* ld-m68hc11/far-hc11.s: New file.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
1e698235 4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c
SS
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "frame.h"
28#include "bfd.h"
29#include "inferior.h"
30#include "value.h"
4e052eda 31#include "regcache.h"
e5d66720 32#include "completer.h"
d709c020 33#include "language.h"
59623e27 34#include "osabi.h"
a7ff40e7 35#include "gdb_assert.h"
65e82032 36#include "infttrace.h"
c906108c
SS
37/* For argument passing to the inferior */
38#include "symtab.h"
39
40#ifdef USG
41#include <sys/types.h>
42#endif
43
44#include <dl.h>
45#include <sys/param.h>
46#include <signal.h>
47
48#include <sys/ptrace.h>
49#include <machine/save_state.h>
50
51#ifdef COFF_ENCAPSULATE
52#include "a.out.encap.h"
53#else
54#endif
55
c5aa993b 56/*#include <sys/user.h> After a.out.h */
c906108c
SS
57#include <sys/file.h>
58#include "gdb_stat.h"
03f2053f 59#include "gdb_wait.h"
c906108c
SS
60
61#include "gdbcore.h"
62#include "gdbcmd.h"
63#include "target.h"
64#include "symfile.h"
65#include "objfiles.h"
66
60383d10
JB
67/* Some local constants. */
68static const int hppa_num_regs = 128;
69
c906108c
SS
70/* To support detection of the pseudo-initial frame
71 that threads have. */
72#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
73#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
c5aa993b 74
a14ed312 75static int extract_5_load (unsigned int);
c906108c 76
a14ed312 77static unsigned extract_5R_store (unsigned int);
c906108c 78
a14ed312 79static unsigned extract_5r_store (unsigned int);
c906108c 80
43bd9a9e 81static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
c906108c 82
a14ed312 83static int find_proc_framesize (CORE_ADDR);
c906108c 84
a14ed312 85static int find_return_regnum (CORE_ADDR);
c906108c 86
a14ed312 87struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
c906108c 88
a14ed312 89static int extract_17 (unsigned int);
c906108c 90
a14ed312 91static unsigned deposit_21 (unsigned int, unsigned int);
c906108c 92
a14ed312 93static int extract_21 (unsigned);
c906108c 94
a14ed312 95static unsigned deposit_14 (int, unsigned int);
c906108c 96
a14ed312 97static int extract_14 (unsigned);
c906108c 98
a14ed312 99static void unwind_command (char *, int);
c906108c 100
a14ed312 101static int low_sign_extend (unsigned int, unsigned int);
c906108c 102
a14ed312 103static int sign_extend (unsigned int, unsigned int);
c906108c 104
43bd9a9e 105static int restore_pc_queue (CORE_ADDR *);
c906108c 106
a14ed312 107static int hppa_alignof (struct type *);
c906108c
SS
108
109/* To support multi-threading and stepping. */
a14ed312 110int hppa_prepare_to_proceed ();
c906108c 111
a14ed312 112static int prologue_inst_adjust_sp (unsigned long);
c906108c 113
a14ed312 114static int is_branch (unsigned long);
c906108c 115
a14ed312 116static int inst_saves_gr (unsigned long);
c906108c 117
a14ed312 118static int inst_saves_fr (unsigned long);
c906108c 119
a14ed312 120static int pc_in_interrupt_handler (CORE_ADDR);
c906108c 121
a14ed312 122static int pc_in_linker_stub (CORE_ADDR);
c906108c 123
a14ed312 124static int compare_unwind_entries (const void *, const void *);
c906108c 125
a14ed312 126static void read_unwind_info (struct objfile *);
c906108c 127
a14ed312
KB
128static void internalize_unwinds (struct objfile *,
129 struct unwind_table_entry *,
130 asection *, unsigned int,
131 unsigned int, CORE_ADDR);
132static void pa_print_registers (char *, int, int);
d9fcf2fb 133static void pa_strcat_registers (char *, int, int, struct ui_file *);
a14ed312
KB
134static void pa_register_look_aside (char *, int, long *);
135static void pa_print_fp_reg (int);
d9fcf2fb 136static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
a14ed312 137static void record_text_segment_lowaddr (bfd *, asection *, void *);
d709c020
JB
138/* FIXME: brobecker 2002-11-07: We will likely be able to make the
139 following functions static, once we hppa is partially multiarched. */
140int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
60383d10
JB
141CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
142CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
143int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
144int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
145CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
d709c020
JB
146int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
147CORE_ADDR hppa_stack_align (CORE_ADDR sp);
148int hppa_pc_requires_run_before_use (CORE_ADDR pc);
149int hppa_instruction_nullified (void);
60e1ff27 150int hppa_register_raw_size (int reg_nr);
d709c020
JB
151int hppa_register_byte (int reg_nr);
152struct type * hppa_register_virtual_type (int reg_nr);
153void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
60383d10
JB
154void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
155int hppa_use_struct_convention (int gcc_p, struct type *type);
156void hppa_store_return_value (struct type *type, char *valbuf);
157CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
d709c020 158int hppa_cannot_store_register (int regnum);
60383d10
JB
159void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
160CORE_ADDR hppa_frame_chain (struct frame_info *frame);
161int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
162int hppa_frameless_function_invocation (struct frame_info *frame);
163CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
d709c020
JB
164CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
165CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
60383d10 166int hppa_frame_num_args (struct frame_info *frame);
7daf4f5b 167void hppa_push_dummy_frame (void);
60383d10
JB
168void hppa_pop_frame (void);
169CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
170 int nargs, struct value **args,
171 struct type *type, int gcc_p);
172CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
173 int struct_return, CORE_ADDR struct_addr);
d709c020 174CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
60383d10
JB
175CORE_ADDR hppa_target_read_pc (ptid_t ptid);
176void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
177CORE_ADDR hppa_target_read_fp (void);
c906108c 178
c5aa993b
JM
179typedef struct
180 {
181 struct minimal_symbol *msym;
182 CORE_ADDR solib_handle;
a0b3c4fd 183 CORE_ADDR return_val;
c5aa993b
JM
184 }
185args_for_find_stub;
c906108c 186
4efb68b1 187static int cover_find_stub_with_shl_get (void *);
c906108c 188
c5aa993b 189static int is_pa_2 = 0; /* False */
c906108c 190
c5aa993b 191/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
c906108c
SS
192extern int hp_som_som_object_present;
193
194/* In breakpoint.c */
195extern int exception_catchpoints_are_fragile;
196
c906108c 197/* Should call_function allocate stack space for a struct return? */
d709c020 198
c906108c 199int
fba45db2 200hppa_use_struct_convention (int gcc_p, struct type *type)
c906108c 201{
104c1213 202 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
c906108c 203}
c906108c 204\f
c5aa993b 205
c906108c
SS
206/* Routines to extract various sized constants out of hppa
207 instructions. */
208
209/* This assumes that no garbage lies outside of the lower bits of
210 value. */
211
212static int
fba45db2 213sign_extend (unsigned val, unsigned bits)
c906108c 214{
c5aa993b 215 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
216}
217
218/* For many immediate values the sign bit is the low bit! */
219
220static int
fba45db2 221low_sign_extend (unsigned val, unsigned bits)
c906108c 222{
c5aa993b 223 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
224}
225
226/* extract the immediate field from a ld{bhw}s instruction */
227
c906108c 228static int
fba45db2 229extract_5_load (unsigned word)
c906108c
SS
230{
231 return low_sign_extend (word >> 16 & MASK_5, 5);
232}
233
c906108c
SS
234/* extract the immediate field from a break instruction */
235
236static unsigned
fba45db2 237extract_5r_store (unsigned word)
c906108c
SS
238{
239 return (word & MASK_5);
240}
241
242/* extract the immediate field from a {sr}sm instruction */
243
244static unsigned
fba45db2 245extract_5R_store (unsigned word)
c906108c
SS
246{
247 return (word >> 16 & MASK_5);
248}
249
c906108c
SS
250/* extract a 14 bit immediate field */
251
252static int
fba45db2 253extract_14 (unsigned word)
c906108c
SS
254{
255 return low_sign_extend (word & MASK_14, 14);
256}
257
258/* deposit a 14 bit constant in a word */
259
260static unsigned
fba45db2 261deposit_14 (int opnd, unsigned word)
c906108c
SS
262{
263 unsigned sign = (opnd < 0 ? 1 : 0);
264
c5aa993b 265 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
c906108c
SS
266}
267
268/* extract a 21 bit constant */
269
270static int
fba45db2 271extract_21 (unsigned word)
c906108c
SS
272{
273 int val;
274
275 word &= MASK_21;
276 word <<= 11;
277 val = GET_FIELD (word, 20, 20);
278 val <<= 11;
279 val |= GET_FIELD (word, 9, 19);
280 val <<= 2;
281 val |= GET_FIELD (word, 5, 6);
282 val <<= 5;
283 val |= GET_FIELD (word, 0, 4);
284 val <<= 2;
285 val |= GET_FIELD (word, 7, 8);
286 return sign_extend (val, 21) << 11;
287}
288
289/* deposit a 21 bit constant in a word. Although 21 bit constants are
290 usually the top 21 bits of a 32 bit constant, we assume that only
291 the low 21 bits of opnd are relevant */
292
293static unsigned
fba45db2 294deposit_21 (unsigned opnd, unsigned word)
c906108c
SS
295{
296 unsigned val = 0;
297
298 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
299 val <<= 2;
300 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
301 val <<= 2;
302 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
303 val <<= 11;
304 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
305 val <<= 1;
306 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
307 return word | val;
308}
309
c906108c
SS
310/* extract a 17 bit constant from branch instructions, returning the
311 19 bit signed value. */
312
313static int
fba45db2 314extract_17 (unsigned word)
c906108c
SS
315{
316 return sign_extend (GET_FIELD (word, 19, 28) |
317 GET_FIELD (word, 29, 29) << 10 |
318 GET_FIELD (word, 11, 15) << 11 |
319 (word & 0x1) << 16, 17) << 2;
320}
321\f
322
323/* Compare the start address for two unwind entries returning 1 if
324 the first address is larger than the second, -1 if the second is
325 larger than the first, and zero if they are equal. */
326
327static int
fba45db2 328compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
329{
330 const struct unwind_table_entry *a = arg1;
331 const struct unwind_table_entry *b = arg2;
332
333 if (a->region_start > b->region_start)
334 return 1;
335 else if (a->region_start < b->region_start)
336 return -1;
337 else
338 return 0;
339}
340
53a5351d
JM
341static CORE_ADDR low_text_segment_address;
342
343static void
8fef05cc 344record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
53a5351d 345{
bf9c25dc 346 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d
JM
347 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
348 && section->vma < low_text_segment_address)
349 low_text_segment_address = section->vma;
350}
351
c906108c 352static void
fba45db2
KB
353internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
354 asection *section, unsigned int entries, unsigned int size,
355 CORE_ADDR text_offset)
c906108c
SS
356{
357 /* We will read the unwind entries into temporary memory, then
358 fill in the actual unwind table. */
359 if (size > 0)
360 {
361 unsigned long tmp;
362 unsigned i;
363 char *buf = alloca (size);
364
53a5351d
JM
365 low_text_segment_address = -1;
366
367 /* If addresses are 64 bits wide, then unwinds are supposed to
c2c6d25f
JM
368 be segment relative offsets instead of absolute addresses.
369
370 Note that when loading a shared library (text_offset != 0) the
371 unwinds are already relative to the text_offset that will be
372 passed in. */
373 if (TARGET_PTR_BIT == 64 && text_offset == 0)
53a5351d
JM
374 {
375 bfd_map_over_sections (objfile->obfd,
4efb68b1 376 record_text_segment_lowaddr, NULL);
53a5351d
JM
377
378 /* ?!? Mask off some low bits. Should this instead subtract
379 out the lowest section's filepos or something like that?
380 This looks very hokey to me. */
381 low_text_segment_address &= ~0xfff;
382 text_offset += low_text_segment_address;
383 }
384
c906108c
SS
385 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
386
387 /* Now internalize the information being careful to handle host/target
c5aa993b 388 endian issues. */
c906108c
SS
389 for (i = 0; i < entries; i++)
390 {
391 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 392 (bfd_byte *) buf);
c906108c
SS
393 table[i].region_start += text_offset;
394 buf += 4;
c5aa993b 395 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
396 table[i].region_end += text_offset;
397 buf += 4;
c5aa993b 398 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
399 buf += 4;
400 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
401 table[i].Millicode = (tmp >> 30) & 0x1;
402 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
403 table[i].Region_description = (tmp >> 27) & 0x3;
404 table[i].reserved1 = (tmp >> 26) & 0x1;
405 table[i].Entry_SR = (tmp >> 25) & 0x1;
406 table[i].Entry_FR = (tmp >> 21) & 0xf;
407 table[i].Entry_GR = (tmp >> 16) & 0x1f;
408 table[i].Args_stored = (tmp >> 15) & 0x1;
409 table[i].Variable_Frame = (tmp >> 14) & 0x1;
410 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
411 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
412 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
413 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
414 table[i].Ada_Region = (tmp >> 9) & 0x1;
415 table[i].cxx_info = (tmp >> 8) & 0x1;
416 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
417 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
418 table[i].reserved2 = (tmp >> 5) & 0x1;
419 table[i].Save_SP = (tmp >> 4) & 0x1;
420 table[i].Save_RP = (tmp >> 3) & 0x1;
421 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
422 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
423 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 424 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
425 buf += 4;
426 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
427 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
428 table[i].Large_frame = (tmp >> 29) & 0x1;
429 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
430 table[i].reserved4 = (tmp >> 27) & 0x1;
431 table[i].Total_frame_size = tmp & 0x7ffffff;
432
c5aa993b 433 /* Stub unwinds are handled elsewhere. */
c906108c
SS
434 table[i].stub_unwind.stub_type = 0;
435 table[i].stub_unwind.padding = 0;
436 }
437 }
438}
439
440/* Read in the backtrace information stored in the `$UNWIND_START$' section of
441 the object file. This info is used mainly by find_unwind_entry() to find
442 out the stack frame size and frame pointer used by procedures. We put
443 everything on the psymbol obstack in the objfile so that it automatically
444 gets freed when the objfile is destroyed. */
445
446static void
fba45db2 447read_unwind_info (struct objfile *objfile)
c906108c 448{
d4f3574e
SS
449 asection *unwind_sec, *stub_unwind_sec;
450 unsigned unwind_size, stub_unwind_size, total_size;
451 unsigned index, unwind_entries;
c906108c
SS
452 unsigned stub_entries, total_entries;
453 CORE_ADDR text_offset;
454 struct obj_unwind_info *ui;
455 obj_private_data_t *obj_private;
456
457 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5aa993b
JM
458 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
459 sizeof (struct obj_unwind_info));
c906108c
SS
460
461 ui->table = NULL;
462 ui->cache = NULL;
463 ui->last = -1;
464
d4f3574e
SS
465 /* For reasons unknown the HP PA64 tools generate multiple unwinder
466 sections in a single executable. So we just iterate over every
467 section in the BFD looking for unwinder sections intead of trying
468 to do a lookup with bfd_get_section_by_name.
c906108c 469
d4f3574e
SS
470 First determine the total size of the unwind tables so that we
471 can allocate memory in a nice big hunk. */
472 total_entries = 0;
473 for (unwind_sec = objfile->obfd->sections;
474 unwind_sec;
475 unwind_sec = unwind_sec->next)
c906108c 476 {
d4f3574e
SS
477 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
478 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
479 {
480 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
481 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 482
d4f3574e
SS
483 total_entries += unwind_entries;
484 }
c906108c
SS
485 }
486
d4f3574e
SS
487 /* Now compute the size of the stub unwinds. Note the ELF tools do not
488 use stub unwinds at the curren time. */
489 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
490
c906108c
SS
491 if (stub_unwind_sec)
492 {
493 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
494 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
495 }
496 else
497 {
498 stub_unwind_size = 0;
499 stub_entries = 0;
500 }
501
502 /* Compute total number of unwind entries and their total size. */
d4f3574e 503 total_entries += stub_entries;
c906108c
SS
504 total_size = total_entries * sizeof (struct unwind_table_entry);
505
506 /* Allocate memory for the unwind table. */
507 ui->table = (struct unwind_table_entry *)
508 obstack_alloc (&objfile->psymbol_obstack, total_size);
c5aa993b 509 ui->last = total_entries - 1;
c906108c 510
d4f3574e
SS
511 /* Now read in each unwind section and internalize the standard unwind
512 entries. */
c906108c 513 index = 0;
d4f3574e
SS
514 for (unwind_sec = objfile->obfd->sections;
515 unwind_sec;
516 unwind_sec = unwind_sec->next)
517 {
518 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
519 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
520 {
521 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
522 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
523
524 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
525 unwind_entries, unwind_size, text_offset);
526 index += unwind_entries;
527 }
528 }
529
530 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
531 if (stub_unwind_size > 0)
532 {
533 unsigned int i;
534 char *buf = alloca (stub_unwind_size);
535
536 /* Read in the stub unwind entries. */
537 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
538 0, stub_unwind_size);
539
540 /* Now convert them into regular unwind entries. */
541 for (i = 0; i < stub_entries; i++, index++)
542 {
543 /* Clear out the next unwind entry. */
544 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
545
546 /* Convert offset & size into region_start and region_end.
547 Stuff away the stub type into "reserved" fields. */
548 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
549 (bfd_byte *) buf);
550 ui->table[index].region_start += text_offset;
551 buf += 4;
552 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 553 (bfd_byte *) buf);
c906108c
SS
554 buf += 2;
555 ui->table[index].region_end
c5aa993b
JM
556 = ui->table[index].region_start + 4 *
557 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
558 buf += 2;
559 }
560
561 }
562
563 /* Unwind table needs to be kept sorted. */
564 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
565 compare_unwind_entries);
566
567 /* Keep a pointer to the unwind information. */
c5aa993b 568 if (objfile->obj_private == NULL)
c906108c
SS
569 {
570 obj_private = (obj_private_data_t *)
c5aa993b
JM
571 obstack_alloc (&objfile->psymbol_obstack,
572 sizeof (obj_private_data_t));
c906108c 573 obj_private->unwind_info = NULL;
c5aa993b 574 obj_private->so_info = NULL;
53a5351d 575 obj_private->dp = 0;
c5aa993b 576
4efb68b1 577 objfile->obj_private = obj_private;
c906108c 578 }
c5aa993b 579 obj_private = (obj_private_data_t *) objfile->obj_private;
c906108c
SS
580 obj_private->unwind_info = ui;
581}
582
583/* Lookup the unwind (stack backtrace) info for the given PC. We search all
584 of the objfiles seeking the unwind table entry for this PC. Each objfile
585 contains a sorted list of struct unwind_table_entry. Since we do a binary
586 search of the unwind tables, we depend upon them to be sorted. */
587
588struct unwind_table_entry *
fba45db2 589find_unwind_entry (CORE_ADDR pc)
c906108c
SS
590{
591 int first, middle, last;
592 struct objfile *objfile;
593
594 /* A function at address 0? Not in HP-UX! */
595 if (pc == (CORE_ADDR) 0)
596 return NULL;
597
598 ALL_OBJFILES (objfile)
c5aa993b
JM
599 {
600 struct obj_unwind_info *ui;
601 ui = NULL;
602 if (objfile->obj_private)
603 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
c906108c 604
c5aa993b
JM
605 if (!ui)
606 {
607 read_unwind_info (objfile);
608 if (objfile->obj_private == NULL)
104c1213 609 error ("Internal error reading unwind information.");
c5aa993b
JM
610 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
611 }
c906108c 612
c5aa993b 613 /* First, check the cache */
c906108c 614
c5aa993b
JM
615 if (ui->cache
616 && pc >= ui->cache->region_start
617 && pc <= ui->cache->region_end)
618 return ui->cache;
c906108c 619
c5aa993b 620 /* Not in the cache, do a binary search */
c906108c 621
c5aa993b
JM
622 first = 0;
623 last = ui->last;
c906108c 624
c5aa993b
JM
625 while (first <= last)
626 {
627 middle = (first + last) / 2;
628 if (pc >= ui->table[middle].region_start
629 && pc <= ui->table[middle].region_end)
630 {
631 ui->cache = &ui->table[middle];
632 return &ui->table[middle];
633 }
c906108c 634
c5aa993b
JM
635 if (pc < ui->table[middle].region_start)
636 last = middle - 1;
637 else
638 first = middle + 1;
639 }
640 } /* ALL_OBJFILES() */
c906108c
SS
641 return NULL;
642}
643
644/* Return the adjustment necessary to make for addresses on the stack
645 as presented by hpread.c.
646
647 This is necessary because of the stack direction on the PA and the
648 bizarre way in which someone (?) decided they wanted to handle
649 frame pointerless code in GDB. */
650int
fba45db2 651hpread_adjust_stack_address (CORE_ADDR func_addr)
c906108c
SS
652{
653 struct unwind_table_entry *u;
654
655 u = find_unwind_entry (func_addr);
656 if (!u)
657 return 0;
658 else
659 return u->Total_frame_size << 3;
660}
661
662/* Called to determine if PC is in an interrupt handler of some
663 kind. */
664
665static int
fba45db2 666pc_in_interrupt_handler (CORE_ADDR pc)
c906108c
SS
667{
668 struct unwind_table_entry *u;
669 struct minimal_symbol *msym_us;
670
671 u = find_unwind_entry (pc);
672 if (!u)
673 return 0;
674
675 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
676 its frame isn't a pure interrupt frame. Deal with this. */
677 msym_us = lookup_minimal_symbol_by_pc (pc);
678
d7bd68ca 679 return (u->HP_UX_interrupt_marker
22abf04a 680 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
c906108c
SS
681}
682
683/* Called when no unwind descriptor was found for PC. Returns 1 if it
104c1213
JM
684 appears that PC is in a linker stub.
