2003-09-28 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
1e698235 4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c
SS
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "frame.h"
28#include "bfd.h"
29#include "inferior.h"
30#include "value.h"
4e052eda 31#include "regcache.h"
e5d66720 32#include "completer.h"
d709c020 33#include "language.h"
59623e27 34#include "osabi.h"
a7ff40e7 35#include "gdb_assert.h"
65e82032 36#include "infttrace.h"
c906108c
SS
37/* For argument passing to the inferior */
38#include "symtab.h"
04714b91 39#include "infcall.h"
fde2cceb 40#include "dis-asm.h"
c906108c
SS
41
42#ifdef USG
43#include <sys/types.h>
44#endif
45
46#include <dl.h>
47#include <sys/param.h>
48#include <signal.h>
49
50#include <sys/ptrace.h>
51#include <machine/save_state.h>
52
53#ifdef COFF_ENCAPSULATE
54#include "a.out.encap.h"
55#else
56#endif
57
c5aa993b 58/*#include <sys/user.h> After a.out.h */
c906108c
SS
59#include <sys/file.h>
60#include "gdb_stat.h"
03f2053f 61#include "gdb_wait.h"
c906108c
SS
62
63#include "gdbcore.h"
64#include "gdbcmd.h"
65#include "target.h"
66#include "symfile.h"
67#include "objfiles.h"
3ff7cf9e 68#include "hppa-tdep.h"
c906108c 69
60383d10 70/* Some local constants. */
3ff7cf9e
JB
71static const int hppa32_num_regs = 128;
72static const int hppa64_num_regs = 96;
73
74static const int hppa64_call_dummy_breakpoint_offset = 22 * 4;
75
76/* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
77 word on the target machine, not the size of an instruction. Since
78 a word on this target holds two instructions we have to divide the
79 instruction size by two to get the word size of the dummy. */
80static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28;
81static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2;
60383d10 82
e2ac8128
JB
83/* Get at various relevent fields of an instruction word. */
84#define MASK_5 0x1f
85#define MASK_11 0x7ff
86#define MASK_14 0x3fff
87#define MASK_21 0x1fffff
88
89/* Define offsets into the call dummy for the target function address.
90 See comments related to CALL_DUMMY for more info. */
91#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
92#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
93
94/* Define offsets into the call dummy for the _sr4export address.
95 See comments related to CALL_DUMMY for more info. */
96#define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
97#define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
98
c906108c
SS
99/* To support detection of the pseudo-initial frame
100 that threads have. */
101#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
102#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
c5aa993b 103
e2ac8128
JB
104/* Sizes (in bytes) of the native unwind entries. */
105#define UNWIND_ENTRY_SIZE 16
106#define STUB_UNWIND_ENTRY_SIZE 8
107
108static int get_field (unsigned word, int from, int to);
109
a14ed312 110static int extract_5_load (unsigned int);
c906108c 111
a14ed312 112static unsigned extract_5R_store (unsigned int);
c906108c 113
a14ed312 114static unsigned extract_5r_store (unsigned int);
c906108c 115
43bd9a9e 116static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
c906108c 117
a14ed312 118static int find_proc_framesize (CORE_ADDR);
c906108c 119
a14ed312 120static int find_return_regnum (CORE_ADDR);
c906108c 121
a14ed312 122struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
c906108c 123
a14ed312 124static int extract_17 (unsigned int);
c906108c 125
a14ed312 126static unsigned deposit_21 (unsigned int, unsigned int);
c906108c 127
a14ed312 128static int extract_21 (unsigned);
c906108c 129
a14ed312 130static unsigned deposit_14 (int, unsigned int);
c906108c 131
a14ed312 132static int extract_14 (unsigned);
c906108c 133
a14ed312 134static void unwind_command (char *, int);
c906108c 135
a14ed312 136static int low_sign_extend (unsigned int, unsigned int);
c906108c 137
a14ed312 138static int sign_extend (unsigned int, unsigned int);
c906108c 139
43bd9a9e 140static int restore_pc_queue (CORE_ADDR *);
c906108c 141
a14ed312 142static int hppa_alignof (struct type *);
c906108c 143
a14ed312 144static int prologue_inst_adjust_sp (unsigned long);
c906108c 145
a14ed312 146static int is_branch (unsigned long);
c906108c 147
a14ed312 148static int inst_saves_gr (unsigned long);
c906108c 149
a14ed312 150static int inst_saves_fr (unsigned long);
c906108c 151
a14ed312 152static int pc_in_interrupt_handler (CORE_ADDR);
c906108c 153
a14ed312 154static int pc_in_linker_stub (CORE_ADDR);
c906108c 155
a14ed312 156static int compare_unwind_entries (const void *, const void *);
c906108c 157
a14ed312 158static void read_unwind_info (struct objfile *);
c906108c 159
a14ed312
KB
160static void internalize_unwinds (struct objfile *,
161 struct unwind_table_entry *,
162 asection *, unsigned int,
163 unsigned int, CORE_ADDR);
164static void pa_print_registers (char *, int, int);
d9fcf2fb 165static void pa_strcat_registers (char *, int, int, struct ui_file *);
a14ed312
KB
166static void pa_register_look_aside (char *, int, long *);
167static void pa_print_fp_reg (int);
d9fcf2fb 168static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
a14ed312 169static void record_text_segment_lowaddr (bfd *, asection *, void *);
d709c020
JB
170/* FIXME: brobecker 2002-11-07: We will likely be able to make the
171 following functions static, once we hppa is partially multiarched. */
172int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
60383d10
JB
173CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
174CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
175int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
176int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
177CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
d709c020 178int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
3ff7cf9e
JB
179CORE_ADDR hppa32_stack_align (CORE_ADDR sp);
180CORE_ADDR hppa64_stack_align (CORE_ADDR sp);
d709c020
JB
181int hppa_pc_requires_run_before_use (CORE_ADDR pc);
182int hppa_instruction_nullified (void);
60e1ff27 183int hppa_register_raw_size (int reg_nr);
d709c020 184int hppa_register_byte (int reg_nr);
3ff7cf9e
JB
185struct type * hppa32_register_virtual_type (int reg_nr);
186struct type * hppa64_register_virtual_type (int reg_nr);
d709c020 187void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
3ff7cf9e
JB
188void hppa32_extract_return_value (struct type *type, char *regbuf,
189 char *valbuf);
190void hppa64_extract_return_value (struct type *type, char *regbuf,
191 char *valbuf);
192int hppa32_use_struct_convention (int gcc_p, struct type *type);
193int hppa64_use_struct_convention (int gcc_p, struct type *type);
194void hppa32_store_return_value (struct type *type, char *valbuf);
195void hppa64_store_return_value (struct type *type, char *valbuf);
60383d10 196CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
d709c020 197int hppa_cannot_store_register (int regnum);
60383d10
JB
198void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
199CORE_ADDR hppa_frame_chain (struct frame_info *frame);
200int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
201int hppa_frameless_function_invocation (struct frame_info *frame);
202CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
d709c020 203CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
60383d10 204int hppa_frame_num_args (struct frame_info *frame);
7daf4f5b 205void hppa_push_dummy_frame (void);
60383d10
JB
206void hppa_pop_frame (void);
207CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
208 int nargs, struct value **args,
209 struct type *type, int gcc_p);
210CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
211 int struct_return, CORE_ADDR struct_addr);
d709c020 212CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
60383d10
JB
213CORE_ADDR hppa_target_read_pc (ptid_t ptid);
214void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
215CORE_ADDR hppa_target_read_fp (void);
c906108c 216
c5aa993b
JM
217typedef struct
218 {
219 struct minimal_symbol *msym;
220 CORE_ADDR solib_handle;
a0b3c4fd 221 CORE_ADDR return_val;
c5aa993b
JM
222 }
223args_for_find_stub;
c906108c 224
4efb68b1 225static int cover_find_stub_with_shl_get (void *);
c906108c 226
c5aa993b 227static int is_pa_2 = 0; /* False */
c906108c 228
c5aa993b 229/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
c906108c
SS
230extern int hp_som_som_object_present;
231
232/* In breakpoint.c */
233extern int exception_catchpoints_are_fragile;
234
c906108c 235/* Should call_function allocate stack space for a struct return? */
d709c020 236
c906108c 237int
3ff7cf9e 238hppa32_use_struct_convention (int gcc_p, struct type *type)
c906108c 239{
b1e29e33 240 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
c906108c 241}
3ff7cf9e
JB
242
243/* Same as hppa32_use_struct_convention() for the PA64 ABI. */
244
245int
246hppa64_use_struct_convention (int gcc_p, struct type *type)
247{
248 /* RM: struct upto 128 bits are returned in registers */
249 return TYPE_LENGTH (type) > 16;
250}
c5aa993b 251
c906108c
SS
252/* Routines to extract various sized constants out of hppa
253 instructions. */
254
255/* This assumes that no garbage lies outside of the lower bits of
256 value. */
257
258static int
fba45db2 259sign_extend (unsigned val, unsigned bits)
c906108c 260{
c5aa993b 261 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
262}
263
264/* For many immediate values the sign bit is the low bit! */
265
266static int
fba45db2 267low_sign_extend (unsigned val, unsigned bits)
c906108c 268{
c5aa993b 269 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
270}
271
e2ac8128
JB
272/* Extract the bits at positions between FROM and TO, using HP's numbering
273 (MSB = 0). */
274
275static int
276get_field (unsigned word, int from, int to)
277{
278 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
279}
280
c906108c
SS
281/* extract the immediate field from a ld{bhw}s instruction */
282
c906108c 283static int
fba45db2 284extract_5_load (unsigned word)
c906108c
SS
285{
286 return low_sign_extend (word >> 16 & MASK_5, 5);
287}
288
c906108c
SS
289/* extract the immediate field from a break instruction */
290
291static unsigned
fba45db2 292extract_5r_store (unsigned word)
c906108c
SS
293{
294 return (word & MASK_5);
295}
296
297/* extract the immediate field from a {sr}sm instruction */
298
299static unsigned
fba45db2 300extract_5R_store (unsigned word)
c906108c
SS
301{
302 return (word >> 16 & MASK_5);
303}
304
c906108c
SS
305/* extract a 14 bit immediate field */
306
307static int
fba45db2 308extract_14 (unsigned word)
c906108c
SS
309{
310 return low_sign_extend (word & MASK_14, 14);
311}
312
313/* deposit a 14 bit constant in a word */
314
315static unsigned
fba45db2 316deposit_14 (int opnd, unsigned word)
c906108c
SS
317{
318 unsigned sign = (opnd < 0 ? 1 : 0);
319
c5aa993b 320 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
c906108c
SS
321}
322
323/* extract a 21 bit constant */
324
325static int
fba45db2 326extract_21 (unsigned word)
c906108c
SS
327{
328 int val;
329
330 word &= MASK_21;
331 word <<= 11;
e2ac8128 332 val = get_field (word, 20, 20);
c906108c 333 val <<= 11;
e2ac8128 334 val |= get_field (word, 9, 19);
c906108c 335 val <<= 2;
e2ac8128 336 val |= get_field (word, 5, 6);
c906108c 337 val <<= 5;
e2ac8128 338 val |= get_field (word, 0, 4);
c906108c 339 val <<= 2;
e2ac8128 340 val |= get_field (word, 7, 8);
c906108c
SS
341 return sign_extend (val, 21) << 11;
342}
343
344/* deposit a 21 bit constant in a word. Although 21 bit constants are
345 usually the top 21 bits of a 32 bit constant, we assume that only
346 the low 21 bits of opnd are relevant */
347
348static unsigned
fba45db2 349deposit_21 (unsigned opnd, unsigned word)
c906108c
SS
350{
351 unsigned val = 0;
352
e2ac8128 353 val |= get_field (opnd, 11 + 14, 11 + 18);
c906108c 354 val <<= 2;
e2ac8128 355 val |= get_field (opnd, 11 + 12, 11 + 13);
c906108c 356 val <<= 2;
e2ac8128 357 val |= get_field (opnd, 11 + 19, 11 + 20);
c906108c 358 val <<= 11;
e2ac8128 359 val |= get_field (opnd, 11 + 1, 11 + 11);
c906108c 360 val <<= 1;
e2ac8128 361 val |= get_field (opnd, 11 + 0, 11 + 0);
c906108c
SS
362 return word | val;
363}
364
c906108c
SS
365/* extract a 17 bit constant from branch instructions, returning the
366 19 bit signed value. */
367
368static int
fba45db2 369extract_17 (unsigned word)
c906108c 370{
e2ac8128
JB
371 return sign_extend (get_field (word, 19, 28) |
372 get_field (word, 29, 29) << 10 |
373 get_field (word, 11, 15) << 11 |
c906108c
SS
374 (word & 0x1) << 16, 17) << 2;
375}
376\f
377
378/* Compare the start address for two unwind entries returning 1 if
379 the first address is larger than the second, -1 if the second is
380 larger than the first, and zero if they are equal. */
381
382static int
fba45db2 383compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
384{
385 const struct unwind_table_entry *a = arg1;
386 const struct unwind_table_entry *b = arg2;
387
388 if (a->region_start > b->region_start)
389 return 1;
390 else if (a->region_start < b->region_start)
391 return -1;
392 else
393 return 0;
394}
395
53a5351d
JM
396static CORE_ADDR low_text_segment_address;
397
398static void
8fef05cc 399record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
53a5351d 400{
bf9c25dc 401 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d
JM
402 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
403 && section->vma < low_text_segment_address)
404 low_text_segment_address = section->vma;
405}
406
c906108c 407static void
fba45db2
KB
408internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
409 asection *section, unsigned int entries, unsigned int size,
410 CORE_ADDR text_offset)
c906108c
SS
411{
412 /* We will read the unwind entries into temporary memory, then
413 fill in the actual unwind table. */
414 if (size > 0)
415 {
416 unsigned long tmp;
417 unsigned i;
418 char *buf = alloca (size);
419
53a5351d
JM
420 low_text_segment_address = -1;
421
422 /* If addresses are 64 bits wide, then unwinds are supposed to
c2c6d25f
JM
423 be segment relative offsets instead of absolute addresses.
424
425 Note that when loading a shared library (text_offset != 0) the
426 unwinds are already relative to the text_offset that will be
427 passed in. */
428 if (TARGET_PTR_BIT == 64 && text_offset == 0)
53a5351d
JM
429 {
430 bfd_map_over_sections (objfile->obfd,
4efb68b1 431 record_text_segment_lowaddr, NULL);
53a5351d
JM
432
433 /* ?!? Mask off some low bits. Should this instead subtract
434 out the lowest section's filepos or something like that?
435 This looks very hokey to me. */
436 low_text_segment_address &= ~0xfff;
437 text_offset += low_text_segment_address;
438 }
439
c906108c
SS
440 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
441
442 /* Now internalize the information being careful to handle host/target
c5aa993b 443 endian issues. */
c906108c
SS
444 for (i = 0; i < entries; i++)
445 {
446 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 447 (bfd_byte *) buf);
c906108c
SS
448 table[i].region_start += text_offset;
449 buf += 4;
c5aa993b 450 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
451 table[i].region_end += text_offset;
452 buf += 4;
c5aa993b 453 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
454 buf += 4;
455 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
456 table[i].Millicode = (tmp >> 30) & 0x1;
457 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
458 table[i].Region_description = (tmp >> 27) & 0x3;
459 table[i].reserved1 = (tmp >> 26) & 0x1;
460 table[i].Entry_SR = (tmp >> 25) & 0x1;
461 table[i].Entry_FR = (tmp >> 21) & 0xf;
462 table[i].Entry_GR = (tmp >> 16) & 0x1f;
463 table[i].Args_stored = (tmp >> 15) & 0x1;
464 table[i].Variable_Frame = (tmp >> 14) & 0x1;
465 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
466 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
467 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
468 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
469 table[i].Ada_Region = (tmp >> 9) & 0x1;
470 table[i].cxx_info = (tmp >> 8) & 0x1;
471 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
472 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
473 table[i].reserved2 = (tmp >> 5) & 0x1;
474 table[i].Save_SP = (tmp >> 4) & 0x1;
475 table[i].Save_RP = (tmp >> 3) & 0x1;
476 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
477 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
478 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 479 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
480 buf += 4;
481 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
482 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
483 table[i].Large_frame = (tmp >> 29) & 0x1;
484 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
485 table[i].reserved4 = (tmp >> 27) & 0x1;
486 table[i].Total_frame_size = tmp & 0x7ffffff;
487
c5aa993b 488 /* Stub unwinds are handled elsewhere. */
c906108c
SS
489 table[i].stub_unwind.stub_type = 0;
490 table[i].stub_unwind.padding = 0;
491 }
492 }
493}
494
495/* Read in the backtrace information stored in the `$UNWIND_START$' section of
496 the object file. This info is used mainly by find_unwind_entry() to find
497 out the stack frame size and frame pointer used by procedures. We put
498 everything on the psymbol obstack in the objfile so that it automatically
499 gets freed when the objfile is destroyed. */
500
501static void
fba45db2 502read_unwind_info (struct objfile *objfile)
c906108c 503{
d4f3574e
SS
504 asection *unwind_sec, *stub_unwind_sec;
505 unsigned unwind_size, stub_unwind_size, total_size;
506 unsigned index, unwind_entries;
c906108c
SS
507 unsigned stub_entries, total_entries;
508 CORE_ADDR text_offset;
509 struct obj_unwind_info *ui;
510 obj_private_data_t *obj_private;
511
512 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5aa993b
JM
513 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
514 sizeof (struct obj_unwind_info));
c906108c
SS
515
516 ui->table = NULL;
517 ui->cache = NULL;
518 ui->last = -1;
519
d4f3574e
SS
520 /* For reasons unknown the HP PA64 tools generate multiple unwinder
521 sections in a single executable. So we just iterate over every
522 section in the BFD looking for unwinder sections intead of trying
523 to do a lookup with bfd_get_section_by_name.
c906108c 524
d4f3574e
SS
525 First determine the total size of the unwind tables so that we
526 can allocate memory in a nice big hunk. */
527 total_entries = 0;
528 for (unwind_sec = objfile->obfd->sections;
529 unwind_sec;
530 unwind_sec = unwind_sec->next)
c906108c 531 {
d4f3574e
SS
532 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
533 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
534 {
535 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
536 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 537
d4f3574e
SS
538 total_entries += unwind_entries;
539 }
c906108c
SS
540 }
541
d4f3574e
SS
542 /* Now compute the size of the stub unwinds. Note the ELF tools do not
543 use stub unwinds at the curren time. */
544 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
545
c906108c
SS
546 if (stub_unwind_sec)
547 {
548 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
549 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
550 }
551 else
552 {
553 stub_unwind_size = 0;
554 stub_entries = 0;
555 }
556
557 /* Compute total number of unwind entries and their total size. */
d4f3574e 558 total_entries += stub_entries;
c906108c
SS
559 total_size = total_entries * sizeof (struct unwind_table_entry);
560
561 /* Allocate memory for the unwind table. */
562 ui->table = (struct unwind_table_entry *)
563 obstack_alloc (&objfile->psymbol_obstack, total_size);
c5aa993b 564 ui->last = total_entries - 1;
c906108c 565
d4f3574e
SS
566 /* Now read in each unwind section and internalize the standard unwind
567 entries. */
c906108c 568 index = 0;
d4f3574e
SS
569 for (unwind_sec = objfile->obfd->sections;
570 unwind_sec;
571 unwind_sec = unwind_sec->next)
572 {
573 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
574 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
575 {
576 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
577 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
578
579 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
580 unwind_entries, unwind_size, text_offset);
581 index += unwind_entries;
582 }
583 }
584
585 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
586 if (stub_unwind_size > 0)
587 {
588 unsigned int i;
589 char *buf = alloca (stub_unwind_size);
590
591 /* Read in the stub unwind entries. */
592 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
593 0, stub_unwind_size);
594
595 /* Now convert them into regular unwind entries. */
596 for (i = 0; i < stub_entries; i++, index++)
597 {
598 /* Clear out the next unwind entry. */
599 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
600
601 /* Convert offset & size into region_start and region_end.
602 Stuff away the stub type into "reserved" fields. */
603 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
604 (bfd_byte *) buf);
605 ui->table[index].region_start += text_offset;
606 buf += 4;
607 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 608 (bfd_byte *) buf);
c906108c
SS
609 buf += 2;
610 ui->table[index].region_end
c5aa993b
JM
611 = ui->table[index].region_start + 4 *
612 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
613 buf += 2;
614 }
615
616 }
617
618 /* Unwind table needs to be kept sorted. */
619 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
620 compare_unwind_entries);
621
622 /* Keep a pointer to the unwind information. */
c5aa993b 623 if (objfile->obj_private == NULL)
c906108c
SS
624 {
625 obj_private = (obj_private_data_t *)
c5aa993b
JM
626 obstack_alloc (&objfile->psymbol_obstack,
627 sizeof (obj_private_data_t));
c906108c 628 obj_private->unwind_info = NULL;
c5aa993b 629 obj_private->so_info = NULL;
53a5351d 630 obj_private->dp = 0;
c5aa993b 631
4efb68b1 632 objfile->obj_private = obj_private;
c906108c 633 }
c5aa993b 634 obj_private = (obj_private_data_t *) objfile->obj_private;
c906108c
SS
635 obj_private->unwind_info = ui;
636}
637
638/* Lookup the unwind (stack backtrace) info for the given PC. We search all
639 of the objfiles seeking the unwind table entry for this PC. Each objfile
640 contains a sorted list of struct unwind_table_entry. Since we do a binary
641 search of the unwind tables, we depend upon them to be sorted. */
642
643struct unwind_table_entry *
fba45db2 644find_unwind_entry (CORE_ADDR pc)
c906108c
SS
645{
646 int first, middle, last;
647 struct objfile *objfile;
648
649 /* A function at address 0? Not in HP-UX! */
650 if (pc == (CORE_ADDR) 0)
651 return NULL;
652
653 ALL_OBJFILES (objfile)
c5aa993b
JM
654 {
655 struct obj_unwind_info *ui;
656 ui = NULL;
657 if (objfile->obj_private)
658 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
c906108c 659
c5aa993b
JM
660 if (!ui)
661 {
662 read_unwind_info (objfile);
663 if (objfile->obj_private == NULL)
104c1213 664 error ("Internal error reading unwind information.");
c5aa993b
JM
665 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
666 }
c906108c 667
c5aa993b 668 /* First, check the cache */
c906108c 669
c5aa993b
JM
670 if (ui->cache
671 && pc >= ui->cache->region_start
672 && pc <= ui->cache->region_end)
673 return ui->cache;
c906108c 674
c5aa993b 675 /* Not in the cache, do a binary search */
c906108c 676
c5aa993b
JM
677 first = 0;
678 last = ui->last;
c906108c 679
c5aa993b
JM
680 while (first <= last)
681 {
682 middle = (first + last) / 2;
683 if (pc >= ui->table[middle].region_start
684 && pc <= ui->table[middle].region_end)
685 {
686 ui->cache = &ui->table[middle];
687 return &ui->table[middle];
688 }
c906108c 689
c5aa993b
JM
690 if (pc < ui->table[middle].region_start)
691 last = middle - 1;
692 else
693 first = middle + 1;
694 }
695 } /* ALL_OBJFILES() */
c906108c
SS
696 return NULL;
697}
698
aaab4dba
AC
699const unsigned char *
700hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
701{
702 static const char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
703 (*len) = sizeof (breakpoint);
704 return breakpoint;
705}
706
e23457df
AC
707/* Return the name of a register. */
708
709const char *
3ff7cf9e 710hppa32_register_name (int i)
e23457df
AC
711{
712 static char *names[] = {
713 "flags", "r1", "rp", "r3",
714 "r4", "r5", "r6", "r7",
715 "r8", "r9", "r10", "r11",
716 "r12", "r13", "r14", "r15",
717 "r16", "r17", "r18", "r19",
718 "r20", "r21", "r22", "r23",
719 "r24", "r25", "r26", "dp",
720 "ret0", "ret1", "sp", "r31",
721 "sar", "pcoqh", "pcsqh", "pcoqt",
722 "pcsqt", "eiem", "iir", "isr",
723 "ior", "ipsw", "goto", "sr4",
724 "sr0", "sr1", "sr2", "sr3",
725 "sr5", "sr6", "sr7", "cr0",
726 "cr8", "cr9", "ccr", "cr12",
727 "cr13", "cr24", "cr25", "cr26",
728 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
729 "fpsr", "fpe1", "fpe2", "fpe3",
730 "fpe4", "fpe5", "fpe6", "fpe7",
731 "fr4", "fr4R", "fr5", "fr5R",
732 "fr6", "fr6R", "fr7", "fr7R",
733 "fr8", "fr8R", "fr9", "fr9R",
734 "fr10", "fr10R", "fr11", "fr11R",
735 "fr12", "fr12R", "fr13", "fr13R",
736 "fr14", "fr14R", "fr15", "fr15R",
737 "fr16", "fr16R", "fr17", "fr17R",
738 "fr18", "fr18R", "fr19", "fr19R",
739 "fr20", "fr20R", "fr21", "fr21R",
740 "fr22", "fr22R", "fr23", "fr23R",
741 "fr24", "fr24R", "fr25", "fr25R",
742 "fr26", "fr26R", "fr27", "fr27R",
743 "fr28", "fr28R", "fr29", "fr29R",
744 "fr30", "fr30R", "fr31", "fr31R"
745 };
746 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
747 return NULL;
748 else
749 return names[i];
750}
751
752const char *
753hppa64_register_name (int i)
754{
755 static char *names[] = {
756 "flags", "r1", "rp", "r3",
757 "r4", "r5", "r6", "r7",
758 "r8", "r9", "r10", "r11",
759 "r12", "r13", "r14", "r15",
760 "r16", "r17", "r18", "r19",
761 "r20", "r21", "r22", "r23",
762 "r24", "r25", "r26", "dp",
763 "ret0", "ret1", "sp", "r31",
764 "sar", "pcoqh", "pcsqh", "pcoqt",
765 "pcsqt", "eiem", "iir", "isr",
766 "ior", "ipsw", "goto", "sr4",
767 "sr0", "sr1", "sr2", "sr3",
768 "sr5", "sr6", "sr7", "cr0",
769 "cr8", "cr9", "ccr", "cr12",
770 "cr13", "cr24", "cr25", "cr26",
771 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
772 "fpsr", "fpe1", "fpe2", "fpe3",
773 "fr4", "fr5", "fr6", "fr7",
774 "fr8", "fr9", "fr10", "fr11",
775 "fr12", "fr13", "fr14", "fr15",
776 "fr16", "fr17", "fr18", "fr19",
777 "fr20", "fr21", "fr22", "fr23",
778 "fr24", "fr25", "fr26", "fr27",
779 "fr28", "fr29", "fr30", "fr31"
780 };
781 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
782 return NULL;
783 else
784 return names[i];
785}
786
787
788
c906108c
SS
789/* Return the adjustment necessary to make for addresses on the stack
790 as presented by hpread.c.
