* target/waitstatus.h (target_waitkind): Remove spurious
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
28e7fd62 3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "bfd.h"
25#include "symtab.h"
26#include "symfile.h"
27#include "objfiles.h"
28#include "gdbtypes.h"
29#include "expression.h"
30#include "language.h"
31#include "target.h"
32#include "value.h"
33#include "demangle.h"
34#include "complaints.h"
35#include "gdbcmd.h"
015a42b4 36#include "cp-abi.h"
a02fd225 37#include "gdb_assert.h"
ae5a43e0 38#include "hashtab.h"
8e7b59a5 39#include "exceptions.h"
8de20a37 40#include "cp-support.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 183 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 185
c16abbde 186 return type;
c906108c
SS
187}
188
e9bb382b
UW
189/* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the heap. */
192
193struct type *
194alloc_type_arch (struct gdbarch *gdbarch)
195{
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = XZALLOC (struct type);
203 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240}
241
2fdde8f8
DJ
242/* Alloc a new type instance structure, fill it with some defaults,
243 and point it at OLDTYPE. Allocate the new type instance from the
244 same place as OLDTYPE. */
245
246static struct type *
247alloc_type_instance (struct type *oldtype)
248{
249 struct type *type;
250
251 /* Allocate the structure. */
252
e9bb382b 253 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 254 type = XZALLOC (struct type);
2fdde8f8 255 else
1deafd4e
PA
256 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
257 struct type);
258
2fdde8f8
DJ
259 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
260
261 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
262
c16abbde 263 return type;
2fdde8f8
DJ
264}
265
266/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 267 replacing it with something else. Preserve owner information. */
5212577a 268
2fdde8f8
DJ
269static void
270smash_type (struct type *type)
271{
e9bb382b
UW
272 int objfile_owned = TYPE_OBJFILE_OWNED (type);
273 union type_owner owner = TYPE_OWNER (type);
274
2fdde8f8
DJ
275 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
276
e9bb382b
UW
277 /* Restore owner information. */
278 TYPE_OBJFILE_OWNED (type) = objfile_owned;
279 TYPE_OWNER (type) = owner;
280
2fdde8f8
DJ
281 /* For now, delete the rings. */
282 TYPE_CHAIN (type) = type;
283
284 /* For now, leave the pointer/reference types alone. */
285}
286
c906108c
SS
287/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
288 to a pointer to memory where the pointer type should be stored.
289 If *TYPEPTR is zero, update it to point to the pointer type we return.
290 We allocate new memory if needed. */
291
292struct type *
fba45db2 293make_pointer_type (struct type *type, struct type **typeptr)
c906108c 294{
52f0bd74 295 struct type *ntype; /* New type */
053cb41b 296 struct type *chain;
c906108c
SS
297
298 ntype = TYPE_POINTER_TYPE (type);
299
c5aa993b 300 if (ntype)
c906108c 301 {
c5aa993b 302 if (typeptr == 0)
7ba81444
MS
303 return ntype; /* Don't care about alloc,
304 and have new type. */
c906108c 305 else if (*typeptr == 0)
c5aa993b 306 {
7ba81444 307 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 308 return ntype;
c5aa993b 309 }
c906108c
SS
310 }
311
312 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
313 {
e9bb382b 314 ntype = alloc_type_copy (type);
c906108c
SS
315 if (typeptr)
316 *typeptr = ntype;
317 }
7ba81444 318 else /* We have storage, but need to reset it. */
c906108c
SS
319 {
320 ntype = *typeptr;
053cb41b 321 chain = TYPE_CHAIN (ntype);
2fdde8f8 322 smash_type (ntype);
053cb41b 323 TYPE_CHAIN (ntype) = chain;
c906108c
SS
324 }
325
326 TYPE_TARGET_TYPE (ntype) = type;
327 TYPE_POINTER_TYPE (type) = ntype;
328
5212577a 329 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 330
50810684
UW
331 TYPE_LENGTH (ntype)
332 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
333 TYPE_CODE (ntype) = TYPE_CODE_PTR;
334
67b2adb2 335 /* Mark pointers as unsigned. The target converts between pointers
76e71323 336 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 337 gdbarch_address_to_pointer. */
876cecd0 338 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 339
053cb41b
JB
340 /* Update the length of all the other variants of this type. */
341 chain = TYPE_CHAIN (ntype);
342 while (chain != ntype)
343 {
344 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
345 chain = TYPE_CHAIN (chain);
346 }
347
c906108c
SS
348 return ntype;
349}
350
351/* Given a type TYPE, return a type of pointers to that type.
352 May need to construct such a type if this is the first use. */
353
354struct type *
fba45db2 355lookup_pointer_type (struct type *type)
c906108c 356{
c5aa993b 357 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
358}
359
7ba81444
MS
360/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
361 points to a pointer to memory where the reference type should be
362 stored. If *TYPEPTR is zero, update it to point to the reference
363 type we return. We allocate new memory if needed. */
c906108c
SS
364
365struct type *
fba45db2 366make_reference_type (struct type *type, struct type **typeptr)
c906108c 367{
52f0bd74 368 struct type *ntype; /* New type */
1e98b326 369 struct type *chain;
c906108c
SS
370
371 ntype = TYPE_REFERENCE_TYPE (type);
372
c5aa993b 373 if (ntype)
c906108c 374 {
c5aa993b 375 if (typeptr == 0)
7ba81444
MS
376 return ntype; /* Don't care about alloc,
377 and have new type. */
c906108c 378 else if (*typeptr == 0)
c5aa993b 379 {
7ba81444 380 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 381 return ntype;
c5aa993b 382 }
c906108c
SS
383 }
384
385 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
386 {
e9bb382b 387 ntype = alloc_type_copy (type);
c906108c
SS
388 if (typeptr)
389 *typeptr = ntype;
390 }
7ba81444 391 else /* We have storage, but need to reset it. */
c906108c
SS
392 {
393 ntype = *typeptr;
1e98b326 394 chain = TYPE_CHAIN (ntype);
2fdde8f8 395 smash_type (ntype);
1e98b326 396 TYPE_CHAIN (ntype) = chain;
c906108c
SS
397 }
398
399 TYPE_TARGET_TYPE (ntype) = type;
400 TYPE_REFERENCE_TYPE (type) = ntype;
401
7ba81444
MS
402 /* FIXME! Assume the machine has only one representation for
403 references, and that it matches the (only) representation for
404 pointers! */
c906108c 405
50810684
UW
406 TYPE_LENGTH (ntype) =
407 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 408 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 409
c906108c
SS
410 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
411 TYPE_REFERENCE_TYPE (type) = ntype;
412
1e98b326
JB
413 /* Update the length of all the other variants of this type. */
414 chain = TYPE_CHAIN (ntype);
415 while (chain != ntype)
416 {
417 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
418 chain = TYPE_CHAIN (chain);
419 }
420
c906108c
SS
421 return ntype;
422}
423
7ba81444
MS
424/* Same as above, but caller doesn't care about memory allocation
425 details. */
c906108c
SS
426
427struct type *
fba45db2 428lookup_reference_type (struct type *type)
c906108c 429{
c5aa993b 430 return make_reference_type (type, (struct type **) 0);
c906108c
SS
431}
432
7ba81444
MS
433/* Lookup a function type that returns type TYPE. TYPEPTR, if
434 nonzero, points to a pointer to memory where the function type
435 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 436 function type we return. We allocate new memory if needed. */
c906108c
SS
437
438struct type *
0c8b41f1 439make_function_type (struct type *type, struct type **typeptr)
c906108c 440{
52f0bd74 441 struct type *ntype; /* New type */
c906108c
SS
442
443 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
444 {
e9bb382b 445 ntype = alloc_type_copy (type);
c906108c
SS
446 if (typeptr)
447 *typeptr = ntype;
448 }
7ba81444 449 else /* We have storage, but need to reset it. */
c906108c
SS
450 {
451 ntype = *typeptr;
2fdde8f8 452 smash_type (ntype);
c906108c
SS
453 }
454
455 TYPE_TARGET_TYPE (ntype) = type;
456
457 TYPE_LENGTH (ntype) = 1;
458 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 459
b6cdc2c1
JK
460 INIT_FUNC_SPECIFIC (ntype);
461
c906108c
SS
462 return ntype;
463}
464
c906108c
SS
465/* Given a type TYPE, return a type of functions that return that type.
466 May need to construct such a type if this is the first use. */
467
468struct type *
fba45db2 469lookup_function_type (struct type *type)
c906108c 470{
0c8b41f1 471 return make_function_type (type, (struct type **) 0);
c906108c
SS
472}
473
71918a86 474/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
475 function type. If the final type in PARAM_TYPES is NULL, make a
476 varargs function. */
71918a86
TT
477
478struct type *
479lookup_function_type_with_arguments (struct type *type,
480 int nparams,
481 struct type **param_types)
482{
483 struct type *fn = make_function_type (type, (struct type **) 0);
484 int i;
485
e314d629 486 if (nparams > 0)
a6fb9c08 487 {
e314d629
TT
488 if (param_types[nparams - 1] == NULL)
489 {
490 --nparams;
491 TYPE_VARARGS (fn) = 1;
492 }
493 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
494 == TYPE_CODE_VOID)
495 {
496 --nparams;
497 /* Caller should have ensured this. */
498 gdb_assert (nparams == 0);
499 TYPE_PROTOTYPED (fn) = 1;
500 }
a6fb9c08
TT
501 }
502
71918a86
TT
503 TYPE_NFIELDS (fn) = nparams;
504 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
505 for (i = 0; i < nparams; ++i)
506 TYPE_FIELD_TYPE (fn, i) = param_types[i];
507
508 return fn;
509}
510
47663de5
MS
511/* Identify address space identifier by name --
512 return the integer flag defined in gdbtypes.h. */
5212577a
DE
513
514int
50810684 515address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 516{
8b2dbe47 517 int type_flags;
d8734c88 518
7ba81444 519 /* Check for known address space delimiters. */
47663de5 520 if (!strcmp (space_identifier, "code"))
876cecd0 521 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 522 else if (!strcmp (space_identifier, "data"))
876cecd0 523 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
524 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
525 && gdbarch_address_class_name_to_type_flags (gdbarch,
526 space_identifier,
527 &type_flags))
8b2dbe47 528 return type_flags;
47663de5 529 else
8a3fe4f8 530 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
531}
532
533/* Identify address space identifier by integer flag as defined in
7ba81444 534 gdbtypes.h -- return the string version of the adress space name. */
47663de5 535
321432c0 536const char *
50810684 537address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 538{
876cecd0 539 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 540 return "code";
876cecd0 541 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 542 return "data";
876cecd0 543 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
544 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
545 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
546 else
547 return NULL;
548}
549
2fdde8f8 550/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
551
552 If STORAGE is non-NULL, create the new type instance there.
553 STORAGE must be in the same obstack as TYPE. */
47663de5 554
b9362cc7 555static struct type *
2fdde8f8
DJ
556make_qualified_type (struct type *type, int new_flags,
557 struct type *storage)
47663de5
MS
558{
559 struct type *ntype;
560
561 ntype = type;
5f61c20e
JK
562 do
563 {
564 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
565 return ntype;
566 ntype = TYPE_CHAIN (ntype);
567 }
568 while (ntype != type);
47663de5 569
2fdde8f8
DJ
570 /* Create a new type instance. */
571 if (storage == NULL)
572 ntype = alloc_type_instance (type);
573 else
574 {
7ba81444
MS
575 /* If STORAGE was provided, it had better be in the same objfile
576 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
577 if one objfile is freed and the other kept, we'd have
578 dangling pointers. */
ad766c0a
JB
579 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
580
2fdde8f8
DJ
581 ntype = storage;
582 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
583 TYPE_CHAIN (ntype) = ntype;
584 }
47663de5
MS
585
586 /* Pointers or references to the original type are not relevant to
2fdde8f8 587 the new type. */
47663de5
MS
588 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
589 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 590
2fdde8f8
DJ
591 /* Chain the new qualified type to the old type. */
592 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
593 TYPE_CHAIN (type) = ntype;
594
595 /* Now set the instance flags and return the new type. */
596 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 597
ab5d3da6
KB
598 /* Set length of new type to that of the original type. */
599 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
600
47663de5
MS
601 return ntype;
602}
603
2fdde8f8
DJ
604/* Make an address-space-delimited variant of a type -- a type that
605 is identical to the one supplied except that it has an address
606 space attribute attached to it (such as "code" or "data").
607
7ba81444
MS
608 The space attributes "code" and "data" are for Harvard
609 architectures. The address space attributes are for architectures
610 which have alternately sized pointers or pointers with alternate
611 representations. */
2fdde8f8
DJ
612
613struct type *
614make_type_with_address_space (struct type *type, int space_flag)
615{
2fdde8f8 616 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
617 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
618 | TYPE_INSTANCE_FLAG_DATA_SPACE
619 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
620 | space_flag);
621
622 return make_qualified_type (type, new_flags, NULL);
623}
c906108c
SS
624
625/* Make a "c-v" variant of a type -- a type that is identical to the
626 one supplied except that it may have const or volatile attributes
627 CNST is a flag for setting the const attribute
628 VOLTL is a flag for setting the volatile attribute
629 TYPE is the base type whose variant we are creating.
c906108c 630
ad766c0a
JB
631 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
632 storage to hold the new qualified type; *TYPEPTR and TYPE must be
633 in the same objfile. Otherwise, allocate fresh memory for the new
634 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
635 new type we construct. */
5212577a 636
c906108c 637struct type *
7ba81444
MS
638make_cv_type (int cnst, int voltl,
639 struct type *type,
640 struct type **typeptr)
c906108c 641{
52f0bd74 642 struct type *ntype; /* New type */
c906108c 643
2fdde8f8 644 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
645 & ~(TYPE_INSTANCE_FLAG_CONST
646 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 647
c906108c 648 if (cnst)
876cecd0 649 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
650
651 if (voltl)
876cecd0 652 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 653
2fdde8f8 654 if (typeptr && *typeptr != NULL)
a02fd225 655 {
ad766c0a
JB
656 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
657 a C-V variant chain that threads across objfiles: if one
658 objfile gets freed, then the other has a broken C-V chain.
659
660 This code used to try to copy over the main type from TYPE to
661 *TYPEPTR if they were in different objfiles, but that's
662 wrong, too: TYPE may have a field list or member function
663 lists, which refer to types of their own, etc. etc. The
664 whole shebang would need to be copied over recursively; you
665 can't have inter-objfile pointers. The only thing to do is
666 to leave stub types as stub types, and look them up afresh by
667 name each time you encounter them. */
668 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
669 }
670
7ba81444
MS
671 ntype = make_qualified_type (type, new_flags,
672 typeptr ? *typeptr : NULL);
c906108c 673
2fdde8f8
DJ
674 if (typeptr != NULL)
675 *typeptr = ntype;
a02fd225 676
2fdde8f8 677 return ntype;
a02fd225 678}
c906108c 679
06d66ee9
TT
680/* Make a 'restrict'-qualified version of TYPE. */
681
682struct type *
683make_restrict_type (struct type *type)
684{
685 return make_qualified_type (type,
686 (TYPE_INSTANCE_FLAGS (type)
687 | TYPE_INSTANCE_FLAG_RESTRICT),
688 NULL);
689}
690
2fdde8f8
DJ
691/* Replace the contents of ntype with the type *type. This changes the
692 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
693 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 694
cda6c68a
JB
695 In order to build recursive types, it's inevitable that we'll need
696 to update types in place --- but this sort of indiscriminate
697 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
698 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
699 clear if more steps are needed. */
5212577a 700
dd6bda65
DJ
701void
702replace_type (struct type *ntype, struct type *type)
703{
ab5d3da6 704 struct type *chain;
dd6bda65 705
ad766c0a
JB
706 /* These two types had better be in the same objfile. Otherwise,
707 the assignment of one type's main type structure to the other
708 will produce a type with references to objects (names; field
709 lists; etc.) allocated on an objfile other than its own. */
710 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
711
2fdde8f8 712 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 713
7ba81444
MS
714 /* The type length is not a part of the main type. Update it for
715 each type on the variant chain. */
ab5d3da6 716 chain = ntype;
5f61c20e
JK
717 do
718 {
719 /* Assert that this element of the chain has no address-class bits
720 set in its flags. Such type variants might have type lengths
721 which are supposed to be different from the non-address-class
722 variants. This assertion shouldn't ever be triggered because
723 symbol readers which do construct address-class variants don't
724 call replace_type(). */
725 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
726
727 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
728 chain = TYPE_CHAIN (chain);
729 }
730 while (ntype != chain);
ab5d3da6 731
2fdde8f8
DJ
732 /* Assert that the two types have equivalent instance qualifiers.