685
686 ?!? Need to handle stubs which appear in PA64 code. */
c906108c
SS
687
688static int
fba45db2 689pc_in_linker_stub (CORE_ADDR pc)
c906108c
SS
690{
691 int found_magic_instruction = 0;
692 int i;
693 char buf[4];
694
695 /* If unable to read memory, assume pc is not in a linker stub. */
696 if (target_read_memory (pc, buf, 4) != 0)
697 return 0;
698
699 /* We are looking for something like
700
701 ; $$dyncall jams RP into this special spot in the frame (RP')
702 ; before calling the "call stub"
703 ldw -18(sp),rp
704
705 ldsid (rp),r1 ; Get space associated with RP into r1
706 mtsp r1,sp ; Move it into space register 0
707 be,n 0(sr0),rp) ; back to your regularly scheduled program */
708
709 /* Maximum known linker stub size is 4 instructions. Search forward
710 from the given PC, then backward. */
711 for (i = 0; i < 4; i++)
712 {
713 /* If we hit something with an unwind, stop searching this direction. */
714
715 if (find_unwind_entry (pc + i * 4) != 0)
716 break;
717
718 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 719 return from a cross-space function call. */
c906108c
SS
720 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
721 {
722 found_magic_instruction = 1;
723 break;
724 }
725 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 726 here. */
c906108c
SS
727 }
728
729 if (found_magic_instruction != 0)
730 return 1;
731
732 /* Now look backward. */
733 for (i = 0; i < 4; i++)
734 {
735 /* If we hit something with an unwind, stop searching this direction. */
736
737 if (find_unwind_entry (pc - i * 4) != 0)
738 break;
739
740 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 741 return from a cross-space function call. */
c906108c
SS
742 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
743 {
744 found_magic_instruction = 1;
745 break;
746 }
747 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 748 here. */
c906108c
SS
749 }
750 return found_magic_instruction;
751}
752
753static int
fba45db2 754find_return_regnum (CORE_ADDR pc)
c906108c
SS
755{
756 struct unwind_table_entry *u;
757
758 u = find_unwind_entry (pc);
759
760 if (!u)
761 return RP_REGNUM;
762
763 if (u->Millicode)
764 return 31;
765
766 return RP_REGNUM;
767}
768
769/* Return size of frame, or -1 if we should use a frame pointer. */
770static int
fba45db2 771find_proc_framesize (CORE_ADDR pc)
c906108c
SS
772{
773 struct unwind_table_entry *u;
774 struct minimal_symbol *msym_us;
775
776 /* This may indicate a bug in our callers... */
c5aa993b 777 if (pc == (CORE_ADDR) 0)
c906108c 778 return -1;
c5aa993b 779
c906108c
SS
780 u = find_unwind_entry (pc);
781
782 if (!u)
783 {
784 if (pc_in_linker_stub (pc))
785 /* Linker stubs have a zero size frame. */
786 return 0;
787 else
788 return -1;
789 }
790
791 msym_us = lookup_minimal_symbol_by_pc (pc);
792
793 /* If Save_SP is set, and we're not in an interrupt or signal caller,
794 then we have a frame pointer. Use it. */
3fa41cdb
JL
795 if (u->Save_SP
796 && !pc_in_interrupt_handler (pc)
797 && msym_us
22abf04a 798 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
c906108c
SS
799 return -1;
800
801 return u->Total_frame_size << 3;
802}
803
804/* Return offset from sp at which rp is saved, or 0 if not saved. */
a14ed312 805static int rp_saved (CORE_ADDR);
c906108c
SS
806
807static int
fba45db2 808rp_saved (CORE_ADDR pc)
c906108c
SS
809{
810 struct unwind_table_entry *u;
811
812 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
813 if (pc == (CORE_ADDR) 0)
814 return 0;
815
816 u = find_unwind_entry (pc);
817
818 if (!u)
819 {
820 if (pc_in_linker_stub (pc))
821 /* This is the so-called RP'. */
822 return -24;
823 else
824 return 0;
825 }
826
827 if (u->Save_RP)
53a5351d 828 return (TARGET_PTR_BIT == 64 ? -16 : -20);
c906108c
SS
829 else if (u->stub_unwind.stub_type != 0)
830 {
831 switch (u->stub_unwind.stub_type)
832 {
833 case EXPORT:
834 case IMPORT:
835 return -24;
836 case PARAMETER_RELOCATION:
837 return -8;
838 default:
839 return 0;
840 }
841 }
842 else
843 return 0;
844}
845\f
846int
60383d10 847hppa_frameless_function_invocation (struct frame_info *frame)
c906108c
SS
848{
849 struct unwind_table_entry *u;
850
ef6e7e13 851 u = find_unwind_entry (get_frame_pc (frame));
c906108c
SS
852
853 if (u == 0)
854 return 0;
855
856 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
857}
858
d709c020
JB
859/* Immediately after a function call, return the saved pc.
860 Can't go through the frames for this because on some machines
861 the new frame is not set up until the new function executes
862 some instructions. */
863
c906108c 864CORE_ADDR
60383d10 865hppa_saved_pc_after_call (struct frame_info *frame)
c906108c
SS
866{
867 int ret_regnum;
868 CORE_ADDR pc;
869 struct unwind_table_entry *u;
870
871 ret_regnum = find_return_regnum (get_frame_pc (frame));
872 pc = read_register (ret_regnum) & ~0x3;
c5aa993b 873
c906108c
SS
874 /* If PC is in a linker stub, then we need to dig the address
875 the stub will return to out of the stack. */
876 u = find_unwind_entry (pc);
877 if (u && u->stub_unwind.stub_type != 0)
8bedc050 878 return DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
879 else
880 return pc;
881}
882\f
883CORE_ADDR
fba45db2 884hppa_frame_saved_pc (struct frame_info *frame)
c906108c
SS
885{
886 CORE_ADDR pc = get_frame_pc (frame);
887 struct unwind_table_entry *u;
65e82032 888 CORE_ADDR old_pc = 0;
c5aa993b
JM
889 int spun_around_loop = 0;
890 int rp_offset = 0;
c906108c
SS
891
892 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
893 at the base of the frame in an interrupt handler. Registers within
894 are saved in the exact same order as GDB numbers registers. How
895 convienent. */
896 if (pc_in_interrupt_handler (pc))
ef6e7e13 897 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
53a5351d 898 TARGET_PTR_BIT / 8) & ~0x3;
c906108c 899
ef6e7e13
AC
900 if ((get_frame_pc (frame) >= get_frame_base (frame)
901 && (get_frame_pc (frame)
902 <= (get_frame_base (frame)
903 /* A call dummy is sized in words, but it is actually a
904 series of instructions. Account for that scaling
905 factor. */
906 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
907 * CALL_DUMMY_LENGTH)
908 /* Similarly we have to account for 64bit wide register
909 saves. */
910 + (32 * REGISTER_SIZE)
911 /* We always consider FP regs 8 bytes long. */
912 + (NUM_REGS - FP0_REGNUM) * 8
913 /* Similarly we have to account for 64bit wide register
914 saves. */
915 + (6 * REGISTER_SIZE)))))
104c1213 916 {
ef6e7e13 917 return read_memory_integer ((get_frame_base (frame)
104c1213
JM
918 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
919 TARGET_PTR_BIT / 8) & ~0x3;
920 }
921
c906108c
SS
922#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
923 /* Deal with signal handler caller frames too. */
5a203e44 924 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
925 {
926 CORE_ADDR rp;
927 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
928 return rp & ~0x3;
929 }
930#endif
931
60383d10 932 if (hppa_frameless_function_invocation (frame))
c906108c
SS
933 {
934 int ret_regnum;
935
936 ret_regnum = find_return_regnum (pc);
937
938 /* If the next frame is an interrupt frame or a signal
c5aa993b
JM
939 handler caller, then we need to look in the saved
940 register area to get the return pointer (the values
941 in the registers may not correspond to anything useful). */
ef6e7e13
AC
942 if (get_next_frame (frame)
943 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
944 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
c906108c 945 {
43bd9a9e 946 CORE_ADDR *saved_regs;
ef6e7e13
AC
947 hppa_frame_init_saved_regs (get_next_frame (frame));
948 saved_regs = get_frame_saved_regs (get_next_frame (frame));
43bd9a9e 949 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 950 TARGET_PTR_BIT / 8) & 0x2)
c906108c 951 {
43bd9a9e 952 pc = read_memory_integer (saved_regs[31],
53a5351d 953 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
954
955 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
956 with a return pointer in %rp and the kernel call with
957 a return pointer in %r31. We return the %rp variant
958 if %r31 is the same as frame->pc. */
ef6e7e13 959 if (pc == get_frame_pc (frame))
43bd9a9e 960 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 961 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
962 }
963 else
43bd9a9e 964 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 965 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
966 }
967 else
968 pc = read_register (ret_regnum) & ~0x3;
969 }
970 else
971 {
972 spun_around_loop = 0;
c5aa993b 973 old_pc = pc;
c906108c 974
c5aa993b 975 restart:
c906108c
SS
976 rp_offset = rp_saved (pc);
977
978 /* Similar to code in frameless function case. If the next
c5aa993b
JM
979 frame is a signal or interrupt handler, then dig the right
980 information out of the saved register info. */
c906108c 981 if (rp_offset == 0
ef6e7e13
AC
982 && get_next_frame (frame)
983 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
984 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
c906108c 985 {
43bd9a9e 986 CORE_ADDR *saved_regs;
ef6e7e13
AC
987 hppa_frame_init_saved_regs (get_next_frame (frame));
988 saved_regs = get_frame_saved_regs (get_next_frame (frame));
43bd9a9e 989 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 990 TARGET_PTR_BIT / 8) & 0x2)
c906108c 991 {
43bd9a9e 992 pc = read_memory_integer (saved_regs[31],
53a5351d 993 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
994
995 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
996 with a return pointer in %rp and the kernel call with
997 a return pointer in %r31. We return the %rp variant
998 if %r31 is the same as frame->pc. */
ef6e7e13 999 if (pc == get_frame_pc (frame))
43bd9a9e 1000 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1001 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1002 }
1003 else
43bd9a9e 1004 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1005 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1006 }
1007 else if (rp_offset == 0)
c5aa993b
JM
1008 {
1009 old_pc = pc;
1010 pc = read_register (RP_REGNUM) & ~0x3;
1011 }
c906108c 1012 else
c5aa993b
JM
1013 {
1014 old_pc = pc;
ef6e7e13 1015 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
53a5351d 1016 TARGET_PTR_BIT / 8) & ~0x3;
c5aa993b 1017 }
c906108c
SS
1018 }
1019
1020 /* If PC is inside a linker stub, then dig out the address the stub
1021 will return to.
1022
1023 Don't do this for long branch stubs. Why? For some unknown reason
1024 _start is marked as a long branch stub in hpux10. */
1025 u = find_unwind_entry (pc);
1026 if (u && u->stub_unwind.stub_type != 0
1027 && u->stub_unwind.stub_type != LONG_BRANCH)
1028 {
1029 unsigned int insn;
1030
1031 /* If this is a dynamic executable, and we're in a signal handler,
c5aa993b
JM
1032 then the call chain will eventually point us into the stub for
1033 _sigreturn. Unlike most cases, we'll be pointed to the branch
1034 to the real sigreturn rather than the code after the real branch!.
c906108c 1035
c5aa993b
JM
1036 Else, try to dig the address the stub will return to in the normal
1037 fashion. */
c906108c
SS
1038 insn = read_memory_integer (pc, 4);
1039 if ((insn & 0xfc00e000) == 0xe8000000)
1040 return (pc + extract_17 (insn) + 8) & ~0x3;
1041 else
1042 {
c5aa993b
JM
1043 if (old_pc == pc)
1044 spun_around_loop++;
1045
1046 if (spun_around_loop > 1)
1047 {
1048 /* We're just about to go around the loop again with
1049 no more hope of success. Die. */
1050 error ("Unable to find return pc for this frame");
1051 }
1052 else
1053 goto restart;
c906108c
SS
1054 }
1055 }
1056
1057 return pc;
1058}
1059\f
1060/* We need to correct the PC and the FP for the outermost frame when we are
1061 in a system call. */
1062
1063void
60383d10 1064hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
c906108c
SS
1065{
1066 int flags;
1067 int framesize;
1068
ef6e7e13 1069 if (get_next_frame (frame) && !fromleaf)
c906108c
SS
1070 return;
1071
618ce49f
AC
1072 /* If the next frame represents a frameless function invocation then
1073 we have to do some adjustments that are normally done by
1074 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1075 this case.) */
c906108c
SS
1076 if (fromleaf)
1077 {
1078 /* Find the framesize of *this* frame without peeking at the PC
c5aa993b 1079 in the current frame structure (it isn't set yet). */
8bedc050 1080 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
c906108c
SS
1081
1082 /* Now adjust our base frame accordingly. If we have a frame pointer
c5aa993b
JM
1083 use it, else subtract the size of this frame from the current
1084 frame. (we always want frame->frame to point at the lowest address
1085 in the frame). */
c906108c 1086 if (framesize == -1)
ef6e7e13 1087 deprecated_update_frame_base_hack (frame, TARGET_READ_FP ());
c906108c 1088 else
ef6e7e13 1089 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
c906108c
SS
1090 return;
1091 }
1092
1093 flags = read_register (FLAGS_REGNUM);
c5aa993b 1094 if (flags & 2) /* In system call? */
ef6e7e13 1095 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
c906108c
SS
1096
1097 /* The outermost frame is always derived from PC-framesize
1098
1099 One might think frameless innermost frames should have
1100 a frame->frame that is the same as the parent's frame->frame.
1101 That is wrong; frame->frame in that case should be the *high*
1102 address of the parent's frame. It's complicated as hell to
1103 explain, but the parent *always* creates some stack space for
1104 the child. So the child actually does have a frame of some
1105 sorts, and its base is the high address in its parent's frame. */
ef6e7e13 1106 framesize = find_proc_framesize (get_frame_pc (frame));
c906108c 1107 if (framesize == -1)
ef6e7e13 1108 deprecated_update_frame_base_hack (frame, TARGET_READ_FP ());
c906108c 1109 else
ef6e7e13 1110 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
c906108c
SS
1111}
1112\f
a5afb99f
AC
1113/* Given a GDB frame, determine the address of the calling function's
1114 frame. This will be used to create a new GDB frame struct, and
e9582e71
AC
1115 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1116 will be called for the new frame.
c906108c
SS
1117
1118 This may involve searching through prologues for several functions
1119 at boundaries where GCC calls HP C code, or where code which has
1120 a frame pointer calls code without a frame pointer. */
1121
1122CORE_ADDR
60383d10 1123hppa_frame_chain (struct frame_info *frame)
c906108c
SS
1124{
1125 int my_framesize, caller_framesize;
1126 struct unwind_table_entry *u;
1127 CORE_ADDR frame_base;
1128 struct frame_info *tmp_frame;
1129
c2c6d25f
JM
1130 /* A frame in the current frame list, or zero. */
1131 struct frame_info *saved_regs_frame = 0;
43bd9a9e
AC
1132 /* Where the registers were saved in saved_regs_frame. If
1133 saved_regs_frame is zero, this is garbage. */
1134 CORE_ADDR *saved_regs = NULL;
c2c6d25f 1135
c5aa993b 1136 CORE_ADDR caller_pc;
c906108c
SS
1137
1138 struct minimal_symbol *min_frame_symbol;
c5aa993b
JM
1139 struct symbol *frame_symbol;
1140 char *frame_symbol_name;
c906108c
SS
1141
1142 /* If this is a threaded application, and we see the
1143 routine "__pthread_exit", treat it as the stack root
1144 for this thread. */
ef6e7e13
AC
1145 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1146 frame_symbol = find_pc_function (get_frame_pc (frame));
c906108c 1147
c5aa993b 1148 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
c906108c 1149 {
c5aa993b
JM
1150 /* The test above for "no user function name" would defend
1151 against the slim likelihood that a user might define a
1152 routine named "__pthread_exit" and then try to debug it.
1153
1154 If it weren't commented out, and you tried to debug the
1155 pthread library itself, you'd get errors.
1156
1157 So for today, we don't make that check. */
22abf04a 1158 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
c5aa993b
JM
1159 if (frame_symbol_name != 0)
1160 {
1161 if (0 == strncmp (frame_symbol_name,
1162 THREAD_INITIAL_FRAME_SYMBOL,
1163 THREAD_INITIAL_FRAME_SYM_LEN))
1164 {
1165 /* Pretend we've reached the bottom of the stack. */
1166 return (CORE_ADDR) 0;
1167 }
1168 }
1169 } /* End of hacky code for threads. */
1170
c906108c
SS
1171 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1172 are easy; at *sp we have a full save state strucutre which we can
1173 pull the old stack pointer from. Also see frame_saved_pc for
1174 code to dig a saved PC out of the save state structure. */
ef6e7e13
AC
1175 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1176 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
53a5351d 1177 TARGET_PTR_BIT / 8);
c906108c 1178#ifdef FRAME_BASE_BEFORE_SIGTRAMP
5a203e44 1179 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
1180 {
1181 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1182 }
1183#endif
1184 else
ef6e7e13 1185 frame_base = get_frame_base (frame);
c906108c
SS
1186
1187 /* Get frame sizes for the current frame and the frame of the
1188 caller. */
ef6e7e13 1189 my_framesize = find_proc_framesize (get_frame_pc (frame));
8bedc050 1190 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
1191
1192 /* If we can't determine the caller's PC, then it's not likely we can
1193 really determine anything meaningful about its frame. We'll consider
1194 this to be stack bottom. */
1195 if (caller_pc == (CORE_ADDR) 0)
1196 return (CORE_ADDR) 0;
1197
8bedc050 1198 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1199
1200 /* If caller does not have a frame pointer, then its frame
1201 can be found at current_frame - caller_framesize. */
1202 if (caller_framesize != -1)
1203 {
1204 return frame_base - caller_framesize;
1205 }
1206 /* Both caller and callee have frame pointers and are GCC compiled
1207 (SAVE_SP bit in unwind descriptor is on for both functions.
1208 The previous frame pointer is found at the top of the current frame. */
1209 if (caller_framesize == -1 && my_framesize == -1)
1210 {
53a5351d 1211 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
c906108c
SS
1212 }
1213 /* Caller has a frame pointer, but callee does not. This is a little
1214 more difficult as GCC and HP C lay out locals and callee register save
1215 areas very differently.
1216
1217 The previous frame pointer could be in a register, or in one of
1218 several areas on the stack.
1219
1220 Walk from the current frame to the innermost frame examining
1221 unwind descriptors to determine if %r3 ever gets saved into the
1222 stack. If so return whatever value got saved into the stack.
1223 If it was never saved in the stack, then the value in %r3 is still
1224 valid, so use it.
1225
1226 We use information from unwind descriptors to determine if %r3
1227 is saved into the stack (Entry_GR field has this information). */
1228
ef6e7e13 1229 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
c906108c 1230 {
ef6e7e13 1231 u = find_unwind_entry (get_frame_pc (tmp_frame));
c906108c
SS
1232
1233 if (!u)
1234 {
1235 /* We could find this information by examining prologues. I don't
1236 think anyone has actually written any tools (not even "strip")
1237 which leave them out of an executable, so maybe this is a moot
1238 point. */
c5aa993b
JM
1239 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1240 code that doesn't have unwind entries. For example, stepping into
1241 the dynamic linker will give you a PC that has none. Thus, I've
1242 disabled this warning. */
c906108c 1243#if 0
ef6e7e13 1244 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
c906108c
SS
1245#endif
1246 return (CORE_ADDR) 0;
1247 }
1248
c2c6d25f 1249 if (u->Save_SP
5a203e44 1250 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
ef6e7e13 1251 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
c906108c 1252 break;
c2c6d25f
JM
1253
1254 /* Entry_GR specifies the number of callee-saved general registers
1255 saved in the stack. It starts at %r3, so %r3 would be 1. */
1256 if (u->Entry_GR >= 1)
1257 {
1258 /* The unwind entry claims that r3 is saved here. However,
1259 in optimized code, GCC often doesn't actually save r3.
1260 We'll discover this if we look at the prologue. */
43bd9a9e
AC
1261 hppa_frame_init_saved_regs (tmp_frame);
1262 saved_regs = get_frame_saved_regs (tmp_frame);
c2c6d25f
JM
1263 saved_regs_frame = tmp_frame;
1264
1265 /* If we have an address for r3, that's good. */
43bd9a9e 1266 if (saved_regs[FP_REGNUM])
c2c6d25f
JM
1267 break;
1268 }
c906108c
SS
1269 }
1270
1271 if (tmp_frame)
1272 {
1273 /* We may have walked down the chain into a function with a frame
c5aa993b 1274 pointer. */
c906108c 1275 if (u->Save_SP
5a203e44 1276 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
ef6e7e13 1277 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
c906108c 1278 {
ef6e7e13 1279 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
c906108c
SS
1280 }
1281 /* %r3 was saved somewhere in the stack. Dig it out. */
c5aa993b 1282 else
c906108c 1283 {
c906108c
SS
1284 /* Sick.
