gdb/
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
0b302171 3 Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "bfd.h"
25#include "symtab.h"
26#include "symfile.h"
27#include "objfiles.h"
28#include "gdbtypes.h"
29#include "expression.h"
30#include "language.h"
31#include "target.h"
32#include "value.h"
33#include "demangle.h"
34#include "complaints.h"
35#include "gdbcmd.h"
015a42b4 36#include "cp-abi.h"
a02fd225 37#include "gdb_assert.h"
ae5a43e0 38#include "hashtab.h"
8e7b59a5 39#include "exceptions.h"
ac3aafc7 40
6403aeea
SW
41/* Initialize BADNESS constants. */
42
a9d5ef47 43const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 44
a9d5ef47
SW
45const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
46const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 47
a9d5ef47 48const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 49
a9d5ef47
SW
50const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
51const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
52const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
53const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
54const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
55const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
57const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
58const struct rank BASE_CONVERSION_BADNESS = {2,0};
59const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 60const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 61const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
6403aeea 62
8da61cc4 63/* Floatformat pairs. */
f9e9243a
UW
64const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
65 &floatformat_ieee_half_big,
66 &floatformat_ieee_half_little
67};
8da61cc4
DJ
68const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_single_big,
70 &floatformat_ieee_single_little
71};
72const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_double_big,
74 &floatformat_ieee_double_little
75};
76const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_littlebyte_bigword
79};
80const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_i387_ext,
82 &floatformat_i387_ext
83};
84const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_m68881_ext,
86 &floatformat_m68881_ext
87};
88const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_arm_ext_big,
90 &floatformat_arm_ext_littlebyte_bigword
91};
92const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_ia64_spill_big,
94 &floatformat_ia64_spill_little
95};
96const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_quad_big,
98 &floatformat_ia64_quad_little
99};
100const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_vax_f,
102 &floatformat_vax_f
103};
104const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_d,
106 &floatformat_vax_d
107};
b14d30e1
JM
108const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_ibm_long_double,
110 &floatformat_ibm_long_double
111};
8da61cc4 112
8da61cc4 113
c906108c 114int opaque_type_resolution = 1;
920d2a44
AC
115static void
116show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
117 struct cmd_list_element *c,
118 const char *value)
920d2a44 119{
3e43a32a
MS
120 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
121 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
122 value);
123}
124
5d161b24 125int overload_debug = 0;
920d2a44
AC
126static void
127show_overload_debug (struct ui_file *file, int from_tty,
128 struct cmd_list_element *c, const char *value)
129{
7ba81444
MS
130 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
131 value);
920d2a44 132}
c906108c 133
c5aa993b
JM
134struct extra
135 {
136 char str[128];
137 int len;
7ba81444 138 }; /* Maximum extension is 128! FIXME */
c906108c 139
a14ed312 140static void print_bit_vector (B_TYPE *, int);
ad2f7632 141static void print_arg_types (struct field *, int, int);
a14ed312
KB
142static void dump_fn_fieldlists (struct type *, int);
143static void print_cplus_stuff (struct type *, int);
7a292a7a 144
c906108c 145
e9bb382b
UW
146/* Allocate a new OBJFILE-associated type structure and fill it
147 with some defaults. Space for the type structure is allocated
148 on the objfile's objfile_obstack. */
c906108c
SS
149
150struct type *
fba45db2 151alloc_type (struct objfile *objfile)
c906108c 152{
52f0bd74 153 struct type *type;
c906108c 154
e9bb382b
UW
155 gdb_assert (objfile != NULL);
156
7ba81444 157 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
158 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
159 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
160 struct main_type);
161 OBJSTAT (objfile, n_types++);
c906108c 162
e9bb382b
UW
163 TYPE_OBJFILE_OWNED (type) = 1;
164 TYPE_OWNER (type).objfile = objfile;
c906108c 165
7ba81444 166 /* Initialize the fields that might not be zero. */
c906108c
SS
167
168 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 169 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 170 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 171
c16abbde 172 return type;
c906108c
SS
173}
174
e9bb382b
UW
175/* Allocate a new GDBARCH-associated type structure and fill it
176 with some defaults. Space for the type structure is allocated
177 on the heap. */
178
179struct type *
180alloc_type_arch (struct gdbarch *gdbarch)
181{
182 struct type *type;
183
184 gdb_assert (gdbarch != NULL);
185
186 /* Alloc the structure and start off with all fields zeroed. */
187
188 type = XZALLOC (struct type);
189 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
190
191 TYPE_OBJFILE_OWNED (type) = 0;
192 TYPE_OWNER (type).gdbarch = gdbarch;
193
194 /* Initialize the fields that might not be zero. */
195
196 TYPE_CODE (type) = TYPE_CODE_UNDEF;
197 TYPE_VPTR_FIELDNO (type) = -1;
198 TYPE_CHAIN (type) = type; /* Chain back to itself. */
199
200 return type;
201}
202
203/* If TYPE is objfile-associated, allocate a new type structure
204 associated with the same objfile. If TYPE is gdbarch-associated,
205 allocate a new type structure associated with the same gdbarch. */
206
207struct type *
208alloc_type_copy (const struct type *type)
209{
210 if (TYPE_OBJFILE_OWNED (type))
211 return alloc_type (TYPE_OWNER (type).objfile);
212 else
213 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
214}
215
216/* If TYPE is gdbarch-associated, return that architecture.
217 If TYPE is objfile-associated, return that objfile's architecture. */
218
219struct gdbarch *
220get_type_arch (const struct type *type)
221{
222 if (TYPE_OBJFILE_OWNED (type))
223 return get_objfile_arch (TYPE_OWNER (type).objfile);
224 else
225 return TYPE_OWNER (type).gdbarch;
226}
227
228
2fdde8f8
DJ
229/* Alloc a new type instance structure, fill it with some defaults,
230 and point it at OLDTYPE. Allocate the new type instance from the
231 same place as OLDTYPE. */
232
233static struct type *
234alloc_type_instance (struct type *oldtype)
235{
236 struct type *type;
237
238 /* Allocate the structure. */
239
e9bb382b 240 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 241 type = XZALLOC (struct type);
2fdde8f8 242 else
1deafd4e
PA
243 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
244 struct type);
245
2fdde8f8
DJ
246 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
247
248 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
249
c16abbde 250 return type;
2fdde8f8
DJ
251}
252
253/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 254 replacing it with something else. Preserve owner information. */
2fdde8f8
DJ
255static void
256smash_type (struct type *type)
257{
e9bb382b
UW
258 int objfile_owned = TYPE_OBJFILE_OWNED (type);
259 union type_owner owner = TYPE_OWNER (type);
260
2fdde8f8
DJ
261 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
262
e9bb382b
UW
263 /* Restore owner information. */
264 TYPE_OBJFILE_OWNED (type) = objfile_owned;
265 TYPE_OWNER (type) = owner;
266
2fdde8f8
DJ
267 /* For now, delete the rings. */
268 TYPE_CHAIN (type) = type;
269
270 /* For now, leave the pointer/reference types alone. */
271}
272
c906108c
SS
273/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
274 to a pointer to memory where the pointer type should be stored.
275 If *TYPEPTR is zero, update it to point to the pointer type we return.
276 We allocate new memory if needed. */
277
278struct type *
fba45db2 279make_pointer_type (struct type *type, struct type **typeptr)
c906108c 280{
52f0bd74 281 struct type *ntype; /* New type */
053cb41b 282 struct type *chain;
c906108c
SS
283
284 ntype = TYPE_POINTER_TYPE (type);
285
c5aa993b 286 if (ntype)
c906108c 287 {
c5aa993b 288 if (typeptr == 0)
7ba81444
MS
289 return ntype; /* Don't care about alloc,
290 and have new type. */
c906108c 291 else if (*typeptr == 0)
c5aa993b 292 {
7ba81444 293 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 294 return ntype;
c5aa993b 295 }
c906108c
SS
296 }
297
298 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
299 {
e9bb382b 300 ntype = alloc_type_copy (type);
c906108c
SS
301 if (typeptr)
302 *typeptr = ntype;
303 }
7ba81444 304 else /* We have storage, but need to reset it. */
c906108c
SS
305 {
306 ntype = *typeptr;
053cb41b 307 chain = TYPE_CHAIN (ntype);
2fdde8f8 308 smash_type (ntype);
053cb41b 309 TYPE_CHAIN (ntype) = chain;
c906108c
SS
310 }
311
312 TYPE_TARGET_TYPE (ntype) = type;
313 TYPE_POINTER_TYPE (type) = ntype;
314
7ba81444
MS
315 /* FIXME! Assume the machine has only one representation for
316 pointers! */
c906108c 317
50810684
UW
318 TYPE_LENGTH (ntype)
319 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
320 TYPE_CODE (ntype) = TYPE_CODE_PTR;
321
67b2adb2 322 /* Mark pointers as unsigned. The target converts between pointers
76e71323 323 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 324 gdbarch_address_to_pointer. */
876cecd0 325 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 326
c906108c
SS
327 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
328 TYPE_POINTER_TYPE (type) = ntype;
329
053cb41b
JB
330 /* Update the length of all the other variants of this type. */
331 chain = TYPE_CHAIN (ntype);
332 while (chain != ntype)
333 {
334 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
335 chain = TYPE_CHAIN (chain);
336 }
337
c906108c
SS
338 return ntype;
339}
340
341/* Given a type TYPE, return a type of pointers to that type.
342 May need to construct such a type if this is the first use. */
343
344struct type *
fba45db2 345lookup_pointer_type (struct type *type)
c906108c 346{
c5aa993b 347 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
348}
349
7ba81444
MS
350/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
351 points to a pointer to memory where the reference type should be
352 stored. If *TYPEPTR is zero, update it to point to the reference
353 type we return. We allocate new memory if needed. */
c906108c
SS
354
355struct type *
fba45db2 356make_reference_type (struct type *type, struct type **typeptr)
c906108c 357{
52f0bd74 358 struct type *ntype; /* New type */
1e98b326 359 struct type *chain;
c906108c
SS
360
361 ntype = TYPE_REFERENCE_TYPE (type);
362
c5aa993b 363 if (ntype)
c906108c 364 {
c5aa993b 365 if (typeptr == 0)
7ba81444
MS
366 return ntype; /* Don't care about alloc,
367 and have new type. */
c906108c 368 else if (*typeptr == 0)
c5aa993b 369 {
7ba81444 370 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 371 return ntype;
c5aa993b 372 }
c906108c
SS
373 }
374
375 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
376 {
e9bb382b 377 ntype = alloc_type_copy (type);
c906108c
SS
378 if (typeptr)
379 *typeptr = ntype;
380 }
7ba81444 381 else /* We have storage, but need to reset it. */
c906108c
SS
382 {
383 ntype = *typeptr;
1e98b326 384 chain = TYPE_CHAIN (ntype);
2fdde8f8 385 smash_type (ntype);
1e98b326 386 TYPE_CHAIN (ntype) = chain;
c906108c
SS
387 }
388
389 TYPE_TARGET_TYPE (ntype) = type;
390 TYPE_REFERENCE_TYPE (type) = ntype;
391
7ba81444
MS
392 /* FIXME! Assume the machine has only one representation for
393 references, and that it matches the (only) representation for
394 pointers! */
c906108c 395
50810684
UW
396 TYPE_LENGTH (ntype) =
397 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 398 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 399
c906108c
SS
400 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
401 TYPE_REFERENCE_TYPE (type) = ntype;
402
1e98b326
JB
403 /* Update the length of all the other variants of this type. */
404 chain = TYPE_CHAIN (ntype);
405 while (chain != ntype)
406 {
407 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
408 chain = TYPE_CHAIN (chain);
409 }
410
c906108c
SS
411 return ntype;
412}
413
7ba81444
MS
414/* Same as above, but caller doesn't care about memory allocation
415 details. */
c906108c
SS
416
417struct type *
fba45db2 418lookup_reference_type (struct type *type)
c906108c 419{
c5aa993b 420 return make_reference_type (type, (struct type **) 0);
c906108c
SS
421}
422
7ba81444
MS
423/* Lookup a function type that returns type TYPE. TYPEPTR, if
424 nonzero, points to a pointer to memory where the function type
425 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 426 function type we return. We allocate new memory if needed. */
c906108c
SS
427
428struct type *
0c8b41f1 429make_function_type (struct type *type, struct type **typeptr)
c906108c 430{
52f0bd74 431 struct type *ntype; /* New type */
c906108c
SS
432
433 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
434 {
e9bb382b 435 ntype = alloc_type_copy (type);
c906108c
SS
436 if (typeptr)
437 *typeptr = ntype;
438 }
7ba81444 439 else /* We have storage, but need to reset it. */
c906108c
SS
440 {
441 ntype = *typeptr;
2fdde8f8 442 smash_type (ntype);
c906108c
SS
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
446
447 TYPE_LENGTH (ntype) = 1;
448 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 449
b6cdc2c1
JK
450 INIT_FUNC_SPECIFIC (ntype);
451
c906108c
SS
452 return ntype;
453}
454
455
456/* Given a type TYPE, return a type of functions that return that type.
457 May need to construct such a type if this is the first use. */
458
459struct type *
fba45db2 460lookup_function_type (struct type *type)
c906108c 461{
0c8b41f1 462 return make_function_type (type, (struct type **) 0);
c906108c
SS
463}
464
71918a86 465/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
466 function type. If the final type in PARAM_TYPES is NULL, make a
467 varargs function. */
71918a86
TT
468
469struct type *
470lookup_function_type_with_arguments (struct type *type,
471 int nparams,
472 struct type **param_types)
473{
474 struct type *fn = make_function_type (type, (struct type **) 0);
475 int i;
476
e314d629 477 if (nparams > 0)
a6fb9c08 478 {
e314d629
TT
479 if (param_types[nparams - 1] == NULL)
480 {
481 --nparams;
482 TYPE_VARARGS (fn) = 1;
483 }
484 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
485 == TYPE_CODE_VOID)
486 {
487 --nparams;
488 /* Caller should have ensured this. */
489 gdb_assert (nparams == 0);
490 TYPE_PROTOTYPED (fn) = 1;
491 }
a6fb9c08
TT
492 }
493
71918a86
TT
494 TYPE_NFIELDS (fn) = nparams;
495 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
496 for (i = 0; i < nparams; ++i)
497 TYPE_FIELD_TYPE (fn, i) = param_types[i];
498
499 return fn;
500}
501
47663de5
MS
502/* Identify address space identifier by name --
503 return the integer flag defined in gdbtypes.h. */
504extern int
50810684 505address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 506{
8b2dbe47 507 int type_flags;
d8734c88 508
7ba81444 509 /* Check for known address space delimiters. */
47663de5 510 if (!strcmp (space_identifier, "code"))
876cecd0 511 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 512 else if (!strcmp (space_identifier, "data"))
876cecd0 513 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
514 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
515 && gdbarch_address_class_name_to_type_flags (gdbarch,
516 space_identifier,
517 &type_flags))
8b2dbe47 518 return type_flags;
47663de5 519 else
8a3fe4f8 520 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
521}
522
523/* Identify address space identifier by integer flag as defined in
7ba81444 524 gdbtypes.h -- return the string version of the adress space name. */
47663de5 525
321432c0 526const char *
50810684 527address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 528{
876cecd0 529 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 530 return "code";
876cecd0 531 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 532 return "data";
876cecd0 533 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
534 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
535 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
536 else
537 return NULL;
538}
539
2fdde8f8 540/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
541
542 If STORAGE is non-NULL, create the new type instance there.
543 STORAGE must be in the same obstack as TYPE. */
47663de5 544
b9362cc7 545static struct type *
2fdde8f8
DJ
546make_qualified_type (struct type *type, int new_flags,
547 struct type *storage)
47663de5
MS
548{
549 struct type *ntype;
550
551 ntype = type;
5f61c20e
JK
552 do
553 {
554 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
555 return ntype;
556 ntype = TYPE_CHAIN (ntype);
557 }
558 while (ntype != type);
47663de5 559
2fdde8f8
DJ
560 /* Create a new type instance. */
561 if (storage == NULL)
562 ntype = alloc_type_instance (type);
563 else
564 {
7ba81444
MS
565 /* If STORAGE was provided, it had better be in the same objfile
566 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
567 if one objfile is freed and the other kept, we'd have
568 dangling pointers. */
ad766c0a
JB
569 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
570
2fdde8f8
DJ
571 ntype = storage;
572 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
573 TYPE_CHAIN (ntype) = ntype;
574 }
47663de5
MS
575
576 /* Pointers or references to the original type are not relevant to
2fdde8f8 577 the new type. */
47663de5
MS
578 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
579 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 580
2fdde8f8
DJ
581 /* Chain the new qualified type to the old type. */
582 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
583 TYPE_CHAIN (type) = ntype;
584
585 /* Now set the instance flags and return the new type. */
586 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 587
ab5d3da6
KB
588 /* Set length of new type to that of the original type. */
589 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
590
47663de5
MS
591 return ntype;
592}
593
2fdde8f8
DJ
594/* Make an address-space-delimited variant of a type -- a type that
595 is identical to the one supplied except that it has an address
596 space attribute attached to it (such as "code" or "data").
