Initialize use_mmap
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 184
c16abbde 185 return type;
c906108c
SS
186}
187
e9bb382b
UW
188/* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192struct type *
193alloc_type_arch (struct gdbarch *gdbarch)
194{
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
41bf6aca
TT
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
e9bb382b
UW
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213}
214
215/* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219struct type *
220alloc_type_copy (const struct type *type)
221{
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226}
227
228/* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231struct gdbarch *
232get_type_arch (const struct type *type)
233{
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238}
239
99ad9427
YQ
240/* See gdbtypes.h. */
241
242struct type *
243get_target_type (struct type *type)
244{
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253}
254
2fdde8f8
DJ
255/* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259static struct type *
260alloc_type_instance (struct type *oldtype)
261{
262 struct type *type;
263
264 /* Allocate the structure. */
265
e9bb382b 266 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 267 type = XCNEW (struct type);
2fdde8f8 268 else
1deafd4e
PA
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
2fdde8f8
DJ
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
c16abbde 276 return type;
2fdde8f8
DJ
277}
278
279/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 280 replacing it with something else. Preserve owner information. */
5212577a 281
2fdde8f8
DJ
282static void
283smash_type (struct type *type)
284{
e9bb382b
UW
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
2fdde8f8
DJ
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
e9bb382b
UW
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
2fdde8f8
DJ
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298}
299
c906108c
SS
300/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305struct type *
fba45db2 306make_pointer_type (struct type *type, struct type **typeptr)
c906108c 307{
52f0bd74 308 struct type *ntype; /* New type */
053cb41b 309 struct type *chain;
c906108c
SS
310
311 ntype = TYPE_POINTER_TYPE (type);
312
c5aa993b 313 if (ntype)
c906108c 314 {
c5aa993b 315 if (typeptr == 0)
7ba81444
MS
316 return ntype; /* Don't care about alloc,
317 and have new type. */
c906108c 318 else if (*typeptr == 0)
c5aa993b 319 {
7ba81444 320 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 321 return ntype;
c5aa993b 322 }
c906108c
SS
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
e9bb382b 327 ntype = alloc_type_copy (type);
c906108c
SS
328 if (typeptr)
329 *typeptr = ntype;
330 }
7ba81444 331 else /* We have storage, but need to reset it. */
c906108c
SS
332 {
333 ntype = *typeptr;
053cb41b 334 chain = TYPE_CHAIN (ntype);
2fdde8f8 335 smash_type (ntype);
053cb41b 336 TYPE_CHAIN (ntype) = chain;
c906108c
SS
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
5212577a 342 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 343
50810684
UW
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
67b2adb2 348 /* Mark pointers as unsigned. The target converts between pointers
76e71323 349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 350 gdbarch_address_to_pointer. */
876cecd0 351 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 352
053cb41b
JB
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
c906108c
SS
361 return ntype;
362}
363
364/* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367struct type *
fba45db2 368lookup_pointer_type (struct type *type)
c906108c 369{
c5aa993b 370 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
371}
372
7ba81444
MS
373/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
c906108c
SS
377
378struct type *
fba45db2 379make_reference_type (struct type *type, struct type **typeptr)
c906108c 380{
52f0bd74 381 struct type *ntype; /* New type */
1e98b326 382 struct type *chain;
c906108c
SS
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
c5aa993b 386 if (ntype)
c906108c 387 {
c5aa993b 388 if (typeptr == 0)
7ba81444
MS
389 return ntype; /* Don't care about alloc,
390 and have new type. */
c906108c 391 else if (*typeptr == 0)
c5aa993b 392 {
7ba81444 393 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 394 return ntype;
c5aa993b 395 }
c906108c
SS
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
e9bb382b 400 ntype = alloc_type_copy (type);
c906108c
SS
401 if (typeptr)
402 *typeptr = ntype;
403 }
7ba81444 404 else /* We have storage, but need to reset it. */
c906108c
SS
405 {
406 ntype = *typeptr;
1e98b326 407 chain = TYPE_CHAIN (ntype);
2fdde8f8 408 smash_type (ntype);
1e98b326 409 TYPE_CHAIN (ntype) = chain;
c906108c
SS
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
7ba81444
MS
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
c906108c 418
50810684
UW
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 421 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 422
c906108c
SS
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
1e98b326
JB
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
c906108c
SS
434 return ntype;
435}
436
7ba81444
MS
437/* Same as above, but caller doesn't care about memory allocation
438 details. */
c906108c
SS
439
440struct type *
fba45db2 441lookup_reference_type (struct type *type)
c906108c 442{
c5aa993b 443 return make_reference_type (type, (struct type **) 0);
c906108c
SS
444}
445
7ba81444
MS
446/* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 449 function type we return. We allocate new memory if needed. */
c906108c
SS
450
451struct type *
0c8b41f1 452make_function_type (struct type *type, struct type **typeptr)
c906108c 453{
52f0bd74 454 struct type *ntype; /* New type */
c906108c
SS
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
e9bb382b 458 ntype = alloc_type_copy (type);
c906108c
SS
459 if (typeptr)
460 *typeptr = ntype;
461 }
7ba81444 462 else /* We have storage, but need to reset it. */
c906108c
SS
463 {
464 ntype = *typeptr;
2fdde8f8 465 smash_type (ntype);
c906108c
SS
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 472
b6cdc2c1
JK
473 INIT_FUNC_SPECIFIC (ntype);
474
c906108c
SS
475 return ntype;
476}
477
c906108c
SS
478/* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481struct type *
fba45db2 482lookup_function_type (struct type *type)
c906108c 483{
0c8b41f1 484 return make_function_type (type, (struct type **) 0);
c906108c
SS
485}
486
71918a86 487/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
71918a86
TT
490
491struct type *
492lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495{
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
e314d629 499 if (nparams > 0)
a6fb9c08 500 {
e314d629
TT
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
a6fb9c08
TT
514 }
515
71918a86
TT
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522}
523
47663de5
MS
524/* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
5212577a
DE
526
527int
50810684 528address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 529{
8b2dbe47 530 int type_flags;
d8734c88 531
7ba81444 532 /* Check for known address space delimiters. */
47663de5 533 if (!strcmp (space_identifier, "code"))
876cecd0 534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 535 else if (!strcmp (space_identifier, "data"))
876cecd0 536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
8b2dbe47 541 return type_flags;
47663de5 542 else
8a3fe4f8 543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
544}
545
546/* Identify address space identifier by integer flag as defined in
7ba81444 547 gdbtypes.h -- return the string version of the adress space name. */
47663de5 548
321432c0 549const char *
50810684 550address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 551{
876cecd0 552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 553 return "code";
876cecd0 554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 555 return "data";
876cecd0 556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
559 else
560 return NULL;
561}
562
2fdde8f8 563/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
47663de5 567
b9362cc7 568static struct type *
2fdde8f8
DJ
569make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
47663de5
MS
571{
572 struct type *ntype;
573
574 ntype = type;
5f61c20e
JK
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
47663de5 582
2fdde8f8
DJ
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
7ba81444
MS
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
ad766c0a
JB
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
2fdde8f8
DJ
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
47663de5
MS
598
599 /* Pointers or references to the original type are not relevant to
2fdde8f8 600 the new type. */
47663de5
MS
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 603
2fdde8f8
DJ
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 610
ab5d3da6
KB
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
47663de5
MS
614 return ntype;
615}
616
2fdde8f8
DJ
617/* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
7ba81444
MS
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
2fdde8f8
DJ
625
626struct type *
627make_type_with_address_space (struct type *type, int space_flag)
628{
2fdde8f8 629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636}
c906108c
SS
637
638/* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
c906108c 643
ad766c0a
JB
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
5212577a 649
c906108c 650struct type *
7ba81444
MS
651make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
c906108c 654{
52f0bd74 655 struct type *ntype; /* New type */
c906108c 656
2fdde8f8 657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 660
c906108c 661 if (cnst)
876cecd0 662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
663
664 if (voltl)
876cecd0 665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 666
2fdde8f8 667 if (typeptr && *typeptr != NULL)
a02fd225 668 {
ad766c0a
JB
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
682 }
683
7ba81444
MS
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
c906108c 686
2fdde8f8
DJ
687 if (typeptr != NULL)
688 *typeptr = ntype;
a02fd225 689
2fdde8f8 690 return ntype;
a02fd225 691}
c906108c 692
06d66ee9
TT
693/* Make a 'restrict'-qualified version of TYPE. */
694
695struct type *
696make_restrict_type (struct type *type)
697{
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702}
703
f1660027
TT
704/* Make a type without const, volatile, or restrict. */
705
706struct type *
707make_unqualified_type (struct type *type)
708{
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715}
716
a2c2acaf
MW
717/* Make a '_Atomic'-qualified version of TYPE. */
718
719struct type *
720make_atomic_type (struct type *type)
721{
722 return make_qualified_type (type,
723 (TYPE_INSTANCE_FLAGS (type)
724 | TYPE_INSTANCE_FLAG_ATOMIC),
725 NULL);
726}
727
2fdde8f8
DJ
728/* Replace the contents of ntype with the type *type. This changes the
729 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
730 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 731
cda6c68a
JB
732 In order to build recursive types, it's inevitable that we'll need
733 to update types in place --- but this sort of indiscriminate
734 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
735 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
736 clear if more steps are needed. */
5212577a 737
dd6bda65
DJ
738void
739replace_type (struct type *ntype, struct type *type)
740{
ab5d3da6 741 struct type *chain;
dd6bda65 742
ad766c0a
JB
743 /* These two types had better be in the same objfile. Otherwise,
744 the assignment of one type's main type structure to the other
745 will produce a type with references to objects (names; field
746 lists; etc.) allocated on an objfile other than its own. */
747 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
748
2fdde8f8 749 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 750
7ba81444
MS
751 /* The type length is not a part of the main type. Update it for
752 each type on the variant chain. */
ab5d3da6 753 chain = ntype;
5f61c20e
JK
754 do
755 {
756 /* Assert that this element of the chain has no address-class bits
757 set in its flags. Such type variants might have type lengths
758 which are supposed to be different from the non-address-class
759 variants. This assertion shouldn't ever be triggered because
760 symbol readers which do construct address-class variants don't
761 call replace_type(). */
762 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
763
764 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
765 chain = TYPE_CHAIN (chain);
766 }
767 while (ntype != chain);
ab5d3da6 768
2fdde8f8
DJ
769 /* Assert that the two types have equivalent instance qualifiers.
770 This should be true for at least all of our debug readers. */
771 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
772}
773
c906108c
SS
774/* Implement direct support for MEMBER_TYPE in GNU C++.
775 May need to construct such a type if this is the first use.
776 The TYPE is the type of the member. The DOMAIN is the type
777 of the aggregate that the member belongs to. */
778
779struct type *
0d5de010 780lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 781{
52f0bd74 782 struct type *mtype;
c906108c 783
e9bb382b 784 mtype = alloc_type_copy (type);
0d5de010 785 smash_to_memberptr_type (mtype, domain, type);
c16abbde 786 return mtype;
c906108c
SS
787}
788
0d5de010
DJ
789/* Return a pointer-to-method type, for a method of type TO_TYPE. */
790
791struct type *
792lookup_methodptr_type (struct type *to_type)
793{
794 struct type *mtype;
795
e9bb382b 796 mtype = alloc_type_copy (to_type);
0b92b5bb 797 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
798 return mtype;
799}
800
7ba81444
MS
801/* Allocate a stub method whose return type is TYPE. This apparently
802 happens for speed of symbol reading, since parsing out the
803 arguments to the method is cpu-intensive, the way we are doing it.
804 So, we will fill in arguments later. This always returns a fresh
805 type. */
c906108c
SS
806
807struct type *
fba45db2 808allocate_stub_method (struct type *type)
c906108c
SS
809{
810 struct type *mtype;
811
e9bb382b
UW
812 mtype = alloc_type_copy (type);
813 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
814 TYPE_LENGTH (mtype) = 1;
815 TYPE_STUB (mtype) = 1;
c906108c 816 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 817 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 818 return mtype;
c906108c
SS
819}
820
729efb13
SA
821/* Create a range type with a dynamic range from LOW_BOUND to
822 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
823
824struct type *
729efb13
SA
825create_range_type (struct type *result_type, struct type *index_type,
826 const struct dynamic_prop *low_bound,
827 const struct dynamic_prop *high_bound)
c906108c
SS
828{
829 if (result_type == NULL)
e9bb382b 830 result_type = alloc_type_copy (index_type);
c906108c
SS
831 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
832 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 833 if (TYPE_STUB (index_type))
876cecd0 834 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
835 else
836 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 837
43bbcdc2
PH
838 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
839 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
840 TYPE_RANGE_DATA (result_type)->low = *low_bound;
841 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 842
729efb13 843 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 844 TYPE_UNSIGNED (result_type) = 1;
c906108c 845
45e44d27
JB
846 /* Ada allows the declaration of range types whose upper bound is
847 less than the lower bound, so checking the lower bound is not
848 enough. Make sure we do not mark a range type whose upper bound
849 is negative as unsigned. */
850 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
851 TYPE_UNSIGNED (result_type) = 0;
852
262452ec 853 return result_type;
c906108c
SS
854}
855
729efb13
SA
856/* Create a range type using either a blank type supplied in
857 RESULT_TYPE, or creating a new type, inheriting the objfile from
858 INDEX_TYPE.
859
860 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
861 to HIGH_BOUND, inclusive.
862
863 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
864 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
865
866struct type *
867create_static_range_type (struct type *result_type, struct type *index_type,
868 LONGEST low_bound, LONGEST high_bound)
869{
870 struct dynamic_prop low, high;
871
872 low.kind = PROP_CONST;
873 low.data.const_val = low_bound;
874
875 high.kind = PROP_CONST;
876 high.data.const_val = high_bound;
877
878 result_type = create_range_type (result_type, index_type, &low, &high);
879
880 return result_type;
881}
882
80180f79
SA
883/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
884 are static, otherwise returns 0. */
885
886static int
887has_static_range (const struct range_bounds *bounds)
888{
889 return (bounds->low.kind == PROP_CONST
890 && bounds->high.kind == PROP_CONST);
891}
892
893
7ba81444
MS
894/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
895 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
896 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
897
898int
fba45db2 899get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
900{
901 CHECK_TYPEDEF (type);
902 switch (TYPE_CODE (type))
903 {
904 case TYPE_CODE_RANGE:
905 *lowp = TYPE_LOW_BOUND (type);
906 *highp = TYPE_HIGH_BOUND (type);
907 return 1;
908 case TYPE_CODE_ENUM:
909 if (TYPE_NFIELDS (type) > 0)
910 {
911 /* The enums may not be sorted by value, so search all
0963b4bd 912 entries. */
c906108c
SS
913 int i;
914
14e75d8e 915 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
916 for (i = 0; i < TYPE_NFIELDS (type); i++)
917 {
14e75d8e
JK
918 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
919 *lowp = TYPE_FIELD_ENUMVAL (type, i);
920 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
921 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
922 }
923
7ba81444 924 /* Set unsigned indicator if warranted. */
c5aa993b 925 if (*lowp >= 0)
c906108c 926 {
876cecd0 927 TYPE_UNSIGNED (type) = 1;
c906108c
SS
928 }
929 }
930 else
931 {
932 *lowp = 0;
933 *highp = -1;
934 }
935 return 0;
936 case TYPE_CODE_BOOL:
937 *lowp = 0;
938 *highp = 1;
939 return 0;
940 case TYPE_CODE_INT:
c5aa993b 941 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
942 return -1;
943 if (!TYPE_UNSIGNED (type))
944 {
c5aa993b 945 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
946 *highp = -*lowp - 1;
947 return 0;
948 }
7ba81444 949 /* ... fall through for unsigned ints ... */
c906108c
SS
950 case TYPE_CODE_CHAR:
951 *lowp = 0;
952 /* This round-about calculation is to avoid shifting by
7b83ea04 953 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 954 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
955 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
956 *highp = (*highp - 1) | *highp;
957 return 0;
958 default:
959 return -1;
960 }
961}
962
dbc98a8b
KW
963/* Assuming TYPE is a simple, non-empty array type, compute its upper
964 and lower bound. Save the low bound into LOW_BOUND if not NULL.
965 Save the high bound into HIGH_BOUND if not NULL.
966
0963b4bd 967 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
968 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
969
970 We now simply use get_discrete_bounds call to get the values
971 of the low and high bounds.
972 get_discrete_bounds can return three values:
973 1, meaning that index is a range,
974 0, meaning that index is a discrete type,
975 or -1 for failure. */
976
977int
978get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
979{
980 struct type *index = TYPE_INDEX_TYPE (type);
981 LONGEST low = 0;
982 LONGEST high = 0;
983 int res;
984
985 if (index == NULL)
986 return 0;
987
988 res = get_discrete_bounds (index, &low, &high);
989 if (res == -1)
990 return 0;
991
992 /* Check if the array bounds are undefined. */
993 if (res == 1
994 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
995 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
996 return 0;
997
998 if (low_bound)
999 *low_bound = low;
1000
1001 if (high_bound)
1002 *high_bound = high;
1003
1004 return 1;
1005}
1006
7ba81444
MS
1007/* Create an array type using either a blank type supplied in
1008 RESULT_TYPE, or creating a new type, inheriting the objfile from
1009 RANGE_TYPE.
c906108c
SS
1010
1011 Elements will be of type ELEMENT_TYPE, the indices will be of type
1012 RANGE_TYPE.
1013
dc53a7ad
JB
1014 If BIT_STRIDE is not zero, build a packed array type whose element
1015 size is BIT_STRIDE. Otherwise, ignore this parameter.
