Add support for dynamic DW_AT_byte_stride.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 65const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 66
8da61cc4 67/* Floatformat pairs. */
f9e9243a
UW
68const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71};
8da61cc4
DJ
72const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75};
76const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79};
80const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83};
84const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87};
88const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91};
92const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95};
96const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99};
100const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103};
104const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107};
108const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111};
b14d30e1 112const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
b14d30e1 115};
8da61cc4 116
2873700e
KS
117/* Should opaque types be resolved? */
118
119static int opaque_type_resolution = 1;
120
121/* A flag to enable printing of debugging information of C++
122 overloading. */
123
124unsigned int overload_debug = 0;
125
a451cb65
KS
126/* A flag to enable strict type checking. */
127
128static int strict_type_checking = 1;
129
2873700e 130/* A function to show whether opaque types are resolved. */
5212577a 131
920d2a44
AC
132static void
133show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
134 struct cmd_list_element *c,
135 const char *value)
920d2a44 136{
3e43a32a
MS
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
139 value);
140}
141
2873700e 142/* A function to show whether C++ overload debugging is enabled. */
5212577a 143
920d2a44
AC
144static void
145show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
7ba81444
MS
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
920d2a44 150}
c906108c 151
a451cb65
KS
152/* A function to show the status of strict type checking. */
153
154static void
155show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159}
160
5212577a 161\f
e9bb382b
UW
162/* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
c906108c
SS
165
166struct type *
fba45db2 167alloc_type (struct objfile *objfile)
c906108c 168{
52f0bd74 169 struct type *type;
c906108c 170
e9bb382b
UW
171 gdb_assert (objfile != NULL);
172
7ba81444 173 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
c906108c 178
e9bb382b
UW
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
c906108c 181
7ba81444 182 /* Initialize the fields that might not be zero. */
c906108c
SS
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 186
c16abbde 187 return type;
c906108c
SS
188}
189
e9bb382b
UW
190/* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
8f57eec2 192 on the obstack associated with GDBARCH. */
e9bb382b
UW
193
194struct type *
195alloc_type_arch (struct gdbarch *gdbarch)
196{
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
8f57eec2
PP
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240}
241
99ad9427
YQ
242/* See gdbtypes.h. */
243
244struct type *
245get_target_type (struct type *type)
246{
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255}
256
2e056931
SM
257/* See gdbtypes.h. */
258
259unsigned int
260type_length_units (struct type *type)
261{
262 struct gdbarch *arch = get_type_arch (type);
263 int unit_size = gdbarch_addressable_memory_unit_size (arch);
264
265 return TYPE_LENGTH (type) / unit_size;
266}
267
2fdde8f8
DJ
268/* Alloc a new type instance structure, fill it with some defaults,
269 and point it at OLDTYPE. Allocate the new type instance from the
270 same place as OLDTYPE. */
271
272static struct type *
273alloc_type_instance (struct type *oldtype)
274{
275 struct type *type;
276
277 /* Allocate the structure. */
278
e9bb382b 279 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 280 type = XCNEW (struct type);
2fdde8f8 281 else
1deafd4e
PA
282 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
283 struct type);
284
2fdde8f8
DJ
285 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
286
287 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
288
c16abbde 289 return type;
2fdde8f8
DJ
290}
291
292/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 293 replacing it with something else. Preserve owner information. */
5212577a 294
2fdde8f8
DJ
295static void
296smash_type (struct type *type)
297{
e9bb382b
UW
298 int objfile_owned = TYPE_OBJFILE_OWNED (type);
299 union type_owner owner = TYPE_OWNER (type);
300
2fdde8f8
DJ
301 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
302
e9bb382b
UW
303 /* Restore owner information. */
304 TYPE_OBJFILE_OWNED (type) = objfile_owned;
305 TYPE_OWNER (type) = owner;
306
2fdde8f8
DJ
307 /* For now, delete the rings. */
308 TYPE_CHAIN (type) = type;
309
310 /* For now, leave the pointer/reference types alone. */
311}
312
c906108c
SS
313/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
314 to a pointer to memory where the pointer type should be stored.
315 If *TYPEPTR is zero, update it to point to the pointer type we return.
316 We allocate new memory if needed. */
317
318struct type *
fba45db2 319make_pointer_type (struct type *type, struct type **typeptr)
c906108c 320{
52f0bd74 321 struct type *ntype; /* New type */
053cb41b 322 struct type *chain;
c906108c
SS
323
324 ntype = TYPE_POINTER_TYPE (type);
325
c5aa993b 326 if (ntype)
c906108c 327 {
c5aa993b 328 if (typeptr == 0)
7ba81444
MS
329 return ntype; /* Don't care about alloc,
330 and have new type. */
c906108c 331 else if (*typeptr == 0)
c5aa993b 332 {
7ba81444 333 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 334 return ntype;
c5aa993b 335 }
c906108c
SS
336 }
337
338 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
339 {
e9bb382b 340 ntype = alloc_type_copy (type);
c906108c
SS
341 if (typeptr)
342 *typeptr = ntype;
343 }
7ba81444 344 else /* We have storage, but need to reset it. */
c906108c
SS
345 {
346 ntype = *typeptr;
053cb41b 347 chain = TYPE_CHAIN (ntype);
2fdde8f8 348 smash_type (ntype);
053cb41b 349 TYPE_CHAIN (ntype) = chain;
c906108c
SS
350 }
351
352 TYPE_TARGET_TYPE (ntype) = type;
353 TYPE_POINTER_TYPE (type) = ntype;
354
5212577a 355 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 356
50810684
UW
357 TYPE_LENGTH (ntype)
358 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
359 TYPE_CODE (ntype) = TYPE_CODE_PTR;
360
67b2adb2 361 /* Mark pointers as unsigned. The target converts between pointers
76e71323 362 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 363 gdbarch_address_to_pointer. */
876cecd0 364 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 365
053cb41b
JB
366 /* Update the length of all the other variants of this type. */
367 chain = TYPE_CHAIN (ntype);
368 while (chain != ntype)
369 {
370 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
371 chain = TYPE_CHAIN (chain);
372 }
373
c906108c
SS
374 return ntype;
375}
376
377/* Given a type TYPE, return a type of pointers to that type.
378 May need to construct such a type if this is the first use. */
379
380struct type *
fba45db2 381lookup_pointer_type (struct type *type)
c906108c 382{
c5aa993b 383 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
384}
385
7ba81444
MS
386/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
387 points to a pointer to memory where the reference type should be
388 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
389 type we return. We allocate new memory if needed. REFCODE denotes
390 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
391
392struct type *
3b224330
AV
393make_reference_type (struct type *type, struct type **typeptr,
394 enum type_code refcode)
c906108c 395{
52f0bd74 396 struct type *ntype; /* New type */
3b224330 397 struct type **reftype;
1e98b326 398 struct type *chain;
c906108c 399
3b224330
AV
400 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
401
402 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
403 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 404
c5aa993b 405 if (ntype)
c906108c 406 {
c5aa993b 407 if (typeptr == 0)
7ba81444
MS
408 return ntype; /* Don't care about alloc,
409 and have new type. */
c906108c 410 else if (*typeptr == 0)
c5aa993b 411 {
7ba81444 412 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 413 return ntype;
c5aa993b 414 }
c906108c
SS
415 }
416
417 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
418 {
e9bb382b 419 ntype = alloc_type_copy (type);
c906108c
SS
420 if (typeptr)
421 *typeptr = ntype;
422 }
7ba81444 423 else /* We have storage, but need to reset it. */
c906108c
SS
424 {
425 ntype = *typeptr;
1e98b326 426 chain = TYPE_CHAIN (ntype);
2fdde8f8 427 smash_type (ntype);
1e98b326 428 TYPE_CHAIN (ntype) = chain;
c906108c
SS
429 }
430
431 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
432 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
433 : &TYPE_RVALUE_REFERENCE_TYPE (type));
434
435 *reftype = ntype;
c906108c 436
7ba81444
MS
437 /* FIXME! Assume the machine has only one representation for
438 references, and that it matches the (only) representation for
439 pointers! */
c906108c 440
50810684
UW
441 TYPE_LENGTH (ntype) =
442 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 443 TYPE_CODE (ntype) = refcode;
c5aa993b 444
3b224330 445 *reftype = ntype;
c906108c 446
1e98b326
JB
447 /* Update the length of all the other variants of this type. */
448 chain = TYPE_CHAIN (ntype);
449 while (chain != ntype)
450 {
451 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
452 chain = TYPE_CHAIN (chain);
453 }
454
c906108c
SS
455 return ntype;
456}
457
7ba81444
MS
458/* Same as above, but caller doesn't care about memory allocation
459 details. */
c906108c
SS
460
461struct type *
3b224330
AV
462lookup_reference_type (struct type *type, enum type_code refcode)
463{
464 return make_reference_type (type, (struct type **) 0, refcode);
465}
466
467/* Lookup the lvalue reference type for the type TYPE. */
468
469struct type *
470lookup_lvalue_reference_type (struct type *type)
471{
472 return lookup_reference_type (type, TYPE_CODE_REF);
473}
474
475/* Lookup the rvalue reference type for the type TYPE. */
476
477struct type *
478lookup_rvalue_reference_type (struct type *type)
c906108c 479{
3b224330 480 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
481}
482
7ba81444
MS
483/* Lookup a function type that returns type TYPE. TYPEPTR, if
484 nonzero, points to a pointer to memory where the function type
485 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 486 function type we return. We allocate new memory if needed. */
c906108c
SS
487
488struct type *
0c8b41f1 489make_function_type (struct type *type, struct type **typeptr)
c906108c 490{
52f0bd74 491 struct type *ntype; /* New type */
c906108c
SS
492
493 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
494 {
e9bb382b 495 ntype = alloc_type_copy (type);
c906108c
SS
496 if (typeptr)
497 *typeptr = ntype;
498 }
7ba81444 499 else /* We have storage, but need to reset it. */
c906108c
SS
500 {
501 ntype = *typeptr;
2fdde8f8 502 smash_type (ntype);
c906108c
SS
503 }
504
505 TYPE_TARGET_TYPE (ntype) = type;
506
507 TYPE_LENGTH (ntype) = 1;
508 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 509
b6cdc2c1
JK
510 INIT_FUNC_SPECIFIC (ntype);
511
c906108c
SS
512 return ntype;
513}
514
c906108c
SS
515/* Given a type TYPE, return a type of functions that return that type.
516 May need to construct such a type if this is the first use. */
517
518struct type *
fba45db2 519lookup_function_type (struct type *type)
c906108c 520{
0c8b41f1 521 return make_function_type (type, (struct type **) 0);
c906108c
SS
522}
523
71918a86 524/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
525 function type. If the final type in PARAM_TYPES is NULL, make a
526 varargs function. */
71918a86
TT
527
528struct type *
529lookup_function_type_with_arguments (struct type *type,
530 int nparams,
531 struct type **param_types)
532{
533 struct type *fn = make_function_type (type, (struct type **) 0);
534 int i;
535
e314d629 536 if (nparams > 0)
a6fb9c08 537 {
e314d629
TT
538 if (param_types[nparams - 1] == NULL)
539 {
540 --nparams;
541 TYPE_VARARGS (fn) = 1;
542 }
543 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
544 == TYPE_CODE_VOID)
545 {
546 --nparams;
547 /* Caller should have ensured this. */
548 gdb_assert (nparams == 0);
549 TYPE_PROTOTYPED (fn) = 1;
550 }
54990598
PA
551 else
552 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
553 }
554
71918a86 555 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
556 TYPE_FIELDS (fn)
557 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
558 for (i = 0; i < nparams; ++i)
559 TYPE_FIELD_TYPE (fn, i) = param_types[i];
560
561 return fn;
562}
563
47663de5
MS
564/* Identify address space identifier by name --
565 return the integer flag defined in gdbtypes.h. */
5212577a
DE
566
567int
50810684 568address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 569{
8b2dbe47 570 int type_flags;
d8734c88 571
7ba81444 572 /* Check for known address space delimiters. */
47663de5 573 if (!strcmp (space_identifier, "code"))
876cecd0 574 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 575 else if (!strcmp (space_identifier, "data"))
876cecd0 576 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
577 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
578 && gdbarch_address_class_name_to_type_flags (gdbarch,
579 space_identifier,
580 &type_flags))
8b2dbe47 581 return type_flags;
47663de5 582 else
8a3fe4f8 583 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
584}
585
586/* Identify address space identifier by integer flag as defined in
7ba81444 587 gdbtypes.h -- return the string version of the adress space name. */
47663de5 588
321432c0 589const char *
50810684 590address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 591{
876cecd0 592 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 593 return "code";
876cecd0 594 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 595 return "data";
876cecd0 596 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
597 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
598 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
599 else
600 return NULL;
601}
602
2fdde8f8 603/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
604
605 If STORAGE is non-NULL, create the new type instance there.
606 STORAGE must be in the same obstack as TYPE. */
47663de5 607
b9362cc7 608static struct type *
2fdde8f8
DJ
609make_qualified_type (struct type *type, int new_flags,
610 struct type *storage)
47663de5
MS
611{
612 struct type *ntype;
613
614 ntype = type;
5f61c20e
JK
615 do
616 {
617 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
618 return ntype;
619 ntype = TYPE_CHAIN (ntype);
620 }
621 while (ntype != type);
47663de5 622
2fdde8f8
DJ
623 /* Create a new type instance. */
624 if (storage == NULL)
625 ntype = alloc_type_instance (type);
626 else
627 {
7ba81444
MS
628 /* If STORAGE was provided, it had better be in the same objfile
629 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
630 if one objfile is freed and the other kept, we'd have
631 dangling pointers. */
ad766c0a
JB
632 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
633
2fdde8f8
DJ
634 ntype = storage;
635 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
636 TYPE_CHAIN (ntype) = ntype;
637 }
47663de5
MS
638
639 /* Pointers or references to the original type are not relevant to
2fdde8f8 640 the new type. */
47663de5
MS
641 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
642 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 643
2fdde8f8
DJ
644 /* Chain the new qualified type to the old type. */
645 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
646 TYPE_CHAIN (type) = ntype;
647
648 /* Now set the instance flags and return the new type. */
649 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 650
ab5d3da6
KB
651 /* Set length of new type to that of the original type. */
652 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
653
47663de5
MS
654 return ntype;
655}
656
2fdde8f8
DJ
657/* Make an address-space-delimited variant of a type -- a type that
658 is identical to the one supplied except that it has an address
659 space attribute attached to it (such as "code" or "data").
660
7ba81444
MS
661 The space attributes "code" and "data" are for Harvard
662 architectures. The address space attributes are for architectures
663 which have alternately sized pointers or pointers with alternate
664 representations. */
2fdde8f8
DJ
665
666struct type *
667make_type_with_address_space (struct type *type, int space_flag)
668{
2fdde8f8 669 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
670 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
671 | TYPE_INSTANCE_FLAG_DATA_SPACE
672 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
673 | space_flag);
674
675 return make_qualified_type (type, new_flags, NULL);
676}
c906108c
SS
677
678/* Make a "c-v" variant of a type -- a type that is identical to the
679 one supplied except that it may have const or volatile attributes
680 CNST is a flag for setting the const attribute
681 VOLTL is a flag for setting the volatile attribute
682 TYPE is the base type whose variant we are creating.
c906108c 683
ad766c0a
JB
684 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
685 storage to hold the new qualified type; *TYPEPTR and TYPE must be
686 in the same objfile. Otherwise, allocate fresh memory for the new
687 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
688 new type we construct. */
5212577a 689
c906108c 690struct type *
7ba81444
MS
691make_cv_type (int cnst, int voltl,
692 struct type *type,
693 struct type **typeptr)
c906108c 694{
52f0bd74 695 struct type *ntype; /* New type */
c906108c 696
2fdde8f8 697 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
698 & ~(TYPE_INSTANCE_FLAG_CONST
699 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 700
c906108c 701 if (cnst)
876cecd0 702 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
703
704 if (voltl)
876cecd0 705 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 706
2fdde8f8 707 if (typeptr && *typeptr != NULL)
a02fd225 708 {
ad766c0a
JB
709 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
710 a C-V variant chain that threads across objfiles: if one
711 objfile gets freed, then the other has a broken C-V chain.
712
713 This code used to try to copy over the main type from TYPE to
714 *TYPEPTR if they were in different objfiles, but that's
715 wrong, too: TYPE may have a field list or member function
716 lists, which refer to types of their own, etc. etc. The
717 whole shebang would need to be copied over recursively; you
718 can't have inter-objfile pointers. The only thing to do is
719 to leave stub types as stub types, and look them up afresh by
720 name each time you encounter them. */
721 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
722 }
723
7ba81444
MS
724 ntype = make_qualified_type (type, new_flags,
725 typeptr ? *typeptr : NULL);
c906108c 726
2fdde8f8
DJ
727 if (typeptr != NULL)
728 *typeptr = ntype;
a02fd225 729
2fdde8f8 730 return ntype;
a02fd225 731}
c906108c 732
06d66ee9
TT
733/* Make a 'restrict'-qualified version of TYPE. */
734
735struct type *
736make_restrict_type (struct type *type)
737{
738 return make_qualified_type (type,
739 (TYPE_INSTANCE_FLAGS (type)
740 | TYPE_INSTANCE_FLAG_RESTRICT),
741 NULL);
742}
743
f1660027
TT
744/* Make a type without const, volatile, or restrict. */
745
746struct type *
747make_unqualified_type (struct type *type)
748{
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 & ~(TYPE_INSTANCE_FLAG_CONST
752 | TYPE_INSTANCE_FLAG_VOLATILE
753 | TYPE_INSTANCE_FLAG_RESTRICT)),
754 NULL);
755}
756
a2c2acaf
MW
757/* Make a '_Atomic'-qualified version of TYPE. */
758
759struct type *
760make_atomic_type (struct type *type)
761{
762 return make_qualified_type (type,
763 (TYPE_INSTANCE_FLAGS (type)
764 | TYPE_INSTANCE_FLAG_ATOMIC),
765 NULL);
766}
767
2fdde8f8
DJ
768/* Replace the contents of ntype with the type *type. This changes the
769 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
770 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 771
cda6c68a
JB
772 In order to build recursive types, it's inevitable that we'll need
773 to update types in place --- but this sort of indiscriminate
774 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
775 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
776 clear if more steps are needed. */
5212577a 777
dd6bda65
DJ
778void
779replace_type (struct type *ntype, struct type *type)
780{
ab5d3da6 781 struct type *chain;
dd6bda65 782
ad766c0a
JB
783 /* These two types had better be in the same objfile. Otherwise,
784 the assignment of one type's main type structure to the other
785 will produce a type with references to objects (names; field
786 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 787 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 788
2fdde8f8 789 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 790
7ba81444
MS
791 /* The type length is not a part of the main type. Update it for
792 each type on the variant chain. */
ab5d3da6 793 chain = ntype;
5f61c20e
JK
794 do
795 {
796 /* Assert that this element of the chain has no address-class bits
797 set in its flags. Such type variants might have type lengths
798 which are supposed to be different from the non-address-class
799 variants. This assertion shouldn't ever be triggered because
800 symbol readers which do construct address-class variants don't
801 call replace_type(). */
802 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
803
804 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
805 chain = TYPE_CHAIN (chain);
806 }
807 while (ntype != chain);
ab5d3da6 808
2fdde8f8
DJ
809 /* Assert that the two types have equivalent instance qualifiers.
810 This should be true for at least all of our debug readers. */
811 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
812}
813
c906108c
SS
814/* Implement direct support for MEMBER_TYPE in GNU C++.
815 May need to construct such a type if this is the first use.
816 The TYPE is the type of the member. The DOMAIN is the type
817 of the aggregate that the member belongs to. */
818
819struct type *
0d5de010 820lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 821{
52f0bd74 822 struct type *mtype;
c906108c 823
e9bb382b 824 mtype = alloc_type_copy (type);
0d5de010 825 smash_to_memberptr_type (mtype, domain, type);
c16abbde 826 return mtype;
c906108c
SS
827}
828
0d5de010
DJ
829/* Return a pointer-to-method type, for a method of type TO_TYPE. */
830
831struct type *
832lookup_methodptr_type (struct type *to_type)
833{
834 struct type *mtype;
835
e9bb382b 836 mtype = alloc_type_copy (to_type);
0b92b5bb 837 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
838 return mtype;
839}
840
7ba81444
MS
841/* Allocate a stub method whose return type is TYPE. This apparently
842 happens for speed of symbol reading, since parsing out the
843 arguments to the method is cpu-intensive, the way we are doing it.
