Index: ChangeLog
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
adc11376
AC
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c
SS
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
c906108c
SS
26
27#include "defs.h"
28#include "frame.h"
29#include "bfd.h"
30#include "inferior.h"
31#include "value.h"
4e052eda 32#include "regcache.h"
e5d66720 33#include "completer.h"
d709c020 34#include "language.h"
59623e27 35#include "osabi.h"
a7ff40e7 36#include "gdb_assert.h"
65e82032 37#include "infttrace.h"
343af405 38#include "arch-utils.h"
c906108c
SS
39/* For argument passing to the inferior */
40#include "symtab.h"
04714b91 41#include "infcall.h"
fde2cceb 42#include "dis-asm.h"
26d08f08
AC
43#include "trad-frame.h"
44#include "frame-unwind.h"
45#include "frame-base.h"
c906108c
SS
46
47#ifdef USG
48#include <sys/types.h>
49#endif
50
51#include <dl.h>
52#include <sys/param.h>
53#include <signal.h>
54
55#include <sys/ptrace.h>
56#include <machine/save_state.h>
57
58#ifdef COFF_ENCAPSULATE
59#include "a.out.encap.h"
60#else
61#endif
62
c5aa993b 63/*#include <sys/user.h> After a.out.h */
c906108c
SS
64#include <sys/file.h>
65#include "gdb_stat.h"
03f2053f 66#include "gdb_wait.h"
c906108c
SS
67
68#include "gdbcore.h"
69#include "gdbcmd.h"
70#include "target.h"
71#include "symfile.h"
72#include "objfiles.h"
3ff7cf9e 73#include "hppa-tdep.h"
c906108c 74
60383d10 75/* Some local constants. */
3ff7cf9e
JB
76static const int hppa32_num_regs = 128;
77static const int hppa64_num_regs = 96;
78
79static const int hppa64_call_dummy_breakpoint_offset = 22 * 4;
80
81/* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
82 word on the target machine, not the size of an instruction. Since
83 a word on this target holds two instructions we have to divide the
84 instruction size by two to get the word size of the dummy. */
85static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28;
86static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2;
60383d10 87
e2ac8128
JB
88/* Get at various relevent fields of an instruction word. */
89#define MASK_5 0x1f
90#define MASK_11 0x7ff
91#define MASK_14 0x3fff
92#define MASK_21 0x1fffff
93
94/* Define offsets into the call dummy for the target function address.
95 See comments related to CALL_DUMMY for more info. */
96#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
97#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
98
99/* Define offsets into the call dummy for the _sr4export address.
100 See comments related to CALL_DUMMY for more info. */
101#define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
102#define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
103
c906108c
SS
104/* To support detection of the pseudo-initial frame
105 that threads have. */
106#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
107#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
c5aa993b 108
e2ac8128
JB
109/* Sizes (in bytes) of the native unwind entries. */
110#define UNWIND_ENTRY_SIZE 16
111#define STUB_UNWIND_ENTRY_SIZE 8
112
113static int get_field (unsigned word, int from, int to);
114
a14ed312 115static int extract_5_load (unsigned int);
c906108c 116
a14ed312 117static unsigned extract_5R_store (unsigned int);
c906108c 118
a14ed312 119static unsigned extract_5r_store (unsigned int);
c906108c 120
343af405
AC
121static void hppa_frame_init_saved_regs (struct frame_info *frame);
122
43bd9a9e 123static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
c906108c 124
a14ed312 125static int find_proc_framesize (CORE_ADDR);
c906108c 126
a14ed312 127static int find_return_regnum (CORE_ADDR);
c906108c 128
a14ed312 129struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
c906108c 130
a14ed312 131static int extract_17 (unsigned int);
c906108c 132
a14ed312 133static unsigned deposit_21 (unsigned int, unsigned int);
c906108c 134
a14ed312 135static int extract_21 (unsigned);
c906108c 136
a14ed312 137static unsigned deposit_14 (int, unsigned int);
c906108c 138
a14ed312 139static int extract_14 (unsigned);
c906108c 140
a14ed312 141static void unwind_command (char *, int);
c906108c 142
a14ed312 143static int low_sign_extend (unsigned int, unsigned int);
c906108c 144
a14ed312 145static int sign_extend (unsigned int, unsigned int);
c906108c 146
43bd9a9e 147static int restore_pc_queue (CORE_ADDR *);
c906108c 148
a14ed312 149static int hppa_alignof (struct type *);
c906108c 150
a14ed312 151static int prologue_inst_adjust_sp (unsigned long);
c906108c 152
a14ed312 153static int is_branch (unsigned long);
c906108c 154
a14ed312 155static int inst_saves_gr (unsigned long);
c906108c 156
a14ed312 157static int inst_saves_fr (unsigned long);
c906108c 158
a14ed312 159static int pc_in_interrupt_handler (CORE_ADDR);
c906108c 160
a14ed312 161static int pc_in_linker_stub (CORE_ADDR);
c906108c 162
a14ed312 163static int compare_unwind_entries (const void *, const void *);
c906108c 164
a14ed312 165static void read_unwind_info (struct objfile *);
c906108c 166
a14ed312
KB
167static void internalize_unwinds (struct objfile *,
168 struct unwind_table_entry *,
169 asection *, unsigned int,
170 unsigned int, CORE_ADDR);
171static void pa_print_registers (char *, int, int);
d9fcf2fb 172static void pa_strcat_registers (char *, int, int, struct ui_file *);
a14ed312
KB
173static void pa_register_look_aside (char *, int, long *);
174static void pa_print_fp_reg (int);
d9fcf2fb 175static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
a14ed312 176static void record_text_segment_lowaddr (bfd *, asection *, void *);
d709c020
JB
177/* FIXME: brobecker 2002-11-07: We will likely be able to make the
178 following functions static, once we hppa is partially multiarched. */
179int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
60383d10
JB
180CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
181CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
182int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
183int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
184CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
d709c020 185int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
3ff7cf9e
JB
186CORE_ADDR hppa32_stack_align (CORE_ADDR sp);
187CORE_ADDR hppa64_stack_align (CORE_ADDR sp);
d709c020
JB
188int hppa_pc_requires_run_before_use (CORE_ADDR pc);
189int hppa_instruction_nullified (void);
60e1ff27 190int hppa_register_raw_size (int reg_nr);
d709c020 191int hppa_register_byte (int reg_nr);
3ff7cf9e
JB
192struct type * hppa32_register_virtual_type (int reg_nr);
193struct type * hppa64_register_virtual_type (int reg_nr);
d709c020 194void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
3ff7cf9e
JB
195void hppa32_extract_return_value (struct type *type, char *regbuf,
196 char *valbuf);
197void hppa64_extract_return_value (struct type *type, char *regbuf,
198 char *valbuf);
199int hppa32_use_struct_convention (int gcc_p, struct type *type);
200int hppa64_use_struct_convention (int gcc_p, struct type *type);
201void hppa32_store_return_value (struct type *type, char *valbuf);
202void hppa64_store_return_value (struct type *type, char *valbuf);
d709c020 203int hppa_cannot_store_register (int regnum);
60383d10
JB
204void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
205CORE_ADDR hppa_frame_chain (struct frame_info *frame);
206int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
207int hppa_frameless_function_invocation (struct frame_info *frame);
208CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
d709c020 209CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
60383d10 210int hppa_frame_num_args (struct frame_info *frame);
7daf4f5b 211void hppa_push_dummy_frame (void);
60383d10
JB
212void hppa_pop_frame (void);
213CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
214 int nargs, struct value **args,
215 struct type *type, int gcc_p);
216CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
217 int struct_return, CORE_ADDR struct_addr);
d709c020 218CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
60383d10
JB
219CORE_ADDR hppa_target_read_pc (ptid_t ptid);
220void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
221CORE_ADDR hppa_target_read_fp (void);
c906108c 222
c5aa993b
JM
223typedef struct
224 {
225 struct minimal_symbol *msym;
226 CORE_ADDR solib_handle;
a0b3c4fd 227 CORE_ADDR return_val;
c5aa993b
JM
228 }
229args_for_find_stub;
c906108c 230
4efb68b1 231static int cover_find_stub_with_shl_get (void *);
c906108c 232
c5aa993b 233static int is_pa_2 = 0; /* False */
c906108c 234
c5aa993b 235/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
c906108c
SS
236extern int hp_som_som_object_present;
237
238/* In breakpoint.c */
239extern int exception_catchpoints_are_fragile;
240
c906108c 241/* Should call_function allocate stack space for a struct return? */
d709c020 242
c906108c 243int
3ff7cf9e 244hppa32_use_struct_convention (int gcc_p, struct type *type)
c906108c 245{
b1e29e33 246 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
c906108c 247}
3ff7cf9e
JB
248
249/* Same as hppa32_use_struct_convention() for the PA64 ABI. */
250
251int
252hppa64_use_struct_convention (int gcc_p, struct type *type)
253{
254 /* RM: struct upto 128 bits are returned in registers */
255 return TYPE_LENGTH (type) > 16;
256}
c5aa993b 257
c906108c
SS
258/* Routines to extract various sized constants out of hppa
259 instructions. */
260
261/* This assumes that no garbage lies outside of the lower bits of
262 value. */
263
264static int
fba45db2 265sign_extend (unsigned val, unsigned bits)
c906108c 266{
c5aa993b 267 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
268}
269
270/* For many immediate values the sign bit is the low bit! */
271
272static int
fba45db2 273low_sign_extend (unsigned val, unsigned bits)
c906108c 274{
c5aa993b 275 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
276}
277
e2ac8128
JB
278/* Extract the bits at positions between FROM and TO, using HP's numbering
279 (MSB = 0). */
280
281static int
282get_field (unsigned word, int from, int to)
283{
284 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
285}
286
c906108c
SS
287/* extract the immediate field from a ld{bhw}s instruction */
288
c906108c 289static int
fba45db2 290extract_5_load (unsigned word)
c906108c
SS
291{
292 return low_sign_extend (word >> 16 & MASK_5, 5);
293}
294
c906108c
SS
295/* extract the immediate field from a break instruction */
296
297static unsigned
fba45db2 298extract_5r_store (unsigned word)
c906108c
SS
299{
300 return (word & MASK_5);
301}
302
303/* extract the immediate field from a {sr}sm instruction */
304
305static unsigned
fba45db2 306extract_5R_store (unsigned word)
c906108c
SS
307{
308 return (word >> 16 & MASK_5);
309}
310
c906108c
SS
311/* extract a 14 bit immediate field */
312
313static int
fba45db2 314extract_14 (unsigned word)
c906108c
SS
315{
316 return low_sign_extend (word & MASK_14, 14);
317}
318
319/* deposit a 14 bit constant in a word */
320
321static unsigned
fba45db2 322deposit_14 (int opnd, unsigned word)
c906108c
SS
323{
324 unsigned sign = (opnd < 0 ? 1 : 0);
325
c5aa993b 326 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
c906108c
SS
327}
328
329/* extract a 21 bit constant */
330
331static int
fba45db2 332extract_21 (unsigned word)
c906108c
SS
333{
334 int val;
335
336 word &= MASK_21;
337 word <<= 11;
e2ac8128 338 val = get_field (word, 20, 20);
c906108c 339 val <<= 11;
e2ac8128 340 val |= get_field (word, 9, 19);
c906108c 341 val <<= 2;
e2ac8128 342 val |= get_field (word, 5, 6);
c906108c 343 val <<= 5;
e2ac8128 344 val |= get_field (word, 0, 4);
c906108c 345 val <<= 2;
e2ac8128 346 val |= get_field (word, 7, 8);
c906108c
SS
347 return sign_extend (val, 21) << 11;
348}
349
350/* deposit a 21 bit constant in a word. Although 21 bit constants are
351 usually the top 21 bits of a 32 bit constant, we assume that only
352 the low 21 bits of opnd are relevant */
353
354static unsigned
fba45db2 355deposit_21 (unsigned opnd, unsigned word)
c906108c
SS
356{
357 unsigned val = 0;
358
e2ac8128 359 val |= get_field (opnd, 11 + 14, 11 + 18);
c906108c 360 val <<= 2;
e2ac8128 361 val |= get_field (opnd, 11 + 12, 11 + 13);
c906108c 362 val <<= 2;
e2ac8128 363 val |= get_field (opnd, 11 + 19, 11 + 20);
c906108c 364 val <<= 11;
e2ac8128 365 val |= get_field (opnd, 11 + 1, 11 + 11);
c906108c 366 val <<= 1;
e2ac8128 367 val |= get_field (opnd, 11 + 0, 11 + 0);
c906108c
SS
368 return word | val;
369}
370
c906108c
SS
371/* extract a 17 bit constant from branch instructions, returning the
372 19 bit signed value. */
373
374static int
fba45db2 375extract_17 (unsigned word)
c906108c 376{
e2ac8128
JB
377 return sign_extend (get_field (word, 19, 28) |
378 get_field (word, 29, 29) << 10 |
379 get_field (word, 11, 15) << 11 |
c906108c
SS
380 (word & 0x1) << 16, 17) << 2;
381}
382\f
383
384/* Compare the start address for two unwind entries returning 1 if
385 the first address is larger than the second, -1 if the second is
386 larger than the first, and zero if they are equal. */
387
388static int
fba45db2 389compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
390{
391 const struct unwind_table_entry *a = arg1;
392 const struct unwind_table_entry *b = arg2;
393
394 if (a->region_start > b->region_start)
395 return 1;
396 else if (a->region_start < b->region_start)
397 return -1;
398 else
399 return 0;
400}
401
53a5351d
JM
402static CORE_ADDR low_text_segment_address;
403
404static void
8fef05cc 405record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
53a5351d 406{
bf9c25dc 407 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d
JM
408 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
409 && section->vma < low_text_segment_address)
410 low_text_segment_address = section->vma;
411}
412
c906108c 413static void
fba45db2
KB
414internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
415 asection *section, unsigned int entries, unsigned int size,
416 CORE_ADDR text_offset)
c906108c
SS
417{
418 /* We will read the unwind entries into temporary memory, then
419 fill in the actual unwind table. */
420 if (size > 0)
421 {
422 unsigned long tmp;
423 unsigned i;
424 char *buf = alloca (size);
425
53a5351d
JM
426 low_text_segment_address = -1;
427
428 /* If addresses are 64 bits wide, then unwinds are supposed to
c2c6d25f
JM
429 be segment relative offsets instead of absolute addresses.
430
431 Note that when loading a shared library (text_offset != 0) the
432 unwinds are already relative to the text_offset that will be
433 passed in. */
434 if (TARGET_PTR_BIT == 64 && text_offset == 0)
53a5351d
JM
435 {
436 bfd_map_over_sections (objfile->obfd,
4efb68b1 437 record_text_segment_lowaddr, NULL);
53a5351d
JM
438
439 /* ?!? Mask off some low bits. Should this instead subtract
440 out the lowest section's filepos or something like that?
441 This looks very hokey to me. */
442 low_text_segment_address &= ~0xfff;
443 text_offset += low_text_segment_address;
444 }
445
c906108c
SS
446 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
447
448 /* Now internalize the information being careful to handle host/target
c5aa993b 449 endian issues. */
c906108c
SS
450 for (i = 0; i < entries; i++)
451 {
452 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 453 (bfd_byte *) buf);
c906108c
SS
454 table[i].region_start += text_offset;
455 buf += 4;
c5aa993b 456 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
457 table[i].region_end += text_offset;
458 buf += 4;
c5aa993b 459 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
460 buf += 4;
461 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
462 table[i].Millicode = (tmp >> 30) & 0x1;
463 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
464 table[i].Region_description = (tmp >> 27) & 0x3;
465 table[i].reserved1 = (tmp >> 26) & 0x1;
466 table[i].Entry_SR = (tmp >> 25) & 0x1;
467 table[i].Entry_FR = (tmp >> 21) & 0xf;
468 table[i].Entry_GR = (tmp >> 16) & 0x1f;
469 table[i].Args_stored = (tmp >> 15) & 0x1;
470 table[i].Variable_Frame = (tmp >> 14) & 0x1;
471 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
472 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
473 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
474 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
475 table[i].Ada_Region = (tmp >> 9) & 0x1;
476 table[i].cxx_info = (tmp >> 8) & 0x1;
477 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
478 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
479 table[i].reserved2 = (tmp >> 5) & 0x1;
480 table[i].Save_SP = (tmp >> 4) & 0x1;
481 table[i].Save_RP = (tmp >> 3) & 0x1;
482 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
483 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
484 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 485 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
486 buf += 4;
487 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
488 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
489 table[i].Large_frame = (tmp >> 29) & 0x1;
490 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
491 table[i].reserved4 = (tmp >> 27) & 0x1;
492 table[i].Total_frame_size = tmp & 0x7ffffff;
493
c5aa993b 494 /* Stub unwinds are handled elsewhere. */
c906108c
SS
495 table[i].stub_unwind.stub_type = 0;
496 table[i].stub_unwind.padding = 0;
497 }
498 }
499}
500
501/* Read in the backtrace information stored in the `$UNWIND_START$' section of
502 the object file. This info is used mainly by find_unwind_entry() to find
503 out the stack frame size and frame pointer used by procedures. We put
504 everything on the psymbol obstack in the objfile so that it automatically
505 gets freed when the objfile is destroyed. */
506
507static void
fba45db2 508read_unwind_info (struct objfile *objfile)
c906108c 509{
d4f3574e
SS
510 asection *unwind_sec, *stub_unwind_sec;
511 unsigned unwind_size, stub_unwind_size, total_size;
512 unsigned index, unwind_entries;
c906108c
SS
513 unsigned stub_entries, total_entries;
514 CORE_ADDR text_offset;
515 struct obj_unwind_info *ui;
516 obj_private_data_t *obj_private;
517
518 text_offset = ANOFFSET (objfile->section_offsets, 0);
8b92e4d5 519 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
c5aa993b 520 sizeof (struct obj_unwind_info));
c906108c
SS
521
522 ui->table = NULL;
523 ui->cache = NULL;
524 ui->last = -1;
525
d4f3574e
SS
526 /* For reasons unknown the HP PA64 tools generate multiple unwinder
527 sections in a single executable. So we just iterate over every
528 section in the BFD looking for unwinder sections intead of trying
529 to do a lookup with bfd_get_section_by_name.
c906108c 530
d4f3574e
SS
531 First determine the total size of the unwind tables so that we
532 can allocate memory in a nice big hunk. */
533 total_entries = 0;
534 for (unwind_sec = objfile->obfd->sections;
535 unwind_sec;
536 unwind_sec = unwind_sec->next)
c906108c 537 {
d4f3574e
SS
538 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
539 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
540 {
541 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
542 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 543
d4f3574e
SS
544 total_entries += unwind_entries;
545 }
c906108c
SS
546 }
547
d4f3574e
SS
548 /* Now compute the size of the stub unwinds. Note the ELF tools do not
549 use stub unwinds at the curren time. */
550 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
551
c906108c
SS
552 if (stub_unwind_sec)
553 {
554 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
555 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
556 }
557 else
558 {
559 stub_unwind_size = 0;
560 stub_entries = 0;
561 }
562
563 /* Compute total number of unwind entries and their total size. */
d4f3574e 564 total_entries += stub_entries;
c906108c
SS
565 total_size = total_entries * sizeof (struct unwind_table_entry);
566
567 /* Allocate memory for the unwind table. */
568 ui->table = (struct unwind_table_entry *)
8b92e4d5 569 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 570 ui->last = total_entries - 1;
c906108c 571
d4f3574e
SS
572 /* Now read in each unwind section and internalize the standard unwind
573 entries. */
c906108c 574 index = 0;
d4f3574e
SS
575 for (unwind_sec = objfile->obfd->sections;
576 unwind_sec;
577 unwind_sec = unwind_sec->next)
578 {
579 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
580 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
581 {
582 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
583 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
584
585 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
586 unwind_entries, unwind_size, text_offset);
587 index += unwind_entries;
588 }
589 }
590
591 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
592 if (stub_unwind_size > 0)
593 {
594 unsigned int i;
595 char *buf = alloca (stub_unwind_size);
596
597 /* Read in the stub unwind entries. */
598 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
599 0, stub_unwind_size);
600
601 /* Now convert them into regular unwind entries. */
602 for (i = 0; i < stub_entries; i++, index++)
603 {
604 /* Clear out the next unwind entry. */
605 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
606
607 /* Convert offset & size into region_start and region_end.
608 Stuff away the stub type into "reserved" fields. */
609 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
610 (bfd_byte *) buf);
611 ui->table[index].region_start += text_offset;
612 buf += 4;
613 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 614 (bfd_byte *) buf);
c906108c
SS
615 buf += 2;
616 ui->table[index].region_end
c5aa993b
JM
617 = ui->table[index].region_start + 4 *
618 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
619 buf += 2;
620 }
621
622 }
623
624 /* Unwind table needs to be kept sorted. */
625 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
626 compare_unwind_entries);
627
628 /* Keep a pointer to the unwind information. */
c5aa993b 629 if (objfile->obj_private == NULL)
c906108c
SS
630 {
631 obj_private = (obj_private_data_t *)
8b92e4d5 632 obstack_alloc (&objfile->objfile_obstack,
c5aa993b 633 sizeof (obj_private_data_t));
c906108c 634 obj_private->unwind_info = NULL;
c5aa993b 635 obj_private->so_info = NULL;
53a5351d 636 obj_private->dp = 0;
c5aa993b 637
4efb68b1 638 objfile->obj_private = obj_private;
c906108c 639 }
c5aa993b 640 obj_private = (obj_private_data_t *) objfile->obj_private;
c906108c
SS
641 obj_private->unwind_info = ui;
642}
643
644/* Lookup the unwind (stack backtrace) info for the given PC. We search all
645 of the objfiles seeking the unwind table entry for this PC. Each objfile
646 contains a sorted list of struct unwind_table_entry. Since we do a binary
647 search of the unwind tables, we depend upon them to be sorted. */
648
649struct unwind_table_entry *
fba45db2 650find_unwind_entry (CORE_ADDR pc)
c906108c
SS
651{
652 int first, middle, last;
653 struct objfile *objfile;
654
655 /* A function at address 0? Not in HP-UX! */
656 if (pc == (CORE_ADDR) 0)
657 return NULL;
658
659 ALL_OBJFILES (objfile)
c5aa993b
JM
660 {
661 struct obj_unwind_info *ui;
662 ui = NULL;
663 if (objfile->obj_private)
664 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
c906108c 665
c5aa993b
JM
666 if (!ui)
667 {
668 read_unwind_info (objfile);
669 if (objfile->obj_private == NULL)
104c1213 670 error ("Internal error reading unwind information.");
c5aa993b
JM
671 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
672 }
c906108c 673
c5aa993b 674 /* First, check the cache */
c906108c 675
c5aa993b
JM
676 if (ui->cache
677 && pc >= ui->cache->region_start
678 && pc <= ui->cache->region_end)
679 return ui->cache;
c906108c 680
c5aa993b 681 /* Not in the cache, do a binary search */
c906108c 682
c5aa993b
JM
683 first = 0;
684 last = ui->last;
c906108c 685
c5aa993b
JM
686 while (first <= last)
687 {
688 middle = (first + last) / 2;
689 if (pc >= ui->table[middle].region_start
690 && pc <= ui->table[middle].region_end)
691 {
692 ui->cache = &ui->table[middle];
693 return &ui->table[middle];
694 }
c906108c 695
c5aa993b
JM
696 if (pc < ui->table[middle].region_start)
697 last = middle - 1;
698 else
699 first = middle + 1;
700 }
701 } /* ALL_OBJFILES() */
c906108c
SS
702 return NULL;
703}
704
aaab4dba
AC
705const unsigned char *
706hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
707{
56132691 708 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
709 (*len) = sizeof (breakpoint);
710 return breakpoint;
711}
712
e23457df
AC
713/* Return the name of a register. */
714
715const char *
3ff7cf9e 716hppa32_register_name (int i)
e23457df
AC
717{
718 static char *names[] = {
719 "flags", "r1", "rp", "r3",
720 "r4", "r5", "r6", "r7",
721 "r8", "r9", "r10", "r11",
722 "r12", "r13", "r14", "r15",
723 "r16", "r17", "r18", "r19",
724 "r20", "r21", "r22", "r23",
725 "r24", "r25", "r26", "dp",
726 "ret0", "ret1", "sp", "r31",
727 "sar", "pcoqh", "pcsqh", "pcoqt",
728 "pcsqt", "eiem", "iir", "isr",
729 "ior", "ipsw", "goto", "sr4",
730 "sr0", "sr1", "sr2", "sr3",
731 "sr5", "sr6", "sr7", "cr0",
732 "cr8", "cr9", "ccr", "cr12",
733 "cr13", "cr24", "cr25", "cr26",
734 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
735 "fpsr", "fpe1", "fpe2", "fpe3",
736 "fpe4", "fpe5", "fpe6", "fpe7",
737 "fr4", "fr4R", "fr5", "fr5R",
738 "fr6", "fr6R", "fr7", "fr7R",
739 "fr8", "fr8R", "fr9", "fr9R",
740 "fr10", "fr10R", "fr11", "fr11R",
741 "fr12", "fr12R", "fr13", "fr13R",
742 "fr14", "fr14R", "fr15", "fr15R",
743 "fr16", "fr16R", "fr17", "fr17R",
744 "fr18", "fr18R", "fr19", "fr19R",
745 "fr20", "fr20R", "fr21", "fr21R",
746 "fr22", "fr22R", "fr23", "fr23R",
747 "fr24", "fr24R", "fr25", "fr25R",
748 "fr26", "fr26R", "fr27", "fr27R",
749 "fr28", "fr28R", "fr29", "fr29R",
750 "fr30", "fr30R", "fr31", "fr31R"
751 };
752 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
753 return NULL;
754 else
755 return names[i];
756}
757
758const char *
759hppa64_register_name (int i)
760{
761 static char *names[] = {
762 "flags", "r1", "rp", "r3",
763 "r4", "r5", "r6", "r7",
764 "r8", "r9", "r10", "r11",
765 "r12", "r13", "r14", "r15",
766 "r16", "r17", "r18", "r19",
767 "r20", "r21", "r22", "r23",
768 "r24", "r25", "r26", "dp",
769 "ret0", "ret1", "sp", "r31",
770 "sar", "pcoqh", "pcsqh", "pcoqt",
771 "pcsqt", "eiem", "iir", "isr",
772 "ior", "ipsw", "goto", "sr4",
773 "sr0", "sr1", "sr2", "sr3",
774 "sr5", "sr6", "sr7", "cr0",
775 "cr8", "cr9", "ccr", "cr12",
776 "cr13", "cr24", "cr25", "cr26",
777 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
778 "fpsr", "fpe1", "fpe2", "fpe3",
779 "fr4", "fr5", "fr6", "fr7",
780 "fr8", "fr9", "fr10", "fr11",
781 "fr12", "fr13", "fr14", "fr15",
782 "fr16", "fr17", "fr18", "fr19",
783 "fr20", "fr21", "fr22", "fr23",
784 "fr24", "fr25", "fr26", "fr27",
785 "fr28", "fr29", "fr30", "fr31"
786 };
787 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
788 return NULL;
789 else
790 return names[i];
791}
792
793
794
c906108c
SS
795/* Return the adjustment necessary to make for addresses on the stack
796 as presented by hpread.c.
