Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
CommitLineData
f0bdd87d
YS
1/* Target-machine dependent code for Renesas H8/300, for GDB.
2
3666a048 3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
f0bdd87d
YS
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
f0bdd87d
YS
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
f0bdd87d
YS
19
20/*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25#include "defs.h"
26#include "value.h"
f0bdd87d
YS
27#include "arch-utils.h"
28#include "regcache.h"
29#include "gdbcore.h"
30#include "objfiles.h"
f0bdd87d 31#include "dis-asm.h"
82ca8957 32#include "dwarf2/frame.h"
f0bdd87d
YS
33#include "frame-base.h"
34#include "frame-unwind.h"
35
f0bdd87d
YS
36enum gdb_regnum
37{
38 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
39 E_RET0_REGNUM = E_R0_REGNUM,
40 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
41 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
42 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
43 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
44 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
45 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
46 E_SP_REGNUM,
47 E_CCR_REGNUM,
48 E_PC_REGNUM,
49 E_CYCLES_REGNUM,
50 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
51 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
52 E_INSTS_REGNUM,
53 E_MACH_REGNUM,
54 E_MACL_REGNUM,
55 E_SBR_REGNUM,
56 E_VBR_REGNUM
57};
58
59#define H8300_MAX_NUM_REGS 18
60
be8626e0
MD
61#define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
62#define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
f0bdd87d 63
862ba188
CV
64struct h8300_frame_cache
65{
66 /* Base address. */
67 CORE_ADDR base;
68 CORE_ADDR sp_offset;
69 CORE_ADDR pc;
70
1777feb0 71 /* Flag showing that a frame has been created in the prologue code. */
862ba188 72 int uses_fp;
f0bdd87d 73
862ba188
CV
74 /* Saved registers. */
75 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
76 CORE_ADDR saved_sp;
77};
78
79enum
80{
81 h8300_reg_size = 2,
82 h8300h_reg_size = 4,
83 h8300_max_reg_size = 4,
84};
85
86static int is_h8300hmode (struct gdbarch *gdbarch);
87static int is_h8300smode (struct gdbarch *gdbarch);
88static int is_h8300sxmode (struct gdbarch *gdbarch);
89static int is_h8300_normal_mode (struct gdbarch *gdbarch);
90
be8626e0
MD
91#define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
92 && !is_h8300_normal_mode (gdbarch)) \
862ba188
CV
93 ? h8300h_reg_size : h8300_reg_size)
94
862ba188
CV
95/* Normal frames. */
96
97/* Allocate and initialize a frame cache. */
98
99static void
be8626e0
MD
100h8300_init_frame_cache (struct gdbarch *gdbarch,
101 struct h8300_frame_cache *cache)
862ba188
CV
102{
103 int i;
104
105 /* Base address. */
106 cache->base = 0;
107 cache->sp_offset = 0;
108 cache->pc = 0;
109
110 /* Frameless until proven otherwise. */
111 cache->uses_fp = 0;
112
113 /* Saved registers. We initialize these to -1 since zero is a valid
114 offset (that's where %fp is supposed to be stored). */
be8626e0 115 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
862ba188
CV
116 cache->saved_regs[i] = -1;
117}
118
119#define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
120#define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
121#define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
122#define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
123#define IS_MOVB_EXT(x) ((x) == 0x7860)
124#define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
125#define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
126#define IS_MOVW_EXT(x) ((x) == 0x78e0)
127#define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
1777feb0 128/* Same instructions as mov.w, just prefixed with 0x0100. */
862ba188
CV
129#define IS_MOVL_PRE(x) ((x) == 0x0100)
130#define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
131#define IS_MOVL_EXT(x) ((x) == 0x78e0)
132#define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
133
134#define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
135#define IS_PUSH_FP(x) ((x) == 0x01006df6)
136#define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
137#define IS_SUB2_SP(x) ((x) == 0x1b87)
138#define IS_SUB4_SP(x) ((x) == 0x1b97)
139#define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
140#define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
141#define IS_SUBL4_SP(x) ((x) == 0x1acf)
142#define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
143#define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
144#define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
145#define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
f0bdd87d
YS
146
147/* If the instruction at PC is an argument register spill, return its
148 length. Otherwise, return zero.
149
150 An argument register spill is an instruction that moves an argument
151 from the register in which it was passed to the stack slot in which
152 it really lives. It is a byte, word, or longword move from an
153 argument register to a negative offset from the frame pointer.
154
155 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
156 is used, it could be a byte, word or long move to registers r3-r5. */
157
158static int
e17a4113 159h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc)
f0bdd87d 160{
e17a4113
UW
161 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
162 int w = read_memory_unsigned_integer (pc, 2, byte_order);
f0bdd87d 163
862ba188 164 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
f0bdd87d
YS
165 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
166 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
167 return 2;
168
862ba188 169 if (IS_MOVB_Rn16_SP (w)
f0bdd87d
YS
170 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
171 {
e17a4113
UW
172 /* ... and d:16 is negative. */
173 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
f0bdd87d
YS
174 return 4;
175 }
862ba188 176 else if (IS_MOVB_EXT (w))
f0bdd87d 177 {
e17a4113
UW
178 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2,
179 2, byte_order)))
f0bdd87d 180 {
1d6ce4d3 181 ULONGEST disp = read_memory_unsigned_integer (pc + 4, 4, byte_order);
f0bdd87d
YS
182
183 /* ... and d:24 is negative. */
1d6ce4d3 184 if ((disp & 0x00800000) != 0)
f0bdd87d
YS
185 return 8;
186 }
187 }
862ba188 188 else if (IS_MOVW_Rn16_SP (w)
f0bdd87d
YS
189 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
190 {
f0bdd87d 191 /* ... and d:16 is negative. */
e17a4113 192 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
f0bdd87d
YS
193 return 4;
194 }
862ba188 195 else if (IS_MOVW_EXT (w))
f0bdd87d 196 {
e17a4113
UW
197 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2,
198 2, byte_order)))
f0bdd87d 199 {
1d6ce4d3 200 ULONGEST disp = read_memory_unsigned_integer (pc + 4, 4, byte_order);
f0bdd87d
YS
201
202 /* ... and d:24 is negative. */
1d6ce4d3 203 if ((disp & 0x00800000) != 0)
f0bdd87d
YS
204 return 8;
205 }
206 }
862ba188 207 else if (IS_MOVL_PRE (w))
f0bdd87d 208 {
e17a4113 209 int w2 = read_memory_integer (pc + 2, 2, byte_order);
f0bdd87d 210
862ba188 211 if (IS_MOVL_Rn16_SP (w2)
f0bdd87d
YS
212 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
213 {
f0bdd87d 214 /* ... and d:16 is negative. */
e17a4113 215 if (read_memory_integer (pc + 4, 2, byte_order) < 0)
f0bdd87d
YS
216 return 6;
217 }
862ba188 218 else if (IS_MOVL_EXT (w2))
f0bdd87d 219 {
e17a4113 220 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order)))
f0bdd87d 221 {
1d6ce4d3
YS
222 ULONGEST disp = read_memory_unsigned_integer (pc + 6, 4,
223 byte_order);
f0bdd87d
YS
224
225 /* ... and d:24 is negative. */
1d6ce4d3 226 if ((disp & 0x00800000) != 0)
f0bdd87d
YS
227 return 10;
228 }
229 }
230 }
231
232 return 0;
233}
234
f0bdd87d
YS
235/* Do a full analysis of the prologue at PC and update CACHE
236 accordingly. Bail out early if CURRENT_PC is reached. Return the
237 address where the analysis stopped.
