfile)
c906108c 168{
52f0bd74 169 struct type *type;
c906108c 170
e9bb382b
UW
171 gdb_assert (objfile != NULL);
172
7ba81444 173 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
c906108c 178
e9bb382b
UW
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
c906108c 181
7ba81444 182 /* Initialize the fields that might not be zero. */
c906108c
SS
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 186
c16abbde 187 return type;
c906108c
SS
188}
189
e9bb382b
UW
190/* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
8f57eec2 192 on the obstack associated with GDBARCH. */
e9bb382b
UW
193
194struct type *
195alloc_type_arch (struct gdbarch *gdbarch)
196{
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
8f57eec2
PP
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
2fabdf33
AB
236 struct gdbarch *arch;
237
e9bb382b 238 if (TYPE_OBJFILE_OWNED (type))
2fabdf33 239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
e9bb382b 240 else
2fabdf33
AB
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
e9bb382b
UW
249}
250
99ad9427
YQ
251/* See gdbtypes.h. */
252
253struct type *
254get_target_type (struct type *type)
255{
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264}
265
2e056931
SM
266/* See gdbtypes.h. */
267
268unsigned int
269type_length_units (struct type *type)
270{
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275}
276
2fdde8f8
DJ
277/* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281static struct type *
282alloc_type_instance (struct type *oldtype)
283{
284 struct type *type;
285
286 /* Allocate the structure. */
287
e9bb382b 288 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 290 else
1deafd4e
PA
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
2fdde8f8
DJ
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
c16abbde 298 return type;
2fdde8f8
DJ
299}
300
301/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 302 replacing it with something else. Preserve owner information. */
5212577a 303
2fdde8f8
DJ
304static void
305smash_type (struct type *type)
306{
e9bb382b
UW
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
2fdde8f8
DJ
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
e9bb382b
UW
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
2fdde8f8
DJ
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320}
321
c906108c
SS
322/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327struct type *
fba45db2 328make_pointer_type (struct type *type, struct type **typeptr)
c906108c 329{
52f0bd74 330 struct type *ntype; /* New type */
053cb41b 331 struct type *chain;
c906108c
SS
332
333 ntype = TYPE_POINTER_TYPE (type);
334
c5aa993b 335 if (ntype)
c906108c 336 {
c5aa993b 337 if (typeptr == 0)
7ba81444
MS
338 return ntype; /* Don't care about alloc,
339 and have new type. */
c906108c 340 else if (*typeptr == 0)
c5aa993b 341 {
7ba81444 342 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 343 return ntype;
c5aa993b 344 }
c906108c
SS
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
e9bb382b 349 ntype = alloc_type_copy (type);
c906108c
SS
350 if (typeptr)
351 *typeptr = ntype;
352 }
7ba81444 353 else /* We have storage, but need to reset it. */
c906108c
SS
354 {
355 ntype = *typeptr;
053cb41b 356 chain = TYPE_CHAIN (ntype);
2fdde8f8 357 smash_type (ntype);
053cb41b 358 TYPE_CHAIN (ntype) = chain;
c906108c
SS
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
5212577a 364 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 365
50810684
UW
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
67b2adb2 370 /* Mark pointers as unsigned. The target converts between pointers
76e71323 371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 372 gdbarch_address_to_pointer. */
876cecd0 373 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 374
053cb41b
JB
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
c906108c
SS
383 return ntype;
384}
385
386/* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389struct type *
fba45db2 390lookup_pointer_type (struct type *type)
c906108c 391{
c5aa993b 392 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
393}
394
7ba81444
MS
395/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
400
401struct type *
3b224330
AV
402make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
c906108c 404{
52f0bd74 405 struct type *ntype; /* New type */
3b224330 406 struct type **reftype;
1e98b326 407 struct type *chain;
c906108c 408
3b224330
AV
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 413
c5aa993b 414 if (ntype)
c906108c 415 {
c5aa993b 416 if (typeptr == 0)
7ba81444
MS
417 return ntype; /* Don't care about alloc,
418 and have new type. */
c906108c 419 else if (*typeptr == 0)
c5aa993b 420 {
7ba81444 421 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 422 return ntype;
c5aa993b 423 }
c906108c
SS
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
e9bb382b 428 ntype = alloc_type_copy (type);
c906108c
SS
429 if (typeptr)
430 *typeptr = ntype;
431 }
7ba81444 432 else /* We have storage, but need to reset it. */
c906108c
SS
433 {
434 ntype = *typeptr;
1e98b326 435 chain = TYPE_CHAIN (ntype);
2fdde8f8 436 smash_type (ntype);
1e98b326 437 TYPE_CHAIN (ntype) = chain;
c906108c
SS
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
c906108c 445
7ba81444
MS
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
c906108c 449
50810684
UW
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 452 TYPE_CODE (ntype) = refcode;
c5aa993b 453
3b224330 454 *reftype = ntype;
c906108c 455
1e98b326
JB
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
c906108c
SS
464 return ntype;
465}
466
7ba81444
MS
467/* Same as above, but caller doesn't care about memory allocation
468 details. */
c906108c
SS
469
470struct type *
3b224330
AV
471lookup_reference_type (struct type *type, enum type_code refcode)
472{
473 return make_reference_type (type, (struct type **) 0, refcode);
474}
475
476/* Lookup the lvalue reference type for the type TYPE. */
477
478struct type *
479lookup_lvalue_reference_type (struct type *type)
480{
481 return lookup_reference_type (type, TYPE_CODE_REF);
482}
483
484/* Lookup the rvalue reference type for the type TYPE. */
485
486struct type *
487lookup_rvalue_reference_type (struct type *type)
c906108c 488{
3b224330 489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
490}
491
7ba81444
MS
492/* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 495 function type we return. We allocate new memory if needed. */
c906108c
SS
496
497struct type *
0c8b41f1 498make_function_type (struct type *type, struct type **typeptr)
c906108c 499{
52f0bd74 500 struct type *ntype; /* New type */
c906108c
SS
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
e9bb382b 504 ntype = alloc_type_copy (type);
c906108c
SS
505 if (typeptr)
506 *typeptr = ntype;
507 }
7ba81444 508 else /* We have storage, but need to reset it. */
c906108c
SS
509 {
510 ntype = *typeptr;
2fdde8f8 511 smash_type (ntype);
c906108c
SS
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 518
b6cdc2c1
JK
519 INIT_FUNC_SPECIFIC (ntype);
520
c906108c
SS
521 return ntype;
522}
523
c906108c
SS
524/* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527struct type *
fba45db2 528lookup_function_type (struct type *type)
c906108c 529{
0c8b41f1 530 return make_function_type (type, (struct type **) 0);
c906108c
SS
531}
532
71918a86 533/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
71918a86
TT
536
537struct type *
538lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541{
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
e314d629 545 if (nparams > 0)
a6fb9c08 546 {
e314d629
TT
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
54990598
PA
560 else
561 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
562 }
563
71918a86 564 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571}
572
47663de5
MS
573/* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
5212577a
DE
575
576int
61f4b350
TT
577address_space_name_to_int (struct gdbarch *gdbarch,
578 const char *space_identifier)
47663de5 579{
8b2dbe47 580 int type_flags;
d8734c88 581
7ba81444 582 /* Check for known address space delimiters. */
47663de5 583 if (!strcmp (space_identifier, "code"))
876cecd0 584 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 585 else if (!strcmp (space_identifier, "data"))
876cecd0 586 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
587 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
588 && gdbarch_address_class_name_to_type_flags (gdbarch,
589 space_identifier,
590 &type_flags))
8b2dbe47 591 return type_flags;
47663de5 592 else
8a3fe4f8 593 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
594}
595
596/* Identify address space identifier by integer flag as defined in
7ba81444 597 gdbtypes.h -- return the string version of the adress space name. */
47663de5 598
321432c0 599const char *
50810684 600address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 601{
876cecd0 602 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 603 return "code";
876cecd0 604 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 605 return "data";
876cecd0 606 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
607 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
608 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
609 else
610 return NULL;
611}
612
2fdde8f8 613/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
614
615 If STORAGE is non-NULL, create the new type instance there.
616 STORAGE must be in the same obstack as TYPE. */
47663de5 617
b9362cc7 618static struct type *
2fdde8f8
DJ
619make_qualified_type (struct type *type, int new_flags,
620 struct type *storage)
47663de5
MS
621{
622 struct type *ntype;
623
624 ntype = type;
5f61c20e
JK
625 do
626 {
627 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
628 return ntype;
629 ntype = TYPE_CHAIN (ntype);
630 }
631 while (ntype != type);
47663de5 632
2fdde8f8
DJ
633 /* Create a new type instance. */
634 if (storage == NULL)
635 ntype = alloc_type_instance (type);
636 else
637 {
7ba81444
MS
638 /* If STORAGE was provided, it had better be in the same objfile
639 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
640 if one objfile is freed and the other kept, we'd have
641 dangling pointers. */
ad766c0a
JB
642 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
643
2fdde8f8
DJ
644 ntype = storage;
645 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
646 TYPE_CHAIN (ntype) = ntype;
647 }
47663de5
MS
648
649 /* Pointers or references to the original type are not relevant to
2fdde8f8 650 the new type. */
47663de5
MS
651 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
652 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 653
2fdde8f8
DJ
654 /* Chain the new qualified type to the old type. */
655 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
656 TYPE_CHAIN (type) = ntype;
657
658 /* Now set the instance flags and return the new type. */
659 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 660
ab5d3da6
KB
661 /* Set length of new type to that of the original type. */
662 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
663
47663de5
MS
664 return ntype;
665}
666
2fdde8f8
DJ
667/* Make an address-space-delimited variant of a type -- a type that
668 is identical to the one supplied except that it has an address
669 space attribute attached to it (such as "code" or "data").
670
7ba81444
MS
671 The space attributes "code" and "data" are for Harvard
672 architectures. The address space attributes are for architectures
673 which have alternately sized pointers or pointers with alternate
674 representations. */
2fdde8f8
DJ
675
676struct type *
677make_type_with_address_space (struct type *type, int space_flag)
678{
2fdde8f8 679 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
680 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
681 | TYPE_INSTANCE_FLAG_DATA_SPACE
682 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
683 | space_flag);
684
685 return make_qualified_type (type, new_flags, NULL);
686}
c906108c
SS
687
688/* Make a "c-v" variant of a type -- a type that is identical to the
689 one supplied except that it may have const or volatile attributes
690 CNST is a flag for setting the const attribute
691 VOLTL is a flag for setting the volatile attribute
692 TYPE is the base type whose variant we are creating.
c906108c 693
ad766c0a
JB
694 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
695 storage to hold the new qualified type; *TYPEPTR and TYPE must be
696 in the same objfile. Otherwise, allocate fresh memory for the new
697 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
698 new type we construct. */
5212577a 699
c906108c 700struct type *
7ba81444
MS
701make_cv_type (int cnst, int voltl,
702 struct type *type,
703 struct type **typeptr)
c906108c 704{
52f0bd74 705 struct type *ntype; /* New type */
c906108c 706
2fdde8f8 707 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
708 & ~(TYPE_INSTANCE_FLAG_CONST
709 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 710
c906108c 711 if (cnst)
876cecd0 712 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
713
714 if (voltl)
876cecd0 715 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 716
2fdde8f8 717 if (typeptr && *typeptr != NULL)
a02fd225 718 {
ad766c0a
JB
719 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
720 a C-V variant chain that threads across objfiles: if one
721 objfile gets freed, then the other has a broken C-V chain.
722
723 This code used to try to copy over the main type from TYPE to
724 *TYPEPTR if they were in different objfiles, but that's
725 wrong, too: TYPE may have a field list or member function
726 lists, which refer to types of their own, etc. etc. The
727 whole shebang would need to be copied over recursively; you
728 can't have inter-objfile pointers. The only thing to do is
729 to leave stub types as stub types, and look them up afresh by
730 name each time you encounter them. */
731 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
732 }
733
7ba81444
MS
734 ntype = make_qualified_type (type, new_flags,
735 typeptr ? *typeptr : NULL);
c906108c 736
2fdde8f8
DJ
737 if (typeptr != NULL)
738 *typeptr = ntype;
a02fd225 739
2fdde8f8 740 return ntype;
a02fd225 741}
c906108c 742
06d66ee9
TT
743/* Make a 'restrict'-qualified version of TYPE. */
744
745struct type *
746make_restrict_type (struct type *type)
747{
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 | TYPE_INSTANCE_FLAG_RESTRICT),
751 NULL);
752}
753
f1660027
TT
754/* Make a type without const, volatile, or restrict. */
755
756struct type *
757make_unqualified_type (struct type *type)
758{
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 & ~(TYPE_INSTANCE_FLAG_CONST
762 | TYPE_INSTANCE_FLAG_VOLATILE
763 | TYPE_INSTANCE_FLAG_RESTRICT)),
764 NULL);
765}
766
a2c2acaf
MW
767/* Make a '_Atomic'-qualified version of TYPE. */
768
769struct type *
770make_atomic_type (struct type *type)
771{
772 return make_qualified_type (type,
773 (TYPE_INSTANCE_FLAGS (type)
774 | TYPE_INSTANCE_FLAG_ATOMIC),
775 NULL);
776}
777
2fdde8f8
DJ
778/* Replace the contents of ntype with the type *type. This changes the
779 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
780 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 781
cda6c68a
JB
782 In order to build recursive types, it's inevitable that we'll need
783 to update types in place --- but this sort of indiscriminate
784 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
785 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
786 clear if more steps are needed. */
5212577a 787
dd6bda65
DJ
788void
789replace_type (struct type *ntype, struct type *type)
790{
ab5d3da6 791 struct type *chain;
dd6bda65 792
ad766c0a
JB
793 /* These two types had better be in the same objfile. Otherwise,
794 the assignment of one type's main type structure to the other
795 will produce a type with references to objects (names; field
796 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 797 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 798
2fdde8f8 799 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 800
7ba81444
MS
801 /* The type length is not a part of the main type. Update it for
802 each type on the variant chain. */
ab5d3da6 803 chain = ntype;
5f61c20e
JK
804 do
805 {
806 /* Assert that this element of the chain has no address-class bits
807 set in its flags. Such type variants might have type lengths
808 which are supposed to be different from the non-address-class
809 variants. This assertion shouldn't ever be triggered because
810 symbol readers which do construct address-class variants don't
811 call replace_type(). */
812 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
813
814 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
815 chain = TYPE_CHAIN (chain);
816 }
817 while (ntype != chain);
ab5d3da6 818
2fdde8f8
DJ
819 /* Assert that the two types have equivalent instance qualifiers.
820 This should be true for at least all of our debug readers. */
821 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
822}
823
c906108c
SS
824/* Implement direct support for MEMBER_TYPE in GNU C++.
825 May need to construct such a type if this is the first use.
826 The TYPE is the type of the member. The DOMAIN is the type
827 of the aggregate that the member belongs to. */
828
829struct type *
0d5de010 830lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 831{
52f0bd74 832 struct type *mtype;
c906108c 833
e9bb382b 834 mtype = alloc_type_copy (type);
0d5de010 835 smash_to_memberptr_type (mtype, domain, type);
c16abbde 836 return mtype;
c906108c
SS
837}
838
0d5de010
DJ
839/* Return a pointer-to-method type, for a method of type TO_TYPE. */
840
841struct type *
842lookup_methodptr_type (struct type *to_type)
843{
844 struct type *mtype;
845
e9bb382b 846 mtype = alloc_type_copy (to_type);
0b92b5bb 847 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
848 return mtype;
849}
850
7ba81444
MS
851/* Allocate a stub method whose return type is TYPE. This apparently
852 happens for speed of symbol reading, since parsing out the
853 arguments to the method is cpu-intensive, the way we are doing it.
854 So, we will fill in arguments later. This always returns a fresh
855 type. */
c906108c
SS
856
857struct type *
fba45db2 858allocate_stub_method (struct type *type)
c906108c
SS
859{
860 struct type *mtype;
861
e9bb382b
UW
862 mtype = alloc_type_copy (type);
863 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
864 TYPE_LENGTH (mtype) = 1;
865 TYPE_STUB (mtype) = 1;
c906108c 866 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 867 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 868 return mtype;
c906108c
SS
869}
870
0f59d5fc
PA
871/* See gdbtypes.h. */
872
873bool
874operator== (const dynamic_prop &l, const dynamic_prop &r)
875{
876 if (l.kind != r.kind)
877 return false;
878
879 switch (l.kind)
880 {
881 case PROP_UNDEFINED:
882 return true;
883 case PROP_CONST:
884 return l.data.const_val == r.data.const_val;
885 case PROP_ADDR_OFFSET:
886 case PROP_LOCEXPR:
887 case PROP_LOCLIST:
888 return l.data.baton == r.data.baton;
889 }
890
891 gdb_assert_not_reached ("unhandled dynamic_prop kind");
892}
893
894/* See gdbtypes.h. */
895
896bool
897operator== (const range_bounds &l, const range_bounds &r)
898{
899#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
900
901 return (FIELD_EQ (low)
902 && FIELD_EQ (high)
903 && FIELD_EQ (flag_upper_bound_is_count)
904 && FIELD_EQ (flag_bound_evaluated));
905
906#undef FIELD_EQ
907}
908
729efb13
SA
909/* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
911
912struct type *
729efb13
SA
913create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
915 const struct dynamic_prop *high_bound)
c906108c
SS
916{
917 if (result_type == NULL)
e9bb382b 918 result_type = alloc_type_copy (index_type);
c906108c
SS
919 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
920 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 921 if (TYPE_STUB (index_type))
876cecd0 922 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
923 else
924 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 925
43bbcdc2
PH
926 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
927 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
928 TYPE_RANGE_DATA (result_type)->low = *low_bound;
929 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 930
729efb13 931 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 932 TYPE_UNSIGNED (result_type) = 1;
c906108c 933
45e44d27
JB
934 /* Ada allows the declaration of range types whose upper bound is
935 less than the lower bound, so checking the lower bound is not
936 enough. Make sure we do not mark a range type whose upper bound
937 is negative as unsigned. */
938 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
939 TYPE_UNSIGNED (result_type) = 0;
940
262452ec 941 return result_type;
c906108c
SS
942}
943
729efb13
SA
944/* Create a range type using either a blank type supplied in
945 RESULT_TYPE, or creating a new type, inheriting the objfile from
946 INDEX_TYPE.
947
948 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
949 to HIGH_BOUND, inclusive.
950
951 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
952 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
953
954struct type *
955create_static_range_type (struct type *result_type, struct type *index_type,
956 LONGEST low_bound, LONGEST high_bound)
957{
958 struct dynamic_prop low, high;
959
960 low.kind = PROP_CONST;
961 low.data.const_val = low_bound;
962
963 high.kind = PROP_CONST;
964 high.data.const_val = high_bound;
965
966 result_type = create_range_type (result_type, index_type, &low, &high);
967
968 return result_type;
969}
970
80180f79
SA
971/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
972 are static, otherwise returns 0. */
973
974static int
975has_static_range (const struct range_bounds *bounds)
976{
977 return (bounds->low.kind == PROP_CONST
978 && bounds->high.kind == PROP_CONST);
979}
980
981
7ba81444
MS
982/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
983 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
984 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
985
986int
fba45db2 987get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 988{
f168693b 989 type = check_typedef (type);
c906108c
SS
990 switch (TYPE_CODE (type))
991 {
992 case TYPE_CODE_RANGE:
993 *lowp = TYPE_LOW_BOUND (type);
994 *highp = TYPE_HIGH_BOUND (type);
995 return 1;
996 case TYPE_CODE_ENUM:
997 if (TYPE_NFIELDS (type) > 0)
998 {
999 /* The enums may not be sorted by value, so search all
0963b4bd 1000 entries. */
c906108c
SS
1001 int i;
1002
14e75d8e 1003 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1004 for (i = 0; i < TYPE_NFIELDS (type); i++)
1005 {
14e75d8e
JK
1006 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1007 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1008 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1009 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1010 }
1011
7ba81444 1012 /* Set unsigned indicator if warranted. */
c5aa993b 1013 if (*lowp >= 0)
c906108c 1014 {
876cecd0 1015 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1016 }
1017 }
1018 else
1019 {
1020 *lowp = 0;
1021 *highp = -1;
1022 }
1023 return 0;
1024 case TYPE_CODE_BOOL:
1025 *lowp = 0;
1026 *highp = 1;
1027 return 0;
1028 case TYPE_CODE_INT:
c5aa993b 1029 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1030 return -1;
1031 if (!TYPE_UNSIGNED (type))
1032 {
c5aa993b 1033 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1034 *highp = -*lowp - 1;
1035 return 0;
1036 }
86a73007 1037 /* fall through */
c906108c
SS
1038 case TYPE_CODE_CHAR:
1039 *lowp = 0;
1040 /* This round-about calculation is to avoid shifting by
7b83ea04 1041 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1042 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1043 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1044 *highp = (*highp - 1) | *highp;
1045 return 0;
1046 default:
1047 return -1;
1048 }
1049}
1050
dbc98a8b
KW
1051/* Assuming TYPE is a simple, non-empty array type, compute its upper
1052 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1053 Save the high bound into HIGH_BOUND if not NULL.