597
7ba81444
MS
598 The space attributes "code" and "data" are for Harvard
599 architectures. The address space attributes are for architectures
600 which have alternately sized pointers or pointers with alternate
601 representations. */
2fdde8f8
DJ
602
603struct type *
604make_type_with_address_space (struct type *type, int space_flag)
605{
2fdde8f8 606 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
607 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
608 | TYPE_INSTANCE_FLAG_DATA_SPACE
609 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
610 | space_flag);
611
612 return make_qualified_type (type, new_flags, NULL);
613}
c906108c
SS
614
615/* Make a "c-v" variant of a type -- a type that is identical to the
616 one supplied except that it may have const or volatile attributes
617 CNST is a flag for setting the const attribute
618 VOLTL is a flag for setting the volatile attribute
619 TYPE is the base type whose variant we are creating.
c906108c 620
ad766c0a
JB
621 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
622 storage to hold the new qualified type; *TYPEPTR and TYPE must be
623 in the same objfile. Otherwise, allocate fresh memory for the new
624 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
625 new type we construct. */
c906108c 626struct type *
7ba81444
MS
627make_cv_type (int cnst, int voltl,
628 struct type *type,
629 struct type **typeptr)
c906108c 630{
52f0bd74 631 struct type *ntype; /* New type */
c906108c 632
2fdde8f8 633 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
634 & ~(TYPE_INSTANCE_FLAG_CONST
635 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 636
c906108c 637 if (cnst)
876cecd0 638 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
639
640 if (voltl)
876cecd0 641 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 642
2fdde8f8 643 if (typeptr && *typeptr != NULL)
a02fd225 644 {
ad766c0a
JB
645 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
646 a C-V variant chain that threads across objfiles: if one
647 objfile gets freed, then the other has a broken C-V chain.
648
649 This code used to try to copy over the main type from TYPE to
650 *TYPEPTR if they were in different objfiles, but that's
651 wrong, too: TYPE may have a field list or member function
652 lists, which refer to types of their own, etc. etc. The
653 whole shebang would need to be copied over recursively; you
654 can't have inter-objfile pointers. The only thing to do is
655 to leave stub types as stub types, and look them up afresh by
656 name each time you encounter them. */
657 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
658 }
659
7ba81444
MS
660 ntype = make_qualified_type (type, new_flags,
661 typeptr ? *typeptr : NULL);
c906108c 662
2fdde8f8
DJ
663 if (typeptr != NULL)
664 *typeptr = ntype;
a02fd225 665
2fdde8f8 666 return ntype;
a02fd225 667}
c906108c 668
2fdde8f8
DJ
669/* Replace the contents of ntype with the type *type. This changes the
670 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
671 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 672
cda6c68a
JB
673 In order to build recursive types, it's inevitable that we'll need
674 to update types in place --- but this sort of indiscriminate
675 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
676 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
677 clear if more steps are needed. */
dd6bda65
DJ
678void
679replace_type (struct type *ntype, struct type *type)
680{
ab5d3da6 681 struct type *chain;
dd6bda65 682
ad766c0a
JB
683 /* These two types had better be in the same objfile. Otherwise,
684 the assignment of one type's main type structure to the other
685 will produce a type with references to objects (names; field
686 lists; etc.) allocated on an objfile other than its own. */
687 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
688
2fdde8f8 689 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 690
7ba81444
MS
691 /* The type length is not a part of the main type. Update it for
692 each type on the variant chain. */
ab5d3da6 693 chain = ntype;
5f61c20e
JK
694 do
695 {
696 /* Assert that this element of the chain has no address-class bits
697 set in its flags. Such type variants might have type lengths
698 which are supposed to be different from the non-address-class
699 variants. This assertion shouldn't ever be triggered because
700 symbol readers which do construct address-class variants don't
701 call replace_type(). */
702 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
703
704 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
705 chain = TYPE_CHAIN (chain);
706 }
707 while (ntype != chain);
ab5d3da6 708
2fdde8f8
DJ
709 /* Assert that the two types have equivalent instance qualifiers.
710 This should be true for at least all of our debug readers. */
711 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
712}
713
c906108c
SS
714/* Implement direct support for MEMBER_TYPE in GNU C++.
715 May need to construct such a type if this is the first use.
716 The TYPE is the type of the member. The DOMAIN is the type
717 of the aggregate that the member belongs to. */
718
719struct type *
0d5de010 720lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 721{
52f0bd74 722 struct type *mtype;
c906108c 723
e9bb382b 724 mtype = alloc_type_copy (type);
0d5de010 725 smash_to_memberptr_type (mtype, domain, type);
c16abbde 726 return mtype;
c906108c
SS
727}
728
0d5de010
DJ
729/* Return a pointer-to-method type, for a method of type TO_TYPE. */
730
731struct type *
732lookup_methodptr_type (struct type *to_type)
733{
734 struct type *mtype;
735
e9bb382b 736 mtype = alloc_type_copy (to_type);
0b92b5bb 737 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
738 return mtype;
739}
740
7ba81444
MS
741/* Allocate a stub method whose return type is TYPE. This apparently
742 happens for speed of symbol reading, since parsing out the
743 arguments to the method is cpu-intensive, the way we are doing it.
744 So, we will fill in arguments later. This always returns a fresh
745 type. */
c906108c
SS
746
747struct type *
fba45db2 748allocate_stub_method (struct type *type)
c906108c
SS
749{
750 struct type *mtype;
751
e9bb382b
UW
752 mtype = alloc_type_copy (type);
753 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
754 TYPE_LENGTH (mtype) = 1;
755 TYPE_STUB (mtype) = 1;
c906108c
SS
756 TYPE_TARGET_TYPE (mtype) = type;
757 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 758 return mtype;
c906108c
SS
759}
760
7ba81444
MS
761/* Create a range type using either a blank type supplied in
762 RESULT_TYPE, or creating a new type, inheriting the objfile from
763 INDEX_TYPE.
c906108c 764
7ba81444
MS
765 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
766 to HIGH_BOUND, inclusive.
c906108c 767
7ba81444
MS
768 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
769 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
770
771struct type *
fba45db2 772create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 773 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
774{
775 if (result_type == NULL)
e9bb382b 776 result_type = alloc_type_copy (index_type);
c906108c
SS
777 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
778 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 779 if (TYPE_STUB (index_type))
876cecd0 780 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
781 else
782 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
783 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
784 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
785 TYPE_LOW_BOUND (result_type) = low_bound;
786 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 787
c5aa993b 788 if (low_bound >= 0)
876cecd0 789 TYPE_UNSIGNED (result_type) = 1;
c906108c 790
262452ec 791 return result_type;
c906108c
SS
792}
793
7ba81444
MS
794/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
795 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
796 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
797
798int
fba45db2 799get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
800{
801 CHECK_TYPEDEF (type);
802 switch (TYPE_CODE (type))
803 {
804 case TYPE_CODE_RANGE:
805 *lowp = TYPE_LOW_BOUND (type);
806 *highp = TYPE_HIGH_BOUND (type);
807 return 1;
808 case TYPE_CODE_ENUM:
809 if (TYPE_NFIELDS (type) > 0)
810 {
811 /* The enums may not be sorted by value, so search all
0963b4bd 812 entries. */
c906108c
SS
813 int i;
814
14e75d8e 815 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
816 for (i = 0; i < TYPE_NFIELDS (type); i++)
817 {
14e75d8e
JK
818 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
819 *lowp = TYPE_FIELD_ENUMVAL (type, i);
820 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
821 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
822 }
823
7ba81444 824 /* Set unsigned indicator if warranted. */
c5aa993b 825 if (*lowp >= 0)
c906108c 826 {
876cecd0 827 TYPE_UNSIGNED (type) = 1;
c906108c
SS
828 }
829 }
830 else
831 {
832 *lowp = 0;
833 *highp = -1;
834 }
835 return 0;
836 case TYPE_CODE_BOOL:
837 *lowp = 0;
838 *highp = 1;
839 return 0;
840 case TYPE_CODE_INT:
c5aa993b 841 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
842 return -1;
843 if (!TYPE_UNSIGNED (type))
844 {
c5aa993b 845 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
846 *highp = -*lowp - 1;
847 return 0;
848 }
7ba81444 849 /* ... fall through for unsigned ints ... */
c906108c
SS
850 case TYPE_CODE_CHAR:
851 *lowp = 0;
852 /* This round-about calculation is to avoid shifting by
7b83ea04 853 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 854 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
855 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
856 *highp = (*highp - 1) | *highp;
857 return 0;
858 default:
859 return -1;
860 }
861}
862
dbc98a8b
KW
863/* Assuming TYPE is a simple, non-empty array type, compute its upper
864 and lower bound. Save the low bound into LOW_BOUND if not NULL.
865 Save the high bound into HIGH_BOUND if not NULL.
866
0963b4bd 867 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
868 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
869
870 We now simply use get_discrete_bounds call to get the values
871 of the low and high bounds.
872 get_discrete_bounds can return three values:
873 1, meaning that index is a range,
874 0, meaning that index is a discrete type,
875 or -1 for failure. */
876
877int
878get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
879{
880 struct type *index = TYPE_INDEX_TYPE (type);
881 LONGEST low = 0;
882 LONGEST high = 0;
883 int res;
884
885 if (index == NULL)
886 return 0;
887
888 res = get_discrete_bounds (index, &low, &high);
889 if (res == -1)
890 return 0;
891
892 /* Check if the array bounds are undefined. */
893 if (res == 1
894 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
895 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
896 return 0;
897
898 if (low_bound)
899 *low_bound = low;
900
901 if (high_bound)
902 *high_bound = high;
903
904 return 1;
905}
906
7ba81444
MS
907/* Create an array type using either a blank type supplied in
908 RESULT_TYPE, or creating a new type, inheriting the objfile from
909 RANGE_TYPE.
c906108c
SS
910
911 Elements will be of type ELEMENT_TYPE, the indices will be of type
912 RANGE_TYPE.
913
7ba81444
MS
914 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
915 sure it is TYPE_CODE_UNDEF before we bash it into an array
916 type? */
c906108c
SS
917
918struct type *
7ba81444
MS
919create_array_type (struct type *result_type,
920 struct type *element_type,
fba45db2 921 struct type *range_type)
c906108c
SS
922{
923 LONGEST low_bound, high_bound;
924
925 if (result_type == NULL)
e9bb382b
UW
926 result_type = alloc_type_copy (range_type);
927
c906108c
SS
928 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
929 TYPE_TARGET_TYPE (result_type) = element_type;
930 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
931 low_bound = high_bound = 0;
932 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
933 /* Be careful when setting the array length. Ada arrays can be
934 empty arrays with the high_bound being smaller than the low_bound.
935 In such cases, the array length should be zero. */
936 if (high_bound < low_bound)
937 TYPE_LENGTH (result_type) = 0;
938 else
939 TYPE_LENGTH (result_type) =
940 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
941 TYPE_NFIELDS (result_type) = 1;
942 TYPE_FIELDS (result_type) =
1deafd4e 943 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 944 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
945 TYPE_VPTR_FIELDNO (result_type) = -1;
946
0963b4bd 947 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 948 if (TYPE_LENGTH (result_type) == 0)
876cecd0 949 TYPE_TARGET_STUB (result_type) = 1;
c906108c 950
c16abbde 951 return result_type;
c906108c
SS
952}
953
e3506a9f
UW
954struct type *
955lookup_array_range_type (struct type *element_type,
956 int low_bound, int high_bound)
957{
50810684 958 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
959 struct type *index_type = builtin_type (gdbarch)->builtin_int;
960 struct type *range_type
961 = create_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 962
e3506a9f
UW
963 return create_array_type (NULL, element_type, range_type);
964}
965
7ba81444
MS
966/* Create a string type using either a blank type supplied in
967 RESULT_TYPE, or creating a new type. String types are similar
968 enough to array of char types that we can use create_array_type to
969 build the basic type and then bash it into a string type.
c906108c
SS
970
971 For fixed length strings, the range type contains 0 as the lower
972 bound and the length of the string minus one as the upper bound.
973
7ba81444
MS
974 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
975 sure it is TYPE_CODE_UNDEF before we bash it into a string
976 type? */
c906108c
SS
977
978struct type *
3b7538c0
UW
979create_string_type (struct type *result_type,
980 struct type *string_char_type,
7ba81444 981 struct type *range_type)
c906108c
SS
982{
983 result_type = create_array_type (result_type,
f290d38e 984 string_char_type,
c906108c
SS
985 range_type);
986 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 987 return result_type;
c906108c
SS
988}
989
e3506a9f
UW
990struct type *
991lookup_string_range_type (struct type *string_char_type,
992 int low_bound, int high_bound)
993{
994 struct type *result_type;
d8734c88 995
e3506a9f
UW
996 result_type = lookup_array_range_type (string_char_type,
997 low_bound, high_bound);
998 TYPE_CODE (result_type) = TYPE_CODE_STRING;
999 return result_type;
1000}
1001
c906108c 1002struct type *
fba45db2 1003create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1004{
c906108c 1005 if (result_type == NULL)
e9bb382b
UW
1006 result_type = alloc_type_copy (domain_type);
1007
c906108c
SS
1008 TYPE_CODE (result_type) = TYPE_CODE_SET;
1009 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1010 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1011
74a9bb82 1012 if (!TYPE_STUB (domain_type))
c906108c 1013 {
f9780d5b 1014 LONGEST low_bound, high_bound, bit_length;
d8734c88 1015
c906108c
SS
1016 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1017 low_bound = high_bound = 0;
1018 bit_length = high_bound - low_bound + 1;
1019 TYPE_LENGTH (result_type)
1020 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1021 if (low_bound >= 0)
876cecd0 1022 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1023 }
1024 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1025
c16abbde 1026 return result_type;
c906108c
SS
1027}
1028
ea37ba09
DJ
1029/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1030 and any array types nested inside it. */
1031
1032void
1033make_vector_type (struct type *array_type)
1034{
1035 struct type *inner_array, *elt_type;
1036 int flags;
1037
1038 /* Find the innermost array type, in case the array is
1039 multi-dimensional. */
1040 inner_array = array_type;
1041 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1042 inner_array = TYPE_TARGET_TYPE (inner_array);
1043
1044 elt_type = TYPE_TARGET_TYPE (inner_array);
1045 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1046 {
2844d6b5 1047 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1048 elt_type = make_qualified_type (elt_type, flags, NULL);
1049 TYPE_TARGET_TYPE (inner_array) = elt_type;
1050 }
1051
876cecd0 1052 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1053}
1054
794ac428 1055struct type *
ac3aafc7
EZ
1056init_vector_type (struct type *elt_type, int n)
1057{
1058 struct type *array_type;
d8734c88 1059
e3506a9f 1060 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1061 make_vector_type (array_type);
ac3aafc7
EZ
1062 return array_type;
1063}
1064
0d5de010
DJ
1065/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1066 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1067 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1068 TYPE doesn't include the offset (that's the value of the MEMBER
1069 itself), but does include the structure type into which it points
1070 (for some reason).
c906108c 1071
7ba81444
MS
1072 When "smashing" the type, we preserve the objfile that the old type
1073 pointed to, since we aren't changing where the type is actually
c906108c
SS
1074 allocated. */
1075
1076void
0d5de010
DJ
1077smash_to_memberptr_type (struct type *type, struct type *domain,
1078 struct type *to_type)
c906108c 1079{
2fdde8f8 1080 smash_type (type);
c906108c
SS
1081 TYPE_TARGET_TYPE (type) = to_type;
1082 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1083 /* Assume that a data member pointer is the same size as a normal
1084 pointer. */
50810684
UW
1085 TYPE_LENGTH (type)
1086 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1087 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1088}
1089
0b92b5bb
TT
1090/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1091
1092 When "smashing" the type, we preserve the objfile that the old type
1093 pointed to, since we aren't changing where the type is actually
1094 allocated. */
1095
1096void
1097smash_to_methodptr_type (struct type *type, struct type *to_type)
1098{
1099 smash_type (type);
1100 TYPE_TARGET_TYPE (type) = to_type;
1101 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1102 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1103 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1104}
1105
c906108c
SS
1106/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1107 METHOD just means `function that gets an extra "this" argument'.
