S12Z: Make disassebler work for --enable-targets=all config.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 65const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 66
8da61cc4 67/* Floatformat pairs. */
f9e9243a
UW
68const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71};
8da61cc4
DJ
72const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75};
76const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79};
80const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83};
84const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87};
88const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91};
92const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95};
96const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99};
100const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103};
104const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107};
108const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111};
b14d30e1 112const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
b14d30e1 115};
8da61cc4 116
2873700e
KS
117/* Should opaque types be resolved? */
118
119static int opaque_type_resolution = 1;
120
121/* A flag to enable printing of debugging information of C++
122 overloading. */
123
124unsigned int overload_debug = 0;
125
a451cb65
KS
126/* A flag to enable strict type checking. */
127
128static int strict_type_checking = 1;
129
2873700e 130/* A function to show whether opaque types are resolved. */
5212577a 131
920d2a44
AC
132static void
133show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
134 struct cmd_list_element *c,
135 const char *value)
920d2a44 136{
3e43a32a
MS
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
139 value);
140}
141
2873700e 142/* A function to show whether C++ overload debugging is enabled. */
5212577a 143
920d2a44
AC
144static void
145show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
7ba81444
MS
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
920d2a44 150}
c906108c 151
a451cb65
KS
152/* A function to show the status of strict type checking. */
153
154static void
155show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159}
160
5212577a 161\f
e9bb382b
UW
162/* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
c906108c
SS
165
166struct type *
fba45db2 167alloc_type (struct objfile *objfile)
c906108c 168{
52f0bd74 169 struct type *type;
c906108c 170
e9bb382b
UW
171 gdb_assert (objfile != NULL);
172
7ba81444 173 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
c906108c 178
e9bb382b
UW
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
c906108c 181
7ba81444 182 /* Initialize the fields that might not be zero. */
c906108c
SS
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 186
c16abbde 187 return type;
c906108c
SS
188}
189
e9bb382b
UW
190/* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
8f57eec2 192 on the obstack associated with GDBARCH. */
e9bb382b
UW
193
194struct type *
195alloc_type_arch (struct gdbarch *gdbarch)
196{
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
8f57eec2
PP
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240}
241
99ad9427
YQ
242/* See gdbtypes.h. */
243
244struct type *
245get_target_type (struct type *type)
246{
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255}
256
2e056931
SM
257/* See gdbtypes.h. */
258
259unsigned int
260type_length_units (struct type *type)
261{
262 struct gdbarch *arch = get_type_arch (type);
263 int unit_size = gdbarch_addressable_memory_unit_size (arch);
264
265 return TYPE_LENGTH (type) / unit_size;
266}
267
2fdde8f8
DJ
268/* Alloc a new type instance structure, fill it with some defaults,
269 and point it at OLDTYPE. Allocate the new type instance from the
270 same place as OLDTYPE. */
271
272static struct type *
273alloc_type_instance (struct type *oldtype)
274{
275 struct type *type;
276
277 /* Allocate the structure. */
278
e9bb382b 279 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 280 type = XCNEW (struct type);
2fdde8f8 281 else
1deafd4e
PA
282 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
283 struct type);
284
2fdde8f8
DJ
285 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
286
287 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
288
c16abbde 289 return type;
2fdde8f8
DJ
290}
291
292/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 293 replacing it with something else. Preserve owner information. */
5212577a 294
2fdde8f8
DJ
295static void
296smash_type (struct type *type)
297{
e9bb382b
UW
298 int objfile_owned = TYPE_OBJFILE_OWNED (type);
299 union type_owner owner = TYPE_OWNER (type);
300
2fdde8f8
DJ
301 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
302
e9bb382b
UW
303 /* Restore owner information. */
304 TYPE_OBJFILE_OWNED (type) = objfile_owned;
305 TYPE_OWNER (type) = owner;
306
2fdde8f8
DJ
307 /* For now, delete the rings. */
308 TYPE_CHAIN (type) = type;
309
310 /* For now, leave the pointer/reference types alone. */
311}
312
c906108c
SS
313/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
314 to a pointer to memory where the pointer type should be stored.
315 If *TYPEPTR is zero, update it to point to the pointer type we return.
316 We allocate new memory if needed. */
317
318struct type *
fba45db2 319make_pointer_type (struct type *type, struct type **typeptr)
c906108c 320{
52f0bd74 321 struct type *ntype; /* New type */
053cb41b 322 struct type *chain;
c906108c
SS
323
324 ntype = TYPE_POINTER_TYPE (type);
325
c5aa993b 326 if (ntype)
c906108c 327 {
c5aa993b 328 if (typeptr == 0)
7ba81444
MS
329 return ntype; /* Don't care about alloc,
330 and have new type. */
c906108c 331 else if (*typeptr == 0)
c5aa993b 332 {
7ba81444 333 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 334 return ntype;
c5aa993b 335 }
c906108c
SS
336 }
337
338 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
339 {
e9bb382b 340 ntype = alloc_type_copy (type);
c906108c
SS
341 if (typeptr)
342 *typeptr = ntype;
343 }
7ba81444 344 else /* We have storage, but need to reset it. */
c906108c
SS
345 {
346 ntype = *typeptr;
053cb41b 347 chain = TYPE_CHAIN (ntype);
2fdde8f8 348 smash_type (ntype);
053cb41b 349 TYPE_CHAIN (ntype) = chain;
c906108c
SS
350 }
351
352 TYPE_TARGET_TYPE (ntype) = type;
353 TYPE_POINTER_TYPE (type) = ntype;
354
5212577a 355 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 356
50810684
UW
357 TYPE_LENGTH (ntype)
358 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
359 TYPE_CODE (ntype) = TYPE_CODE_PTR;
360
67b2adb2 361 /* Mark pointers as unsigned. The target converts between pointers
76e71323 362 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 363 gdbarch_address_to_pointer. */
876cecd0 364 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 365
053cb41b
JB
366 /* Update the length of all the other variants of this type. */
367 chain = TYPE_CHAIN (ntype);
368 while (chain != ntype)
369 {
370 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
371 chain = TYPE_CHAIN (chain);
372 }
373
c906108c
SS
374 return ntype;
375}
376
377/* Given a type TYPE, return a type of pointers to that type.
378 May need to construct such a type if this is the first use. */
379
380struct type *
fba45db2 381lookup_pointer_type (struct type *type)
c906108c 382{
c5aa993b 383 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
384}
385
7ba81444
MS
386/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
387 points to a pointer to memory where the reference type should be
388 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
389 type we return. We allocate new memory if needed. REFCODE denotes
390 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
391
392struct type *
3b224330
AV
393make_reference_type (struct type *type, struct type **typeptr,
394 enum type_code refcode)
c906108c 395{
52f0bd74 396 struct type *ntype; /* New type */
3b224330 397 struct type **reftype;
1e98b326 398 struct type *chain;
c906108c 399
3b224330
AV
400 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
401
402 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
403 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 404
c5aa993b 405 if (ntype)
c906108c 406 {
c5aa993b 407 if (typeptr == 0)
7ba81444
MS
408 return ntype; /* Don't care about alloc,
409 and have new type. */
c906108c 410 else if (*typeptr == 0)
c5aa993b 411 {
7ba81444 412 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 413 return ntype;
c5aa993b 414 }
c906108c
SS
415 }
416
417 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
418 {
e9bb382b 419 ntype = alloc_type_copy (type);
c906108c
SS
420 if (typeptr)
421 *typeptr = ntype;
422 }
7ba81444 423 else /* We have storage, but need to reset it. */
c906108c
SS
424 {
425 ntype = *typeptr;
1e98b326 426 chain = TYPE_CHAIN (ntype);
2fdde8f8 427 smash_type (ntype);
1e98b326 428 TYPE_CHAIN (ntype) = chain;
c906108c
SS
429 }
430
431 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
432 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
433 : &TYPE_RVALUE_REFERENCE_TYPE (type));
434
435 *reftype = ntype;
c906108c 436
7ba81444
MS
437 /* FIXME! Assume the machine has only one representation for
438 references, and that it matches the (only) representation for
439 pointers! */
c906108c 440
50810684
UW
441 TYPE_LENGTH (ntype) =
442 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 443 TYPE_CODE (ntype) = refcode;
c5aa993b 444
3b224330 445 *reftype = ntype;
c906108c 446
1e98b326
JB
447 /* Update the length of all the other variants of this type. */
448 chain = TYPE_CHAIN (ntype);
449 while (chain != ntype)
450 {
451 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
452 chain = TYPE_CHAIN (chain);
453 }
454
c906108c
SS
455 return ntype;
456}
457
7ba81444
MS
458/* Same as above, but caller doesn't care about memory allocation
459 details. */
c906108c
SS
460
461struct type *
3b224330
AV
462lookup_reference_type (struct type *type, enum type_code refcode)
463{
464 return make_reference_type (type, (struct type **) 0, refcode);
465}
466
467/* Lookup the lvalue reference type for the type TYPE. */
468
469struct type *
470lookup_lvalue_reference_type (struct type *type)
471{
472 return lookup_reference_type (type, TYPE_CODE_REF);
473}
474
475/* Lookup the rvalue reference type for the type TYPE. */
476
477struct type *
478lookup_rvalue_reference_type (struct type *type)
c906108c 479{
3b224330 480 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
481}
482
7ba81444
MS
483/* Lookup a function type that returns type TYPE. TYPEPTR, if
484 nonzero, points to a pointer to memory where the function type
485 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 486 function type we return. We allocate new memory if needed. */
c906108c
SS
487
488struct type *
0c8b41f1 489make_function_type (struct type *type, struct type **typeptr)
c906108c 490{
52f0bd74 491 struct type *ntype; /* New type */
c906108c
SS
492
493 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
494 {
e9bb382b 495 ntype = alloc_type_copy (type);
c906108c
SS
496 if (typeptr)
497 *typeptr = ntype;
498 }
7ba81444 499 else /* We have storage, but need to reset it. */
c906108c
SS
500 {
501 ntype = *typeptr;
2fdde8f8 502 smash_type (ntype);
c906108c
SS
503 }
504
505 TYPE_TARGET_TYPE (ntype) = type;
506
507 TYPE_LENGTH (ntype) = 1;
508 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 509
b6cdc2c1
JK
510 INIT_FUNC_SPECIFIC (ntype);
511
c906108c
SS
512 return ntype;
513}
514
c906108c
SS
515/* Given a type TYPE, return a type of functions that return that type.
516 May need to construct such a type if this is the first use. */
517
518struct type *
fba45db2 519lookup_function_type (struct type *type)
c906108c 520{
0c8b41f1 521 return make_function_type (type, (struct type **) 0);
c906108c
SS
522}
523
71918a86 524/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
525 function type. If the final type in PARAM_TYPES is NULL, make a
526 varargs function. */
71918a86
TT
527
528struct type *
529lookup_function_type_with_arguments (struct type *type,
530 int nparams,
531 struct type **param_types)
532{
533 struct type *fn = make_function_type (type, (struct type **) 0);
534 int i;
535
e314d629 536 if (nparams > 0)
a6fb9c08 537 {
e314d629
TT
538 if (param_types[nparams - 1] == NULL)
539 {
540 --nparams;
541 TYPE_VARARGS (fn) = 1;
542 }
543 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
544 == TYPE_CODE_VOID)
545 {
546 --nparams;
547 /* Caller should have ensured this. */
548 gdb_assert (nparams == 0);
549 TYPE_PROTOTYPED (fn) = 1;
550 }
54990598
PA
551 else
552 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
553 }
554
71918a86 555 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
556 TYPE_FIELDS (fn)
557 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
558 for (i = 0; i < nparams; ++i)
559 TYPE_FIELD_TYPE (fn, i) = param_types[i];
560
561 return fn;
562}
563
47663de5
MS
564/* Identify address space identifier by name --
565 return the integer flag defined in gdbtypes.h. */
5212577a
DE
566
567int
50810684 568address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 569{
8b2dbe47 570 int type_flags;
d8734c88 571
7ba81444 572 /* Check for known address space delimiters. */
47663de5 573 if (!strcmp (space_identifier, "code"))
876cecd0 574 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 575 else if (!strcmp (space_identifier, "data"))
876cecd0 576 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
577 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
578 && gdbarch_address_class_name_to_type_flags (gdbarch,
579 space_identifier,
580 &type_flags))
8b2dbe47 581 return type_flags;
47663de5 582 else
8a3fe4f8 583 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
584}
585
586/* Identify address space identifier by integer flag as defined in
7ba81444 587 gdbtypes.h -- return the string version of the adress space name. */
47663de5 588
321432c0 589const char *
50810684 590address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 591{
876cecd0 592 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 593 return "code";
876cecd0 594 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 595 return "data";
876cecd0 596 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
597 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
598 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
599 else
600 return NULL;
601}
602
2fdde8f8 603/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
604
605 If STORAGE is non-NULL, create the new type instance there.
606 STORAGE must be in the same obstack as TYPE. */
47663de5 607
b9362cc7 608static struct type *
2fdde8f8
DJ
609make_qualified_type (struct type *type, int new_flags,
610 struct type *storage)
47663de5
MS
611{
612 struct type *ntype;
613
614 ntype = type;
5f61c20e
JK
615 do
616 {
617 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
618 return ntype;
619 ntype = TYPE_CHAIN (ntype);
620 }
621 while (ntype != type);
47663de5 622
2fdde8f8
DJ
623 /* Create a new type instance. */
624 if (storage == NULL)
625 ntype = alloc_type_instance (type);
626 else
627 {
7ba81444
MS
628 /* If STORAGE was provided, it had better be in the same objfile
629 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
630 if one objfile is freed and the other kept, we'd have
631 dangling pointers. */
ad766c0a
JB
632 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
633
2fdde8f8
DJ
634 ntype = storage;
635 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
636 TYPE_CHAIN (ntype) = ntype;
637 }
47663de5
MS
638
639 /* Pointers or references to the original type are not relevant to
2fdde8f8 640 the new type. */
47663de5
MS
641 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
642 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 643
2fdde8f8
DJ
644 /* Chain the new qualified type to the old type. */
645 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
646 TYPE_CHAIN (type) = ntype;
647
648 /* Now set the instance flags and return the new type. */
649 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 650
ab5d3da6
KB
651 /* Set length of new type to that of the original type. */
652 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
653
47663de5
MS
654 return ntype;
655}
656
2fdde8f8
DJ
657/* Make an address-space-delimited variant of a type -- a type that
658 is identical to the one supplied except that it has an address
659 space attribute attached to it (such as "code" or "data").
660
7ba81444
MS
661 The space attributes "code" and "data" are for Harvard
662 architectures. The address space attributes are for architectures
663 which have alternately sized pointers or pointers with alternate
664 representations. */
2fdde8f8
DJ
665
666struct type *
667make_type_with_address_space (struct type *type, int space_flag)
668{
2fdde8f8 669 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
670 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
671 | TYPE_INSTANCE_FLAG_DATA_SPACE
672 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
673 | space_flag);
674
675 return make_qualified_type (type, new_flags, NULL);
676}
c906108c
SS
677
678/* Make a "c-v" variant of a type -- a type that is identical to the
679 one supplied except that it may have const or volatile attributes
680 CNST is a flag for setting the const attribute
681 VOLTL is a flag for setting the volatile attribute
682 TYPE is the base type whose variant we are creating.
c906108c 683
ad766c0a
JB
684 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
685 storage to hold the new qualified type; *TYPEPTR and TYPE must be
686 in the same objfile. Otherwise, allocate fresh memory for the new
687 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
688 new type we construct. */
5212577a 689
c906108c 690struct type *
7ba81444
MS
691make_cv_type (int cnst, int voltl,
692 struct type *type,
693 struct type **typeptr)
c906108c 694{
52f0bd74 695 struct type *ntype; /* New type */
c906108c 696
2fdde8f8 697 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
698 & ~(TYPE_INSTANCE_FLAG_CONST
699 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 700
c906108c 701 if (cnst)
876cecd0 702 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
703
704 if (voltl)
876cecd0 705 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 706
2fdde8f8 707 if (typeptr && *typeptr != NULL)
a02fd225 708 {
ad766c0a
JB
709 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
710 a C-V variant chain that threads across objfiles: if one
711 objfile gets freed, then the other has a broken C-V chain.
712
713 This code used to try to copy over the main type from TYPE to
714 *TYPEPTR if they were in different objfiles, but that's
715 wrong, too: TYPE may have a field list or member function
716 lists, which refer to types of their own, etc. etc. The
717 whole shebang would need to be copied over recursively; you
718 can't have inter-objfile pointers. The only thing to do is
719 to leave stub types as stub types, and look them up afresh by
720 name each time you encounter them. */
721 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
722 }
723
7ba81444
MS
724 ntype = make_qualified_type (type, new_flags,
725 typeptr ? *typeptr : NULL);
c906108c 726
2fdde8f8
DJ
727 if (typeptr != NULL)
728 *typeptr = ntype;
a02fd225 729
2fdde8f8 730 return ntype;
a02fd225 731}
c906108c 732
06d66ee9
TT
733/* Make a 'restrict'-qualified version of TYPE. */
734
735struct type *
736make_restrict_type (struct type *type)
737{
738 return make_qualified_type (type,
739 (TYPE_INSTANCE_FLAGS (type)
740 | TYPE_INSTANCE_FLAG_RESTRICT),
741 NULL);
742}
743
f1660027
TT
744/* Make a type without const, volatile, or restrict. */
745
746struct type *
747make_unqualified_type (struct type *type)
748{
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 & ~(TYPE_INSTANCE_FLAG_CONST
752 | TYPE_INSTANCE_FLAG_VOLATILE
753 | TYPE_INSTANCE_FLAG_RESTRICT)),
754 NULL);
755}
756
a2c2acaf
MW
757/* Make a '_Atomic'-qualified version of TYPE. */
758
759struct type *
760make_atomic_type (struct type *type)
761{
762 return make_qualified_type (type,
763 (TYPE_INSTANCE_FLAGS (type)
764 | TYPE_INSTANCE_FLAG_ATOMIC),
765 NULL);
766}
767
2fdde8f8
DJ
768/* Replace the contents of ntype with the type *type. This changes the
769 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
770 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 771
cda6c68a
JB
772 In order to build recursive types, it's inevitable that we'll need
773 to update types in place --- but this sort of indiscriminate
774 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
775 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
776 clear if more steps are needed. */
5212577a 777
dd6bda65
DJ
778void
779replace_type (struct type *ntype, struct type *type)
780{
ab5d3da6 781 struct type *chain;
dd6bda65 782
ad766c0a
JB
783 /* These two types had better be in the same objfile. Otherwise,
784 the assignment of one type's main type structure to the other
785 will produce a type with references to objects (names; field
786 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 787 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 788
2fdde8f8 789 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 790
7ba81444
MS
791 /* The type length is not a part of the main type. Update it for
792 each type on the variant chain. */
ab5d3da6 793 chain = ntype;
5f61c20e
JK
794 do
795 {
796 /* Assert that this element of the chain has no address-class bits
797 set in its flags. Such type variants might have type lengths
798 which are supposed to be different from the non-address-class
799 variants. This assertion shouldn't ever be triggered because
800 symbol readers which do construct address-class variants don't
801 call replace_type(). */
802 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
803
804 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
805 chain = TYPE_CHAIN (chain);
806 }
807 while (ntype != chain);
ab5d3da6 808
2fdde8f8
DJ
809 /* Assert that the two types have equivalent instance qualifiers.
810 This should be true for at least all of our debug readers. */
811 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
812}
813
c906108c
SS
814/* Implement direct support for MEMBER_TYPE in GNU C++.
815 May need to construct such a type if this is the first use.
816 The TYPE is the type of the member. The DOMAIN is the type
817 of the aggregate that the member belongs to. */
818
819struct type *
0d5de010 820lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 821{
52f0bd74 822 struct type *mtype;
c906108c 823
e9bb382b 824 mtype = alloc_type_copy (type);
0d5de010 825 smash_to_memberptr_type (mtype, domain, type);
c16abbde 826 return mtype;
c906108c
SS
827}
828
0d5de010
DJ
829/* Return a pointer-to-method type, for a method of type TO_TYPE. */
830
831struct type *
832lookup_methodptr_type (struct type *to_type)
833{
834 struct type *mtype;
835
e9bb382b 836 mtype = alloc_type_copy (to_type);
0b92b5bb 837 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
838 return mtype;
839}
840
7ba81444
MS
841/* Allocate a stub method whose return type is TYPE. This apparently
842 happens for speed of symbol reading, since parsing out the
843 arguments to the method is cpu-intensive, the way we are doing it.