844 So, we will fill in arguments later. This always returns a fresh
845 type. */
c906108c
SS
846
847struct type *
fba45db2 848allocate_stub_method (struct type *type)
c906108c
SS
849{
850 struct type *mtype;
851
e9bb382b
UW
852 mtype = alloc_type_copy (type);
853 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
854 TYPE_LENGTH (mtype) = 1;
855 TYPE_STUB (mtype) = 1;
c906108c 856 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 857 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 858 return mtype;
c906108c
SS
859}
860
729efb13
SA
861/* Create a range type with a dynamic range from LOW_BOUND to
862 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
863
864struct type *
729efb13
SA
865create_range_type (struct type *result_type, struct type *index_type,
866 const struct dynamic_prop *low_bound,
867 const struct dynamic_prop *high_bound)
c906108c
SS
868{
869 if (result_type == NULL)
e9bb382b 870 result_type = alloc_type_copy (index_type);
c906108c
SS
871 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
872 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 873 if (TYPE_STUB (index_type))
876cecd0 874 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
875 else
876 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 877
43bbcdc2
PH
878 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
879 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
880 TYPE_RANGE_DATA (result_type)->low = *low_bound;
881 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 882
729efb13 883 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 884 TYPE_UNSIGNED (result_type) = 1;
c906108c 885
45e44d27
JB
886 /* Ada allows the declaration of range types whose upper bound is
887 less than the lower bound, so checking the lower bound is not
888 enough. Make sure we do not mark a range type whose upper bound
889 is negative as unsigned. */
890 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
891 TYPE_UNSIGNED (result_type) = 0;
892
262452ec 893 return result_type;
c906108c
SS
894}
895
729efb13
SA
896/* Create a range type using either a blank type supplied in
897 RESULT_TYPE, or creating a new type, inheriting the objfile from
898 INDEX_TYPE.
899
900 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
901 to HIGH_BOUND, inclusive.
902
903 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
904 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
905
906struct type *
907create_static_range_type (struct type *result_type, struct type *index_type,
908 LONGEST low_bound, LONGEST high_bound)
909{
910 struct dynamic_prop low, high;
911
912 low.kind = PROP_CONST;
913 low.data.const_val = low_bound;
914
915 high.kind = PROP_CONST;
916 high.data.const_val = high_bound;
917
918 result_type = create_range_type (result_type, index_type, &low, &high);
919
920 return result_type;
921}
922
80180f79
SA
923/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
924 are static, otherwise returns 0. */
925
926static int
927has_static_range (const struct range_bounds *bounds)
928{
929 return (bounds->low.kind == PROP_CONST
930 && bounds->high.kind == PROP_CONST);
931}
932
933
7ba81444
MS
934/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
935 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
936 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
937
938int
fba45db2 939get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 940{
f168693b 941 type = check_typedef (type);
c906108c
SS
942 switch (TYPE_CODE (type))
943 {
944 case TYPE_CODE_RANGE:
945 *lowp = TYPE_LOW_BOUND (type);
946 *highp = TYPE_HIGH_BOUND (type);
947 return 1;
948 case TYPE_CODE_ENUM:
949 if (TYPE_NFIELDS (type) > 0)
950 {
951 /* The enums may not be sorted by value, so search all
0963b4bd 952 entries. */
c906108c
SS
953 int i;
954
14e75d8e 955 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
956 for (i = 0; i < TYPE_NFIELDS (type); i++)
957 {
14e75d8e
JK
958 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
959 *lowp = TYPE_FIELD_ENUMVAL (type, i);
960 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
961 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
962 }
963
7ba81444 964 /* Set unsigned indicator if warranted. */
c5aa993b 965 if (*lowp >= 0)
c906108c 966 {
876cecd0 967 TYPE_UNSIGNED (type) = 1;
c906108c
SS
968 }
969 }
970 else
971 {
972 *lowp = 0;
973 *highp = -1;
974 }
975 return 0;
976 case TYPE_CODE_BOOL:
977 *lowp = 0;
978 *highp = 1;
979 return 0;
980 case TYPE_CODE_INT:
c5aa993b 981 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
982 return -1;
983 if (!TYPE_UNSIGNED (type))
984 {
c5aa993b 985 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
986 *highp = -*lowp - 1;
987 return 0;
988 }
7ba81444 989 /* ... fall through for unsigned ints ... */
c906108c
SS
990 case TYPE_CODE_CHAR:
991 *lowp = 0;
992 /* This round-about calculation is to avoid shifting by
7b83ea04 993 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 994 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
995 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
996 *highp = (*highp - 1) | *highp;
997 return 0;
998 default:
999 return -1;
1000 }
1001}
1002
dbc98a8b
KW
1003/* Assuming TYPE is a simple, non-empty array type, compute its upper
1004 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1005 Save the high bound into HIGH_BOUND if not NULL.
1006
0963b4bd 1007 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1008 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1009
1010 We now simply use get_discrete_bounds call to get the values
1011 of the low and high bounds.
1012 get_discrete_bounds can return three values:
1013 1, meaning that index is a range,
1014 0, meaning that index is a discrete type,
1015 or -1 for failure. */
1016
1017int
1018get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1019{
1020 struct type *index = TYPE_INDEX_TYPE (type);
1021 LONGEST low = 0;
1022 LONGEST high = 0;
1023 int res;
1024
1025 if (index == NULL)
1026 return 0;
1027
1028 res = get_discrete_bounds (index, &low, &high);
1029 if (res == -1)
1030 return 0;
1031
1032 /* Check if the array bounds are undefined. */
1033 if (res == 1
1034 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1035 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1036 return 0;
1037
1038 if (low_bound)
1039 *low_bound = low;
1040
1041 if (high_bound)
1042 *high_bound = high;
1043
1044 return 1;
1045}
1046
aa715135
JG
1047/* Assuming that TYPE is a discrete type and VAL is a valid integer
1048 representation of a value of this type, save the corresponding
1049 position number in POS.
1050
1051 Its differs from VAL only in the case of enumeration types. In
1052 this case, the position number of the value of the first listed
1053 enumeration literal is zero; the position number of the value of
1054 each subsequent enumeration literal is one more than that of its
1055 predecessor in the list.
1056
1057 Return 1 if the operation was successful. Return zero otherwise,
1058 in which case the value of POS is unmodified.
1059*/
1060
1061int
1062discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1063{
1064 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1065 {
1066 int i;
1067
1068 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1069 {
1070 if (val == TYPE_FIELD_ENUMVAL (type, i))
1071 {
1072 *pos = i;
1073 return 1;
1074 }
1075 }
1076 /* Invalid enumeration value. */
1077 return 0;
1078 }
1079 else
1080 {
1081 *pos = val;
1082 return 1;
1083 }
1084}
1085
7ba81444
MS
1086/* Create an array type using either a blank type supplied in
1087 RESULT_TYPE, or creating a new type, inheriting the objfile from
1088 RANGE_TYPE.
c906108c
SS
1089
1090 Elements will be of type ELEMENT_TYPE, the indices will be of type
1091 RANGE_TYPE.
1092
a405673c
JB
1093 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1094 This byte stride property is added to the resulting array type
1095 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1096 argument can only be used to create types that are objfile-owned
1097 (see add_dyn_prop), meaning that either this function must be called
1098 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1099
1100 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1101 If BIT_STRIDE is not zero, build a packed array type whose element
1102 size is BIT_STRIDE. Otherwise, ignore this parameter.
1103
7ba81444
MS
1104 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1105 sure it is TYPE_CODE_UNDEF before we bash it into an array
1106 type? */
c906108c
SS
1107
1108struct type *
dc53a7ad
JB
1109create_array_type_with_stride (struct type *result_type,
1110 struct type *element_type,
1111 struct type *range_type,
a405673c 1112 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1113 unsigned int bit_stride)
c906108c 1114{
a405673c
JB
1115 if (byte_stride_prop != NULL
1116 && byte_stride_prop->kind == PROP_CONST)
1117 {
1118 /* The byte stride is actually not dynamic. Pretend we were
1119 called with bit_stride set instead of byte_stride_prop.
1120 This will give us the same result type, while avoiding
1121 the need to handle this as a special case. */
1122 bit_stride = byte_stride_prop->data.const_val * 8;
1123 byte_stride_prop = NULL;
1124 }
1125
c906108c 1126 if (result_type == NULL)
e9bb382b
UW
1127 result_type = alloc_type_copy (range_type);
1128
c906108c
SS
1129 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1130 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1131 if (byte_stride_prop == NULL
1132 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1133 && (!type_not_associated (result_type)
1134 && !type_not_allocated (result_type)))
80180f79
SA
1135 {
1136 LONGEST low_bound, high_bound;
1137
1138 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1139 low_bound = high_bound = 0;
f168693b 1140 element_type = check_typedef (element_type);
80180f79
SA
1141 /* Be careful when setting the array length. Ada arrays can be
1142 empty arrays with the high_bound being smaller than the low_bound.
1143 In such cases, the array length should be zero. */
1144 if (high_bound < low_bound)
1145 TYPE_LENGTH (result_type) = 0;
1146 else if (bit_stride > 0)
1147 TYPE_LENGTH (result_type) =
1148 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1149 else
1150 TYPE_LENGTH (result_type) =
1151 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1152 }
ab0d6e0d 1153 else
80180f79
SA
1154 {
1155 /* This type is dynamic and its length needs to be computed
1156 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1157 undefined by setting it to zero. Although we are not expected
1158 to trust TYPE_LENGTH in this case, setting the size to zero
1159 allows us to avoid allocating objects of random sizes in case
1160 we accidently do. */
1161 TYPE_LENGTH (result_type) = 0;
1162 }
1163
c906108c
SS
1164 TYPE_NFIELDS (result_type) = 1;
1165 TYPE_FIELDS (result_type) =
1deafd4e 1166 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1167 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c
JB
1168 if (byte_stride_prop != NULL)
1169 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type,
1170 TYPE_OBJFILE (result_type));
1171 else if (bit_stride > 0)
dc53a7ad 1172 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1173
a9ff5f12 1174 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1175 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1176 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1177
c16abbde 1178 return result_type;
c906108c
SS
1179}
1180
dc53a7ad
JB
1181/* Same as create_array_type_with_stride but with no bit_stride
1182 (BIT_STRIDE = 0), thus building an unpacked array. */
1183
1184struct type *
1185create_array_type (struct type *result_type,
1186 struct type *element_type,
1187 struct type *range_type)
1188{
1189 return create_array_type_with_stride (result_type, element_type,
a405673c 1190 range_type, NULL, 0);
dc53a7ad
JB
1191}
1192
e3506a9f
UW
1193struct type *
1194lookup_array_range_type (struct type *element_type,
63375b74 1195 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1196{
50810684 1197 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1198 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1199 struct type *range_type
0c9c3474 1200 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1201
e3506a9f
UW
1202 return create_array_type (NULL, element_type, range_type);
1203}
1204
7ba81444
MS
1205/* Create a string type using either a blank type supplied in
1206 RESULT_TYPE, or creating a new type. String types are similar
1207 enough to array of char types that we can use create_array_type to
1208 build the basic type and then bash it into a string type.
c906108c
SS
1209
1210 For fixed length strings, the range type contains 0 as the lower
1211 bound and the length of the string minus one as the upper bound.
1212
7ba81444
MS
1213 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1214 sure it is TYPE_CODE_UNDEF before we bash it into a string
1215 type? */
c906108c
SS
1216
1217struct type *
3b7538c0
UW
1218create_string_type (struct type *result_type,
1219 struct type *string_char_type,
7ba81444 1220 struct type *range_type)
c906108c
SS
1221{
1222 result_type = create_array_type (result_type,
f290d38e 1223 string_char_type,
c906108c
SS
1224 range_type);
1225 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1226 return result_type;
c906108c
SS
1227}
1228
e3506a9f
UW
1229struct type *
1230lookup_string_range_type (struct type *string_char_type,
63375b74 1231 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1232{
1233 struct type *result_type;
d8734c88 1234
e3506a9f
UW
1235 result_type = lookup_array_range_type (string_char_type,
1236 low_bound, high_bound);
1237 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1238 return result_type;
1239}
1240
c906108c 1241struct type *
fba45db2 1242create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1243{
c906108c 1244 if (result_type == NULL)
e9bb382b
UW
1245 result_type = alloc_type_copy (domain_type);
1246
c906108c
SS
1247 TYPE_CODE (result_type) = TYPE_CODE_SET;
1248 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1249 TYPE_FIELDS (result_type)
1250 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1251
74a9bb82 1252 if (!TYPE_STUB (domain_type))
c906108c 1253 {
f9780d5b 1254 LONGEST low_bound, high_bound, bit_length;
d8734c88 1255
c906108c
SS
1256 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1257 low_bound = high_bound = 0;
1258 bit_length = high_bound - low_bound + 1;
1259 TYPE_LENGTH (result_type)
1260 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1261 if (low_bound >= 0)
876cecd0 1262 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1263 }
1264 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1265
c16abbde 1266 return result_type;
c906108c
SS
1267}
1268
ea37ba09
DJ
1269/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1270 and any array types nested inside it. */
1271
1272void
1273make_vector_type (struct type *array_type)
1274{
1275 struct type *inner_array, *elt_type;
1276 int flags;
1277
1278 /* Find the innermost array type, in case the array is
1279 multi-dimensional. */
1280 inner_array = array_type;
1281 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1282 inner_array = TYPE_TARGET_TYPE (inner_array);
1283
1284 elt_type = TYPE_TARGET_TYPE (inner_array);
1285 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1286 {
2844d6b5 1287 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1288 elt_type = make_qualified_type (elt_type, flags, NULL);
1289 TYPE_TARGET_TYPE (inner_array) = elt_type;
1290 }
1291
876cecd0 1292 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1293}
1294
794ac428 1295struct type *
ac3aafc7
EZ
1296init_vector_type (struct type *elt_type, int n)
1297{
1298 struct type *array_type;
d8734c88 1299
e3506a9f 1300 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1301 make_vector_type (array_type);
ac3aafc7
EZ
1302 return array_type;
1303}
1304
09e2d7c7
DE
1305/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1306 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1307 confusing. "self" is a common enough replacement for "this".
1308 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1309 TYPE_CODE_METHOD. */
1310
1311struct type *
1312internal_type_self_type (struct type *type)
1313{
1314 switch (TYPE_CODE (type))
1315 {
1316 case TYPE_CODE_METHODPTR:
1317 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1318 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1319 return NULL;
09e2d7c7
DE
1320 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1321 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1322 case TYPE_CODE_METHOD:
eaaf76ab
DE
1323 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1324 return NULL;
09e2d7c7
DE
1325 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1326 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1327 default:
1328 gdb_assert_not_reached ("bad type");
1329 }
1330}
1331
1332/* Set the type of the class that TYPE belongs to.
1333 In c++ this is the class of "this".
1334 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1335 TYPE_CODE_METHOD. */
1336
1337void
1338set_type_self_type (struct type *type, struct type *self_type)
1339{
1340 switch (TYPE_CODE (type))
1341 {
1342 case TYPE_CODE_METHODPTR:
1343 case TYPE_CODE_MEMBERPTR:
1344 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1345 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1346 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1347 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1348 break;
1349 case TYPE_CODE_METHOD:
1350 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1351 INIT_FUNC_SPECIFIC (type);
1352 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1353 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1354 break;
1355 default:
1356 gdb_assert_not_reached ("bad type");
1357 }
1358}
1359
1360/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1361 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1362 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1363 TYPE doesn't include the offset (that's the value of the MEMBER
1364 itself), but does include the structure type into which it points
1365 (for some reason).
c906108c 1366
7ba81444
MS
1367 When "smashing" the type, we preserve the objfile that the old type
1368 pointed to, since we aren't changing where the type is actually
c906108c
SS
1369 allocated. */
1370
1371void
09e2d7c7 1372smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1373 struct type *to_type)
c906108c 1374{
2fdde8f8 1375 smash_type (type);
09e2d7c7 1376 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1377 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1378 set_type_self_type (type, self_type);
0d5de010
DJ
1379 /* Assume that a data member pointer is the same size as a normal
1380 pointer. */
50810684
UW
1381 TYPE_LENGTH (type)
1382 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1383}
1384
0b92b5bb
TT
1385/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1386
1387 When "smashing" the type, we preserve the objfile that the old type
1388 pointed to, since we aren't changing where the type is actually
1389 allocated. */
1390
1391void
1392smash_to_methodptr_type (struct type *type, struct type *to_type)
1393{
1394 smash_type (type);
09e2d7c7 1395 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1396 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1397 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1398 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1399}
1400
09e2d7c7 1401/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1402 METHOD just means `function that gets an extra "this" argument'.
1403
7ba81444
MS
1404 When "smashing" the type, we preserve the objfile that the old type
1405 pointed to, since we aren't changing where the type is actually
c906108c
SS
1406 allocated. */
1407
1408void
09e2d7c7 1409smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1410 struct type *to_type, struct field *args,
1411 int nargs, int varargs)
c906108c 1412{
2fdde8f8 1413 smash_type (type);
09e2d7c7 1414 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1415 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1416 set_type_self_type (type, self_type);
ad2f7632
DJ
1417 TYPE_FIELDS (type) = args;
1418 TYPE_NFIELDS (type) = nargs;
1419 if (varargs)
876cecd0 1420 TYPE_VARARGS (type) = 1;
c906108c 1421 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1422}
1423
1424/* Return a typename for a struct/union/enum type without "struct ",
1425 "union ", or "enum ". If the type has a NULL name, return NULL. */
1426
0d5cff50 1427const char *
aa1ee363 1428type_name_no_tag (const struct type *type)
c906108c
SS
1429{
1430 if (TYPE_TAG_NAME (type) != NULL)
1431 return TYPE_TAG_NAME (type);
1432
7ba81444
MS
1433 /* Is there code which expects this to return the name if there is
1434 no tag name? My guess is that this is mainly used for C++ in
1435 cases where the two will always be the same. */
c906108c
SS
1436 return TYPE_NAME (type);
1437}
1438
d8228535
JK
1439/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1440 Since GCC PR debug/47510 DWARF provides associated information to detect the
1441 anonymous class linkage name from its typedef.