238
239 We handle all cases that can be generated by gcc.
240
241 For allocating a stack frame:
242
243 mov.w r6,@-sp
244 mov.w sp,r6
245 mov.w #-n,rN
246 add.w rN,sp
247
248 mov.w r6,@-sp
249 mov.w sp,r6
250 subs #2,sp
251 (repeat)
252
253 mov.l er6,@-sp
254 mov.l sp,er6
255 add.l #-n,sp
256
257 mov.w r6,@-sp
258 mov.w sp,r6
259 subs #4,sp
260 (repeat)
261
262 For saving registers:
263
264 mov.w rN,@-sp
265 mov.l erN,@-sp
266 stm.l reglist,@-sp
267
f0bdd87d
YS
268 */
269
270static CORE_ADDR
e17a4113
UW
271h8300_analyze_prologue (struct gdbarch *gdbarch,
272 CORE_ADDR pc, CORE_ADDR current_pc,
f0bdd87d
YS
273 struct h8300_frame_cache *cache)
274{
e17a4113 275 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f0bdd87d 276 unsigned int op;
862ba188
CV
277 int regno, i, spill_size;
278
279 cache->sp_offset = 0;
f0bdd87d 280
f0bdd87d
YS
281 if (pc >= current_pc)
282 return current_pc;
283
e17a4113 284 op = read_memory_unsigned_integer (pc, 4, byte_order);
862ba188
CV
285
286 if (IS_PUSHFP_MOVESPFP (op))
287 {
288 cache->saved_regs[E_FP_REGNUM] = 0;
289 cache->uses_fp = 1;
290 pc += 4;
291 }
292 else if (IS_PUSH_FP (op))
293 {
294 cache->saved_regs[E_FP_REGNUM] = 0;
295 pc += 4;
296 if (pc >= current_pc)
dda83cd7 297 return current_pc;
e17a4113 298 op = read_memory_unsigned_integer (pc, 2, byte_order);
862ba188
CV
299 if (IS_MOV_SP_FP (op))
300 {
301 cache->uses_fp = 1;
302 pc += 2;
303 }
304 }
305
306 while (pc < current_pc)
307 {
e17a4113 308 op = read_memory_unsigned_integer (pc, 2, byte_order);
862ba188
CV
309 if (IS_SUB2_SP (op))
310 {
311 cache->sp_offset += 2;
312 pc += 2;
313 }
314 else if (IS_SUB4_SP (op))
315 {
316 cache->sp_offset += 4;
317 pc += 2;
318 }
319 else if (IS_ADD_IMM_SP (op))
320 {
e17a4113 321 cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order);
862ba188
CV
322 pc += 4;
323 }
324 else if (IS_SUB_IMM_SP (op))
325 {
e17a4113 326 cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order);
862ba188
CV
327 pc += 4;
328 }
329 else if (IS_SUBL4_SP (op))
330 {
331 cache->sp_offset += 4;
332 pc += 2;
333 }
334 else if (IS_MOV_IMM_Rn (op))
dda83cd7 335 {
e17a4113 336 int offset = read_memory_integer (pc + 2, 2, byte_order);
862ba188 337 regno = op & 0x000f;
e17a4113 338 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
862ba188
CV
339 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
340 {
341 cache->sp_offset -= offset;
342 pc += 6;
343 }
344 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
345 {
346 cache->sp_offset += offset;
347 pc += 6;
348 }
349 else
350 break;
351 }
352 else if (IS_PUSH (op))
353 {
354 regno = op & 0x000f;
355 cache->sp_offset += 2;
356 cache->saved_regs[regno] = cache->sp_offset;
357 pc += 2;
358 }
359 else if (op == 0x0100)
360 {
e17a4113 361 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
862ba188
CV
362 if (IS_PUSH (op))
363 {
364 regno = op & 0x000f;
365 cache->sp_offset += 4;
366 cache->saved_regs[regno] = cache->sp_offset;
367 pc += 4;
368 }
369 else
370 break;
371 }
372 else if ((op & 0xffcf) == 0x0100)
373 {
374 int op1;
e17a4113 375 op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order);
862ba188
CV
376 if (IS_PUSH (op1))
377 {
378 /* Since the prefix is 0x01x0, this is not a simple pushm but a
dda83cd7 379 stm.l reglist,@-sp */
862ba188
CV
380 i = ((op & 0x0030) >> 4) + 1;
381 regno = op1 & 0x000f;
382 for (; i > 0; regno++, --i)
383 {
384 cache->sp_offset += 4;
385 cache->saved_regs[regno] = cache->sp_offset;
386 }
387 pc += 4;
388 }
389 else
390 break;
391 }
392 else
393 break;
394 }
395
396 /* Check for spilling an argument register to the stack frame.
