Remove regcache_cooked_read_part
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
a7aad9aa 1/* Target-dependent code for the HP PA-RISC architecture.
cda5a58a 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c
SS
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "bfd.h"
25#include "inferior.h"
4e052eda 26#include "regcache.h"
e5d66720 27#include "completer.h"
59623e27 28#include "osabi.h"
343af405 29#include "arch-utils.h"
1777feb0 30/* For argument passing to the inferior. */
c906108c 31#include "symtab.h"
fde2cceb 32#include "dis-asm.h"
26d08f08
AC
33#include "trad-frame.h"
34#include "frame-unwind.h"
35#include "frame-base.h"
c906108c 36
c906108c
SS
37#include "gdbcore.h"
38#include "gdbcmd.h"
e6bb342a 39#include "gdbtypes.h"
c906108c 40#include "objfiles.h"
3ff7cf9e 41#include "hppa-tdep.h"
325fac50 42#include <algorithm>
c906108c 43
369aa520
RC
44static int hppa_debug = 0;
45
60383d10 46/* Some local constants. */
3ff7cf9e
JB
47static const int hppa32_num_regs = 128;
48static const int hppa64_num_regs = 96;
49
61a12cfa
JK
50/* We use the objfile->obj_private pointer for two things:
51 * 1. An unwind table;
52 *
53 * 2. A pointer to any associated shared library object.
54 *
55 * #defines are used to help refer to these objects.
56 */
57
58/* Info about the unwind table associated with an object file.
59 * This is hung off of the "objfile->obj_private" pointer, and
60 * is allocated in the objfile's psymbol obstack. This allows
61 * us to have unique unwind info for each executable and shared
62 * library that we are debugging.
63 */
64struct hppa_unwind_info
65 {
66 struct unwind_table_entry *table; /* Pointer to unwind info */
67 struct unwind_table_entry *cache; /* Pointer to last entry we found */
68 int last; /* Index of last entry */
69 };
70
71struct hppa_objfile_private
72 {
73 struct hppa_unwind_info *unwind_info; /* a pointer */
74 struct so_list *so_info; /* a pointer */
75 CORE_ADDR dp;
76
77 int dummy_call_sequence_reg;
78 CORE_ADDR dummy_call_sequence_addr;
79 };
80
7c46b9fb
RC
81/* hppa-specific object data -- unwind and solib info.
82 TODO/maybe: think about splitting this into two parts; the unwind data is
83 common to all hppa targets, but is only used in this file; we can register
84 that separately and make this static. The solib data is probably hpux-
85 specific, so we can create a separate extern objfile_data that is registered
86 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
61a12cfa 87static const struct objfile_data *hppa_objfile_priv_data = NULL;
7c46b9fb 88
1777feb0 89/* Get at various relevent fields of an instruction word. */
e2ac8128
JB
90#define MASK_5 0x1f
91#define MASK_11 0x7ff
92#define MASK_14 0x3fff
93#define MASK_21 0x1fffff
94
e2ac8128
JB
95/* Sizes (in bytes) of the native unwind entries. */
96#define UNWIND_ENTRY_SIZE 16
97#define STUB_UNWIND_ENTRY_SIZE 8
98
c906108c 99/* Routines to extract various sized constants out of hppa
1777feb0 100 instructions. */
c906108c
SS
101
102/* This assumes that no garbage lies outside of the lower bits of
1777feb0 103 value. */
c906108c 104
63807e1d 105static int
abc485a1 106hppa_sign_extend (unsigned val, unsigned bits)
c906108c 107{
66c6502d 108 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
c906108c
SS
109}
110
1777feb0 111/* For many immediate values the sign bit is the low bit! */
c906108c 112
63807e1d 113static int
abc485a1 114hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 115{
66c6502d 116 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
c906108c
SS
117}
118
e2ac8128 119/* Extract the bits at positions between FROM and TO, using HP's numbering
1777feb0 120 (MSB = 0). */
e2ac8128 121
abc485a1
RC
122int
123hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
124{
125 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
126}
127
1777feb0 128/* Extract the immediate field from a ld{bhw}s instruction. */
c906108c 129
abc485a1
RC
130int
131hppa_extract_5_load (unsigned word)
c906108c 132{
abc485a1 133 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
134}
135
1777feb0 136/* Extract the immediate field from a break instruction. */
c906108c 137
abc485a1
RC
138unsigned
139hppa_extract_5r_store (unsigned word)
c906108c
SS
140{
141 return (word & MASK_5);
142}
143
1777feb0 144/* Extract the immediate field from a {sr}sm instruction. */
c906108c 145
abc485a1
RC
146unsigned
147hppa_extract_5R_store (unsigned word)
c906108c
SS
148{
149 return (word >> 16 & MASK_5);
150}
151
1777feb0 152/* Extract a 14 bit immediate field. */
c906108c 153
abc485a1
RC
154int
155hppa_extract_14 (unsigned word)
c906108c 156{
abc485a1 157 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
158}
159
1777feb0 160/* Extract a 21 bit constant. */
c906108c 161
abc485a1
RC
162int
163hppa_extract_21 (unsigned word)
c906108c
SS
164{
165 int val;
166
167 word &= MASK_21;
168 word <<= 11;
abc485a1 169 val = hppa_get_field (word, 20, 20);
c906108c 170 val <<= 11;
abc485a1 171 val |= hppa_get_field (word, 9, 19);
c906108c 172 val <<= 2;
abc485a1 173 val |= hppa_get_field (word, 5, 6);
c906108c 174 val <<= 5;
abc485a1 175 val |= hppa_get_field (word, 0, 4);
c906108c 176 val <<= 2;
abc485a1
RC
177 val |= hppa_get_field (word, 7, 8);
178 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
179}
180
c906108c 181/* extract a 17 bit constant from branch instructions, returning the
1777feb0 182 19 bit signed value. */
c906108c 183
abc485a1
RC
184int
185hppa_extract_17 (unsigned word)
c906108c 186{
abc485a1
RC
187 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
188 hppa_get_field (word, 29, 29) << 10 |
189 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
190 (word & 0x1) << 16, 17) << 2;
191}
3388d7ff
RC
192
193CORE_ADDR
194hppa_symbol_address(const char *sym)
195{
3b7344d5 196 struct bound_minimal_symbol minsym;
3388d7ff
RC
197
198 minsym = lookup_minimal_symbol (sym, NULL, NULL);
3b7344d5 199 if (minsym.minsym)
77e371c0 200 return BMSYMBOL_VALUE_ADDRESS (minsym);
3388d7ff
RC
201 else
202 return (CORE_ADDR)-1;
203}
77d18ded 204
61a12cfa 205static struct hppa_objfile_private *
77d18ded
RC
206hppa_init_objfile_priv_data (struct objfile *objfile)
207{
e39db4db
SM
208 hppa_objfile_private *priv
209 = OBSTACK_ZALLOC (&objfile->objfile_obstack, hppa_objfile_private);
77d18ded 210
77d18ded 211 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
77d18ded
RC
212
213 return priv;
214}
c906108c
SS
215\f
216
217/* Compare the start address for two unwind entries returning 1 if
218 the first address is larger than the second, -1 if the second is
219 larger than the first, and zero if they are equal. */
220
221static int
fba45db2 222compare_unwind_entries (const void *arg1, const void *arg2)
c906108c 223{
9a3c8263
SM
224 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
225 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
c906108c
SS
226
227 if (a->region_start > b->region_start)
228 return 1;
229 else if (a->region_start < b->region_start)
230 return -1;
231 else
232 return 0;
233}
234
53a5351d 235static void
fdd72f95 236record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 237{
fdd72f95 238 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 239 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
240 {
241 bfd_vma value = section->vma - section->filepos;
242 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
243
244 if (value < *low_text_segment_address)
245 *low_text_segment_address = value;
246 }
53a5351d
JM
247}
248
c906108c 249static void
fba45db2 250internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
1777feb0 251 asection *section, unsigned int entries,
241fd515 252 size_t size, CORE_ADDR text_offset)
c906108c
SS
253{
254 /* We will read the unwind entries into temporary memory, then
255 fill in the actual unwind table. */
fdd72f95 256
c906108c
SS
257 if (size > 0)
258 {
5db8bbe5 259 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
260 unsigned long tmp;
261 unsigned i;
224c3ddb 262 char *buf = (char *) alloca (size);
fdd72f95 263 CORE_ADDR low_text_segment_address;
c906108c 264
fdd72f95 265 /* For ELF targets, then unwinds are supposed to
1777feb0 266 be segment relative offsets instead of absolute addresses.
c2c6d25f
JM
267
268 Note that when loading a shared library (text_offset != 0) the
269 unwinds are already relative to the text_offset that will be
270 passed in. */
5db8bbe5 271 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
53a5351d 272 {
fdd72f95
RC
273 low_text_segment_address = -1;
274
53a5351d 275 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
276 record_text_segment_lowaddr,
277 &low_text_segment_address);
53a5351d 278
fdd72f95 279 text_offset = low_text_segment_address;
53a5351d 280 }
5db8bbe5 281 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
acf86d54 282 {
5db8bbe5 283 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
acf86d54 284 }
53a5351d 285
c906108c
SS
286 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
287
288 /* Now internalize the information being careful to handle host/target
c5aa993b 289 endian issues. */
c906108c
SS
290 for (i = 0; i < entries; i++)
291 {
292 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 293 (bfd_byte *) buf);
c906108c
SS
294 table[i].region_start += text_offset;
295 buf += 4;
c5aa993b 296 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
297 table[i].region_end += text_offset;
298 buf += 4;
c5aa993b 299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
300 buf += 4;
301 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
302 table[i].Millicode = (tmp >> 30) & 0x1;
303 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
304 table[i].Region_description = (tmp >> 27) & 0x3;
6fcecea0 305 table[i].reserved = (tmp >> 26) & 0x1;
c906108c
SS
306 table[i].Entry_SR = (tmp >> 25) & 0x1;
307 table[i].Entry_FR = (tmp >> 21) & 0xf;
308 table[i].Entry_GR = (tmp >> 16) & 0x1f;
309 table[i].Args_stored = (tmp >> 15) & 0x1;
310 table[i].Variable_Frame = (tmp >> 14) & 0x1;
311 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
312 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
313 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
314 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
6fcecea0 315 table[i].sr4export = (tmp >> 9) & 0x1;
c906108c
SS
316 table[i].cxx_info = (tmp >> 8) & 0x1;
317 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
318 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
6fcecea0 319 table[i].reserved1 = (tmp >> 5) & 0x1;
c906108c
SS
320 table[i].Save_SP = (tmp >> 4) & 0x1;
321 table[i].Save_RP = (tmp >> 3) & 0x1;
322 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
6fcecea0 323 table[i].save_r19 = (tmp >> 1) & 0x1;
c906108c 324 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 325 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
326 buf += 4;
327 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
328 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
329 table[i].Large_frame = (tmp >> 29) & 0x1;
6fcecea0
RC
330 table[i].alloca_frame = (tmp >> 28) & 0x1;
331 table[i].reserved2 = (tmp >> 27) & 0x1;
c906108c
SS
332 table[i].Total_frame_size = tmp & 0x7ffffff;
333
1777feb0 334 /* Stub unwinds are handled elsewhere. */
c906108c
SS
335 table[i].stub_unwind.stub_type = 0;
336 table[i].stub_unwind.padding = 0;
337 }
338 }
339}
340
341/* Read in the backtrace information stored in the `$UNWIND_START$' section of
342 the object file. This info is used mainly by find_unwind_entry() to find
343 out the stack frame size and frame pointer used by procedures. We put
344 everything on the psymbol obstack in the objfile so that it automatically
345 gets freed when the objfile is destroyed. */
346
347static void
fba45db2 348read_unwind_info (struct objfile *objfile)
c906108c 349{
d4f3574e 350 asection *unwind_sec, *stub_unwind_sec;
241fd515 351 size_t unwind_size, stub_unwind_size, total_size;
d4f3574e 352 unsigned index, unwind_entries;
c906108c
SS
353 unsigned stub_entries, total_entries;
354 CORE_ADDR text_offset;
7c46b9fb
RC
355 struct hppa_unwind_info *ui;
356 struct hppa_objfile_private *obj_private;
c906108c 357
a99dad3d 358 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7c46b9fb
RC
359 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
360 sizeof (struct hppa_unwind_info));
c906108c
SS
361
362 ui->table = NULL;
363 ui->cache = NULL;
364 ui->last = -1;
365
d4f3574e
SS
366 /* For reasons unknown the HP PA64 tools generate multiple unwinder
367 sections in a single executable. So we just iterate over every
368 section in the BFD looking for unwinder sections intead of trying
1777feb0 369 to do a lookup with bfd_get_section_by_name.
c906108c 370
d4f3574e
SS
371 First determine the total size of the unwind tables so that we
372 can allocate memory in a nice big hunk. */
373 total_entries = 0;
374 for (unwind_sec = objfile->obfd->sections;
375 unwind_sec;
376 unwind_sec = unwind_sec->next)
c906108c 377 {
d4f3574e
SS
378 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
379 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
380 {
381 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
382 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 383
d4f3574e
SS
384 total_entries += unwind_entries;
385 }
c906108c
SS
386 }
387
d4f3574e 388 /* Now compute the size of the stub unwinds. Note the ELF tools do not
043f5962 389 use stub unwinds at the current time. */
d4f3574e
SS
390 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
391
c906108c
SS
392 if (stub_unwind_sec)
393 {
394 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
395 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
396 }
397 else
398 {
399 stub_unwind_size = 0;
400 stub_entries = 0;
401 }
402
403 /* Compute total number of unwind entries and their total size. */
d4f3574e 404 total_entries += stub_entries;
c906108c
SS
405 total_size = total_entries * sizeof (struct unwind_table_entry);
406
407 /* Allocate memory for the unwind table. */
408 ui->table = (struct unwind_table_entry *)
8b92e4d5 409 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 410 ui->last = total_entries - 1;
c906108c 411
d4f3574e
SS
412 /* Now read in each unwind section and internalize the standard unwind
413 entries. */
c906108c 414 index = 0;
d4f3574e
SS
415 for (unwind_sec = objfile->obfd->sections;
416 unwind_sec;
417 unwind_sec = unwind_sec->next)
418 {
419 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
420 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
421 {
422 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
423 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
424
425 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
426 unwind_entries, unwind_size, text_offset);
427 index += unwind_entries;
428 }
429 }
430
431 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
432 if (stub_unwind_size > 0)
433 {
434 unsigned int i;
224c3ddb 435 char *buf = (char *) alloca (stub_unwind_size);
c906108c
SS
436
437 /* Read in the stub unwind entries. */
438 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
439 0, stub_unwind_size);
440
441 /* Now convert them into regular unwind entries. */
442 for (i = 0; i < stub_entries; i++, index++)
443 {
444 /* Clear out the next unwind entry. */
445 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
446
1777feb0 447 /* Convert offset & size into region_start and region_end.