1108
7ba81444
MS
1109 When "smashing" the type, we preserve the objfile that the old type
1110 pointed to, since we aren't changing where the type is actually
c906108c
SS
1111 allocated. */
1112
1113void
fba45db2 1114smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1115 struct type *to_type, struct field *args,
1116 int nargs, int varargs)
c906108c 1117{
2fdde8f8 1118 smash_type (type);
c906108c
SS
1119 TYPE_TARGET_TYPE (type) = to_type;
1120 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1121 TYPE_FIELDS (type) = args;
1122 TYPE_NFIELDS (type) = nargs;
1123 if (varargs)
876cecd0 1124 TYPE_VARARGS (type) = 1;
c906108c
SS
1125 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1126 TYPE_CODE (type) = TYPE_CODE_METHOD;
1127}
1128
1129/* Return a typename for a struct/union/enum type without "struct ",
1130 "union ", or "enum ". If the type has a NULL name, return NULL. */
1131
0d5cff50 1132const char *
aa1ee363 1133type_name_no_tag (const struct type *type)
c906108c
SS
1134{
1135 if (TYPE_TAG_NAME (type) != NULL)
1136 return TYPE_TAG_NAME (type);
1137
7ba81444
MS
1138 /* Is there code which expects this to return the name if there is
1139 no tag name? My guess is that this is mainly used for C++ in
1140 cases where the two will always be the same. */
c906108c
SS
1141 return TYPE_NAME (type);
1142}
1143
d8228535
JK
1144/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1145 Since GCC PR debug/47510 DWARF provides associated information to detect the
1146 anonymous class linkage name from its typedef.
1147
1148 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1149 apply it itself. */
1150
1151const char *
1152type_name_no_tag_or_error (struct type *type)
1153{
1154 struct type *saved_type = type;
1155 const char *name;
1156 struct objfile *objfile;
1157
1158 CHECK_TYPEDEF (type);
1159
1160 name = type_name_no_tag (type);
1161 if (name != NULL)
1162 return name;
1163
1164 name = type_name_no_tag (saved_type);
1165 objfile = TYPE_OBJFILE (saved_type);
1166 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1167 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1168}
1169
7ba81444
MS
1170/* Lookup a typedef or primitive type named NAME, visible in lexical
1171 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1172 suitably defined. */
c906108c
SS
1173
1174struct type *
e6c014f2 1175lookup_typename (const struct language_defn *language,
ddd49eee 1176 struct gdbarch *gdbarch, const char *name,
34eaf542 1177 const struct block *block, int noerr)
c906108c 1178{
52f0bd74 1179 struct symbol *sym;
659c9f3a 1180 struct type *type;
c906108c 1181
774b6a14 1182 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c51fe631
DE
1183 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1184 return SYMBOL_TYPE (sym);
1185
659c9f3a
DE
1186 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1187 if (type)
1188 return type;
c51fe631
DE
1189
1190 if (noerr)
1191 return NULL;
1192 error (_("No type named %s."), name);
c906108c
SS
1193}
1194
1195struct type *
e6c014f2 1196lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1197 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1198{
1199 char *uns = alloca (strlen (name) + 10);
1200
1201 strcpy (uns, "unsigned ");
1202 strcpy (uns + 9, name);
e6c014f2 1203 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1204}
1205
1206struct type *
e6c014f2 1207lookup_signed_typename (const struct language_defn *language,
0d5cff50 1208 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1209{
1210 struct type *t;
1211 char *uns = alloca (strlen (name) + 8);
1212
1213 strcpy (uns, "signed ");
1214 strcpy (uns + 7, name);
e6c014f2 1215 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1216 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1217 if (t != NULL)
1218 return t;
e6c014f2 1219 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1220}
1221
1222/* Lookup a structure type named "struct NAME",
1223 visible in lexical block BLOCK. */
1224
1225struct type *
ddd49eee 1226lookup_struct (const char *name, struct block *block)
c906108c 1227{
52f0bd74 1228 struct symbol *sym;
c906108c 1229
2570f2b7 1230 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1231
1232 if (sym == NULL)
1233 {
8a3fe4f8 1234 error (_("No struct type named %s."), name);
c906108c
SS
1235 }
1236 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1237 {
7ba81444
MS
1238 error (_("This context has class, union or enum %s, not a struct."),
1239 name);
c906108c
SS
1240 }
1241 return (SYMBOL_TYPE (sym));
1242}
1243
1244/* Lookup a union type named "union NAME",
1245 visible in lexical block BLOCK. */
1246
1247struct type *
ddd49eee 1248lookup_union (const char *name, struct block *block)
c906108c 1249{
52f0bd74 1250 struct symbol *sym;
c5aa993b 1251 struct type *t;
c906108c 1252
2570f2b7 1253 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1254
1255 if (sym == NULL)
8a3fe4f8 1256 error (_("No union type named %s."), name);
c906108c 1257
c5aa993b 1258 t = SYMBOL_TYPE (sym);
c906108c
SS
1259
1260 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1261 return t;
c906108c 1262
7ba81444
MS
1263 /* If we get here, it's not a union. */
1264 error (_("This context has class, struct or enum %s, not a union."),
1265 name);
c906108c
SS
1266}
1267
1268
1269/* Lookup an enum type named "enum NAME",
1270 visible in lexical block BLOCK. */
1271
1272struct type *
ddd49eee 1273lookup_enum (const char *name, struct block *block)
c906108c 1274{
52f0bd74 1275 struct symbol *sym;
c906108c 1276
2570f2b7 1277 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1278 if (sym == NULL)
1279 {
8a3fe4f8 1280 error (_("No enum type named %s."), name);
c906108c
SS
1281 }
1282 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1283 {
7ba81444
MS
1284 error (_("This context has class, struct or union %s, not an enum."),
1285 name);
c906108c
SS
1286 }
1287 return (SYMBOL_TYPE (sym));
1288}
1289
1290/* Lookup a template type named "template NAME<TYPE>",
1291 visible in lexical block BLOCK. */
1292
1293struct type *
7ba81444
MS
1294lookup_template_type (char *name, struct type *type,
1295 struct block *block)
c906108c
SS
1296{
1297 struct symbol *sym;
7ba81444
MS
1298 char *nam = (char *)
1299 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1300
c906108c
SS
1301 strcpy (nam, name);
1302 strcat (nam, "<");
0004e5a2 1303 strcat (nam, TYPE_NAME (type));
0963b4bd 1304 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1305
2570f2b7 1306 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1307
1308 if (sym == NULL)
1309 {
8a3fe4f8 1310 error (_("No template type named %s."), name);
c906108c
SS
1311 }
1312 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1313 {
7ba81444
MS
1314 error (_("This context has class, union or enum %s, not a struct."),
1315 name);
c906108c
SS
1316 }
1317 return (SYMBOL_TYPE (sym));
1318}
1319
7ba81444
MS
1320/* Given a type TYPE, lookup the type of the component of type named
1321 NAME.
c906108c 1322
7ba81444
MS
1323 TYPE can be either a struct or union, or a pointer or reference to
1324 a struct or union. If it is a pointer or reference, its target
1325 type is automatically used. Thus '.' and '->' are interchangable,
1326 as specified for the definitions of the expression element types
1327 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1328
1329 If NOERR is nonzero, return zero if NAME is not suitably defined.
1330 If NAME is the name of a baseclass type, return that type. */
1331
1332struct type *
fba45db2 1333lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1334{
1335 int i;
c92817ce 1336 char *typename;
c906108c
SS
1337
1338 for (;;)
1339 {
1340 CHECK_TYPEDEF (type);
1341 if (TYPE_CODE (type) != TYPE_CODE_PTR
1342 && TYPE_CODE (type) != TYPE_CODE_REF)
1343 break;
1344 type = TYPE_TARGET_TYPE (type);
1345 }
1346
687d6395
MS
1347 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1348 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1349 {
c92817ce
TT
1350 typename = type_to_string (type);
1351 make_cleanup (xfree, typename);
1352 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1353 }
1354
1355#if 0
7ba81444
MS
1356 /* FIXME: This change put in by Michael seems incorrect for the case
1357 where the structure tag name is the same as the member name.
0963b4bd 1358 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1359 foo; } bell;" Disabled by fnf. */
c906108c
SS
1360 {
1361 char *typename;
1362
1363 typename = type_name_no_tag (type);
762f08a3 1364 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1365 return type;
1366 }
1367#endif
1368
1369 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1370 {
0d5cff50 1371 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1372
db577aea 1373 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1374 {
1375 return TYPE_FIELD_TYPE (type, i);
1376 }
f5a010c0
PM
1377 else if (!t_field_name || *t_field_name == '\0')
1378 {
d8734c88
MS
1379 struct type *subtype
1380 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1381
f5a010c0
PM
1382 if (subtype != NULL)
1383 return subtype;
1384 }
c906108c
SS
1385 }
1386
1387 /* OK, it's not in this class. Recursively check the baseclasses. */
1388 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1389 {
1390 struct type *t;
1391
9733fc94 1392 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1393 if (t != NULL)
1394 {
1395 return t;
1396 }
1397 }
1398
1399 if (noerr)
1400 {
1401 return NULL;
1402 }
c5aa993b 1403
c92817ce
TT
1404 typename = type_to_string (type);
1405 make_cleanup (xfree, typename);
1406 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1407}
1408
81fe8080
DE
1409/* Lookup the vptr basetype/fieldno values for TYPE.
1410 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1411 vptr_fieldno. Also, if found and basetype is from the same objfile,
1412 cache the results.
1413 If not found, return -1 and ignore BASETYPEP.
1414 Callers should be aware that in some cases (for example,
c906108c 1415 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1416 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1417 this function will not be able to find the
7ba81444 1418 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1419 vptr_basetype will remain NULL or incomplete. */
c906108c 1420
81fe8080
DE
1421int
1422get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1423{
1424 CHECK_TYPEDEF (type);
1425
1426 if (TYPE_VPTR_FIELDNO (type) < 0)
1427 {
1428 int i;
1429
7ba81444
MS
1430 /* We must start at zero in case the first (and only) baseclass
1431 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1432 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1433 {
81fe8080
DE
1434 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1435 int fieldno;
1436 struct type *basetype;
1437
1438 fieldno = get_vptr_fieldno (baseclass, &basetype);
1439 if (fieldno >= 0)
c906108c 1440 {
81fe8080 1441 /* If the type comes from a different objfile we can't cache
0963b4bd 1442 it, it may have a different lifetime. PR 2384 */
5ef73790 1443 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1444 {
1445 TYPE_VPTR_FIELDNO (type) = fieldno;
1446 TYPE_VPTR_BASETYPE (type) = basetype;
1447 }
1448 if (basetypep)
1449 *basetypep = basetype;
1450 return fieldno;
c906108c
SS
1451 }
1452 }
81fe8080
DE
1453
1454 /* Not found. */
1455 return -1;
1456 }
1457 else
1458 {
1459 if (basetypep)
1460 *basetypep = TYPE_VPTR_BASETYPE (type);
1461 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1462 }
1463}
1464
44e1a9eb
DJ
1465static void
1466stub_noname_complaint (void)
1467{
e2e0b3e5 1468 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1469}
1470
92163a10
JK
1471/* Find the real type of TYPE. This function returns the real type,
1472 after removing all layers of typedefs, and completing opaque or stub
1473 types. Completion changes the TYPE argument, but stripping of
1474 typedefs does not.
1475
1476 Instance flags (e.g. const/volatile) are preserved as typedefs are
1477 stripped. If necessary a new qualified form of the underlying type
1478 is created.
1479
1480 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1481 not been computed and we're either in the middle of reading symbols, or
1482 there was no name for the typedef in the debug info.
1483
9bc118a5
DE
1484 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1485 QUITs in the symbol reading code can also throw.
1486 Thus this function can throw an exception.
1487
92163a10
JK
1488 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1489 the target type.
c906108c
SS
1490
1491 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1492 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1493 definition, so we can use it in future. There used to be a comment
1494 (but not any code) that if we don't find a full definition, we'd
1495 set a flag so we don't spend time in the future checking the same
1496 type. That would be a mistake, though--we might load in more
92163a10 1497 symbols which contain a full definition for the type. */
c906108c
SS
1498
1499struct type *
a02fd225 1500check_typedef (struct type *type)
c906108c
SS
1501{
1502 struct type *orig_type = type;
92163a10
JK
1503 /* While we're removing typedefs, we don't want to lose qualifiers.
1504 E.g., const/volatile. */
1505 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1506
423c0af8
MS
1507 gdb_assert (type);
1508
c906108c
SS
1509 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1510 {
1511 if (!TYPE_TARGET_TYPE (type))
1512 {
0d5cff50 1513 const char *name;
c906108c
SS
1514 struct symbol *sym;
1515
1516 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1517 reading a symtab. Infinite recursion is one danger. */
c906108c 1518 if (currently_reading_symtab)
92163a10 1519 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1520
1521 name = type_name_no_tag (type);
7ba81444
MS
1522 /* FIXME: shouldn't we separately check the TYPE_NAME and
1523 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1524 VAR_DOMAIN as appropriate? (this code was written before
1525 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1526 if (name == NULL)
1527 {
23136709 1528 stub_noname_complaint ();
92163a10 1529 return make_qualified_type (type, instance_flags, NULL);
c906108c 1530 }
2570f2b7 1531 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1532 if (sym)
1533 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1534 else /* TYPE_CODE_UNDEF */
e9bb382b 1535 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1536 }
1537 type = TYPE_TARGET_TYPE (type);
c906108c 1538
92163a10
JK
1539 /* Preserve the instance flags as we traverse down the typedef chain.
1540
1541 Handling address spaces/classes is nasty, what do we do if there's a
1542 conflict?
1543 E.g., what if an outer typedef marks the type as class_1 and an inner
1544 typedef marks the type as class_2?
1545 This is the wrong place to do such error checking. We leave it to
1546 the code that created the typedef in the first place to flag the
1547 error. We just pick the outer address space (akin to letting the
1548 outer cast in a chain of casting win), instead of assuming
1549 "it can't happen". */
1550 {
1551 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1552 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1553 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1554 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1555
1556 /* Treat code vs data spaces and address classes separately. */
1557 if ((instance_flags & ALL_SPACES) != 0)
1558 new_instance_flags &= ~ALL_SPACES;
1559 if ((instance_flags & ALL_CLASSES) != 0)
1560 new_instance_flags &= ~ALL_CLASSES;
1561
1562 instance_flags |= new_instance_flags;
1563 }
1564 }
a02fd225 1565
7ba81444
MS
1566 /* If this is a struct/class/union with no fields, then check
1567 whether a full definition exists somewhere else. This is for
1568 systems where a type definition with no fields is issued for such
1569 types, instead of identifying them as stub types in the first
1570 place. */
c5aa993b 1571
7ba81444
MS
1572 if (TYPE_IS_OPAQUE (type)
1573 && opaque_type_resolution
1574 && !currently_reading_symtab)
c906108c 1575 {
0d5cff50 1576 const char *name = type_name_no_tag (type);
c5aa993b 1577 struct type *newtype;
d8734c88 1578
c906108c
SS
1579 if (name == NULL)
1580 {
23136709 1581 stub_noname_complaint ();
92163a10 1582 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1583 }
1584 newtype = lookup_transparent_type (name);
ad766c0a 1585
c906108c 1586 if (newtype)
ad766c0a 1587 {
7ba81444
MS
1588 /* If the resolved type and the stub are in the same
1589 objfile, then replace the stub type with the real deal.
