This patch adds support to objdump for disassembly of NFP (Netronome Flow Processor...
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 65const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 66
8da61cc4 67/* Floatformat pairs. */
f9e9243a
UW
68const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71};
8da61cc4
DJ
72const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75};
76const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79};
80const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83};
84const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87};
88const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91};
92const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95};
96const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99};
100const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103};
104const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107};
108const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111};
b14d30e1 112const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
b14d30e1 115};
8da61cc4 116
2873700e
KS
117/* Should opaque types be resolved? */
118
119static int opaque_type_resolution = 1;
120
121/* A flag to enable printing of debugging information of C++
122 overloading. */
123
124unsigned int overload_debug = 0;
125
a451cb65
KS
126/* A flag to enable strict type checking. */
127
128static int strict_type_checking = 1;
129
2873700e 130/* A function to show whether opaque types are resolved. */
5212577a 131
920d2a44
AC
132static void
133show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
134 struct cmd_list_element *c,
135 const char *value)
920d2a44 136{
3e43a32a
MS
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
139 value);
140}
141
2873700e 142/* A function to show whether C++ overload debugging is enabled. */
5212577a 143
920d2a44
AC
144static void
145show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
7ba81444
MS
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
920d2a44 150}
c906108c 151
a451cb65
KS
152/* A function to show the status of strict type checking. */
153
154static void
155show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159}
160
5212577a 161\f
e9bb382b
UW
162/* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
c906108c
SS
165
166struct type *
fba45db2 167alloc_type (struct objfile *objfile)
c906108c 168{
52f0bd74 169 struct type *type;
c906108c 170
e9bb382b
UW
171 gdb_assert (objfile != NULL);
172
7ba81444 173 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
c906108c 178
e9bb382b
UW
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
c906108c 181
7ba81444 182 /* Initialize the fields that might not be zero. */
c906108c
SS
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 186
c16abbde 187 return type;
c906108c
SS
188}
189
e9bb382b
UW
190/* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
8f57eec2 192 on the obstack associated with GDBARCH. */
e9bb382b
UW
193
194struct type *
195alloc_type_arch (struct gdbarch *gdbarch)
196{
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
8f57eec2
PP
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240}
241
99ad9427
YQ
242/* See gdbtypes.h. */
243
244struct type *
245get_target_type (struct type *type)
246{
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255}
256
2e056931
SM
257/* See gdbtypes.h. */
258
259unsigned int
260type_length_units (struct type *type)
261{
262 struct gdbarch *arch = get_type_arch (type);
263 int unit_size = gdbarch_addressable_memory_unit_size (arch);
264
265 return TYPE_LENGTH (type) / unit_size;
266}
267
2fdde8f8
DJ
268/* Alloc a new type instance structure, fill it with some defaults,
269 and point it at OLDTYPE. Allocate the new type instance from the
270 same place as OLDTYPE. */
271
272static struct type *
273alloc_type_instance (struct type *oldtype)
274{
275 struct type *type;
276
277 /* Allocate the structure. */
278
e9bb382b 279 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 280 type = XCNEW (struct type);
2fdde8f8 281 else
1deafd4e
PA
282 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
283 struct type);
284
2fdde8f8
DJ
285 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
286
287 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
288
c16abbde 289 return type;
2fdde8f8
DJ
290}
291
292/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 293 replacing it with something else. Preserve owner information. */
5212577a 294
2fdde8f8
DJ
295static void
296smash_type (struct type *type)
297{
e9bb382b
UW
298 int objfile_owned = TYPE_OBJFILE_OWNED (type);
299 union type_owner owner = TYPE_OWNER (type);
300
2fdde8f8
DJ
301 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
302
e9bb382b
UW
303 /* Restore owner information. */
304 TYPE_OBJFILE_OWNED (type) = objfile_owned;
305 TYPE_OWNER (type) = owner;
306
2fdde8f8
DJ
307 /* For now, delete the rings. */
308 TYPE_CHAIN (type) = type;
309
310 /* For now, leave the pointer/reference types alone. */
311}
312
c906108c
SS
313/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
314 to a pointer to memory where the pointer type should be stored.
315 If *TYPEPTR is zero, update it to point to the pointer type we return.
316 We allocate new memory if needed. */
317
318struct type *
fba45db2 319make_pointer_type (struct type *type, struct type **typeptr)
c906108c 320{
52f0bd74 321 struct type *ntype; /* New type */
053cb41b 322 struct type *chain;
c906108c
SS
323
324 ntype = TYPE_POINTER_TYPE (type);
325
c5aa993b 326 if (ntype)
c906108c 327 {
c5aa993b 328 if (typeptr == 0)
7ba81444
MS
329 return ntype; /* Don't care about alloc,
330 and have new type. */
c906108c 331 else if (*typeptr == 0)
c5aa993b 332 {
7ba81444 333 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 334 return ntype;
c5aa993b 335 }
c906108c
SS
336 }
337
338 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
339 {
e9bb382b 340 ntype = alloc_type_copy (type);
c906108c
SS
341 if (typeptr)
342 *typeptr = ntype;
343 }
7ba81444 344 else /* We have storage, but need to reset it. */
c906108c
SS
345 {
346 ntype = *typeptr;
053cb41b 347 chain = TYPE_CHAIN (ntype);
2fdde8f8 348 smash_type (ntype);
053cb41b 349 TYPE_CHAIN (ntype) = chain;
c906108c
SS
350 }
351
352 TYPE_TARGET_TYPE (ntype) = type;
353 TYPE_POINTER_TYPE (type) = ntype;
354
5212577a 355 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 356
50810684
UW
357 TYPE_LENGTH (ntype)
358 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
359 TYPE_CODE (ntype) = TYPE_CODE_PTR;
360
67b2adb2 361 /* Mark pointers as unsigned. The target converts between pointers
76e71323 362 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 363 gdbarch_address_to_pointer. */
876cecd0 364 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 365
053cb41b
JB
366 /* Update the length of all the other variants of this type. */
367 chain = TYPE_CHAIN (ntype);
368 while (chain != ntype)
369 {
370 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
371 chain = TYPE_CHAIN (chain);
372 }
373
c906108c
SS
374 return ntype;
375}
376
377/* Given a type TYPE, return a type of pointers to that type.
378 May need to construct such a type if this is the first use. */
379
380struct type *
fba45db2 381lookup_pointer_type (struct type *type)
c906108c 382{
c5aa993b 383 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
384}
385
7ba81444
MS
386/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
387 points to a pointer to memory where the reference type should be
388 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
389 type we return. We allocate new memory if needed. REFCODE denotes
390 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
391
392struct type *
3b224330
AV
393make_reference_type (struct type *type, struct type **typeptr,
394 enum type_code refcode)
c906108c 395{
52f0bd74 396 struct type *ntype; /* New type */
3b224330 397 struct type **reftype;
1e98b326 398 struct type *chain;
c906108c 399
3b224330
AV
400 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
401
402 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
403 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 404
c5aa993b 405 if (ntype)
c906108c 406 {
c5aa993b 407 if (typeptr == 0)
7ba81444
MS
408 return ntype; /* Don't care about alloc,
409 and have new type. */
c906108c 410 else if (*typeptr == 0)
c5aa993b 411 {
7ba81444 412 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 413 return ntype;
c5aa993b 414 }
c906108c
SS
415 }
416
417 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
418 {
e9bb382b 419 ntype = alloc_type_copy (type);
c906108c
SS
420 if (typeptr)
421 *typeptr = ntype;
422 }
7ba81444 423 else /* We have storage, but need to reset it. */
c906108c
SS
424 {
425 ntype = *typeptr;
1e98b326 426 chain = TYPE_CHAIN (ntype);
2fdde8f8 427 smash_type (ntype);
1e98b326 428 TYPE_CHAIN (ntype) = chain;
c906108c
SS
429 }
430
431 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
432 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
433 : &TYPE_RVALUE_REFERENCE_TYPE (type));
434
435 *reftype = ntype;
c906108c 436
7ba81444
MS
437 /* FIXME! Assume the machine has only one representation for
438 references, and that it matches the (only) representation for
439 pointers! */
c906108c 440
50810684
UW
441 TYPE_LENGTH (ntype) =
442 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 443 TYPE_CODE (ntype) = refcode;
c5aa993b 444
3b224330 445 *reftype = ntype;
c906108c 446
1e98b326
JB
447 /* Update the length of all the other variants of this type. */
448 chain = TYPE_CHAIN (ntype);
449 while (chain != ntype)
450 {
451 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
452 chain = TYPE_CHAIN (chain);
453 }
454
c906108c
SS
455 return ntype;
456}
457
7ba81444
MS
458/* Same as above, but caller doesn't care about memory allocation
459 details. */
c906108c
SS
460
461struct type *
3b224330
AV
462lookup_reference_type (struct type *type, enum type_code refcode)
463{
464 return make_reference_type (type, (struct type **) 0, refcode);
465}
466
467/* Lookup the lvalue reference type for the type TYPE. */
468
469struct type *
470lookup_lvalue_reference_type (struct type *type)
471{
472 return lookup_reference_type (type, TYPE_CODE_REF);
473}
474
475/* Lookup the rvalue reference type for the type TYPE. */
476
477struct type *
478lookup_rvalue_reference_type (struct type *type)
c906108c 479{
3b224330 480 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
481}
482
7ba81444
MS
483/* Lookup a function type that returns type TYPE. TYPEPTR, if
484 nonzero, points to a pointer to memory where the function type
485 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 486 function type we return. We allocate new memory if needed. */
c906108c
SS
487
488struct type *
0c8b41f1 489make_function_type (struct type *type, struct type **typeptr)
c906108c 490{
52f0bd74 491 struct type *ntype; /* New type */
c906108c
SS
492
493 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
494 {
e9bb382b 495 ntype = alloc_type_copy (type);
c906108c
SS
496 if (typeptr)
497 *typeptr = ntype;
498 }
7ba81444 499 else /* We have storage, but need to reset it. */
c906108c
SS
500 {
501 ntype = *typeptr;
2fdde8f8 502 smash_type (ntype);
c906108c
SS
503 }
504
505 TYPE_TARGET_TYPE (ntype) = type;
506
507 TYPE_LENGTH (ntype) = 1;
508 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 509
b6cdc2c1
JK
510 INIT_FUNC_SPECIFIC (ntype);
511
c906108c
SS
512 return ntype;
513}
514
c906108c
SS
515/* Given a type TYPE, return a type of functions that return that type.
516 May need to construct such a type if this is the first use. */
517
518struct type *
fba45db2 519lookup_function_type (struct type *type)
c906108c 520{
0c8b41f1 521 return make_function_type (type, (struct type **) 0);
c906108c
SS
522}
523
71918a86 524/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
525 function type. If the final type in PARAM_TYPES is NULL, make a
526 varargs function. */
71918a86
TT
527
528struct type *
529lookup_function_type_with_arguments (struct type *type,
530 int nparams,
531 struct type **param_types)
532{
533 struct type *fn = make_function_type (type, (struct type **) 0);
534 int i;
535
e314d629 536 if (nparams > 0)
a6fb9c08 537 {
e314d629
TT
538 if (param_types[nparams - 1] == NULL)
539 {
540 --nparams;
541 TYPE_VARARGS (fn) = 1;
542 }
543 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
544 == TYPE_CODE_VOID)
545 {
546 --nparams;
547 /* Caller should have ensured this. */
548 gdb_assert (nparams == 0);
549 TYPE_PROTOTYPED (fn) = 1;
550 }
54990598
PA
551 else
552 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
553 }
554
71918a86 555 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
556 TYPE_FIELDS (fn)
557 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
558 for (i = 0; i < nparams; ++i)
559 TYPE_FIELD_TYPE (fn, i) = param_types[i];
560
561 return fn;
562}
563
47663de5
MS
564/* Identify address space identifier by name --
565 return the integer flag defined in gdbtypes.h. */
5212577a
DE
566
567int
50810684 568address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 569{
8b2dbe47 570 int type_flags;
d8734c88 571
7ba81444 572 /* Check for known address space delimiters. */
47663de5 573 if (!strcmp (space_identifier, "code"))
876cecd0 574 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 575 else if (!strcmp (space_identifier, "data"))
876cecd0 576 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
577 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
578 && gdbarch_address_class_name_to_type_flags (gdbarch,
579 space_identifier,
580 &type_flags))
8b2dbe47 581 return type_flags;
47663de5 582 else
8a3fe4f8 583 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
584}
585
586/* Identify address space identifier by integer flag as defined in
7ba81444 587 gdbtypes.h -- return the string version of the adress space name. */
47663de5 588
321432c0 589const char *
50810684 590address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 591{
876cecd0 592 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 593 return "code";
876cecd0 594 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 595 return "data";
876cecd0 596 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
597 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
598 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
599 else
600 return NULL;
601}
602
2fdde8f8 603/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
604
605 If STORAGE is non-NULL, create the new type instance there.
606 STORAGE must be in the same obstack as TYPE. */
47663de5 607
b9362cc7 608static struct type *
2fdde8f8
DJ
609make_qualified_type (struct type *type, int new_flags,
610 struct type *storage)
47663de5
MS
611{
612 struct type *ntype;
613
614 ntype = type;
5f61c20e
JK
615 do
616 {
617 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
618 return ntype;
619 ntype = TYPE_CHAIN (ntype);
620 }
621 while (ntype != type);
47663de5 622
2fdde8f8
DJ
623 /* Create a new type instance. */
624 if (storage == NULL)
625 ntype = alloc_type_instance (type);
626 else
627 {
7ba81444
MS
628 /* If STORAGE was provided, it had better be in the same objfile
629 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
630 if one objfile is freed and the other kept, we'd have
631 dangling pointers. */
ad766c0a
JB
632 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
633
2fdde8f8
DJ
634 ntype = storage;
635 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
636 TYPE_CHAIN (ntype) = ntype;
637 }
47663de5
MS
638
639 /* Pointers or references to the original type are not relevant to
2fdde8f8 640 the new type. */
47663de5
MS
641 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
642 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 643
2fdde8f8
DJ
644 /* Chain the new qualified type to the old type. */
645 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
646 TYPE_CHAIN (type) = ntype;
647
648 /* Now set the instance flags and return the new type. */
649 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 650
ab5d3da6
KB
651 /* Set length of new type to that of the original type. */
652 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
653
47663de5
MS
654 return ntype;
655}
656
2fdde8f8
DJ
657/* Make an address-space-delimited variant of a type -- a type that
658 is identical to the one supplied except that it has an address
659 space attribute attached to it (such as "code" or "data").
660
7ba81444
MS
661 The space attributes "code" and "data" are for Harvard
662 architectures. The address space attributes are for architectures
663 which have alternately sized pointers or pointers with alternate
664 representations. */
2fdde8f8
DJ
665
666struct type *
667make_type_with_address_space (struct type *type, int space_flag)
668{
2fdde8f8 669 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
670 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
671 | TYPE_INSTANCE_FLAG_DATA_SPACE
672 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
673 | space_flag);
674
675 return make_qualified_type (type, new_flags, NULL);
676}
c906108c
SS
677
678/* Make a "c-v" variant of a type -- a type that is identical to the
679 one supplied except that it may have const or volatile attributes
680 CNST is a flag for setting the const attribute
681 VOLTL is a flag for setting the volatile attribute
682 TYPE is the base type whose variant we are creating.
c906108c 683
ad766c0a
JB
684 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
685 storage to hold the new qualified type; *TYPEPTR and TYPE must be
686 in the same objfile. Otherwise, allocate fresh memory for the new
687 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
688 new type we construct. */
5212577a 689
c906108c 690struct type *
7ba81444
MS
691make_cv_type (int cnst, int voltl,
692 struct type *type,
693 struct type **typeptr)
c906108c 694{
52f0bd74 695 struct type *ntype; /* New type */
c906108c 696
2fdde8f8 697 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
698 & ~(TYPE_INSTANCE_FLAG_CONST
699 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 700
c906108c 701 if (cnst)
876cecd0 702 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
703
704 if (voltl)
876cecd0 705 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 706
2fdde8f8 707 if (typeptr && *typeptr != NULL)
a02fd225 708 {
ad766c0a
JB
709 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
710 a C-V variant chain that threads across objfiles: if one
711 objfile gets freed, then the other has a broken C-V chain.
712
713 This code used to try to copy over the main type from TYPE to
714 *TYPEPTR if they were in different objfiles, but that's
715 wrong, too: TYPE may have a field list or member function
716 lists, which refer to types of their own, etc. etc. The
717 whole shebang would need to be copied over recursively; you
718 can't have inter-objfile pointers. The only thing to do is
719 to leave stub types as stub types, and look them up afresh by
720 name each time you encounter them. */
721 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
722 }
723
7ba81444
MS
724 ntype = make_qualified_type (type, new_flags,
725 typeptr ? *typeptr : NULL);
c906108c 726
2fdde8f8
DJ
727 if (typeptr != NULL)
728 *typeptr = ntype;
a02fd225 729
2fdde8f8 730 return ntype;
a02fd225 731}
c906108c 732
06d66ee9
TT
733/* Make a 'restrict'-qualified version of TYPE. */
734
735struct type *
736make_restrict_type (struct type *type)
737{
738 return make_qualified_type (type,
739 (TYPE_INSTANCE_FLAGS (type)
740 | TYPE_INSTANCE_FLAG_RESTRICT),
741 NULL);
742}
743
f1660027
TT
744/* Make a type without const, volatile, or restrict. */
745
746struct type *
747make_unqualified_type (struct type *type)
748{
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 & ~(TYPE_INSTANCE_FLAG_CONST
752 | TYPE_INSTANCE_FLAG_VOLATILE
753 | TYPE_INSTANCE_FLAG_RESTRICT)),
754 NULL);
755}
756
a2c2acaf
MW
757/* Make a '_Atomic'-qualified version of TYPE. */
758
759struct type *
760make_atomic_type (struct type *type)
761{
762 return make_qualified_type (type,
763 (TYPE_INSTANCE_FLAGS (type)
764 | TYPE_INSTANCE_FLAG_ATOMIC),
765 NULL);
766}
767
2fdde8f8
DJ
768/* Replace the contents of ntype with the type *type. This changes the
769 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
770 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 771
cda6c68a
JB
772 In order to build recursive types, it's inevitable that we'll need
773 to update types in place --- but this sort of indiscriminate
774 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
775 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
776 clear if more steps are needed. */
5212577a 777
dd6bda65
DJ
778void
779replace_type (struct type *ntype, struct type *type)
780{
ab5d3da6 781 struct type *chain;
dd6bda65 782
ad766c0a
JB
783 /* These two types had better be in the same objfile. Otherwise,
784 the assignment of one type's main type structure to the other
785 will produce a type with references to objects (names; field
786 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 787 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 788
2fdde8f8 789 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 790
7ba81444
MS
791 /* The type length is not a part of the main type. Update it for
792 each type on the variant chain. */
ab5d3da6 793 chain = ntype;
5f61c20e
JK
794 do
795 {
796 /* Assert that this element of the chain has no address-class bits
797 set in its flags. Such type variants might have type lengths
798 which are supposed to be different from the non-address-class
799 variants. This assertion shouldn't ever be triggered because
800 symbol readers which do construct address-class variants don't
801 call replace_type(). */
802 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
803
804 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
805 chain = TYPE_CHAIN (chain);
806 }
807 while (ntype != chain);
ab5d3da6 808
2fdde8f8
DJ
809 /* Assert that the two types have equivalent instance qualifiers.
810 This should be true for at least all of our debug readers. */
811 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
812}
813
c906108c
SS
814/* Implement direct support for MEMBER_TYPE in GNU C++.
815 May need to construct such a type if this is the first use.
816 The TYPE is the type of the member. The DOMAIN is the type
817 of the aggregate that the member belongs to. */
818
819struct type *
0d5de010 820lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 821{
52f0bd74 822 struct type *mtype;
c906108c 823
e9bb382b 824 mtype = alloc_type_copy (type);
0d5de010 825 smash_to_memberptr_type (mtype, domain, type);
c16abbde 826 return mtype;
c906108c
SS
827}
828
0d5de010
DJ
829/* Return a pointer-to-method type, for a method of type TO_TYPE. */
830
831struct type *
832lookup_methodptr_type (struct type *to_type)
833{
834 struct type *mtype;
835
e9bb382b 836 mtype = alloc_type_copy (to_type);
0b92b5bb 837 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
838 return mtype;
839}
840
7ba81444
MS
841/* Allocate a stub method whose return type is TYPE. This apparently
842 happens for speed of symbol reading, since parsing out the
843 arguments to the method is cpu-intensive, the way we are doing it.