797
798 This is necessary because of the stack direction on the PA and the
799 bizarre way in which someone (?) decided they wanted to handle
800 frame pointerless code in GDB. */
801int
fba45db2 802hpread_adjust_stack_address (CORE_ADDR func_addr)
c906108c
SS
803{
804 struct unwind_table_entry *u;
805
806 u = find_unwind_entry (func_addr);
807 if (!u)
808 return 0;
809 else
810 return u->Total_frame_size << 3;
811}
812
813/* Called to determine if PC is in an interrupt handler of some
814 kind. */
815
816static int
fba45db2 817pc_in_interrupt_handler (CORE_ADDR pc)
c906108c
SS
818{
819 struct unwind_table_entry *u;
820 struct minimal_symbol *msym_us;
821
822 u = find_unwind_entry (pc);
823 if (!u)
824 return 0;
825
826 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
827 its frame isn't a pure interrupt frame. Deal with this. */
828 msym_us = lookup_minimal_symbol_by_pc (pc);
829
d7bd68ca 830 return (u->HP_UX_interrupt_marker
22abf04a 831 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
c906108c
SS
832}
833
834/* Called when no unwind descriptor was found for PC. Returns 1 if it
104c1213
JM
835 appears that PC is in a linker stub.
836
837 ?!? Need to handle stubs which appear in PA64 code. */
c906108c
SS
838
839static int
fba45db2 840pc_in_linker_stub (CORE_ADDR pc)
c906108c
SS
841{
842 int found_magic_instruction = 0;
843 int i;
844 char buf[4];
845
846 /* If unable to read memory, assume pc is not in a linker stub. */
847 if (target_read_memory (pc, buf, 4) != 0)
848 return 0;
849
850 /* We are looking for something like
851
852 ; $$dyncall jams RP into this special spot in the frame (RP')
853 ; before calling the "call stub"
854 ldw -18(sp),rp
855
856 ldsid (rp),r1 ; Get space associated with RP into r1
857 mtsp r1,sp ; Move it into space register 0
858 be,n 0(sr0),rp) ; back to your regularly scheduled program */
859
860 /* Maximum known linker stub size is 4 instructions. Search forward
861 from the given PC, then backward. */
862 for (i = 0; i < 4; i++)
863 {
864 /* If we hit something with an unwind, stop searching this direction. */
865
866 if (find_unwind_entry (pc + i * 4) != 0)
867 break;
868
869 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 870 return from a cross-space function call. */
c906108c
SS
871 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
872 {
873 found_magic_instruction = 1;
874 break;
875 }
876 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 877 here. */
c906108c
SS
878 }
879
880 if (found_magic_instruction != 0)
881 return 1;
882
883 /* Now look backward. */
884 for (i = 0; i < 4; i++)
885 {
886 /* If we hit something with an unwind, stop searching this direction. */
887
888 if (find_unwind_entry (pc - i * 4) != 0)
889 break;
890
891 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 892 return from a cross-space function call. */
c906108c
SS
893 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
894 {
895 found_magic_instruction = 1;
896 break;
897 }
898 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 899 here. */
c906108c
SS
900 }
901 return found_magic_instruction;
902}
903
904static int
fba45db2 905find_return_regnum (CORE_ADDR pc)
c906108c
SS
906{
907 struct unwind_table_entry *u;
908
909 u = find_unwind_entry (pc);
910
911 if (!u)
912 return RP_REGNUM;
913
914 if (u->Millicode)
915 return 31;
916
917 return RP_REGNUM;
918}
919
920/* Return size of frame, or -1 if we should use a frame pointer. */
921static int
fba45db2 922find_proc_framesize (CORE_ADDR pc)
c906108c
SS
923{
924 struct unwind_table_entry *u;
925 struct minimal_symbol *msym_us;
926
927 /* This may indicate a bug in our callers... */
c5aa993b 928 if (pc == (CORE_ADDR) 0)
c906108c 929 return -1;
c5aa993b 930
c906108c
SS
931 u = find_unwind_entry (pc);
932
933 if (!u)
934 {
935 if (pc_in_linker_stub (pc))
936 /* Linker stubs have a zero size frame. */
937 return 0;
938 else
939 return -1;
940 }
941
942 msym_us = lookup_minimal_symbol_by_pc (pc);
943
944 /* If Save_SP is set, and we're not in an interrupt or signal caller,
945 then we have a frame pointer. Use it. */
3fa41cdb
JL
946 if (u->Save_SP
947 && !pc_in_interrupt_handler (pc)
948 && msym_us
22abf04a 949 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
c906108c
SS
950 return -1;
951
952 return u->Total_frame_size << 3;
953}
954
955/* Return offset from sp at which rp is saved, or 0 if not saved. */
a14ed312 956static int rp_saved (CORE_ADDR);
c906108c
SS
957
958static int
fba45db2 959rp_saved (CORE_ADDR pc)
c906108c
SS
960{
961 struct unwind_table_entry *u;
962
963 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
964 if (pc == (CORE_ADDR) 0)
965 return 0;
966
967 u = find_unwind_entry (pc);
968
969 if (!u)
970 {
971 if (pc_in_linker_stub (pc))
972 /* This is the so-called RP'. */
973 return -24;
974 else
975 return 0;
976 }
977
978 if (u->Save_RP)
53a5351d 979 return (TARGET_PTR_BIT == 64 ? -16 : -20);
c906108c
SS
980 else if (u->stub_unwind.stub_type != 0)
981 {
982 switch (u->stub_unwind.stub_type)
983 {
984 case EXPORT:
985 case IMPORT:
986 return -24;
987 case PARAMETER_RELOCATION:
988 return -8;
989 default:
990 return 0;
991 }
992 }
993 else
994 return 0;
995}
996\f
997int
60383d10 998hppa_frameless_function_invocation (struct frame_info *frame)
c906108c
SS
999{
1000 struct unwind_table_entry *u;
1001
ef6e7e13 1002 u = find_unwind_entry (get_frame_pc (frame));
c906108c
SS
1003
1004 if (u == 0)
1005 return 0;
1006
1007 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
1008}
1009
d709c020
JB
1010/* Immediately after a function call, return the saved pc.
1011 Can't go through the frames for this because on some machines
1012 the new frame is not set up until the new function executes
1013 some instructions. */
1014
c906108c 1015CORE_ADDR
60383d10 1016hppa_saved_pc_after_call (struct frame_info *frame)
c906108c
SS
1017{
1018 int ret_regnum;
1019 CORE_ADDR pc;
1020 struct unwind_table_entry *u;
1021
1022 ret_regnum = find_return_regnum (get_frame_pc (frame));
1023 pc = read_register (ret_regnum) & ~0x3;
c5aa993b 1024
c906108c
SS
1025 /* If PC is in a linker stub, then we need to dig the address
1026 the stub will return to out of the stack. */
1027 u = find_unwind_entry (pc);
1028 if (u && u->stub_unwind.stub_type != 0)
8bedc050 1029 return DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
1030 else
1031 return pc;
1032}
1033\f
1034CORE_ADDR
fba45db2 1035hppa_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1036{
1037 CORE_ADDR pc = get_frame_pc (frame);
1038 struct unwind_table_entry *u;
65e82032 1039 CORE_ADDR old_pc = 0;
c5aa993b
JM
1040 int spun_around_loop = 0;
1041 int rp_offset = 0;
c906108c
SS
1042
1043 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1044 at the base of the frame in an interrupt handler. Registers within
1045 are saved in the exact same order as GDB numbers registers. How
1046 convienent. */
1047 if (pc_in_interrupt_handler (pc))
ef6e7e13 1048 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
53a5351d 1049 TARGET_PTR_BIT / 8) & ~0x3;
c906108c 1050
ef6e7e13
AC
1051 if ((get_frame_pc (frame) >= get_frame_base (frame)
1052 && (get_frame_pc (frame)
1053 <= (get_frame_base (frame)
1054 /* A call dummy is sized in words, but it is actually a
1055 series of instructions. Account for that scaling
1056 factor. */
b1e29e33
AC
1057 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1058 * DEPRECATED_CALL_DUMMY_LENGTH)
ef6e7e13
AC
1059 /* Similarly we have to account for 64bit wide register
1060 saves. */
b1e29e33 1061 + (32 * DEPRECATED_REGISTER_SIZE)
ef6e7e13
AC
1062 /* We always consider FP regs 8 bytes long. */
1063 + (NUM_REGS - FP0_REGNUM) * 8
1064 /* Similarly we have to account for 64bit wide register
1065 saves. */
b1e29e33 1066 + (6 * DEPRECATED_REGISTER_SIZE)))))
104c1213 1067 {
ef6e7e13 1068 return read_memory_integer ((get_frame_base (frame)
104c1213
JM
1069 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1070 TARGET_PTR_BIT / 8) & ~0x3;
1071 }
1072
c906108c
SS
1073#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1074 /* Deal with signal handler caller frames too. */
5a203e44 1075 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
1076 {
1077 CORE_ADDR rp;
1078 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1079 return rp & ~0x3;
1080 }
1081#endif
1082
60383d10 1083 if (hppa_frameless_function_invocation (frame))
c906108c
SS
1084 {
1085 int ret_regnum;
1086
1087 ret_regnum = find_return_regnum (pc);
1088
1089 /* If the next frame is an interrupt frame or a signal
c5aa993b
JM
1090 handler caller, then we need to look in the saved
1091 register area to get the return pointer (the values
1092 in the registers may not correspond to anything useful). */
ef6e7e13
AC
1093 if (get_next_frame (frame)
1094 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1095 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
c906108c 1096 {
43bd9a9e 1097 CORE_ADDR *saved_regs;
ef6e7e13 1098 hppa_frame_init_saved_regs (get_next_frame (frame));
1b1d3794 1099 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
43bd9a9e 1100 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1101 TARGET_PTR_BIT / 8) & 0x2)
c906108c 1102 {
43bd9a9e 1103 pc = read_memory_integer (saved_regs[31],
53a5351d 1104 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1105
1106 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
1107 with a return pointer in %rp and the kernel call with
1108 a return pointer in %r31. We return the %rp variant
1109 if %r31 is the same as frame->pc. */
ef6e7e13 1110 if (pc == get_frame_pc (frame))
43bd9a9e 1111 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1112 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1113 }
1114 else
43bd9a9e 1115 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1116 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1117 }
1118 else
1119 pc = read_register (ret_regnum) & ~0x3;
1120 }
1121 else
1122 {
1123 spun_around_loop = 0;
c5aa993b 1124 old_pc = pc;
c906108c 1125
c5aa993b 1126 restart:
c906108c
SS
1127 rp_offset = rp_saved (pc);
1128
1129 /* Similar to code in frameless function case. If the next
c5aa993b
JM
1130 frame is a signal or interrupt handler, then dig the right
1131 information out of the saved register info. */
c906108c 1132 if (rp_offset == 0
ef6e7e13
AC
1133 && get_next_frame (frame)
1134 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1135 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
c906108c 1136 {
43bd9a9e 1137 CORE_ADDR *saved_regs;
ef6e7e13 1138 hppa_frame_init_saved_regs (get_next_frame (frame));
1b1d3794 1139 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
43bd9a9e 1140 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1141 TARGET_PTR_BIT / 8) & 0x2)
c906108c 1142 {
43bd9a9e 1143 pc = read_memory_integer (saved_regs[31],
53a5351d 1144 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1145
1146 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
1147 with a return pointer in %rp and the kernel call with
1148 a return pointer in %r31. We return the %rp variant
1149 if %r31 is the same as frame->pc. */
ef6e7e13 1150 if (pc == get_frame_pc (frame))
43bd9a9e 1151 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1152 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1153 }
1154 else
43bd9a9e 1155 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1156 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1157 }
1158 else if (rp_offset == 0)
c5aa993b
JM
1159 {
1160 old_pc = pc;
1161 pc = read_register (RP_REGNUM) & ~0x3;
1162 }
c906108c 1163 else
c5aa993b
JM
1164 {
1165 old_pc = pc;
ef6e7e13 1166 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
53a5351d 1167 TARGET_PTR_BIT / 8) & ~0x3;
c5aa993b 1168 }
c906108c
SS
1169 }
1170
1171 /* If PC is inside a linker stub, then dig out the address the stub
1172 will return to.
1173
1174 Don't do this for long branch stubs. Why? For some unknown reason
1175 _start is marked as a long branch stub in hpux10. */
1176 u = find_unwind_entry (pc);
1177 if (u && u->stub_unwind.stub_type != 0
1178 && u->stub_unwind.stub_type != LONG_BRANCH)
1179 {
1180 unsigned int insn;
1181
1182 /* If this is a dynamic executable, and we're in a signal handler,
c5aa993b
JM
1183 then the call chain will eventually point us into the stub for
1184 _sigreturn. Unlike most cases, we'll be pointed to the branch
1185 to the real sigreturn rather than the code after the real branch!.
c906108c 1186
c5aa993b
JM
1187 Else, try to dig the address the stub will return to in the normal
1188 fashion. */
c906108c
SS
1189 insn = read_memory_integer (pc, 4);
1190 if ((insn & 0xfc00e000) == 0xe8000000)
1191 return (pc + extract_17 (insn) + 8) & ~0x3;
1192 else
1193 {
c5aa993b
JM
1194 if (old_pc == pc)
1195 spun_around_loop++;
1196
1197 if (spun_around_loop > 1)
1198 {
1199 /* We're just about to go around the loop again with
1200 no more hope of success. Die. */
1201 error ("Unable to find return pc for this frame");
1202 }
1203 else
1204 goto restart;
c906108c
SS
1205 }
1206 }
1207
1208 return pc;
1209}
1210\f
1211/* We need to correct the PC and the FP for the outermost frame when we are
1212 in a system call. */
1213
1214void
60383d10 1215hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
c906108c
SS
1216{
1217 int flags;
1218 int framesize;
1219
ef6e7e13 1220 if (get_next_frame (frame) && !fromleaf)
c906108c
SS
1221 return;
1222
618ce49f
AC
1223 /* If the next frame represents a frameless function invocation then
1224 we have to do some adjustments that are normally done by
1225 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1226 this case.) */
c906108c
SS
1227 if (fromleaf)
1228 {
1229 /* Find the framesize of *this* frame without peeking at the PC
c5aa993b 1230 in the current frame structure (it isn't set yet). */
8bedc050 1231 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
c906108c
SS
1232
1233 /* Now adjust our base frame accordingly. If we have a frame pointer
c5aa993b
JM
1234 use it, else subtract the size of this frame from the current
1235 frame. (we always want frame->frame to point at the lowest address
1236 in the frame). */
c906108c 1237 if (framesize == -1)
0ba6dca9 1238 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
c906108c 1239 else
ef6e7e13 1240 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
c906108c
SS
1241 return;
1242 }
1243
1244 flags = read_register (FLAGS_REGNUM);
c5aa993b 1245 if (flags & 2) /* In system call? */
ef6e7e13 1246 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
c906108c
SS
1247
1248 /* The outermost frame is always derived from PC-framesize
1249
1250 One might think frameless innermost frames should have
1251 a frame->frame that is the same as the parent's frame->frame.
1252 That is wrong; frame->frame in that case should be the *high*
1253 address of the parent's frame. It's complicated as hell to
1254 explain, but the parent *always* creates some stack space for
1255 the child. So the child actually does have a frame of some
1256 sorts, and its base is the high address in its parent's frame. */
ef6e7e13 1257 framesize = find_proc_framesize (get_frame_pc (frame));
c906108c 1258 if (framesize == -1)
0ba6dca9 1259 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
c906108c 1260 else
ef6e7e13 1261 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
c906108c
SS
1262}
1263\f
a5afb99f
AC
1264/* Given a GDB frame, determine the address of the calling function's
1265 frame. This will be used to create a new GDB frame struct, and
e9582e71
AC
1266 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1267 will be called for the new frame.
c906108c
SS
1268
1269 This may involve searching through prologues for several functions
1270 at boundaries where GCC calls HP C code, or where code which has
1271 a frame pointer calls code without a frame pointer. */
1272
1273CORE_ADDR
60383d10 1274hppa_frame_chain (struct frame_info *frame)
c906108c
SS
1275{
1276 int my_framesize, caller_framesize;
1277 struct unwind_table_entry *u;
1278 CORE_ADDR frame_base;
1279 struct frame_info *tmp_frame;
1280
c2c6d25f
JM
1281 /* A frame in the current frame list, or zero. */
1282 struct frame_info *saved_regs_frame = 0;
43bd9a9e
AC
1283 /* Where the registers were saved in saved_regs_frame. If
1284 saved_regs_frame is zero, this is garbage. */
1285 CORE_ADDR *saved_regs = NULL;
c2c6d25f 1286
c5aa993b 1287 CORE_ADDR caller_pc;
c906108c
SS
1288
1289 struct minimal_symbol *min_frame_symbol;
c5aa993b
JM
1290 struct symbol *frame_symbol;
1291 char *frame_symbol_name;
c906108c
SS
1292
1293 /* If this is a threaded application, and we see the
1294 routine "__pthread_exit", treat it as the stack root
1295 for this thread. */
ef6e7e13
AC
1296 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1297 frame_symbol = find_pc_function (get_frame_pc (frame));
c906108c 1298
c5aa993b 1299 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
c906108c 1300 {
c5aa993b
JM
1301 /* The test above for "no user function name" would defend
1302 against the slim likelihood that a user might define a
1303 routine named "__pthread_exit" and then try to debug it.
1304
1305 If it weren't commented out, and you tried to debug the
1306 pthread library itself, you'd get errors.
1307
1308 So for today, we don't make that check. */
22abf04a 1309 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
c5aa993b
JM
1310 if (frame_symbol_name != 0)
1311 {
1312 if (0 == strncmp (frame_symbol_name,
1313 THREAD_INITIAL_FRAME_SYMBOL,
1314 THREAD_INITIAL_FRAME_SYM_LEN))
1315 {
1316 /* Pretend we've reached the bottom of the stack. */
1317 return (CORE_ADDR) 0;
1318 }
1319 }
1320 } /* End of hacky code for threads. */
1321
c906108c
SS
1322 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1323 are easy; at *sp we have a full save state strucutre which we can
1324 pull the old stack pointer from. Also see frame_saved_pc for
1325 code to dig a saved PC out of the save state structure. */
ef6e7e13
AC
1326 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1327 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
53a5351d 1328 TARGET_PTR_BIT / 8);
c906108c 1329#ifdef FRAME_BASE_BEFORE_SIGTRAMP
5a203e44 1330 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
1331 {
1332 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1333 }
1334#endif
1335 else
ef6e7e13 1336 frame_base = get_frame_base (frame);
c906108c
SS
1337
1338 /* Get frame sizes for the current frame and the frame of the
1339 caller. */
ef6e7e13 1340 my_framesize = find_proc_framesize (get_frame_pc (frame));
8bedc050 1341 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
1342
1343 /* If we can't determine the caller's PC, then it's not likely we can
1344 really determine anything meaningful about its frame. We'll consider
1345 this to be stack bottom. */
1346 if (caller_pc == (CORE_ADDR) 0)
1347 return (CORE_ADDR) 0;
1348
8bedc050 1349 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1350
1351 /* If caller does not have a frame pointer, then its frame
1352 can be found at current_frame - caller_framesize. */
1353 if (caller_framesize != -1)
1354 {
1355 return frame_base - caller_framesize;
1356 }
1357 /* Both caller and callee have frame pointers and are GCC compiled
1358 (SAVE_SP bit in unwind descriptor is on for both functions.
1359 The previous frame pointer is found at the top of the current frame. */
1360 if (caller_framesize == -1 && my_framesize == -1)
1361 {
53a5351d 1362 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
c906108c
SS
1363 }
1364 /* Caller has a frame pointer, but callee does not. This is a little
1365 more difficult as GCC and HP C lay out locals and callee register save
1366 areas very differently.
1367
1368 The previous frame pointer could be in a register, or in one of
1369 several areas on the stack.
1370
1371 Walk from the current frame to the innermost frame examining
1372 unwind descriptors to determine if %r3 ever gets saved into the
1373 stack. If so return whatever value got saved into the stack.
1374 If it was never saved in the stack, then the value in %r3 is still
1375 valid, so use it.
1376
1377 We use information from unwind descriptors to determine if %r3
1378 is saved into the stack (Entry_GR field has this information). */
1379
ef6e7e13 1380 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
c906108c 1381 {
ef6e7e13 1382 u = find_unwind_entry (get_frame_pc (tmp_frame));
c906108c
SS
1383
1384 if (!u)
1385 {
1386 /* We could find this information by examining prologues. I don't
1387 think anyone has actually written any tools (not even "strip")
1388 which leave them out of an executable, so maybe this is a moot
1389 point. */
c5aa993b
JM
1390 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1391 code that doesn't have unwind entries. For example, stepping into
1392 the dynamic linker will give you a PC that has none. Thus, I've
1393 disabled this warning. */
c906108c 1394#if 0
ef6e7e13 1395 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
c906108c
SS
1396#endif
1397 return (CORE_ADDR) 0;
1398 }
1399
c2c6d25f 1400 if (u->Save_SP
5a203e44 1401 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
ef6e7e13 1402 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
c906108c 1403 break;
c2c6d25f
JM
1404
1405 /* Entry_GR specifies the number of callee-saved general registers
1406 saved in the stack. It starts at %r3, so %r3 would be 1. */
1407 if (u->Entry_GR >= 1)
1408 {
1409 /* The unwind entry claims that r3 is saved here. However,
1410 in optimized code, GCC often doesn't actually save r3.
1411 We'll discover this if we look at the prologue. */
43bd9a9e 1412 hppa_frame_init_saved_regs (tmp_frame);
1b1d3794 1413 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
c2c6d25f
JM
1414 saved_regs_frame = tmp_frame;
1415
1416 /* If we have an address for r3, that's good. */
0ba6dca9 1417 if (saved_regs[DEPRECATED_FP_REGNUM])
c2c6d25f
JM
1418 break;
1419 }
c906108c
SS
1420 }
1421
1422 if (tmp_frame)
1423 {
1424 /* We may have walked down the chain into a function with a frame
c5aa993b 1425 pointer. */
c906108c 1426 if (u->Save_SP
5a203e44 1427 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
ef6e7e13 1428 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
c906108c 1429 {
ef6e7e13 1430 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
c906108c
SS
1431 }
1432 /* %r3 was saved somewhere in the stack. Dig it out. */
c5aa993b 1433 else
c906108c 1434 {
c906108c
SS
1435 /* Sick.