1054
0963b4bd 1055 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1056 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1057
1058 We now simply use get_discrete_bounds call to get the values
1059 of the low and high bounds.
1060 get_discrete_bounds can return three values:
1061 1, meaning that index is a range,
1062 0, meaning that index is a discrete type,
1063 or -1 for failure. */
1064
1065int
1066get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1067{
1068 struct type *index = TYPE_INDEX_TYPE (type);
1069 LONGEST low = 0;
1070 LONGEST high = 0;
1071 int res;
1072
1073 if (index == NULL)
1074 return 0;
1075
1076 res = get_discrete_bounds (index, &low, &high);
1077 if (res == -1)
1078 return 0;
1079
1080 /* Check if the array bounds are undefined. */
1081 if (res == 1
1082 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1083 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1084 return 0;
1085
1086 if (low_bound)
1087 *low_bound = low;
1088
1089 if (high_bound)
1090 *high_bound = high;
1091
1092 return 1;
1093}
1094
aa715135
JG
1095/* Assuming that TYPE is a discrete type and VAL is a valid integer
1096 representation of a value of this type, save the corresponding
1097 position number in POS.
1098
1099 Its differs from VAL only in the case of enumeration types. In
1100 this case, the position number of the value of the first listed
1101 enumeration literal is zero; the position number of the value of
1102 each subsequent enumeration literal is one more than that of its
1103 predecessor in the list.
1104
1105 Return 1 if the operation was successful. Return zero otherwise,
1106 in which case the value of POS is unmodified.
1107*/
1108
1109int
1110discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1111{
1112 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1113 {
1114 int i;
1115
1116 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1117 {
1118 if (val == TYPE_FIELD_ENUMVAL (type, i))
1119 {
1120 *pos = i;
1121 return 1;
1122 }
1123 }
1124 /* Invalid enumeration value. */
1125 return 0;
1126 }
1127 else
1128 {
1129 *pos = val;
1130 return 1;
1131 }
1132}
1133
7ba81444
MS
1134/* Create an array type using either a blank type supplied in
1135 RESULT_TYPE, or creating a new type, inheriting the objfile from
1136 RANGE_TYPE.
c906108c
SS
1137
1138 Elements will be of type ELEMENT_TYPE, the indices will be of type
1139 RANGE_TYPE.
1140
a405673c
JB
1141 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1142 This byte stride property is added to the resulting array type
1143 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1144 argument can only be used to create types that are objfile-owned
1145 (see add_dyn_prop), meaning that either this function must be called
1146 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1147
1148 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1149 If BIT_STRIDE is not zero, build a packed array type whose element
1150 size is BIT_STRIDE. Otherwise, ignore this parameter.
1151
7ba81444
MS
1152 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1153 sure it is TYPE_CODE_UNDEF before we bash it into an array
1154 type? */
c906108c
SS
1155
1156struct type *
dc53a7ad
JB
1157create_array_type_with_stride (struct type *result_type,
1158 struct type *element_type,
1159 struct type *range_type,
a405673c 1160 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1161 unsigned int bit_stride)
c906108c 1162{
a405673c
JB
1163 if (byte_stride_prop != NULL
1164 && byte_stride_prop->kind == PROP_CONST)
1165 {
1166 /* The byte stride is actually not dynamic. Pretend we were
1167 called with bit_stride set instead of byte_stride_prop.
1168 This will give us the same result type, while avoiding
1169 the need to handle this as a special case. */
1170 bit_stride = byte_stride_prop->data.const_val * 8;
1171 byte_stride_prop = NULL;
1172 }
1173
c906108c 1174 if (result_type == NULL)
e9bb382b
UW
1175 result_type = alloc_type_copy (range_type);
1176
c906108c
SS
1177 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1178 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1179 if (byte_stride_prop == NULL
1180 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1181 && (!type_not_associated (result_type)
1182 && !type_not_allocated (result_type)))
80180f79
SA
1183 {
1184 LONGEST low_bound, high_bound;
1185
1186 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1187 low_bound = high_bound = 0;
f168693b 1188 element_type = check_typedef (element_type);
80180f79
SA
1189 /* Be careful when setting the array length. Ada arrays can be
1190 empty arrays with the high_bound being smaller than the low_bound.
1191 In such cases, the array length should be zero. */
1192 if (high_bound < low_bound)
1193 TYPE_LENGTH (result_type) = 0;
1194 else if (bit_stride > 0)
1195 TYPE_LENGTH (result_type) =
1196 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1197 else
1198 TYPE_LENGTH (result_type) =
1199 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1200 }
ab0d6e0d 1201 else
80180f79
SA
1202 {
1203 /* This type is dynamic and its length needs to be computed
1204 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1205 undefined by setting it to zero. Although we are not expected
1206 to trust TYPE_LENGTH in this case, setting the size to zero
1207 allows us to avoid allocating objects of random sizes in case
1208 we accidently do. */
1209 TYPE_LENGTH (result_type) = 0;
1210 }
1211
c906108c
SS
1212 TYPE_NFIELDS (result_type) = 1;
1213 TYPE_FIELDS (result_type) =
1deafd4e 1214 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1215 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c 1216 if (byte_stride_prop != NULL)
50a82047 1217 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
a405673c 1218 else if (bit_stride > 0)
dc53a7ad 1219 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1220
a9ff5f12 1221 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1222 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1223 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1224
c16abbde 1225 return result_type;
c906108c
SS
1226}
1227
dc53a7ad
JB
1228/* Same as create_array_type_with_stride but with no bit_stride
1229 (BIT_STRIDE = 0), thus building an unpacked array. */
1230
1231struct type *
1232create_array_type (struct type *result_type,
1233 struct type *element_type,
1234 struct type *range_type)
1235{
1236 return create_array_type_with_stride (result_type, element_type,
a405673c 1237 range_type, NULL, 0);
dc53a7ad
JB
1238}
1239
e3506a9f
UW
1240struct type *
1241lookup_array_range_type (struct type *element_type,
63375b74 1242 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1243{
929b5ad4
JB
1244 struct type *index_type;
1245 struct type *range_type;
1246
1247 if (TYPE_OBJFILE_OWNED (element_type))
1248 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1249 else
1250 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1251 range_type = create_static_range_type (NULL, index_type,
1252 low_bound, high_bound);
d8734c88 1253
e3506a9f
UW
1254 return create_array_type (NULL, element_type, range_type);
1255}
1256
7ba81444
MS
1257/* Create a string type using either a blank type supplied in
1258 RESULT_TYPE, or creating a new type. String types are similar
1259 enough to array of char types that we can use create_array_type to
1260 build the basic type and then bash it into a string type.
c906108c
SS
1261
1262 For fixed length strings, the range type contains 0 as the lower
1263 bound and the length of the string minus one as the upper bound.
1264
7ba81444
MS
1265 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1266 sure it is TYPE_CODE_UNDEF before we bash it into a string
1267 type? */
c906108c
SS
1268
1269struct type *
3b7538c0
UW
1270create_string_type (struct type *result_type,
1271 struct type *string_char_type,
7ba81444 1272 struct type *range_type)
c906108c
SS
1273{
1274 result_type = create_array_type (result_type,
f290d38e 1275 string_char_type,
c906108c
SS
1276 range_type);
1277 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1278 return result_type;
c906108c
SS
1279}
1280
e3506a9f
UW
1281struct type *
1282lookup_string_range_type (struct type *string_char_type,
63375b74 1283 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1284{
1285 struct type *result_type;
d8734c88 1286
e3506a9f
UW
1287 result_type = lookup_array_range_type (string_char_type,
1288 low_bound, high_bound);
1289 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1290 return result_type;
1291}
1292
c906108c 1293struct type *
fba45db2 1294create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1295{
c906108c 1296 if (result_type == NULL)
e9bb382b
UW
1297 result_type = alloc_type_copy (domain_type);
1298
c906108c
SS
1299 TYPE_CODE (result_type) = TYPE_CODE_SET;
1300 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1301 TYPE_FIELDS (result_type)
1302 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1303
74a9bb82 1304 if (!TYPE_STUB (domain_type))
c906108c 1305 {
f9780d5b 1306 LONGEST low_bound, high_bound, bit_length;
d8734c88 1307
c906108c
SS
1308 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1309 low_bound = high_bound = 0;
1310 bit_length = high_bound - low_bound + 1;
1311 TYPE_LENGTH (result_type)
1312 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1313 if (low_bound >= 0)
876cecd0 1314 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1315 }
1316 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1317
c16abbde 1318 return result_type;
c906108c
SS
1319}
1320
ea37ba09
DJ
1321/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1322 and any array types nested inside it. */
1323
1324void
1325make_vector_type (struct type *array_type)
1326{
1327 struct type *inner_array, *elt_type;
1328 int flags;
1329
1330 /* Find the innermost array type, in case the array is
1331 multi-dimensional. */
1332 inner_array = array_type;
1333 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1334 inner_array = TYPE_TARGET_TYPE (inner_array);
1335
1336 elt_type = TYPE_TARGET_TYPE (inner_array);
1337 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1338 {
2844d6b5 1339 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1340 elt_type = make_qualified_type (elt_type, flags, NULL);
1341 TYPE_TARGET_TYPE (inner_array) = elt_type;
1342 }
1343
876cecd0 1344 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1345}
1346
794ac428 1347struct type *
ac3aafc7
EZ
1348init_vector_type (struct type *elt_type, int n)
1349{
1350 struct type *array_type;
d8734c88 1351
e3506a9f 1352 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1353 make_vector_type (array_type);
ac3aafc7
EZ
1354 return array_type;
1355}
1356
09e2d7c7
DE
1357/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1358 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1359 confusing. "self" is a common enough replacement for "this".
1360 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1361 TYPE_CODE_METHOD. */
1362
1363struct type *
1364internal_type_self_type (struct type *type)
1365{
1366 switch (TYPE_CODE (type))
1367 {
1368 case TYPE_CODE_METHODPTR:
1369 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1370 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1371 return NULL;
09e2d7c7
DE
1372 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1373 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1374 case TYPE_CODE_METHOD:
eaaf76ab
DE
1375 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1376 return NULL;
09e2d7c7
DE
1377 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1378 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1379 default:
1380 gdb_assert_not_reached ("bad type");
1381 }
1382}
1383
1384/* Set the type of the class that TYPE belongs to.
1385 In c++ this is the class of "this".
1386 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1387 TYPE_CODE_METHOD. */
1388
1389void
1390set_type_self_type (struct type *type, struct type *self_type)
1391{
1392 switch (TYPE_CODE (type))
1393 {
1394 case TYPE_CODE_METHODPTR:
1395 case TYPE_CODE_MEMBERPTR:
1396 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1397 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1398 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1399 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1400 break;
1401 case TYPE_CODE_METHOD:
1402 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1403 INIT_FUNC_SPECIFIC (type);
1404 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1405 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1406 break;
1407 default:
1408 gdb_assert_not_reached ("bad type");
1409 }
1410}
1411
1412/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1413 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1414 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1415 TYPE doesn't include the offset (that's the value of the MEMBER
1416 itself), but does include the structure type into which it points
1417 (for some reason).
c906108c 1418
7ba81444
MS
1419 When "smashing" the type, we preserve the objfile that the old type
1420 pointed to, since we aren't changing where the type is actually
c906108c
SS
1421 allocated. */
1422
1423void
09e2d7c7 1424smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1425 struct type *to_type)
c906108c 1426{
2fdde8f8 1427 smash_type (type);
09e2d7c7 1428 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1429 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1430 set_type_self_type (type, self_type);
0d5de010
DJ
1431 /* Assume that a data member pointer is the same size as a normal
1432 pointer. */
50810684
UW
1433 TYPE_LENGTH (type)
1434 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1435}
1436
0b92b5bb
TT
1437/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1438
1439 When "smashing" the type, we preserve the objfile that the old type
1440 pointed to, since we aren't changing where the type is actually
1441 allocated. */
1442
1443void
1444smash_to_methodptr_type (struct type *type, struct type *to_type)
1445{
1446 smash_type (type);
09e2d7c7 1447 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1448 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1449 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1450 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1451}
1452
09e2d7c7 1453/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1454 METHOD just means `function that gets an extra "this" argument'.
1455
7ba81444
MS
1456 When "smashing" the type, we preserve the objfile that the old type
1457 pointed to, since we aren't changing where the type is actually
c906108c
SS
1458 allocated. */
1459
1460void
09e2d7c7 1461smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1462 struct type *to_type, struct field *args,
1463 int nargs, int varargs)
c906108c 1464{
2fdde8f8 1465 smash_type (type);
09e2d7c7 1466 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1467 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1468 set_type_self_type (type, self_type);
ad2f7632
DJ
1469 TYPE_FIELDS (type) = args;
1470 TYPE_NFIELDS (type) = nargs;
1471 if (varargs)
876cecd0 1472 TYPE_VARARGS (type) = 1;
c906108c 1473 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1474}
1475
a737d952 1476/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1477 Since GCC PR debug/47510 DWARF provides associated information to detect the
1478 anonymous class linkage name from its typedef.
1479
1480 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1481 apply it itself. */
1482
1483const char *
a737d952 1484type_name_or_error (struct type *type)
d8228535
JK
1485{
1486 struct type *saved_type = type;
1487 const char *name;
1488 struct objfile *objfile;
1489
f168693b 1490 type = check_typedef (type);
d8228535 1491
a737d952 1492 name = TYPE_NAME (type);
d8228535
JK
1493 if (name != NULL)
1494 return name;
1495
a737d952 1496 name = TYPE_NAME (saved_type);
d8228535
JK
1497 objfile = TYPE_OBJFILE (saved_type);
1498 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1499 name ? name : "<anonymous>",
1500 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1501}
1502
7ba81444
MS
1503/* Lookup a typedef or primitive type named NAME, visible in lexical
1504 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1505 suitably defined. */
c906108c
SS
1506
1507struct type *
e6c014f2 1508lookup_typename (const struct language_defn *language,
ddd49eee 1509 struct gdbarch *gdbarch, const char *name,
34eaf542 1510 const struct block *block, int noerr)
c906108c 1511{
52f0bd74 1512 struct symbol *sym;
c906108c 1513
1994afbf 1514 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1515 language->la_language, NULL).symbol;
c51fe631
DE
1516 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1517 return SYMBOL_TYPE (sym);
1518
c51fe631
DE
1519 if (noerr)
1520 return NULL;
1521 error (_("No type named %s."), name);
c906108c
SS
1522}
1523
1524struct type *
e6c014f2 1525lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1526 struct gdbarch *gdbarch, const char *name)
c906108c 1527{
224c3ddb 1528 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1529
1530 strcpy (uns, "unsigned ");
1531 strcpy (uns + 9, name);
582942f4 1532 return lookup_typename (language, gdbarch, uns, NULL, 0);
c906108c
SS
1533}
1534
1535struct type *
e6c014f2 1536lookup_signed_typename (const struct language_defn *language,
0d5cff50 1537 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1538{
1539 struct type *t;
224c3ddb 1540 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1541
1542 strcpy (uns, "signed ");
1543 strcpy (uns + 7, name);
582942f4 1544 t = lookup_typename (language, gdbarch, uns, NULL, 1);
7ba81444 1545 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1546 if (t != NULL)
1547 return t;
582942f4 1548 return lookup_typename (language, gdbarch, name, NULL, 0);
c906108c
SS
1549}
1550
1551/* Lookup a structure type named "struct NAME",
1552 visible in lexical block BLOCK. */
1553
1554struct type *
270140bd 1555lookup_struct (const char *name, const struct block *block)
c906108c 1556{
52f0bd74 1557 struct symbol *sym;
c906108c 1558
d12307c1 1559 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1560
1561 if (sym == NULL)
1562 {
8a3fe4f8 1563 error (_("No struct type named %s."), name);
c906108c
SS
1564 }
1565 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1566 {
7ba81444
MS
1567 error (_("This context has class, union or enum %s, not a struct."),
1568 name);
c906108c
SS
1569 }
1570 return (SYMBOL_TYPE (sym));
1571}
1572
1573/* Lookup a union type named "union NAME",
1574 visible in lexical block BLOCK. */
1575
1576struct type *
270140bd 1577lookup_union (const char *name, const struct block *block)
c906108c 1578{
52f0bd74 1579 struct symbol *sym;
c5aa993b 1580 struct type *t;
c906108c 1581
d12307c1 1582 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1583
1584 if (sym == NULL)
8a3fe4f8 1585 error (_("No union type named %s."), name);
c906108c 1586
c5aa993b 1587 t = SYMBOL_TYPE (sym);
c906108c
SS
1588
1589 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1590 return t;
c906108c 1591
7ba81444
MS
1592 /* If we get here, it's not a union. */
1593 error (_("This context has class, struct or enum %s, not a union."),
1594 name);
c906108c
SS
1595}
1596
c906108c
SS
1597/* Lookup an enum type named "enum NAME",
1598 visible in lexical block BLOCK. */
1599
1600struct type *
270140bd 1601lookup_enum (const char *name, const struct block *block)
c906108c 1602{
52f0bd74 1603 struct symbol *sym;
c906108c 1604
d12307c1 1605 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1606 if (sym == NULL)
1607 {
8a3fe4f8 1608 error (_("No enum type named %s."), name);
c906108c
SS
1609 }
1610 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1611 {
7ba81444
MS
1612 error (_("This context has class, struct or union %s, not an enum."),
1613 name);
c906108c
SS
1614 }
1615 return (SYMBOL_TYPE (sym));
1616}
1617
1618/* Lookup a template type named "template NAME<TYPE>",
1619 visible in lexical block BLOCK. */
1620
1621struct type *
61f4b350 1622lookup_template_type (const char *name, struct type *type,
270140bd 1623 const struct block *block)
c906108c
SS
1624{
1625 struct symbol *sym;
7ba81444
MS
1626 char *nam = (char *)
1627 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1628
c906108c
SS
1629 strcpy (nam, name);
1630 strcat (nam, "<");
0004e5a2 1631 strcat (nam, TYPE_NAME (type));
0963b4bd 1632 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1633
d12307c1 1634 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1635
1636 if (sym == NULL)
1637 {
8a3fe4f8 1638 error (_("No template type named %s."), name);
c906108c
SS
1639 }
1640 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1641 {
7ba81444
MS
1642 error (_("This context has class, union or enum %s, not a struct."),
1643 name);
c906108c
SS
1644 }
1645 return (SYMBOL_TYPE (sym));
1646}
1647
ef0bd204 1648/* See gdbtypes.h. */
c906108c 1649
ef0bd204
JB
1650struct_elt
1651lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1652{
1653 int i;
1654
1655 for (;;)
1656 {
f168693b 1657 type = check_typedef (type);
c906108c
SS
1658 if (TYPE_CODE (type) != TYPE_CODE_PTR
1659 && TYPE_CODE (type) != TYPE_CODE_REF)
1660 break;
1661 type = TYPE_TARGET_TYPE (type);
1662 }
1663
687d6395
MS
1664 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1665 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1666 {
2f408ecb
PA
1667 std::string type_name = type_to_string (type);
1668 error (_("Type %s is not a structure or union type."),
1669 type_name.c_str ());
c906108c
SS
1670 }
1671
c906108c
SS
1672 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1673 {
0d5cff50 1674 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1675
db577aea 1676 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1677 {
ef0bd204 1678 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1679 }
f5a010c0
PM
1680 else if (!t_field_name || *t_field_name == '\0')
1681 {
ef0bd204
JB
1682 struct_elt elt
1683 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1684 if (elt.field != NULL)
1685 {
1686 elt.offset += TYPE_FIELD_BITPOS (type, i);
1687 return elt;
1688 }
f5a010c0 1689 }
c906108c
SS
1690 }
1691
1692 /* OK, it's not in this class. Recursively check the baseclasses. */
1693 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1694 {
ef0bd204
JB
1695 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1696 if (elt.field != NULL)
1697 return elt;
c906108c
SS
1698 }
1699
1700 if (noerr)
ef0bd204 1701 return {nullptr, 0};
c5aa993b 1702
2f408ecb
PA
1703 std::string type_name = type_to_string (type);
1704 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1705}
1706
ef0bd204
JB
1707/* See gdbtypes.h. */
1708
1709struct type *
1710lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1711{
1712 struct_elt elt = lookup_struct_elt (type, name, noerr);
1713 if (elt.field != NULL)
1714 return FIELD_TYPE (*elt.field);
1715 else
1716 return NULL;
1717}
1718
ed3ef339
DE
1719/* Store in *MAX the largest number representable by unsigned integer type
1720 TYPE. */
1721
1722void
1723get_unsigned_type_max (struct type *type, ULONGEST *max)
1724{
1725 unsigned int n;
1726
f168693b 1727 type = check_typedef (type);
ed3ef339
DE
1728 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1729 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1730
1731 /* Written this way to avoid overflow. */
1732 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1733 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1734}
1735
1736/* Store in *MIN, *MAX the smallest and largest numbers representable by
1737 signed integer type TYPE. */
1738
1739void
1740get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1741{
1742 unsigned int n;
1743
f168693b 1744 type = check_typedef (type);
ed3ef339
DE
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1746 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1747
1748 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1749 *min = -((ULONGEST) 1 << (n - 1));
1750 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1751}
1752
ae6ae975
DE
1753/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1754 cplus_stuff.vptr_fieldno.
