This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c
SS
1/* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 87, 89, 90, 91, 92, 93, 94, 95, 96, 1999
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "frame.h"
27#include "bfd.h"
28#include "inferior.h"
29#include "value.h"
30
31/* For argument passing to the inferior */
32#include "symtab.h"
33
34#ifdef USG
35#include <sys/types.h>
36#endif
37
38#include <dl.h>
39#include <sys/param.h>
40#include <signal.h>
41
42#include <sys/ptrace.h>
43#include <machine/save_state.h>
44
45#ifdef COFF_ENCAPSULATE
46#include "a.out.encap.h"
47#else
48#endif
49
c5aa993b 50/*#include <sys/user.h> After a.out.h */
c906108c
SS
51#include <sys/file.h>
52#include "gdb_stat.h"
53#include "wait.h"
54
55#include "gdbcore.h"
56#include "gdbcmd.h"
57#include "target.h"
58#include "symfile.h"
59#include "objfiles.h"
60
61/* To support asking "What CPU is this?" */
62#include <unistd.h>
63
64/* To support detection of the pseudo-initial frame
65 that threads have. */
66#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
67#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
c5aa993b 68
c906108c
SS
69static int extract_5_load PARAMS ((unsigned int));
70
71static unsigned extract_5R_store PARAMS ((unsigned int));
72
73static unsigned extract_5r_store PARAMS ((unsigned int));
74
75static void find_dummy_frame_regs PARAMS ((struct frame_info *,
76 struct frame_saved_regs *));
77
78static int find_proc_framesize PARAMS ((CORE_ADDR));
79
80static int find_return_regnum PARAMS ((CORE_ADDR));
81
82struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
83
84static int extract_17 PARAMS ((unsigned int));
85
86static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
87
88static int extract_21 PARAMS ((unsigned));
89
90static unsigned deposit_14 PARAMS ((int, unsigned int));
91
92static int extract_14 PARAMS ((unsigned));
93
94static void unwind_command PARAMS ((char *, int));
95
96static int low_sign_extend PARAMS ((unsigned int, unsigned int));
97
98static int sign_extend PARAMS ((unsigned int, unsigned int));
99
100static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
101
102static int hppa_alignof PARAMS ((struct type *));
103
104/* To support multi-threading and stepping. */
105int hppa_prepare_to_proceed PARAMS (());
106
107static int prologue_inst_adjust_sp PARAMS ((unsigned long));
108
109static int is_branch PARAMS ((unsigned long));
110
111static int inst_saves_gr PARAMS ((unsigned long));
112
113static int inst_saves_fr PARAMS ((unsigned long));
114
115static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
116
117static int pc_in_linker_stub PARAMS ((CORE_ADDR));
118
119static int compare_unwind_entries PARAMS ((const void *, const void *));
120
121static void read_unwind_info PARAMS ((struct objfile *));
122
123static void internalize_unwinds PARAMS ((struct objfile *,
124 struct unwind_table_entry *,
125 asection *, unsigned int,
126 unsigned int, CORE_ADDR));
127static void pa_print_registers PARAMS ((char *, int, int));
128static void pa_strcat_registers PARAMS ((char *, int, int, GDB_FILE *));
129static void pa_register_look_aside PARAMS ((char *, int, long *));
130static void pa_print_fp_reg PARAMS ((int));
131static void pa_strcat_fp_reg PARAMS ((int, GDB_FILE *, enum precision_type));
132
c5aa993b
JM
133typedef struct
134 {
135 struct minimal_symbol *msym;
136 CORE_ADDR solib_handle;
137 }
138args_for_find_stub;
c906108c
SS
139
140static CORE_ADDR cover_find_stub_with_shl_get PARAMS ((args_for_find_stub *));
141
c5aa993b 142static int is_pa_2 = 0; /* False */
c906108c 143
c5aa993b 144/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
c906108c
SS
145extern int hp_som_som_object_present;
146
147/* In breakpoint.c */
148extern int exception_catchpoints_are_fragile;
149
150/* This is defined in valops.c. */
151extern value_ptr
c5aa993b 152 find_function_in_inferior PARAMS ((char *));
c906108c
SS
153
154/* Should call_function allocate stack space for a struct return? */
155int
156hppa_use_struct_convention (gcc_p, type)
157 int gcc_p;
158 struct type *type;
159{
160 return (TYPE_LENGTH (type) > 8);
161}
c906108c 162\f
c5aa993b 163
c906108c
SS
164/* Routines to extract various sized constants out of hppa
165 instructions. */
166
167/* This assumes that no garbage lies outside of the lower bits of
168 value. */
169
170static int
171sign_extend (val, bits)
172 unsigned val, bits;
173{
c5aa993b 174 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
175}
176
177/* For many immediate values the sign bit is the low bit! */
178
179static int
180low_sign_extend (val, bits)
181 unsigned val, bits;
182{
c5aa993b 183 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
184}
185
186/* extract the immediate field from a ld{bhw}s instruction */
187
188#if 0
189
190unsigned
191get_field (val, from, to)
192 unsigned val, from, to;
193{
194 val = val >> 31 - to;
195 return val & ((1 << 32 - from) - 1);
196}
197
198unsigned
199set_field (val, from, to, new_val)
200 unsigned *val, from, to;
201{
202 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
203 return *val = *val & mask | (new_val << (31 - from));
204}
205
206/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
207
208int
209extract_3 (word)
210 unsigned word;
211{
212 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
213}
214
215#endif
216
217static int
218extract_5_load (word)
219 unsigned word;
220{
221 return low_sign_extend (word >> 16 & MASK_5, 5);
222}
223
224#if 0
225
226/* extract the immediate field from a st{bhw}s instruction */
227
228int
229extract_5_store (word)
230 unsigned word;
231{
232 return low_sign_extend (word & MASK_5, 5);
233}
234
c5aa993b
JM
235#endif /* 0 */
236
c906108c
SS
237/* extract the immediate field from a break instruction */
238
239static unsigned
240extract_5r_store (word)
241 unsigned word;
242{
243 return (word & MASK_5);
244}
245
246/* extract the immediate field from a {sr}sm instruction */
247
248static unsigned
249extract_5R_store (word)
250 unsigned word;
251{
252 return (word >> 16 & MASK_5);
253}
254
255/* extract an 11 bit immediate field */
256
257#if 0
258
259int
260extract_11 (word)
261 unsigned word;
262{
263 return low_sign_extend (word & MASK_11, 11);
264}
265
266#endif
267
268/* extract a 14 bit immediate field */
269
270static int
271extract_14 (word)
272 unsigned word;
273{
274 return low_sign_extend (word & MASK_14, 14);
275}
276
277/* deposit a 14 bit constant in a word */
278
279static unsigned
280deposit_14 (opnd, word)
281 int opnd;
282 unsigned word;
283{
284 unsigned sign = (opnd < 0 ? 1 : 0);
285
c5aa993b 286 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
c906108c
SS
287}
288
289/* extract a 21 bit constant */
290
291static int
292extract_21 (word)
293 unsigned word;
294{
295 int val;
296
297 word &= MASK_21;
298 word <<= 11;
299 val = GET_FIELD (word, 20, 20);
300 val <<= 11;
301 val |= GET_FIELD (word, 9, 19);
302 val <<= 2;
303 val |= GET_FIELD (word, 5, 6);
304 val <<= 5;
305 val |= GET_FIELD (word, 0, 4);
306 val <<= 2;
307 val |= GET_FIELD (word, 7, 8);
308 return sign_extend (val, 21) << 11;
309}
310
311/* deposit a 21 bit constant in a word. Although 21 bit constants are
312 usually the top 21 bits of a 32 bit constant, we assume that only
313 the low 21 bits of opnd are relevant */
314
315static unsigned
316deposit_21 (opnd, word)
317 unsigned opnd, word;
318{
319 unsigned val = 0;
320
321 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
322 val <<= 2;
323 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
324 val <<= 2;
325 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
326 val <<= 11;
327 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
328 val <<= 1;
329 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
330 return word | val;
331}
332
333/* extract a 12 bit constant from branch instructions */
334
335#if 0
336
337int
338extract_12 (word)
339 unsigned word;
340{
341 return sign_extend (GET_FIELD (word, 19, 28) |
342 GET_FIELD (word, 29, 29) << 10 |
343 (word & 0x1) << 11, 12) << 2;
344}
345
346/* Deposit a 17 bit constant in an instruction (like bl). */
347
348unsigned int
349deposit_17 (opnd, word)
350 unsigned opnd, word;
351{
c5aa993b
JM
352 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
353 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
354 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
355 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
c906108c
SS
356
357 return word;
358}
359
360#endif
361
362/* extract a 17 bit constant from branch instructions, returning the
363 19 bit signed value. */
364
365static int
366extract_17 (word)
367 unsigned word;
368{
369 return sign_extend (GET_FIELD (word, 19, 28) |
370 GET_FIELD (word, 29, 29) << 10 |
371 GET_FIELD (word, 11, 15) << 11 |
372 (word & 0x1) << 16, 17) << 2;
373}
374\f
375
376/* Compare the start address for two unwind entries returning 1 if
377 the first address is larger than the second, -1 if the second is
378 larger than the first, and zero if they are equal. */
379
380static int
381compare_unwind_entries (arg1, arg2)
382 const void *arg1;
383 const void *arg2;
384{
385 const struct unwind_table_entry *a = arg1;
386 const struct unwind_table_entry *b = arg2;
387
388 if (a->region_start > b->region_start)
389 return 1;
390 else if (a->region_start < b->region_start)
391 return -1;
392 else
393 return 0;
394}
395
396static void
397internalize_unwinds (objfile, table, section, entries, size, text_offset)
398 struct objfile *objfile;
399 struct unwind_table_entry *table;
400 asection *section;
401 unsigned int entries, size;
402 CORE_ADDR text_offset;
403{
404 /* We will read the unwind entries into temporary memory, then
405 fill in the actual unwind table. */
406 if (size > 0)
407 {
408 unsigned long tmp;
409 unsigned i;
410 char *buf = alloca (size);
411
412 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
413
414 /* Now internalize the information being careful to handle host/target
c5aa993b 415 endian issues. */
c906108c
SS
416 for (i = 0; i < entries; i++)
417 {
418 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 419 (bfd_byte *) buf);
c906108c
SS
420 table[i].region_start += text_offset;
421 buf += 4;
c5aa993b 422 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
423 table[i].region_end += text_offset;
424 buf += 4;
c5aa993b 425 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
426 buf += 4;
427 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
428 table[i].Millicode = (tmp >> 30) & 0x1;
429 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
430 table[i].Region_description = (tmp >> 27) & 0x3;
431 table[i].reserved1 = (tmp >> 26) & 0x1;
432 table[i].Entry_SR = (tmp >> 25) & 0x1;
433 table[i].Entry_FR = (tmp >> 21) & 0xf;
434 table[i].Entry_GR = (tmp >> 16) & 0x1f;
435 table[i].Args_stored = (tmp >> 15) & 0x1;
436 table[i].Variable_Frame = (tmp >> 14) & 0x1;
437 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
438 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
439 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
440 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
441 table[i].Ada_Region = (tmp >> 9) & 0x1;
442 table[i].cxx_info = (tmp >> 8) & 0x1;
443 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
444 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
445 table[i].reserved2 = (tmp >> 5) & 0x1;
446 table[i].Save_SP = (tmp >> 4) & 0x1;
447 table[i].Save_RP = (tmp >> 3) & 0x1;
448 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
449 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
450 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 451 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
452 buf += 4;
453 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
454 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
455 table[i].Large_frame = (tmp >> 29) & 0x1;
456 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
457 table[i].reserved4 = (tmp >> 27) & 0x1;
458 table[i].Total_frame_size = tmp & 0x7ffffff;
459
c5aa993b 460 /* Stub unwinds are handled elsewhere. */
c906108c
SS
461 table[i].stub_unwind.stub_type = 0;
462 table[i].stub_unwind.padding = 0;
463 }
464 }
465}
466
467/* Read in the backtrace information stored in the `$UNWIND_START$' section of
468 the object file. This info is used mainly by find_unwind_entry() to find
469 out the stack frame size and frame pointer used by procedures. We put
470 everything on the psymbol obstack in the objfile so that it automatically
471 gets freed when the objfile is destroyed. */
472
473static void
474read_unwind_info (objfile)
475 struct objfile *objfile;
476{
477 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
478 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
479 unsigned index, unwind_entries, elf_unwind_entries;
480 unsigned stub_entries, total_entries;
481 CORE_ADDR text_offset;
482 struct obj_unwind_info *ui;
483 obj_private_data_t *obj_private;
484
485 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5aa993b
JM
486 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
487 sizeof (struct obj_unwind_info));
c906108c
SS
488
489 ui->table = NULL;
490 ui->cache = NULL;
491 ui->last = -1;
492
493 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
494 section in ELF at the moment. */
495 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
496 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
497 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
498
499 /* Get sizes and unwind counts for all sections. */
500 if (unwind_sec)
501 {
502 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
503 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
504 }
505 else
506 {
507 unwind_size = 0;
508 unwind_entries = 0;
509 }
510
511 if (elf_unwind_sec)
512 {
c5aa993b
JM
513 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); /* purecov: deadcode */
514 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; /* purecov: deadcode */
c906108c
SS
515 }
516 else
517 {
518 elf_unwind_size = 0;
519 elf_unwind_entries = 0;
520 }
521
522 if (stub_unwind_sec)
523 {
524 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
525 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
526 }
527 else
528 {
529 stub_unwind_size = 0;
530 stub_entries = 0;
531 }
532
533 /* Compute total number of unwind entries and their total size. */
534 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
535 total_size = total_entries * sizeof (struct unwind_table_entry);
536
537 /* Allocate memory for the unwind table. */
538 ui->table = (struct unwind_table_entry *)
539 obstack_alloc (&objfile->psymbol_obstack, total_size);
c5aa993b 540 ui->last = total_entries - 1;
c906108c
SS
541
542 /* Internalize the standard unwind entries. */
543 index = 0;
544 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
545 unwind_entries, unwind_size, text_offset);
546 index += unwind_entries;
547 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
548 elf_unwind_entries, elf_unwind_size, text_offset);
549 index += elf_unwind_entries;
550
551 /* Now internalize the stub unwind entries. */
552 if (stub_unwind_size > 0)
553 {
554 unsigned int i;
555 char *buf = alloca (stub_unwind_size);
556
557 /* Read in the stub unwind entries. */
558 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
559 0, stub_unwind_size);
560
561 /* Now convert them into regular unwind entries. */
562 for (i = 0; i < stub_entries; i++, index++)
563 {
564 /* Clear out the next unwind entry. */
565 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
566
567 /* Convert offset & size into region_start and region_end.
568 Stuff away the stub type into "reserved" fields. */
569 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
570 (bfd_byte *) buf);
571 ui->table[index].region_start += text_offset;
572 buf += 4;
573 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 574 (bfd_byte *) buf);
c906108c
SS
575 buf += 2;
576 ui->table[index].region_end
c5aa993b
JM
577 = ui->table[index].region_start + 4 *
578 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
579 buf += 2;
580 }
581
582 }
583
584 /* Unwind table needs to be kept sorted. */
585 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
586 compare_unwind_entries);
587
588 /* Keep a pointer to the unwind information. */
c5aa993b 589 if (objfile->obj_private == NULL)
c906108c
SS
590 {
591 obj_private = (obj_private_data_t *)
c5aa993b
JM
592 obstack_alloc (&objfile->psymbol_obstack,
593 sizeof (obj_private_data_t));
c906108c 594 obj_private->unwind_info = NULL;
c5aa993b
JM
595 obj_private->so_info = NULL;
596
c906108c
SS
597 objfile->obj_private = (PTR) obj_private;
598 }
c5aa993b 599 obj_private = (obj_private_data_t *) objfile->obj_private;
c906108c
SS
600 obj_private->unwind_info = ui;
601}
602
603/* Lookup the unwind (stack backtrace) info for the given PC. We search all
604 of the objfiles seeking the unwind table entry for this PC. Each objfile
605 contains a sorted list of struct unwind_table_entry. Since we do a binary
606 search of the unwind tables, we depend upon them to be sorted. */
607
608struct unwind_table_entry *
c5aa993b 609find_unwind_entry (pc)
c906108c
SS
610 CORE_ADDR pc;
611{
612 int first, middle, last;
613 struct objfile *objfile;
614
615 /* A function at address 0? Not in HP-UX! */
616 if (pc == (CORE_ADDR) 0)
617 return NULL;
618
619 ALL_OBJFILES (objfile)
c5aa993b
JM
620 {
621 struct obj_unwind_info *ui;
622 ui = NULL;
623 if (objfile->obj_private)
624 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
c906108c 625
c5aa993b
JM
626 if (!ui)
627 {
628 read_unwind_info (objfile);
629 if (objfile->obj_private == NULL)
630 error ("Internal error reading unwind information."); /* purecov: deadcode */
631 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
632 }
c906108c 633
c5aa993b 634 /* First, check the cache */
c906108c 635
c5aa993b
JM
636 if (ui->cache
637 && pc >= ui->cache->region_start
638 && pc <= ui->cache->region_end)
639 return ui->cache;
c906108c 640
c5aa993b 641 /* Not in the cache, do a binary search */
c906108c 642
c5aa993b
JM
643 first = 0;
644 last = ui->last;
c906108c 645
c5aa993b
JM
646 while (first <= last)
647 {
648 middle = (first + last) / 2;
649 if (pc >= ui->table[middle].region_start
650 && pc <= ui->table[middle].region_end)
651 {
652 ui->cache = &ui->table[middle];
653 return &ui->table[middle];
654 }
c906108c 655
c5aa993b
JM
656 if (pc < ui->table[middle].region_start)
657 last = middle - 1;
658 else
659 first = middle + 1;
660 }
661 } /* ALL_OBJFILES() */
c906108c
SS
662 return NULL;
663}
664
665/* Return the adjustment necessary to make for addresses on the stack
666 as presented by hpread.c.