844 So, we will fill in arguments later. This always returns a fresh
845 type. */
c906108c
SS
846
847struct type *
fba45db2 848allocate_stub_method (struct type *type)
c906108c
SS
849{
850 struct type *mtype;
851
e9bb382b
UW
852 mtype = alloc_type_copy (type);
853 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
854 TYPE_LENGTH (mtype) = 1;
855 TYPE_STUB (mtype) = 1;
c906108c 856 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 857 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 858 return mtype;
c906108c
SS
859}
860
0f59d5fc
PA
861/* See gdbtypes.h. */
862
863bool
864operator== (const dynamic_prop &l, const dynamic_prop &r)
865{
866 if (l.kind != r.kind)
867 return false;
868
869 switch (l.kind)
870 {
871 case PROP_UNDEFINED:
872 return true;
873 case PROP_CONST:
874 return l.data.const_val == r.data.const_val;
875 case PROP_ADDR_OFFSET:
876 case PROP_LOCEXPR:
877 case PROP_LOCLIST:
878 return l.data.baton == r.data.baton;
879 }
880
881 gdb_assert_not_reached ("unhandled dynamic_prop kind");
882}
883
884/* See gdbtypes.h. */
885
886bool
887operator== (const range_bounds &l, const range_bounds &r)
888{
889#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
890
891 return (FIELD_EQ (low)
892 && FIELD_EQ (high)
893 && FIELD_EQ (flag_upper_bound_is_count)
894 && FIELD_EQ (flag_bound_evaluated));
895
896#undef FIELD_EQ
897}
898
729efb13
SA
899/* Create a range type with a dynamic range from LOW_BOUND to
900 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
901
902struct type *
729efb13
SA
903create_range_type (struct type *result_type, struct type *index_type,
904 const struct dynamic_prop *low_bound,
905 const struct dynamic_prop *high_bound)
c906108c
SS
906{
907 if (result_type == NULL)
e9bb382b 908 result_type = alloc_type_copy (index_type);
c906108c
SS
909 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
910 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 911 if (TYPE_STUB (index_type))
876cecd0 912 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
913 else
914 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 915
43bbcdc2
PH
916 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
917 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
918 TYPE_RANGE_DATA (result_type)->low = *low_bound;
919 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 920
729efb13 921 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 922 TYPE_UNSIGNED (result_type) = 1;
c906108c 923
45e44d27
JB
924 /* Ada allows the declaration of range types whose upper bound is
925 less than the lower bound, so checking the lower bound is not
926 enough. Make sure we do not mark a range type whose upper bound
927 is negative as unsigned. */
928 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
929 TYPE_UNSIGNED (result_type) = 0;
930
262452ec 931 return result_type;
c906108c
SS
932}
933
729efb13
SA
934/* Create a range type using either a blank type supplied in
935 RESULT_TYPE, or creating a new type, inheriting the objfile from
936 INDEX_TYPE.
937
938 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
939 to HIGH_BOUND, inclusive.
940
941 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
942 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
943
944struct type *
945create_static_range_type (struct type *result_type, struct type *index_type,
946 LONGEST low_bound, LONGEST high_bound)
947{
948 struct dynamic_prop low, high;
949
950 low.kind = PROP_CONST;
951 low.data.const_val = low_bound;
952
953 high.kind = PROP_CONST;
954 high.data.const_val = high_bound;
955
956 result_type = create_range_type (result_type, index_type, &low, &high);
957
958 return result_type;
959}
960
80180f79
SA
961/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
962 are static, otherwise returns 0. */
963
964static int
965has_static_range (const struct range_bounds *bounds)
966{
967 return (bounds->low.kind == PROP_CONST
968 && bounds->high.kind == PROP_CONST);
969}
970
971
7ba81444
MS
972/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
973 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
974 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
975
976int
fba45db2 977get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 978{
f168693b 979 type = check_typedef (type);
c906108c
SS
980 switch (TYPE_CODE (type))
981 {
982 case TYPE_CODE_RANGE:
983 *lowp = TYPE_LOW_BOUND (type);
984 *highp = TYPE_HIGH_BOUND (type);
985 return 1;
986 case TYPE_CODE_ENUM:
987 if (TYPE_NFIELDS (type) > 0)
988 {
989 /* The enums may not be sorted by value, so search all
0963b4bd 990 entries. */
c906108c
SS
991 int i;
992
14e75d8e 993 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
994 for (i = 0; i < TYPE_NFIELDS (type); i++)
995 {
14e75d8e
JK
996 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
997 *lowp = TYPE_FIELD_ENUMVAL (type, i);
998 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
999 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1000 }
1001
7ba81444 1002 /* Set unsigned indicator if warranted. */
c5aa993b 1003 if (*lowp >= 0)
c906108c 1004 {
876cecd0 1005 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1006 }
1007 }
1008 else
1009 {
1010 *lowp = 0;
1011 *highp = -1;
1012 }
1013 return 0;
1014 case TYPE_CODE_BOOL:
1015 *lowp = 0;
1016 *highp = 1;
1017 return 0;
1018 case TYPE_CODE_INT:
c5aa993b 1019 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1020 return -1;
1021 if (!TYPE_UNSIGNED (type))
1022 {
c5aa993b 1023 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1024 *highp = -*lowp - 1;
1025 return 0;
1026 }
86a73007 1027 /* fall through */
c906108c
SS
1028 case TYPE_CODE_CHAR:
1029 *lowp = 0;
1030 /* This round-about calculation is to avoid shifting by
7b83ea04 1031 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1032 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1033 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1034 *highp = (*highp - 1) | *highp;
1035 return 0;
1036 default:
1037 return -1;
1038 }
1039}
1040
dbc98a8b
KW
1041/* Assuming TYPE is a simple, non-empty array type, compute its upper
1042 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1043 Save the high bound into HIGH_BOUND if not NULL.
1044
0963b4bd 1045 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1046 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1047
1048 We now simply use get_discrete_bounds call to get the values
1049 of the low and high bounds.
1050 get_discrete_bounds can return three values:
1051 1, meaning that index is a range,
1052 0, meaning that index is a discrete type,
1053 or -1 for failure. */
1054
1055int
1056get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1057{
1058 struct type *index = TYPE_INDEX_TYPE (type);
1059 LONGEST low = 0;
1060 LONGEST high = 0;
1061 int res;
1062
1063 if (index == NULL)
1064 return 0;
1065
1066 res = get_discrete_bounds (index, &low, &high);
1067 if (res == -1)
1068 return 0;
1069
1070 /* Check if the array bounds are undefined. */
1071 if (res == 1
1072 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1073 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1074 return 0;
1075
1076 if (low_bound)
1077 *low_bound = low;
1078
1079 if (high_bound)
1080 *high_bound = high;
1081
1082 return 1;
1083}
1084
aa715135
JG
1085/* Assuming that TYPE is a discrete type and VAL is a valid integer
1086 representation of a value of this type, save the corresponding
1087 position number in POS.
1088
1089 Its differs from VAL only in the case of enumeration types. In
1090 this case, the position number of the value of the first listed
1091 enumeration literal is zero; the position number of the value of
1092 each subsequent enumeration literal is one more than that of its
1093 predecessor in the list.
1094
1095 Return 1 if the operation was successful. Return zero otherwise,
1096 in which case the value of POS is unmodified.
1097*/
1098
1099int
1100discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1101{
1102 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1103 {
1104 int i;
1105
1106 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1107 {
1108 if (val == TYPE_FIELD_ENUMVAL (type, i))
1109 {
1110 *pos = i;
1111 return 1;
1112 }
1113 }
1114 /* Invalid enumeration value. */
1115 return 0;
1116 }
1117 else
1118 {
1119 *pos = val;
1120 return 1;
1121 }
1122}
1123
7ba81444
MS
1124/* Create an array type using either a blank type supplied in
1125 RESULT_TYPE, or creating a new type, inheriting the objfile from
1126 RANGE_TYPE.
c906108c
SS
1127
1128 Elements will be of type ELEMENT_TYPE, the indices will be of type
1129 RANGE_TYPE.
1130
a405673c
JB
1131 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1132 This byte stride property is added to the resulting array type
1133 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1134 argument can only be used to create types that are objfile-owned
1135 (see add_dyn_prop), meaning that either this function must be called
1136 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1137
1138 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1139 If BIT_STRIDE is not zero, build a packed array type whose element
1140 size is BIT_STRIDE. Otherwise, ignore this parameter.
1141
7ba81444
MS
1142 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1143 sure it is TYPE_CODE_UNDEF before we bash it into an array
1144 type? */
c906108c
SS
1145
1146struct type *
dc53a7ad
JB
1147create_array_type_with_stride (struct type *result_type,
1148 struct type *element_type,
1149 struct type *range_type,
a405673c 1150 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1151 unsigned int bit_stride)
c906108c 1152{
a405673c
JB
1153 if (byte_stride_prop != NULL
1154 && byte_stride_prop->kind == PROP_CONST)
1155 {
1156 /* The byte stride is actually not dynamic. Pretend we were
1157 called with bit_stride set instead of byte_stride_prop.
1158 This will give us the same result type, while avoiding
1159 the need to handle this as a special case. */
1160 bit_stride = byte_stride_prop->data.const_val * 8;
1161 byte_stride_prop = NULL;
1162 }
1163
c906108c 1164 if (result_type == NULL)
e9bb382b
UW
1165 result_type = alloc_type_copy (range_type);
1166
c906108c
SS
1167 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1168 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1169 if (byte_stride_prop == NULL
1170 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1171 && (!type_not_associated (result_type)
1172 && !type_not_allocated (result_type)))
80180f79
SA
1173 {
1174 LONGEST low_bound, high_bound;
1175
1176 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1177 low_bound = high_bound = 0;
f168693b 1178 element_type = check_typedef (element_type);
80180f79
SA
1179 /* Be careful when setting the array length. Ada arrays can be
1180 empty arrays with the high_bound being smaller than the low_bound.
1181 In such cases, the array length should be zero. */
1182 if (high_bound < low_bound)
1183 TYPE_LENGTH (result_type) = 0;
1184 else if (bit_stride > 0)
1185 TYPE_LENGTH (result_type) =
1186 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1187 else
1188 TYPE_LENGTH (result_type) =
1189 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1190 }
ab0d6e0d 1191 else
80180f79
SA
1192 {
1193 /* This type is dynamic and its length needs to be computed
1194 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1195 undefined by setting it to zero. Although we are not expected
1196 to trust TYPE_LENGTH in this case, setting the size to zero
1197 allows us to avoid allocating objects of random sizes in case
1198 we accidently do. */
1199 TYPE_LENGTH (result_type) = 0;
1200 }
1201
c906108c
SS
1202 TYPE_NFIELDS (result_type) = 1;
1203 TYPE_FIELDS (result_type) =
1deafd4e 1204 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1205 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c 1206 if (byte_stride_prop != NULL)
50a82047 1207 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
a405673c 1208 else if (bit_stride > 0)
dc53a7ad 1209 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1210
a9ff5f12 1211 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1212 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1213 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1214
c16abbde 1215 return result_type;
c906108c
SS
1216}
1217
dc53a7ad
JB
1218/* Same as create_array_type_with_stride but with no bit_stride
1219 (BIT_STRIDE = 0), thus building an unpacked array. */
1220
1221struct type *
1222create_array_type (struct type *result_type,
1223 struct type *element_type,
1224 struct type *range_type)
1225{
1226 return create_array_type_with_stride (result_type, element_type,
a405673c 1227 range_type, NULL, 0);
dc53a7ad
JB
1228}
1229
e3506a9f
UW
1230struct type *
1231lookup_array_range_type (struct type *element_type,
63375b74 1232 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1233{
929b5ad4
JB
1234 struct type *index_type;
1235 struct type *range_type;
1236
1237 if (TYPE_OBJFILE_OWNED (element_type))
1238 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1239 else
1240 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1241 range_type = create_static_range_type (NULL, index_type,
1242 low_bound, high_bound);
d8734c88 1243
e3506a9f
UW
1244 return create_array_type (NULL, element_type, range_type);
1245}
1246
7ba81444
MS
1247/* Create a string type using either a blank type supplied in
1248 RESULT_TYPE, or creating a new type. String types are similar
1249 enough to array of char types that we can use create_array_type to
1250 build the basic type and then bash it into a string type.
c906108c
SS
1251
1252 For fixed length strings, the range type contains 0 as the lower
1253 bound and the length of the string minus one as the upper bound.
1254
7ba81444
MS
1255 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1256 sure it is TYPE_CODE_UNDEF before we bash it into a string
1257 type? */
c906108c
SS
1258
1259struct type *
3b7538c0
UW
1260create_string_type (struct type *result_type,
1261 struct type *string_char_type,
7ba81444 1262 struct type *range_type)
c906108c
SS
1263{
1264 result_type = create_array_type (result_type,
f290d38e 1265 string_char_type,
c906108c
SS
1266 range_type);
1267 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1268 return result_type;
c906108c
SS
1269}
1270
e3506a9f
UW
1271struct type *
1272lookup_string_range_type (struct type *string_char_type,
63375b74 1273 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1274{
1275 struct type *result_type;
d8734c88 1276
e3506a9f
UW
1277 result_type = lookup_array_range_type (string_char_type,
1278 low_bound, high_bound);
1279 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1280 return result_type;
1281}
1282
c906108c 1283struct type *
fba45db2 1284create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1285{
c906108c 1286 if (result_type == NULL)
e9bb382b
UW
1287 result_type = alloc_type_copy (domain_type);
1288
c906108c
SS
1289 TYPE_CODE (result_type) = TYPE_CODE_SET;
1290 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1291 TYPE_FIELDS (result_type)
1292 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1293
74a9bb82 1294 if (!TYPE_STUB (domain_type))
c906108c 1295 {
f9780d5b 1296 LONGEST low_bound, high_bound, bit_length;
d8734c88 1297
c906108c
SS
1298 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1299 low_bound = high_bound = 0;
1300 bit_length = high_bound - low_bound + 1;
1301 TYPE_LENGTH (result_type)
1302 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1303 if (low_bound >= 0)
876cecd0 1304 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1305 }
1306 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1307
c16abbde 1308 return result_type;
c906108c
SS
1309}
1310
ea37ba09
DJ
1311/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1312 and any array types nested inside it. */
1313
1314void
1315make_vector_type (struct type *array_type)
1316{
1317 struct type *inner_array, *elt_type;
1318 int flags;
1319
1320 /* Find the innermost array type, in case the array is
1321 multi-dimensional. */
1322 inner_array = array_type;
1323 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1324 inner_array = TYPE_TARGET_TYPE (inner_array);
1325
1326 elt_type = TYPE_TARGET_TYPE (inner_array);
1327 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1328 {
2844d6b5 1329 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1330 elt_type = make_qualified_type (elt_type, flags, NULL);
1331 TYPE_TARGET_TYPE (inner_array) = elt_type;
1332 }
1333
876cecd0 1334 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1335}
1336
794ac428 1337struct type *
ac3aafc7
EZ
1338init_vector_type (struct type *elt_type, int n)
1339{
1340 struct type *array_type;
d8734c88 1341
e3506a9f 1342 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1343 make_vector_type (array_type);
ac3aafc7
EZ
1344 return array_type;
1345}
1346
09e2d7c7
DE
1347/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1348 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1349 confusing. "self" is a common enough replacement for "this".
1350 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1351 TYPE_CODE_METHOD. */
1352
1353struct type *
1354internal_type_self_type (struct type *type)
1355{
1356 switch (TYPE_CODE (type))
1357 {
1358 case TYPE_CODE_METHODPTR:
1359 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1360 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1361 return NULL;
09e2d7c7
DE
1362 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1363 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1364 case TYPE_CODE_METHOD:
eaaf76ab
DE
1365 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1366 return NULL;
09e2d7c7
DE
1367 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1368 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1369 default:
1370 gdb_assert_not_reached ("bad type");
1371 }
1372}
1373
1374/* Set the type of the class that TYPE belongs to.
1375 In c++ this is the class of "this".
1376 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1377 TYPE_CODE_METHOD. */
1378
1379void
1380set_type_self_type (struct type *type, struct type *self_type)
1381{
1382 switch (TYPE_CODE (type))
1383 {
1384 case TYPE_CODE_METHODPTR:
1385 case TYPE_CODE_MEMBERPTR:
1386 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1387 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1388 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1389 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1390 break;
1391 case TYPE_CODE_METHOD:
1392 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1393 INIT_FUNC_SPECIFIC (type);
1394 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1395 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1396 break;
1397 default:
1398 gdb_assert_not_reached ("bad type");
1399 }
1400}
1401
1402/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1403 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1404 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1405 TYPE doesn't include the offset (that's the value of the MEMBER
1406 itself), but does include the structure type into which it points
1407 (for some reason).
c906108c 1408
7ba81444
MS
1409 When "smashing" the type, we preserve the objfile that the old type
1410 pointed to, since we aren't changing where the type is actually
c906108c
SS
1411 allocated. */
1412
1413void
09e2d7c7 1414smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1415 struct type *to_type)
c906108c 1416{
2fdde8f8 1417 smash_type (type);
09e2d7c7 1418 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1419 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1420 set_type_self_type (type, self_type);
0d5de010
DJ
1421 /* Assume that a data member pointer is the same size as a normal
1422 pointer. */
50810684
UW
1423 TYPE_LENGTH (type)
1424 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1425}
1426
0b92b5bb
TT
1427/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1428
1429 When "smashing" the type, we preserve the objfile that the old type
1430 pointed to, since we aren't changing where the type is actually
1431 allocated. */
1432
1433void
1434smash_to_methodptr_type (struct type *type, struct type *to_type)
1435{
1436 smash_type (type);
09e2d7c7 1437 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1438 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1439 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1440 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1441}
1442
09e2d7c7 1443/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1444 METHOD just means `function that gets an extra "this" argument'.
1445
7ba81444
MS
1446 When "smashing" the type, we preserve the objfile that the old type
1447 pointed to, since we aren't changing where the type is actually
c906108c
SS
1448 allocated. */
1449
1450void
09e2d7c7 1451smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1452 struct type *to_type, struct field *args,
1453 int nargs, int varargs)
c906108c 1454{
2fdde8f8 1455 smash_type (type);
09e2d7c7 1456 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1457 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1458 set_type_self_type (type, self_type);
ad2f7632
DJ
1459 TYPE_FIELDS (type) = args;
1460 TYPE_NFIELDS (type) = nargs;
1461 if (varargs)
876cecd0 1462 TYPE_VARARGS (type) = 1;
c906108c 1463 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1464}
1465
a737d952 1466/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1467 Since GCC PR debug/47510 DWARF provides associated information to detect the
1468 anonymous class linkage name from its typedef.