733 This should be true for at least all of our debug readers. */
734 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
735}
736
c906108c
SS
737/* Implement direct support for MEMBER_TYPE in GNU C++.
738 May need to construct such a type if this is the first use.
739 The TYPE is the type of the member. The DOMAIN is the type
740 of the aggregate that the member belongs to. */
741
742struct type *
0d5de010 743lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 744{
52f0bd74 745 struct type *mtype;
c906108c 746
e9bb382b 747 mtype = alloc_type_copy (type);
0d5de010 748 smash_to_memberptr_type (mtype, domain, type);
c16abbde 749 return mtype;
c906108c
SS
750}
751
0d5de010
DJ
752/* Return a pointer-to-method type, for a method of type TO_TYPE. */
753
754struct type *
755lookup_methodptr_type (struct type *to_type)
756{
757 struct type *mtype;
758
e9bb382b 759 mtype = alloc_type_copy (to_type);
0b92b5bb 760 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
761 return mtype;
762}
763
7ba81444
MS
764/* Allocate a stub method whose return type is TYPE. This apparently
765 happens for speed of symbol reading, since parsing out the
766 arguments to the method is cpu-intensive, the way we are doing it.
767 So, we will fill in arguments later. This always returns a fresh
768 type. */
c906108c
SS
769
770struct type *
fba45db2 771allocate_stub_method (struct type *type)
c906108c
SS
772{
773 struct type *mtype;
774
e9bb382b
UW
775 mtype = alloc_type_copy (type);
776 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
777 TYPE_LENGTH (mtype) = 1;
778 TYPE_STUB (mtype) = 1;
c906108c
SS
779 TYPE_TARGET_TYPE (mtype) = type;
780 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 781 return mtype;
c906108c
SS
782}
783
7ba81444
MS
784/* Create a range type using either a blank type supplied in
785 RESULT_TYPE, or creating a new type, inheriting the objfile from
786 INDEX_TYPE.
c906108c 787
7ba81444
MS
788 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
789 to HIGH_BOUND, inclusive.
c906108c 790
7ba81444
MS
791 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
792 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
793
794struct type *
fba45db2 795create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 796 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
797{
798 if (result_type == NULL)
e9bb382b 799 result_type = alloc_type_copy (index_type);
c906108c
SS
800 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
801 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 802 if (TYPE_STUB (index_type))
876cecd0 803 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
804 else
805 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
806 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
807 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
808 TYPE_LOW_BOUND (result_type) = low_bound;
809 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 810
c5aa993b 811 if (low_bound >= 0)
876cecd0 812 TYPE_UNSIGNED (result_type) = 1;
c906108c 813
262452ec 814 return result_type;
c906108c
SS
815}
816
7ba81444
MS
817/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
818 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
819 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
820
821int
fba45db2 822get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
823{
824 CHECK_TYPEDEF (type);
825 switch (TYPE_CODE (type))
826 {
827 case TYPE_CODE_RANGE:
828 *lowp = TYPE_LOW_BOUND (type);
829 *highp = TYPE_HIGH_BOUND (type);
830 return 1;
831 case TYPE_CODE_ENUM:
832 if (TYPE_NFIELDS (type) > 0)
833 {
834 /* The enums may not be sorted by value, so search all
0963b4bd 835 entries. */
c906108c
SS
836 int i;
837
14e75d8e 838 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
839 for (i = 0; i < TYPE_NFIELDS (type); i++)
840 {
14e75d8e
JK
841 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
842 *lowp = TYPE_FIELD_ENUMVAL (type, i);
843 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
844 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
845 }
846
7ba81444 847 /* Set unsigned indicator if warranted. */
c5aa993b 848 if (*lowp >= 0)
c906108c 849 {
876cecd0 850 TYPE_UNSIGNED (type) = 1;
c906108c
SS
851 }
852 }
853 else
854 {
855 *lowp = 0;
856 *highp = -1;
857 }
858 return 0;
859 case TYPE_CODE_BOOL:
860 *lowp = 0;
861 *highp = 1;
862 return 0;
863 case TYPE_CODE_INT:
c5aa993b 864 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
865 return -1;
866 if (!TYPE_UNSIGNED (type))
867 {
c5aa993b 868 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
869 *highp = -*lowp - 1;
870 return 0;
871 }
7ba81444 872 /* ... fall through for unsigned ints ... */
c906108c
SS
873 case TYPE_CODE_CHAR:
874 *lowp = 0;
875 /* This round-about calculation is to avoid shifting by
7b83ea04 876 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 877 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
878 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
879 *highp = (*highp - 1) | *highp;
880 return 0;
881 default:
882 return -1;
883 }
884}
885
dbc98a8b
KW
886/* Assuming TYPE is a simple, non-empty array type, compute its upper
887 and lower bound. Save the low bound into LOW_BOUND if not NULL.
888 Save the high bound into HIGH_BOUND if not NULL.
889
0963b4bd 890 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
891 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
892
893 We now simply use get_discrete_bounds call to get the values
894 of the low and high bounds.
895 get_discrete_bounds can return three values:
896 1, meaning that index is a range,
897 0, meaning that index is a discrete type,
898 or -1 for failure. */
899
900int
901get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
902{
903 struct type *index = TYPE_INDEX_TYPE (type);
904 LONGEST low = 0;
905 LONGEST high = 0;
906 int res;
907
908 if (index == NULL)
909 return 0;
910
911 res = get_discrete_bounds (index, &low, &high);
912 if (res == -1)
913 return 0;
914
915 /* Check if the array bounds are undefined. */
916 if (res == 1
917 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
918 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
919 return 0;
920
921 if (low_bound)
922 *low_bound = low;
923
924 if (high_bound)
925 *high_bound = high;
926
927 return 1;
928}
929
7ba81444
MS
930/* Create an array type using either a blank type supplied in
931 RESULT_TYPE, or creating a new type, inheriting the objfile from
932 RANGE_TYPE.
c906108c
SS
933
934 Elements will be of type ELEMENT_TYPE, the indices will be of type
935 RANGE_TYPE.
936
7ba81444
MS
937 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
938 sure it is TYPE_CODE_UNDEF before we bash it into an array
939 type? */
c906108c
SS
940
941struct type *
7ba81444
MS
942create_array_type (struct type *result_type,
943 struct type *element_type,
fba45db2 944 struct type *range_type)
c906108c
SS
945{
946 LONGEST low_bound, high_bound;
947
948 if (result_type == NULL)
e9bb382b
UW
949 result_type = alloc_type_copy (range_type);
950
c906108c
SS
951 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
952 TYPE_TARGET_TYPE (result_type) = element_type;
953 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
954 low_bound = high_bound = 0;
955 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
956 /* Be careful when setting the array length. Ada arrays can be
957 empty arrays with the high_bound being smaller than the low_bound.
958 In such cases, the array length should be zero. */
959 if (high_bound < low_bound)
960 TYPE_LENGTH (result_type) = 0;
961 else
962 TYPE_LENGTH (result_type) =
963 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
964 TYPE_NFIELDS (result_type) = 1;
965 TYPE_FIELDS (result_type) =
1deafd4e 966 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 967 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
968 TYPE_VPTR_FIELDNO (result_type) = -1;
969
0963b4bd 970 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 971 if (TYPE_LENGTH (result_type) == 0)
876cecd0 972 TYPE_TARGET_STUB (result_type) = 1;
c906108c 973
c16abbde 974 return result_type;
c906108c
SS
975}
976
e3506a9f
UW
977struct type *
978lookup_array_range_type (struct type *element_type,
63375b74 979 LONGEST low_bound, LONGEST high_bound)
e3506a9f 980{
50810684 981 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
982 struct type *index_type = builtin_type (gdbarch)->builtin_int;
983 struct type *range_type
984 = create_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 985
e3506a9f
UW
986 return create_array_type (NULL, element_type, range_type);
987}
988
7ba81444
MS
989/* Create a string type using either a blank type supplied in
990 RESULT_TYPE, or creating a new type. String types are similar
991 enough to array of char types that we can use create_array_type to
992 build the basic type and then bash it into a string type.
c906108c
SS
993
994 For fixed length strings, the range type contains 0 as the lower
995 bound and the length of the string minus one as the upper bound.
996
7ba81444
MS
997 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
998 sure it is TYPE_CODE_UNDEF before we bash it into a string
999 type? */
c906108c
SS
1000
1001struct type *
3b7538c0
UW
1002create_string_type (struct type *result_type,
1003 struct type *string_char_type,
7ba81444 1004 struct type *range_type)
c906108c
SS
1005{
1006 result_type = create_array_type (result_type,
f290d38e 1007 string_char_type,
c906108c
SS
1008 range_type);
1009 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1010 return result_type;
c906108c
SS
1011}
1012
e3506a9f
UW
1013struct type *
1014lookup_string_range_type (struct type *string_char_type,
63375b74 1015 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1016{
1017 struct type *result_type;
d8734c88 1018
e3506a9f
UW
1019 result_type = lookup_array_range_type (string_char_type,
1020 low_bound, high_bound);
1021 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1022 return result_type;
1023}
1024
c906108c 1025struct type *
fba45db2 1026create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1027{
c906108c 1028 if (result_type == NULL)
e9bb382b
UW
1029 result_type = alloc_type_copy (domain_type);
1030
c906108c
SS
1031 TYPE_CODE (result_type) = TYPE_CODE_SET;
1032 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1033 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1034
74a9bb82 1035 if (!TYPE_STUB (domain_type))
c906108c 1036 {
f9780d5b 1037 LONGEST low_bound, high_bound, bit_length;
d8734c88 1038
c906108c
SS
1039 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1040 low_bound = high_bound = 0;
1041 bit_length = high_bound - low_bound + 1;
1042 TYPE_LENGTH (result_type)
1043 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1044 if (low_bound >= 0)
876cecd0 1045 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1046 }
1047 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1048
c16abbde 1049 return result_type;
c906108c
SS
1050}
1051
ea37ba09
DJ
1052/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1053 and any array types nested inside it. */
1054
1055void
1056make_vector_type (struct type *array_type)
1057{
1058 struct type *inner_array, *elt_type;
1059 int flags;
1060
1061 /* Find the innermost array type, in case the array is
1062 multi-dimensional. */
1063 inner_array = array_type;
1064 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1065 inner_array = TYPE_TARGET_TYPE (inner_array);
1066
1067 elt_type = TYPE_TARGET_TYPE (inner_array);
1068 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1069 {
2844d6b5 1070 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1071 elt_type = make_qualified_type (elt_type, flags, NULL);
1072 TYPE_TARGET_TYPE (inner_array) = elt_type;
1073 }
1074
876cecd0 1075 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1076}
1077
794ac428 1078struct type *
ac3aafc7
EZ
1079init_vector_type (struct type *elt_type, int n)
1080{
1081 struct type *array_type;
d8734c88 1082
e3506a9f 1083 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1084 make_vector_type (array_type);
ac3aafc7
EZ
1085 return array_type;
1086}
1087
0d5de010
DJ
1088/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1089 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1090 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1091 TYPE doesn't include the offset (that's the value of the MEMBER
1092 itself), but does include the structure type into which it points
1093 (for some reason).
c906108c 1094
7ba81444
MS
1095 When "smashing" the type, we preserve the objfile that the old type
1096 pointed to, since we aren't changing where the type is actually
c906108c
SS
1097 allocated. */
1098
1099void
0d5de010
DJ
1100smash_to_memberptr_type (struct type *type, struct type *domain,
1101 struct type *to_type)
c906108c 1102{
2fdde8f8 1103 smash_type (type);
c906108c
SS
1104 TYPE_TARGET_TYPE (type) = to_type;
1105 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1106 /* Assume that a data member pointer is the same size as a normal
1107 pointer. */
50810684
UW
1108 TYPE_LENGTH (type)
1109 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1110 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1111}
1112
0b92b5bb
TT
1113/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1114
1115 When "smashing" the type, we preserve the objfile that the old type
1116 pointed to, since we aren't changing where the type is actually
1117 allocated. */
1118
1119void
1120smash_to_methodptr_type (struct type *type, struct type *to_type)
1121{
1122 smash_type (type);
1123 TYPE_TARGET_TYPE (type) = to_type;
1124 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1125 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1126 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1127}
1128
c906108c
SS
1129/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1130 METHOD just means `function that gets an extra "this" argument'.
1131
7ba81444
MS
1132 When "smashing" the type, we preserve the objfile that the old type
1133 pointed to, since we aren't changing where the type is actually
c906108c
SS
1134 allocated. */
1135
1136void
fba45db2 1137smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1138 struct type *to_type, struct field *args,
1139 int nargs, int varargs)
c906108c 1140{
2fdde8f8 1141 smash_type (type);
c906108c
SS
1142 TYPE_TARGET_TYPE (type) = to_type;
1143 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1144 TYPE_FIELDS (type) = args;
1145 TYPE_NFIELDS (type) = nargs;
1146 if (varargs)
876cecd0 1147 TYPE_VARARGS (type) = 1;
c906108c
SS
1148 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1149 TYPE_CODE (type) = TYPE_CODE_METHOD;
1150}
1151
1152/* Return a typename for a struct/union/enum type without "struct ",
1153 "union ", or "enum ". If the type has a NULL name, return NULL. */
1154
0d5cff50 1155const char *
aa1ee363 1156type_name_no_tag (const struct type *type)
c906108c
SS
1157{
1158 if (TYPE_TAG_NAME (type) != NULL)
1159 return TYPE_TAG_NAME (type);
1160
7ba81444
MS
1161 /* Is there code which expects this to return the name if there is
1162 no tag name? My guess is that this is mainly used for C++ in
1163 cases where the two will always be the same. */
c906108c
SS
1164 return TYPE_NAME (type);
1165}
1166
d8228535
JK
1167/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1168 Since GCC PR debug/47510 DWARF provides associated information to detect the
1169 anonymous class linkage name from its typedef.