667
668 This is necessary because of the stack direction on the PA and the
669 bizarre way in which someone (?) decided they wanted to handle
670 frame pointerless code in GDB. */
671int
672hpread_adjust_stack_address (func_addr)
673 CORE_ADDR func_addr;
674{
675 struct unwind_table_entry *u;
676
677 u = find_unwind_entry (func_addr);
678 if (!u)
679 return 0;
680 else
681 return u->Total_frame_size << 3;
682}
683
684/* Called to determine if PC is in an interrupt handler of some
685 kind. */
686
687static int
688pc_in_interrupt_handler (pc)
689 CORE_ADDR pc;
690{
691 struct unwind_table_entry *u;
692 struct minimal_symbol *msym_us;
693
694 u = find_unwind_entry (pc);
695 if (!u)
696 return 0;
697
698 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
699 its frame isn't a pure interrupt frame. Deal with this. */
700 msym_us = lookup_minimal_symbol_by_pc (pc);
701
702 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
703}
704
705/* Called when no unwind descriptor was found for PC. Returns 1 if it
706 appears that PC is in a linker stub. */
707
708static int
709pc_in_linker_stub (pc)
710 CORE_ADDR pc;
711{
712 int found_magic_instruction = 0;
713 int i;
714 char buf[4];
715
716 /* If unable to read memory, assume pc is not in a linker stub. */
717 if (target_read_memory (pc, buf, 4) != 0)
718 return 0;
719
720 /* We are looking for something like
721
722 ; $$dyncall jams RP into this special spot in the frame (RP')
723 ; before calling the "call stub"
724 ldw -18(sp),rp
725
726 ldsid (rp),r1 ; Get space associated with RP into r1
727 mtsp r1,sp ; Move it into space register 0
728 be,n 0(sr0),rp) ; back to your regularly scheduled program */
729
730 /* Maximum known linker stub size is 4 instructions. Search forward
731 from the given PC, then backward. */
732 for (i = 0; i < 4; i++)
733 {
734 /* If we hit something with an unwind, stop searching this direction. */
735
736 if (find_unwind_entry (pc + i * 4) != 0)
737 break;
738
739 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 740 return from a cross-space function call. */
c906108c
SS
741 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
742 {
743 found_magic_instruction = 1;
744 break;
745 }
746 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 747 here. */
c906108c
SS
748 }
749
750 if (found_magic_instruction != 0)
751 return 1;
752
753 /* Now look backward. */
754 for (i = 0; i < 4; i++)
755 {
756 /* If we hit something with an unwind, stop searching this direction. */
757
758 if (find_unwind_entry (pc - i * 4) != 0)
759 break;
760
761 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 762 return from a cross-space function call. */
c906108c
SS
763 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
764 {
765 found_magic_instruction = 1;
766 break;
767 }
768 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 769 here. */
c906108c
SS
770 }
771 return found_magic_instruction;
772}
773
774static int
c5aa993b 775find_return_regnum (pc)
c906108c
SS
776 CORE_ADDR pc;
777{
778 struct unwind_table_entry *u;
779
780 u = find_unwind_entry (pc);
781
782 if (!u)
783 return RP_REGNUM;
784
785 if (u->Millicode)
786 return 31;
787
788 return RP_REGNUM;
789}
790
791/* Return size of frame, or -1 if we should use a frame pointer. */
792static int
793find_proc_framesize (pc)
794 CORE_ADDR pc;
795{
796 struct unwind_table_entry *u;
797 struct minimal_symbol *msym_us;
798
799 /* This may indicate a bug in our callers... */
c5aa993b 800 if (pc == (CORE_ADDR) 0)
c906108c 801 return -1;
c5aa993b 802
c906108c
SS
803 u = find_unwind_entry (pc);
804
805 if (!u)
806 {
807 if (pc_in_linker_stub (pc))
808 /* Linker stubs have a zero size frame. */
809 return 0;
810 else
811 return -1;
812 }
813
814 msym_us = lookup_minimal_symbol_by_pc (pc);
815
816 /* If Save_SP is set, and we're not in an interrupt or signal caller,
817 then we have a frame pointer. Use it. */
818 if (u->Save_SP && !pc_in_interrupt_handler (pc)
819 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
820 return -1;
821
822 return u->Total_frame_size << 3;
823}
824
825/* Return offset from sp at which rp is saved, or 0 if not saved. */
826static int rp_saved PARAMS ((CORE_ADDR));
827
828static int
829rp_saved (pc)
830 CORE_ADDR pc;
831{
832 struct unwind_table_entry *u;
833
834 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
835 if (pc == (CORE_ADDR) 0)
836 return 0;
837
838 u = find_unwind_entry (pc);
839
840 if (!u)
841 {
842 if (pc_in_linker_stub (pc))
843 /* This is the so-called RP'. */
844 return -24;
845 else
846 return 0;
847 }
848
849 if (u->Save_RP)
850 return -20;
851 else if (u->stub_unwind.stub_type != 0)
852 {
853 switch (u->stub_unwind.stub_type)
854 {
855 case EXPORT:
856 case IMPORT:
857 return -24;
858 case PARAMETER_RELOCATION:
859 return -8;
860 default:
861 return 0;
862 }
863 }
864 else
865 return 0;
866}
867\f
868int
869frameless_function_invocation (frame)
870 struct frame_info *frame;
871{
872 struct unwind_table_entry *u;
873
874 u = find_unwind_entry (frame->pc);
875
876 if (u == 0)
877 return 0;
878
879 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
880}
881
882CORE_ADDR
883saved_pc_after_call (frame)
884 struct frame_info *frame;
885{
886 int ret_regnum;
887 CORE_ADDR pc;
888 struct unwind_table_entry *u;
889
890 ret_regnum = find_return_regnum (get_frame_pc (frame));
891 pc = read_register (ret_regnum) & ~0x3;
c5aa993b 892
c906108c
SS
893 /* If PC is in a linker stub, then we need to dig the address
894 the stub will return to out of the stack. */
895 u = find_unwind_entry (pc);
896 if (u && u->stub_unwind.stub_type != 0)
897 return FRAME_SAVED_PC (frame);
898 else
899 return pc;
900}
901\f
902CORE_ADDR
903hppa_frame_saved_pc (frame)
904 struct frame_info *frame;
905{
906 CORE_ADDR pc = get_frame_pc (frame);
907 struct unwind_table_entry *u;
908 CORE_ADDR old_pc;
c5aa993b
JM
909 int spun_around_loop = 0;
910 int rp_offset = 0;
c906108c
SS
911
912 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
913 at the base of the frame in an interrupt handler. Registers within
914 are saved in the exact same order as GDB numbers registers. How
915 convienent. */
916 if (pc_in_interrupt_handler (pc))
917 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
918
919#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
920 /* Deal with signal handler caller frames too. */
921 if (frame->signal_handler_caller)
922 {
923 CORE_ADDR rp;
924 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
925 return rp & ~0x3;
926 }
927#endif
928
929 if (frameless_function_invocation (frame))
930 {
931 int ret_regnum;
932
933 ret_regnum = find_return_regnum (pc);
934
935 /* If the next frame is an interrupt frame or a signal
c5aa993b
JM
936 handler caller, then we need to look in the saved
937 register area to get the return pointer (the values
938 in the registers may not correspond to anything useful). */
939 if (frame->next
c906108c
SS
940 && (frame->next->signal_handler_caller
941 || pc_in_interrupt_handler (frame->next->pc)))
942 {
943 struct frame_saved_regs saved_regs;
944
945 get_frame_saved_regs (frame->next, &saved_regs);
946 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
947 {
948 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
949
950 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
951 with a return pointer in %rp and the kernel call with
952 a return pointer in %r31. We return the %rp variant
953 if %r31 is the same as frame->pc. */
c906108c
SS
954 if (pc == frame->pc)
955 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
956 }
957 else
958 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
959 }
960 else
961 pc = read_register (ret_regnum) & ~0x3;
962 }
963 else
964 {
965 spun_around_loop = 0;
c5aa993b 966 old_pc = pc;
c906108c 967
c5aa993b 968 restart:
c906108c
SS
969 rp_offset = rp_saved (pc);
970
971 /* Similar to code in frameless function case. If the next
c5aa993b
JM
972 frame is a signal or interrupt handler, then dig the right
973 information out of the saved register info. */
c906108c
SS
974 if (rp_offset == 0
975 && frame->next
976 && (frame->next->signal_handler_caller
977 || pc_in_interrupt_handler (frame->next->pc)))
978 {
979 struct frame_saved_regs saved_regs;
980
981 get_frame_saved_regs (frame->next, &saved_regs);
982 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
983 {
984 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
985
986 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
987 with a return pointer in %rp and the kernel call with
988 a return pointer in %r31. We return the %rp variant
989 if %r31 is the same as frame->pc. */
c906108c
SS
990 if (pc == frame->pc)
991 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
992 }
993 else
994 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
995 }
996 else if (rp_offset == 0)
c5aa993b
JM
997 {
998 old_pc = pc;
999 pc = read_register (RP_REGNUM) & ~0x3;
1000 }
c906108c 1001 else
c5aa993b
JM
1002 {
1003 old_pc = pc;
1004 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
1005 }
c906108c
SS
1006 }
1007
1008 /* If PC is inside a linker stub, then dig out the address the stub
1009 will return to.
1010
1011 Don't do this for long branch stubs. Why? For some unknown reason
1012 _start is marked as a long branch stub in hpux10. */
1013 u = find_unwind_entry (pc);
1014 if (u && u->stub_unwind.stub_type != 0
1015 && u->stub_unwind.stub_type != LONG_BRANCH)
1016 {
1017 unsigned int insn;
1018
1019 /* If this is a dynamic executable, and we're in a signal handler,
c5aa993b
JM
1020 then the call chain will eventually point us into the stub for
1021 _sigreturn. Unlike most cases, we'll be pointed to the branch
1022 to the real sigreturn rather than the code after the real branch!.
c906108c 1023
c5aa993b
JM
1024 Else, try to dig the address the stub will return to in the normal
1025 fashion. */
c906108c
SS
1026 insn = read_memory_integer (pc, 4);
1027 if ((insn & 0xfc00e000) == 0xe8000000)
1028 return (pc + extract_17 (insn) + 8) & ~0x3;
1029 else
1030 {
c5aa993b
JM
1031 if (old_pc == pc)
1032 spun_around_loop++;
1033
1034 if (spun_around_loop > 1)
1035 {
1036 /* We're just about to go around the loop again with
1037 no more hope of success. Die. */
1038 error ("Unable to find return pc for this frame");
1039 }
1040 else
1041 goto restart;
c906108c
SS
1042 }
1043 }
1044
1045 return pc;
1046}
1047\f
1048/* We need to correct the PC and the FP for the outermost frame when we are
1049 in a system call. */
1050
1051void
1052init_extra_frame_info (fromleaf, frame)
1053 int fromleaf;
1054 struct frame_info *frame;
1055{
1056 int flags;
1057 int framesize;
1058
1059 if (frame->next && !fromleaf)
1060 return;
1061
1062 /* If the next frame represents a frameless function invocation
1063 then we have to do some adjustments that are normally done by
1064 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1065 if (fromleaf)
1066 {
1067 /* Find the framesize of *this* frame without peeking at the PC
c5aa993b 1068 in the current frame structure (it isn't set yet). */
c906108c
SS
1069 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1070
1071 /* Now adjust our base frame accordingly. If we have a frame pointer
c5aa993b
JM
1072 use it, else subtract the size of this frame from the current
1073 frame. (we always want frame->frame to point at the lowest address
1074 in the frame). */
c906108c
SS
1075 if (framesize == -1)
1076 frame->frame = TARGET_READ_FP ();
1077 else
1078 frame->frame -= framesize;
1079 return;
1080 }
1081
1082 flags = read_register (FLAGS_REGNUM);
c5aa993b 1083 if (flags & 2) /* In system call? */
c906108c
SS
1084 frame->pc = read_register (31) & ~0x3;
1085
1086 /* The outermost frame is always derived from PC-framesize
1087
1088 One might think frameless innermost frames should have
1089 a frame->frame that is the same as the parent's frame->frame.
1090 That is wrong; frame->frame in that case should be the *high*
1091 address of the parent's frame. It's complicated as hell to
1092 explain, but the parent *always* creates some stack space for
1093 the child. So the child actually does have a frame of some
1094 sorts, and its base is the high address in its parent's frame. */
c5aa993b 1095 framesize = find_proc_framesize (frame->pc);
c906108c
SS
1096 if (framesize == -1)
1097 frame->frame = TARGET_READ_FP ();
1098 else
1099 frame->frame = read_register (SP_REGNUM) - framesize;
1100}
1101\f
1102/* Given a GDB frame, determine the address of the calling function's frame.
1103 This will be used to create a new GDB frame struct, and then
1104 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1105
1106 This may involve searching through prologues for several functions
1107 at boundaries where GCC calls HP C code, or where code which has
1108 a frame pointer calls code without a frame pointer. */
1109
1110CORE_ADDR
1111frame_chain (frame)
1112 struct frame_info *frame;
1113{
1114 int my_framesize, caller_framesize;
1115 struct unwind_table_entry *u;
1116 CORE_ADDR frame_base;
1117 struct frame_info *tmp_frame;
1118
c5aa993b 1119 CORE_ADDR caller_pc;
c906108c
SS
1120
1121 struct minimal_symbol *min_frame_symbol;
c5aa993b
JM
1122 struct symbol *frame_symbol;
1123 char *frame_symbol_name;
c906108c
SS
1124
1125 /* If this is a threaded application, and we see the
1126 routine "__pthread_exit", treat it as the stack root
1127 for this thread. */
c5aa993b
JM
1128 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1129 frame_symbol = find_pc_function (frame->pc);
c906108c 1130
c5aa993b 1131 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
c906108c 1132 {
c5aa993b
JM
1133 /* The test above for "no user function name" would defend
1134 against the slim likelihood that a user might define a
1135 routine named "__pthread_exit" and then try to debug it.
1136
1137 If it weren't commented out, and you tried to debug the
1138 pthread library itself, you'd get errors.
1139
1140 So for today, we don't make that check. */
1141 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1142 if (frame_symbol_name != 0)
1143 {
1144 if (0 == strncmp (frame_symbol_name,
1145 THREAD_INITIAL_FRAME_SYMBOL,
1146 THREAD_INITIAL_FRAME_SYM_LEN))
1147 {
1148 /* Pretend we've reached the bottom of the stack. */
1149 return (CORE_ADDR) 0;
1150 }
1151 }
1152 } /* End of hacky code for threads. */
1153
c906108c
SS
1154 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1155 are easy; at *sp we have a full save state strucutre which we can
1156 pull the old stack pointer from. Also see frame_saved_pc for
1157 code to dig a saved PC out of the save state structure. */
1158 if (pc_in_interrupt_handler (frame->pc))
1159 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
1160#ifdef FRAME_BASE_BEFORE_SIGTRAMP
1161 else if (frame->signal_handler_caller)
1162 {
1163 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1164 }
1165#endif
1166 else
1167 frame_base = frame->frame;
1168
1169 /* Get frame sizes for the current frame and the frame of the
1170 caller. */
1171 my_framesize = find_proc_framesize (frame->pc);
c5aa993b 1172 caller_pc = FRAME_SAVED_PC (frame);
c906108c
SS
1173
1174 /* If we can't determine the caller's PC, then it's not likely we can
1175 really determine anything meaningful about its frame. We'll consider
1176 this to be stack bottom. */
1177 if (caller_pc == (CORE_ADDR) 0)
1178 return (CORE_ADDR) 0;
1179
c5aa993b 1180 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
c906108c
SS
1181
1182 /* If caller does not have a frame pointer, then its frame
1183 can be found at current_frame - caller_framesize. */
1184 if (caller_framesize != -1)
1185 {
1186 return frame_base - caller_framesize;
1187 }
1188 /* Both caller and callee have frame pointers and are GCC compiled
1189 (SAVE_SP bit in unwind descriptor is on for both functions.
1190 The previous frame pointer is found at the top of the current frame. */
1191 if (caller_framesize == -1 && my_framesize == -1)
1192 {
1193 return read_memory_integer (frame_base, 4);
1194 }
1195 /* Caller has a frame pointer, but callee does not. This is a little
1196 more difficult as GCC and HP C lay out locals and callee register save
1197 areas very differently.
1198
1199 The previous frame pointer could be in a register, or in one of
1200 several areas on the stack.
1201
1202 Walk from the current frame to the innermost frame examining
1203 unwind descriptors to determine if %r3 ever gets saved into the
1204 stack. If so return whatever value got saved into the stack.
1205 If it was never saved in the stack, then the value in %r3 is still
1206 valid, so use it.
1207
1208 We use information from unwind descriptors to determine if %r3
1209 is saved into the stack (Entry_GR field has this information). */
1210
1211 tmp_frame = frame;
1212 while (tmp_frame)
1213 {
1214 u = find_unwind_entry (tmp_frame->pc);
1215
1216 if (!u)
1217 {
1218 /* We could find this information by examining prologues. I don't
1219 think anyone has actually written any tools (not even "strip")
1220 which leave them out of an executable, so maybe this is a moot
1221 point. */
c5aa993b
JM
1222 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1223 code that doesn't have unwind entries. For example, stepping into
1224 the dynamic linker will give you a PC that has none. Thus, I've
1225 disabled this warning. */
c906108c
SS
1226#if 0
1227 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1228#endif
1229 return (CORE_ADDR) 0;
1230 }
1231
1232 /* Entry_GR specifies the number of callee-saved general registers
c5aa993b 1233 saved in the stack. It starts at %r3, so %r3 would be 1. */
c906108c
SS
1234 if (u->Entry_GR >= 1 || u->Save_SP
1235 || tmp_frame->signal_handler_caller
1236 || pc_in_interrupt_handler (tmp_frame->pc))
1237 break;
1238 else
1239 tmp_frame = tmp_frame->next;
1240 }
1241
1242 if (tmp_frame)
1243 {
1244 /* We may have walked down the chain into a function with a frame
c5aa993b 1245 pointer. */
c906108c
SS
1246 if (u->Save_SP
1247 && !tmp_frame->signal_handler_caller
1248 && !pc_in_interrupt_handler (tmp_frame->pc))
1249 {
1250 return read_memory_integer (tmp_frame->frame, 4);
1251 }
1252 /* %r3 was saved somewhere in the stack. Dig it out. */
c5aa993b 1253 else
c906108c
SS
1254 {
1255 struct frame_saved_regs saved_regs;
1256
1257 /* Sick.