844 So, we will fill in arguments later. This always returns a fresh
845 type. */
c906108c
SS
846
847struct type *
fba45db2 848allocate_stub_method (struct type *type)
c906108c
SS
849{
850 struct type *mtype;
851
e9bb382b
UW
852 mtype = alloc_type_copy (type);
853 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
854 TYPE_LENGTH (mtype) = 1;
855 TYPE_STUB (mtype) = 1;
c906108c 856 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 857 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 858 return mtype;
c906108c
SS
859}
860
0f59d5fc
PA
861/* See gdbtypes.h. */
862
863bool
864operator== (const dynamic_prop &l, const dynamic_prop &r)
865{
866 if (l.kind != r.kind)
867 return false;
868
869 switch (l.kind)
870 {
871 case PROP_UNDEFINED:
872 return true;
873 case PROP_CONST:
874 return l.data.const_val == r.data.const_val;
875 case PROP_ADDR_OFFSET:
876 case PROP_LOCEXPR:
877 case PROP_LOCLIST:
878 return l.data.baton == r.data.baton;
879 }
880
881 gdb_assert_not_reached ("unhandled dynamic_prop kind");
882}
883
884/* See gdbtypes.h. */
885
886bool
887operator== (const range_bounds &l, const range_bounds &r)
888{
889#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
890
891 return (FIELD_EQ (low)
892 && FIELD_EQ (high)
893 && FIELD_EQ (flag_upper_bound_is_count)
894 && FIELD_EQ (flag_bound_evaluated));
895
896#undef FIELD_EQ
897}
898
729efb13
SA
899/* Create a range type with a dynamic range from LOW_BOUND to
900 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
901
902struct type *
729efb13
SA
903create_range_type (struct type *result_type, struct type *index_type,
904 const struct dynamic_prop *low_bound,
905 const struct dynamic_prop *high_bound)
c906108c
SS
906{
907 if (result_type == NULL)
e9bb382b 908 result_type = alloc_type_copy (index_type);
c906108c
SS
909 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
910 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 911 if (TYPE_STUB (index_type))
876cecd0 912 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
913 else
914 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 915
43bbcdc2
PH
916 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
917 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
918 TYPE_RANGE_DATA (result_type)->low = *low_bound;
919 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 920
729efb13 921 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 922 TYPE_UNSIGNED (result_type) = 1;
c906108c 923
45e44d27
JB
924 /* Ada allows the declaration of range types whose upper bound is
925 less than the lower bound, so checking the lower bound is not
926 enough. Make sure we do not mark a range type whose upper bound
927 is negative as unsigned. */
928 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
929 TYPE_UNSIGNED (result_type) = 0;
930
262452ec 931 return result_type;
c906108c
SS
932}
933
729efb13
SA
934/* Create a range type using either a blank type supplied in
935 RESULT_TYPE, or creating a new type, inheriting the objfile from
936 INDEX_TYPE.
937
938 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
939 to HIGH_BOUND, inclusive.
940
941 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
942 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
943
944struct type *
945create_static_range_type (struct type *result_type, struct type *index_type,
946 LONGEST low_bound, LONGEST high_bound)
947{
948 struct dynamic_prop low, high;
949
950 low.kind = PROP_CONST;
951 low.data.const_val = low_bound;
952
953 high.kind = PROP_CONST;
954 high.data.const_val = high_bound;
955
956 result_type = create_range_type (result_type, index_type, &low, &high);
957
958 return result_type;
959}
960
80180f79
SA
961/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
962 are static, otherwise returns 0. */
963
964static int
965has_static_range (const struct range_bounds *bounds)
966{
967 return (bounds->low.kind == PROP_CONST
968 && bounds->high.kind == PROP_CONST);
969}
970
971
7ba81444
MS
972/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
973 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
974 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
975
976int
fba45db2 977get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 978{
f168693b 979 type = check_typedef (type);
c906108c
SS
980 switch (TYPE_CODE (type))
981 {
982 case TYPE_CODE_RANGE:
983 *lowp = TYPE_LOW_BOUND (type);
984 *highp = TYPE_HIGH_BOUND (type);
985 return 1;
986 case TYPE_CODE_ENUM:
987 if (TYPE_NFIELDS (type) > 0)
988 {
989 /* The enums may not be sorted by value, so search all
0963b4bd 990 entries. */
c906108c
SS
991 int i;
992
14e75d8e 993 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
994 for (i = 0; i < TYPE_NFIELDS (type); i++)
995 {
14e75d8e
JK
996 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
997 *lowp = TYPE_FIELD_ENUMVAL (type, i);
998 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
999 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1000 }
1001
7ba81444 1002 /* Set unsigned indicator if warranted. */
c5aa993b 1003 if (*lowp >= 0)
c906108c 1004 {
876cecd0 1005 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1006 }
1007 }
1008 else
1009 {
1010 *lowp = 0;
1011 *highp = -1;
1012 }
1013 return 0;
1014 case TYPE_CODE_BOOL:
1015 *lowp = 0;
1016 *highp = 1;
1017 return 0;
1018 case TYPE_CODE_INT:
c5aa993b 1019 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1020 return -1;
1021 if (!TYPE_UNSIGNED (type))
1022 {
c5aa993b 1023 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1024 *highp = -*lowp - 1;
1025 return 0;
1026 }
7ba81444 1027 /* ... fall through for unsigned ints ... */
c906108c
SS
1028 case TYPE_CODE_CHAR:
1029 *lowp = 0;
1030 /* This round-about calculation is to avoid shifting by
7b83ea04 1031 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1032 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1033 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1034 *highp = (*highp - 1) | *highp;
1035 return 0;
1036 default:
1037 return -1;
1038 }
1039}
1040
dbc98a8b
KW
1041/* Assuming TYPE is a simple, non-empty array type, compute its upper
1042 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1043 Save the high bound into HIGH_BOUND if not NULL.
1044
0963b4bd 1045 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1046 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1047
1048 We now simply use get_discrete_bounds call to get the values
1049 of the low and high bounds.
1050 get_discrete_bounds can return three values:
1051 1, meaning that index is a range,
1052 0, meaning that index is a discrete type,
1053 or -1 for failure. */
1054
1055int
1056get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1057{
1058 struct type *index = TYPE_INDEX_TYPE (type);
1059 LONGEST low = 0;
1060 LONGEST high = 0;
1061 int res;
1062
1063 if (index == NULL)
1064 return 0;
1065
1066 res = get_discrete_bounds (index, &low, &high);
1067 if (res == -1)
1068 return 0;
1069
1070 /* Check if the array bounds are undefined. */
1071 if (res == 1
1072 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1073 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1074 return 0;
1075
1076 if (low_bound)
1077 *low_bound = low;
1078
1079 if (high_bound)
1080 *high_bound = high;
1081
1082 return 1;
1083}
1084
aa715135
JG
1085/* Assuming that TYPE is a discrete type and VAL is a valid integer
1086 representation of a value of this type, save the corresponding
1087 position number in POS.
1088
1089 Its differs from VAL only in the case of enumeration types. In
1090 this case, the position number of the value of the first listed
1091 enumeration literal is zero; the position number of the value of
1092 each subsequent enumeration literal is one more than that of its
1093 predecessor in the list.
1094
1095 Return 1 if the operation was successful. Return zero otherwise,
1096 in which case the value of POS is unmodified.
1097*/
1098
1099int
1100discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1101{
1102 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1103 {
1104 int i;
1105
1106 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1107 {
1108 if (val == TYPE_FIELD_ENUMVAL (type, i))
1109 {
1110 *pos = i;
1111 return 1;
1112 }
1113 }
1114 /* Invalid enumeration value. */
1115 return 0;
1116 }
1117 else
1118 {
1119 *pos = val;
1120 return 1;
1121 }
1122}
1123
7ba81444
MS
1124/* Create an array type using either a blank type supplied in
1125 RESULT_TYPE, or creating a new type, inheriting the objfile from
1126 RANGE_TYPE.
c906108c
SS
1127
1128 Elements will be of type ELEMENT_TYPE, the indices will be of type
1129 RANGE_TYPE.
1130
a405673c
JB
1131 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1132 This byte stride property is added to the resulting array type
1133 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1134 argument can only be used to create types that are objfile-owned
1135 (see add_dyn_prop), meaning that either this function must be called
1136 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1137
1138 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1139 If BIT_STRIDE is not zero, build a packed array type whose element
1140 size is BIT_STRIDE. Otherwise, ignore this parameter.
1141
7ba81444
MS
1142 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1143 sure it is TYPE_CODE_UNDEF before we bash it into an array
1144 type? */
c906108c
SS
1145
1146struct type *
dc53a7ad
JB
1147create_array_type_with_stride (struct type *result_type,
1148 struct type *element_type,
1149 struct type *range_type,
a405673c 1150 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1151 unsigned int bit_stride)
c906108c 1152{
a405673c
JB
1153 if (byte_stride_prop != NULL
1154 && byte_stride_prop->kind == PROP_CONST)
1155 {
1156 /* The byte stride is actually not dynamic. Pretend we were
1157 called with bit_stride set instead of byte_stride_prop.
1158 This will give us the same result type, while avoiding
1159 the need to handle this as a special case. */
1160 bit_stride = byte_stride_prop->data.const_val * 8;
1161 byte_stride_prop = NULL;
1162 }
1163
c906108c 1164 if (result_type == NULL)
e9bb382b
UW
1165 result_type = alloc_type_copy (range_type);
1166
c906108c
SS
1167 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1168 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1169 if (byte_stride_prop == NULL
1170 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1171 && (!type_not_associated (result_type)
1172 && !type_not_allocated (result_type)))
80180f79
SA
1173 {
1174 LONGEST low_bound, high_bound;
1175
1176 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1177 low_bound = high_bound = 0;
f168693b 1178 element_type = check_typedef (element_type);
80180f79
SA
1179 /* Be careful when setting the array length. Ada arrays can be
1180 empty arrays with the high_bound being smaller than the low_bound.
1181 In such cases, the array length should be zero. */
1182 if (high_bound < low_bound)
1183 TYPE_LENGTH (result_type) = 0;
1184 else if (bit_stride > 0)
1185 TYPE_LENGTH (result_type) =
1186 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1187 else
1188 TYPE_LENGTH (result_type) =
1189 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1190 }
ab0d6e0d 1191 else
80180f79
SA
1192 {
1193 /* This type is dynamic and its length needs to be computed
1194 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1195 undefined by setting it to zero. Although we are not expected
1196 to trust TYPE_LENGTH in this case, setting the size to zero
1197 allows us to avoid allocating objects of random sizes in case
1198 we accidently do. */
1199 TYPE_LENGTH (result_type) = 0;
1200 }
1201
c906108c
SS
1202 TYPE_NFIELDS (result_type) = 1;
1203 TYPE_FIELDS (result_type) =
1deafd4e 1204 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1205 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c 1206 if (byte_stride_prop != NULL)
50a82047 1207 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
a405673c 1208 else if (bit_stride > 0)
dc53a7ad 1209 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1210
a9ff5f12 1211 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1212 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1213 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1214
c16abbde 1215 return result_type;
c906108c
SS
1216}
1217
dc53a7ad
JB
1218/* Same as create_array_type_with_stride but with no bit_stride
1219 (BIT_STRIDE = 0), thus building an unpacked array. */
1220
1221struct type *
1222create_array_type (struct type *result_type,
1223 struct type *element_type,
1224 struct type *range_type)
1225{
1226 return create_array_type_with_stride (result_type, element_type,
a405673c 1227 range_type, NULL, 0);
dc53a7ad
JB
1228}
1229
e3506a9f
UW
1230struct type *
1231lookup_array_range_type (struct type *element_type,
63375b74 1232 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1233{
929b5ad4
JB
1234 struct type *index_type;
1235 struct type *range_type;
1236
1237 if (TYPE_OBJFILE_OWNED (element_type))
1238 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1239 else
1240 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1241 range_type = create_static_range_type (NULL, index_type,
1242 low_bound, high_bound);
d8734c88 1243
e3506a9f
UW
1244 return create_array_type (NULL, element_type, range_type);
1245}
1246
7ba81444
MS
1247/* Create a string type using either a blank type supplied in
1248 RESULT_TYPE, or creating a new type. String types are similar
1249 enough to array of char types that we can use create_array_type to
1250 build the basic type and then bash it into a string type.
c906108c
SS
1251
1252 For fixed length strings, the range type contains 0 as the lower
1253 bound and the length of the string minus one as the upper bound.
1254
7ba81444
MS
1255 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1256 sure it is TYPE_CODE_UNDEF before we bash it into a string
1257 type? */
c906108c
SS
1258
1259struct type *
3b7538c0
UW
1260create_string_type (struct type *result_type,
1261 struct type *string_char_type,
7ba81444 1262 struct type *range_type)
c906108c
SS
1263{
1264 result_type = create_array_type (result_type,
f290d38e 1265 string_char_type,
c906108c
SS
1266 range_type);
1267 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1268 return result_type;
c906108c
SS
1269}
1270
e3506a9f
UW
1271struct type *
1272lookup_string_range_type (struct type *string_char_type,
63375b74 1273 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1274{
1275 struct type *result_type;
d8734c88 1276
e3506a9f
UW
1277 result_type = lookup_array_range_type (string_char_type,
1278 low_bound, high_bound);
1279 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1280 return result_type;
1281}
1282
c906108c 1283struct type *
fba45db2 1284create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1285{
c906108c 1286 if (result_type == NULL)
e9bb382b
UW
1287 result_type = alloc_type_copy (domain_type);
1288
c906108c
SS
1289 TYPE_CODE (result_type) = TYPE_CODE_SET;
1290 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1291 TYPE_FIELDS (result_type)
1292 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1293
74a9bb82 1294 if (!TYPE_STUB (domain_type))
c906108c 1295 {
f9780d5b 1296 LONGEST low_bound, high_bound, bit_length;
d8734c88 1297
c906108c
SS
1298 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1299 low_bound = high_bound = 0;
1300 bit_length = high_bound - low_bound + 1;
1301 TYPE_LENGTH (result_type)
1302 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1303 if (low_bound >= 0)
876cecd0 1304 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1305 }
1306 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1307
c16abbde 1308 return result_type;
c906108c
SS
1309}
1310
ea37ba09
DJ
1311/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1312 and any array types nested inside it. */
1313
1314void
1315make_vector_type (struct type *array_type)
1316{
1317 struct type *inner_array, *elt_type;
1318 int flags;
1319
1320 /* Find the innermost array type, in case the array is
1321 multi-dimensional. */
1322 inner_array = array_type;
1323 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1324 inner_array = TYPE_TARGET_TYPE (inner_array);
1325
1326 elt_type = TYPE_TARGET_TYPE (inner_array);
1327 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1328 {
2844d6b5 1329 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1330 elt_type = make_qualified_type (elt_type, flags, NULL);
1331 TYPE_TARGET_TYPE (inner_array) = elt_type;
1332 }
1333
876cecd0 1334 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1335}
1336
794ac428 1337struct type *
ac3aafc7
EZ
1338init_vector_type (struct type *elt_type, int n)
1339{
1340 struct type *array_type;
d8734c88 1341
e3506a9f 1342 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1343 make_vector_type (array_type);
ac3aafc7
EZ
1344 return array_type;
1345}
1346
09e2d7c7
DE
1347/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1348 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1349 confusing. "self" is a common enough replacement for "this".
1350 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1351 TYPE_CODE_METHOD. */
1352
1353struct type *
1354internal_type_self_type (struct type *type)
1355{
1356 switch (TYPE_CODE (type))
1357 {
1358 case TYPE_CODE_METHODPTR:
1359 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1360 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1361 return NULL;
09e2d7c7
DE
1362 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1363 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1364 case TYPE_CODE_METHOD:
eaaf76ab
DE
1365 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1366 return NULL;
09e2d7c7
DE
1367 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1368 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1369 default:
1370 gdb_assert_not_reached ("bad type");
1371 }
1372}
1373
1374/* Set the type of the class that TYPE belongs to.
1375 In c++ this is the class of "this".
1376 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1377 TYPE_CODE_METHOD. */
1378
1379void
1380set_type_self_type (struct type *type, struct type *self_type)
1381{
1382 switch (TYPE_CODE (type))
1383 {
1384 case TYPE_CODE_METHODPTR:
1385 case TYPE_CODE_MEMBERPTR:
1386 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1387 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1388 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1389 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1390 break;
1391 case TYPE_CODE_METHOD:
1392 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1393 INIT_FUNC_SPECIFIC (type);
1394 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1395 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1396 break;
1397 default:
1398 gdb_assert_not_reached ("bad type");
1399 }
1400}
1401
1402/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1403 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1404 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1405 TYPE doesn't include the offset (that's the value of the MEMBER
1406 itself), but does include the structure type into which it points
1407 (for some reason).
c906108c 1408
7ba81444
MS
1409 When "smashing" the type, we preserve the objfile that the old type
1410 pointed to, since we aren't changing where the type is actually
c906108c
SS
1411 allocated. */
1412
1413void
09e2d7c7 1414smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1415 struct type *to_type)
c906108c 1416{
2fdde8f8 1417 smash_type (type);
09e2d7c7 1418 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1419 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1420 set_type_self_type (type, self_type);
0d5de010
DJ
1421 /* Assume that a data member pointer is the same size as a normal
1422 pointer. */
50810684
UW
1423 TYPE_LENGTH (type)
1424 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1425}
1426
0b92b5bb
TT
1427/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1428
1429 When "smashing" the type, we preserve the objfile that the old type
1430 pointed to, since we aren't changing where the type is actually
1431 allocated. */
1432
1433void
1434smash_to_methodptr_type (struct type *type, struct type *to_type)
1435{
1436 smash_type (type);
09e2d7c7 1437 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1438 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1439 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1440 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1441}
1442
09e2d7c7 1443/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1444 METHOD just means `function that gets an extra "this" argument'.
1445
7ba81444
MS
1446 When "smashing" the type, we preserve the objfile that the old type
1447 pointed to, since we aren't changing where the type is actually
c906108c
SS
1448 allocated. */
1449
1450void
09e2d7c7 1451smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1452 struct type *to_type, struct field *args,
1453 int nargs, int varargs)
c906108c 1454{
2fdde8f8 1455 smash_type (type);
09e2d7c7 1456 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1457 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1458 set_type_self_type (type, self_type);
ad2f7632
DJ
1459 TYPE_FIELDS (type) = args;
1460 TYPE_NFIELDS (type) = nargs;
1461 if (varargs)
876cecd0 1462 TYPE_VARARGS (type) = 1;
c906108c 1463 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1464}
1465
1466/* Return a typename for a struct/union/enum type without "struct ",
1467 "union ", or "enum ". If the type has a NULL name, return NULL. */
1468
0d5cff50 1469const char *
aa1ee363 1470type_name_no_tag (const struct type *type)
c906108c
SS
1471{
1472 if (TYPE_TAG_NAME (type) != NULL)
1473 return TYPE_TAG_NAME (type);
1474
7ba81444
MS
1475 /* Is there code which expects this to return the name if there is
1476 no tag name? My guess is that this is mainly used for C++ in
1477 cases where the two will always be the same. */
c906108c
SS
1478 return TYPE_NAME (type);
1479}
1480
d8228535
JK
1481/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1482 Since GCC PR debug/47510 DWARF provides associated information to detect the
1483 anonymous class linkage name from its typedef.
