* gas/arm/arch7.d: Skip for non-ELF ARM targets.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
28e7fd62 3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "bfd.h"
25#include "symtab.h"
26#include "symfile.h"
27#include "objfiles.h"
28#include "gdbtypes.h"
29#include "expression.h"
30#include "language.h"
31#include "target.h"
32#include "value.h"
33#include "demangle.h"
34#include "complaints.h"
35#include "gdbcmd.h"
015a42b4 36#include "cp-abi.h"
a02fd225 37#include "gdb_assert.h"
ae5a43e0 38#include "hashtab.h"
8e7b59a5 39#include "exceptions.h"
ac3aafc7 40
6403aeea
SW
41/* Initialize BADNESS constants. */
42
a9d5ef47 43const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 44
a9d5ef47
SW
45const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
46const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 47
a9d5ef47 48const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 49
a9d5ef47
SW
50const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
51const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
52const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
53const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
54const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
55const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 57const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
58const struct rank BASE_CONVERSION_BADNESS = {2,0};
59const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 60const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 61const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 62const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 63
8da61cc4 64/* Floatformat pairs. */
f9e9243a
UW
65const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_ieee_half_big,
67 &floatformat_ieee_half_little
68};
8da61cc4
DJ
69const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_single_big,
71 &floatformat_ieee_single_little
72};
73const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_double_big,
75 &floatformat_ieee_double_little
76};
77const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_littlebyte_bigword
80};
81const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_i387_ext,
83 &floatformat_i387_ext
84};
85const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_m68881_ext,
87 &floatformat_m68881_ext
88};
89const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_arm_ext_big,
91 &floatformat_arm_ext_littlebyte_bigword
92};
93const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_ia64_spill_big,
95 &floatformat_ia64_spill_little
96};
97const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_quad_big,
99 &floatformat_ia64_quad_little
100};
101const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_vax_f,
103 &floatformat_vax_f
104};
105const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_d,
107 &floatformat_vax_d
108};
b14d30e1
JM
109const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_ibm_long_double,
111 &floatformat_ibm_long_double
112};
8da61cc4 113
2873700e
KS
114/* Should opaque types be resolved? */
115
116static int opaque_type_resolution = 1;
117
118/* A flag to enable printing of debugging information of C++
119 overloading. */
120
121unsigned int overload_debug = 0;
122
a451cb65
KS
123/* A flag to enable strict type checking. */
124
125static int strict_type_checking = 1;
126
2873700e 127/* A function to show whether opaque types are resolved. */
5212577a 128
920d2a44
AC
129static void
130show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
131 struct cmd_list_element *c,
132 const char *value)
920d2a44 133{
3e43a32a
MS
134 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
135 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
136 value);
137}
138
2873700e 139/* A function to show whether C++ overload debugging is enabled. */
5212577a 140
920d2a44
AC
141static void
142show_overload_debug (struct ui_file *file, int from_tty,
143 struct cmd_list_element *c, const char *value)
144{
7ba81444
MS
145 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
146 value);
920d2a44 147}
c906108c 148
a451cb65
KS
149/* A function to show the status of strict type checking. */
150
151static void
152show_strict_type_checking (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154{
155 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
156}
157
5212577a 158\f
e9bb382b
UW
159/* Allocate a new OBJFILE-associated type structure and fill it
160 with some defaults. Space for the type structure is allocated
161 on the objfile's objfile_obstack. */
c906108c
SS
162
163struct type *
fba45db2 164alloc_type (struct objfile *objfile)
c906108c 165{
52f0bd74 166 struct type *type;
c906108c 167
e9bb382b
UW
168 gdb_assert (objfile != NULL);
169
7ba81444 170 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
171 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
172 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
173 struct main_type);
174 OBJSTAT (objfile, n_types++);
c906108c 175
e9bb382b
UW
176 TYPE_OBJFILE_OWNED (type) = 1;
177 TYPE_OWNER (type).objfile = objfile;
c906108c 178
7ba81444 179 /* Initialize the fields that might not be zero. */
c906108c
SS
180
181 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 182 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 184
c16abbde 185 return type;
c906108c
SS
186}
187
e9bb382b
UW
188/* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192struct type *
193alloc_type_arch (struct gdbarch *gdbarch)
194{
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = XZALLOC (struct type);
202 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_VPTR_FIELDNO (type) = -1;
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214}
215
216/* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220struct type *
221alloc_type_copy (const struct type *type)
222{
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227}
228
229/* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232struct gdbarch *
233get_type_arch (const struct type *type)
234{
235 if (TYPE_OBJFILE_OWNED (type))
236 return get_objfile_arch (TYPE_OWNER (type).objfile);
237 else
238 return TYPE_OWNER (type).gdbarch;
239}
240
2fdde8f8
DJ
241/* Alloc a new type instance structure, fill it with some defaults,
242 and point it at OLDTYPE. Allocate the new type instance from the
243 same place as OLDTYPE. */
244
245static struct type *
246alloc_type_instance (struct type *oldtype)
247{
248 struct type *type;
249
250 /* Allocate the structure. */
251
e9bb382b 252 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 253 type = XZALLOC (struct type);
2fdde8f8 254 else
1deafd4e
PA
255 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
256 struct type);
257
2fdde8f8
DJ
258 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
259
260 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
261
c16abbde 262 return type;
2fdde8f8
DJ
263}
264
265/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 266 replacing it with something else. Preserve owner information. */
5212577a 267
2fdde8f8
DJ
268static void
269smash_type (struct type *type)
270{
e9bb382b
UW
271 int objfile_owned = TYPE_OBJFILE_OWNED (type);
272 union type_owner owner = TYPE_OWNER (type);
273
2fdde8f8
DJ
274 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
275
e9bb382b
UW
276 /* Restore owner information. */
277 TYPE_OBJFILE_OWNED (type) = objfile_owned;
278 TYPE_OWNER (type) = owner;
279
2fdde8f8
DJ
280 /* For now, delete the rings. */
281 TYPE_CHAIN (type) = type;
282
283 /* For now, leave the pointer/reference types alone. */
284}
285
c906108c
SS
286/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
287 to a pointer to memory where the pointer type should be stored.
288 If *TYPEPTR is zero, update it to point to the pointer type we return.
289 We allocate new memory if needed. */
290
291struct type *
fba45db2 292make_pointer_type (struct type *type, struct type **typeptr)
c906108c 293{
52f0bd74 294 struct type *ntype; /* New type */
053cb41b 295 struct type *chain;
c906108c
SS
296
297 ntype = TYPE_POINTER_TYPE (type);
298
c5aa993b 299 if (ntype)
c906108c 300 {
c5aa993b 301 if (typeptr == 0)
7ba81444
MS
302 return ntype; /* Don't care about alloc,
303 and have new type. */
c906108c 304 else if (*typeptr == 0)
c5aa993b 305 {
7ba81444 306 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 307 return ntype;
c5aa993b 308 }
c906108c
SS
309 }
310
311 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
312 {
e9bb382b 313 ntype = alloc_type_copy (type);
c906108c
SS
314 if (typeptr)
315 *typeptr = ntype;
316 }
7ba81444 317 else /* We have storage, but need to reset it. */
c906108c
SS
318 {
319 ntype = *typeptr;
053cb41b 320 chain = TYPE_CHAIN (ntype);
2fdde8f8 321 smash_type (ntype);
053cb41b 322 TYPE_CHAIN (ntype) = chain;
c906108c
SS
323 }
324
325 TYPE_TARGET_TYPE (ntype) = type;
326 TYPE_POINTER_TYPE (type) = ntype;
327
5212577a 328 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 329
50810684
UW
330 TYPE_LENGTH (ntype)
331 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
332 TYPE_CODE (ntype) = TYPE_CODE_PTR;
333
67b2adb2 334 /* Mark pointers as unsigned. The target converts between pointers
76e71323 335 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 336 gdbarch_address_to_pointer. */
876cecd0 337 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 338
053cb41b
JB
339 /* Update the length of all the other variants of this type. */
340 chain = TYPE_CHAIN (ntype);
341 while (chain != ntype)
342 {
343 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
344 chain = TYPE_CHAIN (chain);
345 }
346
c906108c
SS
347 return ntype;
348}
349
350/* Given a type TYPE, return a type of pointers to that type.
351 May need to construct such a type if this is the first use. */
352
353struct type *
fba45db2 354lookup_pointer_type (struct type *type)
c906108c 355{
c5aa993b 356 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
357}
358
7ba81444
MS
359/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
360 points to a pointer to memory where the reference type should be
361 stored. If *TYPEPTR is zero, update it to point to the reference
362 type we return. We allocate new memory if needed. */
c906108c
SS
363
364struct type *
fba45db2 365make_reference_type (struct type *type, struct type **typeptr)
c906108c 366{
52f0bd74 367 struct type *ntype; /* New type */
1e98b326 368 struct type *chain;
c906108c
SS
369
370 ntype = TYPE_REFERENCE_TYPE (type);
371
c5aa993b 372 if (ntype)
c906108c 373 {
c5aa993b 374 if (typeptr == 0)
7ba81444
MS
375 return ntype; /* Don't care about alloc,
376 and have new type. */
c906108c 377 else if (*typeptr == 0)
c5aa993b 378 {
7ba81444 379 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 380 return ntype;
c5aa993b 381 }
c906108c
SS
382 }
383
384 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
385 {
e9bb382b 386 ntype = alloc_type_copy (type);
c906108c
SS
387 if (typeptr)
388 *typeptr = ntype;
389 }
7ba81444 390 else /* We have storage, but need to reset it. */
c906108c
SS
391 {
392 ntype = *typeptr;
1e98b326 393 chain = TYPE_CHAIN (ntype);
2fdde8f8 394 smash_type (ntype);
1e98b326 395 TYPE_CHAIN (ntype) = chain;
c906108c
SS
396 }
397
398 TYPE_TARGET_TYPE (ntype) = type;
399 TYPE_REFERENCE_TYPE (type) = ntype;
400
7ba81444
MS
401 /* FIXME! Assume the machine has only one representation for
402 references, and that it matches the (only) representation for
403 pointers! */
c906108c 404
50810684
UW
405 TYPE_LENGTH (ntype) =
406 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 407 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 408
c906108c
SS
409 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
410 TYPE_REFERENCE_TYPE (type) = ntype;
411
1e98b326
JB
412 /* Update the length of all the other variants of this type. */
413 chain = TYPE_CHAIN (ntype);
414 while (chain != ntype)
415 {
416 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
417 chain = TYPE_CHAIN (chain);
418 }
419
c906108c
SS
420 return ntype;
421}
422
7ba81444
MS
423/* Same as above, but caller doesn't care about memory allocation
424 details. */
c906108c
SS
425
426struct type *
fba45db2 427lookup_reference_type (struct type *type)
c906108c 428{
c5aa993b 429 return make_reference_type (type, (struct type **) 0);
c906108c
SS
430}
431
7ba81444
MS
432/* Lookup a function type that returns type TYPE. TYPEPTR, if
433 nonzero, points to a pointer to memory where the function type
434 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 435 function type we return. We allocate new memory if needed. */
c906108c
SS
436
437struct type *
0c8b41f1 438make_function_type (struct type *type, struct type **typeptr)
c906108c 439{
52f0bd74 440 struct type *ntype; /* New type */
c906108c
SS
441
442 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
443 {
e9bb382b 444 ntype = alloc_type_copy (type);
c906108c
SS
445 if (typeptr)
446 *typeptr = ntype;
447 }
7ba81444 448 else /* We have storage, but need to reset it. */
c906108c
SS
449 {
450 ntype = *typeptr;
2fdde8f8 451 smash_type (ntype);
c906108c
SS
452 }
453
454 TYPE_TARGET_TYPE (ntype) = type;
455
456 TYPE_LENGTH (ntype) = 1;
457 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 458
b6cdc2c1
JK
459 INIT_FUNC_SPECIFIC (ntype);
460
c906108c
SS
461 return ntype;
462}
463
c906108c
SS
464/* Given a type TYPE, return a type of functions that return that type.
465 May need to construct such a type if this is the first use. */
466
467struct type *
fba45db2 468lookup_function_type (struct type *type)
c906108c 469{
0c8b41f1 470 return make_function_type (type, (struct type **) 0);
c906108c
SS
471}
472
71918a86 473/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
474 function type. If the final type in PARAM_TYPES is NULL, make a
475 varargs function. */
71918a86
TT
476
477struct type *
478lookup_function_type_with_arguments (struct type *type,
479 int nparams,
480 struct type **param_types)
481{
482 struct type *fn = make_function_type (type, (struct type **) 0);
483 int i;
484
e314d629 485 if (nparams > 0)
a6fb9c08 486 {
e314d629
TT
487 if (param_types[nparams - 1] == NULL)
488 {
489 --nparams;
490 TYPE_VARARGS (fn) = 1;
491 }
492 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
493 == TYPE_CODE_VOID)
494 {
495 --nparams;
496 /* Caller should have ensured this. */
497 gdb_assert (nparams == 0);
498 TYPE_PROTOTYPED (fn) = 1;
499 }
a6fb9c08
TT
500 }
501
71918a86
TT
502 TYPE_NFIELDS (fn) = nparams;
503 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
504 for (i = 0; i < nparams; ++i)
505 TYPE_FIELD_TYPE (fn, i) = param_types[i];
506
507 return fn;
508}
509
47663de5
MS
510/* Identify address space identifier by name --
511 return the integer flag defined in gdbtypes.h. */
5212577a
DE
512
513int
50810684 514address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 515{
8b2dbe47 516 int type_flags;
d8734c88 517
7ba81444 518 /* Check for known address space delimiters. */
47663de5 519 if (!strcmp (space_identifier, "code"))
876cecd0 520 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 521 else if (!strcmp (space_identifier, "data"))
876cecd0 522 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
523 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
524 && gdbarch_address_class_name_to_type_flags (gdbarch,
525 space_identifier,
526 &type_flags))
8b2dbe47 527 return type_flags;
47663de5 528 else
8a3fe4f8 529 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
530}
531
532/* Identify address space identifier by integer flag as defined in
7ba81444 533 gdbtypes.h -- return the string version of the adress space name. */
47663de5 534
321432c0 535const char *
50810684 536address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 537{
876cecd0 538 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 539 return "code";
876cecd0 540 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 541 return "data";
876cecd0 542 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
543 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
544 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
545 else
546 return NULL;
547}
548
2fdde8f8 549/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
550
551 If STORAGE is non-NULL, create the new type instance there.
552 STORAGE must be in the same obstack as TYPE. */
47663de5 553
b9362cc7 554static struct type *
2fdde8f8
DJ
555make_qualified_type (struct type *type, int new_flags,
556 struct type *storage)
47663de5
MS
557{
558 struct type *ntype;
559
560 ntype = type;
5f61c20e
JK
561 do
562 {
563 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
564 return ntype;
565 ntype = TYPE_CHAIN (ntype);
566 }
567 while (ntype != type);
47663de5 568
2fdde8f8
DJ
569 /* Create a new type instance. */
570 if (storage == NULL)
571 ntype = alloc_type_instance (type);
572 else
573 {
7ba81444
MS
574 /* If STORAGE was provided, it had better be in the same objfile
575 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
576 if one objfile is freed and the other kept, we'd have
577 dangling pointers. */
ad766c0a
JB
578 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
579
2fdde8f8
DJ
580 ntype = storage;
581 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
582 TYPE_CHAIN (ntype) = ntype;
583 }
47663de5
MS
584
585 /* Pointers or references to the original type are not relevant to
2fdde8f8 586 the new type. */
47663de5
MS
587 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
588 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 589
2fdde8f8
DJ
590 /* Chain the new qualified type to the old type. */
591 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
592 TYPE_CHAIN (type) = ntype;
593
594 /* Now set the instance flags and return the new type. */
595 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 596
ab5d3da6
KB
597 /* Set length of new type to that of the original type. */
598 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
599
47663de5
MS
600 return ntype;
601}
602
2fdde8f8
DJ
603/* Make an address-space-delimited variant of a type -- a type that
604 is identical to the one supplied except that it has an address
605 space attribute attached to it (such as "code" or "data").
