* config/pa/tm-hppa64.h (HPUX_1100): Remove, not used.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
1e698235 4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c
SS
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "frame.h"
28#include "bfd.h"
29#include "inferior.h"
30#include "value.h"
4e052eda 31#include "regcache.h"
e5d66720 32#include "completer.h"
d709c020 33#include "language.h"
59623e27 34#include "osabi.h"
a7ff40e7 35#include "gdb_assert.h"
65e82032 36#include "infttrace.h"
c906108c
SS
37/* For argument passing to the inferior */
38#include "symtab.h"
04714b91 39#include "infcall.h"
c906108c
SS
40
41#ifdef USG
42#include <sys/types.h>
43#endif
44
45#include <dl.h>
46#include <sys/param.h>
47#include <signal.h>
48
49#include <sys/ptrace.h>
50#include <machine/save_state.h>
51
52#ifdef COFF_ENCAPSULATE
53#include "a.out.encap.h"
54#else
55#endif
56
c5aa993b 57/*#include <sys/user.h> After a.out.h */
c906108c
SS
58#include <sys/file.h>
59#include "gdb_stat.h"
03f2053f 60#include "gdb_wait.h"
c906108c
SS
61
62#include "gdbcore.h"
63#include "gdbcmd.h"
64#include "target.h"
65#include "symfile.h"
66#include "objfiles.h"
67
60383d10
JB
68/* Some local constants. */
69static const int hppa_num_regs = 128;
70
e2ac8128
JB
71/* Get at various relevent fields of an instruction word. */
72#define MASK_5 0x1f
73#define MASK_11 0x7ff
74#define MASK_14 0x3fff
75#define MASK_21 0x1fffff
76
77/* Define offsets into the call dummy for the target function address.
78 See comments related to CALL_DUMMY for more info. */
79#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
80#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
81
82/* Define offsets into the call dummy for the _sr4export address.
83 See comments related to CALL_DUMMY for more info. */
84#define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
85#define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
86
c906108c
SS
87/* To support detection of the pseudo-initial frame
88 that threads have. */
89#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
90#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
c5aa993b 91
e2ac8128
JB
92/* Sizes (in bytes) of the native unwind entries. */
93#define UNWIND_ENTRY_SIZE 16
94#define STUB_UNWIND_ENTRY_SIZE 8
95
96static int get_field (unsigned word, int from, int to);
97
a14ed312 98static int extract_5_load (unsigned int);
c906108c 99
a14ed312 100static unsigned extract_5R_store (unsigned int);
c906108c 101
a14ed312 102static unsigned extract_5r_store (unsigned int);
c906108c 103
43bd9a9e 104static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
c906108c 105
a14ed312 106static int find_proc_framesize (CORE_ADDR);
c906108c 107
a14ed312 108static int find_return_regnum (CORE_ADDR);
c906108c 109
a14ed312 110struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
c906108c 111
a14ed312 112static int extract_17 (unsigned int);
c906108c 113
a14ed312 114static unsigned deposit_21 (unsigned int, unsigned int);
c906108c 115
a14ed312 116static int extract_21 (unsigned);
c906108c 117
a14ed312 118static unsigned deposit_14 (int, unsigned int);
c906108c 119
a14ed312 120static int extract_14 (unsigned);
c906108c 121
a14ed312 122static void unwind_command (char *, int);
c906108c 123
a14ed312 124static int low_sign_extend (unsigned int, unsigned int);
c906108c 125
a14ed312 126static int sign_extend (unsigned int, unsigned int);
c906108c 127
43bd9a9e 128static int restore_pc_queue (CORE_ADDR *);
c906108c 129
a14ed312 130static int hppa_alignof (struct type *);
c906108c 131
a14ed312 132static int prologue_inst_adjust_sp (unsigned long);
c906108c 133
a14ed312 134static int is_branch (unsigned long);
c906108c 135
a14ed312 136static int inst_saves_gr (unsigned long);
c906108c 137
a14ed312 138static int inst_saves_fr (unsigned long);
c906108c 139
a14ed312 140static int pc_in_interrupt_handler (CORE_ADDR);
c906108c 141
a14ed312 142static int pc_in_linker_stub (CORE_ADDR);
c906108c 143
a14ed312 144static int compare_unwind_entries (const void *, const void *);
c906108c 145
a14ed312 146static void read_unwind_info (struct objfile *);
c906108c 147
a14ed312
KB
148static void internalize_unwinds (struct objfile *,
149 struct unwind_table_entry *,
150 asection *, unsigned int,
151 unsigned int, CORE_ADDR);
152static void pa_print_registers (char *, int, int);
d9fcf2fb 153static void pa_strcat_registers (char *, int, int, struct ui_file *);
a14ed312
KB
154static void pa_register_look_aside (char *, int, long *);
155static void pa_print_fp_reg (int);
d9fcf2fb 156static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
a14ed312 157static void record_text_segment_lowaddr (bfd *, asection *, void *);
d709c020
JB
158/* FIXME: brobecker 2002-11-07: We will likely be able to make the
159 following functions static, once we hppa is partially multiarched. */
160int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
60383d10
JB
161CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
162CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
163int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
164int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
165CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
d709c020
JB
166int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
167CORE_ADDR hppa_stack_align (CORE_ADDR sp);
168int hppa_pc_requires_run_before_use (CORE_ADDR pc);
169int hppa_instruction_nullified (void);
60e1ff27 170int hppa_register_raw_size (int reg_nr);
d709c020
JB
171int hppa_register_byte (int reg_nr);
172struct type * hppa_register_virtual_type (int reg_nr);
173void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
60383d10
JB
174void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
175int hppa_use_struct_convention (int gcc_p, struct type *type);
176void hppa_store_return_value (struct type *type, char *valbuf);
177CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
d709c020 178int hppa_cannot_store_register (int regnum);
60383d10
JB
179void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
180CORE_ADDR hppa_frame_chain (struct frame_info *frame);
181int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
182int hppa_frameless_function_invocation (struct frame_info *frame);
183CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
d709c020
JB
184CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
185CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
60383d10 186int hppa_frame_num_args (struct frame_info *frame);
7daf4f5b 187void hppa_push_dummy_frame (void);
60383d10
JB
188void hppa_pop_frame (void);
189CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
190 int nargs, struct value **args,
191 struct type *type, int gcc_p);
192CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
193 int struct_return, CORE_ADDR struct_addr);
d709c020 194CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
60383d10
JB
195CORE_ADDR hppa_target_read_pc (ptid_t ptid);
196void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
197CORE_ADDR hppa_target_read_fp (void);
c906108c 198
c5aa993b
JM
199typedef struct
200 {
201 struct minimal_symbol *msym;
202 CORE_ADDR solib_handle;
a0b3c4fd 203 CORE_ADDR return_val;
c5aa993b
JM
204 }
205args_for_find_stub;
c906108c 206
4efb68b1 207static int cover_find_stub_with_shl_get (void *);
c906108c 208
c5aa993b 209static int is_pa_2 = 0; /* False */
c906108c 210
c5aa993b 211/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
c906108c
SS
212extern int hp_som_som_object_present;
213
214/* In breakpoint.c */
215extern int exception_catchpoints_are_fragile;
216
c906108c 217/* Should call_function allocate stack space for a struct return? */
d709c020 218
c906108c 219int
fba45db2 220hppa_use_struct_convention (int gcc_p, struct type *type)
c906108c 221{
b1e29e33 222 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
c906108c 223}
c906108c 224\f
c5aa993b 225
c906108c
SS
226/* Routines to extract various sized constants out of hppa
227 instructions. */
228
229/* This assumes that no garbage lies outside of the lower bits of
230 value. */
231
232static int
fba45db2 233sign_extend (unsigned val, unsigned bits)
c906108c 234{
c5aa993b 235 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
236}
237
238/* For many immediate values the sign bit is the low bit! */
239
240static int
fba45db2 241low_sign_extend (unsigned val, unsigned bits)
c906108c 242{
c5aa993b 243 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
244}
245
e2ac8128
JB
246/* Extract the bits at positions between FROM and TO, using HP's numbering
247 (MSB = 0). */
248
249static int
250get_field (unsigned word, int from, int to)
251{
252 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
253}
254
c906108c
SS
255/* extract the immediate field from a ld{bhw}s instruction */
256
c906108c 257static int
fba45db2 258extract_5_load (unsigned word)
c906108c
SS
259{
260 return low_sign_extend (word >> 16 & MASK_5, 5);
261}
262
c906108c
SS
263/* extract the immediate field from a break instruction */
264
265static unsigned
fba45db2 266extract_5r_store (unsigned word)
c906108c
SS
267{
268 return (word & MASK_5);
269}
270
271/* extract the immediate field from a {sr}sm instruction */
272
273static unsigned
fba45db2 274extract_5R_store (unsigned word)
c906108c
SS
275{
276 return (word >> 16 & MASK_5);
277}
278
c906108c
SS
279/* extract a 14 bit immediate field */
280
281static int
fba45db2 282extract_14 (unsigned word)
c906108c
SS
283{
284 return low_sign_extend (word & MASK_14, 14);
285}
286
287/* deposit a 14 bit constant in a word */
288
289static unsigned
fba45db2 290deposit_14 (int opnd, unsigned word)
c906108c
SS
291{
292 unsigned sign = (opnd < 0 ? 1 : 0);
293
c5aa993b 294 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
c906108c
SS
295}
296
297/* extract a 21 bit constant */
298
299static int
fba45db2 300extract_21 (unsigned word)
c906108c
SS
301{
302 int val;
303
304 word &= MASK_21;
305 word <<= 11;
e2ac8128 306 val = get_field (word, 20, 20);
c906108c 307 val <<= 11;
e2ac8128 308 val |= get_field (word, 9, 19);
c906108c 309 val <<= 2;
e2ac8128 310 val |= get_field (word, 5, 6);
c906108c 311 val <<= 5;
e2ac8128 312 val |= get_field (word, 0, 4);
c906108c 313 val <<= 2;
e2ac8128 314 val |= get_field (word, 7, 8);
c906108c
SS
315 return sign_extend (val, 21) << 11;
316}
317
318/* deposit a 21 bit constant in a word. Although 21 bit constants are
319 usually the top 21 bits of a 32 bit constant, we assume that only
320 the low 21 bits of opnd are relevant */
321
322static unsigned
fba45db2 323deposit_21 (unsigned opnd, unsigned word)
c906108c
SS
324{
325 unsigned val = 0;
326
e2ac8128 327 val |= get_field (opnd, 11 + 14, 11 + 18);
c906108c 328 val <<= 2;
e2ac8128 329 val |= get_field (opnd, 11 + 12, 11 + 13);
c906108c 330 val <<= 2;
e2ac8128 331 val |= get_field (opnd, 11 + 19, 11 + 20);
c906108c 332 val <<= 11;
e2ac8128 333 val |= get_field (opnd, 11 + 1, 11 + 11);
c906108c 334 val <<= 1;
e2ac8128 335 val |= get_field (opnd, 11 + 0, 11 + 0);
c906108c
SS
336 return word | val;
337}
338
c906108c
SS
339/* extract a 17 bit constant from branch instructions, returning the
340 19 bit signed value. */
341
342static int
fba45db2 343extract_17 (unsigned word)
c906108c 344{
e2ac8128
JB
345 return sign_extend (get_field (word, 19, 28) |
346 get_field (word, 29, 29) << 10 |
347 get_field (word, 11, 15) << 11 |
c906108c
SS
348 (word & 0x1) << 16, 17) << 2;
349}
350\f
351
352/* Compare the start address for two unwind entries returning 1 if
353 the first address is larger than the second, -1 if the second is
354 larger than the first, and zero if they are equal. */
355
356static int
fba45db2 357compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
358{
359 const struct unwind_table_entry *a = arg1;
360 const struct unwind_table_entry *b = arg2;
361
362 if (a->region_start > b->region_start)
363 return 1;
364 else if (a->region_start < b->region_start)
365 return -1;
366 else
367 return 0;
368}
369
53a5351d
JM
370static CORE_ADDR low_text_segment_address;
371
372static void
8fef05cc 373record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
53a5351d 374{
bf9c25dc 375 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d
JM
376 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
377 && section->vma < low_text_segment_address)
378 low_text_segment_address = section->vma;
379}
380
c906108c 381static void
fba45db2
KB
382internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
383 asection *section, unsigned int entries, unsigned int size,
384 CORE_ADDR text_offset)
c906108c
SS
385{
386 /* We will read the unwind entries into temporary memory, then
387 fill in the actual unwind table. */
388 if (size > 0)
389 {
390 unsigned long tmp;
391 unsigned i;
392 char *buf = alloca (size);
393
53a5351d
JM
394 low_text_segment_address = -1;
395
396 /* If addresses are 64 bits wide, then unwinds are supposed to
c2c6d25f
JM
397 be segment relative offsets instead of absolute addresses.
398
399 Note that when loading a shared library (text_offset != 0) the
400 unwinds are already relative to the text_offset that will be
401 passed in. */
402 if (TARGET_PTR_BIT == 64 && text_offset == 0)
53a5351d
JM
403 {
404 bfd_map_over_sections (objfile->obfd,
4efb68b1 405 record_text_segment_lowaddr, NULL);
53a5351d
JM
406
407 /* ?!? Mask off some low bits. Should this instead subtract
408 out the lowest section's filepos or something like that?
409 This looks very hokey to me. */
410 low_text_segment_address &= ~0xfff;
411 text_offset += low_text_segment_address;
412 }
413
c906108c
SS
414 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
415
416 /* Now internalize the information being careful to handle host/target
c5aa993b 417 endian issues. */
c906108c
SS
418 for (i = 0; i < entries; i++)
419 {
420 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 421 (bfd_byte *) buf);
c906108c
SS
422 table[i].region_start += text_offset;
423 buf += 4;
c5aa993b 424 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
425 table[i].region_end += text_offset;
426 buf += 4;
c5aa993b 427 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
428 buf += 4;
429 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
430 table[i].Millicode = (tmp >> 30) & 0x1;
431 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
432 table[i].Region_description = (tmp >> 27) & 0x3;
433 table[i].reserved1 = (tmp >> 26) & 0x1;
434 table[i].Entry_SR = (tmp >> 25) & 0x1;
435 table[i].Entry_FR = (tmp >> 21) & 0xf;
436 table[i].Entry_GR = (tmp >> 16) & 0x1f;
437 table[i].Args_stored = (tmp >> 15) & 0x1;
438 table[i].Variable_Frame = (tmp >> 14) & 0x1;
439 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
440 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
441 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
442 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
443 table[i].Ada_Region = (tmp >> 9) & 0x1;
444 table[i].cxx_info = (tmp >> 8) & 0x1;
445 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
446 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
447 table[i].reserved2 = (tmp >> 5) & 0x1;
448 table[i].Save_SP = (tmp >> 4) & 0x1;
449 table[i].Save_RP = (tmp >> 3) & 0x1;
450 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
451 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
452 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 453 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
454 buf += 4;
455 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
456 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
457 table[i].Large_frame = (tmp >> 29) & 0x1;
458 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
459 table[i].reserved4 = (tmp >> 27) & 0x1;
460 table[i].Total_frame_size = tmp & 0x7ffffff;
461
c5aa993b 462 /* Stub unwinds are handled elsewhere. */
c906108c
SS
463 table[i].stub_unwind.stub_type = 0;
464 table[i].stub_unwind.padding = 0;
465 }
466 }
467}
468
469/* Read in the backtrace information stored in the `$UNWIND_START$' section of
470 the object file. This info is used mainly by find_unwind_entry() to find
471 out the stack frame size and frame pointer used by procedures. We put
472 everything on the psymbol obstack in the objfile so that it automatically
473 gets freed when the objfile is destroyed. */
474
475static void
fba45db2 476read_unwind_info (struct objfile *objfile)
c906108c 477{
d4f3574e
SS
478 asection *unwind_sec, *stub_unwind_sec;
479 unsigned unwind_size, stub_unwind_size, total_size;
480 unsigned index, unwind_entries;
c906108c
SS
481 unsigned stub_entries, total_entries;
482 CORE_ADDR text_offset;
483 struct obj_unwind_info *ui;
484 obj_private_data_t *obj_private;
485
486 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5aa993b
JM
487 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
488 sizeof (struct obj_unwind_info));
c906108c
SS
489
490 ui->table = NULL;
491 ui->cache = NULL;
492 ui->last = -1;
493
d4f3574e
SS
494 /* For reasons unknown the HP PA64 tools generate multiple unwinder
495 sections in a single executable. So we just iterate over every
496 section in the BFD looking for unwinder sections intead of trying
497 to do a lookup with bfd_get_section_by_name.
c906108c 498
d4f3574e
SS
499 First determine the total size of the unwind tables so that we
500 can allocate memory in a nice big hunk. */
501 total_entries = 0;
502 for (unwind_sec = objfile->obfd->sections;
503 unwind_sec;
504 unwind_sec = unwind_sec->next)
c906108c 505 {
d4f3574e
SS
506 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
507 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
508 {
509 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
510 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 511
d4f3574e
SS
512 total_entries += unwind_entries;
513 }
c906108c
SS
514 }
515
d4f3574e
SS
516 /* Now compute the size of the stub unwinds. Note the ELF tools do not
517 use stub unwinds at the curren time. */
518 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
519
c906108c
SS
520 if (stub_unwind_sec)
521 {
522 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
523 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
524 }
525 else
526 {
527 stub_unwind_size = 0;
528 stub_entries = 0;
529 }
530
531 /* Compute total number of unwind entries and their total size. */
d4f3574e 532 total_entries += stub_entries;
c906108c
SS
533 total_size = total_entries * sizeof (struct unwind_table_entry);
534
535 /* Allocate memory for the unwind table. */
536 ui->table = (struct unwind_table_entry *)
537 obstack_alloc (&objfile->psymbol_obstack, total_size);
c5aa993b 538 ui->last = total_entries - 1;
c906108c 539
d4f3574e
SS
540 /* Now read in each unwind section and internalize the standard unwind
541 entries. */
c906108c 542 index = 0;
d4f3574e
SS
543 for (unwind_sec = objfile->obfd->sections;
544 unwind_sec;
545 unwind_sec = unwind_sec->next)
546 {
547 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
548 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
549 {
550 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
551 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
552
553 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
554 unwind_entries, unwind_size, text_offset);
555 index += unwind_entries;
556 }
557 }
558
559 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
560 if (stub_unwind_size > 0)
561 {
562 unsigned int i;
563 char *buf = alloca (stub_unwind_size);
564
565 /* Read in the stub unwind entries. */
566 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
567 0, stub_unwind_size);
568
569 /* Now convert them into regular unwind entries. */
570 for (i = 0; i < stub_entries; i++, index++)
571 {
572 /* Clear out the next unwind entry. */
573 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
574
575 /* Convert offset & size into region_start and region_end.
576 Stuff away the stub type into "reserved" fields. */
577 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
578 (bfd_byte *) buf);
579 ui->table[index].region_start += text_offset;
580 buf += 4;
581 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 582 (bfd_byte *) buf);
c906108c
SS
583 buf += 2;
584 ui->table[index].region_end
c5aa993b
JM
585 = ui->table[index].region_start + 4 *
586 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
587 buf += 2;
588 }
589
590 }
591
592 /* Unwind table needs to be kept sorted. */
593 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
594 compare_unwind_entries);
595
596 /* Keep a pointer to the unwind information. */
c5aa993b 597 if (objfile->obj_private == NULL)
c906108c
SS
598 {
599 obj_private = (obj_private_data_t *)
c5aa993b
JM
600 obstack_alloc (&objfile->psymbol_obstack,
601 sizeof (obj_private_data_t));
c906108c 602 obj_private->unwind_info = NULL;
c5aa993b 603 obj_private->so_info = NULL;
53a5351d 604 obj_private->dp = 0;
c5aa993b 605
4efb68b1 606 objfile->obj_private = obj_private;
c906108c 607 }
c5aa993b 608 obj_private = (obj_private_data_t *) objfile->obj_private;
c906108c
SS
609 obj_private->unwind_info = ui;
610}
611
612/* Lookup the unwind (stack backtrace) info for the given PC. We search all
613 of the objfiles seeking the unwind table entry for this PC. Each objfile
614 contains a sorted list of struct unwind_table_entry. Since we do a binary
615 search of the unwind tables, we depend upon them to be sorted. */
616
617struct unwind_table_entry *
fba45db2 618find_unwind_entry (CORE_ADDR pc)
c906108c
SS
619{
620 int first, middle, last;
621 struct objfile *objfile;
622
623 /* A function at address 0? Not in HP-UX! */
624 if (pc == (CORE_ADDR) 0)
625 return NULL;
626
627 ALL_OBJFILES (objfile)
c5aa993b
JM
628 {
629 struct obj_unwind_info *ui;
630 ui = NULL;
631 if (objfile->obj_private)
632 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
c906108c 633
c5aa993b
JM
634 if (!ui)
635 {
636 read_unwind_info (objfile);
637 if (objfile->obj_private == NULL)
104c1213 638 error ("Internal error reading unwind information.");
c5aa993b
JM
639 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
640 }
c906108c 641
c5aa993b 642 /* First, check the cache */
c906108c 643
c5aa993b
JM
644 if (ui->cache
645 && pc >= ui->cache->region_start
646 && pc <= ui->cache->region_end)
647 return ui->cache;
c906108c 648
c5aa993b 649 /* Not in the cache, do a binary search */
c906108c 650
c5aa993b
JM
651 first = 0;
652 last = ui->last;
c906108c 653
c5aa993b
JM
654 while (first <= last)
655 {
656 middle = (first + last) / 2;
657 if (pc >= ui->table[middle].region_start
658 && pc <= ui->table[middle].region_end)
659 {
660 ui->cache = &ui->table[middle];
661 return &ui->table[middle];
662 }
c906108c 663
c5aa993b
JM
664 if (pc < ui->table[middle].region_start)
665 last = middle - 1;
666 else
667 first = middle + 1;
668 }
669 } /* ALL_OBJFILES() */
c906108c
SS
670 return NULL;
671}
672
aaab4dba
AC
673const unsigned char *
674hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
675{
676 static const char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
677 (*len) = sizeof (breakpoint);
678 return breakpoint;
679}
680
e23457df
AC
681/* Return the name of a register. */
682
683const char *
684hppa_register_name (int i)
685{
686 static char *names[] = {
687 "flags", "r1", "rp", "r3",
688 "r4", "r5", "r6", "r7",
689 "r8", "r9", "r10", "r11",
690 "r12", "r13", "r14", "r15",
691 "r16", "r17", "r18", "r19",
692 "r20", "r21", "r22", "r23",
693 "r24", "r25", "r26", "dp",
694 "ret0", "ret1", "sp", "r31",
695 "sar", "pcoqh", "pcsqh", "pcoqt",
696 "pcsqt", "eiem", "iir", "isr",
697 "ior", "ipsw", "goto", "sr4",
698 "sr0", "sr1", "sr2", "sr3",
699 "sr5", "sr6", "sr7", "cr0",
700 "cr8", "cr9", "ccr", "cr12",
701 "cr13", "cr24", "cr25", "cr26",
702 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
703 "fpsr", "fpe1", "fpe2", "fpe3",
704 "fpe4", "fpe5", "fpe6", "fpe7",
705 "fr4", "fr4R", "fr5", "fr5R",
706 "fr6", "fr6R", "fr7", "fr7R",
707 "fr8", "fr8R", "fr9", "fr9R",
708 "fr10", "fr10R", "fr11", "fr11R",
709 "fr12", "fr12R", "fr13", "fr13R",
710 "fr14", "fr14R", "fr15", "fr15R",
711 "fr16", "fr16R", "fr17", "fr17R",
712 "fr18", "fr18R", "fr19", "fr19R",
713 "fr20", "fr20R", "fr21", "fr21R",
714 "fr22", "fr22R", "fr23", "fr23R",
715 "fr24", "fr24R", "fr25", "fr25R",
716 "fr26", "fr26R", "fr27", "fr27R",
717 "fr28", "fr28R", "fr29", "fr29R",
718 "fr30", "fr30R", "fr31", "fr31R"
719 };
720 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
721 return NULL;
722 else
723 return names[i];
724}
725
726const char *
727hppa64_register_name (int i)
728{
729 static char *names[] = {
730 "flags", "r1", "rp", "r3",
731 "r4", "r5", "r6", "r7",
732 "r8", "r9", "r10", "r11",
733 "r12", "r13", "r14", "r15",
734 "r16", "r17", "r18", "r19",
735 "r20", "r21", "r22", "r23",
736 "r24", "r25", "r26", "dp",
737 "ret0", "ret1", "sp", "r31",
738 "sar", "pcoqh", "pcsqh", "pcoqt",
739 "pcsqt", "eiem", "iir", "isr",
740 "ior", "ipsw", "goto", "sr4",
741 "sr0", "sr1", "sr2", "sr3",
742 "sr5", "sr6", "sr7", "cr0",
743 "cr8", "cr9", "ccr", "cr12",
744 "cr13", "cr24", "cr25", "cr26",
745 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
746 "fpsr", "fpe1", "fpe2", "fpe3",
747 "fr4", "fr5", "fr6", "fr7",
748 "fr8", "fr9", "fr10", "fr11",
749 "fr12", "fr13", "fr14", "fr15",
750 "fr16", "fr17", "fr18", "fr19",
751 "fr20", "fr21", "fr22", "fr23",
752 "fr24", "fr25", "fr26", "fr27",
753 "fr28", "fr29", "fr30", "fr31"
754 };
755 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
756 return NULL;
757 else
758 return names[i];
759}
760
761
762
c906108c
SS
763/* Return the adjustment necessary to make for addresses on the stack
764 as presented by hpread.c.