1755
1756 cplus_stuff is initialized to cplus_struct_default which does not
1757 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1758 designated initializers). We cope with that here. */
1759
1760int
1761internal_type_vptr_fieldno (struct type *type)
1762{
f168693b 1763 type = check_typedef (type);
ae6ae975
DE
1764 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1765 || TYPE_CODE (type) == TYPE_CODE_UNION);
1766 if (!HAVE_CPLUS_STRUCT (type))
1767 return -1;
1768 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1769}
1770
1771/* Set the value of cplus_stuff.vptr_fieldno. */
1772
1773void
1774set_type_vptr_fieldno (struct type *type, int fieldno)
1775{
f168693b 1776 type = check_typedef (type);
ae6ae975
DE
1777 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1778 || TYPE_CODE (type) == TYPE_CODE_UNION);
1779 if (!HAVE_CPLUS_STRUCT (type))
1780 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1781 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1782}
1783
1784/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1785 cplus_stuff.vptr_basetype. */
1786
1787struct type *
1788internal_type_vptr_basetype (struct type *type)
1789{
f168693b 1790 type = check_typedef (type);
ae6ae975
DE
1791 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1792 || TYPE_CODE (type) == TYPE_CODE_UNION);
1793 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1794 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1795}
1796
1797/* Set the value of cplus_stuff.vptr_basetype. */
1798
1799void
1800set_type_vptr_basetype (struct type *type, struct type *basetype)
1801{
f168693b 1802 type = check_typedef (type);
ae6ae975
DE
1803 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1804 || TYPE_CODE (type) == TYPE_CODE_UNION);
1805 if (!HAVE_CPLUS_STRUCT (type))
1806 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1807 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1808}
1809
81fe8080
DE
1810/* Lookup the vptr basetype/fieldno values for TYPE.
1811 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1812 vptr_fieldno. Also, if found and basetype is from the same objfile,
1813 cache the results.
1814 If not found, return -1 and ignore BASETYPEP.
1815 Callers should be aware that in some cases (for example,
c906108c 1816 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1817 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1818 this function will not be able to find the
7ba81444 1819 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1820 vptr_basetype will remain NULL or incomplete. */
c906108c 1821
81fe8080
DE
1822int
1823get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1824{
f168693b 1825 type = check_typedef (type);
c906108c
SS
1826
1827 if (TYPE_VPTR_FIELDNO (type) < 0)
1828 {
1829 int i;
1830
7ba81444
MS
1831 /* We must start at zero in case the first (and only) baseclass
1832 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1833 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1834 {
81fe8080
DE
1835 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1836 int fieldno;
1837 struct type *basetype;
1838
1839 fieldno = get_vptr_fieldno (baseclass, &basetype);
1840 if (fieldno >= 0)
c906108c 1841 {
81fe8080 1842 /* If the type comes from a different objfile we can't cache
0963b4bd 1843 it, it may have a different lifetime. PR 2384 */
5ef73790 1844 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1845 {
ae6ae975
DE
1846 set_type_vptr_fieldno (type, fieldno);
1847 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1848 }
1849 if (basetypep)
1850 *basetypep = basetype;
1851 return fieldno;
c906108c
SS
1852 }
1853 }
81fe8080
DE
1854
1855 /* Not found. */
1856 return -1;
1857 }
1858 else
1859 {
1860 if (basetypep)
1861 *basetypep = TYPE_VPTR_BASETYPE (type);
1862 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1863 }
1864}
1865
44e1a9eb
DJ
1866static void
1867stub_noname_complaint (void)
1868{
b98664d3 1869 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1870}
1871
a405673c
JB
1872/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1873 attached to it, and that property has a non-constant value. */
1874
1875static int
1876array_type_has_dynamic_stride (struct type *type)
1877{
1878 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1879
1880 return (prop != NULL && prop->kind != PROP_CONST);
1881}
1882
d98b7a16 1883/* Worker for is_dynamic_type. */
80180f79 1884
d98b7a16 1885static int
ee715b5a 1886is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1887{
1888 type = check_typedef (type);
1889
e771e4be
PMR
1890 /* We only want to recognize references at the outermost level. */
1891 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1892 type = check_typedef (TYPE_TARGET_TYPE (type));
1893
3cdcd0ce
JB
1894 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1895 dynamic, even if the type itself is statically defined.
1896 From a user's point of view, this may appear counter-intuitive;
1897 but it makes sense in this context, because the point is to determine
1898 whether any part of the type needs to be resolved before it can
1899 be exploited. */
1900 if (TYPE_DATA_LOCATION (type) != NULL
1901 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1902 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1903 return 1;
1904
3f2f83dd
KB
1905 if (TYPE_ASSOCIATED_PROP (type))
1906 return 1;
1907
1908 if (TYPE_ALLOCATED_PROP (type))
1909 return 1;
1910
80180f79
SA
1911 switch (TYPE_CODE (type))
1912 {
6f8a3220 1913 case TYPE_CODE_RANGE:
ddb87a81
JB
1914 {
1915 /* A range type is obviously dynamic if it has at least one
1916 dynamic bound. But also consider the range type to be
1917 dynamic when its subtype is dynamic, even if the bounds
1918 of the range type are static. It allows us to assume that
1919 the subtype of a static range type is also static. */
1920 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1921 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1922 }
6f8a3220 1923
80180f79
SA
1924 case TYPE_CODE_ARRAY:
1925 {
80180f79 1926 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1927
a405673c 1928 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1929 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1930 return 1;
a405673c
JB
1931 /* ... or the elements it contains have a dynamic contents... */
1932 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1933 return 1;
1934 /* ... or if it has a dynamic stride... */
1935 if (array_type_has_dynamic_stride (type))
1936 return 1;
1937 return 0;
80180f79 1938 }
012370f6
TT
1939
1940 case TYPE_CODE_STRUCT:
1941 case TYPE_CODE_UNION:
1942 {
1943 int i;
1944
1945 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1946 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1947 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1948 return 1;
1949 }
1950 break;
80180f79 1951 }
92e2a17f
TT
1952
1953 return 0;
80180f79
SA
1954}
1955
d98b7a16
TT
1956/* See gdbtypes.h. */
1957
1958int
1959is_dynamic_type (struct type *type)
1960{
ee715b5a 1961 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1962}
1963
df25ebbd 1964static struct type *resolve_dynamic_type_internal
ee715b5a 1965 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1966
df25ebbd
JB
1967/* Given a dynamic range type (dyn_range_type) and a stack of
1968 struct property_addr_info elements, return a static version
1969 of that type. */
d190df30 1970
80180f79 1971static struct type *
df25ebbd
JB
1972resolve_dynamic_range (struct type *dyn_range_type,
1973 struct property_addr_info *addr_stack)
80180f79
SA
1974{
1975 CORE_ADDR value;
ddb87a81 1976 struct type *static_range_type, *static_target_type;
80180f79 1977 const struct dynamic_prop *prop;
80180f79
SA
1978 struct dynamic_prop low_bound, high_bound;
1979
6f8a3220 1980 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1981
6f8a3220 1982 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1983 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1984 {
1985 low_bound.kind = PROP_CONST;
1986 low_bound.data.const_val = value;
1987 }
1988 else
1989 {
1990 low_bound.kind = PROP_UNDEFINED;
1991 low_bound.data.const_val = 0;
1992 }
1993
6f8a3220 1994 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 1995 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1996 {
1997 high_bound.kind = PROP_CONST;
1998 high_bound.data.const_val = value;
c451ebe5 1999
6f8a3220 2000 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2001 high_bound.data.const_val
2002 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2003 }
2004 else
2005 {
2006 high_bound.kind = PROP_UNDEFINED;
2007 high_bound.data.const_val = 0;
2008 }
2009
ddb87a81
JB
2010 static_target_type
2011 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2012 addr_stack, 0);
6f8a3220 2013 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 2014 static_target_type,
6f8a3220
JB
2015 &low_bound, &high_bound);
2016 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2017 return static_range_type;
2018}
2019
2020/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
2021 ADDR_STACK is a stack of struct property_addr_info to be used
2022 if needed during the dynamic resolution. */
6f8a3220
JB
2023
2024static struct type *
df25ebbd
JB
2025resolve_dynamic_array (struct type *type,
2026 struct property_addr_info *addr_stack)
6f8a3220
JB
2027{
2028 CORE_ADDR value;
2029 struct type *elt_type;
2030 struct type *range_type;
2031 struct type *ary_dim;
3f2f83dd 2032 struct dynamic_prop *prop;
a405673c 2033 unsigned int bit_stride = 0;
6f8a3220
JB
2034
2035 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2036
3f2f83dd
KB
2037 type = copy_type (type);
2038
6f8a3220
JB
2039 elt_type = type;
2040 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2041 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2042
3f2f83dd
KB
2043 /* Resolve allocated/associated here before creating a new array type, which
2044 will update the length of the array accordingly. */
2045 prop = TYPE_ALLOCATED_PROP (type);
2046 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2047 {
2048 TYPE_DYN_PROP_ADDR (prop) = value;
2049 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2050 }
2051 prop = TYPE_ASSOCIATED_PROP (type);
2052 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2053 {
2054 TYPE_DYN_PROP_ADDR (prop) = value;
2055 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2056 }
2057
80180f79
SA
2058 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2059
2060 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 2061 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
2062 else
2063 elt_type = TYPE_TARGET_TYPE (type);
2064
a405673c
JB
2065 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2066 if (prop != NULL)
2067 {
2068 int prop_eval_ok
2069 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2070
2071 if (prop_eval_ok)
2072 {
2073 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2074 bit_stride = (unsigned int) (value * 8);
2075 }
2076 else
2077 {
2078 /* Could be a bug in our code, but it could also happen
2079 if the DWARF info is not correct. Issue a warning,
2080 and assume no byte/bit stride (leave bit_stride = 0). */
2081 warning (_("cannot determine array stride for type %s"),
2082 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2083 }
2084 }
2085 else
2086 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2087
2088 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2089 bit_stride);
80180f79
SA
2090}
2091
012370f6 2092/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2093 bounds. ADDR_STACK is a stack of struct property_addr_info
2094 to be used if needed during the dynamic resolution. */
012370f6
TT
2095
2096static struct type *
df25ebbd
JB
2097resolve_dynamic_union (struct type *type,
2098 struct property_addr_info *addr_stack)
012370f6
TT
2099{
2100 struct type *resolved_type;
2101 int i;
2102 unsigned int max_len = 0;
2103
2104 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2105
2106 resolved_type = copy_type (type);
2107 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2108 = (struct field *) TYPE_ALLOC (resolved_type,
2109 TYPE_NFIELDS (resolved_type)
2110 * sizeof (struct field));
012370f6
TT
2111 memcpy (TYPE_FIELDS (resolved_type),
2112 TYPE_FIELDS (type),
2113 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2114 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2115 {
2116 struct type *t;
2117
2118 if (field_is_static (&TYPE_FIELD (type, i)))
2119 continue;
2120
d98b7a16 2121 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2122 addr_stack, 0);
012370f6
TT
2123 TYPE_FIELD_TYPE (resolved_type, i) = t;
2124 if (TYPE_LENGTH (t) > max_len)
2125 max_len = TYPE_LENGTH (t);
2126 }
2127
2128 TYPE_LENGTH (resolved_type) = max_len;
2129 return resolved_type;
2130}
2131
2132/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2133 bounds. ADDR_STACK is a stack of struct property_addr_info to
2134 be used if needed during the dynamic resolution. */
012370f6
TT
2135
2136static struct type *
df25ebbd
JB
2137resolve_dynamic_struct (struct type *type,
2138 struct property_addr_info *addr_stack)
012370f6
TT
2139{
2140 struct type *resolved_type;
2141 int i;
6908c509 2142 unsigned resolved_type_bit_length = 0;
012370f6
TT
2143
2144 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2145 gdb_assert (TYPE_NFIELDS (type) > 0);
2146
2147 resolved_type = copy_type (type);
2148 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2149 = (struct field *) TYPE_ALLOC (resolved_type,
2150 TYPE_NFIELDS (resolved_type)
2151 * sizeof (struct field));
012370f6
TT
2152 memcpy (TYPE_FIELDS (resolved_type),
2153 TYPE_FIELDS (type),
2154 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2155 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2156 {
6908c509 2157 unsigned new_bit_length;
df25ebbd 2158 struct property_addr_info pinfo;
012370f6
TT
2159
2160 if (field_is_static (&TYPE_FIELD (type, i)))
2161 continue;
2162
6908c509
JB
2163 /* As we know this field is not a static field, the field's
2164 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2165 this is the case, but only trigger a simple error rather
2166 than an internal error if that fails. While failing
2167 that verification indicates a bug in our code, the error
2168 is not severe enough to suggest to the user he stops
2169 his debugging session because of it. */
df25ebbd 2170 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2171 error (_("Cannot determine struct field location"
2172 " (invalid location kind)"));
df25ebbd
JB
2173
2174 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2175 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2176 pinfo.addr
2177 = (addr_stack->addr
2178 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2179 pinfo.next = addr_stack;
2180
2181 TYPE_FIELD_TYPE (resolved_type, i)
2182 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2183 &pinfo, 0);
df25ebbd
JB
2184 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2185 == FIELD_LOC_KIND_BITPOS);
2186
6908c509
JB
2187 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2188 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2189 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2190 else
2191 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2192 * TARGET_CHAR_BIT);
2193
2194 /* Normally, we would use the position and size of the last field
2195 to determine the size of the enclosing structure. But GCC seems
2196 to be encoding the position of some fields incorrectly when
2197 the struct contains a dynamic field that is not placed last.
2198 So we compute the struct size based on the field that has
2199 the highest position + size - probably the best we can do. */
2200 if (new_bit_length > resolved_type_bit_length)
2201 resolved_type_bit_length = new_bit_length;
012370f6
TT
2202 }
2203
9920b434
BH
2204 /* The length of a type won't change for fortran, but it does for C and Ada.
2205 For fortran the size of dynamic fields might change over time but not the
2206 type length of the structure. If we adapt it, we run into problems
2207 when calculating the element offset for arrays of structs. */
2208 if (current_language->la_language != language_fortran)
2209 TYPE_LENGTH (resolved_type)
2210 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2211
9e195661
PMR
2212 /* The Ada language uses this field as a cache for static fixed types: reset
2213 it as RESOLVED_TYPE must have its own static fixed type. */
2214 TYPE_TARGET_TYPE (resolved_type) = NULL;
2215
012370f6
TT
2216 return resolved_type;
2217}
2218
d98b7a16 2219/* Worker for resolved_dynamic_type. */
80180f79 2220
d98b7a16 2221static struct type *
df25ebbd 2222resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2223 struct property_addr_info *addr_stack,
2224 int top_level)
80180f79
SA
2225{
2226 struct type *real_type = check_typedef (type);
6f8a3220 2227 struct type *resolved_type = type;
d9823cbb 2228 struct dynamic_prop *prop;
3cdcd0ce 2229 CORE_ADDR value;
80180f79 2230
ee715b5a 2231 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2232 return type;
2233
5537b577 2234 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2235 {
cac9b138
JK
2236 resolved_type = copy_type (type);
2237 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2238 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2239 top_level);
5537b577
JK
2240 }
2241 else
2242 {
2243 /* Before trying to resolve TYPE, make sure it is not a stub. */
2244 type = real_type;
012370f6 2245
5537b577
JK
2246 switch (TYPE_CODE (type))
2247 {
e771e4be
PMR
2248 case TYPE_CODE_REF:
2249 {
2250 struct property_addr_info pinfo;
2251
2252 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2253 pinfo.valaddr = NULL;
2254 if (addr_stack->valaddr != NULL)
2255 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2256 else
2257 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2258 pinfo.next = addr_stack;
2259
2260 resolved_type = copy_type (type);
2261 TYPE_TARGET_TYPE (resolved_type)
2262 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2263 &pinfo, top_level);
2264 break;
2265 }
2266
5537b577 2267 case TYPE_CODE_ARRAY:
df25ebbd 2268 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2269 break;
2270
2271 case TYPE_CODE_RANGE:
df25ebbd 2272 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2273 break;
2274
2275 case TYPE_CODE_UNION:
df25ebbd 2276 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2277 break;
2278
2279 case TYPE_CODE_STRUCT:
df25ebbd 2280 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2281 break;
2282 }
6f8a3220 2283 }
80180f79 2284
3cdcd0ce
JB
2285 /* Resolve data_location attribute. */
2286 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2287 if (prop != NULL
2288 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2289 {
d9823cbb
KB
2290 TYPE_DYN_PROP_ADDR (prop) = value;
2291 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2292 }
3cdcd0ce 2293
80180f79
SA
2294 return resolved_type;
2295}
2296
d98b7a16
TT
2297/* See gdbtypes.h */
2298
2299struct type *
c3345124
JB
2300resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2301 CORE_ADDR addr)
d98b7a16 2302{
c3345124
JB
2303 struct property_addr_info pinfo
2304 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2305
ee715b5a 2306 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2307}
2308
d9823cbb
KB
2309/* See gdbtypes.h */
2310
2311struct dynamic_prop *
2312get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2313{
2314 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2315
2316 while (node != NULL)
2317 {
2318 if (node->prop_kind == prop_kind)
283a9958 2319 return &node->prop;
d9823cbb
KB
2320 node = node->next;
2321 }
2322 return NULL;
2323}
2324
2325/* See gdbtypes.h */
2326
2327void
2328add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2329 struct type *type)
d9823cbb
KB
2330{
2331 struct dynamic_prop_list *temp;
2332
2333 gdb_assert (TYPE_OBJFILE_OWNED (type));
2334
50a82047
TT
2335 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2336 struct dynamic_prop_list);
d9823cbb 2337 temp->prop_kind = prop_kind;
283a9958 2338 temp->prop = prop;
d9823cbb
KB
2339 temp->next = TYPE_DYN_PROP_LIST (type);
2340
2341 TYPE_DYN_PROP_LIST (type) = temp;
2342}
2343
9920b434
BH
2344/* Remove dynamic property from TYPE in case it exists. */
2345
2346void
2347remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2348 struct type *type)
2349{
2350 struct dynamic_prop_list *prev_node, *curr_node;
2351
2352 curr_node = TYPE_DYN_PROP_LIST (type);
2353 prev_node = NULL;
2354
2355 while (NULL != curr_node)
2356 {
2357 if (curr_node->prop_kind == prop_kind)
2358 {
2359 /* Update the linked list but don't free anything.