1469
1470 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1471 apply it itself. */
1472
1473const char *
a737d952 1474type_name_or_error (struct type *type)
d8228535
JK
1475{
1476 struct type *saved_type = type;
1477 const char *name;
1478 struct objfile *objfile;
1479
f168693b 1480 type = check_typedef (type);
d8228535 1481
a737d952 1482 name = TYPE_NAME (type);
d8228535
JK
1483 if (name != NULL)
1484 return name;
1485
a737d952 1486 name = TYPE_NAME (saved_type);
d8228535
JK
1487 objfile = TYPE_OBJFILE (saved_type);
1488 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1489 name ? name : "<anonymous>",
1490 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1491}
1492
7ba81444
MS
1493/* Lookup a typedef or primitive type named NAME, visible in lexical
1494 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1495 suitably defined. */
c906108c
SS
1496
1497struct type *
e6c014f2 1498lookup_typename (const struct language_defn *language,
ddd49eee 1499 struct gdbarch *gdbarch, const char *name,
34eaf542 1500 const struct block *block, int noerr)
c906108c 1501{
52f0bd74 1502 struct symbol *sym;
c906108c 1503
1994afbf 1504 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1505 language->la_language, NULL).symbol;
c51fe631
DE
1506 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1507 return SYMBOL_TYPE (sym);
1508
c51fe631
DE
1509 if (noerr)
1510 return NULL;
1511 error (_("No type named %s."), name);
c906108c
SS
1512}
1513
1514struct type *
e6c014f2 1515lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1516 struct gdbarch *gdbarch, const char *name)
c906108c 1517{
224c3ddb 1518 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1519
1520 strcpy (uns, "unsigned ");
1521 strcpy (uns + 9, name);
e6c014f2 1522 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1523}
1524
1525struct type *
e6c014f2 1526lookup_signed_typename (const struct language_defn *language,
0d5cff50 1527 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1528{
1529 struct type *t;
224c3ddb 1530 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1531
1532 strcpy (uns, "signed ");
1533 strcpy (uns + 7, name);
e6c014f2 1534 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1535 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1536 if (t != NULL)
1537 return t;
e6c014f2 1538 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1539}
1540
1541/* Lookup a structure type named "struct NAME",
1542 visible in lexical block BLOCK. */
1543
1544struct type *
270140bd 1545lookup_struct (const char *name, const struct block *block)
c906108c 1546{
52f0bd74 1547 struct symbol *sym;
c906108c 1548
d12307c1 1549 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1550
1551 if (sym == NULL)
1552 {
8a3fe4f8 1553 error (_("No struct type named %s."), name);
c906108c
SS
1554 }
1555 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1556 {
7ba81444
MS
1557 error (_("This context has class, union or enum %s, not a struct."),
1558 name);
c906108c
SS
1559 }
1560 return (SYMBOL_TYPE (sym));
1561}
1562
1563/* Lookup a union type named "union NAME",
1564 visible in lexical block BLOCK. */
1565
1566struct type *
270140bd 1567lookup_union (const char *name, const struct block *block)
c906108c 1568{
52f0bd74 1569 struct symbol *sym;
c5aa993b 1570 struct type *t;
c906108c 1571
d12307c1 1572 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1573
1574 if (sym == NULL)
8a3fe4f8 1575 error (_("No union type named %s."), name);
c906108c 1576
c5aa993b 1577 t = SYMBOL_TYPE (sym);
c906108c
SS
1578
1579 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1580 return t;
c906108c 1581
7ba81444
MS
1582 /* If we get here, it's not a union. */
1583 error (_("This context has class, struct or enum %s, not a union."),
1584 name);
c906108c
SS
1585}
1586
c906108c
SS
1587/* Lookup an enum type named "enum NAME",
1588 visible in lexical block BLOCK. */
1589
1590struct type *
270140bd 1591lookup_enum (const char *name, const struct block *block)
c906108c 1592{
52f0bd74 1593 struct symbol *sym;
c906108c 1594
d12307c1 1595 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1596 if (sym == NULL)
1597 {
8a3fe4f8 1598 error (_("No enum type named %s."), name);
c906108c
SS
1599 }
1600 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1601 {
7ba81444
MS
1602 error (_("This context has class, struct or union %s, not an enum."),
1603 name);
c906108c
SS
1604 }
1605 return (SYMBOL_TYPE (sym));
1606}
1607
1608/* Lookup a template type named "template NAME<TYPE>",
1609 visible in lexical block BLOCK. */
1610
1611struct type *
7ba81444 1612lookup_template_type (char *name, struct type *type,
270140bd 1613 const struct block *block)
c906108c
SS
1614{
1615 struct symbol *sym;
7ba81444
MS
1616 char *nam = (char *)
1617 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1618
c906108c
SS
1619 strcpy (nam, name);
1620 strcat (nam, "<");
0004e5a2 1621 strcat (nam, TYPE_NAME (type));
0963b4bd 1622 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1623
d12307c1 1624 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1625
1626 if (sym == NULL)
1627 {
8a3fe4f8 1628 error (_("No template type named %s."), name);
c906108c
SS
1629 }
1630 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1631 {
7ba81444
MS
1632 error (_("This context has class, union or enum %s, not a struct."),
1633 name);
c906108c
SS
1634 }
1635 return (SYMBOL_TYPE (sym));
1636}
1637
7ba81444
MS
1638/* Given a type TYPE, lookup the type of the component of type named
1639 NAME.
c906108c 1640
7ba81444
MS
1641 TYPE can be either a struct or union, or a pointer or reference to
1642 a struct or union. If it is a pointer or reference, its target
1643 type is automatically used. Thus '.' and '->' are interchangable,
1644 as specified for the definitions of the expression element types
1645 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1646
1647 If NOERR is nonzero, return zero if NAME is not suitably defined.
1648 If NAME is the name of a baseclass type, return that type. */
1649
1650struct type *
d7561cbb 1651lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1652{
1653 int i;
1654
1655 for (;;)
1656 {
f168693b 1657 type = check_typedef (type);
c906108c
SS
1658 if (TYPE_CODE (type) != TYPE_CODE_PTR
1659 && TYPE_CODE (type) != TYPE_CODE_REF)
1660 break;
1661 type = TYPE_TARGET_TYPE (type);
1662 }
1663
687d6395
MS
1664 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1665 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1666 {
2f408ecb
PA
1667 std::string type_name = type_to_string (type);
1668 error (_("Type %s is not a structure or union type."),
1669 type_name.c_str ());
c906108c
SS
1670 }
1671
1672#if 0
7ba81444
MS
1673 /* FIXME: This change put in by Michael seems incorrect for the case
1674 where the structure tag name is the same as the member name.
0963b4bd 1675 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1676 foo; } bell;" Disabled by fnf. */
c906108c 1677 {
fe978cb0 1678 char *type_name;
c906108c 1679
a737d952 1680 type_name = TYPE_NAME (type);
fe978cb0 1681 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1682 return type;
1683 }
1684#endif
1685
1686 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1687 {
0d5cff50 1688 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1689
db577aea 1690 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1691 {
1692 return TYPE_FIELD_TYPE (type, i);
1693 }
f5a010c0
PM
1694 else if (!t_field_name || *t_field_name == '\0')
1695 {
d8734c88
MS
1696 struct type *subtype
1697 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1698
f5a010c0
PM
1699 if (subtype != NULL)
1700 return subtype;
1701 }
c906108c
SS
1702 }
1703
1704 /* OK, it's not in this class. Recursively check the baseclasses. */
1705 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1706 {
1707 struct type *t;
1708
9733fc94 1709 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1710 if (t != NULL)
1711 {
1712 return t;
1713 }
1714 }
1715
1716 if (noerr)
1717 {
1718 return NULL;
1719 }
c5aa993b 1720
2f408ecb
PA
1721 std::string type_name = type_to_string (type);
1722 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1723}
1724
ed3ef339
DE
1725/* Store in *MAX the largest number representable by unsigned integer type
1726 TYPE. */
1727
1728void
1729get_unsigned_type_max (struct type *type, ULONGEST *max)
1730{
1731 unsigned int n;
1732
f168693b 1733 type = check_typedef (type);
ed3ef339
DE
1734 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1735 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1736
1737 /* Written this way to avoid overflow. */
1738 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1739 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1740}
1741
1742/* Store in *MIN, *MAX the smallest and largest numbers representable by
1743 signed integer type TYPE. */
1744
1745void
1746get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1747{
1748 unsigned int n;
1749
f168693b 1750 type = check_typedef (type);
ed3ef339
DE
1751 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1752 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1753
1754 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1755 *min = -((ULONGEST) 1 << (n - 1));
1756 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1757}
1758
ae6ae975
DE
1759/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1760 cplus_stuff.vptr_fieldno.
1761
1762 cplus_stuff is initialized to cplus_struct_default which does not
1763 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1764 designated initializers). We cope with that here. */
1765
1766int
1767internal_type_vptr_fieldno (struct type *type)
1768{
f168693b 1769 type = check_typedef (type);
ae6ae975
DE
1770 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1771 || TYPE_CODE (type) == TYPE_CODE_UNION);
1772 if (!HAVE_CPLUS_STRUCT (type))
1773 return -1;
1774 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1775}
1776
1777/* Set the value of cplus_stuff.vptr_fieldno. */
1778
1779void
1780set_type_vptr_fieldno (struct type *type, int fieldno)
1781{
f168693b 1782 type = check_typedef (type);
ae6ae975
DE
1783 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1784 || TYPE_CODE (type) == TYPE_CODE_UNION);
1785 if (!HAVE_CPLUS_STRUCT (type))
1786 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1787 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1788}
1789
1790/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1791 cplus_stuff.vptr_basetype. */
1792
1793struct type *
1794internal_type_vptr_basetype (struct type *type)
1795{
f168693b 1796 type = check_typedef (type);
ae6ae975
DE
1797 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1798 || TYPE_CODE (type) == TYPE_CODE_UNION);
1799 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1800 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1801}
1802
1803/* Set the value of cplus_stuff.vptr_basetype. */
1804
1805void
1806set_type_vptr_basetype (struct type *type, struct type *basetype)
1807{
f168693b 1808 type = check_typedef (type);
ae6ae975
DE
1809 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1810 || TYPE_CODE (type) == TYPE_CODE_UNION);
1811 if (!HAVE_CPLUS_STRUCT (type))
1812 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1813 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1814}
1815
81fe8080
DE
1816/* Lookup the vptr basetype/fieldno values for TYPE.
1817 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1818 vptr_fieldno. Also, if found and basetype is from the same objfile,
1819 cache the results.
1820 If not found, return -1 and ignore BASETYPEP.
1821 Callers should be aware that in some cases (for example,
c906108c 1822 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1823 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1824 this function will not be able to find the
7ba81444 1825 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1826 vptr_basetype will remain NULL or incomplete. */
c906108c 1827
81fe8080
DE
1828int
1829get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1830{
f168693b 1831 type = check_typedef (type);
c906108c
SS
1832
1833 if (TYPE_VPTR_FIELDNO (type) < 0)
1834 {
1835 int i;
1836
7ba81444
MS
1837 /* We must start at zero in case the first (and only) baseclass
1838 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1839 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1840 {
81fe8080
DE
1841 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1842 int fieldno;
1843 struct type *basetype;
1844
1845 fieldno = get_vptr_fieldno (baseclass, &basetype);
1846 if (fieldno >= 0)
c906108c 1847 {
81fe8080 1848 /* If the type comes from a different objfile we can't cache
0963b4bd 1849 it, it may have a different lifetime. PR 2384 */
5ef73790 1850 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1851 {
ae6ae975
DE
1852 set_type_vptr_fieldno (type, fieldno);
1853 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1854 }
1855 if (basetypep)
1856 *basetypep = basetype;
1857 return fieldno;
c906108c
SS
1858 }
1859 }
81fe8080
DE
1860
1861 /* Not found. */
1862 return -1;
1863 }
1864 else
1865 {
1866 if (basetypep)
1867 *basetypep = TYPE_VPTR_BASETYPE (type);
1868 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1869 }
1870}
1871
44e1a9eb
DJ
1872static void
1873stub_noname_complaint (void)
1874{
b98664d3 1875 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1876}
1877
a405673c
JB
1878/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1879 attached to it, and that property has a non-constant value. */
1880
1881static int
1882array_type_has_dynamic_stride (struct type *type)
1883{
1884 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1885
1886 return (prop != NULL && prop->kind != PROP_CONST);
1887}
1888
d98b7a16 1889/* Worker for is_dynamic_type. */
80180f79 1890
d98b7a16 1891static int
ee715b5a 1892is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1893{
1894 type = check_typedef (type);
1895
e771e4be
PMR
1896 /* We only want to recognize references at the outermost level. */
1897 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1898 type = check_typedef (TYPE_TARGET_TYPE (type));
1899
3cdcd0ce
JB
1900 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1901 dynamic, even if the type itself is statically defined.
1902 From a user's point of view, this may appear counter-intuitive;
1903 but it makes sense in this context, because the point is to determine
1904 whether any part of the type needs to be resolved before it can
1905 be exploited. */
1906 if (TYPE_DATA_LOCATION (type) != NULL
1907 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1908 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1909 return 1;
1910
3f2f83dd
KB
1911 if (TYPE_ASSOCIATED_PROP (type))
1912 return 1;
1913
1914 if (TYPE_ALLOCATED_PROP (type))
1915 return 1;
1916
80180f79
SA
1917 switch (TYPE_CODE (type))
1918 {
6f8a3220 1919 case TYPE_CODE_RANGE:
ddb87a81
JB
1920 {
1921 /* A range type is obviously dynamic if it has at least one
1922 dynamic bound. But also consider the range type to be
1923 dynamic when its subtype is dynamic, even if the bounds
1924 of the range type are static. It allows us to assume that
1925 the subtype of a static range type is also static. */
1926 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1927 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1928 }
6f8a3220 1929
80180f79
SA
1930 case TYPE_CODE_ARRAY:
1931 {
80180f79 1932 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1933
a405673c 1934 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1935 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1936 return 1;
a405673c
JB
1937 /* ... or the elements it contains have a dynamic contents... */
1938 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1939 return 1;
1940 /* ... or if it has a dynamic stride... */
1941 if (array_type_has_dynamic_stride (type))
1942 return 1;
1943 return 0;
80180f79 1944 }
012370f6
TT
1945
1946 case TYPE_CODE_STRUCT:
1947 case TYPE_CODE_UNION:
1948 {
1949 int i;
1950
1951 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1952 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1953 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1954 return 1;
1955 }
1956 break;
80180f79 1957 }
92e2a17f
TT
1958
1959 return 0;
80180f79
SA
1960}
1961
d98b7a16
TT
1962/* See gdbtypes.h. */
1963
1964int
1965is_dynamic_type (struct type *type)
1966{
ee715b5a 1967 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1968}
1969
df25ebbd 1970static struct type *resolve_dynamic_type_internal
ee715b5a 1971 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1972
df25ebbd
JB
1973/* Given a dynamic range type (dyn_range_type) and a stack of
1974 struct property_addr_info elements, return a static version
1975 of that type. */
d190df30 1976
80180f79 1977static struct type *
df25ebbd
JB
1978resolve_dynamic_range (struct type *dyn_range_type,
1979 struct property_addr_info *addr_stack)
80180f79
SA
1980{
1981 CORE_ADDR value;
ddb87a81 1982 struct type *static_range_type, *static_target_type;
80180f79 1983 const struct dynamic_prop *prop;
80180f79
SA
1984 struct dynamic_prop low_bound, high_bound;
1985
6f8a3220 1986 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1987
6f8a3220 1988 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1989 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1990 {
1991 low_bound.kind = PROP_CONST;
1992 low_bound.data.const_val = value;
1993 }
1994 else
1995 {
1996 low_bound.kind = PROP_UNDEFINED;
1997 low_bound.data.const_val = 0;
1998 }
1999
6f8a3220 2000 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2001 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2002 {
2003 high_bound.kind = PROP_CONST;
2004 high_bound.data.const_val = value;
c451ebe5 2005
6f8a3220 2006 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2007 high_bound.data.const_val
2008 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2009 }
2010 else
2011 {
2012 high_bound.kind = PROP_UNDEFINED;
2013 high_bound.data.const_val = 0;
2014 }
2015
ddb87a81
JB
2016 static_target_type
2017 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2018 addr_stack, 0);
6f8a3220 2019 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 2020 static_target_type,
6f8a3220
JB
2021 &low_bound, &high_bound);
2022 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2023 return static_range_type;
2024}
2025
2026/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
2027 ADDR_STACK is a stack of struct property_addr_info to be used
2028 if needed during the dynamic resolution. */
6f8a3220
JB
2029
2030static struct type *
df25ebbd
JB
2031resolve_dynamic_array (struct type *type,
2032 struct property_addr_info *addr_stack)
6f8a3220
JB
2033{
2034 CORE_ADDR value;
2035 struct type *elt_type;
2036 struct type *range_type;
2037 struct type *ary_dim;
3f2f83dd 2038 struct dynamic_prop *prop;
a405673c 2039 unsigned int bit_stride = 0;
6f8a3220
JB
2040
2041 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2042
3f2f83dd
KB
2043 type = copy_type (type);
2044
6f8a3220
JB
2045 elt_type = type;
2046 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2047 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2048
3f2f83dd
KB
2049 /* Resolve allocated/associated here before creating a new array type, which
2050 will update the length of the array accordingly. */
2051 prop = TYPE_ALLOCATED_PROP (type);
2052 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2053 {
2054 TYPE_DYN_PROP_ADDR (prop) = value;
2055 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2056 }
2057 prop = TYPE_ASSOCIATED_PROP (type);
2058 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2059 {
2060 TYPE_DYN_PROP_ADDR (prop) = value;
2061 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2062 }
2063
80180f79
SA
2064 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2065
2066 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 2067 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
2068 else
2069 elt_type = TYPE_TARGET_TYPE (type);
2070
a405673c
JB
2071 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2072 if (prop != NULL)
2073 {
2074 int prop_eval_ok
2075 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2076
2077 if (prop_eval_ok)
2078 {
2079 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2080 bit_stride = (unsigned int) (value * 8);
2081 }
2082 else
2083 {
2084 /* Could be a bug in our code, but it could also happen
2085 if the DWARF info is not correct. Issue a warning,
2086 and assume no byte/bit stride (leave bit_stride = 0). */
2087 warning (_("cannot determine array stride for type %s"),
2088 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2089 }
2090 }
2091 else
2092 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2093
2094 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2095 bit_stride);
80180f79
SA
2096}
2097
012370f6 2098/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2099 bounds. ADDR_STACK is a stack of struct property_addr_info
2100 to be used if needed during the dynamic resolution. */
012370f6
TT
2101
2102static struct type *
df25ebbd
JB
2103resolve_dynamic_union (struct type *type,
2104 struct property_addr_info *addr_stack)
012370f6
TT
2105{
2106 struct type *resolved_type;
2107 int i;
2108 unsigned int max_len = 0;
2109
2110 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2111
2112 resolved_type = copy_type (type);
2113 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2114 = (struct field *) TYPE_ALLOC (resolved_type,
2115 TYPE_NFIELDS (resolved_type)
2116 * sizeof (struct field));
012370f6
TT
2117 memcpy (TYPE_FIELDS (resolved_type),
2118 TYPE_FIELDS (type),
2119 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2120 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2121 {
2122 struct type *t;
2123
2124 if (field_is_static (&TYPE_FIELD (type, i)))
2125 continue;
2126
d98b7a16 2127 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2128 addr_stack, 0);
012370f6
TT
2129 TYPE_FIELD_TYPE (resolved_type, i) = t;
2130 if (TYPE_LENGTH (t) > max_len)
2131 max_len = TYPE_LENGTH (t);
2132 }
2133
2134 TYPE_LENGTH (resolved_type) = max_len;
2135 return resolved_type;
2136}
2137
2138/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2139 bounds. ADDR_STACK is a stack of struct property_addr_info to
2140 be used if needed during the dynamic resolution. */
012370f6
TT
2141
2142static struct type *
df25ebbd
JB
2143resolve_dynamic_struct (struct type *type,
2144 struct property_addr_info *addr_stack)
012370f6
TT
2145{
2146 struct type *resolved_type;
2147 int i;
6908c509 2148 unsigned resolved_type_bit_length = 0;
012370f6
TT
2149
2150 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2151 gdb_assert (TYPE_NFIELDS (type) > 0);
2152
2153 resolved_type = copy_type (type);
2154 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2155 = (struct field *) TYPE_ALLOC (resolved_type,
2156 TYPE_NFIELDS (resolved_type)
2157 * sizeof (struct field));
012370f6
TT
2158 memcpy (TYPE_FIELDS (resolved_type),
2159 TYPE_FIELDS (type),
2160 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2161 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2162 {
6908c509 2163 unsigned new_bit_length;
df25ebbd 2164 struct property_addr_info pinfo;
012370f6
TT
2165
2166 if (field_is_static (&TYPE_FIELD (type, i)))
2167 continue;
2168
6908c509
JB
2169 /* As we know this field is not a static field, the field's
2170 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2171 this is the case, but only trigger a simple error rather
2172 than an internal error if that fails. While failing
2173 that verification indicates a bug in our code, the error
2174 is not severe enough to suggest to the user he stops
2175 his debugging session because of it. */
df25ebbd 2176 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2177 error (_("Cannot determine struct field location"
2178 " (invalid location kind)"));
df25ebbd
JB
2179
2180 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2181 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2182 pinfo.addr
2183 = (addr_stack->addr
2184 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2185 pinfo.next = addr_stack;
2186
2187 TYPE_FIELD_TYPE (resolved_type, i)
2188 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2189 &pinfo, 0);
df25ebbd
JB
2190 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2191 == FIELD_LOC_KIND_BITPOS);
2192
6908c509
JB
2193 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2194 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2195 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2196 else
2197 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2198 * TARGET_CHAR_BIT);
2199
2200 /* Normally, we would use the position and size of the last field
2201 to determine the size of the enclosing structure. But GCC seems
2202 to be encoding the position of some fields incorrectly when
2203 the struct contains a dynamic field that is not placed last.
2204 So we compute the struct size based on the field that has
2205 the highest position + size - probably the best we can do. */
2206 if (new_bit_length > resolved_type_bit_length)
2207 resolved_type_bit_length = new_bit_length;
012370f6
TT
2208 }
2209
9920b434
BH
2210 /* The length of a type won't change for fortran, but it does for C and Ada.