c906108c
SS
448 Stuff away the stub type into "reserved" fields. */
449 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
450 (bfd_byte *) buf);
451 ui->table[index].region_start += text_offset;
452 buf += 4;
453 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 454 (bfd_byte *) buf);
c906108c
SS
455 buf += 2;
456 ui->table[index].region_end
c5aa993b
JM
457 = ui->table[index].region_start + 4 *
458 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
459 buf += 2;
460 }
461
462 }
463
464 /* Unwind table needs to be kept sorted. */
465 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
466 compare_unwind_entries);
467
468 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
469 obj_private = (struct hppa_objfile_private *)
470 objfile_data (objfile, hppa_objfile_priv_data);
471 if (obj_private == NULL)
77d18ded
RC
472 obj_private = hppa_init_objfile_priv_data (objfile);
473
c906108c
SS
474 obj_private->unwind_info = ui;
475}
476
477/* Lookup the unwind (stack backtrace) info for the given PC. We search all
478 of the objfiles seeking the unwind table entry for this PC. Each objfile
479 contains a sorted list of struct unwind_table_entry. Since we do a binary
480 search of the unwind tables, we depend upon them to be sorted. */
481
482struct unwind_table_entry *
fba45db2 483find_unwind_entry (CORE_ADDR pc)
c906108c
SS
484{
485 int first, middle, last;
486 struct objfile *objfile;
7c46b9fb 487 struct hppa_objfile_private *priv;
c906108c 488
369aa520 489 if (hppa_debug)
5af949e3
UW
490 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
491 hex_string (pc));
369aa520 492
1777feb0 493 /* A function at address 0? Not in HP-UX! */
c906108c 494 if (pc == (CORE_ADDR) 0)
369aa520
RC
495 {
496 if (hppa_debug)
497 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
498 return NULL;
499 }
c906108c
SS
500
501 ALL_OBJFILES (objfile)
c5aa993b 502 {
7c46b9fb 503 struct hppa_unwind_info *ui;
c5aa993b 504 ui = NULL;
9a3c8263
SM
505 priv = ((struct hppa_objfile_private *)
506 objfile_data (objfile, hppa_objfile_priv_data));
7c46b9fb
RC
507 if (priv)
508 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 509
c5aa993b
JM
510 if (!ui)
511 {
512 read_unwind_info (objfile);
9a3c8263
SM
513 priv = ((struct hppa_objfile_private *)
514 objfile_data (objfile, hppa_objfile_priv_data));
7c46b9fb 515 if (priv == NULL)
8a3fe4f8 516 error (_("Internal error reading unwind information."));
7c46b9fb 517 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 518 }
c906108c 519
1777feb0 520 /* First, check the cache. */
c906108c 521
c5aa993b
JM
522 if (ui->cache
523 && pc >= ui->cache->region_start
524 && pc <= ui->cache->region_end)
369aa520
RC
525 {
526 if (hppa_debug)
5af949e3
UW
527 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
528 hex_string ((uintptr_t) ui->cache));
369aa520
RC
529 return ui->cache;
530 }
c906108c 531
1777feb0 532 /* Not in the cache, do a binary search. */
c906108c 533
c5aa993b
JM
534 first = 0;
535 last = ui->last;
c906108c 536
c5aa993b
JM
537 while (first <= last)
538 {
539 middle = (first + last) / 2;
540 if (pc >= ui->table[middle].region_start
541 && pc <= ui->table[middle].region_end)
542 {
543 ui->cache = &ui->table[middle];
369aa520 544 if (hppa_debug)
5af949e3
UW
545 fprintf_unfiltered (gdb_stdlog, "%s }\n",
546 hex_string ((uintptr_t) ui->cache));
c5aa993b
JM
547 return &ui->table[middle];
548 }
c906108c 549
c5aa993b
JM
550 if (pc < ui->table[middle].region_start)
551 last = middle - 1;
552 else
553 first = middle + 1;
554 }
555 } /* ALL_OBJFILES() */
369aa520
RC
556
557 if (hppa_debug)
558 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
559
c906108c
SS
560 return NULL;
561}
562
c9cf6e20
MG
563/* Implement the stack_frame_destroyed_p gdbarch method.
564
565 The epilogue is defined here as the area either on the `bv' instruction
1777feb0 566 itself or an instruction which destroys the function's stack frame.
1fb24930
RC
567
568 We do not assume that the epilogue is at the end of a function as we can
569 also have return sequences in the middle of a function. */
c9cf6e20 570
1fb24930 571static int
c9cf6e20 572hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1fb24930 573{
e17a4113 574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1fb24930
RC
575 unsigned long status;
576 unsigned int inst;
e362b510 577 gdb_byte buf[4];
1fb24930 578
8defab1a 579 status = target_read_memory (pc, buf, 4);
1fb24930
RC
580 if (status != 0)
581 return 0;
582
e17a4113 583 inst = extract_unsigned_integer (buf, 4, byte_order);
1fb24930
RC
584
585 /* The most common way to perform a stack adjustment ldo X(sp),sp
586 We are destroying a stack frame if the offset is negative. */
587 if ((inst & 0xffffc000) == 0x37de0000
588 && hppa_extract_14 (inst) < 0)
589 return 1;
590
591 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
592 if (((inst & 0x0fc010e0) == 0x0fc010e0
593 || (inst & 0x0fc010e0) == 0x0fc010e0)
594 && hppa_extract_14 (inst) < 0)
595 return 1;
596
597 /* bv %r0(%rp) or bv,n %r0(%rp) */
598 if (inst == 0xe840c000 || inst == 0xe840c002)
599 return 1;
600
601 return 0;
602}
603
04180708 604constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};
598cc9dc 605
04180708 606typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;
aaab4dba 607
e23457df
AC
608/* Return the name of a register. */
609
4a302917 610static const char *
d93859e2 611hppa32_register_name (struct gdbarch *gdbarch, int i)
e23457df 612{
a121b7c1 613 static const char *names[] = {
e23457df
AC
614 "flags", "r1", "rp", "r3",
615 "r4", "r5", "r6", "r7",
616 "r8", "r9", "r10", "r11",
617 "r12", "r13", "r14", "r15",
618 "r16", "r17", "r18", "r19",
619 "r20", "r21", "r22", "r23",
620 "r24", "r25", "r26", "dp",
621 "ret0", "ret1", "sp", "r31",
622 "sar", "pcoqh", "pcsqh", "pcoqt",
623 "pcsqt", "eiem", "iir", "isr",
624 "ior", "ipsw", "goto", "sr4",
625 "sr0", "sr1", "sr2", "sr3",
626 "sr5", "sr6", "sr7", "cr0",
627 "cr8", "cr9", "ccr", "cr12",
628 "cr13", "cr24", "cr25", "cr26",
629 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
630 "fpsr", "fpe1", "fpe2", "fpe3",
631 "fpe4", "fpe5", "fpe6", "fpe7",
632 "fr4", "fr4R", "fr5", "fr5R",
633 "fr6", "fr6R", "fr7", "fr7R",
634 "fr8", "fr8R", "fr9", "fr9R",
635 "fr10", "fr10R", "fr11", "fr11R",
636 "fr12", "fr12R", "fr13", "fr13R",
637 "fr14", "fr14R", "fr15", "fr15R",
638 "fr16", "fr16R", "fr17", "fr17R",
639 "fr18", "fr18R", "fr19", "fr19R",
640 "fr20", "fr20R", "fr21", "fr21R",
641 "fr22", "fr22R", "fr23", "fr23R",
642 "fr24", "fr24R", "fr25", "fr25R",
643 "fr26", "fr26R", "fr27", "fr27R",
644 "fr28", "fr28R", "fr29", "fr29R",
645 "fr30", "fr30R", "fr31", "fr31R"
646 };
647 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
648 return NULL;
649 else
650 return names[i];
651}
652
4a302917 653static const char *
d93859e2 654hppa64_register_name (struct gdbarch *gdbarch, int i)
e23457df 655{
a121b7c1 656 static const char *names[] = {
e23457df
AC
657 "flags", "r1", "rp", "r3",
658 "r4", "r5", "r6", "r7",
659 "r8", "r9", "r10", "r11",
660 "r12", "r13", "r14", "r15",
661 "r16", "r17", "r18", "r19",
662 "r20", "r21", "r22", "r23",
663 "r24", "r25", "r26", "dp",
664 "ret0", "ret1", "sp", "r31",
665 "sar", "pcoqh", "pcsqh", "pcoqt",
666 "pcsqt", "eiem", "iir", "isr",
667 "ior", "ipsw", "goto", "sr4",
668 "sr0", "sr1", "sr2", "sr3",
669 "sr5", "sr6", "sr7", "cr0",
670 "cr8", "cr9", "ccr", "cr12",
671 "cr13", "cr24", "cr25", "cr26",
672 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
673 "fpsr", "fpe1", "fpe2", "fpe3",
674 "fr4", "fr5", "fr6", "fr7",
675 "fr8", "fr9", "fr10", "fr11",
676 "fr12", "fr13", "fr14", "fr15",
677 "fr16", "fr17", "fr18", "fr19",
678 "fr20", "fr21", "fr22", "fr23",
679 "fr24", "fr25", "fr26", "fr27",
680 "fr28", "fr29", "fr30", "fr31"
681 };
682 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
683 return NULL;
684 else
685 return names[i];
686}
687
85c83e99 688/* Map dwarf DBX register numbers to GDB register numbers. */
1ef7fcb5 689static int
d3f73121 690hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1ef7fcb5 691{
85c83e99 692 /* The general registers and the sar are the same in both sets. */
0fde2c53 693 if (reg >= 0 && reg <= 32)
1ef7fcb5
RC
694 return reg;
695
696 /* fr4-fr31 are mapped from 72 in steps of 2. */
85c83e99 697 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
1ef7fcb5
RC
698 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
699
1ef7fcb5
RC
700 return -1;
701}
702
79508e1e
AC
703/* This function pushes a stack frame with arguments as part of the
704 inferior function calling mechanism.
705
706 This is the version of the function for the 32-bit PA machines, in
707 which later arguments appear at lower addresses. (The stack always
708 grows towards higher addresses.)
709
710 We simply allocate the appropriate amount of stack space and put
711 arguments into their proper slots. */
712
4a302917 713static CORE_ADDR
7d9b040b 714hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
715 struct regcache *regcache, CORE_ADDR bp_addr,
716 int nargs, struct value **args, CORE_ADDR sp,
717 int struct_return, CORE_ADDR struct_addr)
718{
e17a4113
UW
719 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
720
79508e1e
AC
721 /* Stack base address at which any pass-by-reference parameters are
722 stored. */
723 CORE_ADDR struct_end = 0;
724 /* Stack base address at which the first parameter is stored. */
725 CORE_ADDR param_end = 0;
726
79508e1e
AC
727 /* Two passes. First pass computes the location of everything,
728 second pass writes the bytes out. */
729 int write_pass;
d49771ef
RC
730
731 /* Global pointer (r19) of the function we are trying to call. */
732 CORE_ADDR gp;
733
734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
735
79508e1e
AC
736 for (write_pass = 0; write_pass < 2; write_pass++)
737 {
1797a8f6 738 CORE_ADDR struct_ptr = 0;
1777feb0 739 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
2a6228ef
RC
740 struct_ptr is adjusted for each argument below, so the first
741 argument will end up at sp-36. */
742 CORE_ADDR param_ptr = 32;
79508e1e 743 int i;
2a6228ef
RC
744 int small_struct = 0;
745
79508e1e
AC
746 for (i = 0; i < nargs; i++)
747 {
748 struct value *arg = args[i];
4991999e 749 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
750 /* The corresponding parameter that is pushed onto the
751 stack, and [possibly] passed in a register. */
948f8e3d 752 gdb_byte param_val[8];
79508e1e
AC
753 int param_len;
754 memset (param_val, 0, sizeof param_val);
755 if (TYPE_LENGTH (type) > 8)
756 {
757 /* Large parameter, pass by reference. Store the value
758 in "struct" area and then pass its address. */
759 param_len = 4;
1797a8f6 760 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 761 if (write_pass)
0fd88904 762 write_memory (struct_end - struct_ptr, value_contents (arg),
79508e1e 763 TYPE_LENGTH (type));
e17a4113
UW
764 store_unsigned_integer (param_val, 4, byte_order,
765 struct_end - struct_ptr);
79508e1e
AC
766 }
767 else if (TYPE_CODE (type) == TYPE_CODE_INT
768 || TYPE_CODE (type) == TYPE_CODE_ENUM)
769 {
770 /* Integer value store, right aligned. "unpack_long"
771 takes care of any sign-extension problems. */
772 param_len = align_up (TYPE_LENGTH (type), 4);
e17a4113 773 store_unsigned_integer (param_val, param_len, byte_order,
79508e1e 774 unpack_long (type,
0fd88904 775 value_contents (arg)));
79508e1e 776 }
2a6228ef
RC
777 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
778 {
779 /* Floating point value store, right aligned. */
780 param_len = align_up (TYPE_LENGTH (type), 4);
0fd88904 781 memcpy (param_val, value_contents (arg), param_len);
2a6228ef 782 }
79508e1e
AC
783 else
784 {
79508e1e 785 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
786
787 /* Small struct value are stored right-aligned. */
79508e1e 788 memcpy (param_val + param_len - TYPE_LENGTH (type),
0fd88904 789 value_contents (arg), TYPE_LENGTH (type));
2a6228ef
RC
790
791 /* Structures of size 5, 6 and 7 bytes are special in that
792 the higher-ordered word is stored in the lower-ordered
793 argument, and even though it is a 8-byte quantity the
794 registers need not be 8-byte aligned. */
1b07b470 795 if (param_len > 4 && param_len < 8)
2a6228ef 796 small_struct = 1;
79508e1e 797 }
2a6228ef 798
1797a8f6 799 param_ptr += param_len;
2a6228ef
RC
800 if (param_len == 8 && !small_struct)
801 param_ptr = align_up (param_ptr, 8);
802
803 /* First 4 non-FP arguments are passed in gr26-gr23.