1436
1437 For optimization purposes many kernels don't have the
1438 callee saved registers into the save_state structure upon
1439 entry into the kernel for a syscall; the optimization
1440 is usually turned off if the process is being traced so
1441 that the debugger can get full register state for the
1442 process.
c5aa993b 1443
c906108c
SS
1444 This scheme works well except for two cases:
1445
c5aa993b
JM
1446 * Attaching to a process when the process is in the
1447 kernel performing a system call (debugger can't get
1448 full register state for the inferior process since
1449 the process wasn't being traced when it entered the
1450 system call).
c906108c 1451
c5aa993b
JM
1452 * Register state is not complete if the system call
1453 causes the process to core dump.
c906108c
SS
1454
1455
1456 The following heinous code is an attempt to deal with
1457 the lack of register state in a core dump. It will
1458 fail miserably if the function which performs the
1459 system call has a variable sized stack frame. */
1460
c2c6d25f 1461 if (tmp_frame != saved_regs_frame)
43bd9a9e
AC
1462 {
1463 hppa_frame_init_saved_regs (tmp_frame);
1b1d3794 1464 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
43bd9a9e 1465 }
c906108c
SS
1466
1467 /* Abominable hack. */
1468 if (current_target.to_has_execution == 0
43bd9a9e
AC
1469 && ((saved_regs[FLAGS_REGNUM]
1470 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1471 TARGET_PTR_BIT / 8)
c906108c 1472 & 0x2))
43bd9a9e 1473 || (saved_regs[FLAGS_REGNUM] == 0
c906108c
SS
1474 && read_register (FLAGS_REGNUM) & 0x2)))
1475 {
8bedc050 1476 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1477 if (!u)
1478 {
0ba6dca9 1479 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
53a5351d 1480 TARGET_PTR_BIT / 8);
c906108c
SS
1481 }
1482 else
1483 {
1484 return frame_base - (u->Total_frame_size << 3);
1485 }
1486 }
c5aa993b 1487
0ba6dca9 1488 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
53a5351d 1489 TARGET_PTR_BIT / 8);
c906108c
SS
1490 }
1491 }
1492 else
1493 {
c906108c
SS
1494 /* Get the innermost frame. */
1495 tmp_frame = frame;
ef6e7e13
AC
1496 while (get_next_frame (tmp_frame) != NULL)
1497 tmp_frame = get_next_frame (tmp_frame);
c906108c 1498
c2c6d25f 1499 if (tmp_frame != saved_regs_frame)
43bd9a9e
AC
1500 {
1501 hppa_frame_init_saved_regs (tmp_frame);
1b1d3794 1502 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
43bd9a9e 1503 }
c2c6d25f 1504
c906108c
SS
1505 /* Abominable hack. See above. */
1506 if (current_target.to_has_execution == 0
43bd9a9e
AC
1507 && ((saved_regs[FLAGS_REGNUM]
1508 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1509 TARGET_PTR_BIT / 8)
c906108c 1510 & 0x2))
43bd9a9e 1511 || (saved_regs[FLAGS_REGNUM] == 0
c5aa993b 1512 && read_register (FLAGS_REGNUM) & 0x2)))
c906108c 1513 {
8bedc050 1514 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1515 if (!u)
1516 {
0ba6dca9 1517 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
53a5351d 1518 TARGET_PTR_BIT / 8);
c906108c 1519 }
c5aa993b
JM
1520 else
1521 {
1522 return frame_base - (u->Total_frame_size << 3);
1523 }
c906108c 1524 }
c5aa993b 1525
c906108c 1526 /* The value in %r3 was never saved into the stack (thus %r3 still
c5aa993b 1527 holds the value of the previous frame pointer). */
0ba6dca9 1528 return deprecated_read_fp ();
c906108c
SS
1529 }
1530}
c906108c 1531\f
c5aa993b 1532
c906108c
SS
1533/* To see if a frame chain is valid, see if the caller looks like it
1534 was compiled with gcc. */
1535
1536int
fba45db2 1537hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
1538{
1539 struct minimal_symbol *msym_us;
1540 struct minimal_symbol *msym_start;
1541 struct unwind_table_entry *u, *next_u = NULL;
1542 struct frame_info *next;
1543
ef6e7e13 1544 u = find_unwind_entry (get_frame_pc (thisframe));
c906108c
SS
1545
1546 if (u == NULL)
1547 return 1;
1548
1549 /* We can't just check that the same of msym_us is "_start", because
1550 someone idiotically decided that they were going to make a Ltext_end
1551 symbol with the same address. This Ltext_end symbol is totally
1552 indistinguishable (as nearly as I can tell) from the symbol for a function
1553 which is (legitimately, since it is in the user's namespace)
1554 named Ltext_end, so we can't just ignore it. */
8bedc050 1555 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
c906108c
SS
1556 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1557 if (msym_us
1558 && msym_start
1559 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1560 return 0;
1561
1562 /* Grrrr. Some new idiot decided that they don't want _start for the
1563 PRO configurations; $START$ calls main directly.... Deal with it. */
1564 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1565 if (msym_us
1566 && msym_start
1567 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1568 return 0;
1569
1570 next = get_next_frame (thisframe);
1571 if (next)
ef6e7e13 1572 next_u = find_unwind_entry (get_frame_pc (next));
c906108c
SS
1573
1574 /* If this frame does not save SP, has no stack, isn't a stub,
1575 and doesn't "call" an interrupt routine or signal handler caller,
1576 then its not valid. */
1577 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
ef6e7e13 1578 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
c906108c
SS
1579 || (next_u && next_u->HP_UX_interrupt_marker))
1580 return 1;
1581
ef6e7e13 1582 if (pc_in_linker_stub (get_frame_pc (thisframe)))
c906108c
SS
1583 return 1;
1584
1585 return 0;
1586}
1587
7daf4f5b
JB
1588/* These functions deal with saving and restoring register state
1589 around a function call in the inferior. They keep the stack
1590 double-word aligned; eventually, on an hp700, the stack will have
1591 to be aligned to a 64-byte boundary. */
c906108c
SS
1592
1593void
7daf4f5b 1594hppa_push_dummy_frame (void)
c906108c
SS
1595{
1596 CORE_ADDR sp, pc, pcspace;
52f0bd74 1597 int regnum;
53a5351d 1598 CORE_ADDR int_buffer;
c906108c
SS
1599 double freg_buffer;
1600
60383d10 1601 pc = hppa_target_read_pc (inferior_ptid);
c906108c
SS
1602 int_buffer = read_register (FLAGS_REGNUM);
1603 if (int_buffer & 0x2)
1604 {
3371ccc0 1605 const unsigned int sid = (pc >> 30) & 0x3;
c906108c
SS
1606 if (sid == 0)
1607 pcspace = read_register (SR4_REGNUM);
1608 else
1609 pcspace = read_register (SR4_REGNUM + 4 + sid);
c906108c
SS
1610 }
1611 else
1612 pcspace = read_register (PCSQ_HEAD_REGNUM);
1613
1614 /* Space for "arguments"; the RP goes in here. */
1615 sp = read_register (SP_REGNUM) + 48;
1616 int_buffer = read_register (RP_REGNUM) | 0x3;
53a5351d
JM
1617
1618 /* The 32bit and 64bit ABIs save the return pointer into different
1619 stack slots. */
b1e29e33
AC
1620 if (DEPRECATED_REGISTER_SIZE == 8)
1621 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
53a5351d 1622 else
b1e29e33 1623 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
c906108c 1624
0ba6dca9 1625 int_buffer = deprecated_read_fp ();
b1e29e33 1626 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
c906108c 1627
0ba6dca9 1628 write_register (DEPRECATED_FP_REGNUM, sp);
c906108c 1629
b1e29e33 1630 sp += 2 * DEPRECATED_REGISTER_SIZE;
c906108c
SS
1631
1632 for (regnum = 1; regnum < 32; regnum++)
0ba6dca9 1633 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
c906108c
SS
1634 sp = push_word (sp, read_register (regnum));
1635
53a5351d 1636 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
b1e29e33 1637 if (DEPRECATED_REGISTER_SIZE != 8)
53a5351d 1638 sp += 4;
c906108c
SS
1639
1640 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1641 {
62700349 1642 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
73937e03 1643 (char *) &freg_buffer, 8);
c5aa993b 1644 sp = push_bytes (sp, (char *) &freg_buffer, 8);
c906108c
SS
1645 }
1646 sp = push_word (sp, read_register (IPSW_REGNUM));
1647 sp = push_word (sp, read_register (SAR_REGNUM));
1648 sp = push_word (sp, pc);
1649 sp = push_word (sp, pcspace);
1650 sp = push_word (sp, pc + 4);
1651 sp = push_word (sp, pcspace);
1652 write_register (SP_REGNUM, sp);
1653}
1654
1655static void
fba45db2 1656find_dummy_frame_regs (struct frame_info *frame,
43bd9a9e 1657 CORE_ADDR frame_saved_regs[])
c906108c 1658{
ef6e7e13 1659 CORE_ADDR fp = get_frame_base (frame);
c906108c
SS
1660 int i;
1661
53a5351d 1662 /* The 32bit and 64bit ABIs save RP into different locations. */
b1e29e33 1663 if (DEPRECATED_REGISTER_SIZE == 8)
43bd9a9e 1664 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
53a5351d 1665 else
43bd9a9e 1666 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
53a5351d 1667
0ba6dca9 1668 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
c906108c 1669
b1e29e33 1670 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
53a5351d 1671
b1e29e33 1672 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
c906108c 1673 {
0ba6dca9 1674 if (i != DEPRECATED_FP_REGNUM)
c906108c 1675 {
43bd9a9e 1676 frame_saved_regs[i] = fp;
b1e29e33 1677 fp += DEPRECATED_REGISTER_SIZE;
c906108c
SS
1678 }
1679 }
1680
53a5351d 1681 /* This is not necessary or desirable for the 64bit ABI. */
b1e29e33 1682 if (DEPRECATED_REGISTER_SIZE != 8)
53a5351d
JM
1683 fp += 4;
1684
c906108c 1685 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
43bd9a9e
AC
1686 frame_saved_regs[i] = fp;
1687
1688 frame_saved_regs[IPSW_REGNUM] = fp;
b1e29e33
AC
1689 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1690 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1691 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1692 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1693 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
c906108c
SS
1694}
1695
1696void
fba45db2 1697hppa_pop_frame (void)
c906108c 1698{
52f0bd74
AC
1699 struct frame_info *frame = get_current_frame ();
1700 CORE_ADDR fp, npc, target_pc;
1701 int regnum;
43bd9a9e 1702 CORE_ADDR *fsr;
c906108c
SS
1703 double freg_buffer;
1704
c193f6ac 1705 fp = get_frame_base (frame);
43bd9a9e 1706 hppa_frame_init_saved_regs (frame);
1b1d3794 1707 fsr = deprecated_get_frame_saved_regs (frame);
c906108c
SS
1708
1709#ifndef NO_PC_SPACE_QUEUE_RESTORE
43bd9a9e
AC
1710 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1711 restore_pc_queue (fsr);
c906108c
SS
1712#endif
1713
1714 for (regnum = 31; regnum > 0; regnum--)
43bd9a9e
AC
1715 if (fsr[regnum])
1716 write_register (regnum, read_memory_integer (fsr[regnum],
b1e29e33 1717 DEPRECATED_REGISTER_SIZE));
c906108c 1718
c5aa993b 1719 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
43bd9a9e 1720 if (fsr[regnum])
c906108c 1721 {
43bd9a9e 1722 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
62700349 1723 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
73937e03 1724 (char *) &freg_buffer, 8);
c906108c
SS
1725 }
1726
43bd9a9e 1727 if (fsr[IPSW_REGNUM])
c906108c 1728 write_register (IPSW_REGNUM,
43bd9a9e 1729 read_memory_integer (fsr[IPSW_REGNUM],
b1e29e33 1730 DEPRECATED_REGISTER_SIZE));
c906108c 1731
43bd9a9e 1732 if (fsr[SAR_REGNUM])
c906108c 1733 write_register (SAR_REGNUM,
43bd9a9e 1734 read_memory_integer (fsr[SAR_REGNUM],
b1e29e33 1735 DEPRECATED_REGISTER_SIZE));
c906108c
SS
1736
1737 /* If the PC was explicitly saved, then just restore it. */
43bd9a9e 1738 if (fsr[PCOQ_TAIL_REGNUM])
c906108c 1739 {
43bd9a9e 1740 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
b1e29e33 1741 DEPRECATED_REGISTER_SIZE);
c906108c
SS
1742 write_register (PCOQ_TAIL_REGNUM, npc);
1743 }
1744 /* Else use the value in %rp to set the new PC. */
c5aa993b 1745 else
c906108c
SS
1746 {
1747 npc = read_register (RP_REGNUM);
1748 write_pc (npc);
1749 }
1750
b1e29e33 1751 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
c906108c 1752
43bd9a9e 1753 if (fsr[IPSW_REGNUM]) /* call dummy */
c906108c
SS
1754 write_register (SP_REGNUM, fp - 48);
1755 else
1756 write_register (SP_REGNUM, fp);
1757
1758 /* The PC we just restored may be inside a return trampoline. If so
1759 we want to restart the inferior and run it through the trampoline.
1760
1761 Do this by setting a momentary breakpoint at the location the
1762 trampoline returns to.
1763
1764 Don't skip through the trampoline if we're popping a dummy frame. */
1765 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
43bd9a9e 1766 if (target_pc && !fsr[IPSW_REGNUM])
c906108c
SS
1767 {
1768 struct symtab_and_line sal;
1769 struct breakpoint *breakpoint;
1770 struct cleanup *old_chain;
1771
1772 /* Set up our breakpoint. Set it to be silent as the MI code
c5aa993b 1773 for "return_command" will print the frame we returned to. */
c906108c
SS
1774 sal = find_pc_line (target_pc, 0);
1775 sal.pc = target_pc;
516b1f28 1776 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
c906108c
SS
1777 breakpoint->silent = 1;
1778
1779 /* So we can clean things up. */
4d6140d9 1780 old_chain = make_cleanup_delete_breakpoint (breakpoint);
c906108c
SS
1781
1782 /* Start up the inferior. */
1783 clear_proceed_status ();
1784 proceed_to_finish = 1;
2acceee2 1785 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
c906108c
SS
1786
1787 /* Perform our cleanups. */
1788 do_cleanups (old_chain);
1789 }
1790 flush_cached_frames ();
1791}
1792
1793/* After returning to a dummy on the stack, restore the instruction
1794 queue space registers. */
1795
1796static int
43bd9a9e 1797restore_pc_queue (CORE_ADDR *fsr)
c906108c
SS
1798{
1799 CORE_ADDR pc = read_pc ();
43bd9a9e 1800 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
53a5351d 1801 TARGET_PTR_BIT / 8);
c906108c
SS
1802 struct target_waitstatus w;
1803 int insn_count;
1804
1805 /* Advance past break instruction in the call dummy. */
1806 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1807 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1808
1809 /* HPUX doesn't let us set the space registers or the space
1810 registers of the PC queue through ptrace. Boo, hiss.
1811 Conveniently, the call dummy has this sequence of instructions
1812 after the break:
c5aa993b
JM
1813 mtsp r21, sr0
1814 ble,n 0(sr0, r22)
1815
c906108c
SS
1816 So, load up the registers and single step until we are in the
1817 right place. */
1818
43bd9a9e 1819 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
b1e29e33 1820 DEPRECATED_REGISTER_SIZE));
c906108c
SS
1821 write_register (22, new_pc);
1822
1823 for (insn_count = 0; insn_count < 3; insn_count++)
1824 {
1825 /* FIXME: What if the inferior gets a signal right now? Want to
c5aa993b
JM
1826 merge this into wait_for_inferior (as a special kind of
1827 watchpoint? By setting a breakpoint at the end? Is there
1828 any other choice? Is there *any* way to do this stuff with
1829 ptrace() or some equivalent?). */
c906108c 1830 resume (1, 0);
39f77062 1831 target_wait (inferior_ptid, &w);
c906108c
SS
1832
1833 if (w.kind == TARGET_WAITKIND_SIGNALLED)
c5aa993b
JM
1834 {
1835 stop_signal = w.value.sig;
1836 terminal_ours_for_output ();
1837 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
c906108c
SS
1838 target_signal_to_name (stop_signal),
1839 target_signal_to_string (stop_signal));
c5aa993b
JM
1840 gdb_flush (gdb_stdout);
1841 return 0;
1842 }
c906108c
SS
1843 }
1844 target_terminal_ours ();
1845 target_fetch_registers (-1);
1846 return 1;
1847}
1848
c2c6d25f
JM
1849
1850#ifdef PA20W_CALLING_CONVENTIONS
1851
53a5351d
JM
1852/* This function pushes a stack frame with arguments as part of the
1853 inferior function calling mechanism.
c906108c 1854
c2c6d25f
JM
1855 This is the version for the PA64, in which later arguments appear
1856 at higher addresses. (The stack always grows towards higher
1857 addresses.)
c906108c 1858
53a5351d
JM
1859 We simply allocate the appropriate amount of stack space and put
1860 arguments into their proper slots. The call dummy code will copy
1861 arguments into registers as needed by the ABI.
c906108c 1862
c2c6d25f
JM
1863 This ABI also requires that the caller provide an argument pointer
1864 to the callee, so we do that too. */
53a5351d 1865
c906108c 1866CORE_ADDR
ea7c478f 1867hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1868 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1869{
1870 /* array of arguments' offsets */
c5aa993b 1871 int *offset = (int *) alloca (nargs * sizeof (int));
53a5351d
JM
1872
1873 /* array of arguments' lengths: real lengths in bytes, not aligned to
1874 word size */
c5aa993b 1875 int *lengths = (int *) alloca (nargs * sizeof (int));
c906108c 1876
53a5351d
JM
1877 /* The value of SP as it was passed into this function after
1878 aligning. */
f27dd7fd 1879 CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp);
c906108c 1880
53a5351d
JM
1881 /* The number of stack bytes occupied by the current argument. */
1882 int bytes_reserved;
1883
1884 /* The total number of bytes reserved for the arguments. */
1885 int cum_bytes_reserved = 0;
c906108c 1886
53a5351d
JM
1887 /* Similarly, but aligned. */
1888 int cum_bytes_aligned = 0;
1889 int i;
c5aa993b 1890
53a5351d 1891 /* Iterate over each argument provided by the user. */
c906108c
SS
1892 for (i = 0; i < nargs; i++)
1893 {
c2c6d25f
JM
1894 struct type *arg_type = VALUE_TYPE (args[i]);
1895
1896 /* Integral scalar values smaller than a register are padded on
1897 the left. We do this by promoting them to full-width,
1898 although the ABI says to pad them with garbage. */
1899 if (is_integral_type (arg_type)
b1e29e33 1900 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
c2c6d25f
JM
1901 {
1902 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1903 ? builtin_type_unsigned_long
1904 : builtin_type_long),
1905 args[i]);
1906 arg_type = VALUE_TYPE (args[i]);
1907 }
1908
1909 lengths[i] = TYPE_LENGTH (arg_type);
c906108c 1910
53a5351d
JM
1911 /* Align the size of the argument to the word size for this
1912 target. */
b1e29e33 1913 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
c906108c 1914
53a5351d
JM
1915 offset[i] = cum_bytes_reserved;
1916
c2c6d25f
JM
1917 /* Aggregates larger than eight bytes (the only types larger
1918 than eight bytes we have) are aligned on a 16-byte boundary,
1919 possibly padded on the right with garbage. This may leave an
1920 empty word on the stack, and thus an unused register, as per
1921 the ABI. */
1922 if (bytes_reserved > 8)
1923 {
1924 /* Round up the offset to a multiple of two slots. */
b1e29e33
AC
1925 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1926 & -(2*DEPRECATED_REGISTER_SIZE));
c906108c 1927
c2c6d25f
JM
1928 /* Note the space we've wasted, if any. */
1929 bytes_reserved += new_offset - offset[i];
1930 offset[i] = new_offset;
1931 }
53a5351d 1932
c2c6d25f
JM
1933 cum_bytes_reserved += bytes_reserved;
1934 }
1935
1936 /* CUM_BYTES_RESERVED already accounts for all the arguments
1937 passed by the user. However, the ABIs mandate minimum stack space
1938 allocations for outgoing arguments.
1939
1940 The ABIs also mandate minimum stack alignments which we must
1941 preserve. */
f27dd7fd 1942 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
c2c6d25f
JM
1943 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1944
1945 /* Now write each of the args at the proper offset down the stack. */
1946 for (i = 0; i < nargs; i++)
1947 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1948
1949 /* If a structure has to be returned, set up register 28 to hold its
1950 address */
1951 if (struct_return)
1952 write_register (28, struct_addr);
1953
1954 /* For the PA64 we must pass a pointer to the outgoing argument list.
1955 The ABI mandates that the pointer should point to the first byte of
1956 storage beyond the register flushback area.
1957
1958 However, the call dummy expects the outgoing argument pointer to
1959 be passed in register %r4. */
1960 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1961
1962 /* ?!? This needs further work. We need to set up the global data
1963 pointer for this procedure. This assumes the same global pointer
1964 for every procedure. The call dummy expects the dp value to
1965 be passed in register %r6. */
1966 write_register (6, read_register (27));
1967
1968 /* The stack will have 64 bytes of additional space for a frame marker. */
1969 return sp + 64;
1970}
1971
1972#else
1973
1974/* This function pushes a stack frame with arguments as part of the
1975 inferior function calling mechanism.
1976
1977 This is the version of the function for the 32-bit PA machines, in
1978 which later arguments appear at lower addresses. (The stack always
1979 grows towards higher addresses.)
1980
1981 We simply allocate the appropriate amount of stack space and put
1982 arguments into their proper slots. The call dummy code will copy
1983 arguments into registers as needed by the ABI. */
1984
1985CORE_ADDR
ea7c478f 1986hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1987 int struct_return, CORE_ADDR struct_addr)
c2c6d25f
JM
1988{
1989 /* array of arguments' offsets */
1990 int *offset = (int *) alloca (nargs * sizeof (int));
1991
1992 /* array of arguments' lengths: real lengths in bytes, not aligned to
1993 word size */
1994 int *lengths = (int *) alloca (nargs * sizeof (int));
1995
1996 /* The number of stack bytes occupied by the current argument. */
1997 int bytes_reserved;
1998
1999 /* The total number of bytes reserved for the arguments. */
2000 int cum_bytes_reserved = 0;
2001
2002 /* Similarly, but aligned. */
2003 int cum_bytes_aligned = 0;
2004 int i;
2005
2006 /* Iterate over each argument provided by the user. */
2007 for (i = 0; i < nargs; i++)
2008 {
2009 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2010
2011 /* Align the size of the argument to the word size for this
2012 target. */
b1e29e33 2013 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
c2c6d25f 2014
b6649e88
AC
2015 offset[i] = (cum_bytes_reserved
2016 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
c2c6d25f
JM
2017
2018 /* If the argument is a double word argument, then it needs to be
2019 double word aligned. */
b1e29e33
AC
2020 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
2021 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
c5aa993b
JM
2022 {
2023 int new_offset = 0;
53a5351d
JM
2024 /* BYTES_RESERVED is already aligned to the word, so we put
2025 the argument at one word more down the stack.
2026
2027 This will leave one empty word on the stack, and one unused
2028 register as mandated by the ABI. */
b1e29e33
AC
2029 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
2030 & -(2 * DEPRECATED_REGISTER_SIZE));
53a5351d 2031
b1e29e33 2032 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
c5aa993b 2033 {
b1e29e33
AC
2034 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2035 offset[i] += DEPRECATED_REGISTER_SIZE;
c5aa993b
JM
2036 }
2037 }
c906108c
SS
2038
2039 cum_bytes_reserved += bytes_reserved;
2040
2041 }
2042
c2c6d25f
JM
2043 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2044 by the user. However, the ABI mandates minimum stack space
53a5351d
JM
2045 allocations for outgoing arguments.
2046
c2c6d25f 2047 The ABI also mandates minimum stack alignments which we must
53a5351d 2048 preserve. */
f27dd7fd 2049 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
53a5351d
JM
2050 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2051
2052 /* Now write each of the args at the proper offset down the stack.
53a5351d
JM
2053 ?!? We need to promote values to a full register instead of skipping
2054 words in the stack. */
c906108c
SS
2055 for (i = 0; i < nargs; i++)
2056 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
c906108c 2057
53a5351d
JM
2058 /* If a structure has to be returned, set up register 28 to hold its
2059 address */
c906108c
SS
2060 if (struct_return)
2061 write_register (28, struct_addr);
2062
53a5351d 2063 /* The stack will have 32 bytes of additional space for a frame marker. */
c906108c
SS
2064 return sp + 32;
2065}
2066
c2c6d25f 2067#endif
c906108c 2068
c906108c 2069/* elz: Used to lookup a symbol in the shared libraries.
c5aa993b
JM
2070 This function calls shl_findsym, indirectly through a
2071 call to __d_shl_get. __d_shl_get is in end.c, which is always
2072 linked in by the hp compilers/linkers.
2073 The call to shl_findsym cannot be made directly because it needs
2074 to be active in target address space.
2075 inputs: - minimal symbol pointer for the function we want to look up
2076 - address in target space of the descriptor for the library
2077 where we want to look the symbol up.
2078 This address is retrieved using the
2079 som_solib_get_solib_by_pc function (somsolib.c).
2080 output: - real address in the library of the function.
2081 note: the handle can be null, in which case shl_findsym will look for
2082 the symbol in all the loaded shared libraries.