2211 For fortran the size of dynamic fields might change over time but not the
2212 type length of the structure. If we adapt it, we run into problems
2213 when calculating the element offset for arrays of structs. */
2214 if (current_language->la_language != language_fortran)
2215 TYPE_LENGTH (resolved_type)
2216 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2217
9e195661
PMR
2218 /* The Ada language uses this field as a cache for static fixed types: reset
2219 it as RESOLVED_TYPE must have its own static fixed type. */
2220 TYPE_TARGET_TYPE (resolved_type) = NULL;
2221
012370f6
TT
2222 return resolved_type;
2223}
2224
d98b7a16 2225/* Worker for resolved_dynamic_type. */
80180f79 2226
d98b7a16 2227static struct type *
df25ebbd 2228resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2229 struct property_addr_info *addr_stack,
2230 int top_level)
80180f79
SA
2231{
2232 struct type *real_type = check_typedef (type);
6f8a3220 2233 struct type *resolved_type = type;
d9823cbb 2234 struct dynamic_prop *prop;
3cdcd0ce 2235 CORE_ADDR value;
80180f79 2236
ee715b5a 2237 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2238 return type;
2239
5537b577 2240 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2241 {
cac9b138
JK
2242 resolved_type = copy_type (type);
2243 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2244 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2245 top_level);
5537b577
JK
2246 }
2247 else
2248 {
2249 /* Before trying to resolve TYPE, make sure it is not a stub. */
2250 type = real_type;
012370f6 2251
5537b577
JK
2252 switch (TYPE_CODE (type))
2253 {
e771e4be
PMR
2254 case TYPE_CODE_REF:
2255 {
2256 struct property_addr_info pinfo;
2257
2258 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2259 pinfo.valaddr = NULL;
2260 if (addr_stack->valaddr != NULL)
2261 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2262 else
2263 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2264 pinfo.next = addr_stack;
2265
2266 resolved_type = copy_type (type);
2267 TYPE_TARGET_TYPE (resolved_type)
2268 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2269 &pinfo, top_level);
2270 break;
2271 }
2272
5537b577 2273 case TYPE_CODE_ARRAY:
df25ebbd 2274 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2275 break;
2276
2277 case TYPE_CODE_RANGE:
df25ebbd 2278 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2279 break;
2280
2281 case TYPE_CODE_UNION:
df25ebbd 2282 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2283 break;
2284
2285 case TYPE_CODE_STRUCT:
df25ebbd 2286 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2287 break;
2288 }
6f8a3220 2289 }
80180f79 2290
3cdcd0ce
JB
2291 /* Resolve data_location attribute. */
2292 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2293 if (prop != NULL
2294 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2295 {
d9823cbb
KB
2296 TYPE_DYN_PROP_ADDR (prop) = value;
2297 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2298 }
3cdcd0ce 2299
80180f79
SA
2300 return resolved_type;
2301}
2302
d98b7a16
TT
2303/* See gdbtypes.h */
2304
2305struct type *
c3345124
JB
2306resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2307 CORE_ADDR addr)
d98b7a16 2308{
c3345124
JB
2309 struct property_addr_info pinfo
2310 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2311
ee715b5a 2312 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2313}
2314
d9823cbb
KB
2315/* See gdbtypes.h */
2316
2317struct dynamic_prop *
2318get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2319{
2320 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2321
2322 while (node != NULL)
2323 {
2324 if (node->prop_kind == prop_kind)
283a9958 2325 return &node->prop;
d9823cbb
KB
2326 node = node->next;
2327 }
2328 return NULL;
2329}
2330
2331/* See gdbtypes.h */
2332
2333void
2334add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2335 struct type *type)
d9823cbb
KB
2336{
2337 struct dynamic_prop_list *temp;
2338
2339 gdb_assert (TYPE_OBJFILE_OWNED (type));
2340
50a82047
TT
2341 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2342 struct dynamic_prop_list);
d9823cbb 2343 temp->prop_kind = prop_kind;
283a9958 2344 temp->prop = prop;
d9823cbb
KB
2345 temp->next = TYPE_DYN_PROP_LIST (type);
2346
2347 TYPE_DYN_PROP_LIST (type) = temp;
2348}
2349
9920b434
BH
2350/* Remove dynamic property from TYPE in case it exists. */
2351
2352void
2353remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2354 struct type *type)
2355{
2356 struct dynamic_prop_list *prev_node, *curr_node;
2357
2358 curr_node = TYPE_DYN_PROP_LIST (type);
2359 prev_node = NULL;
2360
2361 while (NULL != curr_node)
2362 {
2363 if (curr_node->prop_kind == prop_kind)
2364 {
2365 /* Update the linked list but don't free anything.
2366 The property was allocated on objstack and it is not known
2367 if we are on top of it. Nevertheless, everything is released
2368 when the complete objstack is freed. */
2369 if (NULL == prev_node)
2370 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2371 else
2372 prev_node->next = curr_node->next;
2373
2374 return;
2375 }
2376
2377 prev_node = curr_node;
2378 curr_node = curr_node->next;
2379 }
2380}
d9823cbb 2381
92163a10
JK
2382/* Find the real type of TYPE. This function returns the real type,
2383 after removing all layers of typedefs, and completing opaque or stub
2384 types. Completion changes the TYPE argument, but stripping of
2385 typedefs does not.
2386
2387 Instance flags (e.g. const/volatile) are preserved as typedefs are
2388 stripped. If necessary a new qualified form of the underlying type
2389 is created.
2390
2391 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2392 not been computed and we're either in the middle of reading symbols, or
2393 there was no name for the typedef in the debug info.
2394
9bc118a5
DE
2395 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2396 QUITs in the symbol reading code can also throw.
2397 Thus this function can throw an exception.
2398
92163a10
JK
2399 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2400 the target type.
c906108c
SS
2401
2402 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2403 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2404 definition, so we can use it in future. There used to be a comment
2405 (but not any code) that if we don't find a full definition, we'd
2406 set a flag so we don't spend time in the future checking the same
2407 type. That would be a mistake, though--we might load in more
92163a10 2408 symbols which contain a full definition for the type. */
c906108c
SS
2409
2410struct type *
a02fd225 2411check_typedef (struct type *type)
c906108c
SS
2412{
2413 struct type *orig_type = type;
92163a10
JK
2414 /* While we're removing typedefs, we don't want to lose qualifiers.
2415 E.g., const/volatile. */
2416 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2417
423c0af8
MS
2418 gdb_assert (type);
2419
c906108c
SS
2420 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2421 {
2422 if (!TYPE_TARGET_TYPE (type))
2423 {
0d5cff50 2424 const char *name;
c906108c
SS
2425 struct symbol *sym;
2426
2427 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2428 reading a symtab. Infinite recursion is one danger. */
c906108c 2429 if (currently_reading_symtab)
92163a10 2430 return make_qualified_type (type, instance_flags, NULL);
c906108c 2431
a737d952 2432 name = TYPE_NAME (type);
e86ca25f
TT
2433 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2434 VAR_DOMAIN as appropriate? */
c906108c
SS
2435 if (name == NULL)
2436 {
23136709 2437 stub_noname_complaint ();
92163a10 2438 return make_qualified_type (type, instance_flags, NULL);
c906108c 2439 }
d12307c1 2440 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2441 if (sym)
2442 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2443 else /* TYPE_CODE_UNDEF */
e9bb382b 2444 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2445 }
2446 type = TYPE_TARGET_TYPE (type);
c906108c 2447
92163a10
JK
2448 /* Preserve the instance flags as we traverse down the typedef chain.
2449
2450 Handling address spaces/classes is nasty, what do we do if there's a
2451 conflict?
2452 E.g., what if an outer typedef marks the type as class_1 and an inner
2453 typedef marks the type as class_2?
2454 This is the wrong place to do such error checking. We leave it to
2455 the code that created the typedef in the first place to flag the
2456 error. We just pick the outer address space (akin to letting the
2457 outer cast in a chain of casting win), instead of assuming
2458 "it can't happen". */
2459 {
2460 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2461 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2462 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2463 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2464
2465 /* Treat code vs data spaces and address classes separately. */
2466 if ((instance_flags & ALL_SPACES) != 0)
2467 new_instance_flags &= ~ALL_SPACES;
2468 if ((instance_flags & ALL_CLASSES) != 0)
2469 new_instance_flags &= ~ALL_CLASSES;
2470
2471 instance_flags |= new_instance_flags;
2472 }
2473 }
a02fd225 2474
7ba81444
MS
2475 /* If this is a struct/class/union with no fields, then check
2476 whether a full definition exists somewhere else. This is for
2477 systems where a type definition with no fields is issued for such
2478 types, instead of identifying them as stub types in the first
2479 place. */
c5aa993b 2480
7ba81444
MS
2481 if (TYPE_IS_OPAQUE (type)
2482 && opaque_type_resolution
2483 && !currently_reading_symtab)
c906108c 2484 {
a737d952 2485 const char *name = TYPE_NAME (type);
c5aa993b 2486 struct type *newtype;
d8734c88 2487
c906108c
SS
2488 if (name == NULL)
2489 {
23136709 2490 stub_noname_complaint ();
92163a10 2491 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2492 }
2493 newtype = lookup_transparent_type (name);
ad766c0a 2494
c906108c 2495 if (newtype)
ad766c0a 2496 {
7ba81444
MS
2497 /* If the resolved type and the stub are in the same
2498 objfile, then replace the stub type with the real deal.
2499 But if they're in separate objfiles, leave the stub
2500 alone; we'll just look up the transparent type every time
2501 we call check_typedef. We can't create pointers between
2502 types allocated to different objfiles, since they may
2503 have different lifetimes. Trying to copy NEWTYPE over to
2504 TYPE's objfile is pointless, too, since you'll have to
2505 move over any other types NEWTYPE refers to, which could
2506 be an unbounded amount of stuff. */
ad766c0a 2507 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2508 type = make_qualified_type (newtype,
2509 TYPE_INSTANCE_FLAGS (type),
2510 type);
ad766c0a
JB
2511 else
2512 type = newtype;
2513 }
c906108c 2514 }
7ba81444
MS
2515 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2516 types. */
74a9bb82 2517 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2518 {
a737d952 2519 const char *name = TYPE_NAME (type);
e86ca25f
TT
2520 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2521 as appropriate? */
c906108c 2522 struct symbol *sym;
d8734c88 2523
c906108c
SS
2524 if (name == NULL)
2525 {
23136709 2526 stub_noname_complaint ();
92163a10 2527 return make_qualified_type (type, instance_flags, NULL);
c906108c 2528 }
d12307c1 2529 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2530 if (sym)
c26f2453
JB
2531 {
2532 /* Same as above for opaque types, we can replace the stub
92163a10 2533 with the complete type only if they are in the same
c26f2453
JB
2534 objfile. */
2535 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2536 type = make_qualified_type (SYMBOL_TYPE (sym),
2537 TYPE_INSTANCE_FLAGS (type),
2538 type);
c26f2453
JB
2539 else
2540 type = SYMBOL_TYPE (sym);
2541 }
c906108c
SS
2542 }
2543
74a9bb82 2544 if (TYPE_TARGET_STUB (type))
c906108c 2545 {
c906108c
SS
2546 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2547
74a9bb82 2548 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2549 {
73e2eb35 2550 /* Nothing we can do. */
c5aa993b 2551 }
c906108c
SS
2552 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2553 {
2554 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2555 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2556 }
2557 }
92163a10
JK
2558
2559 type = make_qualified_type (type, instance_flags, NULL);
2560
7ba81444 2561 /* Cache TYPE_LENGTH for future use. */
c906108c 2562 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2563
c906108c
SS
2564 return type;
2565}
2566
7ba81444 2567/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2568 occurs, silently return a void type. */
c91ecb25 2569
b9362cc7 2570static struct type *
48319d1f 2571safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2572{
2573 struct ui_file *saved_gdb_stderr;
34365054 2574 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2575
7ba81444 2576 /* Suppress error messages. */
c91ecb25 2577 saved_gdb_stderr = gdb_stderr;
d7e74731 2578 gdb_stderr = &null_stream;
c91ecb25 2579
7ba81444 2580 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2581 TRY
8e7b59a5
KS
2582 {
2583 type = parse_and_eval_type (p, length);
2584 }
492d29ea
PA
2585 CATCH (except, RETURN_MASK_ERROR)
2586 {
2587 type = builtin_type (gdbarch)->builtin_void;
2588 }
2589 END_CATCH
c91ecb25 2590
7ba81444 2591 /* Stop suppressing error messages. */
c91ecb25
ND
2592 gdb_stderr = saved_gdb_stderr;
2593
2594 return type;
2595}
2596
c906108c
SS
2597/* Ugly hack to convert method stubs into method types.
2598
7ba81444
MS
2599 He ain't kiddin'. This demangles the name of the method into a
2600 string including argument types, parses out each argument type,
2601 generates a string casting a zero to that type, evaluates the
2602 string, and stuffs the resulting type into an argtype vector!!!
2603 Then it knows the type of the whole function (including argument
2604 types for overloading), which info used to be in the stab's but was
2605 removed to hack back the space required for them. */
c906108c 2606
de17c821 2607static void
fba45db2 2608check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2609{
50810684 2610 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2611 struct fn_field *f;
2612 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2613 char *demangled_name = gdb_demangle (mangled_name,
2614 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2615 char *argtypetext, *p;
2616 int depth = 0, argcount = 1;
ad2f7632 2617 struct field *argtypes;
c906108c
SS
2618 struct type *mtype;
2619
2620 /* Make sure we got back a function string that we can use. */
2621 if (demangled_name)
2622 p = strchr (demangled_name, '(');
502dcf4e
AC
2623 else
2624 p = NULL;
c906108c
SS
2625
2626 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2627 error (_("Internal: Cannot demangle mangled name `%s'."),
2628 mangled_name);
c906108c
SS
2629
2630 /* Now, read in the parameters that define this type. */
2631 p += 1;
2632 argtypetext = p;
2633 while (*p)
2634 {
070ad9f0 2635 if (*p == '(' || *p == '<')
c906108c
SS
2636 {
2637 depth += 1;
2638 }
070ad9f0 2639 else if (*p == ')' || *p == '>')
c906108c
SS
2640 {
2641 depth -= 1;
2642 }
2643 else if (*p == ',' && depth == 0)
2644 {
2645 argcount += 1;
2646 }
2647
2648 p += 1;
2649 }
2650
ad2f7632 2651 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2652 if (startswith (argtypetext, "(void)"))
ad2f7632 2653 argcount -= 1;
c906108c 2654
ad2f7632
DJ
2655 /* We need one extra slot, for the THIS pointer. */
2656
2657 argtypes = (struct field *)
2658 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2659 p = argtypetext;
4a1970e4
DJ
2660
2661 /* Add THIS pointer for non-static methods. */
2662 f = TYPE_FN_FIELDLIST1 (type, method_id);
2663 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2664 argcount = 0;
2665 else
2666 {
ad2f7632 2667 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2668 argcount = 1;
2669 }
c906108c 2670
0963b4bd 2671 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2672 {
2673 depth = 0;
2674 while (*p)
2675 {
2676 if (depth <= 0 && (*p == ',' || *p == ')'))
2677 {
ad2f7632
DJ
2678 /* Avoid parsing of ellipsis, they will be handled below.
2679 Also avoid ``void'' as above. */
2680 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2681 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2682 {
ad2f7632 2683 argtypes[argcount].type =
48319d1f 2684 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2685 argcount += 1;
2686 }
2687 argtypetext = p + 1;
2688 }
2689
070ad9f0 2690 if (*p == '(' || *p == '<')
c906108c
SS
2691 {
2692 depth += 1;
2693 }
070ad9f0 2694 else if (*p == ')' || *p == '>')
c906108c
SS
2695 {
2696 depth -= 1;
2697 }
2698
2699 p += 1;
2700 }
2701 }
2702
c906108c
SS
2703 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2704
2705 /* Now update the old "stub" type into a real type. */
2706 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2707 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2708 We want a method (TYPE_CODE_METHOD). */
2709 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2710 argtypes, argcount, p[-2] == '.');
876cecd0 2711 TYPE_STUB (mtype) = 0;
c906108c 2712 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2713
2714 xfree (demangled_name);
c906108c
SS
2715}
2716
7ba81444
MS
2717/* This is the external interface to check_stub_method, above. This
2718 function unstubs all of the signatures for TYPE's METHOD_ID method
2719 name. After calling this function TYPE_FN_FIELD_STUB will be
2720 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2721 correct.
de17c821
DJ
2722
2723 This function unfortunately can not die until stabs do. */
2724
2725void
2726check_stub_method_group (struct type *type, int method_id)
2727{
2728 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2729 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2730 int j, found_stub = 0;
de17c821
DJ
2731
2732 for (j = 0; j < len; j++)
2733 if (TYPE_FN_FIELD_STUB (f, j))
2734 {
2735 found_stub = 1;
2736 check_stub_method (type, method_id, j);
2737 }
2738
7ba81444
MS
2739 /* GNU v3 methods with incorrect names were corrected when we read
2740 in type information, because it was cheaper to do it then. The
2741 only GNU v2 methods with incorrect method names are operators and
2742 destructors; destructors were also corrected when we read in type
2743 information.
de17c821
DJ
2744
2745 Therefore the only thing we need to handle here are v2 operator
2746 names. */
61012eef 2747 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
de17c821
DJ
2748 {
2749 int ret;
2750 char dem_opname[256];
2751
7ba81444
MS
2752 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2753 method_id),
de17c821
DJ
2754 dem_opname, DMGL_ANSI);
2755 if (!ret)
7ba81444
MS
2756 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2757 method_id),
de17c821
DJ
2758 dem_opname, 0);
2759 if (ret)
2760 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2761 }
2762}
2763
9655fd1a
JK
2764/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2765const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2766
2767void
fba45db2 2768allocate_cplus_struct_type (struct type *type)
c906108c 2769{
b4ba55a1
JB
2770 if (HAVE_CPLUS_STRUCT (type))
2771 /* Structure was already allocated. Nothing more to do. */
2772 return;
2773
2774 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2775 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2776 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2777 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2778 set_type_vptr_fieldno (type, -1);
c906108c
SS
2779}
2780
b4ba55a1
JB
2781const struct gnat_aux_type gnat_aux_default =
2782 { NULL };
2783
2784/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2785 and allocate the associated gnat-specific data. The gnat-specific
2786 data is also initialized to gnat_aux_default. */
5212577a 2787
b4ba55a1
JB
2788void
2789allocate_gnat_aux_type (struct type *type)
2790{
2791 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2792 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2793 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2794 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2795}
2796
ae438bc5
UW
2797/* Helper function to initialize a newly allocated type. Set type code
2798 to CODE and initialize the type-specific fields accordingly. */
2799
2800static void
2801set_type_code (struct type *type, enum type_code code)
2802{
2803 TYPE_CODE (type) = code;
2804
2805 switch (code)
2806 {
2807 case TYPE_CODE_STRUCT:
2808 case TYPE_CODE_UNION:
2809 case TYPE_CODE_NAMESPACE:
2810 INIT_CPLUS_SPECIFIC (type);
2811 break;
2812 case TYPE_CODE_FLT:
2813 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2814 break;
2815 case TYPE_CODE_FUNC:
2816 INIT_FUNC_SPECIFIC (type);
2817 break;
2818 }
2819}
2820
19f392bc
UW
2821/* Helper function to verify floating-point format and size.
2822 BIT is the type size in bits; if BIT equals -1, the size is
2823 determined by the floatformat. Returns size to be used. */
2824
2825static int
0db7851f 2826verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2827{
0db7851f 2828 gdb_assert (floatformat != NULL);
9b790ce7 2829
19f392bc 2830 if (bit == -1)
0db7851f 2831 bit = floatformat->totalsize;
19f392bc 2832
0db7851f
UW
2833 gdb_assert (bit >= 0);
2834 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2835
2836 return bit;
2837}
2838
0db7851f
UW
2839/* Return the floating-point format for a floating-point variable of
2840 type TYPE. */
2841
2842const struct floatformat *
2843floatformat_from_type (const struct type *type)
2844{
2845 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2846 gdb_assert (TYPE_FLOATFORMAT (type));
2847 return TYPE_FLOATFORMAT (type);
2848}
2849
c906108c
SS
2850/* Helper function to initialize the standard scalar types.
2851
86f62fd7
TT
2852 If NAME is non-NULL, then it is used to initialize the type name.
2853 Note that NAME is not copied; it is required to have a lifetime at
2854 least as long as OBJFILE. */
c906108c
SS
2855
2856struct type *
77b7c781 2857init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2858 const char *name)
c906108c 2859{
52f0bd74 2860 struct type *type;
c906108c
SS
2861
2862 type = alloc_type (objfile);
ae438bc5 2863 set_type_code (type, code);
77b7c781
UW
2864 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2865 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2866 TYPE_NAME (type) = name;
c906108c 2867
c16abbde 2868 return type;
c906108c 2869}
19f392bc 2870
46a4882b
PA
2871/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2872 to use with variables that have no debug info. NAME is the type
2873 name. */
2874
2875static struct type *
2876init_nodebug_var_type (struct objfile *objfile, const char *name)
2877{
2878 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2879}
2880
19f392bc
UW
2881/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2882 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2883 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2884
2885struct type *
2886init_integer_type (struct objfile *objfile,
2887 int bit, int unsigned_p, const char *name)
2888{
2889 struct type *t;
2890
77b7c781 2891 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2892 if (unsigned_p)
2893 TYPE_UNSIGNED (t) = 1;
2894
2895 return t;
2896}
2897
2898/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2899 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2900 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2901
2902struct type *
2903init_character_type (struct objfile *objfile,
2904 int bit, int unsigned_p, const char *name)
2905{
2906 struct type *t;
2907
77b7c781 2908 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2909 if (unsigned_p)
2910 TYPE_UNSIGNED (t) = 1;
2911
2912 return t;
2913}
2914
2915/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2916 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2917 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2918
2919struct type *
2920init_boolean_type (struct objfile *objfile,
2921 int bit, int unsigned_p, const char *name)
2922{
2923 struct type *t;
2924
77b7c781 2925 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2926 if (unsigned_p)
2927 TYPE_UNSIGNED (t) = 1;
2928
2929 return t;
2930}
2931
2932/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2933 BIT is the type size in bits; if BIT equals -1, the size is
2934 determined by the floatformat. NAME is the type name. Set the
2935 TYPE_FLOATFORMAT from FLOATFORMATS. */
2936
2937struct type *
2938init_float_type (struct objfile *objfile,
2939 int bit, const char *name,
2940 const struct floatformat **floatformats)
2941{
0db7851f
UW
2942 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2943 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
19f392bc
UW
2944 struct type *t;
2945
0db7851f 2946 bit = verify_floatformat (bit, fmt);
77b7c781 2947 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 2948 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
2949
2950 return t;
2951}
2952
2953/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2954 BIT is the type size in bits. NAME is the type name. */
2955
2956struct type *
2957init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2958{
2959 struct type *t;
2960
77b7c781 2961 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
2962 return t;
2963}
2964
2965/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2966 NAME is the type name. TARGET_TYPE is the component float type. */
2967
2968struct type *
2969init_complex_type (struct objfile *objfile,
2970 const char *name, struct type *target_type)
2971{
2972 struct type *t;
2973
2974 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 2975 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
2976 TYPE_TARGET_TYPE (t) = target_type;
2977 return t;
2978}
2979
2980/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2981 BIT is the pointer type size in bits. NAME is the type name.