804 First 4 32-bit FP arguments are passed in fr4L-fr7L.
805 First 2 64-bit FP arguments are passed in fr5 and fr7.
806
807 The rest go on the stack, starting at sp-36, towards lower
808 addresses. 8-byte arguments must be aligned to a 8-byte
809 stack boundary. */
79508e1e
AC
810 if (write_pass)
811 {
1797a8f6 812 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
813
814 /* There are some cases when we don't know the type
815 expected by the callee (e.g. for variadic functions), so
816 pass the parameters in both general and fp regs. */
817 if (param_ptr <= 48)
79508e1e 818 {
2a6228ef
RC
819 int grreg = 26 - (param_ptr - 36) / 4;
820 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
821 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
822
b66f5587
SM
823 regcache->cooked_write (grreg, param_val);
824 regcache->cooked_write (fpLreg, param_val);
2a6228ef 825
79508e1e 826 if (param_len > 4)
2a6228ef 827 {
b66f5587 828 regcache->cooked_write (grreg + 1, param_val + 4);
2a6228ef 829
b66f5587
SM
830 regcache->cooked_write (fpreg, param_val);
831 regcache->cooked_write (fpreg + 1, param_val + 4);
2a6228ef 832 }
79508e1e
AC
833 }
834 }
835 }
836
837 /* Update the various stack pointers. */
838 if (!write_pass)
839 {
2a6228ef 840 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
841 /* PARAM_PTR already accounts for all the arguments passed
842 by the user. However, the ABI mandates minimum stack
843 space allocations for outgoing arguments. The ABI also
844 mandates minimum stack alignments which we must
845 preserve. */
2a6228ef 846 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
847 }
848 }
849
850 /* If a structure has to be returned, set up register 28 to hold its
1777feb0 851 address. */
79508e1e 852 if (struct_return)
9c9acae0 853 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
79508e1e 854
e38c262f 855 gp = tdep->find_global_pointer (gdbarch, function);
d49771ef
RC
856
857 if (gp != 0)
9c9acae0 858 regcache_cooked_write_unsigned (regcache, 19, gp);
d49771ef 859
79508e1e 860 /* Set the return address. */
77d18ded
RC
861 if (!gdbarch_push_dummy_code_p (gdbarch))
862 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 863
c4557624 864 /* Update the Stack Pointer. */
34f75cc1 865 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 866
2a6228ef 867 return param_end;
79508e1e
AC
868}
869
38ca4e0c
MK
870/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
871 Runtime Architecture for PA-RISC 2.0", which is distributed as part
872 as of the HP-UX Software Transition Kit (STK). This implementation
873 is based on version 3.3, dated October 6, 1997. */
2f690297 874
38ca4e0c 875/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
2f690297 876
38ca4e0c
MK
877static int
878hppa64_integral_or_pointer_p (const struct type *type)
879{
880 switch (TYPE_CODE (type))
881 {
882 case TYPE_CODE_INT:
883 case TYPE_CODE_BOOL:
884 case TYPE_CODE_CHAR:
885 case TYPE_CODE_ENUM:
886 case TYPE_CODE_RANGE:
887 {
888 int len = TYPE_LENGTH (type);
889 return (len == 1 || len == 2 || len == 4 || len == 8);
890 }
891 case TYPE_CODE_PTR:
892 case TYPE_CODE_REF:
aa006118 893 case TYPE_CODE_RVALUE_REF:
38ca4e0c
MK
894 return (TYPE_LENGTH (type) == 8);
895 default:
896 break;
897 }
898
899 return 0;
900}
901
902/* Check whether TYPE is a "Floating Scalar Type". */
903
904static int
905hppa64_floating_p (const struct type *type)
906{
907 switch (TYPE_CODE (type))
908 {
909 case TYPE_CODE_FLT:
910 {
911 int len = TYPE_LENGTH (type);
912 return (len == 4 || len == 8 || len == 16);
913 }
914 default:
915 break;
916 }
917
918 return 0;
919}
2f690297 920
1218e655
RC
921/* If CODE points to a function entry address, try to look up the corresponding
922 function descriptor and return its address instead. If CODE is not a
923 function entry address, then just return it unchanged. */
924static CORE_ADDR
e17a4113 925hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
1218e655 926{
e17a4113 927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1218e655
RC
928 struct obj_section *sec, *opd;
929
930 sec = find_pc_section (code);
931
932 if (!sec)
933 return code;
934
935 /* If CODE is in a data section, assume it's already a fptr. */
936 if (!(sec->the_bfd_section->flags & SEC_CODE))
937 return code;
938
939 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
940 {
941 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
aded6f54 942 break;
1218e655
RC
943 }
944
945 if (opd < sec->objfile->sections_end)
946 {
947 CORE_ADDR addr;
948
aded6f54
PA
949 for (addr = obj_section_addr (opd);
950 addr < obj_section_endaddr (opd);
951 addr += 2 * 8)
952 {
1218e655 953 ULONGEST opdaddr;
948f8e3d 954 gdb_byte tmp[8];
1218e655
RC
955
956 if (target_read_memory (addr, tmp, sizeof (tmp)))
957 break;
e17a4113 958 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
1218e655 959
aded6f54 960 if (opdaddr == code)
1218e655
RC
961 return addr - 16;
962 }
963 }
964
965 return code;
966}
967
4a302917 968static CORE_ADDR
7d9b040b 969hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
970 struct regcache *regcache, CORE_ADDR bp_addr,
971 int nargs, struct value **args, CORE_ADDR sp,
972 int struct_return, CORE_ADDR struct_addr)
973{
38ca4e0c 974 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 975 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
38ca4e0c
MK
976 int i, offset = 0;
977 CORE_ADDR gp;
2f690297 978
38ca4e0c
MK
979 /* "The outgoing parameter area [...] must be aligned at a 16-byte
980 boundary." */
981 sp = align_up (sp, 16);
2f690297 982
38ca4e0c
MK
983 for (i = 0; i < nargs; i++)
984 {
985 struct value *arg = args[i];
986 struct type *type = value_type (arg);
987 int len = TYPE_LENGTH (type);
0fd88904 988 const bfd_byte *valbuf;
1218e655 989 bfd_byte fptrbuf[8];
38ca4e0c 990 int regnum;
2f690297 991
38ca4e0c
MK
992 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
993 offset = align_up (offset, 8);
77d18ded 994
38ca4e0c 995 if (hppa64_integral_or_pointer_p (type))
2f690297 996 {
38ca4e0c
MK
997 /* "Integral scalar parameters smaller than 64 bits are
998 padded on the left (i.e., the value is in the
999 least-significant bits of the 64-bit storage unit, and
1000 the high-order bits are undefined)." Therefore we can
1001 safely sign-extend them. */
1002 if (len < 8)
449e1137 1003 {
df4df182 1004 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
38ca4e0c
MK
1005 len = 8;
1006 }
1007 }
1008 else if (hppa64_floating_p (type))
1009 {
1010 if (len > 8)
1011 {
1012 /* "Quad-precision (128-bit) floating-point scalar
1013 parameters are aligned on a 16-byte boundary." */
1014 offset = align_up (offset, 16);
1015
1016 /* "Double-extended- and quad-precision floating-point
1017 parameters within the first 64 bytes of the parameter
1018 list are always passed in general registers." */
449e1137
AC
1019 }
1020 else
1021 {
38ca4e0c 1022 if (len == 4)
449e1137 1023 {
38ca4e0c
MK
1024 /* "Single-precision (32-bit) floating-point scalar
1025 parameters are padded on the left with 32 bits of
1026 garbage (i.e., the floating-point value is in the
1027 least-significant 32 bits of a 64-bit storage
1028 unit)." */
1029 offset += 4;
449e1137 1030 }
38ca4e0c
MK
1031
1032 /* "Single- and double-precision floating-point
1033 parameters in this area are passed according to the
1034 available formal parameter information in a function
1035 prototype. [...] If no prototype is in scope,
1036 floating-point parameters must be passed both in the
1037 corresponding general registers and in the
1038 corresponding floating-point registers." */
1039 regnum = HPPA64_FP4_REGNUM + offset / 8;
1040
1041 if (regnum < HPPA64_FP4_REGNUM + 8)
449e1137 1042 {
38ca4e0c
MK
1043 /* "Single-precision floating-point parameters, when
1044 passed in floating-point registers, are passed in
1045 the right halves of the floating point registers;
1046 the left halves are unused." */
1047 regcache_cooked_write_part (regcache, regnum, offset % 8,
0fd88904 1048 len, value_contents (arg));
449e1137
AC
1049 }
1050 }
2f690297 1051 }
38ca4e0c 1052 else
2f690297 1053 {
38ca4e0c
MK
1054 if (len > 8)
1055 {
1056 /* "Aggregates larger than 8 bytes are aligned on a
1057 16-byte boundary, possibly leaving an unused argument
1777feb0 1058 slot, which is filled with garbage. If necessary,
38ca4e0c
MK
1059 they are padded on the right (with garbage), to a
1060 multiple of 8 bytes." */
1061 offset = align_up (offset, 16);
1062 }
1063 }
1064
1218e655
RC
1065 /* If we are passing a function pointer, make sure we pass a function
1066 descriptor instead of the function entry address. */
1067 if (TYPE_CODE (type) == TYPE_CODE_PTR
1068 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1069 {
1070 ULONGEST codeptr, fptr;
1071
1072 codeptr = unpack_long (type, value_contents (arg));
e17a4113
UW
1073 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1074 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1075 fptr);
1218e655
RC
1076 valbuf = fptrbuf;
1077 }
1078 else
1079 {
1080 valbuf = value_contents (arg);
1081 }
1082
38ca4e0c 1083 /* Always store the argument in memory. */
1218e655 1084 write_memory (sp + offset, valbuf, len);
38ca4e0c 1085
38ca4e0c
MK
1086 regnum = HPPA_ARG0_REGNUM - offset / 8;
1087 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1088 {
1089 regcache_cooked_write_part (regcache, regnum,
325fac50
PA
1090 offset % 8, std::min (len, 8), valbuf);
1091 offset += std::min (len, 8);
1092 valbuf += std::min (len, 8);
1093 len -= std::min (len, 8);
38ca4e0c 1094 regnum--;
2f690297 1095 }
38ca4e0c
MK
1096
1097 offset += len;
2f690297
AC
1098 }
1099
38ca4e0c
MK
1100 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1101 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1102
1103 /* Allocate the outgoing parameter area. Make sure the outgoing
1104 parameter area is multiple of 16 bytes in length. */
325fac50 1105 sp += std::max (align_up (offset, 16), (ULONGEST) 64);
38ca4e0c
MK
1106
1107 /* Allocate 32-bytes of scratch space. The documentation doesn't
1108 mention this, but it seems to be needed. */
1109 sp += 32;
1110
1111 /* Allocate the frame marker area. */
1112 sp += 16;
1113
1114 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1115 its address. */
2f690297 1116 if (struct_return)
38ca4e0c 1117 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
2f690297 1118
38ca4e0c 1119 /* Set up GR27 (%dp) to hold the global pointer (gp). */
e38c262f 1120 gp = tdep->find_global_pointer (gdbarch, function);
77d18ded 1121 if (gp != 0)
38ca4e0c 1122 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
77d18ded 1123
38ca4e0c 1124 /* Set up GR2 (%rp) to hold the return pointer (rp). */
77d18ded
RC
1125 if (!gdbarch_push_dummy_code_p (gdbarch))
1126 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 1127
38ca4e0c
MK
1128 /* Set up GR30 to hold the stack pointer (sp). */
1129 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
c4557624 1130
38ca4e0c 1131 return sp;
2f690297 1132}
38ca4e0c 1133\f
2f690297 1134
08a27113
MK
1135/* Handle 32/64-bit struct return conventions. */
1136
1137static enum return_value_convention
6a3a010b 1138hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1139 struct type *type, struct regcache *regcache,
e127f0db 1140 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1141{
1142 if (TYPE_LENGTH (type) <= 2 * 4)
1143 {
1144 /* The value always lives in the right hand end of the register
1145 (or register pair)? */
1146 int b;
1147 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1148 int part = TYPE_LENGTH (type) % 4;
1149 /* The left hand register contains only part of the value,
1150 transfer that first so that the rest can be xfered as entire
1151 4-byte registers. */
1152 if (part > 0)
1153 {
1154 if (readbuf != NULL)
73bb0000 1155 regcache->cooked_read_part (reg, 4 - part, part, readbuf);
08a27113
MK
1156 if (writebuf != NULL)
1157 regcache_cooked_write_part (regcache, reg, 4 - part,
1158 part, writebuf);
1159 reg++;
1160 }
1161 /* Now transfer the remaining register values. */
1162 for (b = part; b < TYPE_LENGTH (type); b += 4)
1163 {
1164 if (readbuf != NULL)
dca08e1f 1165 regcache->cooked_read (reg, readbuf + b);
08a27113 1166 if (writebuf != NULL)
b66f5587 1167 regcache->cooked_write (reg, writebuf + b);
08a27113
MK
1168 reg++;
1169 }
1170 return RETURN_VALUE_REGISTER_CONVENTION;
1171 }
1172 else
1173 return RETURN_VALUE_STRUCT_CONVENTION;
1174}
1175
1176static enum return_value_convention
6a3a010b 1177hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1178 struct type *type, struct regcache *regcache,
e127f0db 1179 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1180{
1181 int len = TYPE_LENGTH (type);
1182 int regnum, offset;
1183
bad43aa5 1184 if (len > 16)
08a27113
MK
1185 {
1186 /* All return values larget than 128 bits must be aggregate
1187 return values. */
9738b034
MK
1188 gdb_assert (!hppa64_integral_or_pointer_p (type));
1189 gdb_assert (!hppa64_floating_p (type));
08a27113
MK
1190
1191 /* "Aggregate return values larger than 128 bits are returned in
1192 a buffer allocated by the caller. The address of the buffer
1193 must be passed in GR 28." */
1194 return RETURN_VALUE_STRUCT_CONVENTION;
1195 }
1196
1197 if (hppa64_integral_or_pointer_p (type))
1198 {
1199 /* "Integral return values are returned in GR 28. Values
1200 smaller than 64 bits are padded on the left (with garbage)." */
1201 regnum = HPPA_RET0_REGNUM;
1202 offset = 8 - len;
1203 }
1204 else if (hppa64_floating_p (type))
1205 {
1206 if (len > 8)
1207 {
1208 /* "Double-extended- and quad-precision floating-point
1209 values are returned in GRs 28 and 29. The sign,
1210 exponent, and most-significant bits of the mantissa are
1211 returned in GR 28; the least-significant bits of the
1212 mantissa are passed in GR 29. For double-extended
1213 precision values, GR 29 is padded on the right with 48
1214 bits of garbage." */
1215 regnum = HPPA_RET0_REGNUM;
1216 offset = 0;
1217 }
1218 else
1219 {
1220 /* "Single-precision and double-precision floating-point
1221 return values are returned in FR 4R (single precision) or
1222 FR 4 (double-precision)." */
1223 regnum = HPPA64_FP4_REGNUM;
1224 offset = 8 - len;
1225 }
1226 }
1227 else
1228 {
1229 /* "Aggregate return values up to 64 bits in size are returned
1230 in GR 28. Aggregates smaller than 64 bits are left aligned
1231 in the register; the pad bits on the right are undefined."
