merge from gcc
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
1e698235 4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c
SS
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "frame.h"
28#include "bfd.h"
29#include "inferior.h"
30#include "value.h"
4e052eda 31#include "regcache.h"
e5d66720 32#include "completer.h"
d709c020 33#include "language.h"
59623e27 34#include "osabi.h"
a7ff40e7 35#include "gdb_assert.h"
65e82032 36#include "infttrace.h"
c906108c
SS
37/* For argument passing to the inferior */
38#include "symtab.h"
04714b91 39#include "infcall.h"
c906108c
SS
40
41#ifdef USG
42#include <sys/types.h>
43#endif
44
45#include <dl.h>
46#include <sys/param.h>
47#include <signal.h>
48
49#include <sys/ptrace.h>
50#include <machine/save_state.h>
51
52#ifdef COFF_ENCAPSULATE
53#include "a.out.encap.h"
54#else
55#endif
56
c5aa993b 57/*#include <sys/user.h> After a.out.h */
c906108c
SS
58#include <sys/file.h>
59#include "gdb_stat.h"
03f2053f 60#include "gdb_wait.h"
c906108c
SS
61
62#include "gdbcore.h"
63#include "gdbcmd.h"
64#include "target.h"
65#include "symfile.h"
66#include "objfiles.h"
67
60383d10
JB
68/* Some local constants. */
69static const int hppa_num_regs = 128;
70
c906108c
SS
71/* To support detection of the pseudo-initial frame
72 that threads have. */
73#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
74#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
c5aa993b 75
a14ed312 76static int extract_5_load (unsigned int);
c906108c 77
a14ed312 78static unsigned extract_5R_store (unsigned int);
c906108c 79
a14ed312 80static unsigned extract_5r_store (unsigned int);
c906108c 81
43bd9a9e 82static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
c906108c 83
a14ed312 84static int find_proc_framesize (CORE_ADDR);
c906108c 85
a14ed312 86static int find_return_regnum (CORE_ADDR);
c906108c 87
a14ed312 88struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
c906108c 89
a14ed312 90static int extract_17 (unsigned int);
c906108c 91
a14ed312 92static unsigned deposit_21 (unsigned int, unsigned int);
c906108c 93
a14ed312 94static int extract_21 (unsigned);
c906108c 95
a14ed312 96static unsigned deposit_14 (int, unsigned int);
c906108c 97
a14ed312 98static int extract_14 (unsigned);
c906108c 99
a14ed312 100static void unwind_command (char *, int);
c906108c 101
a14ed312 102static int low_sign_extend (unsigned int, unsigned int);
c906108c 103
a14ed312 104static int sign_extend (unsigned int, unsigned int);
c906108c 105
43bd9a9e 106static int restore_pc_queue (CORE_ADDR *);
c906108c 107
a14ed312 108static int hppa_alignof (struct type *);
c906108c
SS
109
110/* To support multi-threading and stepping. */
a14ed312 111int hppa_prepare_to_proceed ();
c906108c 112
a14ed312 113static int prologue_inst_adjust_sp (unsigned long);
c906108c 114
a14ed312 115static int is_branch (unsigned long);
c906108c 116
a14ed312 117static int inst_saves_gr (unsigned long);
c906108c 118
a14ed312 119static int inst_saves_fr (unsigned long);
c906108c 120
a14ed312 121static int pc_in_interrupt_handler (CORE_ADDR);
c906108c 122
a14ed312 123static int pc_in_linker_stub (CORE_ADDR);
c906108c 124
a14ed312 125static int compare_unwind_entries (const void *, const void *);
c906108c 126
a14ed312 127static void read_unwind_info (struct objfile *);
c906108c 128
a14ed312
KB
129static void internalize_unwinds (struct objfile *,
130 struct unwind_table_entry *,
131 asection *, unsigned int,
132 unsigned int, CORE_ADDR);
133static void pa_print_registers (char *, int, int);
d9fcf2fb 134static void pa_strcat_registers (char *, int, int, struct ui_file *);
a14ed312
KB
135static void pa_register_look_aside (char *, int, long *);
136static void pa_print_fp_reg (int);
d9fcf2fb 137static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
a14ed312 138static void record_text_segment_lowaddr (bfd *, asection *, void *);
d709c020
JB
139/* FIXME: brobecker 2002-11-07: We will likely be able to make the
140 following functions static, once we hppa is partially multiarched. */
141int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
60383d10
JB
142CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
143CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
144int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
145int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
146CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
d709c020
JB
147int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
148CORE_ADDR hppa_stack_align (CORE_ADDR sp);
149int hppa_pc_requires_run_before_use (CORE_ADDR pc);
150int hppa_instruction_nullified (void);
60e1ff27 151int hppa_register_raw_size (int reg_nr);
d709c020
JB
152int hppa_register_byte (int reg_nr);
153struct type * hppa_register_virtual_type (int reg_nr);
154void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
60383d10
JB
155void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
156int hppa_use_struct_convention (int gcc_p, struct type *type);
157void hppa_store_return_value (struct type *type, char *valbuf);
158CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
d709c020 159int hppa_cannot_store_register (int regnum);
60383d10
JB
160void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
161CORE_ADDR hppa_frame_chain (struct frame_info *frame);
162int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
163int hppa_frameless_function_invocation (struct frame_info *frame);
164CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
d709c020
JB
165CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
166CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
60383d10 167int hppa_frame_num_args (struct frame_info *frame);
7daf4f5b 168void hppa_push_dummy_frame (void);
60383d10
JB
169void hppa_pop_frame (void);
170CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
171 int nargs, struct value **args,
172 struct type *type, int gcc_p);
173CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
174 int struct_return, CORE_ADDR struct_addr);
d709c020 175CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
60383d10
JB
176CORE_ADDR hppa_target_read_pc (ptid_t ptid);
177void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
178CORE_ADDR hppa_target_read_fp (void);
c906108c 179
c5aa993b
JM
180typedef struct
181 {
182 struct minimal_symbol *msym;
183 CORE_ADDR solib_handle;
a0b3c4fd 184 CORE_ADDR return_val;
c5aa993b
JM
185 }
186args_for_find_stub;
c906108c 187
4efb68b1 188static int cover_find_stub_with_shl_get (void *);
c906108c 189
c5aa993b 190static int is_pa_2 = 0; /* False */
c906108c 191
c5aa993b 192/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
c906108c
SS
193extern int hp_som_som_object_present;
194
195/* In breakpoint.c */
196extern int exception_catchpoints_are_fragile;
197
c906108c 198/* Should call_function allocate stack space for a struct return? */
d709c020 199
c906108c 200int
fba45db2 201hppa_use_struct_convention (int gcc_p, struct type *type)
c906108c 202{
104c1213 203 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
c906108c 204}
c906108c 205\f
c5aa993b 206
c906108c
SS
207/* Routines to extract various sized constants out of hppa
208 instructions. */
209
210/* This assumes that no garbage lies outside of the lower bits of
211 value. */
212
213static int
fba45db2 214sign_extend (unsigned val, unsigned bits)
c906108c 215{
c5aa993b 216 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
217}
218
219/* For many immediate values the sign bit is the low bit! */
220
221static int
fba45db2 222low_sign_extend (unsigned val, unsigned bits)
c906108c 223{
c5aa993b 224 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
225}
226
227/* extract the immediate field from a ld{bhw}s instruction */
228
c906108c 229static int
fba45db2 230extract_5_load (unsigned word)
c906108c
SS
231{
232 return low_sign_extend (word >> 16 & MASK_5, 5);
233}
234
c906108c
SS
235/* extract the immediate field from a break instruction */
236
237static unsigned
fba45db2 238extract_5r_store (unsigned word)
c906108c
SS
239{
240 return (word & MASK_5);
241}
242
243/* extract the immediate field from a {sr}sm instruction */
244
245static unsigned
fba45db2 246extract_5R_store (unsigned word)
c906108c
SS
247{
248 return (word >> 16 & MASK_5);
249}
250
c906108c
SS
251/* extract a 14 bit immediate field */
252
253static int
fba45db2 254extract_14 (unsigned word)
c906108c
SS
255{
256 return low_sign_extend (word & MASK_14, 14);
257}
258
259/* deposit a 14 bit constant in a word */
260
261static unsigned
fba45db2 262deposit_14 (int opnd, unsigned word)
c906108c
SS
263{
264 unsigned sign = (opnd < 0 ? 1 : 0);
265
c5aa993b 266 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
c906108c
SS
267}
268
269/* extract a 21 bit constant */
270
271static int
fba45db2 272extract_21 (unsigned word)
c906108c
SS
273{
274 int val;
275
276 word &= MASK_21;
277 word <<= 11;
278 val = GET_FIELD (word, 20, 20);
279 val <<= 11;
280 val |= GET_FIELD (word, 9, 19);
281 val <<= 2;
282 val |= GET_FIELD (word, 5, 6);
283 val <<= 5;
284 val |= GET_FIELD (word, 0, 4);
285 val <<= 2;
286 val |= GET_FIELD (word, 7, 8);
287 return sign_extend (val, 21) << 11;
288}
289
290/* deposit a 21 bit constant in a word. Although 21 bit constants are
291 usually the top 21 bits of a 32 bit constant, we assume that only
292 the low 21 bits of opnd are relevant */
293
294static unsigned
fba45db2 295deposit_21 (unsigned opnd, unsigned word)
c906108c
SS
296{
297 unsigned val = 0;
298
299 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
300 val <<= 2;
301 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
302 val <<= 2;
303 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
304 val <<= 11;
305 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
306 val <<= 1;
307 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
308 return word | val;
309}
310
c906108c
SS
311/* extract a 17 bit constant from branch instructions, returning the
312 19 bit signed value. */
313
314static int
fba45db2 315extract_17 (unsigned word)
c906108c
SS
316{
317 return sign_extend (GET_FIELD (word, 19, 28) |
318 GET_FIELD (word, 29, 29) << 10 |
319 GET_FIELD (word, 11, 15) << 11 |
320 (word & 0x1) << 16, 17) << 2;
321}
322\f
323
324/* Compare the start address for two unwind entries returning 1 if
325 the first address is larger than the second, -1 if the second is
326 larger than the first, and zero if they are equal. */
327
328static int
fba45db2 329compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
330{
331 const struct unwind_table_entry *a = arg1;
332 const struct unwind_table_entry *b = arg2;
333
334 if (a->region_start > b->region_start)
335 return 1;
336 else if (a->region_start < b->region_start)
337 return -1;
338 else
339 return 0;
340}
341
53a5351d
JM
342static CORE_ADDR low_text_segment_address;
343
344static void
8fef05cc 345record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
53a5351d 346{
bf9c25dc 347 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d
JM
348 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
349 && section->vma < low_text_segment_address)
350 low_text_segment_address = section->vma;
351}
352
c906108c 353static void
fba45db2
KB
354internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
355 asection *section, unsigned int entries, unsigned int size,
356 CORE_ADDR text_offset)
c906108c
SS
357{
358 /* We will read the unwind entries into temporary memory, then
359 fill in the actual unwind table. */
360 if (size > 0)
361 {
362 unsigned long tmp;
363 unsigned i;
364 char *buf = alloca (size);
365
53a5351d
JM
366 low_text_segment_address = -1;
367
368 /* If addresses are 64 bits wide, then unwinds are supposed to
c2c6d25f
JM
369 be segment relative offsets instead of absolute addresses.
370
371 Note that when loading a shared library (text_offset != 0) the
372 unwinds are already relative to the text_offset that will be
373 passed in. */
374 if (TARGET_PTR_BIT == 64 && text_offset == 0)
53a5351d
JM
375 {
376 bfd_map_over_sections (objfile->obfd,
4efb68b1 377 record_text_segment_lowaddr, NULL);
53a5351d
JM
378
379 /* ?!? Mask off some low bits. Should this instead subtract
380 out the lowest section's filepos or something like that?
381 This looks very hokey to me. */
382 low_text_segment_address &= ~0xfff;
383 text_offset += low_text_segment_address;
384 }
385
c906108c
SS
386 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
387
388 /* Now internalize the information being careful to handle host/target
c5aa993b 389 endian issues. */
c906108c
SS
390 for (i = 0; i < entries; i++)
391 {
392 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 393 (bfd_byte *) buf);
c906108c
SS
394 table[i].region_start += text_offset;
395 buf += 4;
c5aa993b 396 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
397 table[i].region_end += text_offset;
398 buf += 4;
c5aa993b 399 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
400 buf += 4;
401 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
402 table[i].Millicode = (tmp >> 30) & 0x1;
403 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
404 table[i].Region_description = (tmp >> 27) & 0x3;
405 table[i].reserved1 = (tmp >> 26) & 0x1;
406 table[i].Entry_SR = (tmp >> 25) & 0x1;
407 table[i].Entry_FR = (tmp >> 21) & 0xf;
408 table[i].Entry_GR = (tmp >> 16) & 0x1f;
409 table[i].Args_stored = (tmp >> 15) & 0x1;
410 table[i].Variable_Frame = (tmp >> 14) & 0x1;
411 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
412 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
413 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
414 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
415 table[i].Ada_Region = (tmp >> 9) & 0x1;
416 table[i].cxx_info = (tmp >> 8) & 0x1;
417 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
418 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
419 table[i].reserved2 = (tmp >> 5) & 0x1;
420 table[i].Save_SP = (tmp >> 4) & 0x1;
421 table[i].Save_RP = (tmp >> 3) & 0x1;
422 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
423 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
424 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 425 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
426 buf += 4;
427 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
428 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
429 table[i].Large_frame = (tmp >> 29) & 0x1;
430 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
431 table[i].reserved4 = (tmp >> 27) & 0x1;
432 table[i].Total_frame_size = tmp & 0x7ffffff;
433
c5aa993b 434 /* Stub unwinds are handled elsewhere. */
c906108c
SS
435 table[i].stub_unwind.stub_type = 0;
436 table[i].stub_unwind.padding = 0;
437 }
438 }
439}
440
441/* Read in the backtrace information stored in the `$UNWIND_START$' section of
442 the object file. This info is used mainly by find_unwind_entry() to find
443 out the stack frame size and frame pointer used by procedures. We put
444 everything on the psymbol obstack in the objfile so that it automatically
445 gets freed when the objfile is destroyed. */
446
447static void
fba45db2 448read_unwind_info (struct objfile *objfile)
c906108c 449{
d4f3574e
SS
450 asection *unwind_sec, *stub_unwind_sec;
451 unsigned unwind_size, stub_unwind_size, total_size;
452 unsigned index, unwind_entries;
c906108c
SS
453 unsigned stub_entries, total_entries;
454 CORE_ADDR text_offset;
455 struct obj_unwind_info *ui;
456 obj_private_data_t *obj_private;
457
458 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5aa993b
JM
459 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
460 sizeof (struct obj_unwind_info));
c906108c
SS
461
462 ui->table = NULL;
463 ui->cache = NULL;
464 ui->last = -1;
465
d4f3574e
SS
466 /* For reasons unknown the HP PA64 tools generate multiple unwinder
467 sections in a single executable. So we just iterate over every
468 section in the BFD looking for unwinder sections intead of trying
469 to do a lookup with bfd_get_section_by_name.
c906108c 470
d4f3574e
SS
471 First determine the total size of the unwind tables so that we
472 can allocate memory in a nice big hunk. */
473 total_entries = 0;
474 for (unwind_sec = objfile->obfd->sections;
475 unwind_sec;
476 unwind_sec = unwind_sec->next)
c906108c 477 {
d4f3574e
SS
478 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
479 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
480 {
481 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
482 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 483
d4f3574e
SS
484 total_entries += unwind_entries;
485 }
c906108c
SS
486 }
487
d4f3574e
SS
488 /* Now compute the size of the stub unwinds. Note the ELF tools do not
489 use stub unwinds at the curren time. */
490 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
491
c906108c
SS
492 if (stub_unwind_sec)
493 {
494 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
495 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
496 }
497 else
498 {
499 stub_unwind_size = 0;
500 stub_entries = 0;
501 }
502
503 /* Compute total number of unwind entries and their total size. */
d4f3574e 504 total_entries += stub_entries;
c906108c
SS
505 total_size = total_entries * sizeof (struct unwind_table_entry);
506
507 /* Allocate memory for the unwind table. */
508 ui->table = (struct unwind_table_entry *)
509 obstack_alloc (&objfile->psymbol_obstack, total_size);
c5aa993b 510 ui->last = total_entries - 1;
c906108c 511
d4f3574e
SS
512 /* Now read in each unwind section and internalize the standard unwind
513 entries. */
c906108c 514 index = 0;
d4f3574e
SS
515 for (unwind_sec = objfile->obfd->sections;
516 unwind_sec;
517 unwind_sec = unwind_sec->next)
518 {
519 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
520 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
521 {
522 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
523 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
524
525 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
526 unwind_entries, unwind_size, text_offset);
527 index += unwind_entries;
528 }
529 }
530
531 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
532 if (stub_unwind_size > 0)
533 {
534 unsigned int i;
535 char *buf = alloca (stub_unwind_size);
536
537 /* Read in the stub unwind entries. */
538 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
539 0, stub_unwind_size);
540
541 /* Now convert them into regular unwind entries. */
542 for (i = 0; i < stub_entries; i++, index++)
543 {
544 /* Clear out the next unwind entry. */
545 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
546
547 /* Convert offset & size into region_start and region_end.
548 Stuff away the stub type into "reserved" fields. */
549 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
550 (bfd_byte *) buf);
551 ui->table[index].region_start += text_offset;
552 buf += 4;
553 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 554 (bfd_byte *) buf);
c906108c
SS
555 buf += 2;
556 ui->table[index].region_end
c5aa993b
JM
557 = ui->table[index].region_start + 4 *
558 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
559 buf += 2;
560 }
561
562 }
563
564 /* Unwind table needs to be kept sorted. */
565 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
566 compare_unwind_entries);
567
568 /* Keep a pointer to the unwind information. */
c5aa993b 569 if (objfile->obj_private == NULL)
c906108c
SS
570 {
571 obj_private = (obj_private_data_t *)
c5aa993b
JM
572 obstack_alloc (&objfile->psymbol_obstack,
573 sizeof (obj_private_data_t));
c906108c 574 obj_private->unwind_info = NULL;
c5aa993b 575 obj_private->so_info = NULL;
53a5351d 576 obj_private->dp = 0;
c5aa993b 577
4efb68b1 578 objfile->obj_private = obj_private;
c906108c 579 }
c5aa993b 580 obj_private = (obj_private_data_t *) objfile->obj_private;
c906108c
SS
581 obj_private->unwind_info = ui;
582}
583
584/* Lookup the unwind (stack backtrace) info for the given PC. We search all
585 of the objfiles seeking the unwind table entry for this PC. Each objfile
586 contains a sorted list of struct unwind_table_entry. Since we do a binary
587 search of the unwind tables, we depend upon them to be sorted. */
588
589struct unwind_table_entry *
fba45db2 590find_unwind_entry (CORE_ADDR pc)
c906108c
SS
591{
592 int first, middle, last;
593 struct objfile *objfile;
594
595 /* A function at address 0? Not in HP-UX! */
596 if (pc == (CORE_ADDR) 0)
597 return NULL;
598
599 ALL_OBJFILES (objfile)
c5aa993b
JM
600 {
601 struct obj_unwind_info *ui;
602 ui = NULL;
603 if (objfile->obj_private)
604 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
c906108c 605
c5aa993b
JM
606 if (!ui)
607 {
608 read_unwind_info (objfile);
609 if (objfile->obj_private == NULL)
104c1213 610 error ("Internal error reading unwind information.");
c5aa993b
JM
611 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
612 }
c906108c 613
c5aa993b 614 /* First, check the cache */
c906108c 615
c5aa993b
JM
616 if (ui->cache
617 && pc >= ui->cache->region_start
618 && pc <= ui->cache->region_end)
619 return ui->cache;
c906108c 620
c5aa993b 621 /* Not in the cache, do a binary search */
c906108c 622
c5aa993b
JM
623 first = 0;
624 last = ui->last;
c906108c 625
c5aa993b
JM
626 while (first <= last)
627 {
628 middle = (first + last) / 2;
629 if (pc >= ui->table[middle].region_start
630 && pc <= ui->table[middle].region_end)
631 {
632 ui->cache = &ui->table[middle];
633 return &ui->table[middle];
634 }
c906108c 635
c5aa993b
JM
636 if (pc < ui->table[middle].region_start)
637 last = middle - 1;
638 else
639 first = middle + 1;
640 }
641 } /* ALL_OBJFILES() */
c906108c
SS
642 return NULL;
643}
644
645/* Return the adjustment necessary to make for addresses on the stack
646 as presented by hpread.c.
647
648 This is necessary because of the stack direction on the PA and the
649 bizarre way in which someone (?) decided they wanted to handle
650 frame pointerless code in GDB. */
651int
fba45db2 652hpread_adjust_stack_address (CORE_ADDR func_addr)
c906108c
SS
653{
654 struct unwind_table_entry *u;
655
656 u = find_unwind_entry (func_addr);
657 if (!u)
658 return 0;
659 else
660 return u->Total_frame_size << 3;
661}
662
663/* Called to determine if PC is in an interrupt handler of some
664 kind. */
665
666static int
fba45db2 667pc_in_interrupt_handler (CORE_ADDR pc)
c906108c
SS
668{
669 struct unwind_table_entry *u;
670 struct minimal_symbol *msym_us;
671
672 u = find_unwind_entry (pc);
673 if (!u)
674 return 0;
675
676 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
677 its frame isn't a pure interrupt frame. Deal with this. */
678 msym_us = lookup_minimal_symbol_by_pc (pc);
679
d7bd68ca 680 return (u->HP_UX_interrupt_marker
22abf04a 681 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
c906108c
SS
682}
683
684/* Called when no unwind descriptor was found for PC. Returns 1 if it
104c1213
JM
685 appears that PC is in a linker stub.