1590 But if they're in separate objfiles, leave the stub
1591 alone; we'll just look up the transparent type every time
1592 we call check_typedef. We can't create pointers between
1593 types allocated to different objfiles, since they may
1594 have different lifetimes. Trying to copy NEWTYPE over to
1595 TYPE's objfile is pointless, too, since you'll have to
1596 move over any other types NEWTYPE refers to, which could
1597 be an unbounded amount of stuff. */
ad766c0a 1598 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
1599 type = make_qualified_type (newtype,
1600 TYPE_INSTANCE_FLAGS (type),
1601 type);
ad766c0a
JB
1602 else
1603 type = newtype;
1604 }
c906108c 1605 }
7ba81444
MS
1606 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1607 types. */
74a9bb82 1608 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1609 {
0d5cff50 1610 const char *name = type_name_no_tag (type);
c906108c 1611 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1612 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1613 as appropriate? (this code was written before TYPE_NAME and
1614 TYPE_TAG_NAME were separate). */
c906108c 1615 struct symbol *sym;
d8734c88 1616
c906108c
SS
1617 if (name == NULL)
1618 {
23136709 1619 stub_noname_complaint ();
92163a10 1620 return make_qualified_type (type, instance_flags, NULL);
c906108c 1621 }
2570f2b7 1622 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1623 if (sym)
c26f2453
JB
1624 {
1625 /* Same as above for opaque types, we can replace the stub
92163a10 1626 with the complete type only if they are in the same
c26f2453
JB
1627 objfile. */
1628 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
1629 type = make_qualified_type (SYMBOL_TYPE (sym),
1630 TYPE_INSTANCE_FLAGS (type),
1631 type);
c26f2453
JB
1632 else
1633 type = SYMBOL_TYPE (sym);
1634 }
c906108c
SS
1635 }
1636
74a9bb82 1637 if (TYPE_TARGET_STUB (type))
c906108c
SS
1638 {
1639 struct type *range_type;
1640 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1641
74a9bb82 1642 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1643 {
73e2eb35 1644 /* Nothing we can do. */
c5aa993b 1645 }
c906108c
SS
1646 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1647 && TYPE_NFIELDS (type) == 1
262452ec 1648 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1649 == TYPE_CODE_RANGE))
1650 {
1651 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1652 number of elements and the target type's length.
1653 Watch out for Ada null Ada arrays where the high bound
0963b4bd 1654 is smaller than the low bound. */
43bbcdc2
PH
1655 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1656 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1657 ULONGEST len;
1658
ab0d6e0d 1659 if (high_bound < low_bound)
43bbcdc2 1660 len = 0;
d8734c88
MS
1661 else
1662 {
1663 /* For now, we conservatively take the array length to be 0
1664 if its length exceeds UINT_MAX. The code below assumes
1665 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1666 which is technically not guaranteed by C, but is usually true
1667 (because it would be true if x were unsigned with its
0963b4bd 1668 high-order bit on). It uses the fact that
d8734c88
MS
1669 high_bound-low_bound is always representable in
1670 ULONGEST and that if high_bound-low_bound+1 overflows,
1671 it overflows to 0. We must change these tests if we
1672 decide to increase the representation of TYPE_LENGTH
0963b4bd 1673 from unsigned int to ULONGEST. */
d8734c88
MS
1674 ULONGEST ulow = low_bound, uhigh = high_bound;
1675 ULONGEST tlen = TYPE_LENGTH (target_type);
1676
1677 len = tlen * (uhigh - ulow + 1);
1678 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1679 || len > UINT_MAX)
1680 len = 0;
1681 }
43bbcdc2 1682 TYPE_LENGTH (type) = len;
876cecd0 1683 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1684 }
1685 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1686 {
1687 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1688 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1689 }
1690 }
92163a10
JK
1691
1692 type = make_qualified_type (type, instance_flags, NULL);
1693
7ba81444 1694 /* Cache TYPE_LENGTH for future use. */
c906108c 1695 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 1696
c906108c
SS
1697 return type;
1698}
1699
7ba81444 1700/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1701 occurs, silently return a void type. */
c91ecb25 1702
b9362cc7 1703static struct type *
48319d1f 1704safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1705{
1706 struct ui_file *saved_gdb_stderr;
34365054 1707 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 1708 volatile struct gdb_exception except;
c91ecb25 1709
7ba81444 1710 /* Suppress error messages. */
c91ecb25
ND
1711 saved_gdb_stderr = gdb_stderr;
1712 gdb_stderr = ui_file_new ();
1713
7ba81444 1714 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
1715 TRY_CATCH (except, RETURN_MASK_ERROR)
1716 {
1717 type = parse_and_eval_type (p, length);
1718 }
1719
1720 if (except.reason < 0)
48319d1f 1721 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1722
7ba81444 1723 /* Stop suppressing error messages. */
c91ecb25
ND
1724 ui_file_delete (gdb_stderr);
1725 gdb_stderr = saved_gdb_stderr;
1726
1727 return type;
1728}
1729
c906108c
SS
1730/* Ugly hack to convert method stubs into method types.
1731
7ba81444
MS
1732 He ain't kiddin'. This demangles the name of the method into a
1733 string including argument types, parses out each argument type,
1734 generates a string casting a zero to that type, evaluates the
1735 string, and stuffs the resulting type into an argtype vector!!!
1736 Then it knows the type of the whole function (including argument
1737 types for overloading), which info used to be in the stab's but was
1738 removed to hack back the space required for them. */
c906108c 1739
de17c821 1740static void
fba45db2 1741check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1742{
50810684 1743 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1744 struct fn_field *f;
1745 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1746 char *demangled_name = cplus_demangle (mangled_name,
1747 DMGL_PARAMS | DMGL_ANSI);
1748 char *argtypetext, *p;
1749 int depth = 0, argcount = 1;
ad2f7632 1750 struct field *argtypes;
c906108c
SS
1751 struct type *mtype;
1752
1753 /* Make sure we got back a function string that we can use. */
1754 if (demangled_name)
1755 p = strchr (demangled_name, '(');
502dcf4e
AC
1756 else
1757 p = NULL;
c906108c
SS
1758
1759 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1760 error (_("Internal: Cannot demangle mangled name `%s'."),
1761 mangled_name);
c906108c
SS
1762
1763 /* Now, read in the parameters that define this type. */
1764 p += 1;
1765 argtypetext = p;
1766 while (*p)
1767 {
070ad9f0 1768 if (*p == '(' || *p == '<')
c906108c
SS
1769 {
1770 depth += 1;
1771 }
070ad9f0 1772 else if (*p == ')' || *p == '>')
c906108c
SS
1773 {
1774 depth -= 1;
1775 }
1776 else if (*p == ',' && depth == 0)
1777 {
1778 argcount += 1;
1779 }
1780
1781 p += 1;
1782 }
1783
ad2f7632
DJ
1784 /* If we read one argument and it was ``void'', don't count it. */
1785 if (strncmp (argtypetext, "(void)", 6) == 0)
1786 argcount -= 1;
c906108c 1787
ad2f7632
DJ
1788 /* We need one extra slot, for the THIS pointer. */
1789
1790 argtypes = (struct field *)
1791 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1792 p = argtypetext;
4a1970e4
DJ
1793
1794 /* Add THIS pointer for non-static methods. */
1795 f = TYPE_FN_FIELDLIST1 (type, method_id);
1796 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1797 argcount = 0;
1798 else
1799 {
ad2f7632 1800 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1801 argcount = 1;
1802 }
c906108c 1803
0963b4bd 1804 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
1805 {
1806 depth = 0;
1807 while (*p)
1808 {
1809 if (depth <= 0 && (*p == ',' || *p == ')'))
1810 {
ad2f7632
DJ
1811 /* Avoid parsing of ellipsis, they will be handled below.
1812 Also avoid ``void'' as above. */
1813 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1814 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1815 {
ad2f7632 1816 argtypes[argcount].type =
48319d1f 1817 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1818 argcount += 1;
1819 }
1820 argtypetext = p + 1;
1821 }
1822
070ad9f0 1823 if (*p == '(' || *p == '<')
c906108c
SS
1824 {
1825 depth += 1;
1826 }
070ad9f0 1827 else if (*p == ')' || *p == '>')
c906108c
SS
1828 {
1829 depth -= 1;
1830 }
1831
1832 p += 1;
1833 }
1834 }
1835
c906108c
SS
1836 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1837
1838 /* Now update the old "stub" type into a real type. */
1839 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1840 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1841 TYPE_FIELDS (mtype) = argtypes;
1842 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1843 TYPE_STUB (mtype) = 0;
c906108c 1844 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1845 if (p[-2] == '.')
876cecd0 1846 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1847
1848 xfree (demangled_name);
c906108c
SS
1849}
1850
7ba81444
MS
1851/* This is the external interface to check_stub_method, above. This
1852 function unstubs all of the signatures for TYPE's METHOD_ID method
1853 name. After calling this function TYPE_FN_FIELD_STUB will be
1854 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1855 correct.
de17c821
DJ
1856
1857 This function unfortunately can not die until stabs do. */
1858
1859void
1860check_stub_method_group (struct type *type, int method_id)
1861{
1862 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1863 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1864 int j, found_stub = 0;
de17c821
DJ
1865
1866 for (j = 0; j < len; j++)
1867 if (TYPE_FN_FIELD_STUB (f, j))
1868 {
1869 found_stub = 1;
1870 check_stub_method (type, method_id, j);
1871 }
1872
7ba81444
MS
1873 /* GNU v3 methods with incorrect names were corrected when we read
1874 in type information, because it was cheaper to do it then. The
1875 only GNU v2 methods with incorrect method names are operators and
1876 destructors; destructors were also corrected when we read in type
1877 information.
de17c821
DJ
1878
1879 Therefore the only thing we need to handle here are v2 operator
1880 names. */
1881 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1882 {
1883 int ret;
1884 char dem_opname[256];
1885
7ba81444
MS
1886 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1887 method_id),
de17c821
DJ
1888 dem_opname, DMGL_ANSI);
1889 if (!ret)
7ba81444
MS
1890 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1891 method_id),
de17c821
DJ
1892 dem_opname, 0);
1893 if (ret)
1894 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1895 }
1896}
1897
9655fd1a
JK
1898/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1899const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
1900
1901void
fba45db2 1902allocate_cplus_struct_type (struct type *type)
c906108c 1903{
b4ba55a1
JB
1904 if (HAVE_CPLUS_STRUCT (type))
1905 /* Structure was already allocated. Nothing more to do. */
1906 return;
1907
1908 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1909 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1910 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1911 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1912}
1913
b4ba55a1
JB
1914const struct gnat_aux_type gnat_aux_default =
1915 { NULL };
1916
1917/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1918 and allocate the associated gnat-specific data. The gnat-specific
1919 data is also initialized to gnat_aux_default. */
1920void
1921allocate_gnat_aux_type (struct type *type)
1922{
1923 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1924 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1925 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1926 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1927}
1928
1929
c906108c
SS
1930/* Helper function to initialize the standard scalar types.
1931
e9bb382b
UW
1932 If NAME is non-NULL, then we make a copy of the string pointed
1933 to by name in the objfile_obstack for that objfile, and initialize
1934 the type name to that copy. There are places (mipsread.c in particular),
1935 where init_type is called with a NULL value for NAME). */
c906108c
SS
1936
1937struct type *
7ba81444
MS
1938init_type (enum type_code code, int length, int flags,
1939 char *name, struct objfile *objfile)
c906108c 1940{
52f0bd74 1941 struct type *type;
c906108c
SS
1942
1943 type = alloc_type (objfile);
1944 TYPE_CODE (type) = code;
1945 TYPE_LENGTH (type) = length;
876cecd0
TT
1946
1947 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1948 if (flags & TYPE_FLAG_UNSIGNED)
1949 TYPE_UNSIGNED (type) = 1;
1950 if (flags & TYPE_FLAG_NOSIGN)
1951 TYPE_NOSIGN (type) = 1;
1952 if (flags & TYPE_FLAG_STUB)
1953 TYPE_STUB (type) = 1;
1954 if (flags & TYPE_FLAG_TARGET_STUB)
1955 TYPE_TARGET_STUB (type) = 1;
1956 if (flags & TYPE_FLAG_STATIC)
1957 TYPE_STATIC (type) = 1;
1958 if (flags & TYPE_FLAG_PROTOTYPED)
1959 TYPE_PROTOTYPED (type) = 1;
1960 if (flags & TYPE_FLAG_INCOMPLETE)
1961 TYPE_INCOMPLETE (type) = 1;
1962 if (flags & TYPE_FLAG_VARARGS)
1963 TYPE_VARARGS (type) = 1;
1964 if (flags & TYPE_FLAG_VECTOR)
1965 TYPE_VECTOR (type) = 1;
1966 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1967 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
1968 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1969 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
1970 if (flags & TYPE_FLAG_GNU_IFUNC)
1971 TYPE_GNU_IFUNC (type) = 1;
876cecd0 1972
e9bb382b
UW
1973 if (name)
1974 TYPE_NAME (type) = obsavestring (name, strlen (name),
1975 &objfile->objfile_obstack);
c906108c
SS
1976
1977 /* C++ fancies. */
1978
973ccf8b 1979 if (name && strcmp (name, "char") == 0)
876cecd0 1980 TYPE_NOSIGN (type) = 1;
973ccf8b 1981
b4ba55a1 1982 switch (code)
c906108c 1983 {
b4ba55a1
JB
1984 case TYPE_CODE_STRUCT:
1985 case TYPE_CODE_UNION:
1986 case TYPE_CODE_NAMESPACE:
1987 INIT_CPLUS_SPECIFIC (type);
1988 break;
1989 case TYPE_CODE_FLT:
1990 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1991 break;
1992 case TYPE_CODE_FUNC:
b6cdc2c1 1993 INIT_FUNC_SPECIFIC (type);
b4ba55a1 1994 break;
c906108c 1995 }
c16abbde 1996 return type;
c906108c
SS
1997}
1998
c906108c 1999int
fba45db2 2000can_dereference (struct type *t)
c906108c 2001{
7ba81444
MS
2002 /* FIXME: Should we return true for references as well as
2003 pointers? */
c906108c
SS
2004 CHECK_TYPEDEF (t);
2005 return
2006 (t != NULL
2007 && TYPE_CODE (t) == TYPE_CODE_PTR
2008 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2009}
2010
adf40b2e 2011int
fba45db2 2012is_integral_type (struct type *t)
adf40b2e
JM
2013{
2014 CHECK_TYPEDEF (t);
2015 return
2016 ((t != NULL)
d4f3574e
SS
2017 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2018 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2019 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2020 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2021 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2022 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2023}
2024
e09342b5
TJB
2025/* Return true if TYPE is scalar. */
2026
2027static int
2028is_scalar_type (struct type *type)
2029{
2030 CHECK_TYPEDEF (type);
2031
2032 switch (TYPE_CODE (type))
2033 {
2034 case TYPE_CODE_ARRAY:
2035 case TYPE_CODE_STRUCT:
2036 case TYPE_CODE_UNION:
2037 case TYPE_CODE_SET:
2038 case TYPE_CODE_STRING:
2039 case TYPE_CODE_BITSTRING:
2040 return 0;
2041 default:
2042 return 1;
2043 }
2044}
2045
2046/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2047 the memory layout of a scalar type. E.g., an array or struct with only
2048 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2049
2050int
2051is_scalar_type_recursive (struct type *t)
2052{
2053 CHECK_TYPEDEF (t);
2054
2055 if (is_scalar_type (t))
2056 return 1;
2057 /* Are we dealing with an array or string of known dimensions? */
2058 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2059 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2060 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2061 {
2062 LONGEST low_bound, high_bound;
2063 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2064
2065 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2066
2067 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2068 }
2069 /* Are we dealing with a struct with one element? */
2070 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2071 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2072 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2073 {
2074 int i, n = TYPE_NFIELDS (t);
2075
2076 /* If all elements of the union are scalar, then the union is scalar. */
2077 for (i = 0; i < n; i++)
2078 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2079 return 0;
2080
2081 return 1;
2082 }
2083
2084 return 0;
2085}
2086
4e8f195d
TT
2087/* A helper function which returns true if types A and B represent the
2088 "same" class type. This is true if the types have the same main
2089 type, or the same name. */
2090
2091int
2092class_types_same_p (const struct type *a, const struct type *b)
2093{
2094 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2095 || (TYPE_NAME (a) && TYPE_NAME (b)
2096 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2097}
2098
a9d5ef47
SW
2099/* If BASE is an ancestor of DCLASS return the distance between them.