2083 files to look at if you need reference on this stuff:
2084 dld.c, dld_shl_findsym.c
2085 end.c
2086 man entry for shl_findsym */
c906108c
SS
2087
2088CORE_ADDR
fba45db2 2089find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
c906108c 2090{
c5aa993b
JM
2091 struct symbol *get_sym, *symbol2;
2092 struct minimal_symbol *buff_minsym, *msymbol;
2093 struct type *ftype;
ea7c478f
AC
2094 struct value **args;
2095 struct value *funcval;
2096 struct value *val;
c5aa993b
JM
2097
2098 int x, namelen, err_value, tmp = -1;
2099 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2100 CORE_ADDR stub_addr;
2101
2102
ea7c478f 2103 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
c5aa993b 2104 funcval = find_function_in_inferior ("__d_shl_get");
176620f1 2105 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
c5aa993b
JM
2106 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2107 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
176620f1 2108 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
c5aa993b 2109 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
22abf04a 2110 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
c5aa993b
JM
2111 value_return_addr = endo_buff_addr + namelen;
2112 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2113
2114 /* do alignment */
2115 if ((x = value_return_addr % 64) != 0)
2116 value_return_addr = value_return_addr + 64 - x;
2117
2118 errno_return_addr = value_return_addr + 64;
2119
2120
2121 /* set up stuff needed by __d_shl_get in buffer in end.o */
2122
22abf04a 2123 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
c5aa993b
JM
2124
2125 target_write_memory (value_return_addr, (char *) &tmp, 4);
2126
2127 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2128
2129 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2130 (char *) &handle, 4);
2131
2132 /* now prepare the arguments for the call */
2133
2134 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
4478b372
JB
2135 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2136 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
c5aa993b 2137 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
4478b372
JB
2138 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2139 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
c5aa993b
JM
2140
2141 /* now call the function */
2142
2143 val = call_function_by_hand (funcval, 6, args);
2144
2145 /* now get the results */
2146
2147 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2148
2149 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2150 if (stub_addr <= 0)
104c1213 2151 error ("call to __d_shl_get failed, error code is %d", err_value);
c5aa993b
JM
2152
2153 return (stub_addr);
c906108c
SS
2154}
2155
c5aa993b 2156/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
a0b3c4fd 2157static int
4efb68b1 2158cover_find_stub_with_shl_get (void *args_untyped)
c906108c 2159{
a0b3c4fd
JM
2160 args_for_find_stub *args = args_untyped;
2161 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2162 return 0;
c906108c
SS
2163}
2164
c906108c
SS
2165/* Insert the specified number of args and function address
2166 into a call sequence of the above form stored at DUMMYNAME.
2167
2168 On the hppa we need to call the stack dummy through $$dyncall.
b1e29e33
AC
2169 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2170 argument, real_pc, which is the location where gdb should start up
2171 the inferior to do the function call.
cce74817
JM
2172
2173 This has to work across several versions of hpux, bsd, osf1. It has to
2174 work regardless of what compiler was used to build the inferior program.
2175 It should work regardless of whether or not end.o is available. It has
2176 to work even if gdb can not call into the dynamic loader in the inferior
2177 to query it for symbol names and addresses.
2178
2179 Yes, all those cases should work. Luckily code exists to handle most
2180 of them. The complexity is in selecting exactly what scheme should
2181 be used to perform the inferior call.
2182
2183 At the current time this routine is known not to handle cases where
2184 the program was linked with HP's compiler without including end.o.
2185
2186 Please contact Jeff Law (law@cygnus.com) before changing this code. */
c906108c
SS
2187
2188CORE_ADDR
fba45db2 2189hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 2190 struct value **args, struct type *type, int gcc_p)
c906108c
SS
2191{
2192 CORE_ADDR dyncall_addr;
2193 struct minimal_symbol *msymbol;
2194 struct minimal_symbol *trampoline;
2195 int flags = read_register (FLAGS_REGNUM);
cce74817
JM
2196 struct unwind_table_entry *u = NULL;
2197 CORE_ADDR new_stub = 0;
2198 CORE_ADDR solib_handle = 0;
2199
2200 /* Nonzero if we will use GCC's PLT call routine. This routine must be
c2c6d25f
JM
2201 passed an import stub, not a PLABEL. It is also necessary to set %r19
2202 (the PIC register) before performing the call.
c906108c 2203
cce74817
JM
2204 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2205 are calling the target directly. When using __d_plt_call we want to
2206 use a PLABEL instead of an import stub. */
2207 int using_gcc_plt_call = 1;
2208
53a5351d
JM
2209#ifdef GDB_TARGET_IS_HPPA_20W
2210 /* We currently use completely different code for the PA2.0W inferior
2211 function call sequences. This needs to be cleaned up. */
2212 {
2213 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2214 struct target_waitstatus w;
2215 int inst1, inst2;
2216 char buf[4];
2217 int status;
2218 struct objfile *objfile;
2219
2220 /* We can not modify the PC space queues directly, so we start
2221 up the inferior and execute a couple instructions to set the
2222 space queues so that they point to the call dummy in the stack. */
2223 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2224 sr5 = read_register (SR5_REGNUM);
2225 if (1)
2226 {
2227 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2228 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2229 if (target_read_memory (pcoqh, buf, 4) != 0)
2230 error ("Couldn't modify space queue\n");
2231 inst1 = extract_unsigned_integer (buf, 4);
2232
2233 if (target_read_memory (pcoqt, buf, 4) != 0)
2234 error ("Couldn't modify space queue\n");
2235 inst2 = extract_unsigned_integer (buf, 4);
2236
2237 /* BVE (r1) */
2238 *((int *) buf) = 0xe820d000;
2239 if (target_write_memory (pcoqh, buf, 4) != 0)
2240 error ("Couldn't modify space queue\n");
2241
2242 /* NOP */
2243 *((int *) buf) = 0x08000240;
2244 if (target_write_memory (pcoqt, buf, 4) != 0)
2245 {
2246 *((int *) buf) = inst1;
2247 target_write_memory (pcoqh, buf, 4);
2248 error ("Couldn't modify space queue\n");
2249 }
2250
2251 write_register (1, pc);
2252
2253 /* Single step twice, the BVE instruction will set the space queue
2254 such that it points to the PC value written immediately above
2255 (ie the call dummy). */
2256 resume (1, 0);
39f77062 2257 target_wait (inferior_ptid, &w);
53a5351d 2258 resume (1, 0);
39f77062 2259 target_wait (inferior_ptid, &w);
53a5351d
JM
2260
2261 /* Restore the two instructions at the old PC locations. */
2262 *((int *) buf) = inst1;
2263 target_write_memory (pcoqh, buf, 4);
2264 *((int *) buf) = inst2;
2265 target_write_memory (pcoqt, buf, 4);
2266 }
2267
2268 /* The call dummy wants the ultimate destination address initially
2269 in register %r5. */
2270 write_register (5, fun);
2271
2272 /* We need to see if this objfile has a different DP value than our
c2c6d25f 2273 own (it could be a shared library for example). */
53a5351d
JM
2274 ALL_OBJFILES (objfile)
2275 {
2276 struct obj_section *s;
2277 obj_private_data_t *obj_private;
2278
2279 /* See if FUN is in any section within this shared library. */
2280 for (s = objfile->sections; s < objfile->sections_end; s++)
2281 if (s->addr <= fun && fun < s->endaddr)
2282 break;
2283
2284 if (s >= objfile->sections_end)
2285 continue;
2286
2287 obj_private = (obj_private_data_t *) objfile->obj_private;
2288
2289 /* The DP value may be different for each objfile. But within an
2290 objfile each function uses the same dp value. Thus we do not need
2291 to grope around the opd section looking for dp values.
2292
2293 ?!? This is not strictly correct since we may be in a shared library
2294 and want to call back into the main program. To make that case
2295 work correctly we need to set obj_private->dp for the main program's
2296 objfile, then remove this conditional. */
2297 if (obj_private->dp)
2298 write_register (27, obj_private->dp);
2299 break;
2300 }
2301 return pc;
2302 }
2303#endif
2304
2305#ifndef GDB_TARGET_IS_HPPA_20W
cce74817 2306 /* Prefer __gcc_plt_call over the HP supplied routine because
c5aa993b 2307 __gcc_plt_call works for any number of arguments. */
c906108c 2308 trampoline = NULL;
cce74817
JM
2309 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2310 using_gcc_plt_call = 0;
2311
c906108c
SS
2312 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2313 if (msymbol == NULL)
cce74817 2314 error ("Can't find an address for $$dyncall trampoline");
c906108c
SS
2315
2316 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2317
2318 /* FUN could be a procedure label, in which case we have to get
cce74817
JM
2319 its real address and the value of its GOT/DP if we plan to
2320 call the routine via gcc_plt_call. */
2321 if ((fun & 0x2) && using_gcc_plt_call)
c906108c
SS
2322 {
2323 /* Get the GOT/DP value for the target function. It's
c5aa993b
JM
2324 at *(fun+4). Note the call dummy is *NOT* allowed to
2325 trash %r19 before calling the target function. */
53a5351d 2326 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
b1e29e33 2327 DEPRECATED_REGISTER_SIZE));
c906108c
SS
2328
2329 /* Now get the real address for the function we are calling, it's
c5aa993b 2330 at *fun. */
53a5351d
JM
2331 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2332 TARGET_PTR_BIT / 8);
c906108c
SS
2333 }
2334 else
2335 {
2336
2337#ifndef GDB_TARGET_IS_PA_ELF
cce74817 2338 /* FUN could be an export stub, the real address of a function, or
c5aa993b
JM
2339 a PLABEL. When using gcc's PLT call routine we must call an import
2340 stub rather than the export stub or real function for lazy binding
2341 to work correctly
cce74817 2342
39f77062 2343 If we are using the gcc PLT call routine, then we need to
c5aa993b 2344 get the import stub for the target function. */
cce74817 2345 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
c906108c
SS
2346 {
2347 struct objfile *objfile;
2348 struct minimal_symbol *funsymbol, *stub_symbol;
2349 CORE_ADDR newfun = 0;
2350
2351 funsymbol = lookup_minimal_symbol_by_pc (fun);
2352 if (!funsymbol)
4ce44c66 2353 error ("Unable to find minimal symbol for target function.\n");
c906108c
SS
2354
2355 /* Search all the object files for an import symbol with the
2356 right name. */
2357 ALL_OBJFILES (objfile)
c5aa993b
JM
2358 {
2359 stub_symbol
2360 = lookup_minimal_symbol_solib_trampoline
40324f1b 2361 (DEPRECATED_SYMBOL_NAME (funsymbol), objfile);
c5aa993b
JM
2362
2363 if (!stub_symbol)
22abf04a 2364 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
c5aa993b
JM
2365 NULL, objfile);
2366
2367 /* Found a symbol with the right name. */
2368 if (stub_symbol)
2369 {
2370 struct unwind_table_entry *u;
2371 /* It must be a shared library trampoline. */
2372 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2373 continue;
2374
2375 /* It must also be an import stub. */
2376 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
6426a772
JM
2377 if (u == NULL
2378 || (u->stub_unwind.stub_type != IMPORT
2379#ifdef GDB_NATIVE_HPUX_11
2380 /* Sigh. The hpux 10.20 dynamic linker will blow
2381 chunks if we perform a call to an unbound function
2382 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2383 linker will blow chunks if we do not call the
2384 unbound function via the IMPORT_SHLIB stub.
2385
2386 We currently have no way to select bevahior on just
2387 the target. However, we only support HPUX/SOM in
2388 native mode. So we conditinalize on a native
2389 #ifdef. Ugly. Ugly. Ugly */
2390 && u->stub_unwind.stub_type != IMPORT_SHLIB
2391#endif
2392 ))
c5aa993b
JM
2393 continue;
2394
2395 /* OK. Looks like the correct import stub. */
2396 newfun = SYMBOL_VALUE (stub_symbol);
2397 fun = newfun;
6426a772
JM
2398
2399 /* If we found an IMPORT stub, then we want to stop
2400 searching now. If we found an IMPORT_SHLIB, we want
2401 to continue the search in the hopes that we will find
2402 an IMPORT stub. */
2403 if (u->stub_unwind.stub_type == IMPORT)
2404 break;
c5aa993b
JM
2405 }
2406 }
cce74817
JM
2407
2408 /* Ouch. We did not find an import stub. Make an attempt to
2409 do the right thing instead of just croaking. Most of the
2410 time this will actually work. */
c906108c
SS
2411 if (newfun == 0)
2412 write_register (19, som_solib_get_got_by_pc (fun));
cce74817
JM
2413
2414 u = find_unwind_entry (fun);
c5aa993b 2415 if (u
cce74817
JM
2416 && (u->stub_unwind.stub_type == IMPORT
2417 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2418 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2419
2420 /* If we found the import stub in the shared library, then we have
2421 to set %r19 before we call the stub. */
2422 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2423 write_register (19, som_solib_get_got_by_pc (fun));
c906108c 2424 }
c906108c
SS
2425#endif
2426 }
2427
cce74817
JM
2428 /* If we are calling into another load module then have sr4export call the
2429 magic __d_plt_call routine which is linked in from end.o.
c906108c 2430
cce74817
JM
2431 You can't use _sr4export to make the call as the value in sp-24 will get
2432 fried and you end up returning to the wrong location. You can't call the
2433 target as the code to bind the PLT entry to a function can't return to a
2434 stack address.
2435
2436 Also, query the dynamic linker in the inferior to provide a suitable
2437 PLABEL for the target function. */
c5aa993b 2438 if (!using_gcc_plt_call)
c906108c
SS
2439 {
2440 CORE_ADDR new_fun;
2441
cce74817 2442 /* Get a handle for the shared library containing FUN. Given the
c5aa993b 2443 handle we can query the shared library for a PLABEL. */
cce74817 2444 solib_handle = som_solib_get_solib_by_pc (fun);
c906108c 2445
cce74817 2446 if (solib_handle)
c906108c 2447 {
cce74817 2448 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
c906108c 2449
cce74817
JM
2450 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2451
2452 if (trampoline == NULL)
2453 {
2454 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2455 }
2456
2457 /* This is where sr4export will jump to. */
2458 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2459
2460 /* If the function is in a shared library, then call __d_shl_get to
2461 get a PLABEL for the target function. */
2462 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2463
c5aa993b 2464 if (new_stub == 0)
22abf04a 2465 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
c906108c
SS
2466
2467 /* We have to store the address of the stub in __shlib_funcptr. */
cce74817 2468 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
c5aa993b 2469 (struct objfile *) NULL);
c906108c 2470
cce74817
JM
2471 if (msymbol == NULL)
2472 error ("Can't find an address for __shlib_funcptr");
2473 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
c5aa993b 2474 (char *) &new_stub, 4);
c906108c
SS
2475
2476 /* We want sr4export to call __d_plt_call, so we claim it is
2477 the final target. Clear trampoline. */
cce74817
JM
2478 fun = new_fun;
2479 trampoline = NULL;
c906108c
SS
2480 }
2481 }
2482
2483 /* Store upper 21 bits of function address into ldil. fun will either be
2484 the final target (most cases) or __d_plt_call when calling into a shared
2485 library and __gcc_plt_call is not available. */
2486 store_unsigned_integer
2487 (&dummy[FUNC_LDIL_OFFSET],
2488 INSTRUCTION_SIZE,
2489 deposit_21 (fun >> 11,
2490 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2491 INSTRUCTION_SIZE)));
2492
2493 /* Store lower 11 bits of function address into ldo */
2494 store_unsigned_integer
2495 (&dummy[FUNC_LDO_OFFSET],
2496 INSTRUCTION_SIZE,
2497 deposit_14 (fun & MASK_11,
2498 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2499 INSTRUCTION_SIZE)));
2500#ifdef SR4EXPORT_LDIL_OFFSET
2501
2502 {
2503 CORE_ADDR trampoline_addr;
2504
2505 /* We may still need sr4export's address too. */
2506
2507 if (trampoline == NULL)
2508 {
2509 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2510 if (msymbol == NULL)
cce74817 2511 error ("Can't find an address for _sr4export trampoline");
c906108c
SS
2512
2513 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2514 }
2515 else
2516 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2517
2518
2519 /* Store upper 21 bits of trampoline's address into ldil */
2520 store_unsigned_integer
2521 (&dummy[SR4EXPORT_LDIL_OFFSET],
2522 INSTRUCTION_SIZE,
2523 deposit_21 (trampoline_addr >> 11,
2524 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2525 INSTRUCTION_SIZE)));
2526
2527 /* Store lower 11 bits of trampoline's address into ldo */
2528 store_unsigned_integer
2529 (&dummy[SR4EXPORT_LDO_OFFSET],
2530 INSTRUCTION_SIZE,
2531 deposit_14 (trampoline_addr & MASK_11,
2532 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2533 INSTRUCTION_SIZE)));
2534 }
2535#endif
2536
2537 write_register (22, pc);
2538
2539 /* If we are in a syscall, then we should call the stack dummy
2540 directly. $$dyncall is not needed as the kernel sets up the
2541 space id registers properly based on the value in %r31. In
2542 fact calling $$dyncall will not work because the value in %r22
2543 will be clobbered on the syscall exit path.
2544
2545 Similarly if the current PC is in a shared library. Note however,
2546 this scheme won't work if the shared library isn't mapped into
2547 the same space as the stack. */
2548 if (flags & 2)
2549 return pc;
2550#ifndef GDB_TARGET_IS_PA_ELF
60383d10 2551 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
c906108c
SS
2552 return pc;
2553#endif
2554 else
2555 return dyncall_addr;
53a5351d 2556#endif
c906108c
SS
2557}
2558
c906108c
SS
2559/* If the pid is in a syscall, then the FP register is not readable.
2560 We'll return zero in that case, rather than attempting to read it
2561 and cause a warning. */
60383d10 2562
c906108c 2563CORE_ADDR
60383d10 2564hppa_read_fp (int pid)
c906108c
SS
2565{
2566 int flags = read_register (FLAGS_REGNUM);
2567
c5aa993b
JM
2568 if (flags & 2)
2569 {
2570 return (CORE_ADDR) 0;
2571 }
c906108c
SS
2572
2573 /* This is the only site that may directly read_register () the FP
0ba6dca9
AC
2574 register. All others must use deprecated_read_fp (). */
2575 return read_register (DEPRECATED_FP_REGNUM);
c906108c
SS
2576}
2577
60383d10
JB
2578CORE_ADDR
2579hppa_target_read_fp (void)
2580{
2581 return hppa_read_fp (PIDGET (inferior_ptid));
2582}
c906108c
SS
2583
2584/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2585 bits. */
2586
2587CORE_ADDR
60383d10 2588hppa_target_read_pc (ptid_t ptid)
c906108c 2589{
39f77062 2590 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2591
2592 /* The following test does not belong here. It is OS-specific, and belongs
2593 in native code. */
2594 /* Test SS_INSYSCALL */
2595 if (flags & 2)
39f77062 2596 return read_register_pid (31, ptid) & ~0x3;
c906108c 2597
39f77062 2598 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
c906108c
SS
2599}
2600
2601/* Write out the PC. If currently in a syscall, then also write the new
2602 PC value into %r31. */
2603
2604void
60383d10 2605hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 2606{
39f77062 2607 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2608
2609 /* The following test does not belong here. It is OS-specific, and belongs
2610 in native code. */
2611 /* If in a syscall, then set %r31. Also make sure to get the
2612 privilege bits set correctly. */
2613 /* Test SS_INSYSCALL */
2614 if (flags & 2)
39f77062 2615 write_register_pid (31, v | 0x3, ptid);
c906108c 2616
39f77062 2617 write_register_pid (PC_REGNUM, v, ptid);
adc11376 2618 write_register_pid (PCOQ_TAIL_REGNUM, v + 4, ptid);
c906108c
SS
2619}
2620
2621/* return the alignment of a type in bytes. Structures have the maximum
2622 alignment required by their fields. */
2623
2624static int
fba45db2 2625hppa_alignof (struct type *type)
c906108c
SS
2626{
2627 int max_align, align, i;
2628 CHECK_TYPEDEF (type);
2629 switch (TYPE_CODE (type))
2630 {
2631 case TYPE_CODE_PTR:
2632 case TYPE_CODE_INT:
2633 case TYPE_CODE_FLT:
2634 return TYPE_LENGTH (type);
2635 case TYPE_CODE_ARRAY:
2636 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2637 case TYPE_CODE_STRUCT:
2638 case TYPE_CODE_UNION:
2639 max_align = 1;
2640 for (i = 0; i < TYPE_NFIELDS (type); i++)
2641 {
2642 /* Bit fields have no real alignment. */
2643 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 2644 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
2645 {
2646 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2647 max_align = max (max_align, align);
2648 }
2649 }
2650 return max_align;
2651 default:
2652 return 4;
2653 }
2654}
2655
2656/* Print the register regnum, or all registers if regnum is -1 */
2657
2658void
fba45db2 2659pa_do_registers_info (int regnum, int fpregs)
c906108c 2660{
b8b527c5 2661 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
c906108c
SS
2662 int i;
2663
2664 /* Make a copy of gdb's save area (may cause actual
2665 reads from the target). */
2666 for (i = 0; i < NUM_REGS; i++)
62700349
AC
2667 frame_register_read (deprecated_selected_frame, i,
2668 raw_regs + DEPRECATED_REGISTER_BYTE (i));
c906108c
SS
2669
2670 if (regnum == -1)
2671 pa_print_registers (raw_regs, regnum, fpregs);
c5aa993b
JM
2672 else if (regnum < FP4_REGNUM)
2673 {
2674 long reg_val[2];
2675
2676 /* Why is the value not passed through "extract_signed_integer"
2677 as in "pa_print_registers" below? */
2678 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2679
2680 if (!is_pa_2)
2681 {
ce414844 2682 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2683 }
c906108c 2684 else
c5aa993b
JM
2685 {
2686 /* Fancy % formats to prevent leading zeros. */
2687 if (reg_val[0] == 0)
ce414844 2688 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2689 else
ce414844 2690 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
c5aa993b
JM
2691 reg_val[0], reg_val[1]);
2692 }
c906108c 2693 }
c906108c 2694 else
c5aa993b
JM
2695 /* Note that real floating point values only start at
2696 FP4_REGNUM. FP0 and up are just status and error
2697 registers, which have integral (bit) values. */
c906108c
SS
2698 pa_print_fp_reg (regnum);
2699}
2700
2701/********** new function ********************/
2702void
fba45db2
KB
2703pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2704 enum precision_type precision)
c906108c 2705{
b8b527c5 2706 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
c906108c
SS
2707 int i;
2708
2709 /* Make a copy of gdb's save area (may cause actual
c5aa993b 2710 reads from the target). */
c906108c 2711 for (i = 0; i < NUM_REGS; i++)
62700349
AC
2712 frame_register_read (deprecated_selected_frame, i,
2713 raw_regs + DEPRECATED_REGISTER_BYTE (i));
c906108c
SS
2714
2715 if (regnum == -1)
2716 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2717
c5aa993b
JM
2718 else if (regnum < FP4_REGNUM)
2719 {
2720 long reg_val[2];
2721
2722 /* Why is the value not passed through "extract_signed_integer"
2723 as in "pa_print_registers" below? */
2724 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
c906108c 2725
c5aa993b
JM
2726 if (!is_pa_2)
2727 {
ce414844 2728 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2729 }
c906108c 2730 else
c5aa993b
JM
2731 {
2732 /* Fancy % formats to prevent leading zeros. */
2733 if (reg_val[0] == 0)
ce414844 2734 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
c5aa993b
JM
2735 reg_val[1]);
2736 else
ce414844 2737 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
c5aa993b
JM
2738 reg_val[0], reg_val[1]);
2739 }
c906108c 2740 }
c906108c 2741 else
c5aa993b
JM
2742 /* Note that real floating point values only start at
2743 FP4_REGNUM. FP0 and up are just status and error
2744 registers, which have integral (bit) values. */
c906108c
SS
2745 pa_strcat_fp_reg (regnum, stream, precision);
2746}
2747
2748/* If this is a PA2.0 machine, fetch the real 64-bit register
2749 value. Otherwise use the info from gdb's saved register area.
2750
2751 Note that reg_val is really expected to be an array of longs,
2752 with two elements. */
2753static void
fba45db2 2754pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
c906108c 2755{
c5aa993b 2756 static int know_which = 0; /* False */
c906108c 2757
c5aa993b 2758 int regaddr;
c906108c 2759 unsigned int offset;
52f0bd74 2760 int i;
c5aa993b
JM
2761 int start;
2762
2763
123a958e 2764 char buf[MAX_REGISTER_SIZE];
c906108c
SS
2765 long long reg_val;
2766
c5aa993b
JM
2767 if (!know_which)
2768 {
2769 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2770 {
2771 is_pa_2 = (1 == 1);
2772 }
2773
2774 know_which = 1; /* True */
2775 }
c906108c
SS
2776
2777 raw_val[0] = 0;
2778 raw_val[1] = 0;
2779
c5aa993b
JM
2780 if (!is_pa_2)
2781 {
62700349 2782 raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum));
c906108c 2783 return;
c5aa993b 2784 }
c906108c
SS
2785
2786 /* Code below copied from hppah-nat.c, with fixes for wide
2787 registers, using different area of save_state, etc. */
2788 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
c5aa993b
JM
2789 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2790 {
c906108c 2791 /* Use narrow regs area of save_state and default macro. */
c5aa993b
JM
2792 offset = U_REGS_OFFSET;
2793 regaddr = register_addr (regnum, offset);
2794 start = 1;
2795 }
2796 else
2797 {
c906108c
SS
2798 /* Use wide regs area, and calculate registers as 8 bytes wide.