686
687 ?!? Need to handle stubs which appear in PA64 code. */
c906108c
SS
688
689static int
fba45db2 690pc_in_linker_stub (CORE_ADDR pc)
c906108c
SS
691{
692 int found_magic_instruction = 0;
693 int i;
694 char buf[4];
695
696 /* If unable to read memory, assume pc is not in a linker stub. */
697 if (target_read_memory (pc, buf, 4) != 0)
698 return 0;
699
700 /* We are looking for something like
701
702 ; $$dyncall jams RP into this special spot in the frame (RP')
703 ; before calling the "call stub"
704 ldw -18(sp),rp
705
706 ldsid (rp),r1 ; Get space associated with RP into r1
707 mtsp r1,sp ; Move it into space register 0
708 be,n 0(sr0),rp) ; back to your regularly scheduled program */
709
710 /* Maximum known linker stub size is 4 instructions. Search forward
711 from the given PC, then backward. */
712 for (i = 0; i < 4; i++)
713 {
714 /* If we hit something with an unwind, stop searching this direction. */
715
716 if (find_unwind_entry (pc + i * 4) != 0)
717 break;
718
719 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 720 return from a cross-space function call. */
c906108c
SS
721 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
722 {
723 found_magic_instruction = 1;
724 break;
725 }
726 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 727 here. */
c906108c
SS
728 }
729
730 if (found_magic_instruction != 0)
731 return 1;
732
733 /* Now look backward. */
734 for (i = 0; i < 4; i++)
735 {
736 /* If we hit something with an unwind, stop searching this direction. */
737
738 if (find_unwind_entry (pc - i * 4) != 0)
739 break;
740
741 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 742 return from a cross-space function call. */
c906108c
SS
743 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
744 {
745 found_magic_instruction = 1;
746 break;
747 }
748 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 749 here. */
c906108c
SS
750 }
751 return found_magic_instruction;
752}
753
754static int
fba45db2 755find_return_regnum (CORE_ADDR pc)
c906108c
SS
756{
757 struct unwind_table_entry *u;
758
759 u = find_unwind_entry (pc);
760
761 if (!u)
762 return RP_REGNUM;
763
764 if (u->Millicode)
765 return 31;
766
767 return RP_REGNUM;
768}
769
770/* Return size of frame, or -1 if we should use a frame pointer. */
771static int
fba45db2 772find_proc_framesize (CORE_ADDR pc)
c906108c
SS
773{
774 struct unwind_table_entry *u;
775 struct minimal_symbol *msym_us;
776
777 /* This may indicate a bug in our callers... */
c5aa993b 778 if (pc == (CORE_ADDR) 0)
c906108c 779 return -1;
c5aa993b 780
c906108c
SS
781 u = find_unwind_entry (pc);
782
783 if (!u)
784 {
785 if (pc_in_linker_stub (pc))
786 /* Linker stubs have a zero size frame. */
787 return 0;
788 else
789 return -1;
790 }
791
792 msym_us = lookup_minimal_symbol_by_pc (pc);
793
794 /* If Save_SP is set, and we're not in an interrupt or signal caller,
795 then we have a frame pointer. Use it. */
3fa41cdb
JL
796 if (u->Save_SP
797 && !pc_in_interrupt_handler (pc)
798 && msym_us
22abf04a 799 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
c906108c
SS
800 return -1;
801
802 return u->Total_frame_size << 3;
803}
804
805/* Return offset from sp at which rp is saved, or 0 if not saved. */
a14ed312 806static int rp_saved (CORE_ADDR);
c906108c
SS
807
808static int
fba45db2 809rp_saved (CORE_ADDR pc)
c906108c
SS
810{
811 struct unwind_table_entry *u;
812
813 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
814 if (pc == (CORE_ADDR) 0)
815 return 0;
816
817 u = find_unwind_entry (pc);
818
819 if (!u)
820 {
821 if (pc_in_linker_stub (pc))
822 /* This is the so-called RP'. */
823 return -24;
824 else
825 return 0;
826 }
827
828 if (u->Save_RP)
53a5351d 829 return (TARGET_PTR_BIT == 64 ? -16 : -20);
c906108c
SS
830 else if (u->stub_unwind.stub_type != 0)
831 {
832 switch (u->stub_unwind.stub_type)
833 {
834 case EXPORT:
835 case IMPORT:
836 return -24;
837 case PARAMETER_RELOCATION:
838 return -8;
839 default:
840 return 0;
841 }
842 }
843 else
844 return 0;
845}
846\f
847int
60383d10 848hppa_frameless_function_invocation (struct frame_info *frame)
c906108c
SS
849{
850 struct unwind_table_entry *u;
851
ef6e7e13 852 u = find_unwind_entry (get_frame_pc (frame));
c906108c
SS
853
854 if (u == 0)
855 return 0;
856
857 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
858}
859
d709c020
JB
860/* Immediately after a function call, return the saved pc.
861 Can't go through the frames for this because on some machines
862 the new frame is not set up until the new function executes
863 some instructions. */
864
c906108c 865CORE_ADDR
60383d10 866hppa_saved_pc_after_call (struct frame_info *frame)
c906108c
SS
867{
868 int ret_regnum;
869 CORE_ADDR pc;
870 struct unwind_table_entry *u;
871
872 ret_regnum = find_return_regnum (get_frame_pc (frame));
873 pc = read_register (ret_regnum) & ~0x3;
c5aa993b 874
c906108c
SS
875 /* If PC is in a linker stub, then we need to dig the address
876 the stub will return to out of the stack. */
877 u = find_unwind_entry (pc);
878 if (u && u->stub_unwind.stub_type != 0)
8bedc050 879 return DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
880 else
881 return pc;
882}
883\f
884CORE_ADDR
fba45db2 885hppa_frame_saved_pc (struct frame_info *frame)
c906108c
SS
886{
887 CORE_ADDR pc = get_frame_pc (frame);
888 struct unwind_table_entry *u;
65e82032 889 CORE_ADDR old_pc = 0;
c5aa993b
JM
890 int spun_around_loop = 0;
891 int rp_offset = 0;
c906108c
SS
892
893 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
894 at the base of the frame in an interrupt handler. Registers within
895 are saved in the exact same order as GDB numbers registers. How
896 convienent. */
897 if (pc_in_interrupt_handler (pc))
ef6e7e13 898 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
53a5351d 899 TARGET_PTR_BIT / 8) & ~0x3;
c906108c 900
ef6e7e13
AC
901 if ((get_frame_pc (frame) >= get_frame_base (frame)
902 && (get_frame_pc (frame)
903 <= (get_frame_base (frame)
904 /* A call dummy is sized in words, but it is actually a
905 series of instructions. Account for that scaling
906 factor. */
907 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
908 * CALL_DUMMY_LENGTH)
909 /* Similarly we have to account for 64bit wide register
910 saves. */
911 + (32 * REGISTER_SIZE)
912 /* We always consider FP regs 8 bytes long. */
913 + (NUM_REGS - FP0_REGNUM) * 8
914 /* Similarly we have to account for 64bit wide register
915 saves. */
916 + (6 * REGISTER_SIZE)))))
104c1213 917 {
ef6e7e13 918 return read_memory_integer ((get_frame_base (frame)
104c1213
JM
919 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
920 TARGET_PTR_BIT / 8) & ~0x3;
921 }
922
c906108c
SS
923#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
924 /* Deal with signal handler caller frames too. */
5a203e44 925 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
926 {
927 CORE_ADDR rp;
928 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
929 return rp & ~0x3;
930 }
931#endif
932
60383d10 933 if (hppa_frameless_function_invocation (frame))
c906108c
SS
934 {
935 int ret_regnum;
936
937 ret_regnum = find_return_regnum (pc);
938
939 /* If the next frame is an interrupt frame or a signal
c5aa993b
JM
940 handler caller, then we need to look in the saved
941 register area to get the return pointer (the values
942 in the registers may not correspond to anything useful). */
ef6e7e13
AC
943 if (get_next_frame (frame)
944 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
945 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
c906108c 946 {
43bd9a9e 947 CORE_ADDR *saved_regs;
ef6e7e13
AC
948 hppa_frame_init_saved_regs (get_next_frame (frame));
949 saved_regs = get_frame_saved_regs (get_next_frame (frame));
43bd9a9e 950 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 951 TARGET_PTR_BIT / 8) & 0x2)
c906108c 952 {
43bd9a9e 953 pc = read_memory_integer (saved_regs[31],
53a5351d 954 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
955
956 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
957 with a return pointer in %rp and the kernel call with
958 a return pointer in %r31. We return the %rp variant
959 if %r31 is the same as frame->pc. */
ef6e7e13 960 if (pc == get_frame_pc (frame))
43bd9a9e 961 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 962 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
963 }
964 else
43bd9a9e 965 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 966 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
967 }
968 else
969 pc = read_register (ret_regnum) & ~0x3;
970 }
971 else
972 {
973 spun_around_loop = 0;
c5aa993b 974 old_pc = pc;
c906108c 975
c5aa993b 976 restart:
c906108c
SS
977 rp_offset = rp_saved (pc);
978
979 /* Similar to code in frameless function case. If the next
c5aa993b
JM
980 frame is a signal or interrupt handler, then dig the right
981 information out of the saved register info. */
c906108c 982 if (rp_offset == 0
ef6e7e13
AC
983 && get_next_frame (frame)
984 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
985 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
c906108c 986 {
43bd9a9e 987 CORE_ADDR *saved_regs;
ef6e7e13
AC
988 hppa_frame_init_saved_regs (get_next_frame (frame));
989 saved_regs = get_frame_saved_regs (get_next_frame (frame));
43bd9a9e 990 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 991 TARGET_PTR_BIT / 8) & 0x2)
c906108c 992 {
43bd9a9e 993 pc = read_memory_integer (saved_regs[31],
53a5351d 994 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
995
996 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
997 with a return pointer in %rp and the kernel call with
998 a return pointer in %r31. We return the %rp variant
999 if %r31 is the same as frame->pc. */
ef6e7e13 1000 if (pc == get_frame_pc (frame))
43bd9a9e 1001 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1002 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1003 }
1004 else
43bd9a9e 1005 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1006 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1007 }
1008 else if (rp_offset == 0)
c5aa993b
JM
1009 {
1010 old_pc = pc;
1011 pc = read_register (RP_REGNUM) & ~0x3;
1012 }
c906108c 1013 else
c5aa993b
JM
1014 {
1015 old_pc = pc;
ef6e7e13 1016 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
53a5351d 1017 TARGET_PTR_BIT / 8) & ~0x3;
c5aa993b 1018 }
c906108c
SS
1019 }
1020
1021 /* If PC is inside a linker stub, then dig out the address the stub
1022 will return to.
1023
1024 Don't do this for long branch stubs. Why? For some unknown reason
1025 _start is marked as a long branch stub in hpux10. */
1026 u = find_unwind_entry (pc);
1027 if (u && u->stub_unwind.stub_type != 0
1028 && u->stub_unwind.stub_type != LONG_BRANCH)
1029 {
1030 unsigned int insn;
1031
1032 /* If this is a dynamic executable, and we're in a signal handler,
c5aa993b
JM
1033 then the call chain will eventually point us into the stub for
1034 _sigreturn. Unlike most cases, we'll be pointed to the branch
1035 to the real sigreturn rather than the code after the real branch!.
c906108c 1036
c5aa993b
JM
1037 Else, try to dig the address the stub will return to in the normal
1038 fashion. */
c906108c
SS
1039 insn = read_memory_integer (pc, 4);
1040 if ((insn & 0xfc00e000) == 0xe8000000)
1041 return (pc + extract_17 (insn) + 8) & ~0x3;
1042 else
1043 {
c5aa993b
JM
1044 if (old_pc == pc)
1045 spun_around_loop++;
1046
1047 if (spun_around_loop > 1)
1048 {
1049 /* We're just about to go around the loop again with
1050 no more hope of success. Die. */
1051 error ("Unable to find return pc for this frame");
1052 }
1053 else
1054 goto restart;
c906108c
SS
1055 }
1056 }
1057
1058 return pc;
1059}
1060\f
1061/* We need to correct the PC and the FP for the outermost frame when we are
1062 in a system call. */
1063
1064void
60383d10 1065hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
c906108c
SS
1066{
1067 int flags;
1068 int framesize;
1069
ef6e7e13 1070 if (get_next_frame (frame) && !fromleaf)
c906108c
SS
1071 return;
1072
618ce49f
AC
1073 /* If the next frame represents a frameless function invocation then
1074 we have to do some adjustments that are normally done by
1075 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1076 this case.) */
c906108c
SS
1077 if (fromleaf)
1078 {
1079 /* Find the framesize of *this* frame without peeking at the PC
c5aa993b 1080 in the current frame structure (it isn't set yet). */
8bedc050 1081 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
c906108c
SS
1082
1083 /* Now adjust our base frame accordingly. If we have a frame pointer
c5aa993b
JM
1084 use it, else subtract the size of this frame from the current
1085 frame. (we always want frame->frame to point at the lowest address
1086 in the frame). */
c906108c 1087 if (framesize == -1)
ef6e7e13 1088 deprecated_update_frame_base_hack (frame, TARGET_READ_FP ());
c906108c 1089 else
ef6e7e13 1090 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
c906108c
SS
1091 return;
1092 }
1093
1094 flags = read_register (FLAGS_REGNUM);
c5aa993b 1095 if (flags & 2) /* In system call? */
ef6e7e13 1096 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
c906108c
SS
1097
1098 /* The outermost frame is always derived from PC-framesize
1099
1100 One might think frameless innermost frames should have
1101 a frame->frame that is the same as the parent's frame->frame.
1102 That is wrong; frame->frame in that case should be the *high*
1103 address of the parent's frame. It's complicated as hell to
1104 explain, but the parent *always* creates some stack space for
1105 the child. So the child actually does have a frame of some
1106 sorts, and its base is the high address in its parent's frame. */
ef6e7e13 1107 framesize = find_proc_framesize (get_frame_pc (frame));
c906108c 1108 if (framesize == -1)
ef6e7e13 1109 deprecated_update_frame_base_hack (frame, TARGET_READ_FP ());
c906108c 1110 else
ef6e7e13 1111 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
c906108c
SS
1112}
1113\f
a5afb99f
AC
1114/* Given a GDB frame, determine the address of the calling function's
1115 frame. This will be used to create a new GDB frame struct, and
e9582e71
AC
1116 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1117 will be called for the new frame.
c906108c
SS
1118
1119 This may involve searching through prologues for several functions
1120 at boundaries where GCC calls HP C code, or where code which has
1121 a frame pointer calls code without a frame pointer. */
1122
1123CORE_ADDR
60383d10 1124hppa_frame_chain (struct frame_info *frame)
c906108c
SS
1125{
1126 int my_framesize, caller_framesize;
1127 struct unwind_table_entry *u;
1128 CORE_ADDR frame_base;
1129 struct frame_info *tmp_frame;
1130
c2c6d25f
JM
1131 /* A frame in the current frame list, or zero. */
1132 struct frame_info *saved_regs_frame = 0;
43bd9a9e
AC
1133 /* Where the registers were saved in saved_regs_frame. If
1134 saved_regs_frame is zero, this is garbage. */
1135 CORE_ADDR *saved_regs = NULL;
c2c6d25f 1136
c5aa993b 1137 CORE_ADDR caller_pc;
c906108c
SS
1138
1139 struct minimal_symbol *min_frame_symbol;
c5aa993b
JM
1140 struct symbol *frame_symbol;
1141 char *frame_symbol_name;
c906108c
SS
1142
1143 /* If this is a threaded application, and we see the
1144 routine "__pthread_exit", treat it as the stack root
1145 for this thread. */
ef6e7e13
AC
1146 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1147 frame_symbol = find_pc_function (get_frame_pc (frame));
c906108c 1148
c5aa993b 1149 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
c906108c 1150 {
c5aa993b
JM
1151 /* The test above for "no user function name" would defend
1152 against the slim likelihood that a user might define a
1153 routine named "__pthread_exit" and then try to debug it.
1154
1155 If it weren't commented out, and you tried to debug the
1156 pthread library itself, you'd get errors.
1157
1158 So for today, we don't make that check. */
22abf04a 1159 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
c5aa993b
JM
1160 if (frame_symbol_name != 0)
1161 {
1162 if (0 == strncmp (frame_symbol_name,
1163 THREAD_INITIAL_FRAME_SYMBOL,
1164 THREAD_INITIAL_FRAME_SYM_LEN))
1165 {
1166 /* Pretend we've reached the bottom of the stack. */
1167 return (CORE_ADDR) 0;
1168 }
1169 }
1170 } /* End of hacky code for threads. */
1171
c906108c
SS
1172 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1173 are easy; at *sp we have a full save state strucutre which we can
1174 pull the old stack pointer from. Also see frame_saved_pc for
1175 code to dig a saved PC out of the save state structure. */
ef6e7e13
AC
1176 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1177 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
53a5351d 1178 TARGET_PTR_BIT / 8);
c906108c 1179#ifdef FRAME_BASE_BEFORE_SIGTRAMP
5a203e44 1180 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
1181 {
1182 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1183 }
1184#endif
1185 else
ef6e7e13 1186 frame_base = get_frame_base (frame);
c906108c
SS
1187
1188 /* Get frame sizes for the current frame and the frame of the
1189 caller. */
ef6e7e13 1190 my_framesize = find_proc_framesize (get_frame_pc (frame));
8bedc050 1191 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
1192
1193 /* If we can't determine the caller's PC, then it's not likely we can
1194 really determine anything meaningful about its frame. We'll consider
1195 this to be stack bottom. */
1196 if (caller_pc == (CORE_ADDR) 0)
1197 return (CORE_ADDR) 0;
1198
8bedc050 1199 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1200
1201 /* If caller does not have a frame pointer, then its frame
1202 can be found at current_frame - caller_framesize. */
1203 if (caller_framesize != -1)
1204 {
1205 return frame_base - caller_framesize;
1206 }
1207 /* Both caller and callee have frame pointers and are GCC compiled
1208 (SAVE_SP bit in unwind descriptor is on for both functions.
1209 The previous frame pointer is found at the top of the current frame. */
1210 if (caller_framesize == -1 && my_framesize == -1)
1211 {
53a5351d 1212 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
c906108c
SS
1213 }
1214 /* Caller has a frame pointer, but callee does not. This is a little
1215 more difficult as GCC and HP C lay out locals and callee register save
1216 areas very differently.
1217
1218 The previous frame pointer could be in a register, or in one of
1219 several areas on the stack.
1220
1221 Walk from the current frame to the innermost frame examining
1222 unwind descriptors to determine if %r3 ever gets saved into the
1223 stack. If so return whatever value got saved into the stack.
1224 If it was never saved in the stack, then the value in %r3 is still
1225 valid, so use it.
1226
1227 We use information from unwind descriptors to determine if %r3
1228 is saved into the stack (Entry_GR field has this information). */
1229
ef6e7e13 1230 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
c906108c 1231 {
ef6e7e13 1232 u = find_unwind_entry (get_frame_pc (tmp_frame));
c906108c
SS
1233
1234 if (!u)
1235 {
1236 /* We could find this information by examining prologues. I don't
1237 think anyone has actually written any tools (not even "strip")
1238 which leave them out of an executable, so maybe this is a moot
1239 point. */
c5aa993b
JM
1240 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1241 code that doesn't have unwind entries. For example, stepping into
1242 the dynamic linker will give you a PC that has none. Thus, I've
1243 disabled this warning. */
c906108c 1244#if 0
ef6e7e13 1245 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
c906108c
SS
1246#endif
1247 return (CORE_ADDR) 0;
1248 }
1249
c2c6d25f 1250 if (u->Save_SP
5a203e44 1251 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
ef6e7e13 1252 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
c906108c 1253 break;
c2c6d25f
JM
1254
1255 /* Entry_GR specifies the number of callee-saved general registers
1256 saved in the stack. It starts at %r3, so %r3 would be 1. */
1257 if (u->Entry_GR >= 1)
1258 {
1259 /* The unwind entry claims that r3 is saved here. However,
1260 in optimized code, GCC often doesn't actually save r3.
1261 We'll discover this if we look at the prologue. */
43bd9a9e
AC
1262 hppa_frame_init_saved_regs (tmp_frame);
1263 saved_regs = get_frame_saved_regs (tmp_frame);
c2c6d25f
JM
1264 saved_regs_frame = tmp_frame;
1265
1266 /* If we have an address for r3, that's good. */
43bd9a9e 1267 if (saved_regs[FP_REGNUM])
c2c6d25f
JM
1268 break;
1269 }
c906108c
SS
1270 }
1271
1272 if (tmp_frame)
1273 {
1274 /* We may have walked down the chain into a function with a frame
c5aa993b 1275 pointer. */
c906108c 1276 if (u->Save_SP
5a203e44 1277 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
ef6e7e13 1278 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
c906108c 1279 {
ef6e7e13 1280 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
c906108c
SS
1281 }
1282 /* %r3 was saved somewhere in the stack. Dig it out. */
c5aa993b 1283 else
c906108c 1284 {
c906108c
SS
1285 /* Sick.