2982 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2983 TYPE_UNSIGNED flag. */
2984
2985struct type *
2986init_pointer_type (struct objfile *objfile,
2987 int bit, const char *name, struct type *target_type)
2988{
2989 struct type *t;
2990
77b7c781 2991 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
2992 TYPE_TARGET_TYPE (t) = target_type;
2993 TYPE_UNSIGNED (t) = 1;
2994 return t;
2995}
2996
2b4424c3
TT
2997/* See gdbtypes.h. */
2998
2999unsigned
3000type_raw_align (struct type *type)
3001{
3002 if (type->align_log2 != 0)
3003 return 1 << (type->align_log2 - 1);
3004 return 0;
3005}
3006
3007/* See gdbtypes.h. */
3008
3009unsigned
3010type_align (struct type *type)
3011{
3012 unsigned raw_align = type_raw_align (type);
3013 if (raw_align != 0)
3014 return raw_align;
3015
3016 ULONGEST align = 0;
3017 switch (TYPE_CODE (type))
3018 {
3019 case TYPE_CODE_PTR:
3020 case TYPE_CODE_FUNC:
3021 case TYPE_CODE_FLAGS:
3022 case TYPE_CODE_INT:
3023 case TYPE_CODE_FLT:
3024 case TYPE_CODE_ENUM:
3025 case TYPE_CODE_REF:
3026 case TYPE_CODE_RVALUE_REF:
3027 case TYPE_CODE_CHAR:
3028 case TYPE_CODE_BOOL:
3029 case TYPE_CODE_DECFLOAT:
3030 {
3031 struct gdbarch *arch = get_type_arch (type);
3032 align = gdbarch_type_align (arch, type);
3033 }
3034 break;
3035
3036 case TYPE_CODE_ARRAY:
3037 case TYPE_CODE_COMPLEX:
3038 case TYPE_CODE_TYPEDEF:
3039 align = type_align (TYPE_TARGET_TYPE (type));
3040 break;
3041
3042 case TYPE_CODE_STRUCT:
3043 case TYPE_CODE_UNION:
3044 {
3045 if (TYPE_NFIELDS (type) == 0)
3046 {
3047 /* An empty struct has alignment 1. */
3048 align = 1;
3049 break;
3050 }
3051 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3052 {
3053 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3054 if (f_align == 0)
3055 {
3056 /* Don't pretend we know something we don't. */
3057 align = 0;
3058 break;
3059 }
3060 if (f_align > align)
3061 align = f_align;
3062 }
3063 }
3064 break;
3065
3066 case TYPE_CODE_SET:
3067 case TYPE_CODE_RANGE:
3068 case TYPE_CODE_STRING:
3069 /* Not sure what to do here, and these can't appear in C or C++
3070 anyway. */
3071 break;
3072
3073 case TYPE_CODE_METHODPTR:
3074 case TYPE_CODE_MEMBERPTR:
55c748a1 3075 align = type_length_units (type);
2b4424c3
TT
3076 break;
3077
3078 case TYPE_CODE_VOID:
3079 align = 1;
3080 break;
3081
3082 case TYPE_CODE_ERROR:
3083 case TYPE_CODE_METHOD:
3084 default:
3085 break;
3086 }
3087
3088 if ((align & (align - 1)) != 0)
3089 {
3090 /* Not a power of 2, so pass. */
3091 align = 0;
3092 }
3093
3094 return align;
3095}
3096
3097/* See gdbtypes.h. */
3098
3099bool
3100set_type_align (struct type *type, ULONGEST align)
3101{
3102 /* Must be a power of 2. Zero is ok. */
3103 gdb_assert ((align & (align - 1)) == 0);
3104
3105 unsigned result = 0;
3106 while (align != 0)
3107 {
3108 ++result;
3109 align >>= 1;
3110 }
3111
3112 if (result >= (1 << TYPE_ALIGN_BITS))
3113 return false;
3114
3115 type->align_log2 = result;
3116 return true;
3117}
3118
5212577a
DE
3119\f
3120/* Queries on types. */
c906108c 3121
c906108c 3122int
fba45db2 3123can_dereference (struct type *t)
c906108c 3124{
7ba81444
MS
3125 /* FIXME: Should we return true for references as well as
3126 pointers? */
f168693b 3127 t = check_typedef (t);
c906108c
SS
3128 return
3129 (t != NULL
3130 && TYPE_CODE (t) == TYPE_CODE_PTR
3131 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3132}
3133
adf40b2e 3134int
fba45db2 3135is_integral_type (struct type *t)
adf40b2e 3136{
f168693b 3137 t = check_typedef (t);
adf40b2e
JM
3138 return
3139 ((t != NULL)
d4f3574e
SS
3140 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3141 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3142 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3143 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3144 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3145 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3146}
3147
70100014
UW
3148int
3149is_floating_type (struct type *t)
3150{
3151 t = check_typedef (t);
3152 return
3153 ((t != NULL)
3154 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3155 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3156}
3157
e09342b5
TJB
3158/* Return true if TYPE is scalar. */
3159
220475ed 3160int
e09342b5
TJB
3161is_scalar_type (struct type *type)
3162{
f168693b 3163 type = check_typedef (type);
e09342b5
TJB
3164
3165 switch (TYPE_CODE (type))
3166 {
3167 case TYPE_CODE_ARRAY:
3168 case TYPE_CODE_STRUCT:
3169 case TYPE_CODE_UNION:
3170 case TYPE_CODE_SET:
3171 case TYPE_CODE_STRING:
e09342b5
TJB
3172 return 0;
3173 default:
3174 return 1;
3175 }
3176}
3177
3178/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3179 the memory layout of a scalar type. E.g., an array or struct with only
3180 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3181
3182int
3183is_scalar_type_recursive (struct type *t)
3184{
f168693b 3185 t = check_typedef (t);
e09342b5
TJB
3186
3187 if (is_scalar_type (t))
3188 return 1;
3189 /* Are we dealing with an array or string of known dimensions? */
3190 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3191 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3192 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3193 {
3194 LONGEST low_bound, high_bound;
3195 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3196
3197 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3198
3199 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3200 }
3201 /* Are we dealing with a struct with one element? */
3202 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3203 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3204 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3205 {
3206 int i, n = TYPE_NFIELDS (t);
3207
3208 /* If all elements of the union are scalar, then the union is scalar. */
3209 for (i = 0; i < n; i++)
3210 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3211 return 0;
3212
3213 return 1;
3214 }
3215
3216 return 0;
3217}
3218
6c659fc2
SC
3219/* Return true is T is a class or a union. False otherwise. */
3220
3221int
3222class_or_union_p (const struct type *t)
3223{
3224 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3225 || TYPE_CODE (t) == TYPE_CODE_UNION);
3226}
3227
4e8f195d
TT
3228/* A helper function which returns true if types A and B represent the
3229 "same" class type. This is true if the types have the same main
3230 type, or the same name. */
3231
3232int
3233class_types_same_p (const struct type *a, const struct type *b)
3234{
3235 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3236 || (TYPE_NAME (a) && TYPE_NAME (b)
3237 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3238}
3239
a9d5ef47
SW
3240/* If BASE is an ancestor of DCLASS return the distance between them.
3241 otherwise return -1;
3242 eg:
3243
3244 class A {};
3245 class B: public A {};
3246 class C: public B {};
3247 class D: C {};
3248
3249 distance_to_ancestor (A, A, 0) = 0
3250 distance_to_ancestor (A, B, 0) = 1
3251 distance_to_ancestor (A, C, 0) = 2
3252 distance_to_ancestor (A, D, 0) = 3
3253
3254 If PUBLIC is 1 then only public ancestors are considered,
3255 and the function returns the distance only if BASE is a public ancestor
3256 of DCLASS.
3257 Eg:
3258
0963b4bd 3259 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3260
0526b37a 3261static int
fe978cb0 3262distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3263{
3264 int i;
a9d5ef47 3265 int d;
c5aa993b 3266
f168693b
SM
3267 base = check_typedef (base);
3268 dclass = check_typedef (dclass);
c906108c 3269
4e8f195d 3270 if (class_types_same_p (base, dclass))
a9d5ef47 3271 return 0;
c906108c
SS
3272
3273 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3274 {
fe978cb0 3275 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3276 continue;
3277
fe978cb0 3278 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3279 if (d >= 0)
3280 return 1 + d;
4e8f195d 3281 }
c906108c 3282
a9d5ef47 3283 return -1;
c906108c 3284}
4e8f195d 3285
0526b37a
SW
3286/* Check whether BASE is an ancestor or base class or DCLASS
3287 Return 1 if so, and 0 if not.
3288 Note: If BASE and DCLASS are of the same type, this function
3289 will return 1. So for some class A, is_ancestor (A, A) will
3290 return 1. */
3291
3292int
3293is_ancestor (struct type *base, struct type *dclass)
3294{
a9d5ef47 3295 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3296}
3297
4e8f195d
TT
3298/* Like is_ancestor, but only returns true when BASE is a public
3299 ancestor of DCLASS. */
3300
3301int
3302is_public_ancestor (struct type *base, struct type *dclass)
3303{
a9d5ef47 3304 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3305}
3306
3307/* A helper function for is_unique_ancestor. */
3308
3309static int
3310is_unique_ancestor_worker (struct type *base, struct type *dclass,
3311 int *offset,
8af8e3bc
PA
3312 const gdb_byte *valaddr, int embedded_offset,
3313 CORE_ADDR address, struct value *val)
4e8f195d
TT
3314{
3315 int i, count = 0;
3316
f168693b
SM
3317 base = check_typedef (base);
3318 dclass = check_typedef (dclass);
4e8f195d
TT
3319
3320 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3321 {
8af8e3bc
PA
3322 struct type *iter;
3323 int this_offset;
4e8f195d 3324
8af8e3bc
PA
3325 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3326
3327 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3328 address, val);
4e8f195d
TT
3329
3330 if (class_types_same_p (base, iter))
3331 {
3332 /* If this is the first subclass, set *OFFSET and set count
3333 to 1. Otherwise, if this is at the same offset as
3334 previous instances, do nothing. Otherwise, increment
3335 count. */
3336 if (*offset == -1)
3337 {
3338 *offset = this_offset;
3339 count = 1;
3340 }
3341 else if (this_offset == *offset)
3342 {
3343 /* Nothing. */
3344 }
3345 else
3346 ++count;
3347 }
3348 else
3349 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3350 valaddr,
3351 embedded_offset + this_offset,
3352 address, val);
4e8f195d
TT
3353 }
3354
3355 return count;
3356}
3357
3358/* Like is_ancestor, but only returns true if BASE is a unique base
3359 class of the type of VAL. */
3360
3361int
3362is_unique_ancestor (struct type *base, struct value *val)
3363{
3364 int offset = -1;
3365
3366 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3367 value_contents_for_printing (val),
3368 value_embedded_offset (val),
3369 value_address (val), val) == 1;
4e8f195d
TT
3370}
3371
c906108c 3372\f
5212577a 3373/* Overload resolution. */
c906108c 3374
6403aeea
SW
3375/* Return the sum of the rank of A with the rank of B. */
3376
3377struct rank
3378sum_ranks (struct rank a, struct rank b)
3379{
3380 struct rank c;
3381 c.rank = a.rank + b.rank;
a9d5ef47 3382 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3383 return c;
3384}
3385
3386/* Compare rank A and B and return:
3387 0 if a = b
3388 1 if a is better than b
3389 -1 if b is better than a. */
3390
3391int
3392compare_ranks (struct rank a, struct rank b)
3393{
3394 if (a.rank == b.rank)
a9d5ef47
SW
3395 {
3396 if (a.subrank == b.subrank)
3397 return 0;
3398 if (a.subrank < b.subrank)
3399 return 1;
3400 if (a.subrank > b.subrank)
3401 return -1;
3402 }
6403aeea
SW
3403
3404 if (a.rank < b.rank)
3405 return 1;
3406
0963b4bd 3407 /* a.rank > b.rank */
6403aeea
SW
3408 return -1;
3409}
c5aa993b 3410
0963b4bd 3411/* Functions for overload resolution begin here. */
c906108c
SS
3412
3413/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3414 0 => A and B are identical
3415 1 => A and B are incomparable
3416 2 => A is better than B
3417 3 => A is worse than B */
c906108c
SS
3418
3419int
fba45db2 3420compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
3421{
3422 int i;
3423 int tmp;
c5aa993b
JM
3424 short found_pos = 0; /* any positives in c? */
3425 short found_neg = 0; /* any negatives in c? */
3426
3427 /* differing lengths => incomparable */
c906108c
SS
3428 if (a->length != b->length)
3429 return 1;
3430
c5aa993b
JM
3431 /* Subtract b from a */
3432 for (i = 0; i < a->length; i++)
c906108c 3433 {
6403aeea 3434 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 3435 if (tmp > 0)
c5aa993b 3436 found_pos = 1;
c906108c 3437 else if (tmp < 0)
c5aa993b 3438 found_neg = 1;
c906108c
SS
3439 }
3440
3441 if (found_pos)
3442 {
3443 if (found_neg)
c5aa993b 3444 return 1; /* incomparable */
c906108c 3445 else
c5aa993b 3446 return 3; /* A > B */
c906108c 3447 }
c5aa993b
JM
3448 else
3449 /* no positives */
c906108c
SS
3450 {
3451 if (found_neg)
c5aa993b 3452 return 2; /* A < B */
c906108c 3453 else
c5aa993b 3454 return 0; /* A == B */
c906108c
SS
3455 }
3456}
3457
7ba81444
MS
3458/* Rank a function by comparing its parameter types (PARMS, length
3459 NPARMS), to the types of an argument list (ARGS, length NARGS).
3460 Return a pointer to a badness vector. This has NARGS + 1
3461 entries. */
c906108c
SS
3462
3463struct badness_vector *
7ba81444 3464rank_function (struct type **parms, int nparms,
da096638 3465 struct value **args, int nargs)
c906108c
SS
3466{
3467 int i;
8d749320 3468 struct badness_vector *bv = XNEW (struct badness_vector);
c906108c
SS
3469 int min_len = nparms < nargs ? nparms : nargs;
3470
0963b4bd 3471 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 3472 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
3473
3474 /* First compare the lengths of the supplied lists.
7ba81444 3475 If there is a mismatch, set it to a high value. */
c5aa993b 3476
c906108c 3477 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3478 arguments and ellipsis parameter lists, we should consider those
3479 and rank the length-match more finely. */
c906108c 3480
6403aeea
SW
3481 LENGTH_MATCH (bv) = (nargs != nparms)
3482 ? LENGTH_MISMATCH_BADNESS
3483 : EXACT_MATCH_BADNESS;
c906108c 3484
0963b4bd 3485 /* Now rank all the parameters of the candidate function. */
74cc24b0 3486 for (i = 1; i <= min_len; i++)
da096638
KS
3487 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3488 args[i - 1]);
c906108c 3489
0963b4bd 3490 /* If more arguments than parameters, add dummy entries. */
c5aa993b 3491 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
3492 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3493
3494 return bv;
3495}
3496
973ccf8b
DJ
3497/* Compare the names of two integer types, assuming that any sign
3498 qualifiers have been checked already. We do it this way because
3499 there may be an "int" in the name of one of the types. */
3500
3501static int
3502integer_types_same_name_p (const char *first, const char *second)
3503{
3504 int first_p, second_p;
3505
7ba81444
MS
3506 /* If both are shorts, return 1; if neither is a short, keep
3507 checking. */
973ccf8b
DJ
3508 first_p = (strstr (first, "short") != NULL);
3509 second_p = (strstr (second, "short") != NULL);
3510 if (first_p && second_p)
3511 return 1;
3512 if (first_p || second_p)
3513 return 0;
3514
3515 /* Likewise for long. */
3516 first_p = (strstr (first, "long") != NULL);
3517 second_p = (strstr (second, "long") != NULL);
3518 if (first_p && second_p)
3519 return 1;
3520 if (first_p || second_p)
3521 return 0;
3522
3523 /* Likewise for char. */
3524 first_p = (strstr (first, "char") != NULL);
3525 second_p = (strstr (second, "char") != NULL);
3526 if (first_p && second_p)
3527 return 1;
3528 if (first_p || second_p)
3529 return 0;
3530
3531 /* They must both be ints. */
3532 return 1;
3533}
3534
894882e3
TT
3535/* Compares type A to type B. Returns true if they represent the same
3536 type, false otherwise. */
7062b0a0 3537
894882e3 3538bool
7062b0a0
SW
3539types_equal (struct type *a, struct type *b)
3540{
3541 /* Identical type pointers. */
3542 /* However, this still doesn't catch all cases of same type for b
3543 and a. The reason is that builtin types are different from
3544 the same ones constructed from the object. */
3545 if (a == b)
894882e3 3546 return true;
7062b0a0
SW
3547
3548 /* Resolve typedefs */
3549 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3550 a = check_typedef (a);
3551 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3552 b = check_typedef (b);
3553
3554 /* If after resolving typedefs a and b are not of the same type
3555 code then they are not equal. */
3556 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3557 return false;
7062b0a0
SW
3558
3559 /* If a and b are both pointers types or both reference types then
3560 they are equal of the same type iff the objects they refer to are
3561 of the same type. */
3562 if (TYPE_CODE (a) == TYPE_CODE_PTR
3563 || TYPE_CODE (a) == TYPE_CODE_REF)
3564 return types_equal (TYPE_TARGET_TYPE (a),
3565 TYPE_TARGET_TYPE (b));
3566
0963b4bd 3567 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3568 are exactly the same. This happens when we generate method
3569 stubs. The types won't point to the same address, but they
0963b4bd 3570 really are the same. */
7062b0a0
SW
3571
3572 if (TYPE_NAME (a) && TYPE_NAME (b)
3573 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3574 return true;
7062b0a0
SW
3575
3576 /* Check if identical after resolving typedefs. */
3577 if (a == b)
894882e3 3578 return true;
7062b0a0 3579
9ce98649
TT
3580 /* Two function types are equal if their argument and return types
3581 are equal. */
3582 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3583 {
3584 int i;
3585
3586 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3587 return false;
9ce98649
TT
3588
3589 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3590 return false;
9ce98649
TT
3591
3592 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3593 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3594 return false;
9ce98649 3595
894882e3 3596 return true;
9ce98649
TT
3597 }
3598
894882e3 3599 return false;
7062b0a0 3600}
ca092b61
DE
3601\f
3602/* Deep comparison of types. */
3603
3604/* An entry in the type-equality bcache. */
3605
894882e3 3606struct type_equality_entry
ca092b61 3607{
894882e3
TT
3608 type_equality_entry (struct type *t1, struct type *t2)
3609 : type1 (t1),
3610 type2 (t2)
3611 {
3612 }
ca092b61 3613
894882e3
TT
3614 struct type *type1, *type2;
3615};
ca092b61 3616
894882e3
TT
3617/* A helper function to compare two strings. Returns true if they are
3618 the same, false otherwise. Handles NULLs properly. */
ca092b61 3619
894882e3 3620static bool
ca092b61
DE
3621compare_maybe_null_strings (const char *s, const char *t)
3622{
894882e3
TT
3623 if (s == NULL || t == NULL)
3624 return s == t;
ca092b61
DE
3625 return strcmp (s, t) == 0;
3626}
3627
3628/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3629 "deep" equality. Returns true if the types are considered the
3630 same, false otherwise. */
ca092b61 3631
894882e3 3632static bool
ca092b61 3633check_types_equal (struct type *type1, struct type *type2,
894882e3 3634 std::vector<type_equality_entry> *worklist)
ca092b61 3635{
f168693b
SM
3636 type1 = check_typedef (type1);
3637 type2 = check_typedef (type2);
ca092b61
DE
3638
3639 if (type1 == type2)
894882e3 3640 return true;
ca092b61
DE
3641
3642 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3643 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3644 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3645 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3646 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3647 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3648 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3649 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3650 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 3651 return false;
ca092b61 3652
e86ca25f 3653 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3654 return false;
ca092b61 3655 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3656 return false;
ca092b61
DE
3657
3658 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3659 {
0f59d5fc 3660 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 3661 return false;
ca092b61
DE
3662 }
3663 else
3664 {
3665 int i;
3666
3667 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3668 {
3669 const struct field *field1 = &TYPE_FIELD (type1, i);
3670 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
3671
3672 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3673 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3674 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 3675 return false;
ca092b61
DE
3676 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3677 FIELD_NAME (*field2)))
894882e3 3678 return false;
ca092b61
DE
3679 switch (FIELD_LOC_KIND (*field1))
3680 {
3681 case FIELD_LOC_KIND_BITPOS:
3682 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 3683 return false;
ca092b61
DE
3684 break;
3685 case FIELD_LOC_KIND_ENUMVAL:
3686 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 3687 return false;
ca092b61
DE
3688 break;
3689 case FIELD_LOC_KIND_PHYSADDR:
3690 if (FIELD_STATIC_PHYSADDR (*field1)
3691 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 3692 return false;
ca092b61
DE
3693 break;
3694 case FIELD_LOC_KIND_PHYSNAME:
3695 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3696 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 3697 return false;
ca092b61
DE
3698 break;
3699 case FIELD_LOC_KIND_DWARF_BLOCK:
3700 {
3701 struct dwarf2_locexpr_baton *block1, *block2;
3702
3703 block1 = FIELD_DWARF_BLOCK (*field1);
3704 block2 = FIELD_DWARF_BLOCK (*field2);
3705 if (block1->per_cu != block2->per_cu
3706 || block1->size != block2->size
3707 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 3708 return false;
ca092b61
DE
3709 }
3710 break;
3711 default:
3712 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3713 "%d by check_types_equal"),
3714 FIELD_LOC_KIND (*field1));
3715 }
3716
894882e3 3717 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
3718 }
3719 }
3720
3721 if (TYPE_TARGET_TYPE (type1) != NULL)
3722 {
ca092b61 3723 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 3724 return false;
ca092b61 3725
894882e3
TT
3726 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3727 TYPE_TARGET_TYPE (type2));
ca092b61
DE
3728 }
3729 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 3730 return false;
ca092b61 3731
894882e3 3732 return true;
ca092b61
DE
3733}
3734
894882e3
TT
3735/* Check types on a worklist for equality. Returns false if any pair
3736 is not equal, true if they are all considered equal. */
ca092b61 3737
894882e3
TT
3738static bool
3739check_types_worklist (std::vector<type_equality_entry> *worklist,
ca092b61
DE
3740 struct bcache *cache)
3741{
894882e3 3742 while (!worklist->empty ())
ca092b61 3743 {
ca092b61
DE
3744 int added;
3745
894882e3
TT
3746 struct type_equality_entry entry = std::move (worklist->back ());
3747 worklist->pop_back ();
ca092b61
DE
3748
3749 /* If the type pair has already been visited, we know it is
3750 ok. */
3751 bcache_full (&entry, sizeof (entry), cache, &added);
3752 if (!added)
3753 continue;
3754
894882e3
TT
3755 if (!check_types_equal (entry.type1, entry.type2, worklist))
3756 return false;
ca092b61 3757 }
7062b0a0 3758
894882e3 3759 return true;
ca092b61
DE
3760}
3761
894882e3
TT
3762/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3763 "deep comparison". Otherwise return false. */
ca092b61 3764
894882e3 3765bool
ca092b61
DE
3766types_deeply_equal (struct type *type1, struct type *type2)
3767{
6c63c96a 3768 struct gdb_exception except = exception_none;
894882e3 3769 bool result = false;
ca092b61 3770 struct bcache *cache;
894882e3 3771 std::vector<type_equality_entry> worklist;
ca092b61
DE
3772
3773 gdb_assert (type1 != NULL && type2 != NULL);
3774
3775 /* Early exit for the simple case. */
3776 if (type1 == type2)
894882e3 3777 return true;
ca092b61
DE
3778
3779 cache = bcache_xmalloc (NULL, NULL);
3780
894882e3 3781 worklist.emplace_back (type1, type2);
ca092b61 3782
6c63c96a
PA
3783 /* check_types_worklist calls several nested helper functions, some
3784 of which can raise a GDB exception, so we just check and rethrow
3785 here. If there is a GDB exception, a comparison is not capable
3786 (or trusted), so exit. */
492d29ea 3787 TRY
ca092b61
DE
3788 {
3789 result = check_types_worklist (&worklist, cache);
3790 }
6c63c96a 3791 CATCH (ex, RETURN_MASK_ALL)
492d29ea 3792 {
6c63c96a 3793 except = ex;
492d29ea
PA
3794 }
3795 END_CATCH
ca092b61 3796
6c63c96a 3797 bcache_xfree (cache);
6c63c96a
PA
3798
3799 /* Rethrow if there was a problem. */
3800 if (except.reason < 0)
3801 throw_exception (except);
3802
ca092b61
DE
3803 return result;
3804}
3f2f83dd
KB
3805
3806/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3807 Otherwise return one. */
3808
3809int
3810type_not_allocated (const struct type *type)
3811{
3812 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3813
3814 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3815 && !TYPE_DYN_PROP_ADDR (prop));
3816}
3817
3818/* Associated status of type TYPE. Return zero if type TYPE is associated.