2799
2800 We'd like to do this, but current version of "C" doesn't
2801 permit "offsetof":
2802
c5aa993b 2803 offset = offsetof(save_state_t, ss_wide);
c906108c
SS
2804
2805 Note that to avoid "C" doing typed pointer arithmetic, we
2806 have to cast away the type in our offset calculation:
2807 otherwise we get an offset of 1! */
2808
7a292a7a 2809 /* NB: save_state_t is not available before HPUX 9.
c5aa993b 2810 The ss_wide field is not available previous to HPUX 10.20,
7a292a7a
SS
2811 so to avoid compile-time warnings, we only compile this for
2812 PA 2.0 processors. This control path should only be followed
2813 if we're debugging a PA 2.0 processor, so this should not cause
2814 problems. */
2815
c906108c
SS
2816 /* #if the following code out so that this file can still be
2817 compiled on older HPUX boxes (< 10.20) which don't have
2818 this structure/structure member. */
2819#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2820 save_state_t temp;
2821
2822 offset = ((int) &temp.ss_wide) - ((int) &temp);
2823 regaddr = offset + regnum * 8;
c5aa993b 2824 start = 0;
c906108c 2825#endif
c5aa993b
JM
2826 }
2827
2828 for (i = start; i < 2; i++)
c906108c
SS
2829 {
2830 errno = 0;
39f77062 2831 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
c5aa993b 2832 (PTRACE_ARG3_TYPE) regaddr, 0);
c906108c
SS
2833 if (errno != 0)
2834 {
2835 /* Warning, not error, in case we are attached; sometimes the
2836 kernel doesn't let us at the registers. */
2837 char *err = safe_strerror (errno);
2838 char *msg = alloca (strlen (err) + 128);
2839 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2840 warning (msg);
2841 goto error_exit;
2842 }
2843
2844 regaddr += sizeof (long);
2845 }
c5aa993b 2846
c906108c 2847 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
c5aa993b 2848 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
c906108c
SS
2849
2850error_exit:
2851 ;
2852}
2853
2854/* "Info all-reg" command */
c5aa993b 2855
c906108c 2856static void
fba45db2 2857pa_print_registers (char *raw_regs, int regnum, int fpregs)
c906108c 2858{
c5aa993b 2859 int i, j;
adf40b2e
JM
2860 /* Alas, we are compiled so that "long long" is 32 bits */
2861 long raw_val[2];
c906108c 2862 long long_val;
a0b3c4fd 2863 int rows = 48, columns = 2;
c906108c 2864
adf40b2e 2865 for (i = 0; i < rows; i++)
c906108c 2866 {
adf40b2e 2867 for (j = 0; j < columns; j++)
c906108c 2868 {
adf40b2e
JM
2869 /* We display registers in column-major order. */
2870 int regnum = i + j * rows;
2871
c5aa993b
JM
2872 /* Q: Why is the value passed through "extract_signed_integer",
2873 while above, in "pa_do_registers_info" it isn't?
2874 A: ? */
adf40b2e 2875 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
c5aa993b
JM
2876
2877 /* Even fancier % formats to prevent leading zeros
2878 and still maintain the output in columns. */
2879 if (!is_pa_2)
2880 {
2881 /* Being big-endian, on this machine the low bits
2882 (the ones we want to look at) are in the second longword. */
2883 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844 2884 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2885 REGISTER_NAME (regnum), long_val);
c5aa993b
JM
2886 }
2887 else
2888 {
2889 /* raw_val = extract_signed_integer(&raw_val, 8); */
2890 if (raw_val[0] == 0)
ce414844 2891 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2892 REGISTER_NAME (regnum), raw_val[1]);
c5aa993b 2893 else
ce414844 2894 printf_filtered ("%10.10s: %8lx%8.8lx ",
a0b3c4fd 2895 REGISTER_NAME (regnum),
c5aa993b
JM
2896 raw_val[0], raw_val[1]);
2897 }
c906108c
SS
2898 }
2899 printf_unfiltered ("\n");
2900 }
c5aa993b 2901
c906108c 2902 if (fpregs)
c5aa993b 2903 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2904 pa_print_fp_reg (i);
2905}
2906
c5aa993b 2907/************* new function ******************/
c906108c 2908static void
fba45db2
KB
2909pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2910 struct ui_file *stream)
c906108c 2911{
c5aa993b
JM
2912 int i, j;
2913 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
c906108c
SS
2914 long long_val;
2915 enum precision_type precision;
2916
2917 precision = unspecified_precision;
2918
2919 for (i = 0; i < 18; i++)
2920 {
2921 for (j = 0; j < 4; j++)
2922 {
c5aa993b
JM
2923 /* Q: Why is the value passed through "extract_signed_integer",
2924 while above, in "pa_do_registers_info" it isn't?
2925 A: ? */
2926 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2927
2928 /* Even fancier % formats to prevent leading zeros
2929 and still maintain the output in columns. */
2930 if (!is_pa_2)
2931 {
2932 /* Being big-endian, on this machine the low bits
2933 (the ones we want to look at) are in the second longword. */
2934 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844
AC
2935 fprintf_filtered (stream, "%8.8s: %8lx ",
2936 REGISTER_NAME (i + (j * 18)), long_val);
c5aa993b
JM
2937 }
2938 else
2939 {
2940 /* raw_val = extract_signed_integer(&raw_val, 8); */
2941 if (raw_val[0] == 0)
ce414844
AC
2942 fprintf_filtered (stream, "%8.8s: %8lx ",
2943 REGISTER_NAME (i + (j * 18)), raw_val[1]);
c5aa993b 2944 else
ce414844
AC
2945 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2946 REGISTER_NAME (i + (j * 18)), raw_val[0],
2947 raw_val[1]);
c5aa993b 2948 }
c906108c
SS
2949 }
2950 fprintf_unfiltered (stream, "\n");
2951 }
c5aa993b 2952
c906108c 2953 if (fpregs)
c5aa993b 2954 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2955 pa_strcat_fp_reg (i, stream, precision);
2956}
2957
2958static void
fba45db2 2959pa_print_fp_reg (int i)
c906108c 2960{
123a958e
AC
2961 char raw_buffer[MAX_REGISTER_SIZE];
2962 char virtual_buffer[MAX_REGISTER_SIZE];
c906108c
SS
2963
2964 /* Get 32bits of data. */
6e7f8b9c 2965 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
2966
2967 /* Put it in the buffer. No conversions are ever necessary. */
12c266ea 2968 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
c906108c
SS
2969
2970 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2971 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2972 fputs_filtered ("(single precision) ", gdb_stdout);
2973
2e092625 2974 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
c906108c
SS
2975 1, 0, Val_pretty_default);
2976 printf_filtered ("\n");
2977
2978 /* If "i" is even, then this register can also be a double-precision
2979 FP register. Dump it out as such. */
2980 if ((i % 2) == 0)
2981 {
2982 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 2983 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
c906108c
SS
2984
2985 /* Copy it into the appropriate part of the virtual buffer. */
12c266ea
AC
2986 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buffer,
2987 DEPRECATED_REGISTER_RAW_SIZE (i));
c906108c
SS
2988
2989 /* Dump it as a double. */
2990 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2991 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2992 fputs_filtered ("(double precision) ", gdb_stdout);
2993
2994 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2995 1, 0, Val_pretty_default);
2996 printf_filtered ("\n");
2997 }
2998}
2999
3000/*************** new function ***********************/
3001static void
fba45db2 3002pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
c906108c 3003{
123a958e
AC
3004 char raw_buffer[MAX_REGISTER_SIZE];
3005 char virtual_buffer[MAX_REGISTER_SIZE];
c906108c
SS
3006
3007 fputs_filtered (REGISTER_NAME (i), stream);
3008 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
3009
3010 /* Get 32bits of data. */
6e7f8b9c 3011 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
3012
3013 /* Put it in the buffer. No conversions are ever necessary. */
12c266ea 3014 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
c906108c
SS
3015
3016 if (precision == double_precision && (i % 2) == 0)
3017 {
3018
123a958e 3019 char raw_buf[MAX_REGISTER_SIZE];
c5aa993b
JM
3020
3021 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 3022 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
c5aa993b
JM
3023
3024 /* Copy it into the appropriate part of the virtual buffer. */
12c266ea
AC
3025 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buf,
3026 DEPRECATED_REGISTER_RAW_SIZE (i));
c906108c 3027
c5aa993b
JM
3028 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3029 1, 0, Val_pretty_default);
c906108c
SS
3030
3031 }
c5aa993b
JM
3032 else
3033 {
2e092625 3034 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
c5aa993b
JM
3035 1, 0, Val_pretty_default);
3036 }
c906108c
SS
3037
3038}
3039
3040/* Return one if PC is in the call path of a trampoline, else return zero.
3041
3042 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3043 just shared library trampolines (import, export). */
3044
3045int
60383d10 3046hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3047{
3048 struct minimal_symbol *minsym;
3049 struct unwind_table_entry *u;
3050 static CORE_ADDR dyncall = 0;
3051 static CORE_ADDR sr4export = 0;
3052
c2c6d25f
JM
3053#ifdef GDB_TARGET_IS_HPPA_20W
3054 /* PA64 has a completely different stub/trampoline scheme. Is it
3055 better? Maybe. It's certainly harder to determine with any
3056 certainty that we are in a stub because we can not refer to the
3057 unwinders to help.
3058
3059 The heuristic is simple. Try to lookup the current PC value in th
3060 minimal symbol table. If that fails, then assume we are not in a
3061 stub and return.
3062
3063 Then see if the PC value falls within the section bounds for the
3064 section containing the minimal symbol we found in the first
3065 step. If it does, then assume we are not in a stub and return.
3066
3067 Finally peek at the instructions to see if they look like a stub. */
3068 {
3069 struct minimal_symbol *minsym;
3070 asection *sec;
3071 CORE_ADDR addr;
3072 int insn, i;
3073
3074 minsym = lookup_minimal_symbol_by_pc (pc);
3075 if (! minsym)
3076 return 0;
3077
3078 sec = SYMBOL_BFD_SECTION (minsym);
3079
b98ed7be
AM
3080 if (bfd_get_section_vma (sec->owner, sec) <= pc
3081 && pc < (bfd_get_section_vma (sec->owner, sec)
3082 + bfd_section_size (sec->owner, sec)))
c2c6d25f
JM
3083 return 0;
3084
3085 /* We might be in a stub. Peek at the instructions. Stubs are 3
3086 instructions long. */
3087 insn = read_memory_integer (pc, 4);
3088
b84a8afe 3089 /* Find out where we think we are within the stub. */
c2c6d25f
JM
3090 if ((insn & 0xffffc00e) == 0x53610000)
3091 addr = pc;
3092 else if ((insn & 0xffffffff) == 0xe820d000)
3093 addr = pc - 4;
3094 else if ((insn & 0xffffc00e) == 0x537b0000)
3095 addr = pc - 8;
3096 else
3097 return 0;
3098
3099 /* Now verify each insn in the range looks like a stub instruction. */
3100 insn = read_memory_integer (addr, 4);
3101 if ((insn & 0xffffc00e) != 0x53610000)
3102 return 0;
3103
3104 /* Now verify each insn in the range looks like a stub instruction. */
3105 insn = read_memory_integer (addr + 4, 4);
3106 if ((insn & 0xffffffff) != 0xe820d000)
3107 return 0;
3108
3109 /* Now verify each insn in the range looks like a stub instruction. */
3110 insn = read_memory_integer (addr + 8, 4);
3111 if ((insn & 0xffffc00e) != 0x537b0000)
3112 return 0;
3113
3114 /* Looks like a stub. */
3115 return 1;
3116 }
3117#endif
3118
3119 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3120 new exec file */
c906108c
SS
3121
3122 /* First see if PC is in one of the two C-library trampolines. */
3123 if (!dyncall)
3124 {
3125 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3126 if (minsym)
3127 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3128 else
3129 dyncall = -1;
3130 }
3131
3132 if (!sr4export)
3133 {
3134 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3135 if (minsym)
3136 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3137 else
3138 sr4export = -1;
3139 }
3140
3141 if (pc == dyncall || pc == sr4export)
3142 return 1;
3143
104c1213 3144 minsym = lookup_minimal_symbol_by_pc (pc);
22abf04a 3145 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
104c1213
JM
3146 return 1;
3147
c906108c
SS
3148 /* Get the unwind descriptor corresponding to PC, return zero
3149 if no unwind was found. */
3150 u = find_unwind_entry (pc);
3151 if (!u)
3152 return 0;
3153
3154 /* If this isn't a linker stub, then return now. */
3155 if (u->stub_unwind.stub_type == 0)
3156 return 0;
3157
3158 /* By definition a long-branch stub is a call stub. */
3159 if (u->stub_unwind.stub_type == LONG_BRANCH)
3160 return 1;
3161
3162 /* The call and return path execute the same instructions within
3163 an IMPORT stub! So an IMPORT stub is both a call and return
3164 trampoline. */
3165 if (u->stub_unwind.stub_type == IMPORT)
3166 return 1;
3167
3168 /* Parameter relocation stubs always have a call path and may have a
3169 return path. */
3170 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3171 || u->stub_unwind.stub_type == EXPORT)
3172 {
3173 CORE_ADDR addr;
3174
3175 /* Search forward from the current PC until we hit a branch
c5aa993b 3176 or the end of the stub. */
c906108c
SS
3177 for (addr = pc; addr <= u->region_end; addr += 4)
3178 {
3179 unsigned long insn;
3180
3181 insn = read_memory_integer (addr, 4);
3182
3183 /* Does it look like a bl? If so then it's the call path, if
3184 we find a bv or be first, then we're on the return path. */
3185 if ((insn & 0xfc00e000) == 0xe8000000)
3186 return 1;
3187 else if ((insn & 0xfc00e001) == 0xe800c000
3188 || (insn & 0xfc000000) == 0xe0000000)
3189 return 0;
3190 }
3191
3192 /* Should never happen. */
104c1213
JM
3193 warning ("Unable to find branch in parameter relocation stub.\n");
3194 return 0;
c906108c
SS
3195 }
3196
3197 /* Unknown stub type. For now, just return zero. */
104c1213 3198 return 0;
c906108c
SS
3199}
3200
3201/* Return one if PC is in the return path of a trampoline, else return zero.
3202
3203 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3204 just shared library trampolines (import, export). */
3205
3206int
60383d10 3207hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3208{
3209 struct unwind_table_entry *u;
3210
3211 /* Get the unwind descriptor corresponding to PC, return zero
3212 if no unwind was found. */
3213 u = find_unwind_entry (pc);
3214 if (!u)
3215 return 0;
3216
3217 /* If this isn't a linker stub or it's just a long branch stub, then
3218 return zero. */
3219 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3220 return 0;
3221
3222 /* The call and return path execute the same instructions within
3223 an IMPORT stub! So an IMPORT stub is both a call and return
3224 trampoline. */
3225 if (u->stub_unwind.stub_type == IMPORT)
3226 return 1;
3227
3228 /* Parameter relocation stubs always have a call path and may have a
3229 return path. */
3230 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3231 || u->stub_unwind.stub_type == EXPORT)
3232 {
3233 CORE_ADDR addr;
3234
3235 /* Search forward from the current PC until we hit a branch
c5aa993b 3236 or the end of the stub. */
c906108c
SS
3237 for (addr = pc; addr <= u->region_end; addr += 4)
3238 {
3239 unsigned long insn;
3240
3241 insn = read_memory_integer (addr, 4);
3242
3243 /* Does it look like a bl? If so then it's the call path, if
3244 we find a bv or be first, then we're on the return path. */
3245 if ((insn & 0xfc00e000) == 0xe8000000)
3246 return 0;
3247 else if ((insn & 0xfc00e001) == 0xe800c000
3248 || (insn & 0xfc000000) == 0xe0000000)
3249 return 1;
3250 }
3251
3252 /* Should never happen. */
104c1213
JM
3253 warning ("Unable to find branch in parameter relocation stub.\n");
3254 return 0;
c906108c
SS
3255 }
3256
3257 /* Unknown stub type. For now, just return zero. */
104c1213 3258 return 0;
c906108c
SS
3259
3260}
3261
3262/* Figure out if PC is in a trampoline, and if so find out where
3263 the trampoline will jump to. If not in a trampoline, return zero.
3264
3265 Simple code examination probably is not a good idea since the code
3266 sequences in trampolines can also appear in user code.
3267
3268 We use unwinds and information from the minimal symbol table to
3269 determine when we're in a trampoline. This won't work for ELF
3270 (yet) since it doesn't create stub unwind entries. Whether or
3271 not ELF will create stub unwinds or normal unwinds for linker
3272 stubs is still being debated.
3273
3274 This should handle simple calls through dyncall or sr4export,
3275 long calls, argument relocation stubs, and dyncall/sr4export
3276 calling an argument relocation stub. It even handles some stubs
3277 used in dynamic executables. */
3278
c906108c 3279CORE_ADDR
60383d10 3280hppa_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
3281{
3282 long orig_pc = pc;
3283 long prev_inst, curr_inst, loc;
3284 static CORE_ADDR dyncall = 0;
3285 static CORE_ADDR dyncall_external = 0;
3286 static CORE_ADDR sr4export = 0;
3287 struct minimal_symbol *msym;
3288 struct unwind_table_entry *u;
3289
c2c6d25f
JM
3290 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3291 new exec file */
c906108c
SS
3292
3293 if (!dyncall)
3294 {
3295 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3296 if (msym)
3297 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3298 else
3299 dyncall = -1;
3300 }
3301
3302 if (!dyncall_external)
3303 {
3304 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3305 if (msym)
3306 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3307 else
3308 dyncall_external = -1;
3309 }
3310
3311 if (!sr4export)
3312 {
3313 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3314 if (msym)
3315 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3316 else
3317 sr4export = -1;
3318 }
3319
3320 /* Addresses passed to dyncall may *NOT* be the actual address
3321 of the function. So we may have to do something special. */
3322 if (pc == dyncall)
3323 {
3324 pc = (CORE_ADDR) read_register (22);
3325
3326 /* If bit 30 (counting from the left) is on, then pc is the address of
c5aa993b
JM
3327 the PLT entry for this function, not the address of the function
3328 itself. Bit 31 has meaning too, but only for MPE. */
c906108c 3329 if (pc & 0x2)
53a5351d 3330 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3331 }
3332 if (pc == dyncall_external)
3333 {
3334 pc = (CORE_ADDR) read_register (22);
53a5351d 3335 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3336 }
3337 else if (pc == sr4export)
3338 pc = (CORE_ADDR) (read_register (22));
3339
3340 /* Get the unwind descriptor corresponding to PC, return zero
3341 if no unwind was found. */
3342 u = find_unwind_entry (pc);
3343 if (!u)
3344 return 0;
3345
3346 /* If this isn't a linker stub, then return now. */
3347 /* elz: attention here! (FIXME) because of a compiler/linker
3348 error, some stubs which should have a non zero stub_unwind.stub_type
3349 have unfortunately a value of zero. So this function would return here
3350 as if we were not in a trampoline. To fix this, we go look at the partial
3351 symbol information, which reports this guy as a stub.
3352 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3353 partial symbol information is also wrong sometimes. This is because
3354 when it is entered (somread.c::som_symtab_read()) it can happen that
3355 if the type of the symbol (from the som) is Entry, and the symbol is
3356 in a shared library, then it can also be a trampoline. This would
3357 be OK, except that I believe the way they decide if we are ina shared library
3358 does not work. SOOOO..., even if we have a regular function w/o trampolines
3359 its minimal symbol can be assigned type mst_solib_trampoline.
3360 Also, if we find that the symbol is a real stub, then we fix the unwind
3361 descriptor, and define the stub type to be EXPORT.
c5aa993b 3362 Hopefully this is correct most of the times. */
c906108c 3363 if (u->stub_unwind.stub_type == 0)
c5aa993b 3364 {
c906108c
SS
3365
3366/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3367 we can delete all the code which appears between the lines */
3368/*--------------------------------------------------------------------------*/
c5aa993b 3369 msym = lookup_minimal_symbol_by_pc (pc);
c906108c 3370
c5aa993b
JM
3371 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3372 return orig_pc == pc ? 0 : pc & ~0x3;
3373
3374 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3375 {
3376 struct objfile *objfile;
3377 struct minimal_symbol *msymbol;
3378 int function_found = 0;
3379
3380 /* go look if there is another minimal symbol with the same name as
3381 this one, but with type mst_text. This would happen if the msym
3382 is an actual trampoline, in which case there would be another
3383 symbol with the same name corresponding to the real function */
3384
3385 ALL_MSYMBOLS (objfile, msymbol)
3386 {
3387 if (MSYMBOL_TYPE (msymbol) == mst_text
cb137aa5 3388 && DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
c5aa993b
JM
3389 {
3390 function_found = 1;
3391 break;
3392 }
3393 }
3394
3395 if (function_found)
3396 /* the type of msym is correct (mst_solib_trampoline), but
3397 the unwind info is wrong, so set it to the correct value */
3398 u->stub_unwind.stub_type = EXPORT;
3399 else
3400 /* the stub type info in the unwind is correct (this is not a
3401 trampoline), but the msym type information is wrong, it
3402 should be mst_text. So we need to fix the msym, and also
3403 get out of this function */
3404 {
3405 MSYMBOL_TYPE (msym) = mst_text;
3406 return orig_pc == pc ? 0 : pc & ~0x3;
3407 }
3408 }
c906108c 3409
c906108c 3410/*--------------------------------------------------------------------------*/
c5aa993b 3411 }
c906108c
SS
3412
3413 /* It's a stub. Search for a branch and figure out where it goes.
3414 Note we have to handle multi insn branch sequences like ldil;ble.
3415 Most (all?) other branches can be determined by examining the contents
3416 of certain registers and the stack. */
3417
3418 loc = pc;
3419 curr_inst = 0;
3420 prev_inst = 0;
3421 while (1)
3422 {
3423 /* Make sure we haven't walked outside the range of this stub. */
3424 if (u != find_unwind_entry (loc))
3425 {
3426 warning ("Unable to find branch in linker stub");
3427 return orig_pc == pc ? 0 : pc & ~0x3;
3428 }
3429
3430 prev_inst = curr_inst;
3431 curr_inst = read_memory_integer (loc, 4);
3432
3433 /* Does it look like a branch external using %r1? Then it's the
c5aa993b 3434 branch from the stub to the actual function. */
c906108c
SS
3435 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3436 {
3437 /* Yup. See if the previous instruction loaded
3438 a value into %r1. If so compute and return the jump address. */
3439 if ((prev_inst & 0xffe00000) == 0x20200000)
3440 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3441 else
3442 {
3443 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3444 return orig_pc == pc ? 0 : pc & ~0x3;
3445 }
3446 }
3447
3448 /* Does it look like a be 0(sr0,%r21)? OR
3449 Does it look like a be, n 0(sr0,%r21)? OR
3450 Does it look like a bve (r21)? (this is on PA2.0)
3451 Does it look like a bve, n(r21)? (this is also on PA2.0)
3452 That's the branch from an
c5aa993b 3453 import stub to an export stub.
c906108c 3454
c5aa993b
JM
3455 It is impossible to determine the target of the branch via
3456 simple examination of instructions and/or data (consider
3457 that the address in the plabel may be the address of the
3458 bind-on-reference routine in the dynamic loader).
c906108c 3459
c5aa993b 3460 So we have try an alternative approach.
c906108c 3461
c5aa993b
JM
3462 Get the name of the symbol at our current location; it should
3463 be a stub symbol with the same name as the symbol in the
3464 shared library.
c906108c 3465
c5aa993b
JM
3466 Then lookup a minimal symbol with the same name; we should
3467 get the minimal symbol for the target routine in the shared
3468 library as those take precedence of import/export stubs. */
c906108c 3469 if ((curr_inst == 0xe2a00000) ||
c5aa993b
JM
3470 (curr_inst == 0xe2a00002) ||
3471 (curr_inst == 0xeaa0d000) ||
3472 (curr_inst == 0xeaa0d002))
c906108c
SS
3473 {
3474 struct minimal_symbol *stubsym, *libsym;
3475
3476 stubsym = lookup_minimal_symbol_by_pc (loc);
3477 if (stubsym == NULL)
3478 {
ce414844 3479 warning ("Unable to find symbol for 0x%lx", loc);
c906108c
SS
3480 return orig_pc == pc ? 0 : pc & ~0x3;
3481 }
3482
22abf04a 3483 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
c906108c
SS
3484 if (libsym == NULL)
3485 {
3486 warning ("Unable to find library symbol for %s\n",
22abf04a 3487 DEPRECATED_SYMBOL_NAME (stubsym));
c906108c
SS
3488 return orig_pc == pc ? 0 : pc & ~0x3;
3489 }
3490
3491 return SYMBOL_VALUE (libsym);
3492 }
3493
3494 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
c5aa993b
JM
3495 branch from the stub to the actual function. */
3496 /*elz */
c906108c
SS
3497 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3498 || (curr_inst & 0xffe0e000) == 0xe8000000
c5aa993b 3499 || (curr_inst & 0xffe0e000) == 0xe800A000)
c906108c
SS
3500 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3501
3502 /* Does it look like bv (rp)? Note this depends on the
c5aa993b
JM
3503 current stack pointer being the same as the stack
3504 pointer in the stub itself! This is a branch on from the
3505 stub back to the original caller. */
3506 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
c906108c
SS
3507 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3508 {
3509 /* Yup. See if the previous instruction loaded
3510 rp from sp - 8. */
3511 if (prev_inst == 0x4bc23ff1)
3512 return (read_memory_integer
3513 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3514 else
3515 {
3516 warning ("Unable to find restore of %%rp before bv (%%rp).");
3517 return orig_pc == pc ? 0 : pc & ~0x3;
3518 }
3519 }
3520
3521 /* elz: added this case to capture the new instruction
3522 at the end of the return part of an export stub used by
3523 the PA2.0: BVE, n (rp) */
3524 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3525 {
c5aa993b 3526 return (read_memory_integer
53a5351d 3527 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3528 }
3529
3530 /* What about be,n 0(sr0,%rp)? It's just another way we return to
c5aa993b 3531 the original caller from the stub. Used in dynamic executables. */
c906108c
SS
3532 else if (curr_inst == 0xe0400002)
3533 {
3534 /* The value we jump to is sitting in sp - 24. But that's
3535 loaded several instructions before the be instruction.
