2002-11-18 Klee Dienes <kdienes@apple.com>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c
SS
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "frame.h"
28#include "bfd.h"
29#include "inferior.h"
30#include "value.h"
4e052eda 31#include "regcache.h"
e5d66720 32#include "completer.h"
d709c020 33#include "language.h"
c906108c
SS
34
35/* For argument passing to the inferior */
36#include "symtab.h"
37
38#ifdef USG
39#include <sys/types.h>
40#endif
41
42#include <dl.h>
43#include <sys/param.h>
44#include <signal.h>
45
46#include <sys/ptrace.h>
47#include <machine/save_state.h>
48
49#ifdef COFF_ENCAPSULATE
50#include "a.out.encap.h"
51#else
52#endif
53
c5aa993b 54/*#include <sys/user.h> After a.out.h */
c906108c
SS
55#include <sys/file.h>
56#include "gdb_stat.h"
03f2053f 57#include "gdb_wait.h"
c906108c
SS
58
59#include "gdbcore.h"
60#include "gdbcmd.h"
61#include "target.h"
62#include "symfile.h"
63#include "objfiles.h"
64
c906108c
SS
65/* To support detection of the pseudo-initial frame
66 that threads have. */
67#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
68#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
c5aa993b 69
a14ed312 70static int extract_5_load (unsigned int);
c906108c 71
a14ed312 72static unsigned extract_5R_store (unsigned int);
c906108c 73
a14ed312 74static unsigned extract_5r_store (unsigned int);
c906108c 75
a14ed312
KB
76static void find_dummy_frame_regs (struct frame_info *,
77 struct frame_saved_regs *);
c906108c 78
a14ed312 79static int find_proc_framesize (CORE_ADDR);
c906108c 80
a14ed312 81static int find_return_regnum (CORE_ADDR);
c906108c 82
a14ed312 83struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
c906108c 84
a14ed312 85static int extract_17 (unsigned int);
c906108c 86
a14ed312 87static unsigned deposit_21 (unsigned int, unsigned int);
c906108c 88
a14ed312 89static int extract_21 (unsigned);
c906108c 90
a14ed312 91static unsigned deposit_14 (int, unsigned int);
c906108c 92
a14ed312 93static int extract_14 (unsigned);
c906108c 94
a14ed312 95static void unwind_command (char *, int);
c906108c 96
a14ed312 97static int low_sign_extend (unsigned int, unsigned int);
c906108c 98
a14ed312 99static int sign_extend (unsigned int, unsigned int);
c906108c 100
a14ed312 101static int restore_pc_queue (struct frame_saved_regs *);
c906108c 102
a14ed312 103static int hppa_alignof (struct type *);
c906108c
SS
104
105/* To support multi-threading and stepping. */
a14ed312 106int hppa_prepare_to_proceed ();
c906108c 107
a14ed312 108static int prologue_inst_adjust_sp (unsigned long);
c906108c 109
a14ed312 110static int is_branch (unsigned long);
c906108c 111
a14ed312 112static int inst_saves_gr (unsigned long);
c906108c 113
a14ed312 114static int inst_saves_fr (unsigned long);
c906108c 115
a14ed312 116static int pc_in_interrupt_handler (CORE_ADDR);
c906108c 117
a14ed312 118static int pc_in_linker_stub (CORE_ADDR);
c906108c 119
a14ed312 120static int compare_unwind_entries (const void *, const void *);
c906108c 121
a14ed312 122static void read_unwind_info (struct objfile *);
c906108c 123
a14ed312
KB
124static void internalize_unwinds (struct objfile *,
125 struct unwind_table_entry *,
126 asection *, unsigned int,
127 unsigned int, CORE_ADDR);
128static void pa_print_registers (char *, int, int);
d9fcf2fb 129static void pa_strcat_registers (char *, int, int, struct ui_file *);
a14ed312
KB
130static void pa_register_look_aside (char *, int, long *);
131static void pa_print_fp_reg (int);
d9fcf2fb 132static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
a14ed312 133static void record_text_segment_lowaddr (bfd *, asection *, void *);
d709c020
JB
134/* FIXME: brobecker 2002-11-07: We will likely be able to make the
135 following functions static, once we hppa is partially multiarched. */
136int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
137int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
138CORE_ADDR hppa_stack_align (CORE_ADDR sp);
139int hppa_pc_requires_run_before_use (CORE_ADDR pc);
140int hppa_instruction_nullified (void);
141int hppa_register_byte (int reg_nr);
142struct type * hppa_register_virtual_type (int reg_nr);
143void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
144int hppa_cannot_store_register (int regnum);
145CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
146CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
147CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
148int hppa_coerce_float_to_double (struct type *formal, struct type *actual);
c906108c 149
c5aa993b
JM
150typedef struct
151 {
152 struct minimal_symbol *msym;
153 CORE_ADDR solib_handle;
a0b3c4fd 154 CORE_ADDR return_val;
c5aa993b
JM
155 }
156args_for_find_stub;
c906108c 157
a0b3c4fd 158static int cover_find_stub_with_shl_get (PTR);
c906108c 159
c5aa993b 160static int is_pa_2 = 0; /* False */
c906108c 161
c5aa993b 162/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
c906108c
SS
163extern int hp_som_som_object_present;
164
165/* In breakpoint.c */
166extern int exception_catchpoints_are_fragile;
167
c906108c 168/* Should call_function allocate stack space for a struct return? */
d709c020 169
c906108c 170int
fba45db2 171hppa_use_struct_convention (int gcc_p, struct type *type)
c906108c 172{
104c1213 173 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
c906108c 174}
c906108c 175\f
c5aa993b 176
c906108c
SS
177/* Routines to extract various sized constants out of hppa
178 instructions. */
179
180/* This assumes that no garbage lies outside of the lower bits of