1232
1233 "Aggregate return values between 65 and 128 bits are returned
1234 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1235 the remaining bits are placed, left aligned, in GR 29. The
1236 pad bits on the right of GR 29 (if any) are undefined." */
1237 regnum = HPPA_RET0_REGNUM;
1238 offset = 0;
1239 }
1240
1241 if (readbuf)
1242 {
08a27113
MK
1243 while (len > 0)
1244 {
73bb0000
SM
1245 regcache->cooked_read_part (regnum, offset, std::min (len, 8),
1246 readbuf);
325fac50
PA
1247 readbuf += std::min (len, 8);
1248 len -= std::min (len, 8);
08a27113
MK
1249 regnum++;
1250 }
1251 }
1252
1253 if (writebuf)
1254 {
08a27113
MK
1255 while (len > 0)
1256 {
1257 regcache_cooked_write_part (regcache, regnum, offset,
325fac50
PA
1258 std::min (len, 8), writebuf);
1259 writebuf += std::min (len, 8);
1260 len -= std::min (len, 8);
08a27113
MK
1261 regnum++;
1262 }
1263 }
1264
1265 return RETURN_VALUE_REGISTER_CONVENTION;
1266}
1267\f
1268
d49771ef 1269static CORE_ADDR
a7aad9aa 1270hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
d49771ef
RC
1271 struct target_ops *targ)
1272{
1273 if (addr & 2)
1274 {
0dfff4cb 1275 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
a7aad9aa 1276 CORE_ADDR plabel = addr & ~3;
0dfff4cb 1277 return read_memory_typed_address (plabel, func_ptr_type);
d49771ef
RC
1278 }
1279
1280 return addr;
1281}
1282
1797a8f6
AC
1283static CORE_ADDR
1284hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1285{
1286 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1287 and not _bit_)! */
1288 return align_up (addr, 64);
1289}
1290
2f690297
AC
1291/* Force all frames to 16-byte alignment. Better safe than sorry. */
1292
1293static CORE_ADDR
1797a8f6 1294hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1295{
1296 /* Just always 16-byte align. */
1297 return align_up (addr, 16);
1298}
1299
cc72850f 1300CORE_ADDR
c113ed0c 1301hppa_read_pc (readable_regcache *regcache)
c906108c 1302{
cc72850f 1303 ULONGEST ipsw;
61a1198a 1304 ULONGEST pc;
c906108c 1305
c113ed0c
YQ
1306 regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw);
1307 regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc);
fe46cd3a
RC
1308
1309 /* If the current instruction is nullified, then we are effectively
1310 still executing the previous instruction. Pretend we are still
cc72850f
MK
1311 there. This is needed when single stepping; if the nullified
1312 instruction is on a different line, we don't want GDB to think
1313 we've stepped onto that line. */
fe46cd3a
RC
1314 if (ipsw & 0x00200000)
1315 pc -= 4;
1316
cc72850f 1317 return pc & ~0x3;
c906108c
SS
1318}
1319
cc72850f 1320void
61a1198a 1321hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 1322{
61a1198a
UW
1323 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1324 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1325}
1326
c906108c 1327/* For the given instruction (INST), return any adjustment it makes
1777feb0 1328 to the stack pointer or zero for no adjustment.
c906108c
SS
1329
1330 This only handles instructions commonly found in prologues. */
1331
1332static int
fba45db2 1333prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1334{
1335 /* This must persist across calls. */
1336 static int save_high21;
1337
1338 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1339 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1340 return hppa_extract_14 (inst);
c906108c
SS
1341
1342 /* stwm X,D(sp) */
1343 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1344 return hppa_extract_14 (inst);
c906108c 1345
104c1213
JM
1346 /* std,ma X,D(sp) */
1347 if ((inst & 0xffe00008) == 0x73c00008)
66c6502d 1348 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1349
e22b26cb 1350 /* addil high21,%r30; ldo low11,(%r1),%r30)
c906108c 1351 save high bits in save_high21 for later use. */
e22b26cb 1352 if ((inst & 0xffe00000) == 0x2bc00000)
c906108c 1353 {
abc485a1 1354 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1355 return 0;
1356 }
1357
1358 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1359 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1360
1361 /* fstws as used by the HP compilers. */
1362 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1363 return hppa_extract_5_load (inst);
c906108c
SS
1364
1365 /* No adjustment. */
1366 return 0;
1367}
1368
1369/* Return nonzero if INST is a branch of some kind, else return zero. */
1370
1371static int
fba45db2 1372is_branch (unsigned long inst)
c906108c
SS
1373{
1374 switch (inst >> 26)
1375 {
1376 case 0x20:
1377 case 0x21:
1378 case 0x22:
1379 case 0x23:
7be570e7 1380 case 0x27:
c906108c
SS
1381 case 0x28:
1382 case 0x29:
1383 case 0x2a:
1384 case 0x2b:
7be570e7 1385 case 0x2f:
c906108c
SS
1386 case 0x30:
1387 case 0x31:
1388 case 0x32:
1389 case 0x33:
1390 case 0x38:
1391 case 0x39:
1392 case 0x3a:
7be570e7 1393 case 0x3b:
c906108c
SS
1394 return 1;
1395
1396 default:
1397 return 0;
1398 }
1399}
1400
1401/* Return the register number for a GR which is saved by INST or
b35018fd 1402 zero if INST does not save a GR.
c906108c 1403
b35018fd 1404 Referenced from:
7be570e7 1405
b35018fd
CG
1406 parisc 1.1:
1407 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
c906108c 1408
b35018fd
CG
1409 parisc 2.0:
1410 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
c906108c 1411
b35018fd
CG
1412 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1413 on page 106 in parisc 2.0, all instructions for storing values from
1414 the general registers are:
c5aa993b 1415
b35018fd
CG
1416 Store: stb, sth, stw, std (according to Chapter 7, they
1417 are only in both "inst >> 26" and "inst >> 6".
1418 Store Absolute: stwa, stda (according to Chapter 7, they are only
1419 in "inst >> 6".
1420 Store Bytes: stby, stdby (according to Chapter 7, they are
1421 only in "inst >> 6").
1422
1423 For (inst >> 26), according to Chapter 7:
1424
1425 The effective memory reference address is formed by the addition
1426 of an immediate displacement to a base value.
1427
1428 - stb: 0x18, store a byte from a general register.
1429
1430 - sth: 0x19, store a halfword from a general register.
1431
1432 - stw: 0x1a, store a word from a general register.
1433
1434 - stwm: 0x1b, store a word from a general register and perform base
1435 register modification (2.0 will still treate it as stw).
1436
1437 - std: 0x1c, store a doubleword from a general register (2.0 only).
1438
1439 - stw: 0x1f, store a word from a general register (2.0 only).
1440
1441 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1442
1443 The effective memory reference address is formed by the addition
1444 of an index value to a base value specified in the instruction.
1445
1446 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1447
1448 - sth: 0x09, store a halfword from a general register (1.1 calls
1449 sths).
1450
1451 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1452
1453 - std: 0x0b: store a doubleword from a general register (2.0 only)
1454
1455 Implement fast byte moves (stores) to unaligned word or doubleword
1456 destination.
1457
1458 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1459
1460 - stdby: 0x0d for unaligned doubleword (2.0 only).
1461
1462 Store a word or doubleword using an absolute memory address formed
1463 using short or long displacement or indexed
1464
1465 - stwa: 0x0e, store a word from a general register to an absolute
1466 address (1.0 calls stwas).
1467
1468 - stda: 0x0f, store a doubleword from a general register to an
1469 absolute address (2.0 only). */
1470
1471static int
1472inst_saves_gr (unsigned long inst)
1473{
1474 switch ((inst >> 26) & 0x0f)
1475 {
1476 case 0x03:
1477 switch ((inst >> 6) & 0x0f)
1478 {
1479 case 0x08:
1480 case 0x09:
1481 case 0x0a:
1482 case 0x0b:
1483 case 0x0c:
1484 case 0x0d:
1485 case 0x0e:
1486 case 0x0f:
1487 return hppa_extract_5R_store (inst);
1488 default:
1489 return 0;
1490 }
1491 case 0x18:
1492 case 0x19:
1493 case 0x1a:
1494 case 0x1b:
1495 case 0x1c:
1496 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1497 case 0x1f:
1498 return hppa_extract_5R_store (inst);
1499 default:
1500 return 0;
1501 }
c906108c
SS
1502}
1503
1504/* Return the register number for a FR which is saved by INST or
1505 zero it INST does not save a FR.
1506
1507 Note we only care about full 64bit register stores (that's the only
1508 kind of stores the prologue will use).
1509
1510 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1511
1512static int
fba45db2 1513inst_saves_fr (unsigned long inst)
c906108c 1514{
1777feb0 1515 /* Is this an FSTD? */
c906108c 1516 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1517 return hppa_extract_5r_store (inst);
7be570e7 1518 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1519 return hppa_extract_5R_store (inst);
1777feb0 1520 /* Is this an FSTW? */
c906108c 1521 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1522 return hppa_extract_5r_store (inst);
7be570e7 1523 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1524 return hppa_extract_5R_store (inst);
c906108c
SS
1525 return 0;
1526}
1527
1528/* Advance PC across any function entry prologue instructions
1777feb0 1529 to reach some "real" code.
c906108c
SS
1530
1531 Use information in the unwind table to determine what exactly should
1532 be in the prologue. */
1533
1534
a71f8c30 1535static CORE_ADDR
be8626e0
MD
1536skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1537 int stop_before_branch)
c906108c 1538{
e17a4113 1539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e362b510 1540 gdb_byte buf[4];
c906108c
SS
1541 CORE_ADDR orig_pc = pc;
1542 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1543 unsigned long args_stored, status, i, restart_gr, restart_fr;
1544 struct unwind_table_entry *u;
a71f8c30 1545 int final_iteration;
c906108c
SS
1546
1547 restart_gr = 0;
1548 restart_fr = 0;
1549
1550restart:
1551 u = find_unwind_entry (pc);
1552 if (!u)
1553 return pc;
1554
1777feb0 1555 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1556 if ((pc & ~0x3) != u->region_start)
1557 return pc;
1558
1559 /* This is how much of a frame adjustment we need to account for. */
1560 stack_remaining = u->Total_frame_size << 3;
1561
1562 /* Magic register saves we want to know about. */
1563 save_rp = u->Save_RP;
1564 save_sp = u->Save_SP;
1565
1566 /* An indication that args may be stored into the stack. Unfortunately
1567 the HPUX compilers tend to set this in cases where no args were
1568 stored too!. */
1569 args_stored = 1;
1570
1571 /* Turn the Entry_GR field into a bitmask. */
1572 save_gr = 0;
1573 for (i = 3; i < u->Entry_GR + 3; i++)
1574 {
1575 /* Frame pointer gets saved into a special location. */
eded0a31 1576 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1577 continue;
1578
1579 save_gr |= (1 << i);
1580 }
1581 save_gr &= ~restart_gr;
1582
1583 /* Turn the Entry_FR field into a bitmask too. */
1584 save_fr = 0;
1585 for (i = 12; i < u->Entry_FR + 12; i++)
1586 save_fr |= (1 << i);
1587 save_fr &= ~restart_fr;
1588
a71f8c30
RC
1589 final_iteration = 0;
1590
c906108c
SS
1591 /* Loop until we find everything of interest or hit a branch.
1592
1593 For unoptimized GCC code and for any HP CC code this will never ever
1594 examine any user instructions.
1595
1596 For optimzied GCC code we're faced with problems. GCC will schedule
1597 its prologue and make prologue instructions available for delay slot
1598 filling. The end result is user code gets mixed in with the prologue
1599 and a prologue instruction may be in the delay slot of the first branch
1600 or call.