1258
1259 For optimization purposes many kernels don't have the
1260 callee saved registers into the save_state structure upon
1261 entry into the kernel for a syscall; the optimization
1262 is usually turned off if the process is being traced so
1263 that the debugger can get full register state for the
1264 process.
c5aa993b 1265
c906108c
SS
1266 This scheme works well except for two cases:
1267
c5aa993b
JM
1268 * Attaching to a process when the process is in the
1269 kernel performing a system call (debugger can't get
1270 full register state for the inferior process since
1271 the process wasn't being traced when it entered the
1272 system call).
c906108c 1273
c5aa993b
JM
1274 * Register state is not complete if the system call
1275 causes the process to core dump.
c906108c
SS
1276
1277
1278 The following heinous code is an attempt to deal with
1279 the lack of register state in a core dump. It will
1280 fail miserably if the function which performs the
1281 system call has a variable sized stack frame. */
1282
1283 get_frame_saved_regs (tmp_frame, &saved_regs);
1284
1285 /* Abominable hack. */
1286 if (current_target.to_has_execution == 0
1287 && ((saved_regs.regs[FLAGS_REGNUM]
c5aa993b 1288 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
c906108c
SS
1289 & 0x2))
1290 || (saved_regs.regs[FLAGS_REGNUM] == 0
1291 && read_register (FLAGS_REGNUM) & 0x2)))
1292 {
1293 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1294 if (!u)
1295 {
1296 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1297 }
1298 else
1299 {
1300 return frame_base - (u->Total_frame_size << 3);
1301 }
1302 }
c5aa993b 1303
c906108c
SS
1304 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1305 }
1306 }
1307 else
1308 {
1309 struct frame_saved_regs saved_regs;
1310
1311 /* Get the innermost frame. */
1312 tmp_frame = frame;
1313 while (tmp_frame->next != NULL)
1314 tmp_frame = tmp_frame->next;
1315
1316 get_frame_saved_regs (tmp_frame, &saved_regs);
1317 /* Abominable hack. See above. */
1318 if (current_target.to_has_execution == 0
1319 && ((saved_regs.regs[FLAGS_REGNUM]
1320 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1321 & 0x2))
1322 || (saved_regs.regs[FLAGS_REGNUM] == 0
c5aa993b 1323 && read_register (FLAGS_REGNUM) & 0x2)))
c906108c
SS
1324 {
1325 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1326 if (!u)
1327 {
1328 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1329 }
c5aa993b
JM
1330 else
1331 {
1332 return frame_base - (u->Total_frame_size << 3);
1333 }
c906108c 1334 }
c5aa993b 1335
c906108c 1336 /* The value in %r3 was never saved into the stack (thus %r3 still
c5aa993b 1337 holds the value of the previous frame pointer). */
c906108c
SS
1338 return TARGET_READ_FP ();
1339 }
1340}
c906108c 1341\f
c5aa993b 1342
c906108c
SS
1343/* To see if a frame chain is valid, see if the caller looks like it
1344 was compiled with gcc. */
1345
1346int
1347hppa_frame_chain_valid (chain, thisframe)
1348 CORE_ADDR chain;
1349 struct frame_info *thisframe;
1350{
1351 struct minimal_symbol *msym_us;
1352 struct minimal_symbol *msym_start;
1353 struct unwind_table_entry *u, *next_u = NULL;
1354 struct frame_info *next;
1355
1356 if (!chain)
1357 return 0;
1358
1359 u = find_unwind_entry (thisframe->pc);
1360
1361 if (u == NULL)
1362 return 1;
1363
1364 /* We can't just check that the same of msym_us is "_start", because
1365 someone idiotically decided that they were going to make a Ltext_end
1366 symbol with the same address. This Ltext_end symbol is totally
1367 indistinguishable (as nearly as I can tell) from the symbol for a function
1368 which is (legitimately, since it is in the user's namespace)
1369 named Ltext_end, so we can't just ignore it. */
1370 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1371 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1372 if (msym_us
1373 && msym_start
1374 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1375 return 0;
1376
1377 /* Grrrr. Some new idiot decided that they don't want _start for the
1378 PRO configurations; $START$ calls main directly.... Deal with it. */
1379 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1380 if (msym_us
1381 && msym_start
1382 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1383 return 0;
1384
1385 next = get_next_frame (thisframe);
1386 if (next)
1387 next_u = find_unwind_entry (next->pc);
1388
1389 /* If this frame does not save SP, has no stack, isn't a stub,
1390 and doesn't "call" an interrupt routine or signal handler caller,
1391 then its not valid. */
1392 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1393 || (thisframe->next && thisframe->next->signal_handler_caller)
1394 || (next_u && next_u->HP_UX_interrupt_marker))
1395 return 1;
1396
1397 if (pc_in_linker_stub (thisframe->pc))
1398 return 1;
1399
1400 return 0;
1401}
1402
1403/*
1404 These functions deal with saving and restoring register state
1405 around a function call in the inferior. They keep the stack
1406 double-word aligned; eventually, on an hp700, the stack will have
1407 to be aligned to a 64-byte boundary. */
1408
1409void
1410push_dummy_frame (inf_status)
1411 struct inferior_status *inf_status;
1412{
1413 CORE_ADDR sp, pc, pcspace;
1414 register int regnum;
1415 int int_buffer;
1416 double freg_buffer;
1417
1418 /* Oh, what a hack. If we're trying to perform an inferior call
1419 while the inferior is asleep, we have to make sure to clear
1420 the "in system call" bit in the flag register (the call will
1421 start after the syscall returns, so we're no longer in the system
1422 call!) This state is kept in "inf_status", change it there.
1423
1424 We also need a number of horrid hacks to deal with lossage in the
1425 PC queue registers (apparently they're not valid when the in syscall
1426 bit is set). */
1427 pc = target_read_pc (inferior_pid);
1428 int_buffer = read_register (FLAGS_REGNUM);
1429 if (int_buffer & 0x2)
1430 {
1431 unsigned int sid;
1432 int_buffer &= ~0x2;
7a292a7a
SS
1433 write_inferior_status_register (inf_status, 0, int_buffer);
1434 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1435 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1436 sid = (pc >> 30) & 0x3;
1437 if (sid == 0)
1438 pcspace = read_register (SR4_REGNUM);
1439 else
1440 pcspace = read_register (SR4_REGNUM + 4 + sid);
7a292a7a
SS
1441 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1442 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
c906108c
SS
1443 }
1444 else
1445 pcspace = read_register (PCSQ_HEAD_REGNUM);
1446
1447 /* Space for "arguments"; the RP goes in here. */
1448 sp = read_register (SP_REGNUM) + 48;
1449 int_buffer = read_register (RP_REGNUM) | 0x3;
c5aa993b 1450 write_memory (sp - 20, (char *) &int_buffer, 4);
c906108c
SS
1451
1452 int_buffer = TARGET_READ_FP ();
c5aa993b 1453 write_memory (sp, (char *) &int_buffer, 4);
c906108c
SS
1454
1455 write_register (FP_REGNUM, sp);
1456
1457 sp += 8;
1458
1459 for (regnum = 1; regnum < 32; regnum++)
1460 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1461 sp = push_word (sp, read_register (regnum));
1462
1463 sp += 4;
1464
1465 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1466 {
c5aa993b
JM
1467 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1468 sp = push_bytes (sp, (char *) &freg_buffer, 8);
c906108c
SS
1469 }
1470 sp = push_word (sp, read_register (IPSW_REGNUM));
1471 sp = push_word (sp, read_register (SAR_REGNUM));
1472 sp = push_word (sp, pc);
1473 sp = push_word (sp, pcspace);
1474 sp = push_word (sp, pc + 4);
1475 sp = push_word (sp, pcspace);
1476 write_register (SP_REGNUM, sp);
1477}
1478
1479static void
1480find_dummy_frame_regs (frame, frame_saved_regs)
1481 struct frame_info *frame;
1482 struct frame_saved_regs *frame_saved_regs;
1483{
1484 CORE_ADDR fp = frame->frame;
1485 int i;
1486
1487 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1488 frame_saved_regs->regs[FP_REGNUM] = fp;
1489 frame_saved_regs->regs[1] = fp + 8;
1490
1491 for (fp += 12, i = 3; i < 32; i++)
1492 {
1493 if (i != FP_REGNUM)
1494 {
1495 frame_saved_regs->regs[i] = fp;
1496 fp += 4;
1497 }
1498 }
1499
1500 fp += 4;
1501 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1502 frame_saved_regs->regs[i] = fp;
1503
1504 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1505 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1506 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1507 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1508 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1509 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1510}
1511
1512void
1513hppa_pop_frame ()
1514{
1515 register struct frame_info *frame = get_current_frame ();
1516 register CORE_ADDR fp, npc, target_pc;
1517 register int regnum;
1518 struct frame_saved_regs fsr;
1519 double freg_buffer;
1520
1521 fp = FRAME_FP (frame);
1522 get_frame_saved_regs (frame, &fsr);
1523
1524#ifndef NO_PC_SPACE_QUEUE_RESTORE
c5aa993b 1525 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
c906108c
SS
1526 restore_pc_queue (&fsr);
1527#endif
1528
1529 for (regnum = 31; regnum > 0; regnum--)
1530 if (fsr.regs[regnum])
1531 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1532
c5aa993b 1533 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
c906108c
SS
1534 if (fsr.regs[regnum])
1535 {
c5aa993b
JM
1536 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1537 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
c906108c
SS
1538 }
1539
1540 if (fsr.regs[IPSW_REGNUM])
1541 write_register (IPSW_REGNUM,
c5aa993b 1542 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
c906108c
SS
1543
1544 if (fsr.regs[SAR_REGNUM])
1545 write_register (SAR_REGNUM,
c5aa993b 1546 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
c906108c
SS
1547
1548 /* If the PC was explicitly saved, then just restore it. */
1549 if (fsr.regs[PCOQ_TAIL_REGNUM])
1550 {
1551 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1552 write_register (PCOQ_TAIL_REGNUM, npc);
1553 }
1554 /* Else use the value in %rp to set the new PC. */
c5aa993b 1555 else
c906108c
SS
1556 {
1557 npc = read_register (RP_REGNUM);
1558 write_pc (npc);
1559 }
1560
1561 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1562
c5aa993b 1563 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
c906108c
SS
1564 write_register (SP_REGNUM, fp - 48);
1565 else
1566 write_register (SP_REGNUM, fp);
1567
1568 /* The PC we just restored may be inside a return trampoline. If so
1569 we want to restart the inferior and run it through the trampoline.
1570
1571 Do this by setting a momentary breakpoint at the location the
1572 trampoline returns to.
1573
1574 Don't skip through the trampoline if we're popping a dummy frame. */
1575 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1576 if (target_pc && !fsr.regs[IPSW_REGNUM])
1577 {
1578 struct symtab_and_line sal;
1579 struct breakpoint *breakpoint;
1580 struct cleanup *old_chain;
1581
1582 /* Set up our breakpoint. Set it to be silent as the MI code
c5aa993b 1583 for "return_command" will print the frame we returned to. */
c906108c
SS
1584 sal = find_pc_line (target_pc, 0);
1585 sal.pc = target_pc;
1586 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1587 breakpoint->silent = 1;
1588
1589 /* So we can clean things up. */
1590 old_chain = make_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint);
1591
1592 /* Start up the inferior. */
1593 clear_proceed_status ();
1594 proceed_to_finish = 1;
c5aa993b 1595 proceed ((CORE_ADDR) - 1, TARGET_SIGNAL_DEFAULT, 0);
c906108c
SS
1596
1597 /* Perform our cleanups. */
1598 do_cleanups (old_chain);
1599 }
1600 flush_cached_frames ();
1601}
1602
1603/* After returning to a dummy on the stack, restore the instruction
1604 queue space registers. */
1605
1606static int
1607restore_pc_queue (fsr)
1608 struct frame_saved_regs *fsr;
1609{
1610 CORE_ADDR pc = read_pc ();
1611 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1612 struct target_waitstatus w;
1613 int insn_count;
1614
1615 /* Advance past break instruction in the call dummy. */
1616 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1617 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1618
1619 /* HPUX doesn't let us set the space registers or the space
1620 registers of the PC queue through ptrace. Boo, hiss.
1621 Conveniently, the call dummy has this sequence of instructions
1622 after the break:
c5aa993b
JM
1623 mtsp r21, sr0
1624 ble,n 0(sr0, r22)
1625
c906108c
SS
1626 So, load up the registers and single step until we are in the
1627 right place. */
1628
1629 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1630 write_register (22, new_pc);
1631
1632 for (insn_count = 0; insn_count < 3; insn_count++)
1633 {
1634 /* FIXME: What if the inferior gets a signal right now? Want to
c5aa993b
JM
1635 merge this into wait_for_inferior (as a special kind of
1636 watchpoint? By setting a breakpoint at the end? Is there
1637 any other choice? Is there *any* way to do this stuff with
1638 ptrace() or some equivalent?). */
c906108c
SS
1639 resume (1, 0);
1640 target_wait (inferior_pid, &w);
1641
1642 if (w.kind == TARGET_WAITKIND_SIGNALLED)
c5aa993b
JM
1643 {
1644 stop_signal = w.value.sig;
1645 terminal_ours_for_output ();
1646 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
c906108c
SS
1647 target_signal_to_name (stop_signal),
1648 target_signal_to_string (stop_signal));
c5aa993b
JM
1649 gdb_flush (gdb_stdout);
1650 return 0;
1651 }
c906108c
SS
1652 }
1653 target_terminal_ours ();
1654 target_fetch_registers (-1);
1655 return 1;
1656}
1657
1658#if 0
1659CORE_ADDR
1660hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1661 int nargs;
1662 value_ptr *args;
1663 CORE_ADDR sp;
1664 int struct_return;
1665 CORE_ADDR struct_addr;
1666{
1667 /* array of arguments' offsets */
c5aa993b 1668 int *offset = (int *) alloca (nargs * sizeof (int));
c906108c
SS
1669 int cum = 0;
1670 int i, alignment;
c5aa993b 1671
c906108c
SS
1672 for (i = 0; i < nargs; i++)
1673 {
1674 int x = 0;
1675 /* cum is the sum of the lengths in bytes of
c5aa993b 1676 the arguments seen so far */
c906108c
SS
1677 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1678
c5aa993b
JM
1679 /* value must go at proper alignment. Assume alignment is a
1680 power of two. */
c906108c
SS
1681 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1682
1683 if (cum % alignment)
1684 cum = (cum + alignment) & -alignment;
1685 offset[i] = -cum;
1686
1687 }
1688 sp += max ((cum + 7) & -8, 16);
1689
1690 for (i = 0; i < nargs; i++)
1691 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1692 TYPE_LENGTH (VALUE_TYPE (args[i])));
1693
1694 if (struct_return)
1695 write_register (28, struct_addr);
1696 return sp + 32;
1697}
1698#endif
1699
1700/* elz: I am rewriting this function, because the one above is a very
1701 obscure piece of code.
1702 This function pushes the arguments on the stack. The stack grows up
1703 on the PA.
1704 Each argument goes in one (or more) word (4 bytes) on the stack.
1705 The first four words for the args must be allocated, even if they
1706 are not used.
1707 The 'topmost' arg is arg0, the 'bottom-most' is arg3. (if you think of
1708 them as 1 word long).
1709 Below these there can be any number of arguments, as needed by the function.
1710 If an arg is bigger than one word, it will be written on the stack
1711 occupying as many words as needed. Args that are bigger than 64bits
1712 are not copied on the stack, a pointer is passed instead.
1713
1714 On top of the arg0 word there are other 8 words (32bytes) which are used
1715 for other purposes */
1716
1717CORE_ADDR
1718hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1719 int nargs;
1720 value_ptr *args;
1721 CORE_ADDR sp;
1722 int struct_return;
1723 CORE_ADDR struct_addr;
1724{
1725 /* array of arguments' offsets */
c5aa993b 1726 int *offset = (int *) alloca (nargs * sizeof (int));
c906108c 1727 /* array of arguments' lengths: real lengths in bytes, not aligned to word size */
c5aa993b 1728 int *lengths = (int *) alloca (nargs * sizeof (int));
c906108c 1729
c5aa993b
JM
1730 int bytes_reserved; /* this is the number of bytes on the stack occupied by an
1731 argument. This will be always a multiple of 4 */
c906108c 1732
c5aa993b
JM
1733 int cum_bytes_reserved = 0; /* this is the total number of bytes reserved by the args
1734 seen so far. It is a multiple of 4 always */
1735 int cum_bytes_aligned = 0; /* same as above, but aligned on 8 bytes */
1736 int i;
c906108c
SS
1737
1738 /* When an arg does not occupy a whole word, for instance in bitfields:
1739 if the arg is x bits (0<x<32), it must be written
1740 starting from the (x-1)-th position down until the 0-th position.
c5aa993b 1741 It is enough to align it to the word. */
c906108c
SS
1742 /* if an arg occupies 8 bytes, it must be aligned on the 64-bits
1743 high order word in odd arg word. */
1744 /* if an arg is larger than 64 bits, we need to pass a pointer to it, and
1745 copy the actual value on the stack, so that the callee can play with it.
1746 This is taken care of in valops.c in the call_function_by_hand function.
1747 The argument that is received in this function here has already be converted
1748 to a pointer to whatever is needed, so that it just can be pushed
1749 as a word argument */
c5aa993b 1750
c906108c
SS
1751 for (i = 0; i < nargs; i++)
1752 {
1753
1754 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1755
1756 if (lengths[i] % 4)
c5aa993b
JM
1757 bytes_reserved = (lengths[i] / 4) * 4 + 4;
1758 else
1759 bytes_reserved = lengths[i];
c906108c
SS
1760
1761 offset[i] = cum_bytes_reserved + lengths[i];
1762
c5aa993b
JM
1763 if ((bytes_reserved == 8) && (offset[i] % 8)) /* if 64-bit arg is not 64 bit aligned */
1764 {
1765 int new_offset = 0;
1766 /* bytes_reserved is already aligned to the word, so we put it at one word
1767 more down the stack. This will leave one empty word on the
1768 stack, and one unused register. This is OK, see the calling
1769 convention doc */
1770 /* the offset may have to be moved to the corresponding position
1771 one word down the stack, to maintain
1772 alignment. */
1773 new_offset = (offset[i] / 8) * 8 + 8;
1774 if ((new_offset - offset[i]) >= 4)
1775 {
1776 bytes_reserved += 4;
1777 offset[i] += 4;
1778 }
1779 }
c906108c
SS
1780
1781 cum_bytes_reserved += bytes_reserved;
1782
1783 }
1784
1785 /* now move up the sp to reserve at least 4 words required for the args,
1786 or more than this if needed */
1787 /* wee also need to keep the sp aligned to 8 bytes */
1788 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1789 sp += max (cum_bytes_aligned, 16);
1790
1791 /* now write each of the args at the proper offset down the stack */
1792 for (i = 0; i < nargs; i++)
1793 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
c906108c 1794
c5aa993b
JM
1795
1796 /* if a structure has to be returned, set up register 28 to hold its address */
c906108c
SS
1797 if (struct_return)
1798 write_register (28, struct_addr);
1799
c5aa993b 1800 /* the stack will have other 8 words on top of the args */
c906108c
SS
1801 return sp + 32;
1802}
1803
1804
1805/* elz: this function returns a value which is built looking at the given address.
1806 It is called from call_function_by_hand, in case we need to return a
1807 value which is larger than 64 bits, and it is stored in the stack rather than
1808 in the registers r28 and r29 or fr4.