3536 I guess we could check for the previous instruction being
3537 mtsp %r1,%sr0 if we want to do sanity checking. */
c5aa993b 3538 return (read_memory_integer
53a5351d 3539 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3540 }
3541
3542 /* Haven't found the branch yet, but we're still in the stub.
c5aa993b 3543 Keep looking. */
c906108c
SS
3544 loc += 4;
3545 }
3546}
3547
3548
3549/* For the given instruction (INST), return any adjustment it makes
3550 to the stack pointer or zero for no adjustment.
3551
3552 This only handles instructions commonly found in prologues. */
3553
3554static int
fba45db2 3555prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
3556{
3557 /* This must persist across calls. */
3558 static int save_high21;
3559
3560 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3561 if ((inst & 0xffffc000) == 0x37de0000)
3562 return extract_14 (inst);
3563
3564 /* stwm X,D(sp) */
3565 if ((inst & 0xffe00000) == 0x6fc00000)
3566 return extract_14 (inst);
3567
104c1213
JM
3568 /* std,ma X,D(sp) */
3569 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 3570 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 3571
c906108c
SS
3572 /* addil high21,%r1; ldo low11,(%r1),%r30)
3573 save high bits in save_high21 for later use. */
3574 if ((inst & 0xffe00000) == 0x28200000)
3575 {
3576 save_high21 = extract_21 (inst);
3577 return 0;
3578 }
3579
3580 if ((inst & 0xffff0000) == 0x343e0000)
3581 return save_high21 + extract_14 (inst);
3582
3583 /* fstws as used by the HP compilers. */
3584 if ((inst & 0xffffffe0) == 0x2fd01220)
3585 return extract_5_load (inst);
3586
3587 /* No adjustment. */
3588 return 0;
3589}
3590
3591/* Return nonzero if INST is a branch of some kind, else return zero. */
3592
3593static int
fba45db2 3594is_branch (unsigned long inst)
c906108c
SS
3595{
3596 switch (inst >> 26)
3597 {
3598 case 0x20:
3599 case 0x21:
3600 case 0x22:
3601 case 0x23:
7be570e7 3602 case 0x27:
c906108c
SS
3603 case 0x28:
3604 case 0x29:
3605 case 0x2a:
3606 case 0x2b:
7be570e7 3607 case 0x2f:
c906108c
SS
3608 case 0x30:
3609 case 0x31:
3610 case 0x32:
3611 case 0x33:
3612 case 0x38:
3613 case 0x39:
3614 case 0x3a:
7be570e7 3615 case 0x3b:
c906108c
SS
3616 return 1;
3617
3618 default:
3619 return 0;
3620 }
3621}
3622
3623/* Return the register number for a GR which is saved by INST or
3624 zero it INST does not save a GR. */
3625
3626static int
fba45db2 3627inst_saves_gr (unsigned long inst)
c906108c
SS
3628{
3629 /* Does it look like a stw? */
7be570e7
JM
3630 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3631 || (inst >> 26) == 0x1f
3632 || ((inst >> 26) == 0x1f
3633 && ((inst >> 6) == 0xa)))
3634 return extract_5R_store (inst);
3635
3636 /* Does it look like a std? */
3637 if ((inst >> 26) == 0x1c
3638 || ((inst >> 26) == 0x03
3639 && ((inst >> 6) & 0xf) == 0xb))
c906108c
SS
3640 return extract_5R_store (inst);
3641
3642 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3643 if ((inst >> 26) == 0x1b)
3644 return extract_5R_store (inst);
3645
3646 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3647 too. */
7be570e7
JM
3648 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3649 || ((inst >> 26) == 0x3
3650 && (((inst >> 6) & 0xf) == 0x8
3651 || (inst >> 6) & 0xf) == 0x9))
c906108c 3652 return extract_5R_store (inst);
c5aa993b 3653
c906108c
SS
3654 return 0;
3655}
3656
3657/* Return the register number for a FR which is saved by INST or
3658 zero it INST does not save a FR.
3659
3660 Note we only care about full 64bit register stores (that's the only
3661 kind of stores the prologue will use).
3662
3663 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3664
3665static int
fba45db2 3666inst_saves_fr (unsigned long inst)
c906108c 3667{
7be570e7 3668 /* is this an FSTD ? */
c906108c
SS
3669 if ((inst & 0xfc00dfc0) == 0x2c001200)
3670 return extract_5r_store (inst);
7be570e7
JM
3671 if ((inst & 0xfc000002) == 0x70000002)
3672 return extract_5R_store (inst);
3673 /* is this an FSTW ? */
c906108c
SS
3674 if ((inst & 0xfc00df80) == 0x24001200)
3675 return extract_5r_store (inst);
7be570e7
JM
3676 if ((inst & 0xfc000002) == 0x7c000000)
3677 return extract_5R_store (inst);
c906108c
SS
3678 return 0;
3679}
3680
3681/* Advance PC across any function entry prologue instructions
3682 to reach some "real" code.
3683
3684 Use information in the unwind table to determine what exactly should
3685 be in the prologue. */
3686
3687
3688CORE_ADDR
fba45db2 3689skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
3690{
3691 char buf[4];
3692 CORE_ADDR orig_pc = pc;
3693 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3694 unsigned long args_stored, status, i, restart_gr, restart_fr;
3695 struct unwind_table_entry *u;
3696
3697 restart_gr = 0;
3698 restart_fr = 0;
3699
3700restart:
3701 u = find_unwind_entry (pc);
3702 if (!u)
3703 return pc;
3704
c5aa993b 3705 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
3706 if ((pc & ~0x3) != u->region_start)
3707 return pc;
3708
3709 /* This is how much of a frame adjustment we need to account for. */
3710 stack_remaining = u->Total_frame_size << 3;
3711
3712 /* Magic register saves we want to know about. */
3713 save_rp = u->Save_RP;
3714 save_sp = u->Save_SP;
3715
3716 /* An indication that args may be stored into the stack. Unfortunately
3717 the HPUX compilers tend to set this in cases where no args were
3718 stored too!. */
3719 args_stored = 1;
3720
3721 /* Turn the Entry_GR field into a bitmask. */
3722 save_gr = 0;
3723 for (i = 3; i < u->Entry_GR + 3; i++)
3724 {
3725 /* Frame pointer gets saved into a special location. */
0ba6dca9 3726 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
c906108c
SS
3727 continue;
3728
3729 save_gr |= (1 << i);
3730 }
3731 save_gr &= ~restart_gr;
3732
3733 /* Turn the Entry_FR field into a bitmask too. */
3734 save_fr = 0;
3735 for (i = 12; i < u->Entry_FR + 12; i++)
3736 save_fr |= (1 << i);
3737 save_fr &= ~restart_fr;
3738
3739 /* Loop until we find everything of interest or hit a branch.
3740
3741 For unoptimized GCC code and for any HP CC code this will never ever
3742 examine any user instructions.
3743
3744 For optimzied GCC code we're faced with problems. GCC will schedule
3745 its prologue and make prologue instructions available for delay slot
3746 filling. The end result is user code gets mixed in with the prologue
3747 and a prologue instruction may be in the delay slot of the first branch
3748 or call.
3749
3750 Some unexpected things are expected with debugging optimized code, so
3751 we allow this routine to walk past user instructions in optimized
3752 GCC code. */
3753 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3754 || args_stored)
3755 {
3756 unsigned int reg_num;
3757 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3758 unsigned long old_save_rp, old_save_sp, next_inst;
3759
3760 /* Save copies of all the triggers so we can compare them later
c5aa993b 3761 (only for HPC). */
c906108c
SS
3762 old_save_gr = save_gr;
3763 old_save_fr = save_fr;
3764 old_save_rp = save_rp;
3765 old_save_sp = save_sp;
3766 old_stack_remaining = stack_remaining;
3767
3768 status = target_read_memory (pc, buf, 4);
3769 inst = extract_unsigned_integer (buf, 4);
c5aa993b 3770
c906108c
SS
3771 /* Yow! */
3772 if (status != 0)
3773 return pc;
3774
3775 /* Note the interesting effects of this instruction. */
3776 stack_remaining -= prologue_inst_adjust_sp (inst);
3777
7be570e7
JM
3778 /* There are limited ways to store the return pointer into the
3779 stack. */
3780 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
3781 save_rp = 0;
3782
104c1213 3783 /* These are the only ways we save SP into the stack. At this time
c5aa993b 3784 the HP compilers never bother to save SP into the stack. */
104c1213
JM
3785 if ((inst & 0xffffc000) == 0x6fc10000
3786 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
3787 save_sp = 0;
3788
6426a772
JM
3789 /* Are we loading some register with an offset from the argument
3790 pointer? */
3791 if ((inst & 0xffe00000) == 0x37a00000
3792 || (inst & 0xffffffe0) == 0x081d0240)
3793 {
3794 pc += 4;
3795 continue;
3796 }
3797
c906108c
SS
3798 /* Account for general and floating-point register saves. */
3799 reg_num = inst_saves_gr (inst);
3800 save_gr &= ~(1 << reg_num);
3801
3802 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3803 Unfortunately args_stored only tells us that some arguments
3804 where stored into the stack. Not how many or what kind!
c906108c 3805
c5aa993b
JM
3806 This is a kludge as on the HP compiler sets this bit and it
3807 never does prologue scheduling. So once we see one, skip past
3808 all of them. We have similar code for the fp arg stores below.
c906108c 3809
c5aa993b
JM
3810 FIXME. Can still die if we have a mix of GR and FR argument
3811 stores! */
6426a772 3812 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 3813 {
6426a772 3814 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
3815 {
3816 pc += 4;
3817 status = target_read_memory (pc, buf, 4);
3818 inst = extract_unsigned_integer (buf, 4);
3819 if (status != 0)
3820 return pc;
3821 reg_num = inst_saves_gr (inst);
3822 }
3823 args_stored = 0;
3824 continue;
3825 }
3826
3827 reg_num = inst_saves_fr (inst);
3828 save_fr &= ~(1 << reg_num);
3829
3830 status = target_read_memory (pc + 4, buf, 4);
3831 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 3832
c906108c
SS
3833 /* Yow! */
3834 if (status != 0)
3835 return pc;
3836
3837 /* We've got to be read to handle the ldo before the fp register
c5aa993b 3838 save. */
c906108c
SS
3839 if ((inst & 0xfc000000) == 0x34000000
3840 && inst_saves_fr (next_inst) >= 4
6426a772 3841 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3842 {
3843 /* So we drop into the code below in a reasonable state. */
3844 reg_num = inst_saves_fr (next_inst);
3845 pc -= 4;
3846 }
3847
3848 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3849 This is a kludge as on the HP compiler sets this bit and it
3850 never does prologue scheduling. So once we see one, skip past
3851 all of them. */
6426a772 3852 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 3853 {
6426a772 3854 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3855 {
3856 pc += 8;
3857 status = target_read_memory (pc, buf, 4);
3858 inst = extract_unsigned_integer (buf, 4);
3859 if (status != 0)
3860 return pc;
3861 if ((inst & 0xfc000000) != 0x34000000)
3862 break;
3863 status = target_read_memory (pc + 4, buf, 4);
3864 next_inst = extract_unsigned_integer (buf, 4);
3865 if (status != 0)
3866 return pc;
3867 reg_num = inst_saves_fr (next_inst);
3868 }
3869 args_stored = 0;
3870 continue;
3871 }
3872
3873 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3874 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3875 if (is_branch (inst))
3876 break;
3877
3878 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
3879 arguments were stored into the stack (boo hiss). This could
3880 cause this code to then skip a bunch of user insns (up to the
3881 first branch).
3882
3883 To combat this we try to identify when args_stored was bogusly
3884 set and clear it. We only do this when args_stored is nonzero,
3885 all other resources are accounted for, and nothing changed on
3886 this pass. */
c906108c 3887 if (args_stored
c5aa993b 3888 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
3889 && old_save_gr == save_gr && old_save_fr == save_fr
3890 && old_save_rp == save_rp && old_save_sp == save_sp
3891 && old_stack_remaining == stack_remaining)
3892 break;
c5aa993b 3893
c906108c
SS
3894 /* Bump the PC. */
3895 pc += 4;
3896 }
3897
3898 /* We've got a tenative location for the end of the prologue. However
3899 because of limitations in the unwind descriptor mechanism we may
3900 have went too far into user code looking for the save of a register
3901 that does not exist. So, if there registers we expected to be saved
3902 but never were, mask them out and restart.
3903
3904 This should only happen in optimized code, and should be very rare. */
c5aa993b 3905 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
3906 {
3907 pc = orig_pc;
3908 restart_gr = save_gr;
3909 restart_fr = save_fr;
3910 goto restart;
3911 }
3912
3913 return pc;
3914}
3915
3916
7be570e7
JM
3917/* Return the address of the PC after the last prologue instruction if
3918 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
3919
3920static CORE_ADDR
fba45db2 3921after_prologue (CORE_ADDR pc)
c906108c
SS
3922{
3923 struct symtab_and_line sal;
3924 CORE_ADDR func_addr, func_end;
3925 struct symbol *f;
3926
7be570e7
JM
3927 /* If we can not find the symbol in the partial symbol table, then
3928 there is no hope we can determine the function's start address
3929 with this code. */
c906108c 3930 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 3931 return 0;
c906108c 3932
7be570e7 3933 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
3934 sal = find_pc_line (func_addr, 0);
3935
7be570e7
JM
3936 /* There are only two cases to consider. First, the end of the source line
3937 is within the function bounds. In that case we return the end of the
3938 source line. Second is the end of the source line extends beyond the
3939 bounds of the current function. We need to use the slow code to
3940 examine instructions in that case.
c906108c 3941
7be570e7
JM
3942 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3943 the wrong thing to do. In fact, it should be entirely possible for this
3944 function to always return zero since the slow instruction scanning code
3945 is supposed to *always* work. If it does not, then it is a bug. */
3946 if (sal.end < func_end)
3947 return sal.end;
c5aa993b 3948 else
7be570e7 3949 return 0;
c906108c
SS
3950}
3951
3952/* To skip prologues, I use this predicate. Returns either PC itself
3953 if the code at PC does not look like a function prologue; otherwise
3954 returns an address that (if we're lucky) follows the prologue. If
3955 LENIENT, then we must skip everything which is involved in setting
3956 up the frame (it's OK to skip more, just so long as we don't skip
3957 anything which might clobber the registers which are being saved.
3958 Currently we must not skip more on the alpha, but we might the lenient
3959 stuff some day. */
3960
3961CORE_ADDR
fba45db2 3962hppa_skip_prologue (CORE_ADDR pc)
c906108c 3963{
c5aa993b
JM
3964 unsigned long inst;
3965 int offset;
3966 CORE_ADDR post_prologue_pc;
3967 char buf[4];
c906108c 3968
c5aa993b
JM
3969 /* See if we can determine the end of the prologue via the symbol table.
3970 If so, then return either PC, or the PC after the prologue, whichever
3971 is greater. */
c906108c 3972
c5aa993b 3973 post_prologue_pc = after_prologue (pc);
c906108c 3974
7be570e7
JM
3975 /* If after_prologue returned a useful address, then use it. Else
3976 fall back on the instruction skipping code.
3977
3978 Some folks have claimed this causes problems because the breakpoint
3979 may be the first instruction of the prologue. If that happens, then
3980 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
3981 if (post_prologue_pc != 0)
3982 return max (pc, post_prologue_pc);
c5aa993b
JM
3983 else
3984 return (skip_prologue_hard_way (pc));
c906108c
SS
3985}
3986
43bd9a9e
AC
3987/* Put here the code to store, into the SAVED_REGS, the addresses of
3988 the saved registers of frame described by FRAME_INFO. This
3989 includes special registers such as pc and fp saved in special ways
3990 in the stack frame. sp is even more special: the address we return
3991 for it IS the sp for the next frame. */
c906108c
SS
3992
3993void
fba45db2 3994hppa_frame_find_saved_regs (struct frame_info *frame_info,
43bd9a9e 3995 CORE_ADDR frame_saved_regs[])
c906108c
SS
3996{
3997 CORE_ADDR pc;
3998 struct unwind_table_entry *u;
3999 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4000 int status, i, reg;
4001 char buf[4];
4002 int fp_loc = -1;
d4f3574e 4003 int final_iteration;
c906108c
SS
4004
4005 /* Zero out everything. */
43bd9a9e 4006 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
4007
4008 /* Call dummy frames always look the same, so there's no need to
4009 examine the dummy code to determine locations of saved registers;
4010 instead, let find_dummy_frame_regs fill in the correct offsets
4011 for the saved registers. */
ef6e7e13
AC
4012 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
4013 && (get_frame_pc (frame_info)
4014 <= (get_frame_base (frame_info)
4015 /* A call dummy is sized in words, but it is actually a
4016 series of instructions. Account for that scaling
4017 factor. */
b1e29e33
AC
4018 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4019 * DEPRECATED_CALL_DUMMY_LENGTH)
ef6e7e13
AC
4020 /* Similarly we have to account for 64bit wide register
4021 saves. */
b1e29e33 4022 + (32 * DEPRECATED_REGISTER_SIZE)
ef6e7e13
AC
4023 /* We always consider FP regs 8 bytes long. */
4024 + (NUM_REGS - FP0_REGNUM) * 8
4025 /* Similarly we have to account for 64bit wide register
4026 saves. */
b1e29e33 4027 + (6 * DEPRECATED_REGISTER_SIZE)))))
c906108c
SS
4028 find_dummy_frame_regs (frame_info, frame_saved_regs);
4029
4030 /* Interrupt handlers are special too. They lay out the register
4031 state in the exact same order as the register numbers in GDB. */
ef6e7e13 4032 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
c906108c
SS
4033 {
4034 for (i = 0; i < NUM_REGS; i++)
4035 {
4036 /* SP is a little special. */
4037 if (i == SP_REGNUM)
43bd9a9e 4038 frame_saved_regs[SP_REGNUM]
ef6e7e13 4039 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
53a5351d 4040 TARGET_PTR_BIT / 8);
c906108c 4041 else
ef6e7e13 4042 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
c906108c
SS
4043 }
4044 return;
4045 }
4046
4047#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4048 /* Handle signal handler callers. */
5a203e44 4049 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
c906108c
SS
4050 {
4051 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4052 return;
4053 }
4054#endif
4055
4056 /* Get the starting address of the function referred to by the PC
4057 saved in frame. */
be41e9f4 4058 pc = get_frame_func (frame_info);
c906108c
SS
4059
4060 /* Yow! */
4061 u = find_unwind_entry (pc);
4062 if (!u)
4063 return;
4064
4065 /* This is how much of a frame adjustment we need to account for. */
4066 stack_remaining = u->Total_frame_size << 3;
4067
4068 /* Magic register saves we want to know about. */
4069 save_rp = u->Save_RP;
4070 save_sp = u->Save_SP;
4071
4072 /* Turn the Entry_GR field into a bitmask. */
4073 save_gr = 0;
4074 for (i = 3; i < u->Entry_GR + 3; i++)
4075 {
4076 /* Frame pointer gets saved into a special location. */
0ba6dca9 4077 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
c906108c
SS
4078 continue;
4079
4080 save_gr |= (1 << i);
4081 }
4082
4083 /* Turn the Entry_FR field into a bitmask too. */
4084 save_fr = 0;
4085 for (i = 12; i < u->Entry_FR + 12; i++)
4086 save_fr |= (1 << i);
4087
4088 /* The frame always represents the value of %sp at entry to the
4089 current function (and is thus equivalent to the "saved" stack
4090 pointer. */
ef6e7e13 4091 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
c906108c
SS
4092
4093 /* Loop until we find everything of interest or hit a branch.
4094
4095 For unoptimized GCC code and for any HP CC code this will never ever
4096 examine any user instructions.
4097
7be570e7 4098 For optimized GCC code we're faced with problems. GCC will schedule
c906108c
SS
4099 its prologue and make prologue instructions available for delay slot
4100 filling. The end result is user code gets mixed in with the prologue
4101 and a prologue instruction may be in the delay slot of the first branch
4102 or call.
4103
4104 Some unexpected things are expected with debugging optimized code, so
4105 we allow this routine to walk past user instructions in optimized
4106 GCC code. */
d4f3574e
SS
4107 final_iteration = 0;
4108 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
ef6e7e13 4109 && pc <= get_frame_pc (frame_info))
c906108c
SS
4110 {
4111 status = target_read_memory (pc, buf, 4);
4112 inst = extract_unsigned_integer (buf, 4);
4113
4114 /* Yow! */
4115 if (status != 0)
4116 return;
4117
4118 /* Note the interesting effects of this instruction. */
4119 stack_remaining -= prologue_inst_adjust_sp (inst);
4120
104c1213
JM
4121 /* There are limited ways to store the return pointer into the
4122 stack. */
c2c6d25f 4123 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
c906108c
SS
4124 {
4125 save_rp = 0;
ef6e7e13 4126 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
c906108c 4127 }
c2c6d25f
JM
4128 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4129 {
4130 save_rp = 0;
ef6e7e13 4131 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
c2c6d25f 4132 }
c906108c 4133
104c1213
JM
4134 /* Note if we saved SP into the stack. This also happens to indicate
4135 the location of the saved frame pointer. */
c2c6d25f
JM
4136 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4137 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
104c1213 4138 {
0ba6dca9 4139 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
104c1213
JM
4140 save_sp = 0;
4141 }
c906108c
SS
4142
4143 /* Account for general and floating-point register saves. */
4144 reg = inst_saves_gr (inst);
4145 if (reg >= 3 && reg <= 18
0ba6dca9 4146 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
c906108c
SS
4147 {
4148 save_gr &= ~(1 << reg);
4149
4150 /* stwm with a positive displacement is a *post modify*. */
4151 if ((inst >> 26) == 0x1b
4152 && extract_14 (inst) >= 0)
ef6e7e13 4153 frame_saved_regs[reg] = get_frame_base (frame_info);
104c1213 4154 /* A std has explicit post_modify forms. */
56132691 4155 else if ((inst & 0xfc00000c) == 0x70000008)
ef6e7e13 4156 frame_saved_regs[reg] = get_frame_base (frame_info);
c906108c
SS
4157 else
4158 {
104c1213
JM
4159 CORE_ADDR offset;
4160
4161 if ((inst >> 26) == 0x1c)
d4f3574e 4162 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213
JM
4163 else if ((inst >> 26) == 0x03)
4164 offset = low_sign_extend (inst & 0x1f, 5);
4165 else
4166 offset = extract_14 (inst);
4167
c906108c
SS
4168 /* Handle code with and without frame pointers. */
4169 if (u->Save_SP)
43bd9a9e 4170 frame_saved_regs[reg]
ef6e7e13 4171 = get_frame_base (frame_info) + offset;
c906108c 4172 else
43bd9a9e 4173 frame_saved_regs[reg]
ef6e7e13 4174 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
104c1213 4175 + offset);
c906108c
SS
4176 }
4177 }
4178
4179
4180 /* GCC handles callee saved FP regs a little differently.