1285
1286 For optimization purposes many kernels don't have the
1287 callee saved registers into the save_state structure upon
1288 entry into the kernel for a syscall; the optimization
1289 is usually turned off if the process is being traced so
1290 that the debugger can get full register state for the
1291 process.
c5aa993b 1292
c906108c
SS
1293 This scheme works well except for two cases:
1294
c5aa993b
JM
1295 * Attaching to a process when the process is in the
1296 kernel performing a system call (debugger can't get
1297 full register state for the inferior process since
1298 the process wasn't being traced when it entered the
1299 system call).
c906108c 1300
c5aa993b
JM
1301 * Register state is not complete if the system call
1302 causes the process to core dump.
c906108c
SS
1303
1304
1305 The following heinous code is an attempt to deal with
1306 the lack of register state in a core dump. It will
1307 fail miserably if the function which performs the
1308 system call has a variable sized stack frame. */
1309
c2c6d25f 1310 if (tmp_frame != saved_regs_frame)
43bd9a9e
AC
1311 {
1312 hppa_frame_init_saved_regs (tmp_frame);
1313 saved_regs = get_frame_saved_regs (tmp_frame);
1314 }
c906108c
SS
1315
1316 /* Abominable hack. */
1317 if (current_target.to_has_execution == 0
43bd9a9e
AC
1318 && ((saved_regs[FLAGS_REGNUM]
1319 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1320 TARGET_PTR_BIT / 8)
c906108c 1321 & 0x2))
43bd9a9e 1322 || (saved_regs[FLAGS_REGNUM] == 0
c906108c
SS
1323 && read_register (FLAGS_REGNUM) & 0x2)))
1324 {
8bedc050 1325 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1326 if (!u)
1327 {
43bd9a9e 1328 return read_memory_integer (saved_regs[FP_REGNUM],
53a5351d 1329 TARGET_PTR_BIT / 8);
c906108c
SS
1330 }
1331 else
1332 {
1333 return frame_base - (u->Total_frame_size << 3);
1334 }
1335 }
c5aa993b 1336
43bd9a9e 1337 return read_memory_integer (saved_regs[FP_REGNUM],
53a5351d 1338 TARGET_PTR_BIT / 8);
c906108c
SS
1339 }
1340 }
1341 else
1342 {
c906108c
SS
1343 /* Get the innermost frame. */
1344 tmp_frame = frame;
ef6e7e13
AC
1345 while (get_next_frame (tmp_frame) != NULL)
1346 tmp_frame = get_next_frame (tmp_frame);
c906108c 1347
c2c6d25f 1348 if (tmp_frame != saved_regs_frame)
43bd9a9e
AC
1349 {
1350 hppa_frame_init_saved_regs (tmp_frame);
1351 saved_regs = get_frame_saved_regs (tmp_frame);
1352 }
c2c6d25f 1353
c906108c
SS
1354 /* Abominable hack. See above. */
1355 if (current_target.to_has_execution == 0
43bd9a9e
AC
1356 && ((saved_regs[FLAGS_REGNUM]
1357 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1358 TARGET_PTR_BIT / 8)
c906108c 1359 & 0x2))
43bd9a9e 1360 || (saved_regs[FLAGS_REGNUM] == 0
c5aa993b 1361 && read_register (FLAGS_REGNUM) & 0x2)))
c906108c 1362 {
8bedc050 1363 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1364 if (!u)
1365 {
43bd9a9e 1366 return read_memory_integer (saved_regs[FP_REGNUM],
53a5351d 1367 TARGET_PTR_BIT / 8);
c906108c 1368 }
c5aa993b
JM
1369 else
1370 {
1371 return frame_base - (u->Total_frame_size << 3);
1372 }
c906108c 1373 }
c5aa993b 1374
c906108c 1375 /* The value in %r3 was never saved into the stack (thus %r3 still
c5aa993b 1376 holds the value of the previous frame pointer). */
c906108c
SS
1377 return TARGET_READ_FP ();
1378 }
1379}
c906108c 1380\f
c5aa993b 1381
c906108c
SS
1382/* To see if a frame chain is valid, see if the caller looks like it
1383 was compiled with gcc. */
1384
1385int
fba45db2 1386hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
1387{
1388 struct minimal_symbol *msym_us;
1389 struct minimal_symbol *msym_start;
1390 struct unwind_table_entry *u, *next_u = NULL;
1391 struct frame_info *next;
1392
ef6e7e13 1393 u = find_unwind_entry (get_frame_pc (thisframe));
c906108c
SS
1394
1395 if (u == NULL)
1396 return 1;
1397
1398 /* We can't just check that the same of msym_us is "_start", because
1399 someone idiotically decided that they were going to make a Ltext_end
1400 symbol with the same address. This Ltext_end symbol is totally
1401 indistinguishable (as nearly as I can tell) from the symbol for a function
1402 which is (legitimately, since it is in the user's namespace)
1403 named Ltext_end, so we can't just ignore it. */
8bedc050 1404 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
c906108c
SS
1405 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1406 if (msym_us
1407 && msym_start
1408 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1409 return 0;
1410
1411 /* Grrrr. Some new idiot decided that they don't want _start for the
1412 PRO configurations; $START$ calls main directly.... Deal with it. */
1413 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1414 if (msym_us
1415 && msym_start
1416 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1417 return 0;
1418
1419 next = get_next_frame (thisframe);
1420 if (next)
ef6e7e13 1421 next_u = find_unwind_entry (get_frame_pc (next));
c906108c
SS
1422
1423 /* If this frame does not save SP, has no stack, isn't a stub,
1424 and doesn't "call" an interrupt routine or signal handler caller,
1425 then its not valid. */
1426 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
ef6e7e13 1427 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
c906108c
SS
1428 || (next_u && next_u->HP_UX_interrupt_marker))
1429 return 1;
1430
ef6e7e13 1431 if (pc_in_linker_stub (get_frame_pc (thisframe)))
c906108c
SS
1432 return 1;
1433
1434 return 0;
1435}
1436
7daf4f5b
JB
1437/* These functions deal with saving and restoring register state
1438 around a function call in the inferior. They keep the stack
1439 double-word aligned; eventually, on an hp700, the stack will have
1440 to be aligned to a 64-byte boundary. */
c906108c
SS
1441
1442void
7daf4f5b 1443hppa_push_dummy_frame (void)
c906108c
SS
1444{
1445 CORE_ADDR sp, pc, pcspace;
1446 register int regnum;
53a5351d 1447 CORE_ADDR int_buffer;
c906108c
SS
1448 double freg_buffer;
1449
60383d10 1450 pc = hppa_target_read_pc (inferior_ptid);
c906108c
SS
1451 int_buffer = read_register (FLAGS_REGNUM);
1452 if (int_buffer & 0x2)
1453 {
3371ccc0 1454 const unsigned int sid = (pc >> 30) & 0x3;
c906108c
SS
1455 if (sid == 0)
1456 pcspace = read_register (SR4_REGNUM);
1457 else
1458 pcspace = read_register (SR4_REGNUM + 4 + sid);
c906108c
SS
1459 }
1460 else
1461 pcspace = read_register (PCSQ_HEAD_REGNUM);
1462
1463 /* Space for "arguments"; the RP goes in here. */
1464 sp = read_register (SP_REGNUM) + 48;
1465 int_buffer = read_register (RP_REGNUM) | 0x3;
53a5351d
JM
1466
1467 /* The 32bit and 64bit ABIs save the return pointer into different
1468 stack slots. */
1469 if (REGISTER_SIZE == 8)
1470 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1471 else
1472 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1473
1474 int_buffer = TARGET_READ_FP ();
53a5351d 1475 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1476
1477 write_register (FP_REGNUM, sp);
1478
53a5351d 1479 sp += 2 * REGISTER_SIZE;
c906108c
SS
1480
1481 for (regnum = 1; regnum < 32; regnum++)
1482 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1483 sp = push_word (sp, read_register (regnum));
1484
53a5351d
JM
1485 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1486 if (REGISTER_SIZE != 8)
1487 sp += 4;
c906108c
SS
1488
1489 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1490 {
73937e03
AC
1491 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1492 (char *) &freg_buffer, 8);
c5aa993b 1493 sp = push_bytes (sp, (char *) &freg_buffer, 8);
c906108c
SS
1494 }
1495 sp = push_word (sp, read_register (IPSW_REGNUM));
1496 sp = push_word (sp, read_register (SAR_REGNUM));
1497 sp = push_word (sp, pc);
1498 sp = push_word (sp, pcspace);
1499 sp = push_word (sp, pc + 4);
1500 sp = push_word (sp, pcspace);
1501 write_register (SP_REGNUM, sp);
1502}
1503
1504static void
fba45db2 1505find_dummy_frame_regs (struct frame_info *frame,
43bd9a9e 1506 CORE_ADDR frame_saved_regs[])
c906108c 1507{
ef6e7e13 1508 CORE_ADDR fp = get_frame_base (frame);
c906108c
SS
1509 int i;
1510
53a5351d
JM
1511 /* The 32bit and 64bit ABIs save RP into different locations. */
1512 if (REGISTER_SIZE == 8)
43bd9a9e 1513 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
53a5351d 1514 else
43bd9a9e 1515 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
53a5351d 1516
43bd9a9e 1517 frame_saved_regs[FP_REGNUM] = fp;
c906108c 1518
43bd9a9e 1519 frame_saved_regs[1] = fp + (2 * REGISTER_SIZE);
53a5351d
JM
1520
1521 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
c906108c
SS
1522 {
1523 if (i != FP_REGNUM)
1524 {
43bd9a9e 1525 frame_saved_regs[i] = fp;
53a5351d 1526 fp += REGISTER_SIZE;
c906108c
SS
1527 }
1528 }
1529
53a5351d
JM
1530 /* This is not necessary or desirable for the 64bit ABI. */
1531 if (REGISTER_SIZE != 8)
1532 fp += 4;
1533
c906108c 1534 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
43bd9a9e
AC
1535 frame_saved_regs[i] = fp;
1536
1537 frame_saved_regs[IPSW_REGNUM] = fp;
1538 frame_saved_regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1539 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1540 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1541 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1542 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
c906108c
SS
1543}
1544
1545void
fba45db2 1546hppa_pop_frame (void)
c906108c
SS
1547{
1548 register struct frame_info *frame = get_current_frame ();
1549 register CORE_ADDR fp, npc, target_pc;
1550 register int regnum;
43bd9a9e 1551 CORE_ADDR *fsr;
c906108c
SS
1552 double freg_buffer;
1553
c193f6ac 1554 fp = get_frame_base (frame);
43bd9a9e
AC
1555 hppa_frame_init_saved_regs (frame);
1556 fsr = get_frame_saved_regs (frame);
c906108c
SS
1557
1558#ifndef NO_PC_SPACE_QUEUE_RESTORE
43bd9a9e
AC
1559 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1560 restore_pc_queue (fsr);
c906108c
SS
1561#endif
1562
1563 for (regnum = 31; regnum > 0; regnum--)
43bd9a9e
AC
1564 if (fsr[regnum])
1565 write_register (regnum, read_memory_integer (fsr[regnum],
53a5351d 1566 REGISTER_SIZE));
c906108c 1567
c5aa993b 1568 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
43bd9a9e 1569 if (fsr[regnum])
c906108c 1570 {
43bd9a9e 1571 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
73937e03
AC
1572 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1573 (char *) &freg_buffer, 8);
c906108c
SS
1574 }
1575
43bd9a9e 1576 if (fsr[IPSW_REGNUM])
c906108c 1577 write_register (IPSW_REGNUM,
43bd9a9e 1578 read_memory_integer (fsr[IPSW_REGNUM],
53a5351d 1579 REGISTER_SIZE));
c906108c 1580
43bd9a9e 1581 if (fsr[SAR_REGNUM])
c906108c 1582 write_register (SAR_REGNUM,
43bd9a9e 1583 read_memory_integer (fsr[SAR_REGNUM],
53a5351d 1584 REGISTER_SIZE));
c906108c
SS
1585
1586 /* If the PC was explicitly saved, then just restore it. */
43bd9a9e 1587 if (fsr[PCOQ_TAIL_REGNUM])
c906108c 1588 {
43bd9a9e 1589 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
53a5351d 1590 REGISTER_SIZE);
c906108c
SS
1591 write_register (PCOQ_TAIL_REGNUM, npc);
1592 }
1593 /* Else use the value in %rp to set the new PC. */
c5aa993b 1594 else
c906108c
SS
1595 {
1596 npc = read_register (RP_REGNUM);
1597 write_pc (npc);
1598 }
1599
53a5351d 1600 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
c906108c 1601
43bd9a9e 1602 if (fsr[IPSW_REGNUM]) /* call dummy */
c906108c
SS
1603 write_register (SP_REGNUM, fp - 48);
1604 else
1605 write_register (SP_REGNUM, fp);
1606
1607 /* The PC we just restored may be inside a return trampoline. If so
1608 we want to restart the inferior and run it through the trampoline.
1609
1610 Do this by setting a momentary breakpoint at the location the
1611 trampoline returns to.
1612
1613 Don't skip through the trampoline if we're popping a dummy frame. */
1614 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
43bd9a9e 1615 if (target_pc && !fsr[IPSW_REGNUM])
c906108c
SS
1616 {
1617 struct symtab_and_line sal;
1618 struct breakpoint *breakpoint;
1619 struct cleanup *old_chain;
1620
1621 /* Set up our breakpoint. Set it to be silent as the MI code
c5aa993b 1622 for "return_command" will print the frame we returned to. */
c906108c
SS
1623 sal = find_pc_line (target_pc, 0);
1624 sal.pc = target_pc;
516b1f28 1625 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
c906108c
SS
1626 breakpoint->silent = 1;
1627
1628 /* So we can clean things up. */
4d6140d9 1629 old_chain = make_cleanup_delete_breakpoint (breakpoint);
c906108c
SS
1630
1631 /* Start up the inferior. */
1632 clear_proceed_status ();
1633 proceed_to_finish = 1;
2acceee2 1634 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
c906108c
SS
1635
1636 /* Perform our cleanups. */
1637 do_cleanups (old_chain);
1638 }
1639 flush_cached_frames ();
1640}
1641
1642/* After returning to a dummy on the stack, restore the instruction
1643 queue space registers. */
1644
1645static int
43bd9a9e 1646restore_pc_queue (CORE_ADDR *fsr)
c906108c
SS
1647{
1648 CORE_ADDR pc = read_pc ();
43bd9a9e 1649 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
53a5351d 1650 TARGET_PTR_BIT / 8);
c906108c
SS
1651 struct target_waitstatus w;
1652 int insn_count;
1653
1654 /* Advance past break instruction in the call dummy. */
1655 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1656 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1657
1658 /* HPUX doesn't let us set the space registers or the space
1659 registers of the PC queue through ptrace. Boo, hiss.
1660 Conveniently, the call dummy has this sequence of instructions
1661 after the break:
c5aa993b
JM
1662 mtsp r21, sr0
1663 ble,n 0(sr0, r22)
1664
c906108c
SS
1665 So, load up the registers and single step until we are in the
1666 right place. */
1667
43bd9a9e 1668 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
53a5351d 1669 REGISTER_SIZE));
c906108c
SS
1670 write_register (22, new_pc);
1671
1672 for (insn_count = 0; insn_count < 3; insn_count++)
1673 {
1674 /* FIXME: What if the inferior gets a signal right now? Want to
c5aa993b
JM
1675 merge this into wait_for_inferior (as a special kind of
1676 watchpoint? By setting a breakpoint at the end? Is there
1677 any other choice? Is there *any* way to do this stuff with
1678 ptrace() or some equivalent?). */
c906108c 1679 resume (1, 0);
39f77062 1680 target_wait (inferior_ptid, &w);
c906108c
SS
1681
1682 if (w.kind == TARGET_WAITKIND_SIGNALLED)
c5aa993b
JM
1683 {
1684 stop_signal = w.value.sig;
1685 terminal_ours_for_output ();
1686 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
c906108c
SS
1687 target_signal_to_name (stop_signal),
1688 target_signal_to_string (stop_signal));
c5aa993b
JM
1689 gdb_flush (gdb_stdout);
1690 return 0;
1691 }
c906108c
SS
1692 }
1693 target_terminal_ours ();
1694 target_fetch_registers (-1);
1695 return 1;
1696}
1697
c2c6d25f
JM
1698
1699#ifdef PA20W_CALLING_CONVENTIONS
1700
53a5351d
JM
1701/* This function pushes a stack frame with arguments as part of the
1702 inferior function calling mechanism.
c906108c 1703
c2c6d25f
JM
1704 This is the version for the PA64, in which later arguments appear
1705 at higher addresses. (The stack always grows towards higher
1706 addresses.)
c906108c 1707
53a5351d
JM
1708 We simply allocate the appropriate amount of stack space and put
1709 arguments into their proper slots. The call dummy code will copy
1710 arguments into registers as needed by the ABI.
c906108c 1711
c2c6d25f
JM
1712 This ABI also requires that the caller provide an argument pointer
1713 to the callee, so we do that too. */
53a5351d 1714
c906108c 1715CORE_ADDR
ea7c478f 1716hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1717 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1718{
1719 /* array of arguments' offsets */
c5aa993b 1720 int *offset = (int *) alloca (nargs * sizeof (int));
53a5351d
JM
1721
1722 /* array of arguments' lengths: real lengths in bytes, not aligned to
1723 word size */
c5aa993b 1724 int *lengths = (int *) alloca (nargs * sizeof (int));
c906108c 1725
53a5351d
JM
1726 /* The value of SP as it was passed into this function after
1727 aligning. */
1728 CORE_ADDR orig_sp = STACK_ALIGN (sp);
c906108c 1729
53a5351d
JM
1730 /* The number of stack bytes occupied by the current argument. */
1731 int bytes_reserved;
1732
1733 /* The total number of bytes reserved for the arguments. */
1734 int cum_bytes_reserved = 0;
c906108c 1735
53a5351d
JM
1736 /* Similarly, but aligned. */
1737 int cum_bytes_aligned = 0;
1738 int i;
c5aa993b 1739
53a5351d 1740 /* Iterate over each argument provided by the user. */
c906108c
SS
1741 for (i = 0; i < nargs; i++)
1742 {
c2c6d25f
JM
1743 struct type *arg_type = VALUE_TYPE (args[i]);
1744
1745 /* Integral scalar values smaller than a register are padded on
1746 the left. We do this by promoting them to full-width,
1747 although the ABI says to pad them with garbage. */
1748 if (is_integral_type (arg_type)
1749 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1750 {
1751 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1752 ? builtin_type_unsigned_long
1753 : builtin_type_long),
1754 args[i]);
1755 arg_type = VALUE_TYPE (args[i]);
1756 }
1757
1758 lengths[i] = TYPE_LENGTH (arg_type);
c906108c 1759
53a5351d
JM
1760 /* Align the size of the argument to the word size for this
1761 target. */
1762 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
c906108c 1763
53a5351d
JM
1764 offset[i] = cum_bytes_reserved;
1765
c2c6d25f
JM
1766 /* Aggregates larger than eight bytes (the only types larger
1767 than eight bytes we have) are aligned on a 16-byte boundary,
1768 possibly padded on the right with garbage. This may leave an
1769 empty word on the stack, and thus an unused register, as per
1770 the ABI. */
1771 if (bytes_reserved > 8)
1772 {
1773 /* Round up the offset to a multiple of two slots. */
1774 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1775 & -(2*REGISTER_SIZE));
c906108c 1776
c2c6d25f
JM
1777 /* Note the space we've wasted, if any. */
1778 bytes_reserved += new_offset - offset[i];
1779 offset[i] = new_offset;
1780 }
53a5351d 1781
c2c6d25f
JM
1782 cum_bytes_reserved += bytes_reserved;
1783 }
1784
1785 /* CUM_BYTES_RESERVED already accounts for all the arguments
1786 passed by the user. However, the ABIs mandate minimum stack space
1787 allocations for outgoing arguments.
1788
1789 The ABIs also mandate minimum stack alignments which we must
1790 preserve. */
1791 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1792 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1793
1794 /* Now write each of the args at the proper offset down the stack. */
1795 for (i = 0; i < nargs; i++)
1796 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1797
1798 /* If a structure has to be returned, set up register 28 to hold its
1799 address */
1800 if (struct_return)
1801 write_register (28, struct_addr);
1802
1803 /* For the PA64 we must pass a pointer to the outgoing argument list.
1804 The ABI mandates that the pointer should point to the first byte of
1805 storage beyond the register flushback area.
1806
1807 However, the call dummy expects the outgoing argument pointer to
1808 be passed in register %r4. */
1809 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1810
1811 /* ?!? This needs further work. We need to set up the global data
1812 pointer for this procedure. This assumes the same global pointer
1813 for every procedure. The call dummy expects the dp value to
1814 be passed in register %r6. */
1815 write_register (6, read_register (27));
1816
1817 /* The stack will have 64 bytes of additional space for a frame marker. */
1818 return sp + 64;
1819}
1820
1821#else
1822
1823/* This function pushes a stack frame with arguments as part of the
1824 inferior function calling mechanism.
1825
1826 This is the version of the function for the 32-bit PA machines, in
1827 which later arguments appear at lower addresses. (The stack always
1828 grows towards higher addresses.)
1829
1830 We simply allocate the appropriate amount of stack space and put
1831 arguments into their proper slots. The call dummy code will copy
1832 arguments into registers as needed by the ABI. */
1833
1834CORE_ADDR
ea7c478f 1835hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1836 int struct_return, CORE_ADDR struct_addr)
c2c6d25f
JM
1837{
1838 /* array of arguments' offsets */
1839 int *offset = (int *) alloca (nargs * sizeof (int));
1840
1841 /* array of arguments' lengths: real lengths in bytes, not aligned to
1842 word size */
1843 int *lengths = (int *) alloca (nargs * sizeof (int));
1844
1845 /* The number of stack bytes occupied by the current argument. */
1846 int bytes_reserved;
1847
1848 /* The total number of bytes reserved for the arguments. */
1849 int cum_bytes_reserved = 0;
1850
1851 /* Similarly, but aligned. */
1852 int cum_bytes_aligned = 0;
1853 int i;
1854
1855 /* Iterate over each argument provided by the user. */
1856 for (i = 0; i < nargs; i++)
1857 {
1858 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1859
1860 /* Align the size of the argument to the word size for this
1861 target. */
1862 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1863
b6649e88
AC
1864 offset[i] = (cum_bytes_reserved
1865 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
c2c6d25f
JM
1866
1867 /* If the argument is a double word argument, then it needs to be
1868 double word aligned. */
53a5351d 1869 if ((bytes_reserved == 2 * REGISTER_SIZE)
c2c6d25f 1870 && (offset[i] % 2 * REGISTER_SIZE))
c5aa993b
JM
1871 {
1872 int new_offset = 0;
53a5351d
JM
1873 /* BYTES_RESERVED is already aligned to the word, so we put
1874 the argument at one word more down the stack.
1875
1876 This will leave one empty word on the stack, and one unused
1877 register as mandated by the ABI. */
1878 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1879 & -(2 * REGISTER_SIZE));
1880
1881 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
c5aa993b 1882 {
53a5351d
JM
1883 bytes_reserved += REGISTER_SIZE;
1884 offset[i] += REGISTER_SIZE;
c5aa993b
JM
1885 }
1886 }
c906108c
SS
1887
1888 cum_bytes_reserved += bytes_reserved;
1889
1890 }
1891
c2c6d25f
JM
1892 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1893 by the user. However, the ABI mandates minimum stack space
53a5351d
JM
1894 allocations for outgoing arguments.
1895
c2c6d25f 1896 The ABI also mandates minimum stack alignments which we must
53a5351d 1897 preserve. */
c906108c 1898 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
53a5351d
JM
1899 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1900
1901 /* Now write each of the args at the proper offset down the stack.
53a5351d
JM
1902 ?!? We need to promote values to a full register instead of skipping
1903 words in the stack. */
c906108c
SS
1904 for (i = 0; i < nargs; i++)
1905 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
c906108c 1906
53a5351d
JM
1907 /* If a structure has to be returned, set up register 28 to hold its
1908 address */
c906108c
SS
1909 if (struct_return)
1910 write_register (28, struct_addr);
1911
53a5351d 1912 /* The stack will have 32 bytes of additional space for a frame marker. */
c906108c
SS
1913 return sp + 32;
1914}
1915
c2c6d25f 1916#endif
c906108c
SS
1917
1918/* elz: this function returns a value which is built looking at the given address.
1919 It is called from call_function_by_hand, in case we need to return a
1920 value which is larger than 64 bits, and it is stored in the stack rather than
1921 in the registers r28 and r29 or fr4.
1922 This function does the same stuff as value_being_returned in values.c, but
1923 gets the value from the stack rather than from the buffer where all the
1924 registers were saved when the function called completed. */
ea7c478f 1925struct value *
fba45db2 1926hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
c906108c 1927{
ea7c478f 1928 register struct value *val;
c906108c
SS
1929
1930 val = allocate_value (valtype);
1931 CHECK_TYPEDEF (valtype);
c5aa993b 1932 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
c906108c
SS
1933
1934 return val;
1935}
1936
1937
1938
1939/* elz: Used to lookup a symbol in the shared libraries.
c5aa993b
JM
1940 This function calls shl_findsym, indirectly through a
1941 call to __d_shl_get. __d_shl_get is in end.c, which is always
1942 linked in by the hp compilers/linkers.