1484
1485 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1486 apply it itself. */
1487
1488const char *
1489type_name_no_tag_or_error (struct type *type)
1490{
1491 struct type *saved_type = type;
1492 const char *name;
1493 struct objfile *objfile;
1494
f168693b 1495 type = check_typedef (type);
d8228535
JK
1496
1497 name = type_name_no_tag (type);
1498 if (name != NULL)
1499 return name;
1500
1501 name = type_name_no_tag (saved_type);
1502 objfile = TYPE_OBJFILE (saved_type);
1503 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1504 name ? name : "<anonymous>",
1505 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1506}
1507
7ba81444
MS
1508/* Lookup a typedef or primitive type named NAME, visible in lexical
1509 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1510 suitably defined. */
c906108c
SS
1511
1512struct type *
e6c014f2 1513lookup_typename (const struct language_defn *language,
ddd49eee 1514 struct gdbarch *gdbarch, const char *name,
34eaf542 1515 const struct block *block, int noerr)
c906108c 1516{
52f0bd74 1517 struct symbol *sym;
c906108c 1518
1994afbf 1519 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1520 language->la_language, NULL).symbol;
c51fe631
DE
1521 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1522 return SYMBOL_TYPE (sym);
1523
c51fe631
DE
1524 if (noerr)
1525 return NULL;
1526 error (_("No type named %s."), name);
c906108c
SS
1527}
1528
1529struct type *
e6c014f2 1530lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1531 struct gdbarch *gdbarch, const char *name)
c906108c 1532{
224c3ddb 1533 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1534
1535 strcpy (uns, "unsigned ");
1536 strcpy (uns + 9, name);
e6c014f2 1537 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1538}
1539
1540struct type *
e6c014f2 1541lookup_signed_typename (const struct language_defn *language,
0d5cff50 1542 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1543{
1544 struct type *t;
224c3ddb 1545 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1546
1547 strcpy (uns, "signed ");
1548 strcpy (uns + 7, name);
e6c014f2 1549 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1550 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1551 if (t != NULL)
1552 return t;
e6c014f2 1553 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1554}
1555
1556/* Lookup a structure type named "struct NAME",
1557 visible in lexical block BLOCK. */
1558
1559struct type *
270140bd 1560lookup_struct (const char *name, const struct block *block)
c906108c 1561{
52f0bd74 1562 struct symbol *sym;
c906108c 1563
d12307c1 1564 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1565
1566 if (sym == NULL)
1567 {
8a3fe4f8 1568 error (_("No struct type named %s."), name);
c906108c
SS
1569 }
1570 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1571 {
7ba81444
MS
1572 error (_("This context has class, union or enum %s, not a struct."),
1573 name);
c906108c
SS
1574 }
1575 return (SYMBOL_TYPE (sym));
1576}
1577
1578/* Lookup a union type named "union NAME",
1579 visible in lexical block BLOCK. */
1580
1581struct type *
270140bd 1582lookup_union (const char *name, const struct block *block)
c906108c 1583{
52f0bd74 1584 struct symbol *sym;
c5aa993b 1585 struct type *t;
c906108c 1586
d12307c1 1587 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1588
1589 if (sym == NULL)
8a3fe4f8 1590 error (_("No union type named %s."), name);
c906108c 1591
c5aa993b 1592 t = SYMBOL_TYPE (sym);
c906108c
SS
1593
1594 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1595 return t;
c906108c 1596
7ba81444
MS
1597 /* If we get here, it's not a union. */
1598 error (_("This context has class, struct or enum %s, not a union."),
1599 name);
c906108c
SS
1600}
1601
c906108c
SS
1602/* Lookup an enum type named "enum NAME",
1603 visible in lexical block BLOCK. */
1604
1605struct type *
270140bd 1606lookup_enum (const char *name, const struct block *block)
c906108c 1607{
52f0bd74 1608 struct symbol *sym;
c906108c 1609
d12307c1 1610 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1611 if (sym == NULL)
1612 {
8a3fe4f8 1613 error (_("No enum type named %s."), name);
c906108c
SS
1614 }
1615 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1616 {
7ba81444
MS
1617 error (_("This context has class, struct or union %s, not an enum."),
1618 name);
c906108c
SS
1619 }
1620 return (SYMBOL_TYPE (sym));
1621}
1622
1623/* Lookup a template type named "template NAME<TYPE>",
1624 visible in lexical block BLOCK. */
1625
1626struct type *
7ba81444 1627lookup_template_type (char *name, struct type *type,
270140bd 1628 const struct block *block)
c906108c
SS
1629{
1630 struct symbol *sym;
7ba81444
MS
1631 char *nam = (char *)
1632 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1633
c906108c
SS
1634 strcpy (nam, name);
1635 strcat (nam, "<");
0004e5a2 1636 strcat (nam, TYPE_NAME (type));
0963b4bd 1637 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1638
d12307c1 1639 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1640
1641 if (sym == NULL)
1642 {
8a3fe4f8 1643 error (_("No template type named %s."), name);
c906108c
SS
1644 }
1645 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1646 {
7ba81444
MS
1647 error (_("This context has class, union or enum %s, not a struct."),
1648 name);
c906108c
SS
1649 }
1650 return (SYMBOL_TYPE (sym));
1651}
1652
7ba81444
MS
1653/* Given a type TYPE, lookup the type of the component of type named
1654 NAME.
c906108c 1655
7ba81444
MS
1656 TYPE can be either a struct or union, or a pointer or reference to
1657 a struct or union. If it is a pointer or reference, its target
1658 type is automatically used. Thus '.' and '->' are interchangable,
1659 as specified for the definitions of the expression element types
1660 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1661
1662 If NOERR is nonzero, return zero if NAME is not suitably defined.
1663 If NAME is the name of a baseclass type, return that type. */
1664
1665struct type *
d7561cbb 1666lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1667{
1668 int i;
1669
1670 for (;;)
1671 {
f168693b 1672 type = check_typedef (type);
c906108c
SS
1673 if (TYPE_CODE (type) != TYPE_CODE_PTR
1674 && TYPE_CODE (type) != TYPE_CODE_REF)
1675 break;
1676 type = TYPE_TARGET_TYPE (type);
1677 }
1678
687d6395
MS
1679 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1680 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1681 {
2f408ecb
PA
1682 std::string type_name = type_to_string (type);
1683 error (_("Type %s is not a structure or union type."),
1684 type_name.c_str ());
c906108c
SS
1685 }
1686
1687#if 0
7ba81444
MS
1688 /* FIXME: This change put in by Michael seems incorrect for the case
1689 where the structure tag name is the same as the member name.
0963b4bd 1690 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1691 foo; } bell;" Disabled by fnf. */
c906108c 1692 {
fe978cb0 1693 char *type_name;
c906108c 1694
fe978cb0
PA
1695 type_name = type_name_no_tag (type);
1696 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1697 return type;
1698 }
1699#endif
1700
1701 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1702 {
0d5cff50 1703 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1704
db577aea 1705 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1706 {
1707 return TYPE_FIELD_TYPE (type, i);
1708 }
f5a010c0
PM
1709 else if (!t_field_name || *t_field_name == '\0')
1710 {
d8734c88
MS
1711 struct type *subtype
1712 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1713
f5a010c0
PM
1714 if (subtype != NULL)
1715 return subtype;
1716 }
c906108c
SS
1717 }
1718
1719 /* OK, it's not in this class. Recursively check the baseclasses. */
1720 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1721 {
1722 struct type *t;
1723
9733fc94 1724 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1725 if (t != NULL)
1726 {
1727 return t;
1728 }
1729 }
1730
1731 if (noerr)
1732 {
1733 return NULL;
1734 }
c5aa993b 1735
2f408ecb
PA
1736 std::string type_name = type_to_string (type);
1737 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1738}
1739
ed3ef339
DE
1740/* Store in *MAX the largest number representable by unsigned integer type
1741 TYPE. */
1742
1743void
1744get_unsigned_type_max (struct type *type, ULONGEST *max)
1745{
1746 unsigned int n;
1747
f168693b 1748 type = check_typedef (type);
ed3ef339
DE
1749 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1750 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1751
1752 /* Written this way to avoid overflow. */
1753 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1754 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1755}
1756
1757/* Store in *MIN, *MAX the smallest and largest numbers representable by
1758 signed integer type TYPE. */
1759
1760void
1761get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1762{
1763 unsigned int n;
1764
f168693b 1765 type = check_typedef (type);
ed3ef339
DE
1766 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1767 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1768
1769 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1770 *min = -((ULONGEST) 1 << (n - 1));
1771 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1772}
1773
ae6ae975
DE
1774/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1775 cplus_stuff.vptr_fieldno.
1776
1777 cplus_stuff is initialized to cplus_struct_default which does not
1778 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1779 designated initializers). We cope with that here. */
1780
1781int
1782internal_type_vptr_fieldno (struct type *type)
1783{
f168693b 1784 type = check_typedef (type);
ae6ae975
DE
1785 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1786 || TYPE_CODE (type) == TYPE_CODE_UNION);
1787 if (!HAVE_CPLUS_STRUCT (type))
1788 return -1;
1789 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1790}
1791
1792/* Set the value of cplus_stuff.vptr_fieldno. */
1793
1794void
1795set_type_vptr_fieldno (struct type *type, int fieldno)
1796{
f168693b 1797 type = check_typedef (type);
ae6ae975
DE
1798 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1799 || TYPE_CODE (type) == TYPE_CODE_UNION);
1800 if (!HAVE_CPLUS_STRUCT (type))
1801 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1802 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1803}
1804
1805/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1806 cplus_stuff.vptr_basetype. */
1807
1808struct type *
1809internal_type_vptr_basetype (struct type *type)
1810{
f168693b 1811 type = check_typedef (type);
ae6ae975
DE
1812 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1813 || TYPE_CODE (type) == TYPE_CODE_UNION);
1814 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1815 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1816}
1817
1818/* Set the value of cplus_stuff.vptr_basetype. */
1819
1820void
1821set_type_vptr_basetype (struct type *type, struct type *basetype)
1822{
f168693b 1823 type = check_typedef (type);
ae6ae975
DE
1824 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1825 || TYPE_CODE (type) == TYPE_CODE_UNION);
1826 if (!HAVE_CPLUS_STRUCT (type))
1827 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1828 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1829}
1830
81fe8080
DE
1831/* Lookup the vptr basetype/fieldno values for TYPE.
1832 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1833 vptr_fieldno. Also, if found and basetype is from the same objfile,
1834 cache the results.
1835 If not found, return -1 and ignore BASETYPEP.
1836 Callers should be aware that in some cases (for example,
c906108c 1837 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1838 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1839 this function will not be able to find the
7ba81444 1840 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1841 vptr_basetype will remain NULL or incomplete. */
c906108c 1842
81fe8080
DE
1843int
1844get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1845{
f168693b 1846 type = check_typedef (type);
c906108c
SS
1847
1848 if (TYPE_VPTR_FIELDNO (type) < 0)
1849 {
1850 int i;
1851
7ba81444
MS
1852 /* We must start at zero in case the first (and only) baseclass
1853 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1854 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1855 {
81fe8080
DE
1856 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1857 int fieldno;
1858 struct type *basetype;
1859
1860 fieldno = get_vptr_fieldno (baseclass, &basetype);
1861 if (fieldno >= 0)
c906108c 1862 {
81fe8080 1863 /* If the type comes from a different objfile we can't cache
0963b4bd 1864 it, it may have a different lifetime. PR 2384 */
5ef73790 1865 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1866 {
ae6ae975
DE
1867 set_type_vptr_fieldno (type, fieldno);
1868 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1869 }
1870 if (basetypep)
1871 *basetypep = basetype;
1872 return fieldno;
c906108c
SS
1873 }
1874 }
81fe8080
DE
1875
1876 /* Not found. */
1877 return -1;
1878 }
1879 else
1880 {
1881 if (basetypep)
1882 *basetypep = TYPE_VPTR_BASETYPE (type);
1883 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1884 }
1885}
1886
44e1a9eb
DJ
1887static void
1888stub_noname_complaint (void)
1889{
e2e0b3e5 1890 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1891}
1892
a405673c
JB
1893/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1894 attached to it, and that property has a non-constant value. */
1895
1896static int
1897array_type_has_dynamic_stride (struct type *type)
1898{
1899 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1900
1901 return (prop != NULL && prop->kind != PROP_CONST);
1902}
1903
d98b7a16 1904/* Worker for is_dynamic_type. */
80180f79 1905
d98b7a16 1906static int
ee715b5a 1907is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1908{
1909 type = check_typedef (type);
1910
e771e4be
PMR
1911 /* We only want to recognize references at the outermost level. */
1912 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1913 type = check_typedef (TYPE_TARGET_TYPE (type));
1914
3cdcd0ce
JB
1915 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1916 dynamic, even if the type itself is statically defined.
1917 From a user's point of view, this may appear counter-intuitive;
1918 but it makes sense in this context, because the point is to determine
1919 whether any part of the type needs to be resolved before it can
1920 be exploited. */
1921 if (TYPE_DATA_LOCATION (type) != NULL
1922 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1923 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1924 return 1;
1925
3f2f83dd
KB
1926 if (TYPE_ASSOCIATED_PROP (type))
1927 return 1;
1928
1929 if (TYPE_ALLOCATED_PROP (type))
1930 return 1;
1931
80180f79
SA
1932 switch (TYPE_CODE (type))
1933 {
6f8a3220 1934 case TYPE_CODE_RANGE:
ddb87a81
JB
1935 {
1936 /* A range type is obviously dynamic if it has at least one
1937 dynamic bound. But also consider the range type to be
1938 dynamic when its subtype is dynamic, even if the bounds
1939 of the range type are static. It allows us to assume that
1940 the subtype of a static range type is also static. */
1941 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1942 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1943 }
6f8a3220 1944
80180f79
SA
1945 case TYPE_CODE_ARRAY:
1946 {
80180f79 1947 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1948
a405673c 1949 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1950 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1951 return 1;
a405673c
JB
1952 /* ... or the elements it contains have a dynamic contents... */
1953 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1954 return 1;
1955 /* ... or if it has a dynamic stride... */
1956 if (array_type_has_dynamic_stride (type))
1957 return 1;
1958 return 0;
80180f79 1959 }
012370f6
TT
1960
1961 case TYPE_CODE_STRUCT:
1962 case TYPE_CODE_UNION:
1963 {
1964 int i;
1965
1966 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1967 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1968 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1969 return 1;
1970 }
1971 break;
80180f79 1972 }
92e2a17f
TT
1973
1974 return 0;
80180f79
SA
1975}
1976
d98b7a16
TT
1977/* See gdbtypes.h. */
1978
1979int
1980is_dynamic_type (struct type *type)
1981{
ee715b5a 1982 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1983}
1984
df25ebbd 1985static struct type *resolve_dynamic_type_internal
ee715b5a 1986 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1987
df25ebbd
JB
1988/* Given a dynamic range type (dyn_range_type) and a stack of
1989 struct property_addr_info elements, return a static version
1990 of that type. */
d190df30 1991
80180f79 1992static struct type *
df25ebbd
JB
1993resolve_dynamic_range (struct type *dyn_range_type,
1994 struct property_addr_info *addr_stack)
80180f79
SA
1995{
1996 CORE_ADDR value;
ddb87a81 1997 struct type *static_range_type, *static_target_type;
80180f79 1998 const struct dynamic_prop *prop;
80180f79
SA
1999 struct dynamic_prop low_bound, high_bound;
2000
6f8a3220 2001 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 2002
6f8a3220 2003 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 2004 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2005 {
2006 low_bound.kind = PROP_CONST;
2007 low_bound.data.const_val = value;
2008 }
2009 else
2010 {
2011 low_bound.kind = PROP_UNDEFINED;
2012 low_bound.data.const_val = 0;
2013 }
2014
6f8a3220 2015 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2016 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2017 {
2018 high_bound.kind = PROP_CONST;
2019 high_bound.data.const_val = value;
c451ebe5 2020
6f8a3220 2021 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2022 high_bound.data.const_val
2023 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2024 }
2025 else
2026 {
2027 high_bound.kind = PROP_UNDEFINED;
2028 high_bound.data.const_val = 0;
2029 }
2030
ddb87a81
JB
2031 static_target_type
2032 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2033 addr_stack, 0);
6f8a3220 2034 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 2035 static_target_type,
6f8a3220
JB
2036 &low_bound, &high_bound);
2037 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2038 return static_range_type;
2039}
2040
2041/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
2042 ADDR_STACK is a stack of struct property_addr_info to be used
2043 if needed during the dynamic resolution. */
6f8a3220
JB
2044
2045static struct type *
df25ebbd
JB
2046resolve_dynamic_array (struct type *type,
2047 struct property_addr_info *addr_stack)
6f8a3220
JB
2048{
2049 CORE_ADDR value;
2050 struct type *elt_type;
2051 struct type *range_type;
2052 struct type *ary_dim;
3f2f83dd 2053 struct dynamic_prop *prop;
a405673c 2054 unsigned int bit_stride = 0;
6f8a3220
JB
2055
2056 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2057
3f2f83dd
KB
2058 type = copy_type (type);
2059
6f8a3220
JB
2060 elt_type = type;
2061 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2062 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2063
3f2f83dd
KB
2064 /* Resolve allocated/associated here before creating a new array type, which
2065 will update the length of the array accordingly. */
2066 prop = TYPE_ALLOCATED_PROP (type);
2067 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2068 {
2069 TYPE_DYN_PROP_ADDR (prop) = value;
2070 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2071 }
2072 prop = TYPE_ASSOCIATED_PROP (type);
2073 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2074 {
2075 TYPE_DYN_PROP_ADDR (prop) = value;
2076 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2077 }
2078
80180f79
SA
2079 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2080
2081 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 2082 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
2083 else
2084 elt_type = TYPE_TARGET_TYPE (type);
2085
a405673c
JB
2086 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2087 if (prop != NULL)
2088 {
2089 int prop_eval_ok
2090 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2091
2092 if (prop_eval_ok)
2093 {
2094 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2095 bit_stride = (unsigned int) (value * 8);
2096 }
2097 else
2098 {
2099 /* Could be a bug in our code, but it could also happen
2100 if the DWARF info is not correct. Issue a warning,
2101 and assume no byte/bit stride (leave bit_stride = 0). */
2102 warning (_("cannot determine array stride for type %s"),
2103 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2104 }
2105 }
2106 else
2107 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2108
2109 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2110 bit_stride);
80180f79
SA
2111}
2112
012370f6 2113/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2114 bounds. ADDR_STACK is a stack of struct property_addr_info
2115 to be used if needed during the dynamic resolution. */
012370f6
TT
2116
2117static struct type *
df25ebbd
JB
2118resolve_dynamic_union (struct type *type,
2119 struct property_addr_info *addr_stack)
012370f6
TT
2120{
2121 struct type *resolved_type;
2122 int i;
2123 unsigned int max_len = 0;
2124
2125 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2126
2127 resolved_type = copy_type (type);
2128 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2129 = (struct field *) TYPE_ALLOC (resolved_type,
2130 TYPE_NFIELDS (resolved_type)
2131 * sizeof (struct field));
012370f6
TT
2132 memcpy (TYPE_FIELDS (resolved_type),
2133 TYPE_FIELDS (type),
2134 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2135 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2136 {
2137 struct type *t;
2138
2139 if (field_is_static (&TYPE_FIELD (type, i)))
2140 continue;
2141
d98b7a16 2142 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2143 addr_stack, 0);
012370f6
TT
2144 TYPE_FIELD_TYPE (resolved_type, i) = t;
2145 if (TYPE_LENGTH (t) > max_len)
2146 max_len = TYPE_LENGTH (t);
2147 }
2148
2149 TYPE_LENGTH (resolved_type) = max_len;
2150 return resolved_type;
2151}
2152
2153/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2154 bounds. ADDR_STACK is a stack of struct property_addr_info to
2155 be used if needed during the dynamic resolution. */
012370f6
TT
2156
2157static struct type *
df25ebbd
JB
2158resolve_dynamic_struct (struct type *type,
2159 struct property_addr_info *addr_stack)
012370f6
TT
2160{
2161 struct type *resolved_type;
2162 int i;
6908c509 2163 unsigned resolved_type_bit_length = 0;
012370f6
TT
2164
2165 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2166 gdb_assert (TYPE_NFIELDS (type) > 0);
2167
2168 resolved_type = copy_type (type);
2169 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2170 = (struct field *) TYPE_ALLOC (resolved_type,
2171 TYPE_NFIELDS (resolved_type)
2172 * sizeof (struct field));
012370f6
TT
2173 memcpy (TYPE_FIELDS (resolved_type),
2174 TYPE_FIELDS (type),
2175 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2176 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2177 {
6908c509 2178 unsigned new_bit_length;
df25ebbd 2179 struct property_addr_info pinfo;
012370f6
TT
2180
2181 if (field_is_static (&TYPE_FIELD (type, i)))
2182 continue;
2183
6908c509
JB
2184 /* As we know this field is not a static field, the field's
2185 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2186 this is the case, but only trigger a simple error rather
2187 than an internal error if that fails. While failing
2188 that verification indicates a bug in our code, the error
2189 is not severe enough to suggest to the user he stops
2190 his debugging session because of it. */
df25ebbd 2191 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2192 error (_("Cannot determine struct field location"
2193 " (invalid location kind)"));
df25ebbd
JB
2194
2195 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2196 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2197 pinfo.addr
2198 = (addr_stack->addr
2199 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2200 pinfo.next = addr_stack;
2201
2202 TYPE_FIELD_TYPE (resolved_type, i)
2203 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2204 &pinfo, 0);
df25ebbd
JB
2205 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2206 == FIELD_LOC_KIND_BITPOS);
2207
6908c509
JB
2208 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2209 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2210 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2211 else
2212 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2213 * TARGET_CHAR_BIT);
2214
2215 /* Normally, we would use the position and size of the last field
2216 to determine the size of the enclosing structure. But GCC seems
2217 to be encoding the position of some fields incorrectly when
2218 the struct contains a dynamic field that is not placed last.