606
7ba81444
MS
607 The space attributes "code" and "data" are for Harvard
608 architectures. The address space attributes are for architectures
609 which have alternately sized pointers or pointers with alternate
610 representations. */
2fdde8f8
DJ
611
612struct type *
613make_type_with_address_space (struct type *type, int space_flag)
614{
2fdde8f8 615 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
616 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
617 | TYPE_INSTANCE_FLAG_DATA_SPACE
618 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
619 | space_flag);
620
621 return make_qualified_type (type, new_flags, NULL);
622}
c906108c
SS
623
624/* Make a "c-v" variant of a type -- a type that is identical to the
625 one supplied except that it may have const or volatile attributes
626 CNST is a flag for setting the const attribute
627 VOLTL is a flag for setting the volatile attribute
628 TYPE is the base type whose variant we are creating.
c906108c 629
ad766c0a
JB
630 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
631 storage to hold the new qualified type; *TYPEPTR and TYPE must be
632 in the same objfile. Otherwise, allocate fresh memory for the new
633 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
634 new type we construct. */
5212577a 635
c906108c 636struct type *
7ba81444
MS
637make_cv_type (int cnst, int voltl,
638 struct type *type,
639 struct type **typeptr)
c906108c 640{
52f0bd74 641 struct type *ntype; /* New type */
c906108c 642
2fdde8f8 643 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
644 & ~(TYPE_INSTANCE_FLAG_CONST
645 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 646
c906108c 647 if (cnst)
876cecd0 648 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
649
650 if (voltl)
876cecd0 651 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 652
2fdde8f8 653 if (typeptr && *typeptr != NULL)
a02fd225 654 {
ad766c0a
JB
655 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
656 a C-V variant chain that threads across objfiles: if one
657 objfile gets freed, then the other has a broken C-V chain.
658
659 This code used to try to copy over the main type from TYPE to
660 *TYPEPTR if they were in different objfiles, but that's
661 wrong, too: TYPE may have a field list or member function
662 lists, which refer to types of their own, etc. etc. The
663 whole shebang would need to be copied over recursively; you
664 can't have inter-objfile pointers. The only thing to do is
665 to leave stub types as stub types, and look them up afresh by
666 name each time you encounter them. */
667 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
668 }
669
7ba81444
MS
670 ntype = make_qualified_type (type, new_flags,
671 typeptr ? *typeptr : NULL);
c906108c 672
2fdde8f8
DJ
673 if (typeptr != NULL)
674 *typeptr = ntype;
a02fd225 675
2fdde8f8 676 return ntype;
a02fd225 677}
c906108c 678
06d66ee9
TT
679/* Make a 'restrict'-qualified version of TYPE. */
680
681struct type *
682make_restrict_type (struct type *type)
683{
684 return make_qualified_type (type,
685 (TYPE_INSTANCE_FLAGS (type)
686 | TYPE_INSTANCE_FLAG_RESTRICT),
687 NULL);
688}
689
2fdde8f8
DJ
690/* Replace the contents of ntype with the type *type. This changes the
691 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
692 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 693
cda6c68a
JB
694 In order to build recursive types, it's inevitable that we'll need
695 to update types in place --- but this sort of indiscriminate
696 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
697 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
698 clear if more steps are needed. */
5212577a 699
dd6bda65
DJ
700void
701replace_type (struct type *ntype, struct type *type)
702{
ab5d3da6 703 struct type *chain;
dd6bda65 704
ad766c0a
JB
705 /* These two types had better be in the same objfile. Otherwise,
706 the assignment of one type's main type structure to the other
707 will produce a type with references to objects (names; field
708 lists; etc.) allocated on an objfile other than its own. */
709 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
710
2fdde8f8 711 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 712
7ba81444
MS
713 /* The type length is not a part of the main type. Update it for
714 each type on the variant chain. */
ab5d3da6 715 chain = ntype;
5f61c20e
JK
716 do
717 {
718 /* Assert that this element of the chain has no address-class bits
719 set in its flags. Such type variants might have type lengths
720 which are supposed to be different from the non-address-class
721 variants. This assertion shouldn't ever be triggered because
722 symbol readers which do construct address-class variants don't
723 call replace_type(). */
724 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
725
726 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
727 chain = TYPE_CHAIN (chain);
728 }
729 while (ntype != chain);
ab5d3da6 730
2fdde8f8
DJ
731 /* Assert that the two types have equivalent instance qualifiers.
732 This should be true for at least all of our debug readers. */
733 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
734}
735
c906108c
SS
736/* Implement direct support for MEMBER_TYPE in GNU C++.
737 May need to construct such a type if this is the first use.
738 The TYPE is the type of the member. The DOMAIN is the type
739 of the aggregate that the member belongs to. */
740
741struct type *
0d5de010 742lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 743{
52f0bd74 744 struct type *mtype;
c906108c 745
e9bb382b 746 mtype = alloc_type_copy (type);
0d5de010 747 smash_to_memberptr_type (mtype, domain, type);
c16abbde 748 return mtype;
c906108c
SS
749}
750
0d5de010
DJ
751/* Return a pointer-to-method type, for a method of type TO_TYPE. */
752
753struct type *
754lookup_methodptr_type (struct type *to_type)
755{
756 struct type *mtype;
757
e9bb382b 758 mtype = alloc_type_copy (to_type);
0b92b5bb 759 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
760 return mtype;
761}
762
7ba81444
MS
763/* Allocate a stub method whose return type is TYPE. This apparently
764 happens for speed of symbol reading, since parsing out the
765 arguments to the method is cpu-intensive, the way we are doing it.
766 So, we will fill in arguments later. This always returns a fresh
767 type. */
c906108c
SS
768
769struct type *
fba45db2 770allocate_stub_method (struct type *type)
c906108c
SS
771{
772 struct type *mtype;
773
e9bb382b
UW
774 mtype = alloc_type_copy (type);
775 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
776 TYPE_LENGTH (mtype) = 1;
777 TYPE_STUB (mtype) = 1;
c906108c
SS
778 TYPE_TARGET_TYPE (mtype) = type;
779 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 780 return mtype;
c906108c
SS
781}
782
7ba81444
MS
783/* Create a range type using either a blank type supplied in
784 RESULT_TYPE, or creating a new type, inheriting the objfile from
785 INDEX_TYPE.
c906108c 786
7ba81444
MS
787 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
788 to HIGH_BOUND, inclusive.
c906108c 789
7ba81444
MS
790 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
791 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
792
793struct type *
fba45db2 794create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 795 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
796{
797 if (result_type == NULL)
e9bb382b 798 result_type = alloc_type_copy (index_type);
c906108c
SS
799 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
800 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 801 if (TYPE_STUB (index_type))
876cecd0 802 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
803 else
804 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
805 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
806 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
807 TYPE_LOW_BOUND (result_type) = low_bound;
808 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 809
c5aa993b 810 if (low_bound >= 0)
876cecd0 811 TYPE_UNSIGNED (result_type) = 1;
c906108c 812
262452ec 813 return result_type;
c906108c
SS
814}
815
7ba81444
MS
816/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
817 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
818 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
819
820int
fba45db2 821get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
822{
823 CHECK_TYPEDEF (type);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 *lowp = TYPE_LOW_BOUND (type);
828 *highp = TYPE_HIGH_BOUND (type);
829 return 1;
830 case TYPE_CODE_ENUM:
831 if (TYPE_NFIELDS (type) > 0)
832 {
833 /* The enums may not be sorted by value, so search all
0963b4bd 834 entries. */
c906108c
SS
835 int i;
836
14e75d8e 837 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
838 for (i = 0; i < TYPE_NFIELDS (type); i++)
839 {
14e75d8e
JK
840 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
841 *lowp = TYPE_FIELD_ENUMVAL (type, i);
842 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
843 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
844 }
845
7ba81444 846 /* Set unsigned indicator if warranted. */
c5aa993b 847 if (*lowp >= 0)
c906108c 848 {
876cecd0 849 TYPE_UNSIGNED (type) = 1;
c906108c
SS
850 }
851 }
852 else
853 {
854 *lowp = 0;
855 *highp = -1;
856 }
857 return 0;
858 case TYPE_CODE_BOOL:
859 *lowp = 0;
860 *highp = 1;
861 return 0;
862 case TYPE_CODE_INT:
c5aa993b 863 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
864 return -1;
865 if (!TYPE_UNSIGNED (type))
866 {
c5aa993b 867 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
868 *highp = -*lowp - 1;
869 return 0;
870 }
7ba81444 871 /* ... fall through for unsigned ints ... */
c906108c
SS
872 case TYPE_CODE_CHAR:
873 *lowp = 0;
874 /* This round-about calculation is to avoid shifting by
7b83ea04 875 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 876 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
877 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
878 *highp = (*highp - 1) | *highp;
879 return 0;
880 default:
881 return -1;
882 }
883}
884
dbc98a8b
KW
885/* Assuming TYPE is a simple, non-empty array type, compute its upper
886 and lower bound. Save the low bound into LOW_BOUND if not NULL.
887 Save the high bound into HIGH_BOUND if not NULL.
888
0963b4bd 889 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
890 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
891
892 We now simply use get_discrete_bounds call to get the values
893 of the low and high bounds.
894 get_discrete_bounds can return three values:
895 1, meaning that index is a range,
896 0, meaning that index is a discrete type,
897 or -1 for failure. */
898
899int
900get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
901{
902 struct type *index = TYPE_INDEX_TYPE (type);
903 LONGEST low = 0;
904 LONGEST high = 0;
905 int res;
906
907 if (index == NULL)
908 return 0;
909
910 res = get_discrete_bounds (index, &low, &high);
911 if (res == -1)
912 return 0;
913
914 /* Check if the array bounds are undefined. */
915 if (res == 1
916 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
917 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
918 return 0;
919
920 if (low_bound)
921 *low_bound = low;
922
923 if (high_bound)
924 *high_bound = high;
925
926 return 1;
927}
928
7ba81444
MS
929/* Create an array type using either a blank type supplied in
930 RESULT_TYPE, or creating a new type, inheriting the objfile from
931 RANGE_TYPE.
c906108c
SS
932
933 Elements will be of type ELEMENT_TYPE, the indices will be of type
934 RANGE_TYPE.
935
7ba81444
MS
936 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
937 sure it is TYPE_CODE_UNDEF before we bash it into an array
938 type? */
c906108c
SS
939
940struct type *
7ba81444
MS
941create_array_type (struct type *result_type,
942 struct type *element_type,
fba45db2 943 struct type *range_type)
c906108c
SS
944{
945 LONGEST low_bound, high_bound;
946
947 if (result_type == NULL)
e9bb382b
UW
948 result_type = alloc_type_copy (range_type);
949
c906108c
SS
950 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
951 TYPE_TARGET_TYPE (result_type) = element_type;
952 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
953 low_bound = high_bound = 0;
954 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
955 /* Be careful when setting the array length. Ada arrays can be
956 empty arrays with the high_bound being smaller than the low_bound.
957 In such cases, the array length should be zero. */
958 if (high_bound < low_bound)
959 TYPE_LENGTH (result_type) = 0;
960 else
961 TYPE_LENGTH (result_type) =
962 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
963 TYPE_NFIELDS (result_type) = 1;
964 TYPE_FIELDS (result_type) =
1deafd4e 965 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 966 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
967 TYPE_VPTR_FIELDNO (result_type) = -1;
968
0963b4bd 969 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 970 if (TYPE_LENGTH (result_type) == 0)
876cecd0 971 TYPE_TARGET_STUB (result_type) = 1;
c906108c 972
c16abbde 973 return result_type;
c906108c
SS
974}
975
e3506a9f
UW
976struct type *
977lookup_array_range_type (struct type *element_type,
63375b74 978 LONGEST low_bound, LONGEST high_bound)
e3506a9f 979{
50810684 980 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
981 struct type *index_type = builtin_type (gdbarch)->builtin_int;
982 struct type *range_type
983 = create_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 984
e3506a9f
UW
985 return create_array_type (NULL, element_type, range_type);
986}
987
7ba81444
MS
988/* Create a string type using either a blank type supplied in
989 RESULT_TYPE, or creating a new type. String types are similar
990 enough to array of char types that we can use create_array_type to
991 build the basic type and then bash it into a string type.
c906108c
SS
992
993 For fixed length strings, the range type contains 0 as the lower
994 bound and the length of the string minus one as the upper bound.
995
7ba81444
MS
996 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
997 sure it is TYPE_CODE_UNDEF before we bash it into a string
998 type? */
c906108c
SS
999
1000struct type *
3b7538c0
UW
1001create_string_type (struct type *result_type,
1002 struct type *string_char_type,
7ba81444 1003 struct type *range_type)
c906108c
SS
1004{
1005 result_type = create_array_type (result_type,
f290d38e 1006 string_char_type,
c906108c
SS
1007 range_type);
1008 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1009 return result_type;
c906108c
SS
1010}
1011
e3506a9f
UW
1012struct type *
1013lookup_string_range_type (struct type *string_char_type,
63375b74 1014 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1015{
1016 struct type *result_type;
d8734c88 1017
e3506a9f
UW
1018 result_type = lookup_array_range_type (string_char_type,
1019 low_bound, high_bound);
1020 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1021 return result_type;
1022}
1023
c906108c 1024struct type *
fba45db2 1025create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1026{
c906108c 1027 if (result_type == NULL)
e9bb382b
UW
1028 result_type = alloc_type_copy (domain_type);
1029
c906108c
SS
1030 TYPE_CODE (result_type) = TYPE_CODE_SET;
1031 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1032 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1033
74a9bb82 1034 if (!TYPE_STUB (domain_type))
c906108c 1035 {
f9780d5b 1036 LONGEST low_bound, high_bound, bit_length;
d8734c88 1037
c906108c
SS
1038 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1039 low_bound = high_bound = 0;
1040 bit_length = high_bound - low_bound + 1;
1041 TYPE_LENGTH (result_type)
1042 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1043 if (low_bound >= 0)
876cecd0 1044 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1045 }
1046 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1047
c16abbde 1048 return result_type;
c906108c
SS
1049}
1050
ea37ba09
DJ
1051/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1052 and any array types nested inside it. */
1053
1054void
1055make_vector_type (struct type *array_type)
1056{
1057 struct type *inner_array, *elt_type;
1058 int flags;
1059
1060 /* Find the innermost array type, in case the array is
1061 multi-dimensional. */
1062 inner_array = array_type;
1063 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1064 inner_array = TYPE_TARGET_TYPE (inner_array);
1065
1066 elt_type = TYPE_TARGET_TYPE (inner_array);
1067 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1068 {
2844d6b5 1069 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1070 elt_type = make_qualified_type (elt_type, flags, NULL);
1071 TYPE_TARGET_TYPE (inner_array) = elt_type;
1072 }
1073
876cecd0 1074 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1075}
1076
794ac428 1077struct type *
ac3aafc7
EZ
1078init_vector_type (struct type *elt_type, int n)
1079{
1080 struct type *array_type;
d8734c88 1081
e3506a9f 1082 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1083 make_vector_type (array_type);
ac3aafc7
EZ
1084 return array_type;
1085}
1086
0d5de010
DJ
1087/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1088 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1089 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1090 TYPE doesn't include the offset (that's the value of the MEMBER
1091 itself), but does include the structure type into which it points
1092 (for some reason).
c906108c 1093
7ba81444
MS
1094 When "smashing" the type, we preserve the objfile that the old type
1095 pointed to, since we aren't changing where the type is actually
c906108c
SS
1096 allocated. */
1097
1098void
0d5de010
DJ
1099smash_to_memberptr_type (struct type *type, struct type *domain,
1100 struct type *to_type)
c906108c 1101{
2fdde8f8 1102 smash_type (type);
c906108c
SS
1103 TYPE_TARGET_TYPE (type) = to_type;
1104 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1105 /* Assume that a data member pointer is the same size as a normal
1106 pointer. */
50810684
UW
1107 TYPE_LENGTH (type)
1108 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1109 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1110}
1111
0b92b5bb
TT
1112/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1113
1114 When "smashing" the type, we preserve the objfile that the old type
1115 pointed to, since we aren't changing where the type is actually
1116 allocated. */
1117
1118void
1119smash_to_methodptr_type (struct type *type, struct type *to_type)
1120{
1121 smash_type (type);
1122 TYPE_TARGET_TYPE (type) = to_type;
1123 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1124 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1125 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1126}
1127
c906108c
SS
1128/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1129 METHOD just means `function that gets an extra "this" argument'.