397 This could also be an initializing store from non-prologue code,
398 but I don't think there's any harm in skipping that. */
e17a4113 399 while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0
dda83cd7 400 && pc + spill_size <= current_pc)
862ba188 401 pc += spill_size;
f0bdd87d
YS
402
403 return pc;
404}
405
406static struct h8300_frame_cache *
94afd7a6 407h8300_frame_cache (struct frame_info *this_frame, void **this_cache)
f0bdd87d 408{
94afd7a6 409 struct gdbarch *gdbarch = get_frame_arch (this_frame);
f0bdd87d 410 struct h8300_frame_cache *cache;
f0bdd87d 411 int i;
862ba188 412 CORE_ADDR current_pc;
f0bdd87d
YS
413
414 if (*this_cache)
9a3c8263 415 return (struct h8300_frame_cache *) *this_cache;
f0bdd87d 416
862ba188 417 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
be8626e0 418 h8300_init_frame_cache (gdbarch, cache);
f0bdd87d
YS
419 *this_cache = cache;
420
421 /* In principle, for normal frames, %fp holds the frame pointer,
422 which holds the base address for the current stack frame.
423 However, for functions that don't need it, the frame pointer is
424 optional. For these "frameless" functions the frame pointer is
862ba188 425 actually the frame pointer of the calling frame. */
f0bdd87d 426
94afd7a6 427 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
f0bdd87d
YS
428 if (cache->base == 0)
429 return cache;
430
be8626e0 431 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
f0bdd87d 432
94afd7a6
UW
433 cache->pc = get_frame_func (this_frame);
434 current_pc = get_frame_pc (this_frame);
f0bdd87d 435 if (cache->pc != 0)
e17a4113 436 h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
f0bdd87d 437
862ba188 438 if (!cache->uses_fp)
f0bdd87d
YS
439 {
440 /* We didn't find a valid frame, which means that CACHE->base
dda83cd7
SM
441 currently holds the frame pointer for our calling frame. If
442 we're at the start of a function, or somewhere half-way its
443 prologue, the function's frame probably hasn't been fully
444 setup yet. Try to reconstruct the base address for the stack
445 frame by looking at the stack pointer. For truly "frameless"
446 functions this might work too. */
f0bdd87d 447
94afd7a6 448 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM)
862ba188 449 + cache->sp_offset;
be8626e0 450 cache->saved_sp = cache->base + BINWORD (gdbarch);
862ba188
CV
451 cache->saved_regs[E_PC_REGNUM] = 0;
452 }
453 else
454 {
be8626e0
MD
455 cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
456 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
f0bdd87d 457 }
f0bdd87d
YS
458
459 /* Adjust all the saved registers such that they contain addresses
460 instead of offsets. */
be8626e0 461 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
f0bdd87d 462 if (cache->saved_regs[i] != -1)
862ba188 463 cache->saved_regs[i] = cache->base - cache->saved_regs[i];
f0bdd87d
YS
464
465 return cache;
466}
467
468static void
94afd7a6 469h8300_frame_this_id (struct frame_info *this_frame, void **this_cache,
f0bdd87d
YS
470 struct frame_id *this_id)
471{
472 struct h8300_frame_cache *cache =
94afd7a6 473 h8300_frame_cache (this_frame, this_cache);
f0bdd87d
YS
474
475 /* This marks the outermost frame. */
476 if (cache->base == 0)
477 return;
478
862ba188 479 *this_id = frame_id_build (cache->saved_sp, cache->pc);
f0bdd87d
YS
480}
481
94afd7a6
UW
482static struct value *
483h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache,
484 int regnum)
f0bdd87d 485{
94afd7a6 486 struct gdbarch *gdbarch = get_frame_arch (this_frame);
f0bdd87d 487 struct h8300_frame_cache *cache =
94afd7a6 488 h8300_frame_cache (this_frame, this_cache);
f0bdd87d
YS
489
490 gdb_assert (regnum >= 0);
491
492 if (regnum == E_SP_REGNUM && cache->saved_sp)
94afd7a6 493 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
f0bdd87d 494
ea78bae4 495 if (regnum < gdbarch_num_regs (gdbarch)
f57d151a 496 && cache->saved_regs[regnum] != -1)
94afd7a6 497 return frame_unwind_got_memory (this_frame, regnum,
dda83cd7 498 cache->saved_regs[regnum]);
f0bdd87d 499
94afd7a6 500 return frame_unwind_got_register (this_frame, regnum, regnum);
f0bdd87d
YS
501}
502
503static const struct frame_unwind h8300_frame_unwind = {
a154d838 504 "h8300 prologue",
f0bdd87d 505 NORMAL_FRAME,
8fbca658 506 default_frame_unwind_stop_reason,
f0bdd87d 507 h8300_frame_this_id,
94afd7a6
UW
508 h8300_frame_prev_register,
509 NULL,
510 default_frame_sniffer
f0bdd87d
YS
511};
512
862ba188 513static CORE_ADDR
94afd7a6 514h8300_frame_base_address (struct frame_info *this_frame, void **this_cache)
862ba188 515{
94afd7a6 516 struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache);
862ba188
CV
517 return cache->base;
518}
519
520static const struct frame_base h8300_frame_base = {
521 &h8300_frame_unwind,
522 h8300_frame_base_address,
523 h8300_frame_base_address,
524 h8300_frame_base_address
525};
526
527static CORE_ADDR
6093d2eb 528h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
862ba188
CV
529{
530 CORE_ADDR func_addr = 0 , func_end = 0;
531
532 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
533 {
534 struct symtab_and_line sal;
535 struct h8300_frame_cache cache;
536
537 /* Found a function. */
538 sal = find_pc_line (func_addr, 0);
539 if (sal.end && sal.end < func_end)
dda83cd7
SM
540 /* Found a line number, use it as end of prologue. */
541 return sal.end;
862ba188
CV
542
543 /* No useable line symbol. Use prologue parsing method. */
be8626e0 544 h8300_init_frame_cache (gdbarch, &cache);
e17a4113 545 return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache);
862ba188
CV
546 }
547
548 /* No function symbol -- just return the PC. */
549 return (CORE_ADDR) pc;
550}
551
f0bdd87d
YS
552/* Function: push_dummy_call
553 Setup the function arguments for calling a function in the inferior.
554 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
555 on the H8/300H.