1286
1287 For optimization purposes many kernels don't have the
1288 callee saved registers into the save_state structure upon
1289 entry into the kernel for a syscall; the optimization
1290 is usually turned off if the process is being traced so
1291 that the debugger can get full register state for the
1292 process.
c5aa993b 1293
c906108c
SS
1294 This scheme works well except for two cases:
1295
c5aa993b
JM
1296 * Attaching to a process when the process is in the
1297 kernel performing a system call (debugger can't get
1298 full register state for the inferior process since
1299 the process wasn't being traced when it entered the
1300 system call).
c906108c 1301
c5aa993b
JM
1302 * Register state is not complete if the system call
1303 causes the process to core dump.
c906108c
SS
1304
1305
1306 The following heinous code is an attempt to deal with
1307 the lack of register state in a core dump. It will
1308 fail miserably if the function which performs the
1309 system call has a variable sized stack frame. */
1310
c2c6d25f 1311 if (tmp_frame != saved_regs_frame)
43bd9a9e
AC
1312 {
1313 hppa_frame_init_saved_regs (tmp_frame);
1314 saved_regs = get_frame_saved_regs (tmp_frame);
1315 }
c906108c
SS
1316
1317 /* Abominable hack. */
1318 if (current_target.to_has_execution == 0
43bd9a9e
AC
1319 && ((saved_regs[FLAGS_REGNUM]
1320 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1321 TARGET_PTR_BIT / 8)
c906108c 1322 & 0x2))
43bd9a9e 1323 || (saved_regs[FLAGS_REGNUM] == 0
c906108c
SS
1324 && read_register (FLAGS_REGNUM) & 0x2)))
1325 {
8bedc050 1326 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1327 if (!u)
1328 {
43bd9a9e 1329 return read_memory_integer (saved_regs[FP_REGNUM],
53a5351d 1330 TARGET_PTR_BIT / 8);
c906108c
SS
1331 }
1332 else
1333 {
1334 return frame_base - (u->Total_frame_size << 3);
1335 }
1336 }
c5aa993b 1337
43bd9a9e 1338 return read_memory_integer (saved_regs[FP_REGNUM],
53a5351d 1339 TARGET_PTR_BIT / 8);
c906108c
SS
1340 }
1341 }
1342 else
1343 {
c906108c
SS
1344 /* Get the innermost frame. */
1345 tmp_frame = frame;
ef6e7e13
AC
1346 while (get_next_frame (tmp_frame) != NULL)
1347 tmp_frame = get_next_frame (tmp_frame);
c906108c 1348
c2c6d25f 1349 if (tmp_frame != saved_regs_frame)
43bd9a9e
AC
1350 {
1351 hppa_frame_init_saved_regs (tmp_frame);
1352 saved_regs = get_frame_saved_regs (tmp_frame);
1353 }
c2c6d25f 1354
c906108c
SS
1355 /* Abominable hack. See above. */
1356 if (current_target.to_has_execution == 0
43bd9a9e
AC
1357 && ((saved_regs[FLAGS_REGNUM]
1358 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1359 TARGET_PTR_BIT / 8)
c906108c 1360 & 0x2))
43bd9a9e 1361 || (saved_regs[FLAGS_REGNUM] == 0
c5aa993b 1362 && read_register (FLAGS_REGNUM) & 0x2)))
c906108c 1363 {
8bedc050 1364 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1365 if (!u)
1366 {
43bd9a9e 1367 return read_memory_integer (saved_regs[FP_REGNUM],
53a5351d 1368 TARGET_PTR_BIT / 8);
c906108c 1369 }
c5aa993b
JM
1370 else
1371 {
1372 return frame_base - (u->Total_frame_size << 3);
1373 }
c906108c 1374 }
c5aa993b 1375
c906108c 1376 /* The value in %r3 was never saved into the stack (thus %r3 still
c5aa993b 1377 holds the value of the previous frame pointer). */
c906108c
SS
1378 return TARGET_READ_FP ();
1379 }
1380}
c906108c 1381\f
c5aa993b 1382
c906108c
SS
1383/* To see if a frame chain is valid, see if the caller looks like it
1384 was compiled with gcc. */
1385
1386int
fba45db2 1387hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
1388{
1389 struct minimal_symbol *msym_us;
1390 struct minimal_symbol *msym_start;
1391 struct unwind_table_entry *u, *next_u = NULL;
1392 struct frame_info *next;
1393
ef6e7e13 1394 u = find_unwind_entry (get_frame_pc (thisframe));
c906108c
SS
1395
1396 if (u == NULL)
1397 return 1;
1398
1399 /* We can't just check that the same of msym_us is "_start", because
1400 someone idiotically decided that they were going to make a Ltext_end
1401 symbol with the same address. This Ltext_end symbol is totally
1402 indistinguishable (as nearly as I can tell) from the symbol for a function
1403 which is (legitimately, since it is in the user's namespace)
1404 named Ltext_end, so we can't just ignore it. */
8bedc050 1405 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
c906108c
SS
1406 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1407 if (msym_us
1408 && msym_start
1409 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1410 return 0;
1411
1412 /* Grrrr. Some new idiot decided that they don't want _start for the
1413 PRO configurations; $START$ calls main directly.... Deal with it. */
1414 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1415 if (msym_us
1416 && msym_start
1417 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1418 return 0;
1419
1420 next = get_next_frame (thisframe);
1421 if (next)
ef6e7e13 1422 next_u = find_unwind_entry (get_frame_pc (next));
c906108c
SS
1423
1424 /* If this frame does not save SP, has no stack, isn't a stub,
1425 and doesn't "call" an interrupt routine or signal handler caller,
1426 then its not valid. */
1427 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
ef6e7e13 1428 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
c906108c
SS
1429 || (next_u && next_u->HP_UX_interrupt_marker))
1430 return 1;
1431
ef6e7e13 1432 if (pc_in_linker_stub (get_frame_pc (thisframe)))
c906108c
SS
1433 return 1;
1434
1435 return 0;
1436}
1437
7daf4f5b
JB
1438/* These functions deal with saving and restoring register state
1439 around a function call in the inferior. They keep the stack
1440 double-word aligned; eventually, on an hp700, the stack will have
1441 to be aligned to a 64-byte boundary. */
c906108c
SS
1442
1443void
7daf4f5b 1444hppa_push_dummy_frame (void)
c906108c
SS
1445{
1446 CORE_ADDR sp, pc, pcspace;
1447 register int regnum;
53a5351d 1448 CORE_ADDR int_buffer;
c906108c
SS
1449 double freg_buffer;
1450
60383d10 1451 pc = hppa_target_read_pc (inferior_ptid);
c906108c
SS
1452 int_buffer = read_register (FLAGS_REGNUM);
1453 if (int_buffer & 0x2)
1454 {
3371ccc0 1455 const unsigned int sid = (pc >> 30) & 0x3;
c906108c
SS
1456 if (sid == 0)
1457 pcspace = read_register (SR4_REGNUM);
1458 else
1459 pcspace = read_register (SR4_REGNUM + 4 + sid);
c906108c
SS
1460 }
1461 else
1462 pcspace = read_register (PCSQ_HEAD_REGNUM);
1463
1464 /* Space for "arguments"; the RP goes in here. */
1465 sp = read_register (SP_REGNUM) + 48;
1466 int_buffer = read_register (RP_REGNUM) | 0x3;
53a5351d
JM
1467
1468 /* The 32bit and 64bit ABIs save the return pointer into different
1469 stack slots. */
1470 if (REGISTER_SIZE == 8)
1471 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1472 else
1473 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1474
1475 int_buffer = TARGET_READ_FP ();
53a5351d 1476 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1477
1478 write_register (FP_REGNUM, sp);
1479
53a5351d 1480 sp += 2 * REGISTER_SIZE;
c906108c
SS
1481
1482 for (regnum = 1; regnum < 32; regnum++)
1483 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1484 sp = push_word (sp, read_register (regnum));
1485
53a5351d
JM
1486 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1487 if (REGISTER_SIZE != 8)
1488 sp += 4;
c906108c
SS
1489
1490 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1491 {
73937e03
AC
1492 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1493 (char *) &freg_buffer, 8);
c5aa993b 1494 sp = push_bytes (sp, (char *) &freg_buffer, 8);
c906108c
SS
1495 }
1496 sp = push_word (sp, read_register (IPSW_REGNUM));
1497 sp = push_word (sp, read_register (SAR_REGNUM));
1498 sp = push_word (sp, pc);
1499 sp = push_word (sp, pcspace);
1500 sp = push_word (sp, pc + 4);
1501 sp = push_word (sp, pcspace);
1502 write_register (SP_REGNUM, sp);
1503}
1504
1505static void
fba45db2 1506find_dummy_frame_regs (struct frame_info *frame,
43bd9a9e 1507 CORE_ADDR frame_saved_regs[])
c906108c 1508{
ef6e7e13 1509 CORE_ADDR fp = get_frame_base (frame);
c906108c
SS
1510 int i;
1511
53a5351d
JM
1512 /* The 32bit and 64bit ABIs save RP into different locations. */
1513 if (REGISTER_SIZE == 8)
43bd9a9e 1514 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
53a5351d 1515 else
43bd9a9e 1516 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
53a5351d 1517
43bd9a9e 1518 frame_saved_regs[FP_REGNUM] = fp;
c906108c 1519
43bd9a9e 1520 frame_saved_regs[1] = fp + (2 * REGISTER_SIZE);
53a5351d
JM
1521
1522 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
c906108c
SS
1523 {
1524 if (i != FP_REGNUM)
1525 {
43bd9a9e 1526 frame_saved_regs[i] = fp;
53a5351d 1527 fp += REGISTER_SIZE;
c906108c
SS
1528 }
1529 }
1530
53a5351d
JM
1531 /* This is not necessary or desirable for the 64bit ABI. */
1532 if (REGISTER_SIZE != 8)
1533 fp += 4;
1534
c906108c 1535 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
43bd9a9e
AC
1536 frame_saved_regs[i] = fp;
1537
1538 frame_saved_regs[IPSW_REGNUM] = fp;
1539 frame_saved_regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1540 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1541 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1542 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1543 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
c906108c
SS
1544}
1545
1546void
fba45db2 1547hppa_pop_frame (void)
c906108c
SS
1548{
1549 register struct frame_info *frame = get_current_frame ();
1550 register CORE_ADDR fp, npc, target_pc;
1551 register int regnum;
43bd9a9e 1552 CORE_ADDR *fsr;
c906108c
SS
1553 double freg_buffer;
1554
c193f6ac 1555 fp = get_frame_base (frame);
43bd9a9e
AC
1556 hppa_frame_init_saved_regs (frame);
1557 fsr = get_frame_saved_regs (frame);
c906108c
SS
1558
1559#ifndef NO_PC_SPACE_QUEUE_RESTORE
43bd9a9e
AC
1560 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1561 restore_pc_queue (fsr);
c906108c
SS
1562#endif
1563
1564 for (regnum = 31; regnum > 0; regnum--)
43bd9a9e
AC
1565 if (fsr[regnum])
1566 write_register (regnum, read_memory_integer (fsr[regnum],
53a5351d 1567 REGISTER_SIZE));
c906108c 1568
c5aa993b 1569 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
43bd9a9e 1570 if (fsr[regnum])
c906108c 1571 {
43bd9a9e 1572 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
73937e03
AC
1573 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1574 (char *) &freg_buffer, 8);
c906108c
SS
1575 }
1576
43bd9a9e 1577 if (fsr[IPSW_REGNUM])
c906108c 1578 write_register (IPSW_REGNUM,
43bd9a9e 1579 read_memory_integer (fsr[IPSW_REGNUM],
53a5351d 1580 REGISTER_SIZE));
c906108c 1581
43bd9a9e 1582 if (fsr[SAR_REGNUM])
c906108c 1583 write_register (SAR_REGNUM,
43bd9a9e 1584 read_memory_integer (fsr[SAR_REGNUM],
53a5351d 1585 REGISTER_SIZE));
c906108c
SS
1586
1587 /* If the PC was explicitly saved, then just restore it. */
43bd9a9e 1588 if (fsr[PCOQ_TAIL_REGNUM])
c906108c 1589 {
43bd9a9e 1590 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
53a5351d 1591 REGISTER_SIZE);
c906108c
SS
1592 write_register (PCOQ_TAIL_REGNUM, npc);
1593 }
1594 /* Else use the value in %rp to set the new PC. */
c5aa993b 1595 else
c906108c
SS
1596 {
1597 npc = read_register (RP_REGNUM);
1598 write_pc (npc);
1599 }
1600
53a5351d 1601 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
c906108c 1602
43bd9a9e 1603 if (fsr[IPSW_REGNUM]) /* call dummy */
c906108c
SS
1604 write_register (SP_REGNUM, fp - 48);
1605 else
1606 write_register (SP_REGNUM, fp);
1607
1608 /* The PC we just restored may be inside a return trampoline. If so
1609 we want to restart the inferior and run it through the trampoline.
1610
1611 Do this by setting a momentary breakpoint at the location the
1612 trampoline returns to.
1613
1614 Don't skip through the trampoline if we're popping a dummy frame. */
1615 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
43bd9a9e 1616 if (target_pc && !fsr[IPSW_REGNUM])
c906108c
SS
1617 {
1618 struct symtab_and_line sal;
1619 struct breakpoint *breakpoint;
1620 struct cleanup *old_chain;
1621
1622 /* Set up our breakpoint. Set it to be silent as the MI code
c5aa993b 1623 for "return_command" will print the frame we returned to. */
c906108c
SS
1624 sal = find_pc_line (target_pc, 0);
1625 sal.pc = target_pc;
516b1f28 1626 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
c906108c
SS
1627 breakpoint->silent = 1;
1628
1629 /* So we can clean things up. */
4d6140d9 1630 old_chain = make_cleanup_delete_breakpoint (breakpoint);
c906108c
SS
1631
1632 /* Start up the inferior. */
1633 clear_proceed_status ();
1634 proceed_to_finish = 1;
2acceee2 1635 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
c906108c
SS
1636
1637 /* Perform our cleanups. */
1638 do_cleanups (old_chain);
1639 }
1640 flush_cached_frames ();
1641}
1642
1643/* After returning to a dummy on the stack, restore the instruction
1644 queue space registers. */
1645
1646static int
43bd9a9e 1647restore_pc_queue (CORE_ADDR *fsr)
c906108c
SS
1648{
1649 CORE_ADDR pc = read_pc ();
43bd9a9e 1650 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
53a5351d 1651 TARGET_PTR_BIT / 8);
c906108c
SS
1652 struct target_waitstatus w;
1653 int insn_count;
1654
1655 /* Advance past break instruction in the call dummy. */
1656 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1657 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1658
1659 /* HPUX doesn't let us set the space registers or the space
1660 registers of the PC queue through ptrace. Boo, hiss.
1661 Conveniently, the call dummy has this sequence of instructions
1662 after the break:
c5aa993b
JM
1663 mtsp r21, sr0
1664 ble,n 0(sr0, r22)
1665
c906108c
SS
1666 So, load up the registers and single step until we are in the
1667 right place. */
1668
43bd9a9e 1669 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
53a5351d 1670 REGISTER_SIZE));
c906108c
SS
1671 write_register (22, new_pc);
1672
1673 for (insn_count = 0; insn_count < 3; insn_count++)
1674 {
1675 /* FIXME: What if the inferior gets a signal right now? Want to
c5aa993b
JM
1676 merge this into wait_for_inferior (as a special kind of
1677 watchpoint? By setting a breakpoint at the end? Is there
1678 any other choice? Is there *any* way to do this stuff with
1679 ptrace() or some equivalent?). */
c906108c 1680 resume (1, 0);
39f77062 1681 target_wait (inferior_ptid, &w);
c906108c
SS
1682
1683 if (w.kind == TARGET_WAITKIND_SIGNALLED)
c5aa993b
JM
1684 {
1685 stop_signal = w.value.sig;
1686 terminal_ours_for_output ();
1687 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
c906108c
SS
1688 target_signal_to_name (stop_signal),
1689 target_signal_to_string (stop_signal));
c5aa993b
JM
1690 gdb_flush (gdb_stdout);
1691 return 0;
1692 }
c906108c
SS
1693 }
1694 target_terminal_ours ();
1695 target_fetch_registers (-1);
1696 return 1;
1697}
1698
c2c6d25f
JM
1699
1700#ifdef PA20W_CALLING_CONVENTIONS
1701
53a5351d
JM
1702/* This function pushes a stack frame with arguments as part of the
1703 inferior function calling mechanism.
c906108c 1704
c2c6d25f
JM
1705 This is the version for the PA64, in which later arguments appear
1706 at higher addresses. (The stack always grows towards higher
1707 addresses.)
c906108c 1708
53a5351d
JM
1709 We simply allocate the appropriate amount of stack space and put
1710 arguments into their proper slots. The call dummy code will copy
1711 arguments into registers as needed by the ABI.
c906108c 1712
c2c6d25f
JM
1713 This ABI also requires that the caller provide an argument pointer
1714 to the callee, so we do that too. */
53a5351d 1715
c906108c 1716CORE_ADDR
ea7c478f 1717hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1718 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1719{
1720 /* array of arguments' offsets */
c5aa993b 1721 int *offset = (int *) alloca (nargs * sizeof (int));
53a5351d
JM
1722
1723 /* array of arguments' lengths: real lengths in bytes, not aligned to
1724 word size */
c5aa993b 1725 int *lengths = (int *) alloca (nargs * sizeof (int));
c906108c 1726
53a5351d
JM
1727 /* The value of SP as it was passed into this function after
1728 aligning. */
1729 CORE_ADDR orig_sp = STACK_ALIGN (sp);
c906108c 1730
53a5351d
JM
1731 /* The number of stack bytes occupied by the current argument. */
1732 int bytes_reserved;
1733
1734 /* The total number of bytes reserved for the arguments. */
1735 int cum_bytes_reserved = 0;
c906108c 1736
53a5351d
JM
1737 /* Similarly, but aligned. */
1738 int cum_bytes_aligned = 0;
1739 int i;
c5aa993b 1740
53a5351d 1741 /* Iterate over each argument provided by the user. */
c906108c
SS
1742 for (i = 0; i < nargs; i++)
1743 {
c2c6d25f
JM
1744 struct type *arg_type = VALUE_TYPE (args[i]);
1745
1746 /* Integral scalar values smaller than a register are padded on
1747 the left. We do this by promoting them to full-width,
1748 although the ABI says to pad them with garbage. */
1749 if (is_integral_type (arg_type)
1750 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1751 {
1752 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1753 ? builtin_type_unsigned_long
1754 : builtin_type_long),
1755 args[i]);
1756 arg_type = VALUE_TYPE (args[i]);
1757 }
1758
1759 lengths[i] = TYPE_LENGTH (arg_type);
c906108c 1760
53a5351d
JM
1761 /* Align the size of the argument to the word size for this
1762 target. */
1763 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
c906108c 1764
53a5351d
JM
1765 offset[i] = cum_bytes_reserved;
1766
c2c6d25f
JM
1767 /* Aggregates larger than eight bytes (the only types larger
1768 than eight bytes we have) are aligned on a 16-byte boundary,
1769 possibly padded on the right with garbage. This may leave an
1770 empty word on the stack, and thus an unused register, as per
1771 the ABI. */
1772 if (bytes_reserved > 8)
1773 {
1774 /* Round up the offset to a multiple of two slots. */
1775 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1776 & -(2*REGISTER_SIZE));
c906108c 1777
c2c6d25f
JM
1778 /* Note the space we've wasted, if any. */
1779 bytes_reserved += new_offset - offset[i];
1780 offset[i] = new_offset;
1781 }
53a5351d 1782
c2c6d25f
JM
1783 cum_bytes_reserved += bytes_reserved;
1784 }
1785
1786 /* CUM_BYTES_RESERVED already accounts for all the arguments
1787 passed by the user. However, the ABIs mandate minimum stack space
1788 allocations for outgoing arguments.
1789
1790 The ABIs also mandate minimum stack alignments which we must
1791 preserve. */
1792 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1793 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1794
1795 /* Now write each of the args at the proper offset down the stack. */
1796 for (i = 0; i < nargs; i++)
1797 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1798
1799 /* If a structure has to be returned, set up register 28 to hold its
1800 address */
1801 if (struct_return)
1802 write_register (28, struct_addr);
1803
1804 /* For the PA64 we must pass a pointer to the outgoing argument list.
1805 The ABI mandates that the pointer should point to the first byte of
1806 storage beyond the register flushback area.
1807
1808 However, the call dummy expects the outgoing argument pointer to
1809 be passed in register %r4. */
1810 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1811
1812 /* ?!? This needs further work. We need to set up the global data
1813 pointer for this procedure. This assumes the same global pointer
1814 for every procedure. The call dummy expects the dp value to
1815 be passed in register %r6. */
1816 write_register (6, read_register (27));
1817
1818 /* The stack will have 64 bytes of additional space for a frame marker. */
1819 return sp + 64;
1820}
1821
1822#else
1823
1824/* This function pushes a stack frame with arguments as part of the
1825 inferior function calling mechanism.
1826
1827 This is the version of the function for the 32-bit PA machines, in
1828 which later arguments appear at lower addresses. (The stack always
1829 grows towards higher addresses.)
1830
1831 We simply allocate the appropriate amount of stack space and put
1832 arguments into their proper slots. The call dummy code will copy
1833 arguments into registers as needed by the ABI. */
1834
1835CORE_ADDR
ea7c478f 1836hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1837 int struct_return, CORE_ADDR struct_addr)
c2c6d25f
JM
1838{
1839 /* array of arguments' offsets */
1840 int *offset = (int *) alloca (nargs * sizeof (int));
1841
1842 /* array of arguments' lengths: real lengths in bytes, not aligned to
1843 word size */
1844 int *lengths = (int *) alloca (nargs * sizeof (int));
1845
1846 /* The number of stack bytes occupied by the current argument. */
1847 int bytes_reserved;
1848
1849 /* The total number of bytes reserved for the arguments. */
1850 int cum_bytes_reserved = 0;
1851
1852 /* Similarly, but aligned. */
1853 int cum_bytes_aligned = 0;
1854 int i;
1855
1856 /* Iterate over each argument provided by the user. */
1857 for (i = 0; i < nargs; i++)
1858 {
1859 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1860
1861 /* Align the size of the argument to the word size for this
1862 target. */
1863 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1864
b6649e88
AC
1865 offset[i] = (cum_bytes_reserved
1866 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
c2c6d25f
JM
1867
1868 /* If the argument is a double word argument, then it needs to be
1869 double word aligned. */
53a5351d 1870 if ((bytes_reserved == 2 * REGISTER_SIZE)
c2c6d25f 1871 && (offset[i] % 2 * REGISTER_SIZE))
c5aa993b
JM
1872 {
1873 int new_offset = 0;
53a5351d
JM
1874 /* BYTES_RESERVED is already aligned to the word, so we put
1875 the argument at one word more down the stack.
1876
1877 This will leave one empty word on the stack, and one unused
1878 register as mandated by the ABI. */
1879 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1880 & -(2 * REGISTER_SIZE));
1881
1882 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
c5aa993b 1883 {
53a5351d
JM
1884 bytes_reserved += REGISTER_SIZE;
1885 offset[i] += REGISTER_SIZE;
c5aa993b
JM
1886 }
1887 }
c906108c
SS
1888
1889 cum_bytes_reserved += bytes_reserved;
1890
1891 }
1892
c2c6d25f
JM
1893 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1894 by the user. However, the ABI mandates minimum stack space
53a5351d
JM
1895 allocations for outgoing arguments.
1896
c2c6d25f 1897 The ABI also mandates minimum stack alignments which we must
53a5351d 1898 preserve. */
c906108c 1899 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
53a5351d
JM
1900 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1901
1902 /* Now write each of the args at the proper offset down the stack.
53a5351d
JM
1903 ?!? We need to promote values to a full register instead of skipping
1904 words in the stack. */
c906108c
SS
1905 for (i = 0; i < nargs; i++)
1906 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
c906108c 1907
53a5351d
JM
1908 /* If a structure has to be returned, set up register 28 to hold its
1909 address */
c906108c
SS
1910 if (struct_return)
1911 write_register (28, struct_addr);
1912
53a5351d 1913 /* The stack will have 32 bytes of additional space for a frame marker. */
c906108c
SS
1914 return sp + 32;
1915}
1916
c2c6d25f 1917#endif
c906108c
SS
1918
1919/* elz: this function returns a value which is built looking at the given address.
1920 It is called from call_function_by_hand, in case we need to return a
1921 value which is larger than 64 bits, and it is stored in the stack rather than
1922 in the registers r28 and r29 or fr4.
1923 This function does the same stuff as value_being_returned in values.c, but
1924 gets the value from the stack rather than from the buffer where all the
1925 registers were saved when the function called completed. */
ea7c478f 1926struct value *
fba45db2 1927hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
c906108c 1928{
ea7c478f 1929 register struct value *val;
c906108c
SS
1930
1931 val = allocate_value (valtype);
1932 CHECK_TYPEDEF (valtype);
c5aa993b 1933 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
c906108c
SS
1934
1935 return val;
1936}
1937
1938
1939
1940/* elz: Used to lookup a symbol in the shared libraries.
c5aa993b
JM
1941 This function calls shl_findsym, indirectly through a
1942 call to __d_shl_get. __d_shl_get is in end.c, which is always
1943 linked in by the hp compilers/linkers.