3819 Otherwise return one. */
3820
3821int
3822type_not_associated (const struct type *type)
3823{
3824 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3825
3826 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3827 && !TYPE_DYN_PROP_ADDR (prop));
3828}
ca092b61 3829\f
c906108c
SS
3830/* Compare one type (PARM) for compatibility with another (ARG).
3831 * PARM is intended to be the parameter type of a function; and
3832 * ARG is the supplied argument's type. This function tests if
3833 * the latter can be converted to the former.
da096638 3834 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3835 *
3836 * Return 0 if they are identical types;
3837 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3838 * PARM is to ARG. The higher the return value, the worse the match.
3839 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3840
6403aeea 3841struct rank
da096638 3842rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3843{
a9d5ef47 3844 struct rank rank = {0,0};
7062b0a0 3845
c906108c
SS
3846 /* Resolve typedefs */
3847 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3848 parm = check_typedef (parm);
3849 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3850 arg = check_typedef (arg);
3851
e15c3eb4 3852 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 3853 {
e15c3eb4
KS
3854 if (VALUE_LVAL (value) == not_lval)
3855 {
3856 /* Rvalues should preferably bind to rvalue references or const
3857 lvalue references. */
3858 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3859 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3860 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3861 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3862 else
3863 return INCOMPATIBLE_TYPE_BADNESS;
3864 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3865 }
3866 else
3867 {
3868 /* Lvalues should prefer lvalue overloads. */
3869 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3870 {
3871 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3872 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3873 }
3874 }
15c0a2a9
AV
3875 }
3876
3877 if (types_equal (parm, arg))
15c0a2a9 3878 {
e15c3eb4
KS
3879 struct type *t1 = parm;
3880 struct type *t2 = arg;
15c0a2a9 3881
e15c3eb4
KS
3882 /* For pointers and references, compare target type. */
3883 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3884 {
3885 t1 = TYPE_TARGET_TYPE (parm);
3886 t2 = TYPE_TARGET_TYPE (arg);
3887 }
15c0a2a9 3888
e15c3eb4
KS
3889 /* Make sure they are CV equal, too. */
3890 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3891 rank.subrank |= CV_CONVERSION_CONST;
3892 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3893 rank.subrank |= CV_CONVERSION_VOLATILE;
3894 if (rank.subrank != 0)
3895 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3896 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
3897 }
3898
db577aea 3899 /* See through references, since we can almost make non-references
7ba81444 3900 references. */
aa006118
AV
3901
3902 if (TYPE_IS_REFERENCE (arg))
da096638 3903 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3904 REFERENCE_CONVERSION_BADNESS));
aa006118 3905 if (TYPE_IS_REFERENCE (parm))
da096638 3906 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3907 REFERENCE_CONVERSION_BADNESS));
5d161b24 3908 if (overload_debug)
7ba81444
MS
3909 /* Debugging only. */
3910 fprintf_filtered (gdb_stderr,
3911 "------ Arg is %s [%d], parm is %s [%d]\n",
3912 TYPE_NAME (arg), TYPE_CODE (arg),
3913 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3914
0963b4bd 3915 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3916
3917 switch (TYPE_CODE (parm))
3918 {
c5aa993b
JM
3919 case TYPE_CODE_PTR:
3920 switch (TYPE_CODE (arg))
3921 {
3922 case TYPE_CODE_PTR:
7062b0a0
SW
3923
3924 /* Allowed pointer conversions are:
3925 (a) pointer to void-pointer conversion. */
3926 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3927 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3928
3929 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3930 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3931 TYPE_TARGET_TYPE (arg),
3932 0);
3933 if (rank.subrank >= 0)
3934 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3935
3936 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3937 case TYPE_CODE_ARRAY:
e15c3eb4
KS
3938 {
3939 struct type *t1 = TYPE_TARGET_TYPE (parm);
3940 struct type *t2 = TYPE_TARGET_TYPE (arg);
3941
3942 if (types_equal (t1, t2))
3943 {
3944 /* Make sure they are CV equal. */
3945 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3946 rank.subrank |= CV_CONVERSION_CONST;
3947 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3948 rank.subrank |= CV_CONVERSION_VOLATILE;
3949 if (rank.subrank != 0)
3950 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3951 return EXACT_MATCH_BADNESS;
3952 }
3953 return INCOMPATIBLE_TYPE_BADNESS;
3954 }
c5aa993b 3955 case TYPE_CODE_FUNC:
da096638 3956 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3957 case TYPE_CODE_INT:
a451cb65 3958 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3959 {
a451cb65
KS
3960 if (value_as_long (value) == 0)
3961 {
3962 /* Null pointer conversion: allow it to be cast to a pointer.
3963 [4.10.1 of C++ standard draft n3290] */
3964 return NULL_POINTER_CONVERSION_BADNESS;
3965 }
3966 else
3967 {
3968 /* If type checking is disabled, allow the conversion. */
3969 if (!strict_type_checking)
3970 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3971 }
da096638
KS
3972 }
3973 /* fall through */
c5aa993b 3974 case TYPE_CODE_ENUM:
4f2aea11 3975 case TYPE_CODE_FLAGS:
c5aa993b
JM
3976 case TYPE_CODE_CHAR:
3977 case TYPE_CODE_RANGE:
3978 case TYPE_CODE_BOOL:
c5aa993b
JM
3979 default:
3980 return INCOMPATIBLE_TYPE_BADNESS;
3981 }
3982 case TYPE_CODE_ARRAY:
3983 switch (TYPE_CODE (arg))
3984 {
3985 case TYPE_CODE_PTR:
3986 case TYPE_CODE_ARRAY:
7ba81444 3987 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3988 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3989 default:
3990 return INCOMPATIBLE_TYPE_BADNESS;
3991 }
3992 case TYPE_CODE_FUNC:
3993 switch (TYPE_CODE (arg))
3994 {
3995 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3996 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3997 default:
3998 return INCOMPATIBLE_TYPE_BADNESS;
3999 }
4000 case TYPE_CODE_INT:
4001 switch (TYPE_CODE (arg))
4002 {
4003 case TYPE_CODE_INT:
4004 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4005 {
4006 /* Deal with signed, unsigned, and plain chars and
7ba81444 4007 signed and unsigned ints. */
c5aa993b
JM
4008 if (TYPE_NOSIGN (parm))
4009 {
0963b4bd 4010 /* This case only for character types. */
7ba81444 4011 if (TYPE_NOSIGN (arg))
6403aeea 4012 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
4013 else /* signed/unsigned char -> plain char */
4014 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4015 }
4016 else if (TYPE_UNSIGNED (parm))
4017 {
4018 if (TYPE_UNSIGNED (arg))
4019 {
7ba81444
MS
4020 /* unsigned int -> unsigned int, or
4021 unsigned long -> unsigned long */
4022 if (integer_types_same_name_p (TYPE_NAME (parm),
4023 TYPE_NAME (arg)))
6403aeea 4024 return EXACT_MATCH_BADNESS;
7ba81444
MS
4025 else if (integer_types_same_name_p (TYPE_NAME (arg),
4026 "int")
4027 && integer_types_same_name_p (TYPE_NAME (parm),
4028 "long"))
3e43a32a
MS
4029 /* unsigned int -> unsigned long */
4030 return INTEGER_PROMOTION_BADNESS;
c5aa993b 4031 else
3e43a32a
MS
4032 /* unsigned long -> unsigned int */
4033 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4034 }
4035 else
4036 {
7ba81444
MS
4037 if (integer_types_same_name_p (TYPE_NAME (arg),
4038 "long")
4039 && integer_types_same_name_p (TYPE_NAME (parm),
4040 "int"))
3e43a32a
MS
4041 /* signed long -> unsigned int */
4042 return INTEGER_CONVERSION_BADNESS;
c5aa993b 4043 else
3e43a32a
MS
4044 /* signed int/long -> unsigned int/long */
4045 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4046 }
4047 }
4048 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4049 {
7ba81444
MS
4050 if (integer_types_same_name_p (TYPE_NAME (parm),
4051 TYPE_NAME (arg)))
6403aeea 4052 return EXACT_MATCH_BADNESS;
7ba81444
MS
4053 else if (integer_types_same_name_p (TYPE_NAME (arg),
4054 "int")
4055 && integer_types_same_name_p (TYPE_NAME (parm),
4056 "long"))
c5aa993b
JM
4057 return INTEGER_PROMOTION_BADNESS;
4058 else
1c5cb38e 4059 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4060 }
4061 else
1c5cb38e 4062 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4063 }
4064 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4065 return INTEGER_PROMOTION_BADNESS;
4066 else
1c5cb38e 4067 return INTEGER_CONVERSION_BADNESS;
c5aa993b 4068 case TYPE_CODE_ENUM:
4f2aea11 4069 case TYPE_CODE_FLAGS:
c5aa993b
JM
4070 case TYPE_CODE_CHAR:
4071 case TYPE_CODE_RANGE:
4072 case TYPE_CODE_BOOL:
3d567982
TT
4073 if (TYPE_DECLARED_CLASS (arg))
4074 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
4075 return INTEGER_PROMOTION_BADNESS;
4076 case TYPE_CODE_FLT:
4077 return INT_FLOAT_CONVERSION_BADNESS;
4078 case TYPE_CODE_PTR:
4079 return NS_POINTER_CONVERSION_BADNESS;
4080 default:
4081 return INCOMPATIBLE_TYPE_BADNESS;
4082 }
4083 break;
4084 case TYPE_CODE_ENUM:
4085 switch (TYPE_CODE (arg))
4086 {
4087 case TYPE_CODE_INT:
4088 case TYPE_CODE_CHAR:
4089 case TYPE_CODE_RANGE:
4090 case TYPE_CODE_BOOL:
4091 case TYPE_CODE_ENUM:
3d567982
TT
4092 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4093 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 4094 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4095 case TYPE_CODE_FLT:
4096 return INT_FLOAT_CONVERSION_BADNESS;
4097 default:
4098 return INCOMPATIBLE_TYPE_BADNESS;
4099 }
4100 break;
4101 case TYPE_CODE_CHAR:
4102 switch (TYPE_CODE (arg))
4103 {
4104 case TYPE_CODE_RANGE:
4105 case TYPE_CODE_BOOL:
4106 case TYPE_CODE_ENUM:
3d567982
TT
4107 if (TYPE_DECLARED_CLASS (arg))
4108 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 4109 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4110 case TYPE_CODE_FLT:
4111 return INT_FLOAT_CONVERSION_BADNESS;
4112 case TYPE_CODE_INT:
4113 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 4114 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4115 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4116 return INTEGER_PROMOTION_BADNESS;
86a73007 4117 /* fall through */
c5aa993b 4118 case TYPE_CODE_CHAR:
7ba81444
MS
4119 /* Deal with signed, unsigned, and plain chars for C++ and
4120 with int cases falling through from previous case. */
c5aa993b
JM
4121 if (TYPE_NOSIGN (parm))
4122 {
4123 if (TYPE_NOSIGN (arg))
6403aeea 4124 return EXACT_MATCH_BADNESS;
c5aa993b 4125 else
1c5cb38e 4126 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4127 }
4128 else if (TYPE_UNSIGNED (parm))
4129 {
4130 if (TYPE_UNSIGNED (arg))
6403aeea 4131 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4132 else
4133 return INTEGER_PROMOTION_BADNESS;
4134 }
4135 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 4136 return EXACT_MATCH_BADNESS;
c5aa993b 4137 else
1c5cb38e 4138 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4139 default:
4140 return INCOMPATIBLE_TYPE_BADNESS;
4141 }
4142 break;
4143 case TYPE_CODE_RANGE:
4144 switch (TYPE_CODE (arg))
4145 {
4146 case TYPE_CODE_INT:
4147 case TYPE_CODE_CHAR:
4148 case TYPE_CODE_RANGE:
4149 case TYPE_CODE_BOOL:
4150 case TYPE_CODE_ENUM:
1c5cb38e 4151 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4152 case TYPE_CODE_FLT:
4153 return INT_FLOAT_CONVERSION_BADNESS;
4154 default:
4155 return INCOMPATIBLE_TYPE_BADNESS;
4156 }
4157 break;
4158 case TYPE_CODE_BOOL:
4159 switch (TYPE_CODE (arg))
4160 {
5b4f6e25
KS
4161 /* n3290 draft, section 4.12.1 (conv.bool):
4162
4163 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4164 pointer to member type can be converted to a prvalue of type
4165 bool. A zero value, null pointer value, or null member pointer
4166 value is converted to false; any other value is converted to
4167 true. A prvalue of type std::nullptr_t can be converted to a
4168 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
4169 case TYPE_CODE_INT:
4170 case TYPE_CODE_CHAR:
c5aa993b
JM
4171 case TYPE_CODE_ENUM:
4172 case TYPE_CODE_FLT:
5b4f6e25 4173 case TYPE_CODE_MEMBERPTR:
c5aa993b 4174 case TYPE_CODE_PTR:
5b4f6e25
KS
4175 return BOOL_CONVERSION_BADNESS;
4176 case TYPE_CODE_RANGE:
4177 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 4178 case TYPE_CODE_BOOL:
6403aeea 4179 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4180 default:
4181 return INCOMPATIBLE_TYPE_BADNESS;
4182 }
4183 break;
4184 case TYPE_CODE_FLT:
4185 switch (TYPE_CODE (arg))
4186 {
4187 case TYPE_CODE_FLT:
4188 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4189 return FLOAT_PROMOTION_BADNESS;
4190 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 4191 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4192 else
4193 return FLOAT_CONVERSION_BADNESS;
4194 case TYPE_CODE_INT:
4195 case TYPE_CODE_BOOL:
4196 case TYPE_CODE_ENUM:
4197 case TYPE_CODE_RANGE:
4198 case TYPE_CODE_CHAR:
4199 return INT_FLOAT_CONVERSION_BADNESS;
4200 default:
4201 return INCOMPATIBLE_TYPE_BADNESS;
4202 }
4203 break;
4204 case TYPE_CODE_COMPLEX:
4205 switch (TYPE_CODE (arg))
7ba81444 4206 { /* Strictly not needed for C++, but... */
c5aa993b
JM
4207 case TYPE_CODE_FLT:
4208 return FLOAT_PROMOTION_BADNESS;
4209 case TYPE_CODE_COMPLEX:
6403aeea 4210 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4211 default:
4212 return INCOMPATIBLE_TYPE_BADNESS;
4213 }
4214 break;
4215 case TYPE_CODE_STRUCT:
c5aa993b
JM
4216 switch (TYPE_CODE (arg))
4217 {
4218 case TYPE_CODE_STRUCT:
4219 /* Check for derivation */
a9d5ef47
SW
4220 rank.subrank = distance_to_ancestor (parm, arg, 0);
4221 if (rank.subrank >= 0)
4222 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
86a73007 4223 /* fall through */
c5aa993b
JM
4224 default:
4225 return INCOMPATIBLE_TYPE_BADNESS;
4226 }
4227 break;
4228 case TYPE_CODE_UNION:
4229 switch (TYPE_CODE (arg))
4230 {
4231 case TYPE_CODE_UNION:
4232 default:
4233 return INCOMPATIBLE_TYPE_BADNESS;
4234 }
4235 break;
0d5de010 4236 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
4237 switch (TYPE_CODE (arg))
4238 {
4239 default:
4240 return INCOMPATIBLE_TYPE_BADNESS;
4241 }
4242 break;
4243 case TYPE_CODE_METHOD:
4244 switch (TYPE_CODE (arg))
4245 {
4246
4247 default:
4248 return INCOMPATIBLE_TYPE_BADNESS;
4249 }
4250 break;
4251 case TYPE_CODE_REF:
4252 switch (TYPE_CODE (arg))
4253 {
4254
4255 default:
4256 return INCOMPATIBLE_TYPE_BADNESS;
4257 }
4258
4259 break;
4260 case TYPE_CODE_SET:
4261 switch (TYPE_CODE (arg))
4262 {
4263 /* Not in C++ */
4264 case TYPE_CODE_SET:
7ba81444 4265 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 4266 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
4267 default:
4268 return INCOMPATIBLE_TYPE_BADNESS;
4269 }
4270 break;
4271 case TYPE_CODE_VOID:
4272 default:
4273 return INCOMPATIBLE_TYPE_BADNESS;
4274 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4275}
4276
0963b4bd 4277/* End of functions for overload resolution. */
5212577a
DE
4278\f
4279/* Routines to pretty-print types. */
c906108c 4280
c906108c 4281static void
fba45db2 4282print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4283{
4284 int bitno;
4285
4286 for (bitno = 0; bitno < nbits; bitno++)
4287 {
4288 if ((bitno % 8) == 0)
4289 {
4290 puts_filtered (" ");
4291 }
4292 if (B_TST (bits, bitno))
a3f17187 4293 printf_filtered (("1"));
c906108c 4294 else
a3f17187 4295 printf_filtered (("0"));
c906108c
SS
4296 }
4297}
4298
ad2f7632 4299/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4300 include it since we may get into a infinitely recursive
4301 situation. */
c906108c
SS
4302
4303static void
4c9e8482 4304print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4305{
4306 if (args != NULL)
4307 {
ad2f7632
DJ
4308 int i;
4309
4310 for (i = 0; i < nargs; i++)
4c9e8482
DE
4311 {
4312 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4313 args[i].name != NULL ? args[i].name : "<NULL>");
4314 recursive_dump_type (args[i].type, spaces + 2);
4315 }
c906108c
SS
4316 }
4317}
4318
d6a843b5
JK
4319int
4320field_is_static (struct field *f)
4321{
4322 /* "static" fields are the fields whose location is not relative
4323 to the address of the enclosing struct. It would be nice to
4324 have a dedicated flag that would be set for static fields when
4325 the type is being created. But in practice, checking the field
254e6b9e 4326 loc_kind should give us an accurate answer. */
d6a843b5
JK
4327 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4328 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4329}
4330
c906108c 4331static void
fba45db2 4332dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4333{
4334 int method_idx;
4335 int overload_idx;
4336 struct fn_field *f;
4337
4338 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4339 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4340 printf_filtered ("\n");
4341 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4342 {
4343 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4344 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4345 method_idx,
4346 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4347 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4348 gdb_stdout);
a3f17187 4349 printf_filtered (_(") length %d\n"),
c906108c
SS
4350 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4351 for (overload_idx = 0;
4352 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4353 overload_idx++)
4354 {
4355 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4356 overload_idx,
4357 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4358 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4359 gdb_stdout);
c906108c
SS
4360 printf_filtered (")\n");
4361 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4362 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4363 gdb_stdout);
c906108c
SS
4364 printf_filtered ("\n");
4365
4366 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4367 spaces + 8 + 2);
4368
4369 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4370 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4371 gdb_stdout);
c906108c 4372 printf_filtered ("\n");
4c9e8482
DE
4373 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4374 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4375 spaces + 8 + 2);
c906108c 4376 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4377 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4378 gdb_stdout);
c906108c
SS
4379 printf_filtered ("\n");
4380
4381 printfi_filtered (spaces + 8, "is_const %d\n",
4382 TYPE_FN_FIELD_CONST (f, overload_idx));
4383 printfi_filtered (spaces + 8, "is_volatile %d\n",
4384 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4385 printfi_filtered (spaces + 8, "is_private %d\n",
4386 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4387 printfi_filtered (spaces + 8, "is_protected %d\n",
4388 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4389 printfi_filtered (spaces + 8, "is_stub %d\n",
4390 TYPE_FN_FIELD_STUB (f, overload_idx));
4391 printfi_filtered (spaces + 8, "voffset %u\n",