2360 The property was allocated on objstack and it is not known
2361 if we are on top of it. Nevertheless, everything is released
2362 when the complete objstack is freed. */
2363 if (NULL == prev_node)
2364 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2365 else
2366 prev_node->next = curr_node->next;
2367
2368 return;
2369 }
2370
2371 prev_node = curr_node;
2372 curr_node = curr_node->next;
2373 }
2374}
d9823cbb 2375
92163a10
JK
2376/* Find the real type of TYPE. This function returns the real type,
2377 after removing all layers of typedefs, and completing opaque or stub
2378 types. Completion changes the TYPE argument, but stripping of
2379 typedefs does not.
2380
2381 Instance flags (e.g. const/volatile) are preserved as typedefs are
2382 stripped. If necessary a new qualified form of the underlying type
2383 is created.
2384
2385 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2386 not been computed and we're either in the middle of reading symbols, or
2387 there was no name for the typedef in the debug info.
2388
9bc118a5
DE
2389 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2390 QUITs in the symbol reading code can also throw.
2391 Thus this function can throw an exception.
2392
92163a10
JK
2393 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2394 the target type.
c906108c
SS
2395
2396 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2397 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2398 definition, so we can use it in future. There used to be a comment
2399 (but not any code) that if we don't find a full definition, we'd
2400 set a flag so we don't spend time in the future checking the same
2401 type. That would be a mistake, though--we might load in more
92163a10 2402 symbols which contain a full definition for the type. */
c906108c
SS
2403
2404struct type *
a02fd225 2405check_typedef (struct type *type)
c906108c
SS
2406{
2407 struct type *orig_type = type;
92163a10
JK
2408 /* While we're removing typedefs, we don't want to lose qualifiers.
2409 E.g., const/volatile. */
2410 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2411
423c0af8
MS
2412 gdb_assert (type);
2413
c906108c
SS
2414 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2415 {
2416 if (!TYPE_TARGET_TYPE (type))
2417 {
0d5cff50 2418 const char *name;
c906108c
SS
2419 struct symbol *sym;
2420
2421 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2422 reading a symtab. Infinite recursion is one danger. */
c906108c 2423 if (currently_reading_symtab)
92163a10 2424 return make_qualified_type (type, instance_flags, NULL);
c906108c 2425
a737d952 2426 name = TYPE_NAME (type);
e86ca25f
TT
2427 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2428 VAR_DOMAIN as appropriate? */
c906108c
SS
2429 if (name == NULL)
2430 {
23136709 2431 stub_noname_complaint ();
92163a10 2432 return make_qualified_type (type, instance_flags, NULL);
c906108c 2433 }
d12307c1 2434 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2435 if (sym)
2436 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2437 else /* TYPE_CODE_UNDEF */
e9bb382b 2438 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2439 }
2440 type = TYPE_TARGET_TYPE (type);
c906108c 2441
92163a10
JK
2442 /* Preserve the instance flags as we traverse down the typedef chain.
2443
2444 Handling address spaces/classes is nasty, what do we do if there's a
2445 conflict?
2446 E.g., what if an outer typedef marks the type as class_1 and an inner
2447 typedef marks the type as class_2?
2448 This is the wrong place to do such error checking. We leave it to
2449 the code that created the typedef in the first place to flag the
2450 error. We just pick the outer address space (akin to letting the
2451 outer cast in a chain of casting win), instead of assuming
2452 "it can't happen". */
2453 {
2454 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2455 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2456 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2457 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2458
2459 /* Treat code vs data spaces and address classes separately. */
2460 if ((instance_flags & ALL_SPACES) != 0)
2461 new_instance_flags &= ~ALL_SPACES;
2462 if ((instance_flags & ALL_CLASSES) != 0)
2463 new_instance_flags &= ~ALL_CLASSES;
2464
2465 instance_flags |= new_instance_flags;
2466 }
2467 }
a02fd225 2468
7ba81444
MS
2469 /* If this is a struct/class/union with no fields, then check
2470 whether a full definition exists somewhere else. This is for
2471 systems where a type definition with no fields is issued for such
2472 types, instead of identifying them as stub types in the first
2473 place. */
c5aa993b 2474
7ba81444
MS
2475 if (TYPE_IS_OPAQUE (type)
2476 && opaque_type_resolution
2477 && !currently_reading_symtab)
c906108c 2478 {
a737d952 2479 const char *name = TYPE_NAME (type);
c5aa993b 2480 struct type *newtype;
d8734c88 2481
c906108c
SS
2482 if (name == NULL)
2483 {
23136709 2484 stub_noname_complaint ();
92163a10 2485 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2486 }
2487 newtype = lookup_transparent_type (name);
ad766c0a 2488
c906108c 2489 if (newtype)
ad766c0a 2490 {
7ba81444
MS
2491 /* If the resolved type and the stub are in the same
2492 objfile, then replace the stub type with the real deal.
2493 But if they're in separate objfiles, leave the stub
2494 alone; we'll just look up the transparent type every time
2495 we call check_typedef. We can't create pointers between
2496 types allocated to different objfiles, since they may
2497 have different lifetimes. Trying to copy NEWTYPE over to
2498 TYPE's objfile is pointless, too, since you'll have to
2499 move over any other types NEWTYPE refers to, which could
2500 be an unbounded amount of stuff. */
ad766c0a 2501 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2502 type = make_qualified_type (newtype,
2503 TYPE_INSTANCE_FLAGS (type),
2504 type);
ad766c0a
JB
2505 else
2506 type = newtype;
2507 }
c906108c 2508 }
7ba81444
MS
2509 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2510 types. */
74a9bb82 2511 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2512 {
a737d952 2513 const char *name = TYPE_NAME (type);
e86ca25f
TT
2514 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2515 as appropriate? */
c906108c 2516 struct symbol *sym;
d8734c88 2517
c906108c
SS
2518 if (name == NULL)
2519 {
23136709 2520 stub_noname_complaint ();
92163a10 2521 return make_qualified_type (type, instance_flags, NULL);
c906108c 2522 }
d12307c1 2523 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2524 if (sym)
c26f2453
JB
2525 {
2526 /* Same as above for opaque types, we can replace the stub
92163a10 2527 with the complete type only if they are in the same
c26f2453
JB
2528 objfile. */
2529 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2530 type = make_qualified_type (SYMBOL_TYPE (sym),
2531 TYPE_INSTANCE_FLAGS (type),
2532 type);
c26f2453
JB
2533 else
2534 type = SYMBOL_TYPE (sym);
2535 }
c906108c
SS
2536 }
2537
74a9bb82 2538 if (TYPE_TARGET_STUB (type))
c906108c 2539 {
c906108c
SS
2540 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2541
74a9bb82 2542 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2543 {
73e2eb35 2544 /* Nothing we can do. */
c5aa993b 2545 }
c906108c
SS
2546 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2547 {
2548 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2549 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2550 }
2551 }
92163a10
JK
2552
2553 type = make_qualified_type (type, instance_flags, NULL);
2554
7ba81444 2555 /* Cache TYPE_LENGTH for future use. */
c906108c 2556 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2557
c906108c
SS
2558 return type;
2559}
2560
7ba81444 2561/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2562 occurs, silently return a void type. */
c91ecb25 2563
b9362cc7 2564static struct type *
48319d1f 2565safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2566{
2567 struct ui_file *saved_gdb_stderr;
34365054 2568 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2569
7ba81444 2570 /* Suppress error messages. */
c91ecb25 2571 saved_gdb_stderr = gdb_stderr;
d7e74731 2572 gdb_stderr = &null_stream;
c91ecb25 2573
7ba81444 2574 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2575 try
8e7b59a5
KS
2576 {
2577 type = parse_and_eval_type (p, length);
2578 }
230d2906 2579 catch (const gdb_exception_error &except)
492d29ea
PA
2580 {
2581 type = builtin_type (gdbarch)->builtin_void;
2582 }
c91ecb25 2583
7ba81444 2584 /* Stop suppressing error messages. */
c91ecb25
ND
2585 gdb_stderr = saved_gdb_stderr;
2586
2587 return type;
2588}
2589
c906108c
SS
2590/* Ugly hack to convert method stubs into method types.
2591
7ba81444
MS
2592 He ain't kiddin'. This demangles the name of the method into a
2593 string including argument types, parses out each argument type,
2594 generates a string casting a zero to that type, evaluates the
2595 string, and stuffs the resulting type into an argtype vector!!!
2596 Then it knows the type of the whole function (including argument
2597 types for overloading), which info used to be in the stab's but was
2598 removed to hack back the space required for them. */
c906108c 2599
de17c821 2600static void
fba45db2 2601check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2602{
50810684 2603 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2604 struct fn_field *f;
2605 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2606 char *demangled_name = gdb_demangle (mangled_name,
2607 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2608 char *argtypetext, *p;
2609 int depth = 0, argcount = 1;
ad2f7632 2610 struct field *argtypes;
c906108c
SS
2611 struct type *mtype;
2612
2613 /* Make sure we got back a function string that we can use. */
2614 if (demangled_name)
2615 p = strchr (demangled_name, '(');
502dcf4e
AC
2616 else
2617 p = NULL;
c906108c
SS
2618
2619 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2620 error (_("Internal: Cannot demangle mangled name `%s'."),
2621 mangled_name);
c906108c
SS
2622
2623 /* Now, read in the parameters that define this type. */
2624 p += 1;
2625 argtypetext = p;
2626 while (*p)
2627 {
070ad9f0 2628 if (*p == '(' || *p == '<')
c906108c
SS
2629 {
2630 depth += 1;
2631 }
070ad9f0 2632 else if (*p == ')' || *p == '>')
c906108c
SS
2633 {
2634 depth -= 1;
2635 }
2636 else if (*p == ',' && depth == 0)
2637 {
2638 argcount += 1;
2639 }
2640
2641 p += 1;
2642 }
2643
ad2f7632 2644 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2645 if (startswith (argtypetext, "(void)"))
ad2f7632 2646 argcount -= 1;
c906108c 2647
ad2f7632
DJ
2648 /* We need one extra slot, for the THIS pointer. */
2649
2650 argtypes = (struct field *)
2651 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2652 p = argtypetext;
4a1970e4
DJ
2653
2654 /* Add THIS pointer for non-static methods. */
2655 f = TYPE_FN_FIELDLIST1 (type, method_id);
2656 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2657 argcount = 0;
2658 else
2659 {
ad2f7632 2660 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2661 argcount = 1;
2662 }
c906108c 2663
0963b4bd 2664 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2665 {
2666 depth = 0;
2667 while (*p)
2668 {
2669 if (depth <= 0 && (*p == ',' || *p == ')'))
2670 {
ad2f7632
DJ
2671 /* Avoid parsing of ellipsis, they will be handled below.
2672 Also avoid ``void'' as above. */
2673 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2674 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2675 {
ad2f7632 2676 argtypes[argcount].type =
48319d1f 2677 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2678 argcount += 1;
2679 }
2680 argtypetext = p + 1;
2681 }
2682
070ad9f0 2683 if (*p == '(' || *p == '<')
c906108c
SS
2684 {
2685 depth += 1;
2686 }
070ad9f0 2687 else if (*p == ')' || *p == '>')
c906108c
SS
2688 {
2689 depth -= 1;
2690 }
2691
2692 p += 1;
2693 }
2694 }
2695
c906108c
SS
2696 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2697
2698 /* Now update the old "stub" type into a real type. */
2699 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2700 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2701 We want a method (TYPE_CODE_METHOD). */
2702 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2703 argtypes, argcount, p[-2] == '.');
876cecd0 2704 TYPE_STUB (mtype) = 0;
c906108c 2705 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2706
2707 xfree (demangled_name);
c906108c
SS
2708}
2709
7ba81444
MS
2710/* This is the external interface to check_stub_method, above. This
2711 function unstubs all of the signatures for TYPE's METHOD_ID method
2712 name. After calling this function TYPE_FN_FIELD_STUB will be
2713 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2714 correct.
de17c821
DJ
2715
2716 This function unfortunately can not die until stabs do. */
2717
2718void
2719check_stub_method_group (struct type *type, int method_id)
2720{
2721 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2722 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 2723
041be526
SM
2724 for (int j = 0; j < len; j++)
2725 {
2726 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 2727 check_stub_method (type, method_id, j);
de17c821
DJ
2728 }
2729}
2730
9655fd1a
JK
2731/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2732const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2733
2734void
fba45db2 2735allocate_cplus_struct_type (struct type *type)
c906108c 2736{
b4ba55a1
JB
2737 if (HAVE_CPLUS_STRUCT (type))
2738 /* Structure was already allocated. Nothing more to do. */
2739 return;
2740
2741 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2742 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2743 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2744 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2745 set_type_vptr_fieldno (type, -1);
c906108c
SS
2746}
2747
b4ba55a1
JB
2748const struct gnat_aux_type gnat_aux_default =
2749 { NULL };
2750
2751/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2752 and allocate the associated gnat-specific data. The gnat-specific
2753 data is also initialized to gnat_aux_default. */
5212577a 2754
b4ba55a1
JB
2755void
2756allocate_gnat_aux_type (struct type *type)
2757{
2758 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2759 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2760 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2761 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2762}
2763
ae438bc5
UW
2764/* Helper function to initialize a newly allocated type. Set type code
2765 to CODE and initialize the type-specific fields accordingly. */
2766
2767static void
2768set_type_code (struct type *type, enum type_code code)
2769{
2770 TYPE_CODE (type) = code;
2771
2772 switch (code)
2773 {
2774 case TYPE_CODE_STRUCT:
2775 case TYPE_CODE_UNION:
2776 case TYPE_CODE_NAMESPACE:
2777 INIT_CPLUS_SPECIFIC (type);
2778 break;
2779 case TYPE_CODE_FLT:
2780 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2781 break;
2782 case TYPE_CODE_FUNC:
2783 INIT_FUNC_SPECIFIC (type);
2784 break;
2785 }
2786}
2787
19f392bc
UW
2788/* Helper function to verify floating-point format and size.
2789 BIT is the type size in bits; if BIT equals -1, the size is
2790 determined by the floatformat. Returns size to be used. */
2791
2792static int
0db7851f 2793verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2794{
0db7851f 2795 gdb_assert (floatformat != NULL);
9b790ce7 2796
19f392bc 2797 if (bit == -1)
0db7851f 2798 bit = floatformat->totalsize;
19f392bc 2799
0db7851f
UW
2800 gdb_assert (bit >= 0);
2801 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2802
2803 return bit;
2804}
2805
0db7851f
UW
2806/* Return the floating-point format for a floating-point variable of
2807 type TYPE. */
2808
2809const struct floatformat *
2810floatformat_from_type (const struct type *type)
2811{
2812 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2813 gdb_assert (TYPE_FLOATFORMAT (type));
2814 return TYPE_FLOATFORMAT (type);
2815}
2816
c906108c
SS
2817/* Helper function to initialize the standard scalar types.
2818
86f62fd7
TT
2819 If NAME is non-NULL, then it is used to initialize the type name.
2820 Note that NAME is not copied; it is required to have a lifetime at
2821 least as long as OBJFILE. */
c906108c
SS
2822
2823struct type *
77b7c781 2824init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2825 const char *name)
c906108c 2826{
52f0bd74 2827 struct type *type;
c906108c
SS
2828
2829 type = alloc_type (objfile);
ae438bc5 2830 set_type_code (type, code);
77b7c781
UW
2831 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2832 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2833 TYPE_NAME (type) = name;
c906108c 2834
c16abbde 2835 return type;
c906108c 2836}
19f392bc 2837
46a4882b
PA
2838/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2839 to use with variables that have no debug info. NAME is the type
2840 name. */
2841
2842static struct type *
2843init_nodebug_var_type (struct objfile *objfile, const char *name)
2844{
2845 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2846}
2847
19f392bc
UW
2848/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2849 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2850 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2851
2852struct type *
2853init_integer_type (struct objfile *objfile,
2854 int bit, int unsigned_p, const char *name)
2855{
2856 struct type *t;
2857
77b7c781 2858 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2859 if (unsigned_p)
2860 TYPE_UNSIGNED (t) = 1;
2861
2862 return t;
2863}
2864
2865/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2866 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2867 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2868
2869struct type *
2870init_character_type (struct objfile *objfile,
2871 int bit, int unsigned_p, const char *name)
2872{
2873 struct type *t;
2874
77b7c781 2875 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2876 if (unsigned_p)
2877 TYPE_UNSIGNED (t) = 1;
2878
2879 return t;
2880}
2881
2882/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2883 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2884 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2885
2886struct type *
2887init_boolean_type (struct objfile *objfile,
2888 int bit, int unsigned_p, const char *name)
2889{
2890 struct type *t;
2891
77b7c781 2892 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2893 if (unsigned_p)
2894 TYPE_UNSIGNED (t) = 1;
2895
2896 return t;
2897}
2898
2899/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2900 BIT is the type size in bits; if BIT equals -1, the size is
2901 determined by the floatformat. NAME is the type name. Set the
2902 TYPE_FLOATFORMAT from FLOATFORMATS. */
2903
2904struct type *
2905init_float_type (struct objfile *objfile,
2906 int bit, const char *name,
2907 const struct floatformat **floatformats)
2908{
0db7851f
UW
2909 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2910 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
19f392bc
UW
2911 struct type *t;
2912
0db7851f 2913 bit = verify_floatformat (bit, fmt);
77b7c781 2914 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 2915 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
2916
2917 return t;
2918}
2919
2920/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2921 BIT is the type size in bits. NAME is the type name. */
2922
2923struct type *
2924init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2925{
2926 struct type *t;
2927
77b7c781 2928 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
2929 return t;
2930}
2931
2932/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2933 NAME is the type name. TARGET_TYPE is the component float type. */
2934
2935struct type *
2936init_complex_type (struct objfile *objfile,
2937 const char *name, struct type *target_type)
2938{
2939 struct type *t;
2940
2941 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 2942 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
2943 TYPE_TARGET_TYPE (t) = target_type;
2944 return t;
2945}
2946
2947/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2948 BIT is the pointer type size in bits. NAME is the type name.