1016
7ba81444
MS
1017 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1018 sure it is TYPE_CODE_UNDEF before we bash it into an array
1019 type? */
c906108c
SS
1020
1021struct type *
dc53a7ad
JB
1022create_array_type_with_stride (struct type *result_type,
1023 struct type *element_type,
1024 struct type *range_type,
1025 unsigned int bit_stride)
c906108c 1026{
c906108c 1027 if (result_type == NULL)
e9bb382b
UW
1028 result_type = alloc_type_copy (range_type);
1029
c906108c
SS
1030 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1031 TYPE_TARGET_TYPE (result_type) = element_type;
80180f79
SA
1032 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1033 {
1034 LONGEST low_bound, high_bound;
1035
1036 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1037 low_bound = high_bound = 0;
1038 CHECK_TYPEDEF (element_type);
1039 /* Be careful when setting the array length. Ada arrays can be
1040 empty arrays with the high_bound being smaller than the low_bound.
1041 In such cases, the array length should be zero. */
1042 if (high_bound < low_bound)
1043 TYPE_LENGTH (result_type) = 0;
1044 else if (bit_stride > 0)
1045 TYPE_LENGTH (result_type) =
1046 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1047 else
1048 TYPE_LENGTH (result_type) =
1049 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1050 }
ab0d6e0d 1051 else
80180f79
SA
1052 {
1053 /* This type is dynamic and its length needs to be computed
1054 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1055 undefined by setting it to zero. Although we are not expected
1056 to trust TYPE_LENGTH in this case, setting the size to zero
1057 allows us to avoid allocating objects of random sizes in case
1058 we accidently do. */
1059 TYPE_LENGTH (result_type) = 0;
1060 }
1061
c906108c
SS
1062 TYPE_NFIELDS (result_type) = 1;
1063 TYPE_FIELDS (result_type) =
1deafd4e 1064 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1065 TYPE_INDEX_TYPE (result_type) = range_type;
dc53a7ad
JB
1066 if (bit_stride > 0)
1067 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1068
0963b4bd 1069 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 1070 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1071 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1072
c16abbde 1073 return result_type;
c906108c
SS
1074}
1075
dc53a7ad
JB
1076/* Same as create_array_type_with_stride but with no bit_stride
1077 (BIT_STRIDE = 0), thus building an unpacked array. */
1078
1079struct type *
1080create_array_type (struct type *result_type,
1081 struct type *element_type,
1082 struct type *range_type)
1083{
1084 return create_array_type_with_stride (result_type, element_type,
1085 range_type, 0);
1086}
1087
e3506a9f
UW
1088struct type *
1089lookup_array_range_type (struct type *element_type,
63375b74 1090 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1091{
50810684 1092 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1093 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1094 struct type *range_type
0c9c3474 1095 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1096
e3506a9f
UW
1097 return create_array_type (NULL, element_type, range_type);
1098}
1099
7ba81444
MS
1100/* Create a string type using either a blank type supplied in
1101 RESULT_TYPE, or creating a new type. String types are similar
1102 enough to array of char types that we can use create_array_type to
1103 build the basic type and then bash it into a string type.
c906108c
SS
1104
1105 For fixed length strings, the range type contains 0 as the lower
1106 bound and the length of the string minus one as the upper bound.
1107
7ba81444
MS
1108 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1109 sure it is TYPE_CODE_UNDEF before we bash it into a string
1110 type? */
c906108c
SS
1111
1112struct type *
3b7538c0
UW
1113create_string_type (struct type *result_type,
1114 struct type *string_char_type,
7ba81444 1115 struct type *range_type)
c906108c
SS
1116{
1117 result_type = create_array_type (result_type,
f290d38e 1118 string_char_type,
c906108c
SS
1119 range_type);
1120 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1121 return result_type;
c906108c
SS
1122}
1123
e3506a9f
UW
1124struct type *
1125lookup_string_range_type (struct type *string_char_type,
63375b74 1126 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1127{
1128 struct type *result_type;
d8734c88 1129
e3506a9f
UW
1130 result_type = lookup_array_range_type (string_char_type,
1131 low_bound, high_bound);
1132 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1133 return result_type;
1134}
1135
c906108c 1136struct type *
fba45db2 1137create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1138{
c906108c 1139 if (result_type == NULL)
e9bb382b
UW
1140 result_type = alloc_type_copy (domain_type);
1141
c906108c
SS
1142 TYPE_CODE (result_type) = TYPE_CODE_SET;
1143 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1144 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1145
74a9bb82 1146 if (!TYPE_STUB (domain_type))
c906108c 1147 {
f9780d5b 1148 LONGEST low_bound, high_bound, bit_length;
d8734c88 1149
c906108c
SS
1150 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1151 low_bound = high_bound = 0;
1152 bit_length = high_bound - low_bound + 1;
1153 TYPE_LENGTH (result_type)
1154 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1155 if (low_bound >= 0)
876cecd0 1156 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1157 }
1158 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1159
c16abbde 1160 return result_type;
c906108c
SS
1161}
1162
ea37ba09
DJ
1163/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1164 and any array types nested inside it. */
1165
1166void
1167make_vector_type (struct type *array_type)
1168{
1169 struct type *inner_array, *elt_type;
1170 int flags;
1171
1172 /* Find the innermost array type, in case the array is
1173 multi-dimensional. */
1174 inner_array = array_type;
1175 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1176 inner_array = TYPE_TARGET_TYPE (inner_array);
1177
1178 elt_type = TYPE_TARGET_TYPE (inner_array);
1179 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1180 {
2844d6b5 1181 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1182 elt_type = make_qualified_type (elt_type, flags, NULL);
1183 TYPE_TARGET_TYPE (inner_array) = elt_type;
1184 }
1185
876cecd0 1186 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1187}
1188
794ac428 1189struct type *
ac3aafc7
EZ
1190init_vector_type (struct type *elt_type, int n)
1191{
1192 struct type *array_type;
d8734c88 1193
e3506a9f 1194 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1195 make_vector_type (array_type);
ac3aafc7
EZ
1196 return array_type;
1197}
1198
09e2d7c7
DE
1199/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1200 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1201 confusing. "self" is a common enough replacement for "this".
1202 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1203 TYPE_CODE_METHOD. */
1204
1205struct type *
1206internal_type_self_type (struct type *type)
1207{
1208 switch (TYPE_CODE (type))
1209 {
1210 case TYPE_CODE_METHODPTR:
1211 case TYPE_CODE_MEMBERPTR:
1212 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1213 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1214 case TYPE_CODE_METHOD:
1215 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1216 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1217 default:
1218 gdb_assert_not_reached ("bad type");
1219 }
1220}
1221
1222/* Set the type of the class that TYPE belongs to.
1223 In c++ this is the class of "this".
1224 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1225 TYPE_CODE_METHOD. */
1226
1227void
1228set_type_self_type (struct type *type, struct type *self_type)
1229{
1230 switch (TYPE_CODE (type))
1231 {
1232 case TYPE_CODE_METHODPTR:
1233 case TYPE_CODE_MEMBERPTR:
1234 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1235 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1236 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1237 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1238 break;
1239 case TYPE_CODE_METHOD:
1240 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1241 INIT_FUNC_SPECIFIC (type);
1242 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1243 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1244 break;
1245 default:
1246 gdb_assert_not_reached ("bad type");
1247 }
1248}
1249
1250/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1251 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1252 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1253 TYPE doesn't include the offset (that's the value of the MEMBER
1254 itself), but does include the structure type into which it points
1255 (for some reason).
c906108c 1256
7ba81444
MS
1257 When "smashing" the type, we preserve the objfile that the old type
1258 pointed to, since we aren't changing where the type is actually
c906108c
SS
1259 allocated. */
1260
1261void
09e2d7c7 1262smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1263 struct type *to_type)
c906108c 1264{
2fdde8f8 1265 smash_type (type);
09e2d7c7 1266 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1267 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1268 set_type_self_type (type, self_type);
0d5de010
DJ
1269 /* Assume that a data member pointer is the same size as a normal
1270 pointer. */
50810684
UW
1271 TYPE_LENGTH (type)
1272 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1273}
1274
0b92b5bb
TT
1275/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1276
1277 When "smashing" the type, we preserve the objfile that the old type
1278 pointed to, since we aren't changing where the type is actually
1279 allocated. */
1280
1281void
1282smash_to_methodptr_type (struct type *type, struct type *to_type)
1283{
1284 smash_type (type);
09e2d7c7 1285 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1286 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1287 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1288 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1289}
1290
09e2d7c7 1291/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1292 METHOD just means `function that gets an extra "this" argument'.
1293
7ba81444
MS
1294 When "smashing" the type, we preserve the objfile that the old type
1295 pointed to, since we aren't changing where the type is actually
c906108c
SS
1296 allocated. */
1297
1298void
09e2d7c7 1299smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1300 struct type *to_type, struct field *args,
1301 int nargs, int varargs)
c906108c 1302{
2fdde8f8 1303 smash_type (type);
09e2d7c7 1304 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1305 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1306 set_type_self_type (type, self_type);
ad2f7632
DJ
1307 TYPE_FIELDS (type) = args;
1308 TYPE_NFIELDS (type) = nargs;
1309 if (varargs)
876cecd0 1310 TYPE_VARARGS (type) = 1;
c906108c 1311 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1312}
1313
1314/* Return a typename for a struct/union/enum type without "struct ",
1315 "union ", or "enum ". If the type has a NULL name, return NULL. */
1316
0d5cff50 1317const char *
aa1ee363 1318type_name_no_tag (const struct type *type)
c906108c
SS
1319{
1320 if (TYPE_TAG_NAME (type) != NULL)
1321 return TYPE_TAG_NAME (type);
1322
7ba81444
MS
1323 /* Is there code which expects this to return the name if there is
1324 no tag name? My guess is that this is mainly used for C++ in
1325 cases where the two will always be the same. */
c906108c
SS
1326 return TYPE_NAME (type);
1327}
1328
d8228535
JK
1329/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1330 Since GCC PR debug/47510 DWARF provides associated information to detect the
1331 anonymous class linkage name from its typedef.
1332
1333 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1334 apply it itself. */
1335
1336const char *
1337type_name_no_tag_or_error (struct type *type)
1338{
1339 struct type *saved_type = type;
1340 const char *name;
1341 struct objfile *objfile;
1342
1343 CHECK_TYPEDEF (type);
1344
1345 name = type_name_no_tag (type);
1346 if (name != NULL)
1347 return name;
1348
1349 name = type_name_no_tag (saved_type);
1350 objfile = TYPE_OBJFILE (saved_type);
1351 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1352 name ? name : "<anonymous>",
1353 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1354}
1355
7ba81444
MS
1356/* Lookup a typedef or primitive type named NAME, visible in lexical
1357 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1358 suitably defined. */
c906108c
SS
1359
1360struct type *
e6c014f2 1361lookup_typename (const struct language_defn *language,
ddd49eee 1362 struct gdbarch *gdbarch, const char *name,
34eaf542 1363 const struct block *block, int noerr)
c906108c 1364{
52f0bd74 1365 struct symbol *sym;
659c9f3a 1366 struct type *type;
c906108c 1367
1994afbf
DE
1368 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1369 language->la_language, NULL);
c51fe631
DE
1370 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1371 return SYMBOL_TYPE (sym);
1372
c51fe631
DE
1373 if (noerr)
1374 return NULL;
1375 error (_("No type named %s."), name);
c906108c
SS
1376}
1377
1378struct type *
e6c014f2 1379lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1380 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1381{
1382 char *uns = alloca (strlen (name) + 10);
1383
1384 strcpy (uns, "unsigned ");
1385 strcpy (uns + 9, name);
e6c014f2 1386 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1387}
1388
1389struct type *
e6c014f2 1390lookup_signed_typename (const struct language_defn *language,
0d5cff50 1391 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1392{
1393 struct type *t;
1394 char *uns = alloca (strlen (name) + 8);
1395
1396 strcpy (uns, "signed ");
1397 strcpy (uns + 7, name);
e6c014f2 1398 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1399 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1400 if (t != NULL)
1401 return t;
e6c014f2 1402 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1403}
1404
1405/* Lookup a structure type named "struct NAME",
1406 visible in lexical block BLOCK. */
1407
1408struct type *
270140bd 1409lookup_struct (const char *name, const struct block *block)
c906108c 1410{
52f0bd74 1411 struct symbol *sym;
c906108c 1412
2570f2b7 1413 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1414
1415 if (sym == NULL)
1416 {
8a3fe4f8 1417 error (_("No struct type named %s."), name);
c906108c
SS
1418 }
1419 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1420 {
7ba81444
MS
1421 error (_("This context has class, union or enum %s, not a struct."),
1422 name);
c906108c
SS
1423 }
1424 return (SYMBOL_TYPE (sym));
1425}
1426
1427/* Lookup a union type named "union NAME",
1428 visible in lexical block BLOCK. */
1429
1430struct type *
270140bd 1431lookup_union (const char *name, const struct block *block)
c906108c 1432{
52f0bd74 1433 struct symbol *sym;
c5aa993b 1434 struct type *t;
c906108c 1435
2570f2b7 1436 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1437
1438 if (sym == NULL)
8a3fe4f8 1439 error (_("No union type named %s."), name);
c906108c 1440
c5aa993b 1441 t = SYMBOL_TYPE (sym);
c906108c
SS
1442
1443 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1444 return t;
c906108c 1445
7ba81444
MS
1446 /* If we get here, it's not a union. */
1447 error (_("This context has class, struct or enum %s, not a union."),
1448 name);
c906108c
SS
1449}
1450
c906108c
SS
1451/* Lookup an enum type named "enum NAME",
1452 visible in lexical block BLOCK. */
1453
1454struct type *
270140bd 1455lookup_enum (const char *name, const struct block *block)
c906108c 1456{
52f0bd74 1457 struct symbol *sym;
c906108c 1458
2570f2b7 1459 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1460 if (sym == NULL)
1461 {
8a3fe4f8 1462 error (_("No enum type named %s."), name);
c906108c
SS
1463 }
1464 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1465 {
7ba81444
MS
1466 error (_("This context has class, struct or union %s, not an enum."),
1467 name);
c906108c
SS
1468 }
1469 return (SYMBOL_TYPE (sym));
1470}
1471
1472/* Lookup a template type named "template NAME<TYPE>",
1473 visible in lexical block BLOCK. */
1474
1475struct type *
7ba81444 1476lookup_template_type (char *name, struct type *type,
270140bd 1477 const struct block *block)
c906108c
SS
1478{
1479 struct symbol *sym;
7ba81444
MS
1480 char *nam = (char *)
1481 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1482
c906108c
SS
1483 strcpy (nam, name);
1484 strcat (nam, "<");
0004e5a2 1485 strcat (nam, TYPE_NAME (type));
0963b4bd 1486 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1487
2570f2b7 1488 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1489
1490 if (sym == NULL)
1491 {
8a3fe4f8 1492 error (_("No template type named %s."), name);
c906108c
SS
1493 }
1494 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1495 {
7ba81444
MS
1496 error (_("This context has class, union or enum %s, not a struct."),
1497 name);
c906108c
SS
1498 }
1499 return (SYMBOL_TYPE (sym));
1500}
1501
7ba81444
MS
1502/* Given a type TYPE, lookup the type of the component of type named
1503 NAME.
c906108c 1504
7ba81444
MS
1505 TYPE can be either a struct or union, or a pointer or reference to
1506 a struct or union. If it is a pointer or reference, its target
1507 type is automatically used. Thus '.' and '->' are interchangable,
1508 as specified for the definitions of the expression element types
1509 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1510
1511 If NOERR is nonzero, return zero if NAME is not suitably defined.
1512 If NAME is the name of a baseclass type, return that type. */
1513
1514struct type *
d7561cbb 1515lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1516{
1517 int i;
c92817ce 1518 char *typename;
c906108c
SS
1519
1520 for (;;)
1521 {
1522 CHECK_TYPEDEF (type);
1523 if (TYPE_CODE (type) != TYPE_CODE_PTR
1524 && TYPE_CODE (type) != TYPE_CODE_REF)
1525 break;
1526 type = TYPE_TARGET_TYPE (type);
1527 }
1528
687d6395
MS
1529 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1530 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1531 {
c92817ce
TT
1532 typename = type_to_string (type);
1533 make_cleanup (xfree, typename);
1534 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1535 }
1536
1537#if 0
7ba81444
MS
1538 /* FIXME: This change put in by Michael seems incorrect for the case
1539 where the structure tag name is the same as the member name.
0963b4bd 1540 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1541 foo; } bell;" Disabled by fnf. */
c906108c
SS
1542 {
1543 char *typename;
1544
1545 typename = type_name_no_tag (type);
762f08a3 1546 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1547 return type;
1548 }
1549#endif
1550
1551 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1552 {
0d5cff50 1553 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1554
db577aea 1555 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1556 {
1557 return TYPE_FIELD_TYPE (type, i);
1558 }
f5a010c0
PM
1559 else if (!t_field_name || *t_field_name == '\0')
1560 {
d8734c88
MS
1561 struct type *subtype
1562 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1563
f5a010c0
PM
1564 if (subtype != NULL)
1565 return subtype;
1566 }
c906108c
SS
1567 }
1568
1569 /* OK, it's not in this class. Recursively check the baseclasses. */
1570 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1571 {
1572 struct type *t;
1573
9733fc94 1574 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1575 if (t != NULL)
1576 {
1577 return t;
1578 }
1579 }
1580
1581 if (noerr)
1582 {
1583 return NULL;
1584 }
c5aa993b 1585
c92817ce
TT
1586 typename = type_to_string (type);
1587 make_cleanup (xfree, typename);
1588 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1589}
1590
ed3ef339
DE
1591/* Store in *MAX the largest number representable by unsigned integer type
1592 TYPE. */
1593
1594void
1595get_unsigned_type_max (struct type *type, ULONGEST *max)
1596{
1597 unsigned int n;
1598
1599 CHECK_TYPEDEF (type);
1600 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1601 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1602
1603 /* Written this way to avoid overflow. */
1604 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1605 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1606}
1607
1608/* Store in *MIN, *MAX the smallest and largest numbers representable by
1609 signed integer type TYPE. */
1610
1611void
1612get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1613{
1614 unsigned int n;
1615
1616 CHECK_TYPEDEF (type);
1617 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1618 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1619
1620 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1621 *min = -((ULONGEST) 1 << (n - 1));
1622 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1623}
1624
ae6ae975
DE
1625/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1626 cplus_stuff.vptr_fieldno.