556
557 There are actually two ABI's here: -mquickcall (the default) and
558 -mno-quickcall. With -mno-quickcall, all arguments are passed on
559 the stack after the return address, word-aligned. With
560 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
561 GCC doesn't indicate in the object file which ABI was used to
562 compile it, GDB only supports the default --- -mquickcall.
563
564 Here are the rules for -mquickcall, in detail:
565
566 Each argument, whether scalar or aggregate, is padded to occupy a
567 whole number of words. Arguments smaller than a word are padded at
568 the most significant end; those larger than a word are padded at
569 the least significant end.
570
571 The initial arguments are passed in r0 -- r2. Earlier arguments go in
572 lower-numbered registers. Multi-word arguments are passed in
573 consecutive registers, with the most significant end in the
574 lower-numbered register.
575
576 If an argument doesn't fit entirely in the remaining registers, it
577 is passed entirely on the stack. Stack arguments begin just after
578 the return address. Once an argument has overflowed onto the stack
579 this way, all subsequent arguments are passed on the stack.
580
581 The above rule has odd consequences. For example, on the h8/300s,
582 if a function takes two longs and an int as arguments:
583 - the first long will be passed in r0/r1,
584 - the second long will be passed entirely on the stack, since it
585 doesn't fit in r2,
586 - and the int will be passed on the stack, even though it could fit
587 in r2.
588
589 A weird exception: if an argument is larger than a word, but not a
590 whole number of words in length (before padding), it is passed on
591 the stack following the rules for stack arguments above, even if
592 there are sufficient registers available to hold it. Stranger
593 still, the argument registers are still `used up' --- even though
594 there's nothing in them.
595
596 So, for example, on the h8/300s, if a function expects a three-byte
597 structure and an int, the structure will go on the stack, and the
598 int will go in r2, not r0.
599
600 If the function returns an aggregate type (struct, union, or class)
601 by value, the caller must allocate space to hold the return value,
602 and pass the callee a pointer to this space as an invisible first
603 argument, in R0.
604
605 For varargs functions, the last fixed argument and all the variable
606 arguments are always passed on the stack. This means that calls to
607 varargs functions don't work properly unless there is a prototype
608 in scope.
609
610 Basically, this ABI is not good, for the following reasons:
611 - You can't call vararg functions properly unless a prototype is in scope.
612 - Structure passing is inconsistent, to no purpose I can see.
613 - It often wastes argument registers, of which there are only three
614 to begin with. */
615
616static CORE_ADDR
617h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
618 struct regcache *regcache, CORE_ADDR bp_addr,
619 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
620 function_call_return_method return_method,
621 CORE_ADDR struct_addr)
f0bdd87d 622{
e17a4113 623 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f0bdd87d 624 int stack_alloc = 0, stack_offset = 0;
be8626e0 625 int wordsize = BINWORD (gdbarch);
f0bdd87d
YS
626 int reg = E_ARG0_REGNUM;
627 int argument;
628
629 /* First, make sure the stack is properly aligned. */
630 sp = align_down (sp, wordsize);
631
632 /* Now make sure there's space on the stack for the arguments. We
633 may over-allocate a little here, but that won't hurt anything. */
634 for (argument = 0; argument < nargs; argument++)
635 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
636 wordsize);
637 sp -= stack_alloc;
638
639 /* Now load as many arguments as possible into registers, and push
640 the rest onto the stack.
641 If we're returning a structure by value, then we must pass a
642 pointer to the buffer for the return value as an invisible first
643 argument. */
cf84fa6b 644 if (return_method == return_method_struct)
f0bdd87d
YS
645 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
646
647 for (argument = 0; argument < nargs; argument++)
648 {
649 struct type *type = value_type (args[argument]);
650 int len = TYPE_LENGTH (type);
651 char *contents = (char *) value_contents (args[argument]);
652
653 /* Pad the argument appropriately. */
654 int padded_len = align_up (len, wordsize);
ab4b1c46
TT
655 /* Use std::vector here to get zero initialization. */
656 std::vector<gdb_byte> padded (padded_len);
f0bdd87d 657
ab4b1c46
TT
658 memcpy ((len < wordsize ? padded.data () + padded_len - len
659 : padded.data ()),
f0bdd87d
YS
660 contents, len);
661
662 /* Could the argument fit in the remaining registers? */
663 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
664 {
665 /* Are we going to pass it on the stack anyway, for no good
666 reason? */
667 if (len > wordsize && len % wordsize)
668 {
669 /* I feel so unclean. */
ab4b1c46 670 write_memory (sp + stack_offset, padded.data (), padded_len);
f0bdd87d
YS
671 stack_offset += padded_len;
672
673 /* That's right --- even though we passed the argument
dda83cd7
SM
674 on the stack, we consume the registers anyway! Love
675 me, love my dog. */
f0bdd87d
YS
676 reg += padded_len / wordsize;
677 }
678 else
679 {
680 /* Heavens to Betsy --- it's really going in registers!
dda83cd7
SM
681 Note that on the h8/300s, there are gaps between the
682 registers in the register file. */
f0bdd87d
YS
683 int offset;
684
685 for (offset = 0; offset < padded_len; offset += wordsize)
686 {
e17a4113 687 ULONGEST word
ab4b1c46 688 = extract_unsigned_integer (&padded[offset],
e17a4113 689 wordsize, byte_order);
f0bdd87d
YS
690 regcache_cooked_write_unsigned (regcache, reg++, word);
691 }
692 }
693 }
694 else
695 {
696 /* It doesn't fit in registers! Onto the stack it goes. */
ab4b1c46 697 write_memory (sp + stack_offset, padded.data (), padded_len);
f0bdd87d
YS
698 stack_offset += padded_len;
699
700 /* Once one argument has spilled onto the stack, all
701 subsequent arguments go on the stack. */
702 reg = E_ARGLAST_REGNUM + 1;
703 }
704 }
705
706 /* Store return address. */
707 sp -= wordsize;
e17a4113 708 write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr);
f0bdd87d
YS
709
710 /* Update stack pointer. */
711 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
712
862ba188
CV
713 /* Return the new stack pointer minus the return address slot since
714 that's what DWARF2/GCC uses as the frame's CFA. */
715 return sp + wordsize;