1442
1443 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1444 apply it itself. */
1445
1446const char *
1447type_name_no_tag_or_error (struct type *type)
1448{
1449 struct type *saved_type = type;
1450 const char *name;
1451 struct objfile *objfile;
1452
f168693b 1453 type = check_typedef (type);
d8228535
JK
1454
1455 name = type_name_no_tag (type);
1456 if (name != NULL)
1457 return name;
1458
1459 name = type_name_no_tag (saved_type);
1460 objfile = TYPE_OBJFILE (saved_type);
1461 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1462 name ? name : "<anonymous>",
1463 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1464}
1465
7ba81444
MS
1466/* Lookup a typedef or primitive type named NAME, visible in lexical
1467 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1468 suitably defined. */
c906108c
SS
1469
1470struct type *
e6c014f2 1471lookup_typename (const struct language_defn *language,
ddd49eee 1472 struct gdbarch *gdbarch, const char *name,
34eaf542 1473 const struct block *block, int noerr)
c906108c 1474{
52f0bd74 1475 struct symbol *sym;
c906108c 1476
1994afbf 1477 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1478 language->la_language, NULL).symbol;
c51fe631
DE
1479 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1480 return SYMBOL_TYPE (sym);
1481
c51fe631
DE
1482 if (noerr)
1483 return NULL;
1484 error (_("No type named %s."), name);
c906108c
SS
1485}
1486
1487struct type *
e6c014f2 1488lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1489 struct gdbarch *gdbarch, const char *name)
c906108c 1490{
224c3ddb 1491 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1492
1493 strcpy (uns, "unsigned ");
1494 strcpy (uns + 9, name);
e6c014f2 1495 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1496}
1497
1498struct type *
e6c014f2 1499lookup_signed_typename (const struct language_defn *language,
0d5cff50 1500 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1501{
1502 struct type *t;
224c3ddb 1503 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1504
1505 strcpy (uns, "signed ");
1506 strcpy (uns + 7, name);
e6c014f2 1507 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1508 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1509 if (t != NULL)
1510 return t;
e6c014f2 1511 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1512}
1513
1514/* Lookup a structure type named "struct NAME",
1515 visible in lexical block BLOCK. */
1516
1517struct type *
270140bd 1518lookup_struct (const char *name, const struct block *block)
c906108c 1519{
52f0bd74 1520 struct symbol *sym;
c906108c 1521
d12307c1 1522 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1523
1524 if (sym == NULL)
1525 {
8a3fe4f8 1526 error (_("No struct type named %s."), name);
c906108c
SS
1527 }
1528 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1529 {
7ba81444
MS
1530 error (_("This context has class, union or enum %s, not a struct."),
1531 name);
c906108c
SS
1532 }
1533 return (SYMBOL_TYPE (sym));
1534}
1535
1536/* Lookup a union type named "union NAME",
1537 visible in lexical block BLOCK. */
1538
1539struct type *
270140bd 1540lookup_union (const char *name, const struct block *block)
c906108c 1541{
52f0bd74 1542 struct symbol *sym;
c5aa993b 1543 struct type *t;
c906108c 1544
d12307c1 1545 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1546
1547 if (sym == NULL)
8a3fe4f8 1548 error (_("No union type named %s."), name);
c906108c 1549
c5aa993b 1550 t = SYMBOL_TYPE (sym);
c906108c
SS
1551
1552 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1553 return t;
c906108c 1554
7ba81444
MS
1555 /* If we get here, it's not a union. */
1556 error (_("This context has class, struct or enum %s, not a union."),
1557 name);
c906108c
SS
1558}
1559
c906108c
SS
1560/* Lookup an enum type named "enum NAME",
1561 visible in lexical block BLOCK. */
1562
1563struct type *
270140bd 1564lookup_enum (const char *name, const struct block *block)
c906108c 1565{
52f0bd74 1566 struct symbol *sym;
c906108c 1567
d12307c1 1568 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1569 if (sym == NULL)
1570 {
8a3fe4f8 1571 error (_("No enum type named %s."), name);
c906108c
SS
1572 }
1573 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1574 {
7ba81444
MS
1575 error (_("This context has class, struct or union %s, not an enum."),
1576 name);
c906108c
SS
1577 }
1578 return (SYMBOL_TYPE (sym));
1579}
1580
1581/* Lookup a template type named "template NAME<TYPE>",
1582 visible in lexical block BLOCK. */
1583
1584struct type *
7ba81444 1585lookup_template_type (char *name, struct type *type,
270140bd 1586 const struct block *block)
c906108c
SS
1587{
1588 struct symbol *sym;
7ba81444
MS
1589 char *nam = (char *)
1590 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1591
c906108c
SS
1592 strcpy (nam, name);
1593 strcat (nam, "<");
0004e5a2 1594 strcat (nam, TYPE_NAME (type));
0963b4bd 1595 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1596
d12307c1 1597 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1598
1599 if (sym == NULL)
1600 {
8a3fe4f8 1601 error (_("No template type named %s."), name);
c906108c
SS
1602 }
1603 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1604 {
7ba81444
MS
1605 error (_("This context has class, union or enum %s, not a struct."),
1606 name);
c906108c
SS
1607 }
1608 return (SYMBOL_TYPE (sym));
1609}
1610
7ba81444
MS
1611/* Given a type TYPE, lookup the type of the component of type named
1612 NAME.
c906108c 1613
7ba81444
MS
1614 TYPE can be either a struct or union, or a pointer or reference to
1615 a struct or union. If it is a pointer or reference, its target
1616 type is automatically used. Thus '.' and '->' are interchangable,
1617 as specified for the definitions of the expression element types
1618 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1619
1620 If NOERR is nonzero, return zero if NAME is not suitably defined.
1621 If NAME is the name of a baseclass type, return that type. */
1622
1623struct type *
d7561cbb 1624lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1625{
1626 int i;
1627
1628 for (;;)
1629 {
f168693b 1630 type = check_typedef (type);
c906108c
SS
1631 if (TYPE_CODE (type) != TYPE_CODE_PTR
1632 && TYPE_CODE (type) != TYPE_CODE_REF)
1633 break;
1634 type = TYPE_TARGET_TYPE (type);
1635 }
1636
687d6395
MS
1637 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1638 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1639 {
2f408ecb
PA
1640 std::string type_name = type_to_string (type);
1641 error (_("Type %s is not a structure or union type."),
1642 type_name.c_str ());
c906108c
SS
1643 }
1644
1645#if 0
7ba81444
MS
1646 /* FIXME: This change put in by Michael seems incorrect for the case
1647 where the structure tag name is the same as the member name.
0963b4bd 1648 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1649 foo; } bell;" Disabled by fnf. */
c906108c 1650 {
fe978cb0 1651 char *type_name;
c906108c 1652
fe978cb0
PA
1653 type_name = type_name_no_tag (type);
1654 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1655 return type;
1656 }
1657#endif
1658
1659 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1660 {
0d5cff50 1661 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1662
db577aea 1663 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1664 {
1665 return TYPE_FIELD_TYPE (type, i);
1666 }
f5a010c0
PM
1667 else if (!t_field_name || *t_field_name == '\0')
1668 {
d8734c88
MS
1669 struct type *subtype
1670 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1671
f5a010c0
PM
1672 if (subtype != NULL)
1673 return subtype;
1674 }
c906108c
SS
1675 }
1676
1677 /* OK, it's not in this class. Recursively check the baseclasses. */
1678 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1679 {
1680 struct type *t;
1681
9733fc94 1682 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1683 if (t != NULL)
1684 {
1685 return t;
1686 }
1687 }
1688
1689 if (noerr)
1690 {
1691 return NULL;
1692 }
c5aa993b 1693
2f408ecb
PA
1694 std::string type_name = type_to_string (type);
1695 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1696}
1697
ed3ef339
DE
1698/* Store in *MAX the largest number representable by unsigned integer type
1699 TYPE. */
1700
1701void
1702get_unsigned_type_max (struct type *type, ULONGEST *max)
1703{
1704 unsigned int n;
1705
f168693b 1706 type = check_typedef (type);
ed3ef339
DE
1707 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1708 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1709
1710 /* Written this way to avoid overflow. */
1711 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1712 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1713}
1714
1715/* Store in *MIN, *MAX the smallest and largest numbers representable by
1716 signed integer type TYPE. */
1717
1718void
1719get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1720{
1721 unsigned int n;
1722
f168693b 1723 type = check_typedef (type);
ed3ef339
DE
1724 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1725 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1726
1727 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1728 *min = -((ULONGEST) 1 << (n - 1));
1729 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1730}
1731
ae6ae975
DE
1732/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1733 cplus_stuff.vptr_fieldno.
1734
1735 cplus_stuff is initialized to cplus_struct_default which does not
1736 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1737 designated initializers). We cope with that here. */
1738
1739int
1740internal_type_vptr_fieldno (struct type *type)
1741{
f168693b 1742 type = check_typedef (type);
ae6ae975
DE
1743 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1744 || TYPE_CODE (type) == TYPE_CODE_UNION);
1745 if (!HAVE_CPLUS_STRUCT (type))
1746 return -1;
1747 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1748}
1749
1750/* Set the value of cplus_stuff.vptr_fieldno. */
1751
1752void
1753set_type_vptr_fieldno (struct type *type, int fieldno)
1754{
f168693b 1755 type = check_typedef (type);
ae6ae975
DE
1756 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1757 || TYPE_CODE (type) == TYPE_CODE_UNION);
1758 if (!HAVE_CPLUS_STRUCT (type))
1759 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1760 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1761}
1762
1763/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1764 cplus_stuff.vptr_basetype. */
1765
1766struct type *
1767internal_type_vptr_basetype (struct type *type)
1768{
f168693b 1769 type = check_typedef (type);
ae6ae975
DE
1770 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1771 || TYPE_CODE (type) == TYPE_CODE_UNION);
1772 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1773 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1774}
1775
1776/* Set the value of cplus_stuff.vptr_basetype. */
1777
1778void
1779set_type_vptr_basetype (struct type *type, struct type *basetype)
1780{
f168693b 1781 type = check_typedef (type);
ae6ae975
DE
1782 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1783 || TYPE_CODE (type) == TYPE_CODE_UNION);
1784 if (!HAVE_CPLUS_STRUCT (type))
1785 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1786 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1787}
1788
81fe8080
DE
1789/* Lookup the vptr basetype/fieldno values for TYPE.
1790 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1791 vptr_fieldno. Also, if found and basetype is from the same objfile,
1792 cache the results.
1793 If not found, return -1 and ignore BASETYPEP.
1794 Callers should be aware that in some cases (for example,
c906108c 1795 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1796 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1797 this function will not be able to find the
7ba81444 1798 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1799 vptr_basetype will remain NULL or incomplete. */
c906108c 1800
81fe8080
DE
1801int
1802get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1803{
f168693b 1804 type = check_typedef (type);
c906108c
SS
1805
1806 if (TYPE_VPTR_FIELDNO (type) < 0)
1807 {
1808 int i;
1809
7ba81444
MS
1810 /* We must start at zero in case the first (and only) baseclass
1811 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1812 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1813 {
81fe8080
DE
1814 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1815 int fieldno;
1816 struct type *basetype;
1817
1818 fieldno = get_vptr_fieldno (baseclass, &basetype);
1819 if (fieldno >= 0)
c906108c 1820 {
81fe8080 1821 /* If the type comes from a different objfile we can't cache
0963b4bd 1822 it, it may have a different lifetime. PR 2384 */
5ef73790 1823 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1824 {
ae6ae975
DE
1825 set_type_vptr_fieldno (type, fieldno);
1826 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1827 }
1828 if (basetypep)
1829 *basetypep = basetype;
1830 return fieldno;
c906108c
SS
1831 }
1832 }
81fe8080
DE
1833
1834 /* Not found. */
1835 return -1;
1836 }
1837 else
1838 {
1839 if (basetypep)
1840 *basetypep = TYPE_VPTR_BASETYPE (type);
1841 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1842 }
1843}
1844
44e1a9eb
DJ
1845static void
1846stub_noname_complaint (void)
1847{
e2e0b3e5 1848 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1849}
1850
a405673c
JB
1851/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1852 attached to it, and that property has a non-constant value. */
1853
1854static int
1855array_type_has_dynamic_stride (struct type *type)
1856{
1857 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1858
1859 return (prop != NULL && prop->kind != PROP_CONST);
1860}
1861
d98b7a16 1862/* Worker for is_dynamic_type. */
80180f79 1863
d98b7a16 1864static int
ee715b5a 1865is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1866{
1867 type = check_typedef (type);
1868
e771e4be
PMR
1869 /* We only want to recognize references at the outermost level. */
1870 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1871 type = check_typedef (TYPE_TARGET_TYPE (type));
1872
3cdcd0ce
JB
1873 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1874 dynamic, even if the type itself is statically defined.
1875 From a user's point of view, this may appear counter-intuitive;
1876 but it makes sense in this context, because the point is to determine
1877 whether any part of the type needs to be resolved before it can
1878 be exploited. */
1879 if (TYPE_DATA_LOCATION (type) != NULL
1880 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1881 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1882 return 1;
1883
3f2f83dd
KB
1884 if (TYPE_ASSOCIATED_PROP (type))
1885 return 1;
1886
1887 if (TYPE_ALLOCATED_PROP (type))
1888 return 1;
1889
80180f79
SA
1890 switch (TYPE_CODE (type))
1891 {
6f8a3220 1892 case TYPE_CODE_RANGE:
ddb87a81
JB
1893 {
1894 /* A range type is obviously dynamic if it has at least one
1895 dynamic bound. But also consider the range type to be
1896 dynamic when its subtype is dynamic, even if the bounds
1897 of the range type are static. It allows us to assume that
1898 the subtype of a static range type is also static. */
1899 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1900 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1901 }
6f8a3220 1902
80180f79
SA
1903 case TYPE_CODE_ARRAY:
1904 {
80180f79 1905 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1906
a405673c 1907 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1908 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1909 return 1;
a405673c
JB
1910 /* ... or the elements it contains have a dynamic contents... */
1911 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1912 return 1;
1913 /* ... or if it has a dynamic stride... */
1914 if (array_type_has_dynamic_stride (type))
1915 return 1;
1916 return 0;
80180f79 1917 }
012370f6
TT
1918
1919 case TYPE_CODE_STRUCT:
1920 case TYPE_CODE_UNION:
1921 {
1922 int i;
1923
1924 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1925 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1926 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1927 return 1;
1928 }
1929 break;
80180f79 1930 }
92e2a17f
TT
1931
1932 return 0;
80180f79
SA
1933}
1934
d98b7a16
TT
1935/* See gdbtypes.h. */
1936
1937int
1938is_dynamic_type (struct type *type)
1939{
ee715b5a 1940 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1941}
1942
df25ebbd 1943static struct type *resolve_dynamic_type_internal
ee715b5a 1944 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1945
df25ebbd
JB
1946/* Given a dynamic range type (dyn_range_type) and a stack of
1947 struct property_addr_info elements, return a static version
1948 of that type. */
d190df30 1949
80180f79 1950static struct type *
df25ebbd
JB
1951resolve_dynamic_range (struct type *dyn_range_type,
1952 struct property_addr_info *addr_stack)
80180f79
SA
1953{
1954 CORE_ADDR value;
ddb87a81 1955 struct type *static_range_type, *static_target_type;
80180f79 1956 const struct dynamic_prop *prop;
80180f79
SA
1957 struct dynamic_prop low_bound, high_bound;
1958
6f8a3220 1959 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1960
6f8a3220 1961 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1962 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1963 {
1964 low_bound.kind = PROP_CONST;
1965 low_bound.data.const_val = value;
1966 }
1967 else
1968 {
1969 low_bound.kind = PROP_UNDEFINED;
1970 low_bound.data.const_val = 0;
1971 }
1972
6f8a3220 1973 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 1974 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1975 {
1976 high_bound.kind = PROP_CONST;
1977 high_bound.data.const_val = value;
c451ebe5 1978
6f8a3220 1979 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1980 high_bound.data.const_val
1981 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1982 }
1983 else
1984 {
1985 high_bound.kind = PROP_UNDEFINED;
1986 high_bound.data.const_val = 0;
1987 }
1988
ddb87a81
JB
1989 static_target_type
1990 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 1991 addr_stack, 0);
6f8a3220 1992 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 1993 static_target_type,
6f8a3220
JB
1994 &low_bound, &high_bound);
1995 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1996 return static_range_type;
1997}
1998
1999/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
2000 ADDR_STACK is a stack of struct property_addr_info to be used
2001 if needed during the dynamic resolution. */
6f8a3220
JB
2002
2003static struct type *
df25ebbd
JB
2004resolve_dynamic_array (struct type *type,
2005 struct property_addr_info *addr_stack)
6f8a3220
JB
2006{
2007 CORE_ADDR value;
2008 struct type *elt_type;
2009 struct type *range_type;
2010 struct type *ary_dim;
3f2f83dd 2011 struct dynamic_prop *prop;
a405673c 2012 unsigned int bit_stride = 0;
6f8a3220
JB
2013
2014 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2015
3f2f83dd
KB
2016 type = copy_type (type);
2017
6f8a3220
JB
2018 elt_type = type;
2019 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2020 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2021
3f2f83dd
KB
2022 /* Resolve allocated/associated here before creating a new array type, which
2023 will update the length of the array accordingly. */
2024 prop = TYPE_ALLOCATED_PROP (type);
2025 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2026 {
2027 TYPE_DYN_PROP_ADDR (prop) = value;
2028 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2029 }
2030 prop = TYPE_ASSOCIATED_PROP (type);
2031 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2032 {
2033 TYPE_DYN_PROP_ADDR (prop) = value;
2034 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2035 }
2036
80180f79
SA
2037 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2038
2039 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 2040 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
2041 else
2042 elt_type = TYPE_TARGET_TYPE (type);
2043
a405673c
JB
2044 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2045 if (prop != NULL)
2046 {
2047 int prop_eval_ok
2048 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2049
2050 if (prop_eval_ok)
2051 {
2052 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2053 bit_stride = (unsigned int) (value * 8);
2054 }
2055 else
2056 {
2057 /* Could be a bug in our code, but it could also happen
2058 if the DWARF info is not correct. Issue a warning,
2059 and assume no byte/bit stride (leave bit_stride = 0). */
2060 warning (_("cannot determine array stride for type %s"),
2061 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2062 }
2063 }
2064 else
2065 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2066
2067 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2068 bit_stride);
80180f79
SA
2069}
2070
012370f6 2071/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2072 bounds. ADDR_STACK is a stack of struct property_addr_info
2073 to be used if needed during the dynamic resolution. */
012370f6
TT
2074
2075static struct type *
df25ebbd
JB
2076resolve_dynamic_union (struct type *type,
2077 struct property_addr_info *addr_stack)
012370f6
TT
2078{
2079 struct type *resolved_type;
2080 int i;
2081 unsigned int max_len = 0;
2082
2083 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2084
2085 resolved_type = copy_type (type);
2086 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2087 = (struct field *) TYPE_ALLOC (resolved_type,
2088 TYPE_NFIELDS (resolved_type)
2089 * sizeof (struct field));
012370f6
TT
2090 memcpy (TYPE_FIELDS (resolved_type),
2091 TYPE_FIELDS (type),
2092 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2093 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2094 {
2095 struct type *t;
2096
2097 if (field_is_static (&TYPE_FIELD (type, i)))
2098 continue;
2099
d98b7a16 2100 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2101 addr_stack, 0);
012370f6
TT
2102 TYPE_FIELD_TYPE (resolved_type, i) = t;
2103 if (TYPE_LENGTH (t) > max_len)
2104 max_len = TYPE_LENGTH (t);
2105 }
2106
2107 TYPE_LENGTH (resolved_type) = max_len;
2108 return resolved_type;
2109}
2110
2111/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2112 bounds. ADDR_STACK is a stack of struct property_addr_info to
2113 be used if needed during the dynamic resolution. */
012370f6
TT
2114
2115static struct type *
df25ebbd
JB
2116resolve_dynamic_struct (struct type *type,
2117 struct property_addr_info *addr_stack)
012370f6
TT
2118{
2119 struct type *resolved_type;
2120 int i;
6908c509 2121 unsigned resolved_type_bit_length = 0;
012370f6
TT
2122
2123 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2124 gdb_assert (TYPE_NFIELDS (type) > 0);
2125
2126 resolved_type = copy_type (type);
2127 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2128 = (struct field *) TYPE_ALLOC (resolved_type,
2129 TYPE_NFIELDS (resolved_type)
2130 * sizeof (struct field));
012370f6
TT
2131 memcpy (TYPE_FIELDS (resolved_type),
2132 TYPE_FIELDS (type),
2133 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2134 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2135 {
6908c509 2136 unsigned new_bit_length;
df25ebbd 2137 struct property_addr_info pinfo;
012370f6
TT
2138
2139 if (field_is_static (&TYPE_FIELD (type, i)))
2140 continue;
2141
6908c509
JB
2142 /* As we know this field is not a static field, the field's
2143 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2144 this is the case, but only trigger a simple error rather
2145 than an internal error if that fails. While failing
2146 that verification indicates a bug in our code, the error
2147 is not severe enough to suggest to the user he stops
2148 his debugging session because of it. */
df25ebbd 2149 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2150 error (_("Cannot determine struct field location"
2151 " (invalid location kind)"));
df25ebbd
JB
2152
2153 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2154 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2155 pinfo.addr
2156 = (addr_stack->addr
2157 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2158 pinfo.next = addr_stack;
2159
2160 TYPE_FIELD_TYPE (resolved_type, i)
2161 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2162 &pinfo, 0);
df25ebbd
JB
2163 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2164 == FIELD_LOC_KIND_BITPOS);
2165
6908c509
JB
2166 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2167 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2168 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2169 else
2170 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2171 * TARGET_CHAR_BIT);
2172
2173 /* Normally, we would use the position and size of the last field
2174 to determine the size of the enclosing structure. But GCC seems
2175 to be encoding the position of some fields incorrectly when
2176 the struct contains a dynamic field that is not placed last.
2177 So we compute the struct size based on the field that has
2178 the highest position + size - probably the best we can do. */
2179 if (new_bit_length > resolved_type_bit_length)
2180 resolved_type_bit_length = new_bit_length;
012370f6
TT
2181 }
2182
9920b434
BH
2183 /* The length of a type won't change for fortran, but it does for C and Ada.