791
792 This is necessary because of the stack direction on the PA and the
793 bizarre way in which someone (?) decided they wanted to handle
794 frame pointerless code in GDB. */
795int
fba45db2 796hpread_adjust_stack_address (CORE_ADDR func_addr)
c906108c
SS
797{
798 struct unwind_table_entry *u;
799
800 u = find_unwind_entry (func_addr);
801 if (!u)
802 return 0;
803 else
804 return u->Total_frame_size << 3;
805}
806
807/* Called to determine if PC is in an interrupt handler of some
808 kind. */
809
810static int
fba45db2 811pc_in_interrupt_handler (CORE_ADDR pc)
c906108c
SS
812{
813 struct unwind_table_entry *u;
814 struct minimal_symbol *msym_us;
815
816 u = find_unwind_entry (pc);
817 if (!u)
818 return 0;
819
820 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
821 its frame isn't a pure interrupt frame. Deal with this. */
822 msym_us = lookup_minimal_symbol_by_pc (pc);
823
d7bd68ca 824 return (u->HP_UX_interrupt_marker
22abf04a 825 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
c906108c
SS
826}
827
828/* Called when no unwind descriptor was found for PC. Returns 1 if it
104c1213
JM
829 appears that PC is in a linker stub.
830
831 ?!? Need to handle stubs which appear in PA64 code. */
c906108c
SS
832
833static int
fba45db2 834pc_in_linker_stub (CORE_ADDR pc)
c906108c
SS
835{
836 int found_magic_instruction = 0;
837 int i;
838 char buf[4];
839
840 /* If unable to read memory, assume pc is not in a linker stub. */
841 if (target_read_memory (pc, buf, 4) != 0)
842 return 0;
843
844 /* We are looking for something like
845
846 ; $$dyncall jams RP into this special spot in the frame (RP')
847 ; before calling the "call stub"
848 ldw -18(sp),rp
849
850 ldsid (rp),r1 ; Get space associated with RP into r1
851 mtsp r1,sp ; Move it into space register 0
852 be,n 0(sr0),rp) ; back to your regularly scheduled program */
853
854 /* Maximum known linker stub size is 4 instructions. Search forward
855 from the given PC, then backward. */
856 for (i = 0; i < 4; i++)
857 {
858 /* If we hit something with an unwind, stop searching this direction. */
859
860 if (find_unwind_entry (pc + i * 4) != 0)
861 break;
862
863 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 864 return from a cross-space function call. */
c906108c
SS
865 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
866 {
867 found_magic_instruction = 1;
868 break;
869 }
870 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 871 here. */
c906108c
SS
872 }
873
874 if (found_magic_instruction != 0)
875 return 1;
876
877 /* Now look backward. */
878 for (i = 0; i < 4; i++)
879 {
880 /* If we hit something with an unwind, stop searching this direction. */
881
882 if (find_unwind_entry (pc - i * 4) != 0)
883 break;
884
885 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 886 return from a cross-space function call. */
c906108c
SS
887 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
888 {
889 found_magic_instruction = 1;
890 break;
891 }
892 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 893 here. */
c906108c
SS
894 }
895 return found_magic_instruction;
896}
897
898static int
fba45db2 899find_return_regnum (CORE_ADDR pc)
c906108c
SS
900{
901 struct unwind_table_entry *u;
902
903 u = find_unwind_entry (pc);
904
905 if (!u)
906 return RP_REGNUM;
907
908 if (u->Millicode)
909 return 31;
910
911 return RP_REGNUM;
912}
913
914/* Return size of frame, or -1 if we should use a frame pointer. */
915static int
fba45db2 916find_proc_framesize (CORE_ADDR pc)
c906108c
SS
917{
918 struct unwind_table_entry *u;
919 struct minimal_symbol *msym_us;
920
921 /* This may indicate a bug in our callers... */
c5aa993b 922 if (pc == (CORE_ADDR) 0)
c906108c 923 return -1;
c5aa993b 924
c906108c
SS
925 u = find_unwind_entry (pc);
926
927 if (!u)
928 {
929 if (pc_in_linker_stub (pc))
930 /* Linker stubs have a zero size frame. */
931 return 0;
932 else
933 return -1;
934 }
935
936 msym_us = lookup_minimal_symbol_by_pc (pc);
937
938 /* If Save_SP is set, and we're not in an interrupt or signal caller,
939 then we have a frame pointer. Use it. */
3fa41cdb
JL
940 if (u->Save_SP
941 && !pc_in_interrupt_handler (pc)
942 && msym_us
22abf04a 943 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
c906108c
SS
944 return -1;
945
946 return u->Total_frame_size << 3;
947}
948
949/* Return offset from sp at which rp is saved, or 0 if not saved. */
a14ed312 950static int rp_saved (CORE_ADDR);
c906108c
SS
951
952static int
fba45db2 953rp_saved (CORE_ADDR pc)
c906108c
SS
954{
955 struct unwind_table_entry *u;
956
957 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
958 if (pc == (CORE_ADDR) 0)
959 return 0;
960
961 u = find_unwind_entry (pc);
962
963 if (!u)
964 {
965 if (pc_in_linker_stub (pc))
966 /* This is the so-called RP'. */
967 return -24;
968 else
969 return 0;
970 }
971
972 if (u->Save_RP)
53a5351d 973 return (TARGET_PTR_BIT == 64 ? -16 : -20);
c906108c
SS
974 else if (u->stub_unwind.stub_type != 0)
975 {
976 switch (u->stub_unwind.stub_type)
977 {
978 case EXPORT:
979 case IMPORT:
980 return -24;
981 case PARAMETER_RELOCATION:
982 return -8;
983 default:
984 return 0;
985 }
986 }
987 else
988 return 0;
989}
990\f
991int
60383d10 992hppa_frameless_function_invocation (struct frame_info *frame)
c906108c
SS
993{
994 struct unwind_table_entry *u;
995
ef6e7e13 996 u = find_unwind_entry (get_frame_pc (frame));
c906108c
SS
997
998 if (u == 0)
999 return 0;
1000
1001 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
1002}
1003
d709c020
JB
1004/* Immediately after a function call, return the saved pc.
1005 Can't go through the frames for this because on some machines
1006 the new frame is not set up until the new function executes
1007 some instructions. */
1008
c906108c 1009CORE_ADDR
60383d10 1010hppa_saved_pc_after_call (struct frame_info *frame)
c906108c
SS
1011{
1012 int ret_regnum;
1013 CORE_ADDR pc;
1014 struct unwind_table_entry *u;
1015
1016 ret_regnum = find_return_regnum (get_frame_pc (frame));
1017 pc = read_register (ret_regnum) & ~0x3;
c5aa993b 1018
c906108c
SS
1019 /* If PC is in a linker stub, then we need to dig the address
1020 the stub will return to out of the stack. */
1021 u = find_unwind_entry (pc);
1022 if (u && u->stub_unwind.stub_type != 0)
8bedc050 1023 return DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
1024 else
1025 return pc;
1026}
1027\f
1028CORE_ADDR
fba45db2 1029hppa_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1030{
1031 CORE_ADDR pc = get_frame_pc (frame);
1032 struct unwind_table_entry *u;
65e82032 1033 CORE_ADDR old_pc = 0;
c5aa993b
JM
1034 int spun_around_loop = 0;
1035 int rp_offset = 0;
c906108c
SS
1036
1037 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1038 at the base of the frame in an interrupt handler. Registers within
1039 are saved in the exact same order as GDB numbers registers. How
1040 convienent. */
1041 if (pc_in_interrupt_handler (pc))
ef6e7e13 1042 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
53a5351d 1043 TARGET_PTR_BIT / 8) & ~0x3;
c906108c 1044
ef6e7e13
AC
1045 if ((get_frame_pc (frame) >= get_frame_base (frame)
1046 && (get_frame_pc (frame)
1047 <= (get_frame_base (frame)
1048 /* A call dummy is sized in words, but it is actually a
1049 series of instructions. Account for that scaling
1050 factor. */
b1e29e33
AC
1051 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1052 * DEPRECATED_CALL_DUMMY_LENGTH)
ef6e7e13
AC
1053 /* Similarly we have to account for 64bit wide register
1054 saves. */
b1e29e33 1055 + (32 * DEPRECATED_REGISTER_SIZE)
ef6e7e13
AC
1056 /* We always consider FP regs 8 bytes long. */
1057 + (NUM_REGS - FP0_REGNUM) * 8
1058 /* Similarly we have to account for 64bit wide register
1059 saves. */
b1e29e33 1060 + (6 * DEPRECATED_REGISTER_SIZE)))))
104c1213 1061 {
ef6e7e13 1062 return read_memory_integer ((get_frame_base (frame)
104c1213
JM
1063 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1064 TARGET_PTR_BIT / 8) & ~0x3;
1065 }
1066
c906108c
SS
1067#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1068 /* Deal with signal handler caller frames too. */
5a203e44 1069 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
1070 {
1071 CORE_ADDR rp;
1072 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1073 return rp & ~0x3;
1074 }
1075#endif
1076
60383d10 1077 if (hppa_frameless_function_invocation (frame))
c906108c
SS
1078 {
1079 int ret_regnum;
1080
1081 ret_regnum = find_return_regnum (pc);
1082
1083 /* If the next frame is an interrupt frame or a signal
c5aa993b
JM
1084 handler caller, then we need to look in the saved
1085 register area to get the return pointer (the values
1086 in the registers may not correspond to anything useful). */
ef6e7e13
AC
1087 if (get_next_frame (frame)
1088 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1089 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
c906108c 1090 {
43bd9a9e 1091 CORE_ADDR *saved_regs;
ef6e7e13 1092 hppa_frame_init_saved_regs (get_next_frame (frame));
1b1d3794 1093 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
43bd9a9e 1094 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1095 TARGET_PTR_BIT / 8) & 0x2)
c906108c 1096 {
43bd9a9e 1097 pc = read_memory_integer (saved_regs[31],
53a5351d 1098 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1099
1100 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
1101 with a return pointer in %rp and the kernel call with
1102 a return pointer in %r31. We return the %rp variant
1103 if %r31 is the same as frame->pc. */
ef6e7e13 1104 if (pc == get_frame_pc (frame))
43bd9a9e 1105 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1106 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1107 }
1108 else
43bd9a9e 1109 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1110 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1111 }
1112 else
1113 pc = read_register (ret_regnum) & ~0x3;
1114 }
1115 else
1116 {
1117 spun_around_loop = 0;
c5aa993b 1118 old_pc = pc;
c906108c 1119
c5aa993b 1120 restart:
c906108c
SS
1121 rp_offset = rp_saved (pc);
1122
1123 /* Similar to code in frameless function case. If the next
c5aa993b
JM
1124 frame is a signal or interrupt handler, then dig the right
1125 information out of the saved register info. */
c906108c 1126 if (rp_offset == 0
ef6e7e13
AC
1127 && get_next_frame (frame)
1128 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1129 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
c906108c 1130 {
43bd9a9e 1131 CORE_ADDR *saved_regs;
ef6e7e13 1132 hppa_frame_init_saved_regs (get_next_frame (frame));
1b1d3794 1133 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
43bd9a9e 1134 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1135 TARGET_PTR_BIT / 8) & 0x2)
c906108c 1136 {
43bd9a9e 1137 pc = read_memory_integer (saved_regs[31],
53a5351d 1138 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1139
1140 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
1141 with a return pointer in %rp and the kernel call with
1142 a return pointer in %r31. We return the %rp variant
1143 if %r31 is the same as frame->pc. */
ef6e7e13 1144 if (pc == get_frame_pc (frame))
43bd9a9e 1145 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1146 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1147 }
1148 else
43bd9a9e 1149 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1150 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1151 }
1152 else if (rp_offset == 0)
c5aa993b
JM
1153 {
1154 old_pc = pc;
1155 pc = read_register (RP_REGNUM) & ~0x3;
1156 }
c906108c 1157 else
c5aa993b
JM
1158 {
1159 old_pc = pc;
ef6e7e13 1160 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
53a5351d 1161 TARGET_PTR_BIT / 8) & ~0x3;
c5aa993b 1162 }
c906108c
SS
1163 }
1164
1165 /* If PC is inside a linker stub, then dig out the address the stub
1166 will return to.
1167
1168 Don't do this for long branch stubs. Why? For some unknown reason
1169 _start is marked as a long branch stub in hpux10. */
1170 u = find_unwind_entry (pc);
1171 if (u && u->stub_unwind.stub_type != 0
1172 && u->stub_unwind.stub_type != LONG_BRANCH)
1173 {
1174 unsigned int insn;
1175
1176 /* If this is a dynamic executable, and we're in a signal handler,
c5aa993b
JM
1177 then the call chain will eventually point us into the stub for
1178 _sigreturn. Unlike most cases, we'll be pointed to the branch
1179 to the real sigreturn rather than the code after the real branch!.
c906108c 1180
c5aa993b
JM
1181 Else, try to dig the address the stub will return to in the normal
1182 fashion. */
c906108c
SS
1183 insn = read_memory_integer (pc, 4);
1184 if ((insn & 0xfc00e000) == 0xe8000000)
1185 return (pc + extract_17 (insn) + 8) & ~0x3;
1186 else
1187 {
c5aa993b
JM
1188 if (old_pc == pc)
1189 spun_around_loop++;
1190
1191 if (spun_around_loop > 1)
1192 {
1193 /* We're just about to go around the loop again with
1194 no more hope of success. Die. */
1195 error ("Unable to find return pc for this frame");
1196 }
1197 else
1198 goto restart;
c906108c
SS
1199 }
1200 }
1201
1202 return pc;
1203}
1204\f
1205/* We need to correct the PC and the FP for the outermost frame when we are
1206 in a system call. */
1207
1208void
60383d10 1209hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
c906108c
SS
1210{
1211 int flags;
1212 int framesize;
1213
ef6e7e13 1214 if (get_next_frame (frame) && !fromleaf)
c906108c
SS
1215 return;
1216
618ce49f
AC
1217 /* If the next frame represents a frameless function invocation then
1218 we have to do some adjustments that are normally done by
1219 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1220 this case.) */
c906108c
SS
1221 if (fromleaf)
1222 {
1223 /* Find the framesize of *this* frame without peeking at the PC
c5aa993b 1224 in the current frame structure (it isn't set yet). */
8bedc050 1225 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
c906108c
SS
1226
1227 /* Now adjust our base frame accordingly. If we have a frame pointer
c5aa993b
JM
1228 use it, else subtract the size of this frame from the current
1229 frame. (we always want frame->frame to point at the lowest address
1230 in the frame). */
c906108c 1231 if (framesize == -1)
0ba6dca9 1232 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
c906108c 1233 else
ef6e7e13 1234 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
c906108c
SS
1235 return;
1236 }
1237
1238 flags = read_register (FLAGS_REGNUM);
c5aa993b 1239 if (flags & 2) /* In system call? */
ef6e7e13 1240 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
c906108c
SS
1241
1242 /* The outermost frame is always derived from PC-framesize
1243
1244 One might think frameless innermost frames should have
1245 a frame->frame that is the same as the parent's frame->frame.
1246 That is wrong; frame->frame in that case should be the *high*
1247 address of the parent's frame. It's complicated as hell to
1248 explain, but the parent *always* creates some stack space for
1249 the child. So the child actually does have a frame of some
1250 sorts, and its base is the high address in its parent's frame. */
ef6e7e13 1251 framesize = find_proc_framesize (get_frame_pc (frame));
c906108c 1252 if (framesize == -1)
0ba6dca9 1253 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
c906108c 1254 else
ef6e7e13 1255 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
c906108c
SS
1256}
1257\f
a5afb99f
AC
1258/* Given a GDB frame, determine the address of the calling function's
1259 frame. This will be used to create a new GDB frame struct, and
e9582e71
AC
1260 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1261 will be called for the new frame.
c906108c
SS
1262
1263 This may involve searching through prologues for several functions
1264 at boundaries where GCC calls HP C code, or where code which has
1265 a frame pointer calls code without a frame pointer. */
1266
1267CORE_ADDR
60383d10 1268hppa_frame_chain (struct frame_info *frame)
c906108c
SS
1269{
1270 int my_framesize, caller_framesize;
1271 struct unwind_table_entry *u;
1272 CORE_ADDR frame_base;
1273 struct frame_info *tmp_frame;
1274
c2c6d25f
JM
1275 /* A frame in the current frame list, or zero. */
1276 struct frame_info *saved_regs_frame = 0;
43bd9a9e
AC
1277 /* Where the registers were saved in saved_regs_frame. If
1278 saved_regs_frame is zero, this is garbage. */
1279 CORE_ADDR *saved_regs = NULL;
c2c6d25f 1280
c5aa993b 1281 CORE_ADDR caller_pc;
c906108c
SS
1282
1283 struct minimal_symbol *min_frame_symbol;
c5aa993b
JM
1284 struct symbol *frame_symbol;
1285 char *frame_symbol_name;
c906108c
SS
1286
1287 /* If this is a threaded application, and we see the
1288 routine "__pthread_exit", treat it as the stack root
1289 for this thread. */
ef6e7e13
AC
1290 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1291 frame_symbol = find_pc_function (get_frame_pc (frame));
c906108c 1292
c5aa993b 1293 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
c906108c 1294 {
c5aa993b
JM
1295 /* The test above for "no user function name" would defend
1296 against the slim likelihood that a user might define a
1297 routine named "__pthread_exit" and then try to debug it.
1298
1299 If it weren't commented out, and you tried to debug the
1300 pthread library itself, you'd get errors.
1301
1302 So for today, we don't make that check. */
22abf04a 1303 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
c5aa993b
JM
1304 if (frame_symbol_name != 0)
1305 {
1306 if (0 == strncmp (frame_symbol_name,
1307 THREAD_INITIAL_FRAME_SYMBOL,
1308 THREAD_INITIAL_FRAME_SYM_LEN))
1309 {
1310 /* Pretend we've reached the bottom of the stack. */
1311 return (CORE_ADDR) 0;
1312 }
1313 }
1314 } /* End of hacky code for threads. */
1315
c906108c
SS
1316 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1317 are easy; at *sp we have a full save state strucutre which we can
1318 pull the old stack pointer from. Also see frame_saved_pc for
1319 code to dig a saved PC out of the save state structure. */
ef6e7e13
AC
1320 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1321 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
53a5351d 1322 TARGET_PTR_BIT / 8);
c906108c 1323#ifdef FRAME_BASE_BEFORE_SIGTRAMP
5a203e44 1324 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
1325 {
1326 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1327 }
1328#endif
1329 else
ef6e7e13 1330 frame_base = get_frame_base (frame);
c906108c
SS
1331
1332 /* Get frame sizes for the current frame and the frame of the
1333 caller. */
ef6e7e13 1334 my_framesize = find_proc_framesize (get_frame_pc (frame));
8bedc050 1335 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
1336
1337 /* If we can't determine the caller's PC, then it's not likely we can
1338 really determine anything meaningful about its frame. We'll consider
1339 this to be stack bottom. */
1340 if (caller_pc == (CORE_ADDR) 0)
1341 return (CORE_ADDR) 0;
1342
8bedc050 1343 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1344
1345 /* If caller does not have a frame pointer, then its frame
1346 can be found at current_frame - caller_framesize. */
1347 if (caller_framesize != -1)
1348 {
1349 return frame_base - caller_framesize;
1350 }
1351 /* Both caller and callee have frame pointers and are GCC compiled
1352 (SAVE_SP bit in unwind descriptor is on for both functions.
1353 The previous frame pointer is found at the top of the current frame. */
1354 if (caller_framesize == -1 && my_framesize == -1)
1355 {
53a5351d 1356 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
c906108c
SS
1357 }
1358 /* Caller has a frame pointer, but callee does not. This is a little
1359 more difficult as GCC and HP C lay out locals and callee register save
1360 areas very differently.
1361
1362 The previous frame pointer could be in a register, or in one of
1363 several areas on the stack.
1364
1365 Walk from the current frame to the innermost frame examining
1366 unwind descriptors to determine if %r3 ever gets saved into the
1367 stack. If so return whatever value got saved into the stack.
1368 If it was never saved in the stack, then the value in %r3 is still
1369 valid, so use it.