1601
1602 Some unexpected things are expected with debugging optimized code, so
1603 we allow this routine to walk past user instructions in optimized
1604 GCC code. */
1605 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1606 || args_stored)
1607 {
1608 unsigned int reg_num;
1609 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1610 unsigned long old_save_rp, old_save_sp, next_inst;
1611
1612 /* Save copies of all the triggers so we can compare them later
c5aa993b 1613 (only for HPC). */
c906108c
SS
1614 old_save_gr = save_gr;
1615 old_save_fr = save_fr;
1616 old_save_rp = save_rp;
1617 old_save_sp = save_sp;
1618 old_stack_remaining = stack_remaining;
1619
8defab1a 1620 status = target_read_memory (pc, buf, 4);
e17a4113 1621 inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1622
c906108c
SS
1623 /* Yow! */
1624 if (status != 0)
1625 return pc;
1626
1627 /* Note the interesting effects of this instruction. */
1628 stack_remaining -= prologue_inst_adjust_sp (inst);
1629
7be570e7
JM
1630 /* There are limited ways to store the return pointer into the
1631 stack. */
c4c79048 1632 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
c906108c
SS
1633 save_rp = 0;
1634
104c1213 1635 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1636 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1637 if ((inst & 0xffffc000) == 0x6fc10000
1638 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1639 save_sp = 0;
1640
6426a772
JM
1641 /* Are we loading some register with an offset from the argument
1642 pointer? */
1643 if ((inst & 0xffe00000) == 0x37a00000
1644 || (inst & 0xffffffe0) == 0x081d0240)
1645 {
1646 pc += 4;
1647 continue;
1648 }
1649
c906108c
SS
1650 /* Account for general and floating-point register saves. */
1651 reg_num = inst_saves_gr (inst);
1652 save_gr &= ~(1 << reg_num);
1653
1654 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1655 Unfortunately args_stored only tells us that some arguments
1656 where stored into the stack. Not how many or what kind!
c906108c 1657
c5aa993b
JM
1658 This is a kludge as on the HP compiler sets this bit and it
1659 never does prologue scheduling. So once we see one, skip past
1660 all of them. We have similar code for the fp arg stores below.
c906108c 1661
c5aa993b
JM
1662 FIXME. Can still die if we have a mix of GR and FR argument
1663 stores! */
be8626e0 1664 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1665 && reg_num <= 26)
c906108c 1666 {
be8626e0 1667 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1668 && reg_num <= 26)
c906108c
SS
1669 {
1670 pc += 4;
8defab1a 1671 status = target_read_memory (pc, buf, 4);
e17a4113 1672 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1673 if (status != 0)
1674 return pc;
1675 reg_num = inst_saves_gr (inst);
1676 }
1677 args_stored = 0;
1678 continue;
1679 }
1680
1681 reg_num = inst_saves_fr (inst);
1682 save_fr &= ~(1 << reg_num);
1683
8defab1a 1684 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1685 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1686
c906108c
SS
1687 /* Yow! */
1688 if (status != 0)
1689 return pc;
1690
1691 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1692 save. */
c906108c
SS
1693 if ((inst & 0xfc000000) == 0x34000000
1694 && inst_saves_fr (next_inst) >= 4
819844ad 1695 && inst_saves_fr (next_inst)
be8626e0 1696 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1697 {
1698 /* So we drop into the code below in a reasonable state. */
1699 reg_num = inst_saves_fr (next_inst);
1700 pc -= 4;
1701 }
1702
1703 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1704 This is a kludge as on the HP compiler sets this bit and it
1705 never does prologue scheduling. So once we see one, skip past
1706 all of them. */
819844ad 1707 if (reg_num >= 4
be8626e0 1708 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c 1709 {
819844ad
UW
1710 while (reg_num >= 4
1711 && reg_num
be8626e0 1712 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1713 {
1714 pc += 8;
8defab1a 1715 status = target_read_memory (pc, buf, 4);
e17a4113 1716 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1717 if (status != 0)
1718 return pc;
1719 if ((inst & 0xfc000000) != 0x34000000)
1720 break;
8defab1a 1721 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1722 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1723 if (status != 0)
1724 return pc;
1725 reg_num = inst_saves_fr (next_inst);
1726 }
1727 args_stored = 0;
1728 continue;
1729 }
1730
1731 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1732 instruction is in the delay slot of the first call/branch. */
a71f8c30 1733 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1734 break;
1735
1736 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1737 arguments were stored into the stack (boo hiss). This could
1738 cause this code to then skip a bunch of user insns (up to the
1739 first branch).
1740
1741 To combat this we try to identify when args_stored was bogusly
1742 set and clear it. We only do this when args_stored is nonzero,
1743 all other resources are accounted for, and nothing changed on
1744 this pass. */
c906108c 1745 if (args_stored
c5aa993b 1746 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1747 && old_save_gr == save_gr && old_save_fr == save_fr
1748 && old_save_rp == save_rp && old_save_sp == save_sp
1749 && old_stack_remaining == stack_remaining)
1750 break;
c5aa993b 1751
c906108c
SS
1752 /* Bump the PC. */
1753 pc += 4;
a71f8c30
RC
1754
1755 /* !stop_before_branch, so also look at the insn in the delay slot
1756 of the branch. */
1757 if (final_iteration)
1758 break;
1759 if (is_branch (inst))
1760 final_iteration = 1;
c906108c
SS
1761 }
1762
1763 /* We've got a tenative location for the end of the prologue. However
1764 because of limitations in the unwind descriptor mechanism we may
1765 have went too far into user code looking for the save of a register
1766 that does not exist. So, if there registers we expected to be saved
1767 but never were, mask them out and restart.
1768
1769 This should only happen in optimized code, and should be very rare. */
c5aa993b 1770 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1771 {
1772 pc = orig_pc;
1773 restart_gr = save_gr;
1774 restart_fr = save_fr;
1775 goto restart;
1776 }
1777
1778 return pc;
1779}
1780
1781
7be570e7
JM
1782/* Return the address of the PC after the last prologue instruction if
1783 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1784
1785static CORE_ADDR
fba45db2 1786after_prologue (CORE_ADDR pc)
c906108c
SS
1787{
1788 struct symtab_and_line sal;
1789 CORE_ADDR func_addr, func_end;
c906108c 1790
7be570e7
JM
1791 /* If we can not find the symbol in the partial symbol table, then
1792 there is no hope we can determine the function's start address
1793 with this code. */
c906108c 1794 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1795 return 0;
c906108c 1796
7be570e7 1797 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1798 sal = find_pc_line (func_addr, 0);
1799
7be570e7
JM
1800 /* There are only two cases to consider. First, the end of the source line
1801 is within the function bounds. In that case we return the end of the
1802 source line. Second is the end of the source line extends beyond the
1803 bounds of the current function. We need to use the slow code to
1777feb0 1804 examine instructions in that case.
c906108c 1805
7be570e7
JM
1806 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1807 the wrong thing to do. In fact, it should be entirely possible for this
1808 function to always return zero since the slow instruction scanning code
1809 is supposed to *always* work. If it does not, then it is a bug. */
1810 if (sal.end < func_end)
1811 return sal.end;
c5aa993b 1812 else
7be570e7 1813 return 0;
c906108c
SS
1814}
1815
1816/* To skip prologues, I use this predicate. Returns either PC itself
1817 if the code at PC does not look like a function prologue; otherwise
1777feb0 1818 returns an address that (if we're lucky) follows the prologue.
a71f8c30
RC
1819
1820 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1777feb0 1821 It doesn't necessarily skips all the insns in the prologue. In fact
a71f8c30
RC
1822 we might not want to skip all the insns because a prologue insn may
1823 appear in the delay slot of the first branch, and we don't want to
1824 skip over the branch in that case. */
c906108c 1825
8d153463 1826static CORE_ADDR
6093d2eb 1827hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1828{
c5aa993b 1829 CORE_ADDR post_prologue_pc;
c906108c 1830
c5aa993b
JM
1831 /* See if we can determine the end of the prologue via the symbol table.
1832 If so, then return either PC, or the PC after the prologue, whichever
1833 is greater. */
c906108c 1834
c5aa993b 1835 post_prologue_pc = after_prologue (pc);
c906108c 1836
7be570e7
JM
1837 /* If after_prologue returned a useful address, then use it. Else
1838 fall back on the instruction skipping code.
1839
1840 Some folks have claimed this causes problems because the breakpoint
1841 may be the first instruction of the prologue. If that happens, then
1842 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b 1843 if (post_prologue_pc != 0)
325fac50 1844 return std::max (pc, post_prologue_pc);
c5aa993b 1845 else
be8626e0 1846 return (skip_prologue_hard_way (gdbarch, pc, 1));
c906108c
SS
1847}
1848
29d375ac 1849/* Return an unwind entry that falls within the frame's code block. */
227e86ad 1850
29d375ac 1851static struct unwind_table_entry *
227e86ad 1852hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
29d375ac 1853{
227e86ad 1854 CORE_ADDR pc = get_frame_address_in_block (this_frame);
93d42b30
DJ
1855
1856 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
ad1193e7 1857 result of get_frame_address_in_block implies a problem.
93d42b30 1858 The bits should have been removed earlier, before the return
c7ce8faa 1859 value of gdbarch_unwind_pc. That might be happening already;
93d42b30
DJ
1860 if it isn't, it should be fixed. Then this call can be
1861 removed. */
227e86ad 1862 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
29d375ac
RC
1863 return find_unwind_entry (pc);
1864}
1865
26d08f08
AC
1866struct hppa_frame_cache
1867{
1868 CORE_ADDR base;
1869 struct trad_frame_saved_reg *saved_regs;
1870};
1871
1872static struct hppa_frame_cache *
227e86ad 1873hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
26d08f08 1874{
227e86ad 1875 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1876 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1877 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
26d08f08
AC
1878 struct hppa_frame_cache *cache;
1879 long saved_gr_mask;
1880 long saved_fr_mask;
26d08f08
AC
1881 long frame_size;
1882 struct unwind_table_entry *u;
9f7194c3 1883 CORE_ADDR prologue_end;
50b2f48a 1884 int fp_in_r1 = 0;
26d08f08
AC
1885 int i;
1886
369aa520
RC
1887 if (hppa_debug)
1888 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
227e86ad 1889 frame_relative_level(this_frame));
369aa520 1890
26d08f08 1891 if ((*this_cache) != NULL)
369aa520
RC
1892 {
1893 if (hppa_debug)
5af949e3
UW
1894 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1895 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
9a3c8263 1896 return (struct hppa_frame_cache *) (*this_cache);
369aa520 1897 }
26d08f08
AC
1898 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1899 (*this_cache) = cache;
227e86ad 1900 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
26d08f08
AC
1901
1902 /* Yow! */
227e86ad 1903 u = hppa_find_unwind_entry_in_block (this_frame);
26d08f08 1904 if (!u)
369aa520
RC
1905 {
1906 if (hppa_debug)
1907 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
9a3c8263 1908 return (struct hppa_frame_cache *) (*this_cache);
369aa520 1909 }
26d08f08
AC
1910
1911 /* Turn the Entry_GR field into a bitmask. */
1912 saved_gr_mask = 0;
1913 for (i = 3; i < u->Entry_GR + 3; i++)
1914 {
1915 /* Frame pointer gets saved into a special location. */
eded0a31 1916 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1917 continue;
1918
1919 saved_gr_mask |= (1 << i);
1920 }
1921
1922 /* Turn the Entry_FR field into a bitmask too. */
1923 saved_fr_mask = 0;
1924 for (i = 12; i < u->Entry_FR + 12; i++)
1925 saved_fr_mask |= (1 << i);
1926
1927 /* Loop until we find everything of interest or hit a branch.
1928
1929 For unoptimized GCC code and for any HP CC code this will never ever
1930 examine any user instructions.
1931
1932 For optimized GCC code we're faced with problems. GCC will schedule
1933 its prologue and make prologue instructions available for delay slot
1934 filling. The end result is user code gets mixed in with the prologue
1935 and a prologue instruction may be in the delay slot of the first branch
1936 or call.
1937
1938 Some unexpected things are expected with debugging optimized code, so
1939 we allow this routine to walk past user instructions in optimized
1940 GCC code. */
1941 {
1942 int final_iteration = 0;
46acf081 1943 CORE_ADDR pc, start_pc, end_pc;
26d08f08
AC
1944 int looking_for_sp = u->Save_SP;
1945 int looking_for_rp = u->Save_RP;
1946 int fp_loc = -1;
9f7194c3 1947
a71f8c30 1948 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1949 skip_prologue_using_sal, in case we stepped into a function without
1950 symbol information. hppa_skip_prologue also bounds the returned
1951 pc by the passed in pc, so it will not return a pc in the next
1777feb0 1952 function.
a71f8c30
RC
1953
1954 We used to call hppa_skip_prologue to find the end of the prologue,
1955 but if some non-prologue instructions get scheduled into the prologue,
1956 and the program is compiled with debug information, the "easy" way
1957 in hppa_skip_prologue will return a prologue end that is too early
1958 for us to notice any potential frame adjustments. */
d5c27f81 1959
ef02daa9
DJ
1960 /* We used to use get_frame_func to locate the beginning of the
1961 function to pass to skip_prologue. However, when objects are
1962 compiled without debug symbols, get_frame_func can return the wrong
1777feb0 1963 function (or 0). We can do better than that by using unwind records.
46acf081 1964 This only works if the Region_description of the unwind record
1777feb0 1965 indicates that it includes the entry point of the function.