2100 otherwise return -1;
2101 eg:
2102
2103 class A {};
2104 class B: public A {};
2105 class C: public B {};
2106 class D: C {};
2107
2108 distance_to_ancestor (A, A, 0) = 0
2109 distance_to_ancestor (A, B, 0) = 1
2110 distance_to_ancestor (A, C, 0) = 2
2111 distance_to_ancestor (A, D, 0) = 3
2112
2113 If PUBLIC is 1 then only public ancestors are considered,
2114 and the function returns the distance only if BASE is a public ancestor
2115 of DCLASS.
2116 Eg:
2117
0963b4bd 2118 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2119
0526b37a 2120static int
a9d5ef47 2121distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2122{
2123 int i;
a9d5ef47 2124 int d;
c5aa993b 2125
c906108c
SS
2126 CHECK_TYPEDEF (base);
2127 CHECK_TYPEDEF (dclass);
2128
4e8f195d 2129 if (class_types_same_p (base, dclass))
a9d5ef47 2130 return 0;
c906108c
SS
2131
2132 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2133 {
0526b37a
SW
2134 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2135 continue;
2136
a9d5ef47
SW
2137 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2138 if (d >= 0)
2139 return 1 + d;
4e8f195d 2140 }
c906108c 2141
a9d5ef47 2142 return -1;
c906108c 2143}
4e8f195d 2144
0526b37a
SW
2145/* Check whether BASE is an ancestor or base class or DCLASS
2146 Return 1 if so, and 0 if not.
2147 Note: If BASE and DCLASS are of the same type, this function
2148 will return 1. So for some class A, is_ancestor (A, A) will
2149 return 1. */
2150
2151int
2152is_ancestor (struct type *base, struct type *dclass)
2153{
a9d5ef47 2154 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2155}
2156
4e8f195d
TT
2157/* Like is_ancestor, but only returns true when BASE is a public
2158 ancestor of DCLASS. */
2159
2160int
2161is_public_ancestor (struct type *base, struct type *dclass)
2162{
a9d5ef47 2163 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2164}
2165
2166/* A helper function for is_unique_ancestor. */
2167
2168static int
2169is_unique_ancestor_worker (struct type *base, struct type *dclass,
2170 int *offset,
8af8e3bc
PA
2171 const gdb_byte *valaddr, int embedded_offset,
2172 CORE_ADDR address, struct value *val)
4e8f195d
TT
2173{
2174 int i, count = 0;
2175
2176 CHECK_TYPEDEF (base);
2177 CHECK_TYPEDEF (dclass);
2178
2179 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2180 {
8af8e3bc
PA
2181 struct type *iter;
2182 int this_offset;
4e8f195d 2183
8af8e3bc
PA
2184 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2185
2186 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2187 address, val);
4e8f195d
TT
2188
2189 if (class_types_same_p (base, iter))
2190 {
2191 /* If this is the first subclass, set *OFFSET and set count
2192 to 1. Otherwise, if this is at the same offset as
2193 previous instances, do nothing. Otherwise, increment
2194 count. */
2195 if (*offset == -1)
2196 {
2197 *offset = this_offset;
2198 count = 1;
2199 }
2200 else if (this_offset == *offset)
2201 {
2202 /* Nothing. */
2203 }
2204 else
2205 ++count;
2206 }
2207 else
2208 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2209 valaddr,
2210 embedded_offset + this_offset,
2211 address, val);
4e8f195d
TT
2212 }
2213
2214 return count;
2215}
2216
2217/* Like is_ancestor, but only returns true if BASE is a unique base
2218 class of the type of VAL. */
2219
2220int
2221is_unique_ancestor (struct type *base, struct value *val)
2222{
2223 int offset = -1;
2224
2225 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2226 value_contents_for_printing (val),
2227 value_embedded_offset (val),
2228 value_address (val), val) == 1;
4e8f195d
TT
2229}
2230
c906108c
SS
2231\f
2232
6403aeea
SW
2233/* Return the sum of the rank of A with the rank of B. */
2234
2235struct rank
2236sum_ranks (struct rank a, struct rank b)
2237{
2238 struct rank c;
2239 c.rank = a.rank + b.rank;
a9d5ef47 2240 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2241 return c;
2242}
2243
2244/* Compare rank A and B and return:
2245 0 if a = b
2246 1 if a is better than b
2247 -1 if b is better than a. */
2248
2249int
2250compare_ranks (struct rank a, struct rank b)
2251{
2252 if (a.rank == b.rank)
a9d5ef47
SW
2253 {
2254 if (a.subrank == b.subrank)
2255 return 0;
2256 if (a.subrank < b.subrank)
2257 return 1;
2258 if (a.subrank > b.subrank)
2259 return -1;
2260 }
6403aeea
SW
2261
2262 if (a.rank < b.rank)
2263 return 1;
2264
0963b4bd 2265 /* a.rank > b.rank */
6403aeea
SW
2266 return -1;
2267}
c5aa993b 2268
0963b4bd 2269/* Functions for overload resolution begin here. */
c906108c
SS
2270
2271/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2272 0 => A and B are identical
2273 1 => A and B are incomparable
2274 2 => A is better than B
2275 3 => A is worse than B */
c906108c
SS
2276
2277int
fba45db2 2278compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2279{
2280 int i;
2281 int tmp;
c5aa993b
JM
2282 short found_pos = 0; /* any positives in c? */
2283 short found_neg = 0; /* any negatives in c? */
2284
2285 /* differing lengths => incomparable */
c906108c
SS
2286 if (a->length != b->length)
2287 return 1;
2288
c5aa993b
JM
2289 /* Subtract b from a */
2290 for (i = 0; i < a->length; i++)
c906108c 2291 {
6403aeea 2292 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2293 if (tmp > 0)
c5aa993b 2294 found_pos = 1;
c906108c 2295 else if (tmp < 0)
c5aa993b 2296 found_neg = 1;
c906108c
SS
2297 }
2298
2299 if (found_pos)
2300 {
2301 if (found_neg)
c5aa993b 2302 return 1; /* incomparable */
c906108c 2303 else
c5aa993b 2304 return 3; /* A > B */
c906108c 2305 }
c5aa993b
JM
2306 else
2307 /* no positives */
c906108c
SS
2308 {
2309 if (found_neg)
c5aa993b 2310 return 2; /* A < B */
c906108c 2311 else
c5aa993b 2312 return 0; /* A == B */
c906108c
SS
2313 }
2314}
2315
7ba81444
MS
2316/* Rank a function by comparing its parameter types (PARMS, length
2317 NPARMS), to the types of an argument list (ARGS, length NARGS).
2318 Return a pointer to a badness vector. This has NARGS + 1
2319 entries. */
c906108c
SS
2320
2321struct badness_vector *
7ba81444 2322rank_function (struct type **parms, int nparms,
da096638 2323 struct value **args, int nargs)
c906108c
SS
2324{
2325 int i;
c5aa993b 2326 struct badness_vector *bv;
c906108c
SS
2327 int min_len = nparms < nargs ? nparms : nargs;
2328
2329 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2330 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c906108c
SS
2331 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2332
2333 /* First compare the lengths of the supplied lists.
7ba81444 2334 If there is a mismatch, set it to a high value. */
c5aa993b 2335
c906108c 2336 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2337 arguments and ellipsis parameter lists, we should consider those
2338 and rank the length-match more finely. */
c906108c 2339
6403aeea
SW
2340 LENGTH_MATCH (bv) = (nargs != nparms)
2341 ? LENGTH_MISMATCH_BADNESS
2342 : EXACT_MATCH_BADNESS;
c906108c 2343
0963b4bd 2344 /* Now rank all the parameters of the candidate function. */
74cc24b0 2345 for (i = 1; i <= min_len; i++)
da096638
KS
2346 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2347 args[i - 1]);
c906108c 2348
0963b4bd 2349 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2350 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2351 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2352
2353 return bv;
2354}
2355
973ccf8b
DJ
2356/* Compare the names of two integer types, assuming that any sign
2357 qualifiers have been checked already. We do it this way because
2358 there may be an "int" in the name of one of the types. */
2359
2360static int
2361integer_types_same_name_p (const char *first, const char *second)
2362{
2363 int first_p, second_p;
2364
7ba81444
MS
2365 /* If both are shorts, return 1; if neither is a short, keep
2366 checking. */
973ccf8b
DJ
2367 first_p = (strstr (first, "short") != NULL);
2368 second_p = (strstr (second, "short") != NULL);
2369 if (first_p && second_p)
2370 return 1;
2371 if (first_p || second_p)
2372 return 0;
2373
2374 /* Likewise for long. */
2375 first_p = (strstr (first, "long") != NULL);
2376 second_p = (strstr (second, "long") != NULL);
2377 if (first_p && second_p)
2378 return 1;
2379 if (first_p || second_p)
2380 return 0;
2381
2382 /* Likewise for char. */
2383 first_p = (strstr (first, "char") != NULL);
2384 second_p = (strstr (second, "char") != NULL);
2385 if (first_p && second_p)
2386 return 1;
2387 if (first_p || second_p)
2388 return 0;
2389
2390 /* They must both be ints. */
2391 return 1;
2392}
2393
7062b0a0
SW
2394/* Compares type A to type B returns 1 if the represent the same type
2395 0 otherwise. */
2396
2397static int
2398types_equal (struct type *a, struct type *b)
2399{
2400 /* Identical type pointers. */
2401 /* However, this still doesn't catch all cases of same type for b
2402 and a. The reason is that builtin types are different from
2403 the same ones constructed from the object. */
2404 if (a == b)
2405 return 1;
2406
2407 /* Resolve typedefs */
2408 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2409 a = check_typedef (a);
2410 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2411 b = check_typedef (b);
2412
2413 /* If after resolving typedefs a and b are not of the same type
2414 code then they are not equal. */
2415 if (TYPE_CODE (a) != TYPE_CODE (b))
2416 return 0;
2417
2418 /* If a and b are both pointers types or both reference types then
2419 they are equal of the same type iff the objects they refer to are
2420 of the same type. */
2421 if (TYPE_CODE (a) == TYPE_CODE_PTR
2422 || TYPE_CODE (a) == TYPE_CODE_REF)
2423 return types_equal (TYPE_TARGET_TYPE (a),
2424 TYPE_TARGET_TYPE (b));
2425
0963b4bd 2426 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2427 are exactly the same. This happens when we generate method
2428 stubs. The types won't point to the same address, but they
0963b4bd 2429 really are the same. */
7062b0a0
SW
2430
2431 if (TYPE_NAME (a) && TYPE_NAME (b)
2432 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2433 return 1;
2434
2435 /* Check if identical after resolving typedefs. */
2436 if (a == b)
2437 return 1;
2438
2439 return 0;
2440}
2441
c906108c
SS
2442/* Compare one type (PARM) for compatibility with another (ARG).
2443 * PARM is intended to be the parameter type of a function; and
2444 * ARG is the supplied argument's type. This function tests if
2445 * the latter can be converted to the former.
da096638 2446 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
2447 *
2448 * Return 0 if they are identical types;
2449 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2450 * PARM is to ARG. The higher the return value, the worse the match.
2451 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 2452
6403aeea 2453struct rank
da096638 2454rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 2455{
a9d5ef47 2456 struct rank rank = {0,0};
7062b0a0
SW
2457
2458 if (types_equal (parm, arg))
6403aeea 2459 return EXACT_MATCH_BADNESS;
c906108c
SS
2460
2461 /* Resolve typedefs */
2462 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2463 parm = check_typedef (parm);
2464 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2465 arg = check_typedef (arg);
2466
db577aea 2467 /* See through references, since we can almost make non-references
7ba81444 2468 references. */
db577aea 2469 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 2470 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 2471 REFERENCE_CONVERSION_BADNESS));
db577aea 2472 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 2473 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 2474 REFERENCE_CONVERSION_BADNESS));
5d161b24 2475 if (overload_debug)
7ba81444
MS
2476 /* Debugging only. */
2477 fprintf_filtered (gdb_stderr,
2478 "------ Arg is %s [%d], parm is %s [%d]\n",
2479 TYPE_NAME (arg), TYPE_CODE (arg),
2480 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 2481
0963b4bd 2482 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
2483
2484 switch (TYPE_CODE (parm))
2485 {
c5aa993b
JM
2486 case TYPE_CODE_PTR:
2487 switch (TYPE_CODE (arg))
2488 {
2489 case TYPE_CODE_PTR:
7062b0a0
SW
2490
2491 /* Allowed pointer conversions are:
2492 (a) pointer to void-pointer conversion. */
2493 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 2494 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
2495
2496 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
2497 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2498 TYPE_TARGET_TYPE (arg),
2499 0);
2500 if (rank.subrank >= 0)
2501 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
2502
2503 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2504 case TYPE_CODE_ARRAY:
7062b0a0
SW
2505 if (types_equal (TYPE_TARGET_TYPE (parm),
2506 TYPE_TARGET_TYPE (arg)))
6403aeea 2507 return EXACT_MATCH_BADNESS;
7062b0a0 2508 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2509 case TYPE_CODE_FUNC:
da096638 2510 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 2511 case TYPE_CODE_INT:
da096638
KS
2512 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT
2513 && value_as_long (value) == 0)
2514 {
2515 /* Null pointer conversion: allow it to be cast to a pointer.