765
766 This is necessary because of the stack direction on the PA and the
767 bizarre way in which someone (?) decided they wanted to handle
768 frame pointerless code in GDB. */
769int
fba45db2 770hpread_adjust_stack_address (CORE_ADDR func_addr)
c906108c
SS
771{
772 struct unwind_table_entry *u;
773
774 u = find_unwind_entry (func_addr);
775 if (!u)
776 return 0;
777 else
778 return u->Total_frame_size << 3;
779}
780
781/* Called to determine if PC is in an interrupt handler of some
782 kind. */
783
784static int
fba45db2 785pc_in_interrupt_handler (CORE_ADDR pc)
c906108c
SS
786{
787 struct unwind_table_entry *u;
788 struct minimal_symbol *msym_us;
789
790 u = find_unwind_entry (pc);
791 if (!u)
792 return 0;
793
794 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
795 its frame isn't a pure interrupt frame. Deal with this. */
796 msym_us = lookup_minimal_symbol_by_pc (pc);
797
d7bd68ca 798 return (u->HP_UX_interrupt_marker
22abf04a 799 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
c906108c
SS
800}
801
802/* Called when no unwind descriptor was found for PC. Returns 1 if it
104c1213
JM
803 appears that PC is in a linker stub.
804
805 ?!? Need to handle stubs which appear in PA64 code. */
c906108c
SS
806
807static int
fba45db2 808pc_in_linker_stub (CORE_ADDR pc)
c906108c
SS
809{
810 int found_magic_instruction = 0;
811 int i;
812 char buf[4];
813
814 /* If unable to read memory, assume pc is not in a linker stub. */
815 if (target_read_memory (pc, buf, 4) != 0)
816 return 0;
817
818 /* We are looking for something like
819
820 ; $$dyncall jams RP into this special spot in the frame (RP')
821 ; before calling the "call stub"
822 ldw -18(sp),rp
823
824 ldsid (rp),r1 ; Get space associated with RP into r1
825 mtsp r1,sp ; Move it into space register 0
826 be,n 0(sr0),rp) ; back to your regularly scheduled program */
827
828 /* Maximum known linker stub size is 4 instructions. Search forward
829 from the given PC, then backward. */
830 for (i = 0; i < 4; i++)
831 {
832 /* If we hit something with an unwind, stop searching this direction. */
833
834 if (find_unwind_entry (pc + i * 4) != 0)
835 break;
836
837 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 838 return from a cross-space function call. */
c906108c
SS
839 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
840 {
841 found_magic_instruction = 1;
842 break;
843 }
844 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 845 here. */
c906108c
SS
846 }
847
848 if (found_magic_instruction != 0)
849 return 1;
850
851 /* Now look backward. */
852 for (i = 0; i < 4; i++)
853 {
854 /* If we hit something with an unwind, stop searching this direction. */
855
856 if (find_unwind_entry (pc - i * 4) != 0)
857 break;
858
859 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 860 return from a cross-space function call. */
c906108c
SS
861 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
862 {
863 found_magic_instruction = 1;
864 break;
865 }
866 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 867 here. */
c906108c
SS
868 }
869 return found_magic_instruction;
870}
871
872static int
fba45db2 873find_return_regnum (CORE_ADDR pc)
c906108c
SS
874{
875 struct unwind_table_entry *u;
876
877 u = find_unwind_entry (pc);
878
879 if (!u)
880 return RP_REGNUM;
881
882 if (u->Millicode)
883 return 31;
884
885 return RP_REGNUM;
886}
887
888/* Return size of frame, or -1 if we should use a frame pointer. */
889static int
fba45db2 890find_proc_framesize (CORE_ADDR pc)
c906108c
SS
891{
892 struct unwind_table_entry *u;
893 struct minimal_symbol *msym_us;
894
895 /* This may indicate a bug in our callers... */
c5aa993b 896 if (pc == (CORE_ADDR) 0)
c906108c 897 return -1;
c5aa993b 898
c906108c
SS
899 u = find_unwind_entry (pc);
900
901 if (!u)
902 {
903 if (pc_in_linker_stub (pc))
904 /* Linker stubs have a zero size frame. */
905 return 0;
906 else
907 return -1;
908 }
909
910 msym_us = lookup_minimal_symbol_by_pc (pc);
911
912 /* If Save_SP is set, and we're not in an interrupt or signal caller,
913 then we have a frame pointer. Use it. */
3fa41cdb
JL
914 if (u->Save_SP
915 && !pc_in_interrupt_handler (pc)
916 && msym_us
22abf04a 917 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
c906108c
SS
918 return -1;
919
920 return u->Total_frame_size << 3;
921}
922
923/* Return offset from sp at which rp is saved, or 0 if not saved. */
a14ed312 924static int rp_saved (CORE_ADDR);
c906108c
SS
925
926static int
fba45db2 927rp_saved (CORE_ADDR pc)
c906108c
SS
928{
929 struct unwind_table_entry *u;
930
931 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
932 if (pc == (CORE_ADDR) 0)
933 return 0;
934
935 u = find_unwind_entry (pc);
936
937 if (!u)
938 {
939 if (pc_in_linker_stub (pc))
940 /* This is the so-called RP'. */
941 return -24;
942 else
943 return 0;
944 }
945
946 if (u->Save_RP)
53a5351d 947 return (TARGET_PTR_BIT == 64 ? -16 : -20);
c906108c
SS
948 else if (u->stub_unwind.stub_type != 0)
949 {
950 switch (u->stub_unwind.stub_type)
951 {
952 case EXPORT:
953 case IMPORT:
954 return -24;
955 case PARAMETER_RELOCATION:
956 return -8;
957 default:
958 return 0;
959 }
960 }
961 else
962 return 0;
963}
964\f
965int
60383d10 966hppa_frameless_function_invocation (struct frame_info *frame)
c906108c
SS
967{
968 struct unwind_table_entry *u;
969
ef6e7e13 970 u = find_unwind_entry (get_frame_pc (frame));
c906108c
SS
971
972 if (u == 0)
973 return 0;
974
975 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
976}
977
d709c020
JB
978/* Immediately after a function call, return the saved pc.
979 Can't go through the frames for this because on some machines
980 the new frame is not set up until the new function executes
981 some instructions. */
982
c906108c 983CORE_ADDR
60383d10 984hppa_saved_pc_after_call (struct frame_info *frame)
c906108c
SS
985{
986 int ret_regnum;
987 CORE_ADDR pc;
988 struct unwind_table_entry *u;
989
990 ret_regnum = find_return_regnum (get_frame_pc (frame));
991 pc = read_register (ret_regnum) & ~0x3;
c5aa993b 992
c906108c
SS
993 /* If PC is in a linker stub, then we need to dig the address
994 the stub will return to out of the stack. */
995 u = find_unwind_entry (pc);
996 if (u && u->stub_unwind.stub_type != 0)
8bedc050 997 return DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
998 else
999 return pc;
1000}
1001\f
1002CORE_ADDR
fba45db2 1003hppa_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1004{
1005 CORE_ADDR pc = get_frame_pc (frame);
1006 struct unwind_table_entry *u;
65e82032 1007 CORE_ADDR old_pc = 0;
c5aa993b
JM
1008 int spun_around_loop = 0;
1009 int rp_offset = 0;
c906108c
SS
1010
1011 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1012 at the base of the frame in an interrupt handler. Registers within
1013 are saved in the exact same order as GDB numbers registers. How
1014 convienent. */
1015 if (pc_in_interrupt_handler (pc))
ef6e7e13 1016 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
53a5351d 1017 TARGET_PTR_BIT / 8) & ~0x3;
c906108c 1018
ef6e7e13
AC
1019 if ((get_frame_pc (frame) >= get_frame_base (frame)
1020 && (get_frame_pc (frame)
1021 <= (get_frame_base (frame)
1022 /* A call dummy is sized in words, but it is actually a
1023 series of instructions. Account for that scaling
1024 factor. */
b1e29e33
AC
1025 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1026 * DEPRECATED_CALL_DUMMY_LENGTH)
ef6e7e13
AC
1027 /* Similarly we have to account for 64bit wide register
1028 saves. */
b1e29e33 1029 + (32 * DEPRECATED_REGISTER_SIZE)
ef6e7e13
AC
1030 /* We always consider FP regs 8 bytes long. */
1031 + (NUM_REGS - FP0_REGNUM) * 8
1032 /* Similarly we have to account for 64bit wide register
1033 saves. */
b1e29e33 1034 + (6 * DEPRECATED_REGISTER_SIZE)))))
104c1213 1035 {
ef6e7e13 1036 return read_memory_integer ((get_frame_base (frame)
104c1213
JM
1037 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1038 TARGET_PTR_BIT / 8) & ~0x3;
1039 }
1040
c906108c
SS
1041#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1042 /* Deal with signal handler caller frames too. */
5a203e44 1043 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
1044 {
1045 CORE_ADDR rp;
1046 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1047 return rp & ~0x3;
1048 }
1049#endif
1050
60383d10 1051 if (hppa_frameless_function_invocation (frame))
c906108c
SS
1052 {
1053 int ret_regnum;
1054
1055 ret_regnum = find_return_regnum (pc);
1056
1057 /* If the next frame is an interrupt frame or a signal
c5aa993b
JM
1058 handler caller, then we need to look in the saved
1059 register area to get the return pointer (the values
1060 in the registers may not correspond to anything useful). */
ef6e7e13
AC
1061 if (get_next_frame (frame)
1062 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1063 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
c906108c 1064 {
43bd9a9e 1065 CORE_ADDR *saved_regs;
ef6e7e13
AC
1066 hppa_frame_init_saved_regs (get_next_frame (frame));
1067 saved_regs = get_frame_saved_regs (get_next_frame (frame));
43bd9a9e 1068 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1069 TARGET_PTR_BIT / 8) & 0x2)
c906108c 1070 {
43bd9a9e 1071 pc = read_memory_integer (saved_regs[31],
53a5351d 1072 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1073
1074 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
1075 with a return pointer in %rp and the kernel call with
1076 a return pointer in %r31. We return the %rp variant
1077 if %r31 is the same as frame->pc. */
ef6e7e13 1078 if (pc == get_frame_pc (frame))
43bd9a9e 1079 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1080 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1081 }
1082 else
43bd9a9e 1083 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1084 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1085 }
1086 else
1087 pc = read_register (ret_regnum) & ~0x3;
1088 }
1089 else
1090 {
1091 spun_around_loop = 0;
c5aa993b 1092 old_pc = pc;
c906108c 1093
c5aa993b 1094 restart:
c906108c
SS
1095 rp_offset = rp_saved (pc);
1096
1097 /* Similar to code in frameless function case. If the next
c5aa993b
JM
1098 frame is a signal or interrupt handler, then dig the right
1099 information out of the saved register info. */
c906108c 1100 if (rp_offset == 0
ef6e7e13
AC
1101 && get_next_frame (frame)
1102 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1103 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
c906108c 1104 {
43bd9a9e 1105 CORE_ADDR *saved_regs;
ef6e7e13
AC
1106 hppa_frame_init_saved_regs (get_next_frame (frame));
1107 saved_regs = get_frame_saved_regs (get_next_frame (frame));
43bd9a9e 1108 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1109 TARGET_PTR_BIT / 8) & 0x2)
c906108c 1110 {
43bd9a9e 1111 pc = read_memory_integer (saved_regs[31],
53a5351d 1112 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1113
1114 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
1115 with a return pointer in %rp and the kernel call with
1116 a return pointer in %r31. We return the %rp variant
1117 if %r31 is the same as frame->pc. */
ef6e7e13 1118 if (pc == get_frame_pc (frame))
43bd9a9e 1119 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1120 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1121 }
1122 else
43bd9a9e 1123 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1124 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1125 }
1126 else if (rp_offset == 0)
c5aa993b
JM
1127 {
1128 old_pc = pc;
1129 pc = read_register (RP_REGNUM) & ~0x3;
1130 }
c906108c 1131 else
c5aa993b
JM
1132 {
1133 old_pc = pc;
ef6e7e13 1134 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
53a5351d 1135 TARGET_PTR_BIT / 8) & ~0x3;
c5aa993b 1136 }
c906108c
SS
1137 }
1138
1139 /* If PC is inside a linker stub, then dig out the address the stub
1140 will return to.
1141
1142 Don't do this for long branch stubs. Why? For some unknown reason
1143 _start is marked as a long branch stub in hpux10. */
1144 u = find_unwind_entry (pc);
1145 if (u && u->stub_unwind.stub_type != 0
1146 && u->stub_unwind.stub_type != LONG_BRANCH)
1147 {
1148 unsigned int insn;
1149
1150 /* If this is a dynamic executable, and we're in a signal handler,
c5aa993b
JM
1151 then the call chain will eventually point us into the stub for
1152 _sigreturn. Unlike most cases, we'll be pointed to the branch
1153 to the real sigreturn rather than the code after the real branch!.
c906108c 1154
c5aa993b
JM
1155 Else, try to dig the address the stub will return to in the normal
1156 fashion. */
c906108c
SS
1157 insn = read_memory_integer (pc, 4);
1158 if ((insn & 0xfc00e000) == 0xe8000000)
1159 return (pc + extract_17 (insn) + 8) & ~0x3;
1160 else
1161 {
c5aa993b
JM
1162 if (old_pc == pc)
1163 spun_around_loop++;
1164
1165 if (spun_around_loop > 1)
1166 {
1167 /* We're just about to go around the loop again with
1168 no more hope of success. Die. */
1169 error ("Unable to find return pc for this frame");
1170 }
1171 else
1172 goto restart;
c906108c
SS
1173 }
1174 }
1175
1176 return pc;
1177}
1178\f
1179/* We need to correct the PC and the FP for the outermost frame when we are
1180 in a system call. */
1181
1182void
60383d10 1183hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
c906108c
SS
1184{
1185 int flags;
1186 int framesize;
1187
ef6e7e13 1188 if (get_next_frame (frame) && !fromleaf)
c906108c
SS
1189 return;
1190
618ce49f
AC
1191 /* If the next frame represents a frameless function invocation then
1192 we have to do some adjustments that are normally done by
1193 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1194 this case.) */
c906108c
SS
1195 if (fromleaf)
1196 {
1197 /* Find the framesize of *this* frame without peeking at the PC
c5aa993b 1198 in the current frame structure (it isn't set yet). */
8bedc050 1199 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
c906108c
SS
1200
1201 /* Now adjust our base frame accordingly. If we have a frame pointer
c5aa993b
JM
1202 use it, else subtract the size of this frame from the current
1203 frame. (we always want frame->frame to point at the lowest address
1204 in the frame). */
c906108c 1205 if (framesize == -1)
0ba6dca9 1206 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
c906108c 1207 else
ef6e7e13 1208 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
c906108c
SS
1209 return;
1210 }
1211
1212 flags = read_register (FLAGS_REGNUM);
c5aa993b 1213 if (flags & 2) /* In system call? */
ef6e7e13 1214 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
c906108c
SS
1215
1216 /* The outermost frame is always derived from PC-framesize
1217
1218 One might think frameless innermost frames should have
1219 a frame->frame that is the same as the parent's frame->frame.
1220 That is wrong; frame->frame in that case should be the *high*
1221 address of the parent's frame. It's complicated as hell to
1222 explain, but the parent *always* creates some stack space for
1223 the child. So the child actually does have a frame of some
1224 sorts, and its base is the high address in its parent's frame. */
ef6e7e13 1225 framesize = find_proc_framesize (get_frame_pc (frame));
c906108c 1226 if (framesize == -1)
0ba6dca9 1227 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
c906108c 1228 else
ef6e7e13 1229 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
c906108c
SS
1230}
1231\f
a5afb99f
AC
1232/* Given a GDB frame, determine the address of the calling function's
1233 frame. This will be used to create a new GDB frame struct, and
e9582e71
AC
1234 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1235 will be called for the new frame.
c906108c
SS
1236
1237 This may involve searching through prologues for several functions
1238 at boundaries where GCC calls HP C code, or where code which has
1239 a frame pointer calls code without a frame pointer. */
1240
1241CORE_ADDR
60383d10 1242hppa_frame_chain (struct frame_info *frame)
c906108c
SS
1243{
1244 int my_framesize, caller_framesize;
1245 struct unwind_table_entry *u;
1246 CORE_ADDR frame_base;
1247 struct frame_info *tmp_frame;
1248
c2c6d25f
JM
1249 /* A frame in the current frame list, or zero. */
1250 struct frame_info *saved_regs_frame = 0;
43bd9a9e
AC
1251 /* Where the registers were saved in saved_regs_frame. If
1252 saved_regs_frame is zero, this is garbage. */
1253 CORE_ADDR *saved_regs = NULL;
c2c6d25f 1254
c5aa993b 1255 CORE_ADDR caller_pc;
c906108c
SS
1256
1257 struct minimal_symbol *min_frame_symbol;
c5aa993b
JM
1258 struct symbol *frame_symbol;
1259 char *frame_symbol_name;
c906108c
SS
1260
1261 /* If this is a threaded application, and we see the
1262 routine "__pthread_exit", treat it as the stack root
1263 for this thread. */
ef6e7e13
AC
1264 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1265 frame_symbol = find_pc_function (get_frame_pc (frame));
c906108c 1266
c5aa993b 1267 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
c906108c 1268 {
c5aa993b
JM
1269 /* The test above for "no user function name" would defend
1270 against the slim likelihood that a user might define a
1271 routine named "__pthread_exit" and then try to debug it.
1272
1273 If it weren't commented out, and you tried to debug the
1274 pthread library itself, you'd get errors.
1275
1276 So for today, we don't make that check. */
22abf04a 1277 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
c5aa993b
JM
1278 if (frame_symbol_name != 0)
1279 {
1280 if (0 == strncmp (frame_symbol_name,
1281 THREAD_INITIAL_FRAME_SYMBOL,
1282 THREAD_INITIAL_FRAME_SYM_LEN))
1283 {
1284 /* Pretend we've reached the bottom of the stack. */
1285 return (CORE_ADDR) 0;
1286 }
1287 }
1288 } /* End of hacky code for threads. */
1289
c906108c
SS
1290 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1291 are easy; at *sp we have a full save state strucutre which we can
1292 pull the old stack pointer from. Also see frame_saved_pc for
1293 code to dig a saved PC out of the save state structure. */
ef6e7e13
AC
1294 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1295 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
53a5351d 1296 TARGET_PTR_BIT / 8);
c906108c 1297#ifdef FRAME_BASE_BEFORE_SIGTRAMP
5a203e44 1298 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
1299 {
1300 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1301 }
1302#endif
1303 else
ef6e7e13 1304 frame_base = get_frame_base (frame);
c906108c
SS
1305
1306 /* Get frame sizes for the current frame and the frame of the
1307 caller. */
ef6e7e13 1308 my_framesize = find_proc_framesize (get_frame_pc (frame));
8bedc050 1309 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
1310
1311 /* If we can't determine the caller's PC, then it's not likely we can
1312 really determine anything meaningful about its frame. We'll consider
1313 this to be stack bottom. */
1314 if (caller_pc == (CORE_ADDR) 0)
1315 return (CORE_ADDR) 0;
1316
8bedc050 1317 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1318
1319 /* If caller does not have a frame pointer, then its frame
1320 can be found at current_frame - caller_framesize. */
1321 if (caller_framesize != -1)
1322 {
1323 return frame_base - caller_framesize;
1324 }
1325 /* Both caller and callee have frame pointers and are GCC compiled
1326 (SAVE_SP bit in unwind descriptor is on for both functions.
1327 The previous frame pointer is found at the top of the current frame. */
1328 if (caller_framesize == -1 && my_framesize == -1)
1329 {
53a5351d 1330 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
c906108c
SS
1331 }
1332 /* Caller has a frame pointer, but callee does not. This is a little
1333 more difficult as GCC and HP C lay out locals and callee register save
1334 areas very differently.
1335
1336 The previous frame pointer could be in a register, or in one of
1337 several areas on the stack.
1338
1339 Walk from the current frame to the innermost frame examining
1340 unwind descriptors to determine if %r3 ever gets saved into the
1341 stack. If so return whatever value got saved into the stack.
1342 If it was never saved in the stack, then the value in %r3 is still
1343 valid, so use it.