1130
7ba81444
MS
1131 When "smashing" the type, we preserve the objfile that the old type
1132 pointed to, since we aren't changing where the type is actually
c906108c
SS
1133 allocated. */
1134
1135void
fba45db2 1136smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1137 struct type *to_type, struct field *args,
1138 int nargs, int varargs)
c906108c 1139{
2fdde8f8 1140 smash_type (type);
c906108c
SS
1141 TYPE_TARGET_TYPE (type) = to_type;
1142 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1143 TYPE_FIELDS (type) = args;
1144 TYPE_NFIELDS (type) = nargs;
1145 if (varargs)
876cecd0 1146 TYPE_VARARGS (type) = 1;
c906108c
SS
1147 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1148 TYPE_CODE (type) = TYPE_CODE_METHOD;
1149}
1150
1151/* Return a typename for a struct/union/enum type without "struct ",
1152 "union ", or "enum ". If the type has a NULL name, return NULL. */
1153
0d5cff50 1154const char *
aa1ee363 1155type_name_no_tag (const struct type *type)
c906108c
SS
1156{
1157 if (TYPE_TAG_NAME (type) != NULL)
1158 return TYPE_TAG_NAME (type);
1159
7ba81444
MS
1160 /* Is there code which expects this to return the name if there is
1161 no tag name? My guess is that this is mainly used for C++ in
1162 cases where the two will always be the same. */
c906108c
SS
1163 return TYPE_NAME (type);
1164}
1165
d8228535
JK
1166/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1167 Since GCC PR debug/47510 DWARF provides associated information to detect the
1168 anonymous class linkage name from its typedef.
1169
1170 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1171 apply it itself. */
1172
1173const char *
1174type_name_no_tag_or_error (struct type *type)
1175{
1176 struct type *saved_type = type;
1177 const char *name;
1178 struct objfile *objfile;
1179
1180 CHECK_TYPEDEF (type);
1181
1182 name = type_name_no_tag (type);
1183 if (name != NULL)
1184 return name;
1185
1186 name = type_name_no_tag (saved_type);
1187 objfile = TYPE_OBJFILE (saved_type);
1188 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1189 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1190}
1191
7ba81444
MS
1192/* Lookup a typedef or primitive type named NAME, visible in lexical
1193 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1194 suitably defined. */
c906108c
SS
1195
1196struct type *
e6c014f2 1197lookup_typename (const struct language_defn *language,
ddd49eee 1198 struct gdbarch *gdbarch, const char *name,
34eaf542 1199 const struct block *block, int noerr)
c906108c 1200{
52f0bd74 1201 struct symbol *sym;
659c9f3a 1202 struct type *type;
c906108c 1203
774b6a14 1204 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c51fe631
DE
1205 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1206 return SYMBOL_TYPE (sym);
1207
659c9f3a
DE
1208 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1209 if (type)
1210 return type;
c51fe631
DE
1211
1212 if (noerr)
1213 return NULL;
1214 error (_("No type named %s."), name);
c906108c
SS
1215}
1216
1217struct type *
e6c014f2 1218lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1219 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1220{
1221 char *uns = alloca (strlen (name) + 10);
1222
1223 strcpy (uns, "unsigned ");
1224 strcpy (uns + 9, name);
e6c014f2 1225 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1226}
1227
1228struct type *
e6c014f2 1229lookup_signed_typename (const struct language_defn *language,
0d5cff50 1230 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1231{
1232 struct type *t;
1233 char *uns = alloca (strlen (name) + 8);
1234
1235 strcpy (uns, "signed ");
1236 strcpy (uns + 7, name);
e6c014f2 1237 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1238 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1239 if (t != NULL)
1240 return t;
e6c014f2 1241 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1242}
1243
1244/* Lookup a structure type named "struct NAME",
1245 visible in lexical block BLOCK. */
1246
1247struct type *
270140bd 1248lookup_struct (const char *name, const struct block *block)
c906108c 1249{
52f0bd74 1250 struct symbol *sym;
c906108c 1251
2570f2b7 1252 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1253
1254 if (sym == NULL)
1255 {
8a3fe4f8 1256 error (_("No struct type named %s."), name);
c906108c
SS
1257 }
1258 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1259 {
7ba81444
MS
1260 error (_("This context has class, union or enum %s, not a struct."),
1261 name);
c906108c
SS
1262 }
1263 return (SYMBOL_TYPE (sym));
1264}
1265
1266/* Lookup a union type named "union NAME",
1267 visible in lexical block BLOCK. */
1268
1269struct type *
270140bd 1270lookup_union (const char *name, const struct block *block)
c906108c 1271{
52f0bd74 1272 struct symbol *sym;
c5aa993b 1273 struct type *t;
c906108c 1274
2570f2b7 1275 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1276
1277 if (sym == NULL)
8a3fe4f8 1278 error (_("No union type named %s."), name);
c906108c 1279
c5aa993b 1280 t = SYMBOL_TYPE (sym);
c906108c
SS
1281
1282 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1283 return t;
c906108c 1284
7ba81444
MS
1285 /* If we get here, it's not a union. */
1286 error (_("This context has class, struct or enum %s, not a union."),
1287 name);
c906108c
SS
1288}
1289
c906108c
SS
1290/* Lookup an enum type named "enum NAME",
1291 visible in lexical block BLOCK. */
1292
1293struct type *
270140bd 1294lookup_enum (const char *name, const struct block *block)
c906108c 1295{
52f0bd74 1296 struct symbol *sym;
c906108c 1297
2570f2b7 1298 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1299 if (sym == NULL)
1300 {
8a3fe4f8 1301 error (_("No enum type named %s."), name);
c906108c
SS
1302 }
1303 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1304 {
7ba81444
MS
1305 error (_("This context has class, struct or union %s, not an enum."),
1306 name);
c906108c
SS
1307 }
1308 return (SYMBOL_TYPE (sym));
1309}
1310
1311/* Lookup a template type named "template NAME<TYPE>",
1312 visible in lexical block BLOCK. */
1313
1314struct type *
7ba81444 1315lookup_template_type (char *name, struct type *type,
270140bd 1316 const struct block *block)
c906108c
SS
1317{
1318 struct symbol *sym;
7ba81444
MS
1319 char *nam = (char *)
1320 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1321
c906108c
SS
1322 strcpy (nam, name);
1323 strcat (nam, "<");
0004e5a2 1324 strcat (nam, TYPE_NAME (type));
0963b4bd 1325 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1326
2570f2b7 1327 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1328
1329 if (sym == NULL)
1330 {
8a3fe4f8 1331 error (_("No template type named %s."), name);
c906108c
SS
1332 }
1333 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1334 {
7ba81444
MS
1335 error (_("This context has class, union or enum %s, not a struct."),
1336 name);
c906108c
SS
1337 }
1338 return (SYMBOL_TYPE (sym));
1339}
1340
7ba81444
MS
1341/* Given a type TYPE, lookup the type of the component of type named
1342 NAME.
c906108c 1343
7ba81444
MS
1344 TYPE can be either a struct or union, or a pointer or reference to
1345 a struct or union. If it is a pointer or reference, its target
1346 type is automatically used. Thus '.' and '->' are interchangable,
1347 as specified for the definitions of the expression element types
1348 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1349
1350 If NOERR is nonzero, return zero if NAME is not suitably defined.
1351 If NAME is the name of a baseclass type, return that type. */
1352
1353struct type *
fba45db2 1354lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1355{
1356 int i;
c92817ce 1357 char *typename;
c906108c
SS
1358
1359 for (;;)
1360 {
1361 CHECK_TYPEDEF (type);
1362 if (TYPE_CODE (type) != TYPE_CODE_PTR
1363 && TYPE_CODE (type) != TYPE_CODE_REF)
1364 break;
1365 type = TYPE_TARGET_TYPE (type);
1366 }
1367
687d6395
MS
1368 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1369 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1370 {
c92817ce
TT
1371 typename = type_to_string (type);
1372 make_cleanup (xfree, typename);
1373 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1374 }
1375
1376#if 0
7ba81444
MS
1377 /* FIXME: This change put in by Michael seems incorrect for the case
1378 where the structure tag name is the same as the member name.
0963b4bd 1379 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1380 foo; } bell;" Disabled by fnf. */
c906108c
SS
1381 {
1382 char *typename;
1383
1384 typename = type_name_no_tag (type);
762f08a3 1385 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1386 return type;
1387 }
1388#endif
1389
1390 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1391 {
0d5cff50 1392 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1393
db577aea 1394 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1395 {
1396 return TYPE_FIELD_TYPE (type, i);
1397 }
f5a010c0
PM
1398 else if (!t_field_name || *t_field_name == '\0')
1399 {
d8734c88
MS
1400 struct type *subtype
1401 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1402
f5a010c0
PM
1403 if (subtype != NULL)
1404 return subtype;
1405 }
c906108c
SS
1406 }
1407
1408 /* OK, it's not in this class. Recursively check the baseclasses. */
1409 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1410 {
1411 struct type *t;
1412
9733fc94 1413 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1414 if (t != NULL)
1415 {
1416 return t;
1417 }
1418 }
1419
1420 if (noerr)
1421 {
1422 return NULL;
1423 }
c5aa993b 1424
c92817ce
TT
1425 typename = type_to_string (type);
1426 make_cleanup (xfree, typename);
1427 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1428}
1429
81fe8080
DE
1430/* Lookup the vptr basetype/fieldno values for TYPE.
1431 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1432 vptr_fieldno. Also, if found and basetype is from the same objfile,
1433 cache the results.
1434 If not found, return -1 and ignore BASETYPEP.
1435 Callers should be aware that in some cases (for example,
c906108c 1436 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1437 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1438 this function will not be able to find the
7ba81444 1439 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1440 vptr_basetype will remain NULL or incomplete. */
c906108c 1441
81fe8080
DE
1442int
1443get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1444{
1445 CHECK_TYPEDEF (type);
1446
1447 if (TYPE_VPTR_FIELDNO (type) < 0)
1448 {
1449 int i;
1450
7ba81444
MS
1451 /* We must start at zero in case the first (and only) baseclass
1452 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1453 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1454 {
81fe8080
DE
1455 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1456 int fieldno;
1457 struct type *basetype;
1458
1459 fieldno = get_vptr_fieldno (baseclass, &basetype);
1460 if (fieldno >= 0)
c906108c 1461 {
81fe8080 1462 /* If the type comes from a different objfile we can't cache
0963b4bd 1463 it, it may have a different lifetime. PR 2384 */
5ef73790 1464 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1465 {
1466 TYPE_VPTR_FIELDNO (type) = fieldno;
1467 TYPE_VPTR_BASETYPE (type) = basetype;
1468 }
1469 if (basetypep)
1470 *basetypep = basetype;
1471 return fieldno;
c906108c
SS
1472 }
1473 }
81fe8080
DE
1474
1475 /* Not found. */
1476 return -1;
1477 }
1478 else
1479 {
1480 if (basetypep)
1481 *basetypep = TYPE_VPTR_BASETYPE (type);
1482 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1483 }
1484}
1485
44e1a9eb
DJ
1486static void
1487stub_noname_complaint (void)
1488{
e2e0b3e5 1489 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1490}
1491
92163a10
JK
1492/* Find the real type of TYPE. This function returns the real type,
1493 after removing all layers of typedefs, and completing opaque or stub
1494 types. Completion changes the TYPE argument, but stripping of
1495 typedefs does not.
1496
1497 Instance flags (e.g. const/volatile) are preserved as typedefs are
1498 stripped. If necessary a new qualified form of the underlying type
1499 is created.
1500
1501 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1502 not been computed and we're either in the middle of reading symbols, or
1503 there was no name for the typedef in the debug info.
1504
9bc118a5
DE
1505 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1506 QUITs in the symbol reading code can also throw.
1507 Thus this function can throw an exception.
1508
92163a10
JK
1509 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1510 the target type.
c906108c
SS
1511
1512 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1513 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1514 definition, so we can use it in future. There used to be a comment
1515 (but not any code) that if we don't find a full definition, we'd
1516 set a flag so we don't spend time in the future checking the same
1517 type. That would be a mistake, though--we might load in more
92163a10 1518 symbols which contain a full definition for the type. */
c906108c
SS
1519
1520struct type *
a02fd225 1521check_typedef (struct type *type)
c906108c
SS
1522{
1523 struct type *orig_type = type;
92163a10
JK
1524 /* While we're removing typedefs, we don't want to lose qualifiers.
1525 E.g., const/volatile. */
1526 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1527
423c0af8
MS
1528 gdb_assert (type);
1529
c906108c
SS
1530 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1531 {
1532 if (!TYPE_TARGET_TYPE (type))
1533 {
0d5cff50 1534 const char *name;
c906108c
SS
1535 struct symbol *sym;
1536
1537 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1538 reading a symtab. Infinite recursion is one danger. */
c906108c 1539 if (currently_reading_symtab)
92163a10 1540 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1541
1542 name = type_name_no_tag (type);
7ba81444
MS
1543 /* FIXME: shouldn't we separately check the TYPE_NAME and
1544 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1545 VAR_DOMAIN as appropriate? (this code was written before
1546 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1547 if (name == NULL)
1548 {
23136709 1549 stub_noname_complaint ();
92163a10 1550 return make_qualified_type (type, instance_flags, NULL);
c906108c 1551 }
2570f2b7 1552 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1553 if (sym)
1554 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1555 else /* TYPE_CODE_UNDEF */
e9bb382b 1556 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1557 }
1558 type = TYPE_TARGET_TYPE (type);
c906108c 1559
92163a10
JK
1560 /* Preserve the instance flags as we traverse down the typedef chain.
1561
1562 Handling address spaces/classes is nasty, what do we do if there's a
1563 conflict?
1564 E.g., what if an outer typedef marks the type as class_1 and an inner
1565 typedef marks the type as class_2?
1566 This is the wrong place to do such error checking. We leave it to
1567 the code that created the typedef in the first place to flag the
1568 error. We just pick the outer address space (akin to letting the
1569 outer cast in a chain of casting win), instead of assuming
1570 "it can't happen". */
1571 {
1572 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1573 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1574 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1575 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1576
1577 /* Treat code vs data spaces and address classes separately. */
1578 if ((instance_flags & ALL_SPACES) != 0)
1579 new_instance_flags &= ~ALL_SPACES;
1580 if ((instance_flags & ALL_CLASSES) != 0)
1581 new_instance_flags &= ~ALL_CLASSES;
1582
1583 instance_flags |= new_instance_flags;
1584 }
1585 }
a02fd225 1586
7ba81444
MS
1587 /* If this is a struct/class/union with no fields, then check
1588 whether a full definition exists somewhere else. This is for
1589 systems where a type definition with no fields is issued for such
1590 types, instead of identifying them as stub types in the first
1591 place. */
c5aa993b 1592
7ba81444
MS
1593 if (TYPE_IS_OPAQUE (type)
1594 && opaque_type_resolution
1595 && !currently_reading_symtab)
c906108c 1596 {
0d5cff50 1597 const char *name = type_name_no_tag (type);
c5aa993b 1598 struct type *newtype;
d8734c88 1599
c906108c
SS
1600 if (name == NULL)
1601 {
23136709 1602 stub_noname_complaint ();
92163a10 1603 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1604 }
1605 newtype = lookup_transparent_type (name);
ad766c0a 1606
c906108c 1607 if (newtype)
ad766c0a 1608 {
7ba81444
MS
1609 /* If the resolved type and the stub are in the same
1610 objfile, then replace the stub type with the real deal.