1944 The call to shl_findsym cannot be made directly because it needs
1945 to be active in target address space.
1946 inputs: - minimal symbol pointer for the function we want to look up
1947 - address in target space of the descriptor for the library
1948 where we want to look the symbol up.
1949 This address is retrieved using the
1950 som_solib_get_solib_by_pc function (somsolib.c).
1951 output: - real address in the library of the function.
1952 note: the handle can be null, in which case shl_findsym will look for
1953 the symbol in all the loaded shared libraries.
1954 files to look at if you need reference on this stuff:
1955 dld.c, dld_shl_findsym.c
1956 end.c
1957 man entry for shl_findsym */
c906108c
SS
1958
1959CORE_ADDR
fba45db2 1960find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
c906108c 1961{
c5aa993b
JM
1962 struct symbol *get_sym, *symbol2;
1963 struct minimal_symbol *buff_minsym, *msymbol;
1964 struct type *ftype;
ea7c478f
AC
1965 struct value **args;
1966 struct value *funcval;
1967 struct value *val;
c5aa993b
JM
1968
1969 int x, namelen, err_value, tmp = -1;
1970 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1971 CORE_ADDR stub_addr;
1972
1973
ea7c478f 1974 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
c5aa993b
JM
1975 funcval = find_function_in_inferior ("__d_shl_get");
1976 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1977 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1978 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1979 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1980 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
22abf04a 1981 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
c5aa993b
JM
1982 value_return_addr = endo_buff_addr + namelen;
1983 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1984
1985 /* do alignment */
1986 if ((x = value_return_addr % 64) != 0)
1987 value_return_addr = value_return_addr + 64 - x;
1988
1989 errno_return_addr = value_return_addr + 64;
1990
1991
1992 /* set up stuff needed by __d_shl_get in buffer in end.o */
1993
22abf04a 1994 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
c5aa993b
JM
1995
1996 target_write_memory (value_return_addr, (char *) &tmp, 4);
1997
1998 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1999
2000 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2001 (char *) &handle, 4);
2002
2003 /* now prepare the arguments for the call */
2004
2005 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
4478b372
JB
2006 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2007 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
c5aa993b 2008 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
4478b372
JB
2009 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2010 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
c5aa993b
JM
2011
2012 /* now call the function */
2013
2014 val = call_function_by_hand (funcval, 6, args);
2015
2016 /* now get the results */
2017
2018 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2019
2020 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2021 if (stub_addr <= 0)
104c1213 2022 error ("call to __d_shl_get failed, error code is %d", err_value);
c5aa993b
JM
2023
2024 return (stub_addr);
c906108c
SS
2025}
2026
c5aa993b 2027/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
a0b3c4fd 2028static int
4efb68b1 2029cover_find_stub_with_shl_get (void *args_untyped)
c906108c 2030{
a0b3c4fd
JM
2031 args_for_find_stub *args = args_untyped;
2032 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2033 return 0;
c906108c
SS
2034}
2035
c906108c
SS
2036/* Insert the specified number of args and function address
2037 into a call sequence of the above form stored at DUMMYNAME.
2038
2039 On the hppa we need to call the stack dummy through $$dyncall.
2040 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
2041 real_pc, which is the location where gdb should start up the
cce74817
JM
2042 inferior to do the function call.
2043
2044 This has to work across several versions of hpux, bsd, osf1. It has to
2045 work regardless of what compiler was used to build the inferior program.
2046 It should work regardless of whether or not end.o is available. It has
2047 to work even if gdb can not call into the dynamic loader in the inferior
2048 to query it for symbol names and addresses.
2049
2050 Yes, all those cases should work. Luckily code exists to handle most
2051 of them. The complexity is in selecting exactly what scheme should
2052 be used to perform the inferior call.
2053
2054 At the current time this routine is known not to handle cases where
2055 the program was linked with HP's compiler without including end.o.
2056
2057 Please contact Jeff Law (law@cygnus.com) before changing this code. */
c906108c
SS
2058
2059CORE_ADDR
fba45db2 2060hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 2061 struct value **args, struct type *type, int gcc_p)
c906108c
SS
2062{
2063 CORE_ADDR dyncall_addr;
2064 struct minimal_symbol *msymbol;
2065 struct minimal_symbol *trampoline;
2066 int flags = read_register (FLAGS_REGNUM);
cce74817
JM
2067 struct unwind_table_entry *u = NULL;
2068 CORE_ADDR new_stub = 0;
2069 CORE_ADDR solib_handle = 0;
2070
2071 /* Nonzero if we will use GCC's PLT call routine. This routine must be
c2c6d25f
JM
2072 passed an import stub, not a PLABEL. It is also necessary to set %r19
2073 (the PIC register) before performing the call.
c906108c 2074
cce74817
JM
2075 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2076 are calling the target directly. When using __d_plt_call we want to
2077 use a PLABEL instead of an import stub. */
2078 int using_gcc_plt_call = 1;
2079
53a5351d
JM
2080#ifdef GDB_TARGET_IS_HPPA_20W
2081 /* We currently use completely different code for the PA2.0W inferior
2082 function call sequences. This needs to be cleaned up. */
2083 {
2084 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2085 struct target_waitstatus w;
2086 int inst1, inst2;
2087 char buf[4];
2088 int status;
2089 struct objfile *objfile;
2090
2091 /* We can not modify the PC space queues directly, so we start
2092 up the inferior and execute a couple instructions to set the
2093 space queues so that they point to the call dummy in the stack. */
2094 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2095 sr5 = read_register (SR5_REGNUM);
2096 if (1)
2097 {
2098 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2099 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2100 if (target_read_memory (pcoqh, buf, 4) != 0)
2101 error ("Couldn't modify space queue\n");
2102 inst1 = extract_unsigned_integer (buf, 4);
2103
2104 if (target_read_memory (pcoqt, buf, 4) != 0)
2105 error ("Couldn't modify space queue\n");
2106 inst2 = extract_unsigned_integer (buf, 4);
2107
2108 /* BVE (r1) */
2109 *((int *) buf) = 0xe820d000;
2110 if (target_write_memory (pcoqh, buf, 4) != 0)
2111 error ("Couldn't modify space queue\n");
2112
2113 /* NOP */
2114 *((int *) buf) = 0x08000240;
2115 if (target_write_memory (pcoqt, buf, 4) != 0)
2116 {
2117 *((int *) buf) = inst1;
2118 target_write_memory (pcoqh, buf, 4);
2119 error ("Couldn't modify space queue\n");
2120 }
2121
2122 write_register (1, pc);
2123
2124 /* Single step twice, the BVE instruction will set the space queue
2125 such that it points to the PC value written immediately above
2126 (ie the call dummy). */
2127 resume (1, 0);
39f77062 2128 target_wait (inferior_ptid, &w);
53a5351d 2129 resume (1, 0);
39f77062 2130 target_wait (inferior_ptid, &w);
53a5351d
JM
2131
2132 /* Restore the two instructions at the old PC locations. */
2133 *((int *) buf) = inst1;
2134 target_write_memory (pcoqh, buf, 4);
2135 *((int *) buf) = inst2;
2136 target_write_memory (pcoqt, buf, 4);
2137 }
2138
2139 /* The call dummy wants the ultimate destination address initially
2140 in register %r5. */
2141 write_register (5, fun);
2142
2143 /* We need to see if this objfile has a different DP value than our
c2c6d25f 2144 own (it could be a shared library for example). */
53a5351d
JM
2145 ALL_OBJFILES (objfile)
2146 {
2147 struct obj_section *s;
2148 obj_private_data_t *obj_private;
2149
2150 /* See if FUN is in any section within this shared library. */
2151 for (s = objfile->sections; s < objfile->sections_end; s++)
2152 if (s->addr <= fun && fun < s->endaddr)
2153 break;
2154
2155 if (s >= objfile->sections_end)
2156 continue;
2157
2158 obj_private = (obj_private_data_t *) objfile->obj_private;
2159
2160 /* The DP value may be different for each objfile. But within an
2161 objfile each function uses the same dp value. Thus we do not need
2162 to grope around the opd section looking for dp values.
2163
2164 ?!? This is not strictly correct since we may be in a shared library
2165 and want to call back into the main program. To make that case
2166 work correctly we need to set obj_private->dp for the main program's
2167 objfile, then remove this conditional. */
2168 if (obj_private->dp)
2169 write_register (27, obj_private->dp);
2170 break;
2171 }
2172 return pc;
2173 }
2174#endif
2175
2176#ifndef GDB_TARGET_IS_HPPA_20W
cce74817 2177 /* Prefer __gcc_plt_call over the HP supplied routine because
c5aa993b 2178 __gcc_plt_call works for any number of arguments. */
c906108c 2179 trampoline = NULL;
cce74817
JM
2180 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2181 using_gcc_plt_call = 0;
2182
c906108c
SS
2183 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2184 if (msymbol == NULL)
cce74817 2185 error ("Can't find an address for $$dyncall trampoline");
c906108c
SS
2186
2187 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2188
2189 /* FUN could be a procedure label, in which case we have to get
cce74817
JM
2190 its real address and the value of its GOT/DP if we plan to
2191 call the routine via gcc_plt_call. */
2192 if ((fun & 0x2) && using_gcc_plt_call)
c906108c
SS
2193 {
2194 /* Get the GOT/DP value for the target function. It's
c5aa993b
JM
2195 at *(fun+4). Note the call dummy is *NOT* allowed to
2196 trash %r19 before calling the target function. */
53a5351d
JM
2197 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2198 REGISTER_SIZE));
c906108c
SS
2199
2200 /* Now get the real address for the function we are calling, it's
c5aa993b 2201 at *fun. */
53a5351d
JM
2202 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2203 TARGET_PTR_BIT / 8);
c906108c
SS
2204 }
2205 else
2206 {
2207
2208#ifndef GDB_TARGET_IS_PA_ELF
cce74817 2209 /* FUN could be an export stub, the real address of a function, or
c5aa993b
JM
2210 a PLABEL. When using gcc's PLT call routine we must call an import
2211 stub rather than the export stub or real function for lazy binding
2212 to work correctly
cce74817 2213
39f77062 2214 If we are using the gcc PLT call routine, then we need to
c5aa993b 2215 get the import stub for the target function. */
cce74817 2216 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
c906108c
SS
2217 {
2218 struct objfile *objfile;
2219 struct minimal_symbol *funsymbol, *stub_symbol;
2220 CORE_ADDR newfun = 0;
2221
2222 funsymbol = lookup_minimal_symbol_by_pc (fun);
2223 if (!funsymbol)
4ce44c66 2224 error ("Unable to find minimal symbol for target function.\n");
c906108c
SS
2225
2226 /* Search all the object files for an import symbol with the
2227 right name. */
2228 ALL_OBJFILES (objfile)
c5aa993b
JM
2229 {
2230 stub_symbol
2231 = lookup_minimal_symbol_solib_trampoline
22abf04a 2232 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
c5aa993b
JM
2233
2234 if (!stub_symbol)
22abf04a 2235 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
c5aa993b
JM
2236 NULL, objfile);
2237
2238 /* Found a symbol with the right name. */
2239 if (stub_symbol)
2240 {
2241 struct unwind_table_entry *u;
2242 /* It must be a shared library trampoline. */
2243 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2244 continue;
2245
2246 /* It must also be an import stub. */
2247 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
6426a772
JM
2248 if (u == NULL
2249 || (u->stub_unwind.stub_type != IMPORT
2250#ifdef GDB_NATIVE_HPUX_11
2251 /* Sigh. The hpux 10.20 dynamic linker will blow
2252 chunks if we perform a call to an unbound function
2253 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2254 linker will blow chunks if we do not call the
2255 unbound function via the IMPORT_SHLIB stub.
2256
2257 We currently have no way to select bevahior on just
2258 the target. However, we only support HPUX/SOM in
2259 native mode. So we conditinalize on a native
2260 #ifdef. Ugly. Ugly. Ugly */
2261 && u->stub_unwind.stub_type != IMPORT_SHLIB
2262#endif
2263 ))
c5aa993b
JM
2264 continue;
2265
2266 /* OK. Looks like the correct import stub. */
2267 newfun = SYMBOL_VALUE (stub_symbol);
2268 fun = newfun;
6426a772
JM
2269
2270 /* If we found an IMPORT stub, then we want to stop
2271 searching now. If we found an IMPORT_SHLIB, we want
2272 to continue the search in the hopes that we will find
2273 an IMPORT stub. */
2274 if (u->stub_unwind.stub_type == IMPORT)
2275 break;
c5aa993b
JM
2276 }
2277 }
cce74817
JM
2278
2279 /* Ouch. We did not find an import stub. Make an attempt to
2280 do the right thing instead of just croaking. Most of the
2281 time this will actually work. */
c906108c
SS
2282 if (newfun == 0)
2283 write_register (19, som_solib_get_got_by_pc (fun));
cce74817
JM
2284
2285 u = find_unwind_entry (fun);
c5aa993b 2286 if (u
cce74817
JM
2287 && (u->stub_unwind.stub_type == IMPORT
2288 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2289 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2290
2291 /* If we found the import stub in the shared library, then we have
2292 to set %r19 before we call the stub. */
2293 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2294 write_register (19, som_solib_get_got_by_pc (fun));
c906108c 2295 }
c906108c
SS
2296#endif
2297 }
2298
cce74817
JM
2299 /* If we are calling into another load module then have sr4export call the
2300 magic __d_plt_call routine which is linked in from end.o.
c906108c 2301
cce74817
JM
2302 You can't use _sr4export to make the call as the value in sp-24 will get
2303 fried and you end up returning to the wrong location. You can't call the
2304 target as the code to bind the PLT entry to a function can't return to a
2305 stack address.
2306
2307 Also, query the dynamic linker in the inferior to provide a suitable
2308 PLABEL for the target function. */
c5aa993b 2309 if (!using_gcc_plt_call)
c906108c
SS
2310 {
2311 CORE_ADDR new_fun;
2312
cce74817 2313 /* Get a handle for the shared library containing FUN. Given the
c5aa993b 2314 handle we can query the shared library for a PLABEL. */
cce74817 2315 solib_handle = som_solib_get_solib_by_pc (fun);
c906108c 2316
cce74817 2317 if (solib_handle)
c906108c 2318 {
cce74817 2319 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
c906108c 2320
cce74817
JM
2321 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2322
2323 if (trampoline == NULL)
2324 {
2325 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2326 }
2327
2328 /* This is where sr4export will jump to. */
2329 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2330
2331 /* If the function is in a shared library, then call __d_shl_get to
2332 get a PLABEL for the target function. */
2333 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2334
c5aa993b 2335 if (new_stub == 0)
22abf04a 2336 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
c906108c
SS
2337
2338 /* We have to store the address of the stub in __shlib_funcptr. */
cce74817 2339 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
c5aa993b 2340 (struct objfile *) NULL);
c906108c 2341
cce74817
JM
2342 if (msymbol == NULL)
2343 error ("Can't find an address for __shlib_funcptr");
2344 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
c5aa993b 2345 (char *) &new_stub, 4);
c906108c
SS
2346
2347 /* We want sr4export to call __d_plt_call, so we claim it is
2348 the final target. Clear trampoline. */
cce74817
JM
2349 fun = new_fun;
2350 trampoline = NULL;
c906108c
SS
2351 }
2352 }
2353
2354 /* Store upper 21 bits of function address into ldil. fun will either be
2355 the final target (most cases) or __d_plt_call when calling into a shared
2356 library and __gcc_plt_call is not available. */
2357 store_unsigned_integer
2358 (&dummy[FUNC_LDIL_OFFSET],
2359 INSTRUCTION_SIZE,
2360 deposit_21 (fun >> 11,
2361 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2362 INSTRUCTION_SIZE)));
2363
2364 /* Store lower 11 bits of function address into ldo */
2365 store_unsigned_integer
2366 (&dummy[FUNC_LDO_OFFSET],
2367 INSTRUCTION_SIZE,
2368 deposit_14 (fun & MASK_11,
2369 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2370 INSTRUCTION_SIZE)));
2371#ifdef SR4EXPORT_LDIL_OFFSET
2372
2373 {
2374 CORE_ADDR trampoline_addr;
2375
2376 /* We may still need sr4export's address too. */
2377
2378 if (trampoline == NULL)
2379 {
2380 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2381 if (msymbol == NULL)
cce74817 2382 error ("Can't find an address for _sr4export trampoline");
c906108c
SS
2383
2384 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2385 }
2386 else
2387 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2388
2389
2390 /* Store upper 21 bits of trampoline's address into ldil */
2391 store_unsigned_integer
2392 (&dummy[SR4EXPORT_LDIL_OFFSET],
2393 INSTRUCTION_SIZE,
2394 deposit_21 (trampoline_addr >> 11,
2395 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2396 INSTRUCTION_SIZE)));
2397
2398 /* Store lower 11 bits of trampoline's address into ldo */
2399 store_unsigned_integer
2400 (&dummy[SR4EXPORT_LDO_OFFSET],
2401 INSTRUCTION_SIZE,
2402 deposit_14 (trampoline_addr & MASK_11,
2403 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2404 INSTRUCTION_SIZE)));
2405 }
2406#endif
2407
2408 write_register (22, pc);
2409
2410 /* If we are in a syscall, then we should call the stack dummy
2411 directly. $$dyncall is not needed as the kernel sets up the
2412 space id registers properly based on the value in %r31. In
2413 fact calling $$dyncall will not work because the value in %r22
2414 will be clobbered on the syscall exit path.
2415
2416 Similarly if the current PC is in a shared library. Note however,
2417 this scheme won't work if the shared library isn't mapped into
2418 the same space as the stack. */
2419 if (flags & 2)
2420 return pc;
2421#ifndef GDB_TARGET_IS_PA_ELF
60383d10 2422 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
c906108c
SS
2423 return pc;
2424#endif
2425 else
2426 return dyncall_addr;
53a5351d 2427#endif
c906108c
SS
2428}
2429
c906108c
SS
2430/* If the pid is in a syscall, then the FP register is not readable.
2431 We'll return zero in that case, rather than attempting to read it
2432 and cause a warning. */
60383d10 2433
c906108c 2434CORE_ADDR
60383d10 2435hppa_read_fp (int pid)
c906108c
SS
2436{
2437 int flags = read_register (FLAGS_REGNUM);
2438
c5aa993b
JM
2439 if (flags & 2)
2440 {
2441 return (CORE_ADDR) 0;
2442 }
c906108c
SS
2443
2444 /* This is the only site that may directly read_register () the FP
2445 register. All others must use TARGET_READ_FP (). */
2446 return read_register (FP_REGNUM);
2447}
2448
60383d10
JB
2449CORE_ADDR
2450hppa_target_read_fp (void)
2451{
2452 return hppa_read_fp (PIDGET (inferior_ptid));
2453}
c906108c
SS
2454
2455/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2456 bits. */
2457
2458CORE_ADDR
60383d10 2459hppa_target_read_pc (ptid_t ptid)
c906108c 2460{
39f77062 2461 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2462
2463 /* The following test does not belong here. It is OS-specific, and belongs
2464 in native code. */
2465 /* Test SS_INSYSCALL */
2466 if (flags & 2)
39f77062 2467 return read_register_pid (31, ptid) & ~0x3;
c906108c 2468
39f77062 2469 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
c906108c
SS
2470}
2471
2472/* Write out the PC. If currently in a syscall, then also write the new
2473 PC value into %r31. */
2474
2475void
60383d10 2476hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 2477{
39f77062 2478 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2479
2480 /* The following test does not belong here. It is OS-specific, and belongs
2481 in native code. */
2482 /* If in a syscall, then set %r31. Also make sure to get the
2483 privilege bits set correctly. */
2484 /* Test SS_INSYSCALL */
2485 if (flags & 2)
39f77062 2486 write_register_pid (31, v | 0x3, ptid);
c906108c 2487
39f77062
KB
2488 write_register_pid (PC_REGNUM, v, ptid);
2489 write_register_pid (NPC_REGNUM, v + 4, ptid);
c906108c
SS
2490}
2491
2492/* return the alignment of a type in bytes. Structures have the maximum
2493 alignment required by their fields. */
2494
2495static int
fba45db2 2496hppa_alignof (struct type *type)
c906108c
SS
2497{
2498 int max_align, align, i;
2499 CHECK_TYPEDEF (type);
2500 switch (TYPE_CODE (type))
2501 {
2502 case TYPE_CODE_PTR:
2503 case TYPE_CODE_INT:
2504 case TYPE_CODE_FLT:
2505 return TYPE_LENGTH (type);
2506 case TYPE_CODE_ARRAY:
2507 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2508 case TYPE_CODE_STRUCT:
2509 case TYPE_CODE_UNION:
2510 max_align = 1;
2511 for (i = 0; i < TYPE_NFIELDS (type); i++)
2512 {
2513 /* Bit fields have no real alignment. */
2514 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 2515 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
2516 {
2517 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2518 max_align = max (max_align, align);
2519 }
2520 }
2521 return max_align;
2522 default:
2523 return 4;
2524 }
2525}
2526
2527/* Print the register regnum, or all registers if regnum is -1 */
2528
2529void
fba45db2 2530pa_do_registers_info (int regnum, int fpregs)
c906108c 2531{
c5aa993b 2532 char raw_regs[REGISTER_BYTES];
c906108c
SS
2533 int i;
2534
2535 /* Make a copy of gdb's save area (may cause actual
2536 reads from the target). */
2537 for (i = 0; i < NUM_REGS; i++)
6e7f8b9c 2538 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2539
2540 if (regnum == -1)
2541 pa_print_registers (raw_regs, regnum, fpregs);
c5aa993b
JM
2542 else if (regnum < FP4_REGNUM)
2543 {
2544 long reg_val[2];
2545
2546 /* Why is the value not passed through "extract_signed_integer"
2547 as in "pa_print_registers" below? */
2548 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2549
2550 if (!is_pa_2)
2551 {
ce414844 2552 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2553 }
c906108c 2554 else
c5aa993b
JM
2555 {
2556 /* Fancy % formats to prevent leading zeros. */
2557 if (reg_val[0] == 0)
ce414844 2558 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2559 else
ce414844 2560 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
c5aa993b
JM
2561 reg_val[0], reg_val[1]);
2562 }
c906108c 2563 }
c906108c 2564 else
c5aa993b
JM
2565 /* Note that real floating point values only start at
2566 FP4_REGNUM. FP0 and up are just status and error
2567 registers, which have integral (bit) values. */
c906108c
SS
2568 pa_print_fp_reg (regnum);
2569}
2570
2571/********** new function ********************/
2572void
fba45db2
KB
2573pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2574 enum precision_type precision)
c906108c 2575{
c5aa993b 2576 char raw_regs[REGISTER_BYTES];
c906108c
SS
2577 int i;
2578
2579 /* Make a copy of gdb's save area (may cause actual
c5aa993b 2580 reads from the target). */
c906108c 2581 for (i = 0; i < NUM_REGS; i++)
6e7f8b9c 2582 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2583
2584 if (regnum == -1)
2585 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2586
c5aa993b
JM
2587 else if (regnum < FP4_REGNUM)
2588 {
2589 long reg_val[2];
2590
2591 /* Why is the value not passed through "extract_signed_integer"
2592 as in "pa_print_registers" below? */
2593 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
c906108c 2594
c5aa993b
JM
2595 if (!is_pa_2)
2596 {
ce414844 2597 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2598 }
c906108c 2599 else
c5aa993b
JM
2600 {
2601 /* Fancy % formats to prevent leading zeros. */
2602 if (reg_val[0] == 0)
ce414844 2603 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
c5aa993b
JM
2604 reg_val[1]);
2605 else
ce414844 2606 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
c5aa993b
JM
2607 reg_val[0], reg_val[1]);
2608 }
c906108c 2609 }
c906108c 2610 else
c5aa993b
JM
2611 /* Note that real floating point values only start at
2612 FP4_REGNUM. FP0 and up are just status and error
2613 registers, which have integral (bit) values. */
c906108c
SS
2614 pa_strcat_fp_reg (regnum, stream, precision);
2615}
2616
2617/* If this is a PA2.0 machine, fetch the real 64-bit register
2618 value. Otherwise use the info from gdb's saved register area.