1344
1345 We use information from unwind descriptors to determine if %r3
1346 is saved into the stack (Entry_GR field has this information). */
1347
ef6e7e13 1348 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
c906108c 1349 {
ef6e7e13 1350 u = find_unwind_entry (get_frame_pc (tmp_frame));
c906108c
SS
1351
1352 if (!u)
1353 {
1354 /* We could find this information by examining prologues. I don't
1355 think anyone has actually written any tools (not even "strip")
1356 which leave them out of an executable, so maybe this is a moot
1357 point. */
c5aa993b
JM
1358 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1359 code that doesn't have unwind entries. For example, stepping into
1360 the dynamic linker will give you a PC that has none. Thus, I've
1361 disabled this warning. */
c906108c 1362#if 0
ef6e7e13 1363 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
c906108c
SS
1364#endif
1365 return (CORE_ADDR) 0;
1366 }
1367
c2c6d25f 1368 if (u->Save_SP
5a203e44 1369 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
ef6e7e13 1370 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
c906108c 1371 break;
c2c6d25f
JM
1372
1373 /* Entry_GR specifies the number of callee-saved general registers
1374 saved in the stack. It starts at %r3, so %r3 would be 1. */
1375 if (u->Entry_GR >= 1)
1376 {
1377 /* The unwind entry claims that r3 is saved here. However,
1378 in optimized code, GCC often doesn't actually save r3.
1379 We'll discover this if we look at the prologue. */
43bd9a9e
AC
1380 hppa_frame_init_saved_regs (tmp_frame);
1381 saved_regs = get_frame_saved_regs (tmp_frame);
c2c6d25f
JM
1382 saved_regs_frame = tmp_frame;
1383
1384 /* If we have an address for r3, that's good. */
0ba6dca9 1385 if (saved_regs[DEPRECATED_FP_REGNUM])
c2c6d25f
JM
1386 break;
1387 }
c906108c
SS
1388 }
1389
1390 if (tmp_frame)
1391 {
1392 /* We may have walked down the chain into a function with a frame
c5aa993b 1393 pointer. */
c906108c 1394 if (u->Save_SP
5a203e44 1395 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
ef6e7e13 1396 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
c906108c 1397 {
ef6e7e13 1398 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
c906108c
SS
1399 }
1400 /* %r3 was saved somewhere in the stack. Dig it out. */
c5aa993b 1401 else
c906108c 1402 {
c906108c
SS
1403 /* Sick.
1404
1405 For optimization purposes many kernels don't have the
1406 callee saved registers into the save_state structure upon
1407 entry into the kernel for a syscall; the optimization
1408 is usually turned off if the process is being traced so
1409 that the debugger can get full register state for the
1410 process.
c5aa993b 1411
c906108c
SS
1412 This scheme works well except for two cases:
1413
c5aa993b
JM
1414 * Attaching to a process when the process is in the
1415 kernel performing a system call (debugger can't get
1416 full register state for the inferior process since
1417 the process wasn't being traced when it entered the
1418 system call).
c906108c 1419
c5aa993b
JM
1420 * Register state is not complete if the system call
1421 causes the process to core dump.
c906108c
SS
1422
1423
1424 The following heinous code is an attempt to deal with
1425 the lack of register state in a core dump. It will
1426 fail miserably if the function which performs the
1427 system call has a variable sized stack frame. */
1428
c2c6d25f 1429 if (tmp_frame != saved_regs_frame)
43bd9a9e
AC
1430 {
1431 hppa_frame_init_saved_regs (tmp_frame);
1432 saved_regs = get_frame_saved_regs (tmp_frame);
1433 }
c906108c
SS
1434
1435 /* Abominable hack. */
1436 if (current_target.to_has_execution == 0
43bd9a9e
AC
1437 && ((saved_regs[FLAGS_REGNUM]
1438 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1439 TARGET_PTR_BIT / 8)
c906108c 1440 & 0x2))
43bd9a9e 1441 || (saved_regs[FLAGS_REGNUM] == 0
c906108c
SS
1442 && read_register (FLAGS_REGNUM) & 0x2)))
1443 {
8bedc050 1444 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1445 if (!u)
1446 {
0ba6dca9 1447 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
53a5351d 1448 TARGET_PTR_BIT / 8);
c906108c
SS
1449 }
1450 else
1451 {
1452 return frame_base - (u->Total_frame_size << 3);
1453 }
1454 }
c5aa993b 1455
0ba6dca9 1456 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
53a5351d 1457 TARGET_PTR_BIT / 8);
c906108c
SS
1458 }
1459 }
1460 else
1461 {
c906108c
SS
1462 /* Get the innermost frame. */
1463 tmp_frame = frame;
ef6e7e13
AC
1464 while (get_next_frame (tmp_frame) != NULL)
1465 tmp_frame = get_next_frame (tmp_frame);
c906108c 1466
c2c6d25f 1467 if (tmp_frame != saved_regs_frame)
43bd9a9e
AC
1468 {
1469 hppa_frame_init_saved_regs (tmp_frame);
1470 saved_regs = get_frame_saved_regs (tmp_frame);
1471 }
c2c6d25f 1472
c906108c
SS
1473 /* Abominable hack. See above. */
1474 if (current_target.to_has_execution == 0
43bd9a9e
AC
1475 && ((saved_regs[FLAGS_REGNUM]
1476 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1477 TARGET_PTR_BIT / 8)
c906108c 1478 & 0x2))
43bd9a9e 1479 || (saved_regs[FLAGS_REGNUM] == 0
c5aa993b 1480 && read_register (FLAGS_REGNUM) & 0x2)))
c906108c 1481 {
8bedc050 1482 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1483 if (!u)
1484 {
0ba6dca9 1485 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
53a5351d 1486 TARGET_PTR_BIT / 8);
c906108c 1487 }
c5aa993b
JM
1488 else
1489 {
1490 return frame_base - (u->Total_frame_size << 3);
1491 }
c906108c 1492 }
c5aa993b 1493
c906108c 1494 /* The value in %r3 was never saved into the stack (thus %r3 still
c5aa993b 1495 holds the value of the previous frame pointer). */
0ba6dca9 1496 return deprecated_read_fp ();
c906108c
SS
1497 }
1498}
c906108c 1499\f
c5aa993b 1500
c906108c
SS
1501/* To see if a frame chain is valid, see if the caller looks like it
1502 was compiled with gcc. */
1503
1504int
fba45db2 1505hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
1506{
1507 struct minimal_symbol *msym_us;
1508 struct minimal_symbol *msym_start;
1509 struct unwind_table_entry *u, *next_u = NULL;
1510 struct frame_info *next;
1511
ef6e7e13 1512 u = find_unwind_entry (get_frame_pc (thisframe));
c906108c
SS
1513
1514 if (u == NULL)
1515 return 1;
1516
1517 /* We can't just check that the same of msym_us is "_start", because
1518 someone idiotically decided that they were going to make a Ltext_end
1519 symbol with the same address. This Ltext_end symbol is totally
1520 indistinguishable (as nearly as I can tell) from the symbol for a function
1521 which is (legitimately, since it is in the user's namespace)
1522 named Ltext_end, so we can't just ignore it. */
8bedc050 1523 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
c906108c
SS
1524 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1525 if (msym_us
1526 && msym_start
1527 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1528 return 0;
1529
1530 /* Grrrr. Some new idiot decided that they don't want _start for the
1531 PRO configurations; $START$ calls main directly.... Deal with it. */
1532 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1533 if (msym_us
1534 && msym_start
1535 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1536 return 0;
1537
1538 next = get_next_frame (thisframe);
1539 if (next)
ef6e7e13 1540 next_u = find_unwind_entry (get_frame_pc (next));
c906108c
SS
1541
1542 /* If this frame does not save SP, has no stack, isn't a stub,
1543 and doesn't "call" an interrupt routine or signal handler caller,
1544 then its not valid. */
1545 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
ef6e7e13 1546 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
c906108c
SS
1547 || (next_u && next_u->HP_UX_interrupt_marker))
1548 return 1;
1549
ef6e7e13 1550 if (pc_in_linker_stub (get_frame_pc (thisframe)))
c906108c
SS
1551 return 1;
1552
1553 return 0;
1554}
1555
7daf4f5b
JB
1556/* These functions deal with saving and restoring register state
1557 around a function call in the inferior. They keep the stack
1558 double-word aligned; eventually, on an hp700, the stack will have
1559 to be aligned to a 64-byte boundary. */
c906108c
SS
1560
1561void
7daf4f5b 1562hppa_push_dummy_frame (void)
c906108c
SS
1563{
1564 CORE_ADDR sp, pc, pcspace;
1565 register int regnum;
53a5351d 1566 CORE_ADDR int_buffer;
c906108c
SS
1567 double freg_buffer;
1568
60383d10 1569 pc = hppa_target_read_pc (inferior_ptid);
c906108c
SS
1570 int_buffer = read_register (FLAGS_REGNUM);
1571 if (int_buffer & 0x2)
1572 {
3371ccc0 1573 const unsigned int sid = (pc >> 30) & 0x3;
c906108c
SS
1574 if (sid == 0)
1575 pcspace = read_register (SR4_REGNUM);
1576 else
1577 pcspace = read_register (SR4_REGNUM + 4 + sid);
c906108c
SS
1578 }
1579 else
1580 pcspace = read_register (PCSQ_HEAD_REGNUM);
1581
1582 /* Space for "arguments"; the RP goes in here. */
1583 sp = read_register (SP_REGNUM) + 48;
1584 int_buffer = read_register (RP_REGNUM) | 0x3;
53a5351d
JM
1585
1586 /* The 32bit and 64bit ABIs save the return pointer into different
1587 stack slots. */
b1e29e33
AC
1588 if (DEPRECATED_REGISTER_SIZE == 8)
1589 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
53a5351d 1590 else
b1e29e33 1591 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
c906108c 1592
0ba6dca9 1593 int_buffer = deprecated_read_fp ();
b1e29e33 1594 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
c906108c 1595
0ba6dca9 1596 write_register (DEPRECATED_FP_REGNUM, sp);
c906108c 1597
b1e29e33 1598 sp += 2 * DEPRECATED_REGISTER_SIZE;
c906108c
SS
1599
1600 for (regnum = 1; regnum < 32; regnum++)
0ba6dca9 1601 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
c906108c
SS
1602 sp = push_word (sp, read_register (regnum));
1603
53a5351d 1604 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
b1e29e33 1605 if (DEPRECATED_REGISTER_SIZE != 8)
53a5351d 1606 sp += 4;
c906108c
SS
1607
1608 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1609 {
73937e03
AC
1610 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1611 (char *) &freg_buffer, 8);
c5aa993b 1612 sp = push_bytes (sp, (char *) &freg_buffer, 8);
c906108c
SS
1613 }
1614 sp = push_word (sp, read_register (IPSW_REGNUM));
1615 sp = push_word (sp, read_register (SAR_REGNUM));
1616 sp = push_word (sp, pc);
1617 sp = push_word (sp, pcspace);
1618 sp = push_word (sp, pc + 4);
1619 sp = push_word (sp, pcspace);
1620 write_register (SP_REGNUM, sp);
1621}
1622
1623static void
fba45db2 1624find_dummy_frame_regs (struct frame_info *frame,
43bd9a9e 1625 CORE_ADDR frame_saved_regs[])
c906108c 1626{
ef6e7e13 1627 CORE_ADDR fp = get_frame_base (frame);
c906108c
SS
1628 int i;
1629
53a5351d 1630 /* The 32bit and 64bit ABIs save RP into different locations. */
b1e29e33 1631 if (DEPRECATED_REGISTER_SIZE == 8)
43bd9a9e 1632 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
53a5351d 1633 else
43bd9a9e 1634 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
53a5351d 1635
0ba6dca9 1636 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
c906108c 1637
b1e29e33 1638 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
53a5351d 1639
b1e29e33 1640 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
c906108c 1641 {
0ba6dca9 1642 if (i != DEPRECATED_FP_REGNUM)
c906108c 1643 {
43bd9a9e 1644 frame_saved_regs[i] = fp;
b1e29e33 1645 fp += DEPRECATED_REGISTER_SIZE;
c906108c
SS
1646 }
1647 }
1648
53a5351d 1649 /* This is not necessary or desirable for the 64bit ABI. */
b1e29e33 1650 if (DEPRECATED_REGISTER_SIZE != 8)
53a5351d
JM
1651 fp += 4;
1652
c906108c 1653 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
43bd9a9e
AC
1654 frame_saved_regs[i] = fp;
1655
1656 frame_saved_regs[IPSW_REGNUM] = fp;
b1e29e33
AC
1657 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1658 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1659 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1660 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1661 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
c906108c
SS
1662}
1663
1664void
fba45db2 1665hppa_pop_frame (void)
c906108c
SS
1666{
1667 register struct frame_info *frame = get_current_frame ();
1668 register CORE_ADDR fp, npc, target_pc;
1669 register int regnum;
43bd9a9e 1670 CORE_ADDR *fsr;
c906108c
SS
1671 double freg_buffer;
1672
c193f6ac 1673 fp = get_frame_base (frame);
43bd9a9e
AC
1674 hppa_frame_init_saved_regs (frame);
1675 fsr = get_frame_saved_regs (frame);
c906108c
SS
1676
1677#ifndef NO_PC_SPACE_QUEUE_RESTORE
43bd9a9e
AC
1678 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1679 restore_pc_queue (fsr);
c906108c
SS
1680#endif
1681
1682 for (regnum = 31; regnum > 0; regnum--)
43bd9a9e
AC
1683 if (fsr[regnum])
1684 write_register (regnum, read_memory_integer (fsr[regnum],
b1e29e33 1685 DEPRECATED_REGISTER_SIZE));
c906108c 1686
c5aa993b 1687 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
43bd9a9e 1688 if (fsr[regnum])
c906108c 1689 {
43bd9a9e 1690 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
73937e03
AC
1691 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1692 (char *) &freg_buffer, 8);
c906108c
SS
1693 }
1694
43bd9a9e 1695 if (fsr[IPSW_REGNUM])
c906108c 1696 write_register (IPSW_REGNUM,
43bd9a9e 1697 read_memory_integer (fsr[IPSW_REGNUM],
b1e29e33 1698 DEPRECATED_REGISTER_SIZE));
c906108c 1699
43bd9a9e 1700 if (fsr[SAR_REGNUM])
c906108c 1701 write_register (SAR_REGNUM,
43bd9a9e 1702 read_memory_integer (fsr[SAR_REGNUM],
b1e29e33 1703 DEPRECATED_REGISTER_SIZE));
c906108c
SS
1704
1705 /* If the PC was explicitly saved, then just restore it. */
43bd9a9e 1706 if (fsr[PCOQ_TAIL_REGNUM])
c906108c 1707 {
43bd9a9e 1708 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
b1e29e33 1709 DEPRECATED_REGISTER_SIZE);
c906108c
SS
1710 write_register (PCOQ_TAIL_REGNUM, npc);
1711 }
1712 /* Else use the value in %rp to set the new PC. */
c5aa993b 1713 else
c906108c
SS
1714 {
1715 npc = read_register (RP_REGNUM);
1716 write_pc (npc);
1717 }
1718
b1e29e33 1719 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
c906108c 1720
43bd9a9e 1721 if (fsr[IPSW_REGNUM]) /* call dummy */
c906108c
SS
1722 write_register (SP_REGNUM, fp - 48);
1723 else
1724 write_register (SP_REGNUM, fp);
1725
1726 /* The PC we just restored may be inside a return trampoline. If so
1727 we want to restart the inferior and run it through the trampoline.
1728
1729 Do this by setting a momentary breakpoint at the location the
1730 trampoline returns to.
1731
1732 Don't skip through the trampoline if we're popping a dummy frame. */
1733 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
43bd9a9e 1734 if (target_pc && !fsr[IPSW_REGNUM])
c906108c
SS
1735 {
1736 struct symtab_and_line sal;
1737 struct breakpoint *breakpoint;
1738 struct cleanup *old_chain;
1739
1740 /* Set up our breakpoint. Set it to be silent as the MI code
c5aa993b 1741 for "return_command" will print the frame we returned to. */
c906108c
SS
1742 sal = find_pc_line (target_pc, 0);
1743 sal.pc = target_pc;
516b1f28 1744 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
c906108c
SS
1745 breakpoint->silent = 1;
1746
1747 /* So we can clean things up. */
4d6140d9 1748 old_chain = make_cleanup_delete_breakpoint (breakpoint);
c906108c
SS
1749
1750 /* Start up the inferior. */
1751 clear_proceed_status ();
1752 proceed_to_finish = 1;
2acceee2 1753 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
c906108c
SS
1754
1755 /* Perform our cleanups. */
1756 do_cleanups (old_chain);
1757 }
1758 flush_cached_frames ();
1759}
1760
1761/* After returning to a dummy on the stack, restore the instruction
1762 queue space registers. */
1763
1764static int
43bd9a9e 1765restore_pc_queue (CORE_ADDR *fsr)
c906108c
SS
1766{
1767 CORE_ADDR pc = read_pc ();
43bd9a9e 1768 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
53a5351d 1769 TARGET_PTR_BIT / 8);
c906108c
SS
1770 struct target_waitstatus w;
1771 int insn_count;
1772
1773 /* Advance past break instruction in the call dummy. */
1774 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1775 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1776
1777 /* HPUX doesn't let us set the space registers or the space
1778 registers of the PC queue through ptrace. Boo, hiss.
1779 Conveniently, the call dummy has this sequence of instructions
1780 after the break:
c5aa993b
JM
1781 mtsp r21, sr0
1782 ble,n 0(sr0, r22)
1783
c906108c
SS
1784 So, load up the registers and single step until we are in the
1785 right place. */
1786
43bd9a9e 1787 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
b1e29e33 1788 DEPRECATED_REGISTER_SIZE));
c906108c
SS
1789 write_register (22, new_pc);
1790
1791 for (insn_count = 0; insn_count < 3; insn_count++)
1792 {
1793 /* FIXME: What if the inferior gets a signal right now? Want to
c5aa993b
JM
1794 merge this into wait_for_inferior (as a special kind of
1795 watchpoint? By setting a breakpoint at the end? Is there
1796 any other choice? Is there *any* way to do this stuff with
1797 ptrace() or some equivalent?). */
c906108c 1798 resume (1, 0);
39f77062 1799 target_wait (inferior_ptid, &w);
c906108c
SS
1800
1801 if (w.kind == TARGET_WAITKIND_SIGNALLED)
c5aa993b
JM
1802 {
1803 stop_signal = w.value.sig;
1804 terminal_ours_for_output ();
1805 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
c906108c
SS
1806 target_signal_to_name (stop_signal),
1807 target_signal_to_string (stop_signal));
c5aa993b
JM
1808 gdb_flush (gdb_stdout);
1809 return 0;
1810 }
c906108c
SS
1811 }
1812 target_terminal_ours ();
1813 target_fetch_registers (-1);
1814 return 1;
1815}
1816
c2c6d25f
JM
1817
1818#ifdef PA20W_CALLING_CONVENTIONS
1819
53a5351d
JM
1820/* This function pushes a stack frame with arguments as part of the
1821 inferior function calling mechanism.
c906108c 1822
c2c6d25f
JM
1823 This is the version for the PA64, in which later arguments appear
1824 at higher addresses. (The stack always grows towards higher
1825 addresses.)
c906108c 1826
53a5351d
JM
1827 We simply allocate the appropriate amount of stack space and put
1828 arguments into their proper slots. The call dummy code will copy
1829 arguments into registers as needed by the ABI.
c906108c 1830
c2c6d25f
JM
1831 This ABI also requires that the caller provide an argument pointer
1832 to the callee, so we do that too. */
53a5351d 1833
c906108c 1834CORE_ADDR
ea7c478f 1835hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1836 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1837{
1838 /* array of arguments' offsets */
c5aa993b 1839 int *offset = (int *) alloca (nargs * sizeof (int));
53a5351d
JM
1840
1841 /* array of arguments' lengths: real lengths in bytes, not aligned to
1842 word size */
c5aa993b 1843 int *lengths = (int *) alloca (nargs * sizeof (int));
c906108c 1844
53a5351d
JM
1845 /* The value of SP as it was passed into this function after
1846 aligning. */
1847 CORE_ADDR orig_sp = STACK_ALIGN (sp);
c906108c 1848
53a5351d
JM
1849 /* The number of stack bytes occupied by the current argument. */
1850 int bytes_reserved;
1851
1852 /* The total number of bytes reserved for the arguments. */
1853 int cum_bytes_reserved = 0;
c906108c 1854
53a5351d
JM
1855 /* Similarly, but aligned. */
1856 int cum_bytes_aligned = 0;
1857 int i;
c5aa993b 1858
53a5351d 1859 /* Iterate over each argument provided by the user. */
c906108c
SS
1860 for (i = 0; i < nargs; i++)
1861 {
c2c6d25f
JM
1862 struct type *arg_type = VALUE_TYPE (args[i]);
1863
1864 /* Integral scalar values smaller than a register are padded on
1865 the left. We do this by promoting them to full-width,
1866 although the ABI says to pad them with garbage. */
1867 if (is_integral_type (arg_type)
b1e29e33 1868 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
c2c6d25f
JM
1869 {
1870 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1871 ? builtin_type_unsigned_long
1872 : builtin_type_long),
1873 args[i]);
1874 arg_type = VALUE_TYPE (args[i]);
1875 }
1876
1877 lengths[i] = TYPE_LENGTH (arg_type);
c906108c 1878
53a5351d
JM
1879 /* Align the size of the argument to the word size for this
1880 target. */
b1e29e33 1881 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
c906108c 1882
53a5351d
JM
1883 offset[i] = cum_bytes_reserved;
1884
c2c6d25f
JM
1885 /* Aggregates larger than eight bytes (the only types larger
1886 than eight bytes we have) are aligned on a 16-byte boundary,
1887 possibly padded on the right with garbage. This may leave an
1888 empty word on the stack, and thus an unused register, as per
1889 the ABI. */
1890 if (bytes_reserved > 8)
1891 {
1892 /* Round up the offset to a multiple of two slots. */
b1e29e33
AC
1893 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1894 & -(2*DEPRECATED_REGISTER_SIZE));
c906108c 1895
c2c6d25f
JM
1896 /* Note the space we've wasted, if any. */
1897 bytes_reserved += new_offset - offset[i];
1898 offset[i] = new_offset;
1899 }
53a5351d 1900
c2c6d25f
JM
1901 cum_bytes_reserved += bytes_reserved;
1902 }
1903
1904 /* CUM_BYTES_RESERVED already accounts for all the arguments
1905 passed by the user. However, the ABIs mandate minimum stack space
1906 allocations for outgoing arguments.
1907
1908 The ABIs also mandate minimum stack alignments which we must
1909 preserve. */
1910 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1911 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1912
1913 /* Now write each of the args at the proper offset down the stack. */
1914 for (i = 0; i < nargs; i++)
1915 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1916
1917 /* If a structure has to be returned, set up register 28 to hold its
1918 address */
1919 if (struct_return)
1920 write_register (28, struct_addr);
1921
1922 /* For the PA64 we must pass a pointer to the outgoing argument list.
