Add casts to memory allocation related calls
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
a7aad9aa 1/* Target-dependent code for the HP PA-RISC architecture.
cda5a58a 2
32d0add0 3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c
SS
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "bfd.h"
25#include "inferior.h"
4e052eda 26#include "regcache.h"
e5d66720 27#include "completer.h"
59623e27 28#include "osabi.h"
343af405 29#include "arch-utils.h"
1777feb0 30/* For argument passing to the inferior. */
c906108c 31#include "symtab.h"
fde2cceb 32#include "dis-asm.h"
26d08f08
AC
33#include "trad-frame.h"
34#include "frame-unwind.h"
35#include "frame-base.h"
c906108c 36
c906108c
SS
37#include "gdbcore.h"
38#include "gdbcmd.h"
e6bb342a 39#include "gdbtypes.h"
c906108c 40#include "objfiles.h"
3ff7cf9e 41#include "hppa-tdep.h"
c906108c 42
369aa520
RC
43static int hppa_debug = 0;
44
60383d10 45/* Some local constants. */
3ff7cf9e
JB
46static const int hppa32_num_regs = 128;
47static const int hppa64_num_regs = 96;
48
61a12cfa
JK
49/* We use the objfile->obj_private pointer for two things:
50 * 1. An unwind table;
51 *
52 * 2. A pointer to any associated shared library object.
53 *
54 * #defines are used to help refer to these objects.
55 */
56
57/* Info about the unwind table associated with an object file.
58 * This is hung off of the "objfile->obj_private" pointer, and
59 * is allocated in the objfile's psymbol obstack. This allows
60 * us to have unique unwind info for each executable and shared
61 * library that we are debugging.
62 */
63struct hppa_unwind_info
64 {
65 struct unwind_table_entry *table; /* Pointer to unwind info */
66 struct unwind_table_entry *cache; /* Pointer to last entry we found */
67 int last; /* Index of last entry */
68 };
69
70struct hppa_objfile_private
71 {
72 struct hppa_unwind_info *unwind_info; /* a pointer */
73 struct so_list *so_info; /* a pointer */
74 CORE_ADDR dp;
75
76 int dummy_call_sequence_reg;
77 CORE_ADDR dummy_call_sequence_addr;
78 };
79
7c46b9fb
RC
80/* hppa-specific object data -- unwind and solib info.
81 TODO/maybe: think about splitting this into two parts; the unwind data is
82 common to all hppa targets, but is only used in this file; we can register
83 that separately and make this static. The solib data is probably hpux-
84 specific, so we can create a separate extern objfile_data that is registered
85 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
61a12cfa 86static const struct objfile_data *hppa_objfile_priv_data = NULL;
7c46b9fb 87
1777feb0 88/* Get at various relevent fields of an instruction word. */
e2ac8128
JB
89#define MASK_5 0x1f
90#define MASK_11 0x7ff
91#define MASK_14 0x3fff
92#define MASK_21 0x1fffff
93
e2ac8128
JB
94/* Sizes (in bytes) of the native unwind entries. */
95#define UNWIND_ENTRY_SIZE 16
96#define STUB_UNWIND_ENTRY_SIZE 8
97
c906108c 98/* Routines to extract various sized constants out of hppa
1777feb0 99 instructions. */
c906108c
SS
100
101/* This assumes that no garbage lies outside of the lower bits of
1777feb0 102 value. */
c906108c 103
63807e1d 104static int
abc485a1 105hppa_sign_extend (unsigned val, unsigned bits)
c906108c 106{
c5aa993b 107 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
108}
109
1777feb0 110/* For many immediate values the sign bit is the low bit! */
c906108c 111
63807e1d 112static int
abc485a1 113hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 114{
c5aa993b 115 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
116}
117
e2ac8128 118/* Extract the bits at positions between FROM and TO, using HP's numbering
1777feb0 119 (MSB = 0). */
e2ac8128 120
abc485a1
RC
121int
122hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
123{
124 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
125}
126
1777feb0 127/* Extract the immediate field from a ld{bhw}s instruction. */
c906108c 128
abc485a1
RC
129int
130hppa_extract_5_load (unsigned word)
c906108c 131{
abc485a1 132 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
133}
134
1777feb0 135/* Extract the immediate field from a break instruction. */
c906108c 136
abc485a1
RC
137unsigned
138hppa_extract_5r_store (unsigned word)
c906108c
SS
139{
140 return (word & MASK_5);
141}
142
1777feb0 143/* Extract the immediate field from a {sr}sm instruction. */
c906108c 144
abc485a1
RC
145unsigned
146hppa_extract_5R_store (unsigned word)
c906108c
SS
147{
148 return (word >> 16 & MASK_5);
149}
150
1777feb0 151/* Extract a 14 bit immediate field. */
c906108c 152
abc485a1
RC
153int
154hppa_extract_14 (unsigned word)
c906108c 155{
abc485a1 156 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
157}
158
1777feb0 159/* Extract a 21 bit constant. */
c906108c 160
abc485a1
RC
161int
162hppa_extract_21 (unsigned word)
c906108c
SS
163{
164 int val;
165
166 word &= MASK_21;
167 word <<= 11;
abc485a1 168 val = hppa_get_field (word, 20, 20);
c906108c 169 val <<= 11;
abc485a1 170 val |= hppa_get_field (word, 9, 19);
c906108c 171 val <<= 2;
abc485a1 172 val |= hppa_get_field (word, 5, 6);
c906108c 173 val <<= 5;
abc485a1 174 val |= hppa_get_field (word, 0, 4);
c906108c 175 val <<= 2;
abc485a1
RC
176 val |= hppa_get_field (word, 7, 8);
177 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
178}
179
c906108c 180/* extract a 17 bit constant from branch instructions, returning the
1777feb0 181 19 bit signed value. */
c906108c 182
abc485a1
RC
183int
184hppa_extract_17 (unsigned word)
c906108c 185{
abc485a1
RC
186 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
187 hppa_get_field (word, 29, 29) << 10 |
188 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
189 (word & 0x1) << 16, 17) << 2;
190}
3388d7ff
RC
191
192CORE_ADDR
193hppa_symbol_address(const char *sym)
194{
3b7344d5 195 struct bound_minimal_symbol minsym;
3388d7ff
RC
196
197 minsym = lookup_minimal_symbol (sym, NULL, NULL);
3b7344d5 198 if (minsym.minsym)
77e371c0 199 return BMSYMBOL_VALUE_ADDRESS (minsym);
3388d7ff
RC
200 else
201 return (CORE_ADDR)-1;
202}
77d18ded 203
61a12cfa 204static struct hppa_objfile_private *
77d18ded
RC
205hppa_init_objfile_priv_data (struct objfile *objfile)
206{
207 struct hppa_objfile_private *priv;
208
209 priv = (struct hppa_objfile_private *)
210 obstack_alloc (&objfile->objfile_obstack,
211 sizeof (struct hppa_objfile_private));
212 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
213 memset (priv, 0, sizeof (*priv));
214
215 return priv;
216}
c906108c
SS
217\f
218
219/* Compare the start address for two unwind entries returning 1 if
220 the first address is larger than the second, -1 if the second is
221 larger than the first, and zero if they are equal. */
222
223static int
fba45db2 224compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
225{
226 const struct unwind_table_entry *a = arg1;
227 const struct unwind_table_entry *b = arg2;
228
229 if (a->region_start > b->region_start)
230 return 1;
231 else if (a->region_start < b->region_start)
232 return -1;
233 else
234 return 0;
235}
236
53a5351d 237static void
fdd72f95 238record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 239{
fdd72f95 240 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 241 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
242 {
243 bfd_vma value = section->vma - section->filepos;
244 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
245
246 if (value < *low_text_segment_address)
247 *low_text_segment_address = value;
248 }
53a5351d
JM
249}
250
c906108c 251static void
fba45db2 252internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
1777feb0 253 asection *section, unsigned int entries,
241fd515 254 size_t size, CORE_ADDR text_offset)
c906108c
SS
255{
256 /* We will read the unwind entries into temporary memory, then
257 fill in the actual unwind table. */
fdd72f95 258
c906108c
SS
259 if (size > 0)
260 {
5db8bbe5 261 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
262 unsigned long tmp;
263 unsigned i;
224c3ddb 264 char *buf = (char *) alloca (size);
fdd72f95 265 CORE_ADDR low_text_segment_address;
c906108c 266
fdd72f95 267 /* For ELF targets, then unwinds are supposed to
1777feb0 268 be segment relative offsets instead of absolute addresses.
c2c6d25f
JM
269
270 Note that when loading a shared library (text_offset != 0) the
271 unwinds are already relative to the text_offset that will be
272 passed in. */
5db8bbe5 273 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
53a5351d 274 {
fdd72f95
RC
275 low_text_segment_address = -1;
276
53a5351d 277 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
278 record_text_segment_lowaddr,
279 &low_text_segment_address);
53a5351d 280
fdd72f95 281 text_offset = low_text_segment_address;
53a5351d 282 }
5db8bbe5 283 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
acf86d54 284 {
5db8bbe5 285 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
acf86d54 286 }
53a5351d 287
c906108c
SS
288 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
289
290 /* Now internalize the information being careful to handle host/target
c5aa993b 291 endian issues. */
c906108c
SS
292 for (i = 0; i < entries; i++)
293 {
294 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 295 (bfd_byte *) buf);
c906108c
SS
296 table[i].region_start += text_offset;
297 buf += 4;
c5aa993b 298 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
299 table[i].region_end += text_offset;
300 buf += 4;
c5aa993b 301 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
302 buf += 4;
303 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
304 table[i].Millicode = (tmp >> 30) & 0x1;
305 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
306 table[i].Region_description = (tmp >> 27) & 0x3;
6fcecea0 307 table[i].reserved = (tmp >> 26) & 0x1;
c906108c
SS
308 table[i].Entry_SR = (tmp >> 25) & 0x1;
309 table[i].Entry_FR = (tmp >> 21) & 0xf;
310 table[i].Entry_GR = (tmp >> 16) & 0x1f;
311 table[i].Args_stored = (tmp >> 15) & 0x1;
312 table[i].Variable_Frame = (tmp >> 14) & 0x1;
313 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
314 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
315 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
316 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
6fcecea0 317 table[i].sr4export = (tmp >> 9) & 0x1;
c906108c
SS
318 table[i].cxx_info = (tmp >> 8) & 0x1;
319 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
320 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
6fcecea0 321 table[i].reserved1 = (tmp >> 5) & 0x1;
c906108c
SS
322 table[i].Save_SP = (tmp >> 4) & 0x1;
323 table[i].Save_RP = (tmp >> 3) & 0x1;
324 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
6fcecea0 325 table[i].save_r19 = (tmp >> 1) & 0x1;
c906108c 326 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 327 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
328 buf += 4;
329 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
330 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
331 table[i].Large_frame = (tmp >> 29) & 0x1;
6fcecea0
RC
332 table[i].alloca_frame = (tmp >> 28) & 0x1;
333 table[i].reserved2 = (tmp >> 27) & 0x1;
c906108c
SS
334 table[i].Total_frame_size = tmp & 0x7ffffff;
335
1777feb0 336 /* Stub unwinds are handled elsewhere. */
c906108c
SS
337 table[i].stub_unwind.stub_type = 0;
338 table[i].stub_unwind.padding = 0;
339 }
340 }
341}
342
343/* Read in the backtrace information stored in the `$UNWIND_START$' section of
344 the object file. This info is used mainly by find_unwind_entry() to find
345 out the stack frame size and frame pointer used by procedures. We put
346 everything on the psymbol obstack in the objfile so that it automatically
347 gets freed when the objfile is destroyed. */
348
349static void
fba45db2 350read_unwind_info (struct objfile *objfile)
c906108c 351{
d4f3574e 352 asection *unwind_sec, *stub_unwind_sec;
241fd515 353 size_t unwind_size, stub_unwind_size, total_size;
d4f3574e 354 unsigned index, unwind_entries;
c906108c
SS
355 unsigned stub_entries, total_entries;
356 CORE_ADDR text_offset;
7c46b9fb
RC
357 struct hppa_unwind_info *ui;
358 struct hppa_objfile_private *obj_private;
c906108c 359
a99dad3d 360 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7c46b9fb
RC
361 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
362 sizeof (struct hppa_unwind_info));
c906108c
SS
363
364 ui->table = NULL;
365 ui->cache = NULL;
366 ui->last = -1;
367
d4f3574e
SS
368 /* For reasons unknown the HP PA64 tools generate multiple unwinder
369 sections in a single executable. So we just iterate over every
370 section in the BFD looking for unwinder sections intead of trying
1777feb0 371 to do a lookup with bfd_get_section_by_name.
c906108c 372
d4f3574e
SS
373 First determine the total size of the unwind tables so that we
374 can allocate memory in a nice big hunk. */
375 total_entries = 0;
376 for (unwind_sec = objfile->obfd->sections;
377 unwind_sec;
378 unwind_sec = unwind_sec->next)
c906108c 379 {
d4f3574e
SS
380 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
381 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
382 {
383 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
384 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 385
d4f3574e
SS
386 total_entries += unwind_entries;
387 }
c906108c
SS
388 }
389
d4f3574e 390 /* Now compute the size of the stub unwinds. Note the ELF tools do not
043f5962 391 use stub unwinds at the current time. */
d4f3574e
SS
392 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
393
c906108c
SS
394 if (stub_unwind_sec)
395 {
396 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
397 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
398 }
399 else
400 {
401 stub_unwind_size = 0;
402 stub_entries = 0;
403 }
404
405 /* Compute total number of unwind entries and their total size. */
d4f3574e 406 total_entries += stub_entries;
c906108c
SS
407 total_size = total_entries * sizeof (struct unwind_table_entry);
408
409 /* Allocate memory for the unwind table. */
410 ui->table = (struct unwind_table_entry *)
8b92e4d5 411 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 412 ui->last = total_entries - 1;
c906108c 413
d4f3574e
SS
414 /* Now read in each unwind section and internalize the standard unwind
415 entries. */
c906108c 416 index = 0;
d4f3574e
SS
417 for (unwind_sec = objfile->obfd->sections;
418 unwind_sec;
419 unwind_sec = unwind_sec->next)
420 {
421 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
422 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
423 {
424 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
425 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
426
427 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
428 unwind_entries, unwind_size, text_offset);
429 index += unwind_entries;
430 }
431 }
432
433 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
434 if (stub_unwind_size > 0)
435 {
436 unsigned int i;
224c3ddb 437 char *buf = (char *) alloca (stub_unwind_size);
c906108c
SS
438
439 /* Read in the stub unwind entries. */
440 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
441 0, stub_unwind_size);
442
443 /* Now convert them into regular unwind entries. */
444 for (i = 0; i < stub_entries; i++, index++)
445 {
446 /* Clear out the next unwind entry. */
447 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
448
1777feb0 449 /* Convert offset & size into region_start and region_end.