2619
2620 Note that reg_val is really expected to be an array of longs,
2621 with two elements. */
2622static void
fba45db2 2623pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
c906108c 2624{
c5aa993b 2625 static int know_which = 0; /* False */
c906108c 2626
c5aa993b 2627 int regaddr;
c906108c
SS
2628 unsigned int offset;
2629 register int i;
c5aa993b
JM
2630 int start;
2631
2632
6789195b 2633 char *buf = alloca (max_register_size (current_gdbarch));
c906108c
SS
2634 long long reg_val;
2635
c5aa993b
JM
2636 if (!know_which)
2637 {
2638 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2639 {
2640 is_pa_2 = (1 == 1);
2641 }
2642
2643 know_which = 1; /* True */
2644 }
c906108c
SS
2645
2646 raw_val[0] = 0;
2647 raw_val[1] = 0;
2648
c5aa993b
JM
2649 if (!is_pa_2)
2650 {
2651 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
c906108c 2652 return;
c5aa993b 2653 }
c906108c
SS
2654
2655 /* Code below copied from hppah-nat.c, with fixes for wide
2656 registers, using different area of save_state, etc. */
2657 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
c5aa993b
JM
2658 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2659 {
c906108c 2660 /* Use narrow regs area of save_state and default macro. */
c5aa993b
JM
2661 offset = U_REGS_OFFSET;
2662 regaddr = register_addr (regnum, offset);
2663 start = 1;
2664 }
2665 else
2666 {
c906108c
SS
2667 /* Use wide regs area, and calculate registers as 8 bytes wide.
2668
2669 We'd like to do this, but current version of "C" doesn't
2670 permit "offsetof":
2671
c5aa993b 2672 offset = offsetof(save_state_t, ss_wide);
c906108c
SS
2673
2674 Note that to avoid "C" doing typed pointer arithmetic, we
2675 have to cast away the type in our offset calculation:
2676 otherwise we get an offset of 1! */
2677
7a292a7a 2678 /* NB: save_state_t is not available before HPUX 9.
c5aa993b 2679 The ss_wide field is not available previous to HPUX 10.20,
7a292a7a
SS
2680 so to avoid compile-time warnings, we only compile this for
2681 PA 2.0 processors. This control path should only be followed
2682 if we're debugging a PA 2.0 processor, so this should not cause
2683 problems. */
2684
c906108c
SS
2685 /* #if the following code out so that this file can still be
2686 compiled on older HPUX boxes (< 10.20) which don't have
2687 this structure/structure member. */
2688#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2689 save_state_t temp;
2690
2691 offset = ((int) &temp.ss_wide) - ((int) &temp);
2692 regaddr = offset + regnum * 8;
c5aa993b 2693 start = 0;
c906108c 2694#endif
c5aa993b
JM
2695 }
2696
2697 for (i = start; i < 2; i++)
c906108c
SS
2698 {
2699 errno = 0;
39f77062 2700 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
c5aa993b 2701 (PTRACE_ARG3_TYPE) regaddr, 0);
c906108c
SS
2702 if (errno != 0)
2703 {
2704 /* Warning, not error, in case we are attached; sometimes the
2705 kernel doesn't let us at the registers. */
2706 char *err = safe_strerror (errno);
2707 char *msg = alloca (strlen (err) + 128);
2708 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2709 warning (msg);
2710 goto error_exit;
2711 }
2712
2713 regaddr += sizeof (long);
2714 }
c5aa993b 2715
c906108c 2716 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
c5aa993b 2717 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
c906108c
SS
2718
2719error_exit:
2720 ;
2721}
2722
2723/* "Info all-reg" command */
c5aa993b 2724
c906108c 2725static void
fba45db2 2726pa_print_registers (char *raw_regs, int regnum, int fpregs)
c906108c 2727{
c5aa993b 2728 int i, j;
adf40b2e
JM
2729 /* Alas, we are compiled so that "long long" is 32 bits */
2730 long raw_val[2];
c906108c 2731 long long_val;
a0b3c4fd 2732 int rows = 48, columns = 2;
c906108c 2733
adf40b2e 2734 for (i = 0; i < rows; i++)
c906108c 2735 {
adf40b2e 2736 for (j = 0; j < columns; j++)
c906108c 2737 {
adf40b2e
JM
2738 /* We display registers in column-major order. */
2739 int regnum = i + j * rows;
2740
c5aa993b
JM
2741 /* Q: Why is the value passed through "extract_signed_integer",
2742 while above, in "pa_do_registers_info" it isn't?
2743 A: ? */
adf40b2e 2744 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
c5aa993b
JM
2745
2746 /* Even fancier % formats to prevent leading zeros
2747 and still maintain the output in columns. */
2748 if (!is_pa_2)
2749 {
2750 /* Being big-endian, on this machine the low bits
2751 (the ones we want to look at) are in the second longword. */
2752 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844 2753 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2754 REGISTER_NAME (regnum), long_val);
c5aa993b
JM
2755 }
2756 else
2757 {
2758 /* raw_val = extract_signed_integer(&raw_val, 8); */
2759 if (raw_val[0] == 0)
ce414844 2760 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2761 REGISTER_NAME (regnum), raw_val[1]);
c5aa993b 2762 else
ce414844 2763 printf_filtered ("%10.10s: %8lx%8.8lx ",
a0b3c4fd 2764 REGISTER_NAME (regnum),
c5aa993b
JM
2765 raw_val[0], raw_val[1]);
2766 }
c906108c
SS
2767 }
2768 printf_unfiltered ("\n");
2769 }
c5aa993b 2770
c906108c 2771 if (fpregs)
c5aa993b 2772 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2773 pa_print_fp_reg (i);
2774}
2775
c5aa993b 2776/************* new function ******************/
c906108c 2777static void
fba45db2
KB
2778pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2779 struct ui_file *stream)
c906108c 2780{
c5aa993b
JM
2781 int i, j;
2782 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
c906108c
SS
2783 long long_val;
2784 enum precision_type precision;
2785
2786 precision = unspecified_precision;
2787
2788 for (i = 0; i < 18; i++)
2789 {
2790 for (j = 0; j < 4; j++)
2791 {
c5aa993b
JM
2792 /* Q: Why is the value passed through "extract_signed_integer",
2793 while above, in "pa_do_registers_info" it isn't?
2794 A: ? */
2795 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2796
2797 /* Even fancier % formats to prevent leading zeros
2798 and still maintain the output in columns. */
2799 if (!is_pa_2)
2800 {
2801 /* Being big-endian, on this machine the low bits
2802 (the ones we want to look at) are in the second longword. */
2803 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844
AC
2804 fprintf_filtered (stream, "%8.8s: %8lx ",
2805 REGISTER_NAME (i + (j * 18)), long_val);
c5aa993b
JM
2806 }
2807 else
2808 {
2809 /* raw_val = extract_signed_integer(&raw_val, 8); */
2810 if (raw_val[0] == 0)
ce414844
AC
2811 fprintf_filtered (stream, "%8.8s: %8lx ",
2812 REGISTER_NAME (i + (j * 18)), raw_val[1]);
c5aa993b 2813 else
ce414844
AC
2814 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2815 REGISTER_NAME (i + (j * 18)), raw_val[0],
2816 raw_val[1]);
c5aa993b 2817 }
c906108c
SS
2818 }
2819 fprintf_unfiltered (stream, "\n");
2820 }
c5aa993b 2821
c906108c 2822 if (fpregs)
c5aa993b 2823 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2824 pa_strcat_fp_reg (i, stream, precision);
2825}
2826
2827static void
fba45db2 2828pa_print_fp_reg (int i)
c906108c 2829{
6789195b
AC
2830 char *raw_buffer = alloca (max_register_size (current_gdbarch));
2831 char *virtual_buffer = alloca (max_register_size (current_gdbarch));
c906108c
SS
2832
2833 /* Get 32bits of data. */
6e7f8b9c 2834 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
2835
2836 /* Put it in the buffer. No conversions are ever necessary. */
2837 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2838
2839 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2840 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2841 fputs_filtered ("(single precision) ", gdb_stdout);
2842
2843 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2844 1, 0, Val_pretty_default);
2845 printf_filtered ("\n");
2846
2847 /* If "i" is even, then this register can also be a double-precision
2848 FP register. Dump it out as such. */
2849 if ((i % 2) == 0)
2850 {
2851 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 2852 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
c906108c
SS
2853
2854 /* Copy it into the appropriate part of the virtual buffer. */
2855 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2856 REGISTER_RAW_SIZE (i));
2857
2858 /* Dump it as a double. */
2859 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2860 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2861 fputs_filtered ("(double precision) ", gdb_stdout);
2862
2863 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2864 1, 0, Val_pretty_default);
2865 printf_filtered ("\n");
2866 }
2867}
2868
2869/*************** new function ***********************/
2870static void
fba45db2 2871pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
c906108c 2872{
6789195b
AC
2873 char *raw_buffer = alloca (max_register_size (current_gdbarch));
2874 char *virtual_buffer = alloca (max_register_size (current_gdbarch));
c906108c
SS
2875
2876 fputs_filtered (REGISTER_NAME (i), stream);
2877 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2878
2879 /* Get 32bits of data. */
6e7f8b9c 2880 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
2881
2882 /* Put it in the buffer. No conversions are ever necessary. */
2883 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2884
2885 if (precision == double_precision && (i % 2) == 0)
2886 {
2887
6789195b 2888 char *raw_buf = alloca (max_register_size (current_gdbarch));
c5aa993b
JM
2889
2890 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 2891 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
c5aa993b
JM
2892
2893 /* Copy it into the appropriate part of the virtual buffer. */
2894 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
c906108c 2895
c5aa993b
JM
2896 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2897 1, 0, Val_pretty_default);
c906108c
SS
2898
2899 }
c5aa993b
JM
2900 else
2901 {
2902 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2903 1, 0, Val_pretty_default);
2904 }
c906108c
SS
2905
2906}
2907
2908/* Return one if PC is in the call path of a trampoline, else return zero.
2909
2910 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2911 just shared library trampolines (import, export). */
2912
2913int
60383d10 2914hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
2915{
2916 struct minimal_symbol *minsym;
2917 struct unwind_table_entry *u;
2918 static CORE_ADDR dyncall = 0;
2919 static CORE_ADDR sr4export = 0;
2920
c2c6d25f
JM
2921#ifdef GDB_TARGET_IS_HPPA_20W
2922 /* PA64 has a completely different stub/trampoline scheme. Is it
2923 better? Maybe. It's certainly harder to determine with any
2924 certainty that we are in a stub because we can not refer to the
2925 unwinders to help.
2926
2927 The heuristic is simple. Try to lookup the current PC value in th
2928 minimal symbol table. If that fails, then assume we are not in a
2929 stub and return.
2930
2931 Then see if the PC value falls within the section bounds for the
2932 section containing the minimal symbol we found in the first
2933 step. If it does, then assume we are not in a stub and return.
2934
2935 Finally peek at the instructions to see if they look like a stub. */
2936 {
2937 struct minimal_symbol *minsym;
2938 asection *sec;
2939 CORE_ADDR addr;
2940 int insn, i;
2941
2942 minsym = lookup_minimal_symbol_by_pc (pc);
2943 if (! minsym)
2944 return 0;
2945
2946 sec = SYMBOL_BFD_SECTION (minsym);
2947
2948 if (sec->vma <= pc
2949 && sec->vma + sec->_cooked_size < pc)
2950 return 0;
2951
2952 /* We might be in a stub. Peek at the instructions. Stubs are 3
2953 instructions long. */
2954 insn = read_memory_integer (pc, 4);
2955
b84a8afe 2956 /* Find out where we think we are within the stub. */
c2c6d25f
JM
2957 if ((insn & 0xffffc00e) == 0x53610000)
2958 addr = pc;
2959 else if ((insn & 0xffffffff) == 0xe820d000)
2960 addr = pc - 4;
2961 else if ((insn & 0xffffc00e) == 0x537b0000)
2962 addr = pc - 8;
2963 else
2964 return 0;
2965
2966 /* Now verify each insn in the range looks like a stub instruction. */
2967 insn = read_memory_integer (addr, 4);
2968 if ((insn & 0xffffc00e) != 0x53610000)
2969 return 0;
2970
2971 /* Now verify each insn in the range looks like a stub instruction. */
2972 insn = read_memory_integer (addr + 4, 4);
2973 if ((insn & 0xffffffff) != 0xe820d000)
2974 return 0;
2975
2976 /* Now verify each insn in the range looks like a stub instruction. */
2977 insn = read_memory_integer (addr + 8, 4);
2978 if ((insn & 0xffffc00e) != 0x537b0000)
2979 return 0;
2980
2981 /* Looks like a stub. */
2982 return 1;
2983 }
2984#endif
2985
2986 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2987 new exec file */
c906108c
SS
2988
2989 /* First see if PC is in one of the two C-library trampolines. */
2990 if (!dyncall)
2991 {
2992 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2993 if (minsym)
2994 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2995 else
2996 dyncall = -1;
2997 }
2998
2999 if (!sr4export)
3000 {
3001 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3002 if (minsym)
3003 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3004 else
3005 sr4export = -1;
3006 }
3007
3008 if (pc == dyncall || pc == sr4export)
3009 return 1;
3010
104c1213 3011 minsym = lookup_minimal_symbol_by_pc (pc);
22abf04a 3012 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
104c1213
JM
3013 return 1;
3014
c906108c
SS
3015 /* Get the unwind descriptor corresponding to PC, return zero
3016 if no unwind was found. */
3017 u = find_unwind_entry (pc);
3018 if (!u)
3019 return 0;
3020
3021 /* If this isn't a linker stub, then return now. */
3022 if (u->stub_unwind.stub_type == 0)
3023 return 0;
3024
3025 /* By definition a long-branch stub is a call stub. */
3026 if (u->stub_unwind.stub_type == LONG_BRANCH)
3027 return 1;
3028
3029 /* The call and return path execute the same instructions within
3030 an IMPORT stub! So an IMPORT stub is both a call and return
3031 trampoline. */
3032 if (u->stub_unwind.stub_type == IMPORT)
3033 return 1;
3034
3035 /* Parameter relocation stubs always have a call path and may have a
3036 return path. */
3037 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3038 || u->stub_unwind.stub_type == EXPORT)
3039 {
3040 CORE_ADDR addr;
3041
3042 /* Search forward from the current PC until we hit a branch
c5aa993b 3043 or the end of the stub. */
c906108c
SS
3044 for (addr = pc; addr <= u->region_end; addr += 4)
3045 {
3046 unsigned long insn;
3047
3048 insn = read_memory_integer (addr, 4);
3049
3050 /* Does it look like a bl? If so then it's the call path, if
3051 we find a bv or be first, then we're on the return path. */
3052 if ((insn & 0xfc00e000) == 0xe8000000)
3053 return 1;
3054 else if ((insn & 0xfc00e001) == 0xe800c000
3055 || (insn & 0xfc000000) == 0xe0000000)
3056 return 0;
3057 }
3058
3059 /* Should never happen. */
104c1213
JM
3060 warning ("Unable to find branch in parameter relocation stub.\n");
3061 return 0;
c906108c
SS
3062 }
3063
3064 /* Unknown stub type. For now, just return zero. */
104c1213 3065 return 0;
c906108c
SS
3066}
3067
3068/* Return one if PC is in the return path of a trampoline, else return zero.
3069
3070 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3071 just shared library trampolines (import, export). */
3072
3073int
60383d10 3074hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3075{
3076 struct unwind_table_entry *u;
3077
3078 /* Get the unwind descriptor corresponding to PC, return zero
3079 if no unwind was found. */
3080 u = find_unwind_entry (pc);
3081 if (!u)
3082 return 0;
3083
3084 /* If this isn't a linker stub or it's just a long branch stub, then
3085 return zero. */
3086 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3087 return 0;
3088
3089 /* The call and return path execute the same instructions within
3090 an IMPORT stub! So an IMPORT stub is both a call and return
3091 trampoline. */
3092 if (u->stub_unwind.stub_type == IMPORT)
3093 return 1;
3094
3095 /* Parameter relocation stubs always have a call path and may have a
3096 return path. */
3097 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3098 || u->stub_unwind.stub_type == EXPORT)
3099 {
3100 CORE_ADDR addr;
3101
3102 /* Search forward from the current PC until we hit a branch
c5aa993b 3103 or the end of the stub. */
c906108c
SS
3104 for (addr = pc; addr <= u->region_end; addr += 4)
3105 {
3106 unsigned long insn;
3107
3108 insn = read_memory_integer (addr, 4);
3109
3110 /* Does it look like a bl? If so then it's the call path, if
3111 we find a bv or be first, then we're on the return path. */
3112 if ((insn & 0xfc00e000) == 0xe8000000)
3113 return 0;
3114 else if ((insn & 0xfc00e001) == 0xe800c000
3115 || (insn & 0xfc000000) == 0xe0000000)
3116 return 1;
3117 }
3118
3119 /* Should never happen. */
104c1213
JM
3120 warning ("Unable to find branch in parameter relocation stub.\n");
3121 return 0;
c906108c
SS
3122 }
3123
3124 /* Unknown stub type. For now, just return zero. */
104c1213 3125 return 0;
c906108c
SS
3126
3127}
3128
3129/* Figure out if PC is in a trampoline, and if so find out where
3130 the trampoline will jump to. If not in a trampoline, return zero.
3131
3132 Simple code examination probably is not a good idea since the code
3133 sequences in trampolines can also appear in user code.
3134
3135 We use unwinds and information from the minimal symbol table to
3136 determine when we're in a trampoline. This won't work for ELF
3137 (yet) since it doesn't create stub unwind entries. Whether or
3138 not ELF will create stub unwinds or normal unwinds for linker
3139 stubs is still being debated.
3140
3141 This should handle simple calls through dyncall or sr4export,
3142 long calls, argument relocation stubs, and dyncall/sr4export
3143 calling an argument relocation stub. It even handles some stubs
3144 used in dynamic executables. */
3145
c906108c 3146CORE_ADDR
60383d10 3147hppa_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
3148{
3149 long orig_pc = pc;
3150 long prev_inst, curr_inst, loc;
3151 static CORE_ADDR dyncall = 0;
3152 static CORE_ADDR dyncall_external = 0;
3153 static CORE_ADDR sr4export = 0;
3154 struct minimal_symbol *msym;
3155 struct unwind_table_entry *u;
3156
c2c6d25f
JM
3157 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3158 new exec file */
c906108c
SS
3159
3160 if (!dyncall)
3161 {
3162 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3163 if (msym)
3164 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3165 else
3166 dyncall = -1;
3167 }
3168
3169 if (!dyncall_external)
3170 {
3171 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3172 if (msym)
3173 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3174 else
3175 dyncall_external = -1;
3176 }
3177
3178 if (!sr4export)
3179 {
3180 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3181 if (msym)
3182 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3183 else
3184 sr4export = -1;
3185 }
3186
3187 /* Addresses passed to dyncall may *NOT* be the actual address
3188 of the function. So we may have to do something special. */
3189 if (pc == dyncall)
3190 {
3191 pc = (CORE_ADDR) read_register (22);
3192
3193 /* If bit 30 (counting from the left) is on, then pc is the address of
c5aa993b
JM
3194 the PLT entry for this function, not the address of the function
3195 itself. Bit 31 has meaning too, but only for MPE. */
c906108c 3196 if (pc & 0x2)
53a5351d 3197 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3198 }
3199 if (pc == dyncall_external)
3200 {
3201 pc = (CORE_ADDR) read_register (22);
53a5351d 3202 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3203 }
3204 else if (pc == sr4export)
3205 pc = (CORE_ADDR) (read_register (22));
3206
3207 /* Get the unwind descriptor corresponding to PC, return zero
3208 if no unwind was found. */
3209 u = find_unwind_entry (pc);
3210 if (!u)
3211 return 0;
3212
3213 /* If this isn't a linker stub, then return now. */
3214 /* elz: attention here! (FIXME) because of a compiler/linker
3215 error, some stubs which should have a non zero stub_unwind.stub_type
3216 have unfortunately a value of zero. So this function would return here
3217 as if we were not in a trampoline. To fix this, we go look at the partial
3218 symbol information, which reports this guy as a stub.
3219 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3220 partial symbol information is also wrong sometimes. This is because
3221 when it is entered (somread.c::som_symtab_read()) it can happen that
3222 if the type of the symbol (from the som) is Entry, and the symbol is
3223 in a shared library, then it can also be a trampoline. This would
3224 be OK, except that I believe the way they decide if we are ina shared library
3225 does not work. SOOOO..., even if we have a regular function w/o trampolines
3226 its minimal symbol can be assigned type mst_solib_trampoline.