f0bdd87d
YS
716}
717
718/* Function: extract_return_value
719 Figure out where in REGBUF the called function has left its return value.
720 Copy that into VALBUF. Be sure to account for CPU type. */
721
722static void
723h8300_extract_return_value (struct type *type, struct regcache *regcache,
7c543f7b 724 gdb_byte *valbuf)
f0bdd87d 725{
ac7936df 726 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 727 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f0bdd87d
YS
728 int len = TYPE_LENGTH (type);
729 ULONGEST c, addr;
730
bad43aa5 731 switch (len)
f0bdd87d
YS
732 {
733 case 1:
734 case 2:
735 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
bad43aa5 736 store_unsigned_integer (valbuf, len, byte_order, c);
f0bdd87d
YS
737 break;
738 case 4: /* Needs two registers on plain H8/300 */
739 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
e17a4113 740 store_unsigned_integer (valbuf, 2, byte_order, c);
f0bdd87d 741 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
7c543f7b 742 store_unsigned_integer (valbuf + 2, 2, byte_order, c);
f0bdd87d
YS
743 break;
744 case 8: /* long long is now 8 bytes. */
78134374 745 if (type->code () == TYPE_CODE_INT)
f0bdd87d
YS
746 {
747 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
bad43aa5
SP
748 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order);
749 store_unsigned_integer (valbuf, len, byte_order, c);
f0bdd87d
YS
750 }
751 else
752 {
a73c6dcd 753 error (_("I don't know how this 8 byte value is returned."));
f0bdd87d
YS
754 }
755 break;
756 }
757}
758
759static void
760h8300h_extract_return_value (struct type *type, struct regcache *regcache,
7c543f7b 761 gdb_byte *valbuf)
f0bdd87d 762{
ac7936df 763 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 764 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
22e048c9 765 ULONGEST c;
f0bdd87d 766
744a8059 767 switch (TYPE_LENGTH (type))
f0bdd87d
YS
768 {
769 case 1:
770 case 2:
771 case 4:
772 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
744a8059 773 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, c);
f0bdd87d
YS
774 break;
775 case 8: /* long long is now 8 bytes. */
78134374 776 if (type->code () == TYPE_CODE_INT)
f0bdd87d 777 {
862ba188 778 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
e17a4113 779 store_unsigned_integer (valbuf, 4, byte_order, c);
862ba188 780 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
7c543f7b 781 store_unsigned_integer (valbuf + 4, 4, byte_order, c);
f0bdd87d
YS
782 }
783 else
784 {
a73c6dcd 785 error (_("I don't know how this 8 byte value is returned."));
f0bdd87d
YS
786 }
787 break;
788 }
789}
790
63807e1d 791static int
862ba188
CV
792h8300_use_struct_convention (struct type *value_type)
793{
794 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
1777feb0 795 stack. */
862ba188 796
78134374
SM
797 if (value_type->code () == TYPE_CODE_STRUCT
798 || value_type->code () == TYPE_CODE_UNION)
862ba188
CV
799 return 1;
800 return !(TYPE_LENGTH (value_type) == 1
801 || TYPE_LENGTH (value_type) == 2
802 || TYPE_LENGTH (value_type) == 4);
803}
804
63807e1d 805static int
862ba188
CV
806h8300h_use_struct_convention (struct type *value_type)
807{
808 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
1777feb0 809 returned in R0/R1, everything else on the stack. */
78134374
SM
810 if (value_type->code () == TYPE_CODE_STRUCT
811 || value_type->code () == TYPE_CODE_UNION)
862ba188
CV
812 return 1;
813 return !(TYPE_LENGTH (value_type) == 1
814 || TYPE_LENGTH (value_type) == 2
815 || TYPE_LENGTH (value_type) == 4
816 || (TYPE_LENGTH (value_type) == 8
78134374 817 && value_type->code () == TYPE_CODE_INT));
862ba188 818}
f0bdd87d
YS
819
820/* Function: store_return_value
821 Place the appropriate value in the appropriate registers.
822 Primarily used by the RETURN command. */
823
824static void
825h8300_store_return_value (struct type *type, struct regcache *regcache,
7c543f7b 826 const gdb_byte *valbuf)
f0bdd87d 827{
ac7936df 828 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f0bdd87d
YS
830 ULONGEST val;
831
744a8059 832 switch (TYPE_LENGTH (type))
f0bdd87d
YS
833 {
834 case 1:
1777feb0 835 case 2: /* short... */
744a8059 836 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
f0bdd87d
YS
837 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
838 break;
839 case 4: /* long, float */
744a8059 840 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
f0bdd87d
YS
841 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
842 (val >> 16) & 0xffff);
843 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
844 break;
1777feb0
MS
845 case 8: /* long long, double and long double
846 are all defined as 4 byte types so
847 far so this shouldn't happen. */
a73c6dcd 848 error (_("I don't know how to return an 8 byte value."));
f0bdd87d
YS
849 break;
850 }
851}
852
853static void
854h8300h_store_return_value (struct type *type, struct regcache *regcache,
7c543f7b 855 const gdb_byte *valbuf)
f0bdd87d 856{
ac7936df 857 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 858 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f0bdd87d
YS
859 ULONGEST val;
860
744a8059 861 switch (TYPE_LENGTH (type))
f0bdd87d
YS
862 {
863 case 1:
864 case 2:
865 case 4: /* long, float */
744a8059 866 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
f0bdd87d
YS
867 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
868 break;
862ba188 869 case 8:
744a8059 870 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
862ba188
CV
871 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
872 (val >> 32) & 0xffffffff);
873 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
874 val & 0xffffffff);
f0bdd87d
YS
875 break;
876 }
877}
878
862ba188 879static enum return_value_convention
6a3a010b 880h8300_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 881 struct type *type, struct regcache *regcache,
5d0d05b6 882 gdb_byte *readbuf, const gdb_byte *writebuf)
862ba188
CV
883{
884 if (h8300_use_struct_convention (type))
885 return RETURN_VALUE_STRUCT_CONVENTION;
886 if (writebuf)
887 h8300_store_return_value (type, regcache, writebuf);
888 else if (readbuf)
889 h8300_extract_return_value (type, regcache, readbuf);
890 return RETURN_VALUE_REGISTER_CONVENTION;
891}
892
893static enum return_value_convention