4392 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4393 }
4394 }
4395}
4396
4397static void
fba45db2 4398print_cplus_stuff (struct type *type, int spaces)
c906108c 4399{
ae6ae975
DE
4400 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4401 printfi_filtered (spaces, "vptr_basetype ");
4402 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4403 puts_filtered ("\n");
4404 if (TYPE_VPTR_BASETYPE (type) != NULL)
4405 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4406
c906108c
SS
4407 printfi_filtered (spaces, "n_baseclasses %d\n",
4408 TYPE_N_BASECLASSES (type));
4409 printfi_filtered (spaces, "nfn_fields %d\n",
4410 TYPE_NFN_FIELDS (type));
c906108c
SS
4411 if (TYPE_N_BASECLASSES (type) > 0)
4412 {
4413 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4414 TYPE_N_BASECLASSES (type));
7ba81444
MS
4415 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4416 gdb_stdout);
c906108c
SS
4417 printf_filtered (")");
4418
4419 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4420 TYPE_N_BASECLASSES (type));
4421 puts_filtered ("\n");
4422 }
4423 if (TYPE_NFIELDS (type) > 0)
4424 {
4425 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4426 {
7ba81444
MS
4427 printfi_filtered (spaces,
4428 "private_field_bits (%d bits at *",
c906108c 4429 TYPE_NFIELDS (type));
7ba81444
MS
4430 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4431 gdb_stdout);
c906108c
SS
4432 printf_filtered (")");
4433 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4434 TYPE_NFIELDS (type));
4435 puts_filtered ("\n");
4436 }
4437 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4438 {
7ba81444
MS
4439 printfi_filtered (spaces,
4440 "protected_field_bits (%d bits at *",
c906108c 4441 TYPE_NFIELDS (type));
7ba81444
MS
4442 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4443 gdb_stdout);
c906108c
SS
4444 printf_filtered (")");
4445 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4446 TYPE_NFIELDS (type));
4447 puts_filtered ("\n");
4448 }
4449 }
4450 if (TYPE_NFN_FIELDS (type) > 0)
4451 {
4452 dump_fn_fieldlists (type, spaces);
4453 }
4454}
4455
b4ba55a1
JB
4456/* Print the contents of the TYPE's type_specific union, assuming that
4457 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4458
4459static void
4460print_gnat_stuff (struct type *type, int spaces)
4461{
4462 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4463
8cd00c59
PMR
4464 if (descriptive_type == NULL)
4465 printfi_filtered (spaces + 2, "no descriptive type\n");
4466 else
4467 {
4468 printfi_filtered (spaces + 2, "descriptive type\n");
4469 recursive_dump_type (descriptive_type, spaces + 4);
4470 }
b4ba55a1
JB
4471}
4472
c906108c
SS
4473static struct obstack dont_print_type_obstack;
4474
4475void
fba45db2 4476recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4477{
4478 int idx;
4479
4480 if (spaces == 0)
4481 obstack_begin (&dont_print_type_obstack, 0);
4482
4483 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4484 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4485 {
4486 struct type **first_dont_print
7ba81444 4487 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4488
7ba81444
MS
4489 int i = (struct type **)
4490 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4491
4492 while (--i >= 0)
4493 {
4494 if (type == first_dont_print[i])
4495 {
4496 printfi_filtered (spaces, "type node ");
d4f3574e 4497 gdb_print_host_address (type, gdb_stdout);
a3f17187 4498 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4499 return;
4500 }
4501 }
4502
4503 obstack_ptr_grow (&dont_print_type_obstack, type);
4504 }
4505
4506 printfi_filtered (spaces, "type node ");
d4f3574e 4507 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4508 printf_filtered ("\n");
4509 printfi_filtered (spaces, "name '%s' (",
4510 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4511 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4512 printf_filtered (")\n");
c906108c
SS
4513 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4514 switch (TYPE_CODE (type))
4515 {
c5aa993b
JM
4516 case TYPE_CODE_UNDEF:
4517 printf_filtered ("(TYPE_CODE_UNDEF)");
4518 break;
4519 case TYPE_CODE_PTR:
4520 printf_filtered ("(TYPE_CODE_PTR)");
4521 break;
4522 case TYPE_CODE_ARRAY:
4523 printf_filtered ("(TYPE_CODE_ARRAY)");
4524 break;
4525 case TYPE_CODE_STRUCT:
4526 printf_filtered ("(TYPE_CODE_STRUCT)");
4527 break;
4528 case TYPE_CODE_UNION:
4529 printf_filtered ("(TYPE_CODE_UNION)");
4530 break;
4531 case TYPE_CODE_ENUM:
4532 printf_filtered ("(TYPE_CODE_ENUM)");
4533 break;
4f2aea11
MK
4534 case TYPE_CODE_FLAGS:
4535 printf_filtered ("(TYPE_CODE_FLAGS)");
4536 break;
c5aa993b
JM
4537 case TYPE_CODE_FUNC:
4538 printf_filtered ("(TYPE_CODE_FUNC)");
4539 break;
4540 case TYPE_CODE_INT:
4541 printf_filtered ("(TYPE_CODE_INT)");
4542 break;
4543 case TYPE_CODE_FLT:
4544 printf_filtered ("(TYPE_CODE_FLT)");
4545 break;
4546 case TYPE_CODE_VOID:
4547 printf_filtered ("(TYPE_CODE_VOID)");
4548 break;
4549 case TYPE_CODE_SET:
4550 printf_filtered ("(TYPE_CODE_SET)");
4551 break;
4552 case TYPE_CODE_RANGE:
4553 printf_filtered ("(TYPE_CODE_RANGE)");
4554 break;
4555 case TYPE_CODE_STRING:
4556 printf_filtered ("(TYPE_CODE_STRING)");
4557 break;
4558 case TYPE_CODE_ERROR:
4559 printf_filtered ("(TYPE_CODE_ERROR)");
4560 break;
0d5de010
DJ
4561 case TYPE_CODE_MEMBERPTR:
4562 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4563 break;
4564 case TYPE_CODE_METHODPTR:
4565 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4566 break;
4567 case TYPE_CODE_METHOD:
4568 printf_filtered ("(TYPE_CODE_METHOD)");
4569 break;
4570 case TYPE_CODE_REF:
4571 printf_filtered ("(TYPE_CODE_REF)");
4572 break;
4573 case TYPE_CODE_CHAR:
4574 printf_filtered ("(TYPE_CODE_CHAR)");
4575 break;
4576 case TYPE_CODE_BOOL:
4577 printf_filtered ("(TYPE_CODE_BOOL)");
4578 break;
e9e79dd9
FF
4579 case TYPE_CODE_COMPLEX:
4580 printf_filtered ("(TYPE_CODE_COMPLEX)");
4581 break;
c5aa993b
JM
4582 case TYPE_CODE_TYPEDEF:
4583 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4584 break;
5c4e30ca
DC
4585 case TYPE_CODE_NAMESPACE:
4586 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4587 break;
c5aa993b
JM
4588 default:
4589 printf_filtered ("(UNKNOWN TYPE CODE)");
4590 break;
c906108c
SS
4591 }
4592 puts_filtered ("\n");
4593 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
4594 if (TYPE_OBJFILE_OWNED (type))
4595 {
4596 printfi_filtered (spaces, "objfile ");
4597 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4598 }
4599 else
4600 {
4601 printfi_filtered (spaces, "gdbarch ");
4602 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4603 }
c906108c
SS
4604 printf_filtered ("\n");
4605 printfi_filtered (spaces, "target_type ");
d4f3574e 4606 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4607 printf_filtered ("\n");
4608 if (TYPE_TARGET_TYPE (type) != NULL)
4609 {
4610 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4611 }
4612 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4613 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4614 printf_filtered ("\n");
4615 printfi_filtered (spaces, "reference_type ");
d4f3574e 4616 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4617 printf_filtered ("\n");
2fdde8f8
DJ
4618 printfi_filtered (spaces, "type_chain ");
4619 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4620 printf_filtered ("\n");
7ba81444
MS
4621 printfi_filtered (spaces, "instance_flags 0x%x",
4622 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4623 if (TYPE_CONST (type))
4624 {
a9ff5f12 4625 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4626 }
4627 if (TYPE_VOLATILE (type))
4628 {
a9ff5f12 4629 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4630 }
4631 if (TYPE_CODE_SPACE (type))
4632 {
a9ff5f12 4633 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4634 }
4635 if (TYPE_DATA_SPACE (type))
4636 {
a9ff5f12 4637 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4638 }
8b2dbe47
KB
4639 if (TYPE_ADDRESS_CLASS_1 (type))
4640 {
a9ff5f12 4641 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4642 }
4643 if (TYPE_ADDRESS_CLASS_2 (type))
4644 {
a9ff5f12 4645 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4646 }
06d66ee9
TT
4647 if (TYPE_RESTRICT (type))
4648 {
a9ff5f12 4649 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4650 }
a2c2acaf
MW
4651 if (TYPE_ATOMIC (type))
4652 {
a9ff5f12 4653 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4654 }
2fdde8f8 4655 puts_filtered ("\n");
876cecd0
TT
4656
4657 printfi_filtered (spaces, "flags");
762a036f 4658 if (TYPE_UNSIGNED (type))
c906108c 4659 {
a9ff5f12 4660 puts_filtered (" TYPE_UNSIGNED");
c906108c 4661 }
762a036f
FF
4662 if (TYPE_NOSIGN (type))
4663 {
a9ff5f12 4664 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4665 }
4666 if (TYPE_STUB (type))
c906108c 4667 {
a9ff5f12 4668 puts_filtered (" TYPE_STUB");
c906108c 4669 }
762a036f
FF
4670 if (TYPE_TARGET_STUB (type))
4671 {
a9ff5f12 4672 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4673 }
762a036f
FF
4674 if (TYPE_PROTOTYPED (type))
4675 {
a9ff5f12 4676 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4677 }
4678 if (TYPE_INCOMPLETE (type))
4679 {
a9ff5f12 4680 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4681 }
762a036f
FF
4682 if (TYPE_VARARGS (type))
4683 {
a9ff5f12 4684 puts_filtered (" TYPE_VARARGS");
762a036f 4685 }
f5f8a009
EZ
4686 /* This is used for things like AltiVec registers on ppc. Gcc emits
4687 an attribute for the array type, which tells whether or not we
4688 have a vector, instead of a regular array. */
4689 if (TYPE_VECTOR (type))
4690 {
a9ff5f12 4691 puts_filtered (" TYPE_VECTOR");
f5f8a009 4692 }
876cecd0
TT
4693 if (TYPE_FIXED_INSTANCE (type))
4694 {
4695 puts_filtered (" TYPE_FIXED_INSTANCE");
4696 }
4697 if (TYPE_STUB_SUPPORTED (type))
4698 {
4699 puts_filtered (" TYPE_STUB_SUPPORTED");
4700 }
4701 if (TYPE_NOTTEXT (type))
4702 {
4703 puts_filtered (" TYPE_NOTTEXT");
4704 }
c906108c
SS
4705 puts_filtered ("\n");
4706 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4707 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4708 puts_filtered ("\n");
4709 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4710 {
14e75d8e
JK
4711 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4712 printfi_filtered (spaces + 2,
4713 "[%d] enumval %s type ",
4714 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4715 else
4716 printfi_filtered (spaces + 2,
6b850546
DT
4717 "[%d] bitpos %s bitsize %d type ",
4718 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4719 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4720 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4721 printf_filtered (" name '%s' (",
4722 TYPE_FIELD_NAME (type, idx) != NULL
4723 ? TYPE_FIELD_NAME (type, idx)
4724 : "<NULL>");
d4f3574e 4725 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4726 printf_filtered (")\n");
4727 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4728 {
4729 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4730 }
4731 }
43bbcdc2
PH
4732 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4733 {
4734 printfi_filtered (spaces, "low %s%s high %s%s\n",
4735 plongest (TYPE_LOW_BOUND (type)),
4736 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4737 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4738 TYPE_HIGH_BOUND_UNDEFINED (type)
4739 ? " (undefined)" : "");
43bbcdc2 4740 }
c906108c 4741
b4ba55a1
JB
4742 switch (TYPE_SPECIFIC_FIELD (type))
4743 {
4744 case TYPE_SPECIFIC_CPLUS_STUFF:
4745 printfi_filtered (spaces, "cplus_stuff ");
4746 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4747 gdb_stdout);
4748 puts_filtered ("\n");
4749 print_cplus_stuff (type, spaces);
4750 break;
8da61cc4 4751
b4ba55a1
JB
4752 case TYPE_SPECIFIC_GNAT_STUFF:
4753 printfi_filtered (spaces, "gnat_stuff ");
4754 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4755 puts_filtered ("\n");
4756 print_gnat_stuff (type, spaces);
4757 break;
701c159d 4758
b4ba55a1
JB
4759 case TYPE_SPECIFIC_FLOATFORMAT:
4760 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4761 if (TYPE_FLOATFORMAT (type) == NULL
4762 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4763 puts_filtered ("(null)");
4764 else
0db7851f 4765 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4766 puts_filtered ("\n");
4767 break;
c906108c 4768
b6cdc2c1 4769 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4770 printfi_filtered (spaces, "calling_convention %d\n",
4771 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4772 /* tail_call_list is not printed. */
b4ba55a1 4773 break;
09e2d7c7
DE
4774
4775 case TYPE_SPECIFIC_SELF_TYPE:
4776 printfi_filtered (spaces, "self_type ");
4777 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4778 puts_filtered ("\n");
4779 break;
c906108c 4780 }
b4ba55a1 4781
c906108c
SS
4782 if (spaces == 0)
4783 obstack_free (&dont_print_type_obstack, NULL);
4784}
5212577a 4785\f
ae5a43e0
DJ
4786/* Trivial helpers for the libiberty hash table, for mapping one
4787 type to another. */
4788
fd90ace4 4789struct type_pair : public allocate_on_obstack
ae5a43e0 4790{
fd90ace4
YQ
4791 type_pair (struct type *old_, struct type *newobj_)
4792 : old (old_), newobj (newobj_)
4793 {}
4794
4795 struct type * const old, * const newobj;
ae5a43e0
DJ
4796};
4797
4798static hashval_t
4799type_pair_hash (const void *item)
4800{
9a3c8263 4801 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4802
ae5a43e0
DJ
4803 return htab_hash_pointer (pair->old);
4804}
4805
4806static int
4807type_pair_eq (const void *item_lhs, const void *item_rhs)
4808{
9a3c8263
SM
4809 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4810 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4811
ae5a43e0
DJ
4812 return lhs->old == rhs->old;
4813}
4814
4815/* Allocate the hash table used by copy_type_recursive to walk
4816 types without duplicates. We use OBJFILE's obstack, because
4817 OBJFILE is about to be deleted. */
4818
4819htab_t
4820create_copied_types_hash (struct objfile *objfile)
4821{
4822 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4823 NULL, &objfile->objfile_obstack,
4824 hashtab_obstack_allocate,
4825 dummy_obstack_deallocate);
4826}
4827
d9823cbb
KB
4828/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4829
4830static struct dynamic_prop_list *
4831copy_dynamic_prop_list (struct obstack *objfile_obstack,
4832 struct dynamic_prop_list *list)
4833{
4834 struct dynamic_prop_list *copy = list;
4835 struct dynamic_prop_list **node_ptr = &copy;
4836
4837 while (*node_ptr != NULL)
4838 {
4839 struct dynamic_prop_list *node_copy;
4840
224c3ddb
SM
4841 node_copy = ((struct dynamic_prop_list *)
4842 obstack_copy (objfile_obstack, *node_ptr,
4843 sizeof (struct dynamic_prop_list)));
283a9958 4844 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4845 *node_ptr = node_copy;
4846
4847 node_ptr = &node_copy->next;
4848 }
4849
4850 return copy;
4851}
4852
7ba81444 4853/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4854 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4855 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4856 it is not associated with OBJFILE. */
ae5a43e0
DJ
4857
4858struct type *
7ba81444
MS
4859copy_type_recursive (struct objfile *objfile,
4860 struct type *type,
ae5a43e0
DJ
4861 htab_t copied_types)
4862{
ae5a43e0
DJ
4863 void **slot;
4864 struct type *new_type;
4865
e9bb382b 4866 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4867 return type;
4868
7ba81444
MS
4869 /* This type shouldn't be pointing to any types in other objfiles;
4870 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4871 gdb_assert (TYPE_OBJFILE (type) == objfile);
4872
fd90ace4
YQ
4873 struct type_pair pair (type, nullptr);
4874
ae5a43e0
DJ
4875 slot = htab_find_slot (copied_types, &pair, INSERT);
4876 if (*slot != NULL)
fe978cb0 4877 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4878
e9bb382b 4879 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4880
4881 /* We must add the new type to the hash table immediately, in case
4882 we encounter this type again during a recursive call below. */
fd90ace4
YQ
4883 struct type_pair *stored
4884 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4885
ae5a43e0
DJ
4886 *slot = stored;
4887
876cecd0
TT
4888 /* Copy the common fields of types. For the main type, we simply
4889 copy the entire thing and then update specific fields as needed. */
4890 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4891 TYPE_OBJFILE_OWNED (new_type) = 0;
4892 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4893
ae5a43e0
DJ
4894 if (TYPE_NAME (type))
4895 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
4896
4897 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4898 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4899
4900 /* Copy the fields. */
ae5a43e0
DJ
4901 if (TYPE_NFIELDS (type))
4902 {
4903 int i, nfields;
4904
4905 nfields = TYPE_NFIELDS (type);
fc270c35 4906 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4907 for (i = 0; i < nfields; i++)
4908 {
7ba81444
MS
4909 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4910 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4911 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4912 if (TYPE_FIELD_TYPE (type, i))
4913 TYPE_FIELD_TYPE (new_type, i)
4914 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4915 copied_types);
4916 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4917 TYPE_FIELD_NAME (new_type, i) =
4918 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4919 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4920 {
d6a843b5
JK
4921 case FIELD_LOC_KIND_BITPOS:
4922 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4923 TYPE_FIELD_BITPOS (type, i));
4924 break;
14e75d8e
JK
4925 case FIELD_LOC_KIND_ENUMVAL:
4926 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4927 TYPE_FIELD_ENUMVAL (type, i));
4928 break;
d6a843b5
JK
4929 case FIELD_LOC_KIND_PHYSADDR:
4930 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4931 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4932 break;
4933 case FIELD_LOC_KIND_PHYSNAME:
4934 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4935 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4936 i)));
4937 break;
4938 default:
4939 internal_error (__FILE__, __LINE__,
4940 _("Unexpected type field location kind: %d"),
4941 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4942 }
4943 }
4944 }
4945
0963b4bd 4946 /* For range types, copy the bounds information. */
43bbcdc2
PH
4947 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4948 {
8d749320 4949 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
43bbcdc2
PH
4950 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4951 }
4952
d9823cbb
KB
4953 if (TYPE_DYN_PROP_LIST (type) != NULL)
4954 TYPE_DYN_PROP_LIST (new_type)
4955 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4956 TYPE_DYN_PROP_LIST (type));
4957
3cdcd0ce 4958
ae5a43e0
DJ
4959 /* Copy pointers to other types. */
4960 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4961 TYPE_TARGET_TYPE (new_type) =
4962 copy_type_recursive (objfile,
4963 TYPE_TARGET_TYPE (type),
4964 copied_types);
f6b3afbf 4965
ae5a43e0
DJ
4966 /* Maybe copy the type_specific bits.