1923 The ABI mandates that the pointer should point to the first byte of
1924 storage beyond the register flushback area.
1925
1926 However, the call dummy expects the outgoing argument pointer to
1927 be passed in register %r4. */
1928 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1929
1930 /* ?!? This needs further work. We need to set up the global data
1931 pointer for this procedure. This assumes the same global pointer
1932 for every procedure. The call dummy expects the dp value to
1933 be passed in register %r6. */
1934 write_register (6, read_register (27));
1935
1936 /* The stack will have 64 bytes of additional space for a frame marker. */
1937 return sp + 64;
1938}
1939
1940#else
1941
1942/* This function pushes a stack frame with arguments as part of the
1943 inferior function calling mechanism.
1944
1945 This is the version of the function for the 32-bit PA machines, in
1946 which later arguments appear at lower addresses. (The stack always
1947 grows towards higher addresses.)
1948
1949 We simply allocate the appropriate amount of stack space and put
1950 arguments into their proper slots. The call dummy code will copy
1951 arguments into registers as needed by the ABI. */
1952
1953CORE_ADDR
ea7c478f 1954hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1955 int struct_return, CORE_ADDR struct_addr)
c2c6d25f
JM
1956{
1957 /* array of arguments' offsets */
1958 int *offset = (int *) alloca (nargs * sizeof (int));
1959
1960 /* array of arguments' lengths: real lengths in bytes, not aligned to
1961 word size */
1962 int *lengths = (int *) alloca (nargs * sizeof (int));
1963
1964 /* The number of stack bytes occupied by the current argument. */
1965 int bytes_reserved;
1966
1967 /* The total number of bytes reserved for the arguments. */
1968 int cum_bytes_reserved = 0;
1969
1970 /* Similarly, but aligned. */
1971 int cum_bytes_aligned = 0;
1972 int i;
1973
1974 /* Iterate over each argument provided by the user. */
1975 for (i = 0; i < nargs; i++)
1976 {
1977 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1978
1979 /* Align the size of the argument to the word size for this
1980 target. */
b1e29e33 1981 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
c2c6d25f 1982
b6649e88
AC
1983 offset[i] = (cum_bytes_reserved
1984 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
c2c6d25f
JM
1985
1986 /* If the argument is a double word argument, then it needs to be
1987 double word aligned. */
b1e29e33
AC
1988 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
1989 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
c5aa993b
JM
1990 {
1991 int new_offset = 0;
53a5351d
JM
1992 /* BYTES_RESERVED is already aligned to the word, so we put
1993 the argument at one word more down the stack.
1994
1995 This will leave one empty word on the stack, and one unused
1996 register as mandated by the ABI. */
b1e29e33
AC
1997 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
1998 & -(2 * DEPRECATED_REGISTER_SIZE));
53a5351d 1999
b1e29e33 2000 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
c5aa993b 2001 {
b1e29e33
AC
2002 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2003 offset[i] += DEPRECATED_REGISTER_SIZE;
c5aa993b
JM
2004 }
2005 }
c906108c
SS
2006
2007 cum_bytes_reserved += bytes_reserved;
2008
2009 }
2010
c2c6d25f
JM
2011 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2012 by the user. However, the ABI mandates minimum stack space
53a5351d
JM
2013 allocations for outgoing arguments.
2014
c2c6d25f 2015 The ABI also mandates minimum stack alignments which we must
53a5351d 2016 preserve. */
c906108c 2017 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
53a5351d
JM
2018 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2019
2020 /* Now write each of the args at the proper offset down the stack.
53a5351d
JM
2021 ?!? We need to promote values to a full register instead of skipping
2022 words in the stack. */
c906108c
SS
2023 for (i = 0; i < nargs; i++)
2024 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
c906108c 2025
53a5351d
JM
2026 /* If a structure has to be returned, set up register 28 to hold its
2027 address */
c906108c
SS
2028 if (struct_return)
2029 write_register (28, struct_addr);
2030
53a5351d 2031 /* The stack will have 32 bytes of additional space for a frame marker. */
c906108c
SS
2032 return sp + 32;
2033}
2034
c2c6d25f 2035#endif
c906108c
SS
2036
2037/* elz: this function returns a value which is built looking at the given address.
2038 It is called from call_function_by_hand, in case we need to return a
2039 value which is larger than 64 bits, and it is stored in the stack rather than
2040 in the registers r28 and r29 or fr4.
2041 This function does the same stuff as value_being_returned in values.c, but
2042 gets the value from the stack rather than from the buffer where all the
2043 registers were saved when the function called completed. */
ea7c478f 2044struct value *
fba45db2 2045hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
c906108c 2046{
ea7c478f 2047 register struct value *val;
c906108c
SS
2048
2049 val = allocate_value (valtype);
2050 CHECK_TYPEDEF (valtype);
c5aa993b 2051 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
c906108c
SS
2052
2053 return val;
2054}
2055
2056
2057
2058/* elz: Used to lookup a symbol in the shared libraries.
c5aa993b
JM
2059 This function calls shl_findsym, indirectly through a
2060 call to __d_shl_get. __d_shl_get is in end.c, which is always
2061 linked in by the hp compilers/linkers.
2062 The call to shl_findsym cannot be made directly because it needs
2063 to be active in target address space.
2064 inputs: - minimal symbol pointer for the function we want to look up
2065 - address in target space of the descriptor for the library
2066 where we want to look the symbol up.
2067 This address is retrieved using the
2068 som_solib_get_solib_by_pc function (somsolib.c).
2069 output: - real address in the library of the function.
2070 note: the handle can be null, in which case shl_findsym will look for
2071 the symbol in all the loaded shared libraries.
2072 files to look at if you need reference on this stuff:
2073 dld.c, dld_shl_findsym.c
2074 end.c
2075 man entry for shl_findsym */
c906108c
SS
2076
2077CORE_ADDR
fba45db2 2078find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
c906108c 2079{
c5aa993b
JM
2080 struct symbol *get_sym, *symbol2;
2081 struct minimal_symbol *buff_minsym, *msymbol;
2082 struct type *ftype;
ea7c478f
AC
2083 struct value **args;
2084 struct value *funcval;
2085 struct value *val;
c5aa993b
JM
2086
2087 int x, namelen, err_value, tmp = -1;
2088 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2089 CORE_ADDR stub_addr;
2090
2091
ea7c478f 2092 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
c5aa993b 2093 funcval = find_function_in_inferior ("__d_shl_get");
176620f1 2094 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
c5aa993b
JM
2095 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2096 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
176620f1 2097 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
c5aa993b 2098 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
22abf04a 2099 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
c5aa993b
JM
2100 value_return_addr = endo_buff_addr + namelen;
2101 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2102
2103 /* do alignment */
2104 if ((x = value_return_addr % 64) != 0)
2105 value_return_addr = value_return_addr + 64 - x;
2106
2107 errno_return_addr = value_return_addr + 64;
2108
2109
2110 /* set up stuff needed by __d_shl_get in buffer in end.o */
2111
22abf04a 2112 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
c5aa993b
JM
2113
2114 target_write_memory (value_return_addr, (char *) &tmp, 4);
2115
2116 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2117
2118 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2119 (char *) &handle, 4);
2120
2121 /* now prepare the arguments for the call */
2122
2123 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
4478b372
JB
2124 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2125 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
c5aa993b 2126 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
4478b372
JB
2127 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2128 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
c5aa993b
JM
2129
2130 /* now call the function */
2131
2132 val = call_function_by_hand (funcval, 6, args);
2133
2134 /* now get the results */
2135
2136 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2137
2138 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2139 if (stub_addr <= 0)
104c1213 2140 error ("call to __d_shl_get failed, error code is %d", err_value);
c5aa993b
JM
2141
2142 return (stub_addr);
c906108c
SS
2143}
2144
c5aa993b 2145/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
a0b3c4fd 2146static int
4efb68b1 2147cover_find_stub_with_shl_get (void *args_untyped)
c906108c 2148{
a0b3c4fd
JM
2149 args_for_find_stub *args = args_untyped;
2150 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2151 return 0;
c906108c
SS
2152}
2153
c906108c
SS
2154/* Insert the specified number of args and function address
2155 into a call sequence of the above form stored at DUMMYNAME.
2156
2157 On the hppa we need to call the stack dummy through $$dyncall.
b1e29e33
AC
2158 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2159 argument, real_pc, which is the location where gdb should start up
2160 the inferior to do the function call.
cce74817
JM
2161
2162 This has to work across several versions of hpux, bsd, osf1. It has to
2163 work regardless of what compiler was used to build the inferior program.
2164 It should work regardless of whether or not end.o is available. It has
2165 to work even if gdb can not call into the dynamic loader in the inferior
2166 to query it for symbol names and addresses.
2167
2168 Yes, all those cases should work. Luckily code exists to handle most
2169 of them. The complexity is in selecting exactly what scheme should
2170 be used to perform the inferior call.
2171
2172 At the current time this routine is known not to handle cases where
2173 the program was linked with HP's compiler without including end.o.
2174
2175 Please contact Jeff Law (law@cygnus.com) before changing this code. */
c906108c
SS
2176
2177CORE_ADDR
fba45db2 2178hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 2179 struct value **args, struct type *type, int gcc_p)
c906108c
SS
2180{
2181 CORE_ADDR dyncall_addr;
2182 struct minimal_symbol *msymbol;
2183 struct minimal_symbol *trampoline;
2184 int flags = read_register (FLAGS_REGNUM);
cce74817
JM
2185 struct unwind_table_entry *u = NULL;
2186 CORE_ADDR new_stub = 0;
2187 CORE_ADDR solib_handle = 0;
2188
2189 /* Nonzero if we will use GCC's PLT call routine. This routine must be
c2c6d25f
JM
2190 passed an import stub, not a PLABEL. It is also necessary to set %r19
2191 (the PIC register) before performing the call.
c906108c 2192
cce74817
JM
2193 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2194 are calling the target directly. When using __d_plt_call we want to
2195 use a PLABEL instead of an import stub. */
2196 int using_gcc_plt_call = 1;
2197
53a5351d
JM
2198#ifdef GDB_TARGET_IS_HPPA_20W
2199 /* We currently use completely different code for the PA2.0W inferior
2200 function call sequences. This needs to be cleaned up. */
2201 {
2202 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2203 struct target_waitstatus w;
2204 int inst1, inst2;
2205 char buf[4];
2206 int status;
2207 struct objfile *objfile;
2208
2209 /* We can not modify the PC space queues directly, so we start
2210 up the inferior and execute a couple instructions to set the
2211 space queues so that they point to the call dummy in the stack. */
2212 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2213 sr5 = read_register (SR5_REGNUM);
2214 if (1)
2215 {
2216 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2217 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2218 if (target_read_memory (pcoqh, buf, 4) != 0)
2219 error ("Couldn't modify space queue\n");
2220 inst1 = extract_unsigned_integer (buf, 4);
2221
2222 if (target_read_memory (pcoqt, buf, 4) != 0)
2223 error ("Couldn't modify space queue\n");
2224 inst2 = extract_unsigned_integer (buf, 4);
2225
2226 /* BVE (r1) */
2227 *((int *) buf) = 0xe820d000;
2228 if (target_write_memory (pcoqh, buf, 4) != 0)
2229 error ("Couldn't modify space queue\n");
2230
2231 /* NOP */
2232 *((int *) buf) = 0x08000240;
2233 if (target_write_memory (pcoqt, buf, 4) != 0)
2234 {
2235 *((int *) buf) = inst1;
2236 target_write_memory (pcoqh, buf, 4);
2237 error ("Couldn't modify space queue\n");
2238 }
2239
2240 write_register (1, pc);
2241
2242 /* Single step twice, the BVE instruction will set the space queue
2243 such that it points to the PC value written immediately above
2244 (ie the call dummy). */
2245 resume (1, 0);
39f77062 2246 target_wait (inferior_ptid, &w);
53a5351d 2247 resume (1, 0);
39f77062 2248 target_wait (inferior_ptid, &w);
53a5351d
JM
2249
2250 /* Restore the two instructions at the old PC locations. */
2251 *((int *) buf) = inst1;
2252 target_write_memory (pcoqh, buf, 4);
2253 *((int *) buf) = inst2;
2254 target_write_memory (pcoqt, buf, 4);
2255 }
2256
2257 /* The call dummy wants the ultimate destination address initially
2258 in register %r5. */
2259 write_register (5, fun);
2260
2261 /* We need to see if this objfile has a different DP value than our
c2c6d25f 2262 own (it could be a shared library for example). */
53a5351d
JM
2263 ALL_OBJFILES (objfile)
2264 {
2265 struct obj_section *s;
2266 obj_private_data_t *obj_private;
2267
2268 /* See if FUN is in any section within this shared library. */
2269 for (s = objfile->sections; s < objfile->sections_end; s++)
2270 if (s->addr <= fun && fun < s->endaddr)
2271 break;
2272
2273 if (s >= objfile->sections_end)
2274 continue;
2275
2276 obj_private = (obj_private_data_t *) objfile->obj_private;
2277
2278 /* The DP value may be different for each objfile. But within an
2279 objfile each function uses the same dp value. Thus we do not need
2280 to grope around the opd section looking for dp values.
2281
2282 ?!? This is not strictly correct since we may be in a shared library
2283 and want to call back into the main program. To make that case
2284 work correctly we need to set obj_private->dp for the main program's
2285 objfile, then remove this conditional. */
2286 if (obj_private->dp)
2287 write_register (27, obj_private->dp);
2288 break;
2289 }
2290 return pc;
2291 }
2292#endif
2293
2294#ifndef GDB_TARGET_IS_HPPA_20W
cce74817 2295 /* Prefer __gcc_plt_call over the HP supplied routine because
c5aa993b 2296 __gcc_plt_call works for any number of arguments. */
c906108c 2297 trampoline = NULL;
cce74817
JM
2298 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2299 using_gcc_plt_call = 0;
2300
c906108c
SS
2301 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2302 if (msymbol == NULL)
cce74817 2303 error ("Can't find an address for $$dyncall trampoline");
c906108c
SS
2304
2305 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2306
2307 /* FUN could be a procedure label, in which case we have to get
cce74817
JM
2308 its real address and the value of its GOT/DP if we plan to
2309 call the routine via gcc_plt_call. */
2310 if ((fun & 0x2) && using_gcc_plt_call)
c906108c
SS
2311 {
2312 /* Get the GOT/DP value for the target function. It's
c5aa993b
JM
2313 at *(fun+4). Note the call dummy is *NOT* allowed to
2314 trash %r19 before calling the target function. */
53a5351d 2315 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
b1e29e33 2316 DEPRECATED_REGISTER_SIZE));
c906108c
SS
2317
2318 /* Now get the real address for the function we are calling, it's
c5aa993b 2319 at *fun. */
53a5351d
JM
2320 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2321 TARGET_PTR_BIT / 8);
c906108c
SS
2322 }
2323 else
2324 {
2325
2326#ifndef GDB_TARGET_IS_PA_ELF
cce74817 2327 /* FUN could be an export stub, the real address of a function, or
c5aa993b
JM
2328 a PLABEL. When using gcc's PLT call routine we must call an import
2329 stub rather than the export stub or real function for lazy binding
2330 to work correctly
cce74817 2331
39f77062 2332 If we are using the gcc PLT call routine, then we need to
c5aa993b 2333 get the import stub for the target function. */
cce74817 2334 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
c906108c
SS
2335 {
2336 struct objfile *objfile;
2337 struct minimal_symbol *funsymbol, *stub_symbol;
2338 CORE_ADDR newfun = 0;
2339
2340 funsymbol = lookup_minimal_symbol_by_pc (fun);
2341 if (!funsymbol)
4ce44c66 2342 error ("Unable to find minimal symbol for target function.\n");
c906108c
SS
2343
2344 /* Search all the object files for an import symbol with the
2345 right name. */
2346 ALL_OBJFILES (objfile)
c5aa993b
JM
2347 {
2348 stub_symbol
2349 = lookup_minimal_symbol_solib_trampoline
22abf04a 2350 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
c5aa993b
JM
2351
2352 if (!stub_symbol)
22abf04a 2353 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
c5aa993b
JM
2354 NULL, objfile);
2355
2356 /* Found a symbol with the right name. */
2357 if (stub_symbol)
2358 {
2359 struct unwind_table_entry *u;
2360 /* It must be a shared library trampoline. */
2361 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2362 continue;
2363
2364 /* It must also be an import stub. */
2365 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
6426a772
JM
2366 if (u == NULL
2367 || (u->stub_unwind.stub_type != IMPORT
2368#ifdef GDB_NATIVE_HPUX_11
2369 /* Sigh. The hpux 10.20 dynamic linker will blow
2370 chunks if we perform a call to an unbound function
2371 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2372 linker will blow chunks if we do not call the
2373 unbound function via the IMPORT_SHLIB stub.
2374
2375 We currently have no way to select bevahior on just
2376 the target. However, we only support HPUX/SOM in
2377 native mode. So we conditinalize on a native
2378 #ifdef. Ugly. Ugly. Ugly */
2379 && u->stub_unwind.stub_type != IMPORT_SHLIB
2380#endif
2381 ))
c5aa993b
JM
2382 continue;
2383
2384 /* OK. Looks like the correct import stub. */
2385 newfun = SYMBOL_VALUE (stub_symbol);
2386 fun = newfun;
6426a772
JM
2387
2388 /* If we found an IMPORT stub, then we want to stop
2389 searching now. If we found an IMPORT_SHLIB, we want
2390 to continue the search in the hopes that we will find
2391 an IMPORT stub. */
2392 if (u->stub_unwind.stub_type == IMPORT)
2393 break;
c5aa993b
JM
2394 }
2395 }
cce74817
JM
2396
2397 /* Ouch. We did not find an import stub. Make an attempt to
2398 do the right thing instead of just croaking. Most of the
2399 time this will actually work. */
c906108c
SS
2400 if (newfun == 0)
2401 write_register (19, som_solib_get_got_by_pc (fun));
cce74817
JM
2402
2403 u = find_unwind_entry (fun);
c5aa993b 2404 if (u
cce74817
JM
2405 && (u->stub_unwind.stub_type == IMPORT
2406 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2407 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2408
2409 /* If we found the import stub in the shared library, then we have
2410 to set %r19 before we call the stub. */
2411 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2412 write_register (19, som_solib_get_got_by_pc (fun));
c906108c 2413 }
c906108c
SS
2414#endif
2415 }
2416
cce74817
JM
2417 /* If we are calling into another load module then have sr4export call the
2418 magic __d_plt_call routine which is linked in from end.o.
c906108c 2419
cce74817
JM
2420 You can't use _sr4export to make the call as the value in sp-24 will get
2421 fried and you end up returning to the wrong location. You can't call the
2422 target as the code to bind the PLT entry to a function can't return to a
2423 stack address.
2424
2425 Also, query the dynamic linker in the inferior to provide a suitable
2426 PLABEL for the target function. */
c5aa993b 2427 if (!using_gcc_plt_call)
c906108c
SS
2428 {
2429 CORE_ADDR new_fun;
2430
cce74817 2431 /* Get a handle for the shared library containing FUN. Given the
c5aa993b 2432 handle we can query the shared library for a PLABEL. */
cce74817 2433 solib_handle = som_solib_get_solib_by_pc (fun);
c906108c 2434
cce74817 2435 if (solib_handle)
c906108c 2436 {
cce74817 2437 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
c906108c 2438
cce74817
JM
2439 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2440
2441 if (trampoline == NULL)
2442 {
2443 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2444 }
2445
2446 /* This is where sr4export will jump to. */
2447 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2448
2449 /* If the function is in a shared library, then call __d_shl_get to
2450 get a PLABEL for the target function. */
2451 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2452
c5aa993b 2453 if (new_stub == 0)
22abf04a 2454 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
c906108c
SS
2455
2456 /* We have to store the address of the stub in __shlib_funcptr. */
cce74817 2457 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
c5aa993b 2458 (struct objfile *) NULL);
c906108c 2459
cce74817
JM
2460 if (msymbol == NULL)
2461 error ("Can't find an address for __shlib_funcptr");
2462 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
c5aa993b 2463 (char *) &new_stub, 4);
c906108c
SS
2464
2465 /* We want sr4export to call __d_plt_call, so we claim it is
2466 the final target. Clear trampoline. */
cce74817
JM
2467 fun = new_fun;
2468 trampoline = NULL;
c906108c
SS
2469 }
2470 }
2471
2472 /* Store upper 21 bits of function address into ldil. fun will either be
2473 the final target (most cases) or __d_plt_call when calling into a shared
2474 library and __gcc_plt_call is not available. */
2475 store_unsigned_integer
2476 (&dummy[FUNC_LDIL_OFFSET],
2477 INSTRUCTION_SIZE,
2478 deposit_21 (fun >> 11,
2479 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2480 INSTRUCTION_SIZE)));
2481
2482 /* Store lower 11 bits of function address into ldo */
2483 store_unsigned_integer
2484 (&dummy[FUNC_LDO_OFFSET],
2485 INSTRUCTION_SIZE,
2486 deposit_14 (fun & MASK_11,
2487 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2488 INSTRUCTION_SIZE)));
2489#ifdef SR4EXPORT_LDIL_OFFSET
2490
2491 {
2492 CORE_ADDR trampoline_addr;
2493
2494 /* We may still need sr4export's address too. */
2495
2496 if (trampoline == NULL)
2497 {
2498 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2499 if (msymbol == NULL)
cce74817 2500 error ("Can't find an address for _sr4export trampoline");
c906108c
SS
2501
2502 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2503 }
2504 else
2505 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2506
2507
2508 /* Store upper 21 bits of trampoline's address into ldil */
2509 store_unsigned_integer
2510 (&dummy[SR4EXPORT_LDIL_OFFSET],
2511 INSTRUCTION_SIZE,
2512 deposit_21 (trampoline_addr >> 11,
2513 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2514 INSTRUCTION_SIZE)));
2515
2516 /* Store lower 11 bits of trampoline's address into ldo */
2517 store_unsigned_integer
2518 (&dummy[SR4EXPORT_LDO_OFFSET],
2519 INSTRUCTION_SIZE,
2520 deposit_14 (trampoline_addr & MASK_11,
2521 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2522 INSTRUCTION_SIZE)));
2523 }
2524#endif
2525
2526 write_register (22, pc);
2527
2528 /* If we are in a syscall, then we should call the stack dummy
2529 directly. $$dyncall is not needed as the kernel sets up the
2530 space id registers properly based on the value in %r31. In
2531 fact calling $$dyncall will not work because the value in %r22
2532 will be clobbered on the syscall exit path.