2184 For fortran the size of dynamic fields might change over time but not the
2185 type length of the structure. If we adapt it, we run into problems
2186 when calculating the element offset for arrays of structs. */
2187 if (current_language->la_language != language_fortran)
2188 TYPE_LENGTH (resolved_type)
2189 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2190
9e195661
PMR
2191 /* The Ada language uses this field as a cache for static fixed types: reset
2192 it as RESOLVED_TYPE must have its own static fixed type. */
2193 TYPE_TARGET_TYPE (resolved_type) = NULL;
2194
012370f6
TT
2195 return resolved_type;
2196}
2197
d98b7a16 2198/* Worker for resolved_dynamic_type. */
80180f79 2199
d98b7a16 2200static struct type *
df25ebbd 2201resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2202 struct property_addr_info *addr_stack,
2203 int top_level)
80180f79
SA
2204{
2205 struct type *real_type = check_typedef (type);
6f8a3220 2206 struct type *resolved_type = type;
d9823cbb 2207 struct dynamic_prop *prop;
3cdcd0ce 2208 CORE_ADDR value;
80180f79 2209
ee715b5a 2210 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2211 return type;
2212
5537b577 2213 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2214 {
cac9b138
JK
2215 resolved_type = copy_type (type);
2216 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2217 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2218 top_level);
5537b577
JK
2219 }
2220 else
2221 {
2222 /* Before trying to resolve TYPE, make sure it is not a stub. */
2223 type = real_type;
012370f6 2224
5537b577
JK
2225 switch (TYPE_CODE (type))
2226 {
e771e4be
PMR
2227 case TYPE_CODE_REF:
2228 {
2229 struct property_addr_info pinfo;
2230
2231 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2232 pinfo.valaddr = NULL;
2233 if (addr_stack->valaddr != NULL)
2234 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2235 else
2236 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2237 pinfo.next = addr_stack;
2238
2239 resolved_type = copy_type (type);
2240 TYPE_TARGET_TYPE (resolved_type)
2241 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2242 &pinfo, top_level);
2243 break;
2244 }
2245
5537b577 2246 case TYPE_CODE_ARRAY:
df25ebbd 2247 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2248 break;
2249
2250 case TYPE_CODE_RANGE:
df25ebbd 2251 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2252 break;
2253
2254 case TYPE_CODE_UNION:
df25ebbd 2255 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2256 break;
2257
2258 case TYPE_CODE_STRUCT:
df25ebbd 2259 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2260 break;
2261 }
6f8a3220 2262 }
80180f79 2263
3cdcd0ce
JB
2264 /* Resolve data_location attribute. */
2265 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2266 if (prop != NULL
2267 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2268 {
d9823cbb
KB
2269 TYPE_DYN_PROP_ADDR (prop) = value;
2270 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2271 }
3cdcd0ce 2272
80180f79
SA
2273 return resolved_type;
2274}
2275
d98b7a16
TT
2276/* See gdbtypes.h */
2277
2278struct type *
c3345124
JB
2279resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2280 CORE_ADDR addr)
d98b7a16 2281{
c3345124
JB
2282 struct property_addr_info pinfo
2283 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2284
ee715b5a 2285 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2286}
2287
d9823cbb
KB
2288/* See gdbtypes.h */
2289
2290struct dynamic_prop *
2291get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2292{
2293 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2294
2295 while (node != NULL)
2296 {
2297 if (node->prop_kind == prop_kind)
283a9958 2298 return &node->prop;
d9823cbb
KB
2299 node = node->next;
2300 }
2301 return NULL;
2302}
2303
2304/* See gdbtypes.h */
2305
2306void
2307add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2308 struct type *type, struct objfile *objfile)
2309{
2310 struct dynamic_prop_list *temp;
2311
2312 gdb_assert (TYPE_OBJFILE_OWNED (type));
2313
224c3ddb 2314 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
d9823cbb 2315 temp->prop_kind = prop_kind;
283a9958 2316 temp->prop = prop;
d9823cbb
KB
2317 temp->next = TYPE_DYN_PROP_LIST (type);
2318
2319 TYPE_DYN_PROP_LIST (type) = temp;
2320}
2321
9920b434
BH
2322/* Remove dynamic property from TYPE in case it exists. */
2323
2324void
2325remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2326 struct type *type)
2327{
2328 struct dynamic_prop_list *prev_node, *curr_node;
2329
2330 curr_node = TYPE_DYN_PROP_LIST (type);
2331 prev_node = NULL;
2332
2333 while (NULL != curr_node)
2334 {
2335 if (curr_node->prop_kind == prop_kind)
2336 {
2337 /* Update the linked list but don't free anything.
2338 The property was allocated on objstack and it is not known
2339 if we are on top of it. Nevertheless, everything is released
2340 when the complete objstack is freed. */
2341 if (NULL == prev_node)
2342 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2343 else
2344 prev_node->next = curr_node->next;
2345
2346 return;
2347 }
2348
2349 prev_node = curr_node;
2350 curr_node = curr_node->next;
2351 }
2352}
d9823cbb 2353
92163a10
JK
2354/* Find the real type of TYPE. This function returns the real type,
2355 after removing all layers of typedefs, and completing opaque or stub
2356 types. Completion changes the TYPE argument, but stripping of
2357 typedefs does not.
2358
2359 Instance flags (e.g. const/volatile) are preserved as typedefs are
2360 stripped. If necessary a new qualified form of the underlying type
2361 is created.
2362
2363 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2364 not been computed and we're either in the middle of reading symbols, or
2365 there was no name for the typedef in the debug info.
2366
9bc118a5
DE
2367 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2368 QUITs in the symbol reading code can also throw.
2369 Thus this function can throw an exception.
2370
92163a10
JK
2371 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2372 the target type.
c906108c
SS
2373
2374 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2375 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2376 definition, so we can use it in future. There used to be a comment
2377 (but not any code) that if we don't find a full definition, we'd
2378 set a flag so we don't spend time in the future checking the same
2379 type. That would be a mistake, though--we might load in more
92163a10 2380 symbols which contain a full definition for the type. */
c906108c
SS
2381
2382struct type *
a02fd225 2383check_typedef (struct type *type)
c906108c
SS
2384{
2385 struct type *orig_type = type;
92163a10
JK
2386 /* While we're removing typedefs, we don't want to lose qualifiers.
2387 E.g., const/volatile. */
2388 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2389
423c0af8
MS
2390 gdb_assert (type);
2391
c906108c
SS
2392 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2393 {
2394 if (!TYPE_TARGET_TYPE (type))
2395 {
0d5cff50 2396 const char *name;
c906108c
SS
2397 struct symbol *sym;
2398
2399 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2400 reading a symtab. Infinite recursion is one danger. */
c906108c 2401 if (currently_reading_symtab)
92163a10 2402 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2403
2404 name = type_name_no_tag (type);
7ba81444
MS
2405 /* FIXME: shouldn't we separately check the TYPE_NAME and
2406 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2407 VAR_DOMAIN as appropriate? (this code was written before
2408 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2409 if (name == NULL)
2410 {
23136709 2411 stub_noname_complaint ();
92163a10 2412 return make_qualified_type (type, instance_flags, NULL);
c906108c 2413 }
d12307c1 2414 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2415 if (sym)
2416 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2417 else /* TYPE_CODE_UNDEF */
e9bb382b 2418 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2419 }
2420 type = TYPE_TARGET_TYPE (type);
c906108c 2421
92163a10
JK
2422 /* Preserve the instance flags as we traverse down the typedef chain.
2423
2424 Handling address spaces/classes is nasty, what do we do if there's a
2425 conflict?
2426 E.g., what if an outer typedef marks the type as class_1 and an inner
2427 typedef marks the type as class_2?
2428 This is the wrong place to do such error checking. We leave it to
2429 the code that created the typedef in the first place to flag the
2430 error. We just pick the outer address space (akin to letting the
2431 outer cast in a chain of casting win), instead of assuming
2432 "it can't happen". */
2433 {
2434 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2435 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2436 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2437 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2438
2439 /* Treat code vs data spaces and address classes separately. */
2440 if ((instance_flags & ALL_SPACES) != 0)
2441 new_instance_flags &= ~ALL_SPACES;
2442 if ((instance_flags & ALL_CLASSES) != 0)
2443 new_instance_flags &= ~ALL_CLASSES;
2444
2445 instance_flags |= new_instance_flags;
2446 }
2447 }
a02fd225 2448
7ba81444
MS
2449 /* If this is a struct/class/union with no fields, then check
2450 whether a full definition exists somewhere else. This is for
2451 systems where a type definition with no fields is issued for such
2452 types, instead of identifying them as stub types in the first
2453 place. */
c5aa993b 2454
7ba81444
MS
2455 if (TYPE_IS_OPAQUE (type)
2456 && opaque_type_resolution
2457 && !currently_reading_symtab)
c906108c 2458 {
0d5cff50 2459 const char *name = type_name_no_tag (type);
c5aa993b 2460 struct type *newtype;
d8734c88 2461
c906108c
SS
2462 if (name == NULL)
2463 {
23136709 2464 stub_noname_complaint ();
92163a10 2465 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2466 }
2467 newtype = lookup_transparent_type (name);
ad766c0a 2468
c906108c 2469 if (newtype)
ad766c0a 2470 {
7ba81444
MS
2471 /* If the resolved type and the stub are in the same
2472 objfile, then replace the stub type with the real deal.
2473 But if they're in separate objfiles, leave the stub
2474 alone; we'll just look up the transparent type every time
2475 we call check_typedef. We can't create pointers between
2476 types allocated to different objfiles, since they may
2477 have different lifetimes. Trying to copy NEWTYPE over to
2478 TYPE's objfile is pointless, too, since you'll have to
2479 move over any other types NEWTYPE refers to, which could
2480 be an unbounded amount of stuff. */
ad766c0a 2481 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2482 type = make_qualified_type (newtype,
2483 TYPE_INSTANCE_FLAGS (type),
2484 type);
ad766c0a
JB
2485 else
2486 type = newtype;
2487 }
c906108c 2488 }
7ba81444
MS
2489 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2490 types. */
74a9bb82 2491 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2492 {
0d5cff50 2493 const char *name = type_name_no_tag (type);
c906108c 2494 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2495 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2496 as appropriate? (this code was written before TYPE_NAME and
2497 TYPE_TAG_NAME were separate). */
c906108c 2498 struct symbol *sym;
d8734c88 2499
c906108c
SS
2500 if (name == NULL)
2501 {
23136709 2502 stub_noname_complaint ();
92163a10 2503 return make_qualified_type (type, instance_flags, NULL);
c906108c 2504 }
d12307c1 2505 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2506 if (sym)
c26f2453
JB
2507 {
2508 /* Same as above for opaque types, we can replace the stub
92163a10 2509 with the complete type only if they are in the same
c26f2453
JB
2510 objfile. */
2511 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2512 type = make_qualified_type (SYMBOL_TYPE (sym),
2513 TYPE_INSTANCE_FLAGS (type),
2514 type);
c26f2453
JB
2515 else
2516 type = SYMBOL_TYPE (sym);
2517 }
c906108c
SS
2518 }
2519
74a9bb82 2520 if (TYPE_TARGET_STUB (type))
c906108c 2521 {
c906108c
SS
2522 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2523
74a9bb82 2524 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2525 {
73e2eb35 2526 /* Nothing we can do. */
c5aa993b 2527 }
c906108c
SS
2528 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2529 {
2530 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2531 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2532 }
2533 }
92163a10
JK
2534
2535 type = make_qualified_type (type, instance_flags, NULL);
2536
7ba81444 2537 /* Cache TYPE_LENGTH for future use. */
c906108c 2538 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2539
c906108c
SS
2540 return type;
2541}
2542
7ba81444 2543/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2544 occurs, silently return a void type. */
c91ecb25 2545
b9362cc7 2546static struct type *
48319d1f 2547safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2548{
2549 struct ui_file *saved_gdb_stderr;
34365054 2550 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2551
7ba81444 2552 /* Suppress error messages. */
c91ecb25 2553 saved_gdb_stderr = gdb_stderr;
d7e74731 2554 gdb_stderr = &null_stream;
c91ecb25 2555
7ba81444 2556 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2557 TRY
8e7b59a5
KS
2558 {
2559 type = parse_and_eval_type (p, length);
2560 }
492d29ea
PA
2561 CATCH (except, RETURN_MASK_ERROR)
2562 {
2563 type = builtin_type (gdbarch)->builtin_void;
2564 }
2565 END_CATCH
c91ecb25 2566
7ba81444 2567 /* Stop suppressing error messages. */
c91ecb25
ND
2568 gdb_stderr = saved_gdb_stderr;
2569
2570 return type;
2571}
2572
c906108c
SS
2573/* Ugly hack to convert method stubs into method types.
2574
7ba81444
MS
2575 He ain't kiddin'. This demangles the name of the method into a
2576 string including argument types, parses out each argument type,
2577 generates a string casting a zero to that type, evaluates the
2578 string, and stuffs the resulting type into an argtype vector!!!
2579 Then it knows the type of the whole function (including argument
2580 types for overloading), which info used to be in the stab's but was
2581 removed to hack back the space required for them. */
c906108c 2582
de17c821 2583static void
fba45db2 2584check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2585{
50810684 2586 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2587 struct fn_field *f;
2588 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2589 char *demangled_name = gdb_demangle (mangled_name,
2590 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2591 char *argtypetext, *p;
2592 int depth = 0, argcount = 1;
ad2f7632 2593 struct field *argtypes;
c906108c
SS
2594 struct type *mtype;
2595
2596 /* Make sure we got back a function string that we can use. */
2597 if (demangled_name)
2598 p = strchr (demangled_name, '(');
502dcf4e
AC
2599 else
2600 p = NULL;
c906108c
SS
2601
2602 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2603 error (_("Internal: Cannot demangle mangled name `%s'."),
2604 mangled_name);
c906108c
SS
2605
2606 /* Now, read in the parameters that define this type. */
2607 p += 1;
2608 argtypetext = p;
2609 while (*p)
2610 {
070ad9f0 2611 if (*p == '(' || *p == '<')
c906108c
SS
2612 {
2613 depth += 1;
2614 }
070ad9f0 2615 else if (*p == ')' || *p == '>')
c906108c
SS
2616 {
2617 depth -= 1;
2618 }
2619 else if (*p == ',' && depth == 0)
2620 {
2621 argcount += 1;
2622 }
2623
2624 p += 1;
2625 }
2626
ad2f7632 2627 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2628 if (startswith (argtypetext, "(void)"))
ad2f7632 2629 argcount -= 1;
c906108c 2630
ad2f7632
DJ
2631 /* We need one extra slot, for the THIS pointer. */
2632
2633 argtypes = (struct field *)
2634 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2635 p = argtypetext;
4a1970e4
DJ
2636
2637 /* Add THIS pointer for non-static methods. */
2638 f = TYPE_FN_FIELDLIST1 (type, method_id);
2639 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2640 argcount = 0;
2641 else
2642 {
ad2f7632 2643 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2644 argcount = 1;
2645 }
c906108c 2646
0963b4bd 2647 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2648 {
2649 depth = 0;
2650 while (*p)
2651 {
2652 if (depth <= 0 && (*p == ',' || *p == ')'))
2653 {
ad2f7632
DJ
2654 /* Avoid parsing of ellipsis, they will be handled below.
2655 Also avoid ``void'' as above. */
2656 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2657 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2658 {
ad2f7632 2659 argtypes[argcount].type =
48319d1f 2660 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2661 argcount += 1;
2662 }
2663 argtypetext = p + 1;
2664 }
2665
070ad9f0 2666 if (*p == '(' || *p == '<')
c906108c
SS
2667 {
2668 depth += 1;
2669 }
070ad9f0 2670 else if (*p == ')' || *p == '>')
c906108c
SS
2671 {
2672 depth -= 1;
2673 }
2674
2675 p += 1;
2676 }
2677 }
2678
c906108c
SS
2679 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2680
2681 /* Now update the old "stub" type into a real type. */
2682 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2683 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2684 We want a method (TYPE_CODE_METHOD). */
2685 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2686 argtypes, argcount, p[-2] == '.');
876cecd0 2687 TYPE_STUB (mtype) = 0;
c906108c 2688 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2689
2690 xfree (demangled_name);
c906108c
SS
2691}
2692
7ba81444
MS
2693/* This is the external interface to check_stub_method, above. This
2694 function unstubs all of the signatures for TYPE's METHOD_ID method
2695 name. After calling this function TYPE_FN_FIELD_STUB will be
2696 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2697 correct.
de17c821
DJ
2698
2699 This function unfortunately can not die until stabs do. */
2700
2701void
2702check_stub_method_group (struct type *type, int method_id)
2703{
2704 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2705 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2706 int j, found_stub = 0;
de17c821
DJ
2707
2708 for (j = 0; j < len; j++)
2709 if (TYPE_FN_FIELD_STUB (f, j))
2710 {
2711 found_stub = 1;
2712 check_stub_method (type, method_id, j);
2713 }
2714
7ba81444
MS
2715 /* GNU v3 methods with incorrect names were corrected when we read
2716 in type information, because it was cheaper to do it then. The
2717 only GNU v2 methods with incorrect method names are operators and
2718 destructors; destructors were also corrected when we read in type
2719 information.
de17c821
DJ
2720
2721 Therefore the only thing we need to handle here are v2 operator
2722 names. */
61012eef 2723 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
de17c821
DJ
2724 {
2725 int ret;
2726 char dem_opname[256];
2727
7ba81444
MS
2728 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2729 method_id),
de17c821
DJ
2730 dem_opname, DMGL_ANSI);
2731 if (!ret)
7ba81444
MS
2732 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2733 method_id),
de17c821
DJ
2734 dem_opname, 0);
2735 if (ret)
2736 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2737 }
2738}
2739
9655fd1a
JK
2740/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2741const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2742
2743void
fba45db2 2744allocate_cplus_struct_type (struct type *type)
c906108c 2745{
b4ba55a1
JB
2746 if (HAVE_CPLUS_STRUCT (type))
2747 /* Structure was already allocated. Nothing more to do. */
2748 return;
2749
2750 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2751 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2752 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2753 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2754 set_type_vptr_fieldno (type, -1);
c906108c
SS
2755}
2756
b4ba55a1
JB
2757const struct gnat_aux_type gnat_aux_default =
2758 { NULL };
2759
2760/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2761 and allocate the associated gnat-specific data. The gnat-specific
2762 data is also initialized to gnat_aux_default. */
5212577a 2763
b4ba55a1
JB
2764void
2765allocate_gnat_aux_type (struct type *type)
2766{
2767 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2768 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2769 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2770 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2771}
2772
ae438bc5
UW
2773/* Helper function to initialize a newly allocated type. Set type code
2774 to CODE and initialize the type-specific fields accordingly. */
2775
2776static void
2777set_type_code (struct type *type, enum type_code code)
2778{
2779 TYPE_CODE (type) = code;
2780
2781 switch (code)
2782 {
2783 case TYPE_CODE_STRUCT:
2784 case TYPE_CODE_UNION:
2785 case TYPE_CODE_NAMESPACE:
2786 INIT_CPLUS_SPECIFIC (type);
2787 break;
2788 case TYPE_CODE_FLT:
2789 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2790 break;
2791 case TYPE_CODE_FUNC:
2792 INIT_FUNC_SPECIFIC (type);
2793 break;
2794 }
2795}
2796
19f392bc
UW
2797/* Helper function to verify floating-point format and size.
2798 BIT is the type size in bits; if BIT equals -1, the size is
2799 determined by the floatformat. Returns size to be used. */
2800
2801static int
0db7851f 2802verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2803{
0db7851f 2804 gdb_assert (floatformat != NULL);
9b790ce7 2805
19f392bc 2806 if (bit == -1)
0db7851f 2807 bit = floatformat->totalsize;
19f392bc 2808
0db7851f
UW
2809 gdb_assert (bit >= 0);
2810 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2811
2812 return bit;
2813}
2814
0db7851f
UW
2815/* Return the floating-point format for a floating-point variable of
2816 type TYPE. */
2817
2818const struct floatformat *
2819floatformat_from_type (const struct type *type)
2820{
2821 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2822 gdb_assert (TYPE_FLOATFORMAT (type));
2823 return TYPE_FLOATFORMAT (type);
2824}
2825
c906108c
SS
2826/* Helper function to initialize the standard scalar types.