1809 This function does the same stuff as value_being_returned in values.c, but
1810 gets the value from the stack rather than from the buffer where all the
1811 registers were saved when the function called completed. */
1812value_ptr
c5aa993b 1813hppa_value_returned_from_stack (valtype, addr)
c906108c
SS
1814 register struct type *valtype;
1815 CORE_ADDR addr;
1816{
1817 register value_ptr val;
1818
1819 val = allocate_value (valtype);
1820 CHECK_TYPEDEF (valtype);
c5aa993b 1821 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
c906108c
SS
1822
1823 return val;
1824}
1825
1826
1827
1828/* elz: Used to lookup a symbol in the shared libraries.
c5aa993b
JM
1829 This function calls shl_findsym, indirectly through a
1830 call to __d_shl_get. __d_shl_get is in end.c, which is always
1831 linked in by the hp compilers/linkers.
1832 The call to shl_findsym cannot be made directly because it needs
1833 to be active in target address space.
1834 inputs: - minimal symbol pointer for the function we want to look up
1835 - address in target space of the descriptor for the library
1836 where we want to look the symbol up.
1837 This address is retrieved using the
1838 som_solib_get_solib_by_pc function (somsolib.c).
1839 output: - real address in the library of the function.
1840 note: the handle can be null, in which case shl_findsym will look for
1841 the symbol in all the loaded shared libraries.
1842 files to look at if you need reference on this stuff:
1843 dld.c, dld_shl_findsym.c
1844 end.c
1845 man entry for shl_findsym */
c906108c
SS
1846
1847CORE_ADDR
c5aa993b
JM
1848find_stub_with_shl_get (function, handle)
1849 struct minimal_symbol *function;
1850 CORE_ADDR handle;
c906108c 1851{
c5aa993b
JM
1852 struct symbol *get_sym, *symbol2;
1853 struct minimal_symbol *buff_minsym, *msymbol;
1854 struct type *ftype;
1855 value_ptr *args;
1856 value_ptr funcval, val;
1857
1858 int x, namelen, err_value, tmp = -1;
1859 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1860 CORE_ADDR stub_addr;
1861
1862
1863 args = (value_ptr *) alloca (sizeof (value_ptr) * 8); /* 6 for the arguments and one null one??? */
1864 funcval = find_function_in_inferior ("__d_shl_get");
1865 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1866 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1867 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1868 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1869 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1870 namelen = strlen (SYMBOL_NAME (function));
1871 value_return_addr = endo_buff_addr + namelen;
1872 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1873
1874 /* do alignment */
1875 if ((x = value_return_addr % 64) != 0)
1876 value_return_addr = value_return_addr + 64 - x;
1877
1878 errno_return_addr = value_return_addr + 64;
1879
1880
1881 /* set up stuff needed by __d_shl_get in buffer in end.o */
1882
1883 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1884
1885 target_write_memory (value_return_addr, (char *) &tmp, 4);
1886
1887 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1888
1889 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1890 (char *) &handle, 4);
1891
1892 /* now prepare the arguments for the call */
1893
1894 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
1895 args[1] = value_from_longest (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1896 args[2] = value_from_longest (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
1897 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
1898 args[4] = value_from_longest (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1899 args[5] = value_from_longest (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
1900
1901 /* now call the function */
1902
1903 val = call_function_by_hand (funcval, 6, args);
1904
1905 /* now get the results */
1906
1907 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1908
1909 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
1910 if (stub_addr <= 0)
1911 error ("call to __d_shl_get failed, error code is %d", err_value); /* purecov: deadcode */
1912
1913 return (stub_addr);
c906108c
SS
1914}
1915
c5aa993b 1916/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
c906108c
SS
1917static CORE_ADDR
1918cover_find_stub_with_shl_get (args)
c5aa993b 1919 args_for_find_stub *args;
c906108c
SS
1920{
1921 return find_stub_with_shl_get (args->msym, args->solib_handle);
1922}
1923
1924
1925/* Insert the specified number of args and function address
1926 into a call sequence of the above form stored at DUMMYNAME.
1927
1928 On the hppa we need to call the stack dummy through $$dyncall.
1929 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1930 real_pc, which is the location where gdb should start up the
cce74817
JM
1931 inferior to do the function call.
1932
1933 This has to work across several versions of hpux, bsd, osf1. It has to
1934 work regardless of what compiler was used to build the inferior program.
1935 It should work regardless of whether or not end.o is available. It has
1936 to work even if gdb can not call into the dynamic loader in the inferior
1937 to query it for symbol names and addresses.
1938
1939 Yes, all those cases should work. Luckily code exists to handle most
1940 of them. The complexity is in selecting exactly what scheme should
1941 be used to perform the inferior call.
1942
1943 At the current time this routine is known not to handle cases where
1944 the program was linked with HP's compiler without including end.o.
1945
1946 Please contact Jeff Law (law@cygnus.com) before changing this code. */
c906108c
SS
1947
1948CORE_ADDR
1949hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1950 char *dummy;
1951 CORE_ADDR pc;
1952 CORE_ADDR fun;
1953 int nargs;
1954 value_ptr *args;
1955 struct type *type;
1956 int gcc_p;
1957{
1958 CORE_ADDR dyncall_addr;
1959 struct minimal_symbol *msymbol;
1960 struct minimal_symbol *trampoline;
1961 int flags = read_register (FLAGS_REGNUM);
cce74817
JM
1962 struct unwind_table_entry *u = NULL;
1963 CORE_ADDR new_stub = 0;
1964 CORE_ADDR solib_handle = 0;
1965
1966 /* Nonzero if we will use GCC's PLT call routine. This routine must be
c5aa993b 1967 passed an import stub, not a PLABEL. It is also necessary to set %r19
cce74817 1968 (the PIC register) before performing the call.
c906108c 1969
cce74817
JM
1970 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
1971 are calling the target directly. When using __d_plt_call we want to
1972 use a PLABEL instead of an import stub. */
1973 int using_gcc_plt_call = 1;
1974
1975 /* Prefer __gcc_plt_call over the HP supplied routine because
c5aa993b 1976 __gcc_plt_call works for any number of arguments. */
c906108c 1977 trampoline = NULL;
cce74817
JM
1978 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
1979 using_gcc_plt_call = 0;
1980
c906108c
SS
1981 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1982 if (msymbol == NULL)
cce74817 1983 error ("Can't find an address for $$dyncall trampoline");
c906108c
SS
1984
1985 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1986
1987 /* FUN could be a procedure label, in which case we have to get
cce74817
JM
1988 its real address and the value of its GOT/DP if we plan to
1989 call the routine via gcc_plt_call. */
1990 if ((fun & 0x2) && using_gcc_plt_call)
c906108c
SS
1991 {
1992 /* Get the GOT/DP value for the target function. It's
c5aa993b
JM
1993 at *(fun+4). Note the call dummy is *NOT* allowed to
1994 trash %r19 before calling the target function. */
c906108c
SS
1995 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1996
1997 /* Now get the real address for the function we are calling, it's
c5aa993b 1998 at *fun. */
c906108c
SS
1999 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
2000 }
2001 else
2002 {
2003
2004#ifndef GDB_TARGET_IS_PA_ELF
cce74817 2005 /* FUN could be an export stub, the real address of a function, or
c5aa993b
JM
2006 a PLABEL. When using gcc's PLT call routine we must call an import
2007 stub rather than the export stub or real function for lazy binding
2008 to work correctly
cce74817 2009
c5aa993b
JM
2010 /* If we are using the gcc PLT call routine, then we need to
2011 get the import stub for the target function. */
cce74817 2012 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
c906108c
SS
2013 {
2014 struct objfile *objfile;
2015 struct minimal_symbol *funsymbol, *stub_symbol;
2016 CORE_ADDR newfun = 0;
2017
2018 funsymbol = lookup_minimal_symbol_by_pc (fun);
2019 if (!funsymbol)
2020 error ("Unable to find minimal symbol for target fucntion.\n");
2021
2022 /* Search all the object files for an import symbol with the
2023 right name. */
2024 ALL_OBJFILES (objfile)
c5aa993b
JM
2025 {
2026 stub_symbol
2027 = lookup_minimal_symbol_solib_trampoline
2028 (SYMBOL_NAME (funsymbol), NULL, objfile);
2029
2030 if (!stub_symbol)
2031 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2032 NULL, objfile);
2033
2034 /* Found a symbol with the right name. */
2035 if (stub_symbol)
2036 {
2037 struct unwind_table_entry *u;
2038 /* It must be a shared library trampoline. */
2039 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2040 continue;
2041
2042 /* It must also be an import stub. */
2043 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2044 if (!u
2045 || (u->stub_unwind.stub_type != IMPORT)
2046 && u->stub_unwind.stub_type != IMPORT_SHLIB)
2047 continue;
2048
2049 /* OK. Looks like the correct import stub. */
2050 newfun = SYMBOL_VALUE (stub_symbol);
2051 fun = newfun;
2052 }
2053 }
cce74817
JM
2054
2055 /* Ouch. We did not find an import stub. Make an attempt to
2056 do the right thing instead of just croaking. Most of the
2057 time this will actually work. */
c906108c
SS
2058 if (newfun == 0)
2059 write_register (19, som_solib_get_got_by_pc (fun));
cce74817
JM
2060
2061 u = find_unwind_entry (fun);
c5aa993b 2062 if (u
cce74817
JM
2063 && (u->stub_unwind.stub_type == IMPORT
2064 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2065 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2066
2067 /* If we found the import stub in the shared library, then we have
2068 to set %r19 before we call the stub. */
2069 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2070 write_register (19, som_solib_get_got_by_pc (fun));
c906108c 2071 }
c906108c
SS
2072#endif
2073 }
2074
cce74817
JM
2075 /* If we are calling into another load module then have sr4export call the
2076 magic __d_plt_call routine which is linked in from end.o.
c906108c 2077
cce74817
JM
2078 You can't use _sr4export to make the call as the value in sp-24 will get
2079 fried and you end up returning to the wrong location. You can't call the
2080 target as the code to bind the PLT entry to a function can't return to a
2081 stack address.
2082
2083 Also, query the dynamic linker in the inferior to provide a suitable
2084 PLABEL for the target function. */
c5aa993b 2085 if (!using_gcc_plt_call)
c906108c
SS
2086 {
2087 CORE_ADDR new_fun;
2088
cce74817 2089 /* Get a handle for the shared library containing FUN. Given the
c5aa993b 2090 handle we can query the shared library for a PLABEL. */
cce74817 2091 solib_handle = som_solib_get_solib_by_pc (fun);
c906108c 2092
cce74817 2093 if (solib_handle)
c906108c 2094 {
cce74817 2095 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
c906108c 2096
cce74817
JM
2097 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2098
2099 if (trampoline == NULL)
2100 {
2101 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2102 }
2103
2104 /* This is where sr4export will jump to. */
2105 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2106
2107 /* If the function is in a shared library, then call __d_shl_get to
2108 get a PLABEL for the target function. */
2109 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2110
c5aa993b 2111 if (new_stub == 0)
cce74817 2112 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
c906108c
SS
2113
2114 /* We have to store the address of the stub in __shlib_funcptr. */
cce74817 2115 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
c5aa993b 2116 (struct objfile *) NULL);
c906108c 2117
cce74817
JM
2118 if (msymbol == NULL)
2119 error ("Can't find an address for __shlib_funcptr");
2120 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
c5aa993b 2121 (char *) &new_stub, 4);
c906108c
SS
2122
2123 /* We want sr4export to call __d_plt_call, so we claim it is
2124 the final target. Clear trampoline. */
cce74817
JM
2125 fun = new_fun;
2126 trampoline = NULL;
c906108c
SS
2127 }
2128 }
2129
adf40b2e 2130#ifndef GDB_TARGET_IS_HPPA_20W
c906108c
SS
2131 /* Store upper 21 bits of function address into ldil. fun will either be
2132 the final target (most cases) or __d_plt_call when calling into a shared
2133 library and __gcc_plt_call is not available. */
2134 store_unsigned_integer
2135 (&dummy[FUNC_LDIL_OFFSET],
2136 INSTRUCTION_SIZE,
2137 deposit_21 (fun >> 11,
2138 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2139 INSTRUCTION_SIZE)));
2140
2141 /* Store lower 11 bits of function address into ldo */
2142 store_unsigned_integer
2143 (&dummy[FUNC_LDO_OFFSET],
2144 INSTRUCTION_SIZE,
2145 deposit_14 (fun & MASK_11,
2146 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2147 INSTRUCTION_SIZE)));
adf40b2e 2148#endif /* GDB_TARGET_IS_HPPA_20W */
c906108c
SS
2149#ifdef SR4EXPORT_LDIL_OFFSET
2150
2151 {
2152 CORE_ADDR trampoline_addr;
2153
2154 /* We may still need sr4export's address too. */
2155
2156 if (trampoline == NULL)
2157 {
2158 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2159 if (msymbol == NULL)
cce74817 2160 error ("Can't find an address for _sr4export trampoline");
c906108c
SS
2161
2162 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2163 }
2164 else
2165 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2166
2167
2168 /* Store upper 21 bits of trampoline's address into ldil */
2169 store_unsigned_integer
2170 (&dummy[SR4EXPORT_LDIL_OFFSET],
2171 INSTRUCTION_SIZE,
2172 deposit_21 (trampoline_addr >> 11,
2173 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2174 INSTRUCTION_SIZE)));
2175
2176 /* Store lower 11 bits of trampoline's address into ldo */
2177 store_unsigned_integer
2178 (&dummy[SR4EXPORT_LDO_OFFSET],
2179 INSTRUCTION_SIZE,
2180 deposit_14 (trampoline_addr & MASK_11,
2181 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2182 INSTRUCTION_SIZE)));
2183 }
2184#endif
2185
2186 write_register (22, pc);
2187
2188 /* If we are in a syscall, then we should call the stack dummy
2189 directly. $$dyncall is not needed as the kernel sets up the
2190 space id registers properly based on the value in %r31. In
2191 fact calling $$dyncall will not work because the value in %r22
2192 will be clobbered on the syscall exit path.
2193
2194 Similarly if the current PC is in a shared library. Note however,
2195 this scheme won't work if the shared library isn't mapped into
2196 the same space as the stack. */
2197 if (flags & 2)
2198 return pc;
2199#ifndef GDB_TARGET_IS_PA_ELF
2200 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
2201 return pc;
2202#endif
2203 else
2204 return dyncall_addr;
c906108c
SS
2205}
2206
2207
2208
2209
2210/* If the pid is in a syscall, then the FP register is not readable.
2211 We'll return zero in that case, rather than attempting to read it
2212 and cause a warning. */
2213CORE_ADDR
2214target_read_fp (pid)
c5aa993b 2215 int pid;
c906108c
SS
2216{
2217 int flags = read_register (FLAGS_REGNUM);
2218
c5aa993b
JM
2219 if (flags & 2)
2220 {
2221 return (CORE_ADDR) 0;
2222 }
c906108c
SS
2223
2224 /* This is the only site that may directly read_register () the FP
2225 register. All others must use TARGET_READ_FP (). */
2226 return read_register (FP_REGNUM);
2227}
2228
2229
2230/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2231 bits. */
2232
2233CORE_ADDR
2234target_read_pc (pid)
2235 int pid;
2236{
2237 int flags = read_register_pid (FLAGS_REGNUM, pid);
2238
2239 /* The following test does not belong here. It is OS-specific, and belongs
2240 in native code. */
2241 /* Test SS_INSYSCALL */
2242 if (flags & 2)
2243 return read_register_pid (31, pid) & ~0x3;
2244
2245 return read_register_pid (PC_REGNUM, pid) & ~0x3;
2246}
2247
2248/* Write out the PC. If currently in a syscall, then also write the new
2249 PC value into %r31. */
2250
2251void
2252target_write_pc (v, pid)
2253 CORE_ADDR v;
2254 int pid;
2255{
2256 int flags = read_register_pid (FLAGS_REGNUM, pid);
2257
2258 /* The following test does not belong here. It is OS-specific, and belongs
2259 in native code. */
2260 /* If in a syscall, then set %r31. Also make sure to get the
2261 privilege bits set correctly. */
2262 /* Test SS_INSYSCALL */
2263 if (flags & 2)
2264 write_register_pid (31, v | 0x3, pid);
2265
2266 write_register_pid (PC_REGNUM, v, pid);
2267 write_register_pid (NPC_REGNUM, v + 4, pid);
2268}
2269
2270/* return the alignment of a type in bytes. Structures have the maximum
2271 alignment required by their fields. */
2272
2273static int
2274hppa_alignof (type)
2275 struct type *type;
2276{
2277 int max_align, align, i;
2278 CHECK_TYPEDEF (type);
2279 switch (TYPE_CODE (type))
2280 {
2281 case TYPE_CODE_PTR:
2282 case TYPE_CODE_INT:
2283 case TYPE_CODE_FLT:
2284 return TYPE_LENGTH (type);
2285 case TYPE_CODE_ARRAY:
2286 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2287 case TYPE_CODE_STRUCT:
2288 case TYPE_CODE_UNION:
2289 max_align = 1;
2290 for (i = 0; i < TYPE_NFIELDS (type); i++)
2291 {
2292 /* Bit fields have no real alignment. */
2293 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 2294 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
2295 {
2296 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2297 max_align = max (max_align, align);
2298 }
2299 }
2300 return max_align;
2301 default:
2302 return 4;
2303 }
2304}
2305
2306/* Print the register regnum, or all registers if regnum is -1 */
2307
2308void
2309pa_do_registers_info (regnum, fpregs)
2310 int regnum;
2311 int fpregs;
2312{
c5aa993b 2313 char raw_regs[REGISTER_BYTES];
c906108c
SS
2314 int i;
2315
2316 /* Make a copy of gdb's save area (may cause actual
2317 reads from the target). */
2318 for (i = 0; i < NUM_REGS; i++)
2319 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2320
2321 if (regnum == -1)
2322 pa_print_registers (raw_regs, regnum, fpregs);
c5aa993b
JM
2323 else if (regnum < FP4_REGNUM)
2324 {
2325 long reg_val[2];
2326
2327 /* Why is the value not passed through "extract_signed_integer"
2328 as in "pa_print_registers" below? */
2329 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2330
2331 if (!is_pa_2)
2332 {
2333 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2334 }
c906108c 2335 else
c5aa993b
JM
2336 {
2337 /* Fancy % formats to prevent leading zeros. */
2338 if (reg_val[0] == 0)
2339 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2340 else
2341 printf_unfiltered ("%s %x%8.8x\n", REGISTER_NAME (regnum),
2342 reg_val[0], reg_val[1]);
2343 }
c906108c 2344 }
c906108c 2345 else
c5aa993b
JM
2346 /* Note that real floating point values only start at
2347 FP4_REGNUM. FP0 and up are just status and error
2348 registers, which have integral (bit) values. */
c906108c
SS
2349 pa_print_fp_reg (regnum);
2350}
2351
2352/********** new function ********************/
2353void
2354pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
2355 int regnum;
2356 int fpregs;
2357 GDB_FILE *stream;
2358 enum precision_type precision;
2359{
c5aa993b 2360 char raw_regs[REGISTER_BYTES];
c906108c
SS
2361 int i;
2362
2363 /* Make a copy of gdb's save area (may cause actual
c5aa993b 2364 reads from the target). */
c906108c
SS
2365 for (i = 0; i < NUM_REGS; i++)
2366 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2367
2368 if (regnum == -1)
2369 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2370
c5aa993b
JM
2371 else if (regnum < FP4_REGNUM)
2372 {
2373 long reg_val[2];
2374
2375 /* Why is the value not passed through "extract_signed_integer"
2376 as in "pa_print_registers" below? */
2377 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
c906108c 2378
c5aa993b
JM
2379 if (!is_pa_2)
2380 {
2381 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum), reg_val[1]);
2382 }
c906108c 2383 else
c5aa993b
JM
2384 {
2385 /* Fancy % formats to prevent leading zeros. */
2386 if (reg_val[0] == 0)
2387 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum),
2388 reg_val[1]);
2389 else
2390 fprintf_unfiltered (stream, "%s %x%8.8x", REGISTER_NAME (regnum),
2391 reg_val[0], reg_val[1]);
2392 }
c906108c 2393 }
c906108c 2394 else
c5aa993b
JM
2395 /* Note that real floating point values only start at
2396 FP4_REGNUM. FP0 and up are just status and error
2397 registers, which have integral (bit) values. */
c906108c
SS
2398 pa_strcat_fp_reg (regnum, stream, precision);
2399}
2400
2401/* If this is a PA2.0 machine, fetch the real 64-bit register
2402 value. Otherwise use the info from gdb's saved register area.