6a3a010b 894h8300h_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 895 struct type *type, struct regcache *regcache,
5d0d05b6 896 gdb_byte *readbuf, const gdb_byte *writebuf)
862ba188
CV
897{
898 if (h8300h_use_struct_convention (type))
899 {
900 if (readbuf)
901 {
902 ULONGEST addr;
903
904 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
905 read_memory (addr, readbuf, TYPE_LENGTH (type));
906 }
907
908 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
909 }
910 if (writebuf)
911 h8300h_store_return_value (type, regcache, writebuf);
912 else if (readbuf)
913 h8300h_extract_return_value (type, regcache, readbuf);
914 return RETURN_VALUE_REGISTER_CONVENTION;
915}
916
76fd5f74
PA
917/* Implementation of 'register_sim_regno' gdbarch method. */
918
919static int
920h8300_register_sim_regno (struct gdbarch *gdbarch, int regnum)
921{
922 /* Only makes sense to supply raw registers. */
923 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
924
925 /* We hide the raw ccr from the user by making it nameless. Because
926 the default register_sim_regno hook returns
927 LEGACY_SIM_REGNO_IGNORE for unnamed registers, we need to
928 override it. The sim register numbering is compatible with
929 gdb's. */
930 return regnum;
931}
932
c54e4253
YS
933static const char *
934h8300_register_name_common (const char *regnames[], int numregs,
935 struct gdbarch *gdbarch, int regno)
936{
937 if (regno < 0
938 || regno >= numregs)
939 internal_error (__FILE__, __LINE__,
940 _("h8300_register_name_common: illegal register number %d"),
941 regno);
942 else
943 return regnames[regno];
944}
945
f0bdd87d 946static const char *
d93859e2 947h8300_register_name (struct gdbarch *gdbarch, int regno)
f0bdd87d
YS
948{
949 /* The register names change depending on which h8300 processor
1777feb0 950 type is selected. */
a121b7c1 951 static const char *register_names[] = {
f0bdd87d
YS
952 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
953 "sp", "", "pc", "cycles", "tick", "inst",
954 "ccr", /* pseudo register */
955 };
c54e4253
YS
956 return h8300_register_name_common(register_names, ARRAY_SIZE(register_names),
957 gdbarch, regno);
958}
959
960static const char *
961h8300h_register_name (struct gdbarch *gdbarch, int regno)
962{
963 static const char *register_names[] = {
964 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
965 "sp", "", "pc", "cycles", "tick", "inst",
966 "ccr", /* pseudo register */
967 };
968 return h8300_register_name_common(register_names, ARRAY_SIZE(register_names),
969 gdbarch, regno);
f0bdd87d
YS
970}
971
972static const char *
d93859e2 973h8300s_register_name (struct gdbarch *gdbarch, int regno)
f0bdd87d 974{
a121b7c1 975 static const char *register_names[] = {
f0bdd87d
YS
976 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
977 "sp", "", "pc", "cycles", "", "tick", "inst",
978 "mach", "macl",
979 "ccr", "exr" /* pseudo registers */
980 };
c54e4253
YS
981 return h8300_register_name_common(register_names, ARRAY_SIZE(register_names),
982 gdbarch, regno);
f0bdd87d
YS
983}
984
985static const char *
d93859e2 986h8300sx_register_name (struct gdbarch *gdbarch, int regno)
f0bdd87d 987{
a121b7c1 988 static const char *register_names[] = {
f0bdd87d
YS
989 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
990 "sp", "", "pc", "cycles", "", "tick", "inst",
991 "mach", "macl", "sbr", "vbr",
992 "ccr", "exr" /* pseudo registers */
993 };
c54e4253
YS
994 return h8300_register_name_common(register_names, ARRAY_SIZE(register_names),
995 gdbarch, regno);
f0bdd87d
YS
996}
997
998static void
999h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1000 struct frame_info *frame, int regno)
1001{
1002 LONGEST rval;
1003 const char *name = gdbarch_register_name (gdbarch, regno);
1004
1005 if (!name || !*name)
1006 return;
1007
1008 rval = get_frame_register_signed (frame, regno);
1009
1010 fprintf_filtered (file, "%-14s ", name);
be8626e0
MD
1011 if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
1012 (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
f0bdd87d
YS
1013 {
1014 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1015 print_longest (file, 'u', 1, rval);
1016 }
1017 else
1018 {
be8626e0
MD
1019 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval,
1020 BINWORD (gdbarch)));
f0bdd87d
YS
1021 print_longest (file, 'd', 1, rval);
1022 }
be8626e0 1023 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
f0bdd87d
YS
1024 {
1025 /* CCR register */
1026 int C, Z, N, V;
1027 unsigned char l = rval & 0xff;
1028 fprintf_filtered (file, "\t");
1029 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1030 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1031 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1032 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1033 N = (l & 0x8) != 0;
1034 Z = (l & 0x4) != 0;
1035 V = (l & 0x2) != 0;
1036 C = (l & 0x1) != 0;
1037 fprintf_filtered (file, "N-%d ", N);
1038 fprintf_filtered (file, "Z-%d ", Z);
1039 fprintf_filtered (file, "V-%d ", V);
1040 fprintf_filtered (file, "C-%d ", C);
1041 if ((C | Z) == 0)
1042 fprintf_filtered (file, "u> ");
1043 if ((C | Z) == 1)
1044 fprintf_filtered (file, "u<= ");
fb36c6bf 1045 if (C == 0)
f0bdd87d
YS
1046 fprintf_filtered (file, "u>= ");
1047 if (C == 1)
1048 fprintf_filtered (file, "u< ");
1049 if (Z == 0)
1050 fprintf_filtered (file, "!= ");
1051 if (Z == 1)
1052 fprintf_filtered (file, "== ");
1053 if ((N ^ V) == 0)
1054 fprintf_filtered (file, ">= ");
1055 if ((N ^ V) == 1)
1056 fprintf_filtered (file, "< ");
1057 if ((Z | (N ^ V)) == 0)
1058 fprintf_filtered (file, "> ");
1059 if ((Z | (N ^ V)) == 1)
1060 fprintf_filtered (file, "<= ");
1061 }
be8626e0 1062 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
f0bdd87d
YS
1063 {
1064 /* EXR register */
1065 unsigned char l = rval & 0xff;
1066 fprintf_filtered (file, "\t");
1067 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1068 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1069 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1070 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1071 }
1072 fprintf_filtered (file, "\n");
1073}
1074
1075static void
1076h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1077 struct frame_info *frame, int regno, int cpregs)
1078{
1079 if (regno < 0)
1080 {
1081 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1082 h8300_print_register (gdbarch, file, frame, regno);