2827
86f62fd7
TT
2828 If NAME is non-NULL, then it is used to initialize the type name.
2829 Note that NAME is not copied; it is required to have a lifetime at
2830 least as long as OBJFILE. */
c906108c
SS
2831
2832struct type *
77b7c781 2833init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2834 const char *name)
c906108c 2835{
52f0bd74 2836 struct type *type;
c906108c
SS
2837
2838 type = alloc_type (objfile);
ae438bc5 2839 set_type_code (type, code);
77b7c781
UW
2840 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2841 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2842 TYPE_NAME (type) = name;
c906108c 2843
c16abbde 2844 return type;
c906108c 2845}
19f392bc 2846
46a4882b
PA
2847/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2848 to use with variables that have no debug info. NAME is the type
2849 name. */
2850
2851static struct type *
2852init_nodebug_var_type (struct objfile *objfile, const char *name)
2853{
2854 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2855}
2856
19f392bc
UW
2857/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2858 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2859 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2860
2861struct type *
2862init_integer_type (struct objfile *objfile,
2863 int bit, int unsigned_p, const char *name)
2864{
2865 struct type *t;
2866
77b7c781 2867 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2868 if (unsigned_p)
2869 TYPE_UNSIGNED (t) = 1;
2870
2871 return t;
2872}
2873
2874/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2875 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2876 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2877
2878struct type *
2879init_character_type (struct objfile *objfile,
2880 int bit, int unsigned_p, const char *name)
2881{
2882 struct type *t;
2883
77b7c781 2884 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2885 if (unsigned_p)
2886 TYPE_UNSIGNED (t) = 1;
2887
2888 return t;
2889}
2890
2891/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2892 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2893 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2894
2895struct type *
2896init_boolean_type (struct objfile *objfile,
2897 int bit, int unsigned_p, const char *name)
2898{
2899 struct type *t;
2900
77b7c781 2901 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2902 if (unsigned_p)
2903 TYPE_UNSIGNED (t) = 1;
2904
2905 return t;
2906}
2907
2908/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2909 BIT is the type size in bits; if BIT equals -1, the size is
2910 determined by the floatformat. NAME is the type name. Set the
2911 TYPE_FLOATFORMAT from FLOATFORMATS. */
2912
2913struct type *
2914init_float_type (struct objfile *objfile,
2915 int bit, const char *name,
2916 const struct floatformat **floatformats)
2917{
0db7851f
UW
2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2919 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
19f392bc
UW
2920 struct type *t;
2921
0db7851f 2922 bit = verify_floatformat (bit, fmt);
77b7c781 2923 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 2924 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
2925
2926 return t;
2927}
2928
2929/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2930 BIT is the type size in bits. NAME is the type name. */
2931
2932struct type *
2933init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2934{
2935 struct type *t;
2936
77b7c781 2937 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
2938 return t;
2939}
2940
2941/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2942 NAME is the type name. TARGET_TYPE is the component float type. */
2943
2944struct type *
2945init_complex_type (struct objfile *objfile,
2946 const char *name, struct type *target_type)
2947{
2948 struct type *t;
2949
2950 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 2951 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
2952 TYPE_TARGET_TYPE (t) = target_type;
2953 return t;
2954}
2955
2956/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2957 BIT is the pointer type size in bits. NAME is the type name.
2958 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2959 TYPE_UNSIGNED flag. */
2960
2961struct type *
2962init_pointer_type (struct objfile *objfile,
2963 int bit, const char *name, struct type *target_type)
2964{
2965 struct type *t;
2966
77b7c781 2967 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
2968 TYPE_TARGET_TYPE (t) = target_type;
2969 TYPE_UNSIGNED (t) = 1;
2970 return t;
2971}
2972
5212577a
DE
2973\f
2974/* Queries on types. */
c906108c 2975
c906108c 2976int
fba45db2 2977can_dereference (struct type *t)
c906108c 2978{
7ba81444
MS
2979 /* FIXME: Should we return true for references as well as
2980 pointers? */
f168693b 2981 t = check_typedef (t);
c906108c
SS
2982 return
2983 (t != NULL
2984 && TYPE_CODE (t) == TYPE_CODE_PTR
2985 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2986}
2987
adf40b2e 2988int
fba45db2 2989is_integral_type (struct type *t)
adf40b2e 2990{
f168693b 2991 t = check_typedef (t);
adf40b2e
JM
2992 return
2993 ((t != NULL)
d4f3574e
SS
2994 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2995 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2996 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2997 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2998 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2999 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3000}
3001
70100014
UW
3002int
3003is_floating_type (struct type *t)
3004{
3005 t = check_typedef (t);
3006 return
3007 ((t != NULL)
3008 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3009 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3010}
3011
e09342b5
TJB
3012/* Return true if TYPE is scalar. */
3013
220475ed 3014int
e09342b5
TJB
3015is_scalar_type (struct type *type)
3016{
f168693b 3017 type = check_typedef (type);
e09342b5
TJB
3018
3019 switch (TYPE_CODE (type))
3020 {
3021 case TYPE_CODE_ARRAY:
3022 case TYPE_CODE_STRUCT:
3023 case TYPE_CODE_UNION:
3024 case TYPE_CODE_SET:
3025 case TYPE_CODE_STRING:
e09342b5
TJB
3026 return 0;
3027 default:
3028 return 1;
3029 }
3030}
3031
3032/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3033 the memory layout of a scalar type. E.g., an array or struct with only
3034 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3035
3036int
3037is_scalar_type_recursive (struct type *t)
3038{
f168693b 3039 t = check_typedef (t);
e09342b5
TJB
3040
3041 if (is_scalar_type (t))
3042 return 1;
3043 /* Are we dealing with an array or string of known dimensions? */
3044 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3045 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3046 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3047 {
3048 LONGEST low_bound, high_bound;
3049 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3050
3051 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3052
3053 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3054 }
3055 /* Are we dealing with a struct with one element? */
3056 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3057 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3058 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3059 {
3060 int i, n = TYPE_NFIELDS (t);
3061
3062 /* If all elements of the union are scalar, then the union is scalar. */
3063 for (i = 0; i < n; i++)
3064 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3065 return 0;
3066
3067 return 1;
3068 }
3069
3070 return 0;
3071}
3072
6c659fc2
SC
3073/* Return true is T is a class or a union. False otherwise. */
3074
3075int
3076class_or_union_p (const struct type *t)
3077{
3078 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3079 || TYPE_CODE (t) == TYPE_CODE_UNION);
3080}
3081
4e8f195d
TT
3082/* A helper function which returns true if types A and B represent the
3083 "same" class type. This is true if the types have the same main
3084 type, or the same name. */
3085
3086int
3087class_types_same_p (const struct type *a, const struct type *b)
3088{
3089 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3090 || (TYPE_NAME (a) && TYPE_NAME (b)
3091 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3092}
3093
a9d5ef47
SW
3094/* If BASE is an ancestor of DCLASS return the distance between them.
3095 otherwise return -1;
3096 eg:
3097
3098 class A {};
3099 class B: public A {};
3100 class C: public B {};
3101 class D: C {};
3102
3103 distance_to_ancestor (A, A, 0) = 0
3104 distance_to_ancestor (A, B, 0) = 1
3105 distance_to_ancestor (A, C, 0) = 2
3106 distance_to_ancestor (A, D, 0) = 3
3107
3108 If PUBLIC is 1 then only public ancestors are considered,
3109 and the function returns the distance only if BASE is a public ancestor
3110 of DCLASS.
3111 Eg:
3112
0963b4bd 3113 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3114
0526b37a 3115static int
fe978cb0 3116distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3117{
3118 int i;
a9d5ef47 3119 int d;
c5aa993b 3120
f168693b
SM
3121 base = check_typedef (base);
3122 dclass = check_typedef (dclass);
c906108c 3123
4e8f195d 3124 if (class_types_same_p (base, dclass))
a9d5ef47 3125 return 0;
c906108c
SS
3126
3127 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3128 {
fe978cb0 3129 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3130 continue;
3131
fe978cb0 3132 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3133 if (d >= 0)
3134 return 1 + d;
4e8f195d 3135 }
c906108c 3136
a9d5ef47 3137 return -1;
c906108c 3138}
4e8f195d 3139
0526b37a
SW
3140/* Check whether BASE is an ancestor or base class or DCLASS
3141 Return 1 if so, and 0 if not.
3142 Note: If BASE and DCLASS are of the same type, this function
3143 will return 1. So for some class A, is_ancestor (A, A) will
3144 return 1. */
3145
3146int
3147is_ancestor (struct type *base, struct type *dclass)
3148{
a9d5ef47 3149 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3150}
3151
4e8f195d
TT
3152/* Like is_ancestor, but only returns true when BASE is a public
3153 ancestor of DCLASS. */
3154
3155int
3156is_public_ancestor (struct type *base, struct type *dclass)
3157{
a9d5ef47 3158 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3159}
3160
3161/* A helper function for is_unique_ancestor. */
3162
3163static int
3164is_unique_ancestor_worker (struct type *base, struct type *dclass,
3165 int *offset,
8af8e3bc
PA
3166 const gdb_byte *valaddr, int embedded_offset,
3167 CORE_ADDR address, struct value *val)
4e8f195d
TT
3168{
3169 int i, count = 0;
3170
f168693b
SM
3171 base = check_typedef (base);
3172 dclass = check_typedef (dclass);
4e8f195d
TT
3173
3174 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3175 {
8af8e3bc
PA
3176 struct type *iter;
3177 int this_offset;
4e8f195d 3178
8af8e3bc
PA
3179 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3180
3181 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3182 address, val);
4e8f195d
TT
3183
3184 if (class_types_same_p (base, iter))
3185 {
3186 /* If this is the first subclass, set *OFFSET and set count
3187 to 1. Otherwise, if this is at the same offset as
3188 previous instances, do nothing. Otherwise, increment
3189 count. */
3190 if (*offset == -1)
3191 {
3192 *offset = this_offset;
3193 count = 1;
3194 }
3195 else if (this_offset == *offset)
3196 {
3197 /* Nothing. */
3198 }
3199 else
3200 ++count;
3201 }
3202 else
3203 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3204 valaddr,
3205 embedded_offset + this_offset,
3206 address, val);
4e8f195d
TT
3207 }
3208
3209 return count;
3210}
3211
3212/* Like is_ancestor, but only returns true if BASE is a unique base
3213 class of the type of VAL. */
3214
3215int
3216is_unique_ancestor (struct type *base, struct value *val)
3217{
3218 int offset = -1;
3219
3220 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3221 value_contents_for_printing (val),
3222 value_embedded_offset (val),
3223 value_address (val), val) == 1;
4e8f195d
TT
3224}
3225
c906108c 3226\f
5212577a 3227/* Overload resolution. */
c906108c 3228
6403aeea
SW
3229/* Return the sum of the rank of A with the rank of B. */
3230
3231struct rank
3232sum_ranks (struct rank a, struct rank b)
3233{
3234 struct rank c;
3235 c.rank = a.rank + b.rank;
a9d5ef47 3236 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3237 return c;
3238}
3239
3240/* Compare rank A and B and return:
3241 0 if a = b
3242 1 if a is better than b
3243 -1 if b is better than a. */
3244
3245int
3246compare_ranks (struct rank a, struct rank b)
3247{
3248 if (a.rank == b.rank)
a9d5ef47
SW
3249 {
3250 if (a.subrank == b.subrank)
3251 return 0;
3252 if (a.subrank < b.subrank)
3253 return 1;
3254 if (a.subrank > b.subrank)
3255 return -1;
3256 }
6403aeea
SW
3257
3258 if (a.rank < b.rank)
3259 return 1;
3260
0963b4bd 3261 /* a.rank > b.rank */
6403aeea
SW
3262 return -1;
3263}
c5aa993b 3264
0963b4bd 3265/* Functions for overload resolution begin here. */
c906108c
SS
3266
3267/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3268 0 => A and B are identical
3269 1 => A and B are incomparable
3270 2 => A is better than B
3271 3 => A is worse than B */
c906108c
SS
3272
3273int
fba45db2 3274compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
3275{
3276 int i;
3277 int tmp;
c5aa993b
JM
3278 short found_pos = 0; /* any positives in c? */
3279 short found_neg = 0; /* any negatives in c? */
3280
3281 /* differing lengths => incomparable */
c906108c
SS
3282 if (a->length != b->length)
3283 return 1;
3284
c5aa993b
JM
3285 /* Subtract b from a */
3286 for (i = 0; i < a->length; i++)
c906108c 3287 {
6403aeea 3288 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 3289 if (tmp > 0)
c5aa993b 3290 found_pos = 1;
c906108c 3291 else if (tmp < 0)
c5aa993b 3292 found_neg = 1;
c906108c
SS
3293 }
3294
3295 if (found_pos)
3296 {
3297 if (found_neg)
c5aa993b 3298 return 1; /* incomparable */
c906108c 3299 else
c5aa993b 3300 return 3; /* A > B */
c906108c 3301 }
c5aa993b
JM
3302 else
3303 /* no positives */
c906108c
SS
3304 {
3305 if (found_neg)
c5aa993b 3306 return 2; /* A < B */
c906108c 3307 else
c5aa993b 3308 return 0; /* A == B */
c906108c
SS
3309 }
3310}
3311
7ba81444
MS
3312/* Rank a function by comparing its parameter types (PARMS, length
3313 NPARMS), to the types of an argument list (ARGS, length NARGS).
3314 Return a pointer to a badness vector. This has NARGS + 1
3315 entries. */
c906108c
SS
3316
3317struct badness_vector *
7ba81444 3318rank_function (struct type **parms, int nparms,
da096638 3319 struct value **args, int nargs)
c906108c
SS
3320{
3321 int i;
8d749320 3322 struct badness_vector *bv = XNEW (struct badness_vector);
c906108c
SS
3323 int min_len = nparms < nargs ? nparms : nargs;
3324
0963b4bd 3325 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 3326 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
3327
3328 /* First compare the lengths of the supplied lists.
7ba81444 3329 If there is a mismatch, set it to a high value. */
c5aa993b 3330
c906108c 3331 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3332 arguments and ellipsis parameter lists, we should consider those
3333 and rank the length-match more finely. */
c906108c 3334
6403aeea
SW
3335 LENGTH_MATCH (bv) = (nargs != nparms)
3336 ? LENGTH_MISMATCH_BADNESS
3337 : EXACT_MATCH_BADNESS;
c906108c 3338
0963b4bd 3339 /* Now rank all the parameters of the candidate function. */
74cc24b0 3340 for (i = 1; i <= min_len; i++)
da096638
KS
3341 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3342 args[i - 1]);
c906108c 3343
0963b4bd 3344 /* If more arguments than parameters, add dummy entries. */
c5aa993b 3345 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
3346 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3347
3348 return bv;
3349}
3350
973ccf8b
DJ
3351/* Compare the names of two integer types, assuming that any sign
3352 qualifiers have been checked already. We do it this way because
3353 there may be an "int" in the name of one of the types. */
3354
3355static int
3356integer_types_same_name_p (const char *first, const char *second)
3357{
3358 int first_p, second_p;
3359
7ba81444
MS
3360 /* If both are shorts, return 1; if neither is a short, keep
3361 checking. */
973ccf8b
DJ
3362 first_p = (strstr (first, "short") != NULL);
3363 second_p = (strstr (second, "short") != NULL);
3364 if (first_p && second_p)
3365 return 1;
3366 if (first_p || second_p)
3367 return 0;
3368
3369 /* Likewise for long. */
3370 first_p = (strstr (first, "long") != NULL);
3371 second_p = (strstr (second, "long") != NULL);
3372 if (first_p && second_p)
3373 return 1;
3374 if (first_p || second_p)
3375 return 0;
3376
3377 /* Likewise for char. */
3378 first_p = (strstr (first, "char") != NULL);
3379 second_p = (strstr (second, "char") != NULL);
3380 if (first_p && second_p)
3381 return 1;
3382 if (first_p || second_p)
3383 return 0;
3384
3385 /* They must both be ints. */
3386 return 1;
3387}
3388
7062b0a0
SW
3389/* Compares type A to type B returns 1 if the represent the same type
3390 0 otherwise. */
3391
bd69fc68 3392int
7062b0a0
SW
3393types_equal (struct type *a, struct type *b)
3394{
3395 /* Identical type pointers. */
3396 /* However, this still doesn't catch all cases of same type for b
3397 and a. The reason is that builtin types are different from
3398 the same ones constructed from the object. */
3399 if (a == b)
3400 return 1;
3401
3402 /* Resolve typedefs */
3403 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3404 a = check_typedef (a);
3405 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3406 b = check_typedef (b);
3407
3408 /* If after resolving typedefs a and b are not of the same type
3409 code then they are not equal. */
3410 if (TYPE_CODE (a) != TYPE_CODE (b))
3411 return 0;
3412
3413 /* If a and b are both pointers types or both reference types then
3414 they are equal of the same type iff the objects they refer to are
3415 of the same type. */
3416 if (TYPE_CODE (a) == TYPE_CODE_PTR
3417 || TYPE_CODE (a) == TYPE_CODE_REF)
3418 return types_equal (TYPE_TARGET_TYPE (a),
3419 TYPE_TARGET_TYPE (b));
3420
0963b4bd 3421 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3422 are exactly the same. This happens when we generate method
3423 stubs. The types won't point to the same address, but they
0963b4bd 3424 really are the same. */
7062b0a0
SW
3425
3426 if (TYPE_NAME (a) && TYPE_NAME (b)
3427 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3428 return 1;
3429
3430 /* Check if identical after resolving typedefs. */
3431 if (a == b)
3432 return 1;
3433
9ce98649
TT
3434 /* Two function types are equal if their argument and return types
3435 are equal. */
3436 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3437 {
3438 int i;
3439
3440 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3441 return 0;
3442
3443 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3444 return 0;
3445
3446 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3447 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3448 return 0;
3449
3450 return 1;
3451 }
3452
7062b0a0
SW
3453 return 0;
3454}
ca092b61
DE
3455\f
3456/* Deep comparison of types. */
3457
3458/* An entry in the type-equality bcache. */
3459
3460typedef struct type_equality_entry
3461{
3462 struct type *type1, *type2;
3463} type_equality_entry_d;
3464
3465DEF_VEC_O (type_equality_entry_d);
3466
3467/* A helper function to compare two strings. Returns 1 if they are
3468 the same, 0 otherwise. Handles NULLs properly. */
3469
3470static int
3471compare_maybe_null_strings (const char *s, const char *t)
3472{
3473 if (s == NULL && t != NULL)
3474 return 0;
3475 else if (s != NULL && t == NULL)
3476 return 0;
3477 else if (s == NULL && t== NULL)
3478 return 1;
3479 return strcmp (s, t) == 0;
3480}
3481
3482/* A helper function for check_types_worklist that checks two types for
3483 "deep" equality. Returns non-zero if the types are considered the
3484 same, zero otherwise. */
3485
3486static int
3487check_types_equal (struct type *type1, struct type *type2,
3488 VEC (type_equality_entry_d) **worklist)
3489{
f168693b
SM
3490 type1 = check_typedef (type1);
3491 type2 = check_typedef (type2);
ca092b61
DE
3492
3493 if (type1 == type2)
3494 return 1;
3495
3496 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3497 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3498 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3499 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3500 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3501 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3502 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3503 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3504 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3505 return 0;
3506
3507 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3508 TYPE_TAG_NAME (type2)))
3509 return 0;
3510 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3511 return 0;
3512
3513 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3514 {
3515 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3516 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3517 return 0;
3518 }
3519 else
3520 {
3521 int i;
3522
3523 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3524 {
3525 const struct field *field1 = &TYPE_FIELD (type1, i);
3526 const struct field *field2 = &TYPE_FIELD (type2, i);
3527 struct type_equality_entry entry;
3528
3529 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3530 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3531 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3532 return 0;
3533 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3534 FIELD_NAME (*field2)))
3535 return 0;
3536 switch (FIELD_LOC_KIND (*field1))
3537 {
3538 case FIELD_LOC_KIND_BITPOS:
3539 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3540 return 0;
3541 break;
3542 case FIELD_LOC_KIND_ENUMVAL:
3543 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3544 return 0;
3545 break;
3546 case FIELD_LOC_KIND_PHYSADDR:
3547 if (FIELD_STATIC_PHYSADDR (*field1)
3548 != FIELD_STATIC_PHYSADDR (*field2))
3549 return 0;
3550 break;
3551 case FIELD_LOC_KIND_PHYSNAME:
3552 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3553 FIELD_STATIC_PHYSNAME (*field2)))
3554 return 0;
3555 break;
3556 case FIELD_LOC_KIND_DWARF_BLOCK:
3557 {
3558 struct dwarf2_locexpr_baton *block1, *block2;
3559
3560 block1 = FIELD_DWARF_BLOCK (*field1);
3561 block2 = FIELD_DWARF_BLOCK (*field2);
3562 if (block1->per_cu != block2->per_cu
3563 || block1->size != block2->size
3564 || memcmp (block1->data, block2->data, block1->size) != 0)
3565 return 0;
3566 }
3567 break;
3568 default:
3569 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3570 "%d by check_types_equal"),
3571 FIELD_LOC_KIND (*field1));
3572 }
3573
3574 entry.type1 = FIELD_TYPE (*field1);
3575 entry.type2 = FIELD_TYPE (*field2);
3576 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3577 }
3578 }
3579
3580 if (TYPE_TARGET_TYPE (type1) != NULL)
3581 {
3582 struct type_equality_entry entry;
3583
3584 if (TYPE_TARGET_TYPE (type2) == NULL)
3585 return 0;
3586
3587 entry.type1 = TYPE_TARGET_TYPE (type1);
3588 entry.type2 = TYPE_TARGET_TYPE (type2);
3589 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3590 }
3591 else if (TYPE_TARGET_TYPE (type2) != NULL)
3592 return 0;
3593
3594 return 1;
3595}
3596
3597/* Check types on a worklist for equality. Returns zero if any pair
3598 is not equal, non-zero if they are all considered equal. */
3599
3600static int
3601check_types_worklist (VEC (type_equality_entry_d) **worklist,
3602 struct bcache *cache)
3603{
3604 while (!VEC_empty (type_equality_entry_d, *worklist))
3605 {
3606 struct type_equality_entry entry;
3607 int added;
3608
3609 entry = *VEC_last (type_equality_entry_d, *worklist);
3610 VEC_pop (type_equality_entry_d, *worklist);
3611
3612 /* If the type pair has already been visited, we know it is
3613 ok. */
3614 bcache_full (&entry, sizeof (entry), cache, &added);
3615 if (!added)
3616 continue;
3617
3618 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3619 return 0;
3620 }
7062b0a0 3621
ca092b61
DE
3622 return 1;
3623}
3624
3625/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3626 "deep comparison". Otherwise return zero. */
3627
3628int
3629types_deeply_equal (struct type *type1, struct type *type2)
3630{
6c63c96a 3631 struct gdb_exception except = exception_none;
ca092b61
DE
3632 int result = 0;
3633 struct bcache *cache;
3634 VEC (type_equality_entry_d) *worklist = NULL;
3635 struct type_equality_entry entry;
3636
3637 gdb_assert (type1 != NULL && type2 != NULL);
3638
3639 /* Early exit for the simple case. */
3640 if (type1 == type2)
3641 return 1;
3642
3643 cache = bcache_xmalloc (NULL, NULL);
3644
3645 entry.type1 = type1;
3646 entry.type2 = type2;
3647 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3648
6c63c96a
PA
3649 /* check_types_worklist calls several nested helper functions, some
3650 of which can raise a GDB exception, so we just check and rethrow
3651 here. If there is a GDB exception, a comparison is not capable
3652 (or trusted), so exit. */
492d29ea 3653 TRY
ca092b61
DE
3654 {
3655 result = check_types_worklist (&worklist, cache);
3656 }
6c63c96a 3657 CATCH (ex, RETURN_MASK_ALL)
492d29ea 3658 {
6c63c96a 3659 except = ex;
492d29ea
PA
3660 }
3661 END_CATCH
ca092b61 3662
6c63c96a
PA
3663 bcache_xfree (cache);
3664 VEC_free (type_equality_entry_d, worklist);
3665
3666 /* Rethrow if there was a problem. */
3667 if (except.reason < 0)
3668 throw_exception (except);
3669
ca092b61
DE
3670 return result;
3671}
3f2f83dd
KB
3672
3673/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3674 Otherwise return one. */
3675
3676int
3677type_not_allocated (const struct type *type)
3678{
3679 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3680
3681 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3682 && !TYPE_DYN_PROP_ADDR (prop));
3683}
3684
3685/* Associated status of type TYPE. Return zero if type TYPE is associated.