1627
1628 cplus_stuff is initialized to cplus_struct_default which does not
1629 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1630 designated initializers). We cope with that here. */
1631
1632int
1633internal_type_vptr_fieldno (struct type *type)
1634{
1635 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1636 || TYPE_CODE (type) == TYPE_CODE_UNION);
1637 if (!HAVE_CPLUS_STRUCT (type))
1638 return -1;
1639 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1640}
1641
1642/* Set the value of cplus_stuff.vptr_fieldno. */
1643
1644void
1645set_type_vptr_fieldno (struct type *type, int fieldno)
1646{
1647 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1648 || TYPE_CODE (type) == TYPE_CODE_UNION);
1649 if (!HAVE_CPLUS_STRUCT (type))
1650 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1651 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1652}
1653
1654/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1655 cplus_stuff.vptr_basetype. */
1656
1657struct type *
1658internal_type_vptr_basetype (struct type *type)
1659{
1660 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1661 || TYPE_CODE (type) == TYPE_CODE_UNION);
1662 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1663 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1664}
1665
1666/* Set the value of cplus_stuff.vptr_basetype. */
1667
1668void
1669set_type_vptr_basetype (struct type *type, struct type *basetype)
1670{
1671 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1672 || TYPE_CODE (type) == TYPE_CODE_UNION);
1673 if (!HAVE_CPLUS_STRUCT (type))
1674 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1675 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1676}
1677
81fe8080
DE
1678/* Lookup the vptr basetype/fieldno values for TYPE.
1679 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1680 vptr_fieldno. Also, if found and basetype is from the same objfile,
1681 cache the results.
1682 If not found, return -1 and ignore BASETYPEP.
1683 Callers should be aware that in some cases (for example,
c906108c 1684 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1685 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1686 this function will not be able to find the
7ba81444 1687 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1688 vptr_basetype will remain NULL or incomplete. */
c906108c 1689
81fe8080
DE
1690int
1691get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1692{
1693 CHECK_TYPEDEF (type);
1694
1695 if (TYPE_VPTR_FIELDNO (type) < 0)
1696 {
1697 int i;
1698
7ba81444
MS
1699 /* We must start at zero in case the first (and only) baseclass
1700 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1701 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1702 {
81fe8080
DE
1703 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1704 int fieldno;
1705 struct type *basetype;
1706
1707 fieldno = get_vptr_fieldno (baseclass, &basetype);
1708 if (fieldno >= 0)
c906108c 1709 {
81fe8080 1710 /* If the type comes from a different objfile we can't cache
0963b4bd 1711 it, it may have a different lifetime. PR 2384 */
5ef73790 1712 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1713 {
ae6ae975
DE
1714 set_type_vptr_fieldno (type, fieldno);
1715 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1716 }
1717 if (basetypep)
1718 *basetypep = basetype;
1719 return fieldno;
c906108c
SS
1720 }
1721 }
81fe8080
DE
1722
1723 /* Not found. */
1724 return -1;
1725 }
1726 else
1727 {
1728 if (basetypep)
1729 *basetypep = TYPE_VPTR_BASETYPE (type);
1730 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1731 }
1732}
1733
44e1a9eb
DJ
1734static void
1735stub_noname_complaint (void)
1736{
e2e0b3e5 1737 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1738}
1739
d98b7a16 1740/* Worker for is_dynamic_type. */
80180f79 1741
d98b7a16
TT
1742static int
1743is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1744{
1745 type = check_typedef (type);
1746
d98b7a16
TT
1747 /* We only want to recognize references at the outermost level. */
1748 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
80180f79
SA
1749 type = check_typedef (TYPE_TARGET_TYPE (type));
1750
3cdcd0ce
JB
1751 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1752 dynamic, even if the type itself is statically defined.
1753 From a user's point of view, this may appear counter-intuitive;
1754 but it makes sense in this context, because the point is to determine
1755 whether any part of the type needs to be resolved before it can
1756 be exploited. */
1757 if (TYPE_DATA_LOCATION (type) != NULL
1758 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1759 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1760 return 1;
1761
80180f79
SA
1762 switch (TYPE_CODE (type))
1763 {
6f8a3220 1764 case TYPE_CODE_RANGE:
ddb87a81
JB
1765 {
1766 /* A range type is obviously dynamic if it has at least one
1767 dynamic bound. But also consider the range type to be
1768 dynamic when its subtype is dynamic, even if the bounds
1769 of the range type are static. It allows us to assume that
1770 the subtype of a static range type is also static. */
1771 return (!has_static_range (TYPE_RANGE_DATA (type))
1772 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1773 }
6f8a3220 1774
80180f79
SA
1775 case TYPE_CODE_ARRAY:
1776 {
80180f79 1777 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1778
1779 /* The array is dynamic if either the bounds are dynamic,
1780 or the elements it contains have a dynamic contents. */
d98b7a16 1781 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1782 return 1;
d98b7a16 1783 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1784 }
012370f6
TT
1785
1786 case TYPE_CODE_STRUCT:
1787 case TYPE_CODE_UNION:
1788 {
1789 int i;
1790
1791 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1792 if (!field_is_static (&TYPE_FIELD (type, i))
d98b7a16 1793 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1794 return 1;
1795 }
1796 break;
80180f79 1797 }
92e2a17f
TT
1798
1799 return 0;
80180f79
SA
1800}
1801
d98b7a16
TT
1802/* See gdbtypes.h. */
1803
1804int
1805is_dynamic_type (struct type *type)
1806{
1807 return is_dynamic_type_internal (type, 1);
1808}
1809
df25ebbd
JB
1810static struct type *resolve_dynamic_type_internal
1811 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1812
df25ebbd
JB
1813/* Given a dynamic range type (dyn_range_type) and a stack of
1814 struct property_addr_info elements, return a static version
1815 of that type. */
d190df30 1816
80180f79 1817static struct type *
df25ebbd
JB
1818resolve_dynamic_range (struct type *dyn_range_type,
1819 struct property_addr_info *addr_stack)
80180f79
SA
1820{
1821 CORE_ADDR value;
ddb87a81 1822 struct type *static_range_type, *static_target_type;
80180f79
SA
1823 const struct dynamic_prop *prop;
1824 const struct dwarf2_locexpr_baton *baton;
1825 struct dynamic_prop low_bound, high_bound;
1826
6f8a3220 1827 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1828
6f8a3220 1829 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
df25ebbd 1830 if (dwarf2_evaluate_property (prop, addr_stack, &value))
80180f79
SA
1831 {
1832 low_bound.kind = PROP_CONST;
1833 low_bound.data.const_val = value;
1834 }
1835 else
1836 {
1837 low_bound.kind = PROP_UNDEFINED;
1838 low_bound.data.const_val = 0;
1839 }
1840
6f8a3220 1841 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
df25ebbd 1842 if (dwarf2_evaluate_property (prop, addr_stack, &value))
80180f79
SA
1843 {
1844 high_bound.kind = PROP_CONST;
1845 high_bound.data.const_val = value;
c451ebe5 1846
6f8a3220 1847 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1848 high_bound.data.const_val
1849 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1850 }
1851 else
1852 {
1853 high_bound.kind = PROP_UNDEFINED;
1854 high_bound.data.const_val = 0;
1855 }
1856
ddb87a81
JB
1857 static_target_type
1858 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
df25ebbd 1859 addr_stack, 0);
6f8a3220 1860 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 1861 static_target_type,
6f8a3220
JB
1862 &low_bound, &high_bound);
1863 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1864 return static_range_type;
1865}
1866
1867/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
1868 ADDR_STACK is a stack of struct property_addr_info to be used
1869 if needed during the dynamic resolution. */
6f8a3220
JB
1870
1871static struct type *
df25ebbd
JB
1872resolve_dynamic_array (struct type *type,
1873 struct property_addr_info *addr_stack)
6f8a3220
JB
1874{
1875 CORE_ADDR value;
1876 struct type *elt_type;
1877 struct type *range_type;
1878 struct type *ary_dim;
1879
1880 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1881
1882 elt_type = type;
1883 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 1884 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 1885
80180f79
SA
1886 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1887
1888 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
df25ebbd 1889 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
80180f79
SA
1890 else
1891 elt_type = TYPE_TARGET_TYPE (type);
1892
80180f79
SA
1893 return create_array_type (copy_type (type),
1894 elt_type,
1895 range_type);
1896}
1897
012370f6 1898/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
1899 bounds. ADDR_STACK is a stack of struct property_addr_info
1900 to be used if needed during the dynamic resolution. */
012370f6
TT
1901
1902static struct type *
df25ebbd
JB
1903resolve_dynamic_union (struct type *type,
1904 struct property_addr_info *addr_stack)
012370f6
TT
1905{
1906 struct type *resolved_type;
1907 int i;
1908 unsigned int max_len = 0;
1909
1910 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1911
1912 resolved_type = copy_type (type);
1913 TYPE_FIELDS (resolved_type)
1914 = TYPE_ALLOC (resolved_type,
1915 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1916 memcpy (TYPE_FIELDS (resolved_type),
1917 TYPE_FIELDS (type),
1918 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1919 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1920 {
1921 struct type *t;
1922
1923 if (field_is_static (&TYPE_FIELD (type, i)))
1924 continue;
1925
d98b7a16 1926 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
df25ebbd 1927 addr_stack, 0);
012370f6
TT
1928 TYPE_FIELD_TYPE (resolved_type, i) = t;
1929 if (TYPE_LENGTH (t) > max_len)
1930 max_len = TYPE_LENGTH (t);
1931 }
1932
1933 TYPE_LENGTH (resolved_type) = max_len;
1934 return resolved_type;
1935}
1936
1937/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
1938 bounds. ADDR_STACK is a stack of struct property_addr_info to
1939 be used if needed during the dynamic resolution. */
012370f6
TT
1940
1941static struct type *
df25ebbd
JB
1942resolve_dynamic_struct (struct type *type,
1943 struct property_addr_info *addr_stack)
012370f6
TT
1944{
1945 struct type *resolved_type;
1946 int i;
6908c509 1947 unsigned resolved_type_bit_length = 0;
012370f6
TT
1948
1949 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1950 gdb_assert (TYPE_NFIELDS (type) > 0);
1951
1952 resolved_type = copy_type (type);
1953 TYPE_FIELDS (resolved_type)
1954 = TYPE_ALLOC (resolved_type,
1955 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1956 memcpy (TYPE_FIELDS (resolved_type),
1957 TYPE_FIELDS (type),
1958 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1959 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1960 {
6908c509 1961 unsigned new_bit_length;
df25ebbd 1962 struct property_addr_info pinfo;
012370f6
TT
1963
1964 if (field_is_static (&TYPE_FIELD (type, i)))
1965 continue;
1966
6908c509
JB
1967 /* As we know this field is not a static field, the field's
1968 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1969 this is the case, but only trigger a simple error rather
1970 than an internal error if that fails. While failing
1971 that verification indicates a bug in our code, the error
1972 is not severe enough to suggest to the user he stops
1973 his debugging session because of it. */
df25ebbd 1974 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
1975 error (_("Cannot determine struct field location"
1976 " (invalid location kind)"));
df25ebbd
JB
1977
1978 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1979 pinfo.addr = addr_stack->addr;
1980 pinfo.next = addr_stack;
1981
1982 TYPE_FIELD_TYPE (resolved_type, i)
1983 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1984 &pinfo, 0);
1985 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1986 == FIELD_LOC_KIND_BITPOS);
1987
6908c509
JB
1988 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1989 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1990 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1991 else
1992 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1993 * TARGET_CHAR_BIT);
1994
1995 /* Normally, we would use the position and size of the last field
1996 to determine the size of the enclosing structure. But GCC seems
1997 to be encoding the position of some fields incorrectly when
1998 the struct contains a dynamic field that is not placed last.
1999 So we compute the struct size based on the field that has
2000 the highest position + size - probably the best we can do. */
2001 if (new_bit_length > resolved_type_bit_length)
2002 resolved_type_bit_length = new_bit_length;
012370f6
TT
2003 }
2004
012370f6 2005 TYPE_LENGTH (resolved_type)
6908c509
JB
2006 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2007
012370f6
TT
2008 return resolved_type;
2009}
2010
d98b7a16 2011/* Worker for resolved_dynamic_type. */
80180f79 2012
d98b7a16 2013static struct type *
df25ebbd
JB
2014resolve_dynamic_type_internal (struct type *type,
2015 struct property_addr_info *addr_stack,
d98b7a16 2016 int top_level)
80180f79
SA
2017{
2018 struct type *real_type = check_typedef (type);
6f8a3220 2019 struct type *resolved_type = type;
3cdcd0ce
JB
2020 const struct dynamic_prop *prop;
2021 CORE_ADDR value;
80180f79 2022
d98b7a16 2023 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2024 return type;
2025
5537b577 2026 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2027 {
cac9b138
JK
2028 resolved_type = copy_type (type);
2029 TYPE_TARGET_TYPE (resolved_type)
df25ebbd 2030 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
cac9b138 2031 top_level);
5537b577
JK
2032 }
2033 else
2034 {
2035 /* Before trying to resolve TYPE, make sure it is not a stub. */
2036 type = real_type;
012370f6 2037
5537b577
JK
2038 switch (TYPE_CODE (type))
2039 {
2040 case TYPE_CODE_REF:
2041 {
df25ebbd
JB
2042 struct property_addr_info pinfo;
2043
2044 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2045 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2046 pinfo.next = addr_stack;
5537b577
JK
2047
2048 resolved_type = copy_type (type);
2049 TYPE_TARGET_TYPE (resolved_type)
2050 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
df25ebbd 2051 &pinfo, top_level);
5537b577
JK
2052 break;
2053 }
2054
2055 case TYPE_CODE_ARRAY:
df25ebbd 2056 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2057 break;
2058
2059 case TYPE_CODE_RANGE:
df25ebbd 2060 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2061 break;
2062
2063 case TYPE_CODE_UNION:
df25ebbd 2064 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2065 break;
2066
2067 case TYPE_CODE_STRUCT:
df25ebbd 2068 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2069 break;
2070 }
6f8a3220 2071 }
80180f79 2072
3cdcd0ce
JB
2073 /* Resolve data_location attribute. */
2074 prop = TYPE_DATA_LOCATION (resolved_type);
df25ebbd 2075 if (dwarf2_evaluate_property (prop, addr_stack, &value))
3cdcd0ce
JB
2076 {
2077 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
2078 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
2079 }
2080 else
2081 TYPE_DATA_LOCATION (resolved_type) = NULL;
2082
80180f79
SA
2083 return resolved_type;
2084}
2085
d98b7a16
TT
2086/* See gdbtypes.h */
2087
2088struct type *
2089resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2090{
df25ebbd
JB
2091 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2092
2093 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2094}
2095
92163a10
JK
2096/* Find the real type of TYPE. This function returns the real type,
2097 after removing all layers of typedefs, and completing opaque or stub
2098 types. Completion changes the TYPE argument, but stripping of
2099 typedefs does not.
2100
2101 Instance flags (e.g. const/volatile) are preserved as typedefs are
2102 stripped. If necessary a new qualified form of the underlying type
2103 is created.
2104
2105 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2106 not been computed and we're either in the middle of reading symbols, or
2107 there was no name for the typedef in the debug info.
2108
9bc118a5
DE
2109 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2110 QUITs in the symbol reading code can also throw.
2111 Thus this function can throw an exception.
2112
92163a10
JK
2113 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2114 the target type.
c906108c
SS
2115
2116 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2117 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2118 definition, so we can use it in future. There used to be a comment
2119 (but not any code) that if we don't find a full definition, we'd
2120 set a flag so we don't spend time in the future checking the same
2121 type. That would be a mistake, though--we might load in more
92163a10 2122 symbols which contain a full definition for the type. */
c906108c
SS
2123
2124struct type *
a02fd225 2125check_typedef (struct type *type)
c906108c
SS
2126{
2127 struct type *orig_type = type;
92163a10
JK
2128 /* While we're removing typedefs, we don't want to lose qualifiers.
2129 E.g., const/volatile. */
2130 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2131
423c0af8
MS
2132 gdb_assert (type);
2133
c906108c
SS
2134 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2135 {
2136 if (!TYPE_TARGET_TYPE (type))
2137 {
0d5cff50 2138 const char *name;
c906108c
SS
2139 struct symbol *sym;
2140
2141 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2142 reading a symtab. Infinite recursion is one danger. */
c906108c 2143 if (currently_reading_symtab)
92163a10 2144 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2145
2146 name = type_name_no_tag (type);
7ba81444
MS
2147 /* FIXME: shouldn't we separately check the TYPE_NAME and
2148 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2149 VAR_DOMAIN as appropriate? (this code was written before
2150 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2151 if (name == NULL)
2152 {
23136709 2153 stub_noname_complaint ();
92163a10 2154 return make_qualified_type (type, instance_flags, NULL);
c906108c 2155 }
2570f2b7 2156 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
2157 if (sym)
2158 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2159 else /* TYPE_CODE_UNDEF */
e9bb382b 2160 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2161 }
2162 type = TYPE_TARGET_TYPE (type);
c906108c 2163
92163a10
JK
2164 /* Preserve the instance flags as we traverse down the typedef chain.
2165
2166 Handling address spaces/classes is nasty, what do we do if there's a
2167 conflict?
2168 E.g., what if an outer typedef marks the type as class_1 and an inner
2169 typedef marks the type as class_2?