1611 But if they're in separate objfiles, leave the stub
1612 alone; we'll just look up the transparent type every time
1613 we call check_typedef. We can't create pointers between
1614 types allocated to different objfiles, since they may
1615 have different lifetimes. Trying to copy NEWTYPE over to
1616 TYPE's objfile is pointless, too, since you'll have to
1617 move over any other types NEWTYPE refers to, which could
1618 be an unbounded amount of stuff. */
ad766c0a 1619 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
1620 type = make_qualified_type (newtype,
1621 TYPE_INSTANCE_FLAGS (type),
1622 type);
ad766c0a
JB
1623 else
1624 type = newtype;
1625 }
c906108c 1626 }
7ba81444
MS
1627 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1628 types. */
74a9bb82 1629 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1630 {
0d5cff50 1631 const char *name = type_name_no_tag (type);
c906108c 1632 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1633 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1634 as appropriate? (this code was written before TYPE_NAME and
1635 TYPE_TAG_NAME were separate). */
c906108c 1636 struct symbol *sym;
d8734c88 1637
c906108c
SS
1638 if (name == NULL)
1639 {
23136709 1640 stub_noname_complaint ();
92163a10 1641 return make_qualified_type (type, instance_flags, NULL);
c906108c 1642 }
2570f2b7 1643 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1644 if (sym)
c26f2453
JB
1645 {
1646 /* Same as above for opaque types, we can replace the stub
92163a10 1647 with the complete type only if they are in the same
c26f2453
JB
1648 objfile. */
1649 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
1650 type = make_qualified_type (SYMBOL_TYPE (sym),
1651 TYPE_INSTANCE_FLAGS (type),
1652 type);
c26f2453
JB
1653 else
1654 type = SYMBOL_TYPE (sym);
1655 }
c906108c
SS
1656 }
1657
74a9bb82 1658 if (TYPE_TARGET_STUB (type))
c906108c
SS
1659 {
1660 struct type *range_type;
1661 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1662
74a9bb82 1663 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1664 {
73e2eb35 1665 /* Nothing we can do. */
c5aa993b 1666 }
c906108c
SS
1667 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1668 && TYPE_NFIELDS (type) == 1
262452ec 1669 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1670 == TYPE_CODE_RANGE))
1671 {
1672 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1673 number of elements and the target type's length.
1674 Watch out for Ada null Ada arrays where the high bound
0963b4bd 1675 is smaller than the low bound. */
43bbcdc2
PH
1676 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1677 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1678 ULONGEST len;
1679
ab0d6e0d 1680 if (high_bound < low_bound)
43bbcdc2 1681 len = 0;
d8734c88
MS
1682 else
1683 {
1684 /* For now, we conservatively take the array length to be 0
1685 if its length exceeds UINT_MAX. The code below assumes
1686 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1687 which is technically not guaranteed by C, but is usually true
1688 (because it would be true if x were unsigned with its
0963b4bd 1689 high-order bit on). It uses the fact that
d8734c88
MS
1690 high_bound-low_bound is always representable in
1691 ULONGEST and that if high_bound-low_bound+1 overflows,
1692 it overflows to 0. We must change these tests if we
1693 decide to increase the representation of TYPE_LENGTH
0963b4bd 1694 from unsigned int to ULONGEST. */
d8734c88
MS
1695 ULONGEST ulow = low_bound, uhigh = high_bound;
1696 ULONGEST tlen = TYPE_LENGTH (target_type);
1697
1698 len = tlen * (uhigh - ulow + 1);
1699 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1700 || len > UINT_MAX)
1701 len = 0;
1702 }
43bbcdc2 1703 TYPE_LENGTH (type) = len;
876cecd0 1704 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1705 }
1706 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1707 {
1708 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1709 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1710 }
1711 }
92163a10
JK
1712
1713 type = make_qualified_type (type, instance_flags, NULL);
1714
7ba81444 1715 /* Cache TYPE_LENGTH for future use. */
c906108c 1716 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 1717
c906108c
SS
1718 return type;
1719}
1720
7ba81444 1721/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1722 occurs, silently return a void type. */
c91ecb25 1723
b9362cc7 1724static struct type *
48319d1f 1725safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1726{
1727 struct ui_file *saved_gdb_stderr;
34365054 1728 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 1729 volatile struct gdb_exception except;
c91ecb25 1730
7ba81444 1731 /* Suppress error messages. */
c91ecb25
ND
1732 saved_gdb_stderr = gdb_stderr;
1733 gdb_stderr = ui_file_new ();
1734
7ba81444 1735 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
1736 TRY_CATCH (except, RETURN_MASK_ERROR)
1737 {
1738 type = parse_and_eval_type (p, length);
1739 }
1740
1741 if (except.reason < 0)
48319d1f 1742 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1743
7ba81444 1744 /* Stop suppressing error messages. */
c91ecb25
ND
1745 ui_file_delete (gdb_stderr);
1746 gdb_stderr = saved_gdb_stderr;
1747
1748 return type;
1749}
1750
c906108c
SS
1751/* Ugly hack to convert method stubs into method types.
1752
7ba81444
MS
1753 He ain't kiddin'. This demangles the name of the method into a
1754 string including argument types, parses out each argument type,
1755 generates a string casting a zero to that type, evaluates the
1756 string, and stuffs the resulting type into an argtype vector!!!
1757 Then it knows the type of the whole function (including argument
1758 types for overloading), which info used to be in the stab's but was
1759 removed to hack back the space required for them. */
c906108c 1760
de17c821 1761static void
fba45db2 1762check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1763{
50810684 1764 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1765 struct fn_field *f;
1766 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1767 char *demangled_name = cplus_demangle (mangled_name,
1768 DMGL_PARAMS | DMGL_ANSI);
1769 char *argtypetext, *p;
1770 int depth = 0, argcount = 1;
ad2f7632 1771 struct field *argtypes;
c906108c
SS
1772 struct type *mtype;
1773
1774 /* Make sure we got back a function string that we can use. */
1775 if (demangled_name)
1776 p = strchr (demangled_name, '(');
502dcf4e
AC
1777 else
1778 p = NULL;
c906108c
SS
1779
1780 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1781 error (_("Internal: Cannot demangle mangled name `%s'."),
1782 mangled_name);
c906108c
SS
1783
1784 /* Now, read in the parameters that define this type. */
1785 p += 1;
1786 argtypetext = p;
1787 while (*p)
1788 {
070ad9f0 1789 if (*p == '(' || *p == '<')
c906108c
SS
1790 {
1791 depth += 1;
1792 }
070ad9f0 1793 else if (*p == ')' || *p == '>')
c906108c
SS
1794 {
1795 depth -= 1;
1796 }
1797 else if (*p == ',' && depth == 0)
1798 {
1799 argcount += 1;
1800 }
1801
1802 p += 1;
1803 }
1804
ad2f7632
DJ
1805 /* If we read one argument and it was ``void'', don't count it. */
1806 if (strncmp (argtypetext, "(void)", 6) == 0)
1807 argcount -= 1;
c906108c 1808
ad2f7632
DJ
1809 /* We need one extra slot, for the THIS pointer. */
1810
1811 argtypes = (struct field *)
1812 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1813 p = argtypetext;
4a1970e4
DJ
1814
1815 /* Add THIS pointer for non-static methods. */
1816 f = TYPE_FN_FIELDLIST1 (type, method_id);
1817 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1818 argcount = 0;
1819 else
1820 {
ad2f7632 1821 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1822 argcount = 1;
1823 }
c906108c 1824
0963b4bd 1825 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
1826 {
1827 depth = 0;
1828 while (*p)
1829 {
1830 if (depth <= 0 && (*p == ',' || *p == ')'))
1831 {
ad2f7632
DJ
1832 /* Avoid parsing of ellipsis, they will be handled below.
1833 Also avoid ``void'' as above. */
1834 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1835 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1836 {
ad2f7632 1837 argtypes[argcount].type =
48319d1f 1838 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1839 argcount += 1;
1840 }
1841 argtypetext = p + 1;
1842 }
1843
070ad9f0 1844 if (*p == '(' || *p == '<')
c906108c
SS
1845 {
1846 depth += 1;
1847 }
070ad9f0 1848 else if (*p == ')' || *p == '>')
c906108c
SS
1849 {
1850 depth -= 1;
1851 }
1852
1853 p += 1;
1854 }
1855 }
1856
c906108c
SS
1857 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1858
1859 /* Now update the old "stub" type into a real type. */
1860 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1861 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1862 TYPE_FIELDS (mtype) = argtypes;
1863 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1864 TYPE_STUB (mtype) = 0;
c906108c 1865 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1866 if (p[-2] == '.')
876cecd0 1867 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1868
1869 xfree (demangled_name);
c906108c
SS
1870}
1871
7ba81444
MS
1872/* This is the external interface to check_stub_method, above. This
1873 function unstubs all of the signatures for TYPE's METHOD_ID method
1874 name. After calling this function TYPE_FN_FIELD_STUB will be
1875 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1876 correct.
de17c821
DJ
1877
1878 This function unfortunately can not die until stabs do. */
1879
1880void
1881check_stub_method_group (struct type *type, int method_id)
1882{
1883 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1884 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1885 int j, found_stub = 0;
de17c821
DJ
1886
1887 for (j = 0; j < len; j++)
1888 if (TYPE_FN_FIELD_STUB (f, j))
1889 {
1890 found_stub = 1;
1891 check_stub_method (type, method_id, j);
1892 }
1893
7ba81444
MS
1894 /* GNU v3 methods with incorrect names were corrected when we read
1895 in type information, because it was cheaper to do it then. The
1896 only GNU v2 methods with incorrect method names are operators and
1897 destructors; destructors were also corrected when we read in type
1898 information.
de17c821
DJ
1899
1900 Therefore the only thing we need to handle here are v2 operator
1901 names. */
1902 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1903 {
1904 int ret;
1905 char dem_opname[256];
1906
7ba81444
MS
1907 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1908 method_id),
de17c821
DJ
1909 dem_opname, DMGL_ANSI);
1910 if (!ret)
7ba81444
MS
1911 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1912 method_id),
de17c821
DJ
1913 dem_opname, 0);
1914 if (ret)
1915 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1916 }
1917}
1918
9655fd1a
JK
1919/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1920const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
1921
1922void
fba45db2 1923allocate_cplus_struct_type (struct type *type)
c906108c 1924{
b4ba55a1
JB
1925 if (HAVE_CPLUS_STRUCT (type))
1926 /* Structure was already allocated. Nothing more to do. */
1927 return;
1928
1929 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1930 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1931 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1932 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1933}
1934
b4ba55a1
JB
1935const struct gnat_aux_type gnat_aux_default =
1936 { NULL };
1937
1938/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1939 and allocate the associated gnat-specific data. The gnat-specific
1940 data is also initialized to gnat_aux_default. */
5212577a 1941
b4ba55a1
JB
1942void
1943allocate_gnat_aux_type (struct type *type)
1944{
1945 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1946 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1947 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1948 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1949}
1950
c906108c
SS
1951/* Helper function to initialize the standard scalar types.
1952
86f62fd7
TT
1953 If NAME is non-NULL, then it is used to initialize the type name.
1954 Note that NAME is not copied; it is required to have a lifetime at
1955 least as long as OBJFILE. */
c906108c
SS
1956
1957struct type *
7ba81444 1958init_type (enum type_code code, int length, int flags,
748e18ae 1959 const char *name, struct objfile *objfile)
c906108c 1960{
52f0bd74 1961 struct type *type;
c906108c
SS
1962
1963 type = alloc_type (objfile);
1964 TYPE_CODE (type) = code;
1965 TYPE_LENGTH (type) = length;
876cecd0
TT
1966
1967 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1968 if (flags & TYPE_FLAG_UNSIGNED)
1969 TYPE_UNSIGNED (type) = 1;
1970 if (flags & TYPE_FLAG_NOSIGN)
1971 TYPE_NOSIGN (type) = 1;
1972 if (flags & TYPE_FLAG_STUB)
1973 TYPE_STUB (type) = 1;
1974 if (flags & TYPE_FLAG_TARGET_STUB)
1975 TYPE_TARGET_STUB (type) = 1;
1976 if (flags & TYPE_FLAG_STATIC)
1977 TYPE_STATIC (type) = 1;
1978 if (flags & TYPE_FLAG_PROTOTYPED)
1979 TYPE_PROTOTYPED (type) = 1;
1980 if (flags & TYPE_FLAG_INCOMPLETE)
1981 TYPE_INCOMPLETE (type) = 1;
1982 if (flags & TYPE_FLAG_VARARGS)
1983 TYPE_VARARGS (type) = 1;
1984 if (flags & TYPE_FLAG_VECTOR)
1985 TYPE_VECTOR (type) = 1;
1986 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1987 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
1988 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1989 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
1990 if (flags & TYPE_FLAG_GNU_IFUNC)
1991 TYPE_GNU_IFUNC (type) = 1;
876cecd0 1992
86f62fd7 1993 TYPE_NAME (type) = name;
c906108c
SS
1994
1995 /* C++ fancies. */
1996
973ccf8b 1997 if (name && strcmp (name, "char") == 0)
876cecd0 1998 TYPE_NOSIGN (type) = 1;
973ccf8b 1999
b4ba55a1 2000 switch (code)
c906108c 2001 {
b4ba55a1
JB
2002 case TYPE_CODE_STRUCT:
2003 case TYPE_CODE_UNION:
2004 case TYPE_CODE_NAMESPACE:
2005 INIT_CPLUS_SPECIFIC (type);
2006 break;
2007 case TYPE_CODE_FLT:
2008 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2009 break;
2010 case TYPE_CODE_FUNC:
b6cdc2c1 2011 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2012 break;
c906108c 2013 }
c16abbde 2014 return type;
c906108c 2015}
5212577a
DE
2016\f
2017/* Queries on types. */
c906108c 2018
c906108c 2019int
fba45db2 2020can_dereference (struct type *t)
c906108c 2021{
7ba81444
MS
2022 /* FIXME: Should we return true for references as well as
2023 pointers? */
c906108c
SS
2024 CHECK_TYPEDEF (t);
2025 return
2026 (t != NULL
2027 && TYPE_CODE (t) == TYPE_CODE_PTR
2028 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2029}
2030
adf40b2e 2031int
fba45db2 2032is_integral_type (struct type *t)
adf40b2e
JM
2033{
2034 CHECK_TYPEDEF (t);
2035 return
2036 ((t != NULL)
d4f3574e
SS
2037 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2038 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2039 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2040 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2041 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2042 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2043}
2044
e09342b5
TJB
2045/* Return true if TYPE is scalar. */
2046
2047static int
2048is_scalar_type (struct type *type)
2049{
2050 CHECK_TYPEDEF (type);
2051
2052 switch (TYPE_CODE (type))
2053 {
2054 case TYPE_CODE_ARRAY:
2055 case TYPE_CODE_STRUCT:
2056 case TYPE_CODE_UNION:
2057 case TYPE_CODE_SET:
2058 case TYPE_CODE_STRING:
e09342b5
TJB
2059 return 0;
2060 default:
2061 return 1;
2062 }
2063}
2064
2065/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2066 the memory layout of a scalar type. E.g., an array or struct with only
2067 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2068
2069int
2070is_scalar_type_recursive (struct type *t)
2071{
2072 CHECK_TYPEDEF (t);
2073
2074 if (is_scalar_type (t))
2075 return 1;
2076 /* Are we dealing with an array or string of known dimensions? */
2077 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2078 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2079 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2080 {
2081 LONGEST low_bound, high_bound;
2082 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2083
2084 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2085
2086 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2087 }
2088 /* Are we dealing with a struct with one element? */
2089 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2090 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2091 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2092 {
2093 int i, n = TYPE_NFIELDS (t);
2094
2095 /* If all elements of the union are scalar, then the union is scalar. */
2096 for (i = 0; i < n; i++)
2097 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2098 return 0;
2099
2100 return 1;
2101 }
2102
2103 return 0;
2104}
2105
4e8f195d
TT
2106/* A helper function which returns true if types A and B represent the
2107 "same" class type. This is true if the types have the same main
2108 type, or the same name. */
2109
2110int
2111class_types_same_p (const struct type *a, const struct type *b)
2112{
2113 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2114 || (TYPE_NAME (a) && TYPE_NAME (b)
2115 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2116}
2117
a9d5ef47
SW
2118/* If BASE is an ancestor of DCLASS return the distance between them.