2219 So we compute the struct size based on the field that has
2220 the highest position + size - probably the best we can do. */
2221 if (new_bit_length > resolved_type_bit_length)
2222 resolved_type_bit_length = new_bit_length;
012370f6
TT
2223 }
2224
9920b434
BH
2225 /* The length of a type won't change for fortran, but it does for C and Ada.
2226 For fortran the size of dynamic fields might change over time but not the
2227 type length of the structure. If we adapt it, we run into problems
2228 when calculating the element offset for arrays of structs. */
2229 if (current_language->la_language != language_fortran)
2230 TYPE_LENGTH (resolved_type)
2231 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2232
9e195661
PMR
2233 /* The Ada language uses this field as a cache for static fixed types: reset
2234 it as RESOLVED_TYPE must have its own static fixed type. */
2235 TYPE_TARGET_TYPE (resolved_type) = NULL;
2236
012370f6
TT
2237 return resolved_type;
2238}
2239
d98b7a16 2240/* Worker for resolved_dynamic_type. */
80180f79 2241
d98b7a16 2242static struct type *
df25ebbd 2243resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2244 struct property_addr_info *addr_stack,
2245 int top_level)
80180f79
SA
2246{
2247 struct type *real_type = check_typedef (type);
6f8a3220 2248 struct type *resolved_type = type;
d9823cbb 2249 struct dynamic_prop *prop;
3cdcd0ce 2250 CORE_ADDR value;
80180f79 2251
ee715b5a 2252 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2253 return type;
2254
5537b577 2255 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2256 {
cac9b138
JK
2257 resolved_type = copy_type (type);
2258 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2259 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2260 top_level);
5537b577
JK
2261 }
2262 else
2263 {
2264 /* Before trying to resolve TYPE, make sure it is not a stub. */
2265 type = real_type;
012370f6 2266
5537b577
JK
2267 switch (TYPE_CODE (type))
2268 {
e771e4be
PMR
2269 case TYPE_CODE_REF:
2270 {
2271 struct property_addr_info pinfo;
2272
2273 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2274 pinfo.valaddr = NULL;
2275 if (addr_stack->valaddr != NULL)
2276 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2277 else
2278 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2279 pinfo.next = addr_stack;
2280
2281 resolved_type = copy_type (type);
2282 TYPE_TARGET_TYPE (resolved_type)
2283 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2284 &pinfo, top_level);
2285 break;
2286 }
2287
5537b577 2288 case TYPE_CODE_ARRAY:
df25ebbd 2289 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2290 break;
2291
2292 case TYPE_CODE_RANGE:
df25ebbd 2293 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2294 break;
2295
2296 case TYPE_CODE_UNION:
df25ebbd 2297 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2298 break;
2299
2300 case TYPE_CODE_STRUCT:
df25ebbd 2301 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2302 break;
2303 }
6f8a3220 2304 }
80180f79 2305
3cdcd0ce
JB
2306 /* Resolve data_location attribute. */
2307 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2308 if (prop != NULL
2309 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2310 {
d9823cbb
KB
2311 TYPE_DYN_PROP_ADDR (prop) = value;
2312 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2313 }
3cdcd0ce 2314
80180f79
SA
2315 return resolved_type;
2316}
2317
d98b7a16
TT
2318/* See gdbtypes.h */
2319
2320struct type *
c3345124
JB
2321resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2322 CORE_ADDR addr)
d98b7a16 2323{
c3345124
JB
2324 struct property_addr_info pinfo
2325 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2326
ee715b5a 2327 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2328}
2329
d9823cbb
KB
2330/* See gdbtypes.h */
2331
2332struct dynamic_prop *
2333get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2334{
2335 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2336
2337 while (node != NULL)
2338 {
2339 if (node->prop_kind == prop_kind)
283a9958 2340 return &node->prop;
d9823cbb
KB
2341 node = node->next;
2342 }
2343 return NULL;
2344}
2345
2346/* See gdbtypes.h */
2347
2348void
2349add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2350 struct type *type)
d9823cbb
KB
2351{
2352 struct dynamic_prop_list *temp;
2353
2354 gdb_assert (TYPE_OBJFILE_OWNED (type));
2355
50a82047
TT
2356 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2357 struct dynamic_prop_list);
d9823cbb 2358 temp->prop_kind = prop_kind;
283a9958 2359 temp->prop = prop;
d9823cbb
KB
2360 temp->next = TYPE_DYN_PROP_LIST (type);
2361
2362 TYPE_DYN_PROP_LIST (type) = temp;
2363}
2364
9920b434
BH
2365/* Remove dynamic property from TYPE in case it exists. */
2366
2367void
2368remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2369 struct type *type)
2370{
2371 struct dynamic_prop_list *prev_node, *curr_node;
2372
2373 curr_node = TYPE_DYN_PROP_LIST (type);
2374 prev_node = NULL;
2375
2376 while (NULL != curr_node)
2377 {
2378 if (curr_node->prop_kind == prop_kind)
2379 {
2380 /* Update the linked list but don't free anything.
2381 The property was allocated on objstack and it is not known
2382 if we are on top of it. Nevertheless, everything is released
2383 when the complete objstack is freed. */
2384 if (NULL == prev_node)
2385 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2386 else
2387 prev_node->next = curr_node->next;
2388
2389 return;
2390 }
2391
2392 prev_node = curr_node;
2393 curr_node = curr_node->next;
2394 }
2395}
d9823cbb 2396
92163a10
JK
2397/* Find the real type of TYPE. This function returns the real type,
2398 after removing all layers of typedefs, and completing opaque or stub
2399 types. Completion changes the TYPE argument, but stripping of
2400 typedefs does not.
2401
2402 Instance flags (e.g. const/volatile) are preserved as typedefs are
2403 stripped. If necessary a new qualified form of the underlying type
2404 is created.
2405
2406 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2407 not been computed and we're either in the middle of reading symbols, or
2408 there was no name for the typedef in the debug info.
2409
9bc118a5
DE
2410 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2411 QUITs in the symbol reading code can also throw.
2412 Thus this function can throw an exception.
2413
92163a10
JK
2414 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2415 the target type.
c906108c
SS
2416
2417 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2418 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2419 definition, so we can use it in future. There used to be a comment
2420 (but not any code) that if we don't find a full definition, we'd
2421 set a flag so we don't spend time in the future checking the same
2422 type. That would be a mistake, though--we might load in more
92163a10 2423 symbols which contain a full definition for the type. */
c906108c
SS
2424
2425struct type *
a02fd225 2426check_typedef (struct type *type)
c906108c
SS
2427{
2428 struct type *orig_type = type;
92163a10
JK
2429 /* While we're removing typedefs, we don't want to lose qualifiers.
2430 E.g., const/volatile. */
2431 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2432
423c0af8
MS
2433 gdb_assert (type);
2434
c906108c
SS
2435 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2436 {
2437 if (!TYPE_TARGET_TYPE (type))
2438 {
0d5cff50 2439 const char *name;
c906108c
SS
2440 struct symbol *sym;
2441
2442 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2443 reading a symtab. Infinite recursion is one danger. */
c906108c 2444 if (currently_reading_symtab)
92163a10 2445 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2446
2447 name = type_name_no_tag (type);
7ba81444
MS
2448 /* FIXME: shouldn't we separately check the TYPE_NAME and
2449 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2450 VAR_DOMAIN as appropriate? (this code was written before
2451 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2452 if (name == NULL)
2453 {
23136709 2454 stub_noname_complaint ();
92163a10 2455 return make_qualified_type (type, instance_flags, NULL);
c906108c 2456 }
d12307c1 2457 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2458 if (sym)
2459 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2460 else /* TYPE_CODE_UNDEF */
e9bb382b 2461 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2462 }
2463 type = TYPE_TARGET_TYPE (type);
c906108c 2464
92163a10
JK
2465 /* Preserve the instance flags as we traverse down the typedef chain.
2466
2467 Handling address spaces/classes is nasty, what do we do if there's a
2468 conflict?
2469 E.g., what if an outer typedef marks the type as class_1 and an inner
2470 typedef marks the type as class_2?
2471 This is the wrong place to do such error checking. We leave it to
2472 the code that created the typedef in the first place to flag the
2473 error. We just pick the outer address space (akin to letting the
2474 outer cast in a chain of casting win), instead of assuming
2475 "it can't happen". */
2476 {
2477 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2478 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2479 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2480 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2481
2482 /* Treat code vs data spaces and address classes separately. */
2483 if ((instance_flags & ALL_SPACES) != 0)
2484 new_instance_flags &= ~ALL_SPACES;
2485 if ((instance_flags & ALL_CLASSES) != 0)
2486 new_instance_flags &= ~ALL_CLASSES;
2487
2488 instance_flags |= new_instance_flags;
2489 }
2490 }
a02fd225 2491
7ba81444
MS
2492 /* If this is a struct/class/union with no fields, then check
2493 whether a full definition exists somewhere else. This is for
2494 systems where a type definition with no fields is issued for such
2495 types, instead of identifying them as stub types in the first
2496 place. */
c5aa993b 2497
7ba81444
MS
2498 if (TYPE_IS_OPAQUE (type)
2499 && opaque_type_resolution
2500 && !currently_reading_symtab)
c906108c 2501 {
0d5cff50 2502 const char *name = type_name_no_tag (type);
c5aa993b 2503 struct type *newtype;
d8734c88 2504
c906108c
SS
2505 if (name == NULL)
2506 {
23136709 2507 stub_noname_complaint ();
92163a10 2508 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2509 }
2510 newtype = lookup_transparent_type (name);
ad766c0a 2511
c906108c 2512 if (newtype)
ad766c0a 2513 {
7ba81444
MS
2514 /* If the resolved type and the stub are in the same
2515 objfile, then replace the stub type with the real deal.
2516 But if they're in separate objfiles, leave the stub
2517 alone; we'll just look up the transparent type every time
2518 we call check_typedef. We can't create pointers between
2519 types allocated to different objfiles, since they may
2520 have different lifetimes. Trying to copy NEWTYPE over to
2521 TYPE's objfile is pointless, too, since you'll have to
2522 move over any other types NEWTYPE refers to, which could
2523 be an unbounded amount of stuff. */
ad766c0a 2524 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2525 type = make_qualified_type (newtype,
2526 TYPE_INSTANCE_FLAGS (type),
2527 type);
ad766c0a
JB
2528 else
2529 type = newtype;
2530 }
c906108c 2531 }
7ba81444
MS
2532 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2533 types. */
74a9bb82 2534 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2535 {
0d5cff50 2536 const char *name = type_name_no_tag (type);
c906108c 2537 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2538 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2539 as appropriate? (this code was written before TYPE_NAME and
2540 TYPE_TAG_NAME were separate). */
c906108c 2541 struct symbol *sym;
d8734c88 2542
c906108c
SS
2543 if (name == NULL)
2544 {
23136709 2545 stub_noname_complaint ();
92163a10 2546 return make_qualified_type (type, instance_flags, NULL);
c906108c 2547 }
d12307c1 2548 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2549 if (sym)
c26f2453
JB
2550 {
2551 /* Same as above for opaque types, we can replace the stub
92163a10 2552 with the complete type only if they are in the same
c26f2453
JB
2553 objfile. */
2554 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2555 type = make_qualified_type (SYMBOL_TYPE (sym),
2556 TYPE_INSTANCE_FLAGS (type),
2557 type);
c26f2453
JB
2558 else
2559 type = SYMBOL_TYPE (sym);
2560 }
c906108c
SS
2561 }
2562
74a9bb82 2563 if (TYPE_TARGET_STUB (type))
c906108c 2564 {
c906108c
SS
2565 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2566
74a9bb82 2567 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2568 {
73e2eb35 2569 /* Nothing we can do. */
c5aa993b 2570 }
c906108c
SS
2571 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2572 {
2573 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2574 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2575 }
2576 }
92163a10
JK
2577
2578 type = make_qualified_type (type, instance_flags, NULL);
2579
7ba81444 2580 /* Cache TYPE_LENGTH for future use. */
c906108c 2581 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2582
c906108c
SS
2583 return type;
2584}
2585
7ba81444 2586/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2587 occurs, silently return a void type. */
c91ecb25 2588
b9362cc7 2589static struct type *
48319d1f 2590safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2591{
2592 struct ui_file *saved_gdb_stderr;
34365054 2593 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2594
7ba81444 2595 /* Suppress error messages. */
c91ecb25 2596 saved_gdb_stderr = gdb_stderr;
d7e74731 2597 gdb_stderr = &null_stream;
c91ecb25 2598
7ba81444 2599 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2600 TRY
8e7b59a5
KS
2601 {
2602 type = parse_and_eval_type (p, length);
2603 }
492d29ea
PA
2604 CATCH (except, RETURN_MASK_ERROR)
2605 {
2606 type = builtin_type (gdbarch)->builtin_void;
2607 }
2608 END_CATCH
c91ecb25 2609
7ba81444 2610 /* Stop suppressing error messages. */
c91ecb25
ND
2611 gdb_stderr = saved_gdb_stderr;
2612
2613 return type;
2614}
2615
c906108c
SS
2616/* Ugly hack to convert method stubs into method types.
2617
7ba81444
MS
2618 He ain't kiddin'. This demangles the name of the method into a
2619 string including argument types, parses out each argument type,
2620 generates a string casting a zero to that type, evaluates the
2621 string, and stuffs the resulting type into an argtype vector!!!
2622 Then it knows the type of the whole function (including argument
2623 types for overloading), which info used to be in the stab's but was
2624 removed to hack back the space required for them. */
c906108c 2625
de17c821 2626static void
fba45db2 2627check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2628{
50810684 2629 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2630 struct fn_field *f;
2631 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2632 char *demangled_name = gdb_demangle (mangled_name,
2633 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2634 char *argtypetext, *p;
2635 int depth = 0, argcount = 1;
ad2f7632 2636 struct field *argtypes;
c906108c
SS
2637 struct type *mtype;
2638
2639 /* Make sure we got back a function string that we can use. */
2640 if (demangled_name)
2641 p = strchr (demangled_name, '(');
502dcf4e
AC
2642 else
2643 p = NULL;
c906108c
SS
2644
2645 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2646 error (_("Internal: Cannot demangle mangled name `%s'."),
2647 mangled_name);
c906108c
SS
2648
2649 /* Now, read in the parameters that define this type. */
2650 p += 1;
2651 argtypetext = p;
2652 while (*p)
2653 {
070ad9f0 2654 if (*p == '(' || *p == '<')
c906108c
SS
2655 {
2656 depth += 1;
2657 }
070ad9f0 2658 else if (*p == ')' || *p == '>')
c906108c
SS
2659 {
2660 depth -= 1;
2661 }
2662 else if (*p == ',' && depth == 0)
2663 {
2664 argcount += 1;
2665 }
2666
2667 p += 1;
2668 }
2669
ad2f7632 2670 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2671 if (startswith (argtypetext, "(void)"))
ad2f7632 2672 argcount -= 1;
c906108c 2673
ad2f7632
DJ
2674 /* We need one extra slot, for the THIS pointer. */
2675
2676 argtypes = (struct field *)
2677 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2678 p = argtypetext;
4a1970e4
DJ
2679
2680 /* Add THIS pointer for non-static methods. */
2681 f = TYPE_FN_FIELDLIST1 (type, method_id);
2682 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2683 argcount = 0;
2684 else
2685 {
ad2f7632 2686 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2687 argcount = 1;
2688 }
c906108c 2689
0963b4bd 2690 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2691 {
2692 depth = 0;
2693 while (*p)
2694 {
2695 if (depth <= 0 && (*p == ',' || *p == ')'))
2696 {
ad2f7632
DJ
2697 /* Avoid parsing of ellipsis, they will be handled below.
2698 Also avoid ``void'' as above. */
2699 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2700 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2701 {
ad2f7632 2702 argtypes[argcount].type =
48319d1f 2703 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2704 argcount += 1;
2705 }
2706 argtypetext = p + 1;
2707 }
2708
070ad9f0 2709 if (*p == '(' || *p == '<')
c906108c
SS
2710 {
2711 depth += 1;
2712 }
070ad9f0 2713 else if (*p == ')' || *p == '>')
c906108c
SS
2714 {
2715 depth -= 1;
2716 }
2717
2718 p += 1;
2719 }
2720 }
2721
c906108c
SS
2722 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2723
2724 /* Now update the old "stub" type into a real type. */
2725 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2726 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2727 We want a method (TYPE_CODE_METHOD). */
2728 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2729 argtypes, argcount, p[-2] == '.');
876cecd0 2730 TYPE_STUB (mtype) = 0;
c906108c 2731 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2732
2733 xfree (demangled_name);
c906108c
SS
2734}
2735
7ba81444
MS
2736/* This is the external interface to check_stub_method, above. This
2737 function unstubs all of the signatures for TYPE's METHOD_ID method
2738 name. After calling this function TYPE_FN_FIELD_STUB will be
2739 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2740 correct.
de17c821
DJ
2741
2742 This function unfortunately can not die until stabs do. */
2743
2744void
2745check_stub_method_group (struct type *type, int method_id)
2746{
2747 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2748 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2749 int j, found_stub = 0;
de17c821
DJ
2750
2751 for (j = 0; j < len; j++)
2752 if (TYPE_FN_FIELD_STUB (f, j))
2753 {
2754 found_stub = 1;
2755 check_stub_method (type, method_id, j);
2756 }
2757
7ba81444
MS
2758 /* GNU v3 methods with incorrect names were corrected when we read
2759 in type information, because it was cheaper to do it then. The
2760 only GNU v2 methods with incorrect method names are operators and
2761 destructors; destructors were also corrected when we read in type
2762 information.
de17c821
DJ
2763
2764 Therefore the only thing we need to handle here are v2 operator
2765 names. */
61012eef 2766 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
de17c821
DJ
2767 {
2768 int ret;
2769 char dem_opname[256];
2770
7ba81444
MS
2771 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2772 method_id),
de17c821
DJ
2773 dem_opname, DMGL_ANSI);
2774 if (!ret)
7ba81444
MS
2775 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2776 method_id),
de17c821
DJ
2777 dem_opname, 0);
2778 if (ret)
2779 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2780 }
2781}
2782
9655fd1a
JK
2783/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2784const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2785
2786void
fba45db2 2787allocate_cplus_struct_type (struct type *type)
c906108c 2788{
b4ba55a1
JB
2789 if (HAVE_CPLUS_STRUCT (type))
2790 /* Structure was already allocated. Nothing more to do. */
2791 return;
2792
2793 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2794 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2795 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2796 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2797 set_type_vptr_fieldno (type, -1);
c906108c
SS
2798}
2799
b4ba55a1
JB
2800const struct gnat_aux_type gnat_aux_default =
2801 { NULL };
2802
2803/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2804 and allocate the associated gnat-specific data. The gnat-specific
2805 data is also initialized to gnat_aux_default. */
5212577a 2806
b4ba55a1
JB
2807void
2808allocate_gnat_aux_type (struct type *type)
2809{
2810 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2811 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2812 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2813 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2814}
2815
ae438bc5
UW
2816/* Helper function to initialize a newly allocated type. Set type code
2817 to CODE and initialize the type-specific fields accordingly. */
2818
2819static void
2820set_type_code (struct type *type, enum type_code code)
2821{
2822 TYPE_CODE (type) = code;
2823
2824 switch (code)
2825 {
2826 case TYPE_CODE_STRUCT:
2827 case TYPE_CODE_UNION:
2828 case TYPE_CODE_NAMESPACE:
2829 INIT_CPLUS_SPECIFIC (type);
2830 break;
2831 case TYPE_CODE_FLT:
2832 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2833 break;
2834 case TYPE_CODE_FUNC:
2835 INIT_FUNC_SPECIFIC (type);
2836 break;
2837 }
2838}
2839
19f392bc
UW
2840/* Helper function to verify floating-point format and size.
2841 BIT is the type size in bits; if BIT equals -1, the size is
2842 determined by the floatformat. Returns size to be used. */
2843
2844static int
0db7851f 2845verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2846{
0db7851f 2847 gdb_assert (floatformat != NULL);
9b790ce7 2848
19f392bc 2849 if (bit == -1)
0db7851f 2850 bit = floatformat->totalsize;
19f392bc 2851
0db7851f
UW
2852 gdb_assert (bit >= 0);
2853 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2854
2855 return bit;
2856}
2857
0db7851f
UW
2858/* Return the floating-point format for a floating-point variable of
2859 type TYPE. */
2860
2861const struct floatformat *
2862floatformat_from_type (const struct type *type)
2863{
2864 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2865 gdb_assert (TYPE_FLOATFORMAT (type));
2866 return TYPE_FLOATFORMAT (type);
2867}
2868
c906108c
SS
2869/* Helper function to initialize the standard scalar types.