c906108c
SS
450 Stuff away the stub type into "reserved" fields. */
451 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
452 (bfd_byte *) buf);
453 ui->table[index].region_start += text_offset;
454 buf += 4;
455 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 456 (bfd_byte *) buf);
c906108c
SS
457 buf += 2;
458 ui->table[index].region_end
c5aa993b
JM
459 = ui->table[index].region_start + 4 *
460 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
461 buf += 2;
462 }
463
464 }
465
466 /* Unwind table needs to be kept sorted. */
467 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
468 compare_unwind_entries);
469
470 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
471 obj_private = (struct hppa_objfile_private *)
472 objfile_data (objfile, hppa_objfile_priv_data);
473 if (obj_private == NULL)
77d18ded
RC
474 obj_private = hppa_init_objfile_priv_data (objfile);
475
c906108c
SS
476 obj_private->unwind_info = ui;
477}
478
479/* Lookup the unwind (stack backtrace) info for the given PC. We search all
480 of the objfiles seeking the unwind table entry for this PC. Each objfile
481 contains a sorted list of struct unwind_table_entry. Since we do a binary
482 search of the unwind tables, we depend upon them to be sorted. */
483
484struct unwind_table_entry *
fba45db2 485find_unwind_entry (CORE_ADDR pc)
c906108c
SS
486{
487 int first, middle, last;
488 struct objfile *objfile;
7c46b9fb 489 struct hppa_objfile_private *priv;
c906108c 490
369aa520 491 if (hppa_debug)
5af949e3
UW
492 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
493 hex_string (pc));
369aa520 494
1777feb0 495 /* A function at address 0? Not in HP-UX! */
c906108c 496 if (pc == (CORE_ADDR) 0)
369aa520
RC
497 {
498 if (hppa_debug)
499 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
500 return NULL;
501 }
c906108c
SS
502
503 ALL_OBJFILES (objfile)
c5aa993b 504 {
7c46b9fb 505 struct hppa_unwind_info *ui;
c5aa993b 506 ui = NULL;
7c46b9fb
RC
507 priv = objfile_data (objfile, hppa_objfile_priv_data);
508 if (priv)
509 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 510
c5aa993b
JM
511 if (!ui)
512 {
513 read_unwind_info (objfile);
7c46b9fb
RC
514 priv = objfile_data (objfile, hppa_objfile_priv_data);
515 if (priv == NULL)
8a3fe4f8 516 error (_("Internal error reading unwind information."));
7c46b9fb 517 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 518 }
c906108c 519
1777feb0 520 /* First, check the cache. */
c906108c 521
c5aa993b
JM
522 if (ui->cache
523 && pc >= ui->cache->region_start
524 && pc <= ui->cache->region_end)
369aa520
RC
525 {
526 if (hppa_debug)
5af949e3
UW
527 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
528 hex_string ((uintptr_t) ui->cache));
369aa520
RC
529 return ui->cache;
530 }
c906108c 531
1777feb0 532 /* Not in the cache, do a binary search. */
c906108c 533
c5aa993b
JM
534 first = 0;
535 last = ui->last;
c906108c 536
c5aa993b
JM
537 while (first <= last)
538 {
539 middle = (first + last) / 2;
540 if (pc >= ui->table[middle].region_start
541 && pc <= ui->table[middle].region_end)
542 {
543 ui->cache = &ui->table[middle];
369aa520 544 if (hppa_debug)
5af949e3
UW
545 fprintf_unfiltered (gdb_stdlog, "%s }\n",
546 hex_string ((uintptr_t) ui->cache));
c5aa993b
JM
547 return &ui->table[middle];
548 }
c906108c 549
c5aa993b
JM
550 if (pc < ui->table[middle].region_start)
551 last = middle - 1;
552 else
553 first = middle + 1;
554 }
555 } /* ALL_OBJFILES() */
369aa520
RC
556
557 if (hppa_debug)
558 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
559
c906108c
SS
560 return NULL;
561}
562
c9cf6e20
MG
563/* Implement the stack_frame_destroyed_p gdbarch method.
564
565 The epilogue is defined here as the area either on the `bv' instruction
1777feb0 566 itself or an instruction which destroys the function's stack frame.
1fb24930
RC
567
568 We do not assume that the epilogue is at the end of a function as we can
569 also have return sequences in the middle of a function. */
c9cf6e20 570
1fb24930 571static int
c9cf6e20 572hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1fb24930 573{
e17a4113 574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1fb24930
RC
575 unsigned long status;
576 unsigned int inst;
e362b510 577 gdb_byte buf[4];
1fb24930 578
8defab1a 579 status = target_read_memory (pc, buf, 4);
1fb24930
RC
580 if (status != 0)
581 return 0;
582
e17a4113 583 inst = extract_unsigned_integer (buf, 4, byte_order);
1fb24930
RC
584
585 /* The most common way to perform a stack adjustment ldo X(sp),sp
586 We are destroying a stack frame if the offset is negative. */
587 if ((inst & 0xffffc000) == 0x37de0000
588 && hppa_extract_14 (inst) < 0)
589 return 1;
590
591 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
592 if (((inst & 0x0fc010e0) == 0x0fc010e0
593 || (inst & 0x0fc010e0) == 0x0fc010e0)
594 && hppa_extract_14 (inst) < 0)
595 return 1;
596
597 /* bv %r0(%rp) or bv,n %r0(%rp) */
598 if (inst == 0xe840c000 || inst == 0xe840c002)
599 return 1;
600
601 return 0;
602}
603
85f4f2d8 604static const unsigned char *
67d57894 605hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
aaab4dba 606{
56132691 607 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
608 (*len) = sizeof (breakpoint);
609 return breakpoint;
610}
611
e23457df
AC
612/* Return the name of a register. */
613
4a302917 614static const char *
d93859e2 615hppa32_register_name (struct gdbarch *gdbarch, int i)
e23457df
AC
616{
617 static char *names[] = {
618 "flags", "r1", "rp", "r3",
619 "r4", "r5", "r6", "r7",
620 "r8", "r9", "r10", "r11",
621 "r12", "r13", "r14", "r15",
622 "r16", "r17", "r18", "r19",
623 "r20", "r21", "r22", "r23",
624 "r24", "r25", "r26", "dp",
625 "ret0", "ret1", "sp", "r31",
626 "sar", "pcoqh", "pcsqh", "pcoqt",
627 "pcsqt", "eiem", "iir", "isr",
628 "ior", "ipsw", "goto", "sr4",
629 "sr0", "sr1", "sr2", "sr3",
630 "sr5", "sr6", "sr7", "cr0",
631 "cr8", "cr9", "ccr", "cr12",
632 "cr13", "cr24", "cr25", "cr26",
633 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
634 "fpsr", "fpe1", "fpe2", "fpe3",
635 "fpe4", "fpe5", "fpe6", "fpe7",
636 "fr4", "fr4R", "fr5", "fr5R",
637 "fr6", "fr6R", "fr7", "fr7R",
638 "fr8", "fr8R", "fr9", "fr9R",
639 "fr10", "fr10R", "fr11", "fr11R",
640 "fr12", "fr12R", "fr13", "fr13R",
641 "fr14", "fr14R", "fr15", "fr15R",
642 "fr16", "fr16R", "fr17", "fr17R",
643 "fr18", "fr18R", "fr19", "fr19R",
644 "fr20", "fr20R", "fr21", "fr21R",
645 "fr22", "fr22R", "fr23", "fr23R",
646 "fr24", "fr24R", "fr25", "fr25R",
647 "fr26", "fr26R", "fr27", "fr27R",
648 "fr28", "fr28R", "fr29", "fr29R",
649 "fr30", "fr30R", "fr31", "fr31R"
650 };
651 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
652 return NULL;
653 else
654 return names[i];
655}
656
4a302917 657static const char *
d93859e2 658hppa64_register_name (struct gdbarch *gdbarch, int i)
e23457df
AC
659{
660 static char *names[] = {
661 "flags", "r1", "rp", "r3",
662 "r4", "r5", "r6", "r7",
663 "r8", "r9", "r10", "r11",
664 "r12", "r13", "r14", "r15",
665 "r16", "r17", "r18", "r19",
666 "r20", "r21", "r22", "r23",
667 "r24", "r25", "r26", "dp",
668 "ret0", "ret1", "sp", "r31",
669 "sar", "pcoqh", "pcsqh", "pcoqt",
670 "pcsqt", "eiem", "iir", "isr",
671 "ior", "ipsw", "goto", "sr4",
672 "sr0", "sr1", "sr2", "sr3",
673 "sr5", "sr6", "sr7", "cr0",
674 "cr8", "cr9", "ccr", "cr12",
675 "cr13", "cr24", "cr25", "cr26",
676 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
677 "fpsr", "fpe1", "fpe2", "fpe3",
678 "fr4", "fr5", "fr6", "fr7",
679 "fr8", "fr9", "fr10", "fr11",
680 "fr12", "fr13", "fr14", "fr15",
681 "fr16", "fr17", "fr18", "fr19",
682 "fr20", "fr21", "fr22", "fr23",
683 "fr24", "fr25", "fr26", "fr27",
684 "fr28", "fr29", "fr30", "fr31"
685 };
686 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
687 return NULL;
688 else
689 return names[i];
690}
691
85c83e99 692/* Map dwarf DBX register numbers to GDB register numbers. */
1ef7fcb5 693static int
d3f73121 694hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1ef7fcb5 695{
85c83e99 696 /* The general registers and the sar are the same in both sets. */
1ef7fcb5
RC
697 if (reg <= 32)
698 return reg;
699
700 /* fr4-fr31 are mapped from 72 in steps of 2. */
85c83e99 701 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
1ef7fcb5
RC
702 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
703
85c83e99 704 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
1ef7fcb5
RC
705 return -1;
706}
707
79508e1e
AC
708/* This function pushes a stack frame with arguments as part of the
709 inferior function calling mechanism.
710
711 This is the version of the function for the 32-bit PA machines, in
712 which later arguments appear at lower addresses. (The stack always
713 grows towards higher addresses.)
714
715 We simply allocate the appropriate amount of stack space and put
716 arguments into their proper slots. */
717
4a302917 718static CORE_ADDR
7d9b040b 719hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
720 struct regcache *regcache, CORE_ADDR bp_addr,
721 int nargs, struct value **args, CORE_ADDR sp,
722 int struct_return, CORE_ADDR struct_addr)
723{
e17a4113
UW
724 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
725
79508e1e
AC
726 /* Stack base address at which any pass-by-reference parameters are
727 stored. */
728 CORE_ADDR struct_end = 0;
729 /* Stack base address at which the first parameter is stored. */
730 CORE_ADDR param_end = 0;
731
732 /* The inner most end of the stack after all the parameters have
733 been pushed. */
734 CORE_ADDR new_sp = 0;
735
736 /* Two passes. First pass computes the location of everything,
737 second pass writes the bytes out. */
738 int write_pass;
d49771ef
RC
739
740 /* Global pointer (r19) of the function we are trying to call. */
741 CORE_ADDR gp;
742
743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
744
79508e1e
AC
745 for (write_pass = 0; write_pass < 2; write_pass++)
746 {
1797a8f6 747 CORE_ADDR struct_ptr = 0;
1777feb0 748 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
2a6228ef
RC
749 struct_ptr is adjusted for each argument below, so the first
750 argument will end up at sp-36. */
751 CORE_ADDR param_ptr = 32;
79508e1e 752 int i;
2a6228ef
RC
753 int small_struct = 0;
754
79508e1e
AC
755 for (i = 0; i < nargs; i++)
756 {
757 struct value *arg = args[i];
4991999e 758 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
759 /* The corresponding parameter that is pushed onto the
760 stack, and [possibly] passed in a register. */
948f8e3d 761 gdb_byte param_val[8];
79508e1e
AC
762 int param_len;
763 memset (param_val, 0, sizeof param_val);
764 if (TYPE_LENGTH (type) > 8)
765 {
766 /* Large parameter, pass by reference. Store the value
767 in "struct" area and then pass its address. */
768 param_len = 4;
1797a8f6 769 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 770 if (write_pass)
0fd88904 771 write_memory (struct_end - struct_ptr, value_contents (arg),
79508e1e 772 TYPE_LENGTH (type));
e17a4113
UW
773 store_unsigned_integer (param_val, 4, byte_order,
774 struct_end - struct_ptr);
79508e1e
AC
775 }
776 else if (TYPE_CODE (type) == TYPE_CODE_INT
777 || TYPE_CODE (type) == TYPE_CODE_ENUM)
778 {
779 /* Integer value store, right aligned. "unpack_long"
780 takes care of any sign-extension problems. */
781 param_len = align_up (TYPE_LENGTH (type), 4);
e17a4113 782 store_unsigned_integer (param_val, param_len, byte_order,
79508e1e 783 unpack_long (type,
0fd88904 784 value_contents (arg)));
79508e1e 785 }
2a6228ef
RC
786 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
787 {
788 /* Floating point value store, right aligned. */
789 param_len = align_up (TYPE_LENGTH (type), 4);
0fd88904 790 memcpy (param_val, value_contents (arg), param_len);
2a6228ef 791 }
79508e1e
AC
792 else
793 {
79508e1e 794 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
795
796 /* Small struct value are stored right-aligned. */
79508e1e 797 memcpy (param_val + param_len - TYPE_LENGTH (type),
0fd88904 798 value_contents (arg), TYPE_LENGTH (type));
2a6228ef
RC
799
800 /* Structures of size 5, 6 and 7 bytes are special in that
801 the higher-ordered word is stored in the lower-ordered
802 argument, and even though it is a 8-byte quantity the
803 registers need not be 8-byte aligned. */
1b07b470 804 if (param_len > 4 && param_len < 8)
2a6228ef 805 small_struct = 1;
79508e1e 806 }
2a6228ef 807
1797a8f6 808 param_ptr += param_len;
2a6228ef
RC
809 if (param_len == 8 && !small_struct)
810 param_ptr = align_up (param_ptr, 8);
811
812 /* First 4 non-FP arguments are passed in gr26-gr23.