1943 The call to shl_findsym cannot be made directly because it needs
1944 to be active in target address space.
1945 inputs: - minimal symbol pointer for the function we want to look up
1946 - address in target space of the descriptor for the library
1947 where we want to look the symbol up.
1948 This address is retrieved using the
1949 som_solib_get_solib_by_pc function (somsolib.c).
1950 output: - real address in the library of the function.
1951 note: the handle can be null, in which case shl_findsym will look for
1952 the symbol in all the loaded shared libraries.
1953 files to look at if you need reference on this stuff:
1954 dld.c, dld_shl_findsym.c
1955 end.c
1956 man entry for shl_findsym */
c906108c
SS
1957
1958CORE_ADDR
fba45db2 1959find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
c906108c 1960{
c5aa993b
JM
1961 struct symbol *get_sym, *symbol2;
1962 struct minimal_symbol *buff_minsym, *msymbol;
1963 struct type *ftype;
ea7c478f
AC
1964 struct value **args;
1965 struct value *funcval;
1966 struct value *val;
c5aa993b
JM
1967
1968 int x, namelen, err_value, tmp = -1;
1969 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1970 CORE_ADDR stub_addr;
1971
1972
ea7c478f 1973 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
c5aa993b
JM
1974 funcval = find_function_in_inferior ("__d_shl_get");
1975 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1976 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1977 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1978 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1979 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
22abf04a 1980 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
c5aa993b
JM
1981 value_return_addr = endo_buff_addr + namelen;
1982 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1983
1984 /* do alignment */
1985 if ((x = value_return_addr % 64) != 0)
1986 value_return_addr = value_return_addr + 64 - x;
1987
1988 errno_return_addr = value_return_addr + 64;
1989
1990
1991 /* set up stuff needed by __d_shl_get in buffer in end.o */
1992
22abf04a 1993 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
c5aa993b
JM
1994
1995 target_write_memory (value_return_addr, (char *) &tmp, 4);
1996
1997 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1998
1999 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2000 (char *) &handle, 4);
2001
2002 /* now prepare the arguments for the call */
2003
2004 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
4478b372
JB
2005 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2006 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
c5aa993b 2007 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
4478b372
JB
2008 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2009 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
c5aa993b
JM
2010
2011 /* now call the function */
2012
2013 val = call_function_by_hand (funcval, 6, args);
2014
2015 /* now get the results */
2016
2017 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2018
2019 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2020 if (stub_addr <= 0)
104c1213 2021 error ("call to __d_shl_get failed, error code is %d", err_value);
c5aa993b
JM
2022
2023 return (stub_addr);
c906108c
SS
2024}
2025
c5aa993b 2026/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
a0b3c4fd 2027static int
4efb68b1 2028cover_find_stub_with_shl_get (void *args_untyped)
c906108c 2029{
a0b3c4fd
JM
2030 args_for_find_stub *args = args_untyped;
2031 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2032 return 0;
c906108c
SS
2033}
2034
c906108c
SS
2035/* Insert the specified number of args and function address
2036 into a call sequence of the above form stored at DUMMYNAME.
2037
2038 On the hppa we need to call the stack dummy through $$dyncall.
2039 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
2040 real_pc, which is the location where gdb should start up the
cce74817
JM
2041 inferior to do the function call.
2042
2043 This has to work across several versions of hpux, bsd, osf1. It has to
2044 work regardless of what compiler was used to build the inferior program.
2045 It should work regardless of whether or not end.o is available. It has
2046 to work even if gdb can not call into the dynamic loader in the inferior
2047 to query it for symbol names and addresses.
2048
2049 Yes, all those cases should work. Luckily code exists to handle most
2050 of them. The complexity is in selecting exactly what scheme should
2051 be used to perform the inferior call.
2052
2053 At the current time this routine is known not to handle cases where
2054 the program was linked with HP's compiler without including end.o.
2055
2056 Please contact Jeff Law (law@cygnus.com) before changing this code. */
c906108c
SS
2057
2058CORE_ADDR
fba45db2 2059hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 2060 struct value **args, struct type *type, int gcc_p)
c906108c
SS
2061{
2062 CORE_ADDR dyncall_addr;
2063 struct minimal_symbol *msymbol;
2064 struct minimal_symbol *trampoline;
2065 int flags = read_register (FLAGS_REGNUM);
cce74817
JM
2066 struct unwind_table_entry *u = NULL;
2067 CORE_ADDR new_stub = 0;
2068 CORE_ADDR solib_handle = 0;
2069
2070 /* Nonzero if we will use GCC's PLT call routine. This routine must be
c2c6d25f
JM
2071 passed an import stub, not a PLABEL. It is also necessary to set %r19
2072 (the PIC register) before performing the call.
c906108c 2073
cce74817
JM
2074 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2075 are calling the target directly. When using __d_plt_call we want to
2076 use a PLABEL instead of an import stub. */
2077 int using_gcc_plt_call = 1;
2078
53a5351d
JM
2079#ifdef GDB_TARGET_IS_HPPA_20W
2080 /* We currently use completely different code for the PA2.0W inferior
2081 function call sequences. This needs to be cleaned up. */
2082 {
2083 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2084 struct target_waitstatus w;
2085 int inst1, inst2;
2086 char buf[4];
2087 int status;
2088 struct objfile *objfile;
2089
2090 /* We can not modify the PC space queues directly, so we start
2091 up the inferior and execute a couple instructions to set the
2092 space queues so that they point to the call dummy in the stack. */
2093 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2094 sr5 = read_register (SR5_REGNUM);
2095 if (1)
2096 {
2097 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2098 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2099 if (target_read_memory (pcoqh, buf, 4) != 0)
2100 error ("Couldn't modify space queue\n");
2101 inst1 = extract_unsigned_integer (buf, 4);
2102
2103 if (target_read_memory (pcoqt, buf, 4) != 0)
2104 error ("Couldn't modify space queue\n");
2105 inst2 = extract_unsigned_integer (buf, 4);
2106
2107 /* BVE (r1) */
2108 *((int *) buf) = 0xe820d000;
2109 if (target_write_memory (pcoqh, buf, 4) != 0)
2110 error ("Couldn't modify space queue\n");
2111
2112 /* NOP */
2113 *((int *) buf) = 0x08000240;
2114 if (target_write_memory (pcoqt, buf, 4) != 0)
2115 {
2116 *((int *) buf) = inst1;
2117 target_write_memory (pcoqh, buf, 4);
2118 error ("Couldn't modify space queue\n");
2119 }
2120
2121 write_register (1, pc);
2122
2123 /* Single step twice, the BVE instruction will set the space queue
2124 such that it points to the PC value written immediately above
2125 (ie the call dummy). */
2126 resume (1, 0);
39f77062 2127 target_wait (inferior_ptid, &w);
53a5351d 2128 resume (1, 0);
39f77062 2129 target_wait (inferior_ptid, &w);
53a5351d
JM
2130
2131 /* Restore the two instructions at the old PC locations. */
2132 *((int *) buf) = inst1;
2133 target_write_memory (pcoqh, buf, 4);
2134 *((int *) buf) = inst2;
2135 target_write_memory (pcoqt, buf, 4);
2136 }
2137
2138 /* The call dummy wants the ultimate destination address initially
2139 in register %r5. */
2140 write_register (5, fun);
2141
2142 /* We need to see if this objfile has a different DP value than our
c2c6d25f 2143 own (it could be a shared library for example). */
53a5351d
JM
2144 ALL_OBJFILES (objfile)
2145 {
2146 struct obj_section *s;
2147 obj_private_data_t *obj_private;
2148
2149 /* See if FUN is in any section within this shared library. */
2150 for (s = objfile->sections; s < objfile->sections_end; s++)
2151 if (s->addr <= fun && fun < s->endaddr)
2152 break;
2153
2154 if (s >= objfile->sections_end)
2155 continue;
2156
2157 obj_private = (obj_private_data_t *) objfile->obj_private;
2158
2159 /* The DP value may be different for each objfile. But within an
2160 objfile each function uses the same dp value. Thus we do not need
2161 to grope around the opd section looking for dp values.
2162
2163 ?!? This is not strictly correct since we may be in a shared library
2164 and want to call back into the main program. To make that case
2165 work correctly we need to set obj_private->dp for the main program's
2166 objfile, then remove this conditional. */
2167 if (obj_private->dp)
2168 write_register (27, obj_private->dp);
2169 break;
2170 }
2171 return pc;
2172 }
2173#endif
2174
2175#ifndef GDB_TARGET_IS_HPPA_20W
cce74817 2176 /* Prefer __gcc_plt_call over the HP supplied routine because
c5aa993b 2177 __gcc_plt_call works for any number of arguments. */
c906108c 2178 trampoline = NULL;
cce74817
JM
2179 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2180 using_gcc_plt_call = 0;
2181
c906108c
SS
2182 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2183 if (msymbol == NULL)
cce74817 2184 error ("Can't find an address for $$dyncall trampoline");
c906108c
SS
2185
2186 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2187
2188 /* FUN could be a procedure label, in which case we have to get
cce74817
JM
2189 its real address and the value of its GOT/DP if we plan to
2190 call the routine via gcc_plt_call. */
2191 if ((fun & 0x2) && using_gcc_plt_call)
c906108c
SS
2192 {
2193 /* Get the GOT/DP value for the target function. It's
c5aa993b
JM
2194 at *(fun+4). Note the call dummy is *NOT* allowed to
2195 trash %r19 before calling the target function. */
53a5351d
JM
2196 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2197 REGISTER_SIZE));
c906108c
SS
2198
2199 /* Now get the real address for the function we are calling, it's
c5aa993b 2200 at *fun. */
53a5351d
JM
2201 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2202 TARGET_PTR_BIT / 8);
c906108c
SS
2203 }
2204 else
2205 {
2206
2207#ifndef GDB_TARGET_IS_PA_ELF
cce74817 2208 /* FUN could be an export stub, the real address of a function, or
c5aa993b
JM
2209 a PLABEL. When using gcc's PLT call routine we must call an import
2210 stub rather than the export stub or real function for lazy binding
2211 to work correctly
cce74817 2212
39f77062 2213 If we are using the gcc PLT call routine, then we need to
c5aa993b 2214 get the import stub for the target function. */
cce74817 2215 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
c906108c
SS
2216 {
2217 struct objfile *objfile;
2218 struct minimal_symbol *funsymbol, *stub_symbol;
2219 CORE_ADDR newfun = 0;
2220
2221 funsymbol = lookup_minimal_symbol_by_pc (fun);
2222 if (!funsymbol)
4ce44c66 2223 error ("Unable to find minimal symbol for target function.\n");
c906108c
SS
2224
2225 /* Search all the object files for an import symbol with the
2226 right name. */
2227 ALL_OBJFILES (objfile)
c5aa993b
JM
2228 {
2229 stub_symbol
2230 = lookup_minimal_symbol_solib_trampoline
22abf04a 2231 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
c5aa993b
JM
2232
2233 if (!stub_symbol)
22abf04a 2234 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
c5aa993b
JM
2235 NULL, objfile);
2236
2237 /* Found a symbol with the right name. */
2238 if (stub_symbol)
2239 {
2240 struct unwind_table_entry *u;
2241 /* It must be a shared library trampoline. */
2242 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2243 continue;
2244
2245 /* It must also be an import stub. */
2246 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
6426a772
JM
2247 if (u == NULL
2248 || (u->stub_unwind.stub_type != IMPORT
2249#ifdef GDB_NATIVE_HPUX_11
2250 /* Sigh. The hpux 10.20 dynamic linker will blow
2251 chunks if we perform a call to an unbound function
2252 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2253 linker will blow chunks if we do not call the
2254 unbound function via the IMPORT_SHLIB stub.
2255
2256 We currently have no way to select bevahior on just
2257 the target. However, we only support HPUX/SOM in
2258 native mode. So we conditinalize on a native
2259 #ifdef. Ugly. Ugly. Ugly */
2260 && u->stub_unwind.stub_type != IMPORT_SHLIB
2261#endif
2262 ))
c5aa993b
JM
2263 continue;
2264
2265 /* OK. Looks like the correct import stub. */
2266 newfun = SYMBOL_VALUE (stub_symbol);
2267 fun = newfun;
6426a772
JM
2268
2269 /* If we found an IMPORT stub, then we want to stop
2270 searching now. If we found an IMPORT_SHLIB, we want
2271 to continue the search in the hopes that we will find
2272 an IMPORT stub. */
2273 if (u->stub_unwind.stub_type == IMPORT)
2274 break;
c5aa993b
JM
2275 }
2276 }
cce74817
JM
2277
2278 /* Ouch. We did not find an import stub. Make an attempt to
2279 do the right thing instead of just croaking. Most of the
2280 time this will actually work. */
c906108c
SS
2281 if (newfun == 0)
2282 write_register (19, som_solib_get_got_by_pc (fun));
cce74817
JM
2283
2284 u = find_unwind_entry (fun);
c5aa993b 2285 if (u
cce74817
JM
2286 && (u->stub_unwind.stub_type == IMPORT
2287 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2288 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2289
2290 /* If we found the import stub in the shared library, then we have
2291 to set %r19 before we call the stub. */
2292 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2293 write_register (19, som_solib_get_got_by_pc (fun));
c906108c 2294 }
c906108c
SS
2295#endif
2296 }
2297
cce74817
JM
2298 /* If we are calling into another load module then have sr4export call the
2299 magic __d_plt_call routine which is linked in from end.o.
c906108c 2300
cce74817
JM
2301 You can't use _sr4export to make the call as the value in sp-24 will get
2302 fried and you end up returning to the wrong location. You can't call the
2303 target as the code to bind the PLT entry to a function can't return to a
2304 stack address.
2305
2306 Also, query the dynamic linker in the inferior to provide a suitable
2307 PLABEL for the target function. */
c5aa993b 2308 if (!using_gcc_plt_call)
c906108c
SS
2309 {
2310 CORE_ADDR new_fun;
2311
cce74817 2312 /* Get a handle for the shared library containing FUN. Given the
c5aa993b 2313 handle we can query the shared library for a PLABEL. */
cce74817 2314 solib_handle = som_solib_get_solib_by_pc (fun);
c906108c 2315
cce74817 2316 if (solib_handle)
c906108c 2317 {
cce74817 2318 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
c906108c 2319
cce74817
JM
2320 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2321
2322 if (trampoline == NULL)
2323 {
2324 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2325 }
2326
2327 /* This is where sr4export will jump to. */
2328 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2329
2330 /* If the function is in a shared library, then call __d_shl_get to
2331 get a PLABEL for the target function. */
2332 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2333
c5aa993b 2334 if (new_stub == 0)
22abf04a 2335 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
c906108c
SS
2336
2337 /* We have to store the address of the stub in __shlib_funcptr. */
cce74817 2338 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
c5aa993b 2339 (struct objfile *) NULL);
c906108c 2340
cce74817
JM
2341 if (msymbol == NULL)
2342 error ("Can't find an address for __shlib_funcptr");
2343 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
c5aa993b 2344 (char *) &new_stub, 4);
c906108c
SS
2345
2346 /* We want sr4export to call __d_plt_call, so we claim it is
2347 the final target. Clear trampoline. */
cce74817
JM
2348 fun = new_fun;
2349 trampoline = NULL;
c906108c
SS
2350 }
2351 }
2352
2353 /* Store upper 21 bits of function address into ldil. fun will either be
2354 the final target (most cases) or __d_plt_call when calling into a shared
2355 library and __gcc_plt_call is not available. */
2356 store_unsigned_integer
2357 (&dummy[FUNC_LDIL_OFFSET],
2358 INSTRUCTION_SIZE,
2359 deposit_21 (fun >> 11,
2360 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2361 INSTRUCTION_SIZE)));
2362
2363 /* Store lower 11 bits of function address into ldo */
2364 store_unsigned_integer
2365 (&dummy[FUNC_LDO_OFFSET],
2366 INSTRUCTION_SIZE,
2367 deposit_14 (fun & MASK_11,
2368 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2369 INSTRUCTION_SIZE)));
2370#ifdef SR4EXPORT_LDIL_OFFSET
2371
2372 {
2373 CORE_ADDR trampoline_addr;
2374
2375 /* We may still need sr4export's address too. */
2376
2377 if (trampoline == NULL)
2378 {
2379 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2380 if (msymbol == NULL)
cce74817 2381 error ("Can't find an address for _sr4export trampoline");
c906108c
SS
2382
2383 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2384 }
2385 else
2386 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2387
2388
2389 /* Store upper 21 bits of trampoline's address into ldil */
2390 store_unsigned_integer
2391 (&dummy[SR4EXPORT_LDIL_OFFSET],
2392 INSTRUCTION_SIZE,
2393 deposit_21 (trampoline_addr >> 11,
2394 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2395 INSTRUCTION_SIZE)));
2396
2397 /* Store lower 11 bits of trampoline's address into ldo */
2398 store_unsigned_integer
2399 (&dummy[SR4EXPORT_LDO_OFFSET],
2400 INSTRUCTION_SIZE,
2401 deposit_14 (trampoline_addr & MASK_11,
2402 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2403 INSTRUCTION_SIZE)));
2404 }
2405#endif
2406
2407 write_register (22, pc);
2408
2409 /* If we are in a syscall, then we should call the stack dummy
2410 directly. $$dyncall is not needed as the kernel sets up the
2411 space id registers properly based on the value in %r31. In
2412 fact calling $$dyncall will not work because the value in %r22
2413 will be clobbered on the syscall exit path.
2414
2415 Similarly if the current PC is in a shared library. Note however,
2416 this scheme won't work if the shared library isn't mapped into
2417 the same space as the stack. */
2418 if (flags & 2)
2419 return pc;
2420#ifndef GDB_TARGET_IS_PA_ELF
60383d10 2421 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
c906108c
SS
2422 return pc;
2423#endif
2424 else
2425 return dyncall_addr;
53a5351d 2426#endif
c906108c
SS
2427}
2428
c906108c
SS
2429/* If the pid is in a syscall, then the FP register is not readable.
2430 We'll return zero in that case, rather than attempting to read it
2431 and cause a warning. */
60383d10 2432
c906108c 2433CORE_ADDR
60383d10 2434hppa_read_fp (int pid)
c906108c
SS
2435{
2436 int flags = read_register (FLAGS_REGNUM);
2437
c5aa993b
JM
2438 if (flags & 2)
2439 {
2440 return (CORE_ADDR) 0;
2441 }
c906108c
SS
2442
2443 /* This is the only site that may directly read_register () the FP
2444 register. All others must use TARGET_READ_FP (). */
2445 return read_register (FP_REGNUM);
2446}
2447
60383d10
JB
2448CORE_ADDR
2449hppa_target_read_fp (void)
2450{
2451 return hppa_read_fp (PIDGET (inferior_ptid));
2452}
c906108c
SS
2453
2454/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2455 bits. */
2456
2457CORE_ADDR
60383d10 2458hppa_target_read_pc (ptid_t ptid)
c906108c 2459{
39f77062 2460 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2461
2462 /* The following test does not belong here. It is OS-specific, and belongs
2463 in native code. */
2464 /* Test SS_INSYSCALL */
2465 if (flags & 2)
39f77062 2466 return read_register_pid (31, ptid) & ~0x3;
c906108c 2467
39f77062 2468 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
c906108c
SS
2469}
2470
2471/* Write out the PC. If currently in a syscall, then also write the new
2472 PC value into %r31. */
2473
2474void
60383d10 2475hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 2476{
39f77062 2477 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2478
2479 /* The following test does not belong here. It is OS-specific, and belongs
2480 in native code. */
2481 /* If in a syscall, then set %r31. Also make sure to get the
2482 privilege bits set correctly. */
2483 /* Test SS_INSYSCALL */
2484 if (flags & 2)
39f77062 2485 write_register_pid (31, v | 0x3, ptid);
c906108c 2486
39f77062
KB
2487 write_register_pid (PC_REGNUM, v, ptid);
2488 write_register_pid (NPC_REGNUM, v + 4, ptid);
c906108c
SS
2489}
2490
2491/* return the alignment of a type in bytes. Structures have the maximum
2492 alignment required by their fields. */
2493
2494static int
fba45db2 2495hppa_alignof (struct type *type)
c906108c
SS
2496{
2497 int max_align, align, i;
2498 CHECK_TYPEDEF (type);
2499 switch (TYPE_CODE (type))
2500 {
2501 case TYPE_CODE_PTR:
2502 case TYPE_CODE_INT:
2503 case TYPE_CODE_FLT:
2504 return TYPE_LENGTH (type);
2505 case TYPE_CODE_ARRAY:
2506 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2507 case TYPE_CODE_STRUCT:
2508 case TYPE_CODE_UNION:
2509 max_align = 1;
2510 for (i = 0; i < TYPE_NFIELDS (type); i++)
2511 {
2512 /* Bit fields have no real alignment. */
2513 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 2514 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
2515 {
2516 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2517 max_align = max (max_align, align);
2518 }
2519 }
2520 return max_align;
2521 default:
2522 return 4;
2523 }
2524}
2525
2526/* Print the register regnum, or all registers if regnum is -1 */
2527
2528void
fba45db2 2529pa_do_registers_info (int regnum, int fpregs)
c906108c 2530{
c5aa993b 2531 char raw_regs[REGISTER_BYTES];
c906108c
SS
2532 int i;
2533
2534 /* Make a copy of gdb's save area (may cause actual
2535 reads from the target). */
2536 for (i = 0; i < NUM_REGS; i++)
6e7f8b9c 2537 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2538
2539 if (regnum == -1)
2540 pa_print_registers (raw_regs, regnum, fpregs);
c5aa993b
JM
2541 else if (regnum < FP4_REGNUM)
2542 {
2543 long reg_val[2];
2544
2545 /* Why is the value not passed through "extract_signed_integer"
2546 as in "pa_print_registers" below? */
2547 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2548
2549 if (!is_pa_2)
2550 {
ce414844 2551 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2552 }
c906108c 2553 else
c5aa993b
JM
2554 {
2555 /* Fancy % formats to prevent leading zeros. */
2556 if (reg_val[0] == 0)
ce414844 2557 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2558 else
ce414844 2559 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
c5aa993b
JM
2560 reg_val[0], reg_val[1]);
2561 }
c906108c 2562 }
c906108c 2563 else
c5aa993b
JM
2564 /* Note that real floating point values only start at
2565 FP4_REGNUM. FP0 and up are just status and error
2566 registers, which have integral (bit) values. */
c906108c
SS
2567 pa_print_fp_reg (regnum);
2568}
2569
2570/********** new function ********************/
2571void
fba45db2
KB
2572pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2573 enum precision_type precision)
c906108c 2574{
c5aa993b 2575 char raw_regs[REGISTER_BYTES];
c906108c
SS
2576 int i;
2577
2578 /* Make a copy of gdb's save area (may cause actual
c5aa993b 2579 reads from the target). */
c906108c 2580 for (i = 0; i < NUM_REGS; i++)
6e7f8b9c 2581 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2582
2583 if (regnum == -1)
2584 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2585
c5aa993b
JM
2586 else if (regnum < FP4_REGNUM)
2587 {
2588 long reg_val[2];
2589
2590 /* Why is the value not passed through "extract_signed_integer"
2591 as in "pa_print_registers" below? */
2592 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
c906108c 2593
c5aa993b
JM
2594 if (!is_pa_2)
2595 {
ce414844 2596 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2597 }
c906108c 2598 else
c5aa993b
JM
2599 {
2600 /* Fancy % formats to prevent leading zeros. */
2601 if (reg_val[0] == 0)
ce414844 2602 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
c5aa993b
JM
2603 reg_val[1]);
2604 else
ce414844 2605 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
c5aa993b
JM
2606 reg_val[0], reg_val[1]);
2607 }
c906108c 2608 }
c906108c 2609 else
c5aa993b
JM
2610 /* Note that real floating point values only start at
2611 FP4_REGNUM. FP0 and up are just status and error
2612 registers, which have integral (bit) values. */
c906108c
SS
2613 pa_strcat_fp_reg (regnum, stream, precision);
2614}
2615
2616/* If this is a PA2.0 machine, fetch the real 64-bit register
2617 value. Otherwise use the info from gdb's saved register area.