be8626e0
MD
1083 h8300_print_register (gdbarch, file, frame,
1084 E_PSEUDO_CCR_REGNUM (gdbarch));
f0bdd87d 1085 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
ea78bae4 1086 if (is_h8300smode (gdbarch))
f0bdd87d 1087 {
be8626e0
MD
1088 h8300_print_register (gdbarch, file, frame,
1089 E_PSEUDO_EXR_REGNUM (gdbarch));
ea78bae4 1090 if (is_h8300sxmode (gdbarch))
f0bdd87d
YS
1091 {
1092 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1093 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1094 }
1095 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1096 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1097 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1098 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1099 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1100 }
1101 else
1102 {
1103 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1104 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1105 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1106 }
1107 }
1108 else
1109 {
1110 if (regno == E_CCR_REGNUM)
be8626e0
MD
1111 h8300_print_register (gdbarch, file, frame,
1112 E_PSEUDO_CCR_REGNUM (gdbarch));
1113 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
ea78bae4 1114 && is_h8300smode (gdbarch))
be8626e0
MD
1115 h8300_print_register (gdbarch, file, frame,
1116 E_PSEUDO_EXR_REGNUM (gdbarch));
f0bdd87d
YS
1117 else
1118 h8300_print_register (gdbarch, file, frame, regno);
1119 }
1120}
1121
1122static struct type *
1123h8300_register_type (struct gdbarch *gdbarch, int regno)
1124{
f6efe3f8 1125 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
f0bdd87d 1126 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
1127 _("h8300_register_type: illegal register number %d"),
1128 regno);
f0bdd87d
YS
1129 else
1130 {
1131 switch (regno)
1132 {
1133 case E_PC_REGNUM:
0dfff4cb 1134 return builtin_type (gdbarch)->builtin_func_ptr;
f0bdd87d
YS
1135 case E_SP_REGNUM:
1136 case E_FP_REGNUM:
0dfff4cb 1137 return builtin_type (gdbarch)->builtin_data_ptr;
f0bdd87d 1138 default:
be8626e0 1139 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
df4df182 1140 return builtin_type (gdbarch)->builtin_uint8;
be8626e0 1141 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
df4df182 1142 return builtin_type (gdbarch)->builtin_uint8;
ea78bae4 1143 else if (is_h8300hmode (gdbarch))
df4df182 1144 return builtin_type (gdbarch)->builtin_int32;
f0bdd87d 1145 else
df4df182 1146 return builtin_type (gdbarch)->builtin_int16;
f0bdd87d
YS
1147 }
1148 }
1149}
1150
5caa2f0b
PA
1151/* Helpers for h8300_pseudo_register_read. We expose ccr/exr as
1152 pseudo-registers to users with smaller sizes than the corresponding
1153 raw registers. These helpers extend/narrow the values. */
1154
1155static enum register_status
849d0ba8 1156pseudo_from_raw_register (struct gdbarch *gdbarch, readable_regcache *regcache,
5caa2f0b
PA
1157 gdb_byte *buf, int pseudo_regno, int raw_regno)
1158{
1159 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1160 enum register_status status;
1161 ULONGEST val;
1162
03f50fc8 1163 status = regcache->raw_read (raw_regno, &val);
5caa2f0b
PA
1164 if (status == REG_VALID)
1165 store_unsigned_integer (buf,
1166 register_size (gdbarch, pseudo_regno),
1167 byte_order, val);
1168 return status;
1169}
1170
1171/* See pseudo_from_raw_register. */
1172
1173static void
1174raw_from_pseudo_register (struct gdbarch *gdbarch, struct regcache *regcache,
1175 const gdb_byte *buf, int raw_regno, int pseudo_regno)
1176{
1177 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1178 ULONGEST val;
1179
1180 val = extract_unsigned_integer (buf, register_size (gdbarch, pseudo_regno),
1181 byte_order);
1182 regcache_raw_write_unsigned (regcache, raw_regno, val);
1183}
1184
05d1431c 1185static enum register_status
f0bdd87d 1186h8300_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 1187 readable_regcache *regcache, int regno,
5d0d05b6 1188 gdb_byte *buf)
f0bdd87d 1189{
be8626e0 1190 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
5caa2f0b
PA
1191 {
1192 return pseudo_from_raw_register (gdbarch, regcache, buf,
1193 regno, E_CCR_REGNUM);
1194 }
be8626e0 1195 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
5caa2f0b
PA
1196 {
1197 return pseudo_from_raw_register (gdbarch, regcache, buf,
1198 regno, E_EXR_REGNUM);
1199 }
f0bdd87d 1200 else
03f50fc8 1201 return regcache->raw_read (regno, buf);
f0bdd87d
YS
1202}
1203
1204static void
1205h8300_pseudo_register_write (struct gdbarch *gdbarch,
1206 struct regcache *regcache, int regno,
5d0d05b6 1207 const gdb_byte *buf)
f0bdd87d 1208{
be8626e0 1209 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
5caa2f0b 1210 raw_from_pseudo_register (gdbarch, regcache, buf, E_CCR_REGNUM, regno);
be8626e0 1211 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
5caa2f0b 1212 raw_from_pseudo_register (gdbarch, regcache, buf, E_EXR_REGNUM, regno);
f0bdd87d 1213 else
10eaee5f 1214 regcache->raw_write (regno, buf);
f0bdd87d
YS
1215}
1216
1217static int
d3f73121 1218h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
f0bdd87d
YS
1219{
1220 if (regno == E_CCR_REGNUM)
be8626e0 1221 return E_PSEUDO_CCR_REGNUM (gdbarch);
f0bdd87d
YS
1222 return regno;
1223}
1224
1225static int
d3f73121 1226h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
f0bdd87d
YS
1227{
1228 if (regno == E_CCR_REGNUM)
be8626e0 1229 return E_PSEUDO_CCR_REGNUM (gdbarch);
f0bdd87d 1230 if (regno == E_EXR_REGNUM)
be8626e0 1231 return E_PSEUDO_EXR_REGNUM (gdbarch);
f0bdd87d
YS
1232 return regno;
1233}
1234
598cc9dc 1235/*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
04180708 1236constexpr gdb_byte h8300_break_insn[] = { 0x01, 0x80 }; /* Sleep */
f0bdd87d 1237
04180708 1238typedef BP_MANIPULATION (h8300_break_insn) h8300_breakpoint;
f0bdd87d 1239
f0bdd87d
YS
1240static struct gdbarch *
1241h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1242{
f0bdd87d
YS
1243 struct gdbarch *gdbarch;
1244
1245 arches = gdbarch_list_lookup_by_info (arches, &info);
1246 if (arches != NULL)
1247 return arches->gdbarch;
1248
f0bdd87d
YS
1249 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1250 return NULL;
1251
1252 gdbarch = gdbarch_alloc (&info, 0);
1253
76fd5f74
PA
1254 set_gdbarch_register_sim_regno (gdbarch, h8300_register_sim_regno);
1255
f0bdd87d
YS