3227 Also, if we find that the symbol is a real stub, then we fix the unwind
3228 descriptor, and define the stub type to be EXPORT.
c5aa993b 3229 Hopefully this is correct most of the times. */
c906108c 3230 if (u->stub_unwind.stub_type == 0)
c5aa993b 3231 {
c906108c
SS
3232
3233/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3234 we can delete all the code which appears between the lines */
3235/*--------------------------------------------------------------------------*/
c5aa993b 3236 msym = lookup_minimal_symbol_by_pc (pc);
c906108c 3237
c5aa993b
JM
3238 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3239 return orig_pc == pc ? 0 : pc & ~0x3;
3240
3241 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3242 {
3243 struct objfile *objfile;
3244 struct minimal_symbol *msymbol;
3245 int function_found = 0;
3246
3247 /* go look if there is another minimal symbol with the same name as
3248 this one, but with type mst_text. This would happen if the msym
3249 is an actual trampoline, in which case there would be another
3250 symbol with the same name corresponding to the real function */
3251
3252 ALL_MSYMBOLS (objfile, msymbol)
3253 {
3254 if (MSYMBOL_TYPE (msymbol) == mst_text
22abf04a 3255 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
c5aa993b
JM
3256 {
3257 function_found = 1;
3258 break;
3259 }
3260 }
3261
3262 if (function_found)
3263 /* the type of msym is correct (mst_solib_trampoline), but
3264 the unwind info is wrong, so set it to the correct value */
3265 u->stub_unwind.stub_type = EXPORT;
3266 else
3267 /* the stub type info in the unwind is correct (this is not a
3268 trampoline), but the msym type information is wrong, it
3269 should be mst_text. So we need to fix the msym, and also
3270 get out of this function */
3271 {
3272 MSYMBOL_TYPE (msym) = mst_text;
3273 return orig_pc == pc ? 0 : pc & ~0x3;
3274 }
3275 }
c906108c 3276
c906108c 3277/*--------------------------------------------------------------------------*/
c5aa993b 3278 }
c906108c
SS
3279
3280 /* It's a stub. Search for a branch and figure out where it goes.
3281 Note we have to handle multi insn branch sequences like ldil;ble.
3282 Most (all?) other branches can be determined by examining the contents
3283 of certain registers and the stack. */
3284
3285 loc = pc;
3286 curr_inst = 0;
3287 prev_inst = 0;
3288 while (1)
3289 {
3290 /* Make sure we haven't walked outside the range of this stub. */
3291 if (u != find_unwind_entry (loc))
3292 {
3293 warning ("Unable to find branch in linker stub");
3294 return orig_pc == pc ? 0 : pc & ~0x3;
3295 }
3296
3297 prev_inst = curr_inst;
3298 curr_inst = read_memory_integer (loc, 4);
3299
3300 /* Does it look like a branch external using %r1? Then it's the
c5aa993b 3301 branch from the stub to the actual function. */
c906108c
SS
3302 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3303 {
3304 /* Yup. See if the previous instruction loaded
3305 a value into %r1. If so compute and return the jump address. */
3306 if ((prev_inst & 0xffe00000) == 0x20200000)
3307 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3308 else
3309 {
3310 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3311 return orig_pc == pc ? 0 : pc & ~0x3;
3312 }
3313 }
3314
3315 /* Does it look like a be 0(sr0,%r21)? OR
3316 Does it look like a be, n 0(sr0,%r21)? OR
3317 Does it look like a bve (r21)? (this is on PA2.0)
3318 Does it look like a bve, n(r21)? (this is also on PA2.0)
3319 That's the branch from an
c5aa993b 3320 import stub to an export stub.
c906108c 3321
c5aa993b
JM
3322 It is impossible to determine the target of the branch via
3323 simple examination of instructions and/or data (consider
3324 that the address in the plabel may be the address of the
3325 bind-on-reference routine in the dynamic loader).
c906108c 3326
c5aa993b 3327 So we have try an alternative approach.
c906108c 3328
c5aa993b
JM
3329 Get the name of the symbol at our current location; it should
3330 be a stub symbol with the same name as the symbol in the
3331 shared library.
c906108c 3332
c5aa993b
JM
3333 Then lookup a minimal symbol with the same name; we should
3334 get the minimal symbol for the target routine in the shared
3335 library as those take precedence of import/export stubs. */
c906108c 3336 if ((curr_inst == 0xe2a00000) ||
c5aa993b
JM
3337 (curr_inst == 0xe2a00002) ||
3338 (curr_inst == 0xeaa0d000) ||
3339 (curr_inst == 0xeaa0d002))
c906108c
SS
3340 {
3341 struct minimal_symbol *stubsym, *libsym;
3342
3343 stubsym = lookup_minimal_symbol_by_pc (loc);
3344 if (stubsym == NULL)
3345 {
ce414844 3346 warning ("Unable to find symbol for 0x%lx", loc);
c906108c
SS
3347 return orig_pc == pc ? 0 : pc & ~0x3;
3348 }
3349
22abf04a 3350 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
c906108c
SS
3351 if (libsym == NULL)
3352 {
3353 warning ("Unable to find library symbol for %s\n",
22abf04a 3354 DEPRECATED_SYMBOL_NAME (stubsym));
c906108c
SS
3355 return orig_pc == pc ? 0 : pc & ~0x3;
3356 }
3357
3358 return SYMBOL_VALUE (libsym);
3359 }
3360
3361 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
c5aa993b
JM
3362 branch from the stub to the actual function. */
3363 /*elz */
c906108c
SS
3364 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3365 || (curr_inst & 0xffe0e000) == 0xe8000000
c5aa993b 3366 || (curr_inst & 0xffe0e000) == 0xe800A000)
c906108c
SS
3367 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3368
3369 /* Does it look like bv (rp)? Note this depends on the
c5aa993b
JM
3370 current stack pointer being the same as the stack
3371 pointer in the stub itself! This is a branch on from the
3372 stub back to the original caller. */
3373 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
c906108c
SS
3374 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3375 {
3376 /* Yup. See if the previous instruction loaded
3377 rp from sp - 8. */
3378 if (prev_inst == 0x4bc23ff1)
3379 return (read_memory_integer
3380 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3381 else
3382 {
3383 warning ("Unable to find restore of %%rp before bv (%%rp).");
3384 return orig_pc == pc ? 0 : pc & ~0x3;
3385 }
3386 }
3387
3388 /* elz: added this case to capture the new instruction
3389 at the end of the return part of an export stub used by
3390 the PA2.0: BVE, n (rp) */
3391 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3392 {
c5aa993b 3393 return (read_memory_integer
53a5351d 3394 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3395 }
3396
3397 /* What about be,n 0(sr0,%rp)? It's just another way we return to
c5aa993b 3398 the original caller from the stub. Used in dynamic executables. */
c906108c
SS
3399 else if (curr_inst == 0xe0400002)
3400 {
3401 /* The value we jump to is sitting in sp - 24. But that's
3402 loaded several instructions before the be instruction.
3403 I guess we could check for the previous instruction being
3404 mtsp %r1,%sr0 if we want to do sanity checking. */
c5aa993b 3405 return (read_memory_integer
53a5351d 3406 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3407 }
3408
3409 /* Haven't found the branch yet, but we're still in the stub.
c5aa993b 3410 Keep looking. */
c906108c
SS
3411 loc += 4;
3412 }
3413}
3414
3415
3416/* For the given instruction (INST), return any adjustment it makes
3417 to the stack pointer or zero for no adjustment.
3418
3419 This only handles instructions commonly found in prologues. */
3420
3421static int
fba45db2 3422prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
3423{
3424 /* This must persist across calls. */
3425 static int save_high21;
3426
3427 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3428 if ((inst & 0xffffc000) == 0x37de0000)
3429 return extract_14 (inst);
3430
3431 /* stwm X,D(sp) */
3432 if ((inst & 0xffe00000) == 0x6fc00000)
3433 return extract_14 (inst);
3434
104c1213
JM
3435 /* std,ma X,D(sp) */
3436 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 3437 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 3438
c906108c
SS
3439 /* addil high21,%r1; ldo low11,(%r1),%r30)
3440 save high bits in save_high21 for later use. */
3441 if ((inst & 0xffe00000) == 0x28200000)
3442 {
3443 save_high21 = extract_21 (inst);
3444 return 0;
3445 }
3446
3447 if ((inst & 0xffff0000) == 0x343e0000)
3448 return save_high21 + extract_14 (inst);
3449
3450 /* fstws as used by the HP compilers. */
3451 if ((inst & 0xffffffe0) == 0x2fd01220)
3452 return extract_5_load (inst);
3453
3454 /* No adjustment. */
3455 return 0;
3456}
3457
3458/* Return nonzero if INST is a branch of some kind, else return zero. */
3459
3460static int
fba45db2 3461is_branch (unsigned long inst)
c906108c
SS
3462{
3463 switch (inst >> 26)
3464 {
3465 case 0x20:
3466 case 0x21:
3467 case 0x22:
3468 case 0x23:
7be570e7 3469 case 0x27:
c906108c
SS
3470 case 0x28:
3471 case 0x29:
3472 case 0x2a:
3473 case 0x2b:
7be570e7 3474 case 0x2f:
c906108c
SS
3475 case 0x30:
3476 case 0x31:
3477 case 0x32:
3478 case 0x33:
3479 case 0x38:
3480 case 0x39:
3481 case 0x3a:
7be570e7 3482 case 0x3b:
c906108c
SS
3483 return 1;
3484
3485 default:
3486 return 0;
3487 }
3488}
3489
3490/* Return the register number for a GR which is saved by INST or
3491 zero it INST does not save a GR. */
3492
3493static int
fba45db2 3494inst_saves_gr (unsigned long inst)
c906108c
SS
3495{
3496 /* Does it look like a stw? */
7be570e7
JM
3497 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3498 || (inst >> 26) == 0x1f
3499 || ((inst >> 26) == 0x1f
3500 && ((inst >> 6) == 0xa)))
3501 return extract_5R_store (inst);
3502
3503 /* Does it look like a std? */
3504 if ((inst >> 26) == 0x1c
3505 || ((inst >> 26) == 0x03
3506 && ((inst >> 6) & 0xf) == 0xb))
c906108c
SS
3507 return extract_5R_store (inst);
3508
3509 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3510 if ((inst >> 26) == 0x1b)
3511 return extract_5R_store (inst);
3512
3513 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3514 too. */
7be570e7
JM
3515 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3516 || ((inst >> 26) == 0x3
3517 && (((inst >> 6) & 0xf) == 0x8
3518 || (inst >> 6) & 0xf) == 0x9))
c906108c 3519 return extract_5R_store (inst);
c5aa993b 3520
c906108c
SS
3521 return 0;
3522}
3523
3524/* Return the register number for a FR which is saved by INST or
3525 zero it INST does not save a FR.
3526
3527 Note we only care about full 64bit register stores (that's the only
3528 kind of stores the prologue will use).
3529
3530 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3531
3532static int
fba45db2 3533inst_saves_fr (unsigned long inst)
c906108c 3534{
7be570e7 3535 /* is this an FSTD ? */
c906108c
SS
3536 if ((inst & 0xfc00dfc0) == 0x2c001200)
3537 return extract_5r_store (inst);
7be570e7
JM
3538 if ((inst & 0xfc000002) == 0x70000002)
3539 return extract_5R_store (inst);
3540 /* is this an FSTW ? */
c906108c
SS
3541 if ((inst & 0xfc00df80) == 0x24001200)
3542 return extract_5r_store (inst);
7be570e7
JM
3543 if ((inst & 0xfc000002) == 0x7c000000)
3544 return extract_5R_store (inst);
c906108c
SS
3545 return 0;
3546}
3547
3548/* Advance PC across any function entry prologue instructions
3549 to reach some "real" code.
3550
3551 Use information in the unwind table to determine what exactly should
3552 be in the prologue. */
3553
3554
3555CORE_ADDR
fba45db2 3556skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
3557{
3558 char buf[4];
3559 CORE_ADDR orig_pc = pc;
3560 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3561 unsigned long args_stored, status, i, restart_gr, restart_fr;
3562 struct unwind_table_entry *u;
3563
3564 restart_gr = 0;
3565 restart_fr = 0;
3566
3567restart:
3568 u = find_unwind_entry (pc);
3569 if (!u)
3570 return pc;
3571
c5aa993b 3572 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
3573 if ((pc & ~0x3) != u->region_start)
3574 return pc;
3575
3576 /* This is how much of a frame adjustment we need to account for. */
3577 stack_remaining = u->Total_frame_size << 3;
3578
3579 /* Magic register saves we want to know about. */
3580 save_rp = u->Save_RP;
3581 save_sp = u->Save_SP;
3582
3583 /* An indication that args may be stored into the stack. Unfortunately
3584 the HPUX compilers tend to set this in cases where no args were
3585 stored too!. */
3586 args_stored = 1;
3587
3588 /* Turn the Entry_GR field into a bitmask. */
3589 save_gr = 0;
3590 for (i = 3; i < u->Entry_GR + 3; i++)
3591 {
3592 /* Frame pointer gets saved into a special location. */
3593 if (u->Save_SP && i == FP_REGNUM)
3594 continue;
3595
3596 save_gr |= (1 << i);
3597 }
3598 save_gr &= ~restart_gr;
3599
3600 /* Turn the Entry_FR field into a bitmask too. */
3601 save_fr = 0;
3602 for (i = 12; i < u->Entry_FR + 12; i++)
3603 save_fr |= (1 << i);
3604 save_fr &= ~restart_fr;
3605
3606 /* Loop until we find everything of interest or hit a branch.
3607
3608 For unoptimized GCC code and for any HP CC code this will never ever
3609 examine any user instructions.
3610
3611 For optimzied GCC code we're faced with problems. GCC will schedule
3612 its prologue and make prologue instructions available for delay slot
3613 filling. The end result is user code gets mixed in with the prologue
3614 and a prologue instruction may be in the delay slot of the first branch
3615 or call.
3616
3617 Some unexpected things are expected with debugging optimized code, so
3618 we allow this routine to walk past user instructions in optimized
3619 GCC code. */
3620 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3621 || args_stored)
3622 {
3623 unsigned int reg_num;
3624 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3625 unsigned long old_save_rp, old_save_sp, next_inst;
3626
3627 /* Save copies of all the triggers so we can compare them later
c5aa993b 3628 (only for HPC). */
c906108c
SS
3629 old_save_gr = save_gr;
3630 old_save_fr = save_fr;
3631 old_save_rp = save_rp;
3632 old_save_sp = save_sp;
3633 old_stack_remaining = stack_remaining;
3634
3635 status = target_read_memory (pc, buf, 4);
3636 inst = extract_unsigned_integer (buf, 4);
c5aa993b 3637
c906108c
SS
3638 /* Yow! */
3639 if (status != 0)
3640 return pc;
3641
3642 /* Note the interesting effects of this instruction. */
3643 stack_remaining -= prologue_inst_adjust_sp (inst);
3644
7be570e7
JM
3645 /* There are limited ways to store the return pointer into the
3646 stack. */
3647 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
3648 save_rp = 0;
3649
104c1213 3650 /* These are the only ways we save SP into the stack. At this time
c5aa993b 3651 the HP compilers never bother to save SP into the stack. */
104c1213
JM
3652 if ((inst & 0xffffc000) == 0x6fc10000
3653 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
3654 save_sp = 0;
3655
6426a772
JM
3656 /* Are we loading some register with an offset from the argument
3657 pointer? */
3658 if ((inst & 0xffe00000) == 0x37a00000
3659 || (inst & 0xffffffe0) == 0x081d0240)
3660 {
3661 pc += 4;
3662 continue;
3663 }
3664
c906108c
SS
3665 /* Account for general and floating-point register saves. */
3666 reg_num = inst_saves_gr (inst);
3667 save_gr &= ~(1 << reg_num);
3668
3669 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3670 Unfortunately args_stored only tells us that some arguments
3671 where stored into the stack. Not how many or what kind!
c906108c 3672
c5aa993b
JM
3673 This is a kludge as on the HP compiler sets this bit and it
3674 never does prologue scheduling. So once we see one, skip past
3675 all of them. We have similar code for the fp arg stores below.
c906108c 3676
c5aa993b
JM
3677 FIXME. Can still die if we have a mix of GR and FR argument
3678 stores! */
6426a772 3679 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 3680 {
6426a772 3681 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
3682 {
3683 pc += 4;
3684 status = target_read_memory (pc, buf, 4);
3685 inst = extract_unsigned_integer (buf, 4);
3686 if (status != 0)
3687 return pc;
3688 reg_num = inst_saves_gr (inst);
3689 }
3690 args_stored = 0;
3691 continue;
3692 }
3693
3694 reg_num = inst_saves_fr (inst);
3695 save_fr &= ~(1 << reg_num);
3696
3697 status = target_read_memory (pc + 4, buf, 4);
3698 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 3699
c906108c
SS
3700 /* Yow! */
3701 if (status != 0)
3702 return pc;
3703
3704 /* We've got to be read to handle the ldo before the fp register
c5aa993b 3705 save. */
c906108c
SS
3706 if ((inst & 0xfc000000) == 0x34000000
3707 && inst_saves_fr (next_inst) >= 4
6426a772 3708 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3709 {
3710 /* So we drop into the code below in a reasonable state. */
3711 reg_num = inst_saves_fr (next_inst);
3712 pc -= 4;
3713 }
3714
3715 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3716 This is a kludge as on the HP compiler sets this bit and it
3717 never does prologue scheduling. So once we see one, skip past
3718 all of them. */
6426a772 3719 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 3720 {
6426a772 3721 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3722 {
3723 pc += 8;
3724 status = target_read_memory (pc, buf, 4);
3725 inst = extract_unsigned_integer (buf, 4);
3726 if (status != 0)
3727 return pc;
3728 if ((inst & 0xfc000000) != 0x34000000)
3729 break;
3730 status = target_read_memory (pc + 4, buf, 4);
3731 next_inst = extract_unsigned_integer (buf, 4);
3732 if (status != 0)
3733 return pc;
3734 reg_num = inst_saves_fr (next_inst);
3735 }
3736 args_stored = 0;
3737 continue;
3738 }
3739
3740 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3741 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3742 if (is_branch (inst))
3743 break;
3744
3745 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
3746 arguments were stored into the stack (boo hiss). This could
3747 cause this code to then skip a bunch of user insns (up to the
3748 first branch).
3749
3750 To combat this we try to identify when args_stored was bogusly
3751 set and clear it. We only do this when args_stored is nonzero,
3752 all other resources are accounted for, and nothing changed on
3753 this pass. */
c906108c 3754 if (args_stored
c5aa993b 3755 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
3756 && old_save_gr == save_gr && old_save_fr == save_fr
3757 && old_save_rp == save_rp && old_save_sp == save_sp
3758 && old_stack_remaining == stack_remaining)
3759 break;
c5aa993b 3760
c906108c
SS
3761 /* Bump the PC. */
3762 pc += 4;
3763 }
3764
3765 /* We've got a tenative location for the end of the prologue. However
3766 because of limitations in the unwind descriptor mechanism we may
3767 have went too far into user code looking for the save of a register
3768 that does not exist. So, if there registers we expected to be saved
3769 but never were, mask them out and restart.
3770
3771 This should only happen in optimized code, and should be very rare. */
c5aa993b 3772 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
3773 {
3774 pc = orig_pc;
3775 restart_gr = save_gr;
3776 restart_fr = save_fr;
3777 goto restart;
3778 }
3779
3780 return pc;
3781}
3782
3783
7be570e7
JM
3784/* Return the address of the PC after the last prologue instruction if
3785 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
3786
3787static CORE_ADDR
fba45db2 3788after_prologue (CORE_ADDR pc)
c906108c
SS
3789{
3790 struct symtab_and_line sal;
3791 CORE_ADDR func_addr, func_end;
3792 struct symbol *f;
3793
7be570e7
JM
3794 /* If we can not find the symbol in the partial symbol table, then
3795 there is no hope we can determine the function's start address
3796 with this code. */
c906108c 3797 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 3798 return 0;
c906108c 3799
7be570e7 3800 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
3801 sal = find_pc_line (func_addr, 0);
3802
7be570e7
JM
3803 /* There are only two cases to consider. First, the end of the source line
3804 is within the function bounds. In that case we return the end of the
3805 source line. Second is the end of the source line extends beyond the
3806 bounds of the current function. We need to use the slow code to
3807 examine instructions in that case.
c906108c 3808
7be570e7
JM
3809 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3810 the wrong thing to do. In fact, it should be entirely possible for this
3811 function to always return zero since the slow instruction scanning code
3812 is supposed to *always* work. If it does not, then it is a bug. */
3813 if (sal.end < func_end)
3814 return sal.end;
c5aa993b 3815 else
7be570e7 3816 return 0;
c906108c
SS
3817}
3818
3819/* To skip prologues, I use this predicate. Returns either PC itself
3820 if the code at PC does not look like a function prologue; otherwise
3821 returns an address that (if we're lucky) follows the prologue. If
3822 LENIENT, then we must skip everything which is involved in setting
3823 up the frame (it's OK to skip more, just so long as we don't skip
3824 anything which might clobber the registers which are being saved.
3825 Currently we must not skip more on the alpha, but we might the lenient
3826 stuff some day. */
3827
3828CORE_ADDR
fba45db2 3829hppa_skip_prologue (CORE_ADDR pc)
c906108c 3830{
c5aa993b
JM
3831 unsigned long inst;
3832 int offset;
3833 CORE_ADDR post_prologue_pc;
3834 char buf[4];
c906108c 3835
c5aa993b
JM
3836 /* See if we can determine the end of the prologue via the symbol table.
3837 If so, then return either PC, or the PC after the prologue, whichever
3838 is greater. */
c906108c 3839
c5aa993b 3840 post_prologue_pc = after_prologue (pc);
c906108c 3841
7be570e7
JM
3842 /* If after_prologue returned a useful address, then use it. Else
3843 fall back on the instruction skipping code.