2949 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2950 TYPE_UNSIGNED flag. */
2951
2952struct type *
2953init_pointer_type (struct objfile *objfile,
2954 int bit, const char *name, struct type *target_type)
2955{
2956 struct type *t;
2957
77b7c781 2958 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
2959 TYPE_TARGET_TYPE (t) = target_type;
2960 TYPE_UNSIGNED (t) = 1;
2961 return t;
2962}
2963
2b4424c3
TT
2964/* See gdbtypes.h. */
2965
2966unsigned
2967type_raw_align (struct type *type)
2968{
2969 if (type->align_log2 != 0)
2970 return 1 << (type->align_log2 - 1);
2971 return 0;
2972}
2973
2974/* See gdbtypes.h. */
2975
2976unsigned
2977type_align (struct type *type)
2978{
5561fc30 2979 /* Check alignment provided in the debug information. */
2b4424c3
TT
2980 unsigned raw_align = type_raw_align (type);
2981 if (raw_align != 0)
2982 return raw_align;
2983
5561fc30
AB
2984 /* Allow the architecture to provide an alignment. */
2985 struct gdbarch *arch = get_type_arch (type);
2986 ULONGEST align = gdbarch_type_align (arch, type);
2987 if (align != 0)
2988 return align;
2989
2b4424c3
TT
2990 switch (TYPE_CODE (type))
2991 {
2992 case TYPE_CODE_PTR:
2993 case TYPE_CODE_FUNC:
2994 case TYPE_CODE_FLAGS:
2995 case TYPE_CODE_INT:
75ba10dc 2996 case TYPE_CODE_RANGE:
2b4424c3
TT
2997 case TYPE_CODE_FLT:
2998 case TYPE_CODE_ENUM:
2999 case TYPE_CODE_REF:
3000 case TYPE_CODE_RVALUE_REF:
3001 case TYPE_CODE_CHAR:
3002 case TYPE_CODE_BOOL:
3003 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3004 case TYPE_CODE_METHODPTR:
3005 case TYPE_CODE_MEMBERPTR:
5561fc30 3006 align = type_length_units (check_typedef (type));
2b4424c3
TT
3007 break;
3008
3009 case TYPE_CODE_ARRAY:
3010 case TYPE_CODE_COMPLEX:
3011 case TYPE_CODE_TYPEDEF:
3012 align = type_align (TYPE_TARGET_TYPE (type));
3013 break;
3014
3015 case TYPE_CODE_STRUCT:
3016 case TYPE_CODE_UNION:
3017 {
41077b66 3018 int number_of_non_static_fields = 0;
2b4424c3
TT
3019 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3020 {
bf9a735e 3021 if (!field_is_static (&TYPE_FIELD (type, i)))
2b4424c3 3022 {
41077b66 3023 number_of_non_static_fields++;
bf9a735e
AB
3024 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3025 if (f_align == 0)
3026 {
3027 /* Don't pretend we know something we don't. */
3028 align = 0;
3029 break;
3030 }
3031 if (f_align > align)
3032 align = f_align;
2b4424c3 3033 }
2b4424c3 3034 }
41077b66
AB
3035 /* A struct with no fields, or with only static fields has an
3036 alignment of 1. */
3037 if (number_of_non_static_fields == 0)
3038 align = 1;
2b4424c3
TT
3039 }
3040 break;
3041
3042 case TYPE_CODE_SET:
2b4424c3
TT
3043 case TYPE_CODE_STRING:
3044 /* Not sure what to do here, and these can't appear in C or C++
3045 anyway. */
3046 break;
3047
2b4424c3
TT
3048 case TYPE_CODE_VOID:
3049 align = 1;
3050 break;
3051
3052 case TYPE_CODE_ERROR:
3053 case TYPE_CODE_METHOD:
3054 default:
3055 break;
3056 }
3057
3058 if ((align & (align - 1)) != 0)
3059 {
3060 /* Not a power of 2, so pass. */
3061 align = 0;
3062 }
3063
3064 return align;
3065}
3066
3067/* See gdbtypes.h. */
3068
3069bool
3070set_type_align (struct type *type, ULONGEST align)
3071{
3072 /* Must be a power of 2. Zero is ok. */
3073 gdb_assert ((align & (align - 1)) == 0);
3074
3075 unsigned result = 0;
3076 while (align != 0)
3077 {
3078 ++result;
3079 align >>= 1;
3080 }
3081
3082 if (result >= (1 << TYPE_ALIGN_BITS))
3083 return false;
3084
3085 type->align_log2 = result;
3086 return true;
3087}
3088
5212577a
DE
3089\f
3090/* Queries on types. */
c906108c 3091
c906108c 3092int
fba45db2 3093can_dereference (struct type *t)
c906108c 3094{
7ba81444
MS
3095 /* FIXME: Should we return true for references as well as
3096 pointers? */
f168693b 3097 t = check_typedef (t);
c906108c
SS
3098 return
3099 (t != NULL
3100 && TYPE_CODE (t) == TYPE_CODE_PTR
3101 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3102}
3103
adf40b2e 3104int
fba45db2 3105is_integral_type (struct type *t)
adf40b2e 3106{
f168693b 3107 t = check_typedef (t);
adf40b2e
JM
3108 return
3109 ((t != NULL)
d4f3574e
SS
3110 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3111 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3112 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3113 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3114 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3115 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3116}
3117
70100014
UW
3118int
3119is_floating_type (struct type *t)
3120{
3121 t = check_typedef (t);
3122 return
3123 ((t != NULL)
3124 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3125 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3126}
3127
e09342b5
TJB
3128/* Return true if TYPE is scalar. */
3129
220475ed 3130int
e09342b5
TJB
3131is_scalar_type (struct type *type)
3132{
f168693b 3133 type = check_typedef (type);
e09342b5
TJB
3134
3135 switch (TYPE_CODE (type))
3136 {
3137 case TYPE_CODE_ARRAY:
3138 case TYPE_CODE_STRUCT:
3139 case TYPE_CODE_UNION:
3140 case TYPE_CODE_SET:
3141 case TYPE_CODE_STRING:
e09342b5
TJB
3142 return 0;
3143 default:
3144 return 1;
3145 }
3146}
3147
3148/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3149 the memory layout of a scalar type. E.g., an array or struct with only
3150 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3151
3152int
3153is_scalar_type_recursive (struct type *t)
3154{
f168693b 3155 t = check_typedef (t);
e09342b5
TJB
3156
3157 if (is_scalar_type (t))
3158 return 1;
3159 /* Are we dealing with an array or string of known dimensions? */
3160 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3161 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3162 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3163 {
3164 LONGEST low_bound, high_bound;
3165 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3166
3167 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3168
3169 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3170 }
3171 /* Are we dealing with a struct with one element? */
3172 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3173 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3174 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3175 {
3176 int i, n = TYPE_NFIELDS (t);
3177
3178 /* If all elements of the union are scalar, then the union is scalar. */
3179 for (i = 0; i < n; i++)
3180 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3181 return 0;
3182
3183 return 1;
3184 }
3185
3186 return 0;
3187}
3188
6c659fc2
SC
3189/* Return true is T is a class or a union. False otherwise. */
3190
3191int
3192class_or_union_p (const struct type *t)
3193{
3194 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3195 || TYPE_CODE (t) == TYPE_CODE_UNION);
3196}
3197
4e8f195d
TT
3198/* A helper function which returns true if types A and B represent the
3199 "same" class type. This is true if the types have the same main
3200 type, or the same name. */
3201
3202int
3203class_types_same_p (const struct type *a, const struct type *b)
3204{
3205 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3206 || (TYPE_NAME (a) && TYPE_NAME (b)
3207 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3208}
3209
a9d5ef47
SW
3210/* If BASE is an ancestor of DCLASS return the distance between them.
3211 otherwise return -1;
3212 eg:
3213
3214 class A {};
3215 class B: public A {};
3216 class C: public B {};
3217 class D: C {};
3218
3219 distance_to_ancestor (A, A, 0) = 0
3220 distance_to_ancestor (A, B, 0) = 1
3221 distance_to_ancestor (A, C, 0) = 2
3222 distance_to_ancestor (A, D, 0) = 3
3223
3224 If PUBLIC is 1 then only public ancestors are considered,
3225 and the function returns the distance only if BASE is a public ancestor
3226 of DCLASS.
3227 Eg:
3228
0963b4bd 3229 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3230
0526b37a 3231static int
fe978cb0 3232distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3233{
3234 int i;
a9d5ef47 3235 int d;
c5aa993b 3236
f168693b
SM
3237 base = check_typedef (base);
3238 dclass = check_typedef (dclass);
c906108c 3239
4e8f195d 3240 if (class_types_same_p (base, dclass))
a9d5ef47 3241 return 0;
c906108c
SS
3242
3243 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3244 {
fe978cb0 3245 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3246 continue;
3247
fe978cb0 3248 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3249 if (d >= 0)
3250 return 1 + d;
4e8f195d 3251 }
c906108c 3252
a9d5ef47 3253 return -1;
c906108c 3254}
4e8f195d 3255
0526b37a
SW
3256/* Check whether BASE is an ancestor or base class or DCLASS
3257 Return 1 if so, and 0 if not.
3258 Note: If BASE and DCLASS are of the same type, this function
3259 will return 1. So for some class A, is_ancestor (A, A) will
3260 return 1. */
3261
3262int
3263is_ancestor (struct type *base, struct type *dclass)
3264{
a9d5ef47 3265 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3266}
3267
4e8f195d
TT
3268/* Like is_ancestor, but only returns true when BASE is a public
3269 ancestor of DCLASS. */
3270
3271int
3272is_public_ancestor (struct type *base, struct type *dclass)
3273{
a9d5ef47 3274 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3275}
3276
3277/* A helper function for is_unique_ancestor. */
3278
3279static int
3280is_unique_ancestor_worker (struct type *base, struct type *dclass,
3281 int *offset,
8af8e3bc
PA
3282 const gdb_byte *valaddr, int embedded_offset,
3283 CORE_ADDR address, struct value *val)
4e8f195d
TT
3284{
3285 int i, count = 0;
3286
f168693b
SM
3287 base = check_typedef (base);
3288 dclass = check_typedef (dclass);
4e8f195d
TT
3289
3290 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3291 {
8af8e3bc
PA
3292 struct type *iter;
3293 int this_offset;
4e8f195d 3294
8af8e3bc
PA
3295 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3296
3297 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3298 address, val);
4e8f195d
TT
3299
3300 if (class_types_same_p (base, iter))
3301 {
3302 /* If this is the first subclass, set *OFFSET and set count
3303 to 1. Otherwise, if this is at the same offset as
3304 previous instances, do nothing. Otherwise, increment
3305 count. */
3306 if (*offset == -1)
3307 {
3308 *offset = this_offset;
3309 count = 1;
3310 }
3311 else if (this_offset == *offset)
3312 {
3313 /* Nothing. */
3314 }
3315 else
3316 ++count;
3317 }
3318 else
3319 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3320 valaddr,
3321 embedded_offset + this_offset,
3322 address, val);
4e8f195d
TT
3323 }
3324
3325 return count;
3326}
3327
3328/* Like is_ancestor, but only returns true if BASE is a unique base
3329 class of the type of VAL. */
3330
3331int
3332is_unique_ancestor (struct type *base, struct value *val)
3333{
3334 int offset = -1;
3335
3336 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3337 value_contents_for_printing (val),
3338 value_embedded_offset (val),
3339 value_address (val), val) == 1;
4e8f195d
TT
3340}
3341
c906108c 3342\f
5212577a 3343/* Overload resolution. */
c906108c 3344
6403aeea
SW
3345/* Return the sum of the rank of A with the rank of B. */
3346
3347struct rank
3348sum_ranks (struct rank a, struct rank b)
3349{
3350 struct rank c;
3351 c.rank = a.rank + b.rank;
a9d5ef47 3352 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3353 return c;
3354}
3355
3356/* Compare rank A and B and return:
3357 0 if a = b
3358 1 if a is better than b
3359 -1 if b is better than a. */
3360
3361int
3362compare_ranks (struct rank a, struct rank b)
3363{
3364 if (a.rank == b.rank)
a9d5ef47
SW
3365 {
3366 if (a.subrank == b.subrank)
3367 return 0;
3368 if (a.subrank < b.subrank)
3369 return 1;
3370 if (a.subrank > b.subrank)
3371 return -1;
3372 }
6403aeea
SW
3373
3374 if (a.rank < b.rank)
3375 return 1;
3376
0963b4bd 3377 /* a.rank > b.rank */
6403aeea
SW
3378 return -1;
3379}
c5aa993b 3380
0963b4bd 3381/* Functions for overload resolution begin here. */
c906108c
SS
3382
3383/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3384 0 => A and B are identical
3385 1 => A and B are incomparable
3386 2 => A is better than B
3387 3 => A is worse than B */
c906108c
SS
3388
3389int
82ceee50 3390compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3391{
3392 int i;
3393 int tmp;
c5aa993b
JM
3394 short found_pos = 0; /* any positives in c? */
3395 short found_neg = 0; /* any negatives in c? */
3396
82ceee50
PA
3397 /* differing sizes => incomparable */
3398 if (a.size () != b.size ())
c906108c
SS
3399 return 1;
3400
c5aa993b 3401 /* Subtract b from a */
82ceee50 3402 for (i = 0; i < a.size (); i++)
c906108c 3403 {
82ceee50 3404 tmp = compare_ranks (b[i], a[i]);
c906108c 3405 if (tmp > 0)
c5aa993b 3406 found_pos = 1;
c906108c 3407 else if (tmp < 0)
c5aa993b 3408 found_neg = 1;
c906108c
SS
3409 }
3410
3411 if (found_pos)
3412 {
3413 if (found_neg)
c5aa993b 3414 return 1; /* incomparable */
c906108c 3415 else
c5aa993b 3416 return 3; /* A > B */
c906108c 3417 }
c5aa993b
JM
3418 else
3419 /* no positives */
c906108c
SS
3420 {
3421 if (found_neg)
c5aa993b 3422 return 2; /* A < B */
c906108c 3423 else
c5aa993b 3424 return 0; /* A == B */
c906108c
SS
3425 }
3426}
3427
6b1747cd 3428/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3429 types of an argument list (ARGS). Return the badness vector. This
3430 has ARGS.size() + 1 entries. */
c906108c 3431
82ceee50 3432badness_vector
6b1747cd
PA
3433rank_function (gdb::array_view<type *> parms,
3434 gdb::array_view<value *> args)
c906108c 3435{
82ceee50
PA
3436 /* add 1 for the length-match rank. */
3437 badness_vector bv;
3438 bv.reserve (1 + args.size ());
c906108c
SS
3439
3440 /* First compare the lengths of the supplied lists.
7ba81444 3441 If there is a mismatch, set it to a high value. */
c5aa993b 3442
c906108c 3443 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3444 arguments and ellipsis parameter lists, we should consider those
3445 and rank the length-match more finely. */
c906108c 3446
82ceee50
PA
3447 bv.push_back ((args.size () != parms.size ())
3448 ? LENGTH_MISMATCH_BADNESS
3449 : EXACT_MATCH_BADNESS);
c906108c 3450
0963b4bd 3451 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3452 size_t min_len = std::min (parms.size (), args.size ());
3453
3454 for (size_t i = 0; i < min_len; i++)
3455 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3456 args[i]));
c906108c 3457
0963b4bd 3458 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3459 for (size_t i = min_len; i < args.size (); i++)
3460 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3461
3462 return bv;
3463}
3464
973ccf8b
DJ
3465/* Compare the names of two integer types, assuming that any sign
3466 qualifiers have been checked already. We do it this way because
3467 there may be an "int" in the name of one of the types. */
3468
3469static int
3470integer_types_same_name_p (const char *first, const char *second)
3471{
3472 int first_p, second_p;
3473
7ba81444
MS
3474 /* If both are shorts, return 1; if neither is a short, keep
3475 checking. */
973ccf8b
DJ
3476 first_p = (strstr (first, "short") != NULL);
3477 second_p = (strstr (second, "short") != NULL);
3478 if (first_p && second_p)
3479 return 1;
3480 if (first_p || second_p)
3481 return 0;
3482
3483 /* Likewise for long. */
3484 first_p = (strstr (first, "long") != NULL);
3485 second_p = (strstr (second, "long") != NULL);
3486 if (first_p && second_p)
3487 return 1;
3488 if (first_p || second_p)
3489 return 0;
3490
3491 /* Likewise for char. */
3492 first_p = (strstr (first, "char") != NULL);
3493 second_p = (strstr (second, "char") != NULL);
3494 if (first_p && second_p)
3495 return 1;
3496 if (first_p || second_p)
3497 return 0;
3498
3499 /* They must both be ints. */
3500 return 1;
3501}
3502
894882e3
TT
3503/* Compares type A to type B. Returns true if they represent the same
3504 type, false otherwise. */
7062b0a0 3505
894882e3 3506bool
7062b0a0
SW
3507types_equal (struct type *a, struct type *b)
3508{
3509 /* Identical type pointers. */
3510 /* However, this still doesn't catch all cases of same type for b
3511 and a. The reason is that builtin types are different from
3512 the same ones constructed from the object. */
3513 if (a == b)
894882e3 3514 return true;
7062b0a0
SW
3515
3516 /* Resolve typedefs */
3517 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3518 a = check_typedef (a);
3519 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3520 b = check_typedef (b);
3521
3522 /* If after resolving typedefs a and b are not of the same type
3523 code then they are not equal. */
3524 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3525 return false;
7062b0a0
SW
3526
3527 /* If a and b are both pointers types or both reference types then
3528 they are equal of the same type iff the objects they refer to are
3529 of the same type. */
3530 if (TYPE_CODE (a) == TYPE_CODE_PTR
3531 || TYPE_CODE (a) == TYPE_CODE_REF)
3532 return types_equal (TYPE_TARGET_TYPE (a),
3533 TYPE_TARGET_TYPE (b));
3534
0963b4bd 3535 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3536 are exactly the same. This happens when we generate method
3537 stubs. The types won't point to the same address, but they
0963b4bd 3538 really are the same. */
7062b0a0
SW
3539
3540 if (TYPE_NAME (a) && TYPE_NAME (b)
3541 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3542 return true;
7062b0a0
SW
3543
3544 /* Check if identical after resolving typedefs. */
3545 if (a == b)
894882e3 3546 return true;
7062b0a0 3547
9ce98649
TT
3548 /* Two function types are equal if their argument and return types
3549 are equal. */
3550 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3551 {
3552 int i;
3553
3554 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3555 return false;
9ce98649
TT
3556
3557 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3558 return false;
9ce98649
TT
3559
3560 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3561 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3562 return false;
9ce98649 3563
894882e3 3564 return true;
9ce98649
TT
3565 }
3566
894882e3 3567 return false;
7062b0a0 3568}
ca092b61
DE
3569\f
3570/* Deep comparison of types. */
3571
3572/* An entry in the type-equality bcache. */
3573
894882e3 3574struct type_equality_entry
ca092b61 3575{
894882e3
TT
3576 type_equality_entry (struct type *t1, struct type *t2)
3577 : type1 (t1),
3578 type2 (t2)
3579 {
3580 }
ca092b61 3581
894882e3
TT
3582 struct type *type1, *type2;
3583};
ca092b61 3584
894882e3
TT
3585/* A helper function to compare two strings. Returns true if they are
3586 the same, false otherwise. Handles NULLs properly. */
ca092b61 3587
894882e3 3588static bool
ca092b61
DE
3589compare_maybe_null_strings (const char *s, const char *t)
3590{
894882e3
TT
3591 if (s == NULL || t == NULL)
3592 return s == t;
ca092b61
DE
3593 return strcmp (s, t) == 0;
3594}
3595
3596/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3597 "deep" equality. Returns true if the types are considered the
3598 same, false otherwise. */
ca092b61 3599
894882e3 3600static bool
ca092b61 3601check_types_equal (struct type *type1, struct type *type2,
894882e3 3602 std::vector<type_equality_entry> *worklist)
ca092b61 3603{
f168693b
SM
3604 type1 = check_typedef (type1);
3605 type2 = check_typedef (type2);
ca092b61
DE
3606
3607 if (type1 == type2)
894882e3 3608 return true;
ca092b61
DE
3609
3610 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3611 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3612 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3613 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3614 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3615 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3616 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3617 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3618 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 3619 return false;
ca092b61 3620
e86ca25f 3621 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3622 return false;
ca092b61 3623 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3624 return false;
ca092b61
DE
3625
3626 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3627 {
0f59d5fc 3628 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 3629 return false;
ca092b61
DE
3630 }
3631 else
3632 {
3633 int i;
3634
3635 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3636 {
3637 const struct field *field1 = &TYPE_FIELD (type1, i);
3638 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
3639
3640 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3641 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3642 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 3643 return false;
ca092b61
DE
3644 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3645 FIELD_NAME (*field2)))
894882e3 3646 return false;
ca092b61
DE
3647 switch (FIELD_LOC_KIND (*field1))
3648 {
3649 case FIELD_LOC_KIND_BITPOS:
3650 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 3651 return false;
ca092b61
DE
3652 break;
3653 case FIELD_LOC_KIND_ENUMVAL:
3654 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 3655 return false;
ca092b61
DE
3656 break;
3657 case FIELD_LOC_KIND_PHYSADDR:
3658 if (FIELD_STATIC_PHYSADDR (*field1)
3659 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 3660 return false;
ca092b61
DE
3661 break;
3662 case FIELD_LOC_KIND_PHYSNAME:
3663 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3664 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 3665 return false;
ca092b61
DE
3666 break;
3667 case FIELD_LOC_KIND_DWARF_BLOCK:
3668 {
3669 struct dwarf2_locexpr_baton *block1, *block2;
3670
3671 block1 = FIELD_DWARF_BLOCK (*field1);
3672 block2 = FIELD_DWARF_BLOCK (*field2);
3673 if (block1->per_cu != block2->per_cu
3674 || block1->size != block2->size
3675 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 3676 return false;
ca092b61
DE
3677 }
3678 break;
3679 default:
3680 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3681 "%d by check_types_equal"),
3682 FIELD_LOC_KIND (*field1));
3683 }
3684
894882e3 3685 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
3686 }
3687 }
3688
3689 if (TYPE_TARGET_TYPE (type1) != NULL)
3690 {
ca092b61 3691 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 3692 return false;
ca092b61 3693
894882e3
TT
3694 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3695 TYPE_TARGET_TYPE (type2));
ca092b61
DE
3696 }
3697 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 3698 return false;
ca092b61 3699
894882e3 3700 return true;
ca092b61
DE
3701}
3702
894882e3
TT
3703/* Check types on a worklist for equality. Returns false if any pair
3704 is not equal, true if they are all considered equal. */
ca092b61 3705
894882e3
TT
3706static bool
3707check_types_worklist (std::vector<type_equality_entry> *worklist,
ca092b61
DE
3708 struct bcache *cache)
3709{
894882e3 3710 while (!worklist->empty ())
ca092b61 3711 {
ca092b61
DE
3712 int added;
3713
894882e3
TT
3714 struct type_equality_entry entry = std::move (worklist->back ());
3715 worklist->pop_back ();
ca092b61
DE
3716
3717 /* If the type pair has already been visited, we know it is
3718 ok. */
25629dfd 3719 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
3720 if (!added)
3721 continue;
3722
894882e3
TT
3723 if (!check_types_equal (entry.type1, entry.type2, worklist))
3724 return false;
ca092b61 3725 }
7062b0a0 3726
894882e3 3727 return true;
ca092b61
DE
3728}
3729
894882e3
TT
3730/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3731 "deep comparison". Otherwise return false. */
ca092b61 3732
894882e3 3733bool
ca092b61
DE
3734types_deeply_equal (struct type *type1, struct type *type2)
3735{
894882e3 3736 std::vector<type_equality_entry> worklist;
ca092b61
DE
3737
3738 gdb_assert (type1 != NULL && type2 != NULL);
3739
3740 /* Early exit for the simple case. */
3741 if (type1 == type2)
894882e3 3742 return true;
ca092b61 3743
25629dfd 3744 struct bcache cache (nullptr, nullptr);
894882e3 3745 worklist.emplace_back (type1, type2);
25629dfd 3746 return check_types_worklist (&worklist, &cache);
ca092b61 3747}
3f2f83dd
KB
3748
3749/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3750 Otherwise return one. */
3751
3752int
3753type_not_allocated (const struct type *type)
3754{
3755 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3756
3757 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3758 && !TYPE_DYN_PROP_ADDR (prop));
3759}
3760
3761/* Associated status of type TYPE. Return zero if type TYPE is associated.