2170 This is the wrong place to do such error checking. We leave it to
2171 the code that created the typedef in the first place to flag the
2172 error. We just pick the outer address space (akin to letting the
2173 outer cast in a chain of casting win), instead of assuming
2174 "it can't happen". */
2175 {
2176 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2177 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2178 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2179 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2180
2181 /* Treat code vs data spaces and address classes separately. */
2182 if ((instance_flags & ALL_SPACES) != 0)
2183 new_instance_flags &= ~ALL_SPACES;
2184 if ((instance_flags & ALL_CLASSES) != 0)
2185 new_instance_flags &= ~ALL_CLASSES;
2186
2187 instance_flags |= new_instance_flags;
2188 }
2189 }
a02fd225 2190
7ba81444
MS
2191 /* If this is a struct/class/union with no fields, then check
2192 whether a full definition exists somewhere else. This is for
2193 systems where a type definition with no fields is issued for such
2194 types, instead of identifying them as stub types in the first
2195 place. */
c5aa993b 2196
7ba81444
MS
2197 if (TYPE_IS_OPAQUE (type)
2198 && opaque_type_resolution
2199 && !currently_reading_symtab)
c906108c 2200 {
0d5cff50 2201 const char *name = type_name_no_tag (type);
c5aa993b 2202 struct type *newtype;
d8734c88 2203
c906108c
SS
2204 if (name == NULL)
2205 {
23136709 2206 stub_noname_complaint ();
92163a10 2207 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2208 }
2209 newtype = lookup_transparent_type (name);
ad766c0a 2210
c906108c 2211 if (newtype)
ad766c0a 2212 {
7ba81444
MS
2213 /* If the resolved type and the stub are in the same
2214 objfile, then replace the stub type with the real deal.
2215 But if they're in separate objfiles, leave the stub
2216 alone; we'll just look up the transparent type every time
2217 we call check_typedef. We can't create pointers between
2218 types allocated to different objfiles, since they may
2219 have different lifetimes. Trying to copy NEWTYPE over to
2220 TYPE's objfile is pointless, too, since you'll have to
2221 move over any other types NEWTYPE refers to, which could
2222 be an unbounded amount of stuff. */
ad766c0a 2223 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2224 type = make_qualified_type (newtype,
2225 TYPE_INSTANCE_FLAGS (type),
2226 type);
ad766c0a
JB
2227 else
2228 type = newtype;
2229 }
c906108c 2230 }
7ba81444
MS
2231 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2232 types. */
74a9bb82 2233 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2234 {
0d5cff50 2235 const char *name = type_name_no_tag (type);
c906108c 2236 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2237 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2238 as appropriate? (this code was written before TYPE_NAME and
2239 TYPE_TAG_NAME were separate). */
c906108c 2240 struct symbol *sym;
d8734c88 2241
c906108c
SS
2242 if (name == NULL)
2243 {
23136709 2244 stub_noname_complaint ();
92163a10 2245 return make_qualified_type (type, instance_flags, NULL);
c906108c 2246 }
2570f2b7 2247 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 2248 if (sym)
c26f2453
JB
2249 {
2250 /* Same as above for opaque types, we can replace the stub
92163a10 2251 with the complete type only if they are in the same
c26f2453
JB
2252 objfile. */
2253 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2254 type = make_qualified_type (SYMBOL_TYPE (sym),
2255 TYPE_INSTANCE_FLAGS (type),
2256 type);
c26f2453
JB
2257 else
2258 type = SYMBOL_TYPE (sym);
2259 }
c906108c
SS
2260 }
2261
74a9bb82 2262 if (TYPE_TARGET_STUB (type))
c906108c
SS
2263 {
2264 struct type *range_type;
2265 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2266
74a9bb82 2267 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2268 {
73e2eb35 2269 /* Nothing we can do. */
c5aa993b 2270 }
c906108c
SS
2271 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2272 {
2273 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2274 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2275 }
2276 }
92163a10
JK
2277
2278 type = make_qualified_type (type, instance_flags, NULL);
2279
7ba81444 2280 /* Cache TYPE_LENGTH for future use. */
c906108c 2281 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2282
c906108c
SS
2283 return type;
2284}
2285
7ba81444 2286/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2287 occurs, silently return a void type. */
c91ecb25 2288
b9362cc7 2289static struct type *
48319d1f 2290safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2291{
2292 struct ui_file *saved_gdb_stderr;
34365054 2293 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 2294 volatile struct gdb_exception except;
c91ecb25 2295
7ba81444 2296 /* Suppress error messages. */
c91ecb25
ND
2297 saved_gdb_stderr = gdb_stderr;
2298 gdb_stderr = ui_file_new ();
2299
7ba81444 2300 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
2301 TRY_CATCH (except, RETURN_MASK_ERROR)
2302 {
2303 type = parse_and_eval_type (p, length);
2304 }
2305
2306 if (except.reason < 0)
48319d1f 2307 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 2308
7ba81444 2309 /* Stop suppressing error messages. */
c91ecb25
ND
2310 ui_file_delete (gdb_stderr);
2311 gdb_stderr = saved_gdb_stderr;
2312
2313 return type;
2314}
2315
c906108c
SS
2316/* Ugly hack to convert method stubs into method types.
2317
7ba81444
MS
2318 He ain't kiddin'. This demangles the name of the method into a
2319 string including argument types, parses out each argument type,
2320 generates a string casting a zero to that type, evaluates the
2321 string, and stuffs the resulting type into an argtype vector!!!
2322 Then it knows the type of the whole function (including argument
2323 types for overloading), which info used to be in the stab's but was
2324 removed to hack back the space required for them. */
c906108c 2325
de17c821 2326static void
fba45db2 2327check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2328{
50810684 2329 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2330 struct fn_field *f;
2331 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2332 char *demangled_name = gdb_demangle (mangled_name,
2333 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2334 char *argtypetext, *p;
2335 int depth = 0, argcount = 1;
ad2f7632 2336 struct field *argtypes;
c906108c
SS
2337 struct type *mtype;
2338
2339 /* Make sure we got back a function string that we can use. */
2340 if (demangled_name)
2341 p = strchr (demangled_name, '(');
502dcf4e
AC
2342 else
2343 p = NULL;
c906108c
SS
2344
2345 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2346 error (_("Internal: Cannot demangle mangled name `%s'."),
2347 mangled_name);
c906108c
SS
2348
2349 /* Now, read in the parameters that define this type. */
2350 p += 1;
2351 argtypetext = p;
2352 while (*p)
2353 {
070ad9f0 2354 if (*p == '(' || *p == '<')
c906108c
SS
2355 {
2356 depth += 1;
2357 }
070ad9f0 2358 else if (*p == ')' || *p == '>')
c906108c
SS
2359 {
2360 depth -= 1;
2361 }
2362 else if (*p == ',' && depth == 0)
2363 {
2364 argcount += 1;
2365 }
2366
2367 p += 1;
2368 }
2369
ad2f7632
DJ
2370 /* If we read one argument and it was ``void'', don't count it. */
2371 if (strncmp (argtypetext, "(void)", 6) == 0)
2372 argcount -= 1;
c906108c 2373
ad2f7632
DJ
2374 /* We need one extra slot, for the THIS pointer. */
2375
2376 argtypes = (struct field *)
2377 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2378 p = argtypetext;
4a1970e4
DJ
2379
2380 /* Add THIS pointer for non-static methods. */
2381 f = TYPE_FN_FIELDLIST1 (type, method_id);
2382 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2383 argcount = 0;
2384 else
2385 {
ad2f7632 2386 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2387 argcount = 1;
2388 }
c906108c 2389
0963b4bd 2390 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2391 {
2392 depth = 0;
2393 while (*p)
2394 {
2395 if (depth <= 0 && (*p == ',' || *p == ')'))
2396 {
ad2f7632
DJ
2397 /* Avoid parsing of ellipsis, they will be handled below.
2398 Also avoid ``void'' as above. */
2399 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2400 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2401 {
ad2f7632 2402 argtypes[argcount].type =
48319d1f 2403 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2404 argcount += 1;
2405 }
2406 argtypetext = p + 1;
2407 }
2408
070ad9f0 2409 if (*p == '(' || *p == '<')
c906108c
SS
2410 {
2411 depth += 1;
2412 }
070ad9f0 2413 else if (*p == ')' || *p == '>')
c906108c
SS
2414 {
2415 depth -= 1;
2416 }
2417
2418 p += 1;
2419 }
2420 }
2421
c906108c
SS
2422 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2423
2424 /* Now update the old "stub" type into a real type. */
2425 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2426 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2427 We want a method (TYPE_CODE_METHOD). */
2428 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2429 argtypes, argcount, p[-2] == '.');
876cecd0 2430 TYPE_STUB (mtype) = 0;
c906108c 2431 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2432
2433 xfree (demangled_name);
c906108c
SS
2434}
2435
7ba81444
MS
2436/* This is the external interface to check_stub_method, above. This
2437 function unstubs all of the signatures for TYPE's METHOD_ID method
2438 name. After calling this function TYPE_FN_FIELD_STUB will be
2439 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2440 correct.
de17c821
DJ
2441
2442 This function unfortunately can not die until stabs do. */
2443
2444void
2445check_stub_method_group (struct type *type, int method_id)
2446{
2447 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2448 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2449 int j, found_stub = 0;
de17c821
DJ
2450
2451 for (j = 0; j < len; j++)
2452 if (TYPE_FN_FIELD_STUB (f, j))
2453 {
2454 found_stub = 1;
2455 check_stub_method (type, method_id, j);
2456 }
2457
7ba81444
MS
2458 /* GNU v3 methods with incorrect names were corrected when we read
2459 in type information, because it was cheaper to do it then. The
2460 only GNU v2 methods with incorrect method names are operators and
2461 destructors; destructors were also corrected when we read in type
2462 information.
de17c821
DJ
2463
2464 Therefore the only thing we need to handle here are v2 operator
2465 names. */
2466 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2467 {
2468 int ret;
2469 char dem_opname[256];
2470
7ba81444
MS
2471 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2472 method_id),
de17c821
DJ
2473 dem_opname, DMGL_ANSI);
2474 if (!ret)
7ba81444
MS
2475 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2476 method_id),
de17c821
DJ
2477 dem_opname, 0);
2478 if (ret)
2479 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2480 }
2481}
2482
9655fd1a
JK
2483/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2484const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2485
2486void
fba45db2 2487allocate_cplus_struct_type (struct type *type)
c906108c 2488{
b4ba55a1
JB
2489 if (HAVE_CPLUS_STRUCT (type))
2490 /* Structure was already allocated. Nothing more to do. */
2491 return;
2492
2493 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2494 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2495 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2496 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2497 set_type_vptr_fieldno (type, -1);
c906108c
SS
2498}
2499
b4ba55a1
JB
2500const struct gnat_aux_type gnat_aux_default =
2501 { NULL };
2502
2503/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2504 and allocate the associated gnat-specific data. The gnat-specific
2505 data is also initialized to gnat_aux_default. */
5212577a 2506
b4ba55a1
JB
2507void
2508allocate_gnat_aux_type (struct type *type)
2509{
2510 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2511 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2512 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2513 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2514}
2515
c906108c
SS
2516/* Helper function to initialize the standard scalar types.
2517
86f62fd7
TT
2518 If NAME is non-NULL, then it is used to initialize the type name.
2519 Note that NAME is not copied; it is required to have a lifetime at
2520 least as long as OBJFILE. */
c906108c
SS
2521
2522struct type *
7ba81444 2523init_type (enum type_code code, int length, int flags,
748e18ae 2524 const char *name, struct objfile *objfile)
c906108c 2525{
52f0bd74 2526 struct type *type;
c906108c
SS
2527
2528 type = alloc_type (objfile);
2529 TYPE_CODE (type) = code;
2530 TYPE_LENGTH (type) = length;
876cecd0
TT
2531
2532 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2533 if (flags & TYPE_FLAG_UNSIGNED)
2534 TYPE_UNSIGNED (type) = 1;
2535 if (flags & TYPE_FLAG_NOSIGN)
2536 TYPE_NOSIGN (type) = 1;
2537 if (flags & TYPE_FLAG_STUB)
2538 TYPE_STUB (type) = 1;
2539 if (flags & TYPE_FLAG_TARGET_STUB)
2540 TYPE_TARGET_STUB (type) = 1;
2541 if (flags & TYPE_FLAG_STATIC)
2542 TYPE_STATIC (type) = 1;
2543 if (flags & TYPE_FLAG_PROTOTYPED)
2544 TYPE_PROTOTYPED (type) = 1;
2545 if (flags & TYPE_FLAG_INCOMPLETE)
2546 TYPE_INCOMPLETE (type) = 1;
2547 if (flags & TYPE_FLAG_VARARGS)
2548 TYPE_VARARGS (type) = 1;
2549 if (flags & TYPE_FLAG_VECTOR)
2550 TYPE_VECTOR (type) = 1;
2551 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2552 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2553 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2554 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2555 if (flags & TYPE_FLAG_GNU_IFUNC)
2556 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2557
86f62fd7 2558 TYPE_NAME (type) = name;
c906108c
SS
2559
2560 /* C++ fancies. */
2561
973ccf8b 2562 if (name && strcmp (name, "char") == 0)
876cecd0 2563 TYPE_NOSIGN (type) = 1;
973ccf8b 2564
b4ba55a1 2565 switch (code)
c906108c 2566 {
b4ba55a1
JB
2567 case TYPE_CODE_STRUCT:
2568 case TYPE_CODE_UNION:
2569 case TYPE_CODE_NAMESPACE:
2570 INIT_CPLUS_SPECIFIC (type);
2571 break;
2572 case TYPE_CODE_FLT:
2573 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2574 break;
2575 case TYPE_CODE_FUNC:
b6cdc2c1 2576 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2577 break;
c906108c 2578 }
c16abbde 2579 return type;
c906108c 2580}
5212577a
DE
2581\f
2582/* Queries on types. */
c906108c 2583
c906108c 2584int
fba45db2 2585can_dereference (struct type *t)
c906108c 2586{
7ba81444
MS
2587 /* FIXME: Should we return true for references as well as
2588 pointers? */
c906108c
SS
2589 CHECK_TYPEDEF (t);
2590 return
2591 (t != NULL
2592 && TYPE_CODE (t) == TYPE_CODE_PTR
2593 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2594}
2595
adf40b2e 2596int
fba45db2 2597is_integral_type (struct type *t)
adf40b2e
JM
2598{
2599 CHECK_TYPEDEF (t);
2600 return
2601 ((t != NULL)
d4f3574e
SS
2602 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2603 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2604 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2605 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2606 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2607 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2608}
2609
e09342b5
TJB
2610/* Return true if TYPE is scalar. */
2611
2612static int
2613is_scalar_type (struct type *type)
2614{
2615 CHECK_TYPEDEF (type);
2616
2617 switch (TYPE_CODE (type))
2618 {
2619 case TYPE_CODE_ARRAY:
2620 case TYPE_CODE_STRUCT:
2621 case TYPE_CODE_UNION:
2622 case TYPE_CODE_SET:
2623 case TYPE_CODE_STRING:
e09342b5
TJB
2624 return 0;
2625 default:
2626 return 1;
2627 }
2628}
2629
2630/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2631 the memory layout of a scalar type. E.g., an array or struct with only
2632 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2633
2634int
2635is_scalar_type_recursive (struct type *t)
2636{
2637 CHECK_TYPEDEF (t);
2638
2639 if (is_scalar_type (t))
2640 return 1;
2641 /* Are we dealing with an array or string of known dimensions? */
2642 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2643 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2644 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2645 {
2646 LONGEST low_bound, high_bound;
2647 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2648
2649 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2650
2651 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2652 }
2653 /* Are we dealing with a struct with one element? */
2654 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2655 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2656 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2657 {
2658 int i, n = TYPE_NFIELDS (t);
2659
2660 /* If all elements of the union are scalar, then the union is scalar. */
2661 for (i = 0; i < n; i++)
2662 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2663 return 0;
2664
2665 return 1;
2666 }
2667
2668 return 0;
2669}
2670
6c659fc2
SC
2671/* Return true is T is a class or a union. False otherwise. */
2672
2673int
2674class_or_union_p (const struct type *t)
2675{
2676 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2677 || TYPE_CODE (t) == TYPE_CODE_UNION);
2678}
2679
4e8f195d
TT
2680/* A helper function which returns true if types A and B represent the
2681 "same" class type. This is true if the types have the same main
2682 type, or the same name. */
2683
2684int
2685class_types_same_p (const struct type *a, const struct type *b)
2686{
2687 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2688 || (TYPE_NAME (a) && TYPE_NAME (b)
2689 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2690}
2691
a9d5ef47
SW
2692/* If BASE is an ancestor of DCLASS return the distance between them.
2693 otherwise return -1;
2694 eg:
2695
2696 class A {};
2697 class B: public A {};
2698 class C: public B {};
2699 class D: C {};
2700
2701 distance_to_ancestor (A, A, 0) = 0
2702 distance_to_ancestor (A, B, 0) = 1
2703 distance_to_ancestor (A, C, 0) = 2
2704 distance_to_ancestor (A, D, 0) = 3
2705
2706 If PUBLIC is 1 then only public ancestors are considered,
2707 and the function returns the distance only if BASE is a public ancestor
2708 of DCLASS.