46acf081
RC
1966 HP compilers sometimes generate unwind records for regions that
1967 do not include the entry or exit point of a function. GNU tools
1968 do not do this. */
1969
1970 if ((u->Region_description & 0x2) == 0)
1971 start_pc = u->region_start;
1972 else
227e86ad 1973 start_pc = get_frame_func (this_frame);
d5c27f81 1974
be8626e0 1975 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
227e86ad 1976 end_pc = get_frame_pc (this_frame);
9f7194c3
RC
1977
1978 if (prologue_end != 0 && end_pc > prologue_end)
1979 end_pc = prologue_end;
1980
26d08f08 1981 frame_size = 0;
9f7194c3 1982
46acf081 1983 for (pc = start_pc;
26d08f08
AC
1984 ((saved_gr_mask || saved_fr_mask
1985 || looking_for_sp || looking_for_rp
1986 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1987 && pc < end_pc);
26d08f08
AC
1988 pc += 4)
1989 {
1990 int reg;
e362b510 1991 gdb_byte buf4[4];
4a302917
RC
1992 long inst;
1993
227e86ad 1994 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
4a302917 1995 {
5af949e3
UW
1996 error (_("Cannot read instruction at %s."),
1997 paddress (gdbarch, pc));
9a3c8263 1998 return (struct hppa_frame_cache *) (*this_cache);
4a302917
RC
1999 }
2000
e17a4113 2001 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
9f7194c3 2002
26d08f08
AC
2003 /* Note the interesting effects of this instruction. */
2004 frame_size += prologue_inst_adjust_sp (inst);
2005
2006 /* There are limited ways to store the return pointer into the
2007 stack. */
2008 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2009 {
2010 looking_for_rp = 0;
34f75cc1 2011 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 2012 }
dfaf8edb
MK
2013 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2014 {
2015 looking_for_rp = 0;
2016 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2017 }
c4c79048
RC
2018 else if (inst == 0x0fc212c1
2019 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
26d08f08
AC
2020 {
2021 looking_for_rp = 0;
34f75cc1 2022 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
2023 }
2024
2025 /* Check to see if we saved SP into the stack. This also
2026 happens to indicate the location of the saved frame
2027 pointer. */
2028 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2029 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2030 {
2031 looking_for_sp = 0;
eded0a31 2032 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 2033 }
50b2f48a
RC
2034 else if (inst == 0x08030241) /* copy %r3, %r1 */
2035 {
2036 fp_in_r1 = 1;
2037 }
26d08f08
AC
2038
2039 /* Account for general and floating-point register saves. */
2040 reg = inst_saves_gr (inst);
2041 if (reg >= 3 && reg <= 18
eded0a31 2042 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
2043 {
2044 saved_gr_mask &= ~(1 << reg);
abc485a1 2045 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
2046 /* stwm with a positive displacement is a _post_
2047 _modify_. */
2048 cache->saved_regs[reg].addr = 0;
2049 else if ((inst & 0xfc00000c) == 0x70000008)
2050 /* A std has explicit post_modify forms. */
2051 cache->saved_regs[reg].addr = 0;
2052 else
2053 {
2054 CORE_ADDR offset;
2055
2056 if ((inst >> 26) == 0x1c)
66c6502d 2057 offset = (inst & 0x1 ? -(1 << 13) : 0)
1777feb0 2058 | (((inst >> 4) & 0x3ff) << 3);
26d08f08 2059 else if ((inst >> 26) == 0x03)
abc485a1 2060 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 2061 else
abc485a1 2062 offset = hppa_extract_14 (inst);
26d08f08
AC
2063
2064 /* Handle code with and without frame pointers. */
2065 if (u->Save_SP)
2066 cache->saved_regs[reg].addr = offset;
2067 else
1777feb0
MS
2068 cache->saved_regs[reg].addr
2069 = (u->Total_frame_size << 3) + offset;
26d08f08
AC
2070 }
2071 }
2072
2073 /* GCC handles callee saved FP regs a little differently.
2074
2075 It emits an instruction to put the value of the start of
2076 the FP store area into %r1. It then uses fstds,ma with a
2077 basereg of %r1 for the stores.
2078
2079 HP CC emits them at the current stack pointer modifying the
2080 stack pointer as it stores each register. */
2081
2082 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2083 if ((inst & 0xffffc000) == 0x34610000
2084 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 2085 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
2086
2087 reg = inst_saves_fr (inst);
2088 if (reg >= 12 && reg <= 21)
2089 {
2090 /* Note +4 braindamage below is necessary because the FP
2091 status registers are internally 8 registers rather than
2092 the expected 4 registers. */
2093 saved_fr_mask &= ~(1 << reg);
2094 if (fp_loc == -1)
2095 {
2096 /* 1st HP CC FP register store. After this
2097 instruction we've set enough state that the GCC and
2098 HPCC code are both handled in the same manner. */
34f75cc1 2099 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
2100 fp_loc = 8;
2101 }
2102 else
2103 {
eded0a31 2104 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
2105 fp_loc += 8;
2106 }
2107 }
2108
1777feb0 2109 /* Quit if we hit any kind of branch the previous iteration. */
26d08f08
AC
2110 if (final_iteration)
2111 break;
2112 /* We want to look precisely one instruction beyond the branch
2113 if we have not found everything yet. */
2114 if (is_branch (inst))
2115 final_iteration = 1;
2116 }
2117 }
2118
2119 {
2120 /* The frame base always represents the value of %sp at entry to
2121 the current function (and is thus equivalent to the "saved"
2122 stack pointer. */
227e86ad
JB
2123 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2124 HPPA_SP_REGNUM);
ed70ba00 2125 CORE_ADDR fp;
9f7194c3
RC
2126
2127 if (hppa_debug)
5af949e3
UW
2128 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2129 "prologue_end=%s) ",
2130 paddress (gdbarch, this_sp),
2131 paddress (gdbarch, get_frame_pc (this_frame)),
2132 paddress (gdbarch, prologue_end));
9f7194c3 2133
ed70ba00
RC
2134 /* Check to see if a frame pointer is available, and use it for
2135 frame unwinding if it is.
2136
2137 There are some situations where we need to rely on the frame
2138 pointer to do stack unwinding. For example, if a function calls
2139 alloca (), the stack pointer can get adjusted inside the body of
2140 the function. In this case, the ABI requires that the compiler
2141 maintain a frame pointer for the function.
2142
2143 The unwind record has a flag (alloca_frame) that indicates that
2144 a function has a variable frame; unfortunately, gcc/binutils
2145 does not set this flag. Instead, whenever a frame pointer is used
2146 and saved on the stack, the Save_SP flag is set. We use this to
2147 decide whether to use the frame pointer for unwinding.
2148
ed70ba00
RC
2149 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2150 instead of Save_SP. */
2151
227e86ad 2152 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
46acf081 2153
6fcecea0 2154 if (u->alloca_frame)
46acf081 2155 fp -= u->Total_frame_size << 3;
ed70ba00 2156
227e86ad 2157 if (get_frame_pc (this_frame) >= prologue_end
6fcecea0 2158 && (u->Save_SP || u->alloca_frame) && fp != 0)
ed70ba00
RC
2159 {
2160 cache->base = fp;
2161
2162 if (hppa_debug)
5af949e3
UW
2163 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2164 paddress (gdbarch, cache->base));
ed70ba00 2165 }
1658da49
RC
2166 else if (u->Save_SP
2167 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 2168 {
9f7194c3
RC
2169 /* Both we're expecting the SP to be saved and the SP has been
2170 saved. The entry SP value is saved at this frame's SP
2171 address. */
e17a4113 2172 cache->base = read_memory_integer (this_sp, word_size, byte_order);
9f7194c3
RC
2173
2174 if (hppa_debug)
5af949e3
UW
2175 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2176 paddress (gdbarch, cache->base));
9f7194c3 2177 }
26d08f08 2178 else
9f7194c3 2179 {
1658da49
RC
2180 /* The prologue has been slowly allocating stack space. Adjust
2181 the SP back. */
2182 cache->base = this_sp - frame_size;
9f7194c3 2183 if (hppa_debug)
5af949e3
UW
2184 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2185 paddress (gdbarch, cache->base));
9f7194c3
RC
2186
2187 }
eded0a31 2188 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
2189 }
2190
412275d5
AC
2191 /* The PC is found in the "return register", "Millicode" uses "r31"
2192 as the return register while normal code uses "rp". */
26d08f08 2193 if (u->Millicode)
9f7194c3 2194 {
5859efe5 2195 if (trad_frame_addr_p (cache->saved_regs, 31))
9ed5ba24
RC
2196 {
2197 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2198 if (hppa_debug)
2199 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2200 }
9f7194c3
RC
2201 else
2202 {
227e86ad 2203 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
34f75cc1 2204 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9ed5ba24
RC
2205 if (hppa_debug)
2206 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
9f7194c3
RC
2207 }
2208 }
26d08f08 2209 else
9f7194c3 2210 {
34f75cc1 2211 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
9ed5ba24
RC
2212 {
2213 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2214 cache->saved_regs[HPPA_RP_REGNUM];
2215 if (hppa_debug)
2216 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2217 }
9f7194c3
RC
2218 else
2219 {
227e86ad
JB
2220 ULONGEST rp = get_frame_register_unsigned (this_frame,
2221 HPPA_RP_REGNUM);
34f75cc1 2222 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9ed5ba24
RC
2223 if (hppa_debug)
2224 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
9f7194c3
RC
2225 }
2226 }
26d08f08 2227
50b2f48a
RC
2228 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2229 frame. However, there is a one-insn window where we haven't saved it
2230 yet, but we've already clobbered it. Detect this case and fix it up.
2231
2232 The prologue sequence for frame-pointer functions is:
2233 0: stw %rp, -20(%sp)
2234 4: copy %r3, %r1
2235 8: copy %sp, %r3
2236 c: stw,ma %r1, XX(%sp)
2237
2238 So if we are at offset c, the r3 value that we want is not yet saved
2239 on the stack, but it's been overwritten. The prologue analyzer will
2240 set fp_in_r1 when it sees the copy insn so we know to get the value
2241 from r1 instead. */
2242 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2243 && fp_in_r1)
2244 {
227e86ad 2245 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
50b2f48a
RC
2246 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2247 }
1658da49 2248
26d08f08
AC
2249 {
2250 /* Convert all the offsets into addresses. */
2251 int reg;
65c5db89 2252 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
26d08f08
AC
2253 {
2254 if (trad_frame_addr_p (cache->saved_regs, reg))
2255 cache->saved_regs[reg].addr += cache->base;
2256 }
2257 }
2258
f77a2124 2259 {
f77a2124
RC
2260 struct gdbarch_tdep *tdep;
2261
f77a2124
RC
2262 tdep = gdbarch_tdep (gdbarch);
2263
2264 if (tdep->unwind_adjust_stub)
227e86ad 2265 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
f77a2124
RC
2266 }
2267
369aa520 2268 if (hppa_debug)
5af949e3
UW
2269 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2270 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
9a3c8263 2271 return (struct hppa_frame_cache *) (*this_cache);
26d08f08
AC
2272}
2273
2274static void
227e86ad
JB
2275hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2276 struct frame_id *this_id)
26d08f08 2277{
d5c27f81 2278 struct hppa_frame_cache *info;
d5c27f81
RC
2279 struct unwind_table_entry *u;
2280
227e86ad
JB
2281 info = hppa_frame_cache (this_frame, this_cache);
2282 u = hppa_find_unwind_entry_in_block (this_frame);
d5c27f81
RC
2283
2284 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
2285}
2286
227e86ad
JB
2287static struct value *
2288hppa_frame_prev_register (struct frame_info *this_frame,
2289 void **this_cache, int regnum)
26d08f08 2290{
227e86ad
JB
2291 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2292
1777feb0
MS
2293 return hppa_frame_prev_register_helper (this_frame,
2294 info->saved_regs, regnum);
227e86ad
JB
2295}
2296
2297static int
2298hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2299 struct frame_info *this_frame, void **this_cache)
2300{
2301 if (hppa_find_unwind_entry_in_block (this_frame))
2302 return 1;
2303
2304 return 0;
0da28f8a
RC
2305}
2306
2307static const struct frame_unwind hppa_frame_unwind =
2308{
2309 NORMAL_FRAME,
8fbca658 2310 default_frame_unwind_stop_reason,
0da28f8a 2311 hppa_frame_this_id,
227e86ad
JB
2312 hppa_frame_prev_register,
2313 NULL,
2314 hppa_frame_unwind_sniffer
0da28f8a
RC
2315};
2316
0da28f8a
RC
2317/* This is a generic fallback frame unwinder that kicks in if we fail all
2318 the other ones. Normally we would expect the stub and regular unwinder
2319 to work, but in some cases we might hit a function that just doesn't
2320 have any unwind information available. In this case we try to do
2321 unwinding solely based on code reading. This is obviously going to be
2322 slow, so only use this as a last resort. Currently this will only
2323 identify the stack and pc for the frame. */
2324
2325static struct hppa_frame_cache *
227e86ad 2326hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
0da28f8a 2327{
e17a4113
UW
2328 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2329 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0da28f8a 2330 struct hppa_frame_cache *cache;
4ba6a975
MK