2533
2534 Similarly if the current PC is in a shared library. Note however,
2535 this scheme won't work if the shared library isn't mapped into
2536 the same space as the stack. */
2537 if (flags & 2)
2538 return pc;
2539#ifndef GDB_TARGET_IS_PA_ELF
60383d10 2540 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
c906108c
SS
2541 return pc;
2542#endif
2543 else
2544 return dyncall_addr;
53a5351d 2545#endif
c906108c
SS
2546}
2547
c906108c
SS
2548/* If the pid is in a syscall, then the FP register is not readable.
2549 We'll return zero in that case, rather than attempting to read it
2550 and cause a warning. */
60383d10 2551
c906108c 2552CORE_ADDR
60383d10 2553hppa_read_fp (int pid)
c906108c
SS
2554{
2555 int flags = read_register (FLAGS_REGNUM);
2556
c5aa993b
JM
2557 if (flags & 2)
2558 {
2559 return (CORE_ADDR) 0;
2560 }
c906108c
SS
2561
2562 /* This is the only site that may directly read_register () the FP
0ba6dca9
AC
2563 register. All others must use deprecated_read_fp (). */
2564 return read_register (DEPRECATED_FP_REGNUM);
c906108c
SS
2565}
2566
60383d10
JB
2567CORE_ADDR
2568hppa_target_read_fp (void)
2569{
2570 return hppa_read_fp (PIDGET (inferior_ptid));
2571}
c906108c
SS
2572
2573/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2574 bits. */
2575
2576CORE_ADDR
60383d10 2577hppa_target_read_pc (ptid_t ptid)
c906108c 2578{
39f77062 2579 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2580
2581 /* The following test does not belong here. It is OS-specific, and belongs
2582 in native code. */
2583 /* Test SS_INSYSCALL */
2584 if (flags & 2)
39f77062 2585 return read_register_pid (31, ptid) & ~0x3;
c906108c 2586
39f77062 2587 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
c906108c
SS
2588}
2589
2590/* Write out the PC. If currently in a syscall, then also write the new
2591 PC value into %r31. */
2592
2593void
60383d10 2594hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 2595{
39f77062 2596 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2597
2598 /* The following test does not belong here. It is OS-specific, and belongs
2599 in native code. */
2600 /* If in a syscall, then set %r31. Also make sure to get the
2601 privilege bits set correctly. */
2602 /* Test SS_INSYSCALL */
2603 if (flags & 2)
39f77062 2604 write_register_pid (31, v | 0x3, ptid);
c906108c 2605
39f77062
KB
2606 write_register_pid (PC_REGNUM, v, ptid);
2607 write_register_pid (NPC_REGNUM, v + 4, ptid);
c906108c
SS
2608}
2609
2610/* return the alignment of a type in bytes. Structures have the maximum
2611 alignment required by their fields. */
2612
2613static int
fba45db2 2614hppa_alignof (struct type *type)
c906108c
SS
2615{
2616 int max_align, align, i;
2617 CHECK_TYPEDEF (type);
2618 switch (TYPE_CODE (type))
2619 {
2620 case TYPE_CODE_PTR:
2621 case TYPE_CODE_INT:
2622 case TYPE_CODE_FLT:
2623 return TYPE_LENGTH (type);
2624 case TYPE_CODE_ARRAY:
2625 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2626 case TYPE_CODE_STRUCT:
2627 case TYPE_CODE_UNION:
2628 max_align = 1;
2629 for (i = 0; i < TYPE_NFIELDS (type); i++)
2630 {
2631 /* Bit fields have no real alignment. */
2632 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 2633 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
2634 {
2635 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2636 max_align = max (max_align, align);
2637 }
2638 }
2639 return max_align;
2640 default:
2641 return 4;
2642 }
2643}
2644
2645/* Print the register regnum, or all registers if regnum is -1 */
2646
2647void
fba45db2 2648pa_do_registers_info (int regnum, int fpregs)
c906108c 2649{
b8b527c5 2650 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
c906108c
SS
2651 int i;
2652
2653 /* Make a copy of gdb's save area (may cause actual
2654 reads from the target). */
2655 for (i = 0; i < NUM_REGS; i++)
6e7f8b9c 2656 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2657
2658 if (regnum == -1)
2659 pa_print_registers (raw_regs, regnum, fpregs);
c5aa993b
JM
2660 else if (regnum < FP4_REGNUM)
2661 {
2662 long reg_val[2];
2663
2664 /* Why is the value not passed through "extract_signed_integer"
2665 as in "pa_print_registers" below? */
2666 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2667
2668 if (!is_pa_2)
2669 {
ce414844 2670 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2671 }
c906108c 2672 else
c5aa993b
JM
2673 {
2674 /* Fancy % formats to prevent leading zeros. */
2675 if (reg_val[0] == 0)
ce414844 2676 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2677 else
ce414844 2678 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
c5aa993b
JM
2679 reg_val[0], reg_val[1]);
2680 }
c906108c 2681 }
c906108c 2682 else
c5aa993b
JM
2683 /* Note that real floating point values only start at
2684 FP4_REGNUM. FP0 and up are just status and error
2685 registers, which have integral (bit) values. */
c906108c
SS
2686 pa_print_fp_reg (regnum);
2687}
2688
2689/********** new function ********************/
2690void
fba45db2
KB
2691pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2692 enum precision_type precision)
c906108c 2693{
b8b527c5 2694 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
c906108c
SS
2695 int i;
2696
2697 /* Make a copy of gdb's save area (may cause actual
c5aa993b 2698 reads from the target). */
c906108c 2699 for (i = 0; i < NUM_REGS; i++)
6e7f8b9c 2700 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2701
2702 if (regnum == -1)
2703 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2704
c5aa993b
JM
2705 else if (regnum < FP4_REGNUM)
2706 {
2707 long reg_val[2];
2708
2709 /* Why is the value not passed through "extract_signed_integer"
2710 as in "pa_print_registers" below? */
2711 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
c906108c 2712
c5aa993b
JM
2713 if (!is_pa_2)
2714 {
ce414844 2715 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2716 }
c906108c 2717 else
c5aa993b
JM
2718 {
2719 /* Fancy % formats to prevent leading zeros. */
2720 if (reg_val[0] == 0)
ce414844 2721 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
c5aa993b
JM
2722 reg_val[1]);
2723 else
ce414844 2724 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
c5aa993b
JM
2725 reg_val[0], reg_val[1]);
2726 }
c906108c 2727 }
c906108c 2728 else
c5aa993b
JM
2729 /* Note that real floating point values only start at
2730 FP4_REGNUM. FP0 and up are just status and error
2731 registers, which have integral (bit) values. */
c906108c
SS
2732 pa_strcat_fp_reg (regnum, stream, precision);
2733}
2734
2735/* If this is a PA2.0 machine, fetch the real 64-bit register
2736 value. Otherwise use the info from gdb's saved register area.
2737
2738 Note that reg_val is really expected to be an array of longs,
2739 with two elements. */
2740static void
fba45db2 2741pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
c906108c 2742{
c5aa993b 2743 static int know_which = 0; /* False */
c906108c 2744
c5aa993b 2745 int regaddr;
c906108c
SS
2746 unsigned int offset;
2747 register int i;
c5aa993b
JM
2748 int start;
2749
2750
123a958e 2751 char buf[MAX_REGISTER_SIZE];
c906108c
SS
2752 long long reg_val;
2753
c5aa993b
JM
2754 if (!know_which)
2755 {
2756 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2757 {
2758 is_pa_2 = (1 == 1);
2759 }
2760
2761 know_which = 1; /* True */
2762 }
c906108c
SS
2763
2764 raw_val[0] = 0;
2765 raw_val[1] = 0;
2766
c5aa993b
JM
2767 if (!is_pa_2)
2768 {
2769 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
c906108c 2770 return;
c5aa993b 2771 }
c906108c
SS
2772
2773 /* Code below copied from hppah-nat.c, with fixes for wide
2774 registers, using different area of save_state, etc. */
2775 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
c5aa993b
JM
2776 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2777 {
c906108c 2778 /* Use narrow regs area of save_state and default macro. */
c5aa993b
JM
2779 offset = U_REGS_OFFSET;
2780 regaddr = register_addr (regnum, offset);
2781 start = 1;
2782 }
2783 else
2784 {
c906108c
SS
2785 /* Use wide regs area, and calculate registers as 8 bytes wide.
2786
2787 We'd like to do this, but current version of "C" doesn't
2788 permit "offsetof":
2789
c5aa993b 2790 offset = offsetof(save_state_t, ss_wide);
c906108c
SS
2791
2792 Note that to avoid "C" doing typed pointer arithmetic, we
2793 have to cast away the type in our offset calculation:
2794 otherwise we get an offset of 1! */
2795
7a292a7a 2796 /* NB: save_state_t is not available before HPUX 9.
c5aa993b 2797 The ss_wide field is not available previous to HPUX 10.20,
7a292a7a
SS
2798 so to avoid compile-time warnings, we only compile this for
2799 PA 2.0 processors. This control path should only be followed
2800 if we're debugging a PA 2.0 processor, so this should not cause
2801 problems. */
2802
c906108c
SS
2803 /* #if the following code out so that this file can still be
2804 compiled on older HPUX boxes (< 10.20) which don't have
2805 this structure/structure member. */
2806#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2807 save_state_t temp;
2808
2809 offset = ((int) &temp.ss_wide) - ((int) &temp);
2810 regaddr = offset + regnum * 8;
c5aa993b 2811 start = 0;
c906108c 2812#endif
c5aa993b
JM
2813 }
2814
2815 for (i = start; i < 2; i++)
c906108c
SS
2816 {
2817 errno = 0;
39f77062 2818 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
c5aa993b 2819 (PTRACE_ARG3_TYPE) regaddr, 0);
c906108c
SS
2820 if (errno != 0)
2821 {
2822 /* Warning, not error, in case we are attached; sometimes the
2823 kernel doesn't let us at the registers. */
2824 char *err = safe_strerror (errno);
2825 char *msg = alloca (strlen (err) + 128);
2826 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2827 warning (msg);
2828 goto error_exit;
2829 }
2830
2831 regaddr += sizeof (long);
2832 }
c5aa993b 2833
c906108c 2834 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
c5aa993b 2835 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
c906108c
SS
2836
2837error_exit:
2838 ;
2839}
2840
2841/* "Info all-reg" command */
c5aa993b 2842
c906108c 2843static void
fba45db2 2844pa_print_registers (char *raw_regs, int regnum, int fpregs)
c906108c 2845{
c5aa993b 2846 int i, j;
adf40b2e
JM
2847 /* Alas, we are compiled so that "long long" is 32 bits */
2848 long raw_val[2];
c906108c 2849 long long_val;
a0b3c4fd 2850 int rows = 48, columns = 2;
c906108c 2851
adf40b2e 2852 for (i = 0; i < rows; i++)
c906108c 2853 {
adf40b2e 2854 for (j = 0; j < columns; j++)
c906108c 2855 {
adf40b2e
JM
2856 /* We display registers in column-major order. */
2857 int regnum = i + j * rows;
2858
c5aa993b
JM
2859 /* Q: Why is the value passed through "extract_signed_integer",
2860 while above, in "pa_do_registers_info" it isn't?
2861 A: ? */
adf40b2e 2862 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
c5aa993b
JM
2863
2864 /* Even fancier % formats to prevent leading zeros
2865 and still maintain the output in columns. */
2866 if (!is_pa_2)
2867 {
2868 /* Being big-endian, on this machine the low bits
2869 (the ones we want to look at) are in the second longword. */
2870 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844 2871 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2872 REGISTER_NAME (regnum), long_val);
c5aa993b
JM
2873 }
2874 else
2875 {
2876 /* raw_val = extract_signed_integer(&raw_val, 8); */
2877 if (raw_val[0] == 0)
ce414844 2878 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2879 REGISTER_NAME (regnum), raw_val[1]);
c5aa993b 2880 else
ce414844 2881 printf_filtered ("%10.10s: %8lx%8.8lx ",
a0b3c4fd 2882 REGISTER_NAME (regnum),
c5aa993b
JM
2883 raw_val[0], raw_val[1]);
2884 }
c906108c
SS
2885 }
2886 printf_unfiltered ("\n");
2887 }
c5aa993b 2888
c906108c 2889 if (fpregs)
c5aa993b 2890 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2891 pa_print_fp_reg (i);
2892}
2893
c5aa993b 2894/************* new function ******************/
c906108c 2895static void
fba45db2
KB
2896pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2897 struct ui_file *stream)
c906108c 2898{
c5aa993b
JM
2899 int i, j;
2900 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
c906108c
SS
2901 long long_val;
2902 enum precision_type precision;
2903
2904 precision = unspecified_precision;
2905
2906 for (i = 0; i < 18; i++)
2907 {
2908 for (j = 0; j < 4; j++)
2909 {
c5aa993b
JM
2910 /* Q: Why is the value passed through "extract_signed_integer",
2911 while above, in "pa_do_registers_info" it isn't?
2912 A: ? */
2913 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2914
2915 /* Even fancier % formats to prevent leading zeros
2916 and still maintain the output in columns. */
2917 if (!is_pa_2)
2918 {
2919 /* Being big-endian, on this machine the low bits
2920 (the ones we want to look at) are in the second longword. */
2921 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844
AC
2922 fprintf_filtered (stream, "%8.8s: %8lx ",
2923 REGISTER_NAME (i + (j * 18)), long_val);
c5aa993b
JM
2924 }
2925 else
2926 {
2927 /* raw_val = extract_signed_integer(&raw_val, 8); */
2928 if (raw_val[0] == 0)
ce414844
AC
2929 fprintf_filtered (stream, "%8.8s: %8lx ",
2930 REGISTER_NAME (i + (j * 18)), raw_val[1]);
c5aa993b 2931 else
ce414844
AC
2932 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2933 REGISTER_NAME (i + (j * 18)), raw_val[0],
2934 raw_val[1]);
c5aa993b 2935 }
c906108c
SS
2936 }
2937 fprintf_unfiltered (stream, "\n");
2938 }
c5aa993b 2939
c906108c 2940 if (fpregs)
c5aa993b 2941 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2942 pa_strcat_fp_reg (i, stream, precision);
2943}
2944
2945static void
fba45db2 2946pa_print_fp_reg (int i)
c906108c 2947{
123a958e
AC
2948 char raw_buffer[MAX_REGISTER_SIZE];
2949 char virtual_buffer[MAX_REGISTER_SIZE];
c906108c
SS
2950
2951 /* Get 32bits of data. */
6e7f8b9c 2952 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
2953
2954 /* Put it in the buffer. No conversions are ever necessary. */
2955 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2956
2957 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2958 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2959 fputs_filtered ("(single precision) ", gdb_stdout);
2960
2961 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2962 1, 0, Val_pretty_default);
2963 printf_filtered ("\n");
2964
2965 /* If "i" is even, then this register can also be a double-precision
2966 FP register. Dump it out as such. */
2967 if ((i % 2) == 0)
2968 {
2969 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 2970 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
c906108c
SS
2971
2972 /* Copy it into the appropriate part of the virtual buffer. */
2973 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2974 REGISTER_RAW_SIZE (i));
2975
2976 /* Dump it as a double. */
2977 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2978 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2979 fputs_filtered ("(double precision) ", gdb_stdout);
2980
2981 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2982 1, 0, Val_pretty_default);
2983 printf_filtered ("\n");
2984 }
2985}
2986
2987/*************** new function ***********************/
2988static void
fba45db2 2989pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
c906108c 2990{
123a958e
AC
2991 char raw_buffer[MAX_REGISTER_SIZE];
2992 char virtual_buffer[MAX_REGISTER_SIZE];
c906108c
SS
2993
2994 fputs_filtered (REGISTER_NAME (i), stream);
2995 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2996
2997 /* Get 32bits of data. */
6e7f8b9c 2998 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
2999
3000 /* Put it in the buffer. No conversions are ever necessary. */
3001 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
3002
3003 if (precision == double_precision && (i % 2) == 0)
3004 {
3005
123a958e 3006 char raw_buf[MAX_REGISTER_SIZE];
c5aa993b
JM
3007
3008 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 3009 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
c5aa993b
JM
3010
3011 /* Copy it into the appropriate part of the virtual buffer. */
3012 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
c906108c 3013
c5aa993b
JM
3014 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3015 1, 0, Val_pretty_default);
c906108c
SS
3016
3017 }
c5aa993b
JM
3018 else
3019 {
3020 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
3021 1, 0, Val_pretty_default);
3022 }
c906108c
SS
3023
3024}
3025
3026/* Return one if PC is in the call path of a trampoline, else return zero.
3027
3028 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3029 just shared library trampolines (import, export). */
3030
3031int
60383d10 3032hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3033{
3034 struct minimal_symbol *minsym;
3035 struct unwind_table_entry *u;
3036 static CORE_ADDR dyncall = 0;
3037 static CORE_ADDR sr4export = 0;
3038
c2c6d25f
JM
3039#ifdef GDB_TARGET_IS_HPPA_20W
3040 /* PA64 has a completely different stub/trampoline scheme. Is it
3041 better? Maybe. It's certainly harder to determine with any
3042 certainty that we are in a stub because we can not refer to the
3043 unwinders to help.
3044
3045 The heuristic is simple. Try to lookup the current PC value in th
3046 minimal symbol table. If that fails, then assume we are not in a
3047 stub and return.
3048
3049 Then see if the PC value falls within the section bounds for the
3050 section containing the minimal symbol we found in the first
3051 step. If it does, then assume we are not in a stub and return.
3052
3053 Finally peek at the instructions to see if they look like a stub. */
3054 {
3055 struct minimal_symbol *minsym;
3056 asection *sec;
3057 CORE_ADDR addr;
3058 int insn, i;
3059
3060 minsym = lookup_minimal_symbol_by_pc (pc);
3061 if (! minsym)
3062 return 0;
3063
3064 sec = SYMBOL_BFD_SECTION (minsym);
3065
3066 if (sec->vma <= pc
3067 && sec->vma + sec->_cooked_size < pc)
3068 return 0;
3069
3070 /* We might be in a stub. Peek at the instructions. Stubs are 3
3071 instructions long. */
3072 insn = read_memory_integer (pc, 4);
3073
b84a8afe 3074 /* Find out where we think we are within the stub. */
c2c6d25f
JM
3075 if ((insn & 0xffffc00e) == 0x53610000)
3076 addr = pc;
3077 else if ((insn & 0xffffffff) == 0xe820d000)
3078 addr = pc - 4;
3079 else if ((insn & 0xffffc00e) == 0x537b0000)
3080 addr = pc - 8;
3081 else
3082 return 0;
3083
3084 /* Now verify each insn in the range looks like a stub instruction. */
3085 insn = read_memory_integer (addr, 4);
3086 if ((insn & 0xffffc00e) != 0x53610000)
3087 return 0;
3088
3089 /* Now verify each insn in the range looks like a stub instruction. */
3090 insn = read_memory_integer (addr + 4, 4);
3091 if ((insn & 0xffffffff) != 0xe820d000)
3092 return 0;
3093
3094 /* Now verify each insn in the range looks like a stub instruction. */
3095 insn = read_memory_integer (addr + 8, 4);
3096 if ((insn & 0xffffc00e) != 0x537b0000)
3097 return 0;
3098
3099 /* Looks like a stub. */
3100 return 1;
3101 }
3102#endif
3103
3104 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3105 new exec file */
c906108c
SS
3106
3107 /* First see if PC is in one of the two C-library trampolines. */
3108 if (!dyncall)
3109 {
3110 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3111 if (minsym)
3112 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3113 else
3114 dyncall = -1;
3115 }
3116
3117 if (!sr4export)
3118 {
3119 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3120 if (minsym)
3121 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3122 else
3123 sr4export = -1;
3124 }
3125
3126 if (pc == dyncall || pc == sr4export)
3127 return 1;
3128
104c1213 3129 minsym = lookup_minimal_symbol_by_pc (pc);
22abf04a 3130 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
104c1213
JM
3131 return 1;
3132
c906108c
SS
3133 /* Get the unwind descriptor corresponding to PC, return zero
3134 if no unwind was found. */
3135 u = find_unwind_entry (pc);
3136 if (!u)
3137 return 0;
3138
3139 /* If this isn't a linker stub, then return now. */
3140 if (u->stub_unwind.stub_type == 0)
3141 return 0;
3142
3143 /* By definition a long-branch stub is a call stub. */
3144 if (u->stub_unwind.stub_type == LONG_BRANCH)
3145 return 1;
3146
3147 /* The call and return path execute the same instructions within
3148 an IMPORT stub! So an IMPORT stub is both a call and return
3149 trampoline. */
3150 if (u->stub_unwind.stub_type == IMPORT)
3151 return 1;
3152
3153 /* Parameter relocation stubs always have a call path and may have a
3154 return path. */
3155 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3156 || u->stub_unwind.stub_type == EXPORT)
3157 {
3158 CORE_ADDR addr;
3159
3160 /* Search forward from the current PC until we hit a branch
c5aa993b 3161 or the end of the stub. */
c906108c
SS
3162 for (addr = pc; addr <= u->region_end; addr += 4)
3163 {
3164 unsigned long insn;
3165
3166 insn = read_memory_integer (addr, 4);
3167
3168 /* Does it look like a bl? If so then it's the call path, if
3169 we find a bv or be first, then we're on the return path. */
3170 if ((insn & 0xfc00e000) == 0xe8000000)
3171 return 1;
3172 else if ((insn & 0xfc00e001) == 0xe800c000
3173 || (insn & 0xfc000000) == 0xe0000000)
3174 return 0;
3175 }
3176
3177 /* Should never happen. */
104c1213
JM
3178 warning ("Unable to find branch in parameter relocation stub.\n");
3179 return 0;
c906108c
SS
3180 }
3181
3182 /* Unknown stub type. For now, just return zero. */
104c1213 3183 return 0;
c906108c
SS
3184}
3185
3186/* Return one if PC is in the return path of a trampoline, else return zero.
3187
3188 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3189 just shared library trampolines (import, export). */
3190
3191int
60383d10 3192hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3193{
3194 struct unwind_table_entry *u;
3195
3196 /* Get the unwind descriptor corresponding to PC, return zero
3197 if no unwind was found. */
3198 u = find_unwind_entry (pc);
3199 if (!u)
3200 return 0;
3201
3202 /* If this isn't a linker stub or it's just a long branch stub, then
3203 return zero. */
3204 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3205 return 0;
3206
3207 /* The call and return path execute the same instructions within
3208 an IMPORT stub! So an IMPORT stub is both a call and return
3209 trampoline. */
3210 if (u->stub_unwind.stub_type == IMPORT)
3211 return 1;
3212
3213 /* Parameter relocation stubs always have a call path and may have a
3214 return path. */
3215 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3216 || u->stub_unwind.stub_type == EXPORT)
3217 {
3218 CORE_ADDR addr;
3219
3220 /* Search forward from the current PC until we hit a branch
c5aa993b 3221 or the end of the stub. */
c906108c
SS
3222 for (addr = pc; addr <= u->region_end; addr += 4)
3223 {
3224 unsigned long insn;
3225
3226 insn = read_memory_integer (addr, 4);
3227
3228 /* Does it look like a bl? If so then it's the call path, if
3229 we find a bv or be first, then we're on the return path. */
3230 if ((insn & 0xfc00e000) == 0xe8000000)
3231 return 0;
3232 else if ((insn & 0xfc00e001) == 0xe800c000
3233 || (insn & 0xfc000000) == 0xe0000000)
3234 return 1;
3235 }
3236
3237 /* Should never happen. */
104c1213
JM
3238 warning ("Unable to find branch in parameter relocation stub.\n");
3239 return 0;
c906108c
SS
3240 }
3241
3242 /* Unknown stub type. For now, just return zero. */
104c1213 3243 return 0;
c906108c
SS
3244
3245}
3246
3247/* Figure out if PC is in a trampoline, and if so find out where
3248 the trampoline will jump to. If not in a trampoline, return zero.