2870
86f62fd7
TT
2871 If NAME is non-NULL, then it is used to initialize the type name.
2872 Note that NAME is not copied; it is required to have a lifetime at
2873 least as long as OBJFILE. */
c906108c
SS
2874
2875struct type *
77b7c781 2876init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2877 const char *name)
c906108c 2878{
52f0bd74 2879 struct type *type;
c906108c
SS
2880
2881 type = alloc_type (objfile);
ae438bc5 2882 set_type_code (type, code);
77b7c781
UW
2883 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2884 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2885 TYPE_NAME (type) = name;
c906108c 2886
c16abbde 2887 return type;
c906108c 2888}
19f392bc 2889
46a4882b
PA
2890/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2891 to use with variables that have no debug info. NAME is the type
2892 name. */
2893
2894static struct type *
2895init_nodebug_var_type (struct objfile *objfile, const char *name)
2896{
2897 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2898}
2899
19f392bc
UW
2900/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2901 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2902 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2903
2904struct type *
2905init_integer_type (struct objfile *objfile,
2906 int bit, int unsigned_p, const char *name)
2907{
2908 struct type *t;
2909
77b7c781 2910 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2911 if (unsigned_p)
2912 TYPE_UNSIGNED (t) = 1;
2913
2914 return t;
2915}
2916
2917/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2918 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2919 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2920
2921struct type *
2922init_character_type (struct objfile *objfile,
2923 int bit, int unsigned_p, const char *name)
2924{
2925 struct type *t;
2926
77b7c781 2927 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2928 if (unsigned_p)
2929 TYPE_UNSIGNED (t) = 1;
2930
2931 return t;
2932}
2933
2934/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2935 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2936 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2937
2938struct type *
2939init_boolean_type (struct objfile *objfile,
2940 int bit, int unsigned_p, const char *name)
2941{
2942 struct type *t;
2943
77b7c781 2944 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2945 if (unsigned_p)
2946 TYPE_UNSIGNED (t) = 1;
2947
2948 return t;
2949}
2950
2951/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2952 BIT is the type size in bits; if BIT equals -1, the size is
2953 determined by the floatformat. NAME is the type name. Set the
2954 TYPE_FLOATFORMAT from FLOATFORMATS. */
2955
2956struct type *
2957init_float_type (struct objfile *objfile,
2958 int bit, const char *name,
2959 const struct floatformat **floatformats)
2960{
0db7851f
UW
2961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2962 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
19f392bc
UW
2963 struct type *t;
2964
0db7851f 2965 bit = verify_floatformat (bit, fmt);
77b7c781 2966 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 2967 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
2968
2969 return t;
2970}
2971
2972/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2973 BIT is the type size in bits. NAME is the type name. */
2974
2975struct type *
2976init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2977{
2978 struct type *t;
2979
77b7c781 2980 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
2981 return t;
2982}
2983
2984/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2985 NAME is the type name. TARGET_TYPE is the component float type. */
2986
2987struct type *
2988init_complex_type (struct objfile *objfile,
2989 const char *name, struct type *target_type)
2990{
2991 struct type *t;
2992
2993 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 2994 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
2995 TYPE_TARGET_TYPE (t) = target_type;
2996 return t;
2997}
2998
2999/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3000 BIT is the pointer type size in bits. NAME is the type name.
3001 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3002 TYPE_UNSIGNED flag. */
3003
3004struct type *
3005init_pointer_type (struct objfile *objfile,
3006 int bit, const char *name, struct type *target_type)
3007{
3008 struct type *t;
3009
77b7c781 3010 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
3011 TYPE_TARGET_TYPE (t) = target_type;
3012 TYPE_UNSIGNED (t) = 1;
3013 return t;
3014}
3015
5212577a
DE
3016\f
3017/* Queries on types. */
c906108c 3018
c906108c 3019int
fba45db2 3020can_dereference (struct type *t)
c906108c 3021{
7ba81444
MS
3022 /* FIXME: Should we return true for references as well as
3023 pointers? */
f168693b 3024 t = check_typedef (t);
c906108c
SS
3025 return
3026 (t != NULL
3027 && TYPE_CODE (t) == TYPE_CODE_PTR
3028 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3029}
3030
adf40b2e 3031int
fba45db2 3032is_integral_type (struct type *t)
adf40b2e 3033{
f168693b 3034 t = check_typedef (t);
adf40b2e
JM
3035 return
3036 ((t != NULL)
d4f3574e
SS
3037 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3038 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3039 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3040 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3041 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3042 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3043}
3044
70100014
UW
3045int
3046is_floating_type (struct type *t)
3047{
3048 t = check_typedef (t);
3049 return
3050 ((t != NULL)
3051 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3052 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3053}
3054
e09342b5
TJB
3055/* Return true if TYPE is scalar. */
3056
220475ed 3057int
e09342b5
TJB
3058is_scalar_type (struct type *type)
3059{
f168693b 3060 type = check_typedef (type);
e09342b5
TJB
3061
3062 switch (TYPE_CODE (type))
3063 {
3064 case TYPE_CODE_ARRAY:
3065 case TYPE_CODE_STRUCT:
3066 case TYPE_CODE_UNION:
3067 case TYPE_CODE_SET:
3068 case TYPE_CODE_STRING:
e09342b5
TJB
3069 return 0;
3070 default:
3071 return 1;
3072 }
3073}
3074
3075/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3076 the memory layout of a scalar type. E.g., an array or struct with only
3077 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3078
3079int
3080is_scalar_type_recursive (struct type *t)
3081{
f168693b 3082 t = check_typedef (t);
e09342b5
TJB
3083
3084 if (is_scalar_type (t))
3085 return 1;
3086 /* Are we dealing with an array or string of known dimensions? */
3087 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3088 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3089 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3090 {
3091 LONGEST low_bound, high_bound;
3092 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3093
3094 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3095
3096 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3097 }
3098 /* Are we dealing with a struct with one element? */
3099 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3100 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3101 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3102 {
3103 int i, n = TYPE_NFIELDS (t);
3104
3105 /* If all elements of the union are scalar, then the union is scalar. */
3106 for (i = 0; i < n; i++)
3107 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3108 return 0;
3109
3110 return 1;
3111 }
3112
3113 return 0;
3114}
3115
6c659fc2
SC
3116/* Return true is T is a class or a union. False otherwise. */
3117
3118int
3119class_or_union_p (const struct type *t)
3120{
3121 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3122 || TYPE_CODE (t) == TYPE_CODE_UNION);
3123}
3124
4e8f195d
TT
3125/* A helper function which returns true if types A and B represent the
3126 "same" class type. This is true if the types have the same main
3127 type, or the same name. */
3128
3129int
3130class_types_same_p (const struct type *a, const struct type *b)
3131{
3132 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3133 || (TYPE_NAME (a) && TYPE_NAME (b)
3134 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3135}
3136
a9d5ef47
SW
3137/* If BASE is an ancestor of DCLASS return the distance between them.
3138 otherwise return -1;
3139 eg:
3140
3141 class A {};
3142 class B: public A {};
3143 class C: public B {};
3144 class D: C {};
3145
3146 distance_to_ancestor (A, A, 0) = 0
3147 distance_to_ancestor (A, B, 0) = 1
3148 distance_to_ancestor (A, C, 0) = 2
3149 distance_to_ancestor (A, D, 0) = 3
3150
3151 If PUBLIC is 1 then only public ancestors are considered,
3152 and the function returns the distance only if BASE is a public ancestor
3153 of DCLASS.
3154 Eg:
3155
0963b4bd 3156 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3157
0526b37a 3158static int
fe978cb0 3159distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3160{
3161 int i;
a9d5ef47 3162 int d;
c5aa993b 3163
f168693b
SM
3164 base = check_typedef (base);
3165 dclass = check_typedef (dclass);
c906108c 3166
4e8f195d 3167 if (class_types_same_p (base, dclass))
a9d5ef47 3168 return 0;
c906108c
SS
3169
3170 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3171 {
fe978cb0 3172 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3173 continue;
3174
fe978cb0 3175 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3176 if (d >= 0)
3177 return 1 + d;
4e8f195d 3178 }
c906108c 3179
a9d5ef47 3180 return -1;
c906108c 3181}
4e8f195d 3182
0526b37a
SW
3183/* Check whether BASE is an ancestor or base class or DCLASS
3184 Return 1 if so, and 0 if not.
3185 Note: If BASE and DCLASS are of the same type, this function
3186 will return 1. So for some class A, is_ancestor (A, A) will
3187 return 1. */
3188
3189int
3190is_ancestor (struct type *base, struct type *dclass)
3191{
a9d5ef47 3192 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3193}
3194
4e8f195d
TT
3195/* Like is_ancestor, but only returns true when BASE is a public
3196 ancestor of DCLASS. */
3197
3198int
3199is_public_ancestor (struct type *base, struct type *dclass)
3200{
a9d5ef47 3201 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3202}
3203
3204/* A helper function for is_unique_ancestor. */
3205
3206static int
3207is_unique_ancestor_worker (struct type *base, struct type *dclass,
3208 int *offset,
8af8e3bc
PA
3209 const gdb_byte *valaddr, int embedded_offset,
3210 CORE_ADDR address, struct value *val)
4e8f195d
TT
3211{
3212 int i, count = 0;
3213
f168693b
SM
3214 base = check_typedef (base);
3215 dclass = check_typedef (dclass);
4e8f195d
TT
3216
3217 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3218 {
8af8e3bc
PA
3219 struct type *iter;
3220 int this_offset;
4e8f195d 3221
8af8e3bc
PA
3222 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3223
3224 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3225 address, val);
4e8f195d
TT
3226
3227 if (class_types_same_p (base, iter))
3228 {
3229 /* If this is the first subclass, set *OFFSET and set count
3230 to 1. Otherwise, if this is at the same offset as
3231 previous instances, do nothing. Otherwise, increment
3232 count. */
3233 if (*offset == -1)
3234 {
3235 *offset = this_offset;
3236 count = 1;
3237 }
3238 else if (this_offset == *offset)
3239 {
3240 /* Nothing. */
3241 }
3242 else
3243 ++count;
3244 }
3245 else
3246 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3247 valaddr,
3248 embedded_offset + this_offset,
3249 address, val);
4e8f195d
TT
3250 }
3251
3252 return count;
3253}
3254
3255/* Like is_ancestor, but only returns true if BASE is a unique base
3256 class of the type of VAL. */
3257
3258int
3259is_unique_ancestor (struct type *base, struct value *val)
3260{
3261 int offset = -1;
3262
3263 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3264 value_contents_for_printing (val),
3265 value_embedded_offset (val),
3266 value_address (val), val) == 1;
4e8f195d
TT
3267}
3268
c906108c 3269\f
5212577a 3270/* Overload resolution. */
c906108c 3271
6403aeea
SW
3272/* Return the sum of the rank of A with the rank of B. */
3273
3274struct rank
3275sum_ranks (struct rank a, struct rank b)
3276{
3277 struct rank c;
3278 c.rank = a.rank + b.rank;
a9d5ef47 3279 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3280 return c;
3281}
3282
3283/* Compare rank A and B and return:
3284 0 if a = b
3285 1 if a is better than b
3286 -1 if b is better than a. */
3287
3288int
3289compare_ranks (struct rank a, struct rank b)
3290{
3291 if (a.rank == b.rank)
a9d5ef47
SW
3292 {
3293 if (a.subrank == b.subrank)
3294 return 0;
3295 if (a.subrank < b.subrank)
3296 return 1;
3297 if (a.subrank > b.subrank)
3298 return -1;
3299 }
6403aeea
SW
3300
3301 if (a.rank < b.rank)
3302 return 1;
3303
0963b4bd 3304 /* a.rank > b.rank */
6403aeea
SW
3305 return -1;
3306}
c5aa993b 3307
0963b4bd 3308/* Functions for overload resolution begin here. */
c906108c
SS
3309
3310/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3311 0 => A and B are identical
3312 1 => A and B are incomparable
3313 2 => A is better than B
3314 3 => A is worse than B */
c906108c
SS
3315
3316int
fba45db2 3317compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
3318{
3319 int i;
3320 int tmp;
c5aa993b
JM
3321 short found_pos = 0; /* any positives in c? */
3322 short found_neg = 0; /* any negatives in c? */
3323
3324 /* differing lengths => incomparable */
c906108c
SS
3325 if (a->length != b->length)
3326 return 1;
3327
c5aa993b
JM
3328 /* Subtract b from a */
3329 for (i = 0; i < a->length; i++)
c906108c 3330 {
6403aeea 3331 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 3332 if (tmp > 0)
c5aa993b 3333 found_pos = 1;
c906108c 3334 else if (tmp < 0)
c5aa993b 3335 found_neg = 1;
c906108c
SS
3336 }
3337
3338 if (found_pos)
3339 {
3340 if (found_neg)
c5aa993b 3341 return 1; /* incomparable */
c906108c 3342 else
c5aa993b 3343 return 3; /* A > B */
c906108c 3344 }
c5aa993b
JM
3345 else
3346 /* no positives */
c906108c
SS
3347 {
3348 if (found_neg)
c5aa993b 3349 return 2; /* A < B */
c906108c 3350 else
c5aa993b 3351 return 0; /* A == B */
c906108c
SS
3352 }
3353}
3354
7ba81444
MS
3355/* Rank a function by comparing its parameter types (PARMS, length
3356 NPARMS), to the types of an argument list (ARGS, length NARGS).
3357 Return a pointer to a badness vector. This has NARGS + 1
3358 entries. */
c906108c
SS
3359
3360struct badness_vector *
7ba81444 3361rank_function (struct type **parms, int nparms,
da096638 3362 struct value **args, int nargs)
c906108c
SS
3363{
3364 int i;
8d749320 3365 struct badness_vector *bv = XNEW (struct badness_vector);
c906108c
SS
3366 int min_len = nparms < nargs ? nparms : nargs;
3367
0963b4bd 3368 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 3369 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
3370
3371 /* First compare the lengths of the supplied lists.
7ba81444 3372 If there is a mismatch, set it to a high value. */
c5aa993b 3373
c906108c 3374 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3375 arguments and ellipsis parameter lists, we should consider those
3376 and rank the length-match more finely. */
c906108c 3377
6403aeea
SW
3378 LENGTH_MATCH (bv) = (nargs != nparms)
3379 ? LENGTH_MISMATCH_BADNESS
3380 : EXACT_MATCH_BADNESS;
c906108c 3381
0963b4bd 3382 /* Now rank all the parameters of the candidate function. */
74cc24b0 3383 for (i = 1; i <= min_len; i++)
da096638
KS
3384 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3385 args[i - 1]);
c906108c 3386
0963b4bd 3387 /* If more arguments than parameters, add dummy entries. */
c5aa993b 3388 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
3389 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3390
3391 return bv;
3392}
3393
973ccf8b
DJ
3394/* Compare the names of two integer types, assuming that any sign
3395 qualifiers have been checked already. We do it this way because
3396 there may be an "int" in the name of one of the types. */
3397
3398static int
3399integer_types_same_name_p (const char *first, const char *second)
3400{
3401 int first_p, second_p;
3402
7ba81444
MS
3403 /* If both are shorts, return 1; if neither is a short, keep
3404 checking. */
973ccf8b
DJ
3405 first_p = (strstr (first, "short") != NULL);
3406 second_p = (strstr (second, "short") != NULL);
3407 if (first_p && second_p)
3408 return 1;
3409 if (first_p || second_p)
3410 return 0;
3411
3412 /* Likewise for long. */
3413 first_p = (strstr (first, "long") != NULL);
3414 second_p = (strstr (second, "long") != NULL);
3415 if (first_p && second_p)
3416 return 1;
3417 if (first_p || second_p)
3418 return 0;
3419
3420 /* Likewise for char. */
3421 first_p = (strstr (first, "char") != NULL);
3422 second_p = (strstr (second, "char") != NULL);
3423 if (first_p && second_p)
3424 return 1;
3425 if (first_p || second_p)
3426 return 0;
3427
3428 /* They must both be ints. */
3429 return 1;
3430}
3431
7062b0a0
SW
3432/* Compares type A to type B returns 1 if the represent the same type
3433 0 otherwise. */
3434
bd69fc68 3435int
7062b0a0
SW
3436types_equal (struct type *a, struct type *b)
3437{
3438 /* Identical type pointers. */
3439 /* However, this still doesn't catch all cases of same type for b
3440 and a. The reason is that builtin types are different from
3441 the same ones constructed from the object. */
3442 if (a == b)
3443 return 1;
3444
3445 /* Resolve typedefs */
3446 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3447 a = check_typedef (a);
3448 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3449 b = check_typedef (b);
3450
3451 /* If after resolving typedefs a and b are not of the same type
3452 code then they are not equal. */
3453 if (TYPE_CODE (a) != TYPE_CODE (b))
3454 return 0;
3455
3456 /* If a and b are both pointers types or both reference types then
3457 they are equal of the same type iff the objects they refer to are
3458 of the same type. */
3459 if (TYPE_CODE (a) == TYPE_CODE_PTR
3460 || TYPE_CODE (a) == TYPE_CODE_REF)
3461 return types_equal (TYPE_TARGET_TYPE (a),
3462 TYPE_TARGET_TYPE (b));
3463
0963b4bd 3464 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3465 are exactly the same. This happens when we generate method
3466 stubs. The types won't point to the same address, but they
0963b4bd 3467 really are the same. */
7062b0a0
SW
3468
3469 if (TYPE_NAME (a) && TYPE_NAME (b)
3470 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3471 return 1;
3472
3473 /* Check if identical after resolving typedefs. */
3474 if (a == b)
3475 return 1;
3476
9ce98649
TT
3477 /* Two function types are equal if their argument and return types
3478 are equal. */
3479 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3480 {
3481 int i;
3482
3483 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3484 return 0;
3485
3486 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3487 return 0;
3488
3489 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3490 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3491 return 0;
3492
3493 return 1;
3494 }
3495
7062b0a0
SW
3496 return 0;
3497}
ca092b61
DE
3498\f
3499/* Deep comparison of types. */
3500
3501/* An entry in the type-equality bcache. */
3502
3503typedef struct type_equality_entry
3504{
3505 struct type *type1, *type2;
3506} type_equality_entry_d;
3507
3508DEF_VEC_O (type_equality_entry_d);
3509
3510/* A helper function to compare two strings. Returns 1 if they are
3511 the same, 0 otherwise. Handles NULLs properly. */
3512
3513static int
3514compare_maybe_null_strings (const char *s, const char *t)
3515{
3516 if (s == NULL && t != NULL)
3517 return 0;
3518 else if (s != NULL && t == NULL)
3519 return 0;
3520 else if (s == NULL && t== NULL)
3521 return 1;
3522 return strcmp (s, t) == 0;
3523}
3524
3525/* A helper function for check_types_worklist that checks two types for
3526 "deep" equality. Returns non-zero if the types are considered the
3527 same, zero otherwise. */
3528
3529static int
3530check_types_equal (struct type *type1, struct type *type2,
3531 VEC (type_equality_entry_d) **worklist)
3532{
f168693b
SM
3533 type1 = check_typedef (type1);
3534 type2 = check_typedef (type2);
ca092b61
DE
3535
3536 if (type1 == type2)
3537 return 1;
3538
3539 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3540 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3541 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3542 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3543 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3544 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3545 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3546 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3547 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3548 return 0;
3549
3550 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3551 TYPE_TAG_NAME (type2)))
3552 return 0;
3553 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3554 return 0;
3555
3556 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3557 {
0f59d5fc 3558 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
ca092b61
DE
3559 return 0;
3560 }
3561 else
3562 {
3563 int i;
3564
3565 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3566 {
3567 const struct field *field1 = &TYPE_FIELD (type1, i);
3568 const struct field *field2 = &TYPE_FIELD (type2, i);
3569 struct type_equality_entry entry;
3570
3571 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3572 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3573 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3574 return 0;
3575 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3576 FIELD_NAME (*field2)))
3577 return 0;
3578 switch (FIELD_LOC_KIND (*field1))
3579 {
3580 case FIELD_LOC_KIND_BITPOS:
3581 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3582 return 0;
3583 break;
3584 case FIELD_LOC_KIND_ENUMVAL:
3585 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3586 return 0;
3587 break;
3588 case FIELD_LOC_KIND_PHYSADDR:
3589 if (FIELD_STATIC_PHYSADDR (*field1)
3590 != FIELD_STATIC_PHYSADDR (*field2))
3591 return 0;
3592 break;
3593 case FIELD_LOC_KIND_PHYSNAME:
3594 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3595 FIELD_STATIC_PHYSNAME (*field2)))
3596 return 0;
3597 break;
3598 case FIELD_LOC_KIND_DWARF_BLOCK:
3599 {
3600 struct dwarf2_locexpr_baton *block1, *block2;
3601
3602 block1 = FIELD_DWARF_BLOCK (*field1);
3603 block2 = FIELD_DWARF_BLOCK (*field2);
3604 if (block1->per_cu != block2->per_cu
3605 || block1->size != block2->size
3606 || memcmp (block1->data, block2->data, block1->size) != 0)
3607 return 0;
3608 }
3609 break;
3610 default:
3611 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3612 "%d by check_types_equal"),
3613 FIELD_LOC_KIND (*field1));
3614 }
3615
3616 entry.type1 = FIELD_TYPE (*field1);
3617 entry.type2 = FIELD_TYPE (*field2);
3618 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3619 }
3620 }
3621
3622 if (TYPE_TARGET_TYPE (type1) != NULL)
3623 {
3624 struct type_equality_entry entry;
3625
3626 if (TYPE_TARGET_TYPE (type2) == NULL)
3627 return 0;
3628
3629 entry.type1 = TYPE_TARGET_TYPE (type1);
3630 entry.type2 = TYPE_TARGET_TYPE (type2);
3631 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3632 }
3633 else if (TYPE_TARGET_TYPE (type2) != NULL)
3634 return 0;
3635
3636 return 1;
3637}
3638
3639/* Check types on a worklist for equality. Returns zero if any pair
3640 is not equal, non-zero if they are all considered equal. */
3641
3642static int
3643check_types_worklist (VEC (type_equality_entry_d) **worklist,
3644 struct bcache *cache)
3645{
3646 while (!VEC_empty (type_equality_entry_d, *worklist))
3647 {
3648 struct type_equality_entry entry;
3649 int added;
3650
3651 entry = *VEC_last (type_equality_entry_d, *worklist);
3652 VEC_pop (type_equality_entry_d, *worklist);
3653
3654 /* If the type pair has already been visited, we know it is
3655 ok. */
3656 bcache_full (&entry, sizeof (entry), cache, &added);
3657 if (!added)
3658 continue;
3659
3660 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3661 return 0;
3662 }
7062b0a0 3663
ca092b61
DE
3664 return 1;
3665}
3666
3667/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3668 "deep comparison". Otherwise return zero. */
3669
3670int
3671types_deeply_equal (struct type *type1, struct type *type2)
3672{
6c63c96a 3673 struct gdb_exception except = exception_none;
ca092b61
DE
3674 int result = 0;
3675 struct bcache *cache;
3676 VEC (type_equality_entry_d) *worklist = NULL;
3677 struct type_equality_entry entry;
3678
3679 gdb_assert (type1 != NULL && type2 != NULL);
3680
3681 /* Early exit for the simple case. */
3682 if (type1 == type2)
3683 return 1;
3684
3685 cache = bcache_xmalloc (NULL, NULL);
3686
3687 entry.type1 = type1;
3688 entry.type2 = type2;
3689 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3690
6c63c96a
PA
3691 /* check_types_worklist calls several nested helper functions, some
3692 of which can raise a GDB exception, so we just check and rethrow
3693 here. If there is a GDB exception, a comparison is not capable
3694 (or trusted), so exit. */
492d29ea 3695 TRY
ca092b61
DE
3696 {
3697 result = check_types_worklist (&worklist, cache);
3698 }
6c63c96a 3699 CATCH (ex, RETURN_MASK_ALL)
492d29ea 3700 {
6c63c96a 3701 except = ex;
492d29ea
PA
3702 }
3703 END_CATCH
ca092b61 3704
6c63c96a
PA
3705 bcache_xfree (cache);
3706 VEC_free (type_equality_entry_d, worklist);
3707
3708 /* Rethrow if there was a problem. */
3709 if (except.reason < 0)
3710 throw_exception (except);
3711
ca092b61
DE
3712 return result;
3713}
3f2f83dd
KB
3714
3715/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3716 Otherwise return one. */
3717
3718int
3719type_not_allocated (const struct type *type)
3720{
3721 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3722
3723 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3724 && !TYPE_DYN_PROP_ADDR (prop));
3725}
3726
3727/* Associated status of type TYPE. Return zero if type TYPE is associated.