1170
1171 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1172 apply it itself. */
1173
1174const char *
1175type_name_no_tag_or_error (struct type *type)
1176{
1177 struct type *saved_type = type;
1178 const char *name;
1179 struct objfile *objfile;
1180
1181 CHECK_TYPEDEF (type);
1182
1183 name = type_name_no_tag (type);
1184 if (name != NULL)
1185 return name;
1186
1187 name = type_name_no_tag (saved_type);
1188 objfile = TYPE_OBJFILE (saved_type);
1189 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1190 name ? name : "<anonymous>",
1191 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1192}
1193
7ba81444
MS
1194/* Lookup a typedef or primitive type named NAME, visible in lexical
1195 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1196 suitably defined. */
c906108c
SS
1197
1198struct type *
e6c014f2 1199lookup_typename (const struct language_defn *language,
ddd49eee 1200 struct gdbarch *gdbarch, const char *name,
34eaf542 1201 const struct block *block, int noerr)
c906108c 1202{
52f0bd74 1203 struct symbol *sym;
659c9f3a 1204 struct type *type;
c906108c 1205
774b6a14 1206 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c51fe631
DE
1207 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1208 return SYMBOL_TYPE (sym);
1209
659c9f3a
DE
1210 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1211 if (type)
1212 return type;
c51fe631
DE
1213
1214 if (noerr)
1215 return NULL;
1216 error (_("No type named %s."), name);
c906108c
SS
1217}
1218
1219struct type *
e6c014f2 1220lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1221 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1222{
1223 char *uns = alloca (strlen (name) + 10);
1224
1225 strcpy (uns, "unsigned ");
1226 strcpy (uns + 9, name);
e6c014f2 1227 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1228}
1229
1230struct type *
e6c014f2 1231lookup_signed_typename (const struct language_defn *language,
0d5cff50 1232 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1233{
1234 struct type *t;
1235 char *uns = alloca (strlen (name) + 8);
1236
1237 strcpy (uns, "signed ");
1238 strcpy (uns + 7, name);
e6c014f2 1239 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1240 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1241 if (t != NULL)
1242 return t;
e6c014f2 1243 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1244}
1245
1246/* Lookup a structure type named "struct NAME",
1247 visible in lexical block BLOCK. */
1248
1249struct type *
270140bd 1250lookup_struct (const char *name, const struct block *block)
c906108c 1251{
52f0bd74 1252 struct symbol *sym;
c906108c 1253
2570f2b7 1254 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1255
1256 if (sym == NULL)
1257 {
8a3fe4f8 1258 error (_("No struct type named %s."), name);
c906108c
SS
1259 }
1260 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1261 {
7ba81444
MS
1262 error (_("This context has class, union or enum %s, not a struct."),
1263 name);
c906108c
SS
1264 }
1265 return (SYMBOL_TYPE (sym));
1266}
1267
1268/* Lookup a union type named "union NAME",
1269 visible in lexical block BLOCK. */
1270
1271struct type *
270140bd 1272lookup_union (const char *name, const struct block *block)
c906108c 1273{
52f0bd74 1274 struct symbol *sym;
c5aa993b 1275 struct type *t;
c906108c 1276
2570f2b7 1277 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1278
1279 if (sym == NULL)
8a3fe4f8 1280 error (_("No union type named %s."), name);
c906108c 1281
c5aa993b 1282 t = SYMBOL_TYPE (sym);
c906108c
SS
1283
1284 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1285 return t;
c906108c 1286
7ba81444
MS
1287 /* If we get here, it's not a union. */
1288 error (_("This context has class, struct or enum %s, not a union."),
1289 name);
c906108c
SS
1290}
1291
c906108c
SS
1292/* Lookup an enum type named "enum NAME",
1293 visible in lexical block BLOCK. */
1294
1295struct type *
270140bd 1296lookup_enum (const char *name, const struct block *block)
c906108c 1297{
52f0bd74 1298 struct symbol *sym;
c906108c 1299
2570f2b7 1300 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1301 if (sym == NULL)
1302 {
8a3fe4f8 1303 error (_("No enum type named %s."), name);
c906108c
SS
1304 }
1305 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1306 {
7ba81444
MS
1307 error (_("This context has class, struct or union %s, not an enum."),
1308 name);
c906108c
SS
1309 }
1310 return (SYMBOL_TYPE (sym));
1311}
1312
1313/* Lookup a template type named "template NAME<TYPE>",
1314 visible in lexical block BLOCK. */
1315
1316struct type *
7ba81444 1317lookup_template_type (char *name, struct type *type,
270140bd 1318 const struct block *block)
c906108c
SS
1319{
1320 struct symbol *sym;
7ba81444
MS
1321 char *nam = (char *)
1322 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1323
c906108c
SS
1324 strcpy (nam, name);
1325 strcat (nam, "<");
0004e5a2 1326 strcat (nam, TYPE_NAME (type));
0963b4bd 1327 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1328
2570f2b7 1329 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1330
1331 if (sym == NULL)
1332 {
8a3fe4f8 1333 error (_("No template type named %s."), name);
c906108c
SS
1334 }
1335 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1336 {
7ba81444
MS
1337 error (_("This context has class, union or enum %s, not a struct."),
1338 name);
c906108c
SS
1339 }
1340 return (SYMBOL_TYPE (sym));
1341}
1342
7ba81444
MS
1343/* Given a type TYPE, lookup the type of the component of type named
1344 NAME.
c906108c 1345
7ba81444
MS
1346 TYPE can be either a struct or union, or a pointer or reference to
1347 a struct or union. If it is a pointer or reference, its target
1348 type is automatically used. Thus '.' and '->' are interchangable,
1349 as specified for the definitions of the expression element types
1350 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1351
1352 If NOERR is nonzero, return zero if NAME is not suitably defined.
1353 If NAME is the name of a baseclass type, return that type. */
1354
1355struct type *
d7561cbb 1356lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1357{
1358 int i;
c92817ce 1359 char *typename;
c906108c
SS
1360
1361 for (;;)
1362 {
1363 CHECK_TYPEDEF (type);
1364 if (TYPE_CODE (type) != TYPE_CODE_PTR
1365 && TYPE_CODE (type) != TYPE_CODE_REF)
1366 break;
1367 type = TYPE_TARGET_TYPE (type);
1368 }
1369
687d6395
MS
1370 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1371 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1372 {
c92817ce
TT
1373 typename = type_to_string (type);
1374 make_cleanup (xfree, typename);
1375 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1376 }
1377
1378#if 0
7ba81444
MS
1379 /* FIXME: This change put in by Michael seems incorrect for the case
1380 where the structure tag name is the same as the member name.
0963b4bd 1381 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1382 foo; } bell;" Disabled by fnf. */
c906108c
SS
1383 {
1384 char *typename;
1385
1386 typename = type_name_no_tag (type);
762f08a3 1387 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1388 return type;
1389 }
1390#endif
1391
1392 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1393 {
0d5cff50 1394 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1395
db577aea 1396 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1397 {
1398 return TYPE_FIELD_TYPE (type, i);
1399 }
f5a010c0
PM
1400 else if (!t_field_name || *t_field_name == '\0')
1401 {
d8734c88
MS
1402 struct type *subtype
1403 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1404
f5a010c0
PM
1405 if (subtype != NULL)
1406 return subtype;
1407 }
c906108c
SS
1408 }
1409
1410 /* OK, it's not in this class. Recursively check the baseclasses. */
1411 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1412 {
1413 struct type *t;
1414
9733fc94 1415 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1416 if (t != NULL)
1417 {
1418 return t;
1419 }
1420 }
1421
1422 if (noerr)
1423 {
1424 return NULL;
1425 }
c5aa993b 1426
c92817ce
TT
1427 typename = type_to_string (type);
1428 make_cleanup (xfree, typename);
1429 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1430}
1431
81fe8080
DE
1432/* Lookup the vptr basetype/fieldno values for TYPE.
1433 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1434 vptr_fieldno. Also, if found and basetype is from the same objfile,
1435 cache the results.
1436 If not found, return -1 and ignore BASETYPEP.
1437 Callers should be aware that in some cases (for example,
c906108c 1438 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1439 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1440 this function will not be able to find the
7ba81444 1441 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1442 vptr_basetype will remain NULL or incomplete. */
c906108c 1443
81fe8080
DE
1444int
1445get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1446{
1447 CHECK_TYPEDEF (type);
1448
1449 if (TYPE_VPTR_FIELDNO (type) < 0)
1450 {
1451 int i;
1452
7ba81444
MS
1453 /* We must start at zero in case the first (and only) baseclass
1454 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1455 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1456 {
81fe8080
DE
1457 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1458 int fieldno;
1459 struct type *basetype;
1460
1461 fieldno = get_vptr_fieldno (baseclass, &basetype);
1462 if (fieldno >= 0)
c906108c 1463 {
81fe8080 1464 /* If the type comes from a different objfile we can't cache
0963b4bd 1465 it, it may have a different lifetime. PR 2384 */
5ef73790 1466 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1467 {
1468 TYPE_VPTR_FIELDNO (type) = fieldno;
1469 TYPE_VPTR_BASETYPE (type) = basetype;
1470 }
1471 if (basetypep)
1472 *basetypep = basetype;
1473 return fieldno;
c906108c
SS
1474 }
1475 }
81fe8080
DE
1476
1477 /* Not found. */
1478 return -1;
1479 }
1480 else
1481 {
1482 if (basetypep)
1483 *basetypep = TYPE_VPTR_BASETYPE (type);
1484 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1485 }
1486}
1487
44e1a9eb
DJ
1488static void
1489stub_noname_complaint (void)
1490{
e2e0b3e5 1491 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1492}
1493
92163a10
JK
1494/* Find the real type of TYPE. This function returns the real type,
1495 after removing all layers of typedefs, and completing opaque or stub
1496 types. Completion changes the TYPE argument, but stripping of
1497 typedefs does not.
1498
1499 Instance flags (e.g. const/volatile) are preserved as typedefs are
1500 stripped. If necessary a new qualified form of the underlying type
1501 is created.
1502
1503 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1504 not been computed and we're either in the middle of reading symbols, or
1505 there was no name for the typedef in the debug info.
1506
9bc118a5
DE
1507 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1508 QUITs in the symbol reading code can also throw.
1509 Thus this function can throw an exception.
1510
92163a10
JK
1511 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1512 the target type.
c906108c
SS
1513
1514 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1515 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1516 definition, so we can use it in future. There used to be a comment
1517 (but not any code) that if we don't find a full definition, we'd
1518 set a flag so we don't spend time in the future checking the same
1519 type. That would be a mistake, though--we might load in more
92163a10 1520 symbols which contain a full definition for the type. */
c906108c
SS
1521
1522struct type *
a02fd225 1523check_typedef (struct type *type)
c906108c
SS
1524{
1525 struct type *orig_type = type;
92163a10
JK
1526 /* While we're removing typedefs, we don't want to lose qualifiers.
1527 E.g., const/volatile. */
1528 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1529
423c0af8
MS
1530 gdb_assert (type);
1531
c906108c
SS
1532 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1533 {
1534 if (!TYPE_TARGET_TYPE (type))
1535 {
0d5cff50 1536 const char *name;
c906108c
SS
1537 struct symbol *sym;
1538
1539 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1540 reading a symtab. Infinite recursion is one danger. */
c906108c 1541 if (currently_reading_symtab)
92163a10 1542 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1543
1544 name = type_name_no_tag (type);
7ba81444
MS
1545 /* FIXME: shouldn't we separately check the TYPE_NAME and
1546 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1547 VAR_DOMAIN as appropriate? (this code was written before
1548 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1549 if (name == NULL)
1550 {
23136709 1551 stub_noname_complaint ();
92163a10 1552 return make_qualified_type (type, instance_flags, NULL);
c906108c 1553 }
2570f2b7 1554 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1555 if (sym)
1556 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1557 else /* TYPE_CODE_UNDEF */
e9bb382b 1558 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1559 }
1560 type = TYPE_TARGET_TYPE (type);
c906108c 1561
92163a10
JK
1562 /* Preserve the instance flags as we traverse down the typedef chain.
1563
1564 Handling address spaces/classes is nasty, what do we do if there's a
1565 conflict?
1566 E.g., what if an outer typedef marks the type as class_1 and an inner
1567 typedef marks the type as class_2?
1568 This is the wrong place to do such error checking. We leave it to
1569 the code that created the typedef in the first place to flag the
1570 error. We just pick the outer address space (akin to letting the
1571 outer cast in a chain of casting win), instead of assuming
1572 "it can't happen". */
1573 {
1574 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1575 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1576 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1577 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1578
1579 /* Treat code vs data spaces and address classes separately. */
1580 if ((instance_flags & ALL_SPACES) != 0)
1581 new_instance_flags &= ~ALL_SPACES;
1582 if ((instance_flags & ALL_CLASSES) != 0)
1583 new_instance_flags &= ~ALL_CLASSES;
1584
1585 instance_flags |= new_instance_flags;
1586 }
1587 }
a02fd225 1588
7ba81444
MS
1589 /* If this is a struct/class/union with no fields, then check
1590 whether a full definition exists somewhere else. This is for
1591 systems where a type definition with no fields is issued for such
1592 types, instead of identifying them as stub types in the first
1593 place. */
c5aa993b 1594
7ba81444
MS
1595 if (TYPE_IS_OPAQUE (type)
1596 && opaque_type_resolution
1597 && !currently_reading_symtab)
c906108c 1598 {
0d5cff50 1599 const char *name = type_name_no_tag (type);
c5aa993b 1600 struct type *newtype;
d8734c88 1601
c906108c
SS
1602 if (name == NULL)
1603 {
23136709 1604 stub_noname_complaint ();
92163a10 1605 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1606 }
1607 newtype = lookup_transparent_type (name);
ad766c0a 1608
c906108c 1609 if (newtype)
ad766c0a 1610 {
7ba81444
MS
1611 /* If the resolved type and the stub are in the same
1612 objfile, then replace the stub type with the real deal.
1613 But if they're in separate objfiles, leave the stub
1614 alone; we'll just look up the transparent type every time
1615 we call check_typedef. We can't create pointers between
1616 types allocated to different objfiles, since they may
1617 have different lifetimes. Trying to copy NEWTYPE over to
1618 TYPE's objfile is pointless, too, since you'll have to
1619 move over any other types NEWTYPE refers to, which could
1620 be an unbounded amount of stuff. */
ad766c0a 1621 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
1622 type = make_qualified_type (newtype,
1623 TYPE_INSTANCE_FLAGS (type),
1624 type);
ad766c0a
JB
1625 else
1626 type = newtype;
1627 }
c906108c 1628 }
7ba81444
MS
1629 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1630 types. */
74a9bb82 1631 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1632 {
0d5cff50 1633 const char *name = type_name_no_tag (type);
c906108c 1634 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1635 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1636 as appropriate? (this code was written before TYPE_NAME and
1637 TYPE_TAG_NAME were separate). */
c906108c 1638 struct symbol *sym;
d8734c88 1639
c906108c
SS
1640 if (name == NULL)
1641 {
23136709 1642 stub_noname_complaint ();
92163a10 1643 return make_qualified_type (type, instance_flags, NULL);
c906108c 1644 }
2570f2b7 1645 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1646 if (sym)
c26f2453
JB
1647 {
1648 /* Same as above for opaque types, we can replace the stub
92163a10 1649 with the complete type only if they are in the same
c26f2453
JB
1650 objfile. */
1651 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
1652 type = make_qualified_type (SYMBOL_TYPE (sym),
1653 TYPE_INSTANCE_FLAGS (type),
1654 type);
c26f2453
JB
1655 else
1656 type = SYMBOL_TYPE (sym);
1657 }
c906108c
SS
1658 }
1659
74a9bb82 1660 if (TYPE_TARGET_STUB (type))
c906108c
SS
1661 {
1662 struct type *range_type;
1663 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1664
74a9bb82 1665 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1666 {
73e2eb35 1667 /* Nothing we can do. */
c5aa993b 1668 }
c906108c
SS
1669 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1670 && TYPE_NFIELDS (type) == 1
262452ec 1671 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1672 == TYPE_CODE_RANGE))
1673 {
1674 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1675 number of elements and the target type's length.