3249
3250 Simple code examination probably is not a good idea since the code
3251 sequences in trampolines can also appear in user code.
3252
3253 We use unwinds and information from the minimal symbol table to
3254 determine when we're in a trampoline. This won't work for ELF
3255 (yet) since it doesn't create stub unwind entries. Whether or
3256 not ELF will create stub unwinds or normal unwinds for linker
3257 stubs is still being debated.
3258
3259 This should handle simple calls through dyncall or sr4export,
3260 long calls, argument relocation stubs, and dyncall/sr4export
3261 calling an argument relocation stub. It even handles some stubs
3262 used in dynamic executables. */
3263
c906108c 3264CORE_ADDR
60383d10 3265hppa_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
3266{
3267 long orig_pc = pc;
3268 long prev_inst, curr_inst, loc;
3269 static CORE_ADDR dyncall = 0;
3270 static CORE_ADDR dyncall_external = 0;
3271 static CORE_ADDR sr4export = 0;
3272 struct minimal_symbol *msym;
3273 struct unwind_table_entry *u;
3274
c2c6d25f
JM
3275 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3276 new exec file */
c906108c
SS
3277
3278 if (!dyncall)
3279 {
3280 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3281 if (msym)
3282 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3283 else
3284 dyncall = -1;
3285 }
3286
3287 if (!dyncall_external)
3288 {
3289 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3290 if (msym)
3291 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3292 else
3293 dyncall_external = -1;
3294 }
3295
3296 if (!sr4export)
3297 {
3298 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3299 if (msym)
3300 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3301 else
3302 sr4export = -1;
3303 }
3304
3305 /* Addresses passed to dyncall may *NOT* be the actual address
3306 of the function. So we may have to do something special. */
3307 if (pc == dyncall)
3308 {
3309 pc = (CORE_ADDR) read_register (22);
3310
3311 /* If bit 30 (counting from the left) is on, then pc is the address of
c5aa993b
JM
3312 the PLT entry for this function, not the address of the function
3313 itself. Bit 31 has meaning too, but only for MPE. */
c906108c 3314 if (pc & 0x2)
53a5351d 3315 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3316 }
3317 if (pc == dyncall_external)
3318 {
3319 pc = (CORE_ADDR) read_register (22);
53a5351d 3320 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3321 }
3322 else if (pc == sr4export)
3323 pc = (CORE_ADDR) (read_register (22));
3324
3325 /* Get the unwind descriptor corresponding to PC, return zero
3326 if no unwind was found. */
3327 u = find_unwind_entry (pc);
3328 if (!u)
3329 return 0;
3330
3331 /* If this isn't a linker stub, then return now. */
3332 /* elz: attention here! (FIXME) because of a compiler/linker
3333 error, some stubs which should have a non zero stub_unwind.stub_type
3334 have unfortunately a value of zero. So this function would return here
3335 as if we were not in a trampoline. To fix this, we go look at the partial
3336 symbol information, which reports this guy as a stub.
3337 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3338 partial symbol information is also wrong sometimes. This is because
3339 when it is entered (somread.c::som_symtab_read()) it can happen that
3340 if the type of the symbol (from the som) is Entry, and the symbol is
3341 in a shared library, then it can also be a trampoline. This would
3342 be OK, except that I believe the way they decide if we are ina shared library
3343 does not work. SOOOO..., even if we have a regular function w/o trampolines
3344 its minimal symbol can be assigned type mst_solib_trampoline.
3345 Also, if we find that the symbol is a real stub, then we fix the unwind
3346 descriptor, and define the stub type to be EXPORT.
c5aa993b 3347 Hopefully this is correct most of the times. */
c906108c 3348 if (u->stub_unwind.stub_type == 0)
c5aa993b 3349 {
c906108c
SS
3350
3351/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3352 we can delete all the code which appears between the lines */
3353/*--------------------------------------------------------------------------*/
c5aa993b 3354 msym = lookup_minimal_symbol_by_pc (pc);
c906108c 3355
c5aa993b
JM
3356 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3357 return orig_pc == pc ? 0 : pc & ~0x3;
3358
3359 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3360 {
3361 struct objfile *objfile;
3362 struct minimal_symbol *msymbol;
3363 int function_found = 0;
3364
3365 /* go look if there is another minimal symbol with the same name as
3366 this one, but with type mst_text. This would happen if the msym
3367 is an actual trampoline, in which case there would be another
3368 symbol with the same name corresponding to the real function */
3369
3370 ALL_MSYMBOLS (objfile, msymbol)
3371 {
3372 if (MSYMBOL_TYPE (msymbol) == mst_text
22abf04a 3373 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
c5aa993b
JM
3374 {
3375 function_found = 1;
3376 break;
3377 }
3378 }
3379
3380 if (function_found)
3381 /* the type of msym is correct (mst_solib_trampoline), but
3382 the unwind info is wrong, so set it to the correct value */
3383 u->stub_unwind.stub_type = EXPORT;
3384 else
3385 /* the stub type info in the unwind is correct (this is not a
3386 trampoline), but the msym type information is wrong, it
3387 should be mst_text. So we need to fix the msym, and also
3388 get out of this function */
3389 {
3390 MSYMBOL_TYPE (msym) = mst_text;
3391 return orig_pc == pc ? 0 : pc & ~0x3;
3392 }
3393 }
c906108c 3394
c906108c 3395/*--------------------------------------------------------------------------*/
c5aa993b 3396 }
c906108c
SS
3397
3398 /* It's a stub. Search for a branch and figure out where it goes.
3399 Note we have to handle multi insn branch sequences like ldil;ble.
3400 Most (all?) other branches can be determined by examining the contents
3401 of certain registers and the stack. */
3402
3403 loc = pc;
3404 curr_inst = 0;
3405 prev_inst = 0;
3406 while (1)
3407 {
3408 /* Make sure we haven't walked outside the range of this stub. */
3409 if (u != find_unwind_entry (loc))
3410 {
3411 warning ("Unable to find branch in linker stub");
3412 return orig_pc == pc ? 0 : pc & ~0x3;
3413 }
3414
3415 prev_inst = curr_inst;
3416 curr_inst = read_memory_integer (loc, 4);
3417
3418 /* Does it look like a branch external using %r1? Then it's the
c5aa993b 3419 branch from the stub to the actual function. */
c906108c
SS
3420 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3421 {
3422 /* Yup. See if the previous instruction loaded
3423 a value into %r1. If so compute and return the jump address. */
3424 if ((prev_inst & 0xffe00000) == 0x20200000)
3425 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3426 else
3427 {
3428 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3429 return orig_pc == pc ? 0 : pc & ~0x3;
3430 }
3431 }
3432
3433 /* Does it look like a be 0(sr0,%r21)? OR
3434 Does it look like a be, n 0(sr0,%r21)? OR
3435 Does it look like a bve (r21)? (this is on PA2.0)
3436 Does it look like a bve, n(r21)? (this is also on PA2.0)
3437 That's the branch from an
c5aa993b 3438 import stub to an export stub.
c906108c 3439
c5aa993b
JM
3440 It is impossible to determine the target of the branch via
3441 simple examination of instructions and/or data (consider
3442 that the address in the plabel may be the address of the
3443 bind-on-reference routine in the dynamic loader).
c906108c 3444
c5aa993b 3445 So we have try an alternative approach.
c906108c 3446
c5aa993b
JM
3447 Get the name of the symbol at our current location; it should
3448 be a stub symbol with the same name as the symbol in the
3449 shared library.
c906108c 3450
c5aa993b
JM
3451 Then lookup a minimal symbol with the same name; we should
3452 get the minimal symbol for the target routine in the shared
3453 library as those take precedence of import/export stubs. */
c906108c 3454 if ((curr_inst == 0xe2a00000) ||
c5aa993b
JM
3455 (curr_inst == 0xe2a00002) ||
3456 (curr_inst == 0xeaa0d000) ||
3457 (curr_inst == 0xeaa0d002))
c906108c
SS
3458 {
3459 struct minimal_symbol *stubsym, *libsym;
3460
3461 stubsym = lookup_minimal_symbol_by_pc (loc);
3462 if (stubsym == NULL)
3463 {
ce414844 3464 warning ("Unable to find symbol for 0x%lx", loc);
c906108c
SS
3465 return orig_pc == pc ? 0 : pc & ~0x3;
3466 }
3467
22abf04a 3468 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
c906108c
SS
3469 if (libsym == NULL)
3470 {
3471 warning ("Unable to find library symbol for %s\n",
22abf04a 3472 DEPRECATED_SYMBOL_NAME (stubsym));
c906108c
SS
3473 return orig_pc == pc ? 0 : pc & ~0x3;
3474 }
3475
3476 return SYMBOL_VALUE (libsym);
3477 }
3478
3479 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
c5aa993b
JM
3480 branch from the stub to the actual function. */
3481 /*elz */
c906108c
SS
3482 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3483 || (curr_inst & 0xffe0e000) == 0xe8000000
c5aa993b 3484 || (curr_inst & 0xffe0e000) == 0xe800A000)
c906108c
SS
3485 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3486
3487 /* Does it look like bv (rp)? Note this depends on the
c5aa993b
JM
3488 current stack pointer being the same as the stack
3489 pointer in the stub itself! This is a branch on from the
3490 stub back to the original caller. */
3491 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
c906108c
SS
3492 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3493 {
3494 /* Yup. See if the previous instruction loaded
3495 rp from sp - 8. */
3496 if (prev_inst == 0x4bc23ff1)
3497 return (read_memory_integer
3498 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3499 else
3500 {
3501 warning ("Unable to find restore of %%rp before bv (%%rp).");
3502 return orig_pc == pc ? 0 : pc & ~0x3;
3503 }
3504 }
3505
3506 /* elz: added this case to capture the new instruction
3507 at the end of the return part of an export stub used by
3508 the PA2.0: BVE, n (rp) */
3509 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3510 {
c5aa993b 3511 return (read_memory_integer
53a5351d 3512 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3513 }
3514
3515 /* What about be,n 0(sr0,%rp)? It's just another way we return to
c5aa993b 3516 the original caller from the stub. Used in dynamic executables. */
c906108c
SS
3517 else if (curr_inst == 0xe0400002)
3518 {
3519 /* The value we jump to is sitting in sp - 24. But that's
3520 loaded several instructions before the be instruction.
3521 I guess we could check for the previous instruction being
3522 mtsp %r1,%sr0 if we want to do sanity checking. */
c5aa993b 3523 return (read_memory_integer
53a5351d 3524 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3525 }
3526
3527 /* Haven't found the branch yet, but we're still in the stub.
c5aa993b 3528 Keep looking. */
c906108c
SS
3529 loc += 4;
3530 }
3531}
3532
3533
3534/* For the given instruction (INST), return any adjustment it makes
3535 to the stack pointer or zero for no adjustment.
3536
3537 This only handles instructions commonly found in prologues. */
3538
3539static int
fba45db2 3540prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
3541{
3542 /* This must persist across calls. */
3543 static int save_high21;
3544
3545 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3546 if ((inst & 0xffffc000) == 0x37de0000)
3547 return extract_14 (inst);
3548
3549 /* stwm X,D(sp) */
3550 if ((inst & 0xffe00000) == 0x6fc00000)
3551 return extract_14 (inst);
3552
104c1213
JM
3553 /* std,ma X,D(sp) */
3554 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 3555 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 3556
c906108c
SS
3557 /* addil high21,%r1; ldo low11,(%r1),%r30)
3558 save high bits in save_high21 for later use. */
3559 if ((inst & 0xffe00000) == 0x28200000)
3560 {
3561 save_high21 = extract_21 (inst);
3562 return 0;
3563 }
3564
3565 if ((inst & 0xffff0000) == 0x343e0000)
3566 return save_high21 + extract_14 (inst);
3567
3568 /* fstws as used by the HP compilers. */
3569 if ((inst & 0xffffffe0) == 0x2fd01220)
3570 return extract_5_load (inst);
3571
3572 /* No adjustment. */
3573 return 0;
3574}
3575
3576/* Return nonzero if INST is a branch of some kind, else return zero. */
3577
3578static int
fba45db2 3579is_branch (unsigned long inst)
c906108c
SS
3580{
3581 switch (inst >> 26)
3582 {
3583 case 0x20:
3584 case 0x21:
3585 case 0x22:
3586 case 0x23:
7be570e7 3587 case 0x27:
c906108c
SS
3588 case 0x28:
3589 case 0x29:
3590 case 0x2a:
3591 case 0x2b:
7be570e7 3592 case 0x2f:
c906108c
SS
3593 case 0x30:
3594 case 0x31:
3595 case 0x32:
3596 case 0x33:
3597 case 0x38:
3598 case 0x39:
3599 case 0x3a:
7be570e7 3600 case 0x3b:
c906108c
SS
3601 return 1;
3602
3603 default:
3604 return 0;
3605 }
3606}
3607
3608/* Return the register number for a GR which is saved by INST or
3609 zero it INST does not save a GR. */
3610
3611static int
fba45db2 3612inst_saves_gr (unsigned long inst)
c906108c
SS
3613{
3614 /* Does it look like a stw? */
7be570e7
JM
3615 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3616 || (inst >> 26) == 0x1f
3617 || ((inst >> 26) == 0x1f
3618 && ((inst >> 6) == 0xa)))
3619 return extract_5R_store (inst);
3620
3621 /* Does it look like a std? */
3622 if ((inst >> 26) == 0x1c
3623 || ((inst >> 26) == 0x03
3624 && ((inst >> 6) & 0xf) == 0xb))
c906108c
SS
3625 return extract_5R_store (inst);
3626
3627 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3628 if ((inst >> 26) == 0x1b)
3629 return extract_5R_store (inst);
3630
3631 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3632 too. */
7be570e7
JM
3633 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3634 || ((inst >> 26) == 0x3
3635 && (((inst >> 6) & 0xf) == 0x8
3636 || (inst >> 6) & 0xf) == 0x9))
c906108c 3637 return extract_5R_store (inst);
c5aa993b 3638
c906108c
SS
3639 return 0;
3640}
3641
3642/* Return the register number for a FR which is saved by INST or
3643 zero it INST does not save a FR.
3644
3645 Note we only care about full 64bit register stores (that's the only
3646 kind of stores the prologue will use).
3647
3648 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3649
3650static int
fba45db2 3651inst_saves_fr (unsigned long inst)
c906108c 3652{
7be570e7 3653 /* is this an FSTD ? */
c906108c
SS
3654 if ((inst & 0xfc00dfc0) == 0x2c001200)
3655 return extract_5r_store (inst);
7be570e7
JM
3656 if ((inst & 0xfc000002) == 0x70000002)
3657 return extract_5R_store (inst);
3658 /* is this an FSTW ? */
c906108c
SS
3659 if ((inst & 0xfc00df80) == 0x24001200)
3660 return extract_5r_store (inst);
7be570e7
JM
3661 if ((inst & 0xfc000002) == 0x7c000000)
3662 return extract_5R_store (inst);
c906108c
SS
3663 return 0;
3664}
3665
3666/* Advance PC across any function entry prologue instructions
3667 to reach some "real" code.
3668
3669 Use information in the unwind table to determine what exactly should
3670 be in the prologue. */
3671
3672
3673CORE_ADDR
fba45db2 3674skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
3675{
3676 char buf[4];
3677 CORE_ADDR orig_pc = pc;
3678 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3679 unsigned long args_stored, status, i, restart_gr, restart_fr;
3680 struct unwind_table_entry *u;
3681
3682 restart_gr = 0;
3683 restart_fr = 0;
3684
3685restart:
3686 u = find_unwind_entry (pc);
3687 if (!u)
3688 return pc;
3689
c5aa993b 3690 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
3691 if ((pc & ~0x3) != u->region_start)
3692 return pc;
3693
3694 /* This is how much of a frame adjustment we need to account for. */
3695 stack_remaining = u->Total_frame_size << 3;
3696
3697 /* Magic register saves we want to know about. */
3698 save_rp = u->Save_RP;
3699 save_sp = u->Save_SP;
3700
3701 /* An indication that args may be stored into the stack. Unfortunately
3702 the HPUX compilers tend to set this in cases where no args were
3703 stored too!. */
3704 args_stored = 1;
3705
3706 /* Turn the Entry_GR field into a bitmask. */
3707 save_gr = 0;
3708 for (i = 3; i < u->Entry_GR + 3; i++)
3709 {
3710 /* Frame pointer gets saved into a special location. */
0ba6dca9 3711 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
c906108c
SS
3712 continue;
3713
3714 save_gr |= (1 << i);
3715 }
3716 save_gr &= ~restart_gr;
3717
3718 /* Turn the Entry_FR field into a bitmask too. */
3719 save_fr = 0;
3720 for (i = 12; i < u->Entry_FR + 12; i++)
3721 save_fr |= (1 << i);
3722 save_fr &= ~restart_fr;
3723
3724 /* Loop until we find everything of interest or hit a branch.
3725
3726 For unoptimized GCC code and for any HP CC code this will never ever
3727 examine any user instructions.
3728
3729 For optimzied GCC code we're faced with problems. GCC will schedule
3730 its prologue and make prologue instructions available for delay slot
3731 filling. The end result is user code gets mixed in with the prologue
3732 and a prologue instruction may be in the delay slot of the first branch
3733 or call.
3734
3735 Some unexpected things are expected with debugging optimized code, so
3736 we allow this routine to walk past user instructions in optimized
3737 GCC code. */
3738 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3739 || args_stored)
3740 {
3741 unsigned int reg_num;
3742 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3743 unsigned long old_save_rp, old_save_sp, next_inst;
3744
3745 /* Save copies of all the triggers so we can compare them later
c5aa993b 3746 (only for HPC). */
c906108c
SS
3747 old_save_gr = save_gr;
3748 old_save_fr = save_fr;
3749 old_save_rp = save_rp;
3750 old_save_sp = save_sp;
3751 old_stack_remaining = stack_remaining;
3752
3753 status = target_read_memory (pc, buf, 4);
3754 inst = extract_unsigned_integer (buf, 4);
c5aa993b 3755
c906108c
SS
3756 /* Yow! */
3757 if (status != 0)
3758 return pc;
3759
3760 /* Note the interesting effects of this instruction. */
3761 stack_remaining -= prologue_inst_adjust_sp (inst);
3762
7be570e7
JM
3763 /* There are limited ways to store the return pointer into the
3764 stack. */
3765 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
3766 save_rp = 0;
3767
104c1213 3768 /* These are the only ways we save SP into the stack. At this time
c5aa993b 3769 the HP compilers never bother to save SP into the stack. */
104c1213
JM
3770 if ((inst & 0xffffc000) == 0x6fc10000
3771 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
3772 save_sp = 0;
3773
6426a772
JM
3774 /* Are we loading some register with an offset from the argument
3775 pointer? */
3776 if ((inst & 0xffe00000) == 0x37a00000
3777 || (inst & 0xffffffe0) == 0x081d0240)
3778 {
3779 pc += 4;
3780 continue;
3781 }
3782
c906108c
SS
3783 /* Account for general and floating-point register saves. */
3784 reg_num = inst_saves_gr (inst);
3785 save_gr &= ~(1 << reg_num);
3786
3787 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3788 Unfortunately args_stored only tells us that some arguments
3789 where stored into the stack. Not how many or what kind!
c906108c 3790
c5aa993b
JM
3791 This is a kludge as on the HP compiler sets this bit and it
3792 never does prologue scheduling. So once we see one, skip past
3793 all of them. We have similar code for the fp arg stores below.
c906108c 3794
c5aa993b
JM
3795 FIXME. Can still die if we have a mix of GR and FR argument
3796 stores! */
6426a772 3797 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 3798 {
6426a772 3799 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
3800 {
3801 pc += 4;
3802 status = target_read_memory (pc, buf, 4);
3803 inst = extract_unsigned_integer (buf, 4);
3804 if (status != 0)
3805 return pc;
3806 reg_num = inst_saves_gr (inst);
3807 }
3808 args_stored = 0;
3809 continue;
3810 }
3811
3812 reg_num = inst_saves_fr (inst);
3813 save_fr &= ~(1 << reg_num);
3814
3815 status = target_read_memory (pc + 4, buf, 4);
3816 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 3817
c906108c
SS
3818 /* Yow! */
3819 if (status != 0)
3820 return pc;
3821
3822 /* We've got to be read to handle the ldo before the fp register
c5aa993b 3823 save. */
c906108c
SS
3824 if ((inst & 0xfc000000) == 0x34000000
3825 && inst_saves_fr (next_inst) >= 4
6426a772 3826 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3827 {
3828 /* So we drop into the code below in a reasonable state. */
3829 reg_num = inst_saves_fr (next_inst);
3830 pc -= 4;
3831 }
3832
3833 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3834 This is a kludge as on the HP compiler sets this bit and it
3835 never does prologue scheduling. So once we see one, skip past
3836 all of them. */
6426a772 3837 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 3838 {
6426a772 3839 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3840 {
3841 pc += 8;
3842 status = target_read_memory (pc, buf, 4);
3843 inst = extract_unsigned_integer (buf, 4);
3844 if (status != 0)
3845 return pc;
3846 if ((inst & 0xfc000000) != 0x34000000)
3847 break;
3848 status = target_read_memory (pc + 4, buf, 4);
3849 next_inst = extract_unsigned_integer (buf, 4);
3850 if (status != 0)
3851 return pc;
3852 reg_num = inst_saves_fr (next_inst);
3853 }
3854 args_stored = 0;
3855 continue;
3856 }
3857
3858 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3859 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3860 if (is_branch (inst))
3861 break;
3862
3863 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
3864 arguments were stored into the stack (boo hiss). This could
3865 cause this code to then skip a bunch of user insns (up to the
3866 first branch).
3867
3868 To combat this we try to identify when args_stored was bogusly
3869 set and clear it. We only do this when args_stored is nonzero,
3870 all other resources are accounted for, and nothing changed on
3871 this pass. */
c906108c 3872 if (args_stored
c5aa993b 3873 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
3874 && old_save_gr == save_gr && old_save_fr == save_fr
3875 && old_save_rp == save_rp && old_save_sp == save_sp
3876 && old_stack_remaining == stack_remaining)
3877 break;
c5aa993b 3878
c906108c
SS
3879 /* Bump the PC. */
3880 pc += 4;
3881 }
3882
3883 /* We've got a tenative location for the end of the prologue. However
3884 because of limitations in the unwind descriptor mechanism we may
3885 have went too far into user code looking for the save of a register
3886 that does not exist. So, if there registers we expected to be saved
3887 but never were, mask them out and restart.