2331 unsigned int frame_size = 0;
2332 int found_rp = 0;
2333 CORE_ADDR start_pc;
0da28f8a 2334
d5c27f81 2335 if (hppa_debug)
4ba6a975
MK
2336 fprintf_unfiltered (gdb_stdlog,
2337 "{ hppa_fallback_frame_cache (frame=%d) -> ",
227e86ad 2338 frame_relative_level (this_frame));
d5c27f81 2339
0da28f8a
RC
2340 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2341 (*this_cache) = cache;
227e86ad 2342 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
0da28f8a 2343
227e86ad 2344 start_pc = get_frame_func (this_frame);
4ba6a975 2345 if (start_pc)
0da28f8a 2346 {
227e86ad 2347 CORE_ADDR cur_pc = get_frame_pc (this_frame);
4ba6a975 2348 CORE_ADDR pc;
0da28f8a 2349
4ba6a975
MK
2350 for (pc = start_pc; pc < cur_pc; pc += 4)
2351 {
2352 unsigned int insn;
0da28f8a 2353
e17a4113 2354 insn = read_memory_unsigned_integer (pc, 4, byte_order);
4ba6a975 2355 frame_size += prologue_inst_adjust_sp (insn);
6d1be3f1 2356
4ba6a975
MK
2357 /* There are limited ways to store the return pointer into the
2358 stack. */
2359 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2360 {
2361 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2362 found_rp = 1;
2363 }
c4c79048
RC
2364 else if (insn == 0x0fc212c1
2365 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
4ba6a975
MK
2366 {
2367 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2368 found_rp = 1;
2369 }
2370 }
412275d5 2371 }
0da28f8a 2372
d5c27f81 2373 if (hppa_debug)
4ba6a975
MK
2374 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2375 frame_size, found_rp);
d5c27f81 2376
227e86ad 2377 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
4ba6a975 2378 cache->base -= frame_size;
6d1be3f1 2379 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2380
2381 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2382 {
2383 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
4ba6a975
MK
2384 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2385 cache->saved_regs[HPPA_RP_REGNUM];
0da28f8a 2386 }
412275d5
AC
2387 else
2388 {
4ba6a975 2389 ULONGEST rp;
227e86ad 2390 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
0da28f8a 2391 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2392 }
0da28f8a
RC
2393
2394 return cache;
26d08f08
AC
2395}
2396
0da28f8a 2397static void
227e86ad 2398hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
0da28f8a
RC
2399 struct frame_id *this_id)
2400{
2401 struct hppa_frame_cache *info =
227e86ad
JB
2402 hppa_fallback_frame_cache (this_frame, this_cache);
2403
2404 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
0da28f8a
RC
2405}
2406
227e86ad
JB
2407static struct value *
2408hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2409 void **this_cache, int regnum)
0da28f8a 2410{
1777feb0
MS
2411 struct hppa_frame_cache *info
2412 = hppa_fallback_frame_cache (this_frame, this_cache);
227e86ad 2413
1777feb0
MS
2414 return hppa_frame_prev_register_helper (this_frame,
2415 info->saved_regs, regnum);
0da28f8a
RC
2416}
2417
2418static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2419{
2420 NORMAL_FRAME,
8fbca658 2421 default_frame_unwind_stop_reason,
0da28f8a 2422 hppa_fallback_frame_this_id,
227e86ad
JB
2423 hppa_fallback_frame_prev_register,
2424 NULL,
2425 default_frame_sniffer
26d08f08
AC
2426};
2427
7f07c5b6
RC
2428/* Stub frames, used for all kinds of call stubs. */
2429struct hppa_stub_unwind_cache
2430{
2431 CORE_ADDR base;
2432 struct trad_frame_saved_reg *saved_regs;
2433};
2434
2435static struct hppa_stub_unwind_cache *
227e86ad 2436hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
7f07c5b6
RC
2437 void **this_cache)
2438{
227e86ad 2439 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7f07c5b6 2440 struct hppa_stub_unwind_cache *info;
22b0923d 2441 struct unwind_table_entry *u;
7f07c5b6
RC
2442
2443 if (*this_cache)
9a3c8263 2444 return (struct hppa_stub_unwind_cache *) *this_cache;
7f07c5b6
RC
2445
2446 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2447 *this_cache = info;
227e86ad 2448 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
7f07c5b6 2449
227e86ad 2450 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
7f07c5b6 2451
22b0923d
RC
2452 /* By default we assume that stubs do not change the rp. */
2453 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2454
7f07c5b6
RC
2455 return info;
2456}
2457
2458static void
227e86ad 2459hppa_stub_frame_this_id (struct frame_info *this_frame,
7f07c5b6
RC
2460 void **this_prologue_cache,
2461 struct frame_id *this_id)
2462{
2463 struct hppa_stub_unwind_cache *info
227e86ad 2464 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57
RC
2465
2466 if (info)
227e86ad 2467 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
7f07c5b6
RC
2468}
2469
227e86ad
JB
2470static struct value *
2471hppa_stub_frame_prev_register (struct frame_info *this_frame,
2472 void **this_prologue_cache, int regnum)
7f07c5b6
RC
2473{
2474 struct hppa_stub_unwind_cache *info
227e86ad 2475 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57 2476
227e86ad 2477 if (info == NULL)
8a3fe4f8 2478 error (_("Requesting registers from null frame."));
7f07c5b6 2479
1777feb0
MS
2480 return hppa_frame_prev_register_helper (this_frame,
2481 info->saved_regs, regnum);
227e86ad 2482}
7f07c5b6 2483
227e86ad
JB
2484static int
2485hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2486 struct frame_info *this_frame,
2487 void **this_cache)
7f07c5b6 2488{
227e86ad
JB
2489 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2490 struct gdbarch *gdbarch = get_frame_arch (this_frame);
84674fe1 2491 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2492
6d1be3f1 2493 if (pc == 0
84674fe1 2494 || (tdep->in_solib_call_trampoline != NULL
3e5d3a5a 2495 && tdep->in_solib_call_trampoline (gdbarch, pc))
464963c9 2496 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
227e86ad
JB
2497 return 1;
2498 return 0;
7f07c5b6
RC
2499}
2500
227e86ad
JB
2501static const struct frame_unwind hppa_stub_frame_unwind = {
2502 NORMAL_FRAME,
8fbca658 2503 default_frame_unwind_stop_reason,
227e86ad
JB
2504 hppa_stub_frame_this_id,
2505 hppa_stub_frame_prev_register,
2506 NULL,
2507 hppa_stub_unwind_sniffer
2508};
2509
26d08f08 2510static struct frame_id
227e86ad 2511hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
26d08f08 2512{
227e86ad
JB
2513 return frame_id_build (get_frame_register_unsigned (this_frame,
2514 HPPA_SP_REGNUM),
2515 get_frame_pc (this_frame));
26d08f08
AC
2516}
2517
cc72850f 2518CORE_ADDR
26d08f08
AC
2519hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2520{
fe46cd3a
RC
2521 ULONGEST ipsw;
2522 CORE_ADDR pc;
2523
cc72850f
MK
2524 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2525 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2526
2527 /* If the current instruction is nullified, then we are effectively
2528 still executing the previous instruction. Pretend we are still
cc72850f
MK
2529 there. This is needed when single stepping; if the nullified
2530 instruction is on a different line, we don't want GDB to think
2531 we've stepped onto that line. */
fe46cd3a
RC
2532 if (ipsw & 0x00200000)
2533 pc -= 4;
2534
cc72850f 2535 return pc & ~0x3;
26d08f08
AC
2536}
2537
ff644745
JB
2538/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2539 Return NULL if no such symbol was found. */
2540
3b7344d5 2541struct bound_minimal_symbol
ff644745
JB
2542hppa_lookup_stub_minimal_symbol (const char *name,
2543 enum unwind_stub_types stub_type)
2544{
2545 struct objfile *objfile;
2546 struct minimal_symbol *msym;
3b7344d5 2547 struct bound_minimal_symbol result = { NULL, NULL };
ff644745
JB
2548
2549 ALL_MSYMBOLS (objfile, msym)
2550 {
efd66ac6 2551 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
ff644745
JB
2552 {
2553 struct unwind_table_entry *u;
2554
efd66ac6 2555 u = find_unwind_entry (MSYMBOL_VALUE (msym));
ff644745 2556 if (u != NULL && u->stub_unwind.stub_type == stub_type)
3b7344d5
TT
2557 {
2558 result.objfile = objfile;
2559 result.minsym = msym;
2560 return result;
2561 }
ff644745
JB
2562 }
2563 }
2564
3b7344d5 2565 return result;
ff644745
JB
2566}
2567
c906108c 2568static void
c482f52c 2569unwind_command (const char *exp, int from_tty)
c906108c
SS
2570{
2571 CORE_ADDR address;
2572 struct unwind_table_entry *u;
2573
2574 /* If we have an expression, evaluate it and use it as the address. */
2575
2576 if (exp != 0 && *exp != 0)
2577 address = parse_and_eval_address (exp);
2578 else
2579 return;
2580
2581 u = find_unwind_entry (address);
2582
2583 if (!u)
2584 {
2585 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2586 return;
2587 }
2588
3329c4b5 2589 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
c906108c 2590
5af949e3 2591 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
d5c27f81 2592 gdb_flush (gdb_stdout);
c906108c 2593
5af949e3 2594 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
d5c27f81 2595 gdb_flush (gdb_stdout);
c906108c 2596
c906108c 2597#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2598
2599 printf_unfiltered ("\n\tflags =");
2600 pif (Cannot_unwind);
2601 pif (Millicode);
2602 pif (Millicode_save_sr0);
2603 pif (Entry_SR);
2604 pif (Args_stored);
2605 pif (Variable_Frame);
2606 pif (Separate_Package_Body);
2607 pif (Frame_Extension_Millicode);
2608 pif (Stack_Overflow_Check);
2609 pif (Two_Instruction_SP_Increment);
6fcecea0
RC
2610 pif (sr4export);
2611 pif (cxx_info);
2612 pif (cxx_try_catch);
2613 pif (sched_entry_seq);
c906108c
SS
2614 pif (Save_SP);
2615 pif (Save_RP);
2616 pif (Save_MRP_in_frame);
6fcecea0 2617 pif (save_r19);
c906108c
SS
2618 pif (Cleanup_defined);
2619 pif (MPE_XL_interrupt_marker);
2620 pif (HP_UX_interrupt_marker);
2621 pif (Large_frame);
6fcecea0 2622 pif (alloca_frame);
c906108c
SS
2623
2624 putchar_unfiltered ('\n');
2625
c906108c 2626#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2627
2628 pin (Region_description);
2629 pin (Entry_FR);
2630 pin (Entry_GR);
2631 pin (Total_frame_size);
57dac9e1
RC
2632
2633 if (u->stub_unwind.stub_type)
2634 {
2635 printf_unfiltered ("\tstub type = ");
2636 switch (u->stub_unwind.stub_type)
2637 {
2638 case LONG_BRANCH:
2639 printf_unfiltered ("long branch\n");
2640 break;
2641 case PARAMETER_RELOCATION:
2642 printf_unfiltered ("parameter relocation\n");
2643 break;
2644 case EXPORT:
2645 printf_unfiltered ("export\n");
2646 break;
2647 case IMPORT:
2648 printf_unfiltered ("import\n");
2649 break;
2650 case IMPORT_SHLIB:
2651 printf_unfiltered ("import shlib\n");
2652 break;
2653 default:
2654 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2655 }
2656 }
c906108c 2657}
c906108c 2658
38ca4e0c
MK
2659/* Return the GDB type object for the "standard" data type of data in
2660 register REGNUM. */
d709c020 2661
eded0a31 2662static struct type *
38ca4e0c 2663hppa32_register_type (struct gdbarch *gdbarch, int regnum)
d709c020 2664{
38ca4e0c 2665 if (regnum < HPPA_FP4_REGNUM)
df4df182 2666 return builtin_type (gdbarch)->builtin_uint32;
d709c020 2667 else
27067745 2668 return builtin_type (gdbarch)->builtin_float;
d709c020
JB
2669}
2670
eded0a31 2671static struct type *
38ca4e0c 2672hppa64_register_type (struct gdbarch *gdbarch, int regnum)
3ff7cf9e 2673{
38ca4e0c 2674 if (regnum < HPPA64_FP4_REGNUM)
df4df182 2675 return builtin_type (gdbarch)->builtin_uint64;
3ff7cf9e 2676 else
27067745 2677 return builtin_type (gdbarch)->builtin_double;
3ff7cf9e
JB
2678}
2679
38ca4e0c
MK
2680/* Return non-zero if REGNUM is not a register available to the user
2681 through ptrace/ttrace. */
d709c020 2682
8d153463 2683static int
64a3914f 2684hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
d709c020
JB
2685{
2686 return (regnum == 0
34f75cc1
RC
2687 || regnum == HPPA_PCSQ_HEAD_REGNUM
2688 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2689 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
38ca4e0c 2690}
d709c020 2691
d037d088 2692static int
64a3914f 2693hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2694{
2695 /* cr26 and cr27 are readable (but not writable) from userspace. */
2696 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2697 return 0;
2698 else
64a3914f 2699 return hppa32_cannot_store_register (gdbarch, regnum);
d037d088
CD
2700}
2701
38ca4e0c 2702static int
64a3914f 2703hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
38ca4e0c
MK
2704{
2705 return (regnum == 0
2706 || regnum == HPPA_PCSQ_HEAD_REGNUM
2707 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2708 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
d709c020
JB
2709}
2710
d037d088 2711static int
64a3914f 2712hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2713{
2714 /* cr26 and cr27 are readable (but not writable) from userspace. */
2715 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2716 return 0;
2717 else
64a3914f 2718 return hppa64_cannot_store_register (gdbarch, regnum);
d037d088
CD
2719}
2720
8d153463 2721static CORE_ADDR
85ddcc70 2722hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
d709c020
JB
2723{
2724 /* The low two bits of the PC on the PA contain the privilege level.
2725 Some genius implementing a (non-GCC) compiler apparently decided
2726 this means that "addresses" in a text section therefore include a
2727 privilege level, and thus symbol tables should contain these bits.