1370
1371 We use information from unwind descriptors to determine if %r3
1372 is saved into the stack (Entry_GR field has this information). */
1373
ef6e7e13 1374 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
c906108c 1375 {
ef6e7e13 1376 u = find_unwind_entry (get_frame_pc (tmp_frame));
c906108c
SS
1377
1378 if (!u)
1379 {
1380 /* We could find this information by examining prologues. I don't
1381 think anyone has actually written any tools (not even "strip")
1382 which leave them out of an executable, so maybe this is a moot
1383 point. */
c5aa993b
JM
1384 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1385 code that doesn't have unwind entries. For example, stepping into
1386 the dynamic linker will give you a PC that has none. Thus, I've
1387 disabled this warning. */
c906108c 1388#if 0
ef6e7e13 1389 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
c906108c
SS
1390#endif
1391 return (CORE_ADDR) 0;
1392 }
1393
c2c6d25f 1394 if (u->Save_SP
5a203e44 1395 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
ef6e7e13 1396 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
c906108c 1397 break;
c2c6d25f
JM
1398
1399 /* Entry_GR specifies the number of callee-saved general registers
1400 saved in the stack. It starts at %r3, so %r3 would be 1. */
1401 if (u->Entry_GR >= 1)
1402 {
1403 /* The unwind entry claims that r3 is saved here. However,
1404 in optimized code, GCC often doesn't actually save r3.
1405 We'll discover this if we look at the prologue. */
43bd9a9e 1406 hppa_frame_init_saved_regs (tmp_frame);
1b1d3794 1407 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
c2c6d25f
JM
1408 saved_regs_frame = tmp_frame;
1409
1410 /* If we have an address for r3, that's good. */
0ba6dca9 1411 if (saved_regs[DEPRECATED_FP_REGNUM])
c2c6d25f
JM
1412 break;
1413 }
c906108c
SS
1414 }
1415
1416 if (tmp_frame)
1417 {
1418 /* We may have walked down the chain into a function with a frame
c5aa993b 1419 pointer. */
c906108c 1420 if (u->Save_SP
5a203e44 1421 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
ef6e7e13 1422 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
c906108c 1423 {
ef6e7e13 1424 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
c906108c
SS
1425 }
1426 /* %r3 was saved somewhere in the stack. Dig it out. */
c5aa993b 1427 else
c906108c 1428 {
c906108c
SS
1429 /* Sick.
1430
1431 For optimization purposes many kernels don't have the
1432 callee saved registers into the save_state structure upon
1433 entry into the kernel for a syscall; the optimization
1434 is usually turned off if the process is being traced so
1435 that the debugger can get full register state for the
1436 process.
c5aa993b 1437
c906108c
SS
1438 This scheme works well except for two cases:
1439
c5aa993b
JM
1440 * Attaching to a process when the process is in the
1441 kernel performing a system call (debugger can't get
1442 full register state for the inferior process since
1443 the process wasn't being traced when it entered the
1444 system call).
c906108c 1445
c5aa993b
JM
1446 * Register state is not complete if the system call
1447 causes the process to core dump.
c906108c
SS
1448
1449
1450 The following heinous code is an attempt to deal with
1451 the lack of register state in a core dump. It will
1452 fail miserably if the function which performs the
1453 system call has a variable sized stack frame. */
1454
c2c6d25f 1455 if (tmp_frame != saved_regs_frame)
43bd9a9e
AC
1456 {
1457 hppa_frame_init_saved_regs (tmp_frame);
1b1d3794 1458 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
43bd9a9e 1459 }
c906108c
SS
1460
1461 /* Abominable hack. */
1462 if (current_target.to_has_execution == 0
43bd9a9e
AC
1463 && ((saved_regs[FLAGS_REGNUM]
1464 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1465 TARGET_PTR_BIT / 8)
c906108c 1466 & 0x2))
43bd9a9e 1467 || (saved_regs[FLAGS_REGNUM] == 0
c906108c
SS
1468 && read_register (FLAGS_REGNUM) & 0x2)))
1469 {
8bedc050 1470 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1471 if (!u)
1472 {
0ba6dca9 1473 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
53a5351d 1474 TARGET_PTR_BIT / 8);
c906108c
SS
1475 }
1476 else
1477 {
1478 return frame_base - (u->Total_frame_size << 3);
1479 }
1480 }
c5aa993b 1481
0ba6dca9 1482 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
53a5351d 1483 TARGET_PTR_BIT / 8);
c906108c
SS
1484 }
1485 }
1486 else
1487 {
c906108c
SS
1488 /* Get the innermost frame. */
1489 tmp_frame = frame;
ef6e7e13
AC
1490 while (get_next_frame (tmp_frame) != NULL)
1491 tmp_frame = get_next_frame (tmp_frame);
c906108c 1492
c2c6d25f 1493 if (tmp_frame != saved_regs_frame)
43bd9a9e
AC
1494 {
1495 hppa_frame_init_saved_regs (tmp_frame);
1b1d3794 1496 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
43bd9a9e 1497 }
c2c6d25f 1498
c906108c
SS
1499 /* Abominable hack. See above. */
1500 if (current_target.to_has_execution == 0
43bd9a9e
AC
1501 && ((saved_regs[FLAGS_REGNUM]
1502 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1503 TARGET_PTR_BIT / 8)
c906108c 1504 & 0x2))
43bd9a9e 1505 || (saved_regs[FLAGS_REGNUM] == 0
c5aa993b 1506 && read_register (FLAGS_REGNUM) & 0x2)))
c906108c 1507 {
8bedc050 1508 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1509 if (!u)
1510 {
0ba6dca9 1511 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
53a5351d 1512 TARGET_PTR_BIT / 8);
c906108c 1513 }
c5aa993b
JM
1514 else
1515 {
1516 return frame_base - (u->Total_frame_size << 3);
1517 }
c906108c 1518 }
c5aa993b 1519
c906108c 1520 /* The value in %r3 was never saved into the stack (thus %r3 still
c5aa993b 1521 holds the value of the previous frame pointer). */
0ba6dca9 1522 return deprecated_read_fp ();
c906108c
SS
1523 }
1524}
c906108c 1525\f
c5aa993b 1526
c906108c
SS
1527/* To see if a frame chain is valid, see if the caller looks like it
1528 was compiled with gcc. */
1529
1530int
fba45db2 1531hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
1532{
1533 struct minimal_symbol *msym_us;
1534 struct minimal_symbol *msym_start;
1535 struct unwind_table_entry *u, *next_u = NULL;
1536 struct frame_info *next;
1537
ef6e7e13 1538 u = find_unwind_entry (get_frame_pc (thisframe));
c906108c
SS
1539
1540 if (u == NULL)
1541 return 1;
1542
1543 /* We can't just check that the same of msym_us is "_start", because
1544 someone idiotically decided that they were going to make a Ltext_end
1545 symbol with the same address. This Ltext_end symbol is totally
1546 indistinguishable (as nearly as I can tell) from the symbol for a function
1547 which is (legitimately, since it is in the user's namespace)
1548 named Ltext_end, so we can't just ignore it. */
8bedc050 1549 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
c906108c
SS
1550 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1551 if (msym_us
1552 && msym_start
1553 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1554 return 0;
1555
1556 /* Grrrr. Some new idiot decided that they don't want _start for the
1557 PRO configurations; $START$ calls main directly.... Deal with it. */
1558 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1559 if (msym_us
1560 && msym_start
1561 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1562 return 0;
1563
1564 next = get_next_frame (thisframe);
1565 if (next)
ef6e7e13 1566 next_u = find_unwind_entry (get_frame_pc (next));
c906108c
SS
1567
1568 /* If this frame does not save SP, has no stack, isn't a stub,
1569 and doesn't "call" an interrupt routine or signal handler caller,
1570 then its not valid. */
1571 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
ef6e7e13 1572 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
c906108c
SS
1573 || (next_u && next_u->HP_UX_interrupt_marker))
1574 return 1;
1575
ef6e7e13 1576 if (pc_in_linker_stub (get_frame_pc (thisframe)))
c906108c
SS
1577 return 1;
1578
1579 return 0;
1580}
1581
7daf4f5b
JB
1582/* These functions deal with saving and restoring register state
1583 around a function call in the inferior. They keep the stack
1584 double-word aligned; eventually, on an hp700, the stack will have
1585 to be aligned to a 64-byte boundary. */
c906108c
SS
1586
1587void
7daf4f5b 1588hppa_push_dummy_frame (void)
c906108c
SS
1589{
1590 CORE_ADDR sp, pc, pcspace;
52f0bd74 1591 int regnum;
53a5351d 1592 CORE_ADDR int_buffer;
c906108c
SS
1593 double freg_buffer;
1594
60383d10 1595 pc = hppa_target_read_pc (inferior_ptid);
c906108c
SS
1596 int_buffer = read_register (FLAGS_REGNUM);
1597 if (int_buffer & 0x2)
1598 {
3371ccc0 1599 const unsigned int sid = (pc >> 30) & 0x3;
c906108c
SS
1600 if (sid == 0)
1601 pcspace = read_register (SR4_REGNUM);
1602 else
1603 pcspace = read_register (SR4_REGNUM + 4 + sid);
c906108c
SS
1604 }
1605 else
1606 pcspace = read_register (PCSQ_HEAD_REGNUM);
1607
1608 /* Space for "arguments"; the RP goes in here. */
1609 sp = read_register (SP_REGNUM) + 48;
1610 int_buffer = read_register (RP_REGNUM) | 0x3;
53a5351d
JM
1611
1612 /* The 32bit and 64bit ABIs save the return pointer into different
1613 stack slots. */
b1e29e33
AC
1614 if (DEPRECATED_REGISTER_SIZE == 8)
1615 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
53a5351d 1616 else
b1e29e33 1617 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
c906108c 1618
0ba6dca9 1619 int_buffer = deprecated_read_fp ();
b1e29e33 1620 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
c906108c 1621
0ba6dca9 1622 write_register (DEPRECATED_FP_REGNUM, sp);
c906108c 1623
b1e29e33 1624 sp += 2 * DEPRECATED_REGISTER_SIZE;
c906108c
SS
1625
1626 for (regnum = 1; regnum < 32; regnum++)
0ba6dca9 1627 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
c906108c
SS
1628 sp = push_word (sp, read_register (regnum));
1629
53a5351d 1630 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
b1e29e33 1631 if (DEPRECATED_REGISTER_SIZE != 8)
53a5351d 1632 sp += 4;
c906108c
SS
1633
1634 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1635 {
62700349 1636 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
73937e03 1637 (char *) &freg_buffer, 8);
c5aa993b 1638 sp = push_bytes (sp, (char *) &freg_buffer, 8);
c906108c
SS
1639 }
1640 sp = push_word (sp, read_register (IPSW_REGNUM));
1641 sp = push_word (sp, read_register (SAR_REGNUM));
1642 sp = push_word (sp, pc);
1643 sp = push_word (sp, pcspace);
1644 sp = push_word (sp, pc + 4);
1645 sp = push_word (sp, pcspace);
1646 write_register (SP_REGNUM, sp);
1647}
1648
1649static void
fba45db2 1650find_dummy_frame_regs (struct frame_info *frame,
43bd9a9e 1651 CORE_ADDR frame_saved_regs[])
c906108c 1652{
ef6e7e13 1653 CORE_ADDR fp = get_frame_base (frame);
c906108c
SS
1654 int i;
1655
53a5351d 1656 /* The 32bit and 64bit ABIs save RP into different locations. */
b1e29e33 1657 if (DEPRECATED_REGISTER_SIZE == 8)
43bd9a9e 1658 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
53a5351d 1659 else
43bd9a9e 1660 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
53a5351d 1661
0ba6dca9 1662 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
c906108c 1663
b1e29e33 1664 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
53a5351d 1665
b1e29e33 1666 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
c906108c 1667 {
0ba6dca9 1668 if (i != DEPRECATED_FP_REGNUM)
c906108c 1669 {
43bd9a9e 1670 frame_saved_regs[i] = fp;
b1e29e33 1671 fp += DEPRECATED_REGISTER_SIZE;
c906108c
SS
1672 }
1673 }
1674
53a5351d 1675 /* This is not necessary or desirable for the 64bit ABI. */
b1e29e33 1676 if (DEPRECATED_REGISTER_SIZE != 8)
53a5351d
JM
1677 fp += 4;
1678
c906108c 1679 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
43bd9a9e
AC
1680 frame_saved_regs[i] = fp;
1681
1682 frame_saved_regs[IPSW_REGNUM] = fp;
b1e29e33
AC
1683 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1684 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1685 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1686 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1687 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
c906108c
SS
1688}
1689
1690void
fba45db2 1691hppa_pop_frame (void)
c906108c 1692{
52f0bd74
AC
1693 struct frame_info *frame = get_current_frame ();
1694 CORE_ADDR fp, npc, target_pc;
1695 int regnum;
43bd9a9e 1696 CORE_ADDR *fsr;
c906108c
SS
1697 double freg_buffer;
1698
c193f6ac 1699 fp = get_frame_base (frame);
43bd9a9e 1700 hppa_frame_init_saved_regs (frame);
1b1d3794 1701 fsr = deprecated_get_frame_saved_regs (frame);
c906108c
SS
1702
1703#ifndef NO_PC_SPACE_QUEUE_RESTORE
43bd9a9e
AC
1704 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1705 restore_pc_queue (fsr);
c906108c
SS
1706#endif
1707
1708 for (regnum = 31; regnum > 0; regnum--)
43bd9a9e
AC
1709 if (fsr[regnum])
1710 write_register (regnum, read_memory_integer (fsr[regnum],
b1e29e33 1711 DEPRECATED_REGISTER_SIZE));
c906108c 1712
c5aa993b 1713 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
43bd9a9e 1714 if (fsr[regnum])
c906108c 1715 {
43bd9a9e 1716 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
62700349 1717 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
73937e03 1718 (char *) &freg_buffer, 8);
c906108c
SS
1719 }
1720
43bd9a9e 1721 if (fsr[IPSW_REGNUM])
c906108c 1722 write_register (IPSW_REGNUM,
43bd9a9e 1723 read_memory_integer (fsr[IPSW_REGNUM],
b1e29e33 1724 DEPRECATED_REGISTER_SIZE));
c906108c 1725
43bd9a9e 1726 if (fsr[SAR_REGNUM])
c906108c 1727 write_register (SAR_REGNUM,
43bd9a9e 1728 read_memory_integer (fsr[SAR_REGNUM],
b1e29e33 1729 DEPRECATED_REGISTER_SIZE));
c906108c
SS
1730
1731 /* If the PC was explicitly saved, then just restore it. */
43bd9a9e 1732 if (fsr[PCOQ_TAIL_REGNUM])
c906108c 1733 {
43bd9a9e 1734 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
b1e29e33 1735 DEPRECATED_REGISTER_SIZE);
c906108c
SS
1736 write_register (PCOQ_TAIL_REGNUM, npc);
1737 }
1738 /* Else use the value in %rp to set the new PC. */
c5aa993b 1739 else
c906108c
SS
1740 {
1741 npc = read_register (RP_REGNUM);
1742 write_pc (npc);
1743 }
1744
b1e29e33 1745 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
c906108c 1746
43bd9a9e 1747 if (fsr[IPSW_REGNUM]) /* call dummy */
c906108c
SS
1748 write_register (SP_REGNUM, fp - 48);
1749 else
1750 write_register (SP_REGNUM, fp);
1751
1752 /* The PC we just restored may be inside a return trampoline. If so
1753 we want to restart the inferior and run it through the trampoline.
1754
1755 Do this by setting a momentary breakpoint at the location the
1756 trampoline returns to.
1757
1758 Don't skip through the trampoline if we're popping a dummy frame. */
1759 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
43bd9a9e 1760 if (target_pc && !fsr[IPSW_REGNUM])
c906108c
SS
1761 {
1762 struct symtab_and_line sal;
1763 struct breakpoint *breakpoint;
1764 struct cleanup *old_chain;
1765
1766 /* Set up our breakpoint. Set it to be silent as the MI code
c5aa993b 1767 for "return_command" will print the frame we returned to. */
c906108c
SS
1768 sal = find_pc_line (target_pc, 0);
1769 sal.pc = target_pc;
516b1f28 1770 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
c906108c
SS
1771 breakpoint->silent = 1;
1772
1773 /* So we can clean things up. */
4d6140d9 1774 old_chain = make_cleanup_delete_breakpoint (breakpoint);
c906108c
SS
1775
1776 /* Start up the inferior. */
1777 clear_proceed_status ();
1778 proceed_to_finish = 1;
2acceee2 1779 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
c906108c
SS
1780
1781 /* Perform our cleanups. */
1782 do_cleanups (old_chain);
1783 }
1784 flush_cached_frames ();
1785}
1786
1787/* After returning to a dummy on the stack, restore the instruction
1788 queue space registers. */
1789
1790static int
43bd9a9e 1791restore_pc_queue (CORE_ADDR *fsr)
c906108c
SS
1792{
1793 CORE_ADDR pc = read_pc ();
43bd9a9e 1794 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
53a5351d 1795 TARGET_PTR_BIT / 8);
c906108c
SS
1796 struct target_waitstatus w;
1797 int insn_count;
1798
1799 /* Advance past break instruction in the call dummy. */
1800 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1801 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1802
1803 /* HPUX doesn't let us set the space registers or the space
1804 registers of the PC queue through ptrace. Boo, hiss.
1805 Conveniently, the call dummy has this sequence of instructions
1806 after the break:
c5aa993b
JM
1807 mtsp r21, sr0
1808 ble,n 0(sr0, r22)
1809
c906108c
SS
1810 So, load up the registers and single step until we are in the
1811 right place. */
1812
43bd9a9e 1813 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
b1e29e33 1814 DEPRECATED_REGISTER_SIZE));
c906108c
SS
1815 write_register (22, new_pc);
1816
1817 for (insn_count = 0; insn_count < 3; insn_count++)
1818 {
1819 /* FIXME: What if the inferior gets a signal right now? Want to
c5aa993b
JM
1820 merge this into wait_for_inferior (as a special kind of
1821 watchpoint? By setting a breakpoint at the end? Is there
1822 any other choice? Is there *any* way to do this stuff with
1823 ptrace() or some equivalent?). */
c906108c 1824 resume (1, 0);
39f77062 1825 target_wait (inferior_ptid, &w);
c906108c
SS
1826
1827 if (w.kind == TARGET_WAITKIND_SIGNALLED)
c5aa993b
JM
1828 {
1829 stop_signal = w.value.sig;
1830 terminal_ours_for_output ();
1831 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
c906108c
SS
1832 target_signal_to_name (stop_signal),
1833 target_signal_to_string (stop_signal));
c5aa993b
JM
1834 gdb_flush (gdb_stdout);
1835 return 0;
1836 }
c906108c
SS
1837 }
1838 target_terminal_ours ();
1839 target_fetch_registers (-1);
1840 return 1;
1841}
1842
c2c6d25f
JM
1843
1844#ifdef PA20W_CALLING_CONVENTIONS
1845
53a5351d
JM
1846/* This function pushes a stack frame with arguments as part of the
1847 inferior function calling mechanism.
c906108c 1848
c2c6d25f
JM
1849 This is the version for the PA64, in which later arguments appear
1850 at higher addresses. (The stack always grows towards higher
1851 addresses.)
c906108c 1852
53a5351d
JM
1853 We simply allocate the appropriate amount of stack space and put
1854 arguments into their proper slots. The call dummy code will copy
1855 arguments into registers as needed by the ABI.
c906108c 1856
c2c6d25f
JM
1857 This ABI also requires that the caller provide an argument pointer
1858 to the callee, so we do that too. */
53a5351d 1859
c906108c 1860CORE_ADDR
ea7c478f 1861hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1862 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1863{
1864 /* array of arguments' offsets */
c5aa993b 1865 int *offset = (int *) alloca (nargs * sizeof (int));
53a5351d
JM
1866
1867 /* array of arguments' lengths: real lengths in bytes, not aligned to
1868 word size */
c5aa993b 1869 int *lengths = (int *) alloca (nargs * sizeof (int));
c906108c 1870
53a5351d
JM
1871 /* The value of SP as it was passed into this function after
1872 aligning. */
f27dd7fd 1873 CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp);
c906108c 1874
53a5351d
JM
1875 /* The number of stack bytes occupied by the current argument. */
1876 int bytes_reserved;
1877
1878 /* The total number of bytes reserved for the arguments. */
1879 int cum_bytes_reserved = 0;
c906108c 1880
53a5351d
JM
1881 /* Similarly, but aligned. */
1882 int cum_bytes_aligned = 0;
1883 int i;
c5aa993b 1884
53a5351d 1885 /* Iterate over each argument provided by the user. */
c906108c
SS
1886 for (i = 0; i < nargs; i++)
1887 {
c2c6d25f
JM
1888 struct type *arg_type = VALUE_TYPE (args[i]);
1889
1890 /* Integral scalar values smaller than a register are padded on
1891 the left. We do this by promoting them to full-width,
1892 although the ABI says to pad them with garbage. */
1893 if (is_integral_type (arg_type)
b1e29e33 1894 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
c2c6d25f
JM
1895 {
1896 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1897 ? builtin_type_unsigned_long
1898 : builtin_type_long),
1899 args[i]);
1900 arg_type = VALUE_TYPE (args[i]);
1901 }
1902
1903 lengths[i] = TYPE_LENGTH (arg_type);
c906108c 1904
53a5351d
JM
1905 /* Align the size of the argument to the word size for this
1906 target. */
b1e29e33 1907 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
c906108c 1908
53a5351d
JM
1909 offset[i] = cum_bytes_reserved;
1910
c2c6d25f
JM
1911 /* Aggregates larger than eight bytes (the only types larger
1912 than eight bytes we have) are aligned on a 16-byte boundary,
1913 possibly padded on the right with garbage. This may leave an
1914 empty word on the stack, and thus an unused register, as per
1915 the ABI. */
1916 if (bytes_reserved > 8)
1917 {
1918 /* Round up the offset to a multiple of two slots. */
b1e29e33
AC
1919 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1920 & -(2*DEPRECATED_REGISTER_SIZE));
c906108c 1921
c2c6d25f
JM
1922 /* Note the space we've wasted, if any. */
1923 bytes_reserved += new_offset - offset[i];
1924 offset[i] = new_offset;
1925 }
53a5351d 1926
c2c6d25f
JM
1927 cum_bytes_reserved += bytes_reserved;
1928 }
1929
1930 /* CUM_BYTES_RESERVED already accounts for all the arguments
1931 passed by the user. However, the ABIs mandate minimum stack space
1932 allocations for outgoing arguments.
1933
1934 The ABIs also mandate minimum stack alignments which we must
1935 preserve. */
f27dd7fd 1936 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
c2c6d25f
JM
1937 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1938
1939 /* Now write each of the args at the proper offset down the stack. */
1940 for (i = 0; i < nargs; i++)
1941 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1942
1943 /* If a structure has to be returned, set up register 28 to hold its
1944 address */
1945 if (struct_return)
1946 write_register (28, struct_addr);
1947
1948 /* For the PA64 we must pass a pointer to the outgoing argument list.
1949 The ABI mandates that the pointer should point to the first byte of
1950 storage beyond the register flushback area.
1951
1952 However, the call dummy expects the outgoing argument pointer to
1953 be passed in register %r4. */
1954 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1955
1956 /* ?!? This needs further work. We need to set up the global data
1957 pointer for this procedure. This assumes the same global pointer
1958 for every procedure. The call dummy expects the dp value to
1959 be passed in register %r6. */
1960 write_register (6, read_register (27));
1961
1962 /* The stack will have 64 bytes of additional space for a frame marker. */
1963 return sp + 64;
1964}
1965
1966#else
1967
1968/* This function pushes a stack frame with arguments as part of the
1969 inferior function calling mechanism.
1970
1971 This is the version of the function for the 32-bit PA machines, in
1972 which later arguments appear at lower addresses. (The stack always
1973 grows towards higher addresses.)