2709 Eg:
2710
0963b4bd 2711 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2712
0526b37a 2713static int
a9d5ef47 2714distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2715{
2716 int i;
a9d5ef47 2717 int d;
c5aa993b 2718
c906108c
SS
2719 CHECK_TYPEDEF (base);
2720 CHECK_TYPEDEF (dclass);
2721
4e8f195d 2722 if (class_types_same_p (base, dclass))
a9d5ef47 2723 return 0;
c906108c
SS
2724
2725 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2726 {
0526b37a
SW
2727 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2728 continue;
2729
a9d5ef47
SW
2730 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2731 if (d >= 0)
2732 return 1 + d;
4e8f195d 2733 }
c906108c 2734
a9d5ef47 2735 return -1;
c906108c 2736}
4e8f195d 2737
0526b37a
SW
2738/* Check whether BASE is an ancestor or base class or DCLASS
2739 Return 1 if so, and 0 if not.
2740 Note: If BASE and DCLASS are of the same type, this function
2741 will return 1. So for some class A, is_ancestor (A, A) will
2742 return 1. */
2743
2744int
2745is_ancestor (struct type *base, struct type *dclass)
2746{
a9d5ef47 2747 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2748}
2749
4e8f195d
TT
2750/* Like is_ancestor, but only returns true when BASE is a public
2751 ancestor of DCLASS. */
2752
2753int
2754is_public_ancestor (struct type *base, struct type *dclass)
2755{
a9d5ef47 2756 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2757}
2758
2759/* A helper function for is_unique_ancestor. */
2760
2761static int
2762is_unique_ancestor_worker (struct type *base, struct type *dclass,
2763 int *offset,
8af8e3bc
PA
2764 const gdb_byte *valaddr, int embedded_offset,
2765 CORE_ADDR address, struct value *val)
4e8f195d
TT
2766{
2767 int i, count = 0;
2768
2769 CHECK_TYPEDEF (base);
2770 CHECK_TYPEDEF (dclass);
2771
2772 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2773 {
8af8e3bc
PA
2774 struct type *iter;
2775 int this_offset;
4e8f195d 2776
8af8e3bc
PA
2777 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2778
2779 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2780 address, val);
4e8f195d
TT
2781
2782 if (class_types_same_p (base, iter))
2783 {
2784 /* If this is the first subclass, set *OFFSET and set count
2785 to 1. Otherwise, if this is at the same offset as
2786 previous instances, do nothing. Otherwise, increment
2787 count. */
2788 if (*offset == -1)
2789 {
2790 *offset = this_offset;
2791 count = 1;
2792 }
2793 else if (this_offset == *offset)
2794 {
2795 /* Nothing. */
2796 }
2797 else
2798 ++count;
2799 }
2800 else
2801 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2802 valaddr,
2803 embedded_offset + this_offset,
2804 address, val);
4e8f195d
TT
2805 }
2806
2807 return count;
2808}
2809
2810/* Like is_ancestor, but only returns true if BASE is a unique base
2811 class of the type of VAL. */
2812
2813int
2814is_unique_ancestor (struct type *base, struct value *val)
2815{
2816 int offset = -1;
2817
2818 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2819 value_contents_for_printing (val),
2820 value_embedded_offset (val),
2821 value_address (val), val) == 1;
4e8f195d
TT
2822}
2823
c906108c 2824\f
5212577a 2825/* Overload resolution. */
c906108c 2826
6403aeea
SW
2827/* Return the sum of the rank of A with the rank of B. */
2828
2829struct rank
2830sum_ranks (struct rank a, struct rank b)
2831{
2832 struct rank c;
2833 c.rank = a.rank + b.rank;
a9d5ef47 2834 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2835 return c;
2836}
2837
2838/* Compare rank A and B and return:
2839 0 if a = b
2840 1 if a is better than b
2841 -1 if b is better than a. */
2842
2843int
2844compare_ranks (struct rank a, struct rank b)
2845{
2846 if (a.rank == b.rank)
a9d5ef47
SW
2847 {
2848 if (a.subrank == b.subrank)
2849 return 0;
2850 if (a.subrank < b.subrank)
2851 return 1;
2852 if (a.subrank > b.subrank)
2853 return -1;
2854 }
6403aeea
SW
2855
2856 if (a.rank < b.rank)
2857 return 1;
2858
0963b4bd 2859 /* a.rank > b.rank */
6403aeea
SW
2860 return -1;
2861}
c5aa993b 2862
0963b4bd 2863/* Functions for overload resolution begin here. */
c906108c
SS
2864
2865/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2866 0 => A and B are identical
2867 1 => A and B are incomparable
2868 2 => A is better than B
2869 3 => A is worse than B */
c906108c
SS
2870
2871int
fba45db2 2872compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2873{
2874 int i;
2875 int tmp;
c5aa993b
JM
2876 short found_pos = 0; /* any positives in c? */
2877 short found_neg = 0; /* any negatives in c? */
2878
2879 /* differing lengths => incomparable */
c906108c
SS
2880 if (a->length != b->length)
2881 return 1;
2882
c5aa993b
JM
2883 /* Subtract b from a */
2884 for (i = 0; i < a->length; i++)
c906108c 2885 {
6403aeea 2886 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2887 if (tmp > 0)
c5aa993b 2888 found_pos = 1;
c906108c 2889 else if (tmp < 0)
c5aa993b 2890 found_neg = 1;
c906108c
SS
2891 }
2892
2893 if (found_pos)
2894 {
2895 if (found_neg)
c5aa993b 2896 return 1; /* incomparable */
c906108c 2897 else
c5aa993b 2898 return 3; /* A > B */
c906108c 2899 }
c5aa993b
JM
2900 else
2901 /* no positives */
c906108c
SS
2902 {
2903 if (found_neg)
c5aa993b 2904 return 2; /* A < B */
c906108c 2905 else
c5aa993b 2906 return 0; /* A == B */
c906108c
SS
2907 }
2908}
2909
7ba81444
MS
2910/* Rank a function by comparing its parameter types (PARMS, length
2911 NPARMS), to the types of an argument list (ARGS, length NARGS).
2912 Return a pointer to a badness vector. This has NARGS + 1
2913 entries. */
c906108c
SS
2914
2915struct badness_vector *
7ba81444 2916rank_function (struct type **parms, int nparms,
da096638 2917 struct value **args, int nargs)
c906108c
SS
2918{
2919 int i;
c5aa993b 2920 struct badness_vector *bv;
c906108c
SS
2921 int min_len = nparms < nargs ? nparms : nargs;
2922
2923 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2924 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 2925 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
2926
2927 /* First compare the lengths of the supplied lists.
7ba81444 2928 If there is a mismatch, set it to a high value. */
c5aa993b 2929
c906108c 2930 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2931 arguments and ellipsis parameter lists, we should consider those
2932 and rank the length-match more finely. */
c906108c 2933
6403aeea
SW
2934 LENGTH_MATCH (bv) = (nargs != nparms)
2935 ? LENGTH_MISMATCH_BADNESS
2936 : EXACT_MATCH_BADNESS;
c906108c 2937
0963b4bd 2938 /* Now rank all the parameters of the candidate function. */
74cc24b0 2939 for (i = 1; i <= min_len; i++)
da096638
KS
2940 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2941 args[i - 1]);
c906108c 2942
0963b4bd 2943 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2944 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2945 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2946
2947 return bv;
2948}
2949
973ccf8b
DJ
2950/* Compare the names of two integer types, assuming that any sign
2951 qualifiers have been checked already. We do it this way because
2952 there may be an "int" in the name of one of the types. */
2953
2954static int
2955integer_types_same_name_p (const char *first, const char *second)
2956{
2957 int first_p, second_p;
2958
7ba81444
MS
2959 /* If both are shorts, return 1; if neither is a short, keep
2960 checking. */
973ccf8b
DJ
2961 first_p = (strstr (first, "short") != NULL);
2962 second_p = (strstr (second, "short") != NULL);
2963 if (first_p && second_p)
2964 return 1;
2965 if (first_p || second_p)
2966 return 0;
2967
2968 /* Likewise for long. */
2969 first_p = (strstr (first, "long") != NULL);
2970 second_p = (strstr (second, "long") != NULL);
2971 if (first_p && second_p)
2972 return 1;
2973 if (first_p || second_p)
2974 return 0;
2975
2976 /* Likewise for char. */
2977 first_p = (strstr (first, "char") != NULL);
2978 second_p = (strstr (second, "char") != NULL);
2979 if (first_p && second_p)
2980 return 1;
2981 if (first_p || second_p)
2982 return 0;
2983
2984 /* They must both be ints. */
2985 return 1;
2986}
2987
7062b0a0
SW
2988/* Compares type A to type B returns 1 if the represent the same type
2989 0 otherwise. */
2990
bd69fc68 2991int
7062b0a0
SW
2992types_equal (struct type *a, struct type *b)
2993{
2994 /* Identical type pointers. */
2995 /* However, this still doesn't catch all cases of same type for b
2996 and a. The reason is that builtin types are different from
2997 the same ones constructed from the object. */
2998 if (a == b)
2999 return 1;
3000
3001 /* Resolve typedefs */
3002 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3003 a = check_typedef (a);
3004 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3005 b = check_typedef (b);
3006
3007 /* If after resolving typedefs a and b are not of the same type
3008 code then they are not equal. */
3009 if (TYPE_CODE (a) != TYPE_CODE (b))
3010 return 0;
3011
3012 /* If a and b are both pointers types or both reference types then
3013 they are equal of the same type iff the objects they refer to are
3014 of the same type. */
3015 if (TYPE_CODE (a) == TYPE_CODE_PTR
3016 || TYPE_CODE (a) == TYPE_CODE_REF)
3017 return types_equal (TYPE_TARGET_TYPE (a),
3018 TYPE_TARGET_TYPE (b));
3019
0963b4bd 3020 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3021 are exactly the same. This happens when we generate method
3022 stubs. The types won't point to the same address, but they
0963b4bd 3023 really are the same. */
7062b0a0
SW
3024
3025 if (TYPE_NAME (a) && TYPE_NAME (b)
3026 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3027 return 1;
3028
3029 /* Check if identical after resolving typedefs. */
3030 if (a == b)
3031 return 1;
3032
9ce98649
TT
3033 /* Two function types are equal if their argument and return types
3034 are equal. */
3035 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3036 {
3037 int i;
3038
3039 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3040 return 0;
3041
3042 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3043 return 0;
3044
3045 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3046 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3047 return 0;
3048
3049 return 1;
3050 }
3051
7062b0a0
SW
3052 return 0;
3053}
ca092b61
DE
3054\f
3055/* Deep comparison of types. */
3056
3057/* An entry in the type-equality bcache. */
3058
3059typedef struct type_equality_entry
3060{
3061 struct type *type1, *type2;
3062} type_equality_entry_d;
3063
3064DEF_VEC_O (type_equality_entry_d);
3065
3066/* A helper function to compare two strings. Returns 1 if they are
3067 the same, 0 otherwise. Handles NULLs properly. */
3068
3069static int
3070compare_maybe_null_strings (const char *s, const char *t)
3071{
3072 if (s == NULL && t != NULL)
3073 return 0;
3074 else if (s != NULL && t == NULL)
3075 return 0;
3076 else if (s == NULL && t== NULL)
3077 return 1;
3078 return strcmp (s, t) == 0;
3079}
3080
3081/* A helper function for check_types_worklist that checks two types for
3082 "deep" equality. Returns non-zero if the types are considered the
3083 same, zero otherwise. */
3084
3085static int
3086check_types_equal (struct type *type1, struct type *type2,
3087 VEC (type_equality_entry_d) **worklist)
3088{
3089 CHECK_TYPEDEF (type1);
3090 CHECK_TYPEDEF (type2);
3091
3092 if (type1 == type2)
3093 return 1;
3094
3095 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3096 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3097 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3098 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3099 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3100 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3101 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3102 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3103 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3104 return 0;
3105
3106 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3107 TYPE_TAG_NAME (type2)))
3108 return 0;
3109 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3110 return 0;
3111
3112 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3113 {
3114 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3115 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3116 return 0;
3117 }
3118 else
3119 {
3120 int i;
3121
3122 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3123 {
3124 const struct field *field1 = &TYPE_FIELD (type1, i);
3125 const struct field *field2 = &TYPE_FIELD (type2, i);
3126 struct type_equality_entry entry;
3127
3128 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3129 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3130 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3131 return 0;
3132 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3133 FIELD_NAME (*field2)))
3134 return 0;
3135 switch (FIELD_LOC_KIND (*field1))
3136 {
3137 case FIELD_LOC_KIND_BITPOS:
3138 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3139 return 0;
3140 break;
3141 case FIELD_LOC_KIND_ENUMVAL:
3142 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3143 return 0;
3144 break;
3145 case FIELD_LOC_KIND_PHYSADDR:
3146 if (FIELD_STATIC_PHYSADDR (*field1)
3147 != FIELD_STATIC_PHYSADDR (*field2))
3148 return 0;
3149 break;
3150 case FIELD_LOC_KIND_PHYSNAME:
3151 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3152 FIELD_STATIC_PHYSNAME (*field2)))
3153 return 0;
3154 break;
3155 case FIELD_LOC_KIND_DWARF_BLOCK:
3156 {
3157 struct dwarf2_locexpr_baton *block1, *block2;
3158
3159 block1 = FIELD_DWARF_BLOCK (*field1);
3160 block2 = FIELD_DWARF_BLOCK (*field2);
3161 if (block1->per_cu != block2->per_cu
3162 || block1->size != block2->size
3163 || memcmp (block1->data, block2->data, block1->size) != 0)
3164 return 0;
3165 }
3166 break;
3167 default:
3168 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3169 "%d by check_types_equal"),
3170 FIELD_LOC_KIND (*field1));
3171 }
3172
3173 entry.type1 = FIELD_TYPE (*field1);
3174 entry.type2 = FIELD_TYPE (*field2);
3175 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3176 }
3177 }
3178
3179 if (TYPE_TARGET_TYPE (type1) != NULL)
3180 {
3181 struct type_equality_entry entry;
3182
3183 if (TYPE_TARGET_TYPE (type2) == NULL)
3184 return 0;
3185
3186 entry.type1 = TYPE_TARGET_TYPE (type1);
3187 entry.type2 = TYPE_TARGET_TYPE (type2);
3188 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3189 }
3190 else if (TYPE_TARGET_TYPE (type2) != NULL)
3191 return 0;
3192
3193 return 1;
3194}
3195
3196/* Check types on a worklist for equality. Returns zero if any pair
3197 is not equal, non-zero if they are all considered equal. */
3198
3199static int
3200check_types_worklist (VEC (type_equality_entry_d) **worklist,
3201 struct bcache *cache)
3202{
3203 while (!VEC_empty (type_equality_entry_d, *worklist))
3204 {
3205 struct type_equality_entry entry;
3206 int added;
3207
3208 entry = *VEC_last (type_equality_entry_d, *worklist);
3209 VEC_pop (type_equality_entry_d, *worklist);
3210
3211 /* If the type pair has already been visited, we know it is
3212 ok. */
3213 bcache_full (&entry, sizeof (entry), cache, &added);
3214 if (!added)
3215 continue;
3216
3217 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3218 return 0;
3219 }
7062b0a0 3220
ca092b61
DE
3221 return 1;
3222}
3223
3224/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3225 "deep comparison". Otherwise return zero. */
3226
3227int
3228types_deeply_equal (struct type *type1, struct type *type2)
3229{
3230 volatile struct gdb_exception except;
3231 int result = 0;
3232 struct bcache *cache;
3233 VEC (type_equality_entry_d) *worklist = NULL;
3234 struct type_equality_entry entry;
3235
3236 gdb_assert (type1 != NULL && type2 != NULL);
3237
3238 /* Early exit for the simple case. */
3239 if (type1 == type2)
3240 return 1;
3241
3242 cache = bcache_xmalloc (NULL, NULL);
3243
3244 entry.type1 = type1;
3245 entry.type2 = type2;
3246 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3247
3248 TRY_CATCH (except, RETURN_MASK_ALL)
3249 {
3250 result = check_types_worklist (&worklist, cache);
3251 }
3252 /* check_types_worklist calls several nested helper functions,
3253 some of which can raise a GDB Exception, so we just check
3254 and rethrow here. If there is a GDB exception, a comparison
3255 is not capable (or trusted), so exit. */
3256 bcache_xfree (cache);
3257 VEC_free (type_equality_entry_d, worklist);
3258 /* Rethrow if there was a problem. */
3259 if (except.reason < 0)
3260 throw_exception (except);
3261
3262 return result;
3263}
3264\f
c906108c
SS
3265/* Compare one type (PARM) for compatibility with another (ARG).
3266 * PARM is intended to be the parameter type of a function; and
3267 * ARG is the supplied argument's type. This function tests if
3268 * the latter can be converted to the former.
da096638 3269 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3270 *
3271 * Return 0 if they are identical types;
3272 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3273 * PARM is to ARG. The higher the return value, the worse the match.
3274 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3275
6403aeea 3276struct rank
da096638 3277rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3278{
a9d5ef47 3279 struct rank rank = {0,0};
7062b0a0
SW
3280
3281 if (types_equal (parm, arg))
6403aeea 3282 return EXACT_MATCH_BADNESS;
c906108c
SS
3283
3284 /* Resolve typedefs */
3285 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3286 parm = check_typedef (parm);
3287 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3288 arg = check_typedef (arg);
3289
db577aea 3290 /* See through references, since we can almost make non-references
7ba81444 3291 references. */
db577aea 3292 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3293 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3294 REFERENCE_CONVERSION_BADNESS));
db577aea 3295 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3296 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3297 REFERENCE_CONVERSION_BADNESS));
5d161b24 3298 if (overload_debug)
7ba81444
MS
3299 /* Debugging only. */
3300 fprintf_filtered (gdb_stderr,
3301 "------ Arg is %s [%d], parm is %s [%d]\n",
3302 TYPE_NAME (arg), TYPE_CODE (arg),
3303 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3304
0963b4bd 3305 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3306
3307 switch (TYPE_CODE (parm))
3308 {
c5aa993b
JM
3309 case TYPE_CODE_PTR:
3310 switch (TYPE_CODE (arg))
3311 {
3312 case TYPE_CODE_PTR:
7062b0a0
SW
3313
3314 /* Allowed pointer conversions are:
3315 (a) pointer to void-pointer conversion. */
3316 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3317 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3318
3319 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3320 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3321 TYPE_TARGET_TYPE (arg),
3322 0);
3323 if (rank.subrank >= 0)
3324 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3325
3326 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3327 case TYPE_CODE_ARRAY:
7062b0a0
SW
3328 if (types_equal (TYPE_TARGET_TYPE (parm),
3329 TYPE_TARGET_TYPE (arg)))
6403aeea 3330 return EXACT_MATCH_BADNESS;
7062b0a0 3331 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3332 case TYPE_CODE_FUNC:
da096638 3333 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3334 case TYPE_CODE_INT:
a451cb65 3335 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3336 {
a451cb65
KS
3337 if (value_as_long (value) == 0)
3338 {
3339 /* Null pointer conversion: allow it to be cast to a pointer.