2119 otherwise return -1;
2120 eg:
2121
2122 class A {};
2123 class B: public A {};
2124 class C: public B {};
2125 class D: C {};
2126
2127 distance_to_ancestor (A, A, 0) = 0
2128 distance_to_ancestor (A, B, 0) = 1
2129 distance_to_ancestor (A, C, 0) = 2
2130 distance_to_ancestor (A, D, 0) = 3
2131
2132 If PUBLIC is 1 then only public ancestors are considered,
2133 and the function returns the distance only if BASE is a public ancestor
2134 of DCLASS.
2135 Eg:
2136
0963b4bd 2137 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2138
0526b37a 2139static int
a9d5ef47 2140distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2141{
2142 int i;
a9d5ef47 2143 int d;
c5aa993b 2144
c906108c
SS
2145 CHECK_TYPEDEF (base);
2146 CHECK_TYPEDEF (dclass);
2147
4e8f195d 2148 if (class_types_same_p (base, dclass))
a9d5ef47 2149 return 0;
c906108c
SS
2150
2151 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2152 {
0526b37a
SW
2153 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2154 continue;
2155
a9d5ef47
SW
2156 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2157 if (d >= 0)
2158 return 1 + d;
4e8f195d 2159 }
c906108c 2160
a9d5ef47 2161 return -1;
c906108c 2162}
4e8f195d 2163
0526b37a
SW
2164/* Check whether BASE is an ancestor or base class or DCLASS
2165 Return 1 if so, and 0 if not.
2166 Note: If BASE and DCLASS are of the same type, this function
2167 will return 1. So for some class A, is_ancestor (A, A) will
2168 return 1. */
2169
2170int
2171is_ancestor (struct type *base, struct type *dclass)
2172{
a9d5ef47 2173 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2174}
2175
4e8f195d
TT
2176/* Like is_ancestor, but only returns true when BASE is a public
2177 ancestor of DCLASS. */
2178
2179int
2180is_public_ancestor (struct type *base, struct type *dclass)
2181{
a9d5ef47 2182 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2183}
2184
2185/* A helper function for is_unique_ancestor. */
2186
2187static int
2188is_unique_ancestor_worker (struct type *base, struct type *dclass,
2189 int *offset,
8af8e3bc
PA
2190 const gdb_byte *valaddr, int embedded_offset,
2191 CORE_ADDR address, struct value *val)
4e8f195d
TT
2192{
2193 int i, count = 0;
2194
2195 CHECK_TYPEDEF (base);
2196 CHECK_TYPEDEF (dclass);
2197
2198 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2199 {
8af8e3bc
PA
2200 struct type *iter;
2201 int this_offset;
4e8f195d 2202
8af8e3bc
PA
2203 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2204
2205 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2206 address, val);
4e8f195d
TT
2207
2208 if (class_types_same_p (base, iter))
2209 {
2210 /* If this is the first subclass, set *OFFSET and set count
2211 to 1. Otherwise, if this is at the same offset as
2212 previous instances, do nothing. Otherwise, increment
2213 count. */
2214 if (*offset == -1)
2215 {
2216 *offset = this_offset;
2217 count = 1;
2218 }
2219 else if (this_offset == *offset)
2220 {
2221 /* Nothing. */
2222 }
2223 else
2224 ++count;
2225 }
2226 else
2227 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2228 valaddr,
2229 embedded_offset + this_offset,
2230 address, val);
4e8f195d
TT
2231 }
2232
2233 return count;
2234}
2235
2236/* Like is_ancestor, but only returns true if BASE is a unique base
2237 class of the type of VAL. */
2238
2239int
2240is_unique_ancestor (struct type *base, struct value *val)
2241{
2242 int offset = -1;
2243
2244 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2245 value_contents_for_printing (val),
2246 value_embedded_offset (val),
2247 value_address (val), val) == 1;
4e8f195d
TT
2248}
2249
c906108c 2250\f
5212577a 2251/* Overload resolution. */
c906108c 2252
6403aeea
SW
2253/* Return the sum of the rank of A with the rank of B. */
2254
2255struct rank
2256sum_ranks (struct rank a, struct rank b)
2257{
2258 struct rank c;
2259 c.rank = a.rank + b.rank;
a9d5ef47 2260 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2261 return c;
2262}
2263
2264/* Compare rank A and B and return:
2265 0 if a = b
2266 1 if a is better than b
2267 -1 if b is better than a. */
2268
2269int
2270compare_ranks (struct rank a, struct rank b)
2271{
2272 if (a.rank == b.rank)
a9d5ef47
SW
2273 {
2274 if (a.subrank == b.subrank)
2275 return 0;
2276 if (a.subrank < b.subrank)
2277 return 1;
2278 if (a.subrank > b.subrank)
2279 return -1;
2280 }
6403aeea
SW
2281
2282 if (a.rank < b.rank)
2283 return 1;
2284
0963b4bd 2285 /* a.rank > b.rank */
6403aeea
SW
2286 return -1;
2287}
c5aa993b 2288
0963b4bd 2289/* Functions for overload resolution begin here. */
c906108c
SS
2290
2291/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2292 0 => A and B are identical
2293 1 => A and B are incomparable
2294 2 => A is better than B
2295 3 => A is worse than B */
c906108c
SS
2296
2297int
fba45db2 2298compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2299{
2300 int i;
2301 int tmp;
c5aa993b
JM
2302 short found_pos = 0; /* any positives in c? */
2303 short found_neg = 0; /* any negatives in c? */
2304
2305 /* differing lengths => incomparable */
c906108c
SS
2306 if (a->length != b->length)
2307 return 1;
2308
c5aa993b
JM
2309 /* Subtract b from a */
2310 for (i = 0; i < a->length; i++)
c906108c 2311 {
6403aeea 2312 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2313 if (tmp > 0)
c5aa993b 2314 found_pos = 1;
c906108c 2315 else if (tmp < 0)
c5aa993b 2316 found_neg = 1;
c906108c
SS
2317 }
2318
2319 if (found_pos)
2320 {
2321 if (found_neg)
c5aa993b 2322 return 1; /* incomparable */
c906108c 2323 else
c5aa993b 2324 return 3; /* A > B */
c906108c 2325 }
c5aa993b
JM
2326 else
2327 /* no positives */
c906108c
SS
2328 {
2329 if (found_neg)
c5aa993b 2330 return 2; /* A < B */
c906108c 2331 else
c5aa993b 2332 return 0; /* A == B */
c906108c
SS
2333 }
2334}
2335
7ba81444
MS
2336/* Rank a function by comparing its parameter types (PARMS, length
2337 NPARMS), to the types of an argument list (ARGS, length NARGS).
2338 Return a pointer to a badness vector. This has NARGS + 1
2339 entries. */
c906108c
SS
2340
2341struct badness_vector *
7ba81444 2342rank_function (struct type **parms, int nparms,
da096638 2343 struct value **args, int nargs)
c906108c
SS
2344{
2345 int i;
c5aa993b 2346 struct badness_vector *bv;
c906108c
SS
2347 int min_len = nparms < nargs ? nparms : nargs;
2348
2349 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2350 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c906108c
SS
2351 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2352
2353 /* First compare the lengths of the supplied lists.
7ba81444 2354 If there is a mismatch, set it to a high value. */
c5aa993b 2355
c906108c 2356 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2357 arguments and ellipsis parameter lists, we should consider those
2358 and rank the length-match more finely. */
c906108c 2359
6403aeea
SW
2360 LENGTH_MATCH (bv) = (nargs != nparms)
2361 ? LENGTH_MISMATCH_BADNESS
2362 : EXACT_MATCH_BADNESS;
c906108c 2363
0963b4bd 2364 /* Now rank all the parameters of the candidate function. */
74cc24b0 2365 for (i = 1; i <= min_len; i++)
da096638
KS
2366 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2367 args[i - 1]);
c906108c 2368
0963b4bd 2369 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2370 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2371 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2372
2373 return bv;
2374}
2375
973ccf8b
DJ
2376/* Compare the names of two integer types, assuming that any sign
2377 qualifiers have been checked already. We do it this way because
2378 there may be an "int" in the name of one of the types. */
2379
2380static int
2381integer_types_same_name_p (const char *first, const char *second)
2382{
2383 int first_p, second_p;
2384
7ba81444
MS
2385 /* If both are shorts, return 1; if neither is a short, keep
2386 checking. */
973ccf8b
DJ
2387 first_p = (strstr (first, "short") != NULL);
2388 second_p = (strstr (second, "short") != NULL);
2389 if (first_p && second_p)
2390 return 1;
2391 if (first_p || second_p)
2392 return 0;
2393
2394 /* Likewise for long. */
2395 first_p = (strstr (first, "long") != NULL);
2396 second_p = (strstr (second, "long") != NULL);
2397 if (first_p && second_p)
2398 return 1;
2399 if (first_p || second_p)
2400 return 0;
2401
2402 /* Likewise for char. */
2403 first_p = (strstr (first, "char") != NULL);
2404 second_p = (strstr (second, "char") != NULL);
2405 if (first_p && second_p)
2406 return 1;
2407 if (first_p || second_p)
2408 return 0;
2409
2410 /* They must both be ints. */
2411 return 1;
2412}
2413
7062b0a0
SW
2414/* Compares type A to type B returns 1 if the represent the same type
2415 0 otherwise. */
2416
bd69fc68 2417int
7062b0a0
SW
2418types_equal (struct type *a, struct type *b)
2419{
2420 /* Identical type pointers. */
2421 /* However, this still doesn't catch all cases of same type for b
2422 and a. The reason is that builtin types are different from
2423 the same ones constructed from the object. */
2424 if (a == b)
2425 return 1;
2426
2427 /* Resolve typedefs */
2428 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2429 a = check_typedef (a);
2430 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2431 b = check_typedef (b);
2432
2433 /* If after resolving typedefs a and b are not of the same type
2434 code then they are not equal. */
2435 if (TYPE_CODE (a) != TYPE_CODE (b))
2436 return 0;
2437
2438 /* If a and b are both pointers types or both reference types then
2439 they are equal of the same type iff the objects they refer to are
2440 of the same type. */
2441 if (TYPE_CODE (a) == TYPE_CODE_PTR
2442 || TYPE_CODE (a) == TYPE_CODE_REF)
2443 return types_equal (TYPE_TARGET_TYPE (a),
2444 TYPE_TARGET_TYPE (b));
2445
0963b4bd 2446 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2447 are exactly the same. This happens when we generate method
2448 stubs. The types won't point to the same address, but they
0963b4bd 2449 really are the same. */
7062b0a0
SW
2450
2451 if (TYPE_NAME (a) && TYPE_NAME (b)
2452 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2453 return 1;
2454
2455 /* Check if identical after resolving typedefs. */
2456 if (a == b)
2457 return 1;
2458
2459 return 0;
2460}
2461
c906108c
SS
2462/* Compare one type (PARM) for compatibility with another (ARG).
2463 * PARM is intended to be the parameter type of a function; and
2464 * ARG is the supplied argument's type. This function tests if
2465 * the latter can be converted to the former.
da096638 2466 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
2467 *
2468 * Return 0 if they are identical types;
2469 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2470 * PARM is to ARG. The higher the return value, the worse the match.
2471 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 2472
6403aeea 2473struct rank
da096638 2474rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 2475{
a9d5ef47 2476 struct rank rank = {0,0};
7062b0a0
SW
2477
2478 if (types_equal (parm, arg))
6403aeea 2479 return EXACT_MATCH_BADNESS;
c906108c
SS
2480
2481 /* Resolve typedefs */
2482 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2483 parm = check_typedef (parm);
2484 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2485 arg = check_typedef (arg);
2486
db577aea 2487 /* See through references, since we can almost make non-references
7ba81444 2488 references. */
db577aea 2489 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 2490 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 2491 REFERENCE_CONVERSION_BADNESS));
db577aea 2492 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 2493 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 2494 REFERENCE_CONVERSION_BADNESS));
5d161b24 2495 if (overload_debug)
7ba81444
MS
2496 /* Debugging only. */
2497 fprintf_filtered (gdb_stderr,
2498 "------ Arg is %s [%d], parm is %s [%d]\n",
2499 TYPE_NAME (arg), TYPE_CODE (arg),
2500 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 2501
0963b4bd 2502 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
2503
2504 switch (TYPE_CODE (parm))
2505 {
c5aa993b
JM
2506 case TYPE_CODE_PTR:
2507 switch (TYPE_CODE (arg))
2508 {
2509 case TYPE_CODE_PTR:
7062b0a0
SW
2510
2511 /* Allowed pointer conversions are:
2512 (a) pointer to void-pointer conversion. */
2513 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 2514 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
2515
2516 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
2517 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2518 TYPE_TARGET_TYPE (arg),
2519 0);
2520 if (rank.subrank >= 0)
2521 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
2522
2523 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2524 case TYPE_CODE_ARRAY:
7062b0a0
SW
2525 if (types_equal (TYPE_TARGET_TYPE (parm),
2526 TYPE_TARGET_TYPE (arg)))
6403aeea 2527 return EXACT_MATCH_BADNESS;
7062b0a0 2528 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2529 case TYPE_CODE_FUNC:
da096638 2530 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 2531 case TYPE_CODE_INT:
a451cb65 2532 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 2533 {
a451cb65
KS
2534 if (value_as_long (value) == 0)
2535 {
2536 /* Null pointer conversion: allow it to be cast to a pointer.