813 First 4 32-bit FP arguments are passed in fr4L-fr7L.
814 First 2 64-bit FP arguments are passed in fr5 and fr7.
815
816 The rest go on the stack, starting at sp-36, towards lower
817 addresses. 8-byte arguments must be aligned to a 8-byte
818 stack boundary. */
79508e1e
AC
819 if (write_pass)
820 {
1797a8f6 821 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
822
823 /* There are some cases when we don't know the type
824 expected by the callee (e.g. for variadic functions), so
825 pass the parameters in both general and fp regs. */
826 if (param_ptr <= 48)
79508e1e 827 {
2a6228ef
RC
828 int grreg = 26 - (param_ptr - 36) / 4;
829 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
830 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
831
832 regcache_cooked_write (regcache, grreg, param_val);
833 regcache_cooked_write (regcache, fpLreg, param_val);
834
79508e1e 835 if (param_len > 4)
2a6228ef
RC
836 {
837 regcache_cooked_write (regcache, grreg + 1,
838 param_val + 4);
839
840 regcache_cooked_write (regcache, fpreg, param_val);
841 regcache_cooked_write (regcache, fpreg + 1,
842 param_val + 4);
843 }
79508e1e
AC
844 }
845 }
846 }
847
848 /* Update the various stack pointers. */
849 if (!write_pass)
850 {
2a6228ef 851 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
852 /* PARAM_PTR already accounts for all the arguments passed
853 by the user. However, the ABI mandates minimum stack
854 space allocations for outgoing arguments. The ABI also
855 mandates minimum stack alignments which we must
856 preserve. */
2a6228ef 857 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
858 }
859 }
860
861 /* If a structure has to be returned, set up register 28 to hold its
1777feb0 862 address. */
79508e1e 863 if (struct_return)
9c9acae0 864 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
79508e1e 865
e38c262f 866 gp = tdep->find_global_pointer (gdbarch, function);
d49771ef
RC
867
868 if (gp != 0)
9c9acae0 869 regcache_cooked_write_unsigned (regcache, 19, gp);
d49771ef 870
79508e1e 871 /* Set the return address. */
77d18ded
RC
872 if (!gdbarch_push_dummy_code_p (gdbarch))
873 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 874
c4557624 875 /* Update the Stack Pointer. */
34f75cc1 876 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 877
2a6228ef 878 return param_end;
79508e1e
AC
879}
880
38ca4e0c
MK
881/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
882 Runtime Architecture for PA-RISC 2.0", which is distributed as part
883 as of the HP-UX Software Transition Kit (STK). This implementation
884 is based on version 3.3, dated October 6, 1997. */
2f690297 885
38ca4e0c 886/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
2f690297 887
38ca4e0c
MK
888static int
889hppa64_integral_or_pointer_p (const struct type *type)
890{
891 switch (TYPE_CODE (type))
892 {
893 case TYPE_CODE_INT:
894 case TYPE_CODE_BOOL:
895 case TYPE_CODE_CHAR:
896 case TYPE_CODE_ENUM:
897 case TYPE_CODE_RANGE:
898 {
899 int len = TYPE_LENGTH (type);
900 return (len == 1 || len == 2 || len == 4 || len == 8);
901 }
902 case TYPE_CODE_PTR:
903 case TYPE_CODE_REF:
904 return (TYPE_LENGTH (type) == 8);
905 default:
906 break;
907 }
908
909 return 0;
910}
911
912/* Check whether TYPE is a "Floating Scalar Type". */
913
914static int
915hppa64_floating_p (const struct type *type)
916{
917 switch (TYPE_CODE (type))
918 {
919 case TYPE_CODE_FLT:
920 {
921 int len = TYPE_LENGTH (type);
922 return (len == 4 || len == 8 || len == 16);
923 }
924 default:
925 break;
926 }
927
928 return 0;
929}
2f690297 930
1218e655
RC
931/* If CODE points to a function entry address, try to look up the corresponding
932 function descriptor and return its address instead. If CODE is not a
933 function entry address, then just return it unchanged. */
934static CORE_ADDR
e17a4113 935hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
1218e655 936{
e17a4113 937 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1218e655
RC
938 struct obj_section *sec, *opd;
939
940 sec = find_pc_section (code);
941
942 if (!sec)
943 return code;
944
945 /* If CODE is in a data section, assume it's already a fptr. */
946 if (!(sec->the_bfd_section->flags & SEC_CODE))
947 return code;
948
949 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
950 {
951 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
aded6f54 952 break;
1218e655
RC
953 }
954
955 if (opd < sec->objfile->sections_end)
956 {
957 CORE_ADDR addr;
958
aded6f54
PA
959 for (addr = obj_section_addr (opd);
960 addr < obj_section_endaddr (opd);
961 addr += 2 * 8)
962 {
1218e655 963 ULONGEST opdaddr;
948f8e3d 964 gdb_byte tmp[8];
1218e655
RC
965
966 if (target_read_memory (addr, tmp, sizeof (tmp)))
967 break;
e17a4113 968 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
1218e655 969
aded6f54 970 if (opdaddr == code)
1218e655
RC
971 return addr - 16;
972 }
973 }
974
975 return code;
976}
977
4a302917 978static CORE_ADDR
7d9b040b 979hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
980 struct regcache *regcache, CORE_ADDR bp_addr,
981 int nargs, struct value **args, CORE_ADDR sp,
982 int struct_return, CORE_ADDR struct_addr)
983{
38ca4e0c 984 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
38ca4e0c
MK
986 int i, offset = 0;
987 CORE_ADDR gp;
2f690297 988
38ca4e0c
MK
989 /* "The outgoing parameter area [...] must be aligned at a 16-byte
990 boundary." */
991 sp = align_up (sp, 16);
2f690297 992
38ca4e0c
MK
993 for (i = 0; i < nargs; i++)
994 {
995 struct value *arg = args[i];
996 struct type *type = value_type (arg);
997 int len = TYPE_LENGTH (type);
0fd88904 998 const bfd_byte *valbuf;
1218e655 999 bfd_byte fptrbuf[8];
38ca4e0c 1000 int regnum;
2f690297 1001
38ca4e0c
MK
1002 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
1003 offset = align_up (offset, 8);
77d18ded 1004
38ca4e0c 1005 if (hppa64_integral_or_pointer_p (type))
2f690297 1006 {
38ca4e0c
MK
1007 /* "Integral scalar parameters smaller than 64 bits are
1008 padded on the left (i.e., the value is in the
1009 least-significant bits of the 64-bit storage unit, and
1010 the high-order bits are undefined)." Therefore we can
1011 safely sign-extend them. */
1012 if (len < 8)
449e1137 1013 {
df4df182 1014 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
38ca4e0c
MK
1015 len = 8;
1016 }
1017 }
1018 else if (hppa64_floating_p (type))
1019 {
1020 if (len > 8)
1021 {
1022 /* "Quad-precision (128-bit) floating-point scalar
1023 parameters are aligned on a 16-byte boundary." */
1024 offset = align_up (offset, 16);
1025
1026 /* "Double-extended- and quad-precision floating-point
1027 parameters within the first 64 bytes of the parameter
1028 list are always passed in general registers." */
449e1137
AC
1029 }
1030 else
1031 {
38ca4e0c 1032 if (len == 4)
449e1137 1033 {
38ca4e0c
MK
1034 /* "Single-precision (32-bit) floating-point scalar
1035 parameters are padded on the left with 32 bits of
1036 garbage (i.e., the floating-point value is in the
1037 least-significant 32 bits of a 64-bit storage
1038 unit)." */
1039 offset += 4;
449e1137 1040 }
38ca4e0c
MK
1041
1042 /* "Single- and double-precision floating-point
1043 parameters in this area are passed according to the
1044 available formal parameter information in a function
1045 prototype. [...] If no prototype is in scope,
1046 floating-point parameters must be passed both in the
1047 corresponding general registers and in the
1048 corresponding floating-point registers." */
1049 regnum = HPPA64_FP4_REGNUM + offset / 8;
1050
1051 if (regnum < HPPA64_FP4_REGNUM + 8)
449e1137 1052 {
38ca4e0c
MK
1053 /* "Single-precision floating-point parameters, when
1054 passed in floating-point registers, are passed in
1055 the right halves of the floating point registers;
1056 the left halves are unused." */
1057 regcache_cooked_write_part (regcache, regnum, offset % 8,
0fd88904 1058 len, value_contents (arg));
449e1137
AC
1059 }
1060 }
2f690297 1061 }
38ca4e0c 1062 else
2f690297 1063 {
38ca4e0c
MK
1064 if (len > 8)
1065 {
1066 /* "Aggregates larger than 8 bytes are aligned on a
1067 16-byte boundary, possibly leaving an unused argument
1777feb0 1068 slot, which is filled with garbage. If necessary,
38ca4e0c
MK
1069 they are padded on the right (with garbage), to a
1070 multiple of 8 bytes." */
1071 offset = align_up (offset, 16);
1072 }
1073 }
1074
1218e655
RC
1075 /* If we are passing a function pointer, make sure we pass a function
1076 descriptor instead of the function entry address. */
1077 if (TYPE_CODE (type) == TYPE_CODE_PTR
1078 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1079 {
1080 ULONGEST codeptr, fptr;
1081
1082 codeptr = unpack_long (type, value_contents (arg));
e17a4113
UW
1083 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1084 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1085 fptr);
1218e655
RC
1086 valbuf = fptrbuf;
1087 }
1088 else
1089 {
1090 valbuf = value_contents (arg);
1091 }
1092
38ca4e0c 1093 /* Always store the argument in memory. */
1218e655 1094 write_memory (sp + offset, valbuf, len);
38ca4e0c 1095
38ca4e0c
MK
1096 regnum = HPPA_ARG0_REGNUM - offset / 8;
1097 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1098 {
1099 regcache_cooked_write_part (regcache, regnum,
1100 offset % 8, min (len, 8), valbuf);
1101 offset += min (len, 8);
1102 valbuf += min (len, 8);
1103 len -= min (len, 8);
1104 regnum--;
2f690297 1105 }
38ca4e0c
MK
1106
1107 offset += len;
2f690297
AC
1108 }
1109
38ca4e0c
MK
1110 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1111 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1112
1113 /* Allocate the outgoing parameter area. Make sure the outgoing
1114 parameter area is multiple of 16 bytes in length. */
1115 sp += max (align_up (offset, 16), 64);
1116
1117 /* Allocate 32-bytes of scratch space. The documentation doesn't
1118 mention this, but it seems to be needed. */
1119 sp += 32;
1120
1121 /* Allocate the frame marker area. */
1122 sp += 16;
1123
1124 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1125 its address. */
2f690297 1126 if (struct_return)
38ca4e0c 1127 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
2f690297 1128
38ca4e0c 1129 /* Set up GR27 (%dp) to hold the global pointer (gp). */
e38c262f 1130 gp = tdep->find_global_pointer (gdbarch, function);
77d18ded 1131 if (gp != 0)
38ca4e0c 1132 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
77d18ded 1133
38ca4e0c 1134 /* Set up GR2 (%rp) to hold the return pointer (rp). */
77d18ded
RC
1135 if (!gdbarch_push_dummy_code_p (gdbarch))
1136 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 1137
38ca4e0c
MK
1138 /* Set up GR30 to hold the stack pointer (sp). */
1139 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
c4557624 1140
38ca4e0c 1141 return sp;
2f690297 1142}
38ca4e0c 1143\f
2f690297 1144
08a27113
MK
1145/* Handle 32/64-bit struct return conventions. */
1146
1147static enum return_value_convention
6a3a010b 1148hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1149 struct type *type, struct regcache *regcache,
e127f0db 1150 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1151{
1152 if (TYPE_LENGTH (type) <= 2 * 4)
1153 {
1154 /* The value always lives in the right hand end of the register
1155 (or register pair)? */
1156 int b;
1157 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1158 int part = TYPE_LENGTH (type) % 4;
1159 /* The left hand register contains only part of the value,
1160 transfer that first so that the rest can be xfered as entire
1161 4-byte registers. */
1162 if (part > 0)
1163 {
1164 if (readbuf != NULL)
1165 regcache_cooked_read_part (regcache, reg, 4 - part,
1166 part, readbuf);
1167 if (writebuf != NULL)
1168 regcache_cooked_write_part (regcache, reg, 4 - part,
1169 part, writebuf);
1170 reg++;
1171 }
1172 /* Now transfer the remaining register values. */
1173 for (b = part; b < TYPE_LENGTH (type); b += 4)
1174 {
1175 if (readbuf != NULL)
e127f0db 1176 regcache_cooked_read (regcache, reg, readbuf + b);
08a27113 1177 if (writebuf != NULL)
e127f0db 1178 regcache_cooked_write (regcache, reg, writebuf + b);
08a27113
MK
1179 reg++;
1180 }
1181 return RETURN_VALUE_REGISTER_CONVENTION;
1182 }
1183 else
1184 return RETURN_VALUE_STRUCT_CONVENTION;
1185}
1186
1187static enum return_value_convention
6a3a010b 1188hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1189 struct type *type, struct regcache *regcache,
e127f0db 1190 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1191{
1192 int len = TYPE_LENGTH (type);
1193 int regnum, offset;
1194
bad43aa5 1195 if (len > 16)
08a27113
MK
1196 {
1197 /* All return values larget than 128 bits must be aggregate
1198 return values. */
9738b034
MK
1199 gdb_assert (!hppa64_integral_or_pointer_p (type));
1200 gdb_assert (!hppa64_floating_p (type));
08a27113
MK
1201
1202 /* "Aggregate return values larger than 128 bits are returned in
1203 a buffer allocated by the caller. The address of the buffer
1204 must be passed in GR 28." */
1205 return RETURN_VALUE_STRUCT_CONVENTION;
1206 }
1207
1208 if (hppa64_integral_or_pointer_p (type))
1209 {
1210 /* "Integral return values are returned in GR 28. Values
1211 smaller than 64 bits are padded on the left (with garbage)." */
1212 regnum = HPPA_RET0_REGNUM;
1213 offset = 8 - len;
1214 }
1215 else if (hppa64_floating_p (type))
1216 {
1217 if (len > 8)
1218 {
1219 /* "Double-extended- and quad-precision floating-point
1220 values are returned in GRs 28 and 29. The sign,
1221 exponent, and most-significant bits of the mantissa are
1222 returned in GR 28; the least-significant bits of the
1223 mantissa are passed in GR 29. For double-extended
1224 precision values, GR 29 is padded on the right with 48
1225 bits of garbage." */
1226 regnum = HPPA_RET0_REGNUM;
1227 offset = 0;
1228 }
1229 else
1230 {
1231 /* "Single-precision and double-precision floating-point
1232 return values are returned in FR 4R (single precision) or
1233 FR 4 (double-precision)." */
1234 regnum = HPPA64_FP4_REGNUM;
1235 offset = 8 - len;
1236 }
1237 }
1238 else
1239 {
1240 /* "Aggregate return values up to 64 bits in size are returned
1241 in GR 28. Aggregates smaller than 64 bits are left aligned
1242 in the register; the pad bits on the right are undefined."