3340 [4.10.1 of C++ standard draft n3290] */
3341 return NULL_POINTER_CONVERSION_BADNESS;
3342 }
3343 else
3344 {
3345 /* If type checking is disabled, allow the conversion. */
3346 if (!strict_type_checking)
3347 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3348 }
da096638
KS
3349 }
3350 /* fall through */
c5aa993b 3351 case TYPE_CODE_ENUM:
4f2aea11 3352 case TYPE_CODE_FLAGS:
c5aa993b
JM
3353 case TYPE_CODE_CHAR:
3354 case TYPE_CODE_RANGE:
3355 case TYPE_CODE_BOOL:
c5aa993b
JM
3356 default:
3357 return INCOMPATIBLE_TYPE_BADNESS;
3358 }
3359 case TYPE_CODE_ARRAY:
3360 switch (TYPE_CODE (arg))
3361 {
3362 case TYPE_CODE_PTR:
3363 case TYPE_CODE_ARRAY:
7ba81444 3364 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3365 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3366 default:
3367 return INCOMPATIBLE_TYPE_BADNESS;
3368 }
3369 case TYPE_CODE_FUNC:
3370 switch (TYPE_CODE (arg))
3371 {
3372 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3373 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3374 default:
3375 return INCOMPATIBLE_TYPE_BADNESS;
3376 }
3377 case TYPE_CODE_INT:
3378 switch (TYPE_CODE (arg))
3379 {
3380 case TYPE_CODE_INT:
3381 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3382 {
3383 /* Deal with signed, unsigned, and plain chars and
7ba81444 3384 signed and unsigned ints. */
c5aa993b
JM
3385 if (TYPE_NOSIGN (parm))
3386 {
0963b4bd 3387 /* This case only for character types. */
7ba81444 3388 if (TYPE_NOSIGN (arg))
6403aeea 3389 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3390 else /* signed/unsigned char -> plain char */
3391 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3392 }
3393 else if (TYPE_UNSIGNED (parm))
3394 {
3395 if (TYPE_UNSIGNED (arg))
3396 {
7ba81444
MS
3397 /* unsigned int -> unsigned int, or
3398 unsigned long -> unsigned long */
3399 if (integer_types_same_name_p (TYPE_NAME (parm),
3400 TYPE_NAME (arg)))
6403aeea 3401 return EXACT_MATCH_BADNESS;
7ba81444
MS
3402 else if (integer_types_same_name_p (TYPE_NAME (arg),
3403 "int")
3404 && integer_types_same_name_p (TYPE_NAME (parm),
3405 "long"))
3e43a32a
MS
3406 /* unsigned int -> unsigned long */
3407 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3408 else
3e43a32a
MS
3409 /* unsigned long -> unsigned int */
3410 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3411 }
3412 else
3413 {
7ba81444
MS
3414 if (integer_types_same_name_p (TYPE_NAME (arg),
3415 "long")
3416 && integer_types_same_name_p (TYPE_NAME (parm),
3417 "int"))
3e43a32a
MS
3418 /* signed long -> unsigned int */
3419 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3420 else
3e43a32a
MS
3421 /* signed int/long -> unsigned int/long */
3422 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3423 }
3424 }
3425 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3426 {
7ba81444
MS
3427 if (integer_types_same_name_p (TYPE_NAME (parm),
3428 TYPE_NAME (arg)))
6403aeea 3429 return EXACT_MATCH_BADNESS;
7ba81444
MS
3430 else if (integer_types_same_name_p (TYPE_NAME (arg),
3431 "int")
3432 && integer_types_same_name_p (TYPE_NAME (parm),
3433 "long"))
c5aa993b
JM
3434 return INTEGER_PROMOTION_BADNESS;
3435 else
1c5cb38e 3436 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3437 }
3438 else
1c5cb38e 3439 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3440 }
3441 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3442 return INTEGER_PROMOTION_BADNESS;
3443 else
1c5cb38e 3444 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3445 case TYPE_CODE_ENUM:
4f2aea11 3446 case TYPE_CODE_FLAGS:
c5aa993b
JM
3447 case TYPE_CODE_CHAR:
3448 case TYPE_CODE_RANGE:
3449 case TYPE_CODE_BOOL:
3d567982
TT
3450 if (TYPE_DECLARED_CLASS (arg))
3451 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3452 return INTEGER_PROMOTION_BADNESS;
3453 case TYPE_CODE_FLT:
3454 return INT_FLOAT_CONVERSION_BADNESS;
3455 case TYPE_CODE_PTR:
3456 return NS_POINTER_CONVERSION_BADNESS;
3457 default:
3458 return INCOMPATIBLE_TYPE_BADNESS;
3459 }
3460 break;
3461 case TYPE_CODE_ENUM:
3462 switch (TYPE_CODE (arg))
3463 {
3464 case TYPE_CODE_INT:
3465 case TYPE_CODE_CHAR:
3466 case TYPE_CODE_RANGE:
3467 case TYPE_CODE_BOOL:
3468 case TYPE_CODE_ENUM:
3d567982
TT
3469 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3470 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3471 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3472 case TYPE_CODE_FLT:
3473 return INT_FLOAT_CONVERSION_BADNESS;
3474 default:
3475 return INCOMPATIBLE_TYPE_BADNESS;
3476 }
3477 break;
3478 case TYPE_CODE_CHAR:
3479 switch (TYPE_CODE (arg))
3480 {
3481 case TYPE_CODE_RANGE:
3482 case TYPE_CODE_BOOL:
3483 case TYPE_CODE_ENUM:
3d567982
TT
3484 if (TYPE_DECLARED_CLASS (arg))
3485 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3486 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3487 case TYPE_CODE_FLT:
3488 return INT_FLOAT_CONVERSION_BADNESS;
3489 case TYPE_CODE_INT:
3490 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3491 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3492 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3493 return INTEGER_PROMOTION_BADNESS;
3494 /* >>> !! else fall through !! <<< */
3495 case TYPE_CODE_CHAR:
7ba81444
MS
3496 /* Deal with signed, unsigned, and plain chars for C++ and
3497 with int cases falling through from previous case. */
c5aa993b
JM
3498 if (TYPE_NOSIGN (parm))
3499 {
3500 if (TYPE_NOSIGN (arg))
6403aeea 3501 return EXACT_MATCH_BADNESS;
c5aa993b 3502 else
1c5cb38e 3503 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3504 }
3505 else if (TYPE_UNSIGNED (parm))
3506 {
3507 if (TYPE_UNSIGNED (arg))
6403aeea 3508 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3509 else
3510 return INTEGER_PROMOTION_BADNESS;
3511 }
3512 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3513 return EXACT_MATCH_BADNESS;
c5aa993b 3514 else
1c5cb38e 3515 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3516 default:
3517 return INCOMPATIBLE_TYPE_BADNESS;
3518 }
3519 break;
3520 case TYPE_CODE_RANGE:
3521 switch (TYPE_CODE (arg))
3522 {
3523 case TYPE_CODE_INT:
3524 case TYPE_CODE_CHAR:
3525 case TYPE_CODE_RANGE:
3526 case TYPE_CODE_BOOL:
3527 case TYPE_CODE_ENUM:
1c5cb38e 3528 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3529 case TYPE_CODE_FLT:
3530 return INT_FLOAT_CONVERSION_BADNESS;
3531 default:
3532 return INCOMPATIBLE_TYPE_BADNESS;
3533 }
3534 break;
3535 case TYPE_CODE_BOOL:
3536 switch (TYPE_CODE (arg))
3537 {
5b4f6e25
KS
3538 /* n3290 draft, section 4.12.1 (conv.bool):
3539
3540 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3541 pointer to member type can be converted to a prvalue of type
3542 bool. A zero value, null pointer value, or null member pointer
3543 value is converted to false; any other value is converted to
3544 true. A prvalue of type std::nullptr_t can be converted to a
3545 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3546 case TYPE_CODE_INT:
3547 case TYPE_CODE_CHAR:
c5aa993b
JM
3548 case TYPE_CODE_ENUM:
3549 case TYPE_CODE_FLT:
5b4f6e25 3550 case TYPE_CODE_MEMBERPTR:
c5aa993b 3551 case TYPE_CODE_PTR:
5b4f6e25
KS
3552 return BOOL_CONVERSION_BADNESS;
3553 case TYPE_CODE_RANGE:
3554 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3555 case TYPE_CODE_BOOL:
6403aeea 3556 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3557 default:
3558 return INCOMPATIBLE_TYPE_BADNESS;
3559 }
3560 break;
3561 case TYPE_CODE_FLT:
3562 switch (TYPE_CODE (arg))
3563 {
3564 case TYPE_CODE_FLT:
3565 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3566 return FLOAT_PROMOTION_BADNESS;
3567 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3568 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3569 else
3570 return FLOAT_CONVERSION_BADNESS;
3571 case TYPE_CODE_INT:
3572 case TYPE_CODE_BOOL:
3573 case TYPE_CODE_ENUM:
3574 case TYPE_CODE_RANGE:
3575 case TYPE_CODE_CHAR:
3576 return INT_FLOAT_CONVERSION_BADNESS;
3577 default:
3578 return INCOMPATIBLE_TYPE_BADNESS;
3579 }
3580 break;
3581 case TYPE_CODE_COMPLEX:
3582 switch (TYPE_CODE (arg))
7ba81444 3583 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3584 case TYPE_CODE_FLT:
3585 return FLOAT_PROMOTION_BADNESS;
3586 case TYPE_CODE_COMPLEX:
6403aeea 3587 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3588 default:
3589 return INCOMPATIBLE_TYPE_BADNESS;
3590 }
3591 break;
3592 case TYPE_CODE_STRUCT:
c5aa993b
JM
3593 switch (TYPE_CODE (arg))
3594 {
3595 case TYPE_CODE_STRUCT:
3596 /* Check for derivation */
a9d5ef47
SW
3597 rank.subrank = distance_to_ancestor (parm, arg, 0);
3598 if (rank.subrank >= 0)
3599 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3600 /* else fall through */
3601 default:
3602 return INCOMPATIBLE_TYPE_BADNESS;
3603 }
3604 break;
3605 case TYPE_CODE_UNION:
3606 switch (TYPE_CODE (arg))
3607 {
3608 case TYPE_CODE_UNION:
3609 default:
3610 return INCOMPATIBLE_TYPE_BADNESS;
3611 }
3612 break;
0d5de010 3613 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3614 switch (TYPE_CODE (arg))
3615 {
3616 default:
3617 return INCOMPATIBLE_TYPE_BADNESS;
3618 }
3619 break;
3620 case TYPE_CODE_METHOD:
3621 switch (TYPE_CODE (arg))
3622 {
3623
3624 default:
3625 return INCOMPATIBLE_TYPE_BADNESS;
3626 }
3627 break;
3628 case TYPE_CODE_REF:
3629 switch (TYPE_CODE (arg))
3630 {
3631
3632 default:
3633 return INCOMPATIBLE_TYPE_BADNESS;
3634 }
3635
3636 break;
3637 case TYPE_CODE_SET:
3638 switch (TYPE_CODE (arg))
3639 {
3640 /* Not in C++ */
3641 case TYPE_CODE_SET:
7ba81444 3642 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3643 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3644 default:
3645 return INCOMPATIBLE_TYPE_BADNESS;
3646 }
3647 break;
3648 case TYPE_CODE_VOID:
3649 default:
3650 return INCOMPATIBLE_TYPE_BADNESS;
3651 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3652}
3653
0963b4bd 3654/* End of functions for overload resolution. */
5212577a
DE
3655\f
3656/* Routines to pretty-print types. */
c906108c 3657
c906108c 3658static void
fba45db2 3659print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3660{
3661 int bitno;
3662
3663 for (bitno = 0; bitno < nbits; bitno++)
3664 {
3665 if ((bitno % 8) == 0)
3666 {
3667 puts_filtered (" ");
3668 }
3669 if (B_TST (bits, bitno))
a3f17187 3670 printf_filtered (("1"));
c906108c 3671 else
a3f17187 3672 printf_filtered (("0"));
c906108c
SS
3673 }
3674}
3675
ad2f7632 3676/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3677 include it since we may get into a infinitely recursive
3678 situation. */
c906108c
SS
3679
3680static void
4c9e8482 3681print_args (struct field *args, int nargs, int spaces)
c906108c
SS
3682{
3683 if (args != NULL)
3684 {
ad2f7632
DJ
3685 int i;
3686
3687 for (i = 0; i < nargs; i++)
4c9e8482
DE
3688 {
3689 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3690 args[i].name != NULL ? args[i].name : "<NULL>");
3691 recursive_dump_type (args[i].type, spaces + 2);
3692 }
c906108c
SS
3693 }
3694}
3695
d6a843b5
JK
3696int
3697field_is_static (struct field *f)
3698{
3699 /* "static" fields are the fields whose location is not relative
3700 to the address of the enclosing struct. It would be nice to
3701 have a dedicated flag that would be set for static fields when
3702 the type is being created. But in practice, checking the field
254e6b9e 3703 loc_kind should give us an accurate answer. */
d6a843b5
JK
3704 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3705 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3706}
3707
c906108c 3708static void
fba45db2 3709dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
3710{
3711 int method_idx;
3712 int overload_idx;
3713 struct fn_field *f;
3714
3715 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 3716 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
3717 printf_filtered ("\n");
3718 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3719 {
3720 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3721 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3722 method_idx,
3723 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
3724 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3725 gdb_stdout);
a3f17187 3726 printf_filtered (_(") length %d\n"),
c906108c
SS
3727 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3728 for (overload_idx = 0;
3729 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3730 overload_idx++)
3731 {
3732 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3733 overload_idx,
3734 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
3735 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3736 gdb_stdout);
c906108c
SS
3737 printf_filtered (")\n");
3738 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
3739 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3740 gdb_stdout);
c906108c
SS
3741 printf_filtered ("\n");
3742
3743 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3744 spaces + 8 + 2);
3745
3746 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
3747 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3748 gdb_stdout);
c906108c 3749 printf_filtered ("\n");
4c9e8482
DE
3750 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3751 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3752 spaces + 8 + 2);
c906108c 3753 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
3754 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3755 gdb_stdout);
c906108c
SS
3756 printf_filtered ("\n");
3757
3758 printfi_filtered (spaces + 8, "is_const %d\n",
3759 TYPE_FN_FIELD_CONST (f, overload_idx));
3760 printfi_filtered (spaces + 8, "is_volatile %d\n",
3761 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3762 printfi_filtered (spaces + 8, "is_private %d\n",
3763 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3764 printfi_filtered (spaces + 8, "is_protected %d\n",
3765 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3766 printfi_filtered (spaces + 8, "is_stub %d\n",
3767 TYPE_FN_FIELD_STUB (f, overload_idx));
3768 printfi_filtered (spaces + 8, "voffset %u\n",
3769 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3770 }
3771 }
3772}
3773
3774static void
fba45db2 3775print_cplus_stuff (struct type *type, int spaces)
c906108c 3776{
ae6ae975
DE
3777 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3778 printfi_filtered (spaces, "vptr_basetype ");
3779 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3780 puts_filtered ("\n");
3781 if (TYPE_VPTR_BASETYPE (type) != NULL)
3782 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3783
c906108c
SS
3784 printfi_filtered (spaces, "n_baseclasses %d\n",
3785 TYPE_N_BASECLASSES (type));
3786 printfi_filtered (spaces, "nfn_fields %d\n",
3787 TYPE_NFN_FIELDS (type));
c906108c
SS
3788 if (TYPE_N_BASECLASSES (type) > 0)
3789 {
3790 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3791 TYPE_N_BASECLASSES (type));
7ba81444
MS
3792 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3793 gdb_stdout);
c906108c
SS
3794 printf_filtered (")");
3795
3796 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3797 TYPE_N_BASECLASSES (type));
3798 puts_filtered ("\n");
3799 }
3800 if (TYPE_NFIELDS (type) > 0)
3801 {
3802 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3803 {
7ba81444
MS
3804 printfi_filtered (spaces,
3805 "private_field_bits (%d bits at *",
c906108c 3806 TYPE_NFIELDS (type));
7ba81444
MS
3807 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3808 gdb_stdout);
c906108c
SS
3809 printf_filtered (")");
3810 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3811 TYPE_NFIELDS (type));
3812 puts_filtered ("\n");
3813 }
3814 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3815 {
7ba81444
MS
3816 printfi_filtered (spaces,
3817 "protected_field_bits (%d bits at *",
c906108c 3818 TYPE_NFIELDS (type));
7ba81444
MS
3819 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3820 gdb_stdout);
c906108c
SS
3821 printf_filtered (")");
3822 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3823 TYPE_NFIELDS (type));
3824 puts_filtered ("\n");
3825 }
3826 }
3827 if (TYPE_NFN_FIELDS (type) > 0)
3828 {
3829 dump_fn_fieldlists (type, spaces);
3830 }
3831}
3832
b4ba55a1
JB
3833/* Print the contents of the TYPE's type_specific union, assuming that
3834 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3835
3836static void
3837print_gnat_stuff (struct type *type, int spaces)
3838{
3839 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3840
3841 recursive_dump_type (descriptive_type, spaces + 2);
3842}
3843
c906108c
SS
3844static struct obstack dont_print_type_obstack;
3845
3846void
fba45db2 3847recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3848{
3849 int idx;
3850
3851 if (spaces == 0)
3852 obstack_begin (&dont_print_type_obstack, 0);
3853
3854 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3855 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3856 {
3857 struct type **first_dont_print
7ba81444 3858 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3859