2537 [4.10.1 of C++ standard draft n3290] */
2538 return NULL_POINTER_CONVERSION_BADNESS;
2539 }
2540 else
2541 {
2542 /* If type checking is disabled, allow the conversion. */
2543 if (!strict_type_checking)
2544 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2545 }
da096638
KS
2546 }
2547 /* fall through */
c5aa993b 2548 case TYPE_CODE_ENUM:
4f2aea11 2549 case TYPE_CODE_FLAGS:
c5aa993b
JM
2550 case TYPE_CODE_CHAR:
2551 case TYPE_CODE_RANGE:
2552 case TYPE_CODE_BOOL:
c5aa993b
JM
2553 default:
2554 return INCOMPATIBLE_TYPE_BADNESS;
2555 }
2556 case TYPE_CODE_ARRAY:
2557 switch (TYPE_CODE (arg))
2558 {
2559 case TYPE_CODE_PTR:
2560 case TYPE_CODE_ARRAY:
7ba81444 2561 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 2562 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2563 default:
2564 return INCOMPATIBLE_TYPE_BADNESS;
2565 }
2566 case TYPE_CODE_FUNC:
2567 switch (TYPE_CODE (arg))
2568 {
2569 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 2570 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2571 default:
2572 return INCOMPATIBLE_TYPE_BADNESS;
2573 }
2574 case TYPE_CODE_INT:
2575 switch (TYPE_CODE (arg))
2576 {
2577 case TYPE_CODE_INT:
2578 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2579 {
2580 /* Deal with signed, unsigned, and plain chars and
7ba81444 2581 signed and unsigned ints. */
c5aa993b
JM
2582 if (TYPE_NOSIGN (parm))
2583 {
0963b4bd 2584 /* This case only for character types. */
7ba81444 2585 if (TYPE_NOSIGN (arg))
6403aeea 2586 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
2587 else /* signed/unsigned char -> plain char */
2588 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2589 }
2590 else if (TYPE_UNSIGNED (parm))
2591 {
2592 if (TYPE_UNSIGNED (arg))
2593 {
7ba81444
MS
2594 /* unsigned int -> unsigned int, or
2595 unsigned long -> unsigned long */
2596 if (integer_types_same_name_p (TYPE_NAME (parm),
2597 TYPE_NAME (arg)))
6403aeea 2598 return EXACT_MATCH_BADNESS;
7ba81444
MS
2599 else if (integer_types_same_name_p (TYPE_NAME (arg),
2600 "int")
2601 && integer_types_same_name_p (TYPE_NAME (parm),
2602 "long"))
3e43a32a
MS
2603 /* unsigned int -> unsigned long */
2604 return INTEGER_PROMOTION_BADNESS;
c5aa993b 2605 else
3e43a32a
MS
2606 /* unsigned long -> unsigned int */
2607 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2608 }
2609 else
2610 {
7ba81444
MS
2611 if (integer_types_same_name_p (TYPE_NAME (arg),
2612 "long")
2613 && integer_types_same_name_p (TYPE_NAME (parm),
2614 "int"))
3e43a32a
MS
2615 /* signed long -> unsigned int */
2616 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2617 else
3e43a32a
MS
2618 /* signed int/long -> unsigned int/long */
2619 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2620 }
2621 }
2622 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2623 {
7ba81444
MS
2624 if (integer_types_same_name_p (TYPE_NAME (parm),
2625 TYPE_NAME (arg)))
6403aeea 2626 return EXACT_MATCH_BADNESS;
7ba81444
MS
2627 else if (integer_types_same_name_p (TYPE_NAME (arg),
2628 "int")
2629 && integer_types_same_name_p (TYPE_NAME (parm),
2630 "long"))
c5aa993b
JM
2631 return INTEGER_PROMOTION_BADNESS;
2632 else
1c5cb38e 2633 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2634 }
2635 else
1c5cb38e 2636 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2637 }
2638 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2639 return INTEGER_PROMOTION_BADNESS;
2640 else
1c5cb38e 2641 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2642 case TYPE_CODE_ENUM:
4f2aea11 2643 case TYPE_CODE_FLAGS:
c5aa993b
JM
2644 case TYPE_CODE_CHAR:
2645 case TYPE_CODE_RANGE:
2646 case TYPE_CODE_BOOL:
2647 return INTEGER_PROMOTION_BADNESS;
2648 case TYPE_CODE_FLT:
2649 return INT_FLOAT_CONVERSION_BADNESS;
2650 case TYPE_CODE_PTR:
2651 return NS_POINTER_CONVERSION_BADNESS;
2652 default:
2653 return INCOMPATIBLE_TYPE_BADNESS;
2654 }
2655 break;
2656 case TYPE_CODE_ENUM:
2657 switch (TYPE_CODE (arg))
2658 {
2659 case TYPE_CODE_INT:
2660 case TYPE_CODE_CHAR:
2661 case TYPE_CODE_RANGE:
2662 case TYPE_CODE_BOOL:
2663 case TYPE_CODE_ENUM:
1c5cb38e 2664 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2665 case TYPE_CODE_FLT:
2666 return INT_FLOAT_CONVERSION_BADNESS;
2667 default:
2668 return INCOMPATIBLE_TYPE_BADNESS;
2669 }
2670 break;
2671 case TYPE_CODE_CHAR:
2672 switch (TYPE_CODE (arg))
2673 {
2674 case TYPE_CODE_RANGE:
2675 case TYPE_CODE_BOOL:
2676 case TYPE_CODE_ENUM:
1c5cb38e 2677 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2678 case TYPE_CODE_FLT:
2679 return INT_FLOAT_CONVERSION_BADNESS;
2680 case TYPE_CODE_INT:
2681 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2682 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2683 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2684 return INTEGER_PROMOTION_BADNESS;
2685 /* >>> !! else fall through !! <<< */
2686 case TYPE_CODE_CHAR:
7ba81444
MS
2687 /* Deal with signed, unsigned, and plain chars for C++ and
2688 with int cases falling through from previous case. */
c5aa993b
JM
2689 if (TYPE_NOSIGN (parm))
2690 {
2691 if (TYPE_NOSIGN (arg))
6403aeea 2692 return EXACT_MATCH_BADNESS;
c5aa993b 2693 else
1c5cb38e 2694 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2695 }
2696 else if (TYPE_UNSIGNED (parm))
2697 {
2698 if (TYPE_UNSIGNED (arg))
6403aeea 2699 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2700 else
2701 return INTEGER_PROMOTION_BADNESS;
2702 }
2703 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 2704 return EXACT_MATCH_BADNESS;
c5aa993b 2705 else
1c5cb38e 2706 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2707 default:
2708 return INCOMPATIBLE_TYPE_BADNESS;
2709 }
2710 break;
2711 case TYPE_CODE_RANGE:
2712 switch (TYPE_CODE (arg))
2713 {
2714 case TYPE_CODE_INT:
2715 case TYPE_CODE_CHAR:
2716 case TYPE_CODE_RANGE:
2717 case TYPE_CODE_BOOL:
2718 case TYPE_CODE_ENUM:
1c5cb38e 2719 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2720 case TYPE_CODE_FLT:
2721 return INT_FLOAT_CONVERSION_BADNESS;
2722 default:
2723 return INCOMPATIBLE_TYPE_BADNESS;
2724 }
2725 break;
2726 case TYPE_CODE_BOOL:
2727 switch (TYPE_CODE (arg))
2728 {
5b4f6e25
KS
2729 /* n3290 draft, section 4.12.1 (conv.bool):
2730
2731 "A prvalue of arithmetic, unscoped enumeration, pointer, or
2732 pointer to member type can be converted to a prvalue of type
2733 bool. A zero value, null pointer value, or null member pointer
2734 value is converted to false; any other value is converted to
2735 true. A prvalue of type std::nullptr_t can be converted to a
2736 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
2737 case TYPE_CODE_INT:
2738 case TYPE_CODE_CHAR:
c5aa993b
JM
2739 case TYPE_CODE_ENUM:
2740 case TYPE_CODE_FLT:
5b4f6e25 2741 case TYPE_CODE_MEMBERPTR:
c5aa993b 2742 case TYPE_CODE_PTR:
5b4f6e25
KS
2743 return BOOL_CONVERSION_BADNESS;
2744 case TYPE_CODE_RANGE:
2745 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2746 case TYPE_CODE_BOOL:
6403aeea 2747 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2748 default:
2749 return INCOMPATIBLE_TYPE_BADNESS;
2750 }
2751 break;
2752 case TYPE_CODE_FLT:
2753 switch (TYPE_CODE (arg))
2754 {
2755 case TYPE_CODE_FLT:
2756 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2757 return FLOAT_PROMOTION_BADNESS;
2758 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 2759 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2760 else
2761 return FLOAT_CONVERSION_BADNESS;
2762 case TYPE_CODE_INT:
2763 case TYPE_CODE_BOOL:
2764 case TYPE_CODE_ENUM:
2765 case TYPE_CODE_RANGE:
2766 case TYPE_CODE_CHAR:
2767 return INT_FLOAT_CONVERSION_BADNESS;
2768 default:
2769 return INCOMPATIBLE_TYPE_BADNESS;
2770 }
2771 break;
2772 case TYPE_CODE_COMPLEX:
2773 switch (TYPE_CODE (arg))
7ba81444 2774 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2775 case TYPE_CODE_FLT:
2776 return FLOAT_PROMOTION_BADNESS;
2777 case TYPE_CODE_COMPLEX:
6403aeea 2778 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2779 default:
2780 return INCOMPATIBLE_TYPE_BADNESS;
2781 }
2782 break;
2783 case TYPE_CODE_STRUCT:
0963b4bd 2784 /* currently same as TYPE_CODE_CLASS. */
c5aa993b
JM
2785 switch (TYPE_CODE (arg))
2786 {
2787 case TYPE_CODE_STRUCT:
2788 /* Check for derivation */
a9d5ef47
SW
2789 rank.subrank = distance_to_ancestor (parm, arg, 0);
2790 if (rank.subrank >= 0)
2791 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
2792 /* else fall through */
2793 default:
2794 return INCOMPATIBLE_TYPE_BADNESS;
2795 }
2796 break;
2797 case TYPE_CODE_UNION:
2798 switch (TYPE_CODE (arg))
2799 {
2800 case TYPE_CODE_UNION:
2801 default:
2802 return INCOMPATIBLE_TYPE_BADNESS;
2803 }
2804 break;
0d5de010 2805 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2806 switch (TYPE_CODE (arg))
2807 {
2808 default:
2809 return INCOMPATIBLE_TYPE_BADNESS;
2810 }
2811 break;
2812 case TYPE_CODE_METHOD:
2813 switch (TYPE_CODE (arg))
2814 {
2815
2816 default:
2817 return INCOMPATIBLE_TYPE_BADNESS;
2818 }
2819 break;
2820 case TYPE_CODE_REF:
2821 switch (TYPE_CODE (arg))
2822 {
2823
2824 default:
2825 return INCOMPATIBLE_TYPE_BADNESS;
2826 }
2827
2828 break;
2829 case TYPE_CODE_SET:
2830 switch (TYPE_CODE (arg))
2831 {
2832 /* Not in C++ */
2833 case TYPE_CODE_SET:
7ba81444 2834 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 2835 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
2836 default:
2837 return INCOMPATIBLE_TYPE_BADNESS;
2838 }
2839 break;
2840 case TYPE_CODE_VOID:
2841 default:
2842 return INCOMPATIBLE_TYPE_BADNESS;
2843 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2844}
2845
0963b4bd 2846/* End of functions for overload resolution. */
5212577a
DE
2847\f
2848/* Routines to pretty-print types. */
c906108c 2849
c906108c 2850static void
fba45db2 2851print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2852{
2853 int bitno;
2854
2855 for (bitno = 0; bitno < nbits; bitno++)
2856 {
2857 if ((bitno % 8) == 0)
2858 {
2859 puts_filtered (" ");
2860 }
2861 if (B_TST (bits, bitno))
a3f17187 2862 printf_filtered (("1"));
c906108c 2863 else
a3f17187 2864 printf_filtered (("0"));
c906108c
SS
2865 }
2866}
2867
ad2f7632 2868/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2869 include it since we may get into a infinitely recursive
2870 situation. */
c906108c
SS
2871
2872static void
ad2f7632 2873print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2874{
2875 if (args != NULL)
2876 {
ad2f7632
DJ
2877 int i;
2878
2879 for (i = 0; i < nargs; i++)
2880 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2881 }
2882}
2883
d6a843b5
JK
2884int
2885field_is_static (struct field *f)
2886{
2887 /* "static" fields are the fields whose location is not relative
2888 to the address of the enclosing struct. It would be nice to
2889 have a dedicated flag that would be set for static fields when
2890 the type is being created. But in practice, checking the field
254e6b9e 2891 loc_kind should give us an accurate answer. */
d6a843b5
JK
2892 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2893 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2894}
2895
c906108c 2896static void
fba45db2 2897dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2898{
2899 int method_idx;
2900 int overload_idx;
2901 struct fn_field *f;
2902
2903 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2904 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2905 printf_filtered ("\n");
2906 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2907 {
2908 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2909 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2910 method_idx,
2911 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2912 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2913 gdb_stdout);
a3f17187 2914 printf_filtered (_(") length %d\n"),
c906108c
SS
2915 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2916 for (overload_idx = 0;
2917 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2918 overload_idx++)
2919 {
2920 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2921 overload_idx,
2922 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2923 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2924 gdb_stdout);
c906108c
SS
2925 printf_filtered (")\n");
2926 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2927 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2928 gdb_stdout);
c906108c
SS
2929 printf_filtered ("\n");
2930
2931 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2932 spaces + 8 + 2);
2933
2934 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2935 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2936 gdb_stdout);
c906108c
SS
2937 printf_filtered ("\n");
2938
ad2f7632 2939 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2940 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2941 overload_idx)),
ad2f7632 2942 spaces);
c906108c 2943 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2944 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2945 gdb_stdout);
c906108c
SS
2946 printf_filtered ("\n");
2947
2948 printfi_filtered (spaces + 8, "is_const %d\n",
2949 TYPE_FN_FIELD_CONST (f, overload_idx));
2950 printfi_filtered (spaces + 8, "is_volatile %d\n",
2951 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2952 printfi_filtered (spaces + 8, "is_private %d\n",
2953 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2954 printfi_filtered (spaces + 8, "is_protected %d\n",
2955 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2956 printfi_filtered (spaces + 8, "is_stub %d\n",
2957 TYPE_FN_FIELD_STUB (f, overload_idx));
2958 printfi_filtered (spaces + 8, "voffset %u\n",
2959 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2960 }
2961 }
2962}
2963
2964static void
fba45db2 2965print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2966{
2967 printfi_filtered (spaces, "n_baseclasses %d\n",
2968 TYPE_N_BASECLASSES (type));
2969 printfi_filtered (spaces, "nfn_fields %d\n",
2970 TYPE_NFN_FIELDS (type));
c906108c
SS
2971 if (TYPE_N_BASECLASSES (type) > 0)
2972 {
2973 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2974 TYPE_N_BASECLASSES (type));
7ba81444
MS
2975 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2976 gdb_stdout);
c906108c
SS
2977 printf_filtered (")");
2978
2979 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2980 TYPE_N_BASECLASSES (type));
2981 puts_filtered ("\n");
2982 }
2983 if (TYPE_NFIELDS (type) > 0)
2984 {
2985 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2986 {
7ba81444
MS
2987 printfi_filtered (spaces,
2988 "private_field_bits (%d bits at *",
c906108c 2989 TYPE_NFIELDS (type));
7ba81444
MS
2990 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2991 gdb_stdout);
c906108c
SS
2992 printf_filtered (")");
2993 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2994 TYPE_NFIELDS (type));
2995 puts_filtered ("\n");
2996 }
2997 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2998 {
7ba81444
MS
2999 printfi_filtered (spaces,
3000 "protected_field_bits (%d bits at *",
c906108c 3001 TYPE_NFIELDS (type));
7ba81444
MS
3002 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3003 gdb_stdout);
c906108c
SS
3004 printf_filtered (")");
3005 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3006 TYPE_NFIELDS (type));
3007 puts_filtered ("\n");
3008 }
3009 }
3010 if (TYPE_NFN_FIELDS (type) > 0)
3011 {
3012 dump_fn_fieldlists (type, spaces);
3013 }
3014}
3015
b4ba55a1
JB
3016/* Print the contents of the TYPE's type_specific union, assuming that
3017 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3018
3019static void
3020print_gnat_stuff (struct type *type, int spaces)
3021{
3022 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3023
3024 recursive_dump_type (descriptive_type, spaces + 2);
3025}
3026
c906108c
SS
3027static struct obstack dont_print_type_obstack;
3028
3029void
fba45db2 3030recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3031{
3032 int idx;
3033
3034 if (spaces == 0)
3035 obstack_begin (&dont_print_type_obstack, 0);
3036
3037 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3038 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3039 {
3040 struct type **first_dont_print
7ba81444 3041 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3042
7ba81444
MS
3043 int i = (struct type **)