1974
1975 We simply allocate the appropriate amount of stack space and put
1976 arguments into their proper slots. The call dummy code will copy
1977 arguments into registers as needed by the ABI. */
1978
1979CORE_ADDR
ea7c478f 1980hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1981 int struct_return, CORE_ADDR struct_addr)
c2c6d25f
JM
1982{
1983 /* array of arguments' offsets */
1984 int *offset = (int *) alloca (nargs * sizeof (int));
1985
1986 /* array of arguments' lengths: real lengths in bytes, not aligned to
1987 word size */
1988 int *lengths = (int *) alloca (nargs * sizeof (int));
1989
1990 /* The number of stack bytes occupied by the current argument. */
1991 int bytes_reserved;
1992
1993 /* The total number of bytes reserved for the arguments. */
1994 int cum_bytes_reserved = 0;
1995
1996 /* Similarly, but aligned. */
1997 int cum_bytes_aligned = 0;
1998 int i;
1999
2000 /* Iterate over each argument provided by the user. */
2001 for (i = 0; i < nargs; i++)
2002 {
2003 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2004
2005 /* Align the size of the argument to the word size for this
2006 target. */
b1e29e33 2007 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
c2c6d25f 2008
b6649e88
AC
2009 offset[i] = (cum_bytes_reserved
2010 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
c2c6d25f
JM
2011
2012 /* If the argument is a double word argument, then it needs to be
2013 double word aligned. */
b1e29e33
AC
2014 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
2015 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
c5aa993b
JM
2016 {
2017 int new_offset = 0;
53a5351d
JM
2018 /* BYTES_RESERVED is already aligned to the word, so we put
2019 the argument at one word more down the stack.
2020
2021 This will leave one empty word on the stack, and one unused
2022 register as mandated by the ABI. */
b1e29e33
AC
2023 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
2024 & -(2 * DEPRECATED_REGISTER_SIZE));
53a5351d 2025
b1e29e33 2026 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
c5aa993b 2027 {
b1e29e33
AC
2028 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2029 offset[i] += DEPRECATED_REGISTER_SIZE;
c5aa993b
JM
2030 }
2031 }
c906108c
SS
2032
2033 cum_bytes_reserved += bytes_reserved;
2034
2035 }
2036
c2c6d25f
JM
2037 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2038 by the user. However, the ABI mandates minimum stack space
53a5351d
JM
2039 allocations for outgoing arguments.
2040
c2c6d25f 2041 The ABI also mandates minimum stack alignments which we must
53a5351d 2042 preserve. */
f27dd7fd 2043 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
53a5351d
JM
2044 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2045
2046 /* Now write each of the args at the proper offset down the stack.
53a5351d
JM
2047 ?!? We need to promote values to a full register instead of skipping
2048 words in the stack. */
c906108c
SS
2049 for (i = 0; i < nargs; i++)
2050 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
c906108c 2051
53a5351d
JM
2052 /* If a structure has to be returned, set up register 28 to hold its
2053 address */
c906108c
SS
2054 if (struct_return)
2055 write_register (28, struct_addr);
2056
53a5351d 2057 /* The stack will have 32 bytes of additional space for a frame marker. */
c906108c
SS
2058 return sp + 32;
2059}
2060
c2c6d25f 2061#endif
c906108c
SS
2062
2063/* elz: this function returns a value which is built looking at the given address.
2064 It is called from call_function_by_hand, in case we need to return a
2065 value which is larger than 64 bits, and it is stored in the stack rather than
2066 in the registers r28 and r29 or fr4.
2067 This function does the same stuff as value_being_returned in values.c, but
2068 gets the value from the stack rather than from the buffer where all the
2069 registers were saved when the function called completed. */
ea7c478f 2070struct value *
aa1ee363 2071hppa_value_returned_from_stack (struct type *valtype, CORE_ADDR addr)
c906108c 2072{
52f0bd74 2073 struct value *val;
c906108c
SS
2074
2075 val = allocate_value (valtype);
2076 CHECK_TYPEDEF (valtype);
c5aa993b 2077 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
c906108c
SS
2078
2079 return val;
2080}
2081
2082
2083
2084/* elz: Used to lookup a symbol in the shared libraries.
c5aa993b
JM
2085 This function calls shl_findsym, indirectly through a
2086 call to __d_shl_get. __d_shl_get is in end.c, which is always
2087 linked in by the hp compilers/linkers.
2088 The call to shl_findsym cannot be made directly because it needs
2089 to be active in target address space.
2090 inputs: - minimal symbol pointer for the function we want to look up
2091 - address in target space of the descriptor for the library
2092 where we want to look the symbol up.
2093 This address is retrieved using the
2094 som_solib_get_solib_by_pc function (somsolib.c).
2095 output: - real address in the library of the function.
2096 note: the handle can be null, in which case shl_findsym will look for
2097 the symbol in all the loaded shared libraries.
2098 files to look at if you need reference on this stuff:
2099 dld.c, dld_shl_findsym.c
2100 end.c
2101 man entry for shl_findsym */
c906108c
SS
2102
2103CORE_ADDR
fba45db2 2104find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
c906108c 2105{
c5aa993b
JM
2106 struct symbol *get_sym, *symbol2;
2107 struct minimal_symbol *buff_minsym, *msymbol;
2108 struct type *ftype;
ea7c478f
AC
2109 struct value **args;
2110 struct value *funcval;
2111 struct value *val;
c5aa993b
JM
2112
2113 int x, namelen, err_value, tmp = -1;
2114 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2115 CORE_ADDR stub_addr;
2116
2117
ea7c478f 2118 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
c5aa993b 2119 funcval = find_function_in_inferior ("__d_shl_get");
176620f1 2120 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
c5aa993b
JM
2121 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2122 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
176620f1 2123 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
c5aa993b 2124 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
22abf04a 2125 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
c5aa993b
JM
2126 value_return_addr = endo_buff_addr + namelen;
2127 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2128
2129 /* do alignment */
2130 if ((x = value_return_addr % 64) != 0)
2131 value_return_addr = value_return_addr + 64 - x;
2132
2133 errno_return_addr = value_return_addr + 64;
2134
2135
2136 /* set up stuff needed by __d_shl_get in buffer in end.o */
2137
22abf04a 2138 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
c5aa993b
JM
2139
2140 target_write_memory (value_return_addr, (char *) &tmp, 4);
2141
2142 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2143
2144 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2145 (char *) &handle, 4);
2146
2147 /* now prepare the arguments for the call */
2148
2149 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
4478b372
JB
2150 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2151 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
c5aa993b 2152 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
4478b372
JB
2153 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2154 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
c5aa993b
JM
2155
2156 /* now call the function */
2157
2158 val = call_function_by_hand (funcval, 6, args);
2159
2160 /* now get the results */
2161
2162 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2163
2164 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2165 if (stub_addr <= 0)
104c1213 2166 error ("call to __d_shl_get failed, error code is %d", err_value);
c5aa993b
JM
2167
2168 return (stub_addr);
c906108c
SS
2169}
2170
c5aa993b 2171/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
a0b3c4fd 2172static int
4efb68b1 2173cover_find_stub_with_shl_get (void *args_untyped)
c906108c 2174{
a0b3c4fd
JM
2175 args_for_find_stub *args = args_untyped;
2176 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2177 return 0;
c906108c
SS
2178}
2179
c906108c
SS
2180/* Insert the specified number of args and function address
2181 into a call sequence of the above form stored at DUMMYNAME.
2182
2183 On the hppa we need to call the stack dummy through $$dyncall.
b1e29e33
AC
2184 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2185 argument, real_pc, which is the location where gdb should start up
2186 the inferior to do the function call.
cce74817
JM
2187
2188 This has to work across several versions of hpux, bsd, osf1. It has to
2189 work regardless of what compiler was used to build the inferior program.
2190 It should work regardless of whether or not end.o is available. It has
2191 to work even if gdb can not call into the dynamic loader in the inferior
2192 to query it for symbol names and addresses.
2193
2194 Yes, all those cases should work. Luckily code exists to handle most
2195 of them. The complexity is in selecting exactly what scheme should
2196 be used to perform the inferior call.
2197
2198 At the current time this routine is known not to handle cases where
2199 the program was linked with HP's compiler without including end.o.
2200
2201 Please contact Jeff Law (law@cygnus.com) before changing this code. */
c906108c
SS
2202
2203CORE_ADDR
fba45db2 2204hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 2205 struct value **args, struct type *type, int gcc_p)
c906108c
SS
2206{
2207 CORE_ADDR dyncall_addr;
2208 struct minimal_symbol *msymbol;
2209 struct minimal_symbol *trampoline;
2210 int flags = read_register (FLAGS_REGNUM);
cce74817
JM
2211 struct unwind_table_entry *u = NULL;
2212 CORE_ADDR new_stub = 0;
2213 CORE_ADDR solib_handle = 0;
2214
2215 /* Nonzero if we will use GCC's PLT call routine. This routine must be
c2c6d25f
JM
2216 passed an import stub, not a PLABEL. It is also necessary to set %r19
2217 (the PIC register) before performing the call.
c906108c 2218
cce74817
JM
2219 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2220 are calling the target directly. When using __d_plt_call we want to
2221 use a PLABEL instead of an import stub. */
2222 int using_gcc_plt_call = 1;
2223
53a5351d
JM
2224#ifdef GDB_TARGET_IS_HPPA_20W
2225 /* We currently use completely different code for the PA2.0W inferior
2226 function call sequences. This needs to be cleaned up. */
2227 {
2228 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2229 struct target_waitstatus w;
2230 int inst1, inst2;
2231 char buf[4];
2232 int status;
2233 struct objfile *objfile;
2234
2235 /* We can not modify the PC space queues directly, so we start
2236 up the inferior and execute a couple instructions to set the
2237 space queues so that they point to the call dummy in the stack. */
2238 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2239 sr5 = read_register (SR5_REGNUM);
2240 if (1)
2241 {
2242 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2243 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2244 if (target_read_memory (pcoqh, buf, 4) != 0)
2245 error ("Couldn't modify space queue\n");
2246 inst1 = extract_unsigned_integer (buf, 4);
2247
2248 if (target_read_memory (pcoqt, buf, 4) != 0)
2249 error ("Couldn't modify space queue\n");
2250 inst2 = extract_unsigned_integer (buf, 4);
2251
2252 /* BVE (r1) */
2253 *((int *) buf) = 0xe820d000;
2254 if (target_write_memory (pcoqh, buf, 4) != 0)
2255 error ("Couldn't modify space queue\n");
2256
2257 /* NOP */
2258 *((int *) buf) = 0x08000240;
2259 if (target_write_memory (pcoqt, buf, 4) != 0)
2260 {
2261 *((int *) buf) = inst1;
2262 target_write_memory (pcoqh, buf, 4);
2263 error ("Couldn't modify space queue\n");
2264 }
2265
2266 write_register (1, pc);
2267
2268 /* Single step twice, the BVE instruction will set the space queue
2269 such that it points to the PC value written immediately above
2270 (ie the call dummy). */
2271 resume (1, 0);
39f77062 2272 target_wait (inferior_ptid, &w);
53a5351d 2273 resume (1, 0);
39f77062 2274 target_wait (inferior_ptid, &w);
53a5351d
JM
2275
2276 /* Restore the two instructions at the old PC locations. */
2277 *((int *) buf) = inst1;
2278 target_write_memory (pcoqh, buf, 4);
2279 *((int *) buf) = inst2;
2280 target_write_memory (pcoqt, buf, 4);
2281 }
2282
2283 /* The call dummy wants the ultimate destination address initially
2284 in register %r5. */
2285 write_register (5, fun);
2286
2287 /* We need to see if this objfile has a different DP value than our
c2c6d25f 2288 own (it could be a shared library for example). */
53a5351d
JM
2289 ALL_OBJFILES (objfile)
2290 {
2291 struct obj_section *s;
2292 obj_private_data_t *obj_private;
2293
2294 /* See if FUN is in any section within this shared library. */
2295 for (s = objfile->sections; s < objfile->sections_end; s++)
2296 if (s->addr <= fun && fun < s->endaddr)
2297 break;
2298
2299 if (s >= objfile->sections_end)
2300 continue;
2301
2302 obj_private = (obj_private_data_t *) objfile->obj_private;
2303
2304 /* The DP value may be different for each objfile. But within an
2305 objfile each function uses the same dp value. Thus we do not need
2306 to grope around the opd section looking for dp values.
2307
2308 ?!? This is not strictly correct since we may be in a shared library
2309 and want to call back into the main program. To make that case
2310 work correctly we need to set obj_private->dp for the main program's
2311 objfile, then remove this conditional. */
2312 if (obj_private->dp)
2313 write_register (27, obj_private->dp);
2314 break;
2315 }
2316 return pc;
2317 }
2318#endif
2319
2320#ifndef GDB_TARGET_IS_HPPA_20W
cce74817 2321 /* Prefer __gcc_plt_call over the HP supplied routine because
c5aa993b 2322 __gcc_plt_call works for any number of arguments. */
c906108c 2323 trampoline = NULL;
cce74817
JM
2324 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2325 using_gcc_plt_call = 0;
2326
c906108c
SS
2327 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2328 if (msymbol == NULL)
cce74817 2329 error ("Can't find an address for $$dyncall trampoline");
c906108c
SS
2330
2331 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2332
2333 /* FUN could be a procedure label, in which case we have to get
cce74817
JM
2334 its real address and the value of its GOT/DP if we plan to
2335 call the routine via gcc_plt_call. */
2336 if ((fun & 0x2) && using_gcc_plt_call)
c906108c
SS
2337 {
2338 /* Get the GOT/DP value for the target function. It's
c5aa993b
JM
2339 at *(fun+4). Note the call dummy is *NOT* allowed to
2340 trash %r19 before calling the target function. */
53a5351d 2341 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
b1e29e33 2342 DEPRECATED_REGISTER_SIZE));
c906108c
SS
2343
2344 /* Now get the real address for the function we are calling, it's
c5aa993b 2345 at *fun. */
53a5351d
JM
2346 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2347 TARGET_PTR_BIT / 8);
c906108c
SS
2348 }
2349 else
2350 {
2351
2352#ifndef GDB_TARGET_IS_PA_ELF
cce74817 2353 /* FUN could be an export stub, the real address of a function, or
c5aa993b
JM
2354 a PLABEL. When using gcc's PLT call routine we must call an import
2355 stub rather than the export stub or real function for lazy binding
2356 to work correctly
cce74817 2357
39f77062 2358 If we are using the gcc PLT call routine, then we need to
c5aa993b 2359 get the import stub for the target function. */
cce74817 2360 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
c906108c
SS
2361 {
2362 struct objfile *objfile;
2363 struct minimal_symbol *funsymbol, *stub_symbol;
2364 CORE_ADDR newfun = 0;
2365
2366 funsymbol = lookup_minimal_symbol_by_pc (fun);
2367 if (!funsymbol)
4ce44c66 2368 error ("Unable to find minimal symbol for target function.\n");
c906108c
SS
2369
2370 /* Search all the object files for an import symbol with the
2371 right name. */
2372 ALL_OBJFILES (objfile)
c5aa993b
JM
2373 {
2374 stub_symbol
2375 = lookup_minimal_symbol_solib_trampoline
22abf04a 2376 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
c5aa993b
JM
2377
2378 if (!stub_symbol)
22abf04a 2379 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
c5aa993b
JM
2380 NULL, objfile);
2381
2382 /* Found a symbol with the right name. */
2383 if (stub_symbol)
2384 {
2385 struct unwind_table_entry *u;
2386 /* It must be a shared library trampoline. */
2387 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2388 continue;
2389
2390 /* It must also be an import stub. */
2391 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
6426a772
JM
2392 if (u == NULL
2393 || (u->stub_unwind.stub_type != IMPORT
2394#ifdef GDB_NATIVE_HPUX_11
2395 /* Sigh. The hpux 10.20 dynamic linker will blow
2396 chunks if we perform a call to an unbound function
2397 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2398 linker will blow chunks if we do not call the
2399 unbound function via the IMPORT_SHLIB stub.
2400
2401 We currently have no way to select bevahior on just
2402 the target. However, we only support HPUX/SOM in
2403 native mode. So we conditinalize on a native
2404 #ifdef. Ugly. Ugly. Ugly */
2405 && u->stub_unwind.stub_type != IMPORT_SHLIB
2406#endif
2407 ))
c5aa993b
JM
2408 continue;
2409
2410 /* OK. Looks like the correct import stub. */
2411 newfun = SYMBOL_VALUE (stub_symbol);
2412 fun = newfun;
6426a772
JM
2413
2414 /* If we found an IMPORT stub, then we want to stop
2415 searching now. If we found an IMPORT_SHLIB, we want
2416 to continue the search in the hopes that we will find
2417 an IMPORT stub. */
2418 if (u->stub_unwind.stub_type == IMPORT)
2419 break;
c5aa993b
JM
2420 }
2421 }
cce74817
JM
2422
2423 /* Ouch. We did not find an import stub. Make an attempt to
2424 do the right thing instead of just croaking. Most of the
2425 time this will actually work. */
c906108c
SS
2426 if (newfun == 0)
2427 write_register (19, som_solib_get_got_by_pc (fun));
cce74817
JM
2428
2429 u = find_unwind_entry (fun);
c5aa993b 2430 if (u
cce74817
JM
2431 && (u->stub_unwind.stub_type == IMPORT
2432 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2433 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2434
2435 /* If we found the import stub in the shared library, then we have
2436 to set %r19 before we call the stub. */
2437 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2438 write_register (19, som_solib_get_got_by_pc (fun));
c906108c 2439 }
c906108c
SS
2440#endif
2441 }
2442
cce74817
JM
2443 /* If we are calling into another load module then have sr4export call the
2444 magic __d_plt_call routine which is linked in from end.o.
c906108c 2445
cce74817
JM
2446 You can't use _sr4export to make the call as the value in sp-24 will get
2447 fried and you end up returning to the wrong location. You can't call the
2448 target as the code to bind the PLT entry to a function can't return to a
2449 stack address.
2450
2451 Also, query the dynamic linker in the inferior to provide a suitable
2452 PLABEL for the target function. */
c5aa993b 2453 if (!using_gcc_plt_call)
c906108c
SS
2454 {
2455 CORE_ADDR new_fun;
2456
cce74817 2457 /* Get a handle for the shared library containing FUN. Given the
c5aa993b 2458 handle we can query the shared library for a PLABEL. */
cce74817 2459 solib_handle = som_solib_get_solib_by_pc (fun);
c906108c 2460
cce74817 2461 if (solib_handle)
c906108c 2462 {
cce74817 2463 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
c906108c 2464
cce74817
JM
2465 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2466
2467 if (trampoline == NULL)
2468 {
2469 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2470 }
2471
2472 /* This is where sr4export will jump to. */
2473 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2474
2475 /* If the function is in a shared library, then call __d_shl_get to
2476 get a PLABEL for the target function. */
2477 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2478
c5aa993b 2479 if (new_stub == 0)
22abf04a 2480 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
c906108c
SS
2481
2482 /* We have to store the address of the stub in __shlib_funcptr. */
cce74817 2483 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
c5aa993b 2484 (struct objfile *) NULL);
c906108c 2485
cce74817
JM
2486 if (msymbol == NULL)
2487 error ("Can't find an address for __shlib_funcptr");
2488 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
c5aa993b 2489 (char *) &new_stub, 4);
c906108c
SS
2490
2491 /* We want sr4export to call __d_plt_call, so we claim it is
2492 the final target. Clear trampoline. */
cce74817
JM
2493 fun = new_fun;
2494 trampoline = NULL;
c906108c
SS
2495 }
2496 }
2497
2498 /* Store upper 21 bits of function address into ldil. fun will either be
2499 the final target (most cases) or __d_plt_call when calling into a shared
2500 library and __gcc_plt_call is not available. */
2501 store_unsigned_integer
2502 (&dummy[FUNC_LDIL_OFFSET],
2503 INSTRUCTION_SIZE,
2504 deposit_21 (fun >> 11,
2505 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2506 INSTRUCTION_SIZE)));
2507
2508 /* Store lower 11 bits of function address into ldo */
2509 store_unsigned_integer
2510 (&dummy[FUNC_LDO_OFFSET],
2511 INSTRUCTION_SIZE,
2512 deposit_14 (fun & MASK_11,
2513 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2514 INSTRUCTION_SIZE)));
2515#ifdef SR4EXPORT_LDIL_OFFSET
2516
2517 {
2518 CORE_ADDR trampoline_addr;
2519
2520 /* We may still need sr4export's address too. */
2521
2522 if (trampoline == NULL)
2523 {
2524 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2525 if (msymbol == NULL)
cce74817 2526 error ("Can't find an address for _sr4export trampoline");
c906108c
SS
2527
2528 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2529 }
2530 else
2531 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2532
2533
2534 /* Store upper 21 bits of trampoline's address into ldil */
2535 store_unsigned_integer
2536 (&dummy[SR4EXPORT_LDIL_OFFSET],
2537 INSTRUCTION_SIZE,
2538 deposit_21 (trampoline_addr >> 11,
2539 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2540 INSTRUCTION_SIZE)));
2541
2542 /* Store lower 11 bits of trampoline's address into ldo */
2543 store_unsigned_integer
2544 (&dummy[SR4EXPORT_LDO_OFFSET],
2545 INSTRUCTION_SIZE,
2546 deposit_14 (trampoline_addr & MASK_11,
2547 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2548 INSTRUCTION_SIZE)));
2549 }
2550#endif
2551
2552 write_register (22, pc);
2553
2554 /* If we are in a syscall, then we should call the stack dummy
2555 directly. $$dyncall is not needed as the kernel sets up the
2556 space id registers properly based on the value in %r31. In
2557 fact calling $$dyncall will not work because the value in %r22
2558 will be clobbered on the syscall exit path.
2559
2560 Similarly if the current PC is in a shared library. Note however,
2561 this scheme won't work if the shared library isn't mapped into
2562 the same space as the stack. */
2563 if (flags & 2)
2564 return pc;
2565#ifndef GDB_TARGET_IS_PA_ELF
60383d10 2566 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
c906108c
SS
2567 return pc;
2568#endif
2569 else
2570 return dyncall_addr;
53a5351d 2571#endif
c906108c
SS
2572}
2573
c906108c
SS
2574/* If the pid is in a syscall, then the FP register is not readable.