3762 Otherwise return one. */
3763
3764int
3765type_not_associated (const struct type *type)
3766{
3767 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3768
3769 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3770 && !TYPE_DYN_PROP_ADDR (prop));
3771}
9293fc63
SM
3772
3773/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3774
3775static struct rank
3776rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3777{
3778 struct rank rank = {0,0};
3779
3780 switch (TYPE_CODE (arg))
3781 {
3782 case TYPE_CODE_PTR:
3783
3784 /* Allowed pointer conversions are:
3785 (a) pointer to void-pointer conversion. */
3786 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3787 return VOID_PTR_CONVERSION_BADNESS;
3788
3789 /* (b) pointer to ancestor-pointer conversion. */
3790 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3791 TYPE_TARGET_TYPE (arg),
3792 0);
3793 if (rank.subrank >= 0)
3794 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3795
3796 return INCOMPATIBLE_TYPE_BADNESS;
3797 case TYPE_CODE_ARRAY:
3798 {
3799 struct type *t1 = TYPE_TARGET_TYPE (parm);
3800 struct type *t2 = TYPE_TARGET_TYPE (arg);
3801
3802 if (types_equal (t1, t2))
3803 {
3804 /* Make sure they are CV equal. */
3805 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3806 rank.subrank |= CV_CONVERSION_CONST;
3807 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3808 rank.subrank |= CV_CONVERSION_VOLATILE;
3809 if (rank.subrank != 0)
3810 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3811 return EXACT_MATCH_BADNESS;
3812 }
3813 return INCOMPATIBLE_TYPE_BADNESS;
3814 }
3815 case TYPE_CODE_FUNC:
3816 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3817 case TYPE_CODE_INT:
3818 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3819 {
3820 if (value_as_long (value) == 0)
3821 {
3822 /* Null pointer conversion: allow it to be cast to a pointer.
3823 [4.10.1 of C++ standard draft n3290] */
3824 return NULL_POINTER_CONVERSION_BADNESS;
3825 }
3826 else
3827 {
3828 /* If type checking is disabled, allow the conversion. */
3829 if (!strict_type_checking)
3830 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3831 }
3832 }
3833 /* fall through */
3834 case TYPE_CODE_ENUM:
3835 case TYPE_CODE_FLAGS:
3836 case TYPE_CODE_CHAR:
3837 case TYPE_CODE_RANGE:
3838 case TYPE_CODE_BOOL:
3839 default:
3840 return INCOMPATIBLE_TYPE_BADNESS;
3841 }
3842}
3843
b9f4512f
SM
3844/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3845
3846static struct rank
3847rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3848{
3849 switch (TYPE_CODE (arg))
3850 {
3851 case TYPE_CODE_PTR:
3852 case TYPE_CODE_ARRAY:
3853 return rank_one_type (TYPE_TARGET_TYPE (parm),
3854 TYPE_TARGET_TYPE (arg), NULL);
3855 default:
3856 return INCOMPATIBLE_TYPE_BADNESS;
3857 }
3858}
3859
f1f832d6
SM
3860/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3861
3862static struct rank
3863rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3864{
3865 switch (TYPE_CODE (arg))
3866 {
3867 case TYPE_CODE_PTR: /* funcptr -> func */
3868 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3869 default:
3870 return INCOMPATIBLE_TYPE_BADNESS;
3871 }
3872}
3873
34910087
SM
3874/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3875
3876static struct rank
3877rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3878{
3879 switch (TYPE_CODE (arg))
3880 {
3881 case TYPE_CODE_INT:
3882 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3883 {
3884 /* Deal with signed, unsigned, and plain chars and
3885 signed and unsigned ints. */
3886 if (TYPE_NOSIGN (parm))
3887 {
3888 /* This case only for character types. */
3889 if (TYPE_NOSIGN (arg))
3890 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3891 else /* signed/unsigned char -> plain char */
3892 return INTEGER_CONVERSION_BADNESS;
3893 }
3894 else if (TYPE_UNSIGNED (parm))
3895 {
3896 if (TYPE_UNSIGNED (arg))
3897 {
3898 /* unsigned int -> unsigned int, or
3899 unsigned long -> unsigned long */
3900 if (integer_types_same_name_p (TYPE_NAME (parm),
3901 TYPE_NAME (arg)))
3902 return EXACT_MATCH_BADNESS;
3903 else if (integer_types_same_name_p (TYPE_NAME (arg),
3904 "int")
3905 && integer_types_same_name_p (TYPE_NAME (parm),
3906 "long"))
3907 /* unsigned int -> unsigned long */
3908 return INTEGER_PROMOTION_BADNESS;
3909 else
3910 /* unsigned long -> unsigned int */
3911 return INTEGER_CONVERSION_BADNESS;
3912 }
3913 else
3914 {
3915 if (integer_types_same_name_p (TYPE_NAME (arg),
3916 "long")
3917 && integer_types_same_name_p (TYPE_NAME (parm),
3918 "int"))
3919 /* signed long -> unsigned int */
3920 return INTEGER_CONVERSION_BADNESS;
3921 else
3922 /* signed int/long -> unsigned int/long */
3923 return INTEGER_CONVERSION_BADNESS;
3924 }
3925 }
3926 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3927 {
3928 if (integer_types_same_name_p (TYPE_NAME (parm),
3929 TYPE_NAME (arg)))
3930 return EXACT_MATCH_BADNESS;
3931 else if (integer_types_same_name_p (TYPE_NAME (arg),
3932 "int")
3933 && integer_types_same_name_p (TYPE_NAME (parm),
3934 "long"))
3935 return INTEGER_PROMOTION_BADNESS;
3936 else
3937 return INTEGER_CONVERSION_BADNESS;
3938 }
3939 else
3940 return INTEGER_CONVERSION_BADNESS;
3941 }
3942 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3943 return INTEGER_PROMOTION_BADNESS;
3944 else
3945 return INTEGER_CONVERSION_BADNESS;
3946 case TYPE_CODE_ENUM:
3947 case TYPE_CODE_FLAGS:
3948 case TYPE_CODE_CHAR:
3949 case TYPE_CODE_RANGE:
3950 case TYPE_CODE_BOOL:
3951 if (TYPE_DECLARED_CLASS (arg))
3952 return INCOMPATIBLE_TYPE_BADNESS;
3953 return INTEGER_PROMOTION_BADNESS;
3954 case TYPE_CODE_FLT:
3955 return INT_FLOAT_CONVERSION_BADNESS;
3956 case TYPE_CODE_PTR:
3957 return NS_POINTER_CONVERSION_BADNESS;
3958 default:
3959 return INCOMPATIBLE_TYPE_BADNESS;
3960 }
3961}
3962
793cd1d2
SM
3963/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3964
3965static struct rank
3966rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3967{
3968 switch (TYPE_CODE (arg))
3969 {
3970 case TYPE_CODE_INT:
3971 case TYPE_CODE_CHAR:
3972 case TYPE_CODE_RANGE:
3973 case TYPE_CODE_BOOL:
3974 case TYPE_CODE_ENUM:
3975 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3976 return INCOMPATIBLE_TYPE_BADNESS;
3977 return INTEGER_CONVERSION_BADNESS;
3978 case TYPE_CODE_FLT:
3979 return INT_FLOAT_CONVERSION_BADNESS;
3980 default:
3981 return INCOMPATIBLE_TYPE_BADNESS;
3982 }
3983}
3984
41ea4728
SM
3985/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3986
3987static struct rank
3988rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3989{
3990 switch (TYPE_CODE (arg))
3991 {
3992 case TYPE_CODE_RANGE:
3993 case TYPE_CODE_BOOL:
3994 case TYPE_CODE_ENUM:
3995 if (TYPE_DECLARED_CLASS (arg))
3996 return INCOMPATIBLE_TYPE_BADNESS;
3997 return INTEGER_CONVERSION_BADNESS;
3998 case TYPE_CODE_FLT:
3999 return INT_FLOAT_CONVERSION_BADNESS;
4000 case TYPE_CODE_INT:
4001 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4002 return INTEGER_CONVERSION_BADNESS;
4003 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4004 return INTEGER_PROMOTION_BADNESS;
4005 /* fall through */
4006 case TYPE_CODE_CHAR:
4007 /* Deal with signed, unsigned, and plain chars for C++ and
4008 with int cases falling through from previous case. */
4009 if (TYPE_NOSIGN (parm))
4010 {
4011 if (TYPE_NOSIGN (arg))
4012 return EXACT_MATCH_BADNESS;
4013 else
4014 return INTEGER_CONVERSION_BADNESS;
4015 }
4016 else if (TYPE_UNSIGNED (parm))
4017 {
4018 if (TYPE_UNSIGNED (arg))
4019 return EXACT_MATCH_BADNESS;
4020 else
4021 return INTEGER_PROMOTION_BADNESS;
4022 }
4023 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4024 return EXACT_MATCH_BADNESS;
4025 else
4026 return INTEGER_CONVERSION_BADNESS;
4027 default:
4028 return INCOMPATIBLE_TYPE_BADNESS;
4029 }
4030}
4031
0dd322dc
SM
4032/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4033
4034static struct rank
4035rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4036{
4037 switch (TYPE_CODE (arg))
4038 {
4039 case TYPE_CODE_INT:
4040 case TYPE_CODE_CHAR:
4041 case TYPE_CODE_RANGE:
4042 case TYPE_CODE_BOOL:
4043 case TYPE_CODE_ENUM:
4044 return INTEGER_CONVERSION_BADNESS;
4045 case TYPE_CODE_FLT:
4046 return INT_FLOAT_CONVERSION_BADNESS;
4047 default:
4048 return INCOMPATIBLE_TYPE_BADNESS;
4049 }
4050}
4051
2c509035
SM
4052/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4053
4054static struct rank
4055rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4056{
4057 switch (TYPE_CODE (arg))
4058 {
4059 /* n3290 draft, section 4.12.1 (conv.bool):
4060
4061 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4062 pointer to member type can be converted to a prvalue of type
4063 bool. A zero value, null pointer value, or null member pointer
4064 value is converted to false; any other value is converted to
4065 true. A prvalue of type std::nullptr_t can be converted to a
4066 prvalue of type bool; the resulting value is false." */
4067 case TYPE_CODE_INT:
4068 case TYPE_CODE_CHAR:
4069 case TYPE_CODE_ENUM:
4070 case TYPE_CODE_FLT:
4071 case TYPE_CODE_MEMBERPTR:
4072 case TYPE_CODE_PTR:
4073 return BOOL_CONVERSION_BADNESS;
4074 case TYPE_CODE_RANGE:
4075 return INCOMPATIBLE_TYPE_BADNESS;
4076 case TYPE_CODE_BOOL:
4077 return EXACT_MATCH_BADNESS;
4078 default:
4079 return INCOMPATIBLE_TYPE_BADNESS;
4080 }
4081}
4082
7f17b20d
SM
4083/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4084
4085static struct rank
4086rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4087{
4088 switch (TYPE_CODE (arg))
4089 {
4090 case TYPE_CODE_FLT:
4091 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4092 return FLOAT_PROMOTION_BADNESS;
4093 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4094 return EXACT_MATCH_BADNESS;
4095 else
4096 return FLOAT_CONVERSION_BADNESS;
4097 case TYPE_CODE_INT:
4098 case TYPE_CODE_BOOL:
4099 case TYPE_CODE_ENUM:
4100 case TYPE_CODE_RANGE:
4101 case TYPE_CODE_CHAR:
4102 return INT_FLOAT_CONVERSION_BADNESS;
4103 default:
4104 return INCOMPATIBLE_TYPE_BADNESS;
4105 }
4106}
4107
2598a94b
SM
4108/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4109
4110static struct rank
4111rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4112{
4113 switch (TYPE_CODE (arg))
4114 { /* Strictly not needed for C++, but... */
4115 case TYPE_CODE_FLT:
4116 return FLOAT_PROMOTION_BADNESS;
4117 case TYPE_CODE_COMPLEX:
4118 return EXACT_MATCH_BADNESS;
4119 default:
4120 return INCOMPATIBLE_TYPE_BADNESS;
4121 }
4122}
4123
595f96a9
SM
4124/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4125
4126static struct rank
4127rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4128{
4129 struct rank rank = {0, 0};
4130
4131 switch (TYPE_CODE (arg))
4132 {
4133 case TYPE_CODE_STRUCT:
4134 /* Check for derivation */
4135 rank.subrank = distance_to_ancestor (parm, arg, 0);
4136 if (rank.subrank >= 0)
4137 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4138 /* fall through */
4139 default:
4140 return INCOMPATIBLE_TYPE_BADNESS;
4141 }
4142}
4143
f09ce22d
SM
4144/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4145
4146static struct rank
4147rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4148{
4149 switch (TYPE_CODE (arg))
4150 {
4151 /* Not in C++ */
4152 case TYPE_CODE_SET:
4153 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4154 TYPE_FIELD_TYPE (arg, 0), NULL);
4155 default:
4156 return INCOMPATIBLE_TYPE_BADNESS;
4157 }
4158}
4159
c906108c
SS
4160/* Compare one type (PARM) for compatibility with another (ARG).
4161 * PARM is intended to be the parameter type of a function; and
4162 * ARG is the supplied argument's type. This function tests if
4163 * the latter can be converted to the former.
da096638 4164 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4165 *
4166 * Return 0 if they are identical types;
4167 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4168 * PARM is to ARG. The higher the return value, the worse the match.