3044 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3045
3046 while (--i >= 0)
3047 {
3048 if (type == first_dont_print[i])
3049 {
3050 printfi_filtered (spaces, "type node ");
d4f3574e 3051 gdb_print_host_address (type, gdb_stdout);
a3f17187 3052 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3053 return;
3054 }
3055 }
3056
3057 obstack_ptr_grow (&dont_print_type_obstack, type);
3058 }
3059
3060 printfi_filtered (spaces, "type node ");
d4f3574e 3061 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3062 printf_filtered ("\n");
3063 printfi_filtered (spaces, "name '%s' (",
3064 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3065 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3066 printf_filtered (")\n");
e9e79dd9
FF
3067 printfi_filtered (spaces, "tagname '%s' (",
3068 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3069 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3070 printf_filtered (")\n");
c906108c
SS
3071 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3072 switch (TYPE_CODE (type))
3073 {
c5aa993b
JM
3074 case TYPE_CODE_UNDEF:
3075 printf_filtered ("(TYPE_CODE_UNDEF)");
3076 break;
3077 case TYPE_CODE_PTR:
3078 printf_filtered ("(TYPE_CODE_PTR)");
3079 break;
3080 case TYPE_CODE_ARRAY:
3081 printf_filtered ("(TYPE_CODE_ARRAY)");
3082 break;
3083 case TYPE_CODE_STRUCT:
3084 printf_filtered ("(TYPE_CODE_STRUCT)");
3085 break;
3086 case TYPE_CODE_UNION:
3087 printf_filtered ("(TYPE_CODE_UNION)");
3088 break;
3089 case TYPE_CODE_ENUM:
3090 printf_filtered ("(TYPE_CODE_ENUM)");
3091 break;
4f2aea11
MK
3092 case TYPE_CODE_FLAGS:
3093 printf_filtered ("(TYPE_CODE_FLAGS)");
3094 break;
c5aa993b
JM
3095 case TYPE_CODE_FUNC:
3096 printf_filtered ("(TYPE_CODE_FUNC)");
3097 break;
3098 case TYPE_CODE_INT:
3099 printf_filtered ("(TYPE_CODE_INT)");
3100 break;
3101 case TYPE_CODE_FLT:
3102 printf_filtered ("(TYPE_CODE_FLT)");
3103 break;
3104 case TYPE_CODE_VOID:
3105 printf_filtered ("(TYPE_CODE_VOID)");
3106 break;
3107 case TYPE_CODE_SET:
3108 printf_filtered ("(TYPE_CODE_SET)");
3109 break;
3110 case TYPE_CODE_RANGE:
3111 printf_filtered ("(TYPE_CODE_RANGE)");
3112 break;
3113 case TYPE_CODE_STRING:
3114 printf_filtered ("(TYPE_CODE_STRING)");
3115 break;
3116 case TYPE_CODE_ERROR:
3117 printf_filtered ("(TYPE_CODE_ERROR)");
3118 break;
0d5de010
DJ
3119 case TYPE_CODE_MEMBERPTR:
3120 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3121 break;
3122 case TYPE_CODE_METHODPTR:
3123 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3124 break;
3125 case TYPE_CODE_METHOD:
3126 printf_filtered ("(TYPE_CODE_METHOD)");
3127 break;
3128 case TYPE_CODE_REF:
3129 printf_filtered ("(TYPE_CODE_REF)");
3130 break;
3131 case TYPE_CODE_CHAR:
3132 printf_filtered ("(TYPE_CODE_CHAR)");
3133 break;
3134 case TYPE_CODE_BOOL:
3135 printf_filtered ("(TYPE_CODE_BOOL)");
3136 break;
e9e79dd9
FF
3137 case TYPE_CODE_COMPLEX:
3138 printf_filtered ("(TYPE_CODE_COMPLEX)");
3139 break;
c5aa993b
JM
3140 case TYPE_CODE_TYPEDEF:
3141 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3142 break;
5c4e30ca
DC
3143 case TYPE_CODE_NAMESPACE:
3144 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3145 break;
c5aa993b
JM
3146 default:
3147 printf_filtered ("(UNKNOWN TYPE CODE)");
3148 break;
c906108c
SS
3149 }
3150 puts_filtered ("\n");
3151 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3152 if (TYPE_OBJFILE_OWNED (type))
3153 {
3154 printfi_filtered (spaces, "objfile ");
3155 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3156 }
3157 else
3158 {
3159 printfi_filtered (spaces, "gdbarch ");
3160 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3161 }
c906108c
SS
3162 printf_filtered ("\n");
3163 printfi_filtered (spaces, "target_type ");
d4f3574e 3164 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3165 printf_filtered ("\n");
3166 if (TYPE_TARGET_TYPE (type) != NULL)
3167 {
3168 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3169 }
3170 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3171 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3172 printf_filtered ("\n");
3173 printfi_filtered (spaces, "reference_type ");
d4f3574e 3174 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3175 printf_filtered ("\n");
2fdde8f8
DJ
3176 printfi_filtered (spaces, "type_chain ");
3177 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3178 printf_filtered ("\n");
7ba81444
MS
3179 printfi_filtered (spaces, "instance_flags 0x%x",
3180 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3181 if (TYPE_CONST (type))
3182 {
3183 puts_filtered (" TYPE_FLAG_CONST");
3184 }
3185 if (TYPE_VOLATILE (type))
3186 {
3187 puts_filtered (" TYPE_FLAG_VOLATILE");
3188 }
3189 if (TYPE_CODE_SPACE (type))
3190 {
3191 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3192 }
3193 if (TYPE_DATA_SPACE (type))
3194 {
3195 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3196 }
8b2dbe47
KB
3197 if (TYPE_ADDRESS_CLASS_1 (type))
3198 {
3199 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3200 }
3201 if (TYPE_ADDRESS_CLASS_2 (type))
3202 {
3203 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3204 }
06d66ee9
TT
3205 if (TYPE_RESTRICT (type))
3206 {
3207 puts_filtered (" TYPE_FLAG_RESTRICT");
3208 }
2fdde8f8 3209 puts_filtered ("\n");
876cecd0
TT
3210
3211 printfi_filtered (spaces, "flags");
762a036f 3212 if (TYPE_UNSIGNED (type))
c906108c
SS
3213 {
3214 puts_filtered (" TYPE_FLAG_UNSIGNED");
3215 }
762a036f
FF
3216 if (TYPE_NOSIGN (type))
3217 {
3218 puts_filtered (" TYPE_FLAG_NOSIGN");
3219 }
3220 if (TYPE_STUB (type))
c906108c
SS
3221 {
3222 puts_filtered (" TYPE_FLAG_STUB");
3223 }
762a036f
FF
3224 if (TYPE_TARGET_STUB (type))
3225 {
3226 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3227 }
3228 if (TYPE_STATIC (type))
3229 {
3230 puts_filtered (" TYPE_FLAG_STATIC");
3231 }
762a036f
FF
3232 if (TYPE_PROTOTYPED (type))
3233 {
3234 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3235 }
3236 if (TYPE_INCOMPLETE (type))
3237 {
3238 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3239 }
762a036f
FF
3240 if (TYPE_VARARGS (type))
3241 {
3242 puts_filtered (" TYPE_FLAG_VARARGS");
3243 }
f5f8a009
EZ
3244 /* This is used for things like AltiVec registers on ppc. Gcc emits
3245 an attribute for the array type, which tells whether or not we
3246 have a vector, instead of a regular array. */
3247 if (TYPE_VECTOR (type))
3248 {
3249 puts_filtered (" TYPE_FLAG_VECTOR");
3250 }
876cecd0
TT
3251 if (TYPE_FIXED_INSTANCE (type))
3252 {
3253 puts_filtered (" TYPE_FIXED_INSTANCE");
3254 }
3255 if (TYPE_STUB_SUPPORTED (type))
3256 {
3257 puts_filtered (" TYPE_STUB_SUPPORTED");
3258 }
3259 if (TYPE_NOTTEXT (type))
3260 {
3261 puts_filtered (" TYPE_NOTTEXT");
3262 }
c906108c
SS
3263 puts_filtered ("\n");
3264 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3265 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3266 puts_filtered ("\n");
3267 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3268 {
14e75d8e
JK
3269 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3270 printfi_filtered (spaces + 2,
3271 "[%d] enumval %s type ",
3272 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3273 else
3274 printfi_filtered (spaces + 2,
3275 "[%d] bitpos %d bitsize %d type ",
3276 idx, TYPE_FIELD_BITPOS (type, idx),
3277 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3278 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3279 printf_filtered (" name '%s' (",
3280 TYPE_FIELD_NAME (type, idx) != NULL
3281 ? TYPE_FIELD_NAME (type, idx)
3282 : "<NULL>");
d4f3574e 3283 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3284 printf_filtered (")\n");
3285 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3286 {
3287 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3288 }
3289 }
43bbcdc2
PH
3290 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3291 {
3292 printfi_filtered (spaces, "low %s%s high %s%s\n",
3293 plongest (TYPE_LOW_BOUND (type)),
3294 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3295 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3296 TYPE_HIGH_BOUND_UNDEFINED (type)
3297 ? " (undefined)" : "");
43bbcdc2 3298 }
c906108c 3299 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3300 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3301 puts_filtered ("\n");
3302 if (TYPE_VPTR_BASETYPE (type) != NULL)
3303 {
3304 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3305 }
7ba81444
MS
3306 printfi_filtered (spaces, "vptr_fieldno %d\n",
3307 TYPE_VPTR_FIELDNO (type));
c906108c 3308
b4ba55a1
JB
3309 switch (TYPE_SPECIFIC_FIELD (type))
3310 {
3311 case TYPE_SPECIFIC_CPLUS_STUFF:
3312 printfi_filtered (spaces, "cplus_stuff ");
3313 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3314 gdb_stdout);
3315 puts_filtered ("\n");
3316 print_cplus_stuff (type, spaces);
3317 break;
8da61cc4 3318
b4ba55a1
JB
3319 case TYPE_SPECIFIC_GNAT_STUFF:
3320 printfi_filtered (spaces, "gnat_stuff ");
3321 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3322 puts_filtered ("\n");
3323 print_gnat_stuff (type, spaces);
3324 break;
701c159d 3325
b4ba55a1
JB
3326 case TYPE_SPECIFIC_FLOATFORMAT:
3327 printfi_filtered (spaces, "floatformat ");
3328 if (TYPE_FLOATFORMAT (type) == NULL)
3329 puts_filtered ("(null)");
3330 else
3331 {
3332 puts_filtered ("{ ");
3333 if (TYPE_FLOATFORMAT (type)[0] == NULL
3334 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3335 puts_filtered ("(null)");
3336 else
3337 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3338
3339 puts_filtered (", ");
3340 if (TYPE_FLOATFORMAT (type)[1] == NULL
3341 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3342 puts_filtered ("(null)");
3343 else
3344 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3345
3346 puts_filtered (" }");
3347 }
3348 puts_filtered ("\n");
3349 break;
c906108c 3350
b6cdc2c1 3351 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
3352 printfi_filtered (spaces, "calling_convention %d\n",
3353 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 3354 /* tail_call_list is not printed. */
b4ba55a1 3355 break;
c906108c 3356 }
b4ba55a1 3357
c906108c
SS
3358 if (spaces == 0)
3359 obstack_free (&dont_print_type_obstack, NULL);
3360}
5212577a 3361\f
ae5a43e0
DJ
3362/* Trivial helpers for the libiberty hash table, for mapping one
3363 type to another. */
3364
3365struct type_pair
3366{
3367 struct type *old, *new;
3368};
3369
3370static hashval_t
3371type_pair_hash (const void *item)
3372{
3373 const struct type_pair *pair = item;
d8734c88 3374
ae5a43e0
DJ
3375 return htab_hash_pointer (pair->old);
3376}
3377
3378static int
3379type_pair_eq (const void *item_lhs, const void *item_rhs)
3380{
3381 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3382
ae5a43e0
DJ
3383 return lhs->old == rhs->old;
3384}
3385
3386/* Allocate the hash table used by copy_type_recursive to walk
3387 types without duplicates. We use OBJFILE's obstack, because
3388 OBJFILE is about to be deleted. */
3389
3390htab_t
3391create_copied_types_hash (struct objfile *objfile)
3392{
3393 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3394 NULL, &objfile->objfile_obstack,
3395 hashtab_obstack_allocate,
3396 dummy_obstack_deallocate);
3397}
3398
7ba81444
MS
3399/* Recursively copy (deep copy) TYPE, if it is associated with
3400 OBJFILE. Return a new type allocated using malloc, a saved type if
3401 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3402 not associated with OBJFILE. */
ae5a43e0
DJ
3403
3404struct type *
7ba81444
MS
3405copy_type_recursive (struct objfile *objfile,
3406 struct type *type,
ae5a43e0
DJ
3407 htab_t copied_types)
3408{
3409 struct type_pair *stored, pair;
3410 void **slot;
3411 struct type *new_type;
3412
e9bb382b 3413 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3414 return type;
3415
7ba81444
MS
3416 /* This type shouldn't be pointing to any types in other objfiles;
3417 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3418 gdb_assert (TYPE_OBJFILE (type) == objfile);
3419
3420 pair.old = type;
3421 slot = htab_find_slot (copied_types, &pair, INSERT);
3422 if (*slot != NULL)
3423 return ((struct type_pair *) *slot)->new;
3424
e9bb382b 3425 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3426
3427 /* We must add the new type to the hash table immediately, in case
3428 we encounter this type again during a recursive call below. */
3e43a32a
MS
3429 stored
3430 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3431 stored->old = type;
3432 stored->new = new_type;
3433 *slot = stored;
3434
876cecd0
TT
3435 /* Copy the common fields of types. For the main type, we simply
3436 copy the entire thing and then update specific fields as needed. */
3437 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3438 TYPE_OBJFILE_OWNED (new_type) = 0;
3439 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3440
ae5a43e0
DJ
3441 if (TYPE_NAME (type))
3442 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3443 if (TYPE_TAG_NAME (type))
3444 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3445
3446 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3447 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3448
3449 /* Copy the fields. */
ae5a43e0
DJ
3450 if (TYPE_NFIELDS (type))
3451 {
3452 int i, nfields;
3453
3454 nfields = TYPE_NFIELDS (type);
1deafd4e 3455 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
3456 for (i = 0; i < nfields; i++)
3457 {
7ba81444
MS
3458 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3459 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3460 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3461 if (TYPE_FIELD_TYPE (type, i))
3462 TYPE_FIELD_TYPE (new_type, i)
3463 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3464 copied_types);
3465 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3466 TYPE_FIELD_NAME (new_type, i) =
3467 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3468 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3469 {
d6a843b5
JK
3470 case FIELD_LOC_KIND_BITPOS:
3471 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3472 TYPE_FIELD_BITPOS (type, i));
3473 break;
14e75d8e
JK
3474 case FIELD_LOC_KIND_ENUMVAL:
3475 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3476 TYPE_FIELD_ENUMVAL (type, i));
3477 break;
d6a843b5
JK
3478 case FIELD_LOC_KIND_PHYSADDR:
3479 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3480 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3481 break;
3482 case FIELD_LOC_KIND_PHYSNAME:
3483 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3484 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3485 i)));
3486 break;
3487 default:
3488 internal_error (__FILE__, __LINE__,
3489 _("Unexpected type field location kind: %d"),
3490 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3491 }
3492 }
3493 }
3494
0963b4bd 3495 /* For range types, copy the bounds information. */
43bbcdc2
PH
3496 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3497 {
3498 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3499 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3500 }
3501
ae5a43e0
DJ
3502 /* Copy pointers to other types. */
3503 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3504 TYPE_TARGET_TYPE (new_type) =
3505 copy_type_recursive (objfile,
3506 TYPE_TARGET_TYPE (type),
3507 copied_types);
ae5a43e0 3508 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3509 TYPE_VPTR_BASETYPE (new_type) =
3510 copy_type_recursive (objfile,
3511 TYPE_VPTR_BASETYPE (type),
3512 copied_types);
ae5a43e0
DJ
3513 /* Maybe copy the type_specific bits.
3514
3515 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3516 base classes and methods. There's no fundamental reason why we
3517 can't, but at the moment it is not needed. */
3518
3519 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3520 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3521 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3522 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
3523 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3524 INIT_CPLUS_SPECIFIC (new_type);
3525
3526 return new_type;
3527}
3528
4af88198
JB
3529/* Make a copy of the given TYPE, except that the pointer & reference
3530 types are not preserved.