2516 [4.10.1 of C++ standard draft n3290] */
2517 return NULL_POINTER_CONVERSION_BADNESS;
2518 }
2519 /* fall through */
c5aa993b 2520 case TYPE_CODE_ENUM:
4f2aea11 2521 case TYPE_CODE_FLAGS:
c5aa993b
JM
2522 case TYPE_CODE_CHAR:
2523 case TYPE_CODE_RANGE:
2524 case TYPE_CODE_BOOL:
c5aa993b
JM
2525 default:
2526 return INCOMPATIBLE_TYPE_BADNESS;
2527 }
2528 case TYPE_CODE_ARRAY:
2529 switch (TYPE_CODE (arg))
2530 {
2531 case TYPE_CODE_PTR:
2532 case TYPE_CODE_ARRAY:
7ba81444 2533 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 2534 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2535 default:
2536 return INCOMPATIBLE_TYPE_BADNESS;
2537 }
2538 case TYPE_CODE_FUNC:
2539 switch (TYPE_CODE (arg))
2540 {
2541 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 2542 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2543 default:
2544 return INCOMPATIBLE_TYPE_BADNESS;
2545 }
2546 case TYPE_CODE_INT:
2547 switch (TYPE_CODE (arg))
2548 {
2549 case TYPE_CODE_INT:
2550 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2551 {
2552 /* Deal with signed, unsigned, and plain chars and
7ba81444 2553 signed and unsigned ints. */
c5aa993b
JM
2554 if (TYPE_NOSIGN (parm))
2555 {
0963b4bd 2556 /* This case only for character types. */
7ba81444 2557 if (TYPE_NOSIGN (arg))
6403aeea 2558 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
2559 else /* signed/unsigned char -> plain char */
2560 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2561 }
2562 else if (TYPE_UNSIGNED (parm))
2563 {
2564 if (TYPE_UNSIGNED (arg))
2565 {
7ba81444
MS
2566 /* unsigned int -> unsigned int, or
2567 unsigned long -> unsigned long */
2568 if (integer_types_same_name_p (TYPE_NAME (parm),
2569 TYPE_NAME (arg)))
6403aeea 2570 return EXACT_MATCH_BADNESS;
7ba81444
MS
2571 else if (integer_types_same_name_p (TYPE_NAME (arg),
2572 "int")
2573 && integer_types_same_name_p (TYPE_NAME (parm),
2574 "long"))
3e43a32a
MS
2575 /* unsigned int -> unsigned long */
2576 return INTEGER_PROMOTION_BADNESS;
c5aa993b 2577 else
3e43a32a
MS
2578 /* unsigned long -> unsigned int */
2579 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2580 }
2581 else
2582 {
7ba81444
MS
2583 if (integer_types_same_name_p (TYPE_NAME (arg),
2584 "long")
2585 && integer_types_same_name_p (TYPE_NAME (parm),
2586 "int"))
3e43a32a
MS
2587 /* signed long -> unsigned int */
2588 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2589 else
3e43a32a
MS
2590 /* signed int/long -> unsigned int/long */
2591 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2592 }
2593 }
2594 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2595 {
7ba81444
MS
2596 if (integer_types_same_name_p (TYPE_NAME (parm),
2597 TYPE_NAME (arg)))
6403aeea 2598 return EXACT_MATCH_BADNESS;
7ba81444
MS
2599 else if (integer_types_same_name_p (TYPE_NAME (arg),
2600 "int")
2601 && integer_types_same_name_p (TYPE_NAME (parm),
2602 "long"))
c5aa993b
JM
2603 return INTEGER_PROMOTION_BADNESS;
2604 else
1c5cb38e 2605 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2606 }
2607 else
1c5cb38e 2608 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2609 }
2610 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2611 return INTEGER_PROMOTION_BADNESS;
2612 else
1c5cb38e 2613 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2614 case TYPE_CODE_ENUM:
4f2aea11 2615 case TYPE_CODE_FLAGS:
c5aa993b
JM
2616 case TYPE_CODE_CHAR:
2617 case TYPE_CODE_RANGE:
2618 case TYPE_CODE_BOOL:
2619 return INTEGER_PROMOTION_BADNESS;
2620 case TYPE_CODE_FLT:
2621 return INT_FLOAT_CONVERSION_BADNESS;
2622 case TYPE_CODE_PTR:
2623 return NS_POINTER_CONVERSION_BADNESS;
2624 default:
2625 return INCOMPATIBLE_TYPE_BADNESS;
2626 }
2627 break;
2628 case TYPE_CODE_ENUM:
2629 switch (TYPE_CODE (arg))
2630 {
2631 case TYPE_CODE_INT:
2632 case TYPE_CODE_CHAR:
2633 case TYPE_CODE_RANGE:
2634 case TYPE_CODE_BOOL:
2635 case TYPE_CODE_ENUM:
1c5cb38e 2636 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2637 case TYPE_CODE_FLT:
2638 return INT_FLOAT_CONVERSION_BADNESS;
2639 default:
2640 return INCOMPATIBLE_TYPE_BADNESS;
2641 }
2642 break;
2643 case TYPE_CODE_CHAR:
2644 switch (TYPE_CODE (arg))
2645 {
2646 case TYPE_CODE_RANGE:
2647 case TYPE_CODE_BOOL:
2648 case TYPE_CODE_ENUM:
1c5cb38e 2649 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2650 case TYPE_CODE_FLT:
2651 return INT_FLOAT_CONVERSION_BADNESS;
2652 case TYPE_CODE_INT:
2653 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2654 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2655 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2656 return INTEGER_PROMOTION_BADNESS;
2657 /* >>> !! else fall through !! <<< */
2658 case TYPE_CODE_CHAR:
7ba81444
MS
2659 /* Deal with signed, unsigned, and plain chars for C++ and
2660 with int cases falling through from previous case. */
c5aa993b
JM
2661 if (TYPE_NOSIGN (parm))
2662 {
2663 if (TYPE_NOSIGN (arg))
6403aeea 2664 return EXACT_MATCH_BADNESS;
c5aa993b 2665 else
1c5cb38e 2666 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2667 }
2668 else if (TYPE_UNSIGNED (parm))
2669 {
2670 if (TYPE_UNSIGNED (arg))
6403aeea 2671 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2672 else
2673 return INTEGER_PROMOTION_BADNESS;
2674 }
2675 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 2676 return EXACT_MATCH_BADNESS;
c5aa993b 2677 else
1c5cb38e 2678 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2679 default:
2680 return INCOMPATIBLE_TYPE_BADNESS;
2681 }
2682 break;
2683 case TYPE_CODE_RANGE:
2684 switch (TYPE_CODE (arg))
2685 {
2686 case TYPE_CODE_INT:
2687 case TYPE_CODE_CHAR:
2688 case TYPE_CODE_RANGE:
2689 case TYPE_CODE_BOOL:
2690 case TYPE_CODE_ENUM:
1c5cb38e 2691 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2692 case TYPE_CODE_FLT:
2693 return INT_FLOAT_CONVERSION_BADNESS;
2694 default:
2695 return INCOMPATIBLE_TYPE_BADNESS;
2696 }
2697 break;
2698 case TYPE_CODE_BOOL:
2699 switch (TYPE_CODE (arg))
2700 {
2701 case TYPE_CODE_INT:
2702 case TYPE_CODE_CHAR:
2703 case TYPE_CODE_RANGE:
2704 case TYPE_CODE_ENUM:
2705 case TYPE_CODE_FLT:
026ffab7 2706 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2707 case TYPE_CODE_PTR:
026ffab7 2708 return BOOL_PTR_CONVERSION_BADNESS;
c5aa993b 2709 case TYPE_CODE_BOOL:
6403aeea 2710 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2711 default:
2712 return INCOMPATIBLE_TYPE_BADNESS;
2713 }
2714 break;
2715 case TYPE_CODE_FLT:
2716 switch (TYPE_CODE (arg))
2717 {
2718 case TYPE_CODE_FLT:
2719 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2720 return FLOAT_PROMOTION_BADNESS;
2721 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 2722 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2723 else
2724 return FLOAT_CONVERSION_BADNESS;
2725 case TYPE_CODE_INT:
2726 case TYPE_CODE_BOOL:
2727 case TYPE_CODE_ENUM:
2728 case TYPE_CODE_RANGE:
2729 case TYPE_CODE_CHAR:
2730 return INT_FLOAT_CONVERSION_BADNESS;
2731 default:
2732 return INCOMPATIBLE_TYPE_BADNESS;
2733 }
2734 break;
2735 case TYPE_CODE_COMPLEX:
2736 switch (TYPE_CODE (arg))
7ba81444 2737 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2738 case TYPE_CODE_FLT:
2739 return FLOAT_PROMOTION_BADNESS;
2740 case TYPE_CODE_COMPLEX:
6403aeea 2741 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2742 default:
2743 return INCOMPATIBLE_TYPE_BADNESS;
2744 }
2745 break;
2746 case TYPE_CODE_STRUCT:
0963b4bd 2747 /* currently same as TYPE_CODE_CLASS. */
c5aa993b
JM
2748 switch (TYPE_CODE (arg))
2749 {
2750 case TYPE_CODE_STRUCT:
2751 /* Check for derivation */
a9d5ef47
SW
2752 rank.subrank = distance_to_ancestor (parm, arg, 0);
2753 if (rank.subrank >= 0)
2754 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
2755 /* else fall through */
2756 default:
2757 return INCOMPATIBLE_TYPE_BADNESS;
2758 }
2759 break;
2760 case TYPE_CODE_UNION:
2761 switch (TYPE_CODE (arg))
2762 {
2763 case TYPE_CODE_UNION:
2764 default:
2765 return INCOMPATIBLE_TYPE_BADNESS;
2766 }
2767 break;
0d5de010 2768 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2769 switch (TYPE_CODE (arg))
2770 {
2771 default:
2772 return INCOMPATIBLE_TYPE_BADNESS;
2773 }
2774 break;
2775 case TYPE_CODE_METHOD:
2776 switch (TYPE_CODE (arg))
2777 {
2778
2779 default:
2780 return INCOMPATIBLE_TYPE_BADNESS;
2781 }
2782 break;
2783 case TYPE_CODE_REF:
2784 switch (TYPE_CODE (arg))
2785 {
2786
2787 default:
2788 return INCOMPATIBLE_TYPE_BADNESS;
2789 }
2790
2791 break;
2792 case TYPE_CODE_SET:
2793 switch (TYPE_CODE (arg))
2794 {
2795 /* Not in C++ */
2796 case TYPE_CODE_SET:
7ba81444 2797 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 2798 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
2799 default:
2800 return INCOMPATIBLE_TYPE_BADNESS;
2801 }
2802 break;
2803 case TYPE_CODE_VOID:
2804 default:
2805 return INCOMPATIBLE_TYPE_BADNESS;
2806 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2807}
2808
c5aa993b 2809
0963b4bd 2810/* End of functions for overload resolution. */
c906108c 2811
c906108c 2812static void
fba45db2 2813print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2814{
2815 int bitno;
2816
2817 for (bitno = 0; bitno < nbits; bitno++)
2818 {
2819 if ((bitno % 8) == 0)
2820 {
2821 puts_filtered (" ");
2822 }
2823 if (B_TST (bits, bitno))
a3f17187 2824 printf_filtered (("1"));
c906108c 2825 else
a3f17187 2826 printf_filtered (("0"));
c906108c
SS
2827 }
2828}
2829
ad2f7632 2830/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2831 include it since we may get into a infinitely recursive
2832 situation. */
c906108c
SS
2833
2834static void
ad2f7632 2835print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2836{
2837 if (args != NULL)
2838 {
ad2f7632
DJ
2839 int i;
2840
2841 for (i = 0; i < nargs; i++)
2842 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2843 }
2844}
2845
d6a843b5
JK
2846int
2847field_is_static (struct field *f)
2848{
2849 /* "static" fields are the fields whose location is not relative
2850 to the address of the enclosing struct. It would be nice to
2851 have a dedicated flag that would be set for static fields when
2852 the type is being created. But in practice, checking the field
254e6b9e 2853 loc_kind should give us an accurate answer. */
d6a843b5
JK
2854 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2855 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2856}
2857
c906108c 2858static void
fba45db2 2859dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2860{
2861 int method_idx;
2862 int overload_idx;
2863 struct fn_field *f;
2864
2865 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2866 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2867 printf_filtered ("\n");
2868 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2869 {
2870 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2871 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2872 method_idx,
2873 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2874 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2875 gdb_stdout);
a3f17187 2876 printf_filtered (_(") length %d\n"),
c906108c
SS
2877 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2878 for (overload_idx = 0;
2879 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2880 overload_idx++)
2881 {
2882 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2883 overload_idx,
2884 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2885 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2886 gdb_stdout);
c906108c
SS
2887 printf_filtered (")\n");
2888 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2889 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2890 gdb_stdout);
c906108c
SS
2891 printf_filtered ("\n");
2892
2893 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2894 spaces + 8 + 2);
2895
2896 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2897 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2898 gdb_stdout);
c906108c
SS
2899 printf_filtered ("\n");
2900
ad2f7632 2901 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2902 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2903 overload_idx)),
ad2f7632 2904 spaces);
c906108c 2905 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2906 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2907 gdb_stdout);
c906108c
SS
2908 printf_filtered ("\n");
2909
2910 printfi_filtered (spaces + 8, "is_const %d\n",
2911 TYPE_FN_FIELD_CONST (f, overload_idx));
2912 printfi_filtered (spaces + 8, "is_volatile %d\n",
2913 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2914 printfi_filtered (spaces + 8, "is_private %d\n",
2915 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2916 printfi_filtered (spaces + 8, "is_protected %d\n",
2917 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2918 printfi_filtered (spaces + 8, "is_stub %d\n",
2919 TYPE_FN_FIELD_STUB (f, overload_idx));
2920 printfi_filtered (spaces + 8, "voffset %u\n",
2921 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2922 }
2923 }
2924}
2925
2926static void
fba45db2 2927print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2928{
2929 printfi_filtered (spaces, "n_baseclasses %d\n",
2930 TYPE_N_BASECLASSES (type));
2931 printfi_filtered (spaces, "nfn_fields %d\n",
2932 TYPE_NFN_FIELDS (type));
c906108c
SS
2933 if (TYPE_N_BASECLASSES (type) > 0)
2934 {
2935 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2936 TYPE_N_BASECLASSES (type));
7ba81444
MS
2937 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2938 gdb_stdout);
c906108c
SS
2939 printf_filtered (")");
2940
2941 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2942 TYPE_N_BASECLASSES (type));
2943 puts_filtered ("\n");
2944 }
2945 if (TYPE_NFIELDS (type) > 0)
2946 {
2947 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2948 {
7ba81444
MS
2949 printfi_filtered (spaces,
2950 "private_field_bits (%d bits at *",
c906108c 2951 TYPE_NFIELDS (type));
7ba81444
MS
2952 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2953 gdb_stdout);
c906108c
SS
2954 printf_filtered (")");
2955 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2956 TYPE_NFIELDS (type));
2957 puts_filtered ("\n");
2958 }
2959 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2960 {
7ba81444
MS
2961 printfi_filtered (spaces,
2962 "protected_field_bits (%d bits at *",
c906108c 2963 TYPE_NFIELDS (type));
7ba81444
MS
2964 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2965 gdb_stdout);
c906108c
SS
2966 printf_filtered (")");
2967 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2968 TYPE_NFIELDS (type));
2969 puts_filtered ("\n");
2970 }
2971 }
2972 if (TYPE_NFN_FIELDS (type) > 0)
2973 {
2974 dump_fn_fieldlists (type, spaces);
2975 }
2976}
2977
b4ba55a1
JB
2978/* Print the contents of the TYPE's type_specific union, assuming that
2979 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2980
2981static void
2982print_gnat_stuff (struct type *type, int spaces)
2983{
2984 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2985
2986 recursive_dump_type (descriptive_type, spaces + 2);
2987}
2988
c906108c
SS
2989static struct obstack dont_print_type_obstack;
2990
2991void
fba45db2 2992recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2993{
2994 int idx;
2995
2996 if (spaces == 0)
2997 obstack_begin (&dont_print_type_obstack, 0);
2998
2999 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3000 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3001 {
3002 struct type **first_dont_print
7ba81444 3003 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3004
7ba81444
MS
3005 int i = (struct type **)
3006 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3007
3008 while (--i >= 0)
3009 {
3010 if (type == first_dont_print[i])
3011 {
3012 printfi_filtered (spaces, "type node ");
d4f3574e 3013 gdb_print_host_address (type, gdb_stdout);
a3f17187 3014 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3015 return;
3016 }
3017 }
3018