3686 Otherwise return one. */
3687
3688int
3689type_not_associated (const struct type *type)
3690{
3691 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3692
3693 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3694 && !TYPE_DYN_PROP_ADDR (prop));
3695}
ca092b61 3696\f
c906108c
SS
3697/* Compare one type (PARM) for compatibility with another (ARG).
3698 * PARM is intended to be the parameter type of a function; and
3699 * ARG is the supplied argument's type. This function tests if
3700 * the latter can be converted to the former.
da096638 3701 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3702 *
3703 * Return 0 if they are identical types;
3704 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3705 * PARM is to ARG. The higher the return value, the worse the match.
3706 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3707
6403aeea 3708struct rank
da096638 3709rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3710{
a9d5ef47 3711 struct rank rank = {0,0};
7062b0a0 3712
c906108c
SS
3713 /* Resolve typedefs */
3714 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3715 parm = check_typedef (parm);
3716 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3717 arg = check_typedef (arg);
3718
e15c3eb4 3719 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 3720 {
e15c3eb4
KS
3721 if (VALUE_LVAL (value) == not_lval)
3722 {
3723 /* Rvalues should preferably bind to rvalue references or const
3724 lvalue references. */
3725 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3726 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3727 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3728 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3729 else
3730 return INCOMPATIBLE_TYPE_BADNESS;
3731 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3732 }
3733 else
3734 {
3735 /* Lvalues should prefer lvalue overloads. */
3736 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3737 {
3738 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3739 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3740 }
3741 }
15c0a2a9
AV
3742 }
3743
3744 if (types_equal (parm, arg))
15c0a2a9 3745 {
e15c3eb4
KS
3746 struct type *t1 = parm;
3747 struct type *t2 = arg;
15c0a2a9 3748
e15c3eb4
KS
3749 /* For pointers and references, compare target type. */
3750 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3751 {
3752 t1 = TYPE_TARGET_TYPE (parm);
3753 t2 = TYPE_TARGET_TYPE (arg);
3754 }
15c0a2a9 3755
e15c3eb4
KS
3756 /* Make sure they are CV equal, too. */
3757 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3758 rank.subrank |= CV_CONVERSION_CONST;
3759 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3760 rank.subrank |= CV_CONVERSION_VOLATILE;
3761 if (rank.subrank != 0)
3762 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3763 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
3764 }
3765
db577aea 3766 /* See through references, since we can almost make non-references
7ba81444 3767 references. */
aa006118
AV
3768
3769 if (TYPE_IS_REFERENCE (arg))
da096638 3770 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3771 REFERENCE_CONVERSION_BADNESS));
aa006118 3772 if (TYPE_IS_REFERENCE (parm))
da096638 3773 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3774 REFERENCE_CONVERSION_BADNESS));
5d161b24 3775 if (overload_debug)
7ba81444
MS
3776 /* Debugging only. */
3777 fprintf_filtered (gdb_stderr,
3778 "------ Arg is %s [%d], parm is %s [%d]\n",
3779 TYPE_NAME (arg), TYPE_CODE (arg),
3780 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3781
0963b4bd 3782 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3783
3784 switch (TYPE_CODE (parm))
3785 {
c5aa993b
JM
3786 case TYPE_CODE_PTR:
3787 switch (TYPE_CODE (arg))
3788 {
3789 case TYPE_CODE_PTR:
7062b0a0
SW
3790
3791 /* Allowed pointer conversions are:
3792 (a) pointer to void-pointer conversion. */
3793 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3794 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3795
3796 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3797 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3798 TYPE_TARGET_TYPE (arg),
3799 0);
3800 if (rank.subrank >= 0)
3801 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3802
3803 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3804 case TYPE_CODE_ARRAY:
e15c3eb4
KS
3805 {
3806 struct type *t1 = TYPE_TARGET_TYPE (parm);
3807 struct type *t2 = TYPE_TARGET_TYPE (arg);
3808
3809 if (types_equal (t1, t2))
3810 {
3811 /* Make sure they are CV equal. */
3812 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3813 rank.subrank |= CV_CONVERSION_CONST;
3814 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3815 rank.subrank |= CV_CONVERSION_VOLATILE;
3816 if (rank.subrank != 0)
3817 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3818 return EXACT_MATCH_BADNESS;
3819 }
3820 return INCOMPATIBLE_TYPE_BADNESS;
3821 }
c5aa993b 3822 case TYPE_CODE_FUNC:
da096638 3823 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3824 case TYPE_CODE_INT:
a451cb65 3825 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3826 {
a451cb65
KS
3827 if (value_as_long (value) == 0)
3828 {
3829 /* Null pointer conversion: allow it to be cast to a pointer.
3830 [4.10.1 of C++ standard draft n3290] */
3831 return NULL_POINTER_CONVERSION_BADNESS;
3832 }
3833 else
3834 {
3835 /* If type checking is disabled, allow the conversion. */
3836 if (!strict_type_checking)
3837 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3838 }
da096638
KS
3839 }
3840 /* fall through */
c5aa993b 3841 case TYPE_CODE_ENUM:
4f2aea11 3842 case TYPE_CODE_FLAGS:
c5aa993b
JM
3843 case TYPE_CODE_CHAR:
3844 case TYPE_CODE_RANGE:
3845 case TYPE_CODE_BOOL:
c5aa993b
JM
3846 default:
3847 return INCOMPATIBLE_TYPE_BADNESS;
3848 }
3849 case TYPE_CODE_ARRAY:
3850 switch (TYPE_CODE (arg))
3851 {
3852 case TYPE_CODE_PTR:
3853 case TYPE_CODE_ARRAY:
7ba81444 3854 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3855 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3856 default:
3857 return INCOMPATIBLE_TYPE_BADNESS;
3858 }
3859 case TYPE_CODE_FUNC:
3860 switch (TYPE_CODE (arg))
3861 {
3862 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3863 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3864 default:
3865 return INCOMPATIBLE_TYPE_BADNESS;
3866 }
3867 case TYPE_CODE_INT:
3868 switch (TYPE_CODE (arg))
3869 {
3870 case TYPE_CODE_INT:
3871 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3872 {
3873 /* Deal with signed, unsigned, and plain chars and
7ba81444 3874 signed and unsigned ints. */
c5aa993b
JM
3875 if (TYPE_NOSIGN (parm))
3876 {
0963b4bd 3877 /* This case only for character types. */
7ba81444 3878 if (TYPE_NOSIGN (arg))
6403aeea 3879 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3880 else /* signed/unsigned char -> plain char */
3881 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3882 }
3883 else if (TYPE_UNSIGNED (parm))
3884 {
3885 if (TYPE_UNSIGNED (arg))
3886 {
7ba81444
MS
3887 /* unsigned int -> unsigned int, or
3888 unsigned long -> unsigned long */
3889 if (integer_types_same_name_p (TYPE_NAME (parm),
3890 TYPE_NAME (arg)))
6403aeea 3891 return EXACT_MATCH_BADNESS;
7ba81444
MS
3892 else if (integer_types_same_name_p (TYPE_NAME (arg),
3893 "int")
3894 && integer_types_same_name_p (TYPE_NAME (parm),
3895 "long"))
3e43a32a
MS
3896 /* unsigned int -> unsigned long */
3897 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3898 else
3e43a32a
MS
3899 /* unsigned long -> unsigned int */
3900 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3901 }
3902 else
3903 {
7ba81444
MS
3904 if (integer_types_same_name_p (TYPE_NAME (arg),
3905 "long")
3906 && integer_types_same_name_p (TYPE_NAME (parm),
3907 "int"))
3e43a32a
MS
3908 /* signed long -> unsigned int */
3909 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3910 else
3e43a32a
MS
3911 /* signed int/long -> unsigned int/long */
3912 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3913 }
3914 }
3915 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3916 {
7ba81444
MS
3917 if (integer_types_same_name_p (TYPE_NAME (parm),
3918 TYPE_NAME (arg)))
6403aeea 3919 return EXACT_MATCH_BADNESS;
7ba81444
MS
3920 else if (integer_types_same_name_p (TYPE_NAME (arg),
3921 "int")
3922 && integer_types_same_name_p (TYPE_NAME (parm),
3923 "long"))
c5aa993b
JM
3924 return INTEGER_PROMOTION_BADNESS;
3925 else
1c5cb38e 3926 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3927 }
3928 else
1c5cb38e 3929 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3930 }
3931 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3932 return INTEGER_PROMOTION_BADNESS;
3933 else
1c5cb38e 3934 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3935 case TYPE_CODE_ENUM:
4f2aea11 3936 case TYPE_CODE_FLAGS:
c5aa993b
JM
3937 case TYPE_CODE_CHAR:
3938 case TYPE_CODE_RANGE:
3939 case TYPE_CODE_BOOL:
3d567982
TT
3940 if (TYPE_DECLARED_CLASS (arg))
3941 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3942 return INTEGER_PROMOTION_BADNESS;
3943 case TYPE_CODE_FLT:
3944 return INT_FLOAT_CONVERSION_BADNESS;
3945 case TYPE_CODE_PTR:
3946 return NS_POINTER_CONVERSION_BADNESS;
3947 default:
3948 return INCOMPATIBLE_TYPE_BADNESS;
3949 }
3950 break;
3951 case TYPE_CODE_ENUM:
3952 switch (TYPE_CODE (arg))
3953 {
3954 case TYPE_CODE_INT:
3955 case TYPE_CODE_CHAR:
3956 case TYPE_CODE_RANGE:
3957 case TYPE_CODE_BOOL:
3958 case TYPE_CODE_ENUM:
3d567982
TT
3959 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3960 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3961 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3962 case TYPE_CODE_FLT:
3963 return INT_FLOAT_CONVERSION_BADNESS;
3964 default:
3965 return INCOMPATIBLE_TYPE_BADNESS;
3966 }
3967 break;
3968 case TYPE_CODE_CHAR:
3969 switch (TYPE_CODE (arg))
3970 {
3971 case TYPE_CODE_RANGE:
3972 case TYPE_CODE_BOOL:
3973 case TYPE_CODE_ENUM:
3d567982
TT
3974 if (TYPE_DECLARED_CLASS (arg))
3975 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3976 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3977 case TYPE_CODE_FLT:
3978 return INT_FLOAT_CONVERSION_BADNESS;
3979 case TYPE_CODE_INT:
3980 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3981 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3982 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3983 return INTEGER_PROMOTION_BADNESS;
3984 /* >>> !! else fall through !! <<< */
3985 case TYPE_CODE_CHAR:
7ba81444
MS
3986 /* Deal with signed, unsigned, and plain chars for C++ and
3987 with int cases falling through from previous case. */
c5aa993b
JM
3988 if (TYPE_NOSIGN (parm))
3989 {
3990 if (TYPE_NOSIGN (arg))
6403aeea 3991 return EXACT_MATCH_BADNESS;
c5aa993b 3992 else
1c5cb38e 3993 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3994 }
3995 else if (TYPE_UNSIGNED (parm))
3996 {
3997 if (TYPE_UNSIGNED (arg))
6403aeea 3998 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3999 else
4000 return INTEGER_PROMOTION_BADNESS;
4001 }
4002 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 4003 return EXACT_MATCH_BADNESS;
c5aa993b 4004 else
1c5cb38e 4005 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4006 default:
4007 return INCOMPATIBLE_TYPE_BADNESS;
4008 }
4009 break;
4010 case TYPE_CODE_RANGE:
4011 switch (TYPE_CODE (arg))
4012 {
4013 case TYPE_CODE_INT:
4014 case TYPE_CODE_CHAR:
4015 case TYPE_CODE_RANGE:
4016 case TYPE_CODE_BOOL:
4017 case TYPE_CODE_ENUM:
1c5cb38e 4018 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4019 case TYPE_CODE_FLT:
4020 return INT_FLOAT_CONVERSION_BADNESS;
4021 default:
4022 return INCOMPATIBLE_TYPE_BADNESS;
4023 }
4024 break;
4025 case TYPE_CODE_BOOL:
4026 switch (TYPE_CODE (arg))
4027 {
5b4f6e25
KS
4028 /* n3290 draft, section 4.12.1 (conv.bool):
4029
4030 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4031 pointer to member type can be converted to a prvalue of type
4032 bool. A zero value, null pointer value, or null member pointer
4033 value is converted to false; any other value is converted to
4034 true. A prvalue of type std::nullptr_t can be converted to a
4035 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
4036 case TYPE_CODE_INT:
4037 case TYPE_CODE_CHAR:
c5aa993b
JM
4038 case TYPE_CODE_ENUM:
4039 case TYPE_CODE_FLT:
5b4f6e25 4040 case TYPE_CODE_MEMBERPTR:
c5aa993b 4041 case TYPE_CODE_PTR:
5b4f6e25
KS
4042 return BOOL_CONVERSION_BADNESS;
4043 case TYPE_CODE_RANGE:
4044 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 4045 case TYPE_CODE_BOOL:
6403aeea 4046 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4047 default:
4048 return INCOMPATIBLE_TYPE_BADNESS;
4049 }
4050 break;
4051 case TYPE_CODE_FLT:
4052 switch (TYPE_CODE (arg))
4053 {
4054 case TYPE_CODE_FLT:
4055 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4056 return FLOAT_PROMOTION_BADNESS;
4057 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 4058 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4059 else
4060 return FLOAT_CONVERSION_BADNESS;
4061 case TYPE_CODE_INT:
4062 case TYPE_CODE_BOOL:
4063 case TYPE_CODE_ENUM:
4064 case TYPE_CODE_RANGE:
4065 case TYPE_CODE_CHAR:
4066 return INT_FLOAT_CONVERSION_BADNESS;
4067 default:
4068 return INCOMPATIBLE_TYPE_BADNESS;
4069 }
4070 break;
4071 case TYPE_CODE_COMPLEX:
4072 switch (TYPE_CODE (arg))
7ba81444 4073 { /* Strictly not needed for C++, but... */
c5aa993b
JM
4074 case TYPE_CODE_FLT:
4075 return FLOAT_PROMOTION_BADNESS;
4076 case TYPE_CODE_COMPLEX:
6403aeea 4077 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4078 default:
4079 return INCOMPATIBLE_TYPE_BADNESS;
4080 }
4081 break;
4082 case TYPE_CODE_STRUCT:
c5aa993b
JM
4083 switch (TYPE_CODE (arg))
4084 {
4085 case TYPE_CODE_STRUCT:
4086 /* Check for derivation */
a9d5ef47
SW
4087 rank.subrank = distance_to_ancestor (parm, arg, 0);
4088 if (rank.subrank >= 0)
4089 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
4090 /* else fall through */
4091 default:
4092 return INCOMPATIBLE_TYPE_BADNESS;
4093 }
4094 break;
4095 case TYPE_CODE_UNION:
4096 switch (TYPE_CODE (arg))
4097 {
4098 case TYPE_CODE_UNION:
4099 default:
4100 return INCOMPATIBLE_TYPE_BADNESS;
4101 }
4102 break;
0d5de010 4103 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
4104 switch (TYPE_CODE (arg))
4105 {
4106 default:
4107 return INCOMPATIBLE_TYPE_BADNESS;
4108 }
4109 break;
4110 case TYPE_CODE_METHOD:
4111 switch (TYPE_CODE (arg))
4112 {
4113
4114 default:
4115 return INCOMPATIBLE_TYPE_BADNESS;
4116 }
4117 break;
4118 case TYPE_CODE_REF:
4119 switch (TYPE_CODE (arg))
4120 {
4121
4122 default:
4123 return INCOMPATIBLE_TYPE_BADNESS;
4124 }
4125
4126 break;
4127 case TYPE_CODE_SET:
4128 switch (TYPE_CODE (arg))
4129 {
4130 /* Not in C++ */
4131 case TYPE_CODE_SET:
7ba81444 4132 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 4133 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
4134 default:
4135 return INCOMPATIBLE_TYPE_BADNESS;
4136 }
4137 break;
4138 case TYPE_CODE_VOID:
4139 default:
4140 return INCOMPATIBLE_TYPE_BADNESS;
4141 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4142}
4143
0963b4bd 4144/* End of functions for overload resolution. */
5212577a
DE
4145\f
4146/* Routines to pretty-print types. */
c906108c 4147
c906108c 4148static void
fba45db2 4149print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4150{
4151 int bitno;
4152
4153 for (bitno = 0; bitno < nbits; bitno++)
4154 {
4155 if ((bitno % 8) == 0)
4156 {
4157 puts_filtered (" ");
4158 }
4159 if (B_TST (bits, bitno))
a3f17187 4160 printf_filtered (("1"));
c906108c 4161 else
a3f17187 4162 printf_filtered (("0"));
c906108c
SS
4163 }
4164}
4165
ad2f7632 4166/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4167 include it since we may get into a infinitely recursive
4168 situation. */
c906108c
SS
4169
4170static void
4c9e8482 4171print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4172{
4173 if (args != NULL)
4174 {
ad2f7632
DJ
4175 int i;
4176
4177 for (i = 0; i < nargs; i++)
4c9e8482
DE
4178 {
4179 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4180 args[i].name != NULL ? args[i].name : "<NULL>");
4181 recursive_dump_type (args[i].type, spaces + 2);
4182 }
c906108c
SS
4183 }
4184}
4185
d6a843b5
JK
4186int
4187field_is_static (struct field *f)
4188{
4189 /* "static" fields are the fields whose location is not relative
4190 to the address of the enclosing struct. It would be nice to
4191 have a dedicated flag that would be set for static fields when
4192 the type is being created. But in practice, checking the field
254e6b9e 4193 loc_kind should give us an accurate answer. */
d6a843b5
JK
4194 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4195 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4196}
4197
c906108c 4198static void
fba45db2 4199dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4200{
4201 int method_idx;
4202 int overload_idx;
4203 struct fn_field *f;
4204
4205 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4206 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4207 printf_filtered ("\n");
4208 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4209 {
4210 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4211 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4212 method_idx,
4213 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4214 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4215 gdb_stdout);
a3f17187 4216 printf_filtered (_(") length %d\n"),
c906108c
SS
4217 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4218 for (overload_idx = 0;
4219 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4220 overload_idx++)
4221 {
4222 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4223 overload_idx,
4224 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4225 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4226 gdb_stdout);
c906108c
SS
4227 printf_filtered (")\n");
4228 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4229 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4230 gdb_stdout);
c906108c
SS
4231 printf_filtered ("\n");
4232
4233 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4234 spaces + 8 + 2);
4235
4236 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4237 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4238 gdb_stdout);
c906108c 4239 printf_filtered ("\n");
4c9e8482
DE
4240 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4241 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4242 spaces + 8 + 2);
c906108c 4243 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4244 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4245 gdb_stdout);
c906108c
SS
4246 printf_filtered ("\n");
4247
4248 printfi_filtered (spaces + 8, "is_const %d\n",
4249 TYPE_FN_FIELD_CONST (f, overload_idx));
4250 printfi_filtered (spaces + 8, "is_volatile %d\n",
4251 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4252 printfi_filtered (spaces + 8, "is_private %d\n",
4253 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4254 printfi_filtered (spaces + 8, "is_protected %d\n",
4255 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4256 printfi_filtered (spaces + 8, "is_stub %d\n",
4257 TYPE_FN_FIELD_STUB (f, overload_idx));
4258 printfi_filtered (spaces + 8, "voffset %u\n",
4259 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4260 }
4261 }
4262}