2618
2619 Note that reg_val is really expected to be an array of longs,
2620 with two elements. */
2621static void
fba45db2 2622pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
c906108c 2623{
c5aa993b 2624 static int know_which = 0; /* False */
c906108c 2625
c5aa993b 2626 int regaddr;
c906108c
SS
2627 unsigned int offset;
2628 register int i;
c5aa993b
JM
2629 int start;
2630
2631
6789195b 2632 char *buf = alloca (max_register_size (current_gdbarch));
c906108c
SS
2633 long long reg_val;
2634
c5aa993b
JM
2635 if (!know_which)
2636 {
2637 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2638 {
2639 is_pa_2 = (1 == 1);
2640 }
2641
2642 know_which = 1; /* True */
2643 }
c906108c
SS
2644
2645 raw_val[0] = 0;
2646 raw_val[1] = 0;
2647
c5aa993b
JM
2648 if (!is_pa_2)
2649 {
2650 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
c906108c 2651 return;
c5aa993b 2652 }
c906108c
SS
2653
2654 /* Code below copied from hppah-nat.c, with fixes for wide
2655 registers, using different area of save_state, etc. */
2656 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
c5aa993b
JM
2657 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2658 {
c906108c 2659 /* Use narrow regs area of save_state and default macro. */
c5aa993b
JM
2660 offset = U_REGS_OFFSET;
2661 regaddr = register_addr (regnum, offset);
2662 start = 1;
2663 }
2664 else
2665 {
c906108c
SS
2666 /* Use wide regs area, and calculate registers as 8 bytes wide.
2667
2668 We'd like to do this, but current version of "C" doesn't
2669 permit "offsetof":
2670
c5aa993b 2671 offset = offsetof(save_state_t, ss_wide);
c906108c
SS
2672
2673 Note that to avoid "C" doing typed pointer arithmetic, we
2674 have to cast away the type in our offset calculation:
2675 otherwise we get an offset of 1! */
2676
7a292a7a 2677 /* NB: save_state_t is not available before HPUX 9.
c5aa993b 2678 The ss_wide field is not available previous to HPUX 10.20,
7a292a7a
SS
2679 so to avoid compile-time warnings, we only compile this for
2680 PA 2.0 processors. This control path should only be followed
2681 if we're debugging a PA 2.0 processor, so this should not cause
2682 problems. */
2683
c906108c
SS
2684 /* #if the following code out so that this file can still be
2685 compiled on older HPUX boxes (< 10.20) which don't have
2686 this structure/structure member. */
2687#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2688 save_state_t temp;
2689
2690 offset = ((int) &temp.ss_wide) - ((int) &temp);
2691 regaddr = offset + regnum * 8;
c5aa993b 2692 start = 0;
c906108c 2693#endif
c5aa993b
JM
2694 }
2695
2696 for (i = start; i < 2; i++)
c906108c
SS
2697 {
2698 errno = 0;
39f77062 2699 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
c5aa993b 2700 (PTRACE_ARG3_TYPE) regaddr, 0);
c906108c
SS
2701 if (errno != 0)
2702 {
2703 /* Warning, not error, in case we are attached; sometimes the
2704 kernel doesn't let us at the registers. */
2705 char *err = safe_strerror (errno);
2706 char *msg = alloca (strlen (err) + 128);
2707 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2708 warning (msg);
2709 goto error_exit;
2710 }
2711
2712 regaddr += sizeof (long);
2713 }
c5aa993b 2714
c906108c 2715 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
c5aa993b 2716 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
c906108c
SS
2717
2718error_exit:
2719 ;
2720}
2721
2722/* "Info all-reg" command */
c5aa993b 2723
c906108c 2724static void
fba45db2 2725pa_print_registers (char *raw_regs, int regnum, int fpregs)
c906108c 2726{
c5aa993b 2727 int i, j;
adf40b2e
JM
2728 /* Alas, we are compiled so that "long long" is 32 bits */
2729 long raw_val[2];
c906108c 2730 long long_val;
a0b3c4fd 2731 int rows = 48, columns = 2;
c906108c 2732
adf40b2e 2733 for (i = 0; i < rows; i++)
c906108c 2734 {
adf40b2e 2735 for (j = 0; j < columns; j++)
c906108c 2736 {
adf40b2e
JM
2737 /* We display registers in column-major order. */
2738 int regnum = i + j * rows;
2739
c5aa993b
JM
2740 /* Q: Why is the value passed through "extract_signed_integer",
2741 while above, in "pa_do_registers_info" it isn't?
2742 A: ? */
adf40b2e 2743 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
c5aa993b
JM
2744
2745 /* Even fancier % formats to prevent leading zeros
2746 and still maintain the output in columns. */
2747 if (!is_pa_2)
2748 {
2749 /* Being big-endian, on this machine the low bits
2750 (the ones we want to look at) are in the second longword. */
2751 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844 2752 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2753 REGISTER_NAME (regnum), long_val);
c5aa993b
JM
2754 }
2755 else
2756 {
2757 /* raw_val = extract_signed_integer(&raw_val, 8); */
2758 if (raw_val[0] == 0)
ce414844 2759 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2760 REGISTER_NAME (regnum), raw_val[1]);
c5aa993b 2761 else
ce414844 2762 printf_filtered ("%10.10s: %8lx%8.8lx ",
a0b3c4fd 2763 REGISTER_NAME (regnum),
c5aa993b
JM
2764 raw_val[0], raw_val[1]);
2765 }
c906108c
SS
2766 }
2767 printf_unfiltered ("\n");
2768 }
c5aa993b 2769
c906108c 2770 if (fpregs)
c5aa993b 2771 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2772 pa_print_fp_reg (i);
2773}
2774
c5aa993b 2775/************* new function ******************/
c906108c 2776static void
fba45db2
KB
2777pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2778 struct ui_file *stream)
c906108c 2779{
c5aa993b
JM
2780 int i, j;
2781 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
c906108c
SS
2782 long long_val;
2783 enum precision_type precision;
2784
2785 precision = unspecified_precision;
2786
2787 for (i = 0; i < 18; i++)
2788 {
2789 for (j = 0; j < 4; j++)
2790 {
c5aa993b
JM
2791 /* Q: Why is the value passed through "extract_signed_integer",
2792 while above, in "pa_do_registers_info" it isn't?
2793 A: ? */
2794 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2795
2796 /* Even fancier % formats to prevent leading zeros
2797 and still maintain the output in columns. */
2798 if (!is_pa_2)
2799 {
2800 /* Being big-endian, on this machine the low bits
2801 (the ones we want to look at) are in the second longword. */
2802 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844
AC
2803 fprintf_filtered (stream, "%8.8s: %8lx ",
2804 REGISTER_NAME (i + (j * 18)), long_val);
c5aa993b
JM
2805 }
2806 else
2807 {
2808 /* raw_val = extract_signed_integer(&raw_val, 8); */
2809 if (raw_val[0] == 0)
ce414844
AC
2810 fprintf_filtered (stream, "%8.8s: %8lx ",
2811 REGISTER_NAME (i + (j * 18)), raw_val[1]);
c5aa993b 2812 else
ce414844
AC
2813 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2814 REGISTER_NAME (i + (j * 18)), raw_val[0],
2815 raw_val[1]);
c5aa993b 2816 }
c906108c
SS
2817 }
2818 fprintf_unfiltered (stream, "\n");
2819 }
c5aa993b 2820
c906108c 2821 if (fpregs)
c5aa993b 2822 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2823 pa_strcat_fp_reg (i, stream, precision);
2824}
2825
2826static void
fba45db2 2827pa_print_fp_reg (int i)
c906108c 2828{
6789195b
AC
2829 char *raw_buffer = alloca (max_register_size (current_gdbarch));
2830 char *virtual_buffer = alloca (max_register_size (current_gdbarch));
c906108c
SS
2831
2832 /* Get 32bits of data. */
6e7f8b9c 2833 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
2834
2835 /* Put it in the buffer. No conversions are ever necessary. */
2836 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2837
2838 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2839 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2840 fputs_filtered ("(single precision) ", gdb_stdout);
2841
2842 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2843 1, 0, Val_pretty_default);
2844 printf_filtered ("\n");
2845
2846 /* If "i" is even, then this register can also be a double-precision
2847 FP register. Dump it out as such. */
2848 if ((i % 2) == 0)
2849 {
2850 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 2851 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
c906108c
SS
2852
2853 /* Copy it into the appropriate part of the virtual buffer. */
2854 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2855 REGISTER_RAW_SIZE (i));
2856
2857 /* Dump it as a double. */
2858 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2859 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2860 fputs_filtered ("(double precision) ", gdb_stdout);
2861
2862 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2863 1, 0, Val_pretty_default);
2864 printf_filtered ("\n");
2865 }
2866}
2867
2868/*************** new function ***********************/
2869static void
fba45db2 2870pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
c906108c 2871{
6789195b
AC
2872 char *raw_buffer = alloca (max_register_size (current_gdbarch));
2873 char *virtual_buffer = alloca (max_register_size (current_gdbarch));
c906108c
SS
2874
2875 fputs_filtered (REGISTER_NAME (i), stream);
2876 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2877
2878 /* Get 32bits of data. */
6e7f8b9c 2879 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
2880
2881 /* Put it in the buffer. No conversions are ever necessary. */
2882 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2883
2884 if (precision == double_precision && (i % 2) == 0)
2885 {
2886
6789195b 2887 char *raw_buf = alloca (max_register_size (current_gdbarch));
c5aa993b
JM
2888
2889 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 2890 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
c5aa993b
JM
2891
2892 /* Copy it into the appropriate part of the virtual buffer. */
2893 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
c906108c 2894
c5aa993b
JM
2895 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2896 1, 0, Val_pretty_default);
c906108c
SS
2897
2898 }
c5aa993b
JM
2899 else
2900 {
2901 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2902 1, 0, Val_pretty_default);
2903 }
c906108c
SS
2904
2905}
2906
2907/* Return one if PC is in the call path of a trampoline, else return zero.
2908
2909 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2910 just shared library trampolines (import, export). */
2911
2912int
60383d10 2913hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
2914{
2915 struct minimal_symbol *minsym;
2916 struct unwind_table_entry *u;
2917 static CORE_ADDR dyncall = 0;
2918 static CORE_ADDR sr4export = 0;
2919
c2c6d25f
JM
2920#ifdef GDB_TARGET_IS_HPPA_20W
2921 /* PA64 has a completely different stub/trampoline scheme. Is it
2922 better? Maybe. It's certainly harder to determine with any
2923 certainty that we are in a stub because we can not refer to the
2924 unwinders to help.
2925
2926 The heuristic is simple. Try to lookup the current PC value in th
2927 minimal symbol table. If that fails, then assume we are not in a
2928 stub and return.
2929
2930 Then see if the PC value falls within the section bounds for the
2931 section containing the minimal symbol we found in the first
2932 step. If it does, then assume we are not in a stub and return.
2933
2934 Finally peek at the instructions to see if they look like a stub. */
2935 {
2936 struct minimal_symbol *minsym;
2937 asection *sec;
2938 CORE_ADDR addr;
2939 int insn, i;
2940
2941 minsym = lookup_minimal_symbol_by_pc (pc);
2942 if (! minsym)
2943 return 0;
2944
2945 sec = SYMBOL_BFD_SECTION (minsym);
2946
2947 if (sec->vma <= pc
2948 && sec->vma + sec->_cooked_size < pc)
2949 return 0;
2950
2951 /* We might be in a stub. Peek at the instructions. Stubs are 3
2952 instructions long. */
2953 insn = read_memory_integer (pc, 4);
2954
b84a8afe 2955 /* Find out where we think we are within the stub. */
c2c6d25f
JM
2956 if ((insn & 0xffffc00e) == 0x53610000)
2957 addr = pc;
2958 else if ((insn & 0xffffffff) == 0xe820d000)
2959 addr = pc - 4;
2960 else if ((insn & 0xffffc00e) == 0x537b0000)
2961 addr = pc - 8;
2962 else
2963 return 0;
2964
2965 /* Now verify each insn in the range looks like a stub instruction. */
2966 insn = read_memory_integer (addr, 4);
2967 if ((insn & 0xffffc00e) != 0x53610000)
2968 return 0;
2969
2970 /* Now verify each insn in the range looks like a stub instruction. */
2971 insn = read_memory_integer (addr + 4, 4);
2972 if ((insn & 0xffffffff) != 0xe820d000)
2973 return 0;
2974
2975 /* Now verify each insn in the range looks like a stub instruction. */
2976 insn = read_memory_integer (addr + 8, 4);
2977 if ((insn & 0xffffc00e) != 0x537b0000)
2978 return 0;
2979
2980 /* Looks like a stub. */
2981 return 1;
2982 }
2983#endif
2984
2985 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2986 new exec file */
c906108c
SS
2987
2988 /* First see if PC is in one of the two C-library trampolines. */
2989 if (!dyncall)
2990 {
2991 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2992 if (minsym)
2993 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2994 else
2995 dyncall = -1;
2996 }
2997
2998 if (!sr4export)
2999 {
3000 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3001 if (minsym)
3002 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3003 else
3004 sr4export = -1;
3005 }
3006
3007 if (pc == dyncall || pc == sr4export)
3008 return 1;
3009
104c1213 3010 minsym = lookup_minimal_symbol_by_pc (pc);
22abf04a 3011 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
104c1213
JM
3012 return 1;
3013
c906108c
SS
3014 /* Get the unwind descriptor corresponding to PC, return zero
3015 if no unwind was found. */
3016 u = find_unwind_entry (pc);
3017 if (!u)
3018 return 0;
3019
3020 /* If this isn't a linker stub, then return now. */
3021 if (u->stub_unwind.stub_type == 0)
3022 return 0;
3023
3024 /* By definition a long-branch stub is a call stub. */
3025 if (u->stub_unwind.stub_type == LONG_BRANCH)
3026 return 1;
3027
3028 /* The call and return path execute the same instructions within
3029 an IMPORT stub! So an IMPORT stub is both a call and return
3030 trampoline. */
3031 if (u->stub_unwind.stub_type == IMPORT)
3032 return 1;
3033
3034 /* Parameter relocation stubs always have a call path and may have a
3035 return path. */
3036 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3037 || u->stub_unwind.stub_type == EXPORT)
3038 {
3039 CORE_ADDR addr;
3040
3041 /* Search forward from the current PC until we hit a branch
c5aa993b 3042 or the end of the stub. */
c906108c
SS
3043 for (addr = pc; addr <= u->region_end; addr += 4)
3044 {
3045 unsigned long insn;
3046
3047 insn = read_memory_integer (addr, 4);
3048
3049 /* Does it look like a bl? If so then it's the call path, if
3050 we find a bv or be first, then we're on the return path. */
3051 if ((insn & 0xfc00e000) == 0xe8000000)
3052 return 1;
3053 else if ((insn & 0xfc00e001) == 0xe800c000
3054 || (insn & 0xfc000000) == 0xe0000000)
3055 return 0;
3056 }
3057
3058 /* Should never happen. */
104c1213
JM
3059 warning ("Unable to find branch in parameter relocation stub.\n");
3060 return 0;
c906108c
SS
3061 }
3062
3063 /* Unknown stub type. For now, just return zero. */
104c1213 3064 return 0;
c906108c
SS
3065}
3066
3067/* Return one if PC is in the return path of a trampoline, else return zero.
3068
3069 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3070 just shared library trampolines (import, export). */
3071
3072int
60383d10 3073hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3074{
3075 struct unwind_table_entry *u;
3076
3077 /* Get the unwind descriptor corresponding to PC, return zero
3078 if no unwind was found. */
3079 u = find_unwind_entry (pc);
3080 if (!u)
3081 return 0;
3082
3083 /* If this isn't a linker stub or it's just a long branch stub, then
3084 return zero. */
3085 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3086 return 0;
3087
3088 /* The call and return path execute the same instructions within
3089 an IMPORT stub! So an IMPORT stub is both a call and return
3090 trampoline. */
3091 if (u->stub_unwind.stub_type == IMPORT)
3092 return 1;
3093
3094 /* Parameter relocation stubs always have a call path and may have a
3095 return path. */
3096 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3097 || u->stub_unwind.stub_type == EXPORT)
3098 {
3099 CORE_ADDR addr;
3100
3101 /* Search forward from the current PC until we hit a branch
c5aa993b 3102 or the end of the stub. */
c906108c
SS
3103 for (addr = pc; addr <= u->region_end; addr += 4)
3104 {
3105 unsigned long insn;
3106
3107 insn = read_memory_integer (addr, 4);
3108
3109 /* Does it look like a bl? If so then it's the call path, if
3110 we find a bv or be first, then we're on the return path. */
3111 if ((insn & 0xfc00e000) == 0xe8000000)
3112 return 0;
3113 else if ((insn & 0xfc00e001) == 0xe800c000
3114 || (insn & 0xfc000000) == 0xe0000000)
3115 return 1;
3116 }
3117
3118 /* Should never happen. */
104c1213
JM
3119 warning ("Unable to find branch in parameter relocation stub.\n");
3120 return 0;
c906108c
SS
3121 }
3122
3123 /* Unknown stub type. For now, just return zero. */
104c1213 3124 return 0;
c906108c
SS
3125
3126}
3127
3128/* Figure out if PC is in a trampoline, and if so find out where
3129 the trampoline will jump to. If not in a trampoline, return zero.
3130
3131 Simple code examination probably is not a good idea since the code
3132 sequences in trampolines can also appear in user code.
3133
3134 We use unwinds and information from the minimal symbol table to
3135 determine when we're in a trampoline. This won't work for ELF
3136 (yet) since it doesn't create stub unwind entries. Whether or
3137 not ELF will create stub unwinds or normal unwinds for linker
3138 stubs is still being debated.
3139
3140 This should handle simple calls through dyncall or sr4export,
3141 long calls, argument relocation stubs, and dyncall/sr4export
3142 calling an argument relocation stub. It even handles some stubs
3143 used in dynamic executables. */
3144
c906108c 3145CORE_ADDR
60383d10 3146hppa_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
3147{
3148 long orig_pc = pc;
3149 long prev_inst, curr_inst, loc;
3150 static CORE_ADDR dyncall = 0;
3151 static CORE_ADDR dyncall_external = 0;
3152 static CORE_ADDR sr4export = 0;
3153 struct minimal_symbol *msym;
3154 struct unwind_table_entry *u;
3155
c2c6d25f
JM
3156 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3157 new exec file */
c906108c
SS
3158
3159 if (!dyncall)
3160 {
3161 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3162 if (msym)
3163 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3164 else
3165 dyncall = -1;
3166 }
3167
3168 if (!dyncall_external)
3169 {
3170 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3171 if (msym)
3172 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3173 else
3174 dyncall_external = -1;
3175 }
3176
3177 if (!sr4export)
3178 {
3179 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3180 if (msym)
3181 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3182 else
3183 sr4export = -1;
3184 }
3185
3186 /* Addresses passed to dyncall may *NOT* be the actual address
3187 of the function. So we may have to do something special. */
3188 if (pc == dyncall)
3189 {
3190 pc = (CORE_ADDR) read_register (22);
3191
3192 /* If bit 30 (counting from the left) is on, then pc is the address of
c5aa993b
JM
3193 the PLT entry for this function, not the address of the function
3194 itself. Bit 31 has meaning too, but only for MPE. */
c906108c 3195 if (pc & 0x2)
53a5351d 3196 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3197 }
3198 if (pc == dyncall_external)
3199 {
3200 pc = (CORE_ADDR) read_register (22);
53a5351d 3201 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3202 }
3203 else if (pc == sr4export)
3204 pc = (CORE_ADDR) (read_register (22));
3205
3206 /* Get the unwind descriptor corresponding to PC, return zero
3207 if no unwind was found. */
3208 u = find_unwind_entry (pc);
3209 if (!u)
3210 return 0;
3211
3212 /* If this isn't a linker stub, then return now. */
3213 /* elz: attention here! (FIXME) because of a compiler/linker
3214 error, some stubs which should have a non zero stub_unwind.stub_type
3215 have unfortunately a value of zero. So this function would return here
3216 as if we were not in a trampoline. To fix this, we go look at the partial
3217 symbol information, which reports this guy as a stub.
3218 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3219 partial symbol information is also wrong sometimes. This is because
3220 when it is entered (somread.c::som_symtab_read()) it can happen that
3221 if the type of the symbol (from the som) is Entry, and the symbol is
3222 in a shared library, then it can also be a trampoline. This would
3223 be OK, except that I believe the way they decide if we are ina shared library
3224 does not work. SOOOO..., even if we have a regular function w/o trampolines
3225 its minimal symbol can be assigned type mst_solib_trampoline.