4181
c5aa993b
JM
4182 It emits an instruction to put the value of the start of
4183 the FP store area into %r1. It then uses fstds,ma with
4184 a basereg of %r1 for the stores.
c906108c 4185
c5aa993b
JM
4186 HP CC emits them at the current stack pointer modifying
4187 the stack pointer as it stores each register. */
c906108c
SS
4188
4189 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4190 if ((inst & 0xffffc000) == 0x34610000
4191 || (inst & 0xffffc000) == 0x37c10000)
4192 fp_loc = extract_14 (inst);
c5aa993b 4193
c906108c
SS
4194 reg = inst_saves_fr (inst);
4195 if (reg >= 12 && reg <= 21)
4196 {
4197 /* Note +4 braindamage below is necessary because the FP status
4198 registers are internally 8 registers rather than the expected
4199 4 registers. */
4200 save_fr &= ~(1 << reg);
4201 if (fp_loc == -1)
4202 {
4203 /* 1st HP CC FP register store. After this instruction
c5aa993b
JM
4204 we've set enough state that the GCC and HPCC code are
4205 both handled in the same manner. */
ef6e7e13 4206 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
c906108c
SS
4207 fp_loc = 8;
4208 }
4209 else
4210 {
43bd9a9e 4211 frame_saved_regs[reg + FP0_REGNUM + 4]
ef6e7e13 4212 = get_frame_base (frame_info) + fp_loc;
c906108c
SS
4213 fp_loc += 8;
4214 }
4215 }
4216
39f77062 4217 /* Quit if we hit any kind of branch the previous iteration. */
d4f3574e 4218 if (final_iteration)
c906108c
SS
4219 break;
4220
d4f3574e
SS
4221 /* We want to look precisely one instruction beyond the branch
4222 if we have not found everything yet. */
4223 if (is_branch (inst))
4224 final_iteration = 1;
4225
c906108c
SS
4226 /* Bump the PC. */
4227 pc += 4;
4228 }
4229}
4230
43bd9a9e
AC
4231/* XXX - deprecated. This is a compatibility function for targets
4232 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4233/* Find the addresses in which registers are saved in FRAME. */
4234
343af405 4235static void
43bd9a9e
AC
4236hppa_frame_init_saved_regs (struct frame_info *frame)
4237{
1b1d3794 4238 if (deprecated_get_frame_saved_regs (frame) == NULL)
43bd9a9e 4239 frame_saved_regs_zalloc (frame);
1b1d3794 4240 hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame));
43bd9a9e 4241}
c906108c 4242
26d08f08
AC
4243struct hppa_frame_cache
4244{
4245 CORE_ADDR base;
4246 struct trad_frame_saved_reg *saved_regs;
4247};
4248
4249static struct hppa_frame_cache *
4250hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
4251{
4252 struct hppa_frame_cache *cache;
4253 long saved_gr_mask;
4254 long saved_fr_mask;
4255 CORE_ADDR this_sp;
4256 long frame_size;
4257 struct unwind_table_entry *u;
4258 int i;
4259
4260 if ((*this_cache) != NULL)
4261 return (*this_cache);
4262 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
4263 (*this_cache) = cache;
4264 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
4265
4266 /* Yow! */
4267 u = find_unwind_entry (frame_func_unwind (next_frame));
4268 if (!u)
4269 return;
4270
4271 /* Turn the Entry_GR field into a bitmask. */
4272 saved_gr_mask = 0;
4273 for (i = 3; i < u->Entry_GR + 3; i++)
4274 {
4275 /* Frame pointer gets saved into a special location. */
4276 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4277 continue;
4278
4279 saved_gr_mask |= (1 << i);
4280 }
4281
4282 /* Turn the Entry_FR field into a bitmask too. */
4283 saved_fr_mask = 0;
4284 for (i = 12; i < u->Entry_FR + 12; i++)
4285 saved_fr_mask |= (1 << i);
4286
4287 /* Loop until we find everything of interest or hit a branch.
4288
4289 For unoptimized GCC code and for any HP CC code this will never ever
4290 examine any user instructions.
4291
4292 For optimized GCC code we're faced with problems. GCC will schedule
4293 its prologue and make prologue instructions available for delay slot
4294 filling. The end result is user code gets mixed in with the prologue
4295 and a prologue instruction may be in the delay slot of the first branch
4296 or call.
4297
4298 Some unexpected things are expected with debugging optimized code, so
4299 we allow this routine to walk past user instructions in optimized
4300 GCC code. */
4301 {
4302 int final_iteration = 0;
4303 CORE_ADDR pc;
4304 CORE_ADDR end_pc = skip_prologue_using_sal (pc);
4305 int looking_for_sp = u->Save_SP;
4306 int looking_for_rp = u->Save_RP;
4307 int fp_loc = -1;
4308 if (end_pc == 0)
4309 end_pc = frame_pc_unwind (next_frame);
4310 frame_size = 0;
4311 for (pc = frame_func_unwind (next_frame);
4312 ((saved_gr_mask || saved_fr_mask
4313 || looking_for_sp || looking_for_rp
4314 || frame_size < (u->Total_frame_size << 3))
4315 && pc <= end_pc);
4316 pc += 4)
4317 {
4318 int reg;
4319 char buf4[4];
4320 long status = target_read_memory (pc, buf4, sizeof buf4);
4321 long inst = extract_unsigned_integer (buf4, sizeof buf4);
4322
4323 /* Note the interesting effects of this instruction. */
4324 frame_size += prologue_inst_adjust_sp (inst);
4325
4326 /* There are limited ways to store the return pointer into the
4327 stack. */
4328 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4329 {
4330 looking_for_rp = 0;
4331 cache->saved_regs[RP_REGNUM].addr = -20;
4332 }
4333 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4334 {
4335 looking_for_rp = 0;
4336 cache->saved_regs[RP_REGNUM].addr = -16;
4337 }
4338
4339 /* Check to see if we saved SP into the stack. This also
4340 happens to indicate the location of the saved frame
4341 pointer. */
4342 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4343 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4344 {
4345 looking_for_sp = 0;
4346 cache->saved_regs[DEPRECATED_FP_REGNUM].addr = 0;
4347 }
4348
4349 /* Account for general and floating-point register saves. */
4350 reg = inst_saves_gr (inst);
4351 if (reg >= 3 && reg <= 18
4352 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4353 {
4354 saved_gr_mask &= ~(1 << reg);
4355 if ((inst >> 26) == 0x1b && extract_14 (inst) >= 0)
4356 /* stwm with a positive displacement is a _post_
4357 _modify_. */
4358 cache->saved_regs[reg].addr = 0;
4359 else if ((inst & 0xfc00000c) == 0x70000008)
4360 /* A std has explicit post_modify forms. */
4361 cache->saved_regs[reg].addr = 0;
4362 else
4363 {
4364 CORE_ADDR offset;
4365
4366 if ((inst >> 26) == 0x1c)
4367 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4368 else if ((inst >> 26) == 0x03)
4369 offset = low_sign_extend (inst & 0x1f, 5);
4370 else
4371 offset = extract_14 (inst);
4372
4373 /* Handle code with and without frame pointers. */
4374 if (u->Save_SP)
4375 cache->saved_regs[reg].addr = offset;
4376 else
4377 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
4378 }
4379 }
4380
4381 /* GCC handles callee saved FP regs a little differently.
4382
4383 It emits an instruction to put the value of the start of
4384 the FP store area into %r1. It then uses fstds,ma with a
4385 basereg of %r1 for the stores.
4386
4387 HP CC emits them at the current stack pointer modifying the
4388 stack pointer as it stores each register. */
4389
4390 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4391 if ((inst & 0xffffc000) == 0x34610000
4392 || (inst & 0xffffc000) == 0x37c10000)
4393 fp_loc = extract_14 (inst);
4394
4395 reg = inst_saves_fr (inst);
4396 if (reg >= 12 && reg <= 21)
4397 {
4398 /* Note +4 braindamage below is necessary because the FP
4399 status registers are internally 8 registers rather than
4400 the expected 4 registers. */
4401 saved_fr_mask &= ~(1 << reg);
4402 if (fp_loc == -1)
4403 {
4404 /* 1st HP CC FP register store. After this
4405 instruction we've set enough state that the GCC and
4406 HPCC code are both handled in the same manner. */
4407 cache->saved_regs[reg + FP4_REGNUM + 4].addr = 0;
4408 fp_loc = 8;
4409 }
4410 else
4411 {
4412 cache->saved_regs[reg + FP0_REGNUM + 4].addr = fp_loc;
4413 fp_loc += 8;
4414 }
4415 }
4416
4417 /* Quit if we hit any kind of branch the previous iteration. */
4418 if (final_iteration)
4419 break;
4420 /* We want to look precisely one instruction beyond the branch
4421 if we have not found everything yet. */
4422 if (is_branch (inst))
4423 final_iteration = 1;
4424 }
4425 }
4426
4427 {
4428 /* The frame base always represents the value of %sp at entry to
4429 the current function (and is thus equivalent to the "saved"
4430 stack pointer. */
4431 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
4432 /* FIXME: cagney/2004-02-22: This assumes that the frame has been
4433 created. If it hasn't everything will be out-of-wack. */
4434 if (u->Save_SP && trad_frame_addr_p (cache->saved_regs, SP_REGNUM))
4435 /* Both we're expecting the SP to be saved and the SP has been
4436 saved. The entry SP value is saved at this frame's SP
4437 address. */
4438 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
4439 else
4440 /* The prologue has been slowly allocating stack space. Adjust
4441 the SP back. */
4442 cache->base = this_sp - frame_size;
4443 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
4444 }
4445
4446 /* The PC is found in the "return register". */
4447 if (u->Millicode)
4448 cache->saved_regs[PC_REGNUM] = cache->saved_regs[31];
4449 else
4450 cache->saved_regs[PC_REGNUM] = cache->saved_regs[RP_REGNUM];
4451
4452 {
4453 /* Convert all the offsets into addresses. */
4454 int reg;
4455 for (reg = 0; reg < NUM_REGS; reg++)
4456 {
4457 if (trad_frame_addr_p (cache->saved_regs, reg))
4458 cache->saved_regs[reg].addr += cache->base;
4459 }
4460 }
4461
4462 return (*this_cache);
4463}
4464
4465static void
4466hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
4467 struct frame_id *this_id)
4468{
4469 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
4470 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
4471}
4472
4473static void
4474hppa_frame_prev_register (struct frame_info *next_frame,
4475 void **this_cache,
4476 int regnum, int *optimizedp,
4477 enum lval_type *lvalp, CORE_ADDR *addrp,
4478 int *realnump, void *valuep)
4479{
4480 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
4481 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
4482 optimizedp, lvalp, addrp, realnump, valuep);
4483}
4484
4485static const struct frame_unwind hppa_frame_unwind =
4486{
4487 NORMAL_FRAME,
4488 hppa_frame_this_id,
4489 hppa_frame_prev_register
4490};
4491
4492static const struct frame_unwind *
4493hppa_frame_unwind_sniffer (struct frame_info *next_frame)
4494{
4495 return &hppa_frame_unwind;
4496}
4497
4498static CORE_ADDR
4499hppa_frame_base_address (struct frame_info *next_frame,
4500 void **this_cache)
4501{
4502 struct hppa_frame_cache *info = hppa_frame_cache (next_frame,
4503 this_cache);
4504 return info->base;
4505}
4506
4507static const struct frame_base hppa_frame_base = {
4508 &hppa_frame_unwind,
4509 hppa_frame_base_address,
4510 hppa_frame_base_address,
4511 hppa_frame_base_address
4512};
4513
4514static const struct frame_base *
4515hppa_frame_base_sniffer (struct frame_info *next_frame)
4516{
4517 return &hppa_frame_base;
4518}
4519
4520static struct frame_id
4521hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
4522{
4523 return frame_id_build (frame_unwind_register_unsigned (next_frame,
4524 SP_REGNUM),
4525 frame_pc_unwind (next_frame));
4526}
4527
4528static CORE_ADDR
4529hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
4530{
4531 return frame_unwind_register_signed (next_frame, PC_REGNUM) & ~3;
4532}
4533
c906108c
SS
4534/* Exception handling support for the HP-UX ANSI C++ compiler.
4535 The compiler (aCC) provides a callback for exception events;
4536 GDB can set a breakpoint on this callback and find out what
4537 exception event has occurred. */
4538
4539/* The name of the hook to be set to point to the callback function */
c5aa993b
JM
4540static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4541/* The name of the function to be used to set the hook value */
4542static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4543/* The name of the callback function in end.o */
c906108c 4544static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
c5aa993b
JM
4545/* Name of function in end.o on which a break is set (called by above) */
4546static char HP_ACC_EH_break[] = "__d_eh_break";
4547/* Name of flag (in end.o) that enables catching throws */
4548static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4549/* Name of flag (in end.o) that enables catching catching */
4550static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4551/* The enum used by aCC */
4552typedef enum
4553 {
4554 __EH_NOTIFY_THROW,
4555 __EH_NOTIFY_CATCH
4556 }
4557__eh_notification;
c906108c
SS
4558
4559/* Is exception-handling support available with this executable? */
4560static int hp_cxx_exception_support = 0;
4561/* Has the initialize function been run? */
4562int hp_cxx_exception_support_initialized = 0;
4563/* Similar to above, but imported from breakpoint.c -- non-target-specific */
4564extern int exception_support_initialized;
4565/* Address of __eh_notify_hook */
a0b3c4fd 4566static CORE_ADDR eh_notify_hook_addr = 0;
c906108c 4567/* Address of __d_eh_notify_callback */
a0b3c4fd 4568static CORE_ADDR eh_notify_callback_addr = 0;
c906108c 4569/* Address of __d_eh_break */
a0b3c4fd 4570static CORE_ADDR eh_break_addr = 0;
c906108c 4571/* Address of __d_eh_catch_catch */
a0b3c4fd 4572static CORE_ADDR eh_catch_catch_addr = 0;
c906108c 4573/* Address of __d_eh_catch_throw */
a0b3c4fd 4574static CORE_ADDR eh_catch_throw_addr = 0;
c906108c 4575/* Sal for __d_eh_break */
a0b3c4fd 4576static struct symtab_and_line *break_callback_sal = 0;
c906108c
SS
4577
4578/* Code in end.c expects __d_pid to be set in the inferior,
4579 otherwise __d_eh_notify_callback doesn't bother to call
4580 __d_eh_break! So we poke the pid into this symbol
4581 ourselves.
4582 0 => success
c5aa993b 4583 1 => failure */
c906108c 4584int
fba45db2 4585setup_d_pid_in_inferior (void)
c906108c
SS
4586{
4587 CORE_ADDR anaddr;
c5aa993b
JM
4588 struct minimal_symbol *msymbol;
4589 char buf[4]; /* FIXME 32x64? */
4590
c906108c
SS
4591 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4592 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4593 if (msymbol == NULL)
4594 {
4595 warning ("Unable to find __d_pid symbol in object file.");
4596 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4597 return 1;
4598 }
4599
4600 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
39f77062 4601 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
c5aa993b 4602 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
c906108c
SS
4603 {
4604 warning ("Unable to write __d_pid");
4605 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4606 return 1;
4607 }
4608 return 0;
4609}
4610
4611/* Initialize exception catchpoint support by looking for the
4612 necessary hooks/callbacks in end.o, etc., and set the hook value to
4613 point to the required debug function
4614
4615 Return 0 => failure
c5aa993b 4616 1 => success */
c906108c
SS
4617
4618static int
fba45db2 4619initialize_hp_cxx_exception_support (void)
c906108c
SS
4620{
4621 struct symtabs_and_lines sals;
c5aa993b
JM
4622 struct cleanup *old_chain;
4623 struct cleanup *canonical_strings_chain = NULL;
c906108c 4624 int i;
c5aa993b
JM
4625 char *addr_start;
4626 char *addr_end = NULL;
4627 char **canonical = (char **) NULL;
c906108c 4628 int thread = -1;
c5aa993b
JM
4629 struct symbol *sym = NULL;
4630 struct minimal_symbol *msym = NULL;
4631 struct objfile *objfile;
c906108c
SS
4632 asection *shlib_info;
4633
4634 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4635 recursion is a possibility because finding the hook for exception
4636 callbacks involves making a call in the inferior, which means
4637 re-inserting breakpoints which can re-invoke this code */
4638
c5aa993b
JM
4639 static int recurse = 0;
4640 if (recurse > 0)
c906108c
SS
4641 {
4642 hp_cxx_exception_support_initialized = 0;
4643 exception_support_initialized = 0;
4644 return 0;
4645 }
4646
4647 hp_cxx_exception_support = 0;
4648
4649 /* First check if we have seen any HP compiled objects; if not,
4650 it is very unlikely that HP's idiosyncratic callback mechanism
4651 for exception handling debug support will be available!
4652 This will percolate back up to breakpoint.c, where our callers
4653 will decide to try the g++ exception-handling support instead. */
4654 if (!hp_som_som_object_present)
4655 return 0;
c5aa993b 4656
c906108c
SS
4657 /* We have a SOM executable with SOM debug info; find the hooks */
4658
4659 /* First look for the notify hook provided by aCC runtime libs */
4660 /* If we find this symbol, we conclude that the executable must
4661 have HP aCC exception support built in. If this symbol is not
4662 found, even though we're a HP SOM-SOM file, we may have been
4663 built with some other compiler (not aCC). This results percolates
4664 back up to our callers in breakpoint.c which can decide to
4665 try the g++ style of exception support instead.
4666 If this symbol is found but the other symbols we require are
4667 not found, there is something weird going on, and g++ support
4668 should *not* be tried as an alternative.
c5aa993b 4669
c906108c
SS
4670 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4671 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
c5aa993b 4672
c906108c
SS
4673 /* libCsup has this hook; it'll usually be non-debuggable */
4674 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4675 if (msym)
4676 {
4677 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4678 hp_cxx_exception_support = 1;
c5aa993b 4679 }
c906108c
SS
4680 else
4681 {
4682 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4683 warning ("Executable may not have been compiled debuggable with HP aCC.");
4684 warning ("GDB will be unable to intercept exception events.");
4685 eh_notify_hook_addr = 0;
4686 hp_cxx_exception_support = 0;
4687 return 0;
4688 }
4689
c906108c 4690 /* Next look for the notify callback routine in end.o */
c5aa993b 4691 /* This is always available in the SOM symbol dictionary if end.o is linked in */
c906108c
SS
4692 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4693 if (msym)
4694 {
4695 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4696 hp_cxx_exception_support = 1;
c5aa993b
JM
4697 }
4698 else
c906108c
SS
4699 {
4700 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4701 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4702 warning ("GDB will be unable to intercept exception events.");
4703 eh_notify_callback_addr = 0;
4704 return 0;
4705 }
4706
53a5351d 4707#ifndef GDB_TARGET_IS_HPPA_20W
c906108c
SS
4708 /* Check whether the executable is dynamically linked or archive bound */
4709 /* With an archive-bound executable we can use the raw addresses we find
4710 for the callback function, etc. without modification. For an executable
4711 with shared libraries, we have to do more work to find the plabel, which
4712 can be the target of a call through $$dyncall from the aCC runtime support
4713 library (libCsup) which is linked shared by default by aCC. */
4714 /* This test below was copied from somsolib.c/somread.c. It may not be a very
c5aa993b 4715 reliable one to test that an executable is linked shared. pai/1997-07-18 */
c906108c
SS
4716 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4717 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4718 {
4719 /* The minsym we have has the local code address, but that's not the
4720 plabel that can be used by an inter-load-module call. */
4721 /* Find solib handle for main image (which has end.o), and use that
4722 and the min sym as arguments to __d_shl_get() (which does the equivalent
c5aa993b 4723 of shl_findsym()) to find the plabel. */
c906108c
SS
4724
4725 args_for_find_stub args;
4726 static char message[] = "Error while finding exception callback hook:\n";
c5aa993b 4727
c906108c
SS
4728 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4729 args.msym = msym;
a0b3c4fd 4730 args.return_val = 0;
c5aa993b 4731
c906108c 4732 recurse++;
4efb68b1 4733 catch_errors (cover_find_stub_with_shl_get, &args, message,
a0b3c4fd
JM
4734 RETURN_MASK_ALL);
4735 eh_notify_callback_addr = args.return_val;
c906108c 4736 recurse--;
c5aa993b 4737
c906108c 4738 exception_catchpoints_are_fragile = 1;
c5aa993b 4739
c906108c 4740 if (!eh_notify_callback_addr)
c5aa993b
JM
4741 {
4742 /* We can get here either if there is no plabel in the export list
1faa59a8 4743 for the main image, or if something strange happened (?) */
c5aa993b
JM
4744 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4745 warning ("GDB will not be able to intercept exception events.");
4746 return 0;
4747 }
c906108c
SS
4748 }
4749 else
4750 exception_catchpoints_are_fragile = 0;
53a5351d 4751#endif
c906108c 4752
c906108c 4753 /* Now, look for the breakpointable routine in end.o */
c5aa993b 4754 /* This should also be available in the SOM symbol dict. if end.o linked in */
c906108c
SS
4755 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4756 if (msym)
4757 {
4758 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4759 hp_cxx_exception_support = 1;
c5aa993b 4760 }
c906108c
SS
4761 else
4762 {
4763 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4764 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4765 warning ("GDB will be unable to intercept exception events.");
4766 eh_break_addr = 0;
4767 return 0;
4768 }
4769
c906108c
SS
4770 /* Next look for the catch enable flag provided in end.o */
4771 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
176620f1 4772 VAR_DOMAIN, 0, (struct symtab **) NULL);
c5aa993b 4773 if (sym) /* sometimes present in debug info */
c906108c
SS
4774 {
4775 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4776 hp_cxx_exception_support = 1;
4777 }
c5aa993b
JM
4778 else
4779 /* otherwise look in SOM symbol dict. */
c906108c
SS
4780 {
4781 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4782 if (msym)
c5aa993b
JM
4783 {
4784 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4785 hp_cxx_exception_support = 1;
4786 }
c906108c 4787 else
c5aa993b
JM
4788 {
4789 warning ("Unable to enable interception of exception catches.");
4790 warning ("Executable may not have been compiled debuggable with HP aCC.");
4791 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4792 return 0;
4793 }
c906108c
SS
4794 }
4795
c906108c
SS
4796 /* Next look for the catch enable flag provided end.o */
4797 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
176620f1 4798 VAR_DOMAIN, 0, (struct symtab **) NULL);
c5aa993b 4799 if (sym) /* sometimes present in debug info */
c906108c
SS
4800 {
4801 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4802 hp_cxx_exception_support = 1;
4803 }
c5aa993b
JM
4804 else
4805 /* otherwise look in SOM symbol dict. */
c906108c
SS
4806 {
4807 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4808 if (msym)
c5aa993b
JM
4809 {
4810 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4811 hp_cxx_exception_support = 1;
4812 }
c906108c 4813 else
c5aa993b
JM
4814 {
4815 warning ("Unable to enable interception of exception throws.");
4816 warning ("Executable may not have been compiled debuggable with HP aCC.");
4817 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4818 return 0;
4819 }
c906108c
SS
4820 }
4821
c5aa993b
JM
4822 /* Set the flags */
4823 hp_cxx_exception_support = 2; /* everything worked so far */
c906108c
SS
4824 hp_cxx_exception_support_initialized = 1;
4825 exception_support_initialized = 1;
4826
4827 return 1;
4828}
4829
4830/* Target operation for enabling or disabling interception of
4831 exception events.
4832 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4833 ENABLE is either 0 (disable) or 1 (enable).