2403
2404 Note that reg_val is really expected to be an array of longs,
2405 with two elements. */
2406static void
c5aa993b 2407pa_register_look_aside (raw_regs, regnum, raw_val)
c906108c 2408 char *raw_regs;
c5aa993b 2409 int regnum;
c906108c
SS
2410 long *raw_val;
2411{
c5aa993b 2412 static int know_which = 0; /* False */
c906108c 2413
c5aa993b 2414 int regaddr;
c906108c
SS
2415 unsigned int offset;
2416 register int i;
c5aa993b
JM
2417 int start;
2418
2419
c906108c
SS
2420 char buf[MAX_REGISTER_RAW_SIZE];
2421 long long reg_val;
2422
c5aa993b
JM
2423 if (!know_which)
2424 {
2425 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2426 {
2427 is_pa_2 = (1 == 1);
2428 }
2429
2430 know_which = 1; /* True */
2431 }
c906108c
SS
2432
2433 raw_val[0] = 0;
2434 raw_val[1] = 0;
2435
c5aa993b
JM
2436 if (!is_pa_2)
2437 {
2438 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
c906108c 2439 return;
c5aa993b 2440 }
c906108c
SS
2441
2442 /* Code below copied from hppah-nat.c, with fixes for wide
2443 registers, using different area of save_state, etc. */
2444 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
c5aa993b
JM
2445 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2446 {
c906108c 2447 /* Use narrow regs area of save_state and default macro. */
c5aa993b
JM
2448 offset = U_REGS_OFFSET;
2449 regaddr = register_addr (regnum, offset);
2450 start = 1;
2451 }
2452 else
2453 {
c906108c
SS
2454 /* Use wide regs area, and calculate registers as 8 bytes wide.
2455
2456 We'd like to do this, but current version of "C" doesn't
2457 permit "offsetof":
2458
c5aa993b 2459 offset = offsetof(save_state_t, ss_wide);
c906108c
SS
2460
2461 Note that to avoid "C" doing typed pointer arithmetic, we
2462 have to cast away the type in our offset calculation:
2463 otherwise we get an offset of 1! */
2464
7a292a7a 2465 /* NB: save_state_t is not available before HPUX 9.
c5aa993b 2466 The ss_wide field is not available previous to HPUX 10.20,
7a292a7a
SS
2467 so to avoid compile-time warnings, we only compile this for
2468 PA 2.0 processors. This control path should only be followed
2469 if we're debugging a PA 2.0 processor, so this should not cause
2470 problems. */
2471
c906108c
SS
2472 /* #if the following code out so that this file can still be
2473 compiled on older HPUX boxes (< 10.20) which don't have
2474 this structure/structure member. */
2475#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2476 save_state_t temp;
2477
2478 offset = ((int) &temp.ss_wide) - ((int) &temp);
2479 regaddr = offset + regnum * 8;
c5aa993b 2480 start = 0;
c906108c 2481#endif
c5aa993b
JM
2482 }
2483
2484 for (i = start; i < 2; i++)
c906108c
SS
2485 {
2486 errno = 0;
2487 raw_val[i] = call_ptrace (PT_RUREGS, inferior_pid,
c5aa993b 2488 (PTRACE_ARG3_TYPE) regaddr, 0);
c906108c
SS
2489 if (errno != 0)
2490 {
2491 /* Warning, not error, in case we are attached; sometimes the
2492 kernel doesn't let us at the registers. */
2493 char *err = safe_strerror (errno);
2494 char *msg = alloca (strlen (err) + 128);
2495 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2496 warning (msg);
2497 goto error_exit;
2498 }
2499
2500 regaddr += sizeof (long);
2501 }
c5aa993b 2502
c906108c 2503 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
c5aa993b 2504 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
c906108c
SS
2505
2506error_exit:
2507 ;
2508}
2509
2510/* "Info all-reg" command */
c5aa993b 2511
c906108c
SS
2512static void
2513pa_print_registers (raw_regs, regnum, fpregs)
2514 char *raw_regs;
2515 int regnum;
2516 int fpregs;
2517{
c5aa993b 2518 int i, j;
adf40b2e
JM
2519 /* Alas, we are compiled so that "long long" is 32 bits */
2520 long raw_val[2];
c906108c 2521 long long_val;
adf40b2e 2522 int rows = 24, columns = 3;
c906108c 2523
adf40b2e 2524 for (i = 0; i < rows; i++)
c906108c 2525 {
adf40b2e 2526 for (j = 0; j < columns; j++)
c906108c 2527 {
adf40b2e
JM
2528 /* We display registers in column-major order. */
2529 int regnum = i + j * rows;
2530
c5aa993b
JM
2531 /* Q: Why is the value passed through "extract_signed_integer",
2532 while above, in "pa_do_registers_info" it isn't?
2533 A: ? */
adf40b2e 2534 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
c5aa993b
JM
2535
2536 /* Even fancier % formats to prevent leading zeros
2537 and still maintain the output in columns. */
2538 if (!is_pa_2)
2539 {
2540 /* Being big-endian, on this machine the low bits
2541 (the ones we want to look at) are in the second longword. */
2542 long_val = extract_signed_integer (&raw_val[1], 4);
adf40b2e
JM
2543 printf_filtered ("%8.8s: %8x",
2544 REGISTER_NAME (regnum), long_val);
c5aa993b
JM
2545 }
2546 else
2547 {
2548 /* raw_val = extract_signed_integer(&raw_val, 8); */
2549 if (raw_val[0] == 0)
adf40b2e
JM
2550 printf_filtered ("%8.8s: %8x",
2551 REGISTER_NAME (regnum), raw_val[1]);
c5aa993b 2552 else
adf40b2e 2553 printf_filtered ("%8.8s: %8x%8.8x", REGISTER_NAME (regnum),
c5aa993b
JM
2554 raw_val[0], raw_val[1]);
2555 }
c906108c
SS
2556 }
2557 printf_unfiltered ("\n");
2558 }
c5aa993b 2559
c906108c 2560 if (fpregs)
c5aa993b 2561 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2562 pa_print_fp_reg (i);
2563}
2564
c5aa993b 2565/************* new function ******************/
c906108c
SS
2566static void
2567pa_strcat_registers (raw_regs, regnum, fpregs, stream)
2568 char *raw_regs;
2569 int regnum;
2570 int fpregs;
2571 GDB_FILE *stream;
2572{
c5aa993b
JM
2573 int i, j;
2574 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
c906108c
SS
2575 long long_val;
2576 enum precision_type precision;
2577
2578 precision = unspecified_precision;
2579
2580 for (i = 0; i < 18; i++)
2581 {
2582 for (j = 0; j < 4; j++)
2583 {
c5aa993b
JM
2584 /* Q: Why is the value passed through "extract_signed_integer",
2585 while above, in "pa_do_registers_info" it isn't?
2586 A: ? */
2587 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2588
2589 /* Even fancier % formats to prevent leading zeros
2590 and still maintain the output in columns. */
2591 if (!is_pa_2)
2592 {
2593 /* Being big-endian, on this machine the low bits
2594 (the ones we want to look at) are in the second longword. */
2595 long_val = extract_signed_integer (&raw_val[1], 4);
2596 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)), long_val);
2597 }
2598 else
2599 {
2600 /* raw_val = extract_signed_integer(&raw_val, 8); */
2601 if (raw_val[0] == 0)
2602 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)),
2603 raw_val[1]);
2604 else
2605 fprintf_filtered (stream, "%8.8s: %8x%8.8x ", REGISTER_NAME (i + (j * 18)),
2606 raw_val[0], raw_val[1]);
2607 }
c906108c
SS
2608 }
2609 fprintf_unfiltered (stream, "\n");
2610 }
c5aa993b 2611
c906108c 2612 if (fpregs)
c5aa993b 2613 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2614 pa_strcat_fp_reg (i, stream, precision);
2615}
2616
2617static void
2618pa_print_fp_reg (i)
2619 int i;
2620{
2621 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2622 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2623
2624 /* Get 32bits of data. */
2625 read_relative_register_raw_bytes (i, raw_buffer);
2626
2627 /* Put it in the buffer. No conversions are ever necessary. */
2628 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2629
2630 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2631 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2632 fputs_filtered ("(single precision) ", gdb_stdout);
2633
2634 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2635 1, 0, Val_pretty_default);
2636 printf_filtered ("\n");
2637
2638 /* If "i" is even, then this register can also be a double-precision
2639 FP register. Dump it out as such. */
2640 if ((i % 2) == 0)
2641 {
2642 /* Get the data in raw format for the 2nd half. */
2643 read_relative_register_raw_bytes (i + 1, raw_buffer);
2644
2645 /* Copy it into the appropriate part of the virtual buffer. */
2646 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2647 REGISTER_RAW_SIZE (i));
2648
2649 /* Dump it as a double. */
2650 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2651 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2652 fputs_filtered ("(double precision) ", gdb_stdout);
2653
2654 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2655 1, 0, Val_pretty_default);
2656 printf_filtered ("\n");
2657 }
2658}
2659
2660/*************** new function ***********************/
2661static void
2662pa_strcat_fp_reg (i, stream, precision)
2663 int i;
2664 GDB_FILE *stream;
2665 enum precision_type precision;
2666{
2667 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2668 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2669
2670 fputs_filtered (REGISTER_NAME (i), stream);
2671 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2672
2673 /* Get 32bits of data. */
2674 read_relative_register_raw_bytes (i, raw_buffer);
2675
2676 /* Put it in the buffer. No conversions are ever necessary. */
2677 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2678
2679 if (precision == double_precision && (i % 2) == 0)
2680 {
2681
c5aa993b
JM
2682 char raw_buf[MAX_REGISTER_RAW_SIZE];
2683
2684 /* Get the data in raw format for the 2nd half. */
2685 read_relative_register_raw_bytes (i + 1, raw_buf);
2686
2687 /* Copy it into the appropriate part of the virtual buffer. */
2688 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
c906108c 2689
c5aa993b
JM
2690 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2691 1, 0, Val_pretty_default);
c906108c
SS
2692
2693 }
c5aa993b
JM
2694 else
2695 {
2696 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2697 1, 0, Val_pretty_default);
2698 }
c906108c
SS
2699
2700}
2701
2702/* Return one if PC is in the call path of a trampoline, else return zero.
2703
2704 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2705 just shared library trampolines (import, export). */
2706
2707int
2708in_solib_call_trampoline (pc, name)
2709 CORE_ADDR pc;
2710 char *name;
2711{
2712 struct minimal_symbol *minsym;
2713 struct unwind_table_entry *u;
2714 static CORE_ADDR dyncall = 0;
2715 static CORE_ADDR sr4export = 0;
2716
2717/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2718 new exec file */
2719
2720 /* First see if PC is in one of the two C-library trampolines. */
2721 if (!dyncall)
2722 {
2723 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2724 if (minsym)
2725 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2726 else
2727 dyncall = -1;
2728 }
2729
2730 if (!sr4export)
2731 {
2732 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2733 if (minsym)
2734 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2735 else
2736 sr4export = -1;
2737 }
2738
2739 if (pc == dyncall || pc == sr4export)
2740 return 1;
2741
2742 /* Get the unwind descriptor corresponding to PC, return zero
2743 if no unwind was found. */
2744 u = find_unwind_entry (pc);
2745 if (!u)
2746 return 0;
2747
2748 /* If this isn't a linker stub, then return now. */
2749 if (u->stub_unwind.stub_type == 0)
2750 return 0;
2751
2752 /* By definition a long-branch stub is a call stub. */
2753 if (u->stub_unwind.stub_type == LONG_BRANCH)
2754 return 1;
2755
2756 /* The call and return path execute the same instructions within
2757 an IMPORT stub! So an IMPORT stub is both a call and return
2758 trampoline. */
2759 if (u->stub_unwind.stub_type == IMPORT)
2760 return 1;
2761
2762 /* Parameter relocation stubs always have a call path and may have a
2763 return path. */
2764 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2765 || u->stub_unwind.stub_type == EXPORT)
2766 {
2767 CORE_ADDR addr;
2768
2769 /* Search forward from the current PC until we hit a branch
c5aa993b 2770 or the end of the stub. */
c906108c
SS
2771 for (addr = pc; addr <= u->region_end; addr += 4)
2772 {
2773 unsigned long insn;
2774
2775 insn = read_memory_integer (addr, 4);
2776
2777 /* Does it look like a bl? If so then it's the call path, if
2778 we find a bv or be first, then we're on the return path. */
2779 if ((insn & 0xfc00e000) == 0xe8000000)
2780 return 1;
2781 else if ((insn & 0xfc00e001) == 0xe800c000
2782 || (insn & 0xfc000000) == 0xe0000000)
2783 return 0;
2784 }
2785
2786 /* Should never happen. */
c5aa993b
JM
2787 warning ("Unable to find branch in parameter relocation stub.\n"); /* purecov: deadcode */
2788 return 0; /* purecov: deadcode */
c906108c
SS
2789 }
2790
2791 /* Unknown stub type. For now, just return zero. */
c5aa993b 2792 return 0; /* purecov: deadcode */
c906108c
SS
2793}
2794
2795/* Return one if PC is in the return path of a trampoline, else return zero.
2796
2797 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2798 just shared library trampolines (import, export). */
2799
2800int
2801in_solib_return_trampoline (pc, name)
2802 CORE_ADDR pc;
2803 char *name;
2804{
2805 struct unwind_table_entry *u;
2806
2807 /* Get the unwind descriptor corresponding to PC, return zero
2808 if no unwind was found. */
2809 u = find_unwind_entry (pc);
2810 if (!u)
2811 return 0;
2812
2813 /* If this isn't a linker stub or it's just a long branch stub, then
2814 return zero. */
2815 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
2816 return 0;
2817
2818 /* The call and return path execute the same instructions within
2819 an IMPORT stub! So an IMPORT stub is both a call and return
2820 trampoline. */
2821 if (u->stub_unwind.stub_type == IMPORT)
2822 return 1;
2823
2824 /* Parameter relocation stubs always have a call path and may have a
2825 return path. */
2826 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2827 || u->stub_unwind.stub_type == EXPORT)
2828 {
2829 CORE_ADDR addr;
2830
2831 /* Search forward from the current PC until we hit a branch
c5aa993b 2832 or the end of the stub. */
c906108c
SS
2833 for (addr = pc; addr <= u->region_end; addr += 4)
2834 {
2835 unsigned long insn;
2836
2837 insn = read_memory_integer (addr, 4);
2838
2839 /* Does it look like a bl? If so then it's the call path, if
2840 we find a bv or be first, then we're on the return path. */
2841 if ((insn & 0xfc00e000) == 0xe8000000)
2842 return 0;
2843 else if ((insn & 0xfc00e001) == 0xe800c000
2844 || (insn & 0xfc000000) == 0xe0000000)
2845 return 1;
2846 }
2847
2848 /* Should never happen. */
c5aa993b
JM
2849 warning ("Unable to find branch in parameter relocation stub.\n"); /* purecov: deadcode */
2850 return 0; /* purecov: deadcode */
c906108c
SS
2851 }
2852
2853 /* Unknown stub type. For now, just return zero. */
c5aa993b 2854 return 0; /* purecov: deadcode */
c906108c
SS
2855
2856}
2857
2858/* Figure out if PC is in a trampoline, and if so find out where
2859 the trampoline will jump to. If not in a trampoline, return zero.
2860
2861 Simple code examination probably is not a good idea since the code
2862 sequences in trampolines can also appear in user code.
2863
2864 We use unwinds and information from the minimal symbol table to
2865 determine when we're in a trampoline. This won't work for ELF
2866 (yet) since it doesn't create stub unwind entries. Whether or
2867 not ELF will create stub unwinds or normal unwinds for linker
2868 stubs is still being debated.