2575 We'll return zero in that case, rather than attempting to read it
2576 and cause a warning. */
60383d10 2577
c906108c 2578CORE_ADDR
60383d10 2579hppa_read_fp (int pid)
c906108c
SS
2580{
2581 int flags = read_register (FLAGS_REGNUM);
2582
c5aa993b
JM
2583 if (flags & 2)
2584 {
2585 return (CORE_ADDR) 0;
2586 }
c906108c
SS
2587
2588 /* This is the only site that may directly read_register () the FP
0ba6dca9
AC
2589 register. All others must use deprecated_read_fp (). */
2590 return read_register (DEPRECATED_FP_REGNUM);
c906108c
SS
2591}
2592
60383d10
JB
2593CORE_ADDR
2594hppa_target_read_fp (void)
2595{
2596 return hppa_read_fp (PIDGET (inferior_ptid));
2597}
c906108c
SS
2598
2599/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2600 bits. */
2601
2602CORE_ADDR
60383d10 2603hppa_target_read_pc (ptid_t ptid)
c906108c 2604{
39f77062 2605 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2606
2607 /* The following test does not belong here. It is OS-specific, and belongs
2608 in native code. */
2609 /* Test SS_INSYSCALL */
2610 if (flags & 2)
39f77062 2611 return read_register_pid (31, ptid) & ~0x3;
c906108c 2612
39f77062 2613 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
c906108c
SS
2614}
2615
2616/* Write out the PC. If currently in a syscall, then also write the new
2617 PC value into %r31. */
2618
2619void
60383d10 2620hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 2621{
39f77062 2622 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2623
2624 /* The following test does not belong here. It is OS-specific, and belongs
2625 in native code. */
2626 /* If in a syscall, then set %r31. Also make sure to get the
2627 privilege bits set correctly. */
2628 /* Test SS_INSYSCALL */
2629 if (flags & 2)
39f77062 2630 write_register_pid (31, v | 0x3, ptid);
c906108c 2631
39f77062 2632 write_register_pid (PC_REGNUM, v, ptid);
efe59759 2633 write_register_pid (DEPRECATED_NPC_REGNUM, v + 4, ptid);
c906108c
SS
2634}
2635
2636/* return the alignment of a type in bytes. Structures have the maximum
2637 alignment required by their fields. */
2638
2639static int
fba45db2 2640hppa_alignof (struct type *type)
c906108c
SS
2641{
2642 int max_align, align, i;
2643 CHECK_TYPEDEF (type);
2644 switch (TYPE_CODE (type))
2645 {
2646 case TYPE_CODE_PTR:
2647 case TYPE_CODE_INT:
2648 case TYPE_CODE_FLT:
2649 return TYPE_LENGTH (type);
2650 case TYPE_CODE_ARRAY:
2651 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2652 case TYPE_CODE_STRUCT:
2653 case TYPE_CODE_UNION:
2654 max_align = 1;
2655 for (i = 0; i < TYPE_NFIELDS (type); i++)
2656 {
2657 /* Bit fields have no real alignment. */
2658 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 2659 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
2660 {
2661 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2662 max_align = max (max_align, align);
2663 }
2664 }
2665 return max_align;
2666 default:
2667 return 4;
2668 }
2669}
2670
2671/* Print the register regnum, or all registers if regnum is -1 */
2672
2673void
fba45db2 2674pa_do_registers_info (int regnum, int fpregs)
c906108c 2675{
b8b527c5 2676 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
c906108c
SS
2677 int i;
2678
2679 /* Make a copy of gdb's save area (may cause actual
2680 reads from the target). */
2681 for (i = 0; i < NUM_REGS; i++)
62700349
AC
2682 frame_register_read (deprecated_selected_frame, i,
2683 raw_regs + DEPRECATED_REGISTER_BYTE (i));
c906108c
SS
2684
2685 if (regnum == -1)
2686 pa_print_registers (raw_regs, regnum, fpregs);
c5aa993b
JM
2687 else if (regnum < FP4_REGNUM)
2688 {
2689 long reg_val[2];
2690
2691 /* Why is the value not passed through "extract_signed_integer"
2692 as in "pa_print_registers" below? */
2693 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2694
2695 if (!is_pa_2)
2696 {
ce414844 2697 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2698 }
c906108c 2699 else
c5aa993b
JM
2700 {
2701 /* Fancy % formats to prevent leading zeros. */
2702 if (reg_val[0] == 0)
ce414844 2703 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2704 else
ce414844 2705 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
c5aa993b
JM
2706 reg_val[0], reg_val[1]);
2707 }
c906108c 2708 }
c906108c 2709 else
c5aa993b
JM
2710 /* Note that real floating point values only start at
2711 FP4_REGNUM. FP0 and up are just status and error
2712 registers, which have integral (bit) values. */
c906108c
SS
2713 pa_print_fp_reg (regnum);
2714}
2715
2716/********** new function ********************/
2717void
fba45db2
KB
2718pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2719 enum precision_type precision)
c906108c 2720{
b8b527c5 2721 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
c906108c
SS
2722 int i;
2723
2724 /* Make a copy of gdb's save area (may cause actual
c5aa993b 2725 reads from the target). */
c906108c 2726 for (i = 0; i < NUM_REGS; i++)
62700349
AC
2727 frame_register_read (deprecated_selected_frame, i,
2728 raw_regs + DEPRECATED_REGISTER_BYTE (i));
c906108c
SS
2729
2730 if (regnum == -1)
2731 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2732
c5aa993b
JM
2733 else if (regnum < FP4_REGNUM)
2734 {
2735 long reg_val[2];
2736
2737 /* Why is the value not passed through "extract_signed_integer"
2738 as in "pa_print_registers" below? */
2739 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
c906108c 2740
c5aa993b
JM
2741 if (!is_pa_2)
2742 {
ce414844 2743 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2744 }
c906108c 2745 else
c5aa993b
JM
2746 {
2747 /* Fancy % formats to prevent leading zeros. */
2748 if (reg_val[0] == 0)
ce414844 2749 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
c5aa993b
JM
2750 reg_val[1]);
2751 else
ce414844 2752 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
c5aa993b
JM
2753 reg_val[0], reg_val[1]);
2754 }
c906108c 2755 }
c906108c 2756 else
c5aa993b
JM
2757 /* Note that real floating point values only start at
2758 FP4_REGNUM. FP0 and up are just status and error
2759 registers, which have integral (bit) values. */
c906108c
SS
2760 pa_strcat_fp_reg (regnum, stream, precision);
2761}
2762
2763/* If this is a PA2.0 machine, fetch the real 64-bit register
2764 value. Otherwise use the info from gdb's saved register area.
2765
2766 Note that reg_val is really expected to be an array of longs,
2767 with two elements. */
2768static void
fba45db2 2769pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
c906108c 2770{
c5aa993b 2771 static int know_which = 0; /* False */
c906108c 2772
c5aa993b 2773 int regaddr;
c906108c 2774 unsigned int offset;
52f0bd74 2775 int i;
c5aa993b
JM
2776 int start;
2777
2778
123a958e 2779 char buf[MAX_REGISTER_SIZE];
c906108c
SS
2780 long long reg_val;
2781
c5aa993b
JM
2782 if (!know_which)
2783 {
2784 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2785 {
2786 is_pa_2 = (1 == 1);
2787 }
2788
2789 know_which = 1; /* True */
2790 }
c906108c
SS
2791
2792 raw_val[0] = 0;
2793 raw_val[1] = 0;
2794
c5aa993b
JM
2795 if (!is_pa_2)
2796 {
62700349 2797 raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum));
c906108c 2798 return;
c5aa993b 2799 }
c906108c
SS
2800
2801 /* Code below copied from hppah-nat.c, with fixes for wide
2802 registers, using different area of save_state, etc. */
2803 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
c5aa993b
JM
2804 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2805 {
c906108c 2806 /* Use narrow regs area of save_state and default macro. */
c5aa993b
JM
2807 offset = U_REGS_OFFSET;
2808 regaddr = register_addr (regnum, offset);
2809 start = 1;
2810 }
2811 else
2812 {
c906108c
SS
2813 /* Use wide regs area, and calculate registers as 8 bytes wide.
2814
2815 We'd like to do this, but current version of "C" doesn't
2816 permit "offsetof":
2817
c5aa993b 2818 offset = offsetof(save_state_t, ss_wide);
c906108c
SS
2819
2820 Note that to avoid "C" doing typed pointer arithmetic, we
2821 have to cast away the type in our offset calculation:
2822 otherwise we get an offset of 1! */
2823
7a292a7a 2824 /* NB: save_state_t is not available before HPUX 9.
c5aa993b 2825 The ss_wide field is not available previous to HPUX 10.20,
7a292a7a
SS
2826 so to avoid compile-time warnings, we only compile this for
2827 PA 2.0 processors. This control path should only be followed
2828 if we're debugging a PA 2.0 processor, so this should not cause
2829 problems. */
2830
c906108c
SS
2831 /* #if the following code out so that this file can still be
2832 compiled on older HPUX boxes (< 10.20) which don't have
2833 this structure/structure member. */
2834#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2835 save_state_t temp;
2836
2837 offset = ((int) &temp.ss_wide) - ((int) &temp);
2838 regaddr = offset + regnum * 8;
c5aa993b 2839 start = 0;
c906108c 2840#endif
c5aa993b
JM
2841 }
2842
2843 for (i = start; i < 2; i++)
c906108c
SS
2844 {
2845 errno = 0;
39f77062 2846 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
c5aa993b 2847 (PTRACE_ARG3_TYPE) regaddr, 0);
c906108c
SS
2848 if (errno != 0)
2849 {
2850 /* Warning, not error, in case we are attached; sometimes the
2851 kernel doesn't let us at the registers. */
2852 char *err = safe_strerror (errno);
2853 char *msg = alloca (strlen (err) + 128);
2854 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2855 warning (msg);
2856 goto error_exit;
2857 }
2858
2859 regaddr += sizeof (long);
2860 }
c5aa993b 2861
c906108c 2862 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
c5aa993b 2863 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
c906108c
SS
2864
2865error_exit:
2866 ;
2867}
2868
2869/* "Info all-reg" command */
c5aa993b 2870
c906108c 2871static void
fba45db2 2872pa_print_registers (char *raw_regs, int regnum, int fpregs)
c906108c 2873{
c5aa993b 2874 int i, j;
adf40b2e
JM
2875 /* Alas, we are compiled so that "long long" is 32 bits */
2876 long raw_val[2];
c906108c 2877 long long_val;
a0b3c4fd 2878 int rows = 48, columns = 2;
c906108c 2879
adf40b2e 2880 for (i = 0; i < rows; i++)
c906108c 2881 {
adf40b2e 2882 for (j = 0; j < columns; j++)
c906108c 2883 {
adf40b2e
JM
2884 /* We display registers in column-major order. */
2885 int regnum = i + j * rows;
2886
c5aa993b
JM
2887 /* Q: Why is the value passed through "extract_signed_integer",
2888 while above, in "pa_do_registers_info" it isn't?
2889 A: ? */
adf40b2e 2890 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
c5aa993b
JM
2891
2892 /* Even fancier % formats to prevent leading zeros
2893 and still maintain the output in columns. */
2894 if (!is_pa_2)
2895 {
2896 /* Being big-endian, on this machine the low bits
2897 (the ones we want to look at) are in the second longword. */
2898 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844 2899 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2900 REGISTER_NAME (regnum), long_val);
c5aa993b
JM
2901 }
2902 else
2903 {
2904 /* raw_val = extract_signed_integer(&raw_val, 8); */
2905 if (raw_val[0] == 0)
ce414844 2906 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2907 REGISTER_NAME (regnum), raw_val[1]);
c5aa993b 2908 else
ce414844 2909 printf_filtered ("%10.10s: %8lx%8.8lx ",
a0b3c4fd 2910 REGISTER_NAME (regnum),
c5aa993b
JM
2911 raw_val[0], raw_val[1]);
2912 }
c906108c
SS
2913 }
2914 printf_unfiltered ("\n");
2915 }
c5aa993b 2916
c906108c 2917 if (fpregs)
c5aa993b 2918 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2919 pa_print_fp_reg (i);
2920}
2921
c5aa993b 2922/************* new function ******************/
c906108c 2923static void
fba45db2
KB
2924pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2925 struct ui_file *stream)
c906108c 2926{
c5aa993b
JM
2927 int i, j;
2928 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
c906108c
SS
2929 long long_val;
2930 enum precision_type precision;
2931
2932 precision = unspecified_precision;
2933
2934 for (i = 0; i < 18; i++)
2935 {
2936 for (j = 0; j < 4; j++)
2937 {
c5aa993b
JM
2938 /* Q: Why is the value passed through "extract_signed_integer",
2939 while above, in "pa_do_registers_info" it isn't?
2940 A: ? */
2941 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2942
2943 /* Even fancier % formats to prevent leading zeros
2944 and still maintain the output in columns. */
2945 if (!is_pa_2)
2946 {
2947 /* Being big-endian, on this machine the low bits
2948 (the ones we want to look at) are in the second longword. */
2949 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844
AC
2950 fprintf_filtered (stream, "%8.8s: %8lx ",
2951 REGISTER_NAME (i + (j * 18)), long_val);
c5aa993b
JM
2952 }
2953 else
2954 {
2955 /* raw_val = extract_signed_integer(&raw_val, 8); */
2956 if (raw_val[0] == 0)
ce414844
AC
2957 fprintf_filtered (stream, "%8.8s: %8lx ",
2958 REGISTER_NAME (i + (j * 18)), raw_val[1]);
c5aa993b 2959 else
ce414844
AC
2960 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2961 REGISTER_NAME (i + (j * 18)), raw_val[0],
2962 raw_val[1]);
c5aa993b 2963 }
c906108c
SS
2964 }
2965 fprintf_unfiltered (stream, "\n");
2966 }
c5aa993b 2967
c906108c 2968 if (fpregs)
c5aa993b 2969 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2970 pa_strcat_fp_reg (i, stream, precision);
2971}
2972
2973static void
fba45db2 2974pa_print_fp_reg (int i)
c906108c 2975{
123a958e
AC
2976 char raw_buffer[MAX_REGISTER_SIZE];
2977 char virtual_buffer[MAX_REGISTER_SIZE];
c906108c
SS
2978
2979 /* Get 32bits of data. */
6e7f8b9c 2980 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
2981
2982 /* Put it in the buffer. No conversions are ever necessary. */
2983 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2984
2985 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2986 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2987 fputs_filtered ("(single precision) ", gdb_stdout);
2988
2989 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2990 1, 0, Val_pretty_default);
2991 printf_filtered ("\n");
2992
2993 /* If "i" is even, then this register can also be a double-precision
2994 FP register. Dump it out as such. */
2995 if ((i % 2) == 0)
2996 {
2997 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 2998 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
c906108c
SS
2999
3000 /* Copy it into the appropriate part of the virtual buffer. */
3001 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
3002 REGISTER_RAW_SIZE (i));
3003
3004 /* Dump it as a double. */
3005 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3006 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3007 fputs_filtered ("(double precision) ", gdb_stdout);
3008
3009 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
3010 1, 0, Val_pretty_default);
3011 printf_filtered ("\n");
3012 }
3013}
3014
3015/*************** new function ***********************/
3016static void
fba45db2 3017pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
c906108c 3018{
123a958e
AC
3019 char raw_buffer[MAX_REGISTER_SIZE];
3020 char virtual_buffer[MAX_REGISTER_SIZE];
c906108c
SS
3021
3022 fputs_filtered (REGISTER_NAME (i), stream);
3023 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
3024
3025 /* Get 32bits of data. */
6e7f8b9c 3026 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
3027
3028 /* Put it in the buffer. No conversions are ever necessary. */
3029 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
3030
3031 if (precision == double_precision && (i % 2) == 0)
3032 {
3033
123a958e 3034 char raw_buf[MAX_REGISTER_SIZE];
c5aa993b
JM
3035
3036 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 3037 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
c5aa993b
JM
3038
3039 /* Copy it into the appropriate part of the virtual buffer. */
3040 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
c906108c 3041
c5aa993b
JM
3042 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3043 1, 0, Val_pretty_default);
c906108c
SS
3044
3045 }
c5aa993b
JM
3046 else
3047 {
3048 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
3049 1, 0, Val_pretty_default);
3050 }
c906108c
SS
3051
3052}
3053
3054/* Return one if PC is in the call path of a trampoline, else return zero.
3055
3056 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3057 just shared library trampolines (import, export). */
3058
3059int
60383d10 3060hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3061{
3062 struct minimal_symbol *minsym;
3063 struct unwind_table_entry *u;
3064 static CORE_ADDR dyncall = 0;
3065 static CORE_ADDR sr4export = 0;
3066
c2c6d25f
JM
3067#ifdef GDB_TARGET_IS_HPPA_20W
3068 /* PA64 has a completely different stub/trampoline scheme. Is it
3069 better? Maybe. It's certainly harder to determine with any
3070 certainty that we are in a stub because we can not refer to the
3071 unwinders to help.
3072
3073 The heuristic is simple. Try to lookup the current PC value in th
3074 minimal symbol table. If that fails, then assume we are not in a
3075 stub and return.
3076
3077 Then see if the PC value falls within the section bounds for the
3078 section containing the minimal symbol we found in the first
3079 step. If it does, then assume we are not in a stub and return.
3080
3081 Finally peek at the instructions to see if they look like a stub. */
3082 {
3083 struct minimal_symbol *minsym;
3084 asection *sec;
3085 CORE_ADDR addr;
3086 int insn, i;
3087
3088 minsym = lookup_minimal_symbol_by_pc (pc);
3089 if (! minsym)
3090 return 0;
3091
3092 sec = SYMBOL_BFD_SECTION (minsym);
3093
3094 if (sec->vma <= pc
3095 && sec->vma + sec->_cooked_size < pc)
3096 return 0;
3097
3098 /* We might be in a stub. Peek at the instructions. Stubs are 3
3099 instructions long. */
3100 insn = read_memory_integer (pc, 4);
3101
b84a8afe 3102 /* Find out where we think we are within the stub. */
c2c6d25f
JM
3103 if ((insn & 0xffffc00e) == 0x53610000)
3104 addr = pc;
3105 else if ((insn & 0xffffffff) == 0xe820d000)
3106 addr = pc - 4;
3107 else if ((insn & 0xffffc00e) == 0x537b0000)
3108 addr = pc - 8;
3109 else
3110 return 0;
3111
3112 /* Now verify each insn in the range looks like a stub instruction. */
3113 insn = read_memory_integer (addr, 4);
3114 if ((insn & 0xffffc00e) != 0x53610000)
3115 return 0;
3116
3117 /* Now verify each insn in the range looks like a stub instruction. */
3118 insn = read_memory_integer (addr + 4, 4);
3119 if ((insn & 0xffffffff) != 0xe820d000)
3120 return 0;
3121
3122 /* Now verify each insn in the range looks like a stub instruction. */
3123 insn = read_memory_integer (addr + 8, 4);
3124 if ((insn & 0xffffc00e) != 0x537b0000)
3125 return 0;
3126
3127 /* Looks like a stub. */
3128 return 1;
3129 }
3130#endif
3131
3132 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3133 new exec file */
c906108c
SS
3134
3135 /* First see if PC is in one of the two C-library trampolines. */
3136 if (!dyncall)
3137 {
3138 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3139 if (minsym)
3140 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3141 else
3142 dyncall = -1;
3143 }
3144
3145 if (!sr4export)
3146 {
3147 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3148 if (minsym)
3149 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3150 else
3151 sr4export = -1;
3152 }
3153
3154 if (pc == dyncall || pc == sr4export)
3155 return 1;
3156
104c1213 3157 minsym = lookup_minimal_symbol_by_pc (pc);
22abf04a 3158 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
104c1213
JM
3159 return 1;
3160
c906108c
SS
3161 /* Get the unwind descriptor corresponding to PC, return zero
3162 if no unwind was found. */
3163 u = find_unwind_entry (pc);
3164 if (!u)
3165 return 0;
3166
3167 /* If this isn't a linker stub, then return now. */
3168 if (u->stub_unwind.stub_type == 0)
3169 return 0;
3170
3171 /* By definition a long-branch stub is a call stub. */
3172 if (u->stub_unwind.stub_type == LONG_BRANCH)
3173 return 1;
3174
3175 /* The call and return path execute the same instructions within
3176 an IMPORT stub! So an IMPORT stub is both a call and return
3177 trampoline. */
3178 if (u->stub_unwind.stub_type == IMPORT)
3179 return 1;
3180
3181 /* Parameter relocation stubs always have a call path and may have a
3182 return path. */
3183 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3184 || u->stub_unwind.stub_type == EXPORT)
3185 {
3186 CORE_ADDR addr;
3187
3188 /* Search forward from the current PC until we hit a branch
c5aa993b 3189 or the end of the stub. */
c906108c
SS
3190 for (addr = pc; addr <= u->region_end; addr += 4)
3191 {
3192 unsigned long insn;
3193
3194 insn = read_memory_integer (addr, 4);
3195
3196 /* Does it look like a bl? If so then it's the call path, if
3197 we find a bv or be first, then we're on the return path. */
3198 if ((insn & 0xfc00e000) == 0xe8000000)
3199 return 1;
3200 else if ((insn & 0xfc00e001) == 0xe800c000
3201 || (insn & 0xfc000000) == 0xe0000000)
3202 return 0;
3203 }
3204
3205 /* Should never happen. */
104c1213
JM
3206 warning ("Unable to find branch in parameter relocation stub.\n");
3207 return 0;
c906108c
SS
3208 }
3209
3210 /* Unknown stub type. For now, just return zero. */
104c1213 3211 return 0;
c906108c
SS
3212}
3213
3214/* Return one if PC is in the return path of a trampoline, else return zero.
3215
3216 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3217 just shared library trampolines (import, export). */
3218
3219int
60383d10 3220hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3221{
3222 struct unwind_table_entry *u;
3223
3224 /* Get the unwind descriptor corresponding to PC, return zero
3225 if no unwind was found. */
3226 u = find_unwind_entry (pc);
3227 if (!u)
3228 return 0;
3229
3230 /* If this isn't a linker stub or it's just a long branch stub, then
3231 return zero. */
3232 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3233 return 0;
3234
3235 /* The call and return path execute the same instructions within
3236 an IMPORT stub! So an IMPORT stub is both a call and return
3237 trampoline. */
3238 if (u->stub_unwind.stub_type == IMPORT)
3239 return 1;
3240
3241 /* Parameter relocation stubs always have a call path and may have a
3242 return path. */
3243 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3244 || u->stub_unwind.stub_type == EXPORT)
3245 {
3246 CORE_ADDR addr;
3247
3248 /* Search forward from the current PC until we hit a branch
c5aa993b 3249 or the end of the stub. */
c906108c
SS
3250 for (addr = pc; addr <= u->region_end; addr += 4)
3251 {
3252 unsigned long insn;
3253
3254 insn = read_memory_integer (addr, 4);
3255
3256 /* Does it look like a bl? If so then it's the call path, if
3257 we find a bv or be first, then we're on the return path. */
3258 if ((insn & 0xfc00e000) == 0xe8000000)
3259 return 0;
3260 else if ((insn & 0xfc00e001) == 0xe800c000
3261 || (insn & 0xfc000000) == 0xe0000000)
3262 return 1;
3263 }
3264
3265 /* Should never happen. */
104c1213
JM
3266 warning ("Unable to find branch in parameter relocation stub.\n");
3267 return 0;
c906108c
SS
3268 }
3269
3270 /* Unknown stub type. For now, just return zero. */
104c1213 3271 return 0;
c906108c
SS
3272
3273}
3274
3275/* Figure out if PC is in a trampoline, and if so find out where
3276 the trampoline will jump to. If not in a trampoline, return zero.
3277
3278 Simple code examination probably is not a good idea since the code
3279 sequences in trampolines can also appear in user code.
3280
3281 We use unwinds and information from the minimal symbol table to
3282 determine when we're in a trampoline. This won't work for ELF
3283 (yet) since it doesn't create stub unwind entries. Whether or
3284 not ELF will create stub unwinds or normal unwinds for linker
3285 stubs is still being debated.
3286
3287 This should handle simple calls through dyncall or sr4export,
3288 long calls, argument relocation stubs, and dyncall/sr4export
3289 calling an argument relocation stub. It even handles some stubs
3290 used in dynamic executables. */
3291
c906108c 3292CORE_ADDR
60383d10 3293hppa_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
3294{
3295 long orig_pc = pc;
3296 long prev_inst, curr_inst, loc;
3297 static CORE_ADDR dyncall = 0;
3298 static CORE_ADDR dyncall_external = 0;
3299 static CORE_ADDR sr4export = 0;
3300 struct minimal_symbol *msym;
3301 struct unwind_table_entry *u;
3302
c2c6d25f
JM
3303 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3304 new exec file */
c906108c
SS
3305
3306 if (!dyncall)
3307 {
3308 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3309 if (msym)
3310 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3311 else
3312 dyncall = -1;
3313 }
3314
3315 if (!dyncall_external)
3316 {
3317 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3318 if (msym)
3319 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3320 else
3321 dyncall_external = -1;
3322 }
3323
3324 if (!sr4export)
3325 {
3326 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3327 if (msym)
3328 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3329 else
3330 sr4export = -1;
3331 }
3332
3333 /* Addresses passed to dyncall may *NOT* be the actual address
3334 of the function. So we may have to do something special. */
3335 if (pc == dyncall)
3336 {
3337 pc = (CORE_ADDR) read_register (22);
3338
3339 /* If bit 30 (counting from the left) is on, then pc is the address of
c5aa993b
JM
3340 the PLT entry for this function, not the address of the function
3341 itself. Bit 31 has meaning too, but only for MPE. */
c906108c 3342 if (pc & 0x2)
53a5351d 3343 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3344 }
3345 if (pc == dyncall_external)
3346 {
3347 pc = (CORE_ADDR) read_register (22);
53a5351d 3348 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3349 }
3350 else if (pc == sr4export)
3351 pc = (CORE_ADDR) (read_register (22));
3352
3353 /* Get the unwind descriptor corresponding to PC, return zero
3354 if no unwind was found. */
3355 u = find_unwind_entry (pc);
3356 if (!u)
3357 return 0;
3358
3359 /* If this isn't a linker stub, then return now. */
3360 /* elz: attention here! (FIXME) because of a compiler/linker
3361 error, some stubs which should have a non zero stub_unwind.stub_type
3362 have unfortunately a value of zero. So this function would return here
3363 as if we were not in a trampoline. To fix this, we go look at the partial
3364 symbol information, which reports this guy as a stub.