4263
4264static void
fba45db2 4265print_cplus_stuff (struct type *type, int spaces)
c906108c 4266{
ae6ae975
DE
4267 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4268 printfi_filtered (spaces, "vptr_basetype ");
4269 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4270 puts_filtered ("\n");
4271 if (TYPE_VPTR_BASETYPE (type) != NULL)
4272 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4273
c906108c
SS
4274 printfi_filtered (spaces, "n_baseclasses %d\n",
4275 TYPE_N_BASECLASSES (type));
4276 printfi_filtered (spaces, "nfn_fields %d\n",
4277 TYPE_NFN_FIELDS (type));
c906108c
SS
4278 if (TYPE_N_BASECLASSES (type) > 0)
4279 {
4280 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4281 TYPE_N_BASECLASSES (type));
7ba81444
MS
4282 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4283 gdb_stdout);
c906108c
SS
4284 printf_filtered (")");
4285
4286 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4287 TYPE_N_BASECLASSES (type));
4288 puts_filtered ("\n");
4289 }
4290 if (TYPE_NFIELDS (type) > 0)
4291 {
4292 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4293 {
7ba81444
MS
4294 printfi_filtered (spaces,
4295 "private_field_bits (%d bits at *",
c906108c 4296 TYPE_NFIELDS (type));
7ba81444
MS
4297 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4298 gdb_stdout);
c906108c
SS
4299 printf_filtered (")");
4300 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4301 TYPE_NFIELDS (type));
4302 puts_filtered ("\n");
4303 }
4304 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4305 {
7ba81444
MS
4306 printfi_filtered (spaces,
4307 "protected_field_bits (%d bits at *",
c906108c 4308 TYPE_NFIELDS (type));
7ba81444
MS
4309 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4310 gdb_stdout);
c906108c
SS
4311 printf_filtered (")");
4312 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4313 TYPE_NFIELDS (type));
4314 puts_filtered ("\n");
4315 }
4316 }
4317 if (TYPE_NFN_FIELDS (type) > 0)
4318 {
4319 dump_fn_fieldlists (type, spaces);
4320 }
4321}
4322
b4ba55a1
JB
4323/* Print the contents of the TYPE's type_specific union, assuming that
4324 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4325
4326static void
4327print_gnat_stuff (struct type *type, int spaces)
4328{
4329 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4330
8cd00c59
PMR
4331 if (descriptive_type == NULL)
4332 printfi_filtered (spaces + 2, "no descriptive type\n");
4333 else
4334 {
4335 printfi_filtered (spaces + 2, "descriptive type\n");
4336 recursive_dump_type (descriptive_type, spaces + 4);
4337 }
b4ba55a1
JB
4338}
4339
c906108c
SS
4340static struct obstack dont_print_type_obstack;
4341
4342void
fba45db2 4343recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4344{
4345 int idx;
4346
4347 if (spaces == 0)
4348 obstack_begin (&dont_print_type_obstack, 0);
4349
4350 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4351 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4352 {
4353 struct type **first_dont_print
7ba81444 4354 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4355
7ba81444
MS
4356 int i = (struct type **)
4357 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4358
4359 while (--i >= 0)
4360 {
4361 if (type == first_dont_print[i])
4362 {
4363 printfi_filtered (spaces, "type node ");
d4f3574e 4364 gdb_print_host_address (type, gdb_stdout);
a3f17187 4365 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4366 return;
4367 }
4368 }
4369
4370 obstack_ptr_grow (&dont_print_type_obstack, type);
4371 }
4372
4373 printfi_filtered (spaces, "type node ");
d4f3574e 4374 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4375 printf_filtered ("\n");
4376 printfi_filtered (spaces, "name '%s' (",
4377 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4378 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4379 printf_filtered (")\n");
e9e79dd9
FF
4380 printfi_filtered (spaces, "tagname '%s' (",
4381 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4382 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4383 printf_filtered (")\n");
c906108c
SS
4384 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4385 switch (TYPE_CODE (type))
4386 {
c5aa993b
JM
4387 case TYPE_CODE_UNDEF:
4388 printf_filtered ("(TYPE_CODE_UNDEF)");
4389 break;
4390 case TYPE_CODE_PTR:
4391 printf_filtered ("(TYPE_CODE_PTR)");
4392 break;
4393 case TYPE_CODE_ARRAY:
4394 printf_filtered ("(TYPE_CODE_ARRAY)");
4395 break;
4396 case TYPE_CODE_STRUCT:
4397 printf_filtered ("(TYPE_CODE_STRUCT)");
4398 break;
4399 case TYPE_CODE_UNION:
4400 printf_filtered ("(TYPE_CODE_UNION)");
4401 break;
4402 case TYPE_CODE_ENUM:
4403 printf_filtered ("(TYPE_CODE_ENUM)");
4404 break;
4f2aea11
MK
4405 case TYPE_CODE_FLAGS:
4406 printf_filtered ("(TYPE_CODE_FLAGS)");
4407 break;
c5aa993b
JM
4408 case TYPE_CODE_FUNC:
4409 printf_filtered ("(TYPE_CODE_FUNC)");
4410 break;
4411 case TYPE_CODE_INT:
4412 printf_filtered ("(TYPE_CODE_INT)");
4413 break;
4414 case TYPE_CODE_FLT:
4415 printf_filtered ("(TYPE_CODE_FLT)");
4416 break;
4417 case TYPE_CODE_VOID:
4418 printf_filtered ("(TYPE_CODE_VOID)");
4419 break;
4420 case TYPE_CODE_SET:
4421 printf_filtered ("(TYPE_CODE_SET)");
4422 break;
4423 case TYPE_CODE_RANGE:
4424 printf_filtered ("(TYPE_CODE_RANGE)");
4425 break;
4426 case TYPE_CODE_STRING:
4427 printf_filtered ("(TYPE_CODE_STRING)");
4428 break;
4429 case TYPE_CODE_ERROR:
4430 printf_filtered ("(TYPE_CODE_ERROR)");
4431 break;
0d5de010
DJ
4432 case TYPE_CODE_MEMBERPTR:
4433 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4434 break;
4435 case TYPE_CODE_METHODPTR:
4436 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4437 break;
4438 case TYPE_CODE_METHOD:
4439 printf_filtered ("(TYPE_CODE_METHOD)");
4440 break;
4441 case TYPE_CODE_REF:
4442 printf_filtered ("(TYPE_CODE_REF)");
4443 break;
4444 case TYPE_CODE_CHAR:
4445 printf_filtered ("(TYPE_CODE_CHAR)");
4446 break;
4447 case TYPE_CODE_BOOL:
4448 printf_filtered ("(TYPE_CODE_BOOL)");
4449 break;
e9e79dd9
FF
4450 case TYPE_CODE_COMPLEX:
4451 printf_filtered ("(TYPE_CODE_COMPLEX)");
4452 break;
c5aa993b
JM
4453 case TYPE_CODE_TYPEDEF:
4454 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4455 break;
5c4e30ca
DC
4456 case TYPE_CODE_NAMESPACE:
4457 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4458 break;
c5aa993b
JM
4459 default:
4460 printf_filtered ("(UNKNOWN TYPE CODE)");
4461 break;
c906108c
SS
4462 }
4463 puts_filtered ("\n");
4464 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
4465 if (TYPE_OBJFILE_OWNED (type))
4466 {
4467 printfi_filtered (spaces, "objfile ");
4468 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4469 }
4470 else
4471 {
4472 printfi_filtered (spaces, "gdbarch ");
4473 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4474 }
c906108c
SS
4475 printf_filtered ("\n");
4476 printfi_filtered (spaces, "target_type ");
d4f3574e 4477 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4478 printf_filtered ("\n");
4479 if (TYPE_TARGET_TYPE (type) != NULL)
4480 {
4481 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4482 }
4483 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4484 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4485 printf_filtered ("\n");
4486 printfi_filtered (spaces, "reference_type ");
d4f3574e 4487 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4488 printf_filtered ("\n");
2fdde8f8
DJ
4489 printfi_filtered (spaces, "type_chain ");
4490 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4491 printf_filtered ("\n");
7ba81444
MS
4492 printfi_filtered (spaces, "instance_flags 0x%x",
4493 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4494 if (TYPE_CONST (type))
4495 {
a9ff5f12 4496 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4497 }
4498 if (TYPE_VOLATILE (type))
4499 {
a9ff5f12 4500 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4501 }
4502 if (TYPE_CODE_SPACE (type))
4503 {
a9ff5f12 4504 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4505 }
4506 if (TYPE_DATA_SPACE (type))
4507 {
a9ff5f12 4508 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4509 }
8b2dbe47
KB
4510 if (TYPE_ADDRESS_CLASS_1 (type))
4511 {
a9ff5f12 4512 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4513 }
4514 if (TYPE_ADDRESS_CLASS_2 (type))
4515 {
a9ff5f12 4516 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4517 }
06d66ee9
TT
4518 if (TYPE_RESTRICT (type))
4519 {
a9ff5f12 4520 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4521 }
a2c2acaf
MW
4522 if (TYPE_ATOMIC (type))
4523 {
a9ff5f12 4524 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4525 }
2fdde8f8 4526 puts_filtered ("\n");
876cecd0
TT
4527
4528 printfi_filtered (spaces, "flags");
762a036f 4529 if (TYPE_UNSIGNED (type))
c906108c 4530 {
a9ff5f12 4531 puts_filtered (" TYPE_UNSIGNED");
c906108c 4532 }
762a036f
FF
4533 if (TYPE_NOSIGN (type))
4534 {
a9ff5f12 4535 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4536 }
4537 if (TYPE_STUB (type))
c906108c 4538 {
a9ff5f12 4539 puts_filtered (" TYPE_STUB");
c906108c 4540 }
762a036f
FF
4541 if (TYPE_TARGET_STUB (type))
4542 {
a9ff5f12 4543 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4544 }
762a036f
FF
4545 if (TYPE_PROTOTYPED (type))
4546 {
a9ff5f12 4547 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4548 }
4549 if (TYPE_INCOMPLETE (type))
4550 {
a9ff5f12 4551 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4552 }
762a036f
FF
4553 if (TYPE_VARARGS (type))
4554 {
a9ff5f12 4555 puts_filtered (" TYPE_VARARGS");
762a036f 4556 }
f5f8a009
EZ
4557 /* This is used for things like AltiVec registers on ppc. Gcc emits
4558 an attribute for the array type, which tells whether or not we
4559 have a vector, instead of a regular array. */
4560 if (TYPE_VECTOR (type))
4561 {
a9ff5f12 4562 puts_filtered (" TYPE_VECTOR");
f5f8a009 4563 }
876cecd0
TT
4564 if (TYPE_FIXED_INSTANCE (type))
4565 {
4566 puts_filtered (" TYPE_FIXED_INSTANCE");
4567 }
4568 if (TYPE_STUB_SUPPORTED (type))
4569 {
4570 puts_filtered (" TYPE_STUB_SUPPORTED");
4571 }
4572 if (TYPE_NOTTEXT (type))
4573 {
4574 puts_filtered (" TYPE_NOTTEXT");
4575 }
c906108c
SS
4576 puts_filtered ("\n");
4577 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4578 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4579 puts_filtered ("\n");
4580 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4581 {
14e75d8e
JK
4582 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4583 printfi_filtered (spaces + 2,
4584 "[%d] enumval %s type ",
4585 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4586 else
4587 printfi_filtered (spaces + 2,
6b850546
DT
4588 "[%d] bitpos %s bitsize %d type ",
4589 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4590 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4591 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4592 printf_filtered (" name '%s' (",
4593 TYPE_FIELD_NAME (type, idx) != NULL
4594 ? TYPE_FIELD_NAME (type, idx)
4595 : "<NULL>");
d4f3574e 4596 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4597 printf_filtered (")\n");
4598 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4599 {
4600 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4601 }
4602 }
43bbcdc2
PH
4603 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4604 {
4605 printfi_filtered (spaces, "low %s%s high %s%s\n",
4606 plongest (TYPE_LOW_BOUND (type)),
4607 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4608 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4609 TYPE_HIGH_BOUND_UNDEFINED (type)
4610 ? " (undefined)" : "");
43bbcdc2 4611 }
c906108c 4612
b4ba55a1
JB
4613 switch (TYPE_SPECIFIC_FIELD (type))
4614 {
4615 case TYPE_SPECIFIC_CPLUS_STUFF:
4616 printfi_filtered (spaces, "cplus_stuff ");
4617 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4618 gdb_stdout);
4619 puts_filtered ("\n");
4620 print_cplus_stuff (type, spaces);
4621 break;
8da61cc4 4622
b4ba55a1
JB
4623 case TYPE_SPECIFIC_GNAT_STUFF:
4624 printfi_filtered (spaces, "gnat_stuff ");
4625 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4626 puts_filtered ("\n");
4627 print_gnat_stuff (type, spaces);
4628 break;
701c159d 4629
b4ba55a1
JB
4630 case TYPE_SPECIFIC_FLOATFORMAT:
4631 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4632 if (TYPE_FLOATFORMAT (type) == NULL
4633 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4634 puts_filtered ("(null)");
4635 else
0db7851f 4636 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4637 puts_filtered ("\n");
4638 break;
c906108c 4639
b6cdc2c1 4640 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4641 printfi_filtered (spaces, "calling_convention %d\n",
4642 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4643 /* tail_call_list is not printed. */
b4ba55a1 4644 break;
09e2d7c7
DE
4645
4646 case TYPE_SPECIFIC_SELF_TYPE:
4647 printfi_filtered (spaces, "self_type ");
4648 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4649 puts_filtered ("\n");
4650 break;
c906108c 4651 }
b4ba55a1 4652
c906108c
SS
4653 if (spaces == 0)
4654 obstack_free (&dont_print_type_obstack, NULL);
4655}
5212577a 4656\f
ae5a43e0
DJ
4657/* Trivial helpers for the libiberty hash table, for mapping one
4658 type to another. */
4659
4660struct type_pair
4661{
fe978cb0 4662 struct type *old, *newobj;
ae5a43e0
DJ
4663};
4664
4665static hashval_t
4666type_pair_hash (const void *item)
4667{
9a3c8263 4668 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4669
ae5a43e0
DJ
4670 return htab_hash_pointer (pair->old);
4671}
4672
4673static int
4674type_pair_eq (const void *item_lhs, const void *item_rhs)
4675{
9a3c8263
SM
4676 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4677 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4678
ae5a43e0
DJ
4679 return lhs->old == rhs->old;
4680}
4681
4682/* Allocate the hash table used by copy_type_recursive to walk
4683 types without duplicates. We use OBJFILE's obstack, because
4684 OBJFILE is about to be deleted. */
4685
4686htab_t
4687create_copied_types_hash (struct objfile *objfile)
4688{
4689 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4690 NULL, &objfile->objfile_obstack,
4691 hashtab_obstack_allocate,
4692 dummy_obstack_deallocate);
4693}
4694
d9823cbb
KB
4695/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4696
4697static struct dynamic_prop_list *
4698copy_dynamic_prop_list (struct obstack *objfile_obstack,
4699 struct dynamic_prop_list *list)
4700{
4701 struct dynamic_prop_list *copy = list;
4702 struct dynamic_prop_list **node_ptr = &copy;
4703
4704 while (*node_ptr != NULL)
4705 {
4706 struct dynamic_prop_list *node_copy;
4707
224c3ddb
SM
4708 node_copy = ((struct dynamic_prop_list *)
4709 obstack_copy (objfile_obstack, *node_ptr,
4710 sizeof (struct dynamic_prop_list)));
283a9958 4711 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4712 *node_ptr = node_copy;
4713
4714 node_ptr = &node_copy->next;
4715 }
4716
4717 return copy;
4718}
4719
7ba81444 4720/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4721 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4722 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4723 it is not associated with OBJFILE. */
ae5a43e0
DJ
4724
4725struct type *
7ba81444
MS
4726copy_type_recursive (struct objfile *objfile,
4727 struct type *type,
ae5a43e0
DJ
4728 htab_t copied_types)
4729{
4730 struct type_pair *stored, pair;
4731 void **slot;
4732 struct type *new_type;
4733
e9bb382b 4734 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4735 return type;
4736
7ba81444
MS
4737 /* This type shouldn't be pointing to any types in other objfiles;
4738 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4739 gdb_assert (TYPE_OBJFILE (type) == objfile);
4740
4741 pair.old = type;
4742 slot = htab_find_slot (copied_types, &pair, INSERT);
4743 if (*slot != NULL)
fe978cb0 4744 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4745
e9bb382b 4746 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4747
4748 /* We must add the new type to the hash table immediately, in case
4749 we encounter this type again during a recursive call below. */
8d749320 4750 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
ae5a43e0 4751 stored->old = type;
fe978cb0 4752 stored->newobj = new_type;
ae5a43e0
DJ
4753 *slot = stored;
4754
876cecd0
TT
4755 /* Copy the common fields of types. For the main type, we simply
4756 copy the entire thing and then update specific fields as needed. */
4757 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4758 TYPE_OBJFILE_OWNED (new_type) = 0;
4759 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4760
ae5a43e0
DJ
4761 if (TYPE_NAME (type))
4762 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4763 if (TYPE_TAG_NAME (type))
4764 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4765
4766 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4767 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4768
4769 /* Copy the fields. */
ae5a43e0
DJ
4770 if (TYPE_NFIELDS (type))
4771 {
4772 int i, nfields;
4773
4774 nfields = TYPE_NFIELDS (type);
fc270c35 4775 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4776 for (i = 0; i < nfields; i++)
4777 {
7ba81444
MS
4778 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4779 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4780 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4781 if (TYPE_FIELD_TYPE (type, i))
4782 TYPE_FIELD_TYPE (new_type, i)
4783 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4784 copied_types);
4785 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4786 TYPE_FIELD_NAME (new_type, i) =
4787 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4788 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4789 {
d6a843b5
JK
4790 case FIELD_LOC_KIND_BITPOS:
4791 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4792 TYPE_FIELD_BITPOS (type, i));
4793 break;
14e75d8e
JK
4794 case FIELD_LOC_KIND_ENUMVAL:
4795 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4796 TYPE_FIELD_ENUMVAL (type, i));
4797 break;
d6a843b5
JK
4798 case FIELD_LOC_KIND_PHYSADDR:
4799 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4800 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4801 break;
4802 case FIELD_LOC_KIND_PHYSNAME:
4803 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4804 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4805 i)));
4806 break;
4807 default:
4808 internal_error (__FILE__, __LINE__,
4809 _("Unexpected type field location kind: %d"),
4810 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4811 }
4812 }
4813 }
4814
0963b4bd 4815 /* For range types, copy the bounds information. */
43bbcdc2
PH
4816 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4817 {
8d749320 4818 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
43bbcdc2
PH
4819 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4820 }
4821
d9823cbb
KB
4822 if (TYPE_DYN_PROP_LIST (type) != NULL)
4823 TYPE_DYN_PROP_LIST (new_type)
4824 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4825 TYPE_DYN_PROP_LIST (type));
4826
3cdcd0ce 4827
ae5a43e0
DJ
4828 /* Copy pointers to other types. */
4829 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4830 TYPE_TARGET_TYPE (new_type) =
4831 copy_type_recursive (objfile,
4832 TYPE_TARGET_TYPE (type),
4833 copied_types);
f6b3afbf 4834
ae5a43e0
DJ
4835 /* Maybe copy the type_specific bits.