3226 Also, if we find that the symbol is a real stub, then we fix the unwind
3227 descriptor, and define the stub type to be EXPORT.
c5aa993b 3228 Hopefully this is correct most of the times. */
c906108c 3229 if (u->stub_unwind.stub_type == 0)
c5aa993b 3230 {
c906108c
SS
3231
3232/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3233 we can delete all the code which appears between the lines */
3234/*--------------------------------------------------------------------------*/
c5aa993b 3235 msym = lookup_minimal_symbol_by_pc (pc);
c906108c 3236
c5aa993b
JM
3237 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3238 return orig_pc == pc ? 0 : pc & ~0x3;
3239
3240 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3241 {
3242 struct objfile *objfile;
3243 struct minimal_symbol *msymbol;
3244 int function_found = 0;
3245
3246 /* go look if there is another minimal symbol with the same name as
3247 this one, but with type mst_text. This would happen if the msym
3248 is an actual trampoline, in which case there would be another
3249 symbol with the same name corresponding to the real function */
3250
3251 ALL_MSYMBOLS (objfile, msymbol)
3252 {
3253 if (MSYMBOL_TYPE (msymbol) == mst_text
22abf04a 3254 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
c5aa993b
JM
3255 {
3256 function_found = 1;
3257 break;
3258 }
3259 }
3260
3261 if (function_found)
3262 /* the type of msym is correct (mst_solib_trampoline), but
3263 the unwind info is wrong, so set it to the correct value */
3264 u->stub_unwind.stub_type = EXPORT;
3265 else
3266 /* the stub type info in the unwind is correct (this is not a
3267 trampoline), but the msym type information is wrong, it
3268 should be mst_text. So we need to fix the msym, and also
3269 get out of this function */
3270 {
3271 MSYMBOL_TYPE (msym) = mst_text;
3272 return orig_pc == pc ? 0 : pc & ~0x3;
3273 }
3274 }
c906108c 3275
c906108c 3276/*--------------------------------------------------------------------------*/
c5aa993b 3277 }
c906108c
SS
3278
3279 /* It's a stub. Search for a branch and figure out where it goes.
3280 Note we have to handle multi insn branch sequences like ldil;ble.
3281 Most (all?) other branches can be determined by examining the contents
3282 of certain registers and the stack. */
3283
3284 loc = pc;
3285 curr_inst = 0;
3286 prev_inst = 0;
3287 while (1)
3288 {
3289 /* Make sure we haven't walked outside the range of this stub. */
3290 if (u != find_unwind_entry (loc))
3291 {
3292 warning ("Unable to find branch in linker stub");
3293 return orig_pc == pc ? 0 : pc & ~0x3;
3294 }
3295
3296 prev_inst = curr_inst;
3297 curr_inst = read_memory_integer (loc, 4);
3298
3299 /* Does it look like a branch external using %r1? Then it's the
c5aa993b 3300 branch from the stub to the actual function. */
c906108c
SS
3301 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3302 {
3303 /* Yup. See if the previous instruction loaded
3304 a value into %r1. If so compute and return the jump address. */
3305 if ((prev_inst & 0xffe00000) == 0x20200000)
3306 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3307 else
3308 {
3309 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3310 return orig_pc == pc ? 0 : pc & ~0x3;
3311 }
3312 }
3313
3314 /* Does it look like a be 0(sr0,%r21)? OR
3315 Does it look like a be, n 0(sr0,%r21)? OR
3316 Does it look like a bve (r21)? (this is on PA2.0)
3317 Does it look like a bve, n(r21)? (this is also on PA2.0)
3318 That's the branch from an
c5aa993b 3319 import stub to an export stub.
c906108c 3320
c5aa993b
JM
3321 It is impossible to determine the target of the branch via
3322 simple examination of instructions and/or data (consider
3323 that the address in the plabel may be the address of the
3324 bind-on-reference routine in the dynamic loader).
c906108c 3325
c5aa993b 3326 So we have try an alternative approach.
c906108c 3327
c5aa993b
JM
3328 Get the name of the symbol at our current location; it should
3329 be a stub symbol with the same name as the symbol in the
3330 shared library.
c906108c 3331
c5aa993b
JM
3332 Then lookup a minimal symbol with the same name; we should
3333 get the minimal symbol for the target routine in the shared
3334 library as those take precedence of import/export stubs. */
c906108c 3335 if ((curr_inst == 0xe2a00000) ||
c5aa993b
JM
3336 (curr_inst == 0xe2a00002) ||
3337 (curr_inst == 0xeaa0d000) ||
3338 (curr_inst == 0xeaa0d002))
c906108c
SS
3339 {
3340 struct minimal_symbol *stubsym, *libsym;
3341
3342 stubsym = lookup_minimal_symbol_by_pc (loc);
3343 if (stubsym == NULL)
3344 {
ce414844 3345 warning ("Unable to find symbol for 0x%lx", loc);
c906108c
SS
3346 return orig_pc == pc ? 0 : pc & ~0x3;
3347 }
3348
22abf04a 3349 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
c906108c
SS
3350 if (libsym == NULL)
3351 {
3352 warning ("Unable to find library symbol for %s\n",
22abf04a 3353 DEPRECATED_SYMBOL_NAME (stubsym));
c906108c
SS
3354 return orig_pc == pc ? 0 : pc & ~0x3;
3355 }
3356
3357 return SYMBOL_VALUE (libsym);
3358 }
3359
3360 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
c5aa993b
JM
3361 branch from the stub to the actual function. */
3362 /*elz */
c906108c
SS
3363 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3364 || (curr_inst & 0xffe0e000) == 0xe8000000
c5aa993b 3365 || (curr_inst & 0xffe0e000) == 0xe800A000)
c906108c
SS
3366 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3367
3368 /* Does it look like bv (rp)? Note this depends on the
c5aa993b
JM
3369 current stack pointer being the same as the stack
3370 pointer in the stub itself! This is a branch on from the
3371 stub back to the original caller. */
3372 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
c906108c
SS
3373 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3374 {
3375 /* Yup. See if the previous instruction loaded
3376 rp from sp - 8. */
3377 if (prev_inst == 0x4bc23ff1)
3378 return (read_memory_integer
3379 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3380 else
3381 {
3382 warning ("Unable to find restore of %%rp before bv (%%rp).");
3383 return orig_pc == pc ? 0 : pc & ~0x3;
3384 }
3385 }
3386
3387 /* elz: added this case to capture the new instruction
3388 at the end of the return part of an export stub used by
3389 the PA2.0: BVE, n (rp) */
3390 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3391 {
c5aa993b 3392 return (read_memory_integer
53a5351d 3393 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3394 }
3395
3396 /* What about be,n 0(sr0,%rp)? It's just another way we return to
c5aa993b 3397 the original caller from the stub. Used in dynamic executables. */
c906108c
SS
3398 else if (curr_inst == 0xe0400002)
3399 {
3400 /* The value we jump to is sitting in sp - 24. But that's
3401 loaded several instructions before the be instruction.
3402 I guess we could check for the previous instruction being
3403 mtsp %r1,%sr0 if we want to do sanity checking. */
c5aa993b 3404 return (read_memory_integer
53a5351d 3405 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3406 }
3407
3408 /* Haven't found the branch yet, but we're still in the stub.
c5aa993b 3409 Keep looking. */
c906108c
SS
3410 loc += 4;
3411 }
3412}
3413
3414
3415/* For the given instruction (INST), return any adjustment it makes
3416 to the stack pointer or zero for no adjustment.
3417
3418 This only handles instructions commonly found in prologues. */
3419
3420static int
fba45db2 3421prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
3422{
3423 /* This must persist across calls. */
3424 static int save_high21;
3425
3426 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3427 if ((inst & 0xffffc000) == 0x37de0000)
3428 return extract_14 (inst);
3429
3430 /* stwm X,D(sp) */
3431 if ((inst & 0xffe00000) == 0x6fc00000)
3432 return extract_14 (inst);
3433
104c1213
JM
3434 /* std,ma X,D(sp) */
3435 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 3436 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 3437
c906108c
SS
3438 /* addil high21,%r1; ldo low11,(%r1),%r30)
3439 save high bits in save_high21 for later use. */
3440 if ((inst & 0xffe00000) == 0x28200000)
3441 {
3442 save_high21 = extract_21 (inst);
3443 return 0;
3444 }
3445
3446 if ((inst & 0xffff0000) == 0x343e0000)
3447 return save_high21 + extract_14 (inst);
3448
3449 /* fstws as used by the HP compilers. */
3450 if ((inst & 0xffffffe0) == 0x2fd01220)
3451 return extract_5_load (inst);
3452
3453 /* No adjustment. */
3454 return 0;
3455}
3456
3457/* Return nonzero if INST is a branch of some kind, else return zero. */
3458
3459static int
fba45db2 3460is_branch (unsigned long inst)
c906108c
SS
3461{
3462 switch (inst >> 26)
3463 {
3464 case 0x20:
3465 case 0x21:
3466 case 0x22:
3467 case 0x23:
7be570e7 3468 case 0x27:
c906108c
SS
3469 case 0x28:
3470 case 0x29:
3471 case 0x2a:
3472 case 0x2b:
7be570e7 3473 case 0x2f:
c906108c
SS
3474 case 0x30:
3475 case 0x31:
3476 case 0x32:
3477 case 0x33:
3478 case 0x38:
3479 case 0x39:
3480 case 0x3a:
7be570e7 3481 case 0x3b:
c906108c
SS
3482 return 1;
3483
3484 default:
3485 return 0;
3486 }
3487}
3488
3489/* Return the register number for a GR which is saved by INST or
3490 zero it INST does not save a GR. */
3491
3492static int
fba45db2 3493inst_saves_gr (unsigned long inst)
c906108c
SS
3494{
3495 /* Does it look like a stw? */
7be570e7
JM
3496 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3497 || (inst >> 26) == 0x1f
3498 || ((inst >> 26) == 0x1f
3499 && ((inst >> 6) == 0xa)))
3500 return extract_5R_store (inst);
3501
3502 /* Does it look like a std? */
3503 if ((inst >> 26) == 0x1c
3504 || ((inst >> 26) == 0x03
3505 && ((inst >> 6) & 0xf) == 0xb))
c906108c
SS
3506 return extract_5R_store (inst);
3507
3508 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3509 if ((inst >> 26) == 0x1b)
3510 return extract_5R_store (inst);
3511
3512 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3513 too. */
7be570e7
JM
3514 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3515 || ((inst >> 26) == 0x3
3516 && (((inst >> 6) & 0xf) == 0x8
3517 || (inst >> 6) & 0xf) == 0x9))
c906108c 3518 return extract_5R_store (inst);
c5aa993b 3519
c906108c
SS
3520 return 0;
3521}
3522
3523/* Return the register number for a FR which is saved by INST or
3524 zero it INST does not save a FR.
3525
3526 Note we only care about full 64bit register stores (that's the only
3527 kind of stores the prologue will use).
3528
3529 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3530
3531static int
fba45db2 3532inst_saves_fr (unsigned long inst)
c906108c 3533{
7be570e7 3534 /* is this an FSTD ? */
c906108c
SS
3535 if ((inst & 0xfc00dfc0) == 0x2c001200)
3536 return extract_5r_store (inst);
7be570e7
JM
3537 if ((inst & 0xfc000002) == 0x70000002)
3538 return extract_5R_store (inst);
3539 /* is this an FSTW ? */
c906108c
SS
3540 if ((inst & 0xfc00df80) == 0x24001200)
3541 return extract_5r_store (inst);
7be570e7
JM
3542 if ((inst & 0xfc000002) == 0x7c000000)
3543 return extract_5R_store (inst);
c906108c
SS
3544 return 0;
3545}
3546
3547/* Advance PC across any function entry prologue instructions
3548 to reach some "real" code.
3549
3550 Use information in the unwind table to determine what exactly should
3551 be in the prologue. */
3552
3553
3554CORE_ADDR
fba45db2 3555skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
3556{
3557 char buf[4];
3558 CORE_ADDR orig_pc = pc;
3559 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3560 unsigned long args_stored, status, i, restart_gr, restart_fr;
3561 struct unwind_table_entry *u;
3562
3563 restart_gr = 0;
3564 restart_fr = 0;
3565
3566restart:
3567 u = find_unwind_entry (pc);
3568 if (!u)
3569 return pc;
3570
c5aa993b 3571 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
3572 if ((pc & ~0x3) != u->region_start)
3573 return pc;
3574
3575 /* This is how much of a frame adjustment we need to account for. */
3576 stack_remaining = u->Total_frame_size << 3;
3577
3578 /* Magic register saves we want to know about. */
3579 save_rp = u->Save_RP;
3580 save_sp = u->Save_SP;
3581
3582 /* An indication that args may be stored into the stack. Unfortunately
3583 the HPUX compilers tend to set this in cases where no args were
3584 stored too!. */
3585 args_stored = 1;
3586
3587 /* Turn the Entry_GR field into a bitmask. */
3588 save_gr = 0;
3589 for (i = 3; i < u->Entry_GR + 3; i++)
3590 {
3591 /* Frame pointer gets saved into a special location. */
3592 if (u->Save_SP && i == FP_REGNUM)
3593 continue;
3594
3595 save_gr |= (1 << i);
3596 }
3597 save_gr &= ~restart_gr;
3598
3599 /* Turn the Entry_FR field into a bitmask too. */
3600 save_fr = 0;
3601 for (i = 12; i < u->Entry_FR + 12; i++)
3602 save_fr |= (1 << i);
3603 save_fr &= ~restart_fr;
3604
3605 /* Loop until we find everything of interest or hit a branch.
3606
3607 For unoptimized GCC code and for any HP CC code this will never ever
3608 examine any user instructions.
3609
3610 For optimzied GCC code we're faced with problems. GCC will schedule
3611 its prologue and make prologue instructions available for delay slot
3612 filling. The end result is user code gets mixed in with the prologue
3613 and a prologue instruction may be in the delay slot of the first branch
3614 or call.
3615
3616 Some unexpected things are expected with debugging optimized code, so
3617 we allow this routine to walk past user instructions in optimized
3618 GCC code. */
3619 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3620 || args_stored)
3621 {
3622 unsigned int reg_num;
3623 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3624 unsigned long old_save_rp, old_save_sp, next_inst;
3625
3626 /* Save copies of all the triggers so we can compare them later
c5aa993b 3627 (only for HPC). */
c906108c
SS
3628 old_save_gr = save_gr;
3629 old_save_fr = save_fr;
3630 old_save_rp = save_rp;
3631 old_save_sp = save_sp;
3632 old_stack_remaining = stack_remaining;
3633
3634 status = target_read_memory (pc, buf, 4);
3635 inst = extract_unsigned_integer (buf, 4);
c5aa993b 3636
c906108c
SS
3637 /* Yow! */
3638 if (status != 0)
3639 return pc;
3640
3641 /* Note the interesting effects of this instruction. */
3642 stack_remaining -= prologue_inst_adjust_sp (inst);
3643
7be570e7
JM
3644 /* There are limited ways to store the return pointer into the
3645 stack. */
3646 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
3647 save_rp = 0;
3648
104c1213 3649 /* These are the only ways we save SP into the stack. At this time
c5aa993b 3650 the HP compilers never bother to save SP into the stack. */
104c1213
JM
3651 if ((inst & 0xffffc000) == 0x6fc10000
3652 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
3653 save_sp = 0;
3654
6426a772
JM
3655 /* Are we loading some register with an offset from the argument
3656 pointer? */
3657 if ((inst & 0xffe00000) == 0x37a00000
3658 || (inst & 0xffffffe0) == 0x081d0240)
3659 {
3660 pc += 4;
3661 continue;
3662 }
3663
c906108c
SS
3664 /* Account for general and floating-point register saves. */
3665 reg_num = inst_saves_gr (inst);
3666 save_gr &= ~(1 << reg_num);
3667
3668 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3669 Unfortunately args_stored only tells us that some arguments
3670 where stored into the stack. Not how many or what kind!
c906108c 3671
c5aa993b
JM
3672 This is a kludge as on the HP compiler sets this bit and it
3673 never does prologue scheduling. So once we see one, skip past
3674 all of them. We have similar code for the fp arg stores below.
c906108c 3675
c5aa993b
JM
3676 FIXME. Can still die if we have a mix of GR and FR argument
3677 stores! */
6426a772 3678 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 3679 {
6426a772 3680 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
3681 {
3682 pc += 4;
3683 status = target_read_memory (pc, buf, 4);
3684 inst = extract_unsigned_integer (buf, 4);
3685 if (status != 0)
3686 return pc;
3687 reg_num = inst_saves_gr (inst);
3688 }
3689 args_stored = 0;
3690 continue;
3691 }
3692
3693 reg_num = inst_saves_fr (inst);
3694 save_fr &= ~(1 << reg_num);
3695
3696 status = target_read_memory (pc + 4, buf, 4);
3697 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 3698
c906108c
SS
3699 /* Yow! */
3700 if (status != 0)
3701 return pc;
3702
3703 /* We've got to be read to handle the ldo before the fp register
c5aa993b 3704 save. */
c906108c
SS
3705 if ((inst & 0xfc000000) == 0x34000000
3706 && inst_saves_fr (next_inst) >= 4
6426a772 3707 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3708 {
3709 /* So we drop into the code below in a reasonable state. */
3710 reg_num = inst_saves_fr (next_inst);
3711 pc -= 4;
3712 }
3713
3714 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3715 This is a kludge as on the HP compiler sets this bit and it
3716 never does prologue scheduling. So once we see one, skip past
3717 all of them. */
6426a772 3718 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 3719 {
6426a772 3720 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3721 {
3722 pc += 8;
3723 status = target_read_memory (pc, buf, 4);
3724 inst = extract_unsigned_integer (buf, 4);
3725 if (status != 0)
3726 return pc;
3727 if ((inst & 0xfc000000) != 0x34000000)
3728 break;
3729 status = target_read_memory (pc + 4, buf, 4);
3730 next_inst = extract_unsigned_integer (buf, 4);
3731 if (status != 0)
3732 return pc;
3733 reg_num = inst_saves_fr (next_inst);
3734 }
3735 args_stored = 0;
3736 continue;
3737 }
3738
3739 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3740 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3741 if (is_branch (inst))
3742 break;
3743
3744 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
3745 arguments were stored into the stack (boo hiss). This could
3746 cause this code to then skip a bunch of user insns (up to the
3747 first branch).
3748
3749 To combat this we try to identify when args_stored was bogusly
3750 set and clear it. We only do this when args_stored is nonzero,
3751 all other resources are accounted for, and nothing changed on
3752 this pass. */
c906108c 3753 if (args_stored
c5aa993b 3754 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
3755 && old_save_gr == save_gr && old_save_fr == save_fr
3756 && old_save_rp == save_rp && old_save_sp == save_sp
3757 && old_stack_remaining == stack_remaining)
3758 break;
c5aa993b 3759
c906108c
SS
3760 /* Bump the PC. */
3761 pc += 4;
3762 }
3763
3764 /* We've got a tenative location for the end of the prologue. However
3765 because of limitations in the unwind descriptor mechanism we may
3766 have went too far into user code looking for the save of a register
3767 that does not exist. So, if there registers we expected to be saved
3768 but never were, mask them out and restart.
3769
3770 This should only happen in optimized code, and should be very rare. */
c5aa993b 3771 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
3772 {
3773 pc = orig_pc;
3774 restart_gr = save_gr;
3775 restart_fr = save_fr;
3776 goto restart;
3777 }
3778
3779 return pc;
3780}
3781
3782
7be570e7
JM
3783/* Return the address of the PC after the last prologue instruction if
3784 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
3785
3786static CORE_ADDR
fba45db2 3787after_prologue (CORE_ADDR pc)
c906108c
SS
3788{
3789 struct symtab_and_line sal;
3790 CORE_ADDR func_addr, func_end;
3791 struct symbol *f;
3792
7be570e7
JM
3793 /* If we can not find the symbol in the partial symbol table, then
3794 there is no hope we can determine the function's start address
3795 with this code. */
c906108c 3796 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 3797 return 0;
c906108c 3798
7be570e7 3799 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
3800 sal = find_pc_line (func_addr, 0);
3801
7be570e7
JM
3802 /* There are only two cases to consider. First, the end of the source line
3803 is within the function bounds. In that case we return the end of the
3804 source line. Second is the end of the source line extends beyond the
3805 bounds of the current function. We need to use the slow code to
3806 examine instructions in that case.
c906108c 3807
7be570e7
JM
3808 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3809 the wrong thing to do. In fact, it should be entirely possible for this
3810 function to always return zero since the slow instruction scanning code
3811 is supposed to *always* work. If it does not, then it is a bug. */
3812 if (sal.end < func_end)
3813 return sal.end;
c5aa993b 3814 else
7be570e7 3815 return 0;
c906108c
SS
3816}
3817
3818/* To skip prologues, I use this predicate. Returns either PC itself
3819 if the code at PC does not look like a function prologue; otherwise
3820 returns an address that (if we're lucky) follows the prologue. If
3821 LENIENT, then we must skip everything which is involved in setting
3822 up the frame (it's OK to skip more, just so long as we don't skip
3823 anything which might clobber the registers which are being saved.
3824 Currently we must not skip more on the alpha, but we might the lenient
3825 stuff some day. */
3826
3827CORE_ADDR
fba45db2 3828hppa_skip_prologue (CORE_ADDR pc)
c906108c 3829{
c5aa993b
JM
3830 unsigned long inst;
3831 int offset;
3832 CORE_ADDR post_prologue_pc;
3833 char buf[4];
c906108c 3834
c5aa993b
JM
3835 /* See if we can determine the end of the prologue via the symbol table.
3836 If so, then return either PC, or the PC after the prologue, whichever
3837 is greater. */
c906108c 3838
c5aa993b 3839 post_prologue_pc = after_prologue (pc);
c906108c 3840
7be570e7
JM
3841 /* If after_prologue returned a useful address, then use it. Else
3842 fall back on the instruction skipping code.