4169 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4170
6403aeea 4171struct rank
da096638 4172rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4173{
a9d5ef47 4174 struct rank rank = {0,0};
7062b0a0 4175
c906108c
SS
4176 /* Resolve typedefs */
4177 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4178 parm = check_typedef (parm);
4179 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4180 arg = check_typedef (arg);
4181
e15c3eb4 4182 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4183 {
e15c3eb4
KS
4184 if (VALUE_LVAL (value) == not_lval)
4185 {
4186 /* Rvalues should preferably bind to rvalue references or const
4187 lvalue references. */
4188 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4189 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4190 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4191 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4192 else
4193 return INCOMPATIBLE_TYPE_BADNESS;
4194 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4195 }
4196 else
4197 {
4198 /* Lvalues should prefer lvalue overloads. */
4199 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4200 {
4201 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4202 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4203 }
4204 }
15c0a2a9
AV
4205 }
4206
4207 if (types_equal (parm, arg))
15c0a2a9 4208 {
e15c3eb4
KS
4209 struct type *t1 = parm;
4210 struct type *t2 = arg;
15c0a2a9 4211
e15c3eb4
KS
4212 /* For pointers and references, compare target type. */
4213 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4214 {
4215 t1 = TYPE_TARGET_TYPE (parm);
4216 t2 = TYPE_TARGET_TYPE (arg);
4217 }
15c0a2a9 4218
e15c3eb4
KS
4219 /* Make sure they are CV equal, too. */
4220 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4221 rank.subrank |= CV_CONVERSION_CONST;
4222 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4223 rank.subrank |= CV_CONVERSION_VOLATILE;
4224 if (rank.subrank != 0)
4225 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4226 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4227 }
4228
db577aea 4229 /* See through references, since we can almost make non-references
7ba81444 4230 references. */
aa006118
AV
4231
4232 if (TYPE_IS_REFERENCE (arg))
da096638 4233 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 4234 REFERENCE_CONVERSION_BADNESS));
aa006118 4235 if (TYPE_IS_REFERENCE (parm))
da096638 4236 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 4237 REFERENCE_CONVERSION_BADNESS));
5d161b24 4238 if (overload_debug)
7ba81444
MS
4239 /* Debugging only. */
4240 fprintf_filtered (gdb_stderr,
4241 "------ Arg is %s [%d], parm is %s [%d]\n",
4242 TYPE_NAME (arg), TYPE_CODE (arg),
4243 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 4244
0963b4bd 4245 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
4246
4247 switch (TYPE_CODE (parm))
4248 {
c5aa993b 4249 case TYPE_CODE_PTR:
9293fc63 4250 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4251 case TYPE_CODE_ARRAY:
b9f4512f 4252 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4253 case TYPE_CODE_FUNC:
f1f832d6 4254 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4255 case TYPE_CODE_INT:
34910087 4256 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4257 case TYPE_CODE_ENUM:
793cd1d2 4258 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4259 case TYPE_CODE_CHAR:
41ea4728 4260 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4261 case TYPE_CODE_RANGE:
0dd322dc 4262 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4263 case TYPE_CODE_BOOL:
2c509035 4264 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4265 case TYPE_CODE_FLT:
7f17b20d 4266 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4267 case TYPE_CODE_COMPLEX:
2598a94b 4268 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4269 case TYPE_CODE_STRUCT:
595f96a9 4270 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4271 case TYPE_CODE_SET:
f09ce22d 4272 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4273 default:
4274 return INCOMPATIBLE_TYPE_BADNESS;
4275 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4276}
4277
0963b4bd 4278/* End of functions for overload resolution. */
5212577a
DE
4279\f
4280/* Routines to pretty-print types. */
c906108c 4281
c906108c 4282static void
fba45db2 4283print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4284{
4285 int bitno;
4286
4287 for (bitno = 0; bitno < nbits; bitno++)
4288 {
4289 if ((bitno % 8) == 0)
4290 {
4291 puts_filtered (" ");
4292 }
4293 if (B_TST (bits, bitno))
a3f17187 4294 printf_filtered (("1"));
c906108c 4295 else
a3f17187 4296 printf_filtered (("0"));
c906108c
SS
4297 }
4298}
4299
ad2f7632 4300/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4301 include it since we may get into a infinitely recursive
4302 situation. */
c906108c
SS
4303
4304static void
4c9e8482 4305print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4306{
4307 if (args != NULL)
4308 {
ad2f7632
DJ
4309 int i;
4310
4311 for (i = 0; i < nargs; i++)
4c9e8482
DE
4312 {
4313 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4314 args[i].name != NULL ? args[i].name : "<NULL>");
4315 recursive_dump_type (args[i].type, spaces + 2);
4316 }
c906108c
SS
4317 }
4318}
4319
d6a843b5
JK
4320int
4321field_is_static (struct field *f)
4322{
4323 /* "static" fields are the fields whose location is not relative
4324 to the address of the enclosing struct. It would be nice to
4325 have a dedicated flag that would be set for static fields when
4326 the type is being created. But in practice, checking the field
254e6b9e 4327 loc_kind should give us an accurate answer. */
d6a843b5
JK
4328 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4329 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4330}
4331
c906108c 4332static void
fba45db2 4333dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4334{
4335 int method_idx;
4336 int overload_idx;
4337 struct fn_field *f;
4338
4339 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4340 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4341 printf_filtered ("\n");
4342 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4343 {
4344 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4345 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4346 method_idx,
4347 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4348 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4349 gdb_stdout);
a3f17187 4350 printf_filtered (_(") length %d\n"),
c906108c
SS
4351 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4352 for (overload_idx = 0;
4353 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4354 overload_idx++)
4355 {
4356 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4357 overload_idx,
4358 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4359 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4360 gdb_stdout);
c906108c
SS
4361 printf_filtered (")\n");
4362 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4363 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4364 gdb_stdout);
c906108c
SS
4365 printf_filtered ("\n");
4366
4367 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4368 spaces + 8 + 2);
4369
4370 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4371 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4372 gdb_stdout);
c906108c 4373 printf_filtered ("\n");
4c9e8482
DE
4374 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4375 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4376 spaces + 8 + 2);
c906108c 4377 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4378 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4379 gdb_stdout);
c906108c
SS
4380 printf_filtered ("\n");
4381
4382 printfi_filtered (spaces + 8, "is_const %d\n",
4383 TYPE_FN_FIELD_CONST (f, overload_idx));
4384 printfi_filtered (spaces + 8, "is_volatile %d\n",
4385 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4386 printfi_filtered (spaces + 8, "is_private %d\n",
4387 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4388 printfi_filtered (spaces + 8, "is_protected %d\n",
4389 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4390 printfi_filtered (spaces + 8, "is_stub %d\n",
4391 TYPE_FN_FIELD_STUB (f, overload_idx));
4392 printfi_filtered (spaces + 8, "voffset %u\n",
4393 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4394 }
4395 }
4396}
4397
4398static void
fba45db2 4399print_cplus_stuff (struct type *type, int spaces)
c906108c 4400{
ae6ae975
DE
4401 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4402 printfi_filtered (spaces, "vptr_basetype ");
4403 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4404 puts_filtered ("\n");
4405 if (TYPE_VPTR_BASETYPE (type) != NULL)
4406 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4407
c906108c
SS
4408 printfi_filtered (spaces, "n_baseclasses %d\n",
4409 TYPE_N_BASECLASSES (type));
4410 printfi_filtered (spaces, "nfn_fields %d\n",
4411 TYPE_NFN_FIELDS (type));
c906108c
SS
4412 if (TYPE_N_BASECLASSES (type) > 0)
4413 {
4414 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4415 TYPE_N_BASECLASSES (type));
7ba81444
MS
4416 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4417 gdb_stdout);
c906108c
SS
4418 printf_filtered (")");
4419
4420 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4421 TYPE_N_BASECLASSES (type));
4422 puts_filtered ("\n");
4423 }
4424 if (TYPE_NFIELDS (type) > 0)
4425 {
4426 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4427 {
7ba81444
MS
4428 printfi_filtered (spaces,
4429 "private_field_bits (%d bits at *",
c906108c 4430 TYPE_NFIELDS (type));
7ba81444
MS
4431 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4432 gdb_stdout);
c906108c
SS
4433 printf_filtered (")");
4434 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4435 TYPE_NFIELDS (type));
4436 puts_filtered ("\n");
4437 }
4438 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4439 {
7ba81444
MS
4440 printfi_filtered (spaces,
4441 "protected_field_bits (%d bits at *",
c906108c 4442 TYPE_NFIELDS (type));
7ba81444
MS
4443 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4444 gdb_stdout);
c906108c
SS
4445 printf_filtered (")");
4446 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4447 TYPE_NFIELDS (type));
4448 puts_filtered ("\n");
4449 }
4450 }
4451 if (TYPE_NFN_FIELDS (type) > 0)
4452 {
4453 dump_fn_fieldlists (type, spaces);
4454 }
4455}
4456
b4ba55a1
JB
4457/* Print the contents of the TYPE's type_specific union, assuming that
4458 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4459
4460static void
4461print_gnat_stuff (struct type *type, int spaces)
4462{
4463 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4464
8cd00c59
PMR
4465 if (descriptive_type == NULL)
4466 printfi_filtered (spaces + 2, "no descriptive type\n");
4467 else
4468 {
4469 printfi_filtered (spaces + 2, "descriptive type\n");
4470 recursive_dump_type (descriptive_type, spaces + 4);
4471 }
b4ba55a1
JB
4472}
4473
c906108c
SS
4474static struct obstack dont_print_type_obstack;
4475
4476void
fba45db2 4477recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4478{
4479 int idx;
4480
4481 if (spaces == 0)
4482 obstack_begin (&dont_print_type_obstack, 0);
4483
4484 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4485 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4486 {
4487 struct type **first_dont_print
7ba81444 4488 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4489
7ba81444
MS
4490 int i = (struct type **)
4491 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4492
4493 while (--i >= 0)
4494 {
4495 if (type == first_dont_print[i])
4496 {
4497 printfi_filtered (spaces, "type node ");
d4f3574e 4498 gdb_print_host_address (type, gdb_stdout);
a3f17187 4499 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4500 return;
4501 }
4502 }
4503
4504 obstack_ptr_grow (&dont_print_type_obstack, type);
4505 }
4506
4507 printfi_filtered (spaces, "type node ");
d4f3574e 4508 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4509 printf_filtered ("\n");
4510 printfi_filtered (spaces, "name '%s' (",
4511 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4512 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4513 printf_filtered (")\n");
c906108c
SS
4514 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4515 switch (TYPE_CODE (type))
4516 {
c5aa993b
JM
4517 case TYPE_CODE_UNDEF:
4518 printf_filtered ("(TYPE_CODE_UNDEF)");
4519 break;
4520 case TYPE_CODE_PTR:
4521 printf_filtered ("(TYPE_CODE_PTR)");
4522 break;
4523 case TYPE_CODE_ARRAY:
4524 printf_filtered ("(TYPE_CODE_ARRAY)");
4525 break;
4526 case TYPE_CODE_STRUCT:
4527 printf_filtered ("(TYPE_CODE_STRUCT)");
4528 break;
4529 case TYPE_CODE_UNION:
4530 printf_filtered ("(TYPE_CODE_UNION)");
4531 break;
4532 case TYPE_CODE_ENUM:
4533 printf_filtered ("(TYPE_CODE_ENUM)");
4534 break;
4f2aea11
MK
4535 case TYPE_CODE_FLAGS:
4536 printf_filtered ("(TYPE_CODE_FLAGS)");
4537 break;
c5aa993b
JM
4538 case TYPE_CODE_FUNC:
4539 printf_filtered ("(TYPE_CODE_FUNC)");
4540 break;
4541 case TYPE_CODE_INT:
4542 printf_filtered ("(TYPE_CODE_INT)");
4543 break;
4544 case TYPE_CODE_FLT:
4545 printf_filtered ("(TYPE_CODE_FLT)");
4546 break;
4547 case TYPE_CODE_VOID:
4548 printf_filtered ("(TYPE_CODE_VOID)");
4549 break;
4550 case TYPE_CODE_SET:
4551 printf_filtered ("(TYPE_CODE_SET)");
4552 break;
4553 case TYPE_CODE_RANGE:
4554 printf_filtered ("(TYPE_CODE_RANGE)");
4555 break;
4556 case TYPE_CODE_STRING:
4557 printf_filtered ("(TYPE_CODE_STRING)");
4558 break;
4559 case TYPE_CODE_ERROR:
4560 printf_filtered ("(TYPE_CODE_ERROR)");
4561 break;
0d5de010
DJ
4562 case TYPE_CODE_MEMBERPTR:
4563 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4564 break;
4565 case TYPE_CODE_METHODPTR:
4566 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4567 break;
4568 case TYPE_CODE_METHOD:
4569 printf_filtered ("(TYPE_CODE_METHOD)");
4570 break;
4571 case TYPE_CODE_REF:
4572 printf_filtered ("(TYPE_CODE_REF)");
4573 break;
4574 case TYPE_CODE_CHAR:
4575 printf_filtered ("(TYPE_CODE_CHAR)");
4576 break;
4577 case TYPE_CODE_BOOL:
4578 printf_filtered ("(TYPE_CODE_BOOL)");
4579 break;
e9e79dd9
FF
4580 case TYPE_CODE_COMPLEX:
4581 printf_filtered ("(TYPE_CODE_COMPLEX)");
4582 break;
c5aa993b
JM
4583 case TYPE_CODE_TYPEDEF:
4584 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4585 break;
5c4e30ca
DC
4586 case TYPE_CODE_NAMESPACE:
4587 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4588 break;
c5aa993b
JM
4589 default:
4590 printf_filtered ("(UNKNOWN TYPE CODE)");
4591 break;
c906108c
SS
4592 }
4593 puts_filtered ("\n");
cc1defb1 4594 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
4595 if (TYPE_OBJFILE_OWNED (type))
4596 {
4597 printfi_filtered (spaces, "objfile ");
4598 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4599 }
4600 else
4601 {
4602 printfi_filtered (spaces, "gdbarch ");
4603 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4604 }
c906108c
SS
4605 printf_filtered ("\n");
4606 printfi_filtered (spaces, "target_type ");
d4f3574e 4607 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4608 printf_filtered ("\n");
4609 if (TYPE_TARGET_TYPE (type) != NULL)
4610 {
4611 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4612 }
4613 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4614 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4615 printf_filtered ("\n");
4616 printfi_filtered (spaces, "reference_type ");
d4f3574e 4617 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4618 printf_filtered ("\n");
2fdde8f8
DJ
4619 printfi_filtered (spaces, "type_chain ");
4620 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4621 printf_filtered ("\n");
7ba81444
MS
4622 printfi_filtered (spaces, "instance_flags 0x%x",
4623 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4624 if (TYPE_CONST (type))
4625 {
a9ff5f12 4626 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4627 }
4628 if (TYPE_VOLATILE (type))
4629 {
a9ff5f12 4630 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4631 }
4632 if (TYPE_CODE_SPACE (type))
4633 {
a9ff5f12 4634 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4635 }
4636 if (TYPE_DATA_SPACE (type))
4637 {
a9ff5f12 4638 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4639 }
8b2dbe47
KB
4640 if (TYPE_ADDRESS_CLASS_1 (type))
4641 {
a9ff5f12 4642 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4643 }
4644 if (TYPE_ADDRESS_CLASS_2 (type))
4645 {
a9ff5f12 4646 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4647 }
06d66ee9
TT
4648 if (TYPE_RESTRICT (type))
4649 {
a9ff5f12 4650 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4651 }
a2c2acaf
MW
4652 if (TYPE_ATOMIC (type))
4653 {
a9ff5f12 4654 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4655 }
2fdde8f8 4656 puts_filtered ("\n");
876cecd0
TT
4657
4658 printfi_filtered (spaces, "flags");
762a036f 4659 if (TYPE_UNSIGNED (type))
c906108c 4660 {
a9ff5f12 4661 puts_filtered (" TYPE_UNSIGNED");
c906108c 4662 }
762a036f
FF
4663 if (TYPE_NOSIGN (type))
4664 {
a9ff5f12 4665 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4666 }
4667 if (TYPE_STUB (type))
c906108c 4668 {
a9ff5f12 4669 puts_filtered (" TYPE_STUB");
c906108c 4670 }
762a036f
FF
4671 if (TYPE_TARGET_STUB (type))
4672 {
a9ff5f12 4673 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4674 }
762a036f
FF
4675 if (TYPE_PROTOTYPED (type))
4676 {
a9ff5f12 4677 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4678 }
4679 if (TYPE_INCOMPLETE (type))
4680 {
a9ff5f12 4681 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4682 }
762a036f
FF
4683 if (TYPE_VARARGS (type))
4684 {
a9ff5f12 4685 puts_filtered (" TYPE_VARARGS");
762a036f 4686 }
f5f8a009
EZ
4687 /* This is used for things like AltiVec registers on ppc. Gcc emits
4688 an attribute for the array type, which tells whether or not we
4689 have a vector, instead of a regular array. */
4690 if (TYPE_VECTOR (type))
4691 {
a9ff5f12 4692 puts_filtered (" TYPE_VECTOR");
f5f8a009 4693 }
876cecd0
TT
4694 if (TYPE_FIXED_INSTANCE (type))
4695 {
4696 puts_filtered (" TYPE_FIXED_INSTANCE");
4697 }
4698 if (TYPE_STUB_SUPPORTED (type))
4699 {
4700 puts_filtered (" TYPE_STUB_SUPPORTED");
4701 }
4702 if (TYPE_NOTTEXT (type))
4703 {
4704 puts_filtered (" TYPE_NOTTEXT");
4705 }
c906108c
SS
4706 puts_filtered ("\n");
4707 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4708 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4709 puts_filtered ("\n");
4710 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4711 {
14e75d8e
JK
4712 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4713 printfi_filtered (spaces + 2,
4714 "[%d] enumval %s type ",
4715 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4716 else
4717 printfi_filtered (spaces + 2,
6b850546
DT
4718 "[%d] bitpos %s bitsize %d type ",
4719 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4720 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4721 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4722 printf_filtered (" name '%s' (",
4723 TYPE_FIELD_NAME (type, idx) != NULL
4724 ? TYPE_FIELD_NAME (type, idx)
4725 : "<NULL>");
d4f3574e 4726 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4727 printf_filtered (")\n");
4728 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4729 {
4730 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4731 }
4732 }
43bbcdc2
PH
4733 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4734 {
4735 printfi_filtered (spaces, "low %s%s high %s%s\n",
4736 plongest (TYPE_LOW_BOUND (type)),
4737 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4738 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4739 TYPE_HIGH_BOUND_UNDEFINED (type)
4740 ? " (undefined)" : "");
43bbcdc2 4741 }
c906108c 4742
b4ba55a1
JB
4743 switch (TYPE_SPECIFIC_FIELD (type))
4744 {
4745 case TYPE_SPECIFIC_CPLUS_STUFF:
4746 printfi_filtered (spaces, "cplus_stuff ");
4747 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4748 gdb_stdout);
4749 puts_filtered ("\n");
4750 print_cplus_stuff (type, spaces);
4751 break;
8da61cc4 4752
b4ba55a1
JB
4753 case TYPE_SPECIFIC_GNAT_STUFF:
4754 printfi_filtered (spaces, "gnat_stuff ");
4755 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4756 puts_filtered ("\n");
4757 print_gnat_stuff (type, spaces);
4758 break;
701c159d 4759
b4ba55a1
JB
4760 case TYPE_SPECIFIC_FLOATFORMAT:
4761 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4762 if (TYPE_FLOATFORMAT (type) == NULL
4763 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4764 puts_filtered ("(null)");
4765 else
0db7851f 4766 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4767 puts_filtered ("\n");
4768 break;
c906108c 4769
b6cdc2c1 4770 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4771 printfi_filtered (spaces, "calling_convention %d\n",
4772 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4773 /* tail_call_list is not printed. */
b4ba55a1 4774 break;
09e2d7c7
DE
4775
4776 case TYPE_SPECIFIC_SELF_TYPE:
4777 printfi_filtered (spaces, "self_type ");
4778 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4779 puts_filtered ("\n");
4780 break;
c906108c 4781 }
b4ba55a1 4782
c906108c
SS
4783 if (spaces == 0)
4784 obstack_free (&dont_print_type_obstack, NULL);
4785}
5212577a 4786\f
ae5a43e0
DJ
4787/* Trivial helpers for the libiberty hash table, for mapping one
4788 type to another. */
4789
fd90ace4 4790struct type_pair : public allocate_on_obstack
ae5a43e0 4791{
fd90ace4
YQ
4792 type_pair (struct type *old_, struct type *newobj_)
4793 : old (old_), newobj (newobj_)
4794 {}
4795
4796 struct type * const old, * const newobj;
ae5a43e0
DJ
4797};
4798
4799static hashval_t
4800type_pair_hash (const void *item)
4801{
9a3c8263 4802 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4803
ae5a43e0
DJ
4804 return htab_hash_pointer (pair->old);
4805}
4806
4807static int
4808type_pair_eq (const void *item_lhs, const void *item_rhs)
4809{
9a3c8263
SM
4810 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4811 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4812
ae5a43e0
DJ
4813 return lhs->old == rhs->old;
4814}
4815
4816/* Allocate the hash table used by copy_type_recursive to walk
4817 types without duplicates. We use OBJFILE's obstack, because
4818 OBJFILE is about to be deleted. */
4819
4820htab_t
4821create_copied_types_hash (struct objfile *objfile)
4822{
4823 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4824 NULL, &objfile->objfile_obstack,
4825 hashtab_obstack_allocate,
4826 dummy_obstack_deallocate);
4827}
4828
d9823cbb
KB
4829/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4830
4831static struct dynamic_prop_list *
4832copy_dynamic_prop_list (struct obstack *objfile_obstack,
4833 struct dynamic_prop_list *list)
4834{
4835 struct dynamic_prop_list *copy = list;
4836 struct dynamic_prop_list **node_ptr = &copy;
4837
4838 while (*node_ptr != NULL)
4839 {
4840 struct dynamic_prop_list *node_copy;
4841
224c3ddb
SM
4842 node_copy = ((struct dynamic_prop_list *)
4843 obstack_copy (objfile_obstack, *node_ptr,
4844 sizeof (struct dynamic_prop_list)));
283a9958 4845 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4846 *node_ptr = node_copy;
4847
4848 node_ptr = &node_copy->next;
4849 }
4850
4851 return copy;
4852}
4853
7ba81444 4854/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4855 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4856 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4857 it is not associated with OBJFILE. */
ae5a43e0
DJ
4858
4859struct type *
7ba81444
MS
4860copy_type_recursive (struct objfile *objfile,
4861 struct type *type,
ae5a43e0
DJ
4862 htab_t copied_types)
4863{
ae5a43e0
DJ
4864 void **slot;
4865 struct type *new_type;
4866
e9bb382b 4867 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4868 return type;
4869
7ba81444
MS
4870 /* This type shouldn't be pointing to any types in other objfiles;
4871 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4872 gdb_assert (TYPE_OBJFILE (type) == objfile);
4873
fd90ace4
YQ
4874 struct type_pair pair (type, nullptr);
4875
ae5a43e0
DJ
4876 slot = htab_find_slot (copied_types, &pair, INSERT);
4877 if (*slot != NULL)
fe978cb0 4878 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4879
e9bb382b 4880 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4881
4882 /* We must add the new type to the hash table immediately, in case
4883 we encounter this type again during a recursive call below. */
fd90ace4
YQ
4884 struct type_pair *stored
4885 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4886
ae5a43e0
DJ
4887 *slot = stored;
4888
876cecd0
TT
4889 /* Copy the common fields of types. For the main type, we simply
4890 copy the entire thing and then update specific fields as needed. */
4891 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4892 TYPE_OBJFILE_OWNED (new_type) = 0;
4893 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4894
ae5a43e0
DJ
4895 if (TYPE_NAME (type))
4896 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
4897
4898 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4899 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4900
4901 /* Copy the fields. */
ae5a43e0
DJ
4902 if (TYPE_NFIELDS (type))
4903 {
4904 int i, nfields;
4905
4906 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
4907 TYPE_FIELDS (new_type) = (struct field *)
4908 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
4909 for (i = 0; i < nfields; i++)
4910 {
7ba81444
MS
4911 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4912 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4913 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4914 if (TYPE_FIELD_TYPE (type, i))
4915 TYPE_FIELD_TYPE (new_type, i)
4916 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4917 copied_types);
4918 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4919 TYPE_FIELD_NAME (new_type, i) =
4920 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4921 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4922 {
d6a843b5
JK
4923 case FIELD_LOC_KIND_BITPOS:
4924 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4925 TYPE_FIELD_BITPOS (type, i));
4926 break;
14e75d8e
JK
4927 case FIELD_LOC_KIND_ENUMVAL:
4928 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4929 TYPE_FIELD_ENUMVAL (type, i));
4930 break;
d6a843b5
JK
4931 case FIELD_LOC_KIND_PHYSADDR:
4932 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4933 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4934 break;
4935 case FIELD_LOC_KIND_PHYSNAME:
4936 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4937 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4938 i)));
4939 break;
4940 default:
4941 internal_error (__FILE__, __LINE__,
4942 _("Unexpected type field location kind: %d"),
4943 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4944 }
4945 }
4946 }
4947
0963b4bd 4948 /* For range types, copy the bounds information. */
43bbcdc2
PH
4949 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4950 {
2fabdf33
AB
4951 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4952 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
4953 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4954 }
4955
d9823cbb
KB
4956 if (TYPE_DYN_PROP_LIST (type) != NULL)
4957 TYPE_DYN_PROP_LIST (new_type)
4958 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4959 TYPE_DYN_PROP_LIST (type));
4960
3cdcd0ce 4961
ae5a43e0
DJ
4962 /* Copy pointers to other types. */
4963 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4964 TYPE_TARGET_TYPE (new_type) =
4965 copy_type_recursive (objfile,
4966 TYPE_TARGET_TYPE (type),
4967 copied_types);
f6b3afbf 4968
ae5a43e0
DJ
4969 /* Maybe copy the type_specific bits.