4836
4837 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4838 base classes and methods. There's no fundamental reason why we
4839 can't, but at the moment it is not needed. */
4840
f6b3afbf
DE
4841 switch (TYPE_SPECIFIC_FIELD (type))
4842 {
4843 case TYPE_SPECIFIC_NONE:
4844 break;
4845 case TYPE_SPECIFIC_FUNC:
4846 INIT_FUNC_SPECIFIC (new_type);
4847 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4848 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4849 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4850 break;
4851 case TYPE_SPECIFIC_FLOATFORMAT:
4852 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4853 break;
4854 case TYPE_SPECIFIC_CPLUS_STUFF:
4855 INIT_CPLUS_SPECIFIC (new_type);
4856 break;
4857 case TYPE_SPECIFIC_GNAT_STUFF:
4858 INIT_GNAT_SPECIFIC (new_type);
4859 break;
09e2d7c7
DE
4860 case TYPE_SPECIFIC_SELF_TYPE:
4861 set_type_self_type (new_type,
4862 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4863 copied_types));
4864 break;
f6b3afbf
DE
4865 default:
4866 gdb_assert_not_reached ("bad type_specific_kind");
4867 }
ae5a43e0
DJ
4868
4869 return new_type;
4870}
4871
4af88198
JB
4872/* Make a copy of the given TYPE, except that the pointer & reference
4873 types are not preserved.
4874
4875 This function assumes that the given type has an associated objfile.
4876 This objfile is used to allocate the new type. */
4877
4878struct type *
4879copy_type (const struct type *type)
4880{
4881 struct type *new_type;
4882
e9bb382b 4883 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4884
e9bb382b 4885 new_type = alloc_type_copy (type);
4af88198
JB
4886 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4887 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4888 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4889 sizeof (struct main_type));
d9823cbb
KB
4890 if (TYPE_DYN_PROP_LIST (type) != NULL)
4891 TYPE_DYN_PROP_LIST (new_type)
4892 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4893 TYPE_DYN_PROP_LIST (type));
4af88198
JB
4894
4895 return new_type;
4896}
5212577a 4897\f
e9bb382b
UW
4898/* Helper functions to initialize architecture-specific types. */
4899
4900/* Allocate a type structure associated with GDBARCH and set its
4901 CODE, LENGTH, and NAME fields. */
5212577a 4902
e9bb382b
UW
4903struct type *
4904arch_type (struct gdbarch *gdbarch,
77b7c781 4905 enum type_code code, int bit, const char *name)
e9bb382b
UW
4906{
4907 struct type *type;
4908
4909 type = alloc_type_arch (gdbarch);
ae438bc5 4910 set_type_code (type, code);
77b7c781
UW
4911 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
4912 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
4913
4914 if (name)
6c214e7c 4915 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
4916
4917 return type;
4918}
4919
4920/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4921 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4922 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4923
e9bb382b
UW
4924struct type *
4925arch_integer_type (struct gdbarch *gdbarch,
695bfa52 4926 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4927{
4928 struct type *t;
4929
77b7c781 4930 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
4931 if (unsigned_p)
4932 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
4933
4934 return t;
4935}
4936
4937/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4938 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4939 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4940
e9bb382b
UW
4941struct type *
4942arch_character_type (struct gdbarch *gdbarch,
695bfa52 4943 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4944{
4945 struct type *t;
4946
77b7c781 4947 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
4948 if (unsigned_p)
4949 TYPE_UNSIGNED (t) = 1;
4950
4951 return t;
4952}
4953
4954/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4955 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4956 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4957
e9bb382b
UW
4958struct type *
4959arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 4960 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4961{
4962 struct type *t;
4963
77b7c781 4964 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
4965 if (unsigned_p)
4966 TYPE_UNSIGNED (t) = 1;
4967
4968 return t;
4969}
4970
4971/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4972 BIT is the type size in bits; if BIT equals -1, the size is
4973 determined by the floatformat. NAME is the type name. Set the
4974 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4975
27067745 4976struct type *
e9bb382b 4977arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
4978 int bit, const char *name,
4979 const struct floatformat **floatformats)
8da61cc4 4980{
0db7851f 4981 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
4982 struct type *t;
4983
0db7851f 4984 bit = verify_floatformat (bit, fmt);
77b7c781 4985 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 4986 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 4987
8da61cc4
DJ
4988 return t;
4989}
4990
88dfca6c
UW
4991/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4992 BIT is the type size in bits. NAME is the type name. */
4993
4994struct type *
4995arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4996{
4997 struct type *t;
4998
77b7c781 4999 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5000 return t;
5001}
5002
e9bb382b
UW
5003/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5004 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 5005
27067745 5006struct type *
e9bb382b 5007arch_complex_type (struct gdbarch *gdbarch,
695bfa52 5008 const char *name, struct type *target_type)
27067745
UW
5009{
5010 struct type *t;
d8734c88 5011
e9bb382b 5012 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 5013 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
5014 TYPE_TARGET_TYPE (t) = target_type;
5015 return t;
5016}
5017
88dfca6c
UW
5018/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5019 BIT is the pointer type size in bits. NAME is the type name.
5020 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5021 TYPE_UNSIGNED flag. */
5022
5023struct type *
5024arch_pointer_type (struct gdbarch *gdbarch,
5025 int bit, const char *name, struct type *target_type)
5026{
5027 struct type *t;
5028
77b7c781 5029 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5030 TYPE_TARGET_TYPE (t) = target_type;
5031 TYPE_UNSIGNED (t) = 1;
5032 return t;
5033}
5034
e9bb382b 5035/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5036 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5037
e9bb382b 5038struct type *
77b7c781 5039arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5040{
e9bb382b
UW
5041 struct type *type;
5042
77b7c781 5043 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5044 TYPE_UNSIGNED (type) = 1;
81516450
DE
5045 TYPE_NFIELDS (type) = 0;
5046 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5047 TYPE_FIELDS (type)
77b7c781 5048 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5049
5050 return type;
5051}
5052
5053/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5054 position BITPOS is called NAME. Pass NAME as "" for fields that
5055 should not be printed. */
5056
5057void
5058append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5059 struct type *field_type, const char *name)
81516450
DE
5060{
5061 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5062 int field_nr = TYPE_NFIELDS (type);
5063
5064 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5065 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5066 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5067 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5068 gdb_assert (name != NULL);
5069
5070 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5071 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5072 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5073 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5074 ++TYPE_NFIELDS (type);
5075}
5076
5077/* Special version of append_flags_type_field to add a flag field.
5078 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5079 position BITPOS is called NAME. */
5212577a 5080
e9bb382b 5081void
695bfa52 5082append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5083{
81516450 5084 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5085
81516450
DE
5086 append_flags_type_field (type, bitpos, 1,
5087 builtin_type (gdbarch)->builtin_bool,
5088 name);
e9bb382b
UW
5089}
5090
5091/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5092 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5093
e9bb382b 5094struct type *
695bfa52
TT
5095arch_composite_type (struct gdbarch *gdbarch, const char *name,
5096 enum type_code code)
e9bb382b
UW
5097{
5098 struct type *t;
d8734c88 5099
e9bb382b
UW
5100 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5101 t = arch_type (gdbarch, code, 0, NULL);
5102 TYPE_TAG_NAME (t) = name;
5103 INIT_CPLUS_SPECIFIC (t);
5104 return t;
5105}
5106
5107/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5108 Do not set the field's position or adjust the type's length;
5109 the caller should do so. Return the new field. */
5212577a 5110
f5dff777 5111struct field *
695bfa52 5112append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5113 struct type *field)
e9bb382b
UW
5114{
5115 struct field *f;
d8734c88 5116
e9bb382b 5117 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5118 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5119 TYPE_NFIELDS (t));
e9bb382b
UW
5120 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5121 memset (f, 0, sizeof f[0]);
5122 FIELD_TYPE (f[0]) = field;
5123 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5124 return f;
5125}
5126
5127/* Add new field with name NAME and type FIELD to composite type T.
5128 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5129
f5dff777 5130void
695bfa52 5131append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5132 struct type *field, int alignment)
5133{
5134 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5135
e9bb382b
UW
5136 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5137 {
5138 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5139 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5140 }
5141 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5142 {
5143 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5144 if (TYPE_NFIELDS (t) > 1)
5145 {
f41f5e61
PA
5146 SET_FIELD_BITPOS (f[0],
5147 (FIELD_BITPOS (f[-1])
5148 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5149 * TARGET_CHAR_BIT)));
e9bb382b
UW
5150
5151 if (alignment)
5152 {
86c3c1fc
AB
5153 int left;
5154
5155 alignment *= TARGET_CHAR_BIT;
5156 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5157
e9bb382b
UW
5158 if (left)
5159 {
f41f5e61 5160 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5161 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5162 }
5163 }
5164 }
5165 }
5166}
5167
5168/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5169
e9bb382b 5170void
695bfa52 5171append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5172 struct type *field)
5173{
5174 append_composite_type_field_aligned (t, name, field, 0);
5175}
5176
000177f0
AC
5177static struct gdbarch_data *gdbtypes_data;
5178
5179const struct builtin_type *
5180builtin_type (struct gdbarch *gdbarch)
5181{
9a3c8263 5182 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5183}
5184
5185static void *
5186gdbtypes_post_init (struct gdbarch *gdbarch)
5187{
5188 struct builtin_type *builtin_type
5189 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5190
46bf5051 5191 /* Basic types. */
e9bb382b 5192 builtin_type->builtin_void
77b7c781 5193 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5194 builtin_type->builtin_char
5195 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5196 !gdbarch_char_signed (gdbarch), "char");
c413c448 5197 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5198 builtin_type->builtin_signed_char
5199 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5200 0, "signed char");
5201 builtin_type->builtin_unsigned_char
5202 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5203 1, "unsigned char");
5204 builtin_type->builtin_short
5205 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5206 0, "short");
5207 builtin_type->builtin_unsigned_short
5208 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5209 1, "unsigned short");
5210 builtin_type->builtin_int
5211 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5212 0, "int");
5213 builtin_type->builtin_unsigned_int
5214 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5215 1, "unsigned int");
5216 builtin_type->builtin_long
5217 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5218 0, "long");
5219 builtin_type->builtin_unsigned_long
5220 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5221 1, "unsigned long");
5222 builtin_type->builtin_long_long
5223 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5224 0, "long long");
5225 builtin_type->builtin_unsigned_long_long
5226 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5227 1, "unsigned long long");
70bd8e24 5228 builtin_type->builtin_float
e9bb382b 5229 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5230 "float", gdbarch_float_format (gdbarch));
70bd8e24 5231 builtin_type->builtin_double
e9bb382b 5232 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5233 "double", gdbarch_double_format (gdbarch));
70bd8e24 5234 builtin_type->builtin_long_double
e9bb382b 5235 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5236 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5237 builtin_type->builtin_complex
e9bb382b
UW
5238 = arch_complex_type (gdbarch, "complex",
5239 builtin_type->builtin_float);
70bd8e24 5240 builtin_type->builtin_double_complex
e9bb382b
UW
5241 = arch_complex_type (gdbarch, "double complex",
5242 builtin_type->builtin_double);
5243 builtin_type->builtin_string
77b7c781 5244 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5245 builtin_type->builtin_bool
77b7c781 5246 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5247
7678ef8f
TJB
5248 /* The following three are about decimal floating point types, which
5249 are 32-bits, 64-bits and 128-bits respectively. */
5250 builtin_type->builtin_decfloat
88dfca6c 5251 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5252 builtin_type->builtin_decdouble
88dfca6c 5253 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5254 builtin_type->builtin_declong
88dfca6c 5255 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5256
69feb676 5257 /* "True" character types. */
e9bb382b
UW
5258 builtin_type->builtin_true_char
5259 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5260 builtin_type->builtin_true_unsigned_char
5261 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5262
df4df182 5263 /* Fixed-size integer types. */
e9bb382b
UW
5264 builtin_type->builtin_int0
5265 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5266 builtin_type->builtin_int8
5267 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5268 builtin_type->builtin_uint8
5269 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5270 builtin_type->builtin_int16
5271 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5272 builtin_type->builtin_uint16
5273 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5274 builtin_type->builtin_int32
5275 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5276 builtin_type->builtin_uint32
5277 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5278 builtin_type->builtin_int64
5279 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5280 builtin_type->builtin_uint64
5281 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5282 builtin_type->builtin_int128
5283 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5284 builtin_type->builtin_uint128
5285 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5286 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5287 TYPE_INSTANCE_FLAG_NOTTEXT;
5288 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5289 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5290
9a22f0d0
PM
5291 /* Wide character types. */
5292 builtin_type->builtin_char16
53e710ac 5293 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5294 builtin_type->builtin_char32
53e710ac 5295 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5296 builtin_type->builtin_wchar
5297 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5298 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5299
46bf5051 5300 /* Default data/code pointer types. */
e9bb382b
UW
5301 builtin_type->builtin_data_ptr
5302 = lookup_pointer_type (builtin_type->builtin_void);
5303 builtin_type->builtin_func_ptr
5304 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5305 builtin_type->builtin_func_func
5306 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5307
78267919 5308 /* This type represents a GDB internal function. */
e9bb382b
UW
5309 builtin_type->internal_fn
5310 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5311 "<internal function>");
78267919 5312
e81e7f5e
SC
5313 /* This type represents an xmethod. */
5314 builtin_type->xmethod
5315 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5316
46bf5051
UW
5317 return builtin_type;
5318}
5319
46bf5051
UW
5320/* This set of objfile-based types is intended to be used by symbol
5321 readers as basic types. */
5322
5323static const struct objfile_data *objfile_type_data;
5324
5325const struct objfile_type *
5326objfile_type (struct objfile *objfile)
5327{
5328 struct gdbarch *gdbarch;
5329 struct objfile_type *objfile_type
9a3c8263 5330 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
46bf5051
UW
5331
5332 if (objfile_type)
5333 return objfile_type;
5334
5335 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5336 1, struct objfile_type);
5337
5338 /* Use the objfile architecture to determine basic type properties. */
5339 gdbarch = get_objfile_arch (objfile);
5340
5341 /* Basic types. */
5342 objfile_type->builtin_void
77b7c781 5343 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5344 objfile_type->builtin_char
19f392bc
UW
5345 = init_integer_type (objfile, TARGET_CHAR_BIT,
5346 !gdbarch_char_signed (gdbarch), "char");
c413c448 5347 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5348 objfile_type->builtin_signed_char
19f392bc
UW
5349 = init_integer_type (objfile, TARGET_CHAR_BIT,
5350 0, "signed char");
46bf5051 5351 objfile_type->builtin_unsigned_char
19f392bc
UW
5352 = init_integer_type (objfile, TARGET_CHAR_BIT,
5353 1, "unsigned char");
46bf5051 5354 objfile_type->builtin_short
19f392bc
UW
5355 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5356 0, "short");
46bf5051 5357 objfile_type->builtin_unsigned_short
19f392bc
UW
5358 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5359 1, "unsigned short");
46bf5051 5360 objfile_type->builtin_int
19f392bc
UW
5361 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5362 0, "int");
46bf5051 5363 objfile_type->builtin_unsigned_int
19f392bc
UW
5364 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5365 1, "unsigned int");
46bf5051 5366 objfile_type->builtin_long
19f392bc
UW
5367 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5368 0, "long");
46bf5051 5369 objfile_type->builtin_unsigned_long
19f392bc
UW
5370 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5371 1, "unsigned long");
46bf5051 5372 objfile_type->builtin_long_long
19f392bc
UW
5373 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5374 0, "long long");
46bf5051 5375 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5376 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5377 1, "unsigned long long");
46bf5051 5378 objfile_type->builtin_float
19f392bc
UW
5379 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5380 "float", gdbarch_float_format (gdbarch));
46bf5051 5381 objfile_type->builtin_double
19f392bc
UW
5382 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5383 "double", gdbarch_double_format (gdbarch));
46bf5051 5384 objfile_type->builtin_long_double
19f392bc
UW
5385 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5386 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5387
5388 /* This type represents a type that was unrecognized in symbol read-in. */
5389 objfile_type->builtin_error
19f392bc 5390 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5391
5392 /* The following set of types is used for symbols with no
5393 debug information. */
5394 objfile_type->nodebug_text_symbol
77b7c781 5395 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5396 "<text variable, no debug info>");
0875794a 5397 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5398 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5399 "<text gnu-indirect-function variable, no debug info>");
7022349d 5400 /* Ifunc resolvers return a function address. */
0875794a 5401 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
7022349d
PA
5402 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5403 "__IFUNC_RESOLVER_RET");
19f392bc 5404 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5405 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5406 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5407 "<text from jump slot in .got.plt, no debug info>",
5408 objfile_type->nodebug_text_symbol);
46bf5051 5409 objfile_type->nodebug_data_symbol
46a4882b 5410 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5411 objfile_type->nodebug_unknown_symbol
46a4882b 5412 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5413 objfile_type->nodebug_tls_symbol
46a4882b 5414 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5415
5416 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5417 the same.
000177f0
AC
5418
5419 The upshot is:
5420 - gdb's `struct type' always describes the target's
5421 representation.
5422 - gdb's `struct value' objects should always hold values in
5423 target form.
5424 - gdb's CORE_ADDR values are addresses in the unified virtual
5425 address space that the assembler and linker work with. Thus,
5426 since target_read_memory takes a CORE_ADDR as an argument, it
5427 can access any memory on the target, even if the processor has
5428 separate code and data address spaces.
5429
46bf5051
UW
5430 In this context, objfile_type->builtin_core_addr is a bit odd:
5431 it's a target type for a value the target will never see. It's
5432 only used to hold the values of (typeless) linker symbols, which
5433 are indeed in the unified virtual address space. */
000177f0 5434
46bf5051 5435 objfile_type->builtin_core_addr
19f392bc
UW
5436 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5437 "__CORE_ADDR");
64c50499 5438
46bf5051
UW
5439 set_objfile_data (objfile, objfile_type_data, objfile_type);
5440 return objfile_type;
000177f0
AC
5441}
5442
c906108c 5443void
fba45db2 5444_initialize_gdbtypes (void)
c906108c 5445{
5674de60 5446 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5447 objfile_type_data = register_objfile_data ();
5674de60 5448
ccce17b0
YQ
5449 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5450 _("Set debugging of C++ overloading."),
5451 _("Show debugging of C++ overloading."),
5452 _("When enabled, ranking of the "
5453 "functions is displayed."),
5454 NULL,
5455 show_overload_debug,
5456 &setdebuglist, &showdebuglist);
5674de60 5457
7ba81444 5458 /* Add user knob for controlling resolution of opaque types. */
5674de60 5459 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5460 &opaque_type_resolution,
5461 _("Set resolution of opaque struct/class/union"
5462 " types (if set before loading symbols)."),
5463 _("Show resolution of opaque struct/class/union"
5464 " types (if set before loading symbols)."),
5465 NULL, NULL,
5674de60
UW
5466 show_opaque_type_resolution,
5467 &setlist, &showlist);
a451cb65
KS
5468
5469 /* Add an option to permit non-strict type checking. */
5470 add_setshow_boolean_cmd ("type", class_support,
5471 &strict_type_checking,
5472 _("Set strict type checking."),
5473 _("Show strict type checking."),
5474 NULL, NULL,
5475 show_strict_type_checking,
5476 &setchecklist, &showchecklist);
c906108c 5477}
This page took 1.780098 seconds and 4 git commands to generate.