3365 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3366 partial symbol information is also wrong sometimes. This is because
3367 when it is entered (somread.c::som_symtab_read()) it can happen that
3368 if the type of the symbol (from the som) is Entry, and the symbol is
3369 in a shared library, then it can also be a trampoline. This would
3370 be OK, except that I believe the way they decide if we are ina shared library
3371 does not work. SOOOO..., even if we have a regular function w/o trampolines
3372 its minimal symbol can be assigned type mst_solib_trampoline.
3373 Also, if we find that the symbol is a real stub, then we fix the unwind
3374 descriptor, and define the stub type to be EXPORT.
c5aa993b 3375 Hopefully this is correct most of the times. */
c906108c 3376 if (u->stub_unwind.stub_type == 0)
c5aa993b 3377 {
c906108c
SS
3378
3379/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3380 we can delete all the code which appears between the lines */
3381/*--------------------------------------------------------------------------*/
c5aa993b 3382 msym = lookup_minimal_symbol_by_pc (pc);
c906108c 3383
c5aa993b
JM
3384 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3385 return orig_pc == pc ? 0 : pc & ~0x3;
3386
3387 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3388 {
3389 struct objfile *objfile;
3390 struct minimal_symbol *msymbol;
3391 int function_found = 0;
3392
3393 /* go look if there is another minimal symbol with the same name as
3394 this one, but with type mst_text. This would happen if the msym
3395 is an actual trampoline, in which case there would be another
3396 symbol with the same name corresponding to the real function */
3397
3398 ALL_MSYMBOLS (objfile, msymbol)
3399 {
3400 if (MSYMBOL_TYPE (msymbol) == mst_text
22abf04a 3401 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
c5aa993b
JM
3402 {
3403 function_found = 1;
3404 break;
3405 }
3406 }
3407
3408 if (function_found)
3409 /* the type of msym is correct (mst_solib_trampoline), but
3410 the unwind info is wrong, so set it to the correct value */
3411 u->stub_unwind.stub_type = EXPORT;
3412 else
3413 /* the stub type info in the unwind is correct (this is not a
3414 trampoline), but the msym type information is wrong, it
3415 should be mst_text. So we need to fix the msym, and also
3416 get out of this function */
3417 {
3418 MSYMBOL_TYPE (msym) = mst_text;
3419 return orig_pc == pc ? 0 : pc & ~0x3;
3420 }
3421 }
c906108c 3422
c906108c 3423/*--------------------------------------------------------------------------*/
c5aa993b 3424 }
c906108c
SS
3425
3426 /* It's a stub. Search for a branch and figure out where it goes.
3427 Note we have to handle multi insn branch sequences like ldil;ble.
3428 Most (all?) other branches can be determined by examining the contents
3429 of certain registers and the stack. */
3430
3431 loc = pc;
3432 curr_inst = 0;
3433 prev_inst = 0;
3434 while (1)
3435 {
3436 /* Make sure we haven't walked outside the range of this stub. */
3437 if (u != find_unwind_entry (loc))
3438 {
3439 warning ("Unable to find branch in linker stub");
3440 return orig_pc == pc ? 0 : pc & ~0x3;
3441 }
3442
3443 prev_inst = curr_inst;
3444 curr_inst = read_memory_integer (loc, 4);
3445
3446 /* Does it look like a branch external using %r1? Then it's the
c5aa993b 3447 branch from the stub to the actual function. */
c906108c
SS
3448 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3449 {
3450 /* Yup. See if the previous instruction loaded
3451 a value into %r1. If so compute and return the jump address. */
3452 if ((prev_inst & 0xffe00000) == 0x20200000)
3453 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3454 else
3455 {
3456 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3457 return orig_pc == pc ? 0 : pc & ~0x3;
3458 }
3459 }
3460
3461 /* Does it look like a be 0(sr0,%r21)? OR
3462 Does it look like a be, n 0(sr0,%r21)? OR
3463 Does it look like a bve (r21)? (this is on PA2.0)
3464 Does it look like a bve, n(r21)? (this is also on PA2.0)
3465 That's the branch from an
c5aa993b 3466 import stub to an export stub.
c906108c 3467
c5aa993b
JM
3468 It is impossible to determine the target of the branch via
3469 simple examination of instructions and/or data (consider
3470 that the address in the plabel may be the address of the
3471 bind-on-reference routine in the dynamic loader).
c906108c 3472
c5aa993b 3473 So we have try an alternative approach.
c906108c 3474
c5aa993b
JM
3475 Get the name of the symbol at our current location; it should
3476 be a stub symbol with the same name as the symbol in the
3477 shared library.
c906108c 3478
c5aa993b
JM
3479 Then lookup a minimal symbol with the same name; we should
3480 get the minimal symbol for the target routine in the shared
3481 library as those take precedence of import/export stubs. */
c906108c 3482 if ((curr_inst == 0xe2a00000) ||
c5aa993b
JM
3483 (curr_inst == 0xe2a00002) ||
3484 (curr_inst == 0xeaa0d000) ||
3485 (curr_inst == 0xeaa0d002))
c906108c
SS
3486 {
3487 struct minimal_symbol *stubsym, *libsym;
3488
3489 stubsym = lookup_minimal_symbol_by_pc (loc);
3490 if (stubsym == NULL)
3491 {
ce414844 3492 warning ("Unable to find symbol for 0x%lx", loc);
c906108c
SS
3493 return orig_pc == pc ? 0 : pc & ~0x3;
3494 }
3495
22abf04a 3496 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
c906108c
SS
3497 if (libsym == NULL)
3498 {
3499 warning ("Unable to find library symbol for %s\n",
22abf04a 3500 DEPRECATED_SYMBOL_NAME (stubsym));
c906108c
SS
3501 return orig_pc == pc ? 0 : pc & ~0x3;
3502 }
3503
3504 return SYMBOL_VALUE (libsym);
3505 }
3506
3507 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
c5aa993b
JM
3508 branch from the stub to the actual function. */
3509 /*elz */
c906108c
SS
3510 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3511 || (curr_inst & 0xffe0e000) == 0xe8000000
c5aa993b 3512 || (curr_inst & 0xffe0e000) == 0xe800A000)
c906108c
SS
3513 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3514
3515 /* Does it look like bv (rp)? Note this depends on the
c5aa993b
JM
3516 current stack pointer being the same as the stack
3517 pointer in the stub itself! This is a branch on from the
3518 stub back to the original caller. */
3519 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
c906108c
SS
3520 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3521 {
3522 /* Yup. See if the previous instruction loaded
3523 rp from sp - 8. */
3524 if (prev_inst == 0x4bc23ff1)
3525 return (read_memory_integer
3526 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3527 else
3528 {
3529 warning ("Unable to find restore of %%rp before bv (%%rp).");
3530 return orig_pc == pc ? 0 : pc & ~0x3;
3531 }
3532 }
3533
3534 /* elz: added this case to capture the new instruction
3535 at the end of the return part of an export stub used by
3536 the PA2.0: BVE, n (rp) */
3537 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3538 {
c5aa993b 3539 return (read_memory_integer
53a5351d 3540 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3541 }
3542
3543 /* What about be,n 0(sr0,%rp)? It's just another way we return to
c5aa993b 3544 the original caller from the stub. Used in dynamic executables. */
c906108c
SS
3545 else if (curr_inst == 0xe0400002)
3546 {
3547 /* The value we jump to is sitting in sp - 24. But that's
3548 loaded several instructions before the be instruction.
3549 I guess we could check for the previous instruction being
3550 mtsp %r1,%sr0 if we want to do sanity checking. */
c5aa993b 3551 return (read_memory_integer
53a5351d 3552 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3553 }
3554
3555 /* Haven't found the branch yet, but we're still in the stub.
c5aa993b 3556 Keep looking. */
c906108c
SS
3557 loc += 4;
3558 }
3559}
3560
3561
3562/* For the given instruction (INST), return any adjustment it makes
3563 to the stack pointer or zero for no adjustment.
3564
3565 This only handles instructions commonly found in prologues. */
3566
3567static int
fba45db2 3568prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
3569{
3570 /* This must persist across calls. */
3571 static int save_high21;
3572
3573 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3574 if ((inst & 0xffffc000) == 0x37de0000)
3575 return extract_14 (inst);
3576
3577 /* stwm X,D(sp) */
3578 if ((inst & 0xffe00000) == 0x6fc00000)
3579 return extract_14 (inst);
3580
104c1213
JM
3581 /* std,ma X,D(sp) */
3582 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 3583 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 3584
c906108c
SS
3585 /* addil high21,%r1; ldo low11,(%r1),%r30)
3586 save high bits in save_high21 for later use. */
3587 if ((inst & 0xffe00000) == 0x28200000)
3588 {
3589 save_high21 = extract_21 (inst);
3590 return 0;
3591 }
3592
3593 if ((inst & 0xffff0000) == 0x343e0000)
3594 return save_high21 + extract_14 (inst);
3595
3596 /* fstws as used by the HP compilers. */
3597 if ((inst & 0xffffffe0) == 0x2fd01220)
3598 return extract_5_load (inst);
3599
3600 /* No adjustment. */
3601 return 0;
3602}
3603
3604/* Return nonzero if INST is a branch of some kind, else return zero. */
3605
3606static int
fba45db2 3607is_branch (unsigned long inst)
c906108c
SS
3608{
3609 switch (inst >> 26)
3610 {
3611 case 0x20:
3612 case 0x21:
3613 case 0x22:
3614 case 0x23:
7be570e7 3615 case 0x27:
c906108c
SS
3616 case 0x28:
3617 case 0x29:
3618 case 0x2a:
3619 case 0x2b:
7be570e7 3620 case 0x2f:
c906108c
SS
3621 case 0x30:
3622 case 0x31:
3623 case 0x32:
3624 case 0x33:
3625 case 0x38:
3626 case 0x39:
3627 case 0x3a:
7be570e7 3628 case 0x3b:
c906108c
SS
3629 return 1;
3630
3631 default:
3632 return 0;
3633 }
3634}
3635
3636/* Return the register number for a GR which is saved by INST or
3637 zero it INST does not save a GR. */
3638
3639static int
fba45db2 3640inst_saves_gr (unsigned long inst)
c906108c
SS
3641{
3642 /* Does it look like a stw? */
7be570e7
JM
3643 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3644 || (inst >> 26) == 0x1f
3645 || ((inst >> 26) == 0x1f
3646 && ((inst >> 6) == 0xa)))
3647 return extract_5R_store (inst);
3648
3649 /* Does it look like a std? */
3650 if ((inst >> 26) == 0x1c
3651 || ((inst >> 26) == 0x03
3652 && ((inst >> 6) & 0xf) == 0xb))
c906108c
SS
3653 return extract_5R_store (inst);
3654
3655 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3656 if ((inst >> 26) == 0x1b)
3657 return extract_5R_store (inst);
3658
3659 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3660 too. */
7be570e7
JM
3661 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3662 || ((inst >> 26) == 0x3
3663 && (((inst >> 6) & 0xf) == 0x8
3664 || (inst >> 6) & 0xf) == 0x9))
c906108c 3665 return extract_5R_store (inst);
c5aa993b 3666
c906108c
SS
3667 return 0;
3668}
3669
3670/* Return the register number for a FR which is saved by INST or
3671 zero it INST does not save a FR.
3672
3673 Note we only care about full 64bit register stores (that's the only
3674 kind of stores the prologue will use).
3675
3676 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3677
3678static int
fba45db2 3679inst_saves_fr (unsigned long inst)
c906108c 3680{
7be570e7 3681 /* is this an FSTD ? */
c906108c
SS
3682 if ((inst & 0xfc00dfc0) == 0x2c001200)
3683 return extract_5r_store (inst);
7be570e7
JM
3684 if ((inst & 0xfc000002) == 0x70000002)
3685 return extract_5R_store (inst);
3686 /* is this an FSTW ? */
c906108c
SS
3687 if ((inst & 0xfc00df80) == 0x24001200)
3688 return extract_5r_store (inst);
7be570e7
JM
3689 if ((inst & 0xfc000002) == 0x7c000000)
3690 return extract_5R_store (inst);
c906108c
SS
3691 return 0;
3692}
3693
3694/* Advance PC across any function entry prologue instructions
3695 to reach some "real" code.
3696
3697 Use information in the unwind table to determine what exactly should
3698 be in the prologue. */
3699
3700
3701CORE_ADDR
fba45db2 3702skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
3703{
3704 char buf[4];
3705 CORE_ADDR orig_pc = pc;
3706 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3707 unsigned long args_stored, status, i, restart_gr, restart_fr;
3708 struct unwind_table_entry *u;
3709
3710 restart_gr = 0;
3711 restart_fr = 0;
3712
3713restart:
3714 u = find_unwind_entry (pc);
3715 if (!u)
3716 return pc;
3717
c5aa993b 3718 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
3719 if ((pc & ~0x3) != u->region_start)
3720 return pc;
3721
3722 /* This is how much of a frame adjustment we need to account for. */
3723 stack_remaining = u->Total_frame_size << 3;
3724
3725 /* Magic register saves we want to know about. */
3726 save_rp = u->Save_RP;
3727 save_sp = u->Save_SP;
3728
3729 /* An indication that args may be stored into the stack. Unfortunately
3730 the HPUX compilers tend to set this in cases where no args were
3731 stored too!. */
3732 args_stored = 1;
3733
3734 /* Turn the Entry_GR field into a bitmask. */
3735 save_gr = 0;
3736 for (i = 3; i < u->Entry_GR + 3; i++)
3737 {
3738 /* Frame pointer gets saved into a special location. */
0ba6dca9 3739 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
c906108c
SS
3740 continue;
3741
3742 save_gr |= (1 << i);
3743 }
3744 save_gr &= ~restart_gr;
3745
3746 /* Turn the Entry_FR field into a bitmask too. */
3747 save_fr = 0;
3748 for (i = 12; i < u->Entry_FR + 12; i++)
3749 save_fr |= (1 << i);
3750 save_fr &= ~restart_fr;
3751
3752 /* Loop until we find everything of interest or hit a branch.
3753
3754 For unoptimized GCC code and for any HP CC code this will never ever
3755 examine any user instructions.
3756
3757 For optimzied GCC code we're faced with problems. GCC will schedule
3758 its prologue and make prologue instructions available for delay slot
3759 filling. The end result is user code gets mixed in with the prologue
3760 and a prologue instruction may be in the delay slot of the first branch
3761 or call.
3762
3763 Some unexpected things are expected with debugging optimized code, so
3764 we allow this routine to walk past user instructions in optimized
3765 GCC code. */
3766 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3767 || args_stored)
3768 {
3769 unsigned int reg_num;
3770 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3771 unsigned long old_save_rp, old_save_sp, next_inst;
3772
3773 /* Save copies of all the triggers so we can compare them later
c5aa993b 3774 (only for HPC). */
c906108c
SS
3775 old_save_gr = save_gr;
3776 old_save_fr = save_fr;
3777 old_save_rp = save_rp;
3778 old_save_sp = save_sp;
3779 old_stack_remaining = stack_remaining;
3780
3781 status = target_read_memory (pc, buf, 4);
3782 inst = extract_unsigned_integer (buf, 4);
c5aa993b 3783
c906108c
SS
3784 /* Yow! */
3785 if (status != 0)
3786 return pc;
3787
3788 /* Note the interesting effects of this instruction. */
3789 stack_remaining -= prologue_inst_adjust_sp (inst);
3790
7be570e7
JM
3791 /* There are limited ways to store the return pointer into the
3792 stack. */
3793 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
3794 save_rp = 0;
3795
104c1213 3796 /* These are the only ways we save SP into the stack. At this time
c5aa993b 3797 the HP compilers never bother to save SP into the stack. */
104c1213
JM
3798 if ((inst & 0xffffc000) == 0x6fc10000
3799 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
3800 save_sp = 0;
3801
6426a772
JM
3802 /* Are we loading some register with an offset from the argument
3803 pointer? */
3804 if ((inst & 0xffe00000) == 0x37a00000
3805 || (inst & 0xffffffe0) == 0x081d0240)
3806 {
3807 pc += 4;
3808 continue;
3809 }
3810
c906108c
SS
3811 /* Account for general and floating-point register saves. */
3812 reg_num = inst_saves_gr (inst);
3813 save_gr &= ~(1 << reg_num);
3814
3815 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3816 Unfortunately args_stored only tells us that some arguments
3817 where stored into the stack. Not how many or what kind!
c906108c 3818
c5aa993b
JM
3819 This is a kludge as on the HP compiler sets this bit and it
3820 never does prologue scheduling. So once we see one, skip past
3821 all of them. We have similar code for the fp arg stores below.
c906108c 3822
c5aa993b
JM
3823 FIXME. Can still die if we have a mix of GR and FR argument
3824 stores! */
6426a772 3825 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 3826 {
6426a772 3827 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
3828 {
3829 pc += 4;
3830 status = target_read_memory (pc, buf, 4);
3831 inst = extract_unsigned_integer (buf, 4);
3832 if (status != 0)
3833 return pc;
3834 reg_num = inst_saves_gr (inst);
3835 }
3836 args_stored = 0;
3837 continue;
3838 }
3839
3840 reg_num = inst_saves_fr (inst);
3841 save_fr &= ~(1 << reg_num);
3842
3843 status = target_read_memory (pc + 4, buf, 4);
3844 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 3845
c906108c
SS
3846 /* Yow! */
3847 if (status != 0)
3848 return pc;
3849
3850 /* We've got to be read to handle the ldo before the fp register
c5aa993b 3851 save. */
c906108c
SS
3852 if ((inst & 0xfc000000) == 0x34000000
3853 && inst_saves_fr (next_inst) >= 4
6426a772 3854 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3855 {
3856 /* So we drop into the code below in a reasonable state. */
3857 reg_num = inst_saves_fr (next_inst);
3858 pc -= 4;
3859 }
3860
3861 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3862 This is a kludge as on the HP compiler sets this bit and it
3863 never does prologue scheduling. So once we see one, skip past
3864 all of them. */
6426a772 3865 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 3866 {
6426a772 3867 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3868 {
3869 pc += 8;
3870 status = target_read_memory (pc, buf, 4);
3871 inst = extract_unsigned_integer (buf, 4);
3872 if (status != 0)
3873 return pc;
3874 if ((inst & 0xfc000000) != 0x34000000)
3875 break;
3876 status = target_read_memory (pc + 4, buf, 4);
3877 next_inst = extract_unsigned_integer (buf, 4);
3878 if (status != 0)
3879 return pc;
3880 reg_num = inst_saves_fr (next_inst);
3881 }
3882 args_stored = 0;
3883 continue;
3884 }
3885
3886 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3887 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3888 if (is_branch (inst))
3889 break;
3890
3891 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
3892 arguments were stored into the stack (boo hiss). This could
3893 cause this code to then skip a bunch of user insns (up to the
3894 first branch).
3895
3896 To combat this we try to identify when args_stored was bogusly
3897 set and clear it. We only do this when args_stored is nonzero,
3898 all other resources are accounted for, and nothing changed on
3899 this pass. */
c906108c 3900 if (args_stored
c5aa993b 3901 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
3902 && old_save_gr == save_gr && old_save_fr == save_fr
3903 && old_save_rp == save_rp && old_save_sp == save_sp
3904 && old_stack_remaining == stack_remaining)
3905 break;
c5aa993b 3906
c906108c
SS
3907 /* Bump the PC. */
3908 pc += 4;
3909 }
3910
3911 /* We've got a tenative location for the end of the prologue. However
3912 because of limitations in the unwind descriptor mechanism we may
3913 have went too far into user code looking for the save of a register
3914 that does not exist. So, if there registers we expected to be saved
3915 but never were, mask them out and restart.
3916
3917 This should only happen in optimized code, and should be very rare. */
c5aa993b 3918 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
3919 {
3920 pc = orig_pc;
3921 restart_gr = save_gr;
3922 restart_fr = save_fr;
3923 goto restart;
3924 }
3925
3926 return pc;
3927}
3928
3929
7be570e7
JM
3930/* Return the address of the PC after the last prologue instruction if
3931 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
3932
3933static CORE_ADDR
fba45db2 3934after_prologue (CORE_ADDR pc)
c906108c
SS
3935{
3936 struct symtab_and_line sal;
3937 CORE_ADDR func_addr, func_end;
3938 struct symbol *f;
3939
7be570e7
JM
3940 /* If we can not find the symbol in the partial symbol table, then
3941 there is no hope we can determine the function's start address
3942 with this code. */
c906108c 3943 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 3944 return 0;
c906108c 3945
7be570e7 3946 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
3947 sal = find_pc_line (func_addr, 0);
3948
7be570e7
JM
3949 /* There are only two cases to consider. First, the end of the source line
3950 is within the function bounds. In that case we return the end of the
3951 source line. Second is the end of the source line extends beyond the
3952 bounds of the current function. We need to use the slow code to
3953 examine instructions in that case.
c906108c 3954
7be570e7
JM
3955 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3956 the wrong thing to do. In fact, it should be entirely possible for this
3957 function to always return zero since the slow instruction scanning code
3958 is supposed to *always* work. If it does not, then it is a bug. */
3959 if (sal.end < func_end)
3960 return sal.end;
c5aa993b 3961 else
7be570e7 3962 return 0;
c906108c
SS
3963}
3964
3965/* To skip prologues, I use this predicate. Returns either PC itself
3966 if the code at PC does not look like a function prologue; otherwise
3967 returns an address that (if we're lucky) follows the prologue. If
3968 LENIENT, then we must skip everything which is involved in setting
3969 up the frame (it's OK to skip more, just so long as we don't skip
3970 anything which might clobber the registers which are being saved.
3971 Currently we must not skip more on the alpha, but we might the lenient
3972 stuff some day. */
3973
3974CORE_ADDR
fba45db2 3975hppa_skip_prologue (CORE_ADDR pc)
c906108c 3976{
c5aa993b
JM
3977 unsigned long inst;
3978 int offset;
3979 CORE_ADDR post_prologue_pc;
3980 char buf[4];
c906108c 3981
c5aa993b
JM
3982 /* See if we can determine the end of the prologue via the symbol table.
3983 If so, then return either PC, or the PC after the prologue, whichever
3984 is greater. */
c906108c 3985
c5aa993b 3986 post_prologue_pc = after_prologue (pc);
c906108c 3987
7be570e7
JM
3988 /* If after_prologue returned a useful address, then use it. Else
3989 fall back on the instruction skipping code.