3843
3844 Some folks have claimed this causes problems because the breakpoint
3845 may be the first instruction of the prologue. If that happens, then
3846 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
3847 if (post_prologue_pc != 0)
3848 return max (pc, post_prologue_pc);
c5aa993b
JM
3849 else
3850 return (skip_prologue_hard_way (pc));
c906108c
SS
3851}
3852
43bd9a9e
AC
3853/* Put here the code to store, into the SAVED_REGS, the addresses of
3854 the saved registers of frame described by FRAME_INFO. This
3855 includes special registers such as pc and fp saved in special ways
3856 in the stack frame. sp is even more special: the address we return
3857 for it IS the sp for the next frame. */
c906108c
SS
3858
3859void
fba45db2 3860hppa_frame_find_saved_regs (struct frame_info *frame_info,
43bd9a9e 3861 CORE_ADDR frame_saved_regs[])
c906108c
SS
3862{
3863 CORE_ADDR pc;
3864 struct unwind_table_entry *u;
3865 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3866 int status, i, reg;
3867 char buf[4];
3868 int fp_loc = -1;
d4f3574e 3869 int final_iteration;
c906108c
SS
3870
3871 /* Zero out everything. */
43bd9a9e 3872 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
3873
3874 /* Call dummy frames always look the same, so there's no need to
3875 examine the dummy code to determine locations of saved registers;
3876 instead, let find_dummy_frame_regs fill in the correct offsets
3877 for the saved registers. */
ef6e7e13
AC
3878 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
3879 && (get_frame_pc (frame_info)
3880 <= (get_frame_base (frame_info)
3881 /* A call dummy is sized in words, but it is actually a
3882 series of instructions. Account for that scaling
3883 factor. */
3884 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3885 * CALL_DUMMY_LENGTH)
3886 /* Similarly we have to account for 64bit wide register
3887 saves. */
3888 + (32 * REGISTER_SIZE)
3889 /* We always consider FP regs 8 bytes long. */
3890 + (NUM_REGS - FP0_REGNUM) * 8
3891 /* Similarly we have to account for 64bit wide register
3892 saves. */
3893 + (6 * REGISTER_SIZE)))))
c906108c
SS
3894 find_dummy_frame_regs (frame_info, frame_saved_regs);
3895
3896 /* Interrupt handlers are special too. They lay out the register
3897 state in the exact same order as the register numbers in GDB. */
ef6e7e13 3898 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
c906108c
SS
3899 {
3900 for (i = 0; i < NUM_REGS; i++)
3901 {
3902 /* SP is a little special. */
3903 if (i == SP_REGNUM)
43bd9a9e 3904 frame_saved_regs[SP_REGNUM]
ef6e7e13 3905 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
53a5351d 3906 TARGET_PTR_BIT / 8);
c906108c 3907 else
ef6e7e13 3908 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
c906108c
SS
3909 }
3910 return;
3911 }
3912
3913#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3914 /* Handle signal handler callers. */
5a203e44 3915 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
c906108c
SS
3916 {
3917 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3918 return;
3919 }
3920#endif
3921
3922 /* Get the starting address of the function referred to by the PC
3923 saved in frame. */
be41e9f4 3924 pc = get_frame_func (frame_info);
c906108c
SS
3925
3926 /* Yow! */
3927 u = find_unwind_entry (pc);
3928 if (!u)
3929 return;
3930
3931 /* This is how much of a frame adjustment we need to account for. */
3932 stack_remaining = u->Total_frame_size << 3;
3933
3934 /* Magic register saves we want to know about. */
3935 save_rp = u->Save_RP;
3936 save_sp = u->Save_SP;
3937
3938 /* Turn the Entry_GR field into a bitmask. */
3939 save_gr = 0;
3940 for (i = 3; i < u->Entry_GR + 3; i++)
3941 {
3942 /* Frame pointer gets saved into a special location. */
3943 if (u->Save_SP && i == FP_REGNUM)
3944 continue;
3945
3946 save_gr |= (1 << i);
3947 }
3948
3949 /* Turn the Entry_FR field into a bitmask too. */
3950 save_fr = 0;
3951 for (i = 12; i < u->Entry_FR + 12; i++)
3952 save_fr |= (1 << i);
3953
3954 /* The frame always represents the value of %sp at entry to the
3955 current function (and is thus equivalent to the "saved" stack
3956 pointer. */
ef6e7e13 3957 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
c906108c
SS
3958
3959 /* Loop until we find everything of interest or hit a branch.
3960
3961 For unoptimized GCC code and for any HP CC code this will never ever
3962 examine any user instructions.
3963
7be570e7 3964 For optimized GCC code we're faced with problems. GCC will schedule
c906108c
SS
3965 its prologue and make prologue instructions available for delay slot
3966 filling. The end result is user code gets mixed in with the prologue
3967 and a prologue instruction may be in the delay slot of the first branch
3968 or call.
3969
3970 Some unexpected things are expected with debugging optimized code, so
3971 we allow this routine to walk past user instructions in optimized
3972 GCC code. */
d4f3574e
SS
3973 final_iteration = 0;
3974 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
ef6e7e13 3975 && pc <= get_frame_pc (frame_info))
c906108c
SS
3976 {
3977 status = target_read_memory (pc, buf, 4);
3978 inst = extract_unsigned_integer (buf, 4);
3979
3980 /* Yow! */
3981 if (status != 0)
3982 return;
3983
3984 /* Note the interesting effects of this instruction. */
3985 stack_remaining -= prologue_inst_adjust_sp (inst);
3986
104c1213
JM
3987 /* There are limited ways to store the return pointer into the
3988 stack. */
c2c6d25f 3989 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
c906108c
SS
3990 {
3991 save_rp = 0;
ef6e7e13 3992 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
c906108c 3993 }
c2c6d25f
JM
3994 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3995 {
3996 save_rp = 0;
ef6e7e13 3997 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
c2c6d25f 3998 }
c906108c 3999
104c1213
JM
4000 /* Note if we saved SP into the stack. This also happens to indicate
4001 the location of the saved frame pointer. */
c2c6d25f
JM
4002 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4003 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
104c1213 4004 {
ef6e7e13 4005 frame_saved_regs[FP_REGNUM] = get_frame_base (frame_info);
104c1213
JM
4006 save_sp = 0;
4007 }
c906108c
SS
4008
4009 /* Account for general and floating-point register saves. */
4010 reg = inst_saves_gr (inst);
4011 if (reg >= 3 && reg <= 18
4012 && (!u->Save_SP || reg != FP_REGNUM))
4013 {
4014 save_gr &= ~(1 << reg);
4015
4016 /* stwm with a positive displacement is a *post modify*. */
4017 if ((inst >> 26) == 0x1b
4018 && extract_14 (inst) >= 0)
ef6e7e13 4019 frame_saved_regs[reg] = get_frame_base (frame_info);
104c1213
JM
4020 /* A std has explicit post_modify forms. */
4021 else if ((inst & 0xfc00000c0) == 0x70000008)
ef6e7e13 4022 frame_saved_regs[reg] = get_frame_base (frame_info);
c906108c
SS
4023 else
4024 {
104c1213
JM
4025 CORE_ADDR offset;
4026
4027 if ((inst >> 26) == 0x1c)
d4f3574e 4028 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213
JM
4029 else if ((inst >> 26) == 0x03)
4030 offset = low_sign_extend (inst & 0x1f, 5);
4031 else
4032 offset = extract_14 (inst);
4033
c906108c
SS
4034 /* Handle code with and without frame pointers. */
4035 if (u->Save_SP)
43bd9a9e 4036 frame_saved_regs[reg]
ef6e7e13 4037 = get_frame_base (frame_info) + offset;
c906108c 4038 else
43bd9a9e 4039 frame_saved_regs[reg]
ef6e7e13 4040 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
104c1213 4041 + offset);
c906108c
SS
4042 }
4043 }
4044
4045
4046 /* GCC handles callee saved FP regs a little differently.
4047
c5aa993b
JM
4048 It emits an instruction to put the value of the start of
4049 the FP store area into %r1. It then uses fstds,ma with
4050 a basereg of %r1 for the stores.
c906108c 4051
c5aa993b
JM
4052 HP CC emits them at the current stack pointer modifying
4053 the stack pointer as it stores each register. */
c906108c
SS
4054
4055 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4056 if ((inst & 0xffffc000) == 0x34610000
4057 || (inst & 0xffffc000) == 0x37c10000)
4058 fp_loc = extract_14 (inst);
c5aa993b 4059
c906108c
SS
4060 reg = inst_saves_fr (inst);
4061 if (reg >= 12 && reg <= 21)
4062 {
4063 /* Note +4 braindamage below is necessary because the FP status
4064 registers are internally 8 registers rather than the expected
4065 4 registers. */
4066 save_fr &= ~(1 << reg);
4067 if (fp_loc == -1)
4068 {
4069 /* 1st HP CC FP register store. After this instruction
c5aa993b
JM
4070 we've set enough state that the GCC and HPCC code are
4071 both handled in the same manner. */
ef6e7e13 4072 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
c906108c
SS
4073 fp_loc = 8;
4074 }
4075 else
4076 {
43bd9a9e 4077 frame_saved_regs[reg + FP0_REGNUM + 4]
ef6e7e13 4078 = get_frame_base (frame_info) + fp_loc;
c906108c
SS
4079 fp_loc += 8;
4080 }
4081 }
4082
39f77062 4083 /* Quit if we hit any kind of branch the previous iteration. */
d4f3574e 4084 if (final_iteration)
c906108c
SS
4085 break;
4086
d4f3574e
SS
4087 /* We want to look precisely one instruction beyond the branch
4088 if we have not found everything yet. */
4089 if (is_branch (inst))
4090 final_iteration = 1;
4091
c906108c
SS
4092 /* Bump the PC. */
4093 pc += 4;
4094 }
4095}
4096
43bd9a9e
AC
4097/* XXX - deprecated. This is a compatibility function for targets
4098 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4099/* Find the addresses in which registers are saved in FRAME. */
4100
4101void
4102hppa_frame_init_saved_regs (struct frame_info *frame)
4103{
4104 if (get_frame_saved_regs (frame) == NULL)
4105 frame_saved_regs_zalloc (frame);
4106 hppa_frame_find_saved_regs (frame, get_frame_saved_regs (frame));
4107}
c906108c
SS
4108
4109/* Exception handling support for the HP-UX ANSI C++ compiler.
4110 The compiler (aCC) provides a callback for exception events;
4111 GDB can set a breakpoint on this callback and find out what
4112 exception event has occurred. */
4113
4114/* The name of the hook to be set to point to the callback function */
c5aa993b
JM
4115static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4116/* The name of the function to be used to set the hook value */
4117static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4118/* The name of the callback function in end.o */
c906108c 4119static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
c5aa993b
JM
4120/* Name of function in end.o on which a break is set (called by above) */
4121static char HP_ACC_EH_break[] = "__d_eh_break";
4122/* Name of flag (in end.o) that enables catching throws */
4123static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4124/* Name of flag (in end.o) that enables catching catching */
4125static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4126/* The enum used by aCC */
4127typedef enum
4128 {
4129 __EH_NOTIFY_THROW,
4130 __EH_NOTIFY_CATCH
4131 }
4132__eh_notification;
c906108c
SS
4133
4134/* Is exception-handling support available with this executable? */
4135static int hp_cxx_exception_support = 0;
4136/* Has the initialize function been run? */
4137int hp_cxx_exception_support_initialized = 0;
4138/* Similar to above, but imported from breakpoint.c -- non-target-specific */
4139extern int exception_support_initialized;
4140/* Address of __eh_notify_hook */
a0b3c4fd 4141static CORE_ADDR eh_notify_hook_addr = 0;
c906108c 4142/* Address of __d_eh_notify_callback */
a0b3c4fd 4143static CORE_ADDR eh_notify_callback_addr = 0;
c906108c 4144/* Address of __d_eh_break */
a0b3c4fd 4145static CORE_ADDR eh_break_addr = 0;
c906108c 4146/* Address of __d_eh_catch_catch */
a0b3c4fd 4147static CORE_ADDR eh_catch_catch_addr = 0;
c906108c 4148/* Address of __d_eh_catch_throw */
a0b3c4fd 4149static CORE_ADDR eh_catch_throw_addr = 0;
c906108c 4150/* Sal for __d_eh_break */
a0b3c4fd 4151static struct symtab_and_line *break_callback_sal = 0;
c906108c
SS
4152
4153/* Code in end.c expects __d_pid to be set in the inferior,
4154 otherwise __d_eh_notify_callback doesn't bother to call
4155 __d_eh_break! So we poke the pid into this symbol
4156 ourselves.
4157 0 => success
c5aa993b 4158 1 => failure */
c906108c 4159int
fba45db2 4160setup_d_pid_in_inferior (void)
c906108c
SS
4161{
4162 CORE_ADDR anaddr;
c5aa993b
JM
4163 struct minimal_symbol *msymbol;
4164 char buf[4]; /* FIXME 32x64? */
4165
c906108c
SS
4166 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4167 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4168 if (msymbol == NULL)
4169 {
4170 warning ("Unable to find __d_pid symbol in object file.");
4171 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4172 return 1;
4173 }
4174
4175 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
39f77062 4176 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
c5aa993b 4177 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
c906108c
SS
4178 {
4179 warning ("Unable to write __d_pid");
4180 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4181 return 1;
4182 }
4183 return 0;
4184}
4185
4186/* Initialize exception catchpoint support by looking for the
4187 necessary hooks/callbacks in end.o, etc., and set the hook value to
4188 point to the required debug function
4189
4190 Return 0 => failure
c5aa993b 4191 1 => success */
c906108c
SS
4192
4193static int
fba45db2 4194initialize_hp_cxx_exception_support (void)
c906108c
SS
4195{
4196 struct symtabs_and_lines sals;
c5aa993b
JM
4197 struct cleanup *old_chain;
4198 struct cleanup *canonical_strings_chain = NULL;
c906108c 4199 int i;
c5aa993b
JM
4200 char *addr_start;
4201 char *addr_end = NULL;
4202 char **canonical = (char **) NULL;
c906108c 4203 int thread = -1;
c5aa993b
JM
4204 struct symbol *sym = NULL;
4205 struct minimal_symbol *msym = NULL;
4206 struct objfile *objfile;
c906108c
SS
4207 asection *shlib_info;
4208
4209 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4210 recursion is a possibility because finding the hook for exception
4211 callbacks involves making a call in the inferior, which means
4212 re-inserting breakpoints which can re-invoke this code */
4213
c5aa993b
JM
4214 static int recurse = 0;
4215 if (recurse > 0)
c906108c
SS
4216 {
4217 hp_cxx_exception_support_initialized = 0;
4218 exception_support_initialized = 0;
4219 return 0;
4220 }
4221
4222 hp_cxx_exception_support = 0;
4223
4224 /* First check if we have seen any HP compiled objects; if not,
4225 it is very unlikely that HP's idiosyncratic callback mechanism
4226 for exception handling debug support will be available!
4227 This will percolate back up to breakpoint.c, where our callers
4228 will decide to try the g++ exception-handling support instead. */
4229 if (!hp_som_som_object_present)
4230 return 0;
c5aa993b 4231
c906108c
SS
4232 /* We have a SOM executable with SOM debug info; find the hooks */
4233
4234 /* First look for the notify hook provided by aCC runtime libs */
4235 /* If we find this symbol, we conclude that the executable must
4236 have HP aCC exception support built in. If this symbol is not
4237 found, even though we're a HP SOM-SOM file, we may have been
4238 built with some other compiler (not aCC). This results percolates
4239 back up to our callers in breakpoint.c which can decide to
4240 try the g++ style of exception support instead.
4241 If this symbol is found but the other symbols we require are
4242 not found, there is something weird going on, and g++ support
4243 should *not* be tried as an alternative.
c5aa993b 4244
c906108c
SS
4245 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4246 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
c5aa993b 4247
c906108c
SS
4248 /* libCsup has this hook; it'll usually be non-debuggable */
4249 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4250 if (msym)
4251 {
4252 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4253 hp_cxx_exception_support = 1;
c5aa993b 4254 }
c906108c
SS
4255 else
4256 {
4257 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4258 warning ("Executable may not have been compiled debuggable with HP aCC.");
4259 warning ("GDB will be unable to intercept exception events.");
4260 eh_notify_hook_addr = 0;
4261 hp_cxx_exception_support = 0;
4262 return 0;
4263 }
4264
c906108c 4265 /* Next look for the notify callback routine in end.o */
c5aa993b 4266 /* This is always available in the SOM symbol dictionary if end.o is linked in */
c906108c
SS
4267 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4268 if (msym)
4269 {
4270 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4271 hp_cxx_exception_support = 1;
c5aa993b
JM
4272 }
4273 else
c906108c
SS
4274 {
4275 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4276 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4277 warning ("GDB will be unable to intercept exception events.");
4278 eh_notify_callback_addr = 0;
4279 return 0;
4280 }
4281
53a5351d 4282#ifndef GDB_TARGET_IS_HPPA_20W
c906108c
SS
4283 /* Check whether the executable is dynamically linked or archive bound */
4284 /* With an archive-bound executable we can use the raw addresses we find
4285 for the callback function, etc. without modification. For an executable
4286 with shared libraries, we have to do more work to find the plabel, which
4287 can be the target of a call through $$dyncall from the aCC runtime support
4288 library (libCsup) which is linked shared by default by aCC. */
4289 /* This test below was copied from somsolib.c/somread.c. It may not be a very
c5aa993b 4290 reliable one to test that an executable is linked shared. pai/1997-07-18 */
c906108c
SS
4291 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4292 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4293 {
4294 /* The minsym we have has the local code address, but that's not the
4295 plabel that can be used by an inter-load-module call. */
4296 /* Find solib handle for main image (which has end.o), and use that
4297 and the min sym as arguments to __d_shl_get() (which does the equivalent
c5aa993b 4298 of shl_findsym()) to find the plabel. */
c906108c
SS
4299
4300 args_for_find_stub args;
4301 static char message[] = "Error while finding exception callback hook:\n";
c5aa993b 4302
c906108c
SS
4303 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4304 args.msym = msym;
a0b3c4fd 4305 args.return_val = 0;
c5aa993b 4306
c906108c 4307 recurse++;
4efb68b1 4308 catch_errors (cover_find_stub_with_shl_get, &args, message,
a0b3c4fd
JM
4309 RETURN_MASK_ALL);
4310 eh_notify_callback_addr = args.return_val;
c906108c 4311 recurse--;
c5aa993b 4312
c906108c 4313 exception_catchpoints_are_fragile = 1;
c5aa993b 4314
c906108c 4315 if (!eh_notify_callback_addr)
c5aa993b
JM
4316 {
4317 /* We can get here either if there is no plabel in the export list
1faa59a8 4318 for the main image, or if something strange happened (?) */
c5aa993b
JM
4319 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4320 warning ("GDB will not be able to intercept exception events.");
4321 return 0;
4322 }
c906108c
SS
4323 }
4324 else
4325 exception_catchpoints_are_fragile = 0;
53a5351d 4326#endif
c906108c 4327
c906108c 4328 /* Now, look for the breakpointable routine in end.o */
c5aa993b 4329 /* This should also be available in the SOM symbol dict. if end.o linked in */
c906108c
SS
4330 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4331 if (msym)
4332 {
4333 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4334 hp_cxx_exception_support = 1;
c5aa993b 4335 }
c906108c
SS
4336 else
4337 {
4338 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4339 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4340 warning ("GDB will be unable to intercept exception events.");
4341 eh_break_addr = 0;
4342 return 0;
4343 }
4344
c906108c
SS
4345 /* Next look for the catch enable flag provided in end.o */
4346 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4347 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4348 if (sym) /* sometimes present in debug info */
c906108c
SS
4349 {
4350 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4351 hp_cxx_exception_support = 1;
4352 }
c5aa993b
JM
4353 else
4354 /* otherwise look in SOM symbol dict. */
c906108c
SS
4355 {
4356 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4357 if (msym)
c5aa993b
JM
4358 {
4359 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4360 hp_cxx_exception_support = 1;
4361 }
c906108c 4362 else
c5aa993b
JM
4363 {
4364 warning ("Unable to enable interception of exception catches.");
4365 warning ("Executable may not have been compiled debuggable with HP aCC.");
4366 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4367 return 0;
4368 }
c906108c
SS
4369 }
4370
c906108c
SS
4371 /* Next look for the catch enable flag provided end.o */
4372 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4373 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4374 if (sym) /* sometimes present in debug info */
c906108c
SS
4375 {
4376 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4377 hp_cxx_exception_support = 1;
4378 }
c5aa993b
JM
4379 else
4380 /* otherwise look in SOM symbol dict. */
c906108c
SS
4381 {
4382 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4383 if (msym)
c5aa993b
JM
4384 {
4385 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4386 hp_cxx_exception_support = 1;
4387 }
c906108c 4388 else
c5aa993b
JM
4389 {
4390 warning ("Unable to enable interception of exception throws.");
4391 warning ("Executable may not have been compiled debuggable with HP aCC.");
4392 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4393 return 0;
4394 }
c906108c
SS
4395 }
4396
c5aa993b
JM
4397 /* Set the flags */
4398 hp_cxx_exception_support = 2; /* everything worked so far */
c906108c
SS
4399 hp_cxx_exception_support_initialized = 1;
4400 exception_support_initialized = 1;
4401
4402 return 1;
4403}
4404
4405/* Target operation for enabling or disabling interception of
4406 exception events.
4407 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4408 ENABLE is either 0 (disable) or 1 (enable).