7ba81444
MS
3860 int i = (struct type **)
3861 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3862
3863 while (--i >= 0)
3864 {
3865 if (type == first_dont_print[i])
3866 {
3867 printfi_filtered (spaces, "type node ");
d4f3574e 3868 gdb_print_host_address (type, gdb_stdout);
a3f17187 3869 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3870 return;
3871 }
3872 }
3873
3874 obstack_ptr_grow (&dont_print_type_obstack, type);
3875 }
3876
3877 printfi_filtered (spaces, "type node ");
d4f3574e 3878 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3879 printf_filtered ("\n");
3880 printfi_filtered (spaces, "name '%s' (",
3881 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3882 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3883 printf_filtered (")\n");
e9e79dd9
FF
3884 printfi_filtered (spaces, "tagname '%s' (",
3885 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3886 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3887 printf_filtered (")\n");
c906108c
SS
3888 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3889 switch (TYPE_CODE (type))
3890 {
c5aa993b
JM
3891 case TYPE_CODE_UNDEF:
3892 printf_filtered ("(TYPE_CODE_UNDEF)");
3893 break;
3894 case TYPE_CODE_PTR:
3895 printf_filtered ("(TYPE_CODE_PTR)");
3896 break;
3897 case TYPE_CODE_ARRAY:
3898 printf_filtered ("(TYPE_CODE_ARRAY)");
3899 break;
3900 case TYPE_CODE_STRUCT:
3901 printf_filtered ("(TYPE_CODE_STRUCT)");
3902 break;
3903 case TYPE_CODE_UNION:
3904 printf_filtered ("(TYPE_CODE_UNION)");
3905 break;
3906 case TYPE_CODE_ENUM:
3907 printf_filtered ("(TYPE_CODE_ENUM)");
3908 break;
4f2aea11
MK
3909 case TYPE_CODE_FLAGS:
3910 printf_filtered ("(TYPE_CODE_FLAGS)");
3911 break;
c5aa993b
JM
3912 case TYPE_CODE_FUNC:
3913 printf_filtered ("(TYPE_CODE_FUNC)");
3914 break;
3915 case TYPE_CODE_INT:
3916 printf_filtered ("(TYPE_CODE_INT)");
3917 break;
3918 case TYPE_CODE_FLT:
3919 printf_filtered ("(TYPE_CODE_FLT)");
3920 break;
3921 case TYPE_CODE_VOID:
3922 printf_filtered ("(TYPE_CODE_VOID)");
3923 break;
3924 case TYPE_CODE_SET:
3925 printf_filtered ("(TYPE_CODE_SET)");
3926 break;
3927 case TYPE_CODE_RANGE:
3928 printf_filtered ("(TYPE_CODE_RANGE)");
3929 break;
3930 case TYPE_CODE_STRING:
3931 printf_filtered ("(TYPE_CODE_STRING)");
3932 break;
3933 case TYPE_CODE_ERROR:
3934 printf_filtered ("(TYPE_CODE_ERROR)");
3935 break;
0d5de010
DJ
3936 case TYPE_CODE_MEMBERPTR:
3937 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3938 break;
3939 case TYPE_CODE_METHODPTR:
3940 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3941 break;
3942 case TYPE_CODE_METHOD:
3943 printf_filtered ("(TYPE_CODE_METHOD)");
3944 break;
3945 case TYPE_CODE_REF:
3946 printf_filtered ("(TYPE_CODE_REF)");
3947 break;
3948 case TYPE_CODE_CHAR:
3949 printf_filtered ("(TYPE_CODE_CHAR)");
3950 break;
3951 case TYPE_CODE_BOOL:
3952 printf_filtered ("(TYPE_CODE_BOOL)");
3953 break;
e9e79dd9
FF
3954 case TYPE_CODE_COMPLEX:
3955 printf_filtered ("(TYPE_CODE_COMPLEX)");
3956 break;
c5aa993b
JM
3957 case TYPE_CODE_TYPEDEF:
3958 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3959 break;
5c4e30ca
DC
3960 case TYPE_CODE_NAMESPACE:
3961 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3962 break;
c5aa993b
JM
3963 default:
3964 printf_filtered ("(UNKNOWN TYPE CODE)");
3965 break;
c906108c
SS
3966 }
3967 puts_filtered ("\n");
3968 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3969 if (TYPE_OBJFILE_OWNED (type))
3970 {
3971 printfi_filtered (spaces, "objfile ");
3972 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3973 }
3974 else
3975 {
3976 printfi_filtered (spaces, "gdbarch ");
3977 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3978 }
c906108c
SS
3979 printf_filtered ("\n");
3980 printfi_filtered (spaces, "target_type ");
d4f3574e 3981 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3982 printf_filtered ("\n");
3983 if (TYPE_TARGET_TYPE (type) != NULL)
3984 {
3985 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3986 }
3987 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3988 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3989 printf_filtered ("\n");
3990 printfi_filtered (spaces, "reference_type ");
d4f3574e 3991 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3992 printf_filtered ("\n");
2fdde8f8
DJ
3993 printfi_filtered (spaces, "type_chain ");
3994 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3995 printf_filtered ("\n");
7ba81444
MS
3996 printfi_filtered (spaces, "instance_flags 0x%x",
3997 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3998 if (TYPE_CONST (type))
3999 {
4000 puts_filtered (" TYPE_FLAG_CONST");
4001 }
4002 if (TYPE_VOLATILE (type))
4003 {
4004 puts_filtered (" TYPE_FLAG_VOLATILE");
4005 }
4006 if (TYPE_CODE_SPACE (type))
4007 {
4008 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4009 }
4010 if (TYPE_DATA_SPACE (type))
4011 {
4012 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4013 }
8b2dbe47
KB
4014 if (TYPE_ADDRESS_CLASS_1 (type))
4015 {
4016 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4017 }
4018 if (TYPE_ADDRESS_CLASS_2 (type))
4019 {
4020 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4021 }
06d66ee9
TT
4022 if (TYPE_RESTRICT (type))
4023 {
4024 puts_filtered (" TYPE_FLAG_RESTRICT");
4025 }
a2c2acaf
MW
4026 if (TYPE_ATOMIC (type))
4027 {
4028 puts_filtered (" TYPE_FLAG_ATOMIC");
4029 }
2fdde8f8 4030 puts_filtered ("\n");
876cecd0
TT
4031
4032 printfi_filtered (spaces, "flags");
762a036f 4033 if (TYPE_UNSIGNED (type))
c906108c
SS
4034 {
4035 puts_filtered (" TYPE_FLAG_UNSIGNED");
4036 }
762a036f
FF
4037 if (TYPE_NOSIGN (type))
4038 {
4039 puts_filtered (" TYPE_FLAG_NOSIGN");
4040 }
4041 if (TYPE_STUB (type))
c906108c
SS
4042 {
4043 puts_filtered (" TYPE_FLAG_STUB");
4044 }
762a036f
FF
4045 if (TYPE_TARGET_STUB (type))
4046 {
4047 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4048 }
4049 if (TYPE_STATIC (type))
4050 {
4051 puts_filtered (" TYPE_FLAG_STATIC");
4052 }
762a036f
FF
4053 if (TYPE_PROTOTYPED (type))
4054 {
4055 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4056 }
4057 if (TYPE_INCOMPLETE (type))
4058 {
4059 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4060 }
762a036f
FF
4061 if (TYPE_VARARGS (type))
4062 {
4063 puts_filtered (" TYPE_FLAG_VARARGS");
4064 }
f5f8a009
EZ
4065 /* This is used for things like AltiVec registers on ppc. Gcc emits
4066 an attribute for the array type, which tells whether or not we
4067 have a vector, instead of a regular array. */
4068 if (TYPE_VECTOR (type))
4069 {
4070 puts_filtered (" TYPE_FLAG_VECTOR");
4071 }
876cecd0
TT
4072 if (TYPE_FIXED_INSTANCE (type))
4073 {
4074 puts_filtered (" TYPE_FIXED_INSTANCE");
4075 }
4076 if (TYPE_STUB_SUPPORTED (type))
4077 {
4078 puts_filtered (" TYPE_STUB_SUPPORTED");
4079 }
4080 if (TYPE_NOTTEXT (type))
4081 {
4082 puts_filtered (" TYPE_NOTTEXT");
4083 }
c906108c
SS
4084 puts_filtered ("\n");
4085 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4086 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4087 puts_filtered ("\n");
4088 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4089 {
14e75d8e
JK
4090 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4091 printfi_filtered (spaces + 2,
4092 "[%d] enumval %s type ",
4093 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4094 else
4095 printfi_filtered (spaces + 2,
4096 "[%d] bitpos %d bitsize %d type ",
4097 idx, TYPE_FIELD_BITPOS (type, idx),
4098 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4099 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4100 printf_filtered (" name '%s' (",
4101 TYPE_FIELD_NAME (type, idx) != NULL
4102 ? TYPE_FIELD_NAME (type, idx)
4103 : "<NULL>");
d4f3574e 4104 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4105 printf_filtered (")\n");
4106 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4107 {
4108 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4109 }
4110 }
43bbcdc2
PH
4111 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4112 {
4113 printfi_filtered (spaces, "low %s%s high %s%s\n",
4114 plongest (TYPE_LOW_BOUND (type)),
4115 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4116 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4117 TYPE_HIGH_BOUND_UNDEFINED (type)
4118 ? " (undefined)" : "");
43bbcdc2 4119 }
c906108c 4120
b4ba55a1
JB
4121 switch (TYPE_SPECIFIC_FIELD (type))
4122 {
4123 case TYPE_SPECIFIC_CPLUS_STUFF:
4124 printfi_filtered (spaces, "cplus_stuff ");
4125 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4126 gdb_stdout);
4127 puts_filtered ("\n");
4128 print_cplus_stuff (type, spaces);
4129 break;
8da61cc4 4130
b4ba55a1
JB
4131 case TYPE_SPECIFIC_GNAT_STUFF:
4132 printfi_filtered (spaces, "gnat_stuff ");
4133 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4134 puts_filtered ("\n");
4135 print_gnat_stuff (type, spaces);
4136 break;
701c159d 4137
b4ba55a1
JB
4138 case TYPE_SPECIFIC_FLOATFORMAT:
4139 printfi_filtered (spaces, "floatformat ");
4140 if (TYPE_FLOATFORMAT (type) == NULL)
4141 puts_filtered ("(null)");
4142 else
4143 {
4144 puts_filtered ("{ ");
4145 if (TYPE_FLOATFORMAT (type)[0] == NULL
4146 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4147 puts_filtered ("(null)");
4148 else
4149 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4150
4151 puts_filtered (", ");
4152 if (TYPE_FLOATFORMAT (type)[1] == NULL
4153 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4154 puts_filtered ("(null)");
4155 else
4156 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4157
4158 puts_filtered (" }");
4159 }
4160 puts_filtered ("\n");
4161 break;
c906108c 4162
b6cdc2c1 4163 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4164 printfi_filtered (spaces, "calling_convention %d\n",
4165 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4166 /* tail_call_list is not printed. */
b4ba55a1 4167 break;
09e2d7c7
DE
4168
4169 case TYPE_SPECIFIC_SELF_TYPE:
4170 printfi_filtered (spaces, "self_type ");
4171 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4172 puts_filtered ("\n");
4173 break;
c906108c 4174 }
b4ba55a1 4175
c906108c
SS
4176 if (spaces == 0)
4177 obstack_free (&dont_print_type_obstack, NULL);
4178}
5212577a 4179\f
ae5a43e0
DJ
4180/* Trivial helpers for the libiberty hash table, for mapping one
4181 type to another. */
4182
4183struct type_pair
4184{
4185 struct type *old, *new;
4186};
4187
4188static hashval_t
4189type_pair_hash (const void *item)
4190{
4191 const struct type_pair *pair = item;
d8734c88 4192
ae5a43e0
DJ
4193 return htab_hash_pointer (pair->old);
4194}
4195
4196static int
4197type_pair_eq (const void *item_lhs, const void *item_rhs)
4198{
4199 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 4200
ae5a43e0
DJ
4201 return lhs->old == rhs->old;
4202}
4203
4204/* Allocate the hash table used by copy_type_recursive to walk
4205 types without duplicates. We use OBJFILE's obstack, because
4206 OBJFILE is about to be deleted. */
4207
4208htab_t
4209create_copied_types_hash (struct objfile *objfile)
4210{
4211 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4212 NULL, &objfile->objfile_obstack,
4213 hashtab_obstack_allocate,
4214 dummy_obstack_deallocate);
4215}
4216
7ba81444
MS
4217/* Recursively copy (deep copy) TYPE, if it is associated with
4218 OBJFILE. Return a new type allocated using malloc, a saved type if
4219 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4220 not associated with OBJFILE. */
ae5a43e0
DJ
4221
4222struct type *
7ba81444
MS
4223copy_type_recursive (struct objfile *objfile,
4224 struct type *type,
ae5a43e0
DJ
4225 htab_t copied_types)
4226{
4227 struct type_pair *stored, pair;
4228 void **slot;
4229 struct type *new_type;
4230
e9bb382b 4231 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4232 return type;
4233
7ba81444
MS
4234 /* This type shouldn't be pointing to any types in other objfiles;
4235 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4236 gdb_assert (TYPE_OBJFILE (type) == objfile);
4237
4238 pair.old = type;
4239 slot = htab_find_slot (copied_types, &pair, INSERT);
4240 if (*slot != NULL)
4241 return ((struct type_pair *) *slot)->new;
4242
e9bb382b 4243 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4244
4245 /* We must add the new type to the hash table immediately, in case
4246 we encounter this type again during a recursive call below. */
3e43a32a
MS
4247 stored
4248 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
4249 stored->old = type;
4250 stored->new = new_type;
4251 *slot = stored;
4252
876cecd0
TT
4253 /* Copy the common fields of types. For the main type, we simply
4254 copy the entire thing and then update specific fields as needed. */
4255 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4256 TYPE_OBJFILE_OWNED (new_type) = 0;
4257 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4258
ae5a43e0
DJ
4259 if (TYPE_NAME (type))
4260 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4261 if (TYPE_TAG_NAME (type))
4262 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4263
4264 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4265 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4266
4267 /* Copy the fields. */
ae5a43e0
DJ
4268 if (TYPE_NFIELDS (type))
4269 {
4270 int i, nfields;
4271
4272 nfields = TYPE_NFIELDS (type);
fc270c35 4273 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4274 for (i = 0; i < nfields; i++)
4275 {
7ba81444
MS
4276 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4277 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4278 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4279 if (TYPE_FIELD_TYPE (type, i))
4280 TYPE_FIELD_TYPE (new_type, i)
4281 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4282 copied_types);
4283 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4284 TYPE_FIELD_NAME (new_type, i) =
4285 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4286 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4287 {
d6a843b5
JK
4288 case FIELD_LOC_KIND_BITPOS:
4289 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4290 TYPE_FIELD_BITPOS (type, i));
4291 break;
14e75d8e
JK
4292 case FIELD_LOC_KIND_ENUMVAL:
4293 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4294 TYPE_FIELD_ENUMVAL (type, i));
4295 break;
d6a843b5
JK
4296 case FIELD_LOC_KIND_PHYSADDR:
4297 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4298 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4299 break;
4300 case FIELD_LOC_KIND_PHYSNAME:
4301 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4302 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4303 i)));
4304 break;
4305 default:
4306 internal_error (__FILE__, __LINE__,
4307 _("Unexpected type field location kind: %d"),
4308 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4309 }
4310 }
4311 }
4312
0963b4bd 4313 /* For range types, copy the bounds information. */
43bbcdc2
PH
4314 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4315 {
4316 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4317 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4318 }
4319
3cdcd0ce
JB
4320 /* Copy the data location information. */
4321 if (TYPE_DATA_LOCATION (type) != NULL)
4322 {
4323 TYPE_DATA_LOCATION (new_type)
4324 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4325 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4326 sizeof (struct dynamic_prop));
4327 }
4328
ae5a43e0
DJ
4329 /* Copy pointers to other types. */
4330 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4331 TYPE_TARGET_TYPE (new_type) =
4332 copy_type_recursive (objfile,
4333 TYPE_TARGET_TYPE (type),
4334 copied_types);
f6b3afbf 4335
ae5a43e0
DJ
4336 /* Maybe copy the type_specific bits.
4337
4338 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4339 base classes and methods. There's no fundamental reason why we
4340 can't, but at the moment it is not needed. */
4341
f6b3afbf
DE
4342 switch (TYPE_SPECIFIC_FIELD (type))
4343 {
4344 case TYPE_SPECIFIC_NONE:
4345 break;
4346 case TYPE_SPECIFIC_FUNC:
4347 INIT_FUNC_SPECIFIC (new_type);
4348 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4349 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4350 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4351 break;
4352 case TYPE_SPECIFIC_FLOATFORMAT:
4353 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4354 break;
4355 case TYPE_SPECIFIC_CPLUS_STUFF:
4356 INIT_CPLUS_SPECIFIC (new_type);
4357 break;
4358 case TYPE_SPECIFIC_GNAT_STUFF:
4359 INIT_GNAT_SPECIFIC (new_type);
4360 break;
09e2d7c7
DE
4361 case TYPE_SPECIFIC_SELF_TYPE:
4362 set_type_self_type (new_type,
4363 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4364 copied_types));
4365 break;
f6b3afbf
DE
4366 default:
4367 gdb_assert_not_reached ("bad type_specific_kind");
4368 }
ae5a43e0
DJ
4369
4370 return new_type;
4371}
4372
4af88198
JB
4373/* Make a copy of the given TYPE, except that the pointer & reference
4374 types are not preserved.