3019 obstack_ptr_grow (&dont_print_type_obstack, type);
3020 }
3021
3022 printfi_filtered (spaces, "type node ");
d4f3574e 3023 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3024 printf_filtered ("\n");
3025 printfi_filtered (spaces, "name '%s' (",
3026 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3027 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3028 printf_filtered (")\n");
e9e79dd9
FF
3029 printfi_filtered (spaces, "tagname '%s' (",
3030 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3031 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3032 printf_filtered (")\n");
c906108c
SS
3033 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3034 switch (TYPE_CODE (type))
3035 {
c5aa993b
JM
3036 case TYPE_CODE_UNDEF:
3037 printf_filtered ("(TYPE_CODE_UNDEF)");
3038 break;
3039 case TYPE_CODE_PTR:
3040 printf_filtered ("(TYPE_CODE_PTR)");
3041 break;
3042 case TYPE_CODE_ARRAY:
3043 printf_filtered ("(TYPE_CODE_ARRAY)");
3044 break;
3045 case TYPE_CODE_STRUCT:
3046 printf_filtered ("(TYPE_CODE_STRUCT)");
3047 break;
3048 case TYPE_CODE_UNION:
3049 printf_filtered ("(TYPE_CODE_UNION)");
3050 break;
3051 case TYPE_CODE_ENUM:
3052 printf_filtered ("(TYPE_CODE_ENUM)");
3053 break;
4f2aea11
MK
3054 case TYPE_CODE_FLAGS:
3055 printf_filtered ("(TYPE_CODE_FLAGS)");
3056 break;
c5aa993b
JM
3057 case TYPE_CODE_FUNC:
3058 printf_filtered ("(TYPE_CODE_FUNC)");
3059 break;
3060 case TYPE_CODE_INT:
3061 printf_filtered ("(TYPE_CODE_INT)");
3062 break;
3063 case TYPE_CODE_FLT:
3064 printf_filtered ("(TYPE_CODE_FLT)");
3065 break;
3066 case TYPE_CODE_VOID:
3067 printf_filtered ("(TYPE_CODE_VOID)");
3068 break;
3069 case TYPE_CODE_SET:
3070 printf_filtered ("(TYPE_CODE_SET)");
3071 break;
3072 case TYPE_CODE_RANGE:
3073 printf_filtered ("(TYPE_CODE_RANGE)");
3074 break;
3075 case TYPE_CODE_STRING:
3076 printf_filtered ("(TYPE_CODE_STRING)");
3077 break;
e9e79dd9
FF
3078 case TYPE_CODE_BITSTRING:
3079 printf_filtered ("(TYPE_CODE_BITSTRING)");
3080 break;
c5aa993b
JM
3081 case TYPE_CODE_ERROR:
3082 printf_filtered ("(TYPE_CODE_ERROR)");
3083 break;
0d5de010
DJ
3084 case TYPE_CODE_MEMBERPTR:
3085 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3086 break;
3087 case TYPE_CODE_METHODPTR:
3088 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3089 break;
3090 case TYPE_CODE_METHOD:
3091 printf_filtered ("(TYPE_CODE_METHOD)");
3092 break;
3093 case TYPE_CODE_REF:
3094 printf_filtered ("(TYPE_CODE_REF)");
3095 break;
3096 case TYPE_CODE_CHAR:
3097 printf_filtered ("(TYPE_CODE_CHAR)");
3098 break;
3099 case TYPE_CODE_BOOL:
3100 printf_filtered ("(TYPE_CODE_BOOL)");
3101 break;
e9e79dd9
FF
3102 case TYPE_CODE_COMPLEX:
3103 printf_filtered ("(TYPE_CODE_COMPLEX)");
3104 break;
c5aa993b
JM
3105 case TYPE_CODE_TYPEDEF:
3106 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3107 break;
5c4e30ca
DC
3108 case TYPE_CODE_NAMESPACE:
3109 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3110 break;
c5aa993b
JM
3111 default:
3112 printf_filtered ("(UNKNOWN TYPE CODE)");
3113 break;
c906108c
SS
3114 }
3115 puts_filtered ("\n");
3116 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3117 if (TYPE_OBJFILE_OWNED (type))
3118 {
3119 printfi_filtered (spaces, "objfile ");
3120 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3121 }
3122 else
3123 {
3124 printfi_filtered (spaces, "gdbarch ");
3125 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3126 }
c906108c
SS
3127 printf_filtered ("\n");
3128 printfi_filtered (spaces, "target_type ");
d4f3574e 3129 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3130 printf_filtered ("\n");
3131 if (TYPE_TARGET_TYPE (type) != NULL)
3132 {
3133 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3134 }
3135 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3136 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3137 printf_filtered ("\n");
3138 printfi_filtered (spaces, "reference_type ");
d4f3574e 3139 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3140 printf_filtered ("\n");
2fdde8f8
DJ
3141 printfi_filtered (spaces, "type_chain ");
3142 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3143 printf_filtered ("\n");
7ba81444
MS
3144 printfi_filtered (spaces, "instance_flags 0x%x",
3145 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3146 if (TYPE_CONST (type))
3147 {
3148 puts_filtered (" TYPE_FLAG_CONST");
3149 }
3150 if (TYPE_VOLATILE (type))
3151 {
3152 puts_filtered (" TYPE_FLAG_VOLATILE");
3153 }
3154 if (TYPE_CODE_SPACE (type))
3155 {
3156 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3157 }
3158 if (TYPE_DATA_SPACE (type))
3159 {
3160 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3161 }
8b2dbe47
KB
3162 if (TYPE_ADDRESS_CLASS_1 (type))
3163 {
3164 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3165 }
3166 if (TYPE_ADDRESS_CLASS_2 (type))
3167 {
3168 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3169 }
2fdde8f8 3170 puts_filtered ("\n");
876cecd0
TT
3171
3172 printfi_filtered (spaces, "flags");
762a036f 3173 if (TYPE_UNSIGNED (type))
c906108c
SS
3174 {
3175 puts_filtered (" TYPE_FLAG_UNSIGNED");
3176 }
762a036f
FF
3177 if (TYPE_NOSIGN (type))
3178 {
3179 puts_filtered (" TYPE_FLAG_NOSIGN");
3180 }
3181 if (TYPE_STUB (type))
c906108c
SS
3182 {
3183 puts_filtered (" TYPE_FLAG_STUB");
3184 }
762a036f
FF
3185 if (TYPE_TARGET_STUB (type))
3186 {
3187 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3188 }
3189 if (TYPE_STATIC (type))
3190 {
3191 puts_filtered (" TYPE_FLAG_STATIC");
3192 }
762a036f
FF
3193 if (TYPE_PROTOTYPED (type))
3194 {
3195 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3196 }
3197 if (TYPE_INCOMPLETE (type))
3198 {
3199 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3200 }
762a036f
FF
3201 if (TYPE_VARARGS (type))
3202 {
3203 puts_filtered (" TYPE_FLAG_VARARGS");
3204 }
f5f8a009
EZ
3205 /* This is used for things like AltiVec registers on ppc. Gcc emits
3206 an attribute for the array type, which tells whether or not we
3207 have a vector, instead of a regular array. */
3208 if (TYPE_VECTOR (type))
3209 {
3210 puts_filtered (" TYPE_FLAG_VECTOR");
3211 }
876cecd0
TT
3212 if (TYPE_FIXED_INSTANCE (type))
3213 {
3214 puts_filtered (" TYPE_FIXED_INSTANCE");
3215 }
3216 if (TYPE_STUB_SUPPORTED (type))
3217 {
3218 puts_filtered (" TYPE_STUB_SUPPORTED");
3219 }
3220 if (TYPE_NOTTEXT (type))
3221 {
3222 puts_filtered (" TYPE_NOTTEXT");
3223 }
c906108c
SS
3224 puts_filtered ("\n");
3225 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3226 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3227 puts_filtered ("\n");
3228 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3229 {
14e75d8e
JK
3230 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3231 printfi_filtered (spaces + 2,
3232 "[%d] enumval %s type ",
3233 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3234 else
3235 printfi_filtered (spaces + 2,
3236 "[%d] bitpos %d bitsize %d type ",
3237 idx, TYPE_FIELD_BITPOS (type, idx),
3238 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3239 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3240 printf_filtered (" name '%s' (",
3241 TYPE_FIELD_NAME (type, idx) != NULL
3242 ? TYPE_FIELD_NAME (type, idx)
3243 : "<NULL>");
d4f3574e 3244 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3245 printf_filtered (")\n");
3246 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3247 {
3248 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3249 }
3250 }
43bbcdc2
PH
3251 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3252 {
3253 printfi_filtered (spaces, "low %s%s high %s%s\n",
3254 plongest (TYPE_LOW_BOUND (type)),
3255 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3256 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3257 TYPE_HIGH_BOUND_UNDEFINED (type)
3258 ? " (undefined)" : "");
43bbcdc2 3259 }
c906108c 3260 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3261 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3262 puts_filtered ("\n");
3263 if (TYPE_VPTR_BASETYPE (type) != NULL)
3264 {
3265 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3266 }
7ba81444
MS
3267 printfi_filtered (spaces, "vptr_fieldno %d\n",
3268 TYPE_VPTR_FIELDNO (type));
c906108c 3269
b4ba55a1
JB
3270 switch (TYPE_SPECIFIC_FIELD (type))
3271 {
3272 case TYPE_SPECIFIC_CPLUS_STUFF:
3273 printfi_filtered (spaces, "cplus_stuff ");
3274 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3275 gdb_stdout);
3276 puts_filtered ("\n");
3277 print_cplus_stuff (type, spaces);
3278 break;
8da61cc4 3279
b4ba55a1
JB
3280 case TYPE_SPECIFIC_GNAT_STUFF:
3281 printfi_filtered (spaces, "gnat_stuff ");
3282 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3283 puts_filtered ("\n");
3284 print_gnat_stuff (type, spaces);
3285 break;
701c159d 3286
b4ba55a1
JB
3287 case TYPE_SPECIFIC_FLOATFORMAT:
3288 printfi_filtered (spaces, "floatformat ");
3289 if (TYPE_FLOATFORMAT (type) == NULL)
3290 puts_filtered ("(null)");
3291 else
3292 {
3293 puts_filtered ("{ ");
3294 if (TYPE_FLOATFORMAT (type)[0] == NULL
3295 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3296 puts_filtered ("(null)");
3297 else
3298 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3299
3300 puts_filtered (", ");
3301 if (TYPE_FLOATFORMAT (type)[1] == NULL
3302 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3303 puts_filtered ("(null)");
3304 else
3305 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3306
3307 puts_filtered (" }");
3308 }
3309 puts_filtered ("\n");
3310 break;
c906108c 3311
b6cdc2c1 3312 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
3313 printfi_filtered (spaces, "calling_convention %d\n",
3314 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 3315 /* tail_call_list is not printed. */
b4ba55a1 3316 break;
c906108c 3317 }
b4ba55a1 3318
c906108c
SS
3319 if (spaces == 0)
3320 obstack_free (&dont_print_type_obstack, NULL);
3321}
3322
ae5a43e0
DJ
3323/* Trivial helpers for the libiberty hash table, for mapping one
3324 type to another. */
3325
3326struct type_pair
3327{
3328 struct type *old, *new;
3329};
3330
3331static hashval_t
3332type_pair_hash (const void *item)
3333{
3334 const struct type_pair *pair = item;
d8734c88 3335
ae5a43e0
DJ
3336 return htab_hash_pointer (pair->old);
3337}
3338
3339static int
3340type_pair_eq (const void *item_lhs, const void *item_rhs)
3341{
3342 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3343
ae5a43e0
DJ
3344 return lhs->old == rhs->old;
3345}
3346
3347/* Allocate the hash table used by copy_type_recursive to walk
3348 types without duplicates. We use OBJFILE's obstack, because
3349 OBJFILE is about to be deleted. */
3350
3351htab_t
3352create_copied_types_hash (struct objfile *objfile)
3353{
3354 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3355 NULL, &objfile->objfile_obstack,
3356 hashtab_obstack_allocate,
3357 dummy_obstack_deallocate);
3358}
3359
7ba81444
MS
3360/* Recursively copy (deep copy) TYPE, if it is associated with
3361 OBJFILE. Return a new type allocated using malloc, a saved type if
3362 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3363 not associated with OBJFILE. */
ae5a43e0
DJ
3364
3365struct type *
7ba81444
MS
3366copy_type_recursive (struct objfile *objfile,
3367 struct type *type,
ae5a43e0
DJ
3368 htab_t copied_types)
3369{
3370 struct type_pair *stored, pair;
3371 void **slot;
3372 struct type *new_type;
3373
e9bb382b 3374 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3375 return type;
3376
7ba81444
MS
3377 /* This type shouldn't be pointing to any types in other objfiles;
3378 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3379 gdb_assert (TYPE_OBJFILE (type) == objfile);
3380
3381 pair.old = type;
3382 slot = htab_find_slot (copied_types, &pair, INSERT);
3383 if (*slot != NULL)
3384 return ((struct type_pair *) *slot)->new;
3385
e9bb382b 3386 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3387
3388 /* We must add the new type to the hash table immediately, in case
3389 we encounter this type again during a recursive call below. */
3e43a32a
MS
3390 stored
3391 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3392 stored->old = type;
3393 stored->new = new_type;
3394 *slot = stored;
3395
876cecd0
TT
3396 /* Copy the common fields of types. For the main type, we simply
3397 copy the entire thing and then update specific fields as needed. */
3398 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3399 TYPE_OBJFILE_OWNED (new_type) = 0;
3400 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3401
ae5a43e0
DJ
3402 if (TYPE_NAME (type))
3403 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3404 if (TYPE_TAG_NAME (type))
3405 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3406
3407 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3408 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3409
3410 /* Copy the fields. */
ae5a43e0
DJ
3411 if (TYPE_NFIELDS (type))
3412 {
3413 int i, nfields;
3414
3415 nfields = TYPE_NFIELDS (type);
1deafd4e 3416 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
3417 for (i = 0; i < nfields; i++)
3418 {
7ba81444
MS
3419 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3420 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3421 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3422 if (TYPE_FIELD_TYPE (type, i))
3423 TYPE_FIELD_TYPE (new_type, i)
3424 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3425 copied_types);
3426 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3427 TYPE_FIELD_NAME (new_type, i) =
3428 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3429 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3430 {
d6a843b5
JK
3431 case FIELD_LOC_KIND_BITPOS:
3432 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3433 TYPE_FIELD_BITPOS (type, i));
3434 break;
14e75d8e
JK
3435 case FIELD_LOC_KIND_ENUMVAL:
3436 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3437 TYPE_FIELD_ENUMVAL (type, i));
3438 break;
d6a843b5
JK
3439 case FIELD_LOC_KIND_PHYSADDR:
3440 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3441 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3442 break;
3443 case FIELD_LOC_KIND_PHYSNAME:
3444 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3445 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3446 i)));
3447 break;
3448 default:
3449 internal_error (__FILE__, __LINE__,
3450 _("Unexpected type field location kind: %d"),
3451 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3452 }
3453 }
3454 }
3455
0963b4bd 3456 /* For range types, copy the bounds information. */
43bbcdc2
PH
3457 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3458 {
3459 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3460 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3461 }
3462
ae5a43e0
DJ
3463 /* Copy pointers to other types. */
3464 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3465 TYPE_TARGET_TYPE (new_type) =
3466 copy_type_recursive (objfile,
3467 TYPE_TARGET_TYPE (type),
3468 copied_types);
ae5a43e0 3469 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3470 TYPE_VPTR_BASETYPE (new_type) =
3471 copy_type_recursive (objfile,
3472 TYPE_VPTR_BASETYPE (type),
3473 copied_types);
ae5a43e0
DJ
3474 /* Maybe copy the type_specific bits.
3475
3476 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3477 base classes and methods. There's no fundamental reason why we
3478 can't, but at the moment it is not needed. */
3479
3480 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3481 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3482 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3483 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
3484 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3485 INIT_CPLUS_SPECIFIC (new_type);
3486
3487 return new_type;
3488}
3489
4af88198
JB
3490/* Make a copy of the given TYPE, except that the pointer & reference
3491 types are not preserved.