1676 Watch out for Ada null Ada arrays where the high bound
0963b4bd 1677 is smaller than the low bound. */
43bbcdc2
PH
1678 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1679 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1680 ULONGEST len;
1681
ab0d6e0d 1682 if (high_bound < low_bound)
43bbcdc2 1683 len = 0;
d8734c88
MS
1684 else
1685 {
1686 /* For now, we conservatively take the array length to be 0
1687 if its length exceeds UINT_MAX. The code below assumes
1688 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1689 which is technically not guaranteed by C, but is usually true
1690 (because it would be true if x were unsigned with its
0963b4bd 1691 high-order bit on). It uses the fact that
d8734c88
MS
1692 high_bound-low_bound is always representable in
1693 ULONGEST and that if high_bound-low_bound+1 overflows,
1694 it overflows to 0. We must change these tests if we
1695 decide to increase the representation of TYPE_LENGTH
0963b4bd 1696 from unsigned int to ULONGEST. */
d8734c88
MS
1697 ULONGEST ulow = low_bound, uhigh = high_bound;
1698 ULONGEST tlen = TYPE_LENGTH (target_type);
1699
1700 len = tlen * (uhigh - ulow + 1);
1701 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1702 || len > UINT_MAX)
1703 len = 0;
1704 }
43bbcdc2 1705 TYPE_LENGTH (type) = len;
876cecd0 1706 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1707 }
1708 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1709 {
1710 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1711 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1712 }
1713 }
92163a10
JK
1714
1715 type = make_qualified_type (type, instance_flags, NULL);
1716
7ba81444 1717 /* Cache TYPE_LENGTH for future use. */
c906108c 1718 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 1719
c906108c
SS
1720 return type;
1721}
1722
7ba81444 1723/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1724 occurs, silently return a void type. */
c91ecb25 1725
b9362cc7 1726static struct type *
48319d1f 1727safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1728{
1729 struct ui_file *saved_gdb_stderr;
34365054 1730 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 1731 volatile struct gdb_exception except;
c91ecb25 1732
7ba81444 1733 /* Suppress error messages. */
c91ecb25
ND
1734 saved_gdb_stderr = gdb_stderr;
1735 gdb_stderr = ui_file_new ();
1736
7ba81444 1737 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
1738 TRY_CATCH (except, RETURN_MASK_ERROR)
1739 {
1740 type = parse_and_eval_type (p, length);
1741 }
1742
1743 if (except.reason < 0)
48319d1f 1744 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1745
7ba81444 1746 /* Stop suppressing error messages. */
c91ecb25
ND
1747 ui_file_delete (gdb_stderr);
1748 gdb_stderr = saved_gdb_stderr;
1749
1750 return type;
1751}
1752
c906108c
SS
1753/* Ugly hack to convert method stubs into method types.
1754
7ba81444
MS
1755 He ain't kiddin'. This demangles the name of the method into a
1756 string including argument types, parses out each argument type,
1757 generates a string casting a zero to that type, evaluates the
1758 string, and stuffs the resulting type into an argtype vector!!!
1759 Then it knows the type of the whole function (including argument
1760 types for overloading), which info used to be in the stab's but was
1761 removed to hack back the space required for them. */
c906108c 1762
de17c821 1763static void
fba45db2 1764check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1765{
50810684 1766 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1767 struct fn_field *f;
1768 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
1769 char *demangled_name = gdb_demangle (mangled_name,
1770 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
1771 char *argtypetext, *p;
1772 int depth = 0, argcount = 1;
ad2f7632 1773 struct field *argtypes;
c906108c
SS
1774 struct type *mtype;
1775
1776 /* Make sure we got back a function string that we can use. */
1777 if (demangled_name)
1778 p = strchr (demangled_name, '(');
502dcf4e
AC
1779 else
1780 p = NULL;
c906108c
SS
1781
1782 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1783 error (_("Internal: Cannot demangle mangled name `%s'."),
1784 mangled_name);
c906108c
SS
1785
1786 /* Now, read in the parameters that define this type. */
1787 p += 1;
1788 argtypetext = p;
1789 while (*p)
1790 {
070ad9f0 1791 if (*p == '(' || *p == '<')
c906108c
SS
1792 {
1793 depth += 1;
1794 }
070ad9f0 1795 else if (*p == ')' || *p == '>')
c906108c
SS
1796 {
1797 depth -= 1;
1798 }
1799 else if (*p == ',' && depth == 0)
1800 {
1801 argcount += 1;
1802 }
1803
1804 p += 1;
1805 }
1806
ad2f7632
DJ
1807 /* If we read one argument and it was ``void'', don't count it. */
1808 if (strncmp (argtypetext, "(void)", 6) == 0)
1809 argcount -= 1;
c906108c 1810
ad2f7632
DJ
1811 /* We need one extra slot, for the THIS pointer. */
1812
1813 argtypes = (struct field *)
1814 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1815 p = argtypetext;
4a1970e4
DJ
1816
1817 /* Add THIS pointer for non-static methods. */
1818 f = TYPE_FN_FIELDLIST1 (type, method_id);
1819 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1820 argcount = 0;
1821 else
1822 {
ad2f7632 1823 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1824 argcount = 1;
1825 }
c906108c 1826
0963b4bd 1827 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
1828 {
1829 depth = 0;
1830 while (*p)
1831 {
1832 if (depth <= 0 && (*p == ',' || *p == ')'))
1833 {
ad2f7632
DJ
1834 /* Avoid parsing of ellipsis, they will be handled below.
1835 Also avoid ``void'' as above. */
1836 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1837 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1838 {
ad2f7632 1839 argtypes[argcount].type =
48319d1f 1840 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1841 argcount += 1;
1842 }
1843 argtypetext = p + 1;
1844 }
1845
070ad9f0 1846 if (*p == '(' || *p == '<')
c906108c
SS
1847 {
1848 depth += 1;
1849 }
070ad9f0 1850 else if (*p == ')' || *p == '>')
c906108c
SS
1851 {
1852 depth -= 1;
1853 }
1854
1855 p += 1;
1856 }
1857 }
1858
c906108c
SS
1859 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1860
1861 /* Now update the old "stub" type into a real type. */
1862 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1863 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1864 TYPE_FIELDS (mtype) = argtypes;
1865 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1866 TYPE_STUB (mtype) = 0;
c906108c 1867 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1868 if (p[-2] == '.')
876cecd0 1869 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1870
1871 xfree (demangled_name);
c906108c
SS
1872}
1873
7ba81444
MS
1874/* This is the external interface to check_stub_method, above. This
1875 function unstubs all of the signatures for TYPE's METHOD_ID method
1876 name. After calling this function TYPE_FN_FIELD_STUB will be
1877 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1878 correct.
de17c821
DJ
1879
1880 This function unfortunately can not die until stabs do. */
1881
1882void
1883check_stub_method_group (struct type *type, int method_id)
1884{
1885 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1886 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1887 int j, found_stub = 0;
de17c821
DJ
1888
1889 for (j = 0; j < len; j++)
1890 if (TYPE_FN_FIELD_STUB (f, j))
1891 {
1892 found_stub = 1;
1893 check_stub_method (type, method_id, j);
1894 }
1895
7ba81444
MS
1896 /* GNU v3 methods with incorrect names were corrected when we read
1897 in type information, because it was cheaper to do it then. The
1898 only GNU v2 methods with incorrect method names are operators and
1899 destructors; destructors were also corrected when we read in type
1900 information.
de17c821
DJ
1901
1902 Therefore the only thing we need to handle here are v2 operator
1903 names. */
1904 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1905 {
1906 int ret;
1907 char dem_opname[256];
1908
7ba81444
MS
1909 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1910 method_id),
de17c821
DJ
1911 dem_opname, DMGL_ANSI);
1912 if (!ret)
7ba81444
MS
1913 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1914 method_id),
de17c821
DJ
1915 dem_opname, 0);
1916 if (ret)
1917 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1918 }
1919}
1920
9655fd1a
JK
1921/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1922const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
1923
1924void
fba45db2 1925allocate_cplus_struct_type (struct type *type)
c906108c 1926{
b4ba55a1
JB
1927 if (HAVE_CPLUS_STRUCT (type))
1928 /* Structure was already allocated. Nothing more to do. */
1929 return;
1930
1931 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1932 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1933 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1934 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1935}
1936
b4ba55a1
JB
1937const struct gnat_aux_type gnat_aux_default =
1938 { NULL };
1939
1940/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1941 and allocate the associated gnat-specific data. The gnat-specific
1942 data is also initialized to gnat_aux_default. */
5212577a 1943
b4ba55a1
JB
1944void
1945allocate_gnat_aux_type (struct type *type)
1946{
1947 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1948 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1949 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1950 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1951}
1952
c906108c
SS
1953/* Helper function to initialize the standard scalar types.
1954
86f62fd7
TT
1955 If NAME is non-NULL, then it is used to initialize the type name.
1956 Note that NAME is not copied; it is required to have a lifetime at
1957 least as long as OBJFILE. */
c906108c
SS
1958
1959struct type *
7ba81444 1960init_type (enum type_code code, int length, int flags,
748e18ae 1961 const char *name, struct objfile *objfile)
c906108c 1962{
52f0bd74 1963 struct type *type;
c906108c
SS
1964
1965 type = alloc_type (objfile);
1966 TYPE_CODE (type) = code;
1967 TYPE_LENGTH (type) = length;
876cecd0
TT
1968
1969 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1970 if (flags & TYPE_FLAG_UNSIGNED)
1971 TYPE_UNSIGNED (type) = 1;
1972 if (flags & TYPE_FLAG_NOSIGN)
1973 TYPE_NOSIGN (type) = 1;
1974 if (flags & TYPE_FLAG_STUB)
1975 TYPE_STUB (type) = 1;
1976 if (flags & TYPE_FLAG_TARGET_STUB)
1977 TYPE_TARGET_STUB (type) = 1;
1978 if (flags & TYPE_FLAG_STATIC)
1979 TYPE_STATIC (type) = 1;
1980 if (flags & TYPE_FLAG_PROTOTYPED)
1981 TYPE_PROTOTYPED (type) = 1;
1982 if (flags & TYPE_FLAG_INCOMPLETE)
1983 TYPE_INCOMPLETE (type) = 1;
1984 if (flags & TYPE_FLAG_VARARGS)
1985 TYPE_VARARGS (type) = 1;
1986 if (flags & TYPE_FLAG_VECTOR)
1987 TYPE_VECTOR (type) = 1;
1988 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1989 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
1990 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1991 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
1992 if (flags & TYPE_FLAG_GNU_IFUNC)
1993 TYPE_GNU_IFUNC (type) = 1;
876cecd0 1994
86f62fd7 1995 TYPE_NAME (type) = name;
c906108c
SS
1996
1997 /* C++ fancies. */
1998
973ccf8b 1999 if (name && strcmp (name, "char") == 0)
876cecd0 2000 TYPE_NOSIGN (type) = 1;
973ccf8b 2001
b4ba55a1 2002 switch (code)
c906108c 2003 {
b4ba55a1
JB
2004 case TYPE_CODE_STRUCT:
2005 case TYPE_CODE_UNION:
2006 case TYPE_CODE_NAMESPACE:
2007 INIT_CPLUS_SPECIFIC (type);
2008 break;
2009 case TYPE_CODE_FLT:
2010 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2011 break;
2012 case TYPE_CODE_FUNC:
b6cdc2c1 2013 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2014 break;
c906108c 2015 }
c16abbde 2016 return type;
c906108c 2017}
5212577a
DE
2018\f
2019/* Queries on types. */
c906108c 2020
c906108c 2021int
fba45db2 2022can_dereference (struct type *t)
c906108c 2023{
7ba81444
MS
2024 /* FIXME: Should we return true for references as well as
2025 pointers? */
c906108c
SS
2026 CHECK_TYPEDEF (t);
2027 return
2028 (t != NULL
2029 && TYPE_CODE (t) == TYPE_CODE_PTR
2030 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2031}
2032
adf40b2e 2033int
fba45db2 2034is_integral_type (struct type *t)
adf40b2e
JM
2035{
2036 CHECK_TYPEDEF (t);
2037 return
2038 ((t != NULL)
d4f3574e
SS
2039 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2040 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2041 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2042 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2043 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2044 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2045}
2046
e09342b5
TJB
2047/* Return true if TYPE is scalar. */
2048
2049static int
2050is_scalar_type (struct type *type)
2051{
2052 CHECK_TYPEDEF (type);
2053
2054 switch (TYPE_CODE (type))
2055 {
2056 case TYPE_CODE_ARRAY:
2057 case TYPE_CODE_STRUCT:
2058 case TYPE_CODE_UNION:
2059 case TYPE_CODE_SET:
2060 case TYPE_CODE_STRING:
e09342b5
TJB
2061 return 0;
2062 default:
2063 return 1;
2064 }
2065}
2066
2067/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2068 the memory layout of a scalar type. E.g., an array or struct with only
2069 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2070
2071int
2072is_scalar_type_recursive (struct type *t)
2073{
2074 CHECK_TYPEDEF (t);
2075
2076 if (is_scalar_type (t))
2077 return 1;
2078 /* Are we dealing with an array or string of known dimensions? */
2079 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2080 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2081 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2082 {
2083 LONGEST low_bound, high_bound;
2084 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2085
2086 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2087
2088 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2089 }
2090 /* Are we dealing with a struct with one element? */
2091 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2092 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2093 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2094 {
2095 int i, n = TYPE_NFIELDS (t);
2096
2097 /* If all elements of the union are scalar, then the union is scalar. */
2098 for (i = 0; i < n; i++)
2099 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2100 return 0;
2101
2102 return 1;
2103 }
2104
2105 return 0;
2106}
2107
4e8f195d
TT
2108/* A helper function which returns true if types A and B represent the
2109 "same" class type. This is true if the types have the same main
2110 type, or the same name. */
2111
2112int
2113class_types_same_p (const struct type *a, const struct type *b)
2114{
2115 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2116 || (TYPE_NAME (a) && TYPE_NAME (b)
2117 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2118}
2119
a9d5ef47
SW
2120/* If BASE is an ancestor of DCLASS return the distance between them.
2121 otherwise return -1;
2122 eg:
2123
2124 class A {};
2125 class B: public A {};
2126 class C: public B {};
2127 class D: C {};
2128
2129 distance_to_ancestor (A, A, 0) = 0
2130 distance_to_ancestor (A, B, 0) = 1
2131 distance_to_ancestor (A, C, 0) = 2
2132 distance_to_ancestor (A, D, 0) = 3
2133
2134 If PUBLIC is 1 then only public ancestors are considered,
2135 and the function returns the distance only if BASE is a public ancestor
2136 of DCLASS.