3888
3889 This should only happen in optimized code, and should be very rare. */
c5aa993b 3890 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
3891 {
3892 pc = orig_pc;
3893 restart_gr = save_gr;
3894 restart_fr = save_fr;
3895 goto restart;
3896 }
3897
3898 return pc;
3899}
3900
3901
7be570e7
JM
3902/* Return the address of the PC after the last prologue instruction if
3903 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
3904
3905static CORE_ADDR
fba45db2 3906after_prologue (CORE_ADDR pc)
c906108c
SS
3907{
3908 struct symtab_and_line sal;
3909 CORE_ADDR func_addr, func_end;
3910 struct symbol *f;
3911
7be570e7
JM
3912 /* If we can not find the symbol in the partial symbol table, then
3913 there is no hope we can determine the function's start address
3914 with this code. */
c906108c 3915 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 3916 return 0;
c906108c 3917
7be570e7 3918 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
3919 sal = find_pc_line (func_addr, 0);
3920
7be570e7
JM
3921 /* There are only two cases to consider. First, the end of the source line
3922 is within the function bounds. In that case we return the end of the
3923 source line. Second is the end of the source line extends beyond the
3924 bounds of the current function. We need to use the slow code to
3925 examine instructions in that case.
c906108c 3926
7be570e7
JM
3927 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3928 the wrong thing to do. In fact, it should be entirely possible for this
3929 function to always return zero since the slow instruction scanning code
3930 is supposed to *always* work. If it does not, then it is a bug. */
3931 if (sal.end < func_end)
3932 return sal.end;
c5aa993b 3933 else
7be570e7 3934 return 0;
c906108c
SS
3935}
3936
3937/* To skip prologues, I use this predicate. Returns either PC itself
3938 if the code at PC does not look like a function prologue; otherwise
3939 returns an address that (if we're lucky) follows the prologue. If
3940 LENIENT, then we must skip everything which is involved in setting
3941 up the frame (it's OK to skip more, just so long as we don't skip
3942 anything which might clobber the registers which are being saved.
3943 Currently we must not skip more on the alpha, but we might the lenient
3944 stuff some day. */
3945
3946CORE_ADDR
fba45db2 3947hppa_skip_prologue (CORE_ADDR pc)
c906108c 3948{
c5aa993b
JM
3949 unsigned long inst;
3950 int offset;
3951 CORE_ADDR post_prologue_pc;
3952 char buf[4];
c906108c 3953
c5aa993b
JM
3954 /* See if we can determine the end of the prologue via the symbol table.
3955 If so, then return either PC, or the PC after the prologue, whichever
3956 is greater. */
c906108c 3957
c5aa993b 3958 post_prologue_pc = after_prologue (pc);
c906108c 3959
7be570e7
JM
3960 /* If after_prologue returned a useful address, then use it. Else
3961 fall back on the instruction skipping code.
3962
3963 Some folks have claimed this causes problems because the breakpoint
3964 may be the first instruction of the prologue. If that happens, then
3965 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
3966 if (post_prologue_pc != 0)
3967 return max (pc, post_prologue_pc);
c5aa993b
JM
3968 else
3969 return (skip_prologue_hard_way (pc));
c906108c
SS
3970}
3971
43bd9a9e
AC
3972/* Put here the code to store, into the SAVED_REGS, the addresses of
3973 the saved registers of frame described by FRAME_INFO. This
3974 includes special registers such as pc and fp saved in special ways
3975 in the stack frame. sp is even more special: the address we return
3976 for it IS the sp for the next frame. */
c906108c
SS
3977
3978void
fba45db2 3979hppa_frame_find_saved_regs (struct frame_info *frame_info,
43bd9a9e 3980 CORE_ADDR frame_saved_regs[])
c906108c
SS
3981{
3982 CORE_ADDR pc;
3983 struct unwind_table_entry *u;
3984 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3985 int status, i, reg;
3986 char buf[4];
3987 int fp_loc = -1;
d4f3574e 3988 int final_iteration;
c906108c
SS
3989
3990 /* Zero out everything. */
43bd9a9e 3991 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
3992
3993 /* Call dummy frames always look the same, so there's no need to
3994 examine the dummy code to determine locations of saved registers;
3995 instead, let find_dummy_frame_regs fill in the correct offsets
3996 for the saved registers. */
ef6e7e13
AC
3997 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
3998 && (get_frame_pc (frame_info)
3999 <= (get_frame_base (frame_info)
4000 /* A call dummy is sized in words, but it is actually a
4001 series of instructions. Account for that scaling
4002 factor. */
b1e29e33
AC
4003 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4004 * DEPRECATED_CALL_DUMMY_LENGTH)
ef6e7e13
AC
4005 /* Similarly we have to account for 64bit wide register
4006 saves. */
b1e29e33 4007 + (32 * DEPRECATED_REGISTER_SIZE)
ef6e7e13
AC
4008 /* We always consider FP regs 8 bytes long. */
4009 + (NUM_REGS - FP0_REGNUM) * 8
4010 /* Similarly we have to account for 64bit wide register
4011 saves. */
b1e29e33 4012 + (6 * DEPRECATED_REGISTER_SIZE)))))
c906108c
SS
4013 find_dummy_frame_regs (frame_info, frame_saved_regs);
4014
4015 /* Interrupt handlers are special too. They lay out the register
4016 state in the exact same order as the register numbers in GDB. */
ef6e7e13 4017 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
c906108c
SS
4018 {
4019 for (i = 0; i < NUM_REGS; i++)
4020 {
4021 /* SP is a little special. */
4022 if (i == SP_REGNUM)
43bd9a9e 4023 frame_saved_regs[SP_REGNUM]
ef6e7e13 4024 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
53a5351d 4025 TARGET_PTR_BIT / 8);
c906108c 4026 else
ef6e7e13 4027 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
c906108c
SS
4028 }
4029 return;
4030 }
4031
4032#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4033 /* Handle signal handler callers. */
5a203e44 4034 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
c906108c
SS
4035 {
4036 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4037 return;
4038 }
4039#endif
4040
4041 /* Get the starting address of the function referred to by the PC
4042 saved in frame. */
be41e9f4 4043 pc = get_frame_func (frame_info);
c906108c
SS
4044
4045 /* Yow! */
4046 u = find_unwind_entry (pc);
4047 if (!u)
4048 return;
4049
4050 /* This is how much of a frame adjustment we need to account for. */
4051 stack_remaining = u->Total_frame_size << 3;
4052
4053 /* Magic register saves we want to know about. */
4054 save_rp = u->Save_RP;
4055 save_sp = u->Save_SP;
4056
4057 /* Turn the Entry_GR field into a bitmask. */
4058 save_gr = 0;
4059 for (i = 3; i < u->Entry_GR + 3; i++)
4060 {
4061 /* Frame pointer gets saved into a special location. */
0ba6dca9 4062 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
c906108c
SS
4063 continue;
4064
4065 save_gr |= (1 << i);
4066 }
4067
4068 /* Turn the Entry_FR field into a bitmask too. */
4069 save_fr = 0;
4070 for (i = 12; i < u->Entry_FR + 12; i++)
4071 save_fr |= (1 << i);
4072
4073 /* The frame always represents the value of %sp at entry to the
4074 current function (and is thus equivalent to the "saved" stack
4075 pointer. */
ef6e7e13 4076 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
c906108c
SS
4077
4078 /* Loop until we find everything of interest or hit a branch.
4079
4080 For unoptimized GCC code and for any HP CC code this will never ever
4081 examine any user instructions.
4082
7be570e7 4083 For optimized GCC code we're faced with problems. GCC will schedule
c906108c
SS
4084 its prologue and make prologue instructions available for delay slot
4085 filling. The end result is user code gets mixed in with the prologue
4086 and a prologue instruction may be in the delay slot of the first branch
4087 or call.
4088
4089 Some unexpected things are expected with debugging optimized code, so
4090 we allow this routine to walk past user instructions in optimized
4091 GCC code. */
d4f3574e
SS
4092 final_iteration = 0;
4093 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
ef6e7e13 4094 && pc <= get_frame_pc (frame_info))
c906108c
SS
4095 {
4096 status = target_read_memory (pc, buf, 4);
4097 inst = extract_unsigned_integer (buf, 4);
4098
4099 /* Yow! */
4100 if (status != 0)
4101 return;
4102
4103 /* Note the interesting effects of this instruction. */
4104 stack_remaining -= prologue_inst_adjust_sp (inst);
4105
104c1213
JM
4106 /* There are limited ways to store the return pointer into the
4107 stack. */
c2c6d25f 4108 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
c906108c
SS
4109 {
4110 save_rp = 0;
ef6e7e13 4111 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
c906108c 4112 }
c2c6d25f
JM
4113 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4114 {
4115 save_rp = 0;
ef6e7e13 4116 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
c2c6d25f 4117 }
c906108c 4118
104c1213
JM
4119 /* Note if we saved SP into the stack. This also happens to indicate
4120 the location of the saved frame pointer. */
c2c6d25f
JM
4121 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4122 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
104c1213 4123 {
0ba6dca9 4124 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
104c1213
JM
4125 save_sp = 0;
4126 }
c906108c
SS
4127
4128 /* Account for general and floating-point register saves. */
4129 reg = inst_saves_gr (inst);
4130 if (reg >= 3 && reg <= 18
0ba6dca9 4131 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
c906108c
SS
4132 {
4133 save_gr &= ~(1 << reg);
4134
4135 /* stwm with a positive displacement is a *post modify*. */
4136 if ((inst >> 26) == 0x1b
4137 && extract_14 (inst) >= 0)
ef6e7e13 4138 frame_saved_regs[reg] = get_frame_base (frame_info);
104c1213
JM
4139 /* A std has explicit post_modify forms. */
4140 else if ((inst & 0xfc00000c0) == 0x70000008)
ef6e7e13 4141 frame_saved_regs[reg] = get_frame_base (frame_info);
c906108c
SS
4142 else
4143 {
104c1213
JM
4144 CORE_ADDR offset;
4145
4146 if ((inst >> 26) == 0x1c)
d4f3574e 4147 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213
JM
4148 else if ((inst >> 26) == 0x03)
4149 offset = low_sign_extend (inst & 0x1f, 5);
4150 else
4151 offset = extract_14 (inst);
4152
c906108c
SS
4153 /* Handle code with and without frame pointers. */
4154 if (u->Save_SP)
43bd9a9e 4155 frame_saved_regs[reg]
ef6e7e13 4156 = get_frame_base (frame_info) + offset;
c906108c 4157 else
43bd9a9e 4158 frame_saved_regs[reg]
ef6e7e13 4159 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
104c1213 4160 + offset);
c906108c
SS
4161 }
4162 }
4163
4164
4165 /* GCC handles callee saved FP regs a little differently.
4166
c5aa993b
JM
4167 It emits an instruction to put the value of the start of
4168 the FP store area into %r1. It then uses fstds,ma with
4169 a basereg of %r1 for the stores.
c906108c 4170
c5aa993b
JM
4171 HP CC emits them at the current stack pointer modifying
4172 the stack pointer as it stores each register. */
c906108c
SS
4173
4174 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4175 if ((inst & 0xffffc000) == 0x34610000
4176 || (inst & 0xffffc000) == 0x37c10000)
4177 fp_loc = extract_14 (inst);
c5aa993b 4178
c906108c
SS
4179 reg = inst_saves_fr (inst);
4180 if (reg >= 12 && reg <= 21)
4181 {
4182 /* Note +4 braindamage below is necessary because the FP status
4183 registers are internally 8 registers rather than the expected
4184 4 registers. */
4185 save_fr &= ~(1 << reg);
4186 if (fp_loc == -1)
4187 {
4188 /* 1st HP CC FP register store. After this instruction
c5aa993b
JM
4189 we've set enough state that the GCC and HPCC code are
4190 both handled in the same manner. */
ef6e7e13 4191 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
c906108c
SS
4192 fp_loc = 8;
4193 }
4194 else
4195 {
43bd9a9e 4196 frame_saved_regs[reg + FP0_REGNUM + 4]
ef6e7e13 4197 = get_frame_base (frame_info) + fp_loc;
c906108c
SS
4198 fp_loc += 8;
4199 }
4200 }
4201
39f77062 4202 /* Quit if we hit any kind of branch the previous iteration. */
d4f3574e 4203 if (final_iteration)
c906108c
SS
4204 break;
4205
d4f3574e
SS
4206 /* We want to look precisely one instruction beyond the branch
4207 if we have not found everything yet. */
4208 if (is_branch (inst))
4209 final_iteration = 1;
4210
c906108c
SS
4211 /* Bump the PC. */
4212 pc += 4;
4213 }
4214}
4215
43bd9a9e
AC
4216/* XXX - deprecated. This is a compatibility function for targets
4217 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4218/* Find the addresses in which registers are saved in FRAME. */
4219
4220void
4221hppa_frame_init_saved_regs (struct frame_info *frame)
4222{
4223 if (get_frame_saved_regs (frame) == NULL)
4224 frame_saved_regs_zalloc (frame);
4225 hppa_frame_find_saved_regs (frame, get_frame_saved_regs (frame));
4226}
c906108c
SS
4227
4228/* Exception handling support for the HP-UX ANSI C++ compiler.
4229 The compiler (aCC) provides a callback for exception events;
4230 GDB can set a breakpoint on this callback and find out what
4231 exception event has occurred. */
4232
4233/* The name of the hook to be set to point to the callback function */
c5aa993b
JM
4234static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4235/* The name of the function to be used to set the hook value */
4236static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4237/* The name of the callback function in end.o */
c906108c 4238static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
c5aa993b
JM
4239/* Name of function in end.o on which a break is set (called by above) */
4240static char HP_ACC_EH_break[] = "__d_eh_break";
4241/* Name of flag (in end.o) that enables catching throws */
4242static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4243/* Name of flag (in end.o) that enables catching catching */
4244static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4245/* The enum used by aCC */
4246typedef enum
4247 {
4248 __EH_NOTIFY_THROW,
4249 __EH_NOTIFY_CATCH
4250 }
4251__eh_notification;
c906108c
SS
4252
4253/* Is exception-handling support available with this executable? */
4254static int hp_cxx_exception_support = 0;
4255/* Has the initialize function been run? */
4256int hp_cxx_exception_support_initialized = 0;
4257/* Similar to above, but imported from breakpoint.c -- non-target-specific */
4258extern int exception_support_initialized;
4259/* Address of __eh_notify_hook */
a0b3c4fd 4260static CORE_ADDR eh_notify_hook_addr = 0;
c906108c 4261/* Address of __d_eh_notify_callback */
a0b3c4fd 4262static CORE_ADDR eh_notify_callback_addr = 0;
c906108c 4263/* Address of __d_eh_break */
a0b3c4fd 4264static CORE_ADDR eh_break_addr = 0;
c906108c 4265/* Address of __d_eh_catch_catch */
a0b3c4fd 4266static CORE_ADDR eh_catch_catch_addr = 0;
c906108c 4267/* Address of __d_eh_catch_throw */
a0b3c4fd 4268static CORE_ADDR eh_catch_throw_addr = 0;
c906108c 4269/* Sal for __d_eh_break */
a0b3c4fd 4270static struct symtab_and_line *break_callback_sal = 0;
c906108c
SS
4271
4272/* Code in end.c expects __d_pid to be set in the inferior,
4273 otherwise __d_eh_notify_callback doesn't bother to call
4274 __d_eh_break! So we poke the pid into this symbol
4275 ourselves.
4276 0 => success
c5aa993b 4277 1 => failure */
c906108c 4278int
fba45db2 4279setup_d_pid_in_inferior (void)
c906108c
SS
4280{
4281 CORE_ADDR anaddr;
c5aa993b
JM
4282 struct minimal_symbol *msymbol;
4283 char buf[4]; /* FIXME 32x64? */
4284
c906108c
SS
4285 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4286 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4287 if (msymbol == NULL)
4288 {
4289 warning ("Unable to find __d_pid symbol in object file.");
4290 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4291 return 1;
4292 }
4293
4294 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
39f77062 4295 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
c5aa993b 4296 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
c906108c
SS
4297 {
4298 warning ("Unable to write __d_pid");
4299 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4300 return 1;
4301 }
4302 return 0;
4303}
4304
4305/* Initialize exception catchpoint support by looking for the
4306 necessary hooks/callbacks in end.o, etc., and set the hook value to
4307 point to the required debug function
4308
4309 Return 0 => failure
c5aa993b 4310 1 => success */
c906108c
SS
4311
4312static int
fba45db2 4313initialize_hp_cxx_exception_support (void)
c906108c
SS
4314{
4315 struct symtabs_and_lines sals;
c5aa993b
JM
4316 struct cleanup *old_chain;
4317 struct cleanup *canonical_strings_chain = NULL;
c906108c 4318 int i;
c5aa993b
JM
4319 char *addr_start;
4320 char *addr_end = NULL;
4321 char **canonical = (char **) NULL;
c906108c 4322 int thread = -1;
c5aa993b
JM
4323 struct symbol *sym = NULL;
4324 struct minimal_symbol *msym = NULL;
4325 struct objfile *objfile;
c906108c
SS
4326 asection *shlib_info;
4327
4328 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4329 recursion is a possibility because finding the hook for exception
4330 callbacks involves making a call in the inferior, which means
4331 re-inserting breakpoints which can re-invoke this code */
4332
c5aa993b
JM
4333 static int recurse = 0;
4334 if (recurse > 0)
c906108c
SS
4335 {
4336 hp_cxx_exception_support_initialized = 0;
4337 exception_support_initialized = 0;
4338 return 0;
4339 }
4340
4341 hp_cxx_exception_support = 0;
4342
4343 /* First check if we have seen any HP compiled objects; if not,
4344 it is very unlikely that HP's idiosyncratic callback mechanism
4345 for exception handling debug support will be available!
4346 This will percolate back up to breakpoint.c, where our callers
4347 will decide to try the g++ exception-handling support instead. */
4348 if (!hp_som_som_object_present)
4349 return 0;
c5aa993b 4350
c906108c
SS
4351 /* We have a SOM executable with SOM debug info; find the hooks */
4352
4353 /* First look for the notify hook provided by aCC runtime libs */
4354 /* If we find this symbol, we conclude that the executable must
4355 have HP aCC exception support built in. If this symbol is not
4356 found, even though we're a HP SOM-SOM file, we may have been
4357 built with some other compiler (not aCC). This results percolates
4358 back up to our callers in breakpoint.c which can decide to
4359 try the g++ style of exception support instead.
4360 If this symbol is found but the other symbols we require are
4361 not found, there is something weird going on, and g++ support
4362 should *not* be tried as an alternative.
c5aa993b 4363
c906108c
SS
4364 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4365 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
c5aa993b 4366
c906108c
SS
4367 /* libCsup has this hook; it'll usually be non-debuggable */
4368 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4369 if (msym)
4370 {
4371 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4372 hp_cxx_exception_support = 1;
c5aa993b 4373 }
c906108c
SS
4374 else
4375 {
4376 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4377 warning ("Executable may not have been compiled debuggable with HP aCC.");
4378 warning ("GDB will be unable to intercept exception events.");
4379 eh_notify_hook_addr = 0;
4380 hp_cxx_exception_support = 0;
4381 return 0;
4382 }
4383
c906108c 4384 /* Next look for the notify callback routine in end.o */
c5aa993b 4385 /* This is always available in the SOM symbol dictionary if end.o is linked in */
c906108c
SS
4386 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4387 if (msym)
4388 {
4389 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4390 hp_cxx_exception_support = 1;
c5aa993b
JM
4391 }
4392 else
c906108c
SS
4393 {
4394 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4395 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4396 warning ("GDB will be unable to intercept exception events.");
4397 eh_notify_callback_addr = 0;
4398 return 0;
4399 }
4400
53a5351d 4401#ifndef GDB_TARGET_IS_HPPA_20W
c906108c
SS
4402 /* Check whether the executable is dynamically linked or archive bound */
4403 /* With an archive-bound executable we can use the raw addresses we find
4404 for the callback function, etc. without modification. For an executable
4405 with shared libraries, we have to do more work to find the plabel, which
4406 can be the target of a call through $$dyncall from the aCC runtime support
4407 library (libCsup) which is linked shared by default by aCC. */
4408 /* This test below was copied from somsolib.c/somread.c. It may not be a very
c5aa993b 4409 reliable one to test that an executable is linked shared. pai/1997-07-18 */
c906108c
SS
4410 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4411 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4412 {
4413 /* The minsym we have has the local code address, but that's not the
4414 plabel that can be used by an inter-load-module call. */
4415 /* Find solib handle for main image (which has end.o), and use that
4416 and the min sym as arguments to __d_shl_get() (which does the equivalent
c5aa993b 4417 of shl_findsym()) to find the plabel. */
c906108c
SS
4418
4419 args_for_find_stub args;
4420 static char message[] = "Error while finding exception callback hook:\n";
c5aa993b 4421
c906108c
SS
4422 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4423 args.msym = msym;
a0b3c4fd 4424 args.return_val = 0;
c5aa993b 4425
c906108c 4426 recurse++;
4efb68b1 4427 catch_errors (cover_find_stub_with_shl_get, &args, message,
a0b3c4fd
JM
4428 RETURN_MASK_ALL);
4429 eh_notify_callback_addr = args.return_val;
c906108c 4430 recurse--;
c5aa993b 4431
c906108c 4432 exception_catchpoints_are_fragile = 1;
c5aa993b 4433
c906108c 4434 if (!eh_notify_callback_addr)
c5aa993b
JM
4435 {
4436 /* We can get here either if there is no plabel in the export list
1faa59a8 4437 for the main image, or if something strange happened (?) */
c5aa993b
JM
4438 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4439 warning ("GDB will not be able to intercept exception events.");
4440 return 0;
4441 }
c906108c
SS
4442 }
4443 else
4444 exception_catchpoints_are_fragile = 0;
53a5351d 4445#endif
c906108c 4446
c906108c 4447 /* Now, look for the breakpointable routine in end.o */
c5aa993b 4448 /* This should also be available in the SOM symbol dict. if end.o linked in */
c906108c
SS
4449 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4450 if (msym)
4451 {
4452 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4453 hp_cxx_exception_support = 1;
c5aa993b 4454 }
c906108c
SS
4455 else
4456 {
4457 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4458 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4459 warning ("GDB will be unable to intercept exception events.");
4460 eh_break_addr = 0;
4461 return 0;
4462 }
4463
c906108c
SS
4464 /* Next look for the catch enable flag provided in end.o */
4465 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
176620f1 4466 VAR_DOMAIN, 0, (struct symtab **) NULL);
c5aa993b 4467 if (sym) /* sometimes present in debug info */
c906108c
SS
4468 {
4469 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4470 hp_cxx_exception_support = 1;
4471 }
c5aa993b
JM
4472 else
4473 /* otherwise look in SOM symbol dict. */
c906108c
SS
4474 {
4475 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4476 if (msym)
c5aa993b
JM
4477 {
4478 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4479 hp_cxx_exception_support = 1;
4480 }
c906108c 4481 else
c5aa993b
JM
4482 {
4483 warning ("Unable to enable interception of exception catches.");
4484 warning ("Executable may not have been compiled debuggable with HP aCC.");
4485 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4486 return 0;
4487 }
c906108c
SS
4488 }
4489
c906108c
SS
4490 /* Next look for the catch enable flag provided end.o */
4491 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
176620f1 4492 VAR_DOMAIN, 0, (struct symtab **) NULL);
c5aa993b 4493 if (sym) /* sometimes present in debug info */
c906108c
SS
4494 {
4495 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4496 hp_cxx_exception_support = 1;
4497 }
c5aa993b
JM
4498 else
4499 /* otherwise look in SOM symbol dict. */
c906108c
SS
4500 {
4501 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4502 if (msym)
c5aa993b
JM
4503 {
4504 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4505 hp_cxx_exception_support = 1;
4506 }
c906108c 4507 else
c5aa993b
JM
4508 {
4509 warning ("Unable to enable interception of exception throws.");
4510 warning ("Executable may not have been compiled debuggable with HP aCC.");
4511 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4512 return 0;
4513 }
c906108c
SS
4514 }
4515
c5aa993b
JM
4516 /* Set the flags */
4517 hp_cxx_exception_support = 2; /* everything worked so far */
c906108c
SS
4518 hp_cxx_exception_support_initialized = 1;
4519 exception_support_initialized = 1;
4520
4521 return 1;
4522}
4523
4524/* Target operation for enabling or disabling interception of
4525 exception events.