2869
2870 This should handle simple calls through dyncall or sr4export,
2871 long calls, argument relocation stubs, and dyncall/sr4export
2872 calling an argument relocation stub. It even handles some stubs
2873 used in dynamic executables. */
2874
c5aa993b 2875#if 0
c906108c
SS
2876CORE_ADDR
2877skip_trampoline_code (pc, name)
2878 CORE_ADDR pc;
2879 char *name;
2880{
c5aa993b 2881 return find_solib_trampoline_target (pc);
c906108c
SS
2882}
2883
2884#endif
2885
2886CORE_ADDR
2887skip_trampoline_code (pc, name)
2888 CORE_ADDR pc;
2889 char *name;
2890{
2891 long orig_pc = pc;
2892 long prev_inst, curr_inst, loc;
2893 static CORE_ADDR dyncall = 0;
2894 static CORE_ADDR dyncall_external = 0;
2895 static CORE_ADDR sr4export = 0;
2896 struct minimal_symbol *msym;
2897 struct unwind_table_entry *u;
2898
2899
2900/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2901 new exec file */
2902
2903 if (!dyncall)
2904 {
2905 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2906 if (msym)
2907 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2908 else
2909 dyncall = -1;
2910 }
2911
2912 if (!dyncall_external)
2913 {
2914 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
2915 if (msym)
2916 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
2917 else
2918 dyncall_external = -1;
2919 }
2920
2921 if (!sr4export)
2922 {
2923 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2924 if (msym)
2925 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2926 else
2927 sr4export = -1;
2928 }
2929
2930 /* Addresses passed to dyncall may *NOT* be the actual address
2931 of the function. So we may have to do something special. */
2932 if (pc == dyncall)
2933 {
2934 pc = (CORE_ADDR) read_register (22);
2935
2936 /* If bit 30 (counting from the left) is on, then pc is the address of
c5aa993b
JM
2937 the PLT entry for this function, not the address of the function
2938 itself. Bit 31 has meaning too, but only for MPE. */
c906108c
SS
2939 if (pc & 0x2)
2940 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2941 }
2942 if (pc == dyncall_external)
2943 {
2944 pc = (CORE_ADDR) read_register (22);
2945 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2946 }
2947 else if (pc == sr4export)
2948 pc = (CORE_ADDR) (read_register (22));
2949
2950 /* Get the unwind descriptor corresponding to PC, return zero
2951 if no unwind was found. */
2952 u = find_unwind_entry (pc);
2953 if (!u)
2954 return 0;
2955
2956 /* If this isn't a linker stub, then return now. */
2957 /* elz: attention here! (FIXME) because of a compiler/linker
2958 error, some stubs which should have a non zero stub_unwind.stub_type
2959 have unfortunately a value of zero. So this function would return here
2960 as if we were not in a trampoline. To fix this, we go look at the partial
2961 symbol information, which reports this guy as a stub.
2962 (FIXME): Unfortunately, we are not that lucky: it turns out that the
2963 partial symbol information is also wrong sometimes. This is because
2964 when it is entered (somread.c::som_symtab_read()) it can happen that
2965 if the type of the symbol (from the som) is Entry, and the symbol is
2966 in a shared library, then it can also be a trampoline. This would
2967 be OK, except that I believe the way they decide if we are ina shared library
2968 does not work. SOOOO..., even if we have a regular function w/o trampolines
2969 its minimal symbol can be assigned type mst_solib_trampoline.
2970 Also, if we find that the symbol is a real stub, then we fix the unwind
2971 descriptor, and define the stub type to be EXPORT.
c5aa993b 2972 Hopefully this is correct most of the times. */
c906108c 2973 if (u->stub_unwind.stub_type == 0)
c5aa993b 2974 {
c906108c
SS
2975
2976/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
2977 we can delete all the code which appears between the lines */
2978/*--------------------------------------------------------------------------*/
c5aa993b 2979 msym = lookup_minimal_symbol_by_pc (pc);
c906108c 2980
c5aa993b
JM
2981 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
2982 return orig_pc == pc ? 0 : pc & ~0x3;
2983
2984 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
2985 {
2986 struct objfile *objfile;
2987 struct minimal_symbol *msymbol;
2988 int function_found = 0;
2989
2990 /* go look if there is another minimal symbol with the same name as
2991 this one, but with type mst_text. This would happen if the msym
2992 is an actual trampoline, in which case there would be another
2993 symbol with the same name corresponding to the real function */
2994
2995 ALL_MSYMBOLS (objfile, msymbol)
2996 {
2997 if (MSYMBOL_TYPE (msymbol) == mst_text
2998 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
2999 {
3000 function_found = 1;
3001 break;
3002 }
3003 }
3004
3005 if (function_found)
3006 /* the type of msym is correct (mst_solib_trampoline), but
3007 the unwind info is wrong, so set it to the correct value */
3008 u->stub_unwind.stub_type = EXPORT;
3009 else
3010 /* the stub type info in the unwind is correct (this is not a
3011 trampoline), but the msym type information is wrong, it
3012 should be mst_text. So we need to fix the msym, and also
3013 get out of this function */
3014 {
3015 MSYMBOL_TYPE (msym) = mst_text;
3016 return orig_pc == pc ? 0 : pc & ~0x3;
3017 }
3018 }
c906108c 3019
c906108c 3020/*--------------------------------------------------------------------------*/
c5aa993b 3021 }
c906108c
SS
3022
3023 /* It's a stub. Search for a branch and figure out where it goes.
3024 Note we have to handle multi insn branch sequences like ldil;ble.
3025 Most (all?) other branches can be determined by examining the contents
3026 of certain registers and the stack. */
3027
3028 loc = pc;
3029 curr_inst = 0;
3030 prev_inst = 0;
3031 while (1)
3032 {
3033 /* Make sure we haven't walked outside the range of this stub. */
3034 if (u != find_unwind_entry (loc))
3035 {
3036 warning ("Unable to find branch in linker stub");
3037 return orig_pc == pc ? 0 : pc & ~0x3;
3038 }
3039
3040 prev_inst = curr_inst;
3041 curr_inst = read_memory_integer (loc, 4);
3042
3043 /* Does it look like a branch external using %r1? Then it's the
c5aa993b 3044 branch from the stub to the actual function. */
c906108c
SS
3045 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3046 {
3047 /* Yup. See if the previous instruction loaded
3048 a value into %r1. If so compute and return the jump address. */
3049 if ((prev_inst & 0xffe00000) == 0x20200000)
3050 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3051 else
3052 {
3053 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3054 return orig_pc == pc ? 0 : pc & ~0x3;
3055 }
3056 }
3057
3058 /* Does it look like a be 0(sr0,%r21)? OR
3059 Does it look like a be, n 0(sr0,%r21)? OR
3060 Does it look like a bve (r21)? (this is on PA2.0)
3061 Does it look like a bve, n(r21)? (this is also on PA2.0)
3062 That's the branch from an
c5aa993b 3063 import stub to an export stub.
c906108c 3064
c5aa993b
JM
3065 It is impossible to determine the target of the branch via
3066 simple examination of instructions and/or data (consider
3067 that the address in the plabel may be the address of the
3068 bind-on-reference routine in the dynamic loader).
c906108c 3069
c5aa993b 3070 So we have try an alternative approach.
c906108c 3071
c5aa993b
JM
3072 Get the name of the symbol at our current location; it should
3073 be a stub symbol with the same name as the symbol in the
3074 shared library.
c906108c 3075
c5aa993b
JM
3076 Then lookup a minimal symbol with the same name; we should
3077 get the minimal symbol for the target routine in the shared
3078 library as those take precedence of import/export stubs. */
c906108c 3079 if ((curr_inst == 0xe2a00000) ||
c5aa993b
JM
3080 (curr_inst == 0xe2a00002) ||
3081 (curr_inst == 0xeaa0d000) ||
3082 (curr_inst == 0xeaa0d002))
c906108c
SS
3083 {
3084 struct minimal_symbol *stubsym, *libsym;
3085
3086 stubsym = lookup_minimal_symbol_by_pc (loc);
3087 if (stubsym == NULL)
3088 {
3089 warning ("Unable to find symbol for 0x%x", loc);
3090 return orig_pc == pc ? 0 : pc & ~0x3;
3091 }
3092
3093 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3094 if (libsym == NULL)
3095 {
3096 warning ("Unable to find library symbol for %s\n",
3097 SYMBOL_NAME (stubsym));
3098 return orig_pc == pc ? 0 : pc & ~0x3;
3099 }
3100
3101 return SYMBOL_VALUE (libsym);
3102 }
3103
3104 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
c5aa993b
JM
3105 branch from the stub to the actual function. */
3106 /*elz */
c906108c
SS
3107 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3108 || (curr_inst & 0xffe0e000) == 0xe8000000
c5aa993b 3109 || (curr_inst & 0xffe0e000) == 0xe800A000)
c906108c
SS
3110 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3111
3112 /* Does it look like bv (rp)? Note this depends on the
c5aa993b
JM
3113 current stack pointer being the same as the stack
3114 pointer in the stub itself! This is a branch on from the
3115 stub back to the original caller. */
3116 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
c906108c
SS
3117 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3118 {
3119 /* Yup. See if the previous instruction loaded
3120 rp from sp - 8. */
3121 if (prev_inst == 0x4bc23ff1)
3122 return (read_memory_integer
3123 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3124 else
3125 {
3126 warning ("Unable to find restore of %%rp before bv (%%rp).");
3127 return orig_pc == pc ? 0 : pc & ~0x3;
3128 }
3129 }
3130
3131 /* elz: added this case to capture the new instruction
3132 at the end of the return part of an export stub used by
3133 the PA2.0: BVE, n (rp) */
3134 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3135 {
c5aa993b 3136 return (read_memory_integer
c906108c
SS
3137 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
3138 }
3139
3140 /* What about be,n 0(sr0,%rp)? It's just another way we return to
c5aa993b 3141 the original caller from the stub. Used in dynamic executables. */
c906108c
SS
3142 else if (curr_inst == 0xe0400002)
3143 {
3144 /* The value we jump to is sitting in sp - 24. But that's
3145 loaded several instructions before the be instruction.
3146 I guess we could check for the previous instruction being
3147 mtsp %r1,%sr0 if we want to do sanity checking. */
c5aa993b 3148 return (read_memory_integer
c906108c
SS
3149 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
3150 }
3151
3152 /* Haven't found the branch yet, but we're still in the stub.
c5aa993b 3153 Keep looking. */
c906108c
SS
3154 loc += 4;
3155 }
3156}
3157
3158
3159/* For the given instruction (INST), return any adjustment it makes
3160 to the stack pointer or zero for no adjustment.
3161
3162 This only handles instructions commonly found in prologues. */
3163
3164static int
3165prologue_inst_adjust_sp (inst)
3166 unsigned long inst;
3167{
3168 /* This must persist across calls. */
3169 static int save_high21;
3170
3171 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3172 if ((inst & 0xffffc000) == 0x37de0000)
3173 return extract_14 (inst);
3174
3175 /* stwm X,D(sp) */
3176 if ((inst & 0xffe00000) == 0x6fc00000)
3177 return extract_14 (inst);
3178
3179 /* addil high21,%r1; ldo low11,(%r1),%r30)
3180 save high bits in save_high21 for later use. */
3181 if ((inst & 0xffe00000) == 0x28200000)
3182 {
3183 save_high21 = extract_21 (inst);
3184 return 0;
3185 }
3186
3187 if ((inst & 0xffff0000) == 0x343e0000)
3188 return save_high21 + extract_14 (inst);
3189
3190 /* fstws as used by the HP compilers. */
3191 if ((inst & 0xffffffe0) == 0x2fd01220)
3192 return extract_5_load (inst);
3193
3194 /* No adjustment. */
3195 return 0;
3196}
3197
3198/* Return nonzero if INST is a branch of some kind, else return zero. */
3199
3200static int
3201is_branch (inst)
3202 unsigned long inst;
3203{
3204 switch (inst >> 26)
3205 {
3206 case 0x20:
3207 case 0x21:
3208 case 0x22:
3209 case 0x23:
3210 case 0x28:
3211 case 0x29:
3212 case 0x2a:
3213 case 0x2b:
3214 case 0x30:
3215 case 0x31:
3216 case 0x32:
3217 case 0x33:
3218 case 0x38:
3219 case 0x39:
3220 case 0x3a:
3221 return 1;
3222
3223 default:
3224 return 0;
3225 }
3226}
3227
3228/* Return the register number for a GR which is saved by INST or
3229 zero it INST does not save a GR. */
3230
3231static int
3232inst_saves_gr (inst)
3233 unsigned long inst;
3234{
3235 /* Does it look like a stw? */
3236 if ((inst >> 26) == 0x1a)
3237 return extract_5R_store (inst);
3238
3239 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3240 if ((inst >> 26) == 0x1b)
3241 return extract_5R_store (inst);
3242
3243 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3244 too. */
3245 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
3246 return extract_5R_store (inst);
c5aa993b 3247
c906108c
SS
3248 return 0;
3249}
3250
3251/* Return the register number for a FR which is saved by INST or
3252 zero it INST does not save a FR.
3253
3254 Note we only care about full 64bit register stores (that's the only
3255 kind of stores the prologue will use).
3256
3257 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3258
3259static int
3260inst_saves_fr (inst)
3261 unsigned long inst;
3262{
c5aa993b 3263 /* is this an FSTDS ? */
c906108c
SS
3264 if ((inst & 0xfc00dfc0) == 0x2c001200)
3265 return extract_5r_store (inst);
c5aa993b 3266 /* is this an FSTWS ? */
c906108c
SS
3267 if ((inst & 0xfc00df80) == 0x24001200)
3268 return extract_5r_store (inst);
3269 return 0;
3270}
3271
3272/* Advance PC across any function entry prologue instructions
3273 to reach some "real" code.
3274
3275 Use information in the unwind table to determine what exactly should
3276 be in the prologue. */
3277
3278
3279CORE_ADDR
3280skip_prologue_hard_way (pc)
3281 CORE_ADDR pc;
3282{
3283 char buf[4];
3284 CORE_ADDR orig_pc = pc;
3285 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3286 unsigned long args_stored, status, i, restart_gr, restart_fr;
3287 struct unwind_table_entry *u;
3288
3289 restart_gr = 0;
3290 restart_fr = 0;
3291
3292restart:
3293 u = find_unwind_entry (pc);
3294 if (!u)
3295 return pc;
3296
c5aa993b 3297 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
3298 if ((pc & ~0x3) != u->region_start)
3299 return pc;
3300
3301 /* This is how much of a frame adjustment we need to account for. */
3302 stack_remaining = u->Total_frame_size << 3;
3303
3304 /* Magic register saves we want to know about. */
3305 save_rp = u->Save_RP;
3306 save_sp = u->Save_SP;
3307
3308 /* An indication that args may be stored into the stack. Unfortunately
3309 the HPUX compilers tend to set this in cases where no args were
3310 stored too!. */
3311 args_stored = 1;
3312
3313 /* Turn the Entry_GR field into a bitmask. */
3314 save_gr = 0;
3315 for (i = 3; i < u->Entry_GR + 3; i++)
3316 {
3317 /* Frame pointer gets saved into a special location. */
3318 if (u->Save_SP && i == FP_REGNUM)
3319 continue;
3320
3321 save_gr |= (1 << i);
3322 }
3323 save_gr &= ~restart_gr;
3324
3325 /* Turn the Entry_FR field into a bitmask too. */
3326 save_fr = 0;
3327 for (i = 12; i < u->Entry_FR + 12; i++)
3328 save_fr |= (1 << i);
3329 save_fr &= ~restart_fr;
3330
3331 /* Loop until we find everything of interest or hit a branch.
3332
3333 For unoptimized GCC code and for any HP CC code this will never ever
3334 examine any user instructions.
3335
3336 For optimzied GCC code we're faced with problems. GCC will schedule
3337 its prologue and make prologue instructions available for delay slot
3338 filling. The end result is user code gets mixed in with the prologue
3339 and a prologue instruction may be in the delay slot of the first branch
3340 or call.
3341
3342 Some unexpected things are expected with debugging optimized code, so
3343 we allow this routine to walk past user instructions in optimized
3344 GCC code. */
3345 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3346 || args_stored)
3347 {
3348 unsigned int reg_num;
3349 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3350 unsigned long old_save_rp, old_save_sp, next_inst;
3351
3352 /* Save copies of all the triggers so we can compare them later
c5aa993b 3353 (only for HPC). */
c906108c
SS
3354 old_save_gr = save_gr;
3355 old_save_fr = save_fr;
3356 old_save_rp = save_rp;
3357 old_save_sp = save_sp;
3358 old_stack_remaining = stack_remaining;
3359
3360 status = target_read_memory (pc, buf, 4);
3361 inst = extract_unsigned_integer (buf, 4);
c5aa993b 3362
c906108c
SS
3363 /* Yow! */
3364 if (status != 0)
3365 return pc;
3366
3367 /* Note the interesting effects of this instruction. */
3368 stack_remaining -= prologue_inst_adjust_sp (inst);
3369
3370 /* There is only one instruction used for saving RP into the stack. */
3371 if (inst == 0x6bc23fd9)
3372 save_rp = 0;
3373
3374 /* This is the only way we save SP into the stack. At this time
c5aa993b 3375 the HP compilers never bother to save SP into the stack. */
c906108c
SS
3376 if ((inst & 0xffffc000) == 0x6fc10000)
3377 save_sp = 0;
3378
3379 /* Account for general and floating-point register saves. */
3380 reg_num = inst_saves_gr (inst);
3381 save_gr &= ~(1 << reg_num);
3382
3383 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3384 Unfortunately args_stored only tells us that some arguments
3385 where stored into the stack. Not how many or what kind!
c906108c 3386
c5aa993b
JM
3387 This is a kludge as on the HP compiler sets this bit and it
3388 never does prologue scheduling. So once we see one, skip past
3389 all of them. We have similar code for the fp arg stores below.
c906108c 3390
c5aa993b
JM
3391 FIXME. Can still die if we have a mix of GR and FR argument
3392 stores! */
c906108c
SS
3393 if (reg_num >= 23 && reg_num <= 26)
3394 {
3395 while (reg_num >= 23 && reg_num <= 26)
3396 {
3397 pc += 4;
3398 status = target_read_memory (pc, buf, 4);
3399 inst = extract_unsigned_integer (buf, 4);
3400 if (status != 0)
3401 return pc;
3402 reg_num = inst_saves_gr (inst);
3403 }
3404 args_stored = 0;
3405 continue;
3406 }
3407
3408 reg_num = inst_saves_fr (inst);
3409 save_fr &= ~(1 << reg_num);
3410
3411 status = target_read_memory (pc + 4, buf, 4);
3412 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 3413
c906108c
SS
3414 /* Yow! */
3415 if (status != 0)
3416 return pc;
3417
3418 /* We've got to be read to handle the ldo before the fp register
c5aa993b 3419 save. */
c906108c
SS
3420 if ((inst & 0xfc000000) == 0x34000000
3421 && inst_saves_fr (next_inst) >= 4
3422 && inst_saves_fr (next_inst) <= 7)
3423 {
3424 /* So we drop into the code below in a reasonable state. */
3425 reg_num = inst_saves_fr (next_inst);
3426 pc -= 4;
3427 }
3428
3429 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3430 This is a kludge as on the HP compiler sets this bit and it
3431 never does prologue scheduling. So once we see one, skip past
3432 all of them. */
c906108c
SS
3433 if (reg_num >= 4 && reg_num <= 7)
3434 {
3435 while (reg_num >= 4 && reg_num <= 7)
3436 {
3437 pc += 8;
3438 status = target_read_memory (pc, buf, 4);
3439 inst = extract_unsigned_integer (buf, 4);
3440 if (status != 0)
3441 return pc;
3442 if ((inst & 0xfc000000) != 0x34000000)
3443 break;
3444 status = target_read_memory (pc + 4, buf, 4);
3445 next_inst = extract_unsigned_integer (buf, 4);
3446 if (status != 0)
3447 return pc;
3448 reg_num = inst_saves_fr (next_inst);
3449 }
3450 args_stored = 0;
3451 continue;
3452 }
3453
3454 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3455 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3456 if (is_branch (inst))
3457 break;
3458
3459 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
3460 arguments were stored into the stack (boo hiss). This could
3461 cause this code to then skip a bunch of user insns (up to the
3462 first branch).