1243
1244 "Aggregate return values between 65 and 128 bits are returned
1245 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1246 the remaining bits are placed, left aligned, in GR 29. The
1247 pad bits on the right of GR 29 (if any) are undefined." */
1248 regnum = HPPA_RET0_REGNUM;
1249 offset = 0;
1250 }
1251
1252 if (readbuf)
1253 {
08a27113
MK
1254 while (len > 0)
1255 {
1256 regcache_cooked_read_part (regcache, regnum, offset,
e127f0db
MK
1257 min (len, 8), readbuf);
1258 readbuf += min (len, 8);
08a27113
MK
1259 len -= min (len, 8);
1260 regnum++;
1261 }
1262 }
1263
1264 if (writebuf)
1265 {
08a27113
MK
1266 while (len > 0)
1267 {
1268 regcache_cooked_write_part (regcache, regnum, offset,
e127f0db
MK
1269 min (len, 8), writebuf);
1270 writebuf += min (len, 8);
08a27113
MK
1271 len -= min (len, 8);
1272 regnum++;
1273 }
1274 }
1275
1276 return RETURN_VALUE_REGISTER_CONVENTION;
1277}
1278\f
1279
d49771ef 1280static CORE_ADDR
a7aad9aa 1281hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
d49771ef
RC
1282 struct target_ops *targ)
1283{
1284 if (addr & 2)
1285 {
0dfff4cb 1286 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
a7aad9aa 1287 CORE_ADDR plabel = addr & ~3;
0dfff4cb 1288 return read_memory_typed_address (plabel, func_ptr_type);
d49771ef
RC
1289 }
1290
1291 return addr;
1292}
1293
1797a8f6
AC
1294static CORE_ADDR
1295hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1296{
1297 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1298 and not _bit_)! */
1299 return align_up (addr, 64);
1300}
1301
2f690297
AC
1302/* Force all frames to 16-byte alignment. Better safe than sorry. */
1303
1304static CORE_ADDR
1797a8f6 1305hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1306{
1307 /* Just always 16-byte align. */
1308 return align_up (addr, 16);
1309}
1310
cc72850f 1311CORE_ADDR
61a1198a 1312hppa_read_pc (struct regcache *regcache)
c906108c 1313{
cc72850f 1314 ULONGEST ipsw;
61a1198a 1315 ULONGEST pc;
c906108c 1316
61a1198a
UW
1317 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1318 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
fe46cd3a
RC
1319
1320 /* If the current instruction is nullified, then we are effectively
1321 still executing the previous instruction. Pretend we are still
cc72850f
MK
1322 there. This is needed when single stepping; if the nullified
1323 instruction is on a different line, we don't want GDB to think
1324 we've stepped onto that line. */
fe46cd3a
RC
1325 if (ipsw & 0x00200000)
1326 pc -= 4;
1327
cc72850f 1328 return pc & ~0x3;
c906108c
SS
1329}
1330
cc72850f 1331void
61a1198a 1332hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 1333{
61a1198a
UW
1334 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1335 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1336}
1337
c906108c 1338/* For the given instruction (INST), return any adjustment it makes
1777feb0 1339 to the stack pointer or zero for no adjustment.
c906108c
SS
1340
1341 This only handles instructions commonly found in prologues. */
1342
1343static int
fba45db2 1344prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1345{
1346 /* This must persist across calls. */
1347 static int save_high21;
1348
1349 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1350 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1351 return hppa_extract_14 (inst);
c906108c
SS
1352
1353 /* stwm X,D(sp) */
1354 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1355 return hppa_extract_14 (inst);
c906108c 1356
104c1213
JM
1357 /* std,ma X,D(sp) */
1358 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 1359 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1360
e22b26cb 1361 /* addil high21,%r30; ldo low11,(%r1),%r30)
c906108c 1362 save high bits in save_high21 for later use. */
e22b26cb 1363 if ((inst & 0xffe00000) == 0x2bc00000)
c906108c 1364 {
abc485a1 1365 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1366 return 0;
1367 }
1368
1369 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1370 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1371
1372 /* fstws as used by the HP compilers. */
1373 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1374 return hppa_extract_5_load (inst);
c906108c
SS
1375
1376 /* No adjustment. */
1377 return 0;
1378}
1379
1380/* Return nonzero if INST is a branch of some kind, else return zero. */
1381
1382static int
fba45db2 1383is_branch (unsigned long inst)
c906108c
SS
1384{
1385 switch (inst >> 26)
1386 {
1387 case 0x20:
1388 case 0x21:
1389 case 0x22:
1390 case 0x23:
7be570e7 1391 case 0x27:
c906108c
SS
1392 case 0x28:
1393 case 0x29:
1394 case 0x2a:
1395 case 0x2b:
7be570e7 1396 case 0x2f:
c906108c
SS
1397 case 0x30:
1398 case 0x31:
1399 case 0x32:
1400 case 0x33:
1401 case 0x38:
1402 case 0x39:
1403 case 0x3a:
7be570e7 1404 case 0x3b:
c906108c
SS
1405 return 1;
1406
1407 default:
1408 return 0;
1409 }
1410}
1411
1412/* Return the register number for a GR which is saved by INST or
b35018fd 1413 zero if INST does not save a GR.
c906108c 1414
b35018fd 1415 Referenced from:
7be570e7 1416
b35018fd
CG
1417 parisc 1.1:
1418 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
c906108c 1419
b35018fd
CG
1420 parisc 2.0:
1421 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
c906108c 1422
b35018fd
CG
1423 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1424 on page 106 in parisc 2.0, all instructions for storing values from
1425 the general registers are:
c5aa993b 1426
b35018fd
CG
1427 Store: stb, sth, stw, std (according to Chapter 7, they
1428 are only in both "inst >> 26" and "inst >> 6".
1429 Store Absolute: stwa, stda (according to Chapter 7, they are only
1430 in "inst >> 6".
1431 Store Bytes: stby, stdby (according to Chapter 7, they are
1432 only in "inst >> 6").
1433
1434 For (inst >> 26), according to Chapter 7:
1435
1436 The effective memory reference address is formed by the addition
1437 of an immediate displacement to a base value.
1438
1439 - stb: 0x18, store a byte from a general register.
1440
1441 - sth: 0x19, store a halfword from a general register.
1442
1443 - stw: 0x1a, store a word from a general register.
1444
1445 - stwm: 0x1b, store a word from a general register and perform base
1446 register modification (2.0 will still treate it as stw).
1447
1448 - std: 0x1c, store a doubleword from a general register (2.0 only).
1449
1450 - stw: 0x1f, store a word from a general register (2.0 only).
1451
1452 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1453
1454 The effective memory reference address is formed by the addition
1455 of an index value to a base value specified in the instruction.
1456
1457 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1458
1459 - sth: 0x09, store a halfword from a general register (1.1 calls
1460 sths).
1461
1462 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1463
1464 - std: 0x0b: store a doubleword from a general register (2.0 only)
1465
1466 Implement fast byte moves (stores) to unaligned word or doubleword
1467 destination.
1468
1469 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1470
1471 - stdby: 0x0d for unaligned doubleword (2.0 only).
1472
1473 Store a word or doubleword using an absolute memory address formed
1474 using short or long displacement or indexed
1475
1476 - stwa: 0x0e, store a word from a general register to an absolute
1477 address (1.0 calls stwas).
1478
1479 - stda: 0x0f, store a doubleword from a general register to an
1480 absolute address (2.0 only). */
1481
1482static int
1483inst_saves_gr (unsigned long inst)
1484{
1485 switch ((inst >> 26) & 0x0f)
1486 {
1487 case 0x03:
1488 switch ((inst >> 6) & 0x0f)
1489 {
1490 case 0x08:
1491 case 0x09:
1492 case 0x0a:
1493 case 0x0b:
1494 case 0x0c:
1495 case 0x0d:
1496 case 0x0e:
1497 case 0x0f:
1498 return hppa_extract_5R_store (inst);
1499 default:
1500 return 0;
1501 }
1502 case 0x18:
1503 case 0x19:
1504 case 0x1a:
1505 case 0x1b:
1506 case 0x1c:
1507 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1508 case 0x1f:
1509 return hppa_extract_5R_store (inst);
1510 default:
1511 return 0;
1512 }
c906108c
SS
1513}
1514
1515/* Return the register number for a FR which is saved by INST or
1516 zero it INST does not save a FR.
1517
1518 Note we only care about full 64bit register stores (that's the only
1519 kind of stores the prologue will use).
1520
1521 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1522
1523static int
fba45db2 1524inst_saves_fr (unsigned long inst)
c906108c 1525{
1777feb0 1526 /* Is this an FSTD? */
c906108c 1527 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1528 return hppa_extract_5r_store (inst);
7be570e7 1529 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1530 return hppa_extract_5R_store (inst);
1777feb0 1531 /* Is this an FSTW? */
c906108c 1532 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1533 return hppa_extract_5r_store (inst);
7be570e7 1534 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1535 return hppa_extract_5R_store (inst);
c906108c
SS
1536 return 0;
1537}
1538
1539/* Advance PC across any function entry prologue instructions
1777feb0 1540 to reach some "real" code.
c906108c
SS
1541
1542 Use information in the unwind table to determine what exactly should
1543 be in the prologue. */
1544
1545
a71f8c30 1546static CORE_ADDR
be8626e0
MD
1547skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1548 int stop_before_branch)
c906108c 1549{
e17a4113 1550 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e362b510 1551 gdb_byte buf[4];
c906108c
SS
1552 CORE_ADDR orig_pc = pc;
1553 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1554 unsigned long args_stored, status, i, restart_gr, restart_fr;
1555 struct unwind_table_entry *u;
a71f8c30 1556 int final_iteration;
c906108c
SS
1557
1558 restart_gr = 0;
1559 restart_fr = 0;
1560
1561restart:
1562 u = find_unwind_entry (pc);
1563 if (!u)
1564 return pc;
1565
1777feb0 1566 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1567 if ((pc & ~0x3) != u->region_start)
1568 return pc;
1569
1570 /* This is how much of a frame adjustment we need to account for. */
1571 stack_remaining = u->Total_frame_size << 3;
1572
1573 /* Magic register saves we want to know about. */
1574 save_rp = u->Save_RP;
1575 save_sp = u->Save_SP;
1576
1577 /* An indication that args may be stored into the stack. Unfortunately
1578 the HPUX compilers tend to set this in cases where no args were
1579 stored too!. */
1580 args_stored = 1;
1581
1582 /* Turn the Entry_GR field into a bitmask. */
1583 save_gr = 0;
1584 for (i = 3; i < u->Entry_GR + 3; i++)
1585 {
1586 /* Frame pointer gets saved into a special location. */
eded0a31 1587 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1588 continue;
1589
1590 save_gr |= (1 << i);
1591 }
1592 save_gr &= ~restart_gr;
1593
1594 /* Turn the Entry_FR field into a bitmask too. */
1595 save_fr = 0;
1596 for (i = 12; i < u->Entry_FR + 12; i++)
1597 save_fr |= (1 << i);
1598 save_fr &= ~restart_fr;
1599
a71f8c30
RC
1600 final_iteration = 0;
1601
c906108c
SS
1602 /* Loop until we find everything of interest or hit a branch.
1603
1604 For unoptimized GCC code and for any HP CC code this will never ever
1605 examine any user instructions.
1606
1607 For optimzied GCC code we're faced with problems. GCC will schedule
1608 its prologue and make prologue instructions available for delay slot
1609 filling. The end result is user code gets mixed in with the prologue
1610 and a prologue instruction may be in the delay slot of the first branch
1611 or call.