2137 Eg:
2138
0963b4bd 2139 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2140
0526b37a 2141static int
a9d5ef47 2142distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2143{
2144 int i;
a9d5ef47 2145 int d;
c5aa993b 2146
c906108c
SS
2147 CHECK_TYPEDEF (base);
2148 CHECK_TYPEDEF (dclass);
2149
4e8f195d 2150 if (class_types_same_p (base, dclass))
a9d5ef47 2151 return 0;
c906108c
SS
2152
2153 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2154 {
0526b37a
SW
2155 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2156 continue;
2157
a9d5ef47
SW
2158 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2159 if (d >= 0)
2160 return 1 + d;
4e8f195d 2161 }
c906108c 2162
a9d5ef47 2163 return -1;
c906108c 2164}
4e8f195d 2165
0526b37a
SW
2166/* Check whether BASE is an ancestor or base class or DCLASS
2167 Return 1 if so, and 0 if not.
2168 Note: If BASE and DCLASS are of the same type, this function
2169 will return 1. So for some class A, is_ancestor (A, A) will
2170 return 1. */
2171
2172int
2173is_ancestor (struct type *base, struct type *dclass)
2174{
a9d5ef47 2175 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2176}
2177
4e8f195d
TT
2178/* Like is_ancestor, but only returns true when BASE is a public
2179 ancestor of DCLASS. */
2180
2181int
2182is_public_ancestor (struct type *base, struct type *dclass)
2183{
a9d5ef47 2184 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2185}
2186
2187/* A helper function for is_unique_ancestor. */
2188
2189static int
2190is_unique_ancestor_worker (struct type *base, struct type *dclass,
2191 int *offset,
8af8e3bc
PA
2192 const gdb_byte *valaddr, int embedded_offset,
2193 CORE_ADDR address, struct value *val)
4e8f195d
TT
2194{
2195 int i, count = 0;
2196
2197 CHECK_TYPEDEF (base);
2198 CHECK_TYPEDEF (dclass);
2199
2200 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2201 {
8af8e3bc
PA
2202 struct type *iter;
2203 int this_offset;
4e8f195d 2204
8af8e3bc
PA
2205 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2206
2207 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2208 address, val);
4e8f195d
TT
2209
2210 if (class_types_same_p (base, iter))
2211 {
2212 /* If this is the first subclass, set *OFFSET and set count
2213 to 1. Otherwise, if this is at the same offset as
2214 previous instances, do nothing. Otherwise, increment
2215 count. */
2216 if (*offset == -1)
2217 {
2218 *offset = this_offset;
2219 count = 1;
2220 }
2221 else if (this_offset == *offset)
2222 {
2223 /* Nothing. */
2224 }
2225 else
2226 ++count;
2227 }
2228 else
2229 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2230 valaddr,
2231 embedded_offset + this_offset,
2232 address, val);
4e8f195d
TT
2233 }
2234
2235 return count;
2236}
2237
2238/* Like is_ancestor, but only returns true if BASE is a unique base
2239 class of the type of VAL. */
2240
2241int
2242is_unique_ancestor (struct type *base, struct value *val)
2243{
2244 int offset = -1;
2245
2246 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2247 value_contents_for_printing (val),
2248 value_embedded_offset (val),
2249 value_address (val), val) == 1;
4e8f195d
TT
2250}
2251
c906108c 2252\f
5212577a 2253/* Overload resolution. */
c906108c 2254
6403aeea
SW
2255/* Return the sum of the rank of A with the rank of B. */
2256
2257struct rank
2258sum_ranks (struct rank a, struct rank b)
2259{
2260 struct rank c;
2261 c.rank = a.rank + b.rank;
a9d5ef47 2262 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2263 return c;
2264}
2265
2266/* Compare rank A and B and return:
2267 0 if a = b
2268 1 if a is better than b
2269 -1 if b is better than a. */
2270
2271int
2272compare_ranks (struct rank a, struct rank b)
2273{
2274 if (a.rank == b.rank)
a9d5ef47
SW
2275 {
2276 if (a.subrank == b.subrank)
2277 return 0;
2278 if (a.subrank < b.subrank)
2279 return 1;
2280 if (a.subrank > b.subrank)
2281 return -1;
2282 }
6403aeea
SW
2283
2284 if (a.rank < b.rank)
2285 return 1;
2286
0963b4bd 2287 /* a.rank > b.rank */
6403aeea
SW
2288 return -1;
2289}
c5aa993b 2290
0963b4bd 2291/* Functions for overload resolution begin here. */
c906108c
SS
2292
2293/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2294 0 => A and B are identical
2295 1 => A and B are incomparable
2296 2 => A is better than B
2297 3 => A is worse than B */
c906108c
SS
2298
2299int
fba45db2 2300compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2301{
2302 int i;
2303 int tmp;
c5aa993b
JM
2304 short found_pos = 0; /* any positives in c? */
2305 short found_neg = 0; /* any negatives in c? */
2306
2307 /* differing lengths => incomparable */
c906108c
SS
2308 if (a->length != b->length)
2309 return 1;
2310
c5aa993b
JM
2311 /* Subtract b from a */
2312 for (i = 0; i < a->length; i++)
c906108c 2313 {
6403aeea 2314 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2315 if (tmp > 0)
c5aa993b 2316 found_pos = 1;
c906108c 2317 else if (tmp < 0)
c5aa993b 2318 found_neg = 1;
c906108c
SS
2319 }
2320
2321 if (found_pos)
2322 {
2323 if (found_neg)
c5aa993b 2324 return 1; /* incomparable */
c906108c 2325 else
c5aa993b 2326 return 3; /* A > B */
c906108c 2327 }
c5aa993b
JM
2328 else
2329 /* no positives */
c906108c
SS
2330 {
2331 if (found_neg)
c5aa993b 2332 return 2; /* A < B */
c906108c 2333 else
c5aa993b 2334 return 0; /* A == B */
c906108c
SS
2335 }
2336}
2337
7ba81444
MS
2338/* Rank a function by comparing its parameter types (PARMS, length
2339 NPARMS), to the types of an argument list (ARGS, length NARGS).
2340 Return a pointer to a badness vector. This has NARGS + 1
2341 entries. */
c906108c
SS
2342
2343struct badness_vector *
7ba81444 2344rank_function (struct type **parms, int nparms,
da096638 2345 struct value **args, int nargs)
c906108c
SS
2346{
2347 int i;
c5aa993b 2348 struct badness_vector *bv;
c906108c
SS
2349 int min_len = nparms < nargs ? nparms : nargs;
2350
2351 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2352 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c906108c
SS
2353 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2354
2355 /* First compare the lengths of the supplied lists.
7ba81444 2356 If there is a mismatch, set it to a high value. */
c5aa993b 2357
c906108c 2358 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2359 arguments and ellipsis parameter lists, we should consider those
2360 and rank the length-match more finely. */
c906108c 2361
6403aeea
SW
2362 LENGTH_MATCH (bv) = (nargs != nparms)
2363 ? LENGTH_MISMATCH_BADNESS
2364 : EXACT_MATCH_BADNESS;
c906108c 2365
0963b4bd 2366 /* Now rank all the parameters of the candidate function. */
74cc24b0 2367 for (i = 1; i <= min_len; i++)
da096638
KS
2368 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2369 args[i - 1]);
c906108c 2370
0963b4bd 2371 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2372 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2373 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2374
2375 return bv;
2376}
2377
973ccf8b
DJ
2378/* Compare the names of two integer types, assuming that any sign
2379 qualifiers have been checked already. We do it this way because
2380 there may be an "int" in the name of one of the types. */
2381
2382static int
2383integer_types_same_name_p (const char *first, const char *second)
2384{
2385 int first_p, second_p;
2386
7ba81444
MS
2387 /* If both are shorts, return 1; if neither is a short, keep
2388 checking. */
973ccf8b
DJ
2389 first_p = (strstr (first, "short") != NULL);
2390 second_p = (strstr (second, "short") != NULL);
2391 if (first_p && second_p)
2392 return 1;
2393 if (first_p || second_p)
2394 return 0;
2395
2396 /* Likewise for long. */
2397 first_p = (strstr (first, "long") != NULL);
2398 second_p = (strstr (second, "long") != NULL);
2399 if (first_p && second_p)
2400 return 1;
2401 if (first_p || second_p)
2402 return 0;
2403
2404 /* Likewise for char. */
2405 first_p = (strstr (first, "char") != NULL);
2406 second_p = (strstr (second, "char") != NULL);
2407 if (first_p && second_p)
2408 return 1;
2409 if (first_p || second_p)
2410 return 0;
2411
2412 /* They must both be ints. */
2413 return 1;
2414}
2415
7062b0a0
SW
2416/* Compares type A to type B returns 1 if the represent the same type
2417 0 otherwise. */
2418
bd69fc68 2419int
7062b0a0
SW
2420types_equal (struct type *a, struct type *b)
2421{
2422 /* Identical type pointers. */
2423 /* However, this still doesn't catch all cases of same type for b
2424 and a. The reason is that builtin types are different from
2425 the same ones constructed from the object. */
2426 if (a == b)
2427 return 1;
2428
2429 /* Resolve typedefs */
2430 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2431 a = check_typedef (a);
2432 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2433 b = check_typedef (b);
2434
2435 /* If after resolving typedefs a and b are not of the same type
2436 code then they are not equal. */
2437 if (TYPE_CODE (a) != TYPE_CODE (b))
2438 return 0;
2439
2440 /* If a and b are both pointers types or both reference types then
2441 they are equal of the same type iff the objects they refer to are
2442 of the same type. */
2443 if (TYPE_CODE (a) == TYPE_CODE_PTR
2444 || TYPE_CODE (a) == TYPE_CODE_REF)
2445 return types_equal (TYPE_TARGET_TYPE (a),
2446 TYPE_TARGET_TYPE (b));
2447
0963b4bd 2448 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2449 are exactly the same. This happens when we generate method
2450 stubs. The types won't point to the same address, but they
0963b4bd 2451 really are the same. */
7062b0a0
SW
2452
2453 if (TYPE_NAME (a) && TYPE_NAME (b)
2454 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2455 return 1;
2456
2457 /* Check if identical after resolving typedefs. */
2458 if (a == b)
2459 return 1;
2460
9ce98649
TT
2461 /* Two function types are equal if their argument and return types
2462 are equal. */
2463 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2464 {
2465 int i;
2466
2467 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2468 return 0;
2469
2470 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2471 return 0;
2472
2473 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2474 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2475 return 0;
2476
2477 return 1;
2478 }
2479
7062b0a0
SW
2480 return 0;
2481}
2482
c906108c
SS
2483/* Compare one type (PARM) for compatibility with another (ARG).
2484 * PARM is intended to be the parameter type of a function; and
2485 * ARG is the supplied argument's type. This function tests if
2486 * the latter can be converted to the former.
da096638 2487 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
2488 *
2489 * Return 0 if they are identical types;
2490 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2491 * PARM is to ARG. The higher the return value, the worse the match.
2492 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 2493
6403aeea 2494struct rank
da096638 2495rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 2496{
a9d5ef47 2497 struct rank rank = {0,0};
7062b0a0
SW
2498
2499 if (types_equal (parm, arg))
6403aeea 2500 return EXACT_MATCH_BADNESS;
c906108c
SS
2501
2502 /* Resolve typedefs */
2503 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2504 parm = check_typedef (parm);
2505 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2506 arg = check_typedef (arg);
2507
db577aea 2508 /* See through references, since we can almost make non-references
7ba81444 2509 references. */
db577aea 2510 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 2511 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 2512 REFERENCE_CONVERSION_BADNESS));
db577aea 2513 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 2514 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 2515 REFERENCE_CONVERSION_BADNESS));
5d161b24 2516 if (overload_debug)
7ba81444
MS
2517 /* Debugging only. */
2518 fprintf_filtered (gdb_stderr,
2519 "------ Arg is %s [%d], parm is %s [%d]\n",
2520 TYPE_NAME (arg), TYPE_CODE (arg),
2521 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 2522
0963b4bd 2523 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
2524
2525 switch (TYPE_CODE (parm))
2526 {
c5aa993b
JM
2527 case TYPE_CODE_PTR:
2528 switch (TYPE_CODE (arg))
2529 {
2530 case TYPE_CODE_PTR:
7062b0a0
SW
2531
2532 /* Allowed pointer conversions are:
2533 (a) pointer to void-pointer conversion. */
2534 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 2535 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
2536
2537 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
2538 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2539 TYPE_TARGET_TYPE (arg),
2540 0);
2541 if (rank.subrank >= 0)
2542 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
2543
2544 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2545 case TYPE_CODE_ARRAY:
7062b0a0
SW
2546 if (types_equal (TYPE_TARGET_TYPE (parm),
2547 TYPE_TARGET_TYPE (arg)))
6403aeea 2548 return EXACT_MATCH_BADNESS;
7062b0a0 2549 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2550 case TYPE_CODE_FUNC:
da096638 2551 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 2552 case TYPE_CODE_INT:
a451cb65 2553 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 2554 {
a451cb65
KS
2555 if (value_as_long (value) == 0)
2556 {
2557 /* Null pointer conversion: allow it to be cast to a pointer.