3463
3464 To combat this we try to identify when args_stored was bogusly
3465 set and clear it. We only do this when args_stored is nonzero,
3466 all other resources are accounted for, and nothing changed on
3467 this pass. */
c906108c 3468 if (args_stored
c5aa993b 3469 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
3470 && old_save_gr == save_gr && old_save_fr == save_fr
3471 && old_save_rp == save_rp && old_save_sp == save_sp
3472 && old_stack_remaining == stack_remaining)
3473 break;
c5aa993b 3474
c906108c
SS
3475 /* Bump the PC. */
3476 pc += 4;
3477 }
3478
3479 /* We've got a tenative location for the end of the prologue. However
3480 because of limitations in the unwind descriptor mechanism we may
3481 have went too far into user code looking for the save of a register
3482 that does not exist. So, if there registers we expected to be saved
3483 but never were, mask them out and restart.
3484
3485 This should only happen in optimized code, and should be very rare. */
c5aa993b 3486 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
3487 {
3488 pc = orig_pc;
3489 restart_gr = save_gr;
3490 restart_fr = save_fr;
3491 goto restart;
3492 }
3493
3494 return pc;
3495}
3496
3497
3498
3499
3500
3501/* return 0 if we cannot determine the end of the prologue,
3502 return the new pc value if we know where the prologue ends */
3503
3504static CORE_ADDR
3505after_prologue (pc)
3506 CORE_ADDR pc;
3507{
3508 struct symtab_and_line sal;
3509 CORE_ADDR func_addr, func_end;
3510 struct symbol *f;
3511
3512 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 3513 return 0; /* Unknown */
c906108c
SS
3514
3515 f = find_pc_function (pc);
3516 if (!f)
3517 return 0; /* no debug info, do it the hard way! */
3518
3519 sal = find_pc_line (func_addr, 0);
3520
3521 if (sal.end < func_end)
c5aa993b
JM
3522 {
3523 /* this happens when the function has no prologue, because the way
3524 find_pc_line works: elz. Note: this may not be a very good
3525 way to decide whether a function has a prologue or not, but
3526 it is the best I can do with the info available
3527 Also, this will work for functions like: int f()
3528 {
3529 return 2;
3530 }
3531 I.e. the bp will be inserted at the first open brace.
3532 For functions where the body is only one line written like this:
3533 int f()
3534 { return 2; }
3535 this will make the breakpoint to be at the last brace, after the body
3536 has been executed already. What's the point of stepping through a function
3537 without any variables anyway?? */
3538
3539 if ((SYMBOL_LINE (f) > 0) && (SYMBOL_LINE (f) < sal.line))
3540 return pc; /*no adjusment will be made */
3541 else
3542 return sal.end; /* this is the end of the prologue */
3543 }
c906108c
SS
3544 /* The line after the prologue is after the end of the function. In this
3545 case, put the end of the prologue is the beginning of the function. */
3546 /* This should happen only when the function is prologueless and has no
3547 code in it. For instance void dumb(){} Note: this kind of function
3548 is used quite a lot in the test system */
3549
c5aa993b
JM
3550 else
3551 return pc; /* no adjustment will be made */
c906108c
SS
3552}
3553
3554/* To skip prologues, I use this predicate. Returns either PC itself
3555 if the code at PC does not look like a function prologue; otherwise
3556 returns an address that (if we're lucky) follows the prologue. If
3557 LENIENT, then we must skip everything which is involved in setting
3558 up the frame (it's OK to skip more, just so long as we don't skip
3559 anything which might clobber the registers which are being saved.
3560 Currently we must not skip more on the alpha, but we might the lenient
3561 stuff some day. */
3562
3563CORE_ADDR
b83266a0 3564hppa_skip_prologue (pc)
c906108c
SS
3565 CORE_ADDR pc;
3566{
c5aa993b
JM
3567 unsigned long inst;
3568 int offset;
3569 CORE_ADDR post_prologue_pc;
3570 char buf[4];
c906108c
SS
3571
3572#ifdef GDB_TARGET_HAS_SHARED_LIBS
c5aa993b
JM
3573 /* Silently return the unaltered pc upon memory errors.
3574 This could happen on OSF/1 if decode_line_1 tries to skip the
3575 prologue for quickstarted shared library functions when the
3576 shared library is not yet mapped in.
3577 Reading target memory is slow over serial lines, so we perform
3578 this check only if the target has shared libraries. */
3579 if (target_read_memory (pc, buf, 4))
3580 return pc;
c906108c
SS
3581#endif
3582
c5aa993b
JM
3583 /* See if we can determine the end of the prologue via the symbol table.
3584 If so, then return either PC, or the PC after the prologue, whichever
3585 is greater. */
c906108c 3586
c5aa993b 3587 post_prologue_pc = after_prologue (pc);
c906108c 3588
c5aa993b
JM
3589 if (post_prologue_pc != 0)
3590 return max (pc, post_prologue_pc);
c906108c
SS
3591
3592
c5aa993b
JM
3593 /* Can't determine prologue from the symbol table, (this can happen if there
3594 is no debug information) so we need to fall back on the old code, which
3595 looks at the instructions */
c906108c
SS
3596 /* FIXME (elz) !!!!: this may create a problem if, once the bp is hit, the user says
3597 where: the backtrace info is not right: this is because the point at which we
3598 break is at the very first instruction of the function. At this time the stuff that
3599 needs to be saved on the stack, has not been saved yet, so the backtrace
3600 cannot know all it needs to know. This will need to be fixed in the
3601 actual backtrace code. (Note: this is what DDE does) */
3602
c5aa993b
JM
3603 else
3604 return (skip_prologue_hard_way (pc));
c906108c
SS
3605
3606#if 0
3607/* elz: I am keeping this code around just in case, but remember, all the
3608 instructions are for alpha: you should change all to the hppa instructions */
3609
c5aa993b
JM
3610 /* Can't determine prologue from the symbol table, need to examine
3611 instructions. */
c906108c 3612
c5aa993b
JM
3613 /* Skip the typical prologue instructions. These are the stack adjustment
3614 instruction and the instructions that save registers on the stack
3615 or in the gcc frame. */
3616 for (offset = 0; offset < 100; offset += 4)
3617 {
3618 int status;
c906108c 3619
c5aa993b
JM
3620 status = read_memory_nobpt (pc + offset, buf, 4);
3621 if (status)
3622 memory_error (status, pc + offset);
3623 inst = extract_unsigned_integer (buf, 4);
c906108c 3624
c5aa993b
JM
3625 /* The alpha has no delay slots. But let's keep the lenient stuff,
3626 we might need it for something else in the future. */
3627 if (lenient && 0)
3628 continue;
c906108c 3629
c5aa993b
JM
3630 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
3631 continue;
3632 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
3633 continue;
3634 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
3635 continue;
3636 else if ((inst & 0xfc1f0000) == 0xb41e0000
3637 && (inst & 0xffff0000) != 0xb7fe0000)
3638 continue; /* stq reg,n($sp) */
3639 /* reg != $zero */
3640 else if ((inst & 0xfc1f0000) == 0x9c1e0000
3641 && (inst & 0xffff0000) != 0x9ffe0000)
3642 continue; /* stt reg,n($sp) */
3643 /* reg != $zero */
3644 else if (inst == 0x47de040f) /* bis sp,sp,fp */
3645 continue;
3646 else
3647 break;
3648 }
3649 return pc + offset;
c906108c
SS
3650#endif /* 0 */
3651}
3652
3653/* Put here the code to store, into a struct frame_saved_regs,
3654 the addresses of the saved registers of frame described by FRAME_INFO.
3655 This includes special registers such as pc and fp saved in special
3656 ways in the stack frame. sp is even more special:
3657 the address we return for it IS the sp for the next frame. */
3658
3659void
3660hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
3661 struct frame_info *frame_info;
3662 struct frame_saved_regs *frame_saved_regs;
3663{
3664 CORE_ADDR pc;
3665 struct unwind_table_entry *u;
3666 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3667 int status, i, reg;
3668 char buf[4];
3669 int fp_loc = -1;
3670
3671 /* Zero out everything. */
3672 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3673
3674 /* Call dummy frames always look the same, so there's no need to
3675 examine the dummy code to determine locations of saved registers;
3676 instead, let find_dummy_frame_regs fill in the correct offsets
3677 for the saved registers. */
3678 if ((frame_info->pc >= frame_info->frame
3679 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
c5aa993b
JM
3680 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
3681 + 6 * 4)))
c906108c
SS
3682 find_dummy_frame_regs (frame_info, frame_saved_regs);
3683
3684 /* Interrupt handlers are special too. They lay out the register
3685 state in the exact same order as the register numbers in GDB. */
3686 if (pc_in_interrupt_handler (frame_info->pc))
3687 {
3688 for (i = 0; i < NUM_REGS; i++)
3689 {
3690 /* SP is a little special. */
3691 if (i == SP_REGNUM)
3692 frame_saved_regs->regs[SP_REGNUM]
3693 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
3694 else
3695 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3696 }
3697 return;
3698 }
3699
3700#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3701 /* Handle signal handler callers. */
3702 if (frame_info->signal_handler_caller)
3703 {
3704 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3705 return;
3706 }
3707#endif
3708
3709 /* Get the starting address of the function referred to by the PC
3710 saved in frame. */
3711 pc = get_pc_function_start (frame_info->pc);
3712
3713 /* Yow! */
3714 u = find_unwind_entry (pc);
3715 if (!u)
3716 return;
3717
3718 /* This is how much of a frame adjustment we need to account for. */
3719 stack_remaining = u->Total_frame_size << 3;
3720
3721 /* Magic register saves we want to know about. */
3722 save_rp = u->Save_RP;
3723 save_sp = u->Save_SP;
3724
3725 /* Turn the Entry_GR field into a bitmask. */
3726 save_gr = 0;
3727 for (i = 3; i < u->Entry_GR + 3; i++)
3728 {
3729 /* Frame pointer gets saved into a special location. */
3730 if (u->Save_SP && i == FP_REGNUM)
3731 continue;
3732
3733 save_gr |= (1 << i);
3734 }
3735
3736 /* Turn the Entry_FR field into a bitmask too. */
3737 save_fr = 0;
3738 for (i = 12; i < u->Entry_FR + 12; i++)
3739 save_fr |= (1 << i);
3740
3741 /* The frame always represents the value of %sp at entry to the
3742 current function (and is thus equivalent to the "saved" stack
3743 pointer. */
3744 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3745
3746 /* Loop until we find everything of interest or hit a branch.
3747
3748 For unoptimized GCC code and for any HP CC code this will never ever
3749 examine any user instructions.
3750
3751 For optimzied GCC code we're faced with problems. GCC will schedule
3752 its prologue and make prologue instructions available for delay slot
3753 filling. The end result is user code gets mixed in with the prologue
3754 and a prologue instruction may be in the delay slot of the first branch
3755 or call.
3756
3757 Some unexpected things are expected with debugging optimized code, so
3758 we allow this routine to walk past user instructions in optimized
3759 GCC code. */
3760 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3761 {
3762 status = target_read_memory (pc, buf, 4);
3763 inst = extract_unsigned_integer (buf, 4);
3764
3765 /* Yow! */
3766 if (status != 0)
3767 return;
3768
3769 /* Note the interesting effects of this instruction. */
3770 stack_remaining -= prologue_inst_adjust_sp (inst);
3771
3772 /* There is only one instruction used for saving RP into the stack. */
3773 if (inst == 0x6bc23fd9)
3774 {
3775 save_rp = 0;
3776 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3777 }
3778
3779 /* Just note that we found the save of SP into the stack. The
c5aa993b 3780 value for frame_saved_regs was computed above. */
c906108c
SS
3781 if ((inst & 0xffffc000) == 0x6fc10000)
3782 save_sp = 0;
3783
3784 /* Account for general and floating-point register saves. */
3785 reg = inst_saves_gr (inst);
3786 if (reg >= 3 && reg <= 18
3787 && (!u->Save_SP || reg != FP_REGNUM))
3788 {
3789 save_gr &= ~(1 << reg);
3790
3791 /* stwm with a positive displacement is a *post modify*. */
3792 if ((inst >> 26) == 0x1b
3793 && extract_14 (inst) >= 0)
3794 frame_saved_regs->regs[reg] = frame_info->frame;
3795 else
3796 {
3797 /* Handle code with and without frame pointers. */
3798 if (u->Save_SP)
3799 frame_saved_regs->regs[reg]
3800 = frame_info->frame + extract_14 (inst);
3801 else
3802 frame_saved_regs->regs[reg]
3803 = frame_info->frame + (u->Total_frame_size << 3)
c5aa993b 3804 + extract_14 (inst);
c906108c
SS
3805 }
3806 }
3807
3808
3809 /* GCC handles callee saved FP regs a little differently.
3810
c5aa993b
JM
3811 It emits an instruction to put the value of the start of
3812 the FP store area into %r1. It then uses fstds,ma with
3813 a basereg of %r1 for the stores.
c906108c 3814
c5aa993b
JM
3815 HP CC emits them at the current stack pointer modifying
3816 the stack pointer as it stores each register. */
c906108c
SS
3817
3818 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
3819 if ((inst & 0xffffc000) == 0x34610000
3820 || (inst & 0xffffc000) == 0x37c10000)
3821 fp_loc = extract_14 (inst);
c5aa993b 3822
c906108c
SS
3823 reg = inst_saves_fr (inst);
3824 if (reg >= 12 && reg <= 21)
3825 {
3826 /* Note +4 braindamage below is necessary because the FP status
3827 registers are internally 8 registers rather than the expected
3828 4 registers. */
3829 save_fr &= ~(1 << reg);
3830 if (fp_loc == -1)
3831 {
3832 /* 1st HP CC FP register store. After this instruction
c5aa993b
JM
3833 we've set enough state that the GCC and HPCC code are
3834 both handled in the same manner. */
c906108c
SS
3835 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
3836 fp_loc = 8;
3837 }
3838 else
3839 {
3840 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
3841 = frame_info->frame + fp_loc;
3842 fp_loc += 8;
3843 }
3844 }
3845
3846 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3847 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3848 if (is_branch (inst))
3849 break;
3850
3851 /* Bump the PC. */
3852 pc += 4;
3853 }
3854}
3855
3856
3857/* Exception handling support for the HP-UX ANSI C++ compiler.
3858 The compiler (aCC) provides a callback for exception events;
3859 GDB can set a breakpoint on this callback and find out what
3860 exception event has occurred. */
3861
3862/* The name of the hook to be set to point to the callback function */
c5aa993b
JM
3863static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
3864/* The name of the function to be used to set the hook value */
3865static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
3866/* The name of the callback function in end.o */
c906108c 3867static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
c5aa993b
JM
3868/* Name of function in end.o on which a break is set (called by above) */
3869static char HP_ACC_EH_break[] = "__d_eh_break";
3870/* Name of flag (in end.o) that enables catching throws */
3871static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
3872/* Name of flag (in end.o) that enables catching catching */
3873static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
3874/* The enum used by aCC */
3875typedef enum
3876 {
3877 __EH_NOTIFY_THROW,
3878 __EH_NOTIFY_CATCH
3879 }
3880__eh_notification;
c906108c
SS
3881
3882/* Is exception-handling support available with this executable? */
3883static int hp_cxx_exception_support = 0;
3884/* Has the initialize function been run? */
3885int hp_cxx_exception_support_initialized = 0;
3886/* Similar to above, but imported from breakpoint.c -- non-target-specific */
3887extern int exception_support_initialized;
3888/* Address of __eh_notify_hook */
3889static CORE_ADDR eh_notify_hook_addr = NULL;
3890/* Address of __d_eh_notify_callback */
3891static CORE_ADDR eh_notify_callback_addr = NULL;
3892/* Address of __d_eh_break */
3893static CORE_ADDR eh_break_addr = NULL;
3894/* Address of __d_eh_catch_catch */
3895static CORE_ADDR eh_catch_catch_addr = NULL;
3896/* Address of __d_eh_catch_throw */
3897static CORE_ADDR eh_catch_throw_addr = NULL;
3898/* Sal for __d_eh_break */
c5aa993b 3899static struct symtab_and_line *break_callback_sal = NULL;
c906108c
SS
3900
3901/* Code in end.c expects __d_pid to be set in the inferior,
3902 otherwise __d_eh_notify_callback doesn't bother to call
3903 __d_eh_break! So we poke the pid into this symbol
3904 ourselves.
3905 0 => success
c5aa993b 3906 1 => failure */
c906108c
SS
3907int
3908setup_d_pid_in_inferior ()
3909{
3910 CORE_ADDR anaddr;
c5aa993b
JM
3911 struct minimal_symbol *msymbol;
3912 char buf[4]; /* FIXME 32x64? */
3913
c906108c
SS
3914 /* Slam the pid of the process into __d_pid; failing is only a warning! */
3915 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
3916 if (msymbol == NULL)
3917 {
3918 warning ("Unable to find __d_pid symbol in object file.");
3919 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
3920 return 1;
3921 }
3922
3923 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
c5aa993b
JM
3924 store_unsigned_integer (buf, 4, inferior_pid); /* FIXME 32x64? */
3925 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
c906108c
SS
3926 {
3927 warning ("Unable to write __d_pid");
3928 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
3929 return 1;
3930 }
3931 return 0;
3932}
3933
3934/* Initialize exception catchpoint support by looking for the
3935 necessary hooks/callbacks in end.o, etc., and set the hook value to
3936 point to the required debug function
3937
3938 Return 0 => failure
c5aa993b 3939 1 => success */
c906108c
SS
3940
3941static int
3942initialize_hp_cxx_exception_support ()
3943{
3944 struct symtabs_and_lines sals;
c5aa993b
JM
3945 struct cleanup *old_chain;
3946 struct cleanup *canonical_strings_chain = NULL;
c906108c 3947 int i;
c5aa993b
JM
3948 char *addr_start;
3949 char *addr_end = NULL;
3950 char **canonical = (char **) NULL;
c906108c 3951 int thread = -1;
c5aa993b
JM
3952 struct symbol *sym = NULL;
3953 struct minimal_symbol *msym = NULL;
3954 struct objfile *objfile;
c906108c
SS
3955 asection *shlib_info;
3956
3957 /* Detect and disallow recursion. On HP-UX with aCC, infinite
3958 recursion is a possibility because finding the hook for exception
3959 callbacks involves making a call in the inferior, which means
3960 re-inserting breakpoints which can re-invoke this code */
3961
c5aa993b
JM
3962 static int recurse = 0;
3963 if (recurse > 0)
c906108c
SS
3964 {
3965 hp_cxx_exception_support_initialized = 0;
3966 exception_support_initialized = 0;
3967 return 0;
3968 }
3969
3970 hp_cxx_exception_support = 0;
3971
3972 /* First check if we have seen any HP compiled objects; if not,
3973 it is very unlikely that HP's idiosyncratic callback mechanism
3974 for exception handling debug support will be available!