3990
3991 Some folks have claimed this causes problems because the breakpoint
3992 may be the first instruction of the prologue. If that happens, then
3993 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
3994 if (post_prologue_pc != 0)
3995 return max (pc, post_prologue_pc);
c5aa993b
JM
3996 else
3997 return (skip_prologue_hard_way (pc));
c906108c
SS
3998}
3999
43bd9a9e
AC
4000/* Put here the code to store, into the SAVED_REGS, the addresses of
4001 the saved registers of frame described by FRAME_INFO. This
4002 includes special registers such as pc and fp saved in special ways
4003 in the stack frame. sp is even more special: the address we return
4004 for it IS the sp for the next frame. */
c906108c
SS
4005
4006void
fba45db2 4007hppa_frame_find_saved_regs (struct frame_info *frame_info,
43bd9a9e 4008 CORE_ADDR frame_saved_regs[])
c906108c
SS
4009{
4010 CORE_ADDR pc;
4011 struct unwind_table_entry *u;
4012 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4013 int status, i, reg;
4014 char buf[4];
4015 int fp_loc = -1;
d4f3574e 4016 int final_iteration;
c906108c
SS
4017
4018 /* Zero out everything. */
43bd9a9e 4019 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
4020
4021 /* Call dummy frames always look the same, so there's no need to
4022 examine the dummy code to determine locations of saved registers;
4023 instead, let find_dummy_frame_regs fill in the correct offsets
4024 for the saved registers. */
ef6e7e13
AC
4025 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
4026 && (get_frame_pc (frame_info)
4027 <= (get_frame_base (frame_info)
4028 /* A call dummy is sized in words, but it is actually a
4029 series of instructions. Account for that scaling
4030 factor. */
b1e29e33
AC
4031 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4032 * DEPRECATED_CALL_DUMMY_LENGTH)
ef6e7e13
AC
4033 /* Similarly we have to account for 64bit wide register
4034 saves. */
b1e29e33 4035 + (32 * DEPRECATED_REGISTER_SIZE)
ef6e7e13
AC
4036 /* We always consider FP regs 8 bytes long. */
4037 + (NUM_REGS - FP0_REGNUM) * 8
4038 /* Similarly we have to account for 64bit wide register
4039 saves. */
b1e29e33 4040 + (6 * DEPRECATED_REGISTER_SIZE)))))
c906108c
SS
4041 find_dummy_frame_regs (frame_info, frame_saved_regs);
4042
4043 /* Interrupt handlers are special too. They lay out the register
4044 state in the exact same order as the register numbers in GDB. */
ef6e7e13 4045 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
c906108c
SS
4046 {
4047 for (i = 0; i < NUM_REGS; i++)
4048 {
4049 /* SP is a little special. */
4050 if (i == SP_REGNUM)
43bd9a9e 4051 frame_saved_regs[SP_REGNUM]
ef6e7e13 4052 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
53a5351d 4053 TARGET_PTR_BIT / 8);
c906108c 4054 else
ef6e7e13 4055 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
c906108c
SS
4056 }
4057 return;
4058 }
4059
4060#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4061 /* Handle signal handler callers. */
5a203e44 4062 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
c906108c
SS
4063 {
4064 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4065 return;
4066 }
4067#endif
4068
4069 /* Get the starting address of the function referred to by the PC
4070 saved in frame. */
be41e9f4 4071 pc = get_frame_func (frame_info);
c906108c
SS
4072
4073 /* Yow! */
4074 u = find_unwind_entry (pc);
4075 if (!u)
4076 return;
4077
4078 /* This is how much of a frame adjustment we need to account for. */
4079 stack_remaining = u->Total_frame_size << 3;
4080
4081 /* Magic register saves we want to know about. */
4082 save_rp = u->Save_RP;
4083 save_sp = u->Save_SP;
4084
4085 /* Turn the Entry_GR field into a bitmask. */
4086 save_gr = 0;
4087 for (i = 3; i < u->Entry_GR + 3; i++)
4088 {
4089 /* Frame pointer gets saved into a special location. */
0ba6dca9 4090 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
c906108c
SS
4091 continue;
4092
4093 save_gr |= (1 << i);
4094 }
4095
4096 /* Turn the Entry_FR field into a bitmask too. */
4097 save_fr = 0;
4098 for (i = 12; i < u->Entry_FR + 12; i++)
4099 save_fr |= (1 << i);
4100
4101 /* The frame always represents the value of %sp at entry to the
4102 current function (and is thus equivalent to the "saved" stack
4103 pointer. */
ef6e7e13 4104 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
c906108c
SS
4105
4106 /* Loop until we find everything of interest or hit a branch.
4107
4108 For unoptimized GCC code and for any HP CC code this will never ever
4109 examine any user instructions.
4110
7be570e7 4111 For optimized GCC code we're faced with problems. GCC will schedule
c906108c
SS
4112 its prologue and make prologue instructions available for delay slot
4113 filling. The end result is user code gets mixed in with the prologue
4114 and a prologue instruction may be in the delay slot of the first branch
4115 or call.
4116
4117 Some unexpected things are expected with debugging optimized code, so
4118 we allow this routine to walk past user instructions in optimized
4119 GCC code. */
d4f3574e
SS
4120 final_iteration = 0;
4121 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
ef6e7e13 4122 && pc <= get_frame_pc (frame_info))
c906108c
SS
4123 {
4124 status = target_read_memory (pc, buf, 4);
4125 inst = extract_unsigned_integer (buf, 4);
4126
4127 /* Yow! */
4128 if (status != 0)
4129 return;
4130
4131 /* Note the interesting effects of this instruction. */
4132 stack_remaining -= prologue_inst_adjust_sp (inst);
4133
104c1213
JM
4134 /* There are limited ways to store the return pointer into the
4135 stack. */
c2c6d25f 4136 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
c906108c
SS
4137 {
4138 save_rp = 0;
ef6e7e13 4139 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
c906108c 4140 }
c2c6d25f
JM
4141 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4142 {
4143 save_rp = 0;
ef6e7e13 4144 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
c2c6d25f 4145 }
c906108c 4146
104c1213
JM
4147 /* Note if we saved SP into the stack. This also happens to indicate
4148 the location of the saved frame pointer. */
c2c6d25f
JM
4149 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4150 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
104c1213 4151 {
0ba6dca9 4152 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
104c1213
JM
4153 save_sp = 0;
4154 }
c906108c
SS
4155
4156 /* Account for general and floating-point register saves. */
4157 reg = inst_saves_gr (inst);
4158 if (reg >= 3 && reg <= 18
0ba6dca9 4159 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
c906108c
SS
4160 {
4161 save_gr &= ~(1 << reg);
4162
4163 /* stwm with a positive displacement is a *post modify*. */
4164 if ((inst >> 26) == 0x1b
4165 && extract_14 (inst) >= 0)
ef6e7e13 4166 frame_saved_regs[reg] = get_frame_base (frame_info);
104c1213
JM
4167 /* A std has explicit post_modify forms. */
4168 else if ((inst & 0xfc00000c0) == 0x70000008)
ef6e7e13 4169 frame_saved_regs[reg] = get_frame_base (frame_info);
c906108c
SS
4170 else
4171 {
104c1213
JM
4172 CORE_ADDR offset;
4173
4174 if ((inst >> 26) == 0x1c)
d4f3574e 4175 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213
JM
4176 else if ((inst >> 26) == 0x03)
4177 offset = low_sign_extend (inst & 0x1f, 5);
4178 else
4179 offset = extract_14 (inst);
4180
c906108c
SS
4181 /* Handle code with and without frame pointers. */
4182 if (u->Save_SP)
43bd9a9e 4183 frame_saved_regs[reg]
ef6e7e13 4184 = get_frame_base (frame_info) + offset;
c906108c 4185 else
43bd9a9e 4186 frame_saved_regs[reg]
ef6e7e13 4187 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
104c1213 4188 + offset);
c906108c
SS
4189 }
4190 }
4191
4192
4193 /* GCC handles callee saved FP regs a little differently.
4194
c5aa993b
JM
4195 It emits an instruction to put the value of the start of
4196 the FP store area into %r1. It then uses fstds,ma with
4197 a basereg of %r1 for the stores.
c906108c 4198
c5aa993b
JM
4199 HP CC emits them at the current stack pointer modifying
4200 the stack pointer as it stores each register. */
c906108c
SS
4201
4202 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4203 if ((inst & 0xffffc000) == 0x34610000
4204 || (inst & 0xffffc000) == 0x37c10000)
4205 fp_loc = extract_14 (inst);
c5aa993b 4206
c906108c
SS
4207 reg = inst_saves_fr (inst);
4208 if (reg >= 12 && reg <= 21)
4209 {
4210 /* Note +4 braindamage below is necessary because the FP status
4211 registers are internally 8 registers rather than the expected
4212 4 registers. */
4213 save_fr &= ~(1 << reg);
4214 if (fp_loc == -1)
4215 {
4216 /* 1st HP CC FP register store. After this instruction
c5aa993b
JM
4217 we've set enough state that the GCC and HPCC code are
4218 both handled in the same manner. */
ef6e7e13 4219 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
c906108c
SS
4220 fp_loc = 8;
4221 }
4222 else
4223 {
43bd9a9e 4224 frame_saved_regs[reg + FP0_REGNUM + 4]
ef6e7e13 4225 = get_frame_base (frame_info) + fp_loc;
c906108c
SS
4226 fp_loc += 8;
4227 }
4228 }
4229
39f77062 4230 /* Quit if we hit any kind of branch the previous iteration. */
d4f3574e 4231 if (final_iteration)
c906108c
SS
4232 break;
4233
d4f3574e
SS
4234 /* We want to look precisely one instruction beyond the branch
4235 if we have not found everything yet. */
4236 if (is_branch (inst))
4237 final_iteration = 1;
4238
c906108c
SS
4239 /* Bump the PC. */
4240 pc += 4;
4241 }
4242}
4243
43bd9a9e
AC
4244/* XXX - deprecated. This is a compatibility function for targets
4245 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4246/* Find the addresses in which registers are saved in FRAME. */
4247
4248void
4249hppa_frame_init_saved_regs (struct frame_info *frame)
4250{
1b1d3794 4251 if (deprecated_get_frame_saved_regs (frame) == NULL)
43bd9a9e 4252 frame_saved_regs_zalloc (frame);
1b1d3794 4253 hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame));
43bd9a9e 4254}
c906108c
SS
4255
4256/* Exception handling support for the HP-UX ANSI C++ compiler.
4257 The compiler (aCC) provides a callback for exception events;
4258 GDB can set a breakpoint on this callback and find out what
4259 exception event has occurred. */
4260
4261/* The name of the hook to be set to point to the callback function */
c5aa993b
JM
4262static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4263/* The name of the function to be used to set the hook value */
4264static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4265/* The name of the callback function in end.o */
c906108c 4266static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
c5aa993b
JM
4267/* Name of function in end.o on which a break is set (called by above) */
4268static char HP_ACC_EH_break[] = "__d_eh_break";
4269/* Name of flag (in end.o) that enables catching throws */
4270static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4271/* Name of flag (in end.o) that enables catching catching */
4272static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4273/* The enum used by aCC */
4274typedef enum
4275 {
4276 __EH_NOTIFY_THROW,
4277 __EH_NOTIFY_CATCH
4278 }
4279__eh_notification;
c906108c
SS
4280
4281/* Is exception-handling support available with this executable? */
4282static int hp_cxx_exception_support = 0;
4283/* Has the initialize function been run? */
4284int hp_cxx_exception_support_initialized = 0;
4285/* Similar to above, but imported from breakpoint.c -- non-target-specific */
4286extern int exception_support_initialized;
4287/* Address of __eh_notify_hook */
a0b3c4fd 4288static CORE_ADDR eh_notify_hook_addr = 0;
c906108c 4289/* Address of __d_eh_notify_callback */
a0b3c4fd 4290static CORE_ADDR eh_notify_callback_addr = 0;
c906108c 4291/* Address of __d_eh_break */
a0b3c4fd 4292static CORE_ADDR eh_break_addr = 0;
c906108c 4293/* Address of __d_eh_catch_catch */
a0b3c4fd 4294static CORE_ADDR eh_catch_catch_addr = 0;
c906108c 4295/* Address of __d_eh_catch_throw */
a0b3c4fd 4296static CORE_ADDR eh_catch_throw_addr = 0;
c906108c 4297/* Sal for __d_eh_break */
a0b3c4fd 4298static struct symtab_and_line *break_callback_sal = 0;
c906108c
SS
4299
4300/* Code in end.c expects __d_pid to be set in the inferior,
4301 otherwise __d_eh_notify_callback doesn't bother to call
4302 __d_eh_break! So we poke the pid into this symbol
4303 ourselves.
4304 0 => success
c5aa993b 4305 1 => failure */
c906108c 4306int
fba45db2 4307setup_d_pid_in_inferior (void)
c906108c
SS
4308{
4309 CORE_ADDR anaddr;
c5aa993b
JM
4310 struct minimal_symbol *msymbol;
4311 char buf[4]; /* FIXME 32x64? */
4312
c906108c
SS
4313 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4314 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4315 if (msymbol == NULL)
4316 {
4317 warning ("Unable to find __d_pid symbol in object file.");
4318 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4319 return 1;
4320 }
4321
4322 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
39f77062 4323 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
c5aa993b 4324 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
c906108c
SS
4325 {
4326 warning ("Unable to write __d_pid");
4327 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4328 return 1;
4329 }
4330 return 0;
4331}
4332
4333/* Initialize exception catchpoint support by looking for the
4334 necessary hooks/callbacks in end.o, etc., and set the hook value to
4335 point to the required debug function
4336
4337 Return 0 => failure
c5aa993b 4338 1 => success */
c906108c
SS
4339
4340static int
fba45db2 4341initialize_hp_cxx_exception_support (void)
c906108c
SS
4342{
4343 struct symtabs_and_lines sals;
c5aa993b
JM
4344 struct cleanup *old_chain;
4345 struct cleanup *canonical_strings_chain = NULL;
c906108c 4346 int i;
c5aa993b
JM
4347 char *addr_start;
4348 char *addr_end = NULL;
4349 char **canonical = (char **) NULL;
c906108c 4350 int thread = -1;
c5aa993b
JM
4351 struct symbol *sym = NULL;
4352 struct minimal_symbol *msym = NULL;
4353 struct objfile *objfile;
c906108c
SS
4354 asection *shlib_info;
4355
4356 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4357 recursion is a possibility because finding the hook for exception
4358 callbacks involves making a call in the inferior, which means
4359 re-inserting breakpoints which can re-invoke this code */
4360
c5aa993b
JM
4361 static int recurse = 0;
4362 if (recurse > 0)
c906108c
SS
4363 {
4364 hp_cxx_exception_support_initialized = 0;
4365 exception_support_initialized = 0;
4366 return 0;
4367 }
4368
4369 hp_cxx_exception_support = 0;
4370
4371 /* First check if we have seen any HP compiled objects; if not,
4372 it is very unlikely that HP's idiosyncratic callback mechanism
4373 for exception handling debug support will be available!
4374 This will percolate back up to breakpoint.c, where our callers
4375 will decide to try the g++ exception-handling support instead. */
4376 if (!hp_som_som_object_present)
4377 return 0;
c5aa993b 4378
c906108c
SS
4379 /* We have a SOM executable with SOM debug info; find the hooks */
4380
4381 /* First look for the notify hook provided by aCC runtime libs */
4382 /* If we find this symbol, we conclude that the executable must
4383 have HP aCC exception support built in. If this symbol is not
4384 found, even though we're a HP SOM-SOM file, we may have been
4385 built with some other compiler (not aCC). This results percolates
4386 back up to our callers in breakpoint.c which can decide to
4387 try the g++ style of exception support instead.
4388 If this symbol is found but the other symbols we require are
4389 not found, there is something weird going on, and g++ support
4390 should *not* be tried as an alternative.
c5aa993b 4391
c906108c
SS
4392 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4393 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
c5aa993b 4394
c906108c
SS
4395 /* libCsup has this hook; it'll usually be non-debuggable */
4396 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4397 if (msym)
4398 {
4399 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4400 hp_cxx_exception_support = 1;
c5aa993b 4401 }
c906108c
SS
4402 else
4403 {
4404 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4405 warning ("Executable may not have been compiled debuggable with HP aCC.");
4406 warning ("GDB will be unable to intercept exception events.");
4407 eh_notify_hook_addr = 0;
4408 hp_cxx_exception_support = 0;
4409 return 0;
4410 }
4411
c906108c 4412 /* Next look for the notify callback routine in end.o */
c5aa993b 4413 /* This is always available in the SOM symbol dictionary if end.o is linked in */
c906108c
SS
4414 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4415 if (msym)
4416 {
4417 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4418 hp_cxx_exception_support = 1;
c5aa993b
JM
4419 }
4420 else
c906108c
SS
4421 {
4422 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4423 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4424 warning ("GDB will be unable to intercept exception events.");
4425 eh_notify_callback_addr = 0;
4426 return 0;
4427 }
4428
53a5351d 4429#ifndef GDB_TARGET_IS_HPPA_20W
c906108c
SS
4430 /* Check whether the executable is dynamically linked or archive bound */
4431 /* With an archive-bound executable we can use the raw addresses we find
4432 for the callback function, etc. without modification. For an executable
4433 with shared libraries, we have to do more work to find the plabel, which
4434 can be the target of a call through $$dyncall from the aCC runtime support
4435 library (libCsup) which is linked shared by default by aCC. */
4436 /* This test below was copied from somsolib.c/somread.c. It may not be a very
c5aa993b 4437 reliable one to test that an executable is linked shared. pai/1997-07-18 */
c906108c
SS
4438 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4439 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4440 {
4441 /* The minsym we have has the local code address, but that's not the
4442 plabel that can be used by an inter-load-module call. */
4443 /* Find solib handle for main image (which has end.o), and use that
4444 and the min sym as arguments to __d_shl_get() (which does the equivalent
c5aa993b 4445 of shl_findsym()) to find the plabel. */
c906108c
SS
4446
4447 args_for_find_stub args;
4448 static char message[] = "Error while finding exception callback hook:\n";
c5aa993b 4449
c906108c
SS
4450 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4451 args.msym = msym;
a0b3c4fd 4452 args.return_val = 0;
c5aa993b 4453
c906108c 4454 recurse++;
4efb68b1 4455 catch_errors (cover_find_stub_with_shl_get, &args, message,
a0b3c4fd
JM
4456 RETURN_MASK_ALL);
4457 eh_notify_callback_addr = args.return_val;
c906108c 4458 recurse--;
c5aa993b 4459
c906108c 4460 exception_catchpoints_are_fragile = 1;
c5aa993b 4461
c906108c 4462 if (!eh_notify_callback_addr)
c5aa993b
JM
4463 {
4464 /* We can get here either if there is no plabel in the export list
1faa59a8 4465 for the main image, or if something strange happened (?) */
c5aa993b
JM
4466 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4467 warning ("GDB will not be able to intercept exception events.");
4468 return 0;
4469 }
c906108c
SS
4470 }
4471 else
4472 exception_catchpoints_are_fragile = 0;
53a5351d 4473#endif
c906108c 4474
c906108c 4475 /* Now, look for the breakpointable routine in end.o */
c5aa993b 4476 /* This should also be available in the SOM symbol dict. if end.o linked in */
c906108c
SS
4477 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4478 if (msym)
4479 {
4480 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4481 hp_cxx_exception_support = 1;
c5aa993b 4482 }
c906108c
SS
4483 else
4484 {
4485 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4486 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4487 warning ("GDB will be unable to intercept exception events.");
4488 eh_break_addr = 0;
4489 return 0;
4490 }
4491
c906108c
SS
4492 /* Next look for the catch enable flag provided in end.o */
4493 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
176620f1 4494 VAR_DOMAIN, 0, (struct symtab **) NULL);
c5aa993b 4495 if (sym) /* sometimes present in debug info */
c906108c
SS
4496 {
4497 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4498 hp_cxx_exception_support = 1;
4499 }
c5aa993b
JM
4500 else
4501 /* otherwise look in SOM symbol dict. */
c906108c
SS
4502 {
4503 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4504 if (msym)
c5aa993b
JM
4505 {
4506 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4507 hp_cxx_exception_support = 1;
4508 }
c906108c 4509 else
c5aa993b
JM
4510 {
4511 warning ("Unable to enable interception of exception catches.");
4512 warning ("Executable may not have been compiled debuggable with HP aCC.");
4513 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4514 return 0;
4515 }
c906108c
SS
4516 }
4517
c906108c
SS
4518 /* Next look for the catch enable flag provided end.o */
4519 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
176620f1 4520 VAR_DOMAIN, 0, (struct symtab **) NULL);
c5aa993b 4521 if (sym) /* sometimes present in debug info */
c906108c
SS
4522 {
4523 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4524 hp_cxx_exception_support = 1;
4525 }
c5aa993b
JM
4526 else
4527 /* otherwise look in SOM symbol dict. */
c906108c
SS
4528 {
4529 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4530 if (msym)
c5aa993b
JM
4531 {
4532 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4533 hp_cxx_exception_support = 1;
4534 }
c906108c 4535 else
c5aa993b
JM
4536 {
4537 warning ("Unable to enable interception of exception throws.");
4538 warning ("Executable may not have been compiled debuggable with HP aCC.");
4539 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4540 return 0;
4541 }
c906108c
SS
4542 }
4543
c5aa993b
JM
4544 /* Set the flags */
4545 hp_cxx_exception_support = 2; /* everything worked so far */
c906108c
SS
4546 hp_cxx_exception_support_initialized = 1;
4547 exception_support_initialized = 1;
4548
4549 return 1;
4550}
4551
4552/* Target operation for enabling or disabling interception of
4553 exception events.
4554 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4555 ENABLE is either 0 (disable) or 1 (enable).