3728 Otherwise return one. */
3729
3730int
3731type_not_associated (const struct type *type)
3732{
3733 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3734
3735 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3736 && !TYPE_DYN_PROP_ADDR (prop));
3737}
ca092b61 3738\f
c906108c
SS
3739/* Compare one type (PARM) for compatibility with another (ARG).
3740 * PARM is intended to be the parameter type of a function; and
3741 * ARG is the supplied argument's type. This function tests if
3742 * the latter can be converted to the former.
da096638 3743 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3744 *
3745 * Return 0 if they are identical types;
3746 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3747 * PARM is to ARG. The higher the return value, the worse the match.
3748 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3749
6403aeea 3750struct rank
da096638 3751rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3752{
a9d5ef47 3753 struct rank rank = {0,0};
7062b0a0 3754
c906108c
SS
3755 /* Resolve typedefs */
3756 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3757 parm = check_typedef (parm);
3758 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3759 arg = check_typedef (arg);
3760
e15c3eb4 3761 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 3762 {
e15c3eb4
KS
3763 if (VALUE_LVAL (value) == not_lval)
3764 {
3765 /* Rvalues should preferably bind to rvalue references or const
3766 lvalue references. */
3767 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3768 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3769 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3770 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3771 else
3772 return INCOMPATIBLE_TYPE_BADNESS;
3773 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3774 }
3775 else
3776 {
3777 /* Lvalues should prefer lvalue overloads. */
3778 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3779 {
3780 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3781 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3782 }
3783 }
15c0a2a9
AV
3784 }
3785
3786 if (types_equal (parm, arg))
15c0a2a9 3787 {
e15c3eb4
KS
3788 struct type *t1 = parm;
3789 struct type *t2 = arg;
15c0a2a9 3790
e15c3eb4
KS
3791 /* For pointers and references, compare target type. */
3792 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3793 {
3794 t1 = TYPE_TARGET_TYPE (parm);
3795 t2 = TYPE_TARGET_TYPE (arg);
3796 }
15c0a2a9 3797
e15c3eb4
KS
3798 /* Make sure they are CV equal, too. */
3799 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3800 rank.subrank |= CV_CONVERSION_CONST;
3801 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3802 rank.subrank |= CV_CONVERSION_VOLATILE;
3803 if (rank.subrank != 0)
3804 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3805 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
3806 }
3807
db577aea 3808 /* See through references, since we can almost make non-references
7ba81444 3809 references. */
aa006118
AV
3810
3811 if (TYPE_IS_REFERENCE (arg))
da096638 3812 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3813 REFERENCE_CONVERSION_BADNESS));
aa006118 3814 if (TYPE_IS_REFERENCE (parm))
da096638 3815 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3816 REFERENCE_CONVERSION_BADNESS));
5d161b24 3817 if (overload_debug)
7ba81444
MS
3818 /* Debugging only. */
3819 fprintf_filtered (gdb_stderr,
3820 "------ Arg is %s [%d], parm is %s [%d]\n",
3821 TYPE_NAME (arg), TYPE_CODE (arg),
3822 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3823
0963b4bd 3824 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3825
3826 switch (TYPE_CODE (parm))
3827 {
c5aa993b
JM
3828 case TYPE_CODE_PTR:
3829 switch (TYPE_CODE (arg))
3830 {
3831 case TYPE_CODE_PTR:
7062b0a0
SW
3832
3833 /* Allowed pointer conversions are:
3834 (a) pointer to void-pointer conversion. */
3835 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3836 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3837
3838 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3839 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3840 TYPE_TARGET_TYPE (arg),
3841 0);
3842 if (rank.subrank >= 0)
3843 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3844
3845 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3846 case TYPE_CODE_ARRAY:
e15c3eb4
KS
3847 {
3848 struct type *t1 = TYPE_TARGET_TYPE (parm);
3849 struct type *t2 = TYPE_TARGET_TYPE (arg);
3850
3851 if (types_equal (t1, t2))
3852 {
3853 /* Make sure they are CV equal. */
3854 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3855 rank.subrank |= CV_CONVERSION_CONST;
3856 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3857 rank.subrank |= CV_CONVERSION_VOLATILE;
3858 if (rank.subrank != 0)
3859 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3860 return EXACT_MATCH_BADNESS;
3861 }
3862 return INCOMPATIBLE_TYPE_BADNESS;
3863 }
c5aa993b 3864 case TYPE_CODE_FUNC:
da096638 3865 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3866 case TYPE_CODE_INT:
a451cb65 3867 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3868 {
a451cb65
KS
3869 if (value_as_long (value) == 0)
3870 {
3871 /* Null pointer conversion: allow it to be cast to a pointer.
3872 [4.10.1 of C++ standard draft n3290] */
3873 return NULL_POINTER_CONVERSION_BADNESS;
3874 }
3875 else
3876 {
3877 /* If type checking is disabled, allow the conversion. */
3878 if (!strict_type_checking)
3879 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3880 }
da096638
KS
3881 }
3882 /* fall through */
c5aa993b 3883 case TYPE_CODE_ENUM:
4f2aea11 3884 case TYPE_CODE_FLAGS:
c5aa993b
JM
3885 case TYPE_CODE_CHAR:
3886 case TYPE_CODE_RANGE:
3887 case TYPE_CODE_BOOL:
c5aa993b
JM
3888 default:
3889 return INCOMPATIBLE_TYPE_BADNESS;
3890 }
3891 case TYPE_CODE_ARRAY:
3892 switch (TYPE_CODE (arg))
3893 {
3894 case TYPE_CODE_PTR:
3895 case TYPE_CODE_ARRAY:
7ba81444 3896 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3897 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3898 default:
3899 return INCOMPATIBLE_TYPE_BADNESS;
3900 }
3901 case TYPE_CODE_FUNC:
3902 switch (TYPE_CODE (arg))
3903 {
3904 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3905 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3906 default:
3907 return INCOMPATIBLE_TYPE_BADNESS;
3908 }
3909 case TYPE_CODE_INT:
3910 switch (TYPE_CODE (arg))
3911 {
3912 case TYPE_CODE_INT:
3913 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3914 {
3915 /* Deal with signed, unsigned, and plain chars and
7ba81444 3916 signed and unsigned ints. */
c5aa993b
JM
3917 if (TYPE_NOSIGN (parm))
3918 {
0963b4bd 3919 /* This case only for character types. */
7ba81444 3920 if (TYPE_NOSIGN (arg))
6403aeea 3921 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3922 else /* signed/unsigned char -> plain char */
3923 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3924 }
3925 else if (TYPE_UNSIGNED (parm))
3926 {
3927 if (TYPE_UNSIGNED (arg))
3928 {
7ba81444
MS
3929 /* unsigned int -> unsigned int, or
3930 unsigned long -> unsigned long */
3931 if (integer_types_same_name_p (TYPE_NAME (parm),
3932 TYPE_NAME (arg)))
6403aeea 3933 return EXACT_MATCH_BADNESS;
7ba81444
MS
3934 else if (integer_types_same_name_p (TYPE_NAME (arg),
3935 "int")
3936 && integer_types_same_name_p (TYPE_NAME (parm),
3937 "long"))
3e43a32a
MS
3938 /* unsigned int -> unsigned long */
3939 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3940 else
3e43a32a
MS
3941 /* unsigned long -> unsigned int */
3942 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3943 }
3944 else
3945 {
7ba81444
MS
3946 if (integer_types_same_name_p (TYPE_NAME (arg),
3947 "long")
3948 && integer_types_same_name_p (TYPE_NAME (parm),
3949 "int"))
3e43a32a
MS
3950 /* signed long -> unsigned int */
3951 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3952 else
3e43a32a
MS
3953 /* signed int/long -> unsigned int/long */
3954 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3955 }
3956 }
3957 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3958 {
7ba81444
MS
3959 if (integer_types_same_name_p (TYPE_NAME (parm),
3960 TYPE_NAME (arg)))
6403aeea 3961 return EXACT_MATCH_BADNESS;
7ba81444
MS
3962 else if (integer_types_same_name_p (TYPE_NAME (arg),
3963 "int")
3964 && integer_types_same_name_p (TYPE_NAME (parm),
3965 "long"))
c5aa993b
JM
3966 return INTEGER_PROMOTION_BADNESS;
3967 else
1c5cb38e 3968 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3969 }
3970 else
1c5cb38e 3971 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3972 }
3973 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3974 return INTEGER_PROMOTION_BADNESS;
3975 else
1c5cb38e 3976 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3977 case TYPE_CODE_ENUM:
4f2aea11 3978 case TYPE_CODE_FLAGS:
c5aa993b
JM
3979 case TYPE_CODE_CHAR:
3980 case TYPE_CODE_RANGE:
3981 case TYPE_CODE_BOOL:
3d567982
TT
3982 if (TYPE_DECLARED_CLASS (arg))
3983 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3984 return INTEGER_PROMOTION_BADNESS;
3985 case TYPE_CODE_FLT:
3986 return INT_FLOAT_CONVERSION_BADNESS;
3987 case TYPE_CODE_PTR:
3988 return NS_POINTER_CONVERSION_BADNESS;
3989 default:
3990 return INCOMPATIBLE_TYPE_BADNESS;
3991 }
3992 break;
3993 case TYPE_CODE_ENUM:
3994 switch (TYPE_CODE (arg))
3995 {
3996 case TYPE_CODE_INT:
3997 case TYPE_CODE_CHAR:
3998 case TYPE_CODE_RANGE:
3999 case TYPE_CODE_BOOL:
4000 case TYPE_CODE_ENUM:
3d567982
TT
4001 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4002 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 4003 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4004 case TYPE_CODE_FLT:
4005 return INT_FLOAT_CONVERSION_BADNESS;
4006 default:
4007 return INCOMPATIBLE_TYPE_BADNESS;
4008 }
4009 break;
4010 case TYPE_CODE_CHAR:
4011 switch (TYPE_CODE (arg))
4012 {
4013 case TYPE_CODE_RANGE:
4014 case TYPE_CODE_BOOL:
4015 case TYPE_CODE_ENUM:
3d567982
TT
4016 if (TYPE_DECLARED_CLASS (arg))
4017 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 4018 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4019 case TYPE_CODE_FLT:
4020 return INT_FLOAT_CONVERSION_BADNESS;
4021 case TYPE_CODE_INT:
4022 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 4023 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4024 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4025 return INTEGER_PROMOTION_BADNESS;
4026 /* >>> !! else fall through !! <<< */
4027 case TYPE_CODE_CHAR:
7ba81444
MS
4028 /* Deal with signed, unsigned, and plain chars for C++ and
4029 with int cases falling through from previous case. */
c5aa993b
JM
4030 if (TYPE_NOSIGN (parm))
4031 {
4032 if (TYPE_NOSIGN (arg))
6403aeea 4033 return EXACT_MATCH_BADNESS;
c5aa993b 4034 else
1c5cb38e 4035 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4036 }
4037 else if (TYPE_UNSIGNED (parm))
4038 {
4039 if (TYPE_UNSIGNED (arg))
6403aeea 4040 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4041 else
4042 return INTEGER_PROMOTION_BADNESS;
4043 }
4044 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 4045 return EXACT_MATCH_BADNESS;
c5aa993b 4046 else
1c5cb38e 4047 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4048 default:
4049 return INCOMPATIBLE_TYPE_BADNESS;
4050 }
4051 break;
4052 case TYPE_CODE_RANGE:
4053 switch (TYPE_CODE (arg))
4054 {
4055 case TYPE_CODE_INT:
4056 case TYPE_CODE_CHAR:
4057 case TYPE_CODE_RANGE:
4058 case TYPE_CODE_BOOL:
4059 case TYPE_CODE_ENUM:
1c5cb38e 4060 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4061 case TYPE_CODE_FLT:
4062 return INT_FLOAT_CONVERSION_BADNESS;
4063 default:
4064 return INCOMPATIBLE_TYPE_BADNESS;
4065 }
4066 break;
4067 case TYPE_CODE_BOOL:
4068 switch (TYPE_CODE (arg))
4069 {
5b4f6e25
KS
4070 /* n3290 draft, section 4.12.1 (conv.bool):
4071
4072 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4073 pointer to member type can be converted to a prvalue of type
4074 bool. A zero value, null pointer value, or null member pointer
4075 value is converted to false; any other value is converted to
4076 true. A prvalue of type std::nullptr_t can be converted to a
4077 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
4078 case TYPE_CODE_INT:
4079 case TYPE_CODE_CHAR:
c5aa993b
JM
4080 case TYPE_CODE_ENUM:
4081 case TYPE_CODE_FLT:
5b4f6e25 4082 case TYPE_CODE_MEMBERPTR:
c5aa993b 4083 case TYPE_CODE_PTR:
5b4f6e25
KS
4084 return BOOL_CONVERSION_BADNESS;
4085 case TYPE_CODE_RANGE:
4086 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 4087 case TYPE_CODE_BOOL:
6403aeea 4088 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4089 default:
4090 return INCOMPATIBLE_TYPE_BADNESS;
4091 }
4092 break;
4093 case TYPE_CODE_FLT:
4094 switch (TYPE_CODE (arg))
4095 {
4096 case TYPE_CODE_FLT:
4097 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4098 return FLOAT_PROMOTION_BADNESS;
4099 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 4100 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4101 else
4102 return FLOAT_CONVERSION_BADNESS;
4103 case TYPE_CODE_INT:
4104 case TYPE_CODE_BOOL:
4105 case TYPE_CODE_ENUM:
4106 case TYPE_CODE_RANGE:
4107 case TYPE_CODE_CHAR:
4108 return INT_FLOAT_CONVERSION_BADNESS;
4109 default:
4110 return INCOMPATIBLE_TYPE_BADNESS;
4111 }
4112 break;
4113 case TYPE_CODE_COMPLEX:
4114 switch (TYPE_CODE (arg))
7ba81444 4115 { /* Strictly not needed for C++, but... */
c5aa993b
JM
4116 case TYPE_CODE_FLT:
4117 return FLOAT_PROMOTION_BADNESS;
4118 case TYPE_CODE_COMPLEX:
6403aeea 4119 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4120 default:
4121 return INCOMPATIBLE_TYPE_BADNESS;
4122 }
4123 break;
4124 case TYPE_CODE_STRUCT:
c5aa993b
JM
4125 switch (TYPE_CODE (arg))
4126 {
4127 case TYPE_CODE_STRUCT:
4128 /* Check for derivation */
a9d5ef47
SW
4129 rank.subrank = distance_to_ancestor (parm, arg, 0);
4130 if (rank.subrank >= 0)
4131 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
4132 /* else fall through */
4133 default:
4134 return INCOMPATIBLE_TYPE_BADNESS;
4135 }
4136 break;
4137 case TYPE_CODE_UNION:
4138 switch (TYPE_CODE (arg))
4139 {
4140 case TYPE_CODE_UNION:
4141 default:
4142 return INCOMPATIBLE_TYPE_BADNESS;
4143 }
4144 break;
0d5de010 4145 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
4146 switch (TYPE_CODE (arg))
4147 {
4148 default:
4149 return INCOMPATIBLE_TYPE_BADNESS;
4150 }
4151 break;
4152 case TYPE_CODE_METHOD:
4153 switch (TYPE_CODE (arg))
4154 {
4155
4156 default:
4157 return INCOMPATIBLE_TYPE_BADNESS;
4158 }
4159 break;
4160 case TYPE_CODE_REF:
4161 switch (TYPE_CODE (arg))
4162 {
4163
4164 default:
4165 return INCOMPATIBLE_TYPE_BADNESS;
4166 }
4167
4168 break;
4169 case TYPE_CODE_SET:
4170 switch (TYPE_CODE (arg))
4171 {
4172 /* Not in C++ */
4173 case TYPE_CODE_SET:
7ba81444 4174 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 4175 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
4176 default:
4177 return INCOMPATIBLE_TYPE_BADNESS;
4178 }
4179 break;
4180 case TYPE_CODE_VOID:
4181 default:
4182 return INCOMPATIBLE_TYPE_BADNESS;
4183 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4184}
4185
0963b4bd 4186/* End of functions for overload resolution. */
5212577a
DE
4187\f
4188/* Routines to pretty-print types. */
c906108c 4189
c906108c 4190static void
fba45db2 4191print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4192{
4193 int bitno;
4194
4195 for (bitno = 0; bitno < nbits; bitno++)
4196 {
4197 if ((bitno % 8) == 0)
4198 {
4199 puts_filtered (" ");
4200 }
4201 if (B_TST (bits, bitno))
a3f17187 4202 printf_filtered (("1"));
c906108c 4203 else
a3f17187 4204 printf_filtered (("0"));
c906108c
SS
4205 }
4206}
4207
ad2f7632 4208/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4209 include it since we may get into a infinitely recursive
4210 situation. */
c906108c
SS
4211
4212static void
4c9e8482 4213print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4214{
4215 if (args != NULL)
4216 {
ad2f7632
DJ
4217 int i;
4218
4219 for (i = 0; i < nargs; i++)
4c9e8482
DE
4220 {
4221 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4222 args[i].name != NULL ? args[i].name : "<NULL>");
4223 recursive_dump_type (args[i].type, spaces + 2);
4224 }
c906108c
SS
4225 }
4226}
4227
d6a843b5
JK
4228int
4229field_is_static (struct field *f)
4230{
4231 /* "static" fields are the fields whose location is not relative
4232 to the address of the enclosing struct. It would be nice to
4233 have a dedicated flag that would be set for static fields when
4234 the type is being created. But in practice, checking the field
254e6b9e 4235 loc_kind should give us an accurate answer. */
d6a843b5
JK
4236 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4237 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4238}
4239
c906108c 4240static void
fba45db2 4241dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4242{
4243 int method_idx;
4244 int overload_idx;
4245 struct fn_field *f;
4246
4247 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4248 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4249 printf_filtered ("\n");
4250 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4251 {
4252 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4253 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4254 method_idx,
4255 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4256 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4257 gdb_stdout);
a3f17187 4258 printf_filtered (_(") length %d\n"),
c906108c
SS
4259 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4260 for (overload_idx = 0;
4261 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4262 overload_idx++)
4263 {
4264 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4265 overload_idx,
4266 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4267 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4268 gdb_stdout);
c906108c
SS
4269 printf_filtered (")\n");
4270 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4271 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4272 gdb_stdout);
c906108c
SS
4273 printf_filtered ("\n");
4274
4275 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4276 spaces + 8 + 2);
4277
4278 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4279 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4280 gdb_stdout);
c906108c 4281 printf_filtered ("\n");
4c9e8482
DE
4282 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4283 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4284 spaces + 8 + 2);
c906108c 4285 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4286 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4287 gdb_stdout);
c906108c
SS
4288 printf_filtered ("\n");
4289
4290 printfi_filtered (spaces + 8, "is_const %d\n",
4291 TYPE_FN_FIELD_CONST (f, overload_idx));
4292 printfi_filtered (spaces + 8, "is_volatile %d\n",
4293 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4294 printfi_filtered (spaces + 8, "is_private %d\n",
4295 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4296 printfi_filtered (spaces + 8, "is_protected %d\n",
4297 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4298 printfi_filtered (spaces + 8, "is_stub %d\n",
4299 TYPE_FN_FIELD_STUB (f, overload_idx));
4300 printfi_filtered (spaces + 8, "voffset %u\n",
4301 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4302 }
4303 }
4304}
4305
4306static void
fba45db2 4307print_cplus_stuff (struct type *type, int spaces)