3531
3532 This function assumes that the given type has an associated objfile.
3533 This objfile is used to allocate the new type. */
3534
3535struct type *
3536copy_type (const struct type *type)
3537{
3538 struct type *new_type;
3539
e9bb382b 3540 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3541
e9bb382b 3542 new_type = alloc_type_copy (type);
4af88198
JB
3543 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3544 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3545 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3546 sizeof (struct main_type));
3547
3548 return new_type;
3549}
5212577a 3550\f
e9bb382b
UW
3551/* Helper functions to initialize architecture-specific types. */
3552
3553/* Allocate a type structure associated with GDBARCH and set its
3554 CODE, LENGTH, and NAME fields. */
5212577a 3555
e9bb382b
UW
3556struct type *
3557arch_type (struct gdbarch *gdbarch,
3558 enum type_code code, int length, char *name)
3559{
3560 struct type *type;
3561
3562 type = alloc_type_arch (gdbarch);
3563 TYPE_CODE (type) = code;
3564 TYPE_LENGTH (type) = length;
3565
3566 if (name)
3567 TYPE_NAME (type) = xstrdup (name);
3568
3569 return type;
3570}
3571
3572/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3573 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3574 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 3575
e9bb382b
UW
3576struct type *
3577arch_integer_type (struct gdbarch *gdbarch,
3578 int bit, int unsigned_p, char *name)
3579{
3580 struct type *t;
3581
3582 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3583 if (unsigned_p)
3584 TYPE_UNSIGNED (t) = 1;
3585 if (name && strcmp (name, "char") == 0)
3586 TYPE_NOSIGN (t) = 1;
3587
3588 return t;
3589}
3590
3591/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3592 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3593 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 3594
e9bb382b
UW
3595struct type *
3596arch_character_type (struct gdbarch *gdbarch,
3597 int bit, int unsigned_p, char *name)
3598{
3599 struct type *t;
3600
3601 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3602 if (unsigned_p)
3603 TYPE_UNSIGNED (t) = 1;
3604
3605 return t;
3606}
3607
3608/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3609 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3610 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 3611
e9bb382b
UW
3612struct type *
3613arch_boolean_type (struct gdbarch *gdbarch,
3614 int bit, int unsigned_p, char *name)
3615{
3616 struct type *t;
3617
3618 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3619 if (unsigned_p)
3620 TYPE_UNSIGNED (t) = 1;
3621
3622 return t;
3623}
3624
3625/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3626 BIT is the type size in bits; if BIT equals -1, the size is
3627 determined by the floatformat. NAME is the type name. Set the
3628 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 3629
27067745 3630struct type *
e9bb382b
UW
3631arch_float_type (struct gdbarch *gdbarch,
3632 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3633{
3634 struct type *t;
3635
3636 if (bit == -1)
3637 {
3638 gdb_assert (floatformats != NULL);
3639 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3640 bit = floatformats[0]->totalsize;
3641 }
3642 gdb_assert (bit >= 0);
3643
e9bb382b 3644 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3645 TYPE_FLOATFORMAT (t) = floatformats;
3646 return t;
3647}
3648
e9bb382b
UW
3649/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3650 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 3651
27067745 3652struct type *
e9bb382b
UW
3653arch_complex_type (struct gdbarch *gdbarch,
3654 char *name, struct type *target_type)
27067745
UW
3655{
3656 struct type *t;
d8734c88 3657
e9bb382b
UW
3658 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3659 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3660 TYPE_TARGET_TYPE (t) = target_type;
3661 return t;
3662}
3663
e9bb382b 3664/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3665 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 3666
e9bb382b
UW
3667struct type *
3668arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3669{
3670 int nfields = length * TARGET_CHAR_BIT;
3671 struct type *type;
3672
3673 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3674 TYPE_UNSIGNED (type) = 1;
3675 TYPE_NFIELDS (type) = nfields;
3676 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3677
3678 return type;
3679}
3680
3681/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3682 position BITPOS is called NAME. */
5212577a 3683
e9bb382b
UW
3684void
3685append_flags_type_flag (struct type *type, int bitpos, char *name)
3686{
3687 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3688 gdb_assert (bitpos < TYPE_NFIELDS (type));
3689 gdb_assert (bitpos >= 0);
3690
3691 if (name)
3692 {
3693 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 3694 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
3695 }
3696 else
3697 {
3698 /* Don't show this field to the user. */
945b3a32 3699 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
3700 }
3701}
3702
3703/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3704 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 3705
e9bb382b
UW
3706struct type *
3707arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3708{
3709 struct type *t;
d8734c88 3710
e9bb382b
UW
3711 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3712 t = arch_type (gdbarch, code, 0, NULL);
3713 TYPE_TAG_NAME (t) = name;
3714 INIT_CPLUS_SPECIFIC (t);
3715 return t;
3716}
3717
3718/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
3719 Do not set the field's position or adjust the type's length;
3720 the caller should do so. Return the new field. */
5212577a 3721
f5dff777
DJ
3722struct field *
3723append_composite_type_field_raw (struct type *t, char *name,
3724 struct type *field)
e9bb382b
UW
3725{
3726 struct field *f;
d8734c88 3727
e9bb382b
UW
3728 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3729 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3730 sizeof (struct field) * TYPE_NFIELDS (t));
3731 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3732 memset (f, 0, sizeof f[0]);
3733 FIELD_TYPE (f[0]) = field;
3734 FIELD_NAME (f[0]) = name;
f5dff777
DJ
3735 return f;
3736}
3737
3738/* Add new field with name NAME and type FIELD to composite type T.
3739 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 3740
f5dff777
DJ
3741void
3742append_composite_type_field_aligned (struct type *t, char *name,
3743 struct type *field, int alignment)
3744{
3745 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 3746
e9bb382b
UW
3747 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3748 {
3749 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3750 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3751 }
3752 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3753 {
3754 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3755 if (TYPE_NFIELDS (t) > 1)
3756 {
f41f5e61
PA
3757 SET_FIELD_BITPOS (f[0],
3758 (FIELD_BITPOS (f[-1])
3759 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3760 * TARGET_CHAR_BIT)));
e9bb382b
UW
3761
3762 if (alignment)
3763 {
86c3c1fc
AB
3764 int left;
3765
3766 alignment *= TARGET_CHAR_BIT;
3767 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 3768
e9bb382b
UW
3769 if (left)
3770 {
f41f5e61 3771 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 3772 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
3773 }
3774 }
3775 }
3776 }
3777}
3778
3779/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 3780
e9bb382b
UW
3781void
3782append_composite_type_field (struct type *t, char *name,
3783 struct type *field)
3784{
3785 append_composite_type_field_aligned (t, name, field, 0);
3786}
3787
000177f0
AC
3788static struct gdbarch_data *gdbtypes_data;
3789
3790const struct builtin_type *
3791builtin_type (struct gdbarch *gdbarch)
3792{
3793 return gdbarch_data (gdbarch, gdbtypes_data);
3794}
3795
3796static void *
3797gdbtypes_post_init (struct gdbarch *gdbarch)
3798{
3799 struct builtin_type *builtin_type
3800 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3801
46bf5051 3802 /* Basic types. */
e9bb382b
UW
3803 builtin_type->builtin_void
3804 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3805 builtin_type->builtin_char
3806 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3807 !gdbarch_char_signed (gdbarch), "char");
3808 builtin_type->builtin_signed_char
3809 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3810 0, "signed char");
3811 builtin_type->builtin_unsigned_char
3812 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3813 1, "unsigned char");
3814 builtin_type->builtin_short
3815 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3816 0, "short");
3817 builtin_type->builtin_unsigned_short
3818 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3819 1, "unsigned short");
3820 builtin_type->builtin_int
3821 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3822 0, "int");
3823 builtin_type->builtin_unsigned_int
3824 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3825 1, "unsigned int");
3826 builtin_type->builtin_long
3827 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3828 0, "long");
3829 builtin_type->builtin_unsigned_long
3830 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3831 1, "unsigned long");
3832 builtin_type->builtin_long_long
3833 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3834 0, "long long");
3835 builtin_type->builtin_unsigned_long_long
3836 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3837 1, "unsigned long long");
70bd8e24 3838 builtin_type->builtin_float
e9bb382b 3839 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3840 "float", gdbarch_float_format (gdbarch));
70bd8e24 3841 builtin_type->builtin_double
e9bb382b 3842 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3843 "double", gdbarch_double_format (gdbarch));
70bd8e24 3844 builtin_type->builtin_long_double
e9bb382b 3845 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3846 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3847 builtin_type->builtin_complex
e9bb382b
UW
3848 = arch_complex_type (gdbarch, "complex",
3849 builtin_type->builtin_float);
70bd8e24 3850 builtin_type->builtin_double_complex
e9bb382b
UW
3851 = arch_complex_type (gdbarch, "double complex",
3852 builtin_type->builtin_double);
3853 builtin_type->builtin_string
3854 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3855 builtin_type->builtin_bool
3856 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3857
7678ef8f
TJB
3858 /* The following three are about decimal floating point types, which
3859 are 32-bits, 64-bits and 128-bits respectively. */
3860 builtin_type->builtin_decfloat
e9bb382b 3861 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3862 builtin_type->builtin_decdouble
e9bb382b 3863 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3864 builtin_type->builtin_declong
e9bb382b 3865 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3866
69feb676 3867 /* "True" character types. */
e9bb382b
UW
3868 builtin_type->builtin_true_char
3869 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3870 builtin_type->builtin_true_unsigned_char
3871 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3872
df4df182 3873 /* Fixed-size integer types. */
e9bb382b
UW
3874 builtin_type->builtin_int0
3875 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3876 builtin_type->builtin_int8
3877 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3878 builtin_type->builtin_uint8
3879 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3880 builtin_type->builtin_int16
3881 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3882 builtin_type->builtin_uint16
3883 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3884 builtin_type->builtin_int32
3885 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3886 builtin_type->builtin_uint32
3887 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3888 builtin_type->builtin_int64
3889 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3890 builtin_type->builtin_uint64
3891 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3892 builtin_type->builtin_int128
3893 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3894 builtin_type->builtin_uint128
3895 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
3896 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3897 TYPE_INSTANCE_FLAG_NOTTEXT;
3898 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3899 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 3900
9a22f0d0
PM
3901 /* Wide character types. */
3902 builtin_type->builtin_char16
3903 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3904 builtin_type->builtin_char32
3905 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3906
3907
46bf5051 3908 /* Default data/code pointer types. */
e9bb382b
UW
3909 builtin_type->builtin_data_ptr
3910 = lookup_pointer_type (builtin_type->builtin_void);
3911 builtin_type->builtin_func_ptr
3912 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
3913 builtin_type->builtin_func_func
3914 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 3915
78267919 3916 /* This type represents a GDB internal function. */
e9bb382b
UW
3917 builtin_type->internal_fn
3918 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3919 "<internal function>");
78267919 3920
46bf5051
UW
3921 return builtin_type;
3922}
3923
46bf5051
UW
3924/* This set of objfile-based types is intended to be used by symbol
3925 readers as basic types. */
3926
3927static const struct objfile_data *objfile_type_data;
3928
3929const struct objfile_type *
3930objfile_type (struct objfile *objfile)
3931{
3932 struct gdbarch *gdbarch;
3933 struct objfile_type *objfile_type
3934 = objfile_data (objfile, objfile_type_data);
3935
3936 if (objfile_type)
3937 return objfile_type;
3938
3939 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3940 1, struct objfile_type);
3941
3942 /* Use the objfile architecture to determine basic type properties. */
3943 gdbarch = get_objfile_arch (objfile);
3944
3945 /* Basic types. */
3946 objfile_type->builtin_void
3947 = init_type (TYPE_CODE_VOID, 1,
3948 0,
3949 "void", objfile);
3950
3951 objfile_type->builtin_char
3952 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3953 (TYPE_FLAG_NOSIGN
3954 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3955 "char", objfile);
3956 objfile_type->builtin_signed_char
3957 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3958 0,
3959 "signed char", objfile);
3960 objfile_type->builtin_unsigned_char
3961 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3962 TYPE_FLAG_UNSIGNED,
3963 "unsigned char", objfile);
3964 objfile_type->builtin_short
3965 = init_type (TYPE_CODE_INT,
3966 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3967 0, "short", objfile);
3968 objfile_type->builtin_unsigned_short
3969 = init_type (TYPE_CODE_INT,
3970 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3971 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3972 objfile_type->builtin_int
3973 = init_type (TYPE_CODE_INT,
3974 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3975 0, "int", objfile);
3976 objfile_type->builtin_unsigned_int
3977 = init_type (TYPE_CODE_INT,
3978 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3979 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3980 objfile_type->builtin_long
3981 = init_type (TYPE_CODE_INT,
3982 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3983 0, "long", objfile);
3984 objfile_type->builtin_unsigned_long
3985 = init_type (TYPE_CODE_INT,
3986 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3987 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3988 objfile_type->builtin_long_long
3989 = init_type (TYPE_CODE_INT,
3990 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3991 0, "long long", objfile);
3992 objfile_type->builtin_unsigned_long_long
3993 = init_type (TYPE_CODE_INT,
3994 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3995 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3996
3997 objfile_type->builtin_float
3998 = init_type (TYPE_CODE_FLT,
3999 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4000 0, "float", objfile);
4001 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4002 = gdbarch_float_format (gdbarch);
4003 objfile_type->builtin_double
4004 = init_type (TYPE_CODE_FLT,
4005 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4006 0, "double", objfile);
4007 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4008 = gdbarch_double_format (gdbarch);
4009 objfile_type->builtin_long_double
4010 = init_type (TYPE_CODE_FLT,
4011 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4012 0, "long double", objfile);
4013 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4014 = gdbarch_long_double_format (gdbarch);
4015
4016 /* This type represents a type that was unrecognized in symbol read-in. */
4017 objfile_type->builtin_error
4018 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4019
4020 /* The following set of types is used for symbols with no
4021 debug information. */
4022 objfile_type->nodebug_text_symbol
4023 = init_type (TYPE_CODE_FUNC, 1, 0,
4024 "<text variable, no debug info>", objfile);
4025 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4026 = objfile_type->builtin_int;
0875794a
JK
4027 objfile_type->nodebug_text_gnu_ifunc_symbol
4028 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4029 "<text gnu-indirect-function variable, no debug info>",
4030 objfile);
4031 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4032 = objfile_type->nodebug_text_symbol;
4033 objfile_type->nodebug_got_plt_symbol
4034 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4035 "<text from jump slot in .got.plt, no debug info>",
4036 objfile);
4037 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4038 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4039 objfile_type->nodebug_data_symbol
4040 = init_type (TYPE_CODE_INT,
4041 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4042 "<data variable, no debug info>", objfile);
4043 objfile_type->nodebug_unknown_symbol
4044 = init_type (TYPE_CODE_INT, 1, 0,
4045 "<variable (not text or data), no debug info>", objfile);
4046 objfile_type->nodebug_tls_symbol
4047 = init_type (TYPE_CODE_INT,
4048 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4049 "<thread local variable, no debug info>", objfile);
000177f0
AC
4050
4051 /* NOTE: on some targets, addresses and pointers are not necessarily
4052 the same --- for example, on the D10V, pointers are 16 bits long,
4053 but addresses are 32 bits long. See doc/gdbint.texinfo,
4054 ``Pointers Are Not Always Addresses''.
4055
4056 The upshot is:
4057 - gdb's `struct type' always describes the target's
4058 representation.
4059 - gdb's `struct value' objects should always hold values in
4060 target form.
4061 - gdb's CORE_ADDR values are addresses in the unified virtual
4062 address space that the assembler and linker work with. Thus,
4063 since target_read_memory takes a CORE_ADDR as an argument, it
4064 can access any memory on the target, even if the processor has
4065 separate code and data address spaces.
4066
4067 So, for example:
4068 - If v is a value holding a D10V code pointer, its contents are
4069 in target form: a big-endian address left-shifted two bits.
4070 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
4071 sizeof (void *) == 2 on the target.
4072
46bf5051
UW
4073 In this context, objfile_type->builtin_core_addr is a bit odd:
4074 it's a target type for a value the target will never see. It's
4075 only used to hold the values of (typeless) linker symbols, which
4076 are indeed in the unified virtual address space. */
000177f0 4077
46bf5051
UW
4078 objfile_type->builtin_core_addr
4079 = init_type (TYPE_CODE_INT,
4080 gdbarch_addr_bit (gdbarch) / 8,
4081 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4082
46bf5051
UW
4083 set_objfile_data (objfile, objfile_type_data, objfile_type);
4084 return objfile_type;
000177f0
AC
4085}
4086
5212577a 4087extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 4088
c906108c 4089void
fba45db2 4090_initialize_gdbtypes (void)
c906108c 4091{
5674de60 4092 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4093 objfile_type_data = register_objfile_data ();
5674de60 4094
ccce17b0
YQ
4095 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4096 _("Set debugging of C++ overloading."),
4097 _("Show debugging of C++ overloading."),
4098 _("When enabled, ranking of the "
4099 "functions is displayed."),
4100 NULL,
4101 show_overload_debug,
4102 &setdebuglist, &showdebuglist);
5674de60 4103
7ba81444 4104 /* Add user knob for controlling resolution of opaque types. */
5674de60 4105 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4106 &opaque_type_resolution,
4107 _("Set resolution of opaque struct/class/union"
4108 " types (if set before loading symbols)."),
4109 _("Show resolution of opaque struct/class/union"
4110 " types (if set before loading symbols)."),
4111 NULL, NULL,
5674de60
UW
4112 show_opaque_type_resolution,
4113 &setlist, &showlist);
a451cb65
KS
4114
4115 /* Add an option to permit non-strict type checking. */
4116 add_setshow_boolean_cmd ("type", class_support,
4117 &strict_type_checking,
4118 _("Set strict type checking."),
4119 _("Show strict type checking."),
4120 NULL, NULL,
4121 show_strict_type_checking,
4122 &setchecklist, &showchecklist);
c906108c 4123}
This page took 1.651445 seconds and 4 git commands to generate.