1612
1613 Some unexpected things are expected with debugging optimized code, so
1614 we allow this routine to walk past user instructions in optimized
1615 GCC code. */
1616 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1617 || args_stored)
1618 {
1619 unsigned int reg_num;
1620 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1621 unsigned long old_save_rp, old_save_sp, next_inst;
1622
1623 /* Save copies of all the triggers so we can compare them later
c5aa993b 1624 (only for HPC). */
c906108c
SS
1625 old_save_gr = save_gr;
1626 old_save_fr = save_fr;
1627 old_save_rp = save_rp;
1628 old_save_sp = save_sp;
1629 old_stack_remaining = stack_remaining;
1630
8defab1a 1631 status = target_read_memory (pc, buf, 4);
e17a4113 1632 inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1633
c906108c
SS
1634 /* Yow! */
1635 if (status != 0)
1636 return pc;
1637
1638 /* Note the interesting effects of this instruction. */
1639 stack_remaining -= prologue_inst_adjust_sp (inst);
1640
7be570e7
JM
1641 /* There are limited ways to store the return pointer into the
1642 stack. */
c4c79048 1643 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
c906108c
SS
1644 save_rp = 0;
1645
104c1213 1646 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1647 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1648 if ((inst & 0xffffc000) == 0x6fc10000
1649 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1650 save_sp = 0;
1651
6426a772
JM
1652 /* Are we loading some register with an offset from the argument
1653 pointer? */
1654 if ((inst & 0xffe00000) == 0x37a00000
1655 || (inst & 0xffffffe0) == 0x081d0240)
1656 {
1657 pc += 4;
1658 continue;
1659 }
1660
c906108c
SS
1661 /* Account for general and floating-point register saves. */
1662 reg_num = inst_saves_gr (inst);
1663 save_gr &= ~(1 << reg_num);
1664
1665 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1666 Unfortunately args_stored only tells us that some arguments
1667 where stored into the stack. Not how many or what kind!
c906108c 1668
c5aa993b
JM
1669 This is a kludge as on the HP compiler sets this bit and it
1670 never does prologue scheduling. So once we see one, skip past
1671 all of them. We have similar code for the fp arg stores below.
c906108c 1672
c5aa993b
JM
1673 FIXME. Can still die if we have a mix of GR and FR argument
1674 stores! */
be8626e0 1675 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1676 && reg_num <= 26)
c906108c 1677 {
be8626e0 1678 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1679 && reg_num <= 26)
c906108c
SS
1680 {
1681 pc += 4;
8defab1a 1682 status = target_read_memory (pc, buf, 4);
e17a4113 1683 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1684 if (status != 0)
1685 return pc;
1686 reg_num = inst_saves_gr (inst);
1687 }
1688 args_stored = 0;
1689 continue;
1690 }
1691
1692 reg_num = inst_saves_fr (inst);
1693 save_fr &= ~(1 << reg_num);
1694
8defab1a 1695 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1696 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1697
c906108c
SS
1698 /* Yow! */
1699 if (status != 0)
1700 return pc;
1701
1702 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1703 save. */
c906108c
SS
1704 if ((inst & 0xfc000000) == 0x34000000
1705 && inst_saves_fr (next_inst) >= 4
819844ad 1706 && inst_saves_fr (next_inst)
be8626e0 1707 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1708 {
1709 /* So we drop into the code below in a reasonable state. */
1710 reg_num = inst_saves_fr (next_inst);
1711 pc -= 4;
1712 }
1713
1714 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1715 This is a kludge as on the HP compiler sets this bit and it
1716 never does prologue scheduling. So once we see one, skip past
1717 all of them. */
819844ad 1718 if (reg_num >= 4
be8626e0 1719 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c 1720 {
819844ad
UW
1721 while (reg_num >= 4
1722 && reg_num
be8626e0 1723 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1724 {
1725 pc += 8;
8defab1a 1726 status = target_read_memory (pc, buf, 4);
e17a4113 1727 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1728 if (status != 0)
1729 return pc;
1730 if ((inst & 0xfc000000) != 0x34000000)
1731 break;
8defab1a 1732 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1733 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1734 if (status != 0)
1735 return pc;
1736 reg_num = inst_saves_fr (next_inst);
1737 }
1738 args_stored = 0;
1739 continue;
1740 }
1741
1742 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1743 instruction is in the delay slot of the first call/branch. */
a71f8c30 1744 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1745 break;
1746
1747 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1748 arguments were stored into the stack (boo hiss). This could
1749 cause this code to then skip a bunch of user insns (up to the
1750 first branch).
1751
1752 To combat this we try to identify when args_stored was bogusly
1753 set and clear it. We only do this when args_stored is nonzero,
1754 all other resources are accounted for, and nothing changed on
1755 this pass. */
c906108c 1756 if (args_stored
c5aa993b 1757 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1758 && old_save_gr == save_gr && old_save_fr == save_fr
1759 && old_save_rp == save_rp && old_save_sp == save_sp
1760 && old_stack_remaining == stack_remaining)
1761 break;
c5aa993b 1762
c906108c
SS
1763 /* Bump the PC. */
1764 pc += 4;
a71f8c30
RC
1765
1766 /* !stop_before_branch, so also look at the insn in the delay slot
1767 of the branch. */
1768 if (final_iteration)
1769 break;
1770 if (is_branch (inst))
1771 final_iteration = 1;
c906108c
SS
1772 }
1773
1774 /* We've got a tenative location for the end of the prologue. However
1775 because of limitations in the unwind descriptor mechanism we may
1776 have went too far into user code looking for the save of a register
1777 that does not exist. So, if there registers we expected to be saved
1778 but never were, mask them out and restart.
1779
1780 This should only happen in optimized code, and should be very rare. */
c5aa993b 1781 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1782 {
1783 pc = orig_pc;
1784 restart_gr = save_gr;
1785 restart_fr = save_fr;
1786 goto restart;
1787 }
1788
1789 return pc;
1790}
1791
1792
7be570e7
JM
1793/* Return the address of the PC after the last prologue instruction if
1794 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1795
1796static CORE_ADDR
fba45db2 1797after_prologue (CORE_ADDR pc)
c906108c
SS
1798{
1799 struct symtab_and_line sal;
1800 CORE_ADDR func_addr, func_end;
c906108c 1801
7be570e7
JM
1802 /* If we can not find the symbol in the partial symbol table, then
1803 there is no hope we can determine the function's start address
1804 with this code. */
c906108c 1805 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1806 return 0;
c906108c 1807
7be570e7 1808 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1809 sal = find_pc_line (func_addr, 0);
1810
7be570e7
JM
1811 /* There are only two cases to consider. First, the end of the source line
1812 is within the function bounds. In that case we return the end of the
1813 source line. Second is the end of the source line extends beyond the
1814 bounds of the current function. We need to use the slow code to
1777feb0 1815 examine instructions in that case.
c906108c 1816
7be570e7
JM
1817 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1818 the wrong thing to do. In fact, it should be entirely possible for this
1819 function to always return zero since the slow instruction scanning code
1820 is supposed to *always* work. If it does not, then it is a bug. */
1821 if (sal.end < func_end)
1822 return sal.end;
c5aa993b 1823 else
7be570e7 1824 return 0;
c906108c
SS
1825}
1826
1827/* To skip prologues, I use this predicate. Returns either PC itself
1828 if the code at PC does not look like a function prologue; otherwise
1777feb0 1829 returns an address that (if we're lucky) follows the prologue.
a71f8c30
RC
1830
1831 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1777feb0 1832 It doesn't necessarily skips all the insns in the prologue. In fact
a71f8c30
RC
1833 we might not want to skip all the insns because a prologue insn may
1834 appear in the delay slot of the first branch, and we don't want to
1835 skip over the branch in that case. */
c906108c 1836
8d153463 1837static CORE_ADDR
6093d2eb 1838hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1839{
c5aa993b 1840 CORE_ADDR post_prologue_pc;
c906108c 1841
c5aa993b
JM
1842 /* See if we can determine the end of the prologue via the symbol table.
1843 If so, then return either PC, or the PC after the prologue, whichever
1844 is greater. */
c906108c 1845
c5aa993b 1846 post_prologue_pc = after_prologue (pc);
c906108c 1847
7be570e7
JM
1848 /* If after_prologue returned a useful address, then use it. Else
1849 fall back on the instruction skipping code.
1850
1851 Some folks have claimed this causes problems because the breakpoint
1852 may be the first instruction of the prologue. If that happens, then
1853 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1854 if (post_prologue_pc != 0)
1855 return max (pc, post_prologue_pc);
c5aa993b 1856 else
be8626e0 1857 return (skip_prologue_hard_way (gdbarch, pc, 1));
c906108c
SS
1858}
1859
29d375ac 1860/* Return an unwind entry that falls within the frame's code block. */
227e86ad 1861
29d375ac 1862static struct unwind_table_entry *
227e86ad 1863hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
29d375ac 1864{
227e86ad 1865 CORE_ADDR pc = get_frame_address_in_block (this_frame);
93d42b30
DJ
1866
1867 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
ad1193e7 1868 result of get_frame_address_in_block implies a problem.
93d42b30 1869 The bits should have been removed earlier, before the return
c7ce8faa 1870 value of gdbarch_unwind_pc. That might be happening already;
93d42b30
DJ
1871 if it isn't, it should be fixed. Then this call can be
1872 removed. */
227e86ad 1873 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
29d375ac
RC
1874 return find_unwind_entry (pc);
1875}
1876
26d08f08
AC
1877struct hppa_frame_cache
1878{
1879 CORE_ADDR base;
1880 struct trad_frame_saved_reg *saved_regs;
1881};
1882
1883static struct hppa_frame_cache *
227e86ad 1884hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
26d08f08 1885{
227e86ad 1886 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1887 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1888 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
26d08f08
AC
1889 struct hppa_frame_cache *cache;
1890 long saved_gr_mask;
1891 long saved_fr_mask;
26d08f08
AC
1892 long frame_size;
1893 struct unwind_table_entry *u;
9f7194c3 1894 CORE_ADDR prologue_end;
50b2f48a 1895 int fp_in_r1 = 0;
26d08f08
AC
1896 int i;
1897
369aa520
RC
1898 if (hppa_debug)
1899 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
227e86ad 1900 frame_relative_level(this_frame));
369aa520 1901
26d08f08 1902 if ((*this_cache) != NULL)
369aa520
RC
1903 {
1904 if (hppa_debug)
5af949e3
UW
1905 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1906 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
369aa520
RC
1907 return (*this_cache);
1908 }
26d08f08
AC
1909 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1910 (*this_cache) = cache;
227e86ad 1911 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
26d08f08
AC
1912
1913 /* Yow! */
227e86ad 1914 u = hppa_find_unwind_entry_in_block (this_frame);
26d08f08 1915 if (!u)
369aa520
RC
1916 {
1917 if (hppa_debug)
1918 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1919 return (*this_cache);
1920 }
26d08f08
AC
1921
1922 /* Turn the Entry_GR field into a bitmask. */
1923 saved_gr_mask = 0;
1924 for (i = 3; i < u->Entry_GR + 3; i++)
1925 {
1926 /* Frame pointer gets saved into a special location. */
eded0a31 1927 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1928 continue;
1929
1930 saved_gr_mask |= (1 << i);
1931 }
1932
1933 /* Turn the Entry_FR field into a bitmask too. */
1934 saved_fr_mask = 0;
1935 for (i = 12; i < u->Entry_FR + 12; i++)
1936 saved_fr_mask |= (1 << i);
1937
1938 /* Loop until we find everything of interest or hit a branch.
1939
1940 For unoptimized GCC code and for any HP CC code this will never ever
1941 examine any user instructions.
1942
1943 For optimized GCC code we're faced with problems. GCC will schedule
1944 its prologue and make prologue instructions available for delay slot
1945 filling. The end result is user code gets mixed in with the prologue
1946 and a prologue instruction may be in the delay slot of the first branch
1947 or call.
1948
1949 Some unexpected things are expected with debugging optimized code, so
1950 we allow this routine to walk past user instructions in optimized
1951 GCC code. */
1952 {
1953 int final_iteration = 0;
46acf081 1954 CORE_ADDR pc, start_pc, end_pc;
26d08f08
AC
1955 int looking_for_sp = u->Save_SP;
1956 int looking_for_rp = u->Save_RP;
1957 int fp_loc = -1;
9f7194c3 1958
a71f8c30 1959 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1960 skip_prologue_using_sal, in case we stepped into a function without
1961 symbol information. hppa_skip_prologue also bounds the returned
1962 pc by the passed in pc, so it will not return a pc in the next
1777feb0 1963 function.
a71f8c30
RC
1964
1965 We used to call hppa_skip_prologue to find the end of the prologue,
1966 but if some non-prologue instructions get scheduled into the prologue,
1967 and the program is compiled with debug information, the "easy" way
1968 in hppa_skip_prologue will return a prologue end that is too early
1969 for us to notice any potential frame adjustments. */
d5c27f81 1970
ef02daa9
DJ
1971 /* We used to use get_frame_func to locate the beginning of the
1972 function to pass to skip_prologue. However, when objects are
1973 compiled without debug symbols, get_frame_func can return the wrong
1777feb0 1974 function (or 0). We can do better than that by using unwind records.
46acf081 1975 This only works if the Region_description of the unwind record
1777feb0 1976 indicates that it includes the entry point of the function.