4967
4968 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4969 base classes and methods. There's no fundamental reason why we
4970 can't, but at the moment it is not needed. */
4971
f6b3afbf
DE
4972 switch (TYPE_SPECIFIC_FIELD (type))
4973 {
4974 case TYPE_SPECIFIC_NONE:
4975 break;
4976 case TYPE_SPECIFIC_FUNC:
4977 INIT_FUNC_SPECIFIC (new_type);
4978 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4979 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4980 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4981 break;
4982 case TYPE_SPECIFIC_FLOATFORMAT:
4983 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4984 break;
4985 case TYPE_SPECIFIC_CPLUS_STUFF:
4986 INIT_CPLUS_SPECIFIC (new_type);
4987 break;
4988 case TYPE_SPECIFIC_GNAT_STUFF:
4989 INIT_GNAT_SPECIFIC (new_type);
4990 break;
09e2d7c7
DE
4991 case TYPE_SPECIFIC_SELF_TYPE:
4992 set_type_self_type (new_type,
4993 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4994 copied_types));
4995 break;
f6b3afbf
DE
4996 default:
4997 gdb_assert_not_reached ("bad type_specific_kind");
4998 }
ae5a43e0
DJ
4999
5000 return new_type;
5001}
5002
4af88198
JB
5003/* Make a copy of the given TYPE, except that the pointer & reference
5004 types are not preserved.
5005
5006 This function assumes that the given type has an associated objfile.
5007 This objfile is used to allocate the new type. */
5008
5009struct type *
5010copy_type (const struct type *type)
5011{
5012 struct type *new_type;
5013
e9bb382b 5014 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5015
e9bb382b 5016 new_type = alloc_type_copy (type);
4af88198
JB
5017 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5018 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5019 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5020 sizeof (struct main_type));
d9823cbb
KB
5021 if (TYPE_DYN_PROP_LIST (type) != NULL)
5022 TYPE_DYN_PROP_LIST (new_type)
5023 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5024 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5025
5026 return new_type;
5027}
5212577a 5028\f
e9bb382b
UW
5029/* Helper functions to initialize architecture-specific types. */
5030
5031/* Allocate a type structure associated with GDBARCH and set its
5032 CODE, LENGTH, and NAME fields. */
5212577a 5033
e9bb382b
UW
5034struct type *
5035arch_type (struct gdbarch *gdbarch,
77b7c781 5036 enum type_code code, int bit, const char *name)
e9bb382b
UW
5037{
5038 struct type *type;
5039
5040 type = alloc_type_arch (gdbarch);
ae438bc5 5041 set_type_code (type, code);
77b7c781
UW
5042 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5043 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5044
5045 if (name)
6c214e7c 5046 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5047
5048 return type;
5049}
5050
5051/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5052 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5053 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5054
e9bb382b
UW
5055struct type *
5056arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5057 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5058{
5059 struct type *t;
5060
77b7c781 5061 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5062 if (unsigned_p)
5063 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5064
5065 return t;
5066}
5067
5068/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5069 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5070 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5071
e9bb382b
UW
5072struct type *
5073arch_character_type (struct gdbarch *gdbarch,
695bfa52 5074 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5075{
5076 struct type *t;
5077
77b7c781 5078 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5079 if (unsigned_p)
5080 TYPE_UNSIGNED (t) = 1;
5081
5082 return t;
5083}
5084
5085/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5086 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5087 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5088
e9bb382b
UW
5089struct type *
5090arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5091 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5092{
5093 struct type *t;
5094
77b7c781 5095 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5096 if (unsigned_p)
5097 TYPE_UNSIGNED (t) = 1;
5098
5099 return t;
5100}
5101
5102/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5103 BIT is the type size in bits; if BIT equals -1, the size is
5104 determined by the floatformat. NAME is the type name. Set the
5105 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5106
27067745 5107struct type *
e9bb382b 5108arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5109 int bit, const char *name,
5110 const struct floatformat **floatformats)
8da61cc4 5111{
0db7851f 5112 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5113 struct type *t;
5114
0db7851f 5115 bit = verify_floatformat (bit, fmt);
77b7c781 5116 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5117 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5118
8da61cc4
DJ
5119 return t;
5120}
5121
88dfca6c
UW
5122/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5123 BIT is the type size in bits. NAME is the type name. */
5124
5125struct type *
5126arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5127{
5128 struct type *t;
5129
77b7c781 5130 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5131 return t;
5132}
5133
e9bb382b
UW
5134/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5135 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 5136
27067745 5137struct type *
e9bb382b 5138arch_complex_type (struct gdbarch *gdbarch,
695bfa52 5139 const char *name, struct type *target_type)
27067745
UW
5140{
5141 struct type *t;
d8734c88 5142
e9bb382b 5143 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 5144 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
5145 TYPE_TARGET_TYPE (t) = target_type;
5146 return t;
5147}
5148
88dfca6c
UW
5149/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5150 BIT is the pointer type size in bits. NAME is the type name.
5151 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5152 TYPE_UNSIGNED flag. */
5153
5154struct type *
5155arch_pointer_type (struct gdbarch *gdbarch,
5156 int bit, const char *name, struct type *target_type)
5157{
5158 struct type *t;
5159
77b7c781 5160 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5161 TYPE_TARGET_TYPE (t) = target_type;
5162 TYPE_UNSIGNED (t) = 1;
5163 return t;
5164}
5165
e9bb382b 5166/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5167 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5168
e9bb382b 5169struct type *
77b7c781 5170arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5171{
e9bb382b
UW
5172 struct type *type;
5173
77b7c781 5174 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5175 TYPE_UNSIGNED (type) = 1;
81516450
DE
5176 TYPE_NFIELDS (type) = 0;
5177 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5178 TYPE_FIELDS (type)
77b7c781 5179 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5180
5181 return type;
5182}
5183
5184/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5185 position BITPOS is called NAME. Pass NAME as "" for fields that
5186 should not be printed. */
5187
5188void
5189append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5190 struct type *field_type, const char *name)
81516450
DE
5191{
5192 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5193 int field_nr = TYPE_NFIELDS (type);
5194
5195 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5196 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5197 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5198 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5199 gdb_assert (name != NULL);
5200
5201 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5202 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5203 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5204 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5205 ++TYPE_NFIELDS (type);
5206}
5207
5208/* Special version of append_flags_type_field to add a flag field.
5209 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5210 position BITPOS is called NAME. */
5212577a 5211
e9bb382b 5212void
695bfa52 5213append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5214{
81516450 5215 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5216
81516450
DE
5217 append_flags_type_field (type, bitpos, 1,
5218 builtin_type (gdbarch)->builtin_bool,
5219 name);
e9bb382b
UW
5220}
5221
5222/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5223 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5224
e9bb382b 5225struct type *
695bfa52
TT
5226arch_composite_type (struct gdbarch *gdbarch, const char *name,
5227 enum type_code code)
e9bb382b
UW
5228{
5229 struct type *t;
d8734c88 5230
e9bb382b
UW
5231 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5232 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5233 TYPE_NAME (t) = name;
e9bb382b
UW
5234 INIT_CPLUS_SPECIFIC (t);
5235 return t;
5236}
5237
5238/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5239 Do not set the field's position or adjust the type's length;
5240 the caller should do so. Return the new field. */
5212577a 5241
f5dff777 5242struct field *
695bfa52 5243append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5244 struct type *field)
e9bb382b
UW
5245{
5246 struct field *f;
d8734c88 5247
e9bb382b 5248 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5249 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5250 TYPE_NFIELDS (t));
e9bb382b
UW
5251 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5252 memset (f, 0, sizeof f[0]);
5253 FIELD_TYPE (f[0]) = field;
5254 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5255 return f;
5256}
5257
5258/* Add new field with name NAME and type FIELD to composite type T.
5259 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5260
f5dff777 5261void
695bfa52 5262append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5263 struct type *field, int alignment)
5264{
5265 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5266
e9bb382b
UW
5267 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5268 {
5269 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5270 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5271 }
5272 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5273 {
5274 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5275 if (TYPE_NFIELDS (t) > 1)
5276 {
f41f5e61
PA
5277 SET_FIELD_BITPOS (f[0],
5278 (FIELD_BITPOS (f[-1])
5279 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5280 * TARGET_CHAR_BIT)));
e9bb382b
UW
5281
5282 if (alignment)
5283 {
86c3c1fc
AB
5284 int left;
5285
5286 alignment *= TARGET_CHAR_BIT;
5287 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5288
e9bb382b
UW
5289 if (left)
5290 {
f41f5e61 5291 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5292 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5293 }
5294 }
5295 }
5296 }
5297}
5298
5299/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5300
e9bb382b 5301void
695bfa52 5302append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5303 struct type *field)
5304{
5305 append_composite_type_field_aligned (t, name, field, 0);
5306}
5307
000177f0
AC
5308static struct gdbarch_data *gdbtypes_data;
5309
5310const struct builtin_type *
5311builtin_type (struct gdbarch *gdbarch)
5312{
9a3c8263 5313 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5314}
5315
5316static void *
5317gdbtypes_post_init (struct gdbarch *gdbarch)
5318{
5319 struct builtin_type *builtin_type
5320 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5321
46bf5051 5322 /* Basic types. */
e9bb382b 5323 builtin_type->builtin_void
77b7c781 5324 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5325 builtin_type->builtin_char
5326 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5327 !gdbarch_char_signed (gdbarch), "char");
c413c448 5328 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5329 builtin_type->builtin_signed_char
5330 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5331 0, "signed char");
5332 builtin_type->builtin_unsigned_char
5333 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5334 1, "unsigned char");
5335 builtin_type->builtin_short
5336 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5337 0, "short");
5338 builtin_type->builtin_unsigned_short
5339 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5340 1, "unsigned short");
5341 builtin_type->builtin_int
5342 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5343 0, "int");
5344 builtin_type->builtin_unsigned_int
5345 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5346 1, "unsigned int");
5347 builtin_type->builtin_long
5348 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5349 0, "long");
5350 builtin_type->builtin_unsigned_long
5351 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5352 1, "unsigned long");
5353 builtin_type->builtin_long_long
5354 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5355 0, "long long");
5356 builtin_type->builtin_unsigned_long_long
5357 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5358 1, "unsigned long long");
70bd8e24 5359 builtin_type->builtin_float
e9bb382b 5360 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5361 "float", gdbarch_float_format (gdbarch));
70bd8e24 5362 builtin_type->builtin_double
e9bb382b 5363 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5364 "double", gdbarch_double_format (gdbarch));
70bd8e24 5365 builtin_type->builtin_long_double
e9bb382b 5366 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5367 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5368 builtin_type->builtin_complex
e9bb382b
UW
5369 = arch_complex_type (gdbarch, "complex",
5370 builtin_type->builtin_float);
70bd8e24 5371 builtin_type->builtin_double_complex
e9bb382b
UW
5372 = arch_complex_type (gdbarch, "double complex",
5373 builtin_type->builtin_double);
5374 builtin_type->builtin_string
77b7c781 5375 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5376 builtin_type->builtin_bool
77b7c781 5377 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5378
7678ef8f
TJB
5379 /* The following three are about decimal floating point types, which
5380 are 32-bits, 64-bits and 128-bits respectively. */
5381 builtin_type->builtin_decfloat
88dfca6c 5382 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5383 builtin_type->builtin_decdouble
88dfca6c 5384 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5385 builtin_type->builtin_declong
88dfca6c 5386 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5387
69feb676 5388 /* "True" character types. */
e9bb382b
UW
5389 builtin_type->builtin_true_char
5390 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5391 builtin_type->builtin_true_unsigned_char
5392 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5393
df4df182 5394 /* Fixed-size integer types. */
e9bb382b
UW
5395 builtin_type->builtin_int0
5396 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5397 builtin_type->builtin_int8
5398 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5399 builtin_type->builtin_uint8
5400 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5401 builtin_type->builtin_int16
5402 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5403 builtin_type->builtin_uint16
5404 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5405 builtin_type->builtin_int32
5406 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5407 builtin_type->builtin_uint32
5408 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5409 builtin_type->builtin_int64
5410 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5411 builtin_type->builtin_uint64
5412 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5413 builtin_type->builtin_int128
5414 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5415 builtin_type->builtin_uint128
5416 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5417 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5418 TYPE_INSTANCE_FLAG_NOTTEXT;
5419 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5420 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5421
9a22f0d0
PM
5422 /* Wide character types. */
5423 builtin_type->builtin_char16
53e710ac 5424 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5425 builtin_type->builtin_char32
53e710ac 5426 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5427 builtin_type->builtin_wchar
5428 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5429 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5430
46bf5051 5431 /* Default data/code pointer types. */
e9bb382b
UW
5432 builtin_type->builtin_data_ptr
5433 = lookup_pointer_type (builtin_type->builtin_void);
5434 builtin_type->builtin_func_ptr
5435 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5436 builtin_type->builtin_func_func
5437 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5438
78267919 5439 /* This type represents a GDB internal function. */
e9bb382b
UW
5440 builtin_type->internal_fn
5441 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5442 "<internal function>");
78267919 5443
e81e7f5e
SC
5444 /* This type represents an xmethod. */
5445 builtin_type->xmethod
5446 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5447
46bf5051
UW
5448 return builtin_type;
5449}
5450
46bf5051
UW
5451/* This set of objfile-based types is intended to be used by symbol
5452 readers as basic types. */
5453
5454static const struct objfile_data *objfile_type_data;
5455
5456const struct objfile_type *
5457objfile_type (struct objfile *objfile)
5458{
5459 struct gdbarch *gdbarch;
5460 struct objfile_type *objfile_type
9a3c8263 5461 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
46bf5051
UW
5462
5463 if (objfile_type)
5464 return objfile_type;
5465
5466 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5467 1, struct objfile_type);
5468
5469 /* Use the objfile architecture to determine basic type properties. */
5470 gdbarch = get_objfile_arch (objfile);
5471
5472 /* Basic types. */
5473 objfile_type->builtin_void
77b7c781 5474 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5475 objfile_type->builtin_char
19f392bc
UW
5476 = init_integer_type (objfile, TARGET_CHAR_BIT,
5477 !gdbarch_char_signed (gdbarch), "char");
c413c448 5478 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5479 objfile_type->builtin_signed_char
19f392bc
UW
5480 = init_integer_type (objfile, TARGET_CHAR_BIT,
5481 0, "signed char");
46bf5051 5482 objfile_type->builtin_unsigned_char
19f392bc
UW
5483 = init_integer_type (objfile, TARGET_CHAR_BIT,
5484 1, "unsigned char");
46bf5051 5485 objfile_type->builtin_short
19f392bc
UW
5486 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5487 0, "short");
46bf5051 5488 objfile_type->builtin_unsigned_short
19f392bc
UW
5489 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5490 1, "unsigned short");
46bf5051 5491 objfile_type->builtin_int
19f392bc
UW
5492 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5493 0, "int");
46bf5051 5494 objfile_type->builtin_unsigned_int
19f392bc
UW
5495 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5496 1, "unsigned int");
46bf5051 5497 objfile_type->builtin_long
19f392bc
UW
5498 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5499 0, "long");
46bf5051 5500 objfile_type->builtin_unsigned_long
19f392bc
UW
5501 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5502 1, "unsigned long");
46bf5051 5503 objfile_type->builtin_long_long
19f392bc
UW
5504 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5505 0, "long long");
46bf5051 5506 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5507 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5508 1, "unsigned long long");
46bf5051 5509 objfile_type->builtin_float
19f392bc
UW
5510 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5511 "float", gdbarch_float_format (gdbarch));
46bf5051 5512 objfile_type->builtin_double
19f392bc
UW
5513 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5514 "double", gdbarch_double_format (gdbarch));
46bf5051 5515 objfile_type->builtin_long_double
19f392bc
UW
5516 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5517 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5518
5519 /* This type represents a type that was unrecognized in symbol read-in. */
5520 objfile_type->builtin_error
19f392bc 5521 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5522
5523 /* The following set of types is used for symbols with no
5524 debug information. */
5525 objfile_type->nodebug_text_symbol
77b7c781 5526 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5527 "<text variable, no debug info>");
0875794a 5528 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5529 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5530 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5531 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5532 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5533 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5534 "<text from jump slot in .got.plt, no debug info>",
5535 objfile_type->nodebug_text_symbol);
46bf5051 5536 objfile_type->nodebug_data_symbol
46a4882b 5537 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5538 objfile_type->nodebug_unknown_symbol
46a4882b 5539 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5540 objfile_type->nodebug_tls_symbol
46a4882b 5541 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5542
5543 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5544 the same.
000177f0
AC
5545
5546 The upshot is:
5547 - gdb's `struct type' always describes the target's
5548 representation.
5549 - gdb's `struct value' objects should always hold values in
5550 target form.
5551 - gdb's CORE_ADDR values are addresses in the unified virtual
5552 address space that the assembler and linker work with. Thus,
5553 since target_read_memory takes a CORE_ADDR as an argument, it
5554 can access any memory on the target, even if the processor has
5555 separate code and data address spaces.
5556
46bf5051
UW
5557 In this context, objfile_type->builtin_core_addr is a bit odd:
5558 it's a target type for a value the target will never see. It's
5559 only used to hold the values of (typeless) linker symbols, which
5560 are indeed in the unified virtual address space. */
000177f0 5561
46bf5051 5562 objfile_type->builtin_core_addr
19f392bc
UW
5563 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5564 "__CORE_ADDR");
64c50499 5565
46bf5051
UW
5566 set_objfile_data (objfile, objfile_type_data, objfile_type);
5567 return objfile_type;
000177f0
AC
5568}
5569
c906108c 5570void
fba45db2 5571_initialize_gdbtypes (void)
c906108c 5572{
5674de60 5573 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5574 objfile_type_data = register_objfile_data ();
5674de60 5575
ccce17b0
YQ
5576 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5577 _("Set debugging of C++ overloading."),
5578 _("Show debugging of C++ overloading."),
5579 _("When enabled, ranking of the "
5580 "functions is displayed."),
5581 NULL,
5582 show_overload_debug,
5583 &setdebuglist, &showdebuglist);
5674de60 5584
7ba81444 5585 /* Add user knob for controlling resolution of opaque types. */
5674de60 5586 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5587 &opaque_type_resolution,
5588 _("Set resolution of opaque struct/class/union"
5589 " types (if set before loading symbols)."),
5590 _("Show resolution of opaque struct/class/union"
5591 " types (if set before loading symbols)."),
5592 NULL, NULL,
5674de60
UW
5593 show_opaque_type_resolution,
5594 &setlist, &showlist);
a451cb65
KS
5595
5596 /* Add an option to permit non-strict type checking. */
5597 add_setshow_boolean_cmd ("type", class_support,
5598 &strict_type_checking,
5599 _("Set strict type checking."),
5600 _("Show strict type checking."),
5601 NULL, NULL,
5602 show_strict_type_checking,
5603 &setchecklist, &showchecklist);
c906108c 5604}
This page took 1.888624 seconds and 4 git commands to generate.