1256 switch (info.bfd_arch_info->mach)
1257 {
1258 case bfd_mach_h8300:
1259 set_gdbarch_num_regs (gdbarch, 13);
1260 set_gdbarch_num_pseudo_regs (gdbarch, 1);
f0bdd87d
YS
1261 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1262 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1263 set_gdbarch_register_name (gdbarch, h8300_register_name);
1264 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1265 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
862ba188 1266 set_gdbarch_return_value (gdbarch, h8300_return_value);
f0bdd87d
YS
1267 break;
1268 case bfd_mach_h8300h:
1269 case bfd_mach_h8300hn:
1270 set_gdbarch_num_regs (gdbarch, 13);
1271 set_gdbarch_num_pseudo_regs (gdbarch, 1);
f0bdd87d
YS
1272 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1273 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
c54e4253 1274 set_gdbarch_register_name (gdbarch, h8300h_register_name);
f0bdd87d
YS
1275 if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1276 {
1277 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1278 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1279 }
1280 else
1281 {
1282 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1283 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1284 }
862ba188 1285 set_gdbarch_return_value (gdbarch, h8300h_return_value);
f0bdd87d
YS
1286 break;
1287 case bfd_mach_h8300s:
1288 case bfd_mach_h8300sn:
1289 set_gdbarch_num_regs (gdbarch, 16);
1290 set_gdbarch_num_pseudo_regs (gdbarch, 2);
f0bdd87d
YS
1291 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1292 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1293 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1294 if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1295 {
1296 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1297 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1298 }
1299 else
1300 {
1301 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1302 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1303 }
862ba188 1304 set_gdbarch_return_value (gdbarch, h8300h_return_value);
f0bdd87d
YS
1305 break;
1306 case bfd_mach_h8300sx:
1307 case bfd_mach_h8300sxn:
1308 set_gdbarch_num_regs (gdbarch, 18);
1309 set_gdbarch_num_pseudo_regs (gdbarch, 2);
f0bdd87d
YS
1310 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1311 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1312 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1313 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1314 {
1315 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1316 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1317 }
1318 else
1319 {
1320 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1321 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1322 }
862ba188 1323 set_gdbarch_return_value (gdbarch, h8300h_return_value);
f0bdd87d
YS
1324 break;
1325 }
1326
1327 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1328 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1329
1330 /*
1331 * Basic register fields and methods.
1332 */
1333
1334 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
f0bdd87d
YS
1335 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1336 set_gdbarch_register_type (gdbarch, h8300_register_type);
1337 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
f0bdd87d
YS
1338
1339 /*
1340 * Frame Info
1341 */
1342 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1343
1344 /* Frame unwinder. */
862ba188 1345 frame_base_set_default (gdbarch, &h8300_frame_base);
f0bdd87d
YS
1346
1347 /*
85102364 1348 * Miscellany
f0bdd87d 1349 */
1777feb0 1350 /* Stack grows up. */
f0bdd87d
YS
1351 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1352
04180708
YQ
1353 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1354 h8300_breakpoint::kind_from_pc);
1355 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1356 h8300_breakpoint::bp_from_kind);
f0bdd87d
YS
1357 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1358
862ba188 1359 set_gdbarch_char_signed (gdbarch, 0);
f0bdd87d
YS
1360 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1361 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1362 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
53375380
PA
1363
1364 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1365 set_gdbarch_wchar_signed (gdbarch, 0);
1366
f0bdd87d 1367 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 1368 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
f0bdd87d 1369 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 1370 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
f0bdd87d
YS
1371
1372 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1373
862ba188 1374 /* Hook in the DWARF CFI frame unwinder. */
94afd7a6
UW
1375 dwarf2_append_unwinders (gdbarch);
1376 frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind);
f0bdd87d
YS
1377
1378 return gdbarch;
1379
1380}
1381
6c265988 1382void _initialize_h8300_tdep ();
f0bdd87d 1383void
6c265988 1384_initialize_h8300_tdep ()
f0bdd87d
YS
1385{
1386 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1387}
1388
1389static int
1390is_h8300hmode (struct gdbarch *gdbarch)
1391{
1392 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1393 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1394 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1395 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1396 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1397 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1398}
1399
1400static int
1401is_h8300smode (struct gdbarch *gdbarch)
1402{
1403 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1404 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1405 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1406 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1407}
1408
1409static int
1410is_h8300sxmode (struct gdbarch *gdbarch)
1411{
1412 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1413 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1414}
1415
1416static int
1417is_h8300_normal_mode (struct gdbarch *gdbarch)
1418{
1419 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1420 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1421 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1422}
This page took 1.457347 seconds and 4 git commands to generate.