3844
3845 Some folks have claimed this causes problems because the breakpoint
3846 may be the first instruction of the prologue. If that happens, then
3847 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
3848 if (post_prologue_pc != 0)
3849 return max (pc, post_prologue_pc);
c5aa993b
JM
3850 else
3851 return (skip_prologue_hard_way (pc));
c906108c
SS
3852}
3853
43bd9a9e
AC
3854/* Put here the code to store, into the SAVED_REGS, the addresses of
3855 the saved registers of frame described by FRAME_INFO. This
3856 includes special registers such as pc and fp saved in special ways
3857 in the stack frame. sp is even more special: the address we return
3858 for it IS the sp for the next frame. */
c906108c
SS
3859
3860void
fba45db2 3861hppa_frame_find_saved_regs (struct frame_info *frame_info,
43bd9a9e 3862 CORE_ADDR frame_saved_regs[])
c906108c
SS
3863{
3864 CORE_ADDR pc;
3865 struct unwind_table_entry *u;
3866 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3867 int status, i, reg;
3868 char buf[4];
3869 int fp_loc = -1;
d4f3574e 3870 int final_iteration;
c906108c
SS
3871
3872 /* Zero out everything. */
43bd9a9e 3873 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
3874
3875 /* Call dummy frames always look the same, so there's no need to
3876 examine the dummy code to determine locations of saved registers;
3877 instead, let find_dummy_frame_regs fill in the correct offsets
3878 for the saved registers. */
ef6e7e13
AC
3879 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
3880 && (get_frame_pc (frame_info)
3881 <= (get_frame_base (frame_info)
3882 /* A call dummy is sized in words, but it is actually a
3883 series of instructions. Account for that scaling
3884 factor. */
3885 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3886 * CALL_DUMMY_LENGTH)
3887 /* Similarly we have to account for 64bit wide register
3888 saves. */
3889 + (32 * REGISTER_SIZE)
3890 /* We always consider FP regs 8 bytes long. */
3891 + (NUM_REGS - FP0_REGNUM) * 8
3892 /* Similarly we have to account for 64bit wide register
3893 saves. */
3894 + (6 * REGISTER_SIZE)))))
c906108c
SS
3895 find_dummy_frame_regs (frame_info, frame_saved_regs);
3896
3897 /* Interrupt handlers are special too. They lay out the register
3898 state in the exact same order as the register numbers in GDB. */
ef6e7e13 3899 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
c906108c
SS
3900 {
3901 for (i = 0; i < NUM_REGS; i++)
3902 {
3903 /* SP is a little special. */
3904 if (i == SP_REGNUM)
43bd9a9e 3905 frame_saved_regs[SP_REGNUM]
ef6e7e13 3906 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
53a5351d 3907 TARGET_PTR_BIT / 8);
c906108c 3908 else
ef6e7e13 3909 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
c906108c
SS
3910 }
3911 return;
3912 }
3913
3914#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3915 /* Handle signal handler callers. */
5a203e44 3916 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
c906108c
SS
3917 {
3918 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3919 return;
3920 }
3921#endif
3922
3923 /* Get the starting address of the function referred to by the PC
3924 saved in frame. */
be41e9f4 3925 pc = get_frame_func (frame_info);
c906108c
SS
3926
3927 /* Yow! */
3928 u = find_unwind_entry (pc);
3929 if (!u)
3930 return;
3931
3932 /* This is how much of a frame adjustment we need to account for. */
3933 stack_remaining = u->Total_frame_size << 3;
3934
3935 /* Magic register saves we want to know about. */
3936 save_rp = u->Save_RP;
3937 save_sp = u->Save_SP;
3938
3939 /* Turn the Entry_GR field into a bitmask. */
3940 save_gr = 0;
3941 for (i = 3; i < u->Entry_GR + 3; i++)
3942 {
3943 /* Frame pointer gets saved into a special location. */
3944 if (u->Save_SP && i == FP_REGNUM)
3945 continue;
3946
3947 save_gr |= (1 << i);
3948 }
3949
3950 /* Turn the Entry_FR field into a bitmask too. */
3951 save_fr = 0;
3952 for (i = 12; i < u->Entry_FR + 12; i++)
3953 save_fr |= (1 << i);
3954
3955 /* The frame always represents the value of %sp at entry to the
3956 current function (and is thus equivalent to the "saved" stack
3957 pointer. */
ef6e7e13 3958 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
c906108c
SS
3959
3960 /* Loop until we find everything of interest or hit a branch.
3961
3962 For unoptimized GCC code and for any HP CC code this will never ever
3963 examine any user instructions.
3964
7be570e7 3965 For optimized GCC code we're faced with problems. GCC will schedule
c906108c
SS
3966 its prologue and make prologue instructions available for delay slot
3967 filling. The end result is user code gets mixed in with the prologue
3968 and a prologue instruction may be in the delay slot of the first branch
3969 or call.
3970
3971 Some unexpected things are expected with debugging optimized code, so
3972 we allow this routine to walk past user instructions in optimized
3973 GCC code. */
d4f3574e
SS
3974 final_iteration = 0;
3975 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
ef6e7e13 3976 && pc <= get_frame_pc (frame_info))
c906108c
SS
3977 {
3978 status = target_read_memory (pc, buf, 4);
3979 inst = extract_unsigned_integer (buf, 4);
3980
3981 /* Yow! */
3982 if (status != 0)
3983 return;
3984
3985 /* Note the interesting effects of this instruction. */
3986 stack_remaining -= prologue_inst_adjust_sp (inst);
3987
104c1213
JM
3988 /* There are limited ways to store the return pointer into the
3989 stack. */
c2c6d25f 3990 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
c906108c
SS
3991 {
3992 save_rp = 0;
ef6e7e13 3993 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
c906108c 3994 }
c2c6d25f
JM
3995 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3996 {
3997 save_rp = 0;
ef6e7e13 3998 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
c2c6d25f 3999 }
c906108c 4000
104c1213
JM
4001 /* Note if we saved SP into the stack. This also happens to indicate
4002 the location of the saved frame pointer. */
c2c6d25f
JM
4003 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4004 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
104c1213 4005 {
ef6e7e13 4006 frame_saved_regs[FP_REGNUM] = get_frame_base (frame_info);
104c1213
JM
4007 save_sp = 0;
4008 }
c906108c
SS
4009
4010 /* Account for general and floating-point register saves. */
4011 reg = inst_saves_gr (inst);
4012 if (reg >= 3 && reg <= 18
4013 && (!u->Save_SP || reg != FP_REGNUM))
4014 {
4015 save_gr &= ~(1 << reg);
4016
4017 /* stwm with a positive displacement is a *post modify*. */
4018 if ((inst >> 26) == 0x1b
4019 && extract_14 (inst) >= 0)
ef6e7e13 4020 frame_saved_regs[reg] = get_frame_base (frame_info);
104c1213
JM
4021 /* A std has explicit post_modify forms. */
4022 else if ((inst & 0xfc00000c0) == 0x70000008)
ef6e7e13 4023 frame_saved_regs[reg] = get_frame_base (frame_info);
c906108c
SS
4024 else
4025 {
104c1213
JM
4026 CORE_ADDR offset;
4027
4028 if ((inst >> 26) == 0x1c)
d4f3574e 4029 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213
JM
4030 else if ((inst >> 26) == 0x03)
4031 offset = low_sign_extend (inst & 0x1f, 5);
4032 else
4033 offset = extract_14 (inst);
4034
c906108c
SS
4035 /* Handle code with and without frame pointers. */
4036 if (u->Save_SP)
43bd9a9e 4037 frame_saved_regs[reg]
ef6e7e13 4038 = get_frame_base (frame_info) + offset;
c906108c 4039 else
43bd9a9e 4040 frame_saved_regs[reg]
ef6e7e13 4041 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
104c1213 4042 + offset);
c906108c
SS
4043 }
4044 }
4045
4046
4047 /* GCC handles callee saved FP regs a little differently.
4048
c5aa993b
JM
4049 It emits an instruction to put the value of the start of
4050 the FP store area into %r1. It then uses fstds,ma with
4051 a basereg of %r1 for the stores.
c906108c 4052
c5aa993b
JM
4053 HP CC emits them at the current stack pointer modifying
4054 the stack pointer as it stores each register. */
c906108c
SS
4055
4056 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4057 if ((inst & 0xffffc000) == 0x34610000
4058 || (inst & 0xffffc000) == 0x37c10000)
4059 fp_loc = extract_14 (inst);
c5aa993b 4060
c906108c
SS
4061 reg = inst_saves_fr (inst);
4062 if (reg >= 12 && reg <= 21)
4063 {
4064 /* Note +4 braindamage below is necessary because the FP status
4065 registers are internally 8 registers rather than the expected
4066 4 registers. */
4067 save_fr &= ~(1 << reg);
4068 if (fp_loc == -1)
4069 {
4070 /* 1st HP CC FP register store. After this instruction
c5aa993b
JM
4071 we've set enough state that the GCC and HPCC code are
4072 both handled in the same manner. */
ef6e7e13 4073 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
c906108c
SS
4074 fp_loc = 8;
4075 }
4076 else
4077 {
43bd9a9e 4078 frame_saved_regs[reg + FP0_REGNUM + 4]
ef6e7e13 4079 = get_frame_base (frame_info) + fp_loc;
c906108c
SS
4080 fp_loc += 8;
4081 }
4082 }
4083
39f77062 4084 /* Quit if we hit any kind of branch the previous iteration. */
d4f3574e 4085 if (final_iteration)
c906108c
SS
4086 break;
4087
d4f3574e
SS
4088 /* We want to look precisely one instruction beyond the branch
4089 if we have not found everything yet. */
4090 if (is_branch (inst))
4091 final_iteration = 1;
4092
c906108c
SS
4093 /* Bump the PC. */
4094 pc += 4;
4095 }
4096}
4097
43bd9a9e
AC
4098/* XXX - deprecated. This is a compatibility function for targets
4099 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4100/* Find the addresses in which registers are saved in FRAME. */
4101
4102void
4103hppa_frame_init_saved_regs (struct frame_info *frame)
4104{
4105 if (get_frame_saved_regs (frame) == NULL)
4106 frame_saved_regs_zalloc (frame);
4107 hppa_frame_find_saved_regs (frame, get_frame_saved_regs (frame));
4108}
c906108c
SS
4109
4110/* Exception handling support for the HP-UX ANSI C++ compiler.
4111 The compiler (aCC) provides a callback for exception events;
4112 GDB can set a breakpoint on this callback and find out what
4113 exception event has occurred. */
4114
4115/* The name of the hook to be set to point to the callback function */
c5aa993b
JM
4116static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4117/* The name of the function to be used to set the hook value */
4118static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4119/* The name of the callback function in end.o */
c906108c 4120static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
c5aa993b
JM
4121/* Name of function in end.o on which a break is set (called by above) */
4122static char HP_ACC_EH_break[] = "__d_eh_break";
4123/* Name of flag (in end.o) that enables catching throws */
4124static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4125/* Name of flag (in end.o) that enables catching catching */
4126static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4127/* The enum used by aCC */
4128typedef enum
4129 {
4130 __EH_NOTIFY_THROW,
4131 __EH_NOTIFY_CATCH
4132 }
4133__eh_notification;
c906108c
SS
4134
4135/* Is exception-handling support available with this executable? */
4136static int hp_cxx_exception_support = 0;
4137/* Has the initialize function been run? */
4138int hp_cxx_exception_support_initialized = 0;
4139/* Similar to above, but imported from breakpoint.c -- non-target-specific */
4140extern int exception_support_initialized;
4141/* Address of __eh_notify_hook */
a0b3c4fd 4142static CORE_ADDR eh_notify_hook_addr = 0;
c906108c 4143/* Address of __d_eh_notify_callback */
a0b3c4fd 4144static CORE_ADDR eh_notify_callback_addr = 0;
c906108c 4145/* Address of __d_eh_break */
a0b3c4fd 4146static CORE_ADDR eh_break_addr = 0;
c906108c 4147/* Address of __d_eh_catch_catch */
a0b3c4fd 4148static CORE_ADDR eh_catch_catch_addr = 0;
c906108c 4149/* Address of __d_eh_catch_throw */
a0b3c4fd 4150static CORE_ADDR eh_catch_throw_addr = 0;
c906108c 4151/* Sal for __d_eh_break */
a0b3c4fd 4152static struct symtab_and_line *break_callback_sal = 0;
c906108c
SS
4153
4154/* Code in end.c expects __d_pid to be set in the inferior,
4155 otherwise __d_eh_notify_callback doesn't bother to call
4156 __d_eh_break! So we poke the pid into this symbol
4157 ourselves.
4158 0 => success
c5aa993b 4159 1 => failure */
c906108c 4160int
fba45db2 4161setup_d_pid_in_inferior (void)
c906108c
SS
4162{
4163 CORE_ADDR anaddr;
c5aa993b
JM
4164 struct minimal_symbol *msymbol;
4165 char buf[4]; /* FIXME 32x64? */
4166
c906108c
SS
4167 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4168 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4169 if (msymbol == NULL)
4170 {
4171 warning ("Unable to find __d_pid symbol in object file.");
4172 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4173 return 1;
4174 }
4175
4176 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
39f77062 4177 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
c5aa993b 4178 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
c906108c
SS
4179 {
4180 warning ("Unable to write __d_pid");
4181 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4182 return 1;
4183 }
4184 return 0;
4185}
4186
4187/* Initialize exception catchpoint support by looking for the
4188 necessary hooks/callbacks in end.o, etc., and set the hook value to
4189 point to the required debug function
4190
4191 Return 0 => failure
c5aa993b 4192 1 => success */
c906108c
SS
4193
4194static int
fba45db2 4195initialize_hp_cxx_exception_support (void)
c906108c
SS
4196{
4197 struct symtabs_and_lines sals;
c5aa993b
JM
4198 struct cleanup *old_chain;
4199 struct cleanup *canonical_strings_chain = NULL;
c906108c 4200 int i;
c5aa993b
JM
4201 char *addr_start;
4202 char *addr_end = NULL;
4203 char **canonical = (char **) NULL;
c906108c 4204 int thread = -1;
c5aa993b
JM
4205 struct symbol *sym = NULL;
4206 struct minimal_symbol *msym = NULL;
4207 struct objfile *objfile;
c906108c
SS
4208 asection *shlib_info;
4209
4210 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4211 recursion is a possibility because finding the hook for exception
4212 callbacks involves making a call in the inferior, which means
4213 re-inserting breakpoints which can re-invoke this code */
4214
c5aa993b
JM
4215 static int recurse = 0;
4216 if (recurse > 0)
c906108c
SS
4217 {
4218 hp_cxx_exception_support_initialized = 0;
4219 exception_support_initialized = 0;
4220 return 0;
4221 }
4222
4223 hp_cxx_exception_support = 0;
4224
4225 /* First check if we have seen any HP compiled objects; if not,
4226 it is very unlikely that HP's idiosyncratic callback mechanism
4227 for exception handling debug support will be available!
4228 This will percolate back up to breakpoint.c, where our callers
4229 will decide to try the g++ exception-handling support instead. */
4230 if (!hp_som_som_object_present)
4231 return 0;
c5aa993b 4232
c906108c
SS
4233 /* We have a SOM executable with SOM debug info; find the hooks */
4234
4235 /* First look for the notify hook provided by aCC runtime libs */
4236 /* If we find this symbol, we conclude that the executable must
4237 have HP aCC exception support built in. If this symbol is not
4238 found, even though we're a HP SOM-SOM file, we may have been
4239 built with some other compiler (not aCC). This results percolates
4240 back up to our callers in breakpoint.c which can decide to
4241 try the g++ style of exception support instead.
4242 If this symbol is found but the other symbols we require are
4243 not found, there is something weird going on, and g++ support
4244 should *not* be tried as an alternative.
c5aa993b 4245
c906108c
SS
4246 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4247 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
c5aa993b 4248
c906108c
SS
4249 /* libCsup has this hook; it'll usually be non-debuggable */
4250 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4251 if (msym)
4252 {
4253 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4254 hp_cxx_exception_support = 1;
c5aa993b 4255 }
c906108c
SS
4256 else
4257 {
4258 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4259 warning ("Executable may not have been compiled debuggable with HP aCC.");
4260 warning ("GDB will be unable to intercept exception events.");
4261 eh_notify_hook_addr = 0;
4262 hp_cxx_exception_support = 0;
4263 return 0;
4264 }
4265
c906108c 4266 /* Next look for the notify callback routine in end.o */
c5aa993b 4267 /* This is always available in the SOM symbol dictionary if end.o is linked in */
c906108c
SS
4268 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4269 if (msym)
4270 {
4271 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4272 hp_cxx_exception_support = 1;
c5aa993b
JM
4273 }
4274 else
c906108c
SS
4275 {
4276 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4277 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4278 warning ("GDB will be unable to intercept exception events.");
4279 eh_notify_callback_addr = 0;
4280 return 0;
4281 }
4282
53a5351d 4283#ifndef GDB_TARGET_IS_HPPA_20W
c906108c
SS
4284 /* Check whether the executable is dynamically linked or archive bound */
4285 /* With an archive-bound executable we can use the raw addresses we find
4286 for the callback function, etc. without modification. For an executable
4287 with shared libraries, we have to do more work to find the plabel, which
4288 can be the target of a call through $$dyncall from the aCC runtime support
4289 library (libCsup) which is linked shared by default by aCC. */
4290 /* This test below was copied from somsolib.c/somread.c. It may not be a very
c5aa993b 4291 reliable one to test that an executable is linked shared. pai/1997-07-18 */
c906108c
SS
4292 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4293 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4294 {
4295 /* The minsym we have has the local code address, but that's not the
4296 plabel that can be used by an inter-load-module call. */
4297 /* Find solib handle for main image (which has end.o), and use that
4298 and the min sym as arguments to __d_shl_get() (which does the equivalent
c5aa993b 4299 of shl_findsym()) to find the plabel. */
c906108c
SS
4300
4301 args_for_find_stub args;
4302 static char message[] = "Error while finding exception callback hook:\n";
c5aa993b 4303
c906108c
SS
4304 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4305 args.msym = msym;
a0b3c4fd 4306 args.return_val = 0;
c5aa993b 4307
c906108c 4308 recurse++;
4efb68b1 4309 catch_errors (cover_find_stub_with_shl_get, &args, message,
a0b3c4fd
JM
4310 RETURN_MASK_ALL);
4311 eh_notify_callback_addr = args.return_val;
c906108c 4312 recurse--;
c5aa993b 4313
c906108c 4314 exception_catchpoints_are_fragile = 1;
c5aa993b 4315
c906108c 4316 if (!eh_notify_callback_addr)
c5aa993b
JM
4317 {
4318 /* We can get here either if there is no plabel in the export list
1faa59a8 4319 for the main image, or if something strange happened (?) */
c5aa993b
JM
4320 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4321 warning ("GDB will not be able to intercept exception events.");
4322 return 0;
4323 }
c906108c
SS
4324 }
4325 else
4326 exception_catchpoints_are_fragile = 0;
53a5351d 4327#endif
c906108c 4328
c906108c 4329 /* Now, look for the breakpointable routine in end.o */
c5aa993b 4330 /* This should also be available in the SOM symbol dict. if end.o linked in */
c906108c
SS
4331 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4332 if (msym)
4333 {
4334 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4335 hp_cxx_exception_support = 1;
c5aa993b 4336 }
c906108c
SS
4337 else
4338 {
4339 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4340 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4341 warning ("GDB will be unable to intercept exception events.");
4342 eh_break_addr = 0;
4343 return 0;
4344 }
4345
c906108c
SS
4346 /* Next look for the catch enable flag provided in end.o */
4347 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4348 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4349 if (sym) /* sometimes present in debug info */
c906108c
SS
4350 {
4351 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4352 hp_cxx_exception_support = 1;
4353 }
c5aa993b
JM
4354 else
4355 /* otherwise look in SOM symbol dict. */
c906108c
SS
4356 {
4357 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4358 if (msym)
c5aa993b
JM
4359 {
4360 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4361 hp_cxx_exception_support = 1;
4362 }
c906108c 4363 else
c5aa993b
JM
4364 {
4365 warning ("Unable to enable interception of exception catches.");
4366 warning ("Executable may not have been compiled debuggable with HP aCC.");
4367 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4368 return 0;
4369 }
c906108c
SS
4370 }
4371
c906108c
SS
4372 /* Next look for the catch enable flag provided end.o */
4373 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4374 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4375 if (sym) /* sometimes present in debug info */
c906108c
SS
4376 {
4377 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4378 hp_cxx_exception_support = 1;
4379 }
c5aa993b
JM
4380 else
4381 /* otherwise look in SOM symbol dict. */
c906108c
SS
4382 {
4383 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4384 if (msym)
c5aa993b
JM
4385 {
4386 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4387 hp_cxx_exception_support = 1;
4388 }
c906108c 4389 else
c5aa993b
JM
4390 {
4391 warning ("Unable to enable interception of exception throws.");
4392 warning ("Executable may not have been compiled debuggable with HP aCC.");
4393 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4394 return 0;
4395 }
c906108c
SS
4396 }
4397
c5aa993b
JM
4398 /* Set the flags */
4399 hp_cxx_exception_support = 2; /* everything worked so far */
c906108c
SS
4400 hp_cxx_exception_support_initialized = 1;
4401 exception_support_initialized = 1;
4402
4403 return 1;
4404}
4405
4406/* Target operation for enabling or disabling interception of
4407 exception events.
4408 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4409 ENABLE is either 0 (disable) or 1 (enable).