3492
3493 This function assumes that the given type has an associated objfile.
3494 This objfile is used to allocate the new type. */
3495
3496struct type *
3497copy_type (const struct type *type)
3498{
3499 struct type *new_type;
3500
e9bb382b 3501 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3502
e9bb382b 3503 new_type = alloc_type_copy (type);
4af88198
JB
3504 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3505 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3506 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3507 sizeof (struct main_type));
3508
3509 return new_type;
3510}
3511
e9bb382b
UW
3512
3513/* Helper functions to initialize architecture-specific types. */
3514
3515/* Allocate a type structure associated with GDBARCH and set its
3516 CODE, LENGTH, and NAME fields. */
3517struct type *
3518arch_type (struct gdbarch *gdbarch,
3519 enum type_code code, int length, char *name)
3520{
3521 struct type *type;
3522
3523 type = alloc_type_arch (gdbarch);
3524 TYPE_CODE (type) = code;
3525 TYPE_LENGTH (type) = length;
3526
3527 if (name)
3528 TYPE_NAME (type) = xstrdup (name);
3529
3530 return type;
3531}
3532
3533/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3534 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3535 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3536struct type *
3537arch_integer_type (struct gdbarch *gdbarch,
3538 int bit, int unsigned_p, char *name)
3539{
3540 struct type *t;
3541
3542 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3543 if (unsigned_p)
3544 TYPE_UNSIGNED (t) = 1;
3545 if (name && strcmp (name, "char") == 0)
3546 TYPE_NOSIGN (t) = 1;
3547
3548 return t;
3549}
3550
3551/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3552 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3553 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3554struct type *
3555arch_character_type (struct gdbarch *gdbarch,
3556 int bit, int unsigned_p, char *name)
3557{
3558 struct type *t;
3559
3560 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3561 if (unsigned_p)
3562 TYPE_UNSIGNED (t) = 1;
3563
3564 return t;
3565}
3566
3567/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3568 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3569 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3570struct type *
3571arch_boolean_type (struct gdbarch *gdbarch,
3572 int bit, int unsigned_p, char *name)
3573{
3574 struct type *t;
3575
3576 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3577 if (unsigned_p)
3578 TYPE_UNSIGNED (t) = 1;
3579
3580 return t;
3581}
3582
3583/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3584 BIT is the type size in bits; if BIT equals -1, the size is
3585 determined by the floatformat. NAME is the type name. Set the
3586 TYPE_FLOATFORMAT from FLOATFORMATS. */
27067745 3587struct type *
e9bb382b
UW
3588arch_float_type (struct gdbarch *gdbarch,
3589 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3590{
3591 struct type *t;
3592
3593 if (bit == -1)
3594 {
3595 gdb_assert (floatformats != NULL);
3596 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3597 bit = floatformats[0]->totalsize;
3598 }
3599 gdb_assert (bit >= 0);
3600
e9bb382b 3601 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3602 TYPE_FLOATFORMAT (t) = floatformats;
3603 return t;
3604}
3605
e9bb382b
UW
3606/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3607 NAME is the type name. TARGET_TYPE is the component float type. */
27067745 3608struct type *
e9bb382b
UW
3609arch_complex_type (struct gdbarch *gdbarch,
3610 char *name, struct type *target_type)
27067745
UW
3611{
3612 struct type *t;
d8734c88 3613
e9bb382b
UW
3614 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3615 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3616 TYPE_TARGET_TYPE (t) = target_type;
3617 return t;
3618}
3619
e9bb382b 3620/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3621 NAME is the type name. LENGTH is the size of the flag word in bytes. */
e9bb382b
UW
3622struct type *
3623arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3624{
3625 int nfields = length * TARGET_CHAR_BIT;
3626 struct type *type;
3627
3628 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3629 TYPE_UNSIGNED (type) = 1;
3630 TYPE_NFIELDS (type) = nfields;
3631 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3632
3633 return type;
3634}
3635
3636/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3637 position BITPOS is called NAME. */
3638void
3639append_flags_type_flag (struct type *type, int bitpos, char *name)
3640{
3641 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3642 gdb_assert (bitpos < TYPE_NFIELDS (type));
3643 gdb_assert (bitpos >= 0);
3644
3645 if (name)
3646 {
3647 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 3648 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
3649 }
3650 else
3651 {
3652 /* Don't show this field to the user. */
945b3a32 3653 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
3654 }
3655}
3656
3657/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3658 specified by CODE) associated with GDBARCH. NAME is the type name. */
3659struct type *
3660arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3661{
3662 struct type *t;
d8734c88 3663
e9bb382b
UW
3664 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3665 t = arch_type (gdbarch, code, 0, NULL);
3666 TYPE_TAG_NAME (t) = name;
3667 INIT_CPLUS_SPECIFIC (t);
3668 return t;
3669}
3670
3671/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
3672 Do not set the field's position or adjust the type's length;
3673 the caller should do so. Return the new field. */
3674struct field *
3675append_composite_type_field_raw (struct type *t, char *name,
3676 struct type *field)
e9bb382b
UW
3677{
3678 struct field *f;
d8734c88 3679
e9bb382b
UW
3680 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3681 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3682 sizeof (struct field) * TYPE_NFIELDS (t));
3683 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3684 memset (f, 0, sizeof f[0]);
3685 FIELD_TYPE (f[0]) = field;
3686 FIELD_NAME (f[0]) = name;
f5dff777
DJ
3687 return f;
3688}
3689
3690/* Add new field with name NAME and type FIELD to composite type T.
3691 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3692void
3693append_composite_type_field_aligned (struct type *t, char *name,
3694 struct type *field, int alignment)
3695{
3696 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 3697
e9bb382b
UW
3698 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3699 {
3700 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3701 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3702 }
3703 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3704 {
3705 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3706 if (TYPE_NFIELDS (t) > 1)
3707 {
f41f5e61
PA
3708 SET_FIELD_BITPOS (f[0],
3709 (FIELD_BITPOS (f[-1])
3710 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3711 * TARGET_CHAR_BIT)));
e9bb382b
UW
3712
3713 if (alignment)
3714 {
86c3c1fc
AB
3715 int left;
3716
3717 alignment *= TARGET_CHAR_BIT;
3718 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 3719
e9bb382b
UW
3720 if (left)
3721 {
f41f5e61 3722 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 3723 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
3724 }
3725 }
3726 }
3727 }
3728}
3729
3730/* Add new field with name NAME and type FIELD to composite type T. */
3731void
3732append_composite_type_field (struct type *t, char *name,
3733 struct type *field)
3734{
3735 append_composite_type_field_aligned (t, name, field, 0);
3736}
3737
3738
000177f0
AC
3739static struct gdbarch_data *gdbtypes_data;
3740
3741const struct builtin_type *
3742builtin_type (struct gdbarch *gdbarch)
3743{
3744 return gdbarch_data (gdbarch, gdbtypes_data);
3745}
3746
3747static void *
3748gdbtypes_post_init (struct gdbarch *gdbarch)
3749{
3750 struct builtin_type *builtin_type
3751 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3752
46bf5051 3753 /* Basic types. */
e9bb382b
UW
3754 builtin_type->builtin_void
3755 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3756 builtin_type->builtin_char
3757 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3758 !gdbarch_char_signed (gdbarch), "char");
3759 builtin_type->builtin_signed_char
3760 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3761 0, "signed char");
3762 builtin_type->builtin_unsigned_char
3763 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3764 1, "unsigned char");
3765 builtin_type->builtin_short
3766 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3767 0, "short");
3768 builtin_type->builtin_unsigned_short
3769 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3770 1, "unsigned short");
3771 builtin_type->builtin_int
3772 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3773 0, "int");
3774 builtin_type->builtin_unsigned_int
3775 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3776 1, "unsigned int");
3777 builtin_type->builtin_long
3778 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3779 0, "long");
3780 builtin_type->builtin_unsigned_long
3781 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3782 1, "unsigned long");
3783 builtin_type->builtin_long_long
3784 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3785 0, "long long");
3786 builtin_type->builtin_unsigned_long_long
3787 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3788 1, "unsigned long long");
70bd8e24 3789 builtin_type->builtin_float
e9bb382b 3790 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3791 "float", gdbarch_float_format (gdbarch));
70bd8e24 3792 builtin_type->builtin_double
e9bb382b 3793 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3794 "double", gdbarch_double_format (gdbarch));
70bd8e24 3795 builtin_type->builtin_long_double
e9bb382b 3796 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3797 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3798 builtin_type->builtin_complex
e9bb382b
UW
3799 = arch_complex_type (gdbarch, "complex",
3800 builtin_type->builtin_float);
70bd8e24 3801 builtin_type->builtin_double_complex
e9bb382b
UW
3802 = arch_complex_type (gdbarch, "double complex",
3803 builtin_type->builtin_double);
3804 builtin_type->builtin_string
3805 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3806 builtin_type->builtin_bool
3807 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3808
7678ef8f
TJB
3809 /* The following three are about decimal floating point types, which
3810 are 32-bits, 64-bits and 128-bits respectively. */
3811 builtin_type->builtin_decfloat
e9bb382b 3812 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3813 builtin_type->builtin_decdouble
e9bb382b 3814 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3815 builtin_type->builtin_declong
e9bb382b 3816 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3817
69feb676 3818 /* "True" character types. */
e9bb382b
UW
3819 builtin_type->builtin_true_char
3820 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3821 builtin_type->builtin_true_unsigned_char
3822 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3823
df4df182 3824 /* Fixed-size integer types. */
e9bb382b
UW
3825 builtin_type->builtin_int0
3826 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3827 builtin_type->builtin_int8
3828 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3829 builtin_type->builtin_uint8
3830 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3831 builtin_type->builtin_int16
3832 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3833 builtin_type->builtin_uint16
3834 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3835 builtin_type->builtin_int32
3836 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3837 builtin_type->builtin_uint32
3838 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3839 builtin_type->builtin_int64
3840 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3841 builtin_type->builtin_uint64
3842 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3843 builtin_type->builtin_int128
3844 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3845 builtin_type->builtin_uint128
3846 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
3847 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3848 TYPE_INSTANCE_FLAG_NOTTEXT;
3849 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3850 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 3851
9a22f0d0
PM
3852 /* Wide character types. */
3853 builtin_type->builtin_char16
3854 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3855 builtin_type->builtin_char32
3856 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3857
3858
46bf5051 3859 /* Default data/code pointer types. */
e9bb382b
UW
3860 builtin_type->builtin_data_ptr
3861 = lookup_pointer_type (builtin_type->builtin_void);
3862 builtin_type->builtin_func_ptr
3863 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
3864 builtin_type->builtin_func_func
3865 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 3866
78267919 3867 /* This type represents a GDB internal function. */
e9bb382b
UW
3868 builtin_type->internal_fn
3869 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3870 "<internal function>");
78267919 3871
46bf5051
UW
3872 return builtin_type;
3873}
3874
3875
3876/* This set of objfile-based types is intended to be used by symbol
3877 readers as basic types. */
3878
3879static const struct objfile_data *objfile_type_data;
3880
3881const struct objfile_type *
3882objfile_type (struct objfile *objfile)
3883{
3884 struct gdbarch *gdbarch;
3885 struct objfile_type *objfile_type
3886 = objfile_data (objfile, objfile_type_data);
3887
3888 if (objfile_type)
3889 return objfile_type;
3890
3891 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3892 1, struct objfile_type);
3893
3894 /* Use the objfile architecture to determine basic type properties. */
3895 gdbarch = get_objfile_arch (objfile);
3896
3897 /* Basic types. */
3898 objfile_type->builtin_void
3899 = init_type (TYPE_CODE_VOID, 1,
3900 0,
3901 "void", objfile);
3902
3903 objfile_type->builtin_char
3904 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3905 (TYPE_FLAG_NOSIGN
3906 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3907 "char", objfile);
3908 objfile_type->builtin_signed_char
3909 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3910 0,
3911 "signed char", objfile);
3912 objfile_type->builtin_unsigned_char
3913 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3914 TYPE_FLAG_UNSIGNED,
3915 "unsigned char", objfile);
3916 objfile_type->builtin_short
3917 = init_type (TYPE_CODE_INT,
3918 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3919 0, "short", objfile);
3920 objfile_type->builtin_unsigned_short
3921 = init_type (TYPE_CODE_INT,
3922 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3923 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3924 objfile_type->builtin_int
3925 = init_type (TYPE_CODE_INT,
3926 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3927 0, "int", objfile);
3928 objfile_type->builtin_unsigned_int
3929 = init_type (TYPE_CODE_INT,
3930 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3931 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3932 objfile_type->builtin_long
3933 = init_type (TYPE_CODE_INT,
3934 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3935 0, "long", objfile);
3936 objfile_type->builtin_unsigned_long
3937 = init_type (TYPE_CODE_INT,
3938 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3939 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3940 objfile_type->builtin_long_long
3941 = init_type (TYPE_CODE_INT,
3942 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3943 0, "long long", objfile);
3944 objfile_type->builtin_unsigned_long_long
3945 = init_type (TYPE_CODE_INT,
3946 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3947 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3948
3949 objfile_type->builtin_float
3950 = init_type (TYPE_CODE_FLT,
3951 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3952 0, "float", objfile);
3953 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3954 = gdbarch_float_format (gdbarch);
3955 objfile_type->builtin_double
3956 = init_type (TYPE_CODE_FLT,
3957 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3958 0, "double", objfile);
3959 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3960 = gdbarch_double_format (gdbarch);
3961 objfile_type->builtin_long_double
3962 = init_type (TYPE_CODE_FLT,
3963 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3964 0, "long double", objfile);
3965 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3966 = gdbarch_long_double_format (gdbarch);
3967
3968 /* This type represents a type that was unrecognized in symbol read-in. */
3969 objfile_type->builtin_error
3970 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3971
3972 /* The following set of types is used for symbols with no
3973 debug information. */
3974 objfile_type->nodebug_text_symbol
3975 = init_type (TYPE_CODE_FUNC, 1, 0,
3976 "<text variable, no debug info>", objfile);
3977 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3978 = objfile_type->builtin_int;
0875794a
JK
3979 objfile_type->nodebug_text_gnu_ifunc_symbol
3980 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3981 "<text gnu-indirect-function variable, no debug info>",
3982 objfile);
3983 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3984 = objfile_type->nodebug_text_symbol;
3985 objfile_type->nodebug_got_plt_symbol
3986 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3987 "<text from jump slot in .got.plt, no debug info>",
3988 objfile);
3989 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3990 = objfile_type->nodebug_text_symbol;
46bf5051
UW
3991 objfile_type->nodebug_data_symbol
3992 = init_type (TYPE_CODE_INT,
3993 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3994 "<data variable, no debug info>", objfile);
3995 objfile_type->nodebug_unknown_symbol
3996 = init_type (TYPE_CODE_INT, 1, 0,
3997 "<variable (not text or data), no debug info>", objfile);
3998 objfile_type->nodebug_tls_symbol
3999 = init_type (TYPE_CODE_INT,
4000 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4001 "<thread local variable, no debug info>", objfile);
000177f0
AC
4002
4003 /* NOTE: on some targets, addresses and pointers are not necessarily
4004 the same --- for example, on the D10V, pointers are 16 bits long,
4005 but addresses are 32 bits long. See doc/gdbint.texinfo,
4006 ``Pointers Are Not Always Addresses''.
4007
4008 The upshot is:
4009 - gdb's `struct type' always describes the target's
4010 representation.
4011 - gdb's `struct value' objects should always hold values in
4012 target form.
4013 - gdb's CORE_ADDR values are addresses in the unified virtual
4014 address space that the assembler and linker work with. Thus,
4015 since target_read_memory takes a CORE_ADDR as an argument, it
4016 can access any memory on the target, even if the processor has
4017 separate code and data address spaces.
4018
4019 So, for example:
4020 - If v is a value holding a D10V code pointer, its contents are
4021 in target form: a big-endian address left-shifted two bits.
4022 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
4023 sizeof (void *) == 2 on the target.
4024
46bf5051
UW
4025 In this context, objfile_type->builtin_core_addr is a bit odd:
4026 it's a target type for a value the target will never see. It's
4027 only used to hold the values of (typeless) linker symbols, which
4028 are indeed in the unified virtual address space. */
000177f0 4029
46bf5051
UW
4030 objfile_type->builtin_core_addr
4031 = init_type (TYPE_CODE_INT,
4032 gdbarch_addr_bit (gdbarch) / 8,
4033 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4034
46bf5051
UW
4035 set_objfile_data (objfile, objfile_type_data, objfile_type);
4036 return objfile_type;
000177f0
AC
4037}
4038
46bf5051 4039
a14ed312 4040extern void _initialize_gdbtypes (void);
c906108c 4041void
fba45db2 4042_initialize_gdbtypes (void)
c906108c 4043{
5674de60 4044 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4045 objfile_type_data = register_objfile_data ();
5674de60 4046
3e43a32a
MS
4047 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
4048 _("Set debugging of C++ overloading."),
4049 _("Show debugging of C++ overloading."),
4050 _("When enabled, ranking of the "
4051 "functions is displayed."),
85c07804 4052 NULL,
920d2a44 4053 show_overload_debug,
85c07804 4054 &setdebuglist, &showdebuglist);
5674de60 4055
7ba81444 4056 /* Add user knob for controlling resolution of opaque types. */
5674de60 4057 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4058 &opaque_type_resolution,
4059 _("Set resolution of opaque struct/class/union"
4060 " types (if set before loading symbols)."),
4061 _("Show resolution of opaque struct/class/union"
4062 " types (if set before loading symbols)."),
4063 NULL, NULL,
5674de60
UW
4064 show_opaque_type_resolution,
4065 &setlist, &showlist);
c906108c 4066}
This page took 1.238175 seconds and 4 git commands to generate.