2558 [4.10.1 of C++ standard draft n3290] */
2559 return NULL_POINTER_CONVERSION_BADNESS;
2560 }
2561 else
2562 {
2563 /* If type checking is disabled, allow the conversion. */
2564 if (!strict_type_checking)
2565 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2566 }
da096638
KS
2567 }
2568 /* fall through */
c5aa993b 2569 case TYPE_CODE_ENUM:
4f2aea11 2570 case TYPE_CODE_FLAGS:
c5aa993b
JM
2571 case TYPE_CODE_CHAR:
2572 case TYPE_CODE_RANGE:
2573 case TYPE_CODE_BOOL:
c5aa993b
JM
2574 default:
2575 return INCOMPATIBLE_TYPE_BADNESS;
2576 }
2577 case TYPE_CODE_ARRAY:
2578 switch (TYPE_CODE (arg))
2579 {
2580 case TYPE_CODE_PTR:
2581 case TYPE_CODE_ARRAY:
7ba81444 2582 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 2583 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2584 default:
2585 return INCOMPATIBLE_TYPE_BADNESS;
2586 }
2587 case TYPE_CODE_FUNC:
2588 switch (TYPE_CODE (arg))
2589 {
2590 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 2591 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2592 default:
2593 return INCOMPATIBLE_TYPE_BADNESS;
2594 }
2595 case TYPE_CODE_INT:
2596 switch (TYPE_CODE (arg))
2597 {
2598 case TYPE_CODE_INT:
2599 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2600 {
2601 /* Deal with signed, unsigned, and plain chars and
7ba81444 2602 signed and unsigned ints. */
c5aa993b
JM
2603 if (TYPE_NOSIGN (parm))
2604 {
0963b4bd 2605 /* This case only for character types. */
7ba81444 2606 if (TYPE_NOSIGN (arg))
6403aeea 2607 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
2608 else /* signed/unsigned char -> plain char */
2609 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2610 }
2611 else if (TYPE_UNSIGNED (parm))
2612 {
2613 if (TYPE_UNSIGNED (arg))
2614 {
7ba81444
MS
2615 /* unsigned int -> unsigned int, or
2616 unsigned long -> unsigned long */
2617 if (integer_types_same_name_p (TYPE_NAME (parm),
2618 TYPE_NAME (arg)))
6403aeea 2619 return EXACT_MATCH_BADNESS;
7ba81444
MS
2620 else if (integer_types_same_name_p (TYPE_NAME (arg),
2621 "int")
2622 && integer_types_same_name_p (TYPE_NAME (parm),
2623 "long"))
3e43a32a
MS
2624 /* unsigned int -> unsigned long */
2625 return INTEGER_PROMOTION_BADNESS;
c5aa993b 2626 else
3e43a32a
MS
2627 /* unsigned long -> unsigned int */
2628 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2629 }
2630 else
2631 {
7ba81444
MS
2632 if (integer_types_same_name_p (TYPE_NAME (arg),
2633 "long")
2634 && integer_types_same_name_p (TYPE_NAME (parm),
2635 "int"))
3e43a32a
MS
2636 /* signed long -> unsigned int */
2637 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2638 else
3e43a32a
MS
2639 /* signed int/long -> unsigned int/long */
2640 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2641 }
2642 }
2643 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2644 {
7ba81444
MS
2645 if (integer_types_same_name_p (TYPE_NAME (parm),
2646 TYPE_NAME (arg)))
6403aeea 2647 return EXACT_MATCH_BADNESS;
7ba81444
MS
2648 else if (integer_types_same_name_p (TYPE_NAME (arg),
2649 "int")
2650 && integer_types_same_name_p (TYPE_NAME (parm),
2651 "long"))
c5aa993b
JM
2652 return INTEGER_PROMOTION_BADNESS;
2653 else
1c5cb38e 2654 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2655 }
2656 else
1c5cb38e 2657 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2658 }
2659 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2660 return INTEGER_PROMOTION_BADNESS;
2661 else
1c5cb38e 2662 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2663 case TYPE_CODE_ENUM:
4f2aea11 2664 case TYPE_CODE_FLAGS:
c5aa993b
JM
2665 case TYPE_CODE_CHAR:
2666 case TYPE_CODE_RANGE:
2667 case TYPE_CODE_BOOL:
2668 return INTEGER_PROMOTION_BADNESS;
2669 case TYPE_CODE_FLT:
2670 return INT_FLOAT_CONVERSION_BADNESS;
2671 case TYPE_CODE_PTR:
2672 return NS_POINTER_CONVERSION_BADNESS;
2673 default:
2674 return INCOMPATIBLE_TYPE_BADNESS;
2675 }
2676 break;
2677 case TYPE_CODE_ENUM:
2678 switch (TYPE_CODE (arg))
2679 {
2680 case TYPE_CODE_INT:
2681 case TYPE_CODE_CHAR:
2682 case TYPE_CODE_RANGE:
2683 case TYPE_CODE_BOOL:
2684 case TYPE_CODE_ENUM:
1c5cb38e 2685 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2686 case TYPE_CODE_FLT:
2687 return INT_FLOAT_CONVERSION_BADNESS;
2688 default:
2689 return INCOMPATIBLE_TYPE_BADNESS;
2690 }
2691 break;
2692 case TYPE_CODE_CHAR:
2693 switch (TYPE_CODE (arg))
2694 {
2695 case TYPE_CODE_RANGE:
2696 case TYPE_CODE_BOOL:
2697 case TYPE_CODE_ENUM:
1c5cb38e 2698 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2699 case TYPE_CODE_FLT:
2700 return INT_FLOAT_CONVERSION_BADNESS;
2701 case TYPE_CODE_INT:
2702 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2703 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2704 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2705 return INTEGER_PROMOTION_BADNESS;
2706 /* >>> !! else fall through !! <<< */
2707 case TYPE_CODE_CHAR:
7ba81444
MS
2708 /* Deal with signed, unsigned, and plain chars for C++ and
2709 with int cases falling through from previous case. */
c5aa993b
JM
2710 if (TYPE_NOSIGN (parm))
2711 {
2712 if (TYPE_NOSIGN (arg))
6403aeea 2713 return EXACT_MATCH_BADNESS;
c5aa993b 2714 else
1c5cb38e 2715 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2716 }
2717 else if (TYPE_UNSIGNED (parm))
2718 {
2719 if (TYPE_UNSIGNED (arg))
6403aeea 2720 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2721 else
2722 return INTEGER_PROMOTION_BADNESS;
2723 }
2724 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 2725 return EXACT_MATCH_BADNESS;
c5aa993b 2726 else
1c5cb38e 2727 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2728 default:
2729 return INCOMPATIBLE_TYPE_BADNESS;
2730 }
2731 break;
2732 case TYPE_CODE_RANGE:
2733 switch (TYPE_CODE (arg))
2734 {
2735 case TYPE_CODE_INT:
2736 case TYPE_CODE_CHAR:
2737 case TYPE_CODE_RANGE:
2738 case TYPE_CODE_BOOL:
2739 case TYPE_CODE_ENUM:
1c5cb38e 2740 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2741 case TYPE_CODE_FLT:
2742 return INT_FLOAT_CONVERSION_BADNESS;
2743 default:
2744 return INCOMPATIBLE_TYPE_BADNESS;
2745 }
2746 break;
2747 case TYPE_CODE_BOOL:
2748 switch (TYPE_CODE (arg))
2749 {
5b4f6e25
KS
2750 /* n3290 draft, section 4.12.1 (conv.bool):
2751
2752 "A prvalue of arithmetic, unscoped enumeration, pointer, or
2753 pointer to member type can be converted to a prvalue of type
2754 bool. A zero value, null pointer value, or null member pointer
2755 value is converted to false; any other value is converted to
2756 true. A prvalue of type std::nullptr_t can be converted to a
2757 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
2758 case TYPE_CODE_INT:
2759 case TYPE_CODE_CHAR:
c5aa993b
JM
2760 case TYPE_CODE_ENUM:
2761 case TYPE_CODE_FLT:
5b4f6e25 2762 case TYPE_CODE_MEMBERPTR:
c5aa993b 2763 case TYPE_CODE_PTR:
5b4f6e25
KS
2764 return BOOL_CONVERSION_BADNESS;
2765 case TYPE_CODE_RANGE:
2766 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2767 case TYPE_CODE_BOOL:
6403aeea 2768 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2769 default:
2770 return INCOMPATIBLE_TYPE_BADNESS;
2771 }
2772 break;
2773 case TYPE_CODE_FLT:
2774 switch (TYPE_CODE (arg))
2775 {
2776 case TYPE_CODE_FLT:
2777 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2778 return FLOAT_PROMOTION_BADNESS;
2779 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 2780 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2781 else
2782 return FLOAT_CONVERSION_BADNESS;
2783 case TYPE_CODE_INT:
2784 case TYPE_CODE_BOOL:
2785 case TYPE_CODE_ENUM:
2786 case TYPE_CODE_RANGE:
2787 case TYPE_CODE_CHAR:
2788 return INT_FLOAT_CONVERSION_BADNESS;
2789 default:
2790 return INCOMPATIBLE_TYPE_BADNESS;
2791 }
2792 break;
2793 case TYPE_CODE_COMPLEX:
2794 switch (TYPE_CODE (arg))
7ba81444 2795 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2796 case TYPE_CODE_FLT:
2797 return FLOAT_PROMOTION_BADNESS;
2798 case TYPE_CODE_COMPLEX:
6403aeea 2799 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2800 default:
2801 return INCOMPATIBLE_TYPE_BADNESS;
2802 }
2803 break;
2804 case TYPE_CODE_STRUCT:
0963b4bd 2805 /* currently same as TYPE_CODE_CLASS. */
c5aa993b
JM
2806 switch (TYPE_CODE (arg))
2807 {
2808 case TYPE_CODE_STRUCT:
2809 /* Check for derivation */
a9d5ef47
SW
2810 rank.subrank = distance_to_ancestor (parm, arg, 0);
2811 if (rank.subrank >= 0)
2812 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
2813 /* else fall through */
2814 default:
2815 return INCOMPATIBLE_TYPE_BADNESS;
2816 }
2817 break;
2818 case TYPE_CODE_UNION:
2819 switch (TYPE_CODE (arg))
2820 {
2821 case TYPE_CODE_UNION:
2822 default:
2823 return INCOMPATIBLE_TYPE_BADNESS;
2824 }
2825 break;
0d5de010 2826 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2827 switch (TYPE_CODE (arg))
2828 {
2829 default:
2830 return INCOMPATIBLE_TYPE_BADNESS;
2831 }
2832 break;
2833 case TYPE_CODE_METHOD:
2834 switch (TYPE_CODE (arg))
2835 {
2836
2837 default:
2838 return INCOMPATIBLE_TYPE_BADNESS;
2839 }
2840 break;
2841 case TYPE_CODE_REF:
2842 switch (TYPE_CODE (arg))
2843 {
2844
2845 default:
2846 return INCOMPATIBLE_TYPE_BADNESS;
2847 }
2848
2849 break;
2850 case TYPE_CODE_SET:
2851 switch (TYPE_CODE (arg))
2852 {
2853 /* Not in C++ */
2854 case TYPE_CODE_SET:
7ba81444 2855 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 2856 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
2857 default:
2858 return INCOMPATIBLE_TYPE_BADNESS;
2859 }
2860 break;
2861 case TYPE_CODE_VOID:
2862 default:
2863 return INCOMPATIBLE_TYPE_BADNESS;
2864 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2865}
2866
0963b4bd 2867/* End of functions for overload resolution. */
5212577a
DE
2868\f
2869/* Routines to pretty-print types. */
c906108c 2870
c906108c 2871static void
fba45db2 2872print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2873{
2874 int bitno;
2875
2876 for (bitno = 0; bitno < nbits; bitno++)
2877 {
2878 if ((bitno % 8) == 0)
2879 {
2880 puts_filtered (" ");
2881 }
2882 if (B_TST (bits, bitno))
a3f17187 2883 printf_filtered (("1"));
c906108c 2884 else
a3f17187 2885 printf_filtered (("0"));
c906108c
SS
2886 }
2887}
2888
ad2f7632 2889/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2890 include it since we may get into a infinitely recursive
2891 situation. */
c906108c
SS
2892
2893static void
ad2f7632 2894print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2895{
2896 if (args != NULL)
2897 {
ad2f7632
DJ
2898 int i;
2899
2900 for (i = 0; i < nargs; i++)
2901 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2902 }
2903}
2904
d6a843b5
JK
2905int
2906field_is_static (struct field *f)
2907{
2908 /* "static" fields are the fields whose location is not relative
2909 to the address of the enclosing struct. It would be nice to
2910 have a dedicated flag that would be set for static fields when
2911 the type is being created. But in practice, checking the field
254e6b9e 2912 loc_kind should give us an accurate answer. */
d6a843b5
JK
2913 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2914 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2915}
2916
c906108c 2917static void
fba45db2 2918dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2919{
2920 int method_idx;
2921 int overload_idx;
2922 struct fn_field *f;
2923
2924 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2925 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2926 printf_filtered ("\n");
2927 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2928 {
2929 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2930 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2931 method_idx,
2932 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2933 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2934 gdb_stdout);
a3f17187 2935 printf_filtered (_(") length %d\n"),
c906108c
SS
2936 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2937 for (overload_idx = 0;
2938 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2939 overload_idx++)
2940 {
2941 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2942 overload_idx,
2943 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2944 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2945 gdb_stdout);
c906108c
SS
2946 printf_filtered (")\n");
2947 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2948 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2949 gdb_stdout);
c906108c
SS
2950 printf_filtered ("\n");
2951
2952 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2953 spaces + 8 + 2);
2954
2955 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2956 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2957 gdb_stdout);
c906108c
SS
2958 printf_filtered ("\n");
2959
ad2f7632 2960 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2961 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2962 overload_idx)),
ad2f7632 2963 spaces);
c906108c 2964 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2965 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2966 gdb_stdout);
c906108c
SS
2967 printf_filtered ("\n");
2968
2969 printfi_filtered (spaces + 8, "is_const %d\n",
2970 TYPE_FN_FIELD_CONST (f, overload_idx));
2971 printfi_filtered (spaces + 8, "is_volatile %d\n",
2972 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2973 printfi_filtered (spaces + 8, "is_private %d\n",
2974 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2975 printfi_filtered (spaces + 8, "is_protected %d\n",
2976 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2977 printfi_filtered (spaces + 8, "is_stub %d\n",
2978 TYPE_FN_FIELD_STUB (f, overload_idx));
2979 printfi_filtered (spaces + 8, "voffset %u\n",
2980 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2981 }
2982 }
2983}
2984
2985static void
fba45db2 2986print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2987{
2988 printfi_filtered (spaces, "n_baseclasses %d\n",
2989 TYPE_N_BASECLASSES (type));
2990 printfi_filtered (spaces, "nfn_fields %d\n",
2991 TYPE_NFN_FIELDS (type));
c906108c
SS
2992 if (TYPE_N_BASECLASSES (type) > 0)
2993 {
2994 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2995 TYPE_N_BASECLASSES (type));
7ba81444
MS
2996 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2997 gdb_stdout);
c906108c
SS
2998 printf_filtered (")");
2999
3000 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3001 TYPE_N_BASECLASSES (type));
3002 puts_filtered ("\n");
3003 }
3004 if (TYPE_NFIELDS (type) > 0)
3005 {
3006 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3007 {
7ba81444
MS
3008 printfi_filtered (spaces,
3009 "private_field_bits (%d bits at *",
c906108c 3010 TYPE_NFIELDS (type));
7ba81444
MS
3011 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3012 gdb_stdout);
c906108c
SS
3013 printf_filtered (")");
3014 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3015 TYPE_NFIELDS (type));
3016 puts_filtered ("\n");
3017 }
3018 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3019 {
7ba81444
MS
3020 printfi_filtered (spaces,
3021 "protected_field_bits (%d bits at *",
c906108c 3022 TYPE_NFIELDS (type));
7ba81444
MS
3023 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3024 gdb_stdout);
c906108c
SS
3025 printf_filtered (")");
3026 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3027 TYPE_NFIELDS (type));
3028 puts_filtered ("\n");
3029 }
3030 }
3031 if (TYPE_NFN_FIELDS (type) > 0)
3032 {
3033 dump_fn_fieldlists (type, spaces);
3034 }
3035}
3036
b4ba55a1
JB
3037/* Print the contents of the TYPE's type_specific union, assuming that
3038 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3039
3040static void
3041print_gnat_stuff (struct type *type, int spaces)
3042{
3043 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3044
3045 recursive_dump_type (descriptive_type, spaces + 2);
3046}
3047
c906108c
SS
3048static struct obstack dont_print_type_obstack;
3049
3050void
fba45db2 3051recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3052{
3053 int idx;
3054
3055 if (spaces == 0)
3056 obstack_begin (&dont_print_type_obstack, 0);
3057
3058 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3059 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3060 {
3061 struct type **first_dont_print
7ba81444 3062 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3063
7ba81444
MS
3064 int i = (struct type **)