4410 Return value is NULL if no support found;
4411 -1 if something went wrong,
4412 or a pointer to a symtab/line struct if the breakpointable
c5aa993b 4413 address was found. */
c906108c 4414
c5aa993b 4415struct symtab_and_line *
fba45db2 4416child_enable_exception_callback (enum exception_event_kind kind, int enable)
c906108c
SS
4417{
4418 char buf[4];
4419
4420 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4421 if (!initialize_hp_cxx_exception_support ())
4422 return NULL;
4423
4424 switch (hp_cxx_exception_support)
4425 {
c5aa993b
JM
4426 case 0:
4427 /* Assuming no HP support at all */
4428 return NULL;
4429 case 1:
4430 /* HP support should be present, but something went wrong */
4431 return (struct symtab_and_line *) -1; /* yuck! */
4432 /* there may be other cases in the future */
c906108c 4433 }
c5aa993b 4434
c906108c 4435 /* Set the EH hook to point to the callback routine */
c5aa993b 4436 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
c906108c 4437 /* pai: (temp) FIXME should there be a pack operation first? */
c5aa993b 4438 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
c906108c
SS
4439 {
4440 warning ("Could not write to target memory for exception event callback.");
4441 warning ("Interception of exception events may not work.");
c5aa993b 4442 return (struct symtab_and_line *) -1;
c906108c
SS
4443 }
4444 if (enable)
4445 {
c5aa993b 4446 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
39f77062 4447 if (PIDGET (inferior_ptid) > 0)
c5aa993b
JM
4448 {
4449 if (setup_d_pid_in_inferior ())
4450 return (struct symtab_and_line *) -1;
4451 }
c906108c 4452 else
c5aa993b 4453 {
104c1213
JM
4454 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4455 return (struct symtab_and_line *) -1;
c5aa993b 4456 }
c906108c 4457 }
c5aa993b 4458
c906108c
SS
4459 switch (kind)
4460 {
c5aa993b
JM
4461 case EX_EVENT_THROW:
4462 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4463 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4464 {
4465 warning ("Couldn't enable exception throw interception.");
4466 return (struct symtab_and_line *) -1;
4467 }
4468 break;
4469 case EX_EVENT_CATCH:
4470 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4471 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4472 {
4473 warning ("Couldn't enable exception catch interception.");
4474 return (struct symtab_and_line *) -1;
4475 }
4476 break;
104c1213
JM
4477 default:
4478 error ("Request to enable unknown or unsupported exception event.");
c906108c 4479 }
c5aa993b 4480
c906108c
SS
4481 /* Copy break address into new sal struct, malloc'ing if needed. */
4482 if (!break_callback_sal)
4483 {
4484 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4485 }
fe39c653 4486 init_sal (break_callback_sal);
c906108c
SS
4487 break_callback_sal->symtab = NULL;
4488 break_callback_sal->pc = eh_break_addr;
4489 break_callback_sal->line = 0;
4490 break_callback_sal->end = eh_break_addr;
c5aa993b 4491
c906108c
SS
4492 return break_callback_sal;
4493}
4494
c5aa993b 4495/* Record some information about the current exception event */
c906108c 4496static struct exception_event_record current_ex_event;
c5aa993b
JM
4497/* Convenience struct */
4498static struct symtab_and_line null_symtab_and_line =
4499{NULL, 0, 0, 0};
c906108c
SS
4500
4501/* Report current exception event. Returns a pointer to a record
4502 that describes the kind of the event, where it was thrown from,
4503 and where it will be caught. More information may be reported
c5aa993b 4504 in the future */
c906108c 4505struct exception_event_record *
fba45db2 4506child_get_current_exception_event (void)
c906108c 4507{
c5aa993b
JM
4508 CORE_ADDR event_kind;
4509 CORE_ADDR throw_addr;
4510 CORE_ADDR catch_addr;
c906108c
SS
4511 struct frame_info *fi, *curr_frame;
4512 int level = 1;
4513
c5aa993b 4514 curr_frame = get_current_frame ();
c906108c
SS
4515 if (!curr_frame)
4516 return (struct exception_event_record *) NULL;
4517
4518 /* Go up one frame to __d_eh_notify_callback, because at the
4519 point when this code is executed, there's garbage in the
4520 arguments of __d_eh_break. */
4521 fi = find_relative_frame (curr_frame, &level);
4522 if (level != 0)
4523 return (struct exception_event_record *) NULL;
4524
0f7d239c 4525 select_frame (fi);
c906108c
SS
4526
4527 /* Read in the arguments */
4528 /* __d_eh_notify_callback() is called with 3 arguments:
c5aa993b
JM
4529 1. event kind catch or throw
4530 2. the target address if known
4531 3. a flag -- not sure what this is. pai/1997-07-17 */
4532 event_kind = read_register (ARG0_REGNUM);
c906108c
SS
4533 catch_addr = read_register (ARG1_REGNUM);
4534
4535 /* Now go down to a user frame */
4536 /* For a throw, __d_eh_break is called by
c5aa993b
JM
4537 __d_eh_notify_callback which is called by
4538 __notify_throw which is called
4539 from user code.
c906108c 4540 For a catch, __d_eh_break is called by
c5aa993b
JM
4541 __d_eh_notify_callback which is called by
4542 <stackwalking stuff> which is called by
4543 __throw__<stuff> or __rethrow_<stuff> which is called
4544 from user code. */
4545 /* FIXME: Don't use such magic numbers; search for the frames */
c906108c
SS
4546 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4547 fi = find_relative_frame (curr_frame, &level);
4548 if (level != 0)
4549 return (struct exception_event_record *) NULL;
4550
0f7d239c 4551 select_frame (fi);
ef6e7e13 4552 throw_addr = get_frame_pc (fi);
c906108c
SS
4553
4554 /* Go back to original (top) frame */
0f7d239c 4555 select_frame (curr_frame);
c906108c
SS
4556
4557 current_ex_event.kind = (enum exception_event_kind) event_kind;
4558 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4559 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4560
4561 return &current_ex_event;
4562}
4563
9a043c1d
AC
4564/* Instead of this nasty cast, add a method pvoid() that prints out a
4565 host VOID data type (remember %p isn't portable). */
4566
4567static CORE_ADDR
4568hppa_pointer_to_address_hack (void *ptr)
4569{
4570 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4571 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4572}
4573
c906108c 4574static void
fba45db2 4575unwind_command (char *exp, int from_tty)
c906108c
SS
4576{
4577 CORE_ADDR address;
4578 struct unwind_table_entry *u;
4579
4580 /* If we have an expression, evaluate it and use it as the address. */
4581
4582 if (exp != 0 && *exp != 0)
4583 address = parse_and_eval_address (exp);
4584 else
4585 return;
4586
4587 u = find_unwind_entry (address);
4588
4589 if (!u)
4590 {
4591 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4592 return;
4593 }
4594
ce414844 4595 printf_unfiltered ("unwind_table_entry (0x%s):\n",
9a043c1d 4596 paddr_nz (hppa_pointer_to_address_hack (u)));
c906108c
SS
4597
4598 printf_unfiltered ("\tregion_start = ");
4599 print_address (u->region_start, gdb_stdout);
4600
4601 printf_unfiltered ("\n\tregion_end = ");
4602 print_address (u->region_end, gdb_stdout);
4603
c906108c 4604#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
4605
4606 printf_unfiltered ("\n\tflags =");
4607 pif (Cannot_unwind);
4608 pif (Millicode);
4609 pif (Millicode_save_sr0);
4610 pif (Entry_SR);
4611 pif (Args_stored);
4612 pif (Variable_Frame);
4613 pif (Separate_Package_Body);
4614 pif (Frame_Extension_Millicode);
4615 pif (Stack_Overflow_Check);
4616 pif (Two_Instruction_SP_Increment);
4617 pif (Ada_Region);
4618 pif (Save_SP);
4619 pif (Save_RP);
4620 pif (Save_MRP_in_frame);
4621 pif (extn_ptr_defined);
4622 pif (Cleanup_defined);
4623 pif (MPE_XL_interrupt_marker);
4624 pif (HP_UX_interrupt_marker);
4625 pif (Large_frame);
4626
4627 putchar_unfiltered ('\n');
4628
c906108c 4629#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
4630
4631 pin (Region_description);
4632 pin (Entry_FR);
4633 pin (Entry_GR);
4634 pin (Total_frame_size);
4635}
c906108c
SS
4636
4637#ifdef PREPARE_TO_PROCEED
4638
4639/* If the user has switched threads, and there is a breakpoint
4640 at the old thread's pc location, then switch to that thread
4641 and return TRUE, else return FALSE and don't do a thread
4642 switch (or rather, don't seem to have done a thread switch).
4643
4644 Ptrace-based gdb will always return FALSE to the thread-switch
4645 query, and thus also to PREPARE_TO_PROCEED.
4646
4647 The important thing is whether there is a BPT instruction,
4648 not how many user breakpoints there are. So we have to worry
4649 about things like these:
4650
4651 o Non-bp stop -- NO
4652
4653 o User hits bp, no switch -- NO
4654
4655 o User hits bp, switches threads -- YES
4656
4657 o User hits bp, deletes bp, switches threads -- NO
4658
4659 o User hits bp, deletes one of two or more bps
c5aa993b 4660 at that PC, user switches threads -- YES
c906108c
SS
4661
4662 o Plus, since we're buffering events, the user may have hit a
c5aa993b
JM
4663 breakpoint, deleted the breakpoint and then gotten another
4664 hit on that same breakpoint on another thread which
4665 actually hit before the delete. (FIXME in breakpoint.c
4666 so that "dead" breakpoints are ignored?) -- NO
c906108c
SS
4667
4668 For these reasons, we have to violate information hiding and
4669 call "breakpoint_here_p". If core gdb thinks there is a bpt
4670 here, that's what counts, as core gdb is the one which is
e02bc4cc
DS
4671 putting the BPT instruction in and taking it out.
4672
4673 Note that this implementation is potentially redundant now that
8849f47d
JL
4674 default_prepare_to_proceed() has been added.
4675
4676 FIXME This may not support switching threads after Ctrl-C
4677 correctly. The default implementation does support this. */
c906108c 4678int
fba45db2 4679hppa_prepare_to_proceed (void)
c906108c
SS
4680{
4681 pid_t old_thread;
4682 pid_t current_thread;
4683
39f77062 4684 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
c906108c
SS
4685 if (old_thread != 0)
4686 {
4687 /* Switched over from "old_thread". Try to do
4688 as little work as possible, 'cause mostly
4689 we're going to switch back. */
4690 CORE_ADDR new_pc;
c5aa993b 4691 CORE_ADDR old_pc = read_pc ();
c906108c
SS
4692
4693 /* Yuk, shouldn't use global to specify current
4694 thread. But that's how gdb does it. */
39f77062
KB
4695 current_thread = PIDGET (inferior_ptid);
4696 inferior_ptid = pid_to_ptid (old_thread);
c906108c 4697
c5aa993b
JM
4698 new_pc = read_pc ();
4699 if (new_pc != old_pc /* If at same pc, no need */
c906108c 4700 && breakpoint_here_p (new_pc))
c5aa993b 4701 {
c906108c 4702 /* User hasn't deleted the BP.
c5aa993b 4703 Return TRUE, finishing switch to "old_thread". */
c906108c
SS
4704 flush_cached_frames ();
4705 registers_changed ();
4706#if 0
c5aa993b 4707 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
39f77062 4708 current_thread, PIDGET (inferior_ptid));
c906108c 4709#endif
c5aa993b 4710
c906108c 4711 return 1;
c5aa993b 4712 }
c906108c
SS
4713
4714 /* Otherwise switch back to the user-chosen thread. */
39f77062 4715 inferior_ptid = pid_to_ptid (current_thread);
c5aa993b 4716 new_pc = read_pc (); /* Re-prime register cache */
c906108c
SS
4717 }
4718
4719 return 0;
4720}
4721#endif /* PREPARE_TO_PROCEED */
4722
c2c6d25f 4723void
fba45db2 4724hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
4725{
4726 /* To step over a breakpoint instruction on the PA takes some
4727 fiddling with the instruction address queue.
4728
4729 When we stop at a breakpoint, the IA queue front (the instruction
4730 we're executing now) points at the breakpoint instruction, and
4731 the IA queue back (the next instruction to execute) points to
4732 whatever instruction we would execute after the breakpoint, if it
4733 were an ordinary instruction. This is the case even if the
4734 breakpoint is in the delay slot of a branch instruction.
4735
4736 Clearly, to step past the breakpoint, we need to set the queue
4737 front to the back. But what do we put in the back? What
4738 instruction comes after that one? Because of the branch delay
4739 slot, the next insn is always at the back + 4. */
4740 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4741 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4742
4743 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4744 /* We can leave the tail's space the same, since there's no jump. */
4745}
4746
1cdb71fe
JL
4747/* Copy the function value from VALBUF into the proper location
4748 for a function return.
4749
4750 Called only in the context of the "return" command. */
4751
4752void
4753hppa_store_return_value (struct type *type, char *valbuf)
4754{
4755 /* For software floating point, the return value goes into the
4756 integer registers. But we do not have any flag to key this on,
4757 so we always store the value into the integer registers.
4758
4759 If its a float value, then we also store it into the floating
4760 point registers. */
73937e03
AC
4761 deprecated_write_register_bytes (REGISTER_BYTE (28)
4762 + (TYPE_LENGTH (type) > 4
4763 ? (8 - TYPE_LENGTH (type))
4764 : (4 - TYPE_LENGTH (type))),
4765 valbuf, TYPE_LENGTH (type));
1cdb71fe 4766 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
73937e03
AC
4767 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4768 valbuf, TYPE_LENGTH (type));
1cdb71fe
JL
4769}
4770
4771/* Copy the function's return value into VALBUF.
4772
4773 This function is called only in the context of "target function calls",
4774 ie. when the debugger forces a function to be called in the child, and
4775 when the debugger forces a fucntion to return prematurely via the
4776 "return" command. */
4777
4778void
4779hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4780{
4781 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4782 memcpy (valbuf,
4783 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4784 TYPE_LENGTH (type));
4785 else
4786 memcpy (valbuf,
4787 ((char *)regbuf
4788 + REGISTER_BYTE (28)
4789 + (TYPE_LENGTH (type) > 4
4790 ? (8 - TYPE_LENGTH (type))
4791 : (4 - TYPE_LENGTH (type)))),
4792 TYPE_LENGTH (type));
4793}
4facf7e8 4794
d709c020
JB
4795int
4796hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4797{
4798 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4799 via a pointer regardless of its type or the compiler used. */
4800 return (TYPE_LENGTH (type) > 8);
4801}
4802
4803int
4804hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4805{
4806 /* Stack grows upward */
4807 return (lhs > rhs);
4808}
4809
4810CORE_ADDR
4811hppa_stack_align (CORE_ADDR sp)
4812{
4813 /* elz: adjust the quantity to the next highest value which is
4814 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4815 On hppa the sp must always be kept 64-bit aligned */
4816 return ((sp % 8) ? (sp + 7) & -8 : sp);
4817}
4818
4819int
4820hppa_pc_requires_run_before_use (CORE_ADDR pc)
4821{
4822 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4823
4824 An example of this occurs when an a.out is linked against a foo.sl.
4825 The foo.sl defines a global bar(), and the a.out declares a signature
4826 for bar(). However, the a.out doesn't directly call bar(), but passes
4827 its address in another call.
4828
4829 If you have this scenario and attempt to "break bar" before running,
4830 gdb will find a minimal symbol for bar() in the a.out. But that
4831 symbol's address will be negative. What this appears to denote is
4832 an index backwards from the base of the procedure linkage table (PLT)
4833 into the data linkage table (DLT), the end of which is contiguous
4834 with the start of the PLT. This is clearly not a valid address for
4835 us to set a breakpoint on.
4836
4837 Note that one must be careful in how one checks for a negative address.
4838 0xc0000000 is a legitimate address of something in a shared text
4839 segment, for example. Since I don't know what the possible range
4840 is of these "really, truly negative" addresses that come from the
4841 minimal symbols, I'm resorting to the gross hack of checking the
4842 top byte of the address for all 1's. Sigh. */
4843
4844 return (!target_has_stack && (pc & 0xFF000000));
4845}
4846
4847int
4848hppa_instruction_nullified (void)
4849{
4850 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4851 avoid the type cast. I'm leaving it as is for now as I'm doing
4852 semi-mechanical multiarching-related changes. */
4853 const int ipsw = (int) read_register (IPSW_REGNUM);
4854 const int flags = (int) read_register (FLAGS_REGNUM);
4855
4856 return ((ipsw & 0x00200000) && !(flags & 0x2));
4857}
4858
60e1ff27
JB
4859int
4860hppa_register_raw_size (int reg_nr)
4861{
4862 /* All registers have the same size. */
4863 return REGISTER_SIZE;
4864}
4865
d709c020
JB
4866/* Index within the register vector of the first byte of the space i
4867 used for register REG_NR. */
4868
4869int
4870hppa_register_byte (int reg_nr)
4871{
4872 return reg_nr * 4;
4873}
4874
4875/* Return the GDB type object for the "standard" data type of data
4876 in register N. */
4877
4878struct type *
4879hppa_register_virtual_type (int reg_nr)
4880{
4881 if (reg_nr < FP4_REGNUM)
4882 return builtin_type_int;
4883 else
4884 return builtin_type_float;
4885}
4886
4887/* Store the address of the place in which to copy the structure the
4888 subroutine will return. This is called from call_function. */
4889
4890void
4891hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4892{
4893 write_register (28, addr);
4894}
4895
60383d10
JB
4896CORE_ADDR
4897hppa_extract_struct_value_address (char *regbuf)
4898{
4899 /* Extract from an array REGBUF containing the (raw) register state
4900 the address in which a function should return its structure value,
4901 as a CORE_ADDR (or an expression that can be used as one). */
4902 /* FIXME: brobecker 2002-12-26.
4903 The current implementation is historical, but we should eventually
4904 implement it in a more robust manner as it relies on the fact that
4905 the address size is equal to the size of an int* _on the host_...
4906 One possible implementation that crossed my mind is to use
4907 extract_address. */
4908 return (*(int *)(regbuf + REGISTER_BYTE (28)));
4909}
4910
d709c020
JB
4911/* Return True if REGNUM is not a register available to the user
4912 through ptrace(). */
4913
4914int
4915hppa_cannot_store_register (int regnum)
4916{
4917 return (regnum == 0
4918 || regnum == PCSQ_HEAD_REGNUM
4919 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
4920 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
4921
4922}
4923
4924CORE_ADDR
4925hppa_frame_args_address (struct frame_info *fi)
4926{
ef6e7e13 4927 return get_frame_base (fi);
d709c020
JB
4928}
4929
4930CORE_ADDR
4931hppa_frame_locals_address (struct frame_info *fi)
4932{
ef6e7e13 4933 return get_frame_base (fi);
d709c020
JB
4934}
4935
60383d10
JB
4936int
4937hppa_frame_num_args (struct frame_info *frame)
4938{
4939 /* We can't tell how many args there are now that the C compiler delays
4940 popping them. */
4941 return -1;
4942}
4943
d709c020
JB
4944CORE_ADDR
4945hppa_smash_text_address (CORE_ADDR addr)
4946{
4947 /* The low two bits of the PC on the PA contain the privilege level.
4948 Some genius implementing a (non-GCC) compiler apparently decided
4949 this means that "addresses" in a text section therefore include a
4950 privilege level, and thus symbol tables should contain these bits.
4951 This seems like a bonehead thing to do--anyway, it seems to work
4952 for our purposes to just ignore those bits. */
4953
4954 return (addr &= ~0x3);
4955}
4956
e6e68f1f
JB
4957static struct gdbarch *
4958hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4959{
4960 struct gdbarch *gdbarch;
59623e27
JB
4961
4962 /* Try to determine the ABI of the object we are loading. */
4be87837 4963 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 4964 {
4be87837
DJ
4965 /* If it's a SOM file, assume it's HP/UX SOM. */
4966 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
4967 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 4968 }
e6e68f1f
JB
4969
4970 /* find a candidate among the list of pre-declared architectures. */
4971 arches = gdbarch_list_lookup_by_info (arches, &info);
4972 if (arches != NULL)
4973 return (arches->gdbarch);
4974
4975 /* If none found, then allocate and initialize one. */
4976 gdbarch = gdbarch_alloc (&info, NULL);
4977
273f8429 4978 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 4979 gdbarch_init_osabi (info, gdbarch);
273f8429 4980
60383d10
JB
4981 set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
4982 set_gdbarch_function_start_offset (gdbarch, 0);
4983 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
4984 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
4985 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
4986 set_gdbarch_in_solib_return_trampoline (gdbarch,
4987 hppa_in_solib_return_trampoline);
6913c89a 4988 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
60383d10
JB
4989 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
4990 set_gdbarch_stack_align (gdbarch, hppa_stack_align);
60383d10
JB
4991 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4992 set_gdbarch_register_size (gdbarch, 4);
4993 set_gdbarch_num_regs (gdbarch, hppa_num_regs);
4994 set_gdbarch_fp_regnum (gdbarch, 3);
4995 set_gdbarch_sp_regnum (gdbarch, 30);
4996 set_gdbarch_fp0_regnum (gdbarch, 64);
4997 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
4998 set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
4999 set_gdbarch_register_raw_size (gdbarch, hppa_register_raw_size);
5000 set_gdbarch_register_bytes (gdbarch, hppa_num_regs * 4);
5001 set_gdbarch_register_byte (gdbarch, hppa_register_byte);
5002 set_gdbarch_register_virtual_size (gdbarch, hppa_register_raw_size);
a0ed5532
AC
5003 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
5004 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
60383d10 5005 set_gdbarch_register_virtual_type (gdbarch, hppa_register_virtual_type);
4183d812 5006 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
60383d10
JB
5007 set_gdbarch_deprecated_extract_return_value (gdbarch,
5008 hppa_extract_return_value);
5009 set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention);
5010 set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value);
5011 set_gdbarch_deprecated_extract_struct_value_address
5012 (gdbarch, hppa_extract_struct_value_address);
5013 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
e9582e71 5014 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
618ce49f
AC
5015 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5016 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
60383d10
JB
5017 set_gdbarch_frameless_function_invocation
5018 (gdbarch, hppa_frameless_function_invocation);
8bedc050 5019 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
60383d10
JB
5020 set_gdbarch_frame_args_address (gdbarch, hppa_frame_args_address);
5021 set_gdbarch_frame_locals_address (gdbarch, hppa_frame_locals_address);
5022 set_gdbarch_frame_num_args (gdbarch, hppa_frame_num_args);
5023 set_gdbarch_frame_args_skip (gdbarch, 0);
5ef7553b 5024 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
749b82f6 5025 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
60383d10 5026 set_gdbarch_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28);
60383d10 5027 /* set_gdbarch_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
b81774d8 5028 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
60383d10
JB
5029 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5030 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5031 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5032 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5033 set_gdbarch_read_fp (gdbarch, hppa_target_read_fp);
60383d10 5034
e6e68f1f
JB
5035 return gdbarch;
5036}
5037
5038static void
5039hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5040{
5041 /* Nothing to print for the moment. */
5042}
5043
4facf7e8
JB
5044void
5045_initialize_hppa_tdep (void)
5046{
5047 struct cmd_list_element *c;
5048 void break_at_finish_command (char *arg, int from_tty);
5049 void tbreak_at_finish_command (char *arg, int from_tty);
5050 void break_at_finish_at_depth_command (char *arg, int from_tty);
5051
e6e68f1f 5052 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8
JB
5053 tm_print_insn = print_insn_hppa;
5054
5055 add_cmd ("unwind", class_maintenance, unwind_command,
5056 "Print unwind table entry at given address.",
5057 &maintenanceprintlist);
5058
5059 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5060 break_at_finish_command,
5061 concat ("Set breakpoint at procedure exit. \n\
5062Argument may be function name, or \"*\" and an address.\n\
5063If function is specified, break at end of code for that function.\n\
5064If an address is specified, break at the end of the function that contains \n\
5065that exact address.\n",
5066 "With no arg, uses current execution address of selected stack frame.\n\
5067This is useful for breaking on return to a stack frame.\n\
5068\n\
5069Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5070\n\
5071Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5072 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5073 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5074 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5075 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5076
5077 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5078 tbreak_at_finish_command,
5079"Set temporary breakpoint at procedure exit. Either there should\n\
5080be no argument or the argument must be a depth.\n"), NULL);
5081 set_cmd_completer (c, location_completer);
5082
5083 if (xdb_commands)
5084 deprecate_cmd (add_com ("bx", class_breakpoint,
5085 break_at_finish_at_depth_command,
5086"Set breakpoint at procedure exit. Either there should\n\
5087be no argument or the argument must be a depth.\n"), NULL);
5088}
5089
This page took 0.93854 seconds and 4 git commands to generate.