46acf081
RC
1977 HP compilers sometimes generate unwind records for regions that
1978 do not include the entry or exit point of a function. GNU tools
1979 do not do this. */
1980
1981 if ((u->Region_description & 0x2) == 0)
1982 start_pc = u->region_start;
1983 else
227e86ad 1984 start_pc = get_frame_func (this_frame);
d5c27f81 1985
be8626e0 1986 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
227e86ad 1987 end_pc = get_frame_pc (this_frame);
9f7194c3
RC
1988
1989 if (prologue_end != 0 && end_pc > prologue_end)
1990 end_pc = prologue_end;
1991
26d08f08 1992 frame_size = 0;
9f7194c3 1993
46acf081 1994 for (pc = start_pc;
26d08f08
AC
1995 ((saved_gr_mask || saved_fr_mask
1996 || looking_for_sp || looking_for_rp
1997 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1998 && pc < end_pc);
26d08f08
AC
1999 pc += 4)
2000 {
2001 int reg;
e362b510 2002 gdb_byte buf4[4];
4a302917
RC
2003 long inst;
2004
227e86ad 2005 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
4a302917 2006 {
5af949e3
UW
2007 error (_("Cannot read instruction at %s."),
2008 paddress (gdbarch, pc));
4a302917
RC
2009 return (*this_cache);
2010 }
2011
e17a4113 2012 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
9f7194c3 2013
26d08f08
AC
2014 /* Note the interesting effects of this instruction. */
2015 frame_size += prologue_inst_adjust_sp (inst);
2016
2017 /* There are limited ways to store the return pointer into the
2018 stack. */
2019 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2020 {
2021 looking_for_rp = 0;
34f75cc1 2022 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 2023 }
dfaf8edb
MK
2024 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2025 {
2026 looking_for_rp = 0;
2027 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2028 }
c4c79048
RC
2029 else if (inst == 0x0fc212c1
2030 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
26d08f08
AC
2031 {
2032 looking_for_rp = 0;
34f75cc1 2033 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
2034 }
2035
2036 /* Check to see if we saved SP into the stack. This also
2037 happens to indicate the location of the saved frame
2038 pointer. */
2039 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2040 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2041 {
2042 looking_for_sp = 0;
eded0a31 2043 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 2044 }
50b2f48a
RC
2045 else if (inst == 0x08030241) /* copy %r3, %r1 */
2046 {
2047 fp_in_r1 = 1;
2048 }
26d08f08
AC
2049
2050 /* Account for general and floating-point register saves. */
2051 reg = inst_saves_gr (inst);
2052 if (reg >= 3 && reg <= 18
eded0a31 2053 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
2054 {
2055 saved_gr_mask &= ~(1 << reg);
abc485a1 2056 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
2057 /* stwm with a positive displacement is a _post_
2058 _modify_. */
2059 cache->saved_regs[reg].addr = 0;
2060 else if ((inst & 0xfc00000c) == 0x70000008)
2061 /* A std has explicit post_modify forms. */
2062 cache->saved_regs[reg].addr = 0;
2063 else
2064 {
2065 CORE_ADDR offset;
2066
2067 if ((inst >> 26) == 0x1c)
1777feb0
MS
2068 offset = (inst & 0x1 ? -1 << 13 : 0)
2069 | (((inst >> 4) & 0x3ff) << 3);
26d08f08 2070 else if ((inst >> 26) == 0x03)
abc485a1 2071 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 2072 else
abc485a1 2073 offset = hppa_extract_14 (inst);
26d08f08
AC
2074
2075 /* Handle code with and without frame pointers. */
2076 if (u->Save_SP)
2077 cache->saved_regs[reg].addr = offset;
2078 else
1777feb0
MS
2079 cache->saved_regs[reg].addr
2080 = (u->Total_frame_size << 3) + offset;
26d08f08
AC
2081 }
2082 }
2083
2084 /* GCC handles callee saved FP regs a little differently.
2085
2086 It emits an instruction to put the value of the start of
2087 the FP store area into %r1. It then uses fstds,ma with a
2088 basereg of %r1 for the stores.
2089
2090 HP CC emits them at the current stack pointer modifying the
2091 stack pointer as it stores each register. */
2092
2093 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2094 if ((inst & 0xffffc000) == 0x34610000
2095 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 2096 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
2097
2098 reg = inst_saves_fr (inst);
2099 if (reg >= 12 && reg <= 21)
2100 {
2101 /* Note +4 braindamage below is necessary because the FP
2102 status registers are internally 8 registers rather than
2103 the expected 4 registers. */
2104 saved_fr_mask &= ~(1 << reg);
2105 if (fp_loc == -1)
2106 {
2107 /* 1st HP CC FP register store. After this
2108 instruction we've set enough state that the GCC and
2109 HPCC code are both handled in the same manner. */
34f75cc1 2110 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
2111 fp_loc = 8;
2112 }
2113 else
2114 {
eded0a31 2115 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
2116 fp_loc += 8;
2117 }
2118 }
2119
1777feb0 2120 /* Quit if we hit any kind of branch the previous iteration. */
26d08f08
AC
2121 if (final_iteration)
2122 break;
2123 /* We want to look precisely one instruction beyond the branch
2124 if we have not found everything yet. */
2125 if (is_branch (inst))
2126 final_iteration = 1;
2127 }
2128 }
2129
2130 {
2131 /* The frame base always represents the value of %sp at entry to
2132 the current function (and is thus equivalent to the "saved"
2133 stack pointer. */
227e86ad
JB
2134 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2135 HPPA_SP_REGNUM);
ed70ba00 2136 CORE_ADDR fp;
9f7194c3
RC
2137
2138 if (hppa_debug)
5af949e3
UW
2139 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2140 "prologue_end=%s) ",
2141 paddress (gdbarch, this_sp),
2142 paddress (gdbarch, get_frame_pc (this_frame)),
2143 paddress (gdbarch, prologue_end));
9f7194c3 2144
ed70ba00
RC
2145 /* Check to see if a frame pointer is available, and use it for
2146 frame unwinding if it is.
2147
2148 There are some situations where we need to rely on the frame
2149 pointer to do stack unwinding. For example, if a function calls
2150 alloca (), the stack pointer can get adjusted inside the body of
2151 the function. In this case, the ABI requires that the compiler
2152 maintain a frame pointer for the function.
2153
2154 The unwind record has a flag (alloca_frame) that indicates that
2155 a function has a variable frame; unfortunately, gcc/binutils
2156 does not set this flag. Instead, whenever a frame pointer is used
2157 and saved on the stack, the Save_SP flag is set. We use this to
2158 decide whether to use the frame pointer for unwinding.
2159
ed70ba00
RC
2160 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2161 instead of Save_SP. */
2162
227e86ad 2163 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
46acf081 2164
6fcecea0 2165 if (u->alloca_frame)
46acf081 2166 fp -= u->Total_frame_size << 3;
ed70ba00 2167
227e86ad 2168 if (get_frame_pc (this_frame) >= prologue_end
6fcecea0 2169 && (u->Save_SP || u->alloca_frame) && fp != 0)
ed70ba00
RC
2170 {
2171 cache->base = fp;
2172
2173 if (hppa_debug)
5af949e3
UW
2174 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2175 paddress (gdbarch, cache->base));
ed70ba00 2176 }
1658da49
RC
2177 else if (u->Save_SP
2178 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 2179 {
9f7194c3
RC
2180 /* Both we're expecting the SP to be saved and the SP has been
2181 saved. The entry SP value is saved at this frame's SP
2182 address. */
e17a4113 2183 cache->base = read_memory_integer (this_sp, word_size, byte_order);
9f7194c3
RC
2184
2185 if (hppa_debug)
5af949e3
UW
2186 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2187 paddress (gdbarch, cache->base));
9f7194c3 2188 }
26d08f08 2189 else
9f7194c3 2190 {
1658da49
RC
2191 /* The prologue has been slowly allocating stack space. Adjust
2192 the SP back. */
2193 cache->base = this_sp - frame_size;
9f7194c3 2194 if (hppa_debug)
5af949e3
UW
2195 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2196 paddress (gdbarch, cache->base));
9f7194c3
RC
2197
2198 }
eded0a31 2199 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
2200 }
2201
412275d5
AC
2202 /* The PC is found in the "return register", "Millicode" uses "r31"
2203 as the return register while normal code uses "rp". */
26d08f08 2204 if (u->Millicode)
9f7194c3 2205 {
5859efe5 2206 if (trad_frame_addr_p (cache->saved_regs, 31))
9ed5ba24
RC
2207 {
2208 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2209 if (hppa_debug)
2210 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2211 }
9f7194c3
RC
2212 else
2213 {
227e86ad 2214 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
34f75cc1 2215 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9ed5ba24
RC
2216 if (hppa_debug)
2217 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
9f7194c3
RC
2218 }
2219 }
26d08f08 2220 else
9f7194c3 2221 {
34f75cc1 2222 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
9ed5ba24
RC
2223 {
2224 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2225 cache->saved_regs[HPPA_RP_REGNUM];
2226 if (hppa_debug)
2227 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2228 }
9f7194c3
RC
2229 else
2230 {
227e86ad
JB
2231 ULONGEST rp = get_frame_register_unsigned (this_frame,
2232 HPPA_RP_REGNUM);
34f75cc1 2233 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9ed5ba24
RC
2234 if (hppa_debug)
2235 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
9f7194c3
RC
2236 }
2237 }
26d08f08 2238
50b2f48a
RC
2239 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2240 frame. However, there is a one-insn window where we haven't saved it
2241 yet, but we've already clobbered it. Detect this case and fix it up.
2242
2243 The prologue sequence for frame-pointer functions is:
2244 0: stw %rp, -20(%sp)
2245 4: copy %r3, %r1
2246 8: copy %sp, %r3
2247 c: stw,ma %r1, XX(%sp)
2248
2249 So if we are at offset c, the r3 value that we want is not yet saved
2250 on the stack, but it's been overwritten. The prologue analyzer will
2251 set fp_in_r1 when it sees the copy insn so we know to get the value
2252 from r1 instead. */
2253 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2254 && fp_in_r1)
2255 {
227e86ad 2256 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
50b2f48a
RC
2257 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2258 }
1658da49 2259
26d08f08
AC
2260 {
2261 /* Convert all the offsets into addresses. */
2262 int reg;
65c5db89 2263 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
26d08f08
AC
2264 {
2265 if (trad_frame_addr_p (cache->saved_regs, reg))
2266 cache->saved_regs[reg].addr += cache->base;
2267 }
2268 }
2269
f77a2124 2270 {
f77a2124
RC
2271 struct gdbarch_tdep *tdep;
2272
f77a2124
RC
2273 tdep = gdbarch_tdep (gdbarch);
2274
2275 if (tdep->unwind_adjust_stub)
227e86ad 2276 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
f77a2124
RC
2277 }
2278
369aa520 2279 if (hppa_debug)
5af949e3
UW
2280 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2281 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
26d08f08
AC
2282 return (*this_cache);
2283}
2284
2285static void
227e86ad
JB
2286hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2287 struct frame_id *this_id)
26d08f08 2288{
d5c27f81 2289 struct hppa_frame_cache *info;
227e86ad 2290 CORE_ADDR pc = get_frame_pc (this_frame);
d5c27f81
RC
2291 struct unwind_table_entry *u;
2292
227e86ad
JB
2293 info = hppa_frame_cache (this_frame, this_cache);
2294 u = hppa_find_unwind_entry_in_block (this_frame);
d5c27f81
RC
2295
2296 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
2297}
2298
227e86ad
JB
2299static struct value *
2300hppa_frame_prev_register (struct frame_info *this_frame,
2301 void **this_cache, int regnum)
26d08f08 2302{
227e86ad
JB
2303 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2304
1777feb0
MS
2305 return hppa_frame_prev_register_helper (this_frame,
2306 info->saved_regs, regnum);
227e86ad
JB
2307}
2308
2309static int
2310hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2311 struct frame_info *this_frame, void **this_cache)
2312{
2313 if (hppa_find_unwind_entry_in_block (this_frame))
2314 return 1;
2315
2316 return 0;
0da28f8a
RC
2317}
2318
2319static const struct frame_unwind hppa_frame_unwind =
2320{
2321 NORMAL_FRAME,
8fbca658 2322 default_frame_unwind_stop_reason,
0da28f8a 2323 hppa_frame_this_id,
227e86ad
JB
2324 hppa_frame_prev_register,
2325 NULL,
2326 hppa_frame_unwind_sniffer
0da28f8a
RC
2327};
2328
0da28f8a
RC
2329/* This is a generic fallback frame unwinder that kicks in if we fail all
2330 the other ones. Normally we would expect the stub and regular unwinder
2331 to work, but in some cases we might hit a function that just doesn't
2332 have any unwind information available. In this case we try to do
2333 unwinding solely based on code reading. This is obviously going to be
2334 slow, so only use this as a last resort. Currently this will only
2335 identify the stack and pc for the frame. */
2336
2337static struct hppa_frame_cache *
227e86ad 2338hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
0da28f8a 2339{
e17a4113
UW
2340 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2341 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0da28f8a 2342 struct hppa_frame_cache *cache;
4ba6a975
MK
2343 unsigned int frame_size = 0;
2344 int found_rp = 0;
2345 CORE_ADDR start_pc;
0da28f8a 2346
d5c27f81 2347 if (hppa_debug)
4ba6a975
MK
2348 fprintf_unfiltered (gdb_stdlog,
2349 "{ hppa_fallback_frame_cache (frame=%d) -> ",