4526 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4527 ENABLE is either 0 (disable) or 1 (enable).
4528 Return value is NULL if no support found;
4529 -1 if something went wrong,
4530 or a pointer to a symtab/line struct if the breakpointable
c5aa993b 4531 address was found. */
c906108c 4532
c5aa993b 4533struct symtab_and_line *
fba45db2 4534child_enable_exception_callback (enum exception_event_kind kind, int enable)
c906108c
SS
4535{
4536 char buf[4];
4537
4538 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4539 if (!initialize_hp_cxx_exception_support ())
4540 return NULL;
4541
4542 switch (hp_cxx_exception_support)
4543 {
c5aa993b
JM
4544 case 0:
4545 /* Assuming no HP support at all */
4546 return NULL;
4547 case 1:
4548 /* HP support should be present, but something went wrong */
4549 return (struct symtab_and_line *) -1; /* yuck! */
4550 /* there may be other cases in the future */
c906108c 4551 }
c5aa993b 4552
c906108c 4553 /* Set the EH hook to point to the callback routine */
c5aa993b 4554 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
c906108c 4555 /* pai: (temp) FIXME should there be a pack operation first? */
c5aa993b 4556 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
c906108c
SS
4557 {
4558 warning ("Could not write to target memory for exception event callback.");
4559 warning ("Interception of exception events may not work.");
c5aa993b 4560 return (struct symtab_and_line *) -1;
c906108c
SS
4561 }
4562 if (enable)
4563 {
c5aa993b 4564 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
39f77062 4565 if (PIDGET (inferior_ptid) > 0)
c5aa993b
JM
4566 {
4567 if (setup_d_pid_in_inferior ())
4568 return (struct symtab_and_line *) -1;
4569 }
c906108c 4570 else
c5aa993b 4571 {
104c1213
JM
4572 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4573 return (struct symtab_and_line *) -1;
c5aa993b 4574 }
c906108c 4575 }
c5aa993b 4576
c906108c
SS
4577 switch (kind)
4578 {
c5aa993b
JM
4579 case EX_EVENT_THROW:
4580 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4581 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4582 {
4583 warning ("Couldn't enable exception throw interception.");
4584 return (struct symtab_and_line *) -1;
4585 }
4586 break;
4587 case EX_EVENT_CATCH:
4588 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4589 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4590 {
4591 warning ("Couldn't enable exception catch interception.");
4592 return (struct symtab_and_line *) -1;
4593 }
4594 break;
104c1213
JM
4595 default:
4596 error ("Request to enable unknown or unsupported exception event.");
c906108c 4597 }
c5aa993b 4598
c906108c
SS
4599 /* Copy break address into new sal struct, malloc'ing if needed. */
4600 if (!break_callback_sal)
4601 {
4602 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4603 }
fe39c653 4604 init_sal (break_callback_sal);
c906108c
SS
4605 break_callback_sal->symtab = NULL;
4606 break_callback_sal->pc = eh_break_addr;
4607 break_callback_sal->line = 0;
4608 break_callback_sal->end = eh_break_addr;
c5aa993b 4609
c906108c
SS
4610 return break_callback_sal;
4611}
4612
c5aa993b 4613/* Record some information about the current exception event */
c906108c 4614static struct exception_event_record current_ex_event;
c5aa993b
JM
4615/* Convenience struct */
4616static struct symtab_and_line null_symtab_and_line =
4617{NULL, 0, 0, 0};
c906108c
SS
4618
4619/* Report current exception event. Returns a pointer to a record
4620 that describes the kind of the event, where it was thrown from,
4621 and where it will be caught. More information may be reported
c5aa993b 4622 in the future */
c906108c 4623struct exception_event_record *
fba45db2 4624child_get_current_exception_event (void)
c906108c 4625{
c5aa993b
JM
4626 CORE_ADDR event_kind;
4627 CORE_ADDR throw_addr;
4628 CORE_ADDR catch_addr;
c906108c
SS
4629 struct frame_info *fi, *curr_frame;
4630 int level = 1;
4631
c5aa993b 4632 curr_frame = get_current_frame ();
c906108c
SS
4633 if (!curr_frame)
4634 return (struct exception_event_record *) NULL;
4635
4636 /* Go up one frame to __d_eh_notify_callback, because at the
4637 point when this code is executed, there's garbage in the
4638 arguments of __d_eh_break. */
4639 fi = find_relative_frame (curr_frame, &level);
4640 if (level != 0)
4641 return (struct exception_event_record *) NULL;
4642
0f7d239c 4643 select_frame (fi);
c906108c
SS
4644
4645 /* Read in the arguments */
4646 /* __d_eh_notify_callback() is called with 3 arguments:
c5aa993b
JM
4647 1. event kind catch or throw
4648 2. the target address if known
4649 3. a flag -- not sure what this is. pai/1997-07-17 */
4650 event_kind = read_register (ARG0_REGNUM);
c906108c
SS
4651 catch_addr = read_register (ARG1_REGNUM);
4652
4653 /* Now go down to a user frame */
4654 /* For a throw, __d_eh_break is called by
c5aa993b
JM
4655 __d_eh_notify_callback which is called by
4656 __notify_throw which is called
4657 from user code.
c906108c 4658 For a catch, __d_eh_break is called by
c5aa993b
JM
4659 __d_eh_notify_callback which is called by
4660 <stackwalking stuff> which is called by
4661 __throw__<stuff> or __rethrow_<stuff> which is called
4662 from user code. */
4663 /* FIXME: Don't use such magic numbers; search for the frames */
c906108c
SS
4664 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4665 fi = find_relative_frame (curr_frame, &level);
4666 if (level != 0)
4667 return (struct exception_event_record *) NULL;
4668
0f7d239c 4669 select_frame (fi);
ef6e7e13 4670 throw_addr = get_frame_pc (fi);
c906108c
SS
4671
4672 /* Go back to original (top) frame */
0f7d239c 4673 select_frame (curr_frame);
c906108c
SS
4674
4675 current_ex_event.kind = (enum exception_event_kind) event_kind;
4676 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4677 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4678
4679 return &current_ex_event;
4680}
4681
9a043c1d
AC
4682/* Instead of this nasty cast, add a method pvoid() that prints out a
4683 host VOID data type (remember %p isn't portable). */
4684
4685static CORE_ADDR
4686hppa_pointer_to_address_hack (void *ptr)
4687{
4688 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4689 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4690}
4691
c906108c 4692static void
fba45db2 4693unwind_command (char *exp, int from_tty)
c906108c
SS
4694{
4695 CORE_ADDR address;
4696 struct unwind_table_entry *u;
4697
4698 /* If we have an expression, evaluate it and use it as the address. */
4699
4700 if (exp != 0 && *exp != 0)
4701 address = parse_and_eval_address (exp);
4702 else
4703 return;
4704
4705 u = find_unwind_entry (address);
4706
4707 if (!u)
4708 {
4709 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4710 return;
4711 }
4712
ce414844 4713 printf_unfiltered ("unwind_table_entry (0x%s):\n",
9a043c1d 4714 paddr_nz (hppa_pointer_to_address_hack (u)));
c906108c
SS
4715
4716 printf_unfiltered ("\tregion_start = ");
4717 print_address (u->region_start, gdb_stdout);
4718
4719 printf_unfiltered ("\n\tregion_end = ");
4720 print_address (u->region_end, gdb_stdout);
4721
c906108c 4722#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
4723
4724 printf_unfiltered ("\n\tflags =");
4725 pif (Cannot_unwind);
4726 pif (Millicode);
4727 pif (Millicode_save_sr0);
4728 pif (Entry_SR);
4729 pif (Args_stored);
4730 pif (Variable_Frame);
4731 pif (Separate_Package_Body);
4732 pif (Frame_Extension_Millicode);
4733 pif (Stack_Overflow_Check);
4734 pif (Two_Instruction_SP_Increment);
4735 pif (Ada_Region);
4736 pif (Save_SP);
4737 pif (Save_RP);
4738 pif (Save_MRP_in_frame);
4739 pif (extn_ptr_defined);
4740 pif (Cleanup_defined);
4741 pif (MPE_XL_interrupt_marker);
4742 pif (HP_UX_interrupt_marker);
4743 pif (Large_frame);
4744
4745 putchar_unfiltered ('\n');
4746
c906108c 4747#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
4748
4749 pin (Region_description);
4750 pin (Entry_FR);
4751 pin (Entry_GR);
4752 pin (Total_frame_size);
4753}
c906108c 4754
c2c6d25f 4755void
fba45db2 4756hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
4757{
4758 /* To step over a breakpoint instruction on the PA takes some
4759 fiddling with the instruction address queue.
4760
4761 When we stop at a breakpoint, the IA queue front (the instruction
4762 we're executing now) points at the breakpoint instruction, and
4763 the IA queue back (the next instruction to execute) points to
4764 whatever instruction we would execute after the breakpoint, if it
4765 were an ordinary instruction. This is the case even if the
4766 breakpoint is in the delay slot of a branch instruction.
4767
4768 Clearly, to step past the breakpoint, we need to set the queue
4769 front to the back. But what do we put in the back? What
4770 instruction comes after that one? Because of the branch delay
4771 slot, the next insn is always at the back + 4. */
4772 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4773 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4774
4775 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4776 /* We can leave the tail's space the same, since there's no jump. */
4777}
4778
1cdb71fe
JL
4779/* Copy the function value from VALBUF into the proper location
4780 for a function return.
4781
4782 Called only in the context of the "return" command. */
4783
4784void
4785hppa_store_return_value (struct type *type, char *valbuf)
4786{
4787 /* For software floating point, the return value goes into the
4788 integer registers. But we do not have any flag to key this on,
4789 so we always store the value into the integer registers.
4790
4791 If its a float value, then we also store it into the floating
4792 point registers. */
73937e03
AC
4793 deprecated_write_register_bytes (REGISTER_BYTE (28)
4794 + (TYPE_LENGTH (type) > 4
4795 ? (8 - TYPE_LENGTH (type))
4796 : (4 - TYPE_LENGTH (type))),
4797 valbuf, TYPE_LENGTH (type));
77296879 4798 if (TYPE_CODE (type) == TYPE_CODE_FLT)
73937e03
AC
4799 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4800 valbuf, TYPE_LENGTH (type));
1cdb71fe
JL
4801}
4802
4803/* Copy the function's return value into VALBUF.
4804
4805 This function is called only in the context of "target function calls",
4806 ie. when the debugger forces a function to be called in the child, and
4807 when the debugger forces a fucntion to return prematurely via the
4808 "return" command. */
4809
4810void
4811hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4812{
77296879 4813 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1cdb71fe
JL
4814 memcpy (valbuf,
4815 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4816 TYPE_LENGTH (type));
4817 else
4818 memcpy (valbuf,
4819 ((char *)regbuf
4820 + REGISTER_BYTE (28)
4821 + (TYPE_LENGTH (type) > 4
4822 ? (8 - TYPE_LENGTH (type))
4823 : (4 - TYPE_LENGTH (type)))),
4824 TYPE_LENGTH (type));
4825}
4facf7e8 4826
d709c020
JB
4827int
4828hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4829{
4830 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4831 via a pointer regardless of its type or the compiler used. */
4832 return (TYPE_LENGTH (type) > 8);
4833}
4834
4835int
4836hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4837{
4838 /* Stack grows upward */
4839 return (lhs > rhs);
4840}
4841
4842CORE_ADDR
4843hppa_stack_align (CORE_ADDR sp)
4844{
4845 /* elz: adjust the quantity to the next highest value which is
4846 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4847 On hppa the sp must always be kept 64-bit aligned */
4848 return ((sp % 8) ? (sp + 7) & -8 : sp);
4849}
4850
4851int
4852hppa_pc_requires_run_before_use (CORE_ADDR pc)
4853{
4854 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4855
4856 An example of this occurs when an a.out is linked against a foo.sl.
4857 The foo.sl defines a global bar(), and the a.out declares a signature
4858 for bar(). However, the a.out doesn't directly call bar(), but passes
4859 its address in another call.
4860
4861 If you have this scenario and attempt to "break bar" before running,
4862 gdb will find a minimal symbol for bar() in the a.out. But that
4863 symbol's address will be negative. What this appears to denote is
4864 an index backwards from the base of the procedure linkage table (PLT)
4865 into the data linkage table (DLT), the end of which is contiguous
4866 with the start of the PLT. This is clearly not a valid address for
4867 us to set a breakpoint on.
4868
4869 Note that one must be careful in how one checks for a negative address.
4870 0xc0000000 is a legitimate address of something in a shared text
4871 segment, for example. Since I don't know what the possible range
4872 is of these "really, truly negative" addresses that come from the
4873 minimal symbols, I'm resorting to the gross hack of checking the
4874 top byte of the address for all 1's. Sigh. */
4875
4876 return (!target_has_stack && (pc & 0xFF000000));
4877}
4878
4879int
4880hppa_instruction_nullified (void)
4881{
4882 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4883 avoid the type cast. I'm leaving it as is for now as I'm doing
4884 semi-mechanical multiarching-related changes. */
4885 const int ipsw = (int) read_register (IPSW_REGNUM);
4886 const int flags = (int) read_register (FLAGS_REGNUM);
4887
4888 return ((ipsw & 0x00200000) && !(flags & 0x2));
4889}
4890
60e1ff27
JB
4891int
4892hppa_register_raw_size (int reg_nr)
4893{
4894 /* All registers have the same size. */
b1e29e33 4895 return DEPRECATED_REGISTER_SIZE;
60e1ff27
JB
4896}
4897
d709c020
JB
4898/* Index within the register vector of the first byte of the space i
4899 used for register REG_NR. */
4900
4901int
4902hppa_register_byte (int reg_nr)
4903{
4904 return reg_nr * 4;
4905}
4906
4907/* Return the GDB type object for the "standard" data type of data
4908 in register N. */
4909
4910struct type *
4911hppa_register_virtual_type (int reg_nr)
4912{
4913 if (reg_nr < FP4_REGNUM)
4914 return builtin_type_int;
4915 else
4916 return builtin_type_float;
4917}
4918
4919/* Store the address of the place in which to copy the structure the
4920 subroutine will return. This is called from call_function. */
4921
4922void
4923hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4924{
4925 write_register (28, addr);
4926}
4927
60383d10
JB
4928CORE_ADDR
4929hppa_extract_struct_value_address (char *regbuf)
4930{
4931 /* Extract from an array REGBUF containing the (raw) register state
4932 the address in which a function should return its structure value,
4933 as a CORE_ADDR (or an expression that can be used as one). */
4934 /* FIXME: brobecker 2002-12-26.
4935 The current implementation is historical, but we should eventually
4936 implement it in a more robust manner as it relies on the fact that
4937 the address size is equal to the size of an int* _on the host_...
4938 One possible implementation that crossed my mind is to use
4939 extract_address. */
4940 return (*(int *)(regbuf + REGISTER_BYTE (28)));
4941}
4942
d709c020
JB
4943/* Return True if REGNUM is not a register available to the user
4944 through ptrace(). */
4945
4946int
4947hppa_cannot_store_register (int regnum)
4948{
4949 return (regnum == 0
4950 || regnum == PCSQ_HEAD_REGNUM
4951 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
4952 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
4953
4954}
4955
d709c020
JB
4956CORE_ADDR
4957hppa_smash_text_address (CORE_ADDR addr)
4958{
4959 /* The low two bits of the PC on the PA contain the privilege level.
4960 Some genius implementing a (non-GCC) compiler apparently decided
4961 this means that "addresses" in a text section therefore include a
4962 privilege level, and thus symbol tables should contain these bits.
4963 This seems like a bonehead thing to do--anyway, it seems to work
4964 for our purposes to just ignore those bits. */
4965
4966 return (addr &= ~0x3);
4967}
4968
143985b7
AF
4969/* Get the ith function argument for the current function. */
4970CORE_ADDR
4971hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
4972 struct type *type)
4973{
4974 CORE_ADDR addr;
4975 frame_read_register (frame, R0_REGNUM + 26 - argi, &addr);
4976 return addr;
4977}
4978
e6e68f1f
JB
4979static struct gdbarch *
4980hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4981{
4982 struct gdbarch *gdbarch;
59623e27
JB
4983
4984 /* Try to determine the ABI of the object we are loading. */
4be87837 4985 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 4986 {
4be87837
DJ
4987 /* If it's a SOM file, assume it's HP/UX SOM. */
4988 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
4989 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 4990 }
e6e68f1f
JB
4991
4992 /* find a candidate among the list of pre-declared architectures. */
4993 arches = gdbarch_list_lookup_by_info (arches, &info);
4994 if (arches != NULL)
4995 return (arches->gdbarch);
4996
4997 /* If none found, then allocate and initialize one. */
4998 gdbarch = gdbarch_alloc (&info, NULL);
4999
273f8429 5000 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 5001 gdbarch_init_osabi (info, gdbarch);
273f8429 5002
60383d10
JB
5003 set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
5004 set_gdbarch_function_start_offset (gdbarch, 0);
5005 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5006 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5007 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5008 set_gdbarch_in_solib_return_trampoline (gdbarch,
5009 hppa_in_solib_return_trampoline);
6913c89a 5010 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
60383d10
JB
5011 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
5012 set_gdbarch_stack_align (gdbarch, hppa_stack_align);
60383d10 5013 set_gdbarch_decr_pc_after_break (gdbarch, 0);
b1e29e33 5014 set_gdbarch_deprecated_register_size (gdbarch, 4);
60383d10 5015 set_gdbarch_num_regs (gdbarch, hppa_num_regs);
0ba6dca9 5016 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
60383d10
JB
5017 set_gdbarch_sp_regnum (gdbarch, 30);
5018 set_gdbarch_fp0_regnum (gdbarch, 64);
5019 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
5020 set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
9c04cab7 5021 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
b8b527c5 5022 set_gdbarch_deprecated_register_bytes (gdbarch, hppa_num_regs * 4);
9c04cab7
AC
5023 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5024 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
a0ed5532
AC
5025 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
5026 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
9c04cab7 5027 set_gdbarch_deprecated_register_virtual_type (gdbarch, hppa_register_virtual_type);
e23457df 5028 set_gdbarch_register_name (gdbarch, hppa_register_name);
4183d812 5029 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
60383d10
JB
5030 set_gdbarch_deprecated_extract_return_value (gdbarch,
5031 hppa_extract_return_value);
5032 set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention);
5033 set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value);
5034 set_gdbarch_deprecated_extract_struct_value_address
5035 (gdbarch, hppa_extract_struct_value_address);
5036 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
e9582e71 5037 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
618ce49f
AC
5038 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5039 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
60383d10
JB
5040 set_gdbarch_frameless_function_invocation
5041 (gdbarch, hppa_frameless_function_invocation);
8bedc050 5042 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
60383d10 5043 set_gdbarch_frame_args_skip (gdbarch, 0);
5ef7553b 5044 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
749b82f6 5045 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
b1e29e33
AC
5046 set_gdbarch_deprecated_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28);
5047 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
b81774d8 5048 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
b6fbdd1d 5049 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
5050 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5051 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5052 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5053 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
0ba6dca9 5054 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
60383d10 5055
143985b7
AF
5056 /* Helper for function argument information. */
5057 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5058
e6e68f1f
JB
5059 return gdbarch;
5060}
5061
5062static void
5063hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5064{
5065 /* Nothing to print for the moment. */
5066}
5067
4facf7e8
JB
5068void
5069_initialize_hppa_tdep (void)
5070{
5071 struct cmd_list_element *c;
5072 void break_at_finish_command (char *arg, int from_tty);
5073 void tbreak_at_finish_command (char *arg, int from_tty);
5074 void break_at_finish_at_depth_command (char *arg, int from_tty);
5075
e6e68f1f 5076 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
d7a27068 5077 deprecated_tm_print_insn = print_insn_hppa;
4facf7e8
JB
5078
5079 add_cmd ("unwind", class_maintenance, unwind_command,
5080 "Print unwind table entry at given address.",
5081 &maintenanceprintlist);
5082
5083 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5084 break_at_finish_command,
5085 concat ("Set breakpoint at procedure exit. \n\
5086Argument may be function name, or \"*\" and an address.\n\
5087If function is specified, break at end of code for that function.\n\
5088If an address is specified, break at the end of the function that contains \n\
5089that exact address.\n",
5090 "With no arg, uses current execution address of selected stack frame.\n\
5091This is useful for breaking on return to a stack frame.\n\
5092\n\
5093Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5094\n\
5095Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5096 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5097 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5098 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5099 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5100
5101 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5102 tbreak_at_finish_command,
5103"Set temporary breakpoint at procedure exit. Either there should\n\
5104be no argument or the argument must be a depth.\n"), NULL);
5105 set_cmd_completer (c, location_completer);
5106
5107 if (xdb_commands)
5108 deprecate_cmd (add_com ("bx", class_breakpoint,
5109 break_at_finish_at_depth_command,
5110"Set breakpoint at procedure exit. Either there should\n\
5111be no argument or the argument must be a depth.\n"), NULL);
5112}
5113
This page took 0.583866 seconds and 4 git commands to generate.