c906108c 4308{
ae6ae975
DE
4309 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4310 printfi_filtered (spaces, "vptr_basetype ");
4311 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4312 puts_filtered ("\n");
4313 if (TYPE_VPTR_BASETYPE (type) != NULL)
4314 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4315
c906108c
SS
4316 printfi_filtered (spaces, "n_baseclasses %d\n",
4317 TYPE_N_BASECLASSES (type));
4318 printfi_filtered (spaces, "nfn_fields %d\n",
4319 TYPE_NFN_FIELDS (type));
c906108c
SS
4320 if (TYPE_N_BASECLASSES (type) > 0)
4321 {
4322 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4323 TYPE_N_BASECLASSES (type));
7ba81444
MS
4324 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4325 gdb_stdout);
c906108c
SS
4326 printf_filtered (")");
4327
4328 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4329 TYPE_N_BASECLASSES (type));
4330 puts_filtered ("\n");
4331 }
4332 if (TYPE_NFIELDS (type) > 0)
4333 {
4334 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4335 {
7ba81444
MS
4336 printfi_filtered (spaces,
4337 "private_field_bits (%d bits at *",
c906108c 4338 TYPE_NFIELDS (type));
7ba81444
MS
4339 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4340 gdb_stdout);
c906108c
SS
4341 printf_filtered (")");
4342 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4343 TYPE_NFIELDS (type));
4344 puts_filtered ("\n");
4345 }
4346 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4347 {
7ba81444
MS
4348 printfi_filtered (spaces,
4349 "protected_field_bits (%d bits at *",
c906108c 4350 TYPE_NFIELDS (type));
7ba81444
MS
4351 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4352 gdb_stdout);
c906108c
SS
4353 printf_filtered (")");
4354 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4355 TYPE_NFIELDS (type));
4356 puts_filtered ("\n");
4357 }
4358 }
4359 if (TYPE_NFN_FIELDS (type) > 0)
4360 {
4361 dump_fn_fieldlists (type, spaces);
4362 }
4363}
4364
b4ba55a1
JB
4365/* Print the contents of the TYPE's type_specific union, assuming that
4366 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4367
4368static void
4369print_gnat_stuff (struct type *type, int spaces)
4370{
4371 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4372
8cd00c59
PMR
4373 if (descriptive_type == NULL)
4374 printfi_filtered (spaces + 2, "no descriptive type\n");
4375 else
4376 {
4377 printfi_filtered (spaces + 2, "descriptive type\n");
4378 recursive_dump_type (descriptive_type, spaces + 4);
4379 }
b4ba55a1
JB
4380}
4381
c906108c
SS
4382static struct obstack dont_print_type_obstack;
4383
4384void
fba45db2 4385recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4386{
4387 int idx;
4388
4389 if (spaces == 0)
4390 obstack_begin (&dont_print_type_obstack, 0);
4391
4392 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4393 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4394 {
4395 struct type **first_dont_print
7ba81444 4396 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4397
7ba81444
MS
4398 int i = (struct type **)
4399 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4400
4401 while (--i >= 0)
4402 {
4403 if (type == first_dont_print[i])
4404 {
4405 printfi_filtered (spaces, "type node ");
d4f3574e 4406 gdb_print_host_address (type, gdb_stdout);
a3f17187 4407 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4408 return;
4409 }
4410 }
4411
4412 obstack_ptr_grow (&dont_print_type_obstack, type);
4413 }
4414
4415 printfi_filtered (spaces, "type node ");
d4f3574e 4416 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4417 printf_filtered ("\n");
4418 printfi_filtered (spaces, "name '%s' (",
4419 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4420 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4421 printf_filtered (")\n");
e9e79dd9
FF
4422 printfi_filtered (spaces, "tagname '%s' (",
4423 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4424 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4425 printf_filtered (")\n");
c906108c
SS
4426 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4427 switch (TYPE_CODE (type))
4428 {
c5aa993b
JM
4429 case TYPE_CODE_UNDEF:
4430 printf_filtered ("(TYPE_CODE_UNDEF)");
4431 break;
4432 case TYPE_CODE_PTR:
4433 printf_filtered ("(TYPE_CODE_PTR)");
4434 break;
4435 case TYPE_CODE_ARRAY:
4436 printf_filtered ("(TYPE_CODE_ARRAY)");
4437 break;
4438 case TYPE_CODE_STRUCT:
4439 printf_filtered ("(TYPE_CODE_STRUCT)");
4440 break;
4441 case TYPE_CODE_UNION:
4442 printf_filtered ("(TYPE_CODE_UNION)");
4443 break;
4444 case TYPE_CODE_ENUM:
4445 printf_filtered ("(TYPE_CODE_ENUM)");
4446 break;
4f2aea11
MK
4447 case TYPE_CODE_FLAGS:
4448 printf_filtered ("(TYPE_CODE_FLAGS)");
4449 break;
c5aa993b
JM
4450 case TYPE_CODE_FUNC:
4451 printf_filtered ("(TYPE_CODE_FUNC)");
4452 break;
4453 case TYPE_CODE_INT:
4454 printf_filtered ("(TYPE_CODE_INT)");
4455 break;
4456 case TYPE_CODE_FLT:
4457 printf_filtered ("(TYPE_CODE_FLT)");
4458 break;
4459 case TYPE_CODE_VOID:
4460 printf_filtered ("(TYPE_CODE_VOID)");
4461 break;
4462 case TYPE_CODE_SET:
4463 printf_filtered ("(TYPE_CODE_SET)");
4464 break;
4465 case TYPE_CODE_RANGE:
4466 printf_filtered ("(TYPE_CODE_RANGE)");
4467 break;
4468 case TYPE_CODE_STRING:
4469 printf_filtered ("(TYPE_CODE_STRING)");
4470 break;
4471 case TYPE_CODE_ERROR:
4472 printf_filtered ("(TYPE_CODE_ERROR)");
4473 break;
0d5de010
DJ
4474 case TYPE_CODE_MEMBERPTR:
4475 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4476 break;
4477 case TYPE_CODE_METHODPTR:
4478 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4479 break;
4480 case TYPE_CODE_METHOD:
4481 printf_filtered ("(TYPE_CODE_METHOD)");
4482 break;
4483 case TYPE_CODE_REF:
4484 printf_filtered ("(TYPE_CODE_REF)");
4485 break;
4486 case TYPE_CODE_CHAR:
4487 printf_filtered ("(TYPE_CODE_CHAR)");
4488 break;
4489 case TYPE_CODE_BOOL:
4490 printf_filtered ("(TYPE_CODE_BOOL)");
4491 break;
e9e79dd9
FF
4492 case TYPE_CODE_COMPLEX:
4493 printf_filtered ("(TYPE_CODE_COMPLEX)");
4494 break;
c5aa993b
JM
4495 case TYPE_CODE_TYPEDEF:
4496 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4497 break;
5c4e30ca
DC
4498 case TYPE_CODE_NAMESPACE:
4499 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4500 break;
c5aa993b
JM
4501 default:
4502 printf_filtered ("(UNKNOWN TYPE CODE)");
4503 break;
c906108c
SS
4504 }
4505 puts_filtered ("\n");
4506 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
4507 if (TYPE_OBJFILE_OWNED (type))
4508 {
4509 printfi_filtered (spaces, "objfile ");
4510 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4511 }
4512 else
4513 {
4514 printfi_filtered (spaces, "gdbarch ");
4515 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4516 }
c906108c
SS
4517 printf_filtered ("\n");
4518 printfi_filtered (spaces, "target_type ");
d4f3574e 4519 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4520 printf_filtered ("\n");
4521 if (TYPE_TARGET_TYPE (type) != NULL)
4522 {
4523 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4524 }
4525 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4526 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4527 printf_filtered ("\n");
4528 printfi_filtered (spaces, "reference_type ");
d4f3574e 4529 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4530 printf_filtered ("\n");
2fdde8f8
DJ
4531 printfi_filtered (spaces, "type_chain ");
4532 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4533 printf_filtered ("\n");
7ba81444
MS
4534 printfi_filtered (spaces, "instance_flags 0x%x",
4535 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4536 if (TYPE_CONST (type))
4537 {
a9ff5f12 4538 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4539 }
4540 if (TYPE_VOLATILE (type))
4541 {
a9ff5f12 4542 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4543 }
4544 if (TYPE_CODE_SPACE (type))
4545 {
a9ff5f12 4546 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4547 }
4548 if (TYPE_DATA_SPACE (type))
4549 {
a9ff5f12 4550 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4551 }
8b2dbe47
KB
4552 if (TYPE_ADDRESS_CLASS_1 (type))
4553 {
a9ff5f12 4554 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4555 }
4556 if (TYPE_ADDRESS_CLASS_2 (type))
4557 {
a9ff5f12 4558 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4559 }
06d66ee9
TT
4560 if (TYPE_RESTRICT (type))
4561 {
a9ff5f12 4562 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4563 }
a2c2acaf
MW
4564 if (TYPE_ATOMIC (type))
4565 {
a9ff5f12 4566 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4567 }
2fdde8f8 4568 puts_filtered ("\n");
876cecd0
TT
4569
4570 printfi_filtered (spaces, "flags");
762a036f 4571 if (TYPE_UNSIGNED (type))
c906108c 4572 {
a9ff5f12 4573 puts_filtered (" TYPE_UNSIGNED");
c906108c 4574 }
762a036f
FF
4575 if (TYPE_NOSIGN (type))
4576 {
a9ff5f12 4577 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4578 }
4579 if (TYPE_STUB (type))
c906108c 4580 {
a9ff5f12 4581 puts_filtered (" TYPE_STUB");
c906108c 4582 }
762a036f
FF
4583 if (TYPE_TARGET_STUB (type))
4584 {
a9ff5f12 4585 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4586 }
762a036f
FF
4587 if (TYPE_PROTOTYPED (type))
4588 {
a9ff5f12 4589 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4590 }
4591 if (TYPE_INCOMPLETE (type))
4592 {
a9ff5f12 4593 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4594 }
762a036f
FF
4595 if (TYPE_VARARGS (type))
4596 {
a9ff5f12 4597 puts_filtered (" TYPE_VARARGS");
762a036f 4598 }
f5f8a009
EZ
4599 /* This is used for things like AltiVec registers on ppc. Gcc emits
4600 an attribute for the array type, which tells whether or not we
4601 have a vector, instead of a regular array. */
4602 if (TYPE_VECTOR (type))
4603 {
a9ff5f12 4604 puts_filtered (" TYPE_VECTOR");
f5f8a009 4605 }
876cecd0
TT
4606 if (TYPE_FIXED_INSTANCE (type))
4607 {
4608 puts_filtered (" TYPE_FIXED_INSTANCE");
4609 }
4610 if (TYPE_STUB_SUPPORTED (type))
4611 {
4612 puts_filtered (" TYPE_STUB_SUPPORTED");
4613 }
4614 if (TYPE_NOTTEXT (type))
4615 {
4616 puts_filtered (" TYPE_NOTTEXT");
4617 }
c906108c
SS
4618 puts_filtered ("\n");
4619 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4620 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4621 puts_filtered ("\n");
4622 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4623 {
14e75d8e
JK
4624 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4625 printfi_filtered (spaces + 2,
4626 "[%d] enumval %s type ",
4627 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4628 else
4629 printfi_filtered (spaces + 2,
6b850546
DT
4630 "[%d] bitpos %s bitsize %d type ",
4631 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4632 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4633 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4634 printf_filtered (" name '%s' (",
4635 TYPE_FIELD_NAME (type, idx) != NULL
4636 ? TYPE_FIELD_NAME (type, idx)
4637 : "<NULL>");
d4f3574e 4638 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4639 printf_filtered (")\n");
4640 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4641 {
4642 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4643 }
4644 }
43bbcdc2
PH
4645 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4646 {
4647 printfi_filtered (spaces, "low %s%s high %s%s\n",
4648 plongest (TYPE_LOW_BOUND (type)),
4649 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4650 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4651 TYPE_HIGH_BOUND_UNDEFINED (type)
4652 ? " (undefined)" : "");
43bbcdc2 4653 }
c906108c 4654
b4ba55a1
JB
4655 switch (TYPE_SPECIFIC_FIELD (type))
4656 {
4657 case TYPE_SPECIFIC_CPLUS_STUFF:
4658 printfi_filtered (spaces, "cplus_stuff ");
4659 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4660 gdb_stdout);
4661 puts_filtered ("\n");
4662 print_cplus_stuff (type, spaces);
4663 break;
8da61cc4 4664
b4ba55a1
JB
4665 case TYPE_SPECIFIC_GNAT_STUFF:
4666 printfi_filtered (spaces, "gnat_stuff ");
4667 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4668 puts_filtered ("\n");
4669 print_gnat_stuff (type, spaces);
4670 break;
701c159d 4671
b4ba55a1
JB
4672 case TYPE_SPECIFIC_FLOATFORMAT:
4673 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4674 if (TYPE_FLOATFORMAT (type) == NULL
4675 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4676 puts_filtered ("(null)");
4677 else
0db7851f 4678 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4679 puts_filtered ("\n");
4680 break;
c906108c 4681
b6cdc2c1 4682 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4683 printfi_filtered (spaces, "calling_convention %d\n",
4684 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4685 /* tail_call_list is not printed. */
b4ba55a1 4686 break;
09e2d7c7
DE
4687
4688 case TYPE_SPECIFIC_SELF_TYPE:
4689 printfi_filtered (spaces, "self_type ");
4690 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4691 puts_filtered ("\n");
4692 break;
c906108c 4693 }
b4ba55a1 4694
c906108c
SS
4695 if (spaces == 0)
4696 obstack_free (&dont_print_type_obstack, NULL);
4697}
5212577a 4698\f
ae5a43e0
DJ
4699/* Trivial helpers for the libiberty hash table, for mapping one
4700 type to another. */
4701
fd90ace4 4702struct type_pair : public allocate_on_obstack
ae5a43e0 4703{
fd90ace4
YQ
4704 type_pair (struct type *old_, struct type *newobj_)
4705 : old (old_), newobj (newobj_)
4706 {}
4707
4708 struct type * const old, * const newobj;
ae5a43e0
DJ
4709};
4710
4711static hashval_t
4712type_pair_hash (const void *item)
4713{
9a3c8263 4714 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4715
ae5a43e0
DJ
4716 return htab_hash_pointer (pair->old);
4717}
4718
4719static int
4720type_pair_eq (const void *item_lhs, const void *item_rhs)
4721{
9a3c8263
SM
4722 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4723 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4724
ae5a43e0
DJ
4725 return lhs->old == rhs->old;
4726}
4727
4728/* Allocate the hash table used by copy_type_recursive to walk
4729 types without duplicates. We use OBJFILE's obstack, because
4730 OBJFILE is about to be deleted. */
4731
4732htab_t
4733create_copied_types_hash (struct objfile *objfile)
4734{
4735 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4736 NULL, &objfile->objfile_obstack,
4737 hashtab_obstack_allocate,
4738 dummy_obstack_deallocate);
4739}
4740
d9823cbb
KB
4741/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4742
4743static struct dynamic_prop_list *
4744copy_dynamic_prop_list (struct obstack *objfile_obstack,
4745 struct dynamic_prop_list *list)
4746{
4747 struct dynamic_prop_list *copy = list;
4748 struct dynamic_prop_list **node_ptr = &copy;
4749
4750 while (*node_ptr != NULL)
4751 {
4752 struct dynamic_prop_list *node_copy;
4753
224c3ddb
SM
4754 node_copy = ((struct dynamic_prop_list *)
4755 obstack_copy (objfile_obstack, *node_ptr,
4756 sizeof (struct dynamic_prop_list)));
283a9958 4757 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4758 *node_ptr = node_copy;
4759
4760 node_ptr = &node_copy->next;
4761 }
4762
4763 return copy;
4764}
4765
7ba81444 4766/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4767 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4768 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4769 it is not associated with OBJFILE. */
ae5a43e0
DJ
4770
4771struct type *
7ba81444
MS
4772copy_type_recursive (struct objfile *objfile,
4773 struct type *type,
ae5a43e0
DJ
4774 htab_t copied_types)
4775{
ae5a43e0
DJ
4776 void **slot;
4777 struct type *new_type;
4778
e9bb382b 4779 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4780 return type;
4781
7ba81444
MS
4782 /* This type shouldn't be pointing to any types in other objfiles;
4783 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4784 gdb_assert (TYPE_OBJFILE (type) == objfile);
4785
fd90ace4
YQ
4786 struct type_pair pair (type, nullptr);
4787
ae5a43e0
DJ
4788 slot = htab_find_slot (copied_types, &pair, INSERT);
4789 if (*slot != NULL)
fe978cb0 4790 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4791
e9bb382b 4792 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4793
4794 /* We must add the new type to the hash table immediately, in case
4795 we encounter this type again during a recursive call below. */
fd90ace4
YQ
4796 struct type_pair *stored
4797 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4798
ae5a43e0
DJ
4799 *slot = stored;
4800
876cecd0
TT
4801 /* Copy the common fields of types. For the main type, we simply
4802 copy the entire thing and then update specific fields as needed. */
4803 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4804 TYPE_OBJFILE_OWNED (new_type) = 0;
4805 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4806
ae5a43e0
DJ
4807 if (TYPE_NAME (type))
4808 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4809 if (TYPE_TAG_NAME (type))
4810 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4811
4812 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4813 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4814
4815 /* Copy the fields. */
ae5a43e0
DJ
4816 if (TYPE_NFIELDS (type))
4817 {
4818 int i, nfields;
4819
4820 nfields = TYPE_NFIELDS (type);
fc270c35 4821 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4822 for (i = 0; i < nfields; i++)
4823 {
7ba81444
MS
4824 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4825 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4826 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4827 if (TYPE_FIELD_TYPE (type, i))
4828 TYPE_FIELD_TYPE (new_type, i)
4829 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4830 copied_types);
4831 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4832 TYPE_FIELD_NAME (new_type, i) =
4833 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4834 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4835 {
d6a843b5
JK
4836 case FIELD_LOC_KIND_BITPOS:
4837 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4838 TYPE_FIELD_BITPOS (type, i));
4839 break;
14e75d8e
JK
4840 case FIELD_LOC_KIND_ENUMVAL:
4841 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4842 TYPE_FIELD_ENUMVAL (type, i));
4843 break;
d6a843b5
JK
4844 case FIELD_LOC_KIND_PHYSADDR:
4845 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4846 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4847 break;
4848 case FIELD_LOC_KIND_PHYSNAME:
4849 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4850 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4851 i)));
4852 break;
4853 default:
4854 internal_error (__FILE__, __LINE__,
4855 _("Unexpected type field location kind: %d"),
4856 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4857 }
4858 }
4859 }
4860
0963b4bd 4861 /* For range types, copy the bounds information. */
43bbcdc2
PH
4862 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4863 {
8d749320 4864 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
43bbcdc2
PH
4865 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4866 }
4867
d9823cbb
KB
4868 if (TYPE_DYN_PROP_LIST (type) != NULL)
4869 TYPE_DYN_PROP_LIST (new_type)
4870 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4871 TYPE_DYN_PROP_LIST (type));
4872
3cdcd0ce 4873
ae5a43e0
DJ
4874 /* Copy pointers to other types. */
4875 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4876 TYPE_TARGET_TYPE (new_type) =
4877 copy_type_recursive (objfile,
4878 TYPE_TARGET_TYPE (type),
4879 copied_types);
f6b3afbf 4880
ae5a43e0
DJ
4881 /* Maybe copy the type_specific bits.