4834 Return value is NULL if no support found;
4835 -1 if something went wrong,
4836 or a pointer to a symtab/line struct if the breakpointable
c5aa993b 4837 address was found. */
c906108c 4838
c5aa993b 4839struct symtab_and_line *
fba45db2 4840child_enable_exception_callback (enum exception_event_kind kind, int enable)
c906108c
SS
4841{
4842 char buf[4];
4843
4844 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4845 if (!initialize_hp_cxx_exception_support ())
4846 return NULL;
4847
4848 switch (hp_cxx_exception_support)
4849 {
c5aa993b
JM
4850 case 0:
4851 /* Assuming no HP support at all */
4852 return NULL;
4853 case 1:
4854 /* HP support should be present, but something went wrong */
4855 return (struct symtab_and_line *) -1; /* yuck! */
4856 /* there may be other cases in the future */
c906108c 4857 }
c5aa993b 4858
c906108c 4859 /* Set the EH hook to point to the callback routine */
c5aa993b 4860 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
c906108c 4861 /* pai: (temp) FIXME should there be a pack operation first? */
c5aa993b 4862 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
c906108c
SS
4863 {
4864 warning ("Could not write to target memory for exception event callback.");
4865 warning ("Interception of exception events may not work.");
c5aa993b 4866 return (struct symtab_and_line *) -1;
c906108c
SS
4867 }
4868 if (enable)
4869 {
c5aa993b 4870 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
39f77062 4871 if (PIDGET (inferior_ptid) > 0)
c5aa993b
JM
4872 {
4873 if (setup_d_pid_in_inferior ())
4874 return (struct symtab_and_line *) -1;
4875 }
c906108c 4876 else
c5aa993b 4877 {
104c1213
JM
4878 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4879 return (struct symtab_and_line *) -1;
c5aa993b 4880 }
c906108c 4881 }
c5aa993b 4882
c906108c
SS
4883 switch (kind)
4884 {
c5aa993b
JM
4885 case EX_EVENT_THROW:
4886 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4887 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4888 {
4889 warning ("Couldn't enable exception throw interception.");
4890 return (struct symtab_and_line *) -1;
4891 }
4892 break;
4893 case EX_EVENT_CATCH:
4894 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4895 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4896 {
4897 warning ("Couldn't enable exception catch interception.");
4898 return (struct symtab_and_line *) -1;
4899 }
4900 break;
104c1213
JM
4901 default:
4902 error ("Request to enable unknown or unsupported exception event.");
c906108c 4903 }
c5aa993b 4904
c906108c
SS
4905 /* Copy break address into new sal struct, malloc'ing if needed. */
4906 if (!break_callback_sal)
4907 {
4908 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4909 }
fe39c653 4910 init_sal (break_callback_sal);
c906108c
SS
4911 break_callback_sal->symtab = NULL;
4912 break_callback_sal->pc = eh_break_addr;
4913 break_callback_sal->line = 0;
4914 break_callback_sal->end = eh_break_addr;
c5aa993b 4915
c906108c
SS
4916 return break_callback_sal;
4917}
4918
c5aa993b 4919/* Record some information about the current exception event */
c906108c 4920static struct exception_event_record current_ex_event;
c5aa993b
JM
4921/* Convenience struct */
4922static struct symtab_and_line null_symtab_and_line =
4923{NULL, 0, 0, 0};
c906108c
SS
4924
4925/* Report current exception event. Returns a pointer to a record
4926 that describes the kind of the event, where it was thrown from,
4927 and where it will be caught. More information may be reported
c5aa993b 4928 in the future */
c906108c 4929struct exception_event_record *
fba45db2 4930child_get_current_exception_event (void)
c906108c 4931{
c5aa993b
JM
4932 CORE_ADDR event_kind;
4933 CORE_ADDR throw_addr;
4934 CORE_ADDR catch_addr;
c906108c
SS
4935 struct frame_info *fi, *curr_frame;
4936 int level = 1;
4937
c5aa993b 4938 curr_frame = get_current_frame ();
c906108c
SS
4939 if (!curr_frame)
4940 return (struct exception_event_record *) NULL;
4941
4942 /* Go up one frame to __d_eh_notify_callback, because at the
4943 point when this code is executed, there's garbage in the
4944 arguments of __d_eh_break. */
4945 fi = find_relative_frame (curr_frame, &level);
4946 if (level != 0)
4947 return (struct exception_event_record *) NULL;
4948
0f7d239c 4949 select_frame (fi);
c906108c
SS
4950
4951 /* Read in the arguments */
4952 /* __d_eh_notify_callback() is called with 3 arguments:
c5aa993b
JM
4953 1. event kind catch or throw
4954 2. the target address if known
4955 3. a flag -- not sure what this is. pai/1997-07-17 */
4956 event_kind = read_register (ARG0_REGNUM);
c906108c
SS
4957 catch_addr = read_register (ARG1_REGNUM);
4958
4959 /* Now go down to a user frame */
4960 /* For a throw, __d_eh_break is called by
c5aa993b
JM
4961 __d_eh_notify_callback which is called by
4962 __notify_throw which is called
4963 from user code.
c906108c 4964 For a catch, __d_eh_break is called by
c5aa993b
JM
4965 __d_eh_notify_callback which is called by
4966 <stackwalking stuff> which is called by
4967 __throw__<stuff> or __rethrow_<stuff> which is called
4968 from user code. */
4969 /* FIXME: Don't use such magic numbers; search for the frames */
c906108c
SS
4970 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4971 fi = find_relative_frame (curr_frame, &level);
4972 if (level != 0)
4973 return (struct exception_event_record *) NULL;
4974
0f7d239c 4975 select_frame (fi);
ef6e7e13 4976 throw_addr = get_frame_pc (fi);
c906108c
SS
4977
4978 /* Go back to original (top) frame */
0f7d239c 4979 select_frame (curr_frame);
c906108c
SS
4980
4981 current_ex_event.kind = (enum exception_event_kind) event_kind;
4982 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4983 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4984
4985 return &current_ex_event;
4986}
4987
9a043c1d
AC
4988/* Instead of this nasty cast, add a method pvoid() that prints out a
4989 host VOID data type (remember %p isn't portable). */
4990
4991static CORE_ADDR
4992hppa_pointer_to_address_hack (void *ptr)
4993{
4994 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4995 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4996}
4997
c906108c 4998static void
fba45db2 4999unwind_command (char *exp, int from_tty)
c906108c
SS
5000{
5001 CORE_ADDR address;
5002 struct unwind_table_entry *u;
5003
5004 /* If we have an expression, evaluate it and use it as the address. */
5005
5006 if (exp != 0 && *exp != 0)
5007 address = parse_and_eval_address (exp);
5008 else
5009 return;
5010
5011 u = find_unwind_entry (address);
5012
5013 if (!u)
5014 {
5015 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
5016 return;
5017 }
5018
ce414844 5019 printf_unfiltered ("unwind_table_entry (0x%s):\n",
9a043c1d 5020 paddr_nz (hppa_pointer_to_address_hack (u)));
c906108c
SS
5021
5022 printf_unfiltered ("\tregion_start = ");
5023 print_address (u->region_start, gdb_stdout);
5024
5025 printf_unfiltered ("\n\tregion_end = ");
5026 print_address (u->region_end, gdb_stdout);
5027
c906108c 5028#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
5029
5030 printf_unfiltered ("\n\tflags =");
5031 pif (Cannot_unwind);
5032 pif (Millicode);
5033 pif (Millicode_save_sr0);
5034 pif (Entry_SR);
5035 pif (Args_stored);
5036 pif (Variable_Frame);
5037 pif (Separate_Package_Body);
5038 pif (Frame_Extension_Millicode);
5039 pif (Stack_Overflow_Check);
5040 pif (Two_Instruction_SP_Increment);
5041 pif (Ada_Region);
5042 pif (Save_SP);
5043 pif (Save_RP);
5044 pif (Save_MRP_in_frame);
5045 pif (extn_ptr_defined);
5046 pif (Cleanup_defined);
5047 pif (MPE_XL_interrupt_marker);
5048 pif (HP_UX_interrupt_marker);
5049 pif (Large_frame);
5050
5051 putchar_unfiltered ('\n');
5052
c906108c 5053#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
5054
5055 pin (Region_description);
5056 pin (Entry_FR);
5057 pin (Entry_GR);
5058 pin (Total_frame_size);
5059}
c906108c 5060
c2c6d25f 5061void
fba45db2 5062hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
5063{
5064 /* To step over a breakpoint instruction on the PA takes some
5065 fiddling with the instruction address queue.
5066
5067 When we stop at a breakpoint, the IA queue front (the instruction
5068 we're executing now) points at the breakpoint instruction, and
5069 the IA queue back (the next instruction to execute) points to
5070 whatever instruction we would execute after the breakpoint, if it
5071 were an ordinary instruction. This is the case even if the
5072 breakpoint is in the delay slot of a branch instruction.
5073
5074 Clearly, to step past the breakpoint, we need to set the queue
5075 front to the back. But what do we put in the back? What
5076 instruction comes after that one? Because of the branch delay
5077 slot, the next insn is always at the back + 4. */
5078 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
5079 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
5080
5081 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
5082 /* We can leave the tail's space the same, since there's no jump. */
5083}
5084
1cdb71fe
JL
5085/* Copy the function value from VALBUF into the proper location
5086 for a function return.
5087
5088 Called only in the context of the "return" command. */
5089
5090void
3ff7cf9e 5091hppa32_store_return_value (struct type *type, char *valbuf)
1cdb71fe
JL
5092{
5093 /* For software floating point, the return value goes into the
5094 integer registers. But we do not have any flag to key this on,
5095 so we always store the value into the integer registers.
5096
5097 If its a float value, then we also store it into the floating
5098 point registers. */
62700349 5099 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28)
73937e03
AC
5100 + (TYPE_LENGTH (type) > 4
5101 ? (8 - TYPE_LENGTH (type))
5102 : (4 - TYPE_LENGTH (type))),
5103 valbuf, TYPE_LENGTH (type));
77296879 5104 if (TYPE_CODE (type) == TYPE_CODE_FLT)
62700349 5105 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP4_REGNUM),
73937e03 5106 valbuf, TYPE_LENGTH (type));
1cdb71fe
JL
5107}
5108
3ff7cf9e
JB
5109/* Same as hppa32_store_return_value(), but for the PA64 ABI. */
5110
5111void
5112hppa64_store_return_value (struct type *type, char *valbuf)
5113{
5114 if (TYPE_CODE (type) == TYPE_CODE_FLT)
5115 deprecated_write_register_bytes
62700349 5116 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
3ff7cf9e
JB
5117 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5118 valbuf, TYPE_LENGTH (type));
5119 else if (is_integral_type(type))
5120 deprecated_write_register_bytes
62700349 5121 (DEPRECATED_REGISTER_BYTE (28)
3ff7cf9e
JB
5122 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5123 valbuf, TYPE_LENGTH (type));
5124 else if (TYPE_LENGTH (type) <= 8)
5125 deprecated_write_register_bytes
62700349 5126 (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type));
3ff7cf9e
JB
5127 else if (TYPE_LENGTH (type) <= 16)
5128 {
62700349 5129 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8);
3ff7cf9e 5130 deprecated_write_register_bytes
62700349 5131 (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8);
3ff7cf9e
JB
5132 }
5133}
5134
1cdb71fe
JL
5135/* Copy the function's return value into VALBUF.
5136
5137 This function is called only in the context of "target function calls",
5138 ie. when the debugger forces a function to be called in the child, and
5139 when the debugger forces a fucntion to return prematurely via the
5140 "return" command. */
5141
5142void
3ff7cf9e 5143hppa32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
1cdb71fe 5144{
77296879 5145 if (TYPE_CODE (type) == TYPE_CODE_FLT)
62700349 5146 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM), TYPE_LENGTH (type));
1cdb71fe
JL
5147 else
5148 memcpy (valbuf,
3ff7cf9e 5149 (regbuf
62700349 5150 + DEPRECATED_REGISTER_BYTE (28)
1cdb71fe
JL
5151 + (TYPE_LENGTH (type) > 4
5152 ? (8 - TYPE_LENGTH (type))
5153 : (4 - TYPE_LENGTH (type)))),
5154 TYPE_LENGTH (type));
5155}
4facf7e8 5156
3ff7cf9e
JB
5157/* Same as hppa32_extract_return_value but for the PA64 ABI case. */
5158
5159void
5160hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
5161{
5162 /* RM: Floats are returned in FR4R, doubles in FR4.
5163 Integral values are in r28, padded on the left.
5164 Aggregates less that 65 bits are in r28, right padded.
5165 Aggregates upto 128 bits are in r28 and r29, right padded. */
5166 if (TYPE_CODE (type) == TYPE_CODE_FLT)
5167 memcpy (valbuf,
62700349 5168 regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
3ff7cf9e
JB
5169 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5170 TYPE_LENGTH (type));
5171 else if (is_integral_type(type))
5172 memcpy (valbuf,
62700349 5173 regbuf + DEPRECATED_REGISTER_BYTE (28)
3ff7cf9e
JB
5174 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5175 TYPE_LENGTH (type));
5176 else if (TYPE_LENGTH (type) <= 8)
62700349
AC
5177 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28),
5178 TYPE_LENGTH (type));
3ff7cf9e
JB
5179 else if (TYPE_LENGTH (type) <= 16)
5180 {
62700349
AC
5181 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8);
5182 memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29),
5183 TYPE_LENGTH (type) - 8);
3ff7cf9e
JB
5184 }
5185}
5186
d709c020
JB
5187int
5188hppa_reg_struct_has_addr (int gcc_p, struct type *type)
5189{
5190 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
5191 via a pointer regardless of its type or the compiler used. */
5192 return (TYPE_LENGTH (type) > 8);
5193}
5194
5195int
5196hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
5197{
5198 /* Stack grows upward */
5199 return (lhs > rhs);
5200}
5201
5202CORE_ADDR
3ff7cf9e 5203hppa32_stack_align (CORE_ADDR sp)
d709c020
JB
5204{
5205 /* elz: adjust the quantity to the next highest value which is
5206 64-bit aligned. This is used in valops.c, when the sp is adjusted.
5207 On hppa the sp must always be kept 64-bit aligned */
5208 return ((sp % 8) ? (sp + 7) & -8 : sp);
5209}
5210
3ff7cf9e
JB
5211CORE_ADDR
5212hppa64_stack_align (CORE_ADDR sp)
5213{
5214 /* The PA64 ABI mandates a 16 byte stack alignment. */
5215 return ((sp % 16) ? (sp + 15) & -16 : sp);
5216}
5217
d709c020
JB
5218int
5219hppa_pc_requires_run_before_use (CORE_ADDR pc)
5220{
5221 /* Sometimes we may pluck out a minimal symbol that has a negative address.
5222
5223 An example of this occurs when an a.out is linked against a foo.sl.
5224 The foo.sl defines a global bar(), and the a.out declares a signature
5225 for bar(). However, the a.out doesn't directly call bar(), but passes
5226 its address in another call.
5227
5228 If you have this scenario and attempt to "break bar" before running,
5229 gdb will find a minimal symbol for bar() in the a.out. But that
5230 symbol's address will be negative. What this appears to denote is
5231 an index backwards from the base of the procedure linkage table (PLT)
5232 into the data linkage table (DLT), the end of which is contiguous
5233 with the start of the PLT. This is clearly not a valid address for
5234 us to set a breakpoint on.
5235
5236 Note that one must be careful in how one checks for a negative address.
5237 0xc0000000 is a legitimate address of something in a shared text
5238 segment, for example. Since I don't know what the possible range
5239 is of these "really, truly negative" addresses that come from the
5240 minimal symbols, I'm resorting to the gross hack of checking the
5241 top byte of the address for all 1's. Sigh. */
5242
5243 return (!target_has_stack && (pc & 0xFF000000));
5244}
5245
5246int
5247hppa_instruction_nullified (void)
5248{
5249 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
5250 avoid the type cast. I'm leaving it as is for now as I'm doing
5251 semi-mechanical multiarching-related changes. */
5252 const int ipsw = (int) read_register (IPSW_REGNUM);
5253 const int flags = (int) read_register (FLAGS_REGNUM);
5254
5255 return ((ipsw & 0x00200000) && !(flags & 0x2));
5256}
5257
60e1ff27
JB
5258int
5259hppa_register_raw_size (int reg_nr)
5260{
5261 /* All registers have the same size. */
b1e29e33 5262 return DEPRECATED_REGISTER_SIZE;
60e1ff27
JB
5263}
5264
d709c020
JB
5265/* Index within the register vector of the first byte of the space i
5266 used for register REG_NR. */
5267
5268int
5269hppa_register_byte (int reg_nr)
5270{
3ff7cf9e
JB
5271 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5272
5273 return reg_nr * tdep->bytes_per_address;
d709c020
JB
5274}
5275
5276/* Return the GDB type object for the "standard" data type of data
5277 in register N. */
5278
5279struct type *
3ff7cf9e 5280hppa32_register_virtual_type (int reg_nr)
d709c020
JB
5281{
5282 if (reg_nr < FP4_REGNUM)
5283 return builtin_type_int;
5284 else
5285 return builtin_type_float;
5286}
5287
3ff7cf9e
JB
5288/* Return the GDB type object for the "standard" data type of data
5289 in register N. hppa64 version. */
5290
5291struct type *
5292hppa64_register_virtual_type (int reg_nr)
5293{
5294 if (reg_nr < FP4_REGNUM)
5295 return builtin_type_unsigned_long_long;
5296 else
5297 return builtin_type_double;
5298}
5299
d709c020
JB
5300/* Store the address of the place in which to copy the structure the
5301 subroutine will return. This is called from call_function. */
5302
5303void
5304hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5305{
5306 write_register (28, addr);
5307}
d709c020
JB
5308/* Return True if REGNUM is not a register available to the user
5309 through ptrace(). */
5310
5311int
5312hppa_cannot_store_register (int regnum)
5313{
5314 return (regnum == 0
5315 || regnum == PCSQ_HEAD_REGNUM
5316 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
5317 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
5318
5319}
5320
d709c020
JB
5321CORE_ADDR
5322hppa_smash_text_address (CORE_ADDR addr)
5323{
5324 /* The low two bits of the PC on the PA contain the privilege level.
5325 Some genius implementing a (non-GCC) compiler apparently decided
5326 this means that "addresses" in a text section therefore include a
5327 privilege level, and thus symbol tables should contain these bits.
5328 This seems like a bonehead thing to do--anyway, it seems to work
5329 for our purposes to just ignore those bits. */
5330
5331 return (addr &= ~0x3);
5332}
5333
143985b7
AF
5334/* Get the ith function argument for the current function. */
5335CORE_ADDR
5336hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
5337 struct type *type)
5338{
5339 CORE_ADDR addr;
7f5f525d 5340 get_frame_register (frame, R0_REGNUM + 26 - argi, &addr);
143985b7
AF
5341 return addr;
5342}
5343
8e8b2dba
MC
5344/* Here is a table of C type sizes on hppa with various compiles
5345 and options. I measured this on PA 9000/800 with HP-UX 11.11
5346 and these compilers:
5347
5348 /usr/ccs/bin/cc HP92453-01 A.11.01.21
5349 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
5350 /opt/aCC/bin/aCC B3910B A.03.45
5351 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
5352
5353 cc : 1 2 4 4 8 : 4 8 -- : 4 4
5354 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5355 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5356 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5357 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5358 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5359 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5360 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
5361
5362 Each line is:
5363
5364 compiler and options
5365 char, short, int, long, long long
5366 float, double, long double
5367 char *, void (*)()
5368
5369 So all these compilers use either ILP32 or LP64 model.
5370 TODO: gcc has more options so it needs more investigation.
5371
a2379359
MC
5372 For floating point types, see:
5373
5374 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
5375 HP-UX floating-point guide, hpux 11.00
5376
8e8b2dba
MC
5377 -- chastain 2003-12-18 */
5378
e6e68f1f
JB
5379static struct gdbarch *
5380hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5381{
3ff7cf9e 5382 struct gdbarch_tdep *tdep;
e6e68f1f 5383 struct gdbarch *gdbarch;
59623e27
JB
5384
5385 /* Try to determine the ABI of the object we are loading. */
4be87837 5386 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 5387 {
4be87837
DJ
5388 /* If it's a SOM file, assume it's HP/UX SOM. */
5389 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5390 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 5391 }
e6e68f1f
JB
5392
5393 /* find a candidate among the list of pre-declared architectures. */
5394 arches = gdbarch_list_lookup_by_info (arches, &info);
5395 if (arches != NULL)
5396 return (arches->gdbarch);
5397
5398 /* If none found, then allocate and initialize one. */
3ff7cf9e
JB
5399 tdep = XMALLOC (struct gdbarch_tdep);
5400 gdbarch = gdbarch_alloc (&info, tdep);
5401
5402 /* Determine from the bfd_arch_info structure if we are dealing with
5403 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5404 then default to a 32bit machine. */
5405 if (info.bfd_arch_info != NULL)
5406 tdep->bytes_per_address =
5407 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
5408 else
5409 tdep->bytes_per_address = 4;
5410
5411 /* Some parts of the gdbarch vector depend on whether we are running
5412 on a 32 bits or 64 bits target. */
5413 switch (tdep->bytes_per_address)
5414 {
5415 case 4:
5416 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
5417 set_gdbarch_register_name (gdbarch, hppa32_register_name);
5418 set_gdbarch_deprecated_register_virtual_type
5419 (gdbarch, hppa32_register_virtual_type);
3ff7cf9e
JB
5420 break;
5421 case 8:
5422 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
5423 set_gdbarch_register_name (gdbarch, hppa64_register_name);
5424 set_gdbarch_deprecated_register_virtual_type
5425 (gdbarch, hppa64_register_virtual_type);
3ff7cf9e
JB
5426 break;
5427 default:
5428 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
5429 tdep->bytes_per_address);
5430 }
5431
5432 /* The following gdbarch vector elements depend on other parts of this
5433 vector which have been set above, depending on the ABI. */
5434 set_gdbarch_deprecated_register_bytes
5435 (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address);
5436 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 5437 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 5438
8e8b2dba
MC
5439 /* The following gdbarch vector elements are the same in both ILP32
5440 and LP64, but might show differences some day. */
5441 set_gdbarch_long_long_bit (gdbarch, 64);
5442 set_gdbarch_long_double_bit (gdbarch, 128);
a2379359 5443 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
8e8b2dba 5444
3ff7cf9e
JB
5445 /* The following gdbarch vector elements do not depend on the address
5446 size, or in any other gdbarch element previously set. */
60383d10
JB
5447 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5448 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5449 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5450 set_gdbarch_in_solib_return_trampoline (gdbarch,
5451 hppa_in_solib_return_trampoline);
60383d10 5452 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
3ff7cf9e 5453 set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address);
0ba6dca9 5454 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
60383d10
JB
5455 set_gdbarch_sp_regnum (gdbarch, 30);
5456 set_gdbarch_fp0_regnum (gdbarch, 64);
5457 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
9c04cab7 5458 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
9c04cab7
AC
5459 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5460 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
3ff7cf9e 5461 set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address);
a0ed5532 5462 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
60383d10 5463 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
b6fbdd1d 5464 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
5465 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5466 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5467 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5468 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
0ba6dca9 5469 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
60383d10 5470
143985b7
AF
5471 /* Helper for function argument information. */
5472 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5473
36482093
AC
5474 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
5475
3a3bc038
AC
5476 /* When a hardware watchpoint triggers, we'll move the inferior past
5477 it by removing all eventpoints; stepping past the instruction
5478 that caused the trigger; reinserting eventpoints; and checking
5479 whether any watched location changed. */
5480 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5481
5979bc46 5482 /* Inferior function call methods. */
e963316f 5483 if (0)
5979bc46 5484 {
5979bc46 5485 }
e963316f
AC
5486 else
5487 {
5488 switch (tdep->bytes_per_address)
5489 {
5490 case 4:
5491 set_gdbarch_deprecated_call_dummy_length (gdbarch, hppa32_call_dummy_length);
5492 set_gdbarch_deprecated_stack_align (gdbarch, hppa32_stack_align);
5493 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
5494 set_gdbarch_deprecated_extract_return_value (gdbarch, hppa32_extract_return_value);
5495 set_gdbarch_use_struct_convention (gdbarch, hppa32_use_struct_convention);
5496 set_gdbarch_deprecated_store_return_value (gdbarch, hppa32_store_return_value);
5497 break;
5498 case 8:
5499 set_gdbarch_deprecated_call_dummy_breakpoint_offset (gdbarch, hppa64_call_dummy_breakpoint_offset);
5500 set_gdbarch_deprecated_call_dummy_length (gdbarch, hppa64_call_dummy_length);
5501 set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align);
5502 set_gdbarch_deprecated_extract_return_value (gdbarch, hppa64_extract_return_value);
5503 set_gdbarch_use_struct_convention (gdbarch, hppa64_use_struct_convention);
5504 set_gdbarch_deprecated_store_return_value (gdbarch, hppa64_store_return_value);
5505 break;
5506 }
5507 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5508 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5509 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5510 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5511 }
5512
5979bc46 5513 /* Frame unwind methods. */
e963316f
AC
5514 if (0)
5515 {
26d08f08
AC
5516 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
5517 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
5518 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
5519 frame_base_append_sniffer (gdbarch, hppa_frame_base_sniffer);
e963316f
AC
5520 }
5521 else
5522 {
5523 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
5524 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
5525 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, hppa_frame_init_saved_regs);
5526 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5527 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5528 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5529 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, hppa_frameless_function_invocation);
5530 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5531 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5532 }
5979bc46 5533
752d4ac1
JB
5534 /* Hook in ABI-specific overrides, if they have been registered. */
5535 gdbarch_init_osabi (info, gdbarch);
5536
e6e68f1f
JB
5537 return gdbarch;
5538}
5539
5540static void
5541hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5542{
5543 /* Nothing to print for the moment. */
5544}
5545
4facf7e8
JB
5546void
5547_initialize_hppa_tdep (void)
5548{
5549 struct cmd_list_element *c;
5550 void break_at_finish_command (char *arg, int from_tty);
5551 void tbreak_at_finish_command (char *arg, int from_tty);
5552 void break_at_finish_at_depth_command (char *arg, int from_tty);
5553
e6e68f1f 5554 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8
JB
5555
5556 add_cmd ("unwind", class_maintenance, unwind_command,
5557 "Print unwind table entry at given address.",
5558 &maintenanceprintlist);
5559
5560 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5561 break_at_finish_command,
5562 concat ("Set breakpoint at procedure exit. \n\
5563Argument may be function name, or \"*\" and an address.\n\
5564If function is specified, break at end of code for that function.\n\
5565If an address is specified, break at the end of the function that contains \n\
5566that exact address.\n",
5567 "With no arg, uses current execution address of selected stack frame.\n\
5568This is useful for breaking on return to a stack frame.\n\
5569\n\
5570Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5571\n\
5572Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5573 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5574 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5575 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5576 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5577
5578 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5579 tbreak_at_finish_command,
5580"Set temporary breakpoint at procedure exit. Either there should\n\
5581be no argument or the argument must be a depth.\n"), NULL);
5582 set_cmd_completer (c, location_completer);
5583
5584 if (xdb_commands)
5585 deprecate_cmd (add_com ("bx", class_breakpoint,
5586 break_at_finish_at_depth_command,
5587"Set breakpoint at procedure exit. Either there should\n\
5588be no argument or the argument must be a depth.\n"), NULL);
5589}
5590
This page took 0.760101 seconds and 4 git commands to generate.