3975 This will percolate back up to breakpoint.c, where our callers
3976 will decide to try the g++ exception-handling support instead. */
3977 if (!hp_som_som_object_present)
3978 return 0;
c5aa993b 3979
c906108c
SS
3980 /* We have a SOM executable with SOM debug info; find the hooks */
3981
3982 /* First look for the notify hook provided by aCC runtime libs */
3983 /* If we find this symbol, we conclude that the executable must
3984 have HP aCC exception support built in. If this symbol is not
3985 found, even though we're a HP SOM-SOM file, we may have been
3986 built with some other compiler (not aCC). This results percolates
3987 back up to our callers in breakpoint.c which can decide to
3988 try the g++ style of exception support instead.
3989 If this symbol is found but the other symbols we require are
3990 not found, there is something weird going on, and g++ support
3991 should *not* be tried as an alternative.
c5aa993b 3992
c906108c
SS
3993 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
3994 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
c5aa993b 3995
c906108c
SS
3996 /* libCsup has this hook; it'll usually be non-debuggable */
3997 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
3998 if (msym)
3999 {
4000 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4001 hp_cxx_exception_support = 1;
c5aa993b 4002 }
c906108c
SS
4003 else
4004 {
4005 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4006 warning ("Executable may not have been compiled debuggable with HP aCC.");
4007 warning ("GDB will be unable to intercept exception events.");
4008 eh_notify_hook_addr = 0;
4009 hp_cxx_exception_support = 0;
4010 return 0;
4011 }
4012
c906108c 4013 /* Next look for the notify callback routine in end.o */
c5aa993b 4014 /* This is always available in the SOM symbol dictionary if end.o is linked in */
c906108c
SS
4015 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4016 if (msym)
4017 {
4018 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4019 hp_cxx_exception_support = 1;
c5aa993b
JM
4020 }
4021 else
c906108c
SS
4022 {
4023 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4024 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4025 warning ("GDB will be unable to intercept exception events.");
4026 eh_notify_callback_addr = 0;
4027 return 0;
4028 }
4029
4030 /* Check whether the executable is dynamically linked or archive bound */
4031 /* With an archive-bound executable we can use the raw addresses we find
4032 for the callback function, etc. without modification. For an executable
4033 with shared libraries, we have to do more work to find the plabel, which
4034 can be the target of a call through $$dyncall from the aCC runtime support
4035 library (libCsup) which is linked shared by default by aCC. */
4036 /* This test below was copied from somsolib.c/somread.c. It may not be a very
c5aa993b 4037 reliable one to test that an executable is linked shared. pai/1997-07-18 */
c906108c
SS
4038 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4039 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4040 {
4041 /* The minsym we have has the local code address, but that's not the
4042 plabel that can be used by an inter-load-module call. */
4043 /* Find solib handle for main image (which has end.o), and use that
4044 and the min sym as arguments to __d_shl_get() (which does the equivalent
c5aa993b 4045 of shl_findsym()) to find the plabel. */
c906108c
SS
4046
4047 args_for_find_stub args;
4048 static char message[] = "Error while finding exception callback hook:\n";
c5aa993b 4049
c906108c
SS
4050 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4051 args.msym = msym;
c5aa993b 4052
c906108c 4053 recurse++;
c5aa993b
JM
4054 eh_notify_callback_addr = catch_errors ((int (*)PARAMS ((char *))) cover_find_stub_with_shl_get,
4055 (char *) &args,
4056 message, RETURN_MASK_ALL);
c906108c 4057 recurse--;
c5aa993b 4058
c906108c 4059 exception_catchpoints_are_fragile = 1;
c5aa993b 4060
c906108c 4061 if (!eh_notify_callback_addr)
c5aa993b
JM
4062 {
4063 /* We can get here either if there is no plabel in the export list
4064 for the main image, or if something strange happened (??) */
4065 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4066 warning ("GDB will not be able to intercept exception events.");
4067 return 0;
4068 }
c906108c
SS
4069 }
4070 else
4071 exception_catchpoints_are_fragile = 0;
4072
c906108c 4073 /* Now, look for the breakpointable routine in end.o */
c5aa993b 4074 /* This should also be available in the SOM symbol dict. if end.o linked in */
c906108c
SS
4075 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4076 if (msym)
4077 {
4078 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4079 hp_cxx_exception_support = 1;
c5aa993b 4080 }
c906108c
SS
4081 else
4082 {
4083 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4084 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4085 warning ("GDB will be unable to intercept exception events.");
4086 eh_break_addr = 0;
4087 return 0;
4088 }
4089
c906108c
SS
4090 /* Next look for the catch enable flag provided in end.o */
4091 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4092 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4093 if (sym) /* sometimes present in debug info */
c906108c
SS
4094 {
4095 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4096 hp_cxx_exception_support = 1;
4097 }
c5aa993b
JM
4098 else
4099 /* otherwise look in SOM symbol dict. */
c906108c
SS
4100 {
4101 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4102 if (msym)
c5aa993b
JM
4103 {
4104 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4105 hp_cxx_exception_support = 1;
4106 }
c906108c 4107 else
c5aa993b
JM
4108 {
4109 warning ("Unable to enable interception of exception catches.");
4110 warning ("Executable may not have been compiled debuggable with HP aCC.");
4111 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4112 return 0;
4113 }
c906108c
SS
4114 }
4115
c906108c
SS
4116 /* Next look for the catch enable flag provided end.o */
4117 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4118 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4119 if (sym) /* sometimes present in debug info */
c906108c
SS
4120 {
4121 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4122 hp_cxx_exception_support = 1;
4123 }
c5aa993b
JM
4124 else
4125 /* otherwise look in SOM symbol dict. */
c906108c
SS
4126 {
4127 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4128 if (msym)
c5aa993b
JM
4129 {
4130 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4131 hp_cxx_exception_support = 1;
4132 }
c906108c 4133 else
c5aa993b
JM
4134 {
4135 warning ("Unable to enable interception of exception throws.");
4136 warning ("Executable may not have been compiled debuggable with HP aCC.");
4137 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4138 return 0;
4139 }
c906108c
SS
4140 }
4141
c5aa993b
JM
4142 /* Set the flags */
4143 hp_cxx_exception_support = 2; /* everything worked so far */
c906108c
SS
4144 hp_cxx_exception_support_initialized = 1;
4145 exception_support_initialized = 1;
4146
4147 return 1;
4148}
4149
4150/* Target operation for enabling or disabling interception of
4151 exception events.
4152 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4153 ENABLE is either 0 (disable) or 1 (enable).
4154 Return value is NULL if no support found;
4155 -1 if something went wrong,
4156 or a pointer to a symtab/line struct if the breakpointable
c5aa993b 4157 address was found. */
c906108c 4158
c5aa993b 4159struct symtab_and_line *
c906108c 4160child_enable_exception_callback (kind, enable)
c5aa993b
JM
4161 enum exception_event_kind kind;
4162 int enable;
c906108c
SS
4163{
4164 char buf[4];
4165
4166 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4167 if (!initialize_hp_cxx_exception_support ())
4168 return NULL;
4169
4170 switch (hp_cxx_exception_support)
4171 {
c5aa993b
JM
4172 case 0:
4173 /* Assuming no HP support at all */
4174 return NULL;
4175 case 1:
4176 /* HP support should be present, but something went wrong */
4177 return (struct symtab_and_line *) -1; /* yuck! */
4178 /* there may be other cases in the future */
c906108c 4179 }
c5aa993b 4180
c906108c 4181 /* Set the EH hook to point to the callback routine */
c5aa993b 4182 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
c906108c 4183 /* pai: (temp) FIXME should there be a pack operation first? */
c5aa993b 4184 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
c906108c
SS
4185 {
4186 warning ("Could not write to target memory for exception event callback.");
4187 warning ("Interception of exception events may not work.");
c5aa993b 4188 return (struct symtab_and_line *) -1;
c906108c
SS
4189 }
4190 if (enable)
4191 {
c5aa993b 4192 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
c906108c 4193 if (inferior_pid > 0)
c5aa993b
JM
4194 {
4195 if (setup_d_pid_in_inferior ())
4196 return (struct symtab_and_line *) -1;
4197 }
c906108c 4198 else
c5aa993b
JM
4199 {
4200 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); /* purecov: deadcode */
4201 return (struct symtab_and_line *) -1; /* purecov: deadcode */
4202 }
c906108c 4203 }
c5aa993b 4204
c906108c
SS
4205 switch (kind)
4206 {
c5aa993b
JM
4207 case EX_EVENT_THROW:
4208 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4209 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4210 {
4211 warning ("Couldn't enable exception throw interception.");
4212 return (struct symtab_and_line *) -1;
4213 }
4214 break;
4215 case EX_EVENT_CATCH:
4216 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4217 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4218 {
4219 warning ("Couldn't enable exception catch interception.");
4220 return (struct symtab_and_line *) -1;
4221 }
4222 break;
4223 default: /* purecov: deadcode */
4224 error ("Request to enable unknown or unsupported exception event."); /* purecov: deadcode */
c906108c 4225 }
c5aa993b 4226
c906108c
SS
4227 /* Copy break address into new sal struct, malloc'ing if needed. */
4228 if (!break_callback_sal)
4229 {
4230 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4231 }
c5aa993b 4232 INIT_SAL (break_callback_sal);
c906108c
SS
4233 break_callback_sal->symtab = NULL;
4234 break_callback_sal->pc = eh_break_addr;
4235 break_callback_sal->line = 0;
4236 break_callback_sal->end = eh_break_addr;
c5aa993b 4237
c906108c
SS
4238 return break_callback_sal;
4239}
4240
c5aa993b 4241/* Record some information about the current exception event */
c906108c 4242static struct exception_event_record current_ex_event;
c5aa993b
JM
4243/* Convenience struct */
4244static struct symtab_and_line null_symtab_and_line =
4245{NULL, 0, 0, 0};
c906108c
SS
4246
4247/* Report current exception event. Returns a pointer to a record
4248 that describes the kind of the event, where it was thrown from,
4249 and where it will be caught. More information may be reported
c5aa993b 4250 in the future */
c906108c
SS
4251struct exception_event_record *
4252child_get_current_exception_event ()
4253{
c5aa993b
JM
4254 CORE_ADDR event_kind;
4255 CORE_ADDR throw_addr;
4256 CORE_ADDR catch_addr;
c906108c
SS
4257 struct frame_info *fi, *curr_frame;
4258 int level = 1;
4259
c5aa993b 4260 curr_frame = get_current_frame ();
c906108c
SS
4261 if (!curr_frame)
4262 return (struct exception_event_record *) NULL;
4263
4264 /* Go up one frame to __d_eh_notify_callback, because at the
4265 point when this code is executed, there's garbage in the
4266 arguments of __d_eh_break. */
4267 fi = find_relative_frame (curr_frame, &level);
4268 if (level != 0)
4269 return (struct exception_event_record *) NULL;
4270
4271 select_frame (fi, -1);
4272
4273 /* Read in the arguments */
4274 /* __d_eh_notify_callback() is called with 3 arguments:
c5aa993b
JM
4275 1. event kind catch or throw
4276 2. the target address if known
4277 3. a flag -- not sure what this is. pai/1997-07-17 */
4278 event_kind = read_register (ARG0_REGNUM);
c906108c
SS
4279 catch_addr = read_register (ARG1_REGNUM);
4280
4281 /* Now go down to a user frame */
4282 /* For a throw, __d_eh_break is called by
c5aa993b
JM
4283 __d_eh_notify_callback which is called by
4284 __notify_throw which is called
4285 from user code.
c906108c 4286 For a catch, __d_eh_break is called by
c5aa993b
JM
4287 __d_eh_notify_callback which is called by
4288 <stackwalking stuff> which is called by
4289 __throw__<stuff> or __rethrow_<stuff> which is called
4290 from user code. */
4291 /* FIXME: Don't use such magic numbers; search for the frames */
c906108c
SS
4292 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4293 fi = find_relative_frame (curr_frame, &level);
4294 if (level != 0)
4295 return (struct exception_event_record *) NULL;
4296
4297 select_frame (fi, -1);
4298 throw_addr = fi->pc;
4299
4300 /* Go back to original (top) frame */
4301 select_frame (curr_frame, -1);
4302
4303 current_ex_event.kind = (enum exception_event_kind) event_kind;
4304 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4305 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4306
4307 return &current_ex_event;
4308}
4309
c906108c
SS
4310static void
4311unwind_command (exp, from_tty)
4312 char *exp;
4313 int from_tty;
4314{
4315 CORE_ADDR address;
4316 struct unwind_table_entry *u;
4317
4318 /* If we have an expression, evaluate it and use it as the address. */
4319
4320 if (exp != 0 && *exp != 0)
4321 address = parse_and_eval_address (exp);
4322 else
4323 return;
4324
4325 u = find_unwind_entry (address);
4326
4327 if (!u)
4328 {
4329 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4330 return;
4331 }
4332
4333 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
4334
4335 printf_unfiltered ("\tregion_start = ");
4336 print_address (u->region_start, gdb_stdout);
4337
4338 printf_unfiltered ("\n\tregion_end = ");
4339 print_address (u->region_end, gdb_stdout);
4340
4341#ifdef __STDC__
4342#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4343#else
4344#define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
4345#endif
4346
4347 printf_unfiltered ("\n\tflags =");
4348 pif (Cannot_unwind);
4349 pif (Millicode);
4350 pif (Millicode_save_sr0);
4351 pif (Entry_SR);
4352 pif (Args_stored);
4353 pif (Variable_Frame);
4354 pif (Separate_Package_Body);
4355 pif (Frame_Extension_Millicode);
4356 pif (Stack_Overflow_Check);
4357 pif (Two_Instruction_SP_Increment);
4358 pif (Ada_Region);
4359 pif (Save_SP);
4360 pif (Save_RP);
4361 pif (Save_MRP_in_frame);
4362 pif (extn_ptr_defined);
4363 pif (Cleanup_defined);
4364 pif (MPE_XL_interrupt_marker);
4365 pif (HP_UX_interrupt_marker);
4366 pif (Large_frame);
4367
4368 putchar_unfiltered ('\n');
4369
4370#ifdef __STDC__
4371#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4372#else
4373#define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
4374#endif
4375
4376 pin (Region_description);
4377 pin (Entry_FR);
4378 pin (Entry_GR);
4379 pin (Total_frame_size);
4380}
c906108c
SS
4381
4382#ifdef PREPARE_TO_PROCEED
4383
4384/* If the user has switched threads, and there is a breakpoint
4385 at the old thread's pc location, then switch to that thread
4386 and return TRUE, else return FALSE and don't do a thread
4387 switch (or rather, don't seem to have done a thread switch).
4388
4389 Ptrace-based gdb will always return FALSE to the thread-switch
4390 query, and thus also to PREPARE_TO_PROCEED.
4391
4392 The important thing is whether there is a BPT instruction,
4393 not how many user breakpoints there are. So we have to worry
4394 about things like these:
4395
4396 o Non-bp stop -- NO
4397
4398 o User hits bp, no switch -- NO
4399
4400 o User hits bp, switches threads -- YES
4401
4402 o User hits bp, deletes bp, switches threads -- NO
4403
4404 o User hits bp, deletes one of two or more bps
c5aa993b 4405 at that PC, user switches threads -- YES
c906108c
SS
4406
4407 o Plus, since we're buffering events, the user may have hit a
c5aa993b
JM
4408 breakpoint, deleted the breakpoint and then gotten another
4409 hit on that same breakpoint on another thread which
4410 actually hit before the delete. (FIXME in breakpoint.c
4411 so that "dead" breakpoints are ignored?) -- NO
c906108c
SS
4412
4413 For these reasons, we have to violate information hiding and
4414 call "breakpoint_here_p". If core gdb thinks there is a bpt
4415 here, that's what counts, as core gdb is the one which is
4416 putting the BPT instruction in and taking it out. */
4417int
c5aa993b 4418hppa_prepare_to_proceed ()
c906108c
SS
4419{
4420 pid_t old_thread;
4421 pid_t current_thread;
4422
c5aa993b 4423 old_thread = hppa_switched_threads (inferior_pid);
c906108c
SS
4424 if (old_thread != 0)
4425 {
4426 /* Switched over from "old_thread". Try to do
4427 as little work as possible, 'cause mostly
4428 we're going to switch back. */
4429 CORE_ADDR new_pc;
c5aa993b 4430 CORE_ADDR old_pc = read_pc ();
c906108c
SS
4431
4432 /* Yuk, shouldn't use global to specify current
4433 thread. But that's how gdb does it. */
4434 current_thread = inferior_pid;
c5aa993b 4435 inferior_pid = old_thread;
c906108c 4436
c5aa993b
JM
4437 new_pc = read_pc ();
4438 if (new_pc != old_pc /* If at same pc, no need */
c906108c 4439 && breakpoint_here_p (new_pc))
c5aa993b 4440 {
c906108c 4441 /* User hasn't deleted the BP.
c5aa993b 4442 Return TRUE, finishing switch to "old_thread". */
c906108c
SS
4443 flush_cached_frames ();
4444 registers_changed ();
4445#if 0
c5aa993b 4446 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
c906108c
SS
4447 current_thread, inferior_pid);
4448#endif
c5aa993b 4449
c906108c 4450 return 1;
c5aa993b 4451 }
c906108c
SS
4452
4453 /* Otherwise switch back to the user-chosen thread. */
4454 inferior_pid = current_thread;
c5aa993b 4455 new_pc = read_pc (); /* Re-prime register cache */
c906108c
SS
4456 }
4457
4458 return 0;
4459}
4460#endif /* PREPARE_TO_PROCEED */
4461
4462void
4463_initialize_hppa_tdep ()
4464{
4465 tm_print_insn = print_insn_hppa;
4466
c906108c
SS
4467 add_cmd ("unwind", class_maintenance, unwind_command,
4468 "Print unwind table entry at given address.",
4469 &maintenanceprintlist);
c906108c 4470}
This page took 0.229777 seconds and 4 git commands to generate.