4409 Return value is NULL if no support found;
4410 -1 if something went wrong,
4411 or a pointer to a symtab/line struct if the breakpointable
c5aa993b 4412 address was found. */
c906108c 4413
c5aa993b 4414struct symtab_and_line *
fba45db2 4415child_enable_exception_callback (enum exception_event_kind kind, int enable)
c906108c
SS
4416{
4417 char buf[4];
4418
4419 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4420 if (!initialize_hp_cxx_exception_support ())
4421 return NULL;
4422
4423 switch (hp_cxx_exception_support)
4424 {
c5aa993b
JM
4425 case 0:
4426 /* Assuming no HP support at all */
4427 return NULL;
4428 case 1:
4429 /* HP support should be present, but something went wrong */
4430 return (struct symtab_and_line *) -1; /* yuck! */
4431 /* there may be other cases in the future */
c906108c 4432 }
c5aa993b 4433
c906108c 4434 /* Set the EH hook to point to the callback routine */
c5aa993b 4435 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
c906108c 4436 /* pai: (temp) FIXME should there be a pack operation first? */
c5aa993b 4437 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
c906108c
SS
4438 {
4439 warning ("Could not write to target memory for exception event callback.");
4440 warning ("Interception of exception events may not work.");
c5aa993b 4441 return (struct symtab_and_line *) -1;
c906108c
SS
4442 }
4443 if (enable)
4444 {
c5aa993b 4445 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
39f77062 4446 if (PIDGET (inferior_ptid) > 0)
c5aa993b
JM
4447 {
4448 if (setup_d_pid_in_inferior ())
4449 return (struct symtab_and_line *) -1;
4450 }
c906108c 4451 else
c5aa993b 4452 {
104c1213
JM
4453 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4454 return (struct symtab_and_line *) -1;
c5aa993b 4455 }
c906108c 4456 }
c5aa993b 4457
c906108c
SS
4458 switch (kind)
4459 {
c5aa993b
JM
4460 case EX_EVENT_THROW:
4461 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4462 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4463 {
4464 warning ("Couldn't enable exception throw interception.");
4465 return (struct symtab_and_line *) -1;
4466 }
4467 break;
4468 case EX_EVENT_CATCH:
4469 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4470 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4471 {
4472 warning ("Couldn't enable exception catch interception.");
4473 return (struct symtab_and_line *) -1;
4474 }
4475 break;
104c1213
JM
4476 default:
4477 error ("Request to enable unknown or unsupported exception event.");
c906108c 4478 }
c5aa993b 4479
c906108c
SS
4480 /* Copy break address into new sal struct, malloc'ing if needed. */
4481 if (!break_callback_sal)
4482 {
4483 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4484 }
fe39c653 4485 init_sal (break_callback_sal);
c906108c
SS
4486 break_callback_sal->symtab = NULL;
4487 break_callback_sal->pc = eh_break_addr;
4488 break_callback_sal->line = 0;
4489 break_callback_sal->end = eh_break_addr;
c5aa993b 4490
c906108c
SS
4491 return break_callback_sal;
4492}
4493
c5aa993b 4494/* Record some information about the current exception event */
c906108c 4495static struct exception_event_record current_ex_event;
c5aa993b
JM
4496/* Convenience struct */
4497static struct symtab_and_line null_symtab_and_line =
4498{NULL, 0, 0, 0};
c906108c
SS
4499
4500/* Report current exception event. Returns a pointer to a record
4501 that describes the kind of the event, where it was thrown from,
4502 and where it will be caught. More information may be reported
c5aa993b 4503 in the future */
c906108c 4504struct exception_event_record *
fba45db2 4505child_get_current_exception_event (void)
c906108c 4506{
c5aa993b
JM
4507 CORE_ADDR event_kind;
4508 CORE_ADDR throw_addr;
4509 CORE_ADDR catch_addr;
c906108c
SS
4510 struct frame_info *fi, *curr_frame;
4511 int level = 1;
4512
c5aa993b 4513 curr_frame = get_current_frame ();
c906108c
SS
4514 if (!curr_frame)
4515 return (struct exception_event_record *) NULL;
4516
4517 /* Go up one frame to __d_eh_notify_callback, because at the
4518 point when this code is executed, there's garbage in the
4519 arguments of __d_eh_break. */
4520 fi = find_relative_frame (curr_frame, &level);
4521 if (level != 0)
4522 return (struct exception_event_record *) NULL;
4523
0f7d239c 4524 select_frame (fi);
c906108c
SS
4525
4526 /* Read in the arguments */
4527 /* __d_eh_notify_callback() is called with 3 arguments:
c5aa993b
JM
4528 1. event kind catch or throw
4529 2. the target address if known
4530 3. a flag -- not sure what this is. pai/1997-07-17 */
4531 event_kind = read_register (ARG0_REGNUM);
c906108c
SS
4532 catch_addr = read_register (ARG1_REGNUM);
4533
4534 /* Now go down to a user frame */
4535 /* For a throw, __d_eh_break is called by
c5aa993b
JM
4536 __d_eh_notify_callback which is called by
4537 __notify_throw which is called
4538 from user code.
c906108c 4539 For a catch, __d_eh_break is called by
c5aa993b
JM
4540 __d_eh_notify_callback which is called by
4541 <stackwalking stuff> which is called by
4542 __throw__<stuff> or __rethrow_<stuff> which is called
4543 from user code. */
4544 /* FIXME: Don't use such magic numbers; search for the frames */
c906108c
SS
4545 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4546 fi = find_relative_frame (curr_frame, &level);
4547 if (level != 0)
4548 return (struct exception_event_record *) NULL;
4549
0f7d239c 4550 select_frame (fi);
ef6e7e13 4551 throw_addr = get_frame_pc (fi);
c906108c
SS
4552
4553 /* Go back to original (top) frame */
0f7d239c 4554 select_frame (curr_frame);
c906108c
SS
4555
4556 current_ex_event.kind = (enum exception_event_kind) event_kind;
4557 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4558 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4559
4560 return &current_ex_event;
4561}
4562
9a043c1d
AC
4563/* Instead of this nasty cast, add a method pvoid() that prints out a
4564 host VOID data type (remember %p isn't portable). */
4565
4566static CORE_ADDR
4567hppa_pointer_to_address_hack (void *ptr)
4568{
4569 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4570 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4571}
4572
c906108c 4573static void
fba45db2 4574unwind_command (char *exp, int from_tty)
c906108c
SS
4575{
4576 CORE_ADDR address;
4577 struct unwind_table_entry *u;
4578
4579 /* If we have an expression, evaluate it and use it as the address. */
4580
4581 if (exp != 0 && *exp != 0)
4582 address = parse_and_eval_address (exp);
4583 else
4584 return;
4585
4586 u = find_unwind_entry (address);
4587
4588 if (!u)
4589 {
4590 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4591 return;
4592 }
4593
ce414844 4594 printf_unfiltered ("unwind_table_entry (0x%s):\n",
9a043c1d 4595 paddr_nz (hppa_pointer_to_address_hack (u)));
c906108c
SS
4596
4597 printf_unfiltered ("\tregion_start = ");
4598 print_address (u->region_start, gdb_stdout);
4599
4600 printf_unfiltered ("\n\tregion_end = ");
4601 print_address (u->region_end, gdb_stdout);
4602
c906108c 4603#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
4604
4605 printf_unfiltered ("\n\tflags =");
4606 pif (Cannot_unwind);
4607 pif (Millicode);
4608 pif (Millicode_save_sr0);
4609 pif (Entry_SR);
4610 pif (Args_stored);
4611 pif (Variable_Frame);
4612 pif (Separate_Package_Body);
4613 pif (Frame_Extension_Millicode);
4614 pif (Stack_Overflow_Check);
4615 pif (Two_Instruction_SP_Increment);
4616 pif (Ada_Region);
4617 pif (Save_SP);
4618 pif (Save_RP);
4619 pif (Save_MRP_in_frame);
4620 pif (extn_ptr_defined);
4621 pif (Cleanup_defined);
4622 pif (MPE_XL_interrupt_marker);
4623 pif (HP_UX_interrupt_marker);
4624 pif (Large_frame);
4625
4626 putchar_unfiltered ('\n');
4627
c906108c 4628#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
4629
4630 pin (Region_description);
4631 pin (Entry_FR);
4632 pin (Entry_GR);
4633 pin (Total_frame_size);
4634}
c906108c
SS
4635
4636#ifdef PREPARE_TO_PROCEED
4637
4638/* If the user has switched threads, and there is a breakpoint
4639 at the old thread's pc location, then switch to that thread
4640 and return TRUE, else return FALSE and don't do a thread
4641 switch (or rather, don't seem to have done a thread switch).
4642
4643 Ptrace-based gdb will always return FALSE to the thread-switch
4644 query, and thus also to PREPARE_TO_PROCEED.
4645
4646 The important thing is whether there is a BPT instruction,
4647 not how many user breakpoints there are. So we have to worry
4648 about things like these:
4649
4650 o Non-bp stop -- NO
4651
4652 o User hits bp, no switch -- NO
4653
4654 o User hits bp, switches threads -- YES
4655
4656 o User hits bp, deletes bp, switches threads -- NO
4657
4658 o User hits bp, deletes one of two or more bps
c5aa993b 4659 at that PC, user switches threads -- YES
c906108c
SS
4660
4661 o Plus, since we're buffering events, the user may have hit a
c5aa993b
JM
4662 breakpoint, deleted the breakpoint and then gotten another
4663 hit on that same breakpoint on another thread which
4664 actually hit before the delete. (FIXME in breakpoint.c
4665 so that "dead" breakpoints are ignored?) -- NO
c906108c
SS
4666
4667 For these reasons, we have to violate information hiding and
4668 call "breakpoint_here_p". If core gdb thinks there is a bpt
4669 here, that's what counts, as core gdb is the one which is
e02bc4cc
DS
4670 putting the BPT instruction in and taking it out.
4671
4672 Note that this implementation is potentially redundant now that
8849f47d
JL
4673 default_prepare_to_proceed() has been added.
4674
4675 FIXME This may not support switching threads after Ctrl-C
4676 correctly. The default implementation does support this. */
c906108c 4677int
fba45db2 4678hppa_prepare_to_proceed (void)
c906108c
SS
4679{
4680 pid_t old_thread;
4681 pid_t current_thread;
4682
39f77062 4683 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
c906108c
SS
4684 if (old_thread != 0)
4685 {
4686 /* Switched over from "old_thread". Try to do
4687 as little work as possible, 'cause mostly
4688 we're going to switch back. */
4689 CORE_ADDR new_pc;
c5aa993b 4690 CORE_ADDR old_pc = read_pc ();
c906108c
SS
4691
4692 /* Yuk, shouldn't use global to specify current
4693 thread. But that's how gdb does it. */
39f77062
KB
4694 current_thread = PIDGET (inferior_ptid);
4695 inferior_ptid = pid_to_ptid (old_thread);
c906108c 4696
c5aa993b
JM
4697 new_pc = read_pc ();
4698 if (new_pc != old_pc /* If at same pc, no need */
c906108c 4699 && breakpoint_here_p (new_pc))
c5aa993b 4700 {
c906108c 4701 /* User hasn't deleted the BP.
c5aa993b 4702 Return TRUE, finishing switch to "old_thread". */
c906108c
SS
4703 flush_cached_frames ();
4704 registers_changed ();
4705#if 0
c5aa993b 4706 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
39f77062 4707 current_thread, PIDGET (inferior_ptid));
c906108c 4708#endif
c5aa993b 4709
c906108c 4710 return 1;
c5aa993b 4711 }
c906108c
SS
4712
4713 /* Otherwise switch back to the user-chosen thread. */
39f77062 4714 inferior_ptid = pid_to_ptid (current_thread);
c5aa993b 4715 new_pc = read_pc (); /* Re-prime register cache */
c906108c
SS
4716 }
4717
4718 return 0;
4719}
4720#endif /* PREPARE_TO_PROCEED */
4721
c2c6d25f 4722void
fba45db2 4723hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
4724{
4725 /* To step over a breakpoint instruction on the PA takes some
4726 fiddling with the instruction address queue.
4727
4728 When we stop at a breakpoint, the IA queue front (the instruction
4729 we're executing now) points at the breakpoint instruction, and
4730 the IA queue back (the next instruction to execute) points to
4731 whatever instruction we would execute after the breakpoint, if it
4732 were an ordinary instruction. This is the case even if the
4733 breakpoint is in the delay slot of a branch instruction.
4734
4735 Clearly, to step past the breakpoint, we need to set the queue
4736 front to the back. But what do we put in the back? What
4737 instruction comes after that one? Because of the branch delay
4738 slot, the next insn is always at the back + 4. */
4739 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4740 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4741
4742 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4743 /* We can leave the tail's space the same, since there's no jump. */
4744}
4745
1cdb71fe
JL
4746/* Copy the function value from VALBUF into the proper location
4747 for a function return.
4748
4749 Called only in the context of the "return" command. */
4750
4751void
4752hppa_store_return_value (struct type *type, char *valbuf)
4753{
4754 /* For software floating point, the return value goes into the
4755 integer registers. But we do not have any flag to key this on,
4756 so we always store the value into the integer registers.
4757
4758 If its a float value, then we also store it into the floating
4759 point registers. */
73937e03
AC
4760 deprecated_write_register_bytes (REGISTER_BYTE (28)
4761 + (TYPE_LENGTH (type) > 4
4762 ? (8 - TYPE_LENGTH (type))
4763 : (4 - TYPE_LENGTH (type))),
4764 valbuf, TYPE_LENGTH (type));
1cdb71fe 4765 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
73937e03
AC
4766 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4767 valbuf, TYPE_LENGTH (type));
1cdb71fe
JL
4768}
4769
4770/* Copy the function's return value into VALBUF.
4771
4772 This function is called only in the context of "target function calls",
4773 ie. when the debugger forces a function to be called in the child, and
4774 when the debugger forces a fucntion to return prematurely via the
4775 "return" command. */
4776
4777void
4778hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4779{
4780 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4781 memcpy (valbuf,
4782 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4783 TYPE_LENGTH (type));
4784 else
4785 memcpy (valbuf,
4786 ((char *)regbuf
4787 + REGISTER_BYTE (28)
4788 + (TYPE_LENGTH (type) > 4
4789 ? (8 - TYPE_LENGTH (type))
4790 : (4 - TYPE_LENGTH (type)))),
4791 TYPE_LENGTH (type));
4792}
4facf7e8 4793
d709c020
JB
4794int
4795hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4796{
4797 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4798 via a pointer regardless of its type or the compiler used. */
4799 return (TYPE_LENGTH (type) > 8);
4800}
4801
4802int
4803hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4804{
4805 /* Stack grows upward */
4806 return (lhs > rhs);
4807}
4808
4809CORE_ADDR
4810hppa_stack_align (CORE_ADDR sp)
4811{
4812 /* elz: adjust the quantity to the next highest value which is
4813 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4814 On hppa the sp must always be kept 64-bit aligned */
4815 return ((sp % 8) ? (sp + 7) & -8 : sp);
4816}
4817
4818int
4819hppa_pc_requires_run_before_use (CORE_ADDR pc)
4820{
4821 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4822
4823 An example of this occurs when an a.out is linked against a foo.sl.
4824 The foo.sl defines a global bar(), and the a.out declares a signature
4825 for bar(). However, the a.out doesn't directly call bar(), but passes
4826 its address in another call.
4827
4828 If you have this scenario and attempt to "break bar" before running,
4829 gdb will find a minimal symbol for bar() in the a.out. But that
4830 symbol's address will be negative. What this appears to denote is
4831 an index backwards from the base of the procedure linkage table (PLT)
4832 into the data linkage table (DLT), the end of which is contiguous
4833 with the start of the PLT. This is clearly not a valid address for
4834 us to set a breakpoint on.
4835
4836 Note that one must be careful in how one checks for a negative address.
4837 0xc0000000 is a legitimate address of something in a shared text
4838 segment, for example. Since I don't know what the possible range
4839 is of these "really, truly negative" addresses that come from the
4840 minimal symbols, I'm resorting to the gross hack of checking the
4841 top byte of the address for all 1's. Sigh. */
4842
4843 return (!target_has_stack && (pc & 0xFF000000));
4844}
4845
4846int
4847hppa_instruction_nullified (void)
4848{
4849 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4850 avoid the type cast. I'm leaving it as is for now as I'm doing
4851 semi-mechanical multiarching-related changes. */
4852 const int ipsw = (int) read_register (IPSW_REGNUM);
4853 const int flags = (int) read_register (FLAGS_REGNUM);
4854
4855 return ((ipsw & 0x00200000) && !(flags & 0x2));
4856}
4857
60e1ff27
JB
4858int
4859hppa_register_raw_size (int reg_nr)
4860{
4861 /* All registers have the same size. */
4862 return REGISTER_SIZE;
4863}
4864
d709c020
JB
4865/* Index within the register vector of the first byte of the space i
4866 used for register REG_NR. */
4867
4868int
4869hppa_register_byte (int reg_nr)
4870{
4871 return reg_nr * 4;
4872}
4873
4874/* Return the GDB type object for the "standard" data type of data
4875 in register N. */
4876
4877struct type *
4878hppa_register_virtual_type (int reg_nr)
4879{
4880 if (reg_nr < FP4_REGNUM)
4881 return builtin_type_int;
4882 else
4883 return builtin_type_float;
4884}
4885
4886/* Store the address of the place in which to copy the structure the
4887 subroutine will return. This is called from call_function. */
4888
4889void
4890hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4891{
4892 write_register (28, addr);
4893}
4894
60383d10
JB
4895CORE_ADDR
4896hppa_extract_struct_value_address (char *regbuf)
4897{
4898 /* Extract from an array REGBUF containing the (raw) register state
4899 the address in which a function should return its structure value,
4900 as a CORE_ADDR (or an expression that can be used as one). */
4901 /* FIXME: brobecker 2002-12-26.
4902 The current implementation is historical, but we should eventually
4903 implement it in a more robust manner as it relies on the fact that
4904 the address size is equal to the size of an int* _on the host_...
4905 One possible implementation that crossed my mind is to use
4906 extract_address. */
4907 return (*(int *)(regbuf + REGISTER_BYTE (28)));
4908}
4909
d709c020
JB
4910/* Return True if REGNUM is not a register available to the user
4911 through ptrace(). */
4912
4913int
4914hppa_cannot_store_register (int regnum)
4915{
4916 return (regnum == 0
4917 || regnum == PCSQ_HEAD_REGNUM
4918 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
4919 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
4920
4921}
4922
4923CORE_ADDR
4924hppa_frame_args_address (struct frame_info *fi)
4925{
ef6e7e13 4926 return get_frame_base (fi);
d709c020
JB
4927}
4928
4929CORE_ADDR
4930hppa_frame_locals_address (struct frame_info *fi)
4931{
ef6e7e13 4932 return get_frame_base (fi);
d709c020
JB
4933}
4934
60383d10
JB
4935int
4936hppa_frame_num_args (struct frame_info *frame)
4937{
4938 /* We can't tell how many args there are now that the C compiler delays
4939 popping them. */
4940 return -1;
4941}
4942
d709c020
JB
4943CORE_ADDR
4944hppa_smash_text_address (CORE_ADDR addr)
4945{
4946 /* The low two bits of the PC on the PA contain the privilege level.
4947 Some genius implementing a (non-GCC) compiler apparently decided
4948 this means that "addresses" in a text section therefore include a
4949 privilege level, and thus symbol tables should contain these bits.
4950 This seems like a bonehead thing to do--anyway, it seems to work
4951 for our purposes to just ignore those bits. */
4952
4953 return (addr &= ~0x3);
4954}
4955
e6e68f1f
JB
4956static struct gdbarch *
4957hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4958{
4959 struct gdbarch *gdbarch;
59623e27
JB
4960
4961 /* Try to determine the ABI of the object we are loading. */
4be87837 4962 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 4963 {
4be87837
DJ
4964 /* If it's a SOM file, assume it's HP/UX SOM. */
4965 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
4966 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 4967 }
e6e68f1f
JB
4968
4969 /* find a candidate among the list of pre-declared architectures. */
4970 arches = gdbarch_list_lookup_by_info (arches, &info);
4971 if (arches != NULL)
4972 return (arches->gdbarch);
4973
4974 /* If none found, then allocate and initialize one. */
4975 gdbarch = gdbarch_alloc (&info, NULL);
4976
273f8429 4977 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 4978 gdbarch_init_osabi (info, gdbarch);
273f8429 4979
60383d10
JB
4980 set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
4981 set_gdbarch_function_start_offset (gdbarch, 0);
4982 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
4983 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
4984 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
4985 set_gdbarch_in_solib_return_trampoline (gdbarch,
4986 hppa_in_solib_return_trampoline);
6913c89a 4987 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
60383d10
JB
4988 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
4989 set_gdbarch_stack_align (gdbarch, hppa_stack_align);
60383d10
JB
4990 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4991 set_gdbarch_register_size (gdbarch, 4);
4992 set_gdbarch_num_regs (gdbarch, hppa_num_regs);
4993 set_gdbarch_fp_regnum (gdbarch, 3);
4994 set_gdbarch_sp_regnum (gdbarch, 30);
4995 set_gdbarch_fp0_regnum (gdbarch, 64);
4996 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
4997 set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
4998 set_gdbarch_register_raw_size (gdbarch, hppa_register_raw_size);
4999 set_gdbarch_register_bytes (gdbarch, hppa_num_regs * 4);
5000 set_gdbarch_register_byte (gdbarch, hppa_register_byte);
5001 set_gdbarch_register_virtual_size (gdbarch, hppa_register_raw_size);
a0ed5532
AC
5002 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
5003 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
60383d10 5004 set_gdbarch_register_virtual_type (gdbarch, hppa_register_virtual_type);
4183d812 5005 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
60383d10
JB
5006 set_gdbarch_deprecated_extract_return_value (gdbarch,
5007 hppa_extract_return_value);
5008 set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention);
5009 set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value);
5010 set_gdbarch_deprecated_extract_struct_value_address
5011 (gdbarch, hppa_extract_struct_value_address);
5012 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
e9582e71 5013 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
618ce49f
AC
5014 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5015 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
60383d10
JB
5016 set_gdbarch_frameless_function_invocation
5017 (gdbarch, hppa_frameless_function_invocation);
8bedc050 5018 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
60383d10
JB
5019 set_gdbarch_frame_args_address (gdbarch, hppa_frame_args_address);
5020 set_gdbarch_frame_locals_address (gdbarch, hppa_frame_locals_address);
5021 set_gdbarch_frame_num_args (gdbarch, hppa_frame_num_args);
5022 set_gdbarch_frame_args_skip (gdbarch, 0);
5ef7553b 5023 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
749b82f6 5024 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
60383d10 5025 set_gdbarch_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28);
60383d10 5026 /* set_gdbarch_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
b81774d8 5027 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
60383d10
JB
5028 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5029 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5030 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5031 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5032 set_gdbarch_read_fp (gdbarch, hppa_target_read_fp);
60383d10 5033
e6e68f1f
JB
5034 return gdbarch;
5035}
5036
5037static void
5038hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5039{
5040 /* Nothing to print for the moment. */
5041}
5042
4facf7e8
JB
5043void
5044_initialize_hppa_tdep (void)
5045{
5046 struct cmd_list_element *c;
5047 void break_at_finish_command (char *arg, int from_tty);
5048 void tbreak_at_finish_command (char *arg, int from_tty);
5049 void break_at_finish_at_depth_command (char *arg, int from_tty);
5050
e6e68f1f 5051 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8
JB
5052 tm_print_insn = print_insn_hppa;
5053
5054 add_cmd ("unwind", class_maintenance, unwind_command,
5055 "Print unwind table entry at given address.",
5056 &maintenanceprintlist);
5057
5058 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5059 break_at_finish_command,
5060 concat ("Set breakpoint at procedure exit. \n\
5061Argument may be function name, or \"*\" and an address.\n\
5062If function is specified, break at end of code for that function.\n\
5063If an address is specified, break at the end of the function that contains \n\
5064that exact address.\n",
5065 "With no arg, uses current execution address of selected stack frame.\n\
5066This is useful for breaking on return to a stack frame.\n\
5067\n\
5068Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5069\n\
5070Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5071 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5072 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5073 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5074 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5075
5076 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5077 tbreak_at_finish_command,
5078"Set temporary breakpoint at procedure exit. Either there should\n\
5079be no argument or the argument must be a depth.\n"), NULL);
5080 set_cmd_completer (c, location_completer);
5081
5082 if (xdb_commands)
5083 deprecate_cmd (add_com ("bx", class_breakpoint,
5084 break_at_finish_at_depth_command,
5085"Set breakpoint at procedure exit. Either there should\n\
5086be no argument or the argument must be a depth.\n"), NULL);
5087}
5088
This page took 0.63945 seconds and 4 git commands to generate.