227e86ad 2350 frame_relative_level (this_frame));
d5c27f81 2351
0da28f8a
RC
2352 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2353 (*this_cache) = cache;
227e86ad 2354 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
0da28f8a 2355
227e86ad 2356 start_pc = get_frame_func (this_frame);
4ba6a975 2357 if (start_pc)
0da28f8a 2358 {
227e86ad 2359 CORE_ADDR cur_pc = get_frame_pc (this_frame);
4ba6a975 2360 CORE_ADDR pc;
0da28f8a 2361
4ba6a975
MK
2362 for (pc = start_pc; pc < cur_pc; pc += 4)
2363 {
2364 unsigned int insn;
0da28f8a 2365
e17a4113 2366 insn = read_memory_unsigned_integer (pc, 4, byte_order);
4ba6a975 2367 frame_size += prologue_inst_adjust_sp (insn);
6d1be3f1 2368
4ba6a975
MK
2369 /* There are limited ways to store the return pointer into the
2370 stack. */
2371 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2372 {
2373 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2374 found_rp = 1;
2375 }
c4c79048
RC
2376 else if (insn == 0x0fc212c1
2377 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
4ba6a975
MK
2378 {
2379 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2380 found_rp = 1;
2381 }
2382 }
412275d5 2383 }
0da28f8a 2384
d5c27f81 2385 if (hppa_debug)
4ba6a975
MK
2386 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2387 frame_size, found_rp);
d5c27f81 2388
227e86ad 2389 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
4ba6a975 2390 cache->base -= frame_size;
6d1be3f1 2391 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2392
2393 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2394 {
2395 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
4ba6a975
MK
2396 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2397 cache->saved_regs[HPPA_RP_REGNUM];
0da28f8a 2398 }
412275d5
AC
2399 else
2400 {
4ba6a975 2401 ULONGEST rp;
227e86ad 2402 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
0da28f8a 2403 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2404 }
0da28f8a
RC
2405
2406 return cache;
26d08f08
AC
2407}
2408
0da28f8a 2409static void
227e86ad 2410hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
0da28f8a
RC
2411 struct frame_id *this_id)
2412{
2413 struct hppa_frame_cache *info =
227e86ad
JB
2414 hppa_fallback_frame_cache (this_frame, this_cache);
2415
2416 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
0da28f8a
RC
2417}
2418
227e86ad
JB
2419static struct value *
2420hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2421 void **this_cache, int regnum)
0da28f8a 2422{
1777feb0
MS
2423 struct hppa_frame_cache *info
2424 = hppa_fallback_frame_cache (this_frame, this_cache);
227e86ad 2425
1777feb0
MS
2426 return hppa_frame_prev_register_helper (this_frame,
2427 info->saved_regs, regnum);
0da28f8a
RC
2428}
2429
2430static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2431{
2432 NORMAL_FRAME,
8fbca658 2433 default_frame_unwind_stop_reason,
0da28f8a 2434 hppa_fallback_frame_this_id,
227e86ad
JB
2435 hppa_fallback_frame_prev_register,
2436 NULL,
2437 default_frame_sniffer
26d08f08
AC
2438};
2439
7f07c5b6
RC
2440/* Stub frames, used for all kinds of call stubs. */
2441struct hppa_stub_unwind_cache
2442{
2443 CORE_ADDR base;
2444 struct trad_frame_saved_reg *saved_regs;
2445};
2446
2447static struct hppa_stub_unwind_cache *
227e86ad 2448hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
7f07c5b6
RC
2449 void **this_cache)
2450{
227e86ad 2451 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7f07c5b6 2452 struct hppa_stub_unwind_cache *info;
22b0923d 2453 struct unwind_table_entry *u;
7f07c5b6
RC
2454
2455 if (*this_cache)
2456 return *this_cache;
2457
2458 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2459 *this_cache = info;
227e86ad 2460 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
7f07c5b6 2461
227e86ad 2462 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
7f07c5b6 2463
090ccbb7 2464 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
22b0923d
RC
2465 {
2466 /* HPUX uses export stubs in function calls; the export stub clobbers
2467 the return value of the caller, and, later restores it from the
2468 stack. */
227e86ad 2469 u = find_unwind_entry (get_frame_pc (this_frame));
22b0923d
RC
2470
2471 if (u && u->stub_unwind.stub_type == EXPORT)
2472 {
2473 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2474
2475 return info;
2476 }
2477 }
2478
2479 /* By default we assume that stubs do not change the rp. */
2480 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2481
7f07c5b6
RC
2482 return info;
2483}
2484
2485static void
227e86ad 2486hppa_stub_frame_this_id (struct frame_info *this_frame,
7f07c5b6
RC
2487 void **this_prologue_cache,
2488 struct frame_id *this_id)
2489{
2490 struct hppa_stub_unwind_cache *info
227e86ad 2491 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57
RC
2492
2493 if (info)
227e86ad 2494 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
7f07c5b6
RC
2495}
2496
227e86ad
JB
2497static struct value *
2498hppa_stub_frame_prev_register (struct frame_info *this_frame,
2499 void **this_prologue_cache, int regnum)
7f07c5b6
RC
2500{
2501 struct hppa_stub_unwind_cache *info
227e86ad 2502 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57 2503
227e86ad 2504 if (info == NULL)
8a3fe4f8 2505 error (_("Requesting registers from null frame."));
7f07c5b6 2506
1777feb0
MS
2507 return hppa_frame_prev_register_helper (this_frame,
2508 info->saved_regs, regnum);
227e86ad 2509}
7f07c5b6 2510
227e86ad
JB
2511static int
2512hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2513 struct frame_info *this_frame,
2514 void **this_cache)
7f07c5b6 2515{
227e86ad
JB
2516 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2517 struct gdbarch *gdbarch = get_frame_arch (this_frame);
84674fe1 2518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2519
6d1be3f1 2520 if (pc == 0
84674fe1 2521 || (tdep->in_solib_call_trampoline != NULL
3e5d3a5a 2522 && tdep->in_solib_call_trampoline (gdbarch, pc))
464963c9 2523 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
227e86ad
JB
2524 return 1;
2525 return 0;
7f07c5b6
RC
2526}
2527
227e86ad
JB
2528static const struct frame_unwind hppa_stub_frame_unwind = {
2529 NORMAL_FRAME,
8fbca658 2530 default_frame_unwind_stop_reason,
227e86ad
JB
2531 hppa_stub_frame_this_id,
2532 hppa_stub_frame_prev_register,
2533 NULL,
2534 hppa_stub_unwind_sniffer
2535};
2536
26d08f08 2537static struct frame_id
227e86ad 2538hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
26d08f08 2539{
227e86ad
JB
2540 return frame_id_build (get_frame_register_unsigned (this_frame,
2541 HPPA_SP_REGNUM),
2542 get_frame_pc (this_frame));
26d08f08
AC
2543}
2544
cc72850f 2545CORE_ADDR
26d08f08
AC
2546hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2547{
fe46cd3a
RC
2548 ULONGEST ipsw;
2549 CORE_ADDR pc;
2550
cc72850f
MK
2551 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2552 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2553
2554 /* If the current instruction is nullified, then we are effectively
2555 still executing the previous instruction. Pretend we are still
cc72850f
MK
2556 there. This is needed when single stepping; if the nullified
2557 instruction is on a different line, we don't want GDB to think
2558 we've stepped onto that line. */
fe46cd3a
RC
2559 if (ipsw & 0x00200000)
2560 pc -= 4;
2561
cc72850f 2562 return pc & ~0x3;
26d08f08
AC
2563}
2564
ff644745
JB
2565/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2566 Return NULL if no such symbol was found. */
2567
3b7344d5 2568struct bound_minimal_symbol
ff644745
JB
2569hppa_lookup_stub_minimal_symbol (const char *name,
2570 enum unwind_stub_types stub_type)
2571{
2572 struct objfile *objfile;
2573 struct minimal_symbol *msym;
3b7344d5 2574 struct bound_minimal_symbol result = { NULL, NULL };
ff644745
JB
2575
2576 ALL_MSYMBOLS (objfile, msym)
2577 {
efd66ac6 2578 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
ff644745
JB
2579 {
2580 struct unwind_table_entry *u;
2581
efd66ac6 2582 u = find_unwind_entry (MSYMBOL_VALUE (msym));
ff644745 2583 if (u != NULL && u->stub_unwind.stub_type == stub_type)
3b7344d5
TT
2584 {
2585 result.objfile = objfile;
2586 result.minsym = msym;
2587 return result;
2588 }
ff644745
JB
2589 }
2590 }
2591
3b7344d5 2592 return result;
ff644745
JB
2593}
2594
c906108c 2595static void
fba45db2 2596unwind_command (char *exp, int from_tty)
c906108c
SS
2597{
2598 CORE_ADDR address;
2599 struct unwind_table_entry *u;
2600
2601 /* If we have an expression, evaluate it and use it as the address. */
2602
2603 if (exp != 0 && *exp != 0)
2604 address = parse_and_eval_address (exp);
2605 else
2606 return;
2607
2608 u = find_unwind_entry (address);
2609
2610 if (!u)
2611 {
2612 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2613 return;
2614 }
2615
3329c4b5 2616 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
c906108c 2617
5af949e3 2618 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
d5c27f81 2619 gdb_flush (gdb_stdout);
c906108c 2620
5af949e3 2621 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
d5c27f81 2622 gdb_flush (gdb_stdout);
c906108c 2623
c906108c 2624#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2625
2626 printf_unfiltered ("\n\tflags =");
2627 pif (Cannot_unwind);
2628 pif (Millicode);
2629 pif (Millicode_save_sr0);
2630 pif (Entry_SR);
2631 pif (Args_stored);
2632 pif (Variable_Frame);
2633 pif (Separate_Package_Body);
2634 pif (Frame_Extension_Millicode);
2635 pif (Stack_Overflow_Check);
2636 pif (Two_Instruction_SP_Increment);
6fcecea0
RC
2637 pif (sr4export);
2638 pif (cxx_info);
2639 pif (cxx_try_catch);
2640 pif (sched_entry_seq);
c906108c
SS
2641 pif (Save_SP);
2642 pif (Save_RP);
2643 pif (Save_MRP_in_frame);
6fcecea0 2644 pif (save_r19);
c906108c
SS
2645 pif (Cleanup_defined);
2646 pif (MPE_XL_interrupt_marker);
2647 pif (HP_UX_interrupt_marker);
2648 pif (Large_frame);
6fcecea0 2649 pif (alloca_frame);
c906108c
SS
2650
2651 putchar_unfiltered ('\n');
2652
c906108c 2653#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2654
2655 pin (Region_description);
2656 pin (Entry_FR);
2657 pin (Entry_GR);
2658 pin (Total_frame_size);
57dac9e1
RC
2659
2660 if (u->stub_unwind.stub_type)
2661 {
2662 printf_unfiltered ("\tstub type = ");
2663 switch (u->stub_unwind.stub_type)
2664 {
2665 case LONG_BRANCH:
2666 printf_unfiltered ("long branch\n");
2667 break;
2668 case PARAMETER_RELOCATION:
2669 printf_unfiltered ("parameter relocation\n");
2670 break;
2671 case EXPORT:
2672 printf_unfiltered ("export\n");
2673 break;
2674 case IMPORT:
2675 printf_unfiltered ("import\n");
2676 break;
2677 case IMPORT_SHLIB:
2678 printf_unfiltered ("import shlib\n");
2679 break;
2680 default:
2681 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2682 }
2683 }
c906108c 2684}
c906108c 2685
38ca4e0c
MK
2686/* Return the GDB type object for the "standard" data type of data in
2687 register REGNUM. */
d709c020 2688
eded0a31 2689static struct type *
38ca4e0c 2690hppa32_register_type (struct gdbarch *gdbarch, int regnum)
d709c020 2691{
38ca4e0c 2692 if (regnum < HPPA_FP4_REGNUM)
df4df182 2693 return builtin_type (gdbarch)->builtin_uint32;
d709c020 2694 else
27067745 2695 return builtin_type (gdbarch)->builtin_float;
d709c020
JB
2696}
2697
eded0a31 2698static struct type *
38ca4e0c 2699hppa64_register_type (struct gdbarch *gdbarch, int regnum)
3ff7cf9e 2700{
38ca4e0c 2701 if (regnum < HPPA64_FP4_REGNUM)
df4df182 2702 return builtin_type (gdbarch)->builtin_uint64;
3ff7cf9e 2703 else
27067745 2704 return builtin_type (gdbarch)->builtin_double;
3ff7cf9e
JB
2705}
2706
38ca4e0c
MK
2707/* Return non-zero if REGNUM is not a register available to the user
2708 through ptrace/ttrace. */
d709c020 2709
8d153463 2710static int
64a3914f 2711hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
d709c020
JB
2712{
2713 return (regnum == 0
34f75cc1
RC
2714 || regnum == HPPA_PCSQ_HEAD_REGNUM
2715 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2716 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
38ca4e0c 2717}
d709c020 2718
d037d088 2719static int
64a3914f 2720hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2721{
2722 /* cr26 and cr27 are readable (but not writable) from userspace. */
2723 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2724 return 0;
2725 else
64a3914f 2726 return hppa32_cannot_store_register (gdbarch, regnum);
d037d088
CD
2727}
2728
38ca4e0c 2729static int
64a3914f 2730hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
38ca4e0c
MK
2731{
2732 return (regnum == 0
2733 || regnum == HPPA_PCSQ_HEAD_REGNUM
2734 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2735 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
d709c020
JB
2736}
2737
d037d088 2738static int
64a3914f 2739hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2740{
2741 /* cr26 and cr27 are readable (but not writable) from userspace. */
2742 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2743 return 0;
2744 else
64a3914f 2745 return hppa64_cannot_store_register (gdbarch, regnum);
d037d088
CD
2746}
2747
8d153463 2748static CORE_ADDR
85ddcc70 2749hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
d709c020
JB
2750{
2751 /* The low two bits of the PC on the PA contain the privilege level.
2752 Some genius implementing a (non-GCC) compiler apparently decided
2753 this means that "addresses" in a text section therefore include a
2754 privilege level, and thus symbol tables should contain these bits.