4375
4376 This function assumes that the given type has an associated objfile.
4377 This objfile is used to allocate the new type. */
4378
4379struct type *
4380copy_type (const struct type *type)
4381{
4382 struct type *new_type;
4383
e9bb382b 4384 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4385
e9bb382b 4386 new_type = alloc_type_copy (type);
4af88198
JB
4387 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4388 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4389 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4390 sizeof (struct main_type));
3cdcd0ce
JB
4391 if (TYPE_DATA_LOCATION (type) != NULL)
4392 {
4393 TYPE_DATA_LOCATION (new_type)
4394 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4395 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4396 sizeof (struct dynamic_prop));
4397 }
4af88198
JB
4398
4399 return new_type;
4400}
5212577a 4401\f
e9bb382b
UW
4402/* Helper functions to initialize architecture-specific types. */
4403
4404/* Allocate a type structure associated with GDBARCH and set its
4405 CODE, LENGTH, and NAME fields. */
5212577a 4406
e9bb382b
UW
4407struct type *
4408arch_type (struct gdbarch *gdbarch,
4409 enum type_code code, int length, char *name)
4410{
4411 struct type *type;
4412
4413 type = alloc_type_arch (gdbarch);
4414 TYPE_CODE (type) = code;
4415 TYPE_LENGTH (type) = length;
4416
4417 if (name)
4418 TYPE_NAME (type) = xstrdup (name);
4419
4420 return type;
4421}
4422
4423/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4424 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4425 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4426
e9bb382b
UW
4427struct type *
4428arch_integer_type (struct gdbarch *gdbarch,
4429 int bit, int unsigned_p, char *name)
4430{
4431 struct type *t;
4432
4433 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4434 if (unsigned_p)
4435 TYPE_UNSIGNED (t) = 1;
4436 if (name && strcmp (name, "char") == 0)
4437 TYPE_NOSIGN (t) = 1;
4438
4439 return t;
4440}
4441
4442/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4443 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4444 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4445
e9bb382b
UW
4446struct type *
4447arch_character_type (struct gdbarch *gdbarch,
4448 int bit, int unsigned_p, char *name)
4449{
4450 struct type *t;
4451
4452 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4453 if (unsigned_p)
4454 TYPE_UNSIGNED (t) = 1;
4455
4456 return t;
4457}
4458
4459/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4460 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4461 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4462
e9bb382b
UW
4463struct type *
4464arch_boolean_type (struct gdbarch *gdbarch,
4465 int bit, int unsigned_p, char *name)
4466{
4467 struct type *t;
4468
4469 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4470 if (unsigned_p)
4471 TYPE_UNSIGNED (t) = 1;
4472
4473 return t;
4474}
4475
4476/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4477 BIT is the type size in bits; if BIT equals -1, the size is
4478 determined by the floatformat. NAME is the type name. Set the
4479 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4480
27067745 4481struct type *
e9bb382b
UW
4482arch_float_type (struct gdbarch *gdbarch,
4483 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
4484{
4485 struct type *t;
4486
4487 if (bit == -1)
4488 {
4489 gdb_assert (floatformats != NULL);
4490 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4491 bit = floatformats[0]->totalsize;
4492 }
4493 gdb_assert (bit >= 0);
4494
e9bb382b 4495 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
4496 TYPE_FLOATFORMAT (t) = floatformats;
4497 return t;
4498}
4499
e9bb382b
UW
4500/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4501 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4502
27067745 4503struct type *
e9bb382b
UW
4504arch_complex_type (struct gdbarch *gdbarch,
4505 char *name, struct type *target_type)
27067745
UW
4506{
4507 struct type *t;
d8734c88 4508
e9bb382b
UW
4509 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4510 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4511 TYPE_TARGET_TYPE (t) = target_type;
4512 return t;
4513}
4514
e9bb382b 4515/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4516 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4517
e9bb382b
UW
4518struct type *
4519arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4520{
4521 int nfields = length * TARGET_CHAR_BIT;
4522 struct type *type;
4523
4524 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4525 TYPE_UNSIGNED (type) = 1;
4526 TYPE_NFIELDS (type) = nfields;
4527 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4528
4529 return type;
4530}
4531
4532/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4533 position BITPOS is called NAME. */
5212577a 4534
e9bb382b
UW
4535void
4536append_flags_type_flag (struct type *type, int bitpos, char *name)
4537{
4538 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4539 gdb_assert (bitpos < TYPE_NFIELDS (type));
4540 gdb_assert (bitpos >= 0);
4541
4542 if (name)
4543 {
4544 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 4545 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
4546 }
4547 else
4548 {
4549 /* Don't show this field to the user. */
945b3a32 4550 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
4551 }
4552}
4553
4554/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4555 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4556
e9bb382b
UW
4557struct type *
4558arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4559{
4560 struct type *t;
d8734c88 4561
e9bb382b
UW
4562 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4563 t = arch_type (gdbarch, code, 0, NULL);
4564 TYPE_TAG_NAME (t) = name;
4565 INIT_CPLUS_SPECIFIC (t);
4566 return t;
4567}
4568
4569/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4570 Do not set the field's position or adjust the type's length;
4571 the caller should do so. Return the new field. */
5212577a 4572
f5dff777
DJ
4573struct field *
4574append_composite_type_field_raw (struct type *t, char *name,
4575 struct type *field)
e9bb382b
UW
4576{
4577 struct field *f;
d8734c88 4578
e9bb382b
UW
4579 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4580 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4581 sizeof (struct field) * TYPE_NFIELDS (t));
4582 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4583 memset (f, 0, sizeof f[0]);
4584 FIELD_TYPE (f[0]) = field;
4585 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4586 return f;
4587}
4588
4589/* Add new field with name NAME and type FIELD to composite type T.
4590 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4591
f5dff777
DJ
4592void
4593append_composite_type_field_aligned (struct type *t, char *name,
4594 struct type *field, int alignment)
4595{
4596 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4597
e9bb382b
UW
4598 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4599 {
4600 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4601 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4602 }
4603 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4604 {
4605 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4606 if (TYPE_NFIELDS (t) > 1)
4607 {
f41f5e61
PA
4608 SET_FIELD_BITPOS (f[0],
4609 (FIELD_BITPOS (f[-1])
4610 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4611 * TARGET_CHAR_BIT)));
e9bb382b
UW
4612
4613 if (alignment)
4614 {
86c3c1fc
AB
4615 int left;
4616
4617 alignment *= TARGET_CHAR_BIT;
4618 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 4619
e9bb382b
UW
4620 if (left)
4621 {
f41f5e61 4622 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 4623 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
4624 }
4625 }
4626 }
4627 }
4628}
4629
4630/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 4631
e9bb382b
UW
4632void
4633append_composite_type_field (struct type *t, char *name,
4634 struct type *field)
4635{
4636 append_composite_type_field_aligned (t, name, field, 0);
4637}
4638
000177f0
AC
4639static struct gdbarch_data *gdbtypes_data;
4640
4641const struct builtin_type *
4642builtin_type (struct gdbarch *gdbarch)
4643{
4644 return gdbarch_data (gdbarch, gdbtypes_data);
4645}
4646
4647static void *
4648gdbtypes_post_init (struct gdbarch *gdbarch)
4649{
4650 struct builtin_type *builtin_type
4651 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4652
46bf5051 4653 /* Basic types. */
e9bb382b
UW
4654 builtin_type->builtin_void
4655 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4656 builtin_type->builtin_char
4657 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4658 !gdbarch_char_signed (gdbarch), "char");
4659 builtin_type->builtin_signed_char
4660 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4661 0, "signed char");
4662 builtin_type->builtin_unsigned_char
4663 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4664 1, "unsigned char");
4665 builtin_type->builtin_short
4666 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4667 0, "short");
4668 builtin_type->builtin_unsigned_short
4669 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4670 1, "unsigned short");
4671 builtin_type->builtin_int
4672 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4673 0, "int");
4674 builtin_type->builtin_unsigned_int
4675 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4676 1, "unsigned int");
4677 builtin_type->builtin_long
4678 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4679 0, "long");
4680 builtin_type->builtin_unsigned_long
4681 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4682 1, "unsigned long");
4683 builtin_type->builtin_long_long
4684 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4685 0, "long long");
4686 builtin_type->builtin_unsigned_long_long
4687 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4688 1, "unsigned long long");
70bd8e24 4689 builtin_type->builtin_float
e9bb382b 4690 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 4691 "float", gdbarch_float_format (gdbarch));
70bd8e24 4692 builtin_type->builtin_double
e9bb382b 4693 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 4694 "double", gdbarch_double_format (gdbarch));
70bd8e24 4695 builtin_type->builtin_long_double
e9bb382b 4696 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 4697 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 4698 builtin_type->builtin_complex
e9bb382b
UW
4699 = arch_complex_type (gdbarch, "complex",
4700 builtin_type->builtin_float);
70bd8e24 4701 builtin_type->builtin_double_complex
e9bb382b
UW
4702 = arch_complex_type (gdbarch, "double complex",
4703 builtin_type->builtin_double);
4704 builtin_type->builtin_string
4705 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4706 builtin_type->builtin_bool
4707 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 4708
7678ef8f
TJB
4709 /* The following three are about decimal floating point types, which
4710 are 32-bits, 64-bits and 128-bits respectively. */
4711 builtin_type->builtin_decfloat
e9bb382b 4712 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 4713 builtin_type->builtin_decdouble
e9bb382b 4714 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 4715 builtin_type->builtin_declong
e9bb382b 4716 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 4717
69feb676 4718 /* "True" character types. */
e9bb382b
UW
4719 builtin_type->builtin_true_char
4720 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4721 builtin_type->builtin_true_unsigned_char
4722 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 4723
df4df182 4724 /* Fixed-size integer types. */
e9bb382b
UW
4725 builtin_type->builtin_int0
4726 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4727 builtin_type->builtin_int8
4728 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4729 builtin_type->builtin_uint8
4730 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4731 builtin_type->builtin_int16
4732 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4733 builtin_type->builtin_uint16
4734 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4735 builtin_type->builtin_int32
4736 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4737 builtin_type->builtin_uint32
4738 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4739 builtin_type->builtin_int64
4740 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4741 builtin_type->builtin_uint64
4742 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4743 builtin_type->builtin_int128
4744 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4745 builtin_type->builtin_uint128
4746 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
4747 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4748 TYPE_INSTANCE_FLAG_NOTTEXT;
4749 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4750 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 4751
9a22f0d0
PM
4752 /* Wide character types. */
4753 builtin_type->builtin_char16
4754 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4755 builtin_type->builtin_char32
4756 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4757
4758
46bf5051 4759 /* Default data/code pointer types. */
e9bb382b
UW
4760 builtin_type->builtin_data_ptr
4761 = lookup_pointer_type (builtin_type->builtin_void);
4762 builtin_type->builtin_func_ptr
4763 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
4764 builtin_type->builtin_func_func
4765 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 4766
78267919 4767 /* This type represents a GDB internal function. */
e9bb382b
UW
4768 builtin_type->internal_fn
4769 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4770 "<internal function>");
78267919 4771
e81e7f5e
SC
4772 /* This type represents an xmethod. */
4773 builtin_type->xmethod
4774 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4775
46bf5051
UW
4776 return builtin_type;
4777}
4778
46bf5051
UW
4779/* This set of objfile-based types is intended to be used by symbol
4780 readers as basic types. */
4781
4782static const struct objfile_data *objfile_type_data;
4783
4784const struct objfile_type *
4785objfile_type (struct objfile *objfile)
4786{
4787 struct gdbarch *gdbarch;
4788 struct objfile_type *objfile_type
4789 = objfile_data (objfile, objfile_type_data);
4790
4791 if (objfile_type)
4792 return objfile_type;
4793
4794 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4795 1, struct objfile_type);
4796
4797 /* Use the objfile architecture to determine basic type properties. */
4798 gdbarch = get_objfile_arch (objfile);
4799
4800 /* Basic types. */
4801 objfile_type->builtin_void
4802 = init_type (TYPE_CODE_VOID, 1,
4803 0,
4804 "void", objfile);
4805
4806 objfile_type->builtin_char
4807 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4808 (TYPE_FLAG_NOSIGN
4809 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4810 "char", objfile);
4811 objfile_type->builtin_signed_char
4812 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4813 0,
4814 "signed char", objfile);
4815 objfile_type->builtin_unsigned_char
4816 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4817 TYPE_FLAG_UNSIGNED,
4818 "unsigned char", objfile);
4819 objfile_type->builtin_short
4820 = init_type (TYPE_CODE_INT,
4821 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4822 0, "short", objfile);
4823 objfile_type->builtin_unsigned_short
4824 = init_type (TYPE_CODE_INT,
4825 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4826 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4827 objfile_type->builtin_int
4828 = init_type (TYPE_CODE_INT,
4829 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4830 0, "int", objfile);
4831 objfile_type->builtin_unsigned_int
4832 = init_type (TYPE_CODE_INT,
4833 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4834 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4835 objfile_type->builtin_long
4836 = init_type (TYPE_CODE_INT,
4837 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4838 0, "long", objfile);
4839 objfile_type->builtin_unsigned_long
4840 = init_type (TYPE_CODE_INT,
4841 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4842 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4843 objfile_type->builtin_long_long
4844 = init_type (TYPE_CODE_INT,
4845 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4846 0, "long long", objfile);
4847 objfile_type->builtin_unsigned_long_long
4848 = init_type (TYPE_CODE_INT,
4849 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4850 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4851
4852 objfile_type->builtin_float
4853 = init_type (TYPE_CODE_FLT,
4854 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4855 0, "float", objfile);
4856 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4857 = gdbarch_float_format (gdbarch);
4858 objfile_type->builtin_double
4859 = init_type (TYPE_CODE_FLT,
4860 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4861 0, "double", objfile);
4862 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4863 = gdbarch_double_format (gdbarch);
4864 objfile_type->builtin_long_double
4865 = init_type (TYPE_CODE_FLT,
4866 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4867 0, "long double", objfile);
4868 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4869 = gdbarch_long_double_format (gdbarch);
4870
4871 /* This type represents a type that was unrecognized in symbol read-in. */
4872 objfile_type->builtin_error
4873 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4874
4875 /* The following set of types is used for symbols with no
4876 debug information. */
4877 objfile_type->nodebug_text_symbol
4878 = init_type (TYPE_CODE_FUNC, 1, 0,
4879 "<text variable, no debug info>", objfile);
4880 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4881 = objfile_type->builtin_int;
0875794a
JK
4882 objfile_type->nodebug_text_gnu_ifunc_symbol
4883 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4884 "<text gnu-indirect-function variable, no debug info>",
4885 objfile);
4886 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4887 = objfile_type->nodebug_text_symbol;
4888 objfile_type->nodebug_got_plt_symbol
4889 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4890 "<text from jump slot in .got.plt, no debug info>",
4891 objfile);
4892 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4893 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4894 objfile_type->nodebug_data_symbol
4895 = init_type (TYPE_CODE_INT,
4896 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4897 "<data variable, no debug info>", objfile);
4898 objfile_type->nodebug_unknown_symbol
4899 = init_type (TYPE_CODE_INT, 1, 0,
4900 "<variable (not text or data), no debug info>", objfile);
4901 objfile_type->nodebug_tls_symbol
4902 = init_type (TYPE_CODE_INT,
4903 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4904 "<thread local variable, no debug info>", objfile);
000177f0
AC
4905
4906 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 4907 the same.
000177f0
AC
4908
4909 The upshot is:
4910 - gdb's `struct type' always describes the target's
4911 representation.
4912 - gdb's `struct value' objects should always hold values in
4913 target form.
4914 - gdb's CORE_ADDR values are addresses in the unified virtual
4915 address space that the assembler and linker work with. Thus,
4916 since target_read_memory takes a CORE_ADDR as an argument, it
4917 can access any memory on the target, even if the processor has
4918 separate code and data address spaces.
4919
46bf5051
UW
4920 In this context, objfile_type->builtin_core_addr is a bit odd:
4921 it's a target type for a value the target will never see. It's
4922 only used to hold the values of (typeless) linker symbols, which
4923 are indeed in the unified virtual address space. */
000177f0 4924
46bf5051
UW
4925 objfile_type->builtin_core_addr
4926 = init_type (TYPE_CODE_INT,
4927 gdbarch_addr_bit (gdbarch) / 8,
4928 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4929
46bf5051
UW
4930 set_objfile_data (objfile, objfile_type_data, objfile_type);
4931 return objfile_type;
000177f0
AC
4932}
4933
5212577a 4934extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 4935
c906108c 4936void
fba45db2 4937_initialize_gdbtypes (void)
c906108c 4938{
5674de60 4939 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4940 objfile_type_data = register_objfile_data ();
5674de60 4941
ccce17b0
YQ
4942 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4943 _("Set debugging of C++ overloading."),
4944 _("Show debugging of C++ overloading."),
4945 _("When enabled, ranking of the "
4946 "functions is displayed."),
4947 NULL,
4948 show_overload_debug,
4949 &setdebuglist, &showdebuglist);
5674de60 4950
7ba81444 4951 /* Add user knob for controlling resolution of opaque types. */
5674de60 4952 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4953 &opaque_type_resolution,
4954 _("Set resolution of opaque struct/class/union"
4955 " types (if set before loading symbols)."),
4956 _("Show resolution of opaque struct/class/union"
4957 " types (if set before loading symbols)."),
4958 NULL, NULL,
5674de60
UW
4959 show_opaque_type_resolution,
4960 &setlist, &showlist);
a451cb65
KS
4961
4962 /* Add an option to permit non-strict type checking. */
4963 add_setshow_boolean_cmd ("type", class_support,
4964 &strict_type_checking,
4965 _("Set strict type checking."),
4966 _("Show strict type checking."),
4967 NULL, NULL,
4968 show_strict_type_checking,
4969 &setchecklist, &showchecklist);
c906108c 4970}
This page took 1.602286 seconds and 4 git commands to generate.