4882
4883 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4884 base classes and methods. There's no fundamental reason why we
4885 can't, but at the moment it is not needed. */
4886
f6b3afbf
DE
4887 switch (TYPE_SPECIFIC_FIELD (type))
4888 {
4889 case TYPE_SPECIFIC_NONE:
4890 break;
4891 case TYPE_SPECIFIC_FUNC:
4892 INIT_FUNC_SPECIFIC (new_type);
4893 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4894 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4895 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4896 break;
4897 case TYPE_SPECIFIC_FLOATFORMAT:
4898 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4899 break;
4900 case TYPE_SPECIFIC_CPLUS_STUFF:
4901 INIT_CPLUS_SPECIFIC (new_type);
4902 break;
4903 case TYPE_SPECIFIC_GNAT_STUFF:
4904 INIT_GNAT_SPECIFIC (new_type);
4905 break;
09e2d7c7
DE
4906 case TYPE_SPECIFIC_SELF_TYPE:
4907 set_type_self_type (new_type,
4908 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4909 copied_types));
4910 break;
f6b3afbf
DE
4911 default:
4912 gdb_assert_not_reached ("bad type_specific_kind");
4913 }
ae5a43e0
DJ
4914
4915 return new_type;
4916}
4917
4af88198
JB
4918/* Make a copy of the given TYPE, except that the pointer & reference
4919 types are not preserved.
4920
4921 This function assumes that the given type has an associated objfile.
4922 This objfile is used to allocate the new type. */
4923
4924struct type *
4925copy_type (const struct type *type)
4926{
4927 struct type *new_type;
4928
e9bb382b 4929 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4930
e9bb382b 4931 new_type = alloc_type_copy (type);
4af88198
JB
4932 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4933 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4934 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4935 sizeof (struct main_type));
d9823cbb
KB
4936 if (TYPE_DYN_PROP_LIST (type) != NULL)
4937 TYPE_DYN_PROP_LIST (new_type)
4938 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4939 TYPE_DYN_PROP_LIST (type));
4af88198
JB
4940
4941 return new_type;
4942}
5212577a 4943\f
e9bb382b
UW
4944/* Helper functions to initialize architecture-specific types. */
4945
4946/* Allocate a type structure associated with GDBARCH and set its
4947 CODE, LENGTH, and NAME fields. */
5212577a 4948
e9bb382b
UW
4949struct type *
4950arch_type (struct gdbarch *gdbarch,
77b7c781 4951 enum type_code code, int bit, const char *name)
e9bb382b
UW
4952{
4953 struct type *type;
4954
4955 type = alloc_type_arch (gdbarch);
ae438bc5 4956 set_type_code (type, code);
77b7c781
UW
4957 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
4958 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
4959
4960 if (name)
6c214e7c 4961 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
4962
4963 return type;
4964}
4965
4966/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4967 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4968 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4969
e9bb382b
UW
4970struct type *
4971arch_integer_type (struct gdbarch *gdbarch,
695bfa52 4972 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4973{
4974 struct type *t;
4975
77b7c781 4976 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
4977 if (unsigned_p)
4978 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
4979
4980 return t;
4981}
4982
4983/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4984 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4985 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4986
e9bb382b
UW
4987struct type *
4988arch_character_type (struct gdbarch *gdbarch,
695bfa52 4989 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4990{
4991 struct type *t;
4992
77b7c781 4993 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
4994 if (unsigned_p)
4995 TYPE_UNSIGNED (t) = 1;
4996
4997 return t;
4998}
4999
5000/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5001 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5002 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5003
e9bb382b
UW
5004struct type *
5005arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5006 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5007{
5008 struct type *t;
5009
77b7c781 5010 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5011 if (unsigned_p)
5012 TYPE_UNSIGNED (t) = 1;
5013
5014 return t;
5015}
5016
5017/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5018 BIT is the type size in bits; if BIT equals -1, the size is
5019 determined by the floatformat. NAME is the type name. Set the
5020 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5021
27067745 5022struct type *
e9bb382b 5023arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5024 int bit, const char *name,
5025 const struct floatformat **floatformats)
8da61cc4 5026{
0db7851f 5027 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5028 struct type *t;
5029
0db7851f 5030 bit = verify_floatformat (bit, fmt);
77b7c781 5031 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5032 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5033
8da61cc4
DJ
5034 return t;
5035}
5036
88dfca6c
UW
5037/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5038 BIT is the type size in bits. NAME is the type name. */
5039
5040struct type *
5041arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5042{
5043 struct type *t;
5044
77b7c781 5045 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5046 return t;
5047}
5048
e9bb382b
UW
5049/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5050 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 5051
27067745 5052struct type *
e9bb382b 5053arch_complex_type (struct gdbarch *gdbarch,
695bfa52 5054 const char *name, struct type *target_type)
27067745
UW
5055{
5056 struct type *t;
d8734c88 5057
e9bb382b 5058 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 5059 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
5060 TYPE_TARGET_TYPE (t) = target_type;
5061 return t;
5062}
5063
88dfca6c
UW
5064/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5065 BIT is the pointer type size in bits. NAME is the type name.
5066 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5067 TYPE_UNSIGNED flag. */
5068
5069struct type *
5070arch_pointer_type (struct gdbarch *gdbarch,
5071 int bit, const char *name, struct type *target_type)
5072{
5073 struct type *t;
5074
77b7c781 5075 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5076 TYPE_TARGET_TYPE (t) = target_type;
5077 TYPE_UNSIGNED (t) = 1;
5078 return t;
5079}
5080
e9bb382b 5081/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5082 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5083
e9bb382b 5084struct type *
77b7c781 5085arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5086{
e9bb382b
UW
5087 struct type *type;
5088
77b7c781 5089 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5090 TYPE_UNSIGNED (type) = 1;
81516450
DE
5091 TYPE_NFIELDS (type) = 0;
5092 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5093 TYPE_FIELDS (type)
77b7c781 5094 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5095
5096 return type;
5097}
5098
5099/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5100 position BITPOS is called NAME. Pass NAME as "" for fields that
5101 should not be printed. */
5102
5103void
5104append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5105 struct type *field_type, const char *name)
81516450
DE
5106{
5107 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5108 int field_nr = TYPE_NFIELDS (type);
5109
5110 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5111 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5112 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5113 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5114 gdb_assert (name != NULL);
5115
5116 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5117 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5118 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5119 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5120 ++TYPE_NFIELDS (type);
5121}
5122
5123/* Special version of append_flags_type_field to add a flag field.
5124 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5125 position BITPOS is called NAME. */
5212577a 5126
e9bb382b 5127void
695bfa52 5128append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5129{
81516450 5130 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5131
81516450
DE
5132 append_flags_type_field (type, bitpos, 1,
5133 builtin_type (gdbarch)->builtin_bool,
5134 name);
e9bb382b
UW
5135}
5136
5137/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5138 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5139
e9bb382b 5140struct type *
695bfa52
TT
5141arch_composite_type (struct gdbarch *gdbarch, const char *name,
5142 enum type_code code)
e9bb382b
UW
5143{
5144 struct type *t;
d8734c88 5145
e9bb382b
UW
5146 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5147 t = arch_type (gdbarch, code, 0, NULL);
5148 TYPE_TAG_NAME (t) = name;
5149 INIT_CPLUS_SPECIFIC (t);
5150 return t;
5151}
5152
5153/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5154 Do not set the field's position or adjust the type's length;
5155 the caller should do so. Return the new field. */
5212577a 5156
f5dff777 5157struct field *
695bfa52 5158append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5159 struct type *field)
e9bb382b
UW
5160{
5161 struct field *f;
d8734c88 5162
e9bb382b 5163 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5164 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5165 TYPE_NFIELDS (t));
e9bb382b
UW
5166 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5167 memset (f, 0, sizeof f[0]);
5168 FIELD_TYPE (f[0]) = field;
5169 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5170 return f;
5171}
5172
5173/* Add new field with name NAME and type FIELD to composite type T.
5174 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5175
f5dff777 5176void
695bfa52 5177append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5178 struct type *field, int alignment)
5179{
5180 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5181
e9bb382b
UW
5182 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5183 {
5184 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5185 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5186 }
5187 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5188 {
5189 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5190 if (TYPE_NFIELDS (t) > 1)
5191 {
f41f5e61
PA
5192 SET_FIELD_BITPOS (f[0],
5193 (FIELD_BITPOS (f[-1])
5194 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5195 * TARGET_CHAR_BIT)));
e9bb382b
UW
5196
5197 if (alignment)
5198 {
86c3c1fc
AB
5199 int left;
5200
5201 alignment *= TARGET_CHAR_BIT;
5202 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5203
e9bb382b
UW
5204 if (left)
5205 {
f41f5e61 5206 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5207 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5208 }
5209 }
5210 }
5211 }
5212}
5213
5214/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5215
e9bb382b 5216void
695bfa52 5217append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5218 struct type *field)
5219{
5220 append_composite_type_field_aligned (t, name, field, 0);
5221}
5222
000177f0
AC
5223static struct gdbarch_data *gdbtypes_data;
5224
5225const struct builtin_type *
5226builtin_type (struct gdbarch *gdbarch)
5227{
9a3c8263 5228 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5229}
5230
5231static void *
5232gdbtypes_post_init (struct gdbarch *gdbarch)
5233{
5234 struct builtin_type *builtin_type
5235 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5236
46bf5051 5237 /* Basic types. */
e9bb382b 5238 builtin_type->builtin_void
77b7c781 5239 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5240 builtin_type->builtin_char
5241 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5242 !gdbarch_char_signed (gdbarch), "char");
c413c448 5243 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5244 builtin_type->builtin_signed_char
5245 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5246 0, "signed char");
5247 builtin_type->builtin_unsigned_char
5248 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5249 1, "unsigned char");
5250 builtin_type->builtin_short
5251 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5252 0, "short");
5253 builtin_type->builtin_unsigned_short
5254 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5255 1, "unsigned short");
5256 builtin_type->builtin_int
5257 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5258 0, "int");
5259 builtin_type->builtin_unsigned_int
5260 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5261 1, "unsigned int");
5262 builtin_type->builtin_long
5263 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5264 0, "long");
5265 builtin_type->builtin_unsigned_long
5266 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5267 1, "unsigned long");
5268 builtin_type->builtin_long_long
5269 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5270 0, "long long");
5271 builtin_type->builtin_unsigned_long_long
5272 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5273 1, "unsigned long long");
70bd8e24 5274 builtin_type->builtin_float
e9bb382b 5275 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5276 "float", gdbarch_float_format (gdbarch));
70bd8e24 5277 builtin_type->builtin_double
e9bb382b 5278 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5279 "double", gdbarch_double_format (gdbarch));
70bd8e24 5280 builtin_type->builtin_long_double
e9bb382b 5281 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5282 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5283 builtin_type->builtin_complex
e9bb382b
UW
5284 = arch_complex_type (gdbarch, "complex",
5285 builtin_type->builtin_float);
70bd8e24 5286 builtin_type->builtin_double_complex
e9bb382b
UW
5287 = arch_complex_type (gdbarch, "double complex",
5288 builtin_type->builtin_double);
5289 builtin_type->builtin_string
77b7c781 5290 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5291 builtin_type->builtin_bool
77b7c781 5292 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5293
7678ef8f
TJB
5294 /* The following three are about decimal floating point types, which
5295 are 32-bits, 64-bits and 128-bits respectively. */
5296 builtin_type->builtin_decfloat
88dfca6c 5297 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5298 builtin_type->builtin_decdouble
88dfca6c 5299 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5300 builtin_type->builtin_declong
88dfca6c 5301 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5302
69feb676 5303 /* "True" character types. */
e9bb382b
UW
5304 builtin_type->builtin_true_char
5305 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5306 builtin_type->builtin_true_unsigned_char
5307 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5308
df4df182 5309 /* Fixed-size integer types. */
e9bb382b
UW
5310 builtin_type->builtin_int0
5311 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5312 builtin_type->builtin_int8
5313 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5314 builtin_type->builtin_uint8
5315 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5316 builtin_type->builtin_int16
5317 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5318 builtin_type->builtin_uint16
5319 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5320 builtin_type->builtin_int32
5321 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5322 builtin_type->builtin_uint32
5323 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5324 builtin_type->builtin_int64
5325 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5326 builtin_type->builtin_uint64
5327 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5328 builtin_type->builtin_int128
5329 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5330 builtin_type->builtin_uint128
5331 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5332 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5333 TYPE_INSTANCE_FLAG_NOTTEXT;
5334 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5335 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5336
9a22f0d0
PM
5337 /* Wide character types. */
5338 builtin_type->builtin_char16
53e710ac 5339 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5340 builtin_type->builtin_char32
53e710ac 5341 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5342 builtin_type->builtin_wchar
5343 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5344 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5345
46bf5051 5346 /* Default data/code pointer types. */
e9bb382b
UW
5347 builtin_type->builtin_data_ptr
5348 = lookup_pointer_type (builtin_type->builtin_void);
5349 builtin_type->builtin_func_ptr
5350 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5351 builtin_type->builtin_func_func
5352 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5353
78267919 5354 /* This type represents a GDB internal function. */
e9bb382b
UW
5355 builtin_type->internal_fn
5356 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5357 "<internal function>");
78267919 5358
e81e7f5e
SC
5359 /* This type represents an xmethod. */
5360 builtin_type->xmethod
5361 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5362
46bf5051
UW
5363 return builtin_type;
5364}
5365
46bf5051
UW
5366/* This set of objfile-based types is intended to be used by symbol
5367 readers as basic types. */
5368
5369static const struct objfile_data *objfile_type_data;
5370
5371const struct objfile_type *
5372objfile_type (struct objfile *objfile)
5373{
5374 struct gdbarch *gdbarch;
5375 struct objfile_type *objfile_type
9a3c8263 5376 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
46bf5051
UW
5377
5378 if (objfile_type)
5379 return objfile_type;
5380
5381 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5382 1, struct objfile_type);
5383
5384 /* Use the objfile architecture to determine basic type properties. */
5385 gdbarch = get_objfile_arch (objfile);
5386
5387 /* Basic types. */
5388 objfile_type->builtin_void
77b7c781 5389 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5390 objfile_type->builtin_char
19f392bc
UW
5391 = init_integer_type (objfile, TARGET_CHAR_BIT,
5392 !gdbarch_char_signed (gdbarch), "char");
c413c448 5393 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5394 objfile_type->builtin_signed_char
19f392bc
UW
5395 = init_integer_type (objfile, TARGET_CHAR_BIT,
5396 0, "signed char");
46bf5051 5397 objfile_type->builtin_unsigned_char
19f392bc
UW
5398 = init_integer_type (objfile, TARGET_CHAR_BIT,
5399 1, "unsigned char");
46bf5051 5400 objfile_type->builtin_short
19f392bc
UW
5401 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5402 0, "short");
46bf5051 5403 objfile_type->builtin_unsigned_short
19f392bc
UW
5404 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5405 1, "unsigned short");
46bf5051 5406 objfile_type->builtin_int
19f392bc
UW
5407 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5408 0, "int");
46bf5051 5409 objfile_type->builtin_unsigned_int
19f392bc
UW
5410 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5411 1, "unsigned int");
46bf5051 5412 objfile_type->builtin_long
19f392bc
UW
5413 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5414 0, "long");
46bf5051 5415 objfile_type->builtin_unsigned_long
19f392bc
UW
5416 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5417 1, "unsigned long");
46bf5051 5418 objfile_type->builtin_long_long
19f392bc
UW
5419 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5420 0, "long long");
46bf5051 5421 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5422 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5423 1, "unsigned long long");
46bf5051 5424 objfile_type->builtin_float
19f392bc
UW
5425 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5426 "float", gdbarch_float_format (gdbarch));
46bf5051 5427 objfile_type->builtin_double
19f392bc
UW
5428 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5429 "double", gdbarch_double_format (gdbarch));
46bf5051 5430 objfile_type->builtin_long_double
19f392bc
UW
5431 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5432 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5433
5434 /* This type represents a type that was unrecognized in symbol read-in. */
5435 objfile_type->builtin_error
19f392bc 5436 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5437
5438 /* The following set of types is used for symbols with no
5439 debug information. */
5440 objfile_type->nodebug_text_symbol
77b7c781 5441 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5442 "<text variable, no debug info>");
0875794a 5443 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5444 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5445 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5446 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5447 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5448 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5449 "<text from jump slot in .got.plt, no debug info>",
5450 objfile_type->nodebug_text_symbol);
46bf5051 5451 objfile_type->nodebug_data_symbol
46a4882b 5452 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5453 objfile_type->nodebug_unknown_symbol
46a4882b 5454 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5455 objfile_type->nodebug_tls_symbol
46a4882b 5456 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5457
5458 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5459 the same.
000177f0
AC
5460
5461 The upshot is:
5462 - gdb's `struct type' always describes the target's
5463 representation.
5464 - gdb's `struct value' objects should always hold values in
5465 target form.
5466 - gdb's CORE_ADDR values are addresses in the unified virtual
5467 address space that the assembler and linker work with. Thus,
5468 since target_read_memory takes a CORE_ADDR as an argument, it
5469 can access any memory on the target, even if the processor has
5470 separate code and data address spaces.
5471
46bf5051
UW
5472 In this context, objfile_type->builtin_core_addr is a bit odd:
5473 it's a target type for a value the target will never see. It's
5474 only used to hold the values of (typeless) linker symbols, which
5475 are indeed in the unified virtual address space. */
000177f0 5476
46bf5051 5477 objfile_type->builtin_core_addr
19f392bc
UW
5478 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5479 "__CORE_ADDR");
64c50499 5480
46bf5051
UW
5481 set_objfile_data (objfile, objfile_type_data, objfile_type);
5482 return objfile_type;
000177f0
AC
5483}
5484
c906108c 5485void
fba45db2 5486_initialize_gdbtypes (void)
c906108c 5487{
5674de60 5488 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5489 objfile_type_data = register_objfile_data ();
5674de60 5490
ccce17b0
YQ
5491 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5492 _("Set debugging of C++ overloading."),
5493 _("Show debugging of C++ overloading."),
5494 _("When enabled, ranking of the "
5495 "functions is displayed."),
5496 NULL,
5497 show_overload_debug,
5498 &setdebuglist, &showdebuglist);
5674de60 5499
7ba81444 5500 /* Add user knob for controlling resolution of opaque types. */
5674de60 5501 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5502 &opaque_type_resolution,
5503 _("Set resolution of opaque struct/class/union"
5504 " types (if set before loading symbols)."),
5505 _("Show resolution of opaque struct/class/union"
5506 " types (if set before loading symbols)."),
5507 NULL, NULL,
5674de60
UW
5508 show_opaque_type_resolution,
5509 &setlist, &showlist);
a451cb65
KS
5510
5511 /* Add an option to permit non-strict type checking. */
5512 add_setshow_boolean_cmd ("type", class_support,
5513 &strict_type_checking,
5514 _("Set strict type checking."),
5515 _("Show strict type checking."),
5516 NULL, NULL,
5517 show_strict_type_checking,
5518 &setchecklist, &showchecklist);
c906108c 5519}
This page took 2.038223 seconds and 4 git commands to generate.