2755 This seems like a bonehead thing to do--anyway, it seems to work
2756 for our purposes to just ignore those bits. */
2757
2758 return (addr &= ~0x3);
2759}
2760
e127f0db
MK
2761/* Get the ARGIth function argument for the current function. */
2762
4a302917 2763static CORE_ADDR
143985b7
AF
2764hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2765 struct type *type)
2766{
e127f0db 2767 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
143985b7
AF
2768}
2769
05d1431c 2770static enum register_status
0f8d9d59 2771hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e127f0db 2772 int regnum, gdb_byte *buf)
0f8d9d59 2773{
05d1431c
PA
2774 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2775 ULONGEST tmp;
2776 enum register_status status;
0f8d9d59 2777
05d1431c
PA
2778 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2779 if (status == REG_VALID)
2780 {
2781 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2782 tmp &= ~0x3;
2783 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2784 }
2785 return status;
0f8d9d59
RC
2786}
2787
d49771ef 2788static CORE_ADDR
e38c262f 2789hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
d49771ef
RC
2790{
2791 return 0;
2792}
2793
227e86ad
JB
2794struct value *
2795hppa_frame_prev_register_helper (struct frame_info *this_frame,
0da28f8a 2796 struct trad_frame_saved_reg saved_regs[],
227e86ad 2797 int regnum)
0da28f8a 2798{
227e86ad 2799 struct gdbarch *arch = get_frame_arch (this_frame);
e17a4113 2800 enum bfd_endian byte_order = gdbarch_byte_order (arch);
8f4e467c 2801
8693c419
MK
2802 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2803 {
227e86ad
JB
2804 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2805 CORE_ADDR pc;
2806 struct value *pcoq_val =
2807 trad_frame_get_prev_register (this_frame, saved_regs,
2808 HPPA_PCOQ_HEAD_REGNUM);
8693c419 2809
e17a4113
UW
2810 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2811 size, byte_order);
227e86ad 2812 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
8693c419 2813 }
0da28f8a 2814
227e86ad 2815 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
0da28f8a 2816}
8693c419 2817\f
0da28f8a 2818
34f55018
MK
2819/* An instruction to match. */
2820struct insn_pattern
2821{
2822 unsigned int data; /* See if it matches this.... */
2823 unsigned int mask; /* ... with this mask. */
2824};
2825
2826/* See bfd/elf32-hppa.c */
2827static struct insn_pattern hppa_long_branch_stub[] = {
2828 /* ldil LR'xxx,%r1 */
2829 { 0x20200000, 0xffe00000 },
2830 /* be,n RR'xxx(%sr4,%r1) */
2831 { 0xe0202002, 0xffe02002 },
2832 { 0, 0 }
2833};
2834
2835static struct insn_pattern hppa_long_branch_pic_stub[] = {
2836 /* b,l .+8, %r1 */
2837 { 0xe8200000, 0xffe00000 },
2838 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2839 { 0x28200000, 0xffe00000 },
2840 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2841 { 0xe0202002, 0xffe02002 },
2842 { 0, 0 }
2843};
2844
2845static struct insn_pattern hppa_import_stub[] = {
2846 /* addil LR'xxx, %dp */
2847 { 0x2b600000, 0xffe00000 },
2848 /* ldw RR'xxx(%r1), %r21 */
2849 { 0x48350000, 0xffffb000 },
2850 /* bv %r0(%r21) */
2851 { 0xeaa0c000, 0xffffffff },
2852 /* ldw RR'xxx+4(%r1), %r19 */
2853 { 0x48330000, 0xffffb000 },
2854 { 0, 0 }
2855};
2856
2857static struct insn_pattern hppa_import_pic_stub[] = {
2858 /* addil LR'xxx,%r19 */
2859 { 0x2a600000, 0xffe00000 },
2860 /* ldw RR'xxx(%r1),%r21 */
2861 { 0x48350000, 0xffffb000 },
2862 /* bv %r0(%r21) */
2863 { 0xeaa0c000, 0xffffffff },
2864 /* ldw RR'xxx+4(%r1),%r19 */
2865 { 0x48330000, 0xffffb000 },
2866 { 0, 0 },
2867};
2868
2869static struct insn_pattern hppa_plt_stub[] = {
2870 /* b,l 1b, %r20 - 1b is 3 insns before here */
2871 { 0xea9f1fdd, 0xffffffff },
2872 /* depi 0,31,2,%r20 */
2873 { 0xd6801c1e, 0xffffffff },
2874 { 0, 0 }
34f55018
MK
2875};
2876
2877/* Maximum number of instructions on the patterns above. */
2878#define HPPA_MAX_INSN_PATTERN_LEN 4
2879
2880/* Return non-zero if the instructions at PC match the series
2881 described in PATTERN, or zero otherwise. PATTERN is an array of
2882 'struct insn_pattern' objects, terminated by an entry whose mask is
2883 zero.
2884
2885 When the match is successful, fill INSN[i] with what PATTERN[i]
2886 matched. */
2887
2888static int
e17a4113
UW
2889hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2890 struct insn_pattern *pattern, unsigned int *insn)
34f55018 2891{
e17a4113 2892 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
34f55018
MK
2893 CORE_ADDR npc = pc;
2894 int i;
2895
2896 for (i = 0; pattern[i].mask; i++)
2897 {
2898 gdb_byte buf[HPPA_INSN_SIZE];
2899
8defab1a 2900 target_read_memory (npc, buf, HPPA_INSN_SIZE);
e17a4113 2901 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
34f55018
MK
2902 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2903 npc += 4;
2904 else
2905 return 0;
2906 }
2907
2908 return 1;
2909}
2910
2911/* This relaxed version of the insstruction matcher allows us to match
2912 from somewhere inside the pattern, by looking backwards in the
2913 instruction scheme. */
2914
2915static int
e17a4113
UW
2916hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2917 struct insn_pattern *pattern, unsigned int *insn)
34f55018
MK
2918{
2919 int offset, len = 0;
2920
2921 while (pattern[len].mask)
2922 len++;
2923
2924 for (offset = 0; offset < len; offset++)
e17a4113
UW
2925 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2926 pattern, insn))
34f55018
MK
2927 return 1;
2928
2929 return 0;
2930}
2931
2932static int
2933hppa_in_dyncall (CORE_ADDR pc)
2934{
2935 struct unwind_table_entry *u;
2936
2937 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2938 if (!u)
2939 return 0;
2940
2941 return (pc >= u->region_start && pc <= u->region_end);
2942}
2943
2944int
3e5d3a5a 2945hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
34f55018
MK
2946{
2947 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2948 struct unwind_table_entry *u;
2949
3e5d3a5a 2950 if (in_plt_section (pc) || hppa_in_dyncall (pc))
34f55018
MK
2951 return 1;
2952
2953 /* The GNU toolchain produces linker stubs without unwind
2954 information. Since the pattern matching for linker stubs can be
2955 quite slow, so bail out if we do have an unwind entry. */
2956
2957 u = find_unwind_entry (pc);
806e23c0 2958 if (u != NULL)
34f55018
MK
2959 return 0;
2960
e17a4113
UW
2961 return
2962 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2963 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2964 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2965 || hppa_match_insns_relaxed (gdbarch, pc,
2966 hppa_long_branch_pic_stub, insn));
34f55018
MK
2967}
2968
2969/* This code skips several kind of "trampolines" used on PA-RISC
2970 systems: $$dyncall, import stubs and PLT stubs. */
2971
2972CORE_ADDR
52f729a7 2973hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
34f55018 2974{
0dfff4cb
UW
2975 struct gdbarch *gdbarch = get_frame_arch (frame);
2976 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2977
34f55018
MK
2978 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2979 int dp_rel;
2980
2981 /* $$dyncall handles both PLABELs and direct addresses. */
2982 if (hppa_in_dyncall (pc))
2983 {
52f729a7 2984 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
34f55018
MK
2985
2986 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2987 if (pc & 0x2)
0dfff4cb 2988 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
34f55018
MK
2989
2990 return pc;
2991 }
2992
e17a4113
UW
2993 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2994 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
34f55018
MK
2995 {
2996 /* Extract the target address from the addil/ldw sequence. */
2997 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2998
2999 if (dp_rel)
52f729a7 3000 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
34f55018 3001 else
52f729a7 3002 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
34f55018
MK
3003
3004 /* fallthrough */
3005 }
3006
3e5d3a5a 3007 if (in_plt_section (pc))
34f55018 3008 {
0dfff4cb 3009 pc = read_memory_typed_address (pc, func_ptr_type);
34f55018
MK
3010
3011 /* If the PLT slot has not yet been resolved, the target will be
3012 the PLT stub. */
3e5d3a5a 3013 if (in_plt_section (pc))
34f55018
MK
3014 {
3015 /* Sanity check: are we pointing to the PLT stub? */
e17a4113 3016 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
34f55018 3017 {
5af949e3
UW
3018 warning (_("Cannot resolve PLT stub at %s."),
3019 paddress (gdbarch, pc));
34f55018
MK
3020 return 0;
3021 }
3022
3023 /* This should point to the fixup routine. */
0dfff4cb 3024 pc = read_memory_typed_address (pc + 8, func_ptr_type);
34f55018
MK
3025 }
3026 }
3027
3028 return pc;
3029}
3030\f
3031
8e8b2dba
MC
3032/* Here is a table of C type sizes on hppa with various compiles
3033 and options. I measured this on PA 9000/800 with HP-UX 11.11
3034 and these compilers:
3035
3036 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3037 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3038 /opt/aCC/bin/aCC B3910B A.03.45
3039 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3040
3041 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3042 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3043 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3044 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3045 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3046 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3047 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3048 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3049
3050 Each line is:
3051
3052 compiler and options
3053 char, short, int, long, long long
3054 float, double, long double
3055 char *, void (*)()
3056
3057 So all these compilers use either ILP32 or LP64 model.
3058 TODO: gcc has more options so it needs more investigation.
3059
a2379359
MC
3060 For floating point types, see:
3061
3062 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3063 HP-UX floating-point guide, hpux 11.00
3064
8e8b2dba
MC
3065 -- chastain 2003-12-18 */
3066
e6e68f1f
JB
3067static struct gdbarch *
3068hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3069{
3ff7cf9e 3070 struct gdbarch_tdep *tdep;
e6e68f1f 3071 struct gdbarch *gdbarch;
59623e27
JB
3072
3073 /* Try to determine the ABI of the object we are loading. */
4be87837 3074 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 3075 {
4be87837
DJ
3076 /* If it's a SOM file, assume it's HP/UX SOM. */
3077 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3078 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 3079 }
e6e68f1f
JB
3080
3081 /* find a candidate among the list of pre-declared architectures. */
3082 arches = gdbarch_list_lookup_by_info (arches, &info);
3083 if (arches != NULL)
3084 return (arches->gdbarch);
3085
3086 /* If none found, then allocate and initialize one. */
41bf6aca 3087 tdep = XCNEW (struct gdbarch_tdep);
3ff7cf9e
JB
3088 gdbarch = gdbarch_alloc (&info, tdep);
3089
3090 /* Determine from the bfd_arch_info structure if we are dealing with
3091 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3092 then default to a 32bit machine. */
3093 if (info.bfd_arch_info != NULL)
3094 tdep->bytes_per_address =
3095 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3096 else
3097 tdep->bytes_per_address = 4;
3098
d49771ef
RC
3099 tdep->find_global_pointer = hppa_find_global_pointer;
3100
3ff7cf9e
JB
3101 /* Some parts of the gdbarch vector depend on whether we are running
3102 on a 32 bits or 64 bits target. */
3103 switch (tdep->bytes_per_address)
3104 {
3105 case 4:
3106 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3107 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 3108 set_gdbarch_register_type (gdbarch, hppa32_register_type);
38ca4e0c
MK
3109 set_gdbarch_cannot_store_register (gdbarch,
3110 hppa32_cannot_store_register);
3111 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3112 hppa32_cannot_fetch_register);
3ff7cf9e
JB
3113 break;
3114 case 8:
3115 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3116 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 3117 set_gdbarch_register_type (gdbarch, hppa64_register_type);
1ef7fcb5 3118 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
38ca4e0c
MK
3119 set_gdbarch_cannot_store_register (gdbarch,
3120 hppa64_cannot_store_register);
3121 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3122 hppa64_cannot_fetch_register);
3ff7cf9e
JB
3123 break;
3124 default:
e2e0b3e5 3125 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3ff7cf9e
JB
3126 tdep->bytes_per_address);
3127 }
3128
3ff7cf9e 3129 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 3130 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 3131
8e8b2dba
MC
3132 /* The following gdbarch vector elements are the same in both ILP32
3133 and LP64, but might show differences some day. */
3134 set_gdbarch_long_long_bit (gdbarch, 64);
3135 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 3136 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
8e8b2dba 3137
3ff7cf9e
JB
3138 /* The following gdbarch vector elements do not depend on the address
3139 size, or in any other gdbarch element previously set. */
60383d10 3140 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
c9cf6e20
MG
3141 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3142 hppa_stack_frame_destroyed_p);
a2a84a72 3143 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
3144 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3145 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
85ddcc70 3146 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
60383d10 3147 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
3148 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3149 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 3150
143985b7
AF
3151 /* Helper for function argument information. */
3152 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3153
36482093
AC
3154 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3155
3a3bc038
AC
3156 /* When a hardware watchpoint triggers, we'll move the inferior past
3157 it by removing all eventpoints; stepping past the instruction
3158 that caused the trigger; reinserting eventpoints; and checking
3159 whether any watched location changed. */
3160 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3161
5979bc46 3162 /* Inferior function call methods. */
fca7aa43 3163 switch (tdep->bytes_per_address)
5979bc46 3164 {
fca7aa43
AC
3165 case 4:
3166 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3167 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
3168 set_gdbarch_convert_from_func_ptr_addr
3169 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
3170 break;
3171 case 8:
782eae8b
AC
3172 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3173 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 3174 break;
782eae8b 3175 default:
e2e0b3e5 3176 internal_error (__FILE__, __LINE__, _("bad switch"));
fad850b2
AC
3177 }
3178
3179 /* Struct return methods. */
fca7aa43 3180 switch (tdep->bytes_per_address)
fad850b2 3181 {
fca7aa43
AC
3182 case 4:
3183 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3184 break;
3185 case 8:
782eae8b 3186 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 3187 break;
fca7aa43 3188 default:
e2e0b3e5 3189 internal_error (__FILE__, __LINE__, _("bad switch"));
e963316f 3190 }
7f07c5b6 3191
85f4f2d8 3192 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 3193 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 3194
5979bc46 3195 /* Frame unwind methods. */
227e86ad 3196 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
782eae8b 3197 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 3198
50306a9d
RC
3199 /* Hook in ABI-specific overrides, if they have been registered. */
3200 gdbarch_init_osabi (info, gdbarch);
3201
7f07c5b6 3202 /* Hook in the default unwinders. */
227e86ad
JB
3203 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3204 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3205 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
5979bc46 3206
e6e68f1f
JB
3207 return gdbarch;
3208}
3209
3210static void
464963c9 3211hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
e6e68f1f 3212{
464963c9 3213 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fdd72f95
RC
3214
3215 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3216 tdep->bytes_per_address);
3217 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
3218}
3219
72753510
PA
3220/* Provide a prototype to silence -Wmissing-prototypes. */
3221extern initialize_file_ftype _initialize_hppa_tdep;
3222
4facf7e8
JB
3223void
3224_initialize_hppa_tdep (void)
3225{
3226 struct cmd_list_element *c;
4facf7e8 3227
e6e68f1f 3228 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 3229
7c46b9fb
RC
3230 hppa_objfile_priv_data = register_objfile_data ();
3231
4facf7e8 3232 add_cmd ("unwind", class_maintenance, unwind_command,
1a966eab 3233 _("Print unwind table entry at given address."),
4facf7e8
JB
3234 &maintenanceprintlist);
3235
1777feb0 3236 /* Debug this files internals. */
7915a72c
AC
3237 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3238Set whether hppa target specific debugging information should be displayed."),
3239 _("\
3240Show whether hppa target specific debugging information is displayed."), _("\
4a302917
RC
3241This flag controls whether hppa target specific debugging information is\n\
3242displayed. This information is particularly useful for debugging frame\n\
7915a72c 3243unwinding problems."),
2c5b56ce 3244 NULL,
7915a72c 3245 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2c5b56ce 3246 &setdebuglist, &showdebuglist);
4facf7e8 3247}
This page took 1.550621 seconds and 4 git commands to generate.