2728 This seems like a bonehead thing to do--anyway, it seems to work
2729 for our purposes to just ignore those bits. */
2730
2731 return (addr &= ~0x3);
2732}
2733
e127f0db
MK
2734/* Get the ARGIth function argument for the current function. */
2735
4a302917 2736static CORE_ADDR
143985b7
AF
2737hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2738 struct type *type)
2739{
e127f0db 2740 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
143985b7
AF
2741}
2742
05d1431c 2743static enum register_status
849d0ba8 2744hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
e127f0db 2745 int regnum, gdb_byte *buf)
0f8d9d59 2746{
05d1431c
PA
2747 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2748 ULONGEST tmp;
2749 enum register_status status;
0f8d9d59 2750
03f50fc8 2751 status = regcache->raw_read (regnum, &tmp);
05d1431c
PA
2752 if (status == REG_VALID)
2753 {
2754 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2755 tmp &= ~0x3;
2756 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2757 }
2758 return status;
0f8d9d59
RC
2759}
2760
d49771ef 2761static CORE_ADDR
e38c262f 2762hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
d49771ef
RC
2763{
2764 return 0;
2765}
2766
227e86ad
JB
2767struct value *
2768hppa_frame_prev_register_helper (struct frame_info *this_frame,
0da28f8a 2769 struct trad_frame_saved_reg saved_regs[],
227e86ad 2770 int regnum)
0da28f8a 2771{
227e86ad 2772 struct gdbarch *arch = get_frame_arch (this_frame);
e17a4113 2773 enum bfd_endian byte_order = gdbarch_byte_order (arch);
8f4e467c 2774
8693c419
MK
2775 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2776 {
227e86ad
JB
2777 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2778 CORE_ADDR pc;
2779 struct value *pcoq_val =
2780 trad_frame_get_prev_register (this_frame, saved_regs,
2781 HPPA_PCOQ_HEAD_REGNUM);
8693c419 2782
e17a4113
UW
2783 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2784 size, byte_order);
227e86ad 2785 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
8693c419 2786 }
0da28f8a 2787
227e86ad 2788 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
0da28f8a 2789}
8693c419 2790\f
0da28f8a 2791
34f55018
MK
2792/* An instruction to match. */
2793struct insn_pattern
2794{
2795 unsigned int data; /* See if it matches this.... */
2796 unsigned int mask; /* ... with this mask. */
2797};
2798
2799/* See bfd/elf32-hppa.c */
2800static struct insn_pattern hppa_long_branch_stub[] = {
2801 /* ldil LR'xxx,%r1 */
2802 { 0x20200000, 0xffe00000 },
2803 /* be,n RR'xxx(%sr4,%r1) */
2804 { 0xe0202002, 0xffe02002 },
2805 { 0, 0 }
2806};
2807
2808static struct insn_pattern hppa_long_branch_pic_stub[] = {
2809 /* b,l .+8, %r1 */
2810 { 0xe8200000, 0xffe00000 },
2811 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2812 { 0x28200000, 0xffe00000 },
2813 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2814 { 0xe0202002, 0xffe02002 },
2815 { 0, 0 }
2816};
2817
2818static struct insn_pattern hppa_import_stub[] = {
2819 /* addil LR'xxx, %dp */
2820 { 0x2b600000, 0xffe00000 },
2821 /* ldw RR'xxx(%r1), %r21 */
2822 { 0x48350000, 0xffffb000 },
2823 /* bv %r0(%r21) */
2824 { 0xeaa0c000, 0xffffffff },
2825 /* ldw RR'xxx+4(%r1), %r19 */
2826 { 0x48330000, 0xffffb000 },
2827 { 0, 0 }
2828};
2829
2830static struct insn_pattern hppa_import_pic_stub[] = {
2831 /* addil LR'xxx,%r19 */
2832 { 0x2a600000, 0xffe00000 },
2833 /* ldw RR'xxx(%r1),%r21 */
2834 { 0x48350000, 0xffffb000 },
2835 /* bv %r0(%r21) */
2836 { 0xeaa0c000, 0xffffffff },
2837 /* ldw RR'xxx+4(%r1),%r19 */
2838 { 0x48330000, 0xffffb000 },
2839 { 0, 0 },
2840};
2841
2842static struct insn_pattern hppa_plt_stub[] = {
2843 /* b,l 1b, %r20 - 1b is 3 insns before here */
2844 { 0xea9f1fdd, 0xffffffff },
2845 /* depi 0,31,2,%r20 */
2846 { 0xd6801c1e, 0xffffffff },
2847 { 0, 0 }
34f55018
MK
2848};
2849
2850/* Maximum number of instructions on the patterns above. */
2851#define HPPA_MAX_INSN_PATTERN_LEN 4
2852
2853/* Return non-zero if the instructions at PC match the series
2854 described in PATTERN, or zero otherwise. PATTERN is an array of
2855 'struct insn_pattern' objects, terminated by an entry whose mask is
2856 zero.
2857
2858 When the match is successful, fill INSN[i] with what PATTERN[i]
2859 matched. */
2860
2861static int
e17a4113
UW
2862hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2863 struct insn_pattern *pattern, unsigned int *insn)
34f55018 2864{
e17a4113 2865 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
34f55018
MK
2866 CORE_ADDR npc = pc;
2867 int i;
2868
2869 for (i = 0; pattern[i].mask; i++)
2870 {
2871 gdb_byte buf[HPPA_INSN_SIZE];
2872
8defab1a 2873 target_read_memory (npc, buf, HPPA_INSN_SIZE);
e17a4113 2874 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
34f55018
MK
2875 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2876 npc += 4;
2877 else
2878 return 0;
2879 }
2880
2881 return 1;
2882}
2883
2884/* This relaxed version of the insstruction matcher allows us to match
2885 from somewhere inside the pattern, by looking backwards in the
2886 instruction scheme. */
2887
2888static int
e17a4113
UW
2889hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2890 struct insn_pattern *pattern, unsigned int *insn)
34f55018
MK
2891{
2892 int offset, len = 0;
2893
2894 while (pattern[len].mask)
2895 len++;
2896
2897 for (offset = 0; offset < len; offset++)
e17a4113
UW
2898 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2899 pattern, insn))
34f55018
MK
2900 return 1;
2901
2902 return 0;
2903}
2904
2905static int
2906hppa_in_dyncall (CORE_ADDR pc)
2907{
2908 struct unwind_table_entry *u;
2909
2910 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2911 if (!u)
2912 return 0;
2913
2914 return (pc >= u->region_start && pc <= u->region_end);
2915}
2916
2917int
3e5d3a5a 2918hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
34f55018
MK
2919{
2920 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2921 struct unwind_table_entry *u;
2922
3e5d3a5a 2923 if (in_plt_section (pc) || hppa_in_dyncall (pc))
34f55018
MK
2924 return 1;
2925
2926 /* The GNU toolchain produces linker stubs without unwind
2927 information. Since the pattern matching for linker stubs can be
2928 quite slow, so bail out if we do have an unwind entry. */
2929
2930 u = find_unwind_entry (pc);
806e23c0 2931 if (u != NULL)
34f55018
MK
2932 return 0;
2933
e17a4113
UW
2934 return
2935 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2936 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2937 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2938 || hppa_match_insns_relaxed (gdbarch, pc,
2939 hppa_long_branch_pic_stub, insn));
34f55018
MK
2940}
2941
2942/* This code skips several kind of "trampolines" used on PA-RISC
2943 systems: $$dyncall, import stubs and PLT stubs. */
2944
2945CORE_ADDR
52f729a7 2946hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
34f55018 2947{
0dfff4cb
UW
2948 struct gdbarch *gdbarch = get_frame_arch (frame);
2949 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2950
34f55018
MK
2951 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2952 int dp_rel;
2953
2954 /* $$dyncall handles both PLABELs and direct addresses. */
2955 if (hppa_in_dyncall (pc))
2956 {
52f729a7 2957 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
34f55018
MK
2958
2959 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2960 if (pc & 0x2)
0dfff4cb 2961 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
34f55018
MK
2962
2963 return pc;
2964 }
2965
e17a4113
UW
2966 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2967 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
34f55018
MK
2968 {
2969 /* Extract the target address from the addil/ldw sequence. */
2970 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2971
2972 if (dp_rel)
52f729a7 2973 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
34f55018 2974 else
52f729a7 2975 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
34f55018
MK
2976
2977 /* fallthrough */
2978 }
2979
3e5d3a5a 2980 if (in_plt_section (pc))
34f55018 2981 {
0dfff4cb 2982 pc = read_memory_typed_address (pc, func_ptr_type);
34f55018
MK
2983
2984 /* If the PLT slot has not yet been resolved, the target will be
2985 the PLT stub. */
3e5d3a5a 2986 if (in_plt_section (pc))
34f55018
MK
2987 {
2988 /* Sanity check: are we pointing to the PLT stub? */
e17a4113 2989 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
34f55018 2990 {
5af949e3
UW
2991 warning (_("Cannot resolve PLT stub at %s."),
2992 paddress (gdbarch, pc));
34f55018
MK
2993 return 0;
2994 }
2995
2996 /* This should point to the fixup routine. */
0dfff4cb 2997 pc = read_memory_typed_address (pc + 8, func_ptr_type);
34f55018
MK
2998 }
2999 }
3000
3001 return pc;
3002}
3003\f
3004
8e8b2dba
MC
3005/* Here is a table of C type sizes on hppa with various compiles
3006 and options. I measured this on PA 9000/800 with HP-UX 11.11
3007 and these compilers:
3008
3009 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3010 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3011 /opt/aCC/bin/aCC B3910B A.03.45
3012 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3013
3014 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3015 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3016 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3017 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3018 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3019 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3020 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3021 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3022
3023 Each line is:
3024
3025 compiler and options
3026 char, short, int, long, long long
3027 float, double, long double
3028 char *, void (*)()
3029
3030 So all these compilers use either ILP32 or LP64 model.
3031 TODO: gcc has more options so it needs more investigation.
3032
a2379359
MC
3033 For floating point types, see:
3034
3035 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3036 HP-UX floating-point guide, hpux 11.00
3037
8e8b2dba
MC
3038 -- chastain 2003-12-18 */
3039
e6e68f1f
JB
3040static struct gdbarch *
3041hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3042{
3ff7cf9e 3043 struct gdbarch_tdep *tdep;
e6e68f1f
JB
3044 struct gdbarch *gdbarch;
3045
3046 /* find a candidate among the list of pre-declared architectures. */
3047 arches = gdbarch_list_lookup_by_info (arches, &info);
3048 if (arches != NULL)
3049 return (arches->gdbarch);
3050
3051 /* If none found, then allocate and initialize one. */
41bf6aca 3052 tdep = XCNEW (struct gdbarch_tdep);
3ff7cf9e
JB
3053 gdbarch = gdbarch_alloc (&info, tdep);
3054
3055 /* Determine from the bfd_arch_info structure if we are dealing with
3056 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3057 then default to a 32bit machine. */
3058 if (info.bfd_arch_info != NULL)
3059 tdep->bytes_per_address =
3060 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3061 else
3062 tdep->bytes_per_address = 4;
3063
d49771ef
RC
3064 tdep->find_global_pointer = hppa_find_global_pointer;
3065
3ff7cf9e
JB
3066 /* Some parts of the gdbarch vector depend on whether we are running
3067 on a 32 bits or 64 bits target. */
3068 switch (tdep->bytes_per_address)
3069 {
3070 case 4:
3071 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3072 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 3073 set_gdbarch_register_type (gdbarch, hppa32_register_type);
38ca4e0c
MK
3074 set_gdbarch_cannot_store_register (gdbarch,
3075 hppa32_cannot_store_register);
3076 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3077 hppa32_cannot_fetch_register);
3ff7cf9e
JB
3078 break;
3079 case 8:
3080 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3081 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 3082 set_gdbarch_register_type (gdbarch, hppa64_register_type);
1ef7fcb5 3083 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
38ca4e0c
MK
3084 set_gdbarch_cannot_store_register (gdbarch,
3085 hppa64_cannot_store_register);
3086 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3087 hppa64_cannot_fetch_register);
3ff7cf9e
JB
3088 break;
3089 default:
e2e0b3e5 3090 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3ff7cf9e
JB
3091 tdep->bytes_per_address);
3092 }
3093
3ff7cf9e 3094 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 3095 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 3096
8e8b2dba
MC
3097 /* The following gdbarch vector elements are the same in both ILP32
3098 and LP64, but might show differences some day. */
3099 set_gdbarch_long_long_bit (gdbarch, 64);
3100 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 3101 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
8e8b2dba 3102
3ff7cf9e
JB
3103 /* The following gdbarch vector elements do not depend on the address
3104 size, or in any other gdbarch element previously set. */
60383d10 3105 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
c9cf6e20
MG
3106 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3107 hppa_stack_frame_destroyed_p);
a2a84a72 3108 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
3109 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3110 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
85ddcc70 3111 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
60383d10 3112 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
3113 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3114 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 3115
143985b7
AF
3116 /* Helper for function argument information. */
3117 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3118
3a3bc038
AC
3119 /* When a hardware watchpoint triggers, we'll move the inferior past
3120 it by removing all eventpoints; stepping past the instruction
3121 that caused the trigger; reinserting eventpoints; and checking
3122 whether any watched location changed. */
3123 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3124
5979bc46 3125 /* Inferior function call methods. */
fca7aa43 3126 switch (tdep->bytes_per_address)
5979bc46 3127 {
fca7aa43
AC
3128 case 4:
3129 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3130 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
3131 set_gdbarch_convert_from_func_ptr_addr
3132 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
3133 break;
3134 case 8:
782eae8b
AC
3135 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3136 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 3137 break;
782eae8b 3138 default:
e2e0b3e5 3139 internal_error (__FILE__, __LINE__, _("bad switch"));
fad850b2
AC
3140 }
3141
3142 /* Struct return methods. */
fca7aa43 3143 switch (tdep->bytes_per_address)
fad850b2 3144 {
fca7aa43
AC
3145 case 4:
3146 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3147 break;
3148 case 8:
782eae8b 3149 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 3150 break;
fca7aa43 3151 default:
e2e0b3e5 3152 internal_error (__FILE__, __LINE__, _("bad switch"));
e963316f 3153 }
7f07c5b6 3154
04180708
YQ
3155 set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
3156 set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
7f07c5b6 3157 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 3158
5979bc46 3159 /* Frame unwind methods. */
227e86ad 3160 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
782eae8b 3161 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 3162
50306a9d
RC
3163 /* Hook in ABI-specific overrides, if they have been registered. */
3164 gdbarch_init_osabi (info, gdbarch);
3165
7f07c5b6 3166 /* Hook in the default unwinders. */
227e86ad
JB
3167 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3168 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3169 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
5979bc46 3170
e6e68f1f
JB
3171 return gdbarch;
3172}
3173
3174static void
464963c9 3175hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
e6e68f1f 3176{
464963c9 3177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fdd72f95
RC
3178
3179 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3180 tdep->bytes_per_address);
3181 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
3182}
3183
4facf7e8
JB
3184void
3185_initialize_hppa_tdep (void)
3186{
e6e68f1f 3187 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 3188
7c46b9fb
RC
3189 hppa_objfile_priv_data = register_objfile_data ();
3190
4facf7e8 3191 add_cmd ("unwind", class_maintenance, unwind_command,
1a966eab 3192 _("Print unwind table entry at given address."),
4facf7e8
JB
3193 &maintenanceprintlist);
3194
1777feb0 3195 /* Debug this files internals. */
7915a72c
AC
3196 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3197Set whether hppa target specific debugging information should be displayed."),
3198 _("\
3199Show whether hppa target specific debugging information is displayed."), _("\
4a302917
RC
3200This flag controls whether hppa target specific debugging information is\n\
3201displayed. This information is particularly useful for debugging frame\n\
7915a72c 3202unwinding problems."),
2c5b56ce 3203 NULL,
7915a72c 3204 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2c5b56ce 3205 &setdebuglist, &showdebuglist);
4facf7e8 3206}
This page took 1.710648 seconds and 4 git commands to generate.