4970
4971 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4972 base classes and methods. There's no fundamental reason why we
4973 can't, but at the moment it is not needed. */
4974
f6b3afbf
DE
4975 switch (TYPE_SPECIFIC_FIELD (type))
4976 {
4977 case TYPE_SPECIFIC_NONE:
4978 break;
4979 case TYPE_SPECIFIC_FUNC:
4980 INIT_FUNC_SPECIFIC (new_type);
4981 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4982 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4983 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4984 break;
4985 case TYPE_SPECIFIC_FLOATFORMAT:
4986 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4987 break;
4988 case TYPE_SPECIFIC_CPLUS_STUFF:
4989 INIT_CPLUS_SPECIFIC (new_type);
4990 break;
4991 case TYPE_SPECIFIC_GNAT_STUFF:
4992 INIT_GNAT_SPECIFIC (new_type);
4993 break;
09e2d7c7
DE
4994 case TYPE_SPECIFIC_SELF_TYPE:
4995 set_type_self_type (new_type,
4996 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4997 copied_types));
4998 break;
f6b3afbf
DE
4999 default:
5000 gdb_assert_not_reached ("bad type_specific_kind");
5001 }
ae5a43e0
DJ
5002
5003 return new_type;
5004}
5005
4af88198
JB
5006/* Make a copy of the given TYPE, except that the pointer & reference
5007 types are not preserved.
5008
5009 This function assumes that the given type has an associated objfile.
5010 This objfile is used to allocate the new type. */
5011
5012struct type *
5013copy_type (const struct type *type)
5014{
5015 struct type *new_type;
5016
e9bb382b 5017 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5018
e9bb382b 5019 new_type = alloc_type_copy (type);
4af88198
JB
5020 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5021 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5022 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5023 sizeof (struct main_type));
d9823cbb
KB
5024 if (TYPE_DYN_PROP_LIST (type) != NULL)
5025 TYPE_DYN_PROP_LIST (new_type)
5026 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5027 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5028
5029 return new_type;
5030}
5212577a 5031\f
e9bb382b
UW
5032/* Helper functions to initialize architecture-specific types. */
5033
5034/* Allocate a type structure associated with GDBARCH and set its
5035 CODE, LENGTH, and NAME fields. */
5212577a 5036
e9bb382b
UW
5037struct type *
5038arch_type (struct gdbarch *gdbarch,
77b7c781 5039 enum type_code code, int bit, const char *name)
e9bb382b
UW
5040{
5041 struct type *type;
5042
5043 type = alloc_type_arch (gdbarch);
ae438bc5 5044 set_type_code (type, code);
77b7c781
UW
5045 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5046 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5047
5048 if (name)
6c214e7c 5049 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5050
5051 return type;
5052}
5053
5054/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5055 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5056 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5057
e9bb382b
UW
5058struct type *
5059arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5060 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5061{
5062 struct type *t;
5063
77b7c781 5064 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5065 if (unsigned_p)
5066 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5067
5068 return t;
5069}
5070
5071/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5072 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5073 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5074
e9bb382b
UW
5075struct type *
5076arch_character_type (struct gdbarch *gdbarch,
695bfa52 5077 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5078{
5079 struct type *t;
5080
77b7c781 5081 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5082 if (unsigned_p)
5083 TYPE_UNSIGNED (t) = 1;
5084
5085 return t;
5086}
5087
5088/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5089 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5090 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5091
e9bb382b
UW
5092struct type *
5093arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5094 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5095{
5096 struct type *t;
5097
77b7c781 5098 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5099 if (unsigned_p)
5100 TYPE_UNSIGNED (t) = 1;
5101
5102 return t;
5103}
5104
5105/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5106 BIT is the type size in bits; if BIT equals -1, the size is
5107 determined by the floatformat. NAME is the type name. Set the
5108 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5109
27067745 5110struct type *
e9bb382b 5111arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5112 int bit, const char *name,
5113 const struct floatformat **floatformats)
8da61cc4 5114{
0db7851f 5115 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5116 struct type *t;
5117
0db7851f 5118 bit = verify_floatformat (bit, fmt);
77b7c781 5119 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5120 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5121
8da61cc4
DJ
5122 return t;
5123}
5124
88dfca6c
UW
5125/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5126 BIT is the type size in bits. NAME is the type name. */
5127
5128struct type *
5129arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5130{
5131 struct type *t;
5132
77b7c781 5133 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5134 return t;
5135}
5136
e9bb382b
UW
5137/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5138 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 5139
27067745 5140struct type *
e9bb382b 5141arch_complex_type (struct gdbarch *gdbarch,
695bfa52 5142 const char *name, struct type *target_type)
27067745
UW
5143{
5144 struct type *t;
d8734c88 5145
e9bb382b 5146 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 5147 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
5148 TYPE_TARGET_TYPE (t) = target_type;
5149 return t;
5150}
5151
88dfca6c
UW
5152/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5153 BIT is the pointer type size in bits. NAME is the type name.
5154 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5155 TYPE_UNSIGNED flag. */
5156
5157struct type *
5158arch_pointer_type (struct gdbarch *gdbarch,
5159 int bit, const char *name, struct type *target_type)
5160{
5161 struct type *t;
5162
77b7c781 5163 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5164 TYPE_TARGET_TYPE (t) = target_type;
5165 TYPE_UNSIGNED (t) = 1;
5166 return t;
5167}
5168
e9bb382b 5169/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5170 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5171
e9bb382b 5172struct type *
77b7c781 5173arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5174{
e9bb382b
UW
5175 struct type *type;
5176
77b7c781 5177 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5178 TYPE_UNSIGNED (type) = 1;
81516450
DE
5179 TYPE_NFIELDS (type) = 0;
5180 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5181 TYPE_FIELDS (type)
77b7c781 5182 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5183
5184 return type;
5185}
5186
5187/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5188 position BITPOS is called NAME. Pass NAME as "" for fields that
5189 should not be printed. */
5190
5191void
5192append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5193 struct type *field_type, const char *name)
81516450
DE
5194{
5195 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5196 int field_nr = TYPE_NFIELDS (type);
5197
5198 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5199 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5200 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5201 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5202 gdb_assert (name != NULL);
5203
5204 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5205 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5206 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5207 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5208 ++TYPE_NFIELDS (type);
5209}
5210
5211/* Special version of append_flags_type_field to add a flag field.
5212 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5213 position BITPOS is called NAME. */
5212577a 5214
e9bb382b 5215void
695bfa52 5216append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5217{
81516450 5218 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5219
81516450
DE
5220 append_flags_type_field (type, bitpos, 1,
5221 builtin_type (gdbarch)->builtin_bool,
5222 name);
e9bb382b
UW
5223}
5224
5225/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5226 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5227
e9bb382b 5228struct type *
695bfa52
TT
5229arch_composite_type (struct gdbarch *gdbarch, const char *name,
5230 enum type_code code)
e9bb382b
UW
5231{
5232 struct type *t;
d8734c88 5233
e9bb382b
UW
5234 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5235 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5236 TYPE_NAME (t) = name;
e9bb382b
UW
5237 INIT_CPLUS_SPECIFIC (t);
5238 return t;
5239}
5240
5241/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5242 Do not set the field's position or adjust the type's length;
5243 the caller should do so. Return the new field. */
5212577a 5244
f5dff777 5245struct field *
695bfa52 5246append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5247 struct type *field)
e9bb382b
UW
5248{
5249 struct field *f;
d8734c88 5250
e9bb382b 5251 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5252 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5253 TYPE_NFIELDS (t));
e9bb382b
UW
5254 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5255 memset (f, 0, sizeof f[0]);
5256 FIELD_TYPE (f[0]) = field;
5257 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5258 return f;
5259}
5260
5261/* Add new field with name NAME and type FIELD to composite type T.
5262 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5263
f5dff777 5264void
695bfa52 5265append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5266 struct type *field, int alignment)
5267{
5268 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5269
e9bb382b
UW
5270 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5271 {
5272 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5273 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5274 }
5275 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5276 {
5277 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5278 if (TYPE_NFIELDS (t) > 1)
5279 {
f41f5e61
PA
5280 SET_FIELD_BITPOS (f[0],
5281 (FIELD_BITPOS (f[-1])
5282 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5283 * TARGET_CHAR_BIT)));
e9bb382b
UW
5284
5285 if (alignment)
5286 {
86c3c1fc
AB
5287 int left;
5288
5289 alignment *= TARGET_CHAR_BIT;
5290 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5291
e9bb382b
UW
5292 if (left)
5293 {
f41f5e61 5294 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5295 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5296 }
5297 }
5298 }
5299 }
5300}
5301
5302/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5303
e9bb382b 5304void
695bfa52 5305append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5306 struct type *field)
5307{
5308 append_composite_type_field_aligned (t, name, field, 0);
5309}
5310
000177f0
AC
5311static struct gdbarch_data *gdbtypes_data;
5312
5313const struct builtin_type *
5314builtin_type (struct gdbarch *gdbarch)
5315{
9a3c8263 5316 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5317}
5318
5319static void *
5320gdbtypes_post_init (struct gdbarch *gdbarch)
5321{
5322 struct builtin_type *builtin_type
5323 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5324
46bf5051 5325 /* Basic types. */
e9bb382b 5326 builtin_type->builtin_void
77b7c781 5327 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5328 builtin_type->builtin_char
5329 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5330 !gdbarch_char_signed (gdbarch), "char");
c413c448 5331 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5332 builtin_type->builtin_signed_char
5333 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5334 0, "signed char");
5335 builtin_type->builtin_unsigned_char
5336 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5337 1, "unsigned char");
5338 builtin_type->builtin_short
5339 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5340 0, "short");
5341 builtin_type->builtin_unsigned_short
5342 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5343 1, "unsigned short");
5344 builtin_type->builtin_int
5345 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5346 0, "int");
5347 builtin_type->builtin_unsigned_int
5348 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5349 1, "unsigned int");
5350 builtin_type->builtin_long
5351 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5352 0, "long");
5353 builtin_type->builtin_unsigned_long
5354 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5355 1, "unsigned long");
5356 builtin_type->builtin_long_long
5357 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5358 0, "long long");
5359 builtin_type->builtin_unsigned_long_long
5360 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5361 1, "unsigned long long");
70bd8e24 5362 builtin_type->builtin_float
e9bb382b 5363 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5364 "float", gdbarch_float_format (gdbarch));
70bd8e24 5365 builtin_type->builtin_double
e9bb382b 5366 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5367 "double", gdbarch_double_format (gdbarch));
70bd8e24 5368 builtin_type->builtin_long_double
e9bb382b 5369 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5370 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5371 builtin_type->builtin_complex
e9bb382b
UW
5372 = arch_complex_type (gdbarch, "complex",
5373 builtin_type->builtin_float);
70bd8e24 5374 builtin_type->builtin_double_complex
e9bb382b
UW
5375 = arch_complex_type (gdbarch, "double complex",
5376 builtin_type->builtin_double);
5377 builtin_type->builtin_string
77b7c781 5378 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5379 builtin_type->builtin_bool
77b7c781 5380 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5381
7678ef8f
TJB
5382 /* The following three are about decimal floating point types, which
5383 are 32-bits, 64-bits and 128-bits respectively. */
5384 builtin_type->builtin_decfloat
88dfca6c 5385 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5386 builtin_type->builtin_decdouble
88dfca6c 5387 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5388 builtin_type->builtin_declong
88dfca6c 5389 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5390
69feb676 5391 /* "True" character types. */
e9bb382b
UW
5392 builtin_type->builtin_true_char
5393 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5394 builtin_type->builtin_true_unsigned_char
5395 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5396
df4df182 5397 /* Fixed-size integer types. */
e9bb382b
UW
5398 builtin_type->builtin_int0
5399 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5400 builtin_type->builtin_int8
5401 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5402 builtin_type->builtin_uint8
5403 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5404 builtin_type->builtin_int16
5405 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5406 builtin_type->builtin_uint16
5407 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5408 builtin_type->builtin_int24
5409 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5410 builtin_type->builtin_uint24
5411 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5412 builtin_type->builtin_int32
5413 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5414 builtin_type->builtin_uint32
5415 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5416 builtin_type->builtin_int64
5417 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5418 builtin_type->builtin_uint64
5419 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5420 builtin_type->builtin_int128
5421 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5422 builtin_type->builtin_uint128
5423 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5424 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5425 TYPE_INSTANCE_FLAG_NOTTEXT;
5426 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5427 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5428
9a22f0d0
PM
5429 /* Wide character types. */
5430 builtin_type->builtin_char16
53e710ac 5431 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5432 builtin_type->builtin_char32
53e710ac 5433 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5434 builtin_type->builtin_wchar
5435 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5436 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5437
46bf5051 5438 /* Default data/code pointer types. */
e9bb382b
UW
5439 builtin_type->builtin_data_ptr
5440 = lookup_pointer_type (builtin_type->builtin_void);
5441 builtin_type->builtin_func_ptr
5442 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5443 builtin_type->builtin_func_func
5444 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5445
78267919 5446 /* This type represents a GDB internal function. */
e9bb382b
UW
5447 builtin_type->internal_fn
5448 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5449 "<internal function>");
78267919 5450
e81e7f5e
SC
5451 /* This type represents an xmethod. */
5452 builtin_type->xmethod
5453 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5454
46bf5051
UW
5455 return builtin_type;
5456}
5457
46bf5051
UW
5458/* This set of objfile-based types is intended to be used by symbol
5459 readers as basic types. */
5460
5461static const struct objfile_data *objfile_type_data;
5462
5463const struct objfile_type *
5464objfile_type (struct objfile *objfile)
5465{
5466 struct gdbarch *gdbarch;
5467 struct objfile_type *objfile_type
9a3c8263 5468 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
46bf5051
UW
5469
5470 if (objfile_type)
5471 return objfile_type;
5472
5473 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5474 1, struct objfile_type);
5475
5476 /* Use the objfile architecture to determine basic type properties. */
5477 gdbarch = get_objfile_arch (objfile);
5478
5479 /* Basic types. */
5480 objfile_type->builtin_void
77b7c781 5481 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5482 objfile_type->builtin_char
19f392bc
UW
5483 = init_integer_type (objfile, TARGET_CHAR_BIT,
5484 !gdbarch_char_signed (gdbarch), "char");
c413c448 5485 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5486 objfile_type->builtin_signed_char
19f392bc
UW
5487 = init_integer_type (objfile, TARGET_CHAR_BIT,
5488 0, "signed char");
46bf5051 5489 objfile_type->builtin_unsigned_char
19f392bc
UW
5490 = init_integer_type (objfile, TARGET_CHAR_BIT,
5491 1, "unsigned char");
46bf5051 5492 objfile_type->builtin_short
19f392bc
UW
5493 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5494 0, "short");
46bf5051 5495 objfile_type->builtin_unsigned_short
19f392bc
UW
5496 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5497 1, "unsigned short");
46bf5051 5498 objfile_type->builtin_int
19f392bc
UW
5499 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5500 0, "int");
46bf5051 5501 objfile_type->builtin_unsigned_int
19f392bc
UW
5502 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5503 1, "unsigned int");
46bf5051 5504 objfile_type->builtin_long
19f392bc
UW
5505 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5506 0, "long");
46bf5051 5507 objfile_type->builtin_unsigned_long
19f392bc
UW
5508 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5509 1, "unsigned long");
46bf5051 5510 objfile_type->builtin_long_long
19f392bc
UW
5511 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5512 0, "long long");
46bf5051 5513 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5514 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5515 1, "unsigned long long");
46bf5051 5516 objfile_type->builtin_float
19f392bc
UW
5517 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5518 "float", gdbarch_float_format (gdbarch));
46bf5051 5519 objfile_type->builtin_double
19f392bc
UW
5520 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5521 "double", gdbarch_double_format (gdbarch));
46bf5051 5522 objfile_type->builtin_long_double
19f392bc
UW
5523 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5524 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5525
5526 /* This type represents a type that was unrecognized in symbol read-in. */
5527 objfile_type->builtin_error
19f392bc 5528 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5529
5530 /* The following set of types is used for symbols with no
5531 debug information. */
5532 objfile_type->nodebug_text_symbol
77b7c781 5533 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5534 "<text variable, no debug info>");
0875794a 5535 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5536 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5537 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5538 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5539 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5540 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5541 "<text from jump slot in .got.plt, no debug info>",
5542 objfile_type->nodebug_text_symbol);
46bf5051 5543 objfile_type->nodebug_data_symbol
46a4882b 5544 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5545 objfile_type->nodebug_unknown_symbol
46a4882b 5546 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5547 objfile_type->nodebug_tls_symbol
46a4882b 5548 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5549
5550 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5551 the same.
000177f0
AC
5552
5553 The upshot is:
5554 - gdb's `struct type' always describes the target's
5555 representation.
5556 - gdb's `struct value' objects should always hold values in
5557 target form.
5558 - gdb's CORE_ADDR values are addresses in the unified virtual
5559 address space that the assembler and linker work with. Thus,
5560 since target_read_memory takes a CORE_ADDR as an argument, it
5561 can access any memory on the target, even if the processor has
5562 separate code and data address spaces.
5563
46bf5051
UW
5564 In this context, objfile_type->builtin_core_addr is a bit odd:
5565 it's a target type for a value the target will never see. It's
5566 only used to hold the values of (typeless) linker symbols, which
5567 are indeed in the unified virtual address space. */
000177f0 5568
46bf5051 5569 objfile_type->builtin_core_addr
19f392bc
UW
5570 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5571 "__CORE_ADDR");
64c50499 5572
46bf5051
UW
5573 set_objfile_data (objfile, objfile_type_data, objfile_type);
5574 return objfile_type;
000177f0
AC
5575}
5576
c906108c 5577void
fba45db2 5578_initialize_gdbtypes (void)
c906108c 5579{
5674de60 5580 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5581 objfile_type_data = register_objfile_data ();
5674de60 5582
ccce17b0
YQ
5583 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5584 _("Set debugging of C++ overloading."),
5585 _("Show debugging of C++ overloading."),
5586 _("When enabled, ranking of the "
5587 "functions is displayed."),
5588 NULL,
5589 show_overload_debug,
5590 &setdebuglist, &showdebuglist);
5674de60 5591
7ba81444 5592 /* Add user knob for controlling resolution of opaque types. */
5674de60 5593 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5594 &opaque_type_resolution,
5595 _("Set resolution of opaque struct/class/union"
5596 " types (if set before loading symbols)."),
5597 _("Show resolution of opaque struct/class/union"
5598 " types (if set before loading symbols)."),
5599 NULL, NULL,
5674de60
UW
5600 show_opaque_type_resolution,
5601 &setlist, &showlist);
a451cb65
KS
5602
5603 /* Add an option to permit non-strict type checking. */
5604 add_setshow_boolean_cmd ("type", class_support,
5605 &strict_type_checking,
5606 _("Set strict type checking."),
5607 _("Show strict type checking."),
5608 NULL, NULL,
5609 show_strict_type_checking,
5610 &setchecklist, &showchecklist);
c906108c 5611}
This page took 2.957863 seconds and 4 git commands to generate.