3065 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3066
3067 while (--i >= 0)
3068 {
3069 if (type == first_dont_print[i])
3070 {
3071 printfi_filtered (spaces, "type node ");
d4f3574e 3072 gdb_print_host_address (type, gdb_stdout);
a3f17187 3073 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3074 return;
3075 }
3076 }
3077
3078 obstack_ptr_grow (&dont_print_type_obstack, type);
3079 }
3080
3081 printfi_filtered (spaces, "type node ");
d4f3574e 3082 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3083 printf_filtered ("\n");
3084 printfi_filtered (spaces, "name '%s' (",
3085 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3086 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3087 printf_filtered (")\n");
e9e79dd9
FF
3088 printfi_filtered (spaces, "tagname '%s' (",
3089 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3090 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3091 printf_filtered (")\n");
c906108c
SS
3092 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3093 switch (TYPE_CODE (type))
3094 {
c5aa993b
JM
3095 case TYPE_CODE_UNDEF:
3096 printf_filtered ("(TYPE_CODE_UNDEF)");
3097 break;
3098 case TYPE_CODE_PTR:
3099 printf_filtered ("(TYPE_CODE_PTR)");
3100 break;
3101 case TYPE_CODE_ARRAY:
3102 printf_filtered ("(TYPE_CODE_ARRAY)");
3103 break;
3104 case TYPE_CODE_STRUCT:
3105 printf_filtered ("(TYPE_CODE_STRUCT)");
3106 break;
3107 case TYPE_CODE_UNION:
3108 printf_filtered ("(TYPE_CODE_UNION)");
3109 break;
3110 case TYPE_CODE_ENUM:
3111 printf_filtered ("(TYPE_CODE_ENUM)");
3112 break;
4f2aea11
MK
3113 case TYPE_CODE_FLAGS:
3114 printf_filtered ("(TYPE_CODE_FLAGS)");
3115 break;
c5aa993b
JM
3116 case TYPE_CODE_FUNC:
3117 printf_filtered ("(TYPE_CODE_FUNC)");
3118 break;
3119 case TYPE_CODE_INT:
3120 printf_filtered ("(TYPE_CODE_INT)");
3121 break;
3122 case TYPE_CODE_FLT:
3123 printf_filtered ("(TYPE_CODE_FLT)");
3124 break;
3125 case TYPE_CODE_VOID:
3126 printf_filtered ("(TYPE_CODE_VOID)");
3127 break;
3128 case TYPE_CODE_SET:
3129 printf_filtered ("(TYPE_CODE_SET)");
3130 break;
3131 case TYPE_CODE_RANGE:
3132 printf_filtered ("(TYPE_CODE_RANGE)");
3133 break;
3134 case TYPE_CODE_STRING:
3135 printf_filtered ("(TYPE_CODE_STRING)");
3136 break;
3137 case TYPE_CODE_ERROR:
3138 printf_filtered ("(TYPE_CODE_ERROR)");
3139 break;
0d5de010
DJ
3140 case TYPE_CODE_MEMBERPTR:
3141 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3142 break;
3143 case TYPE_CODE_METHODPTR:
3144 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3145 break;
3146 case TYPE_CODE_METHOD:
3147 printf_filtered ("(TYPE_CODE_METHOD)");
3148 break;
3149 case TYPE_CODE_REF:
3150 printf_filtered ("(TYPE_CODE_REF)");
3151 break;
3152 case TYPE_CODE_CHAR:
3153 printf_filtered ("(TYPE_CODE_CHAR)");
3154 break;
3155 case TYPE_CODE_BOOL:
3156 printf_filtered ("(TYPE_CODE_BOOL)");
3157 break;
e9e79dd9
FF
3158 case TYPE_CODE_COMPLEX:
3159 printf_filtered ("(TYPE_CODE_COMPLEX)");
3160 break;
c5aa993b
JM
3161 case TYPE_CODE_TYPEDEF:
3162 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3163 break;
5c4e30ca
DC
3164 case TYPE_CODE_NAMESPACE:
3165 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3166 break;
c5aa993b
JM
3167 default:
3168 printf_filtered ("(UNKNOWN TYPE CODE)");
3169 break;
c906108c
SS
3170 }
3171 puts_filtered ("\n");
3172 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3173 if (TYPE_OBJFILE_OWNED (type))
3174 {
3175 printfi_filtered (spaces, "objfile ");
3176 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3177 }
3178 else
3179 {
3180 printfi_filtered (spaces, "gdbarch ");
3181 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3182 }
c906108c
SS
3183 printf_filtered ("\n");
3184 printfi_filtered (spaces, "target_type ");
d4f3574e 3185 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3186 printf_filtered ("\n");
3187 if (TYPE_TARGET_TYPE (type) != NULL)
3188 {
3189 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3190 }
3191 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3192 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3193 printf_filtered ("\n");
3194 printfi_filtered (spaces, "reference_type ");
d4f3574e 3195 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3196 printf_filtered ("\n");
2fdde8f8
DJ
3197 printfi_filtered (spaces, "type_chain ");
3198 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3199 printf_filtered ("\n");
7ba81444
MS
3200 printfi_filtered (spaces, "instance_flags 0x%x",
3201 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3202 if (TYPE_CONST (type))
3203 {
3204 puts_filtered (" TYPE_FLAG_CONST");
3205 }
3206 if (TYPE_VOLATILE (type))
3207 {
3208 puts_filtered (" TYPE_FLAG_VOLATILE");
3209 }
3210 if (TYPE_CODE_SPACE (type))
3211 {
3212 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3213 }
3214 if (TYPE_DATA_SPACE (type))
3215 {
3216 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3217 }
8b2dbe47
KB
3218 if (TYPE_ADDRESS_CLASS_1 (type))
3219 {
3220 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3221 }
3222 if (TYPE_ADDRESS_CLASS_2 (type))
3223 {
3224 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3225 }
06d66ee9
TT
3226 if (TYPE_RESTRICT (type))
3227 {
3228 puts_filtered (" TYPE_FLAG_RESTRICT");
3229 }
2fdde8f8 3230 puts_filtered ("\n");
876cecd0
TT
3231
3232 printfi_filtered (spaces, "flags");
762a036f 3233 if (TYPE_UNSIGNED (type))
c906108c
SS
3234 {
3235 puts_filtered (" TYPE_FLAG_UNSIGNED");
3236 }
762a036f
FF
3237 if (TYPE_NOSIGN (type))
3238 {
3239 puts_filtered (" TYPE_FLAG_NOSIGN");
3240 }
3241 if (TYPE_STUB (type))
c906108c
SS
3242 {
3243 puts_filtered (" TYPE_FLAG_STUB");
3244 }
762a036f
FF
3245 if (TYPE_TARGET_STUB (type))
3246 {
3247 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3248 }
3249 if (TYPE_STATIC (type))
3250 {
3251 puts_filtered (" TYPE_FLAG_STATIC");
3252 }
762a036f
FF
3253 if (TYPE_PROTOTYPED (type))
3254 {
3255 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3256 }
3257 if (TYPE_INCOMPLETE (type))
3258 {
3259 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3260 }
762a036f
FF
3261 if (TYPE_VARARGS (type))
3262 {
3263 puts_filtered (" TYPE_FLAG_VARARGS");
3264 }
f5f8a009
EZ
3265 /* This is used for things like AltiVec registers on ppc. Gcc emits
3266 an attribute for the array type, which tells whether or not we
3267 have a vector, instead of a regular array. */
3268 if (TYPE_VECTOR (type))
3269 {
3270 puts_filtered (" TYPE_FLAG_VECTOR");
3271 }
876cecd0
TT
3272 if (TYPE_FIXED_INSTANCE (type))
3273 {
3274 puts_filtered (" TYPE_FIXED_INSTANCE");
3275 }
3276 if (TYPE_STUB_SUPPORTED (type))
3277 {
3278 puts_filtered (" TYPE_STUB_SUPPORTED");
3279 }
3280 if (TYPE_NOTTEXT (type))
3281 {
3282 puts_filtered (" TYPE_NOTTEXT");
3283 }
c906108c
SS
3284 puts_filtered ("\n");
3285 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3286 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3287 puts_filtered ("\n");
3288 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3289 {
14e75d8e
JK
3290 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3291 printfi_filtered (spaces + 2,
3292 "[%d] enumval %s type ",
3293 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3294 else
3295 printfi_filtered (spaces + 2,
3296 "[%d] bitpos %d bitsize %d type ",
3297 idx, TYPE_FIELD_BITPOS (type, idx),
3298 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3299 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3300 printf_filtered (" name '%s' (",
3301 TYPE_FIELD_NAME (type, idx) != NULL
3302 ? TYPE_FIELD_NAME (type, idx)
3303 : "<NULL>");
d4f3574e 3304 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3305 printf_filtered (")\n");
3306 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3307 {
3308 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3309 }
3310 }
43bbcdc2
PH
3311 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3312 {
3313 printfi_filtered (spaces, "low %s%s high %s%s\n",
3314 plongest (TYPE_LOW_BOUND (type)),
3315 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3316 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3317 TYPE_HIGH_BOUND_UNDEFINED (type)
3318 ? " (undefined)" : "");
43bbcdc2 3319 }
c906108c 3320 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3321 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3322 puts_filtered ("\n");
3323 if (TYPE_VPTR_BASETYPE (type) != NULL)
3324 {
3325 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3326 }
7ba81444
MS
3327 printfi_filtered (spaces, "vptr_fieldno %d\n",
3328 TYPE_VPTR_FIELDNO (type));
c906108c 3329
b4ba55a1
JB
3330 switch (TYPE_SPECIFIC_FIELD (type))
3331 {
3332 case TYPE_SPECIFIC_CPLUS_STUFF:
3333 printfi_filtered (spaces, "cplus_stuff ");
3334 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3335 gdb_stdout);
3336 puts_filtered ("\n");
3337 print_cplus_stuff (type, spaces);
3338 break;
8da61cc4 3339
b4ba55a1
JB
3340 case TYPE_SPECIFIC_GNAT_STUFF:
3341 printfi_filtered (spaces, "gnat_stuff ");
3342 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3343 puts_filtered ("\n");
3344 print_gnat_stuff (type, spaces);
3345 break;
701c159d 3346
b4ba55a1
JB
3347 case TYPE_SPECIFIC_FLOATFORMAT:
3348 printfi_filtered (spaces, "floatformat ");
3349 if (TYPE_FLOATFORMAT (type) == NULL)
3350 puts_filtered ("(null)");
3351 else
3352 {
3353 puts_filtered ("{ ");
3354 if (TYPE_FLOATFORMAT (type)[0] == NULL
3355 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3356 puts_filtered ("(null)");
3357 else
3358 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3359
3360 puts_filtered (", ");
3361 if (TYPE_FLOATFORMAT (type)[1] == NULL
3362 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3363 puts_filtered ("(null)");
3364 else
3365 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3366
3367 puts_filtered (" }");
3368 }
3369 puts_filtered ("\n");
3370 break;
c906108c 3371
b6cdc2c1 3372 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
3373 printfi_filtered (spaces, "calling_convention %d\n",
3374 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 3375 /* tail_call_list is not printed. */
b4ba55a1 3376 break;
c906108c 3377 }
b4ba55a1 3378
c906108c
SS
3379 if (spaces == 0)
3380 obstack_free (&dont_print_type_obstack, NULL);
3381}
5212577a 3382\f
ae5a43e0
DJ
3383/* Trivial helpers for the libiberty hash table, for mapping one
3384 type to another. */
3385
3386struct type_pair
3387{
3388 struct type *old, *new;
3389};
3390
3391static hashval_t
3392type_pair_hash (const void *item)
3393{
3394 const struct type_pair *pair = item;
d8734c88 3395
ae5a43e0
DJ
3396 return htab_hash_pointer (pair->old);
3397}
3398
3399static int
3400type_pair_eq (const void *item_lhs, const void *item_rhs)
3401{
3402 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3403
ae5a43e0
DJ
3404 return lhs->old == rhs->old;
3405}
3406
3407/* Allocate the hash table used by copy_type_recursive to walk
3408 types without duplicates. We use OBJFILE's obstack, because
3409 OBJFILE is about to be deleted. */
3410
3411htab_t
3412create_copied_types_hash (struct objfile *objfile)
3413{
3414 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3415 NULL, &objfile->objfile_obstack,
3416 hashtab_obstack_allocate,
3417 dummy_obstack_deallocate);
3418}
3419
7ba81444
MS
3420/* Recursively copy (deep copy) TYPE, if it is associated with
3421 OBJFILE. Return a new type allocated using malloc, a saved type if
3422 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3423 not associated with OBJFILE. */
ae5a43e0
DJ
3424
3425struct type *
7ba81444
MS
3426copy_type_recursive (struct objfile *objfile,
3427 struct type *type,
ae5a43e0
DJ
3428 htab_t copied_types)
3429{
3430 struct type_pair *stored, pair;
3431 void **slot;
3432 struct type *new_type;
3433
e9bb382b 3434 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3435 return type;
3436
7ba81444
MS
3437 /* This type shouldn't be pointing to any types in other objfiles;
3438 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3439 gdb_assert (TYPE_OBJFILE (type) == objfile);
3440
3441 pair.old = type;
3442 slot = htab_find_slot (copied_types, &pair, INSERT);
3443 if (*slot != NULL)
3444 return ((struct type_pair *) *slot)->new;
3445
e9bb382b 3446 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3447
3448 /* We must add the new type to the hash table immediately, in case
3449 we encounter this type again during a recursive call below. */
3e43a32a
MS
3450 stored
3451 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3452 stored->old = type;
3453 stored->new = new_type;
3454 *slot = stored;
3455
876cecd0
TT
3456 /* Copy the common fields of types. For the main type, we simply
3457 copy the entire thing and then update specific fields as needed. */
3458 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3459 TYPE_OBJFILE_OWNED (new_type) = 0;
3460 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3461
ae5a43e0
DJ
3462 if (TYPE_NAME (type))
3463 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3464 if (TYPE_TAG_NAME (type))
3465 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3466
3467 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3468 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3469
3470 /* Copy the fields. */
ae5a43e0
DJ
3471 if (TYPE_NFIELDS (type))
3472 {
3473 int i, nfields;
3474
3475 nfields = TYPE_NFIELDS (type);
1deafd4e 3476 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
3477 for (i = 0; i < nfields; i++)
3478 {
7ba81444
MS
3479 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3480 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3481 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3482 if (TYPE_FIELD_TYPE (type, i))
3483 TYPE_FIELD_TYPE (new_type, i)
3484 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3485 copied_types);
3486 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3487 TYPE_FIELD_NAME (new_type, i) =
3488 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3489 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3490 {
d6a843b5
JK
3491 case FIELD_LOC_KIND_BITPOS:
3492 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3493 TYPE_FIELD_BITPOS (type, i));
3494 break;
14e75d8e
JK
3495 case FIELD_LOC_KIND_ENUMVAL:
3496 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3497 TYPE_FIELD_ENUMVAL (type, i));
3498 break;
d6a843b5
JK
3499 case FIELD_LOC_KIND_PHYSADDR:
3500 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3501 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3502 break;
3503 case FIELD_LOC_KIND_PHYSNAME:
3504 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3505 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3506 i)));
3507 break;
3508 default:
3509 internal_error (__FILE__, __LINE__,
3510 _("Unexpected type field location kind: %d"),
3511 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3512 }
3513 }
3514 }
3515
0963b4bd 3516 /* For range types, copy the bounds information. */
43bbcdc2
PH
3517 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3518 {
3519 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3520 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3521 }
3522
ae5a43e0
DJ
3523 /* Copy pointers to other types. */
3524 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3525 TYPE_TARGET_TYPE (new_type) =
3526 copy_type_recursive (objfile,
3527 TYPE_TARGET_TYPE (type),
3528 copied_types);
ae5a43e0 3529 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3530 TYPE_VPTR_BASETYPE (new_type) =
3531 copy_type_recursive (objfile,
3532 TYPE_VPTR_BASETYPE (type),
3533 copied_types);
ae5a43e0
DJ
3534 /* Maybe copy the type_specific bits.
3535
3536 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3537 base classes and methods. There's no fundamental reason why we
3538 can't, but at the moment it is not needed. */
3539
3540 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3541 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3542 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3543 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
3544 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3545 INIT_CPLUS_SPECIFIC (new_type);
3546
3547 return new_type;
3548}
3549
4af88198
JB
3550/* Make a copy of the given TYPE, except that the pointer & reference
3551 types are not preserved.