4556 Return value is NULL if no support found;
4557 -1 if something went wrong,
4558 or a pointer to a symtab/line struct if the breakpointable
c5aa993b 4559 address was found. */
c906108c 4560
c5aa993b 4561struct symtab_and_line *
fba45db2 4562child_enable_exception_callback (enum exception_event_kind kind, int enable)
c906108c
SS
4563{
4564 char buf[4];
4565
4566 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4567 if (!initialize_hp_cxx_exception_support ())
4568 return NULL;
4569
4570 switch (hp_cxx_exception_support)
4571 {
c5aa993b
JM
4572 case 0:
4573 /* Assuming no HP support at all */
4574 return NULL;
4575 case 1:
4576 /* HP support should be present, but something went wrong */
4577 return (struct symtab_and_line *) -1; /* yuck! */
4578 /* there may be other cases in the future */
c906108c 4579 }
c5aa993b 4580
c906108c 4581 /* Set the EH hook to point to the callback routine */
c5aa993b 4582 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
c906108c 4583 /* pai: (temp) FIXME should there be a pack operation first? */
c5aa993b 4584 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
c906108c
SS
4585 {
4586 warning ("Could not write to target memory for exception event callback.");
4587 warning ("Interception of exception events may not work.");
c5aa993b 4588 return (struct symtab_and_line *) -1;
c906108c
SS
4589 }
4590 if (enable)
4591 {
c5aa993b 4592 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
39f77062 4593 if (PIDGET (inferior_ptid) > 0)
c5aa993b
JM
4594 {
4595 if (setup_d_pid_in_inferior ())
4596 return (struct symtab_and_line *) -1;
4597 }
c906108c 4598 else
c5aa993b 4599 {
104c1213
JM
4600 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4601 return (struct symtab_and_line *) -1;
c5aa993b 4602 }
c906108c 4603 }
c5aa993b 4604
c906108c
SS
4605 switch (kind)
4606 {
c5aa993b
JM
4607 case EX_EVENT_THROW:
4608 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4609 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4610 {
4611 warning ("Couldn't enable exception throw interception.");
4612 return (struct symtab_and_line *) -1;
4613 }
4614 break;
4615 case EX_EVENT_CATCH:
4616 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4617 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4618 {
4619 warning ("Couldn't enable exception catch interception.");
4620 return (struct symtab_and_line *) -1;
4621 }
4622 break;
104c1213
JM
4623 default:
4624 error ("Request to enable unknown or unsupported exception event.");
c906108c 4625 }
c5aa993b 4626
c906108c
SS
4627 /* Copy break address into new sal struct, malloc'ing if needed. */
4628 if (!break_callback_sal)
4629 {
4630 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4631 }
fe39c653 4632 init_sal (break_callback_sal);
c906108c
SS
4633 break_callback_sal->symtab = NULL;
4634 break_callback_sal->pc = eh_break_addr;
4635 break_callback_sal->line = 0;
4636 break_callback_sal->end = eh_break_addr;
c5aa993b 4637
c906108c
SS
4638 return break_callback_sal;
4639}
4640
c5aa993b 4641/* Record some information about the current exception event */
c906108c 4642static struct exception_event_record current_ex_event;
c5aa993b
JM
4643/* Convenience struct */
4644static struct symtab_and_line null_symtab_and_line =
4645{NULL, 0, 0, 0};
c906108c
SS
4646
4647/* Report current exception event. Returns a pointer to a record
4648 that describes the kind of the event, where it was thrown from,
4649 and where it will be caught. More information may be reported
c5aa993b 4650 in the future */
c906108c 4651struct exception_event_record *
fba45db2 4652child_get_current_exception_event (void)
c906108c 4653{
c5aa993b
JM
4654 CORE_ADDR event_kind;
4655 CORE_ADDR throw_addr;
4656 CORE_ADDR catch_addr;
c906108c
SS
4657 struct frame_info *fi, *curr_frame;
4658 int level = 1;
4659
c5aa993b 4660 curr_frame = get_current_frame ();
c906108c
SS
4661 if (!curr_frame)
4662 return (struct exception_event_record *) NULL;
4663
4664 /* Go up one frame to __d_eh_notify_callback, because at the
4665 point when this code is executed, there's garbage in the
4666 arguments of __d_eh_break. */
4667 fi = find_relative_frame (curr_frame, &level);
4668 if (level != 0)
4669 return (struct exception_event_record *) NULL;
4670
0f7d239c 4671 select_frame (fi);
c906108c
SS
4672
4673 /* Read in the arguments */
4674 /* __d_eh_notify_callback() is called with 3 arguments:
c5aa993b
JM
4675 1. event kind catch or throw
4676 2. the target address if known
4677 3. a flag -- not sure what this is. pai/1997-07-17 */
4678 event_kind = read_register (ARG0_REGNUM);
c906108c
SS
4679 catch_addr = read_register (ARG1_REGNUM);
4680
4681 /* Now go down to a user frame */
4682 /* For a throw, __d_eh_break is called by
c5aa993b
JM
4683 __d_eh_notify_callback which is called by
4684 __notify_throw which is called
4685 from user code.
c906108c 4686 For a catch, __d_eh_break is called by
c5aa993b
JM
4687 __d_eh_notify_callback which is called by
4688 <stackwalking stuff> which is called by
4689 __throw__<stuff> or __rethrow_<stuff> which is called
4690 from user code. */
4691 /* FIXME: Don't use such magic numbers; search for the frames */
c906108c
SS
4692 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4693 fi = find_relative_frame (curr_frame, &level);
4694 if (level != 0)
4695 return (struct exception_event_record *) NULL;
4696
0f7d239c 4697 select_frame (fi);
ef6e7e13 4698 throw_addr = get_frame_pc (fi);
c906108c
SS
4699
4700 /* Go back to original (top) frame */
0f7d239c 4701 select_frame (curr_frame);
c906108c
SS
4702
4703 current_ex_event.kind = (enum exception_event_kind) event_kind;
4704 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4705 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4706
4707 return &current_ex_event;
4708}
4709
9a043c1d
AC
4710/* Instead of this nasty cast, add a method pvoid() that prints out a
4711 host VOID data type (remember %p isn't portable). */
4712
4713static CORE_ADDR
4714hppa_pointer_to_address_hack (void *ptr)
4715{
4716 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4717 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4718}
4719
c906108c 4720static void
fba45db2 4721unwind_command (char *exp, int from_tty)
c906108c
SS
4722{
4723 CORE_ADDR address;
4724 struct unwind_table_entry *u;
4725
4726 /* If we have an expression, evaluate it and use it as the address. */
4727
4728 if (exp != 0 && *exp != 0)
4729 address = parse_and_eval_address (exp);
4730 else
4731 return;
4732
4733 u = find_unwind_entry (address);
4734
4735 if (!u)
4736 {
4737 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4738 return;
4739 }
4740
ce414844 4741 printf_unfiltered ("unwind_table_entry (0x%s):\n",
9a043c1d 4742 paddr_nz (hppa_pointer_to_address_hack (u)));
c906108c
SS
4743
4744 printf_unfiltered ("\tregion_start = ");
4745 print_address (u->region_start, gdb_stdout);
4746
4747 printf_unfiltered ("\n\tregion_end = ");
4748 print_address (u->region_end, gdb_stdout);
4749
c906108c 4750#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
4751
4752 printf_unfiltered ("\n\tflags =");
4753 pif (Cannot_unwind);
4754 pif (Millicode);
4755 pif (Millicode_save_sr0);
4756 pif (Entry_SR);
4757 pif (Args_stored);
4758 pif (Variable_Frame);
4759 pif (Separate_Package_Body);
4760 pif (Frame_Extension_Millicode);
4761 pif (Stack_Overflow_Check);
4762 pif (Two_Instruction_SP_Increment);
4763 pif (Ada_Region);
4764 pif (Save_SP);
4765 pif (Save_RP);
4766 pif (Save_MRP_in_frame);
4767 pif (extn_ptr_defined);
4768 pif (Cleanup_defined);
4769 pif (MPE_XL_interrupt_marker);
4770 pif (HP_UX_interrupt_marker);
4771 pif (Large_frame);
4772
4773 putchar_unfiltered ('\n');
4774
c906108c 4775#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
4776
4777 pin (Region_description);
4778 pin (Entry_FR);
4779 pin (Entry_GR);
4780 pin (Total_frame_size);
4781}
c906108c 4782
c2c6d25f 4783void
fba45db2 4784hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
4785{
4786 /* To step over a breakpoint instruction on the PA takes some
4787 fiddling with the instruction address queue.
4788
4789 When we stop at a breakpoint, the IA queue front (the instruction
4790 we're executing now) points at the breakpoint instruction, and
4791 the IA queue back (the next instruction to execute) points to
4792 whatever instruction we would execute after the breakpoint, if it
4793 were an ordinary instruction. This is the case even if the
4794 breakpoint is in the delay slot of a branch instruction.
4795
4796 Clearly, to step past the breakpoint, we need to set the queue
4797 front to the back. But what do we put in the back? What
4798 instruction comes after that one? Because of the branch delay
4799 slot, the next insn is always at the back + 4. */
4800 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4801 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4802
4803 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4804 /* We can leave the tail's space the same, since there's no jump. */
4805}
4806
1cdb71fe
JL
4807/* Copy the function value from VALBUF into the proper location
4808 for a function return.
4809
4810 Called only in the context of the "return" command. */
4811
4812void
3ff7cf9e 4813hppa32_store_return_value (struct type *type, char *valbuf)
1cdb71fe
JL
4814{
4815 /* For software floating point, the return value goes into the
4816 integer registers. But we do not have any flag to key this on,
4817 so we always store the value into the integer registers.
4818
4819 If its a float value, then we also store it into the floating
4820 point registers. */
62700349 4821 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28)
73937e03
AC
4822 + (TYPE_LENGTH (type) > 4
4823 ? (8 - TYPE_LENGTH (type))
4824 : (4 - TYPE_LENGTH (type))),
4825 valbuf, TYPE_LENGTH (type));
77296879 4826 if (TYPE_CODE (type) == TYPE_CODE_FLT)
62700349 4827 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP4_REGNUM),
73937e03 4828 valbuf, TYPE_LENGTH (type));
1cdb71fe
JL
4829}
4830
3ff7cf9e
JB
4831/* Same as hppa32_store_return_value(), but for the PA64 ABI. */
4832
4833void
4834hppa64_store_return_value (struct type *type, char *valbuf)
4835{
4836 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4837 deprecated_write_register_bytes
62700349 4838 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
3ff7cf9e
JB
4839 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4840 valbuf, TYPE_LENGTH (type));
4841 else if (is_integral_type(type))
4842 deprecated_write_register_bytes
62700349 4843 (DEPRECATED_REGISTER_BYTE (28)
3ff7cf9e
JB
4844 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4845 valbuf, TYPE_LENGTH (type));
4846 else if (TYPE_LENGTH (type) <= 8)
4847 deprecated_write_register_bytes
62700349 4848 (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type));
3ff7cf9e
JB
4849 else if (TYPE_LENGTH (type) <= 16)
4850 {
62700349 4851 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8);
3ff7cf9e 4852 deprecated_write_register_bytes
62700349 4853 (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8);
3ff7cf9e
JB
4854 }
4855}
4856
1cdb71fe
JL
4857/* Copy the function's return value into VALBUF.
4858
4859 This function is called only in the context of "target function calls",
4860 ie. when the debugger forces a function to be called in the child, and
4861 when the debugger forces a fucntion to return prematurely via the
4862 "return" command. */
4863
4864void
3ff7cf9e 4865hppa32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
1cdb71fe 4866{
77296879 4867 if (TYPE_CODE (type) == TYPE_CODE_FLT)
62700349 4868 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM), TYPE_LENGTH (type));
1cdb71fe
JL
4869 else
4870 memcpy (valbuf,
3ff7cf9e 4871 (regbuf
62700349 4872 + DEPRECATED_REGISTER_BYTE (28)
1cdb71fe
JL
4873 + (TYPE_LENGTH (type) > 4
4874 ? (8 - TYPE_LENGTH (type))
4875 : (4 - TYPE_LENGTH (type)))),
4876 TYPE_LENGTH (type));
4877}
4facf7e8 4878
3ff7cf9e
JB
4879/* Same as hppa32_extract_return_value but for the PA64 ABI case. */
4880
4881void
4882hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4883{
4884 /* RM: Floats are returned in FR4R, doubles in FR4.
4885 Integral values are in r28, padded on the left.
4886 Aggregates less that 65 bits are in r28, right padded.
4887 Aggregates upto 128 bits are in r28 and r29, right padded. */
4888 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4889 memcpy (valbuf,
62700349 4890 regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
3ff7cf9e
JB
4891 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4892 TYPE_LENGTH (type));
4893 else if (is_integral_type(type))
4894 memcpy (valbuf,
62700349 4895 regbuf + DEPRECATED_REGISTER_BYTE (28)
3ff7cf9e
JB
4896 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4897 TYPE_LENGTH (type));
4898 else if (TYPE_LENGTH (type) <= 8)
62700349
AC
4899 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28),
4900 TYPE_LENGTH (type));
3ff7cf9e
JB
4901 else if (TYPE_LENGTH (type) <= 16)
4902 {
62700349
AC
4903 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8);
4904 memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29),
4905 TYPE_LENGTH (type) - 8);
3ff7cf9e
JB
4906 }
4907}
4908
d709c020
JB
4909int
4910hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4911{
4912 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4913 via a pointer regardless of its type or the compiler used. */
4914 return (TYPE_LENGTH (type) > 8);
4915}
4916
4917int
4918hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4919{
4920 /* Stack grows upward */
4921 return (lhs > rhs);
4922}
4923
4924CORE_ADDR
3ff7cf9e 4925hppa32_stack_align (CORE_ADDR sp)
d709c020
JB
4926{
4927 /* elz: adjust the quantity to the next highest value which is
4928 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4929 On hppa the sp must always be kept 64-bit aligned */
4930 return ((sp % 8) ? (sp + 7) & -8 : sp);
4931}
4932
3ff7cf9e
JB
4933CORE_ADDR
4934hppa64_stack_align (CORE_ADDR sp)
4935{
4936 /* The PA64 ABI mandates a 16 byte stack alignment. */
4937 return ((sp % 16) ? (sp + 15) & -16 : sp);
4938}
4939
d709c020
JB
4940int
4941hppa_pc_requires_run_before_use (CORE_ADDR pc)
4942{
4943 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4944
4945 An example of this occurs when an a.out is linked against a foo.sl.
4946 The foo.sl defines a global bar(), and the a.out declares a signature
4947 for bar(). However, the a.out doesn't directly call bar(), but passes
4948 its address in another call.
4949
4950 If you have this scenario and attempt to "break bar" before running,
4951 gdb will find a minimal symbol for bar() in the a.out. But that
4952 symbol's address will be negative. What this appears to denote is
4953 an index backwards from the base of the procedure linkage table (PLT)
4954 into the data linkage table (DLT), the end of which is contiguous
4955 with the start of the PLT. This is clearly not a valid address for
4956 us to set a breakpoint on.
4957
4958 Note that one must be careful in how one checks for a negative address.
4959 0xc0000000 is a legitimate address of something in a shared text
4960 segment, for example. Since I don't know what the possible range
4961 is of these "really, truly negative" addresses that come from the
4962 minimal symbols, I'm resorting to the gross hack of checking the
4963 top byte of the address for all 1's. Sigh. */
4964
4965 return (!target_has_stack && (pc & 0xFF000000));
4966}
4967
4968int
4969hppa_instruction_nullified (void)
4970{
4971 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4972 avoid the type cast. I'm leaving it as is for now as I'm doing
4973 semi-mechanical multiarching-related changes. */
4974 const int ipsw = (int) read_register (IPSW_REGNUM);
4975 const int flags = (int) read_register (FLAGS_REGNUM);
4976
4977 return ((ipsw & 0x00200000) && !(flags & 0x2));
4978}
4979
60e1ff27
JB
4980int
4981hppa_register_raw_size (int reg_nr)
4982{
4983 /* All registers have the same size. */
b1e29e33 4984 return DEPRECATED_REGISTER_SIZE;
60e1ff27
JB
4985}
4986
d709c020
JB
4987/* Index within the register vector of the first byte of the space i
4988 used for register REG_NR. */
4989
4990int
4991hppa_register_byte (int reg_nr)
4992{
3ff7cf9e
JB
4993 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4994
4995 return reg_nr * tdep->bytes_per_address;
d709c020
JB
4996}
4997
4998/* Return the GDB type object for the "standard" data type of data
4999 in register N. */
5000
5001struct type *
3ff7cf9e 5002hppa32_register_virtual_type (int reg_nr)
d709c020
JB
5003{
5004 if (reg_nr < FP4_REGNUM)
5005 return builtin_type_int;
5006 else
5007 return builtin_type_float;
5008}
5009
3ff7cf9e
JB
5010/* Return the GDB type object for the "standard" data type of data
5011 in register N. hppa64 version. */
5012
5013struct type *
5014hppa64_register_virtual_type (int reg_nr)
5015{
5016 if (reg_nr < FP4_REGNUM)
5017 return builtin_type_unsigned_long_long;
5018 else
5019 return builtin_type_double;
5020}
5021
d709c020
JB
5022/* Store the address of the place in which to copy the structure the
5023 subroutine will return. This is called from call_function. */
5024
5025void
5026hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5027{
5028 write_register (28, addr);
5029}
5030
60383d10
JB
5031CORE_ADDR
5032hppa_extract_struct_value_address (char *regbuf)
5033{
5034 /* Extract from an array REGBUF containing the (raw) register state
5035 the address in which a function should return its structure value,
5036 as a CORE_ADDR (or an expression that can be used as one). */
5037 /* FIXME: brobecker 2002-12-26.
5038 The current implementation is historical, but we should eventually
5039 implement it in a more robust manner as it relies on the fact that
5040 the address size is equal to the size of an int* _on the host_...
5041 One possible implementation that crossed my mind is to use
5042 extract_address. */
62700349 5043 return (*(int *)(regbuf + DEPRECATED_REGISTER_BYTE (28)));
60383d10
JB
5044}
5045
d709c020
JB
5046/* Return True if REGNUM is not a register available to the user
5047 through ptrace(). */
5048
5049int
5050hppa_cannot_store_register (int regnum)
5051{
5052 return (regnum == 0
5053 || regnum == PCSQ_HEAD_REGNUM
5054 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
5055 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
5056
5057}
5058
d709c020
JB
5059CORE_ADDR
5060hppa_smash_text_address (CORE_ADDR addr)
5061{
5062 /* The low two bits of the PC on the PA contain the privilege level.
5063 Some genius implementing a (non-GCC) compiler apparently decided
5064 this means that "addresses" in a text section therefore include a
5065 privilege level, and thus symbol tables should contain these bits.
5066 This seems like a bonehead thing to do--anyway, it seems to work
5067 for our purposes to just ignore those bits. */
5068
5069 return (addr &= ~0x3);
5070}
5071
143985b7
AF
5072/* Get the ith function argument for the current function. */
5073CORE_ADDR
5074hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
5075 struct type *type)
5076{
5077 CORE_ADDR addr;
5078 frame_read_register (frame, R0_REGNUM + 26 - argi, &addr);
5079 return addr;
5080}
5081
e6e68f1f
JB
5082static struct gdbarch *
5083hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5084{
3ff7cf9e 5085 struct gdbarch_tdep *tdep;
e6e68f1f 5086 struct gdbarch *gdbarch;
59623e27
JB
5087
5088 /* Try to determine the ABI of the object we are loading. */
4be87837 5089 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 5090 {
4be87837
DJ
5091 /* If it's a SOM file, assume it's HP/UX SOM. */
5092 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5093 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 5094 }
e6e68f1f
JB
5095
5096 /* find a candidate among the list of pre-declared architectures. */
5097 arches = gdbarch_list_lookup_by_info (arches, &info);
5098 if (arches != NULL)
5099 return (arches->gdbarch);
5100
5101 /* If none found, then allocate and initialize one. */
3ff7cf9e
JB
5102 tdep = XMALLOC (struct gdbarch_tdep);
5103 gdbarch = gdbarch_alloc (&info, tdep);
5104
5105 /* Determine from the bfd_arch_info structure if we are dealing with
5106 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5107 then default to a 32bit machine. */
5108 if (info.bfd_arch_info != NULL)
5109 tdep->bytes_per_address =
5110 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
5111 else
5112 tdep->bytes_per_address = 4;
5113
5114 /* Some parts of the gdbarch vector depend on whether we are running
5115 on a 32 bits or 64 bits target. */
5116 switch (tdep->bytes_per_address)
5117 {
5118 case 4:
5119 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
5120 set_gdbarch_register_name (gdbarch, hppa32_register_name);
5121 set_gdbarch_deprecated_register_virtual_type
5122 (gdbarch, hppa32_register_virtual_type);
5123 set_gdbarch_deprecated_call_dummy_length
5124 (gdbarch, hppa32_call_dummy_length);
f27dd7fd 5125 set_gdbarch_deprecated_stack_align (gdbarch, hppa32_stack_align);
2110b94f
MK
5126 set_gdbarch_deprecated_reg_struct_has_addr
5127 (gdbarch, hppa_reg_struct_has_addr);
3ff7cf9e
JB
5128 set_gdbarch_deprecated_extract_return_value
5129 (gdbarch, hppa32_extract_return_value);
5130 set_gdbarch_use_struct_convention
5131 (gdbarch, hppa32_use_struct_convention);
5132 set_gdbarch_deprecated_store_return_value
5133 (gdbarch, hppa32_store_return_value);
5134 break;
5135 case 8:
5136 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
5137 set_gdbarch_register_name (gdbarch, hppa64_register_name);
5138 set_gdbarch_deprecated_register_virtual_type
5139 (gdbarch, hppa64_register_virtual_type);
5140 set_gdbarch_deprecated_call_dummy_breakpoint_offset
5141 (gdbarch, hppa64_call_dummy_breakpoint_offset);
5142 set_gdbarch_deprecated_call_dummy_length
5143 (gdbarch, hppa64_call_dummy_length);
f27dd7fd 5144 set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align);
3ff7cf9e
JB
5145 set_gdbarch_deprecated_extract_return_value
5146 (gdbarch, hppa64_extract_return_value);
5147 set_gdbarch_use_struct_convention
5148 (gdbarch, hppa64_use_struct_convention);
5149 set_gdbarch_deprecated_store_return_value
5150 (gdbarch, hppa64_store_return_value);
5151 break;
5152 default:
5153 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
5154 tdep->bytes_per_address);
5155 }
5156
5157 /* The following gdbarch vector elements depend on other parts of this
5158 vector which have been set above, depending on the ABI. */
5159 set_gdbarch_deprecated_register_bytes
5160 (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address);
5161 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5162 set_gdbarch_long_long_bit (gdbarch, 64);
5163 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 5164
3ff7cf9e
JB
5165 /* The following gdbarch vector elements do not depend on the address
5166 size, or in any other gdbarch element previously set. */
60383d10
JB
5167 set_gdbarch_function_start_offset (gdbarch, 0);
5168 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5169 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5170 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5171 set_gdbarch_in_solib_return_trampoline (gdbarch,
5172 hppa_in_solib_return_trampoline);
6913c89a 5173 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
60383d10 5174 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
60383d10 5175 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3ff7cf9e 5176 set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address);
0ba6dca9 5177 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
60383d10
JB
5178 set_gdbarch_sp_regnum (gdbarch, 30);
5179 set_gdbarch_fp0_regnum (gdbarch, 64);
5180 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
efe59759 5181 set_gdbarch_deprecated_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
9c04cab7 5182 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
9c04cab7
AC
5183 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5184 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
3ff7cf9e 5185 set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address);
a0ed5532 5186 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
4183d812 5187 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
60383d10
JB
5188 set_gdbarch_deprecated_extract_struct_value_address
5189 (gdbarch, hppa_extract_struct_value_address);
5190 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
e9582e71 5191 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
618ce49f
AC
5192 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5193 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
60383d10
JB
5194 set_gdbarch_frameless_function_invocation
5195 (gdbarch, hppa_frameless_function_invocation);
8bedc050 5196 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
60383d10 5197 set_gdbarch_frame_args_skip (gdbarch, 0);
5ef7553b 5198 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
749b82f6 5199 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
b1e29e33 5200 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
b81774d8 5201 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
b6fbdd1d 5202 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
5203 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5204 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5205 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5206 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
0ba6dca9 5207 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
60383d10 5208
143985b7
AF
5209 /* Helper for function argument information. */
5210 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5211
36482093
AC
5212 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
5213
3a3bc038
AC
5214 /* When a hardware watchpoint triggers, we'll move the inferior past
5215 it by removing all eventpoints; stepping past the instruction
5216 that caused the trigger; reinserting eventpoints; and checking
5217 whether any watched location changed. */
5218 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5219
752d4ac1
JB
5220 /* Hook in ABI-specific overrides, if they have been registered. */
5221 gdbarch_init_osabi (info, gdbarch);
5222
e6e68f1f
JB
5223 return gdbarch;
5224}
5225
5226static void
5227hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5228{
5229 /* Nothing to print for the moment. */
5230}
5231
4facf7e8
JB
5232void
5233_initialize_hppa_tdep (void)
5234{
5235 struct cmd_list_element *c;
5236 void break_at_finish_command (char *arg, int from_tty);
5237 void tbreak_at_finish_command (char *arg, int from_tty);
5238 void break_at_finish_at_depth_command (char *arg, int from_tty);
5239
e6e68f1f 5240 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8
JB
5241
5242 add_cmd ("unwind", class_maintenance, unwind_command,
5243 "Print unwind table entry at given address.",
5244 &maintenanceprintlist);
5245
5246 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5247 break_at_finish_command,
5248 concat ("Set breakpoint at procedure exit. \n\
5249Argument may be function name, or \"*\" and an address.\n\
5250If function is specified, break at end of code for that function.\n\
5251If an address is specified, break at the end of the function that contains \n\
5252that exact address.\n",
5253 "With no arg, uses current execution address of selected stack frame.\n\
5254This is useful for breaking on return to a stack frame.\n\
5255\n\
5256Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5257\n\
5258Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5259 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5260 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5261 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5262 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5263
5264 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5265 tbreak_at_finish_command,
5266"Set temporary breakpoint at procedure exit. Either there should\n\
5267be no argument or the argument must be a depth.\n"), NULL);
5268 set_cmd_completer (c, location_completer);
5269
5270 if (xdb_commands)
5271 deprecate_cmd (add_com ("bx", class_breakpoint,
5272 break_at_finish_at_depth_command,
5273"Set breakpoint at procedure exit. Either there should\n\
5274be no argument or the argument must be a depth.\n"), NULL);
5275}
5276
This page took 0.719004 seconds and 4 git commands to generate.