3552
3553 This function assumes that the given type has an associated objfile.
3554 This objfile is used to allocate the new type. */
3555
3556struct type *
3557copy_type (const struct type *type)
3558{
3559 struct type *new_type;
3560
e9bb382b 3561 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3562
e9bb382b 3563 new_type = alloc_type_copy (type);
4af88198
JB
3564 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3565 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3566 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3567 sizeof (struct main_type));
3568
3569 return new_type;
3570}
5212577a 3571\f
e9bb382b
UW
3572/* Helper functions to initialize architecture-specific types. */
3573
3574/* Allocate a type structure associated with GDBARCH and set its
3575 CODE, LENGTH, and NAME fields. */
5212577a 3576
e9bb382b
UW
3577struct type *
3578arch_type (struct gdbarch *gdbarch,
3579 enum type_code code, int length, char *name)
3580{
3581 struct type *type;
3582
3583 type = alloc_type_arch (gdbarch);
3584 TYPE_CODE (type) = code;
3585 TYPE_LENGTH (type) = length;
3586
3587 if (name)
3588 TYPE_NAME (type) = xstrdup (name);
3589
3590 return type;
3591}
3592
3593/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3594 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3595 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 3596
e9bb382b
UW
3597struct type *
3598arch_integer_type (struct gdbarch *gdbarch,
3599 int bit, int unsigned_p, char *name)
3600{
3601 struct type *t;
3602
3603 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3604 if (unsigned_p)
3605 TYPE_UNSIGNED (t) = 1;
3606 if (name && strcmp (name, "char") == 0)
3607 TYPE_NOSIGN (t) = 1;
3608
3609 return t;
3610}
3611
3612/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3613 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3614 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 3615
e9bb382b
UW
3616struct type *
3617arch_character_type (struct gdbarch *gdbarch,
3618 int bit, int unsigned_p, char *name)
3619{
3620 struct type *t;
3621
3622 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3623 if (unsigned_p)
3624 TYPE_UNSIGNED (t) = 1;
3625
3626 return t;
3627}
3628
3629/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3630 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3631 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 3632
e9bb382b
UW
3633struct type *
3634arch_boolean_type (struct gdbarch *gdbarch,
3635 int bit, int unsigned_p, char *name)
3636{
3637 struct type *t;
3638
3639 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3640 if (unsigned_p)
3641 TYPE_UNSIGNED (t) = 1;
3642
3643 return t;
3644}
3645
3646/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3647 BIT is the type size in bits; if BIT equals -1, the size is
3648 determined by the floatformat. NAME is the type name. Set the
3649 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 3650
27067745 3651struct type *
e9bb382b
UW
3652arch_float_type (struct gdbarch *gdbarch,
3653 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3654{
3655 struct type *t;
3656
3657 if (bit == -1)
3658 {
3659 gdb_assert (floatformats != NULL);
3660 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3661 bit = floatformats[0]->totalsize;
3662 }
3663 gdb_assert (bit >= 0);
3664
e9bb382b 3665 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3666 TYPE_FLOATFORMAT (t) = floatformats;
3667 return t;
3668}
3669
e9bb382b
UW
3670/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3671 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 3672
27067745 3673struct type *
e9bb382b
UW
3674arch_complex_type (struct gdbarch *gdbarch,
3675 char *name, struct type *target_type)
27067745
UW
3676{
3677 struct type *t;
d8734c88 3678
e9bb382b
UW
3679 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3680 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3681 TYPE_TARGET_TYPE (t) = target_type;
3682 return t;
3683}
3684
e9bb382b 3685/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3686 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 3687
e9bb382b
UW
3688struct type *
3689arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3690{
3691 int nfields = length * TARGET_CHAR_BIT;
3692 struct type *type;
3693
3694 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3695 TYPE_UNSIGNED (type) = 1;
3696 TYPE_NFIELDS (type) = nfields;
3697 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3698
3699 return type;
3700}
3701
3702/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3703 position BITPOS is called NAME. */
5212577a 3704
e9bb382b
UW
3705void
3706append_flags_type_flag (struct type *type, int bitpos, char *name)
3707{
3708 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3709 gdb_assert (bitpos < TYPE_NFIELDS (type));
3710 gdb_assert (bitpos >= 0);
3711
3712 if (name)
3713 {
3714 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 3715 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
3716 }
3717 else
3718 {
3719 /* Don't show this field to the user. */
945b3a32 3720 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
3721 }
3722}
3723
3724/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3725 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 3726
e9bb382b
UW
3727struct type *
3728arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3729{
3730 struct type *t;
d8734c88 3731
e9bb382b
UW
3732 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3733 t = arch_type (gdbarch, code, 0, NULL);
3734 TYPE_TAG_NAME (t) = name;
3735 INIT_CPLUS_SPECIFIC (t);
3736 return t;
3737}
3738
3739/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
3740 Do not set the field's position or adjust the type's length;
3741 the caller should do so. Return the new field. */
5212577a 3742
f5dff777
DJ
3743struct field *
3744append_composite_type_field_raw (struct type *t, char *name,
3745 struct type *field)
e9bb382b
UW
3746{
3747 struct field *f;
d8734c88 3748
e9bb382b
UW
3749 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3750 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3751 sizeof (struct field) * TYPE_NFIELDS (t));
3752 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3753 memset (f, 0, sizeof f[0]);
3754 FIELD_TYPE (f[0]) = field;
3755 FIELD_NAME (f[0]) = name;
f5dff777
DJ
3756 return f;
3757}
3758
3759/* Add new field with name NAME and type FIELD to composite type T.
3760 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 3761
f5dff777
DJ
3762void
3763append_composite_type_field_aligned (struct type *t, char *name,
3764 struct type *field, int alignment)
3765{
3766 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 3767
e9bb382b
UW
3768 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3769 {
3770 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3771 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3772 }
3773 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3774 {
3775 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3776 if (TYPE_NFIELDS (t) > 1)
3777 {
f41f5e61
PA
3778 SET_FIELD_BITPOS (f[0],
3779 (FIELD_BITPOS (f[-1])
3780 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3781 * TARGET_CHAR_BIT)));
e9bb382b
UW
3782
3783 if (alignment)
3784 {
86c3c1fc
AB
3785 int left;
3786
3787 alignment *= TARGET_CHAR_BIT;
3788 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 3789
e9bb382b
UW
3790 if (left)
3791 {
f41f5e61 3792 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 3793 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
3794 }
3795 }
3796 }
3797 }
3798}
3799
3800/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 3801
e9bb382b
UW
3802void
3803append_composite_type_field (struct type *t, char *name,
3804 struct type *field)
3805{
3806 append_composite_type_field_aligned (t, name, field, 0);
3807}
3808
000177f0
AC
3809static struct gdbarch_data *gdbtypes_data;
3810
3811const struct builtin_type *
3812builtin_type (struct gdbarch *gdbarch)
3813{
3814 return gdbarch_data (gdbarch, gdbtypes_data);
3815}
3816
3817static void *
3818gdbtypes_post_init (struct gdbarch *gdbarch)
3819{
3820 struct builtin_type *builtin_type
3821 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3822
46bf5051 3823 /* Basic types. */
e9bb382b
UW
3824 builtin_type->builtin_void
3825 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3826 builtin_type->builtin_char
3827 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3828 !gdbarch_char_signed (gdbarch), "char");
3829 builtin_type->builtin_signed_char
3830 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3831 0, "signed char");
3832 builtin_type->builtin_unsigned_char
3833 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3834 1, "unsigned char");
3835 builtin_type->builtin_short
3836 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3837 0, "short");
3838 builtin_type->builtin_unsigned_short
3839 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3840 1, "unsigned short");
3841 builtin_type->builtin_int
3842 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3843 0, "int");
3844 builtin_type->builtin_unsigned_int
3845 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3846 1, "unsigned int");
3847 builtin_type->builtin_long
3848 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3849 0, "long");
3850 builtin_type->builtin_unsigned_long
3851 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3852 1, "unsigned long");
3853 builtin_type->builtin_long_long
3854 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3855 0, "long long");
3856 builtin_type->builtin_unsigned_long_long
3857 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3858 1, "unsigned long long");
70bd8e24 3859 builtin_type->builtin_float
e9bb382b 3860 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3861 "float", gdbarch_float_format (gdbarch));
70bd8e24 3862 builtin_type->builtin_double
e9bb382b 3863 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3864 "double", gdbarch_double_format (gdbarch));
70bd8e24 3865 builtin_type->builtin_long_double
e9bb382b 3866 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3867 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3868 builtin_type->builtin_complex
e9bb382b
UW
3869 = arch_complex_type (gdbarch, "complex",
3870 builtin_type->builtin_float);
70bd8e24 3871 builtin_type->builtin_double_complex
e9bb382b
UW
3872 = arch_complex_type (gdbarch, "double complex",
3873 builtin_type->builtin_double);
3874 builtin_type->builtin_string
3875 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3876 builtin_type->builtin_bool
3877 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3878
7678ef8f
TJB
3879 /* The following three are about decimal floating point types, which
3880 are 32-bits, 64-bits and 128-bits respectively. */
3881 builtin_type->builtin_decfloat
e9bb382b 3882 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3883 builtin_type->builtin_decdouble
e9bb382b 3884 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3885 builtin_type->builtin_declong
e9bb382b 3886 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3887
69feb676 3888 /* "True" character types. */
e9bb382b
UW
3889 builtin_type->builtin_true_char
3890 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3891 builtin_type->builtin_true_unsigned_char
3892 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3893
df4df182 3894 /* Fixed-size integer types. */
e9bb382b
UW
3895 builtin_type->builtin_int0
3896 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3897 builtin_type->builtin_int8
3898 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3899 builtin_type->builtin_uint8
3900 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3901 builtin_type->builtin_int16
3902 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3903 builtin_type->builtin_uint16
3904 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3905 builtin_type->builtin_int32
3906 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3907 builtin_type->builtin_uint32
3908 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3909 builtin_type->builtin_int64
3910 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3911 builtin_type->builtin_uint64
3912 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3913 builtin_type->builtin_int128
3914 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3915 builtin_type->builtin_uint128
3916 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
3917 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3918 TYPE_INSTANCE_FLAG_NOTTEXT;
3919 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3920 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 3921
9a22f0d0
PM
3922 /* Wide character types. */
3923 builtin_type->builtin_char16
3924 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3925 builtin_type->builtin_char32
3926 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3927
3928
46bf5051 3929 /* Default data/code pointer types. */
e9bb382b
UW
3930 builtin_type->builtin_data_ptr
3931 = lookup_pointer_type (builtin_type->builtin_void);
3932 builtin_type->builtin_func_ptr
3933 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
3934 builtin_type->builtin_func_func
3935 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 3936
78267919 3937 /* This type represents a GDB internal function. */
e9bb382b
UW
3938 builtin_type->internal_fn
3939 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3940 "<internal function>");
78267919 3941
46bf5051
UW
3942 return builtin_type;
3943}
3944
46bf5051
UW
3945/* This set of objfile-based types is intended to be used by symbol
3946 readers as basic types. */
3947
3948static const struct objfile_data *objfile_type_data;
3949
3950const struct objfile_type *
3951objfile_type (struct objfile *objfile)
3952{
3953 struct gdbarch *gdbarch;
3954 struct objfile_type *objfile_type
3955 = objfile_data (objfile, objfile_type_data);
3956
3957 if (objfile_type)
3958 return objfile_type;
3959
3960 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3961 1, struct objfile_type);
3962
3963 /* Use the objfile architecture to determine basic type properties. */
3964 gdbarch = get_objfile_arch (objfile);
3965
3966 /* Basic types. */
3967 objfile_type->builtin_void
3968 = init_type (TYPE_CODE_VOID, 1,
3969 0,
3970 "void", objfile);
3971
3972 objfile_type->builtin_char
3973 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3974 (TYPE_FLAG_NOSIGN
3975 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3976 "char", objfile);
3977 objfile_type->builtin_signed_char
3978 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3979 0,
3980 "signed char", objfile);
3981 objfile_type->builtin_unsigned_char
3982 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3983 TYPE_FLAG_UNSIGNED,
3984 "unsigned char", objfile);
3985 objfile_type->builtin_short
3986 = init_type (TYPE_CODE_INT,
3987 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3988 0, "short", objfile);
3989 objfile_type->builtin_unsigned_short
3990 = init_type (TYPE_CODE_INT,
3991 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3992 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3993 objfile_type->builtin_int
3994 = init_type (TYPE_CODE_INT,
3995 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3996 0, "int", objfile);
3997 objfile_type->builtin_unsigned_int
3998 = init_type (TYPE_CODE_INT,
3999 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4000 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4001 objfile_type->builtin_long
4002 = init_type (TYPE_CODE_INT,
4003 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4004 0, "long", objfile);
4005 objfile_type->builtin_unsigned_long
4006 = init_type (TYPE_CODE_INT,
4007 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4008 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4009 objfile_type->builtin_long_long
4010 = init_type (TYPE_CODE_INT,
4011 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4012 0, "long long", objfile);
4013 objfile_type->builtin_unsigned_long_long
4014 = init_type (TYPE_CODE_INT,
4015 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4016 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4017
4018 objfile_type->builtin_float
4019 = init_type (TYPE_CODE_FLT,
4020 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4021 0, "float", objfile);
4022 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4023 = gdbarch_float_format (gdbarch);
4024 objfile_type->builtin_double
4025 = init_type (TYPE_CODE_FLT,
4026 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4027 0, "double", objfile);
4028 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4029 = gdbarch_double_format (gdbarch);
4030 objfile_type->builtin_long_double
4031 = init_type (TYPE_CODE_FLT,
4032 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4033 0, "long double", objfile);
4034 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4035 = gdbarch_long_double_format (gdbarch);
4036
4037 /* This type represents a type that was unrecognized in symbol read-in. */
4038 objfile_type->builtin_error
4039 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4040
4041 /* The following set of types is used for symbols with no
4042 debug information. */
4043 objfile_type->nodebug_text_symbol
4044 = init_type (TYPE_CODE_FUNC, 1, 0,
4045 "<text variable, no debug info>", objfile);
4046 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4047 = objfile_type->builtin_int;
0875794a
JK
4048 objfile_type->nodebug_text_gnu_ifunc_symbol
4049 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4050 "<text gnu-indirect-function variable, no debug info>",
4051 objfile);
4052 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4053 = objfile_type->nodebug_text_symbol;
4054 objfile_type->nodebug_got_plt_symbol
4055 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4056 "<text from jump slot in .got.plt, no debug info>",
4057 objfile);
4058 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4059 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4060 objfile_type->nodebug_data_symbol
4061 = init_type (TYPE_CODE_INT,
4062 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4063 "<data variable, no debug info>", objfile);
4064 objfile_type->nodebug_unknown_symbol
4065 = init_type (TYPE_CODE_INT, 1, 0,
4066 "<variable (not text or data), no debug info>", objfile);
4067 objfile_type->nodebug_tls_symbol
4068 = init_type (TYPE_CODE_INT,
4069 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4070 "<thread local variable, no debug info>", objfile);
000177f0
AC
4071
4072 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 4073 the same.
000177f0
AC
4074
4075 The upshot is:
4076 - gdb's `struct type' always describes the target's
4077 representation.
4078 - gdb's `struct value' objects should always hold values in
4079 target form.
4080 - gdb's CORE_ADDR values are addresses in the unified virtual
4081 address space that the assembler and linker work with. Thus,
4082 since target_read_memory takes a CORE_ADDR as an argument, it
4083 can access any memory on the target, even if the processor has
4084 separate code and data address spaces.
4085
46bf5051
UW
4086 In this context, objfile_type->builtin_core_addr is a bit odd:
4087 it's a target type for a value the target will never see. It's
4088 only used to hold the values of (typeless) linker symbols, which
4089 are indeed in the unified virtual address space. */
000177f0 4090
46bf5051
UW
4091 objfile_type->builtin_core_addr
4092 = init_type (TYPE_CODE_INT,
4093 gdbarch_addr_bit (gdbarch) / 8,
4094 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4095
46bf5051
UW
4096 set_objfile_data (objfile, objfile_type_data, objfile_type);
4097 return objfile_type;
000177f0
AC
4098}
4099
5212577a 4100extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 4101
c906108c 4102void
fba45db2 4103_initialize_gdbtypes (void)
c906108c 4104{
5674de60 4105 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4106 objfile_type_data = register_objfile_data ();
5674de60 4107
ccce17b0
YQ
4108 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4109 _("Set debugging of C++ overloading."),
4110 _("Show debugging of C++ overloading."),
4111 _("When enabled, ranking of the "
4112 "functions is displayed."),
4113 NULL,
4114 show_overload_debug,
4115 &setdebuglist, &showdebuglist);
5674de60 4116
7ba81444 4117 /* Add user knob for controlling resolution of opaque types. */
5674de60 4118 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4119 &opaque_type_resolution,
4120 _("Set resolution of opaque struct/class/union"
4121 " types (if set before loading symbols)."),
4122 _("Show resolution of opaque struct/class/union"
4123 " types (if set before loading symbols)."),
4124 NULL, NULL,
5674de60
UW
4125 show_opaque_type_resolution,
4126 &setlist, &showlist);
a451cb65
KS
4127
4128 /* Add an option to permit non-strict type checking. */
4129 add_setshow_boolean_cmd ("type", class_support,
4130 &strict_type_checking,
4131 _("Set strict type checking."),
4132 _("Show strict type checking."),
4133 NULL, NULL,
4134 show_strict_type_checking,
4135 &setchecklist, &showchecklist);
c906108c 4136}
This page took 1.532164 seconds and 4 git commands to generate.