181 value. */
182
183static int
fba45db2 184sign_extend (unsigned val, unsigned bits)
c906108c 185{
c5aa993b 186 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
187}
188
189/* For many immediate values the sign bit is the low bit! */
190
191static int
fba45db2 192low_sign_extend (unsigned val, unsigned bits)
c906108c 193{
c5aa993b 194 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
195}
196
197/* extract the immediate field from a ld{bhw}s instruction */
198
c906108c 199static int
fba45db2 200extract_5_load (unsigned word)
c906108c
SS
201{
202 return low_sign_extend (word >> 16 & MASK_5, 5);
203}
204
c906108c
SS
205/* extract the immediate field from a break instruction */
206
207static unsigned
fba45db2 208extract_5r_store (unsigned word)
c906108c
SS
209{
210 return (word & MASK_5);
211}
212
213/* extract the immediate field from a {sr}sm instruction */
214
215static unsigned
fba45db2 216extract_5R_store (unsigned word)
c906108c
SS
217{
218 return (word >> 16 & MASK_5);
219}
220
c906108c
SS
221/* extract a 14 bit immediate field */
222
223static int
fba45db2 224extract_14 (unsigned word)
c906108c
SS
225{
226 return low_sign_extend (word & MASK_14, 14);
227}
228
229/* deposit a 14 bit constant in a word */
230
231static unsigned
fba45db2 232deposit_14 (int opnd, unsigned word)
c906108c
SS
233{
234 unsigned sign = (opnd < 0 ? 1 : 0);
235
c5aa993b 236 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
c906108c
SS
237}
238
239/* extract a 21 bit constant */
240
241static int
fba45db2 242extract_21 (unsigned word)
c906108c
SS
243{
244 int val;
245
246 word &= MASK_21;
247 word <<= 11;
248 val = GET_FIELD (word, 20, 20);
249 val <<= 11;
250 val |= GET_FIELD (word, 9, 19);
251 val <<= 2;
252 val |= GET_FIELD (word, 5, 6);
253 val <<= 5;
254 val |= GET_FIELD (word, 0, 4);
255 val <<= 2;
256 val |= GET_FIELD (word, 7, 8);
257 return sign_extend (val, 21) << 11;
258}
259
260/* deposit a 21 bit constant in a word. Although 21 bit constants are
261 usually the top 21 bits of a 32 bit constant, we assume that only
262 the low 21 bits of opnd are relevant */
263
264static unsigned
fba45db2 265deposit_21 (unsigned opnd, unsigned word)
c906108c
SS
266{
267 unsigned val = 0;
268
269 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
270 val <<= 2;
271 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
272 val <<= 2;
273 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
274 val <<= 11;
275 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
276 val <<= 1;
277 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
278 return word | val;
279}
280
c906108c
SS
281/* extract a 17 bit constant from branch instructions, returning the
282 19 bit signed value. */
283
284static int
fba45db2 285extract_17 (unsigned word)
c906108c
SS
286{
287 return sign_extend (GET_FIELD (word, 19, 28) |
288 GET_FIELD (word, 29, 29) << 10 |
289 GET_FIELD (word, 11, 15) << 11 |
290 (word & 0x1) << 16, 17) << 2;
291}
292\f
293
294/* Compare the start address for two unwind entries returning 1 if
295 the first address is larger than the second, -1 if the second is
296 larger than the first, and zero if they are equal. */
297
298static int
fba45db2 299compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
300{
301 const struct unwind_table_entry *a = arg1;
302 const struct unwind_table_entry *b = arg2;
303
304 if (a->region_start > b->region_start)
305 return 1;
306 else if (a->region_start < b->region_start)
307 return -1;
308 else
309 return 0;
310}
311
53a5351d
JM
312static CORE_ADDR low_text_segment_address;
313
314static void
8fef05cc 315record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
53a5351d 316{
bf9c25dc 317 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d
JM
318 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
319 && section->vma < low_text_segment_address)
320 low_text_segment_address = section->vma;
321}
322
c906108c 323static void
fba45db2
KB
324internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
325 asection *section, unsigned int entries, unsigned int size,
326 CORE_ADDR text_offset)
c906108c
SS
327{
328 /* We will read the unwind entries into temporary memory, then
329 fill in the actual unwind table. */
330 if (size > 0)
331 {
332 unsigned long tmp;
333 unsigned i;
334 char *buf = alloca (size);
335
53a5351d
JM
336 low_text_segment_address = -1;
337
338 /* If addresses are 64 bits wide, then unwinds are supposed to
c2c6d25f
JM
339 be segment relative offsets instead of absolute addresses.
340
341 Note that when loading a shared library (text_offset != 0) the
342 unwinds are already relative to the text_offset that will be
343 passed in. */
344 if (TARGET_PTR_BIT == 64 && text_offset == 0)
53a5351d
JM
345 {
346 bfd_map_over_sections (objfile->obfd,
347 record_text_segment_lowaddr, (PTR) NULL);
348
349 /* ?!? Mask off some low bits. Should this instead subtract
350 out the lowest section's filepos or something like that?
351 This looks very hokey to me. */
352 low_text_segment_address &= ~0xfff;
353 text_offset += low_text_segment_address;
354 }
355
c906108c
SS
356 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
357
358 /* Now internalize the information being careful to handle host/target
c5aa993b 359 endian issues. */
c906108c
SS
360 for (i = 0; i < entries; i++)
361 {
362 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 363 (bfd_byte *) buf);
c906108c
SS
364 table[i].region_start += text_offset;
365 buf += 4;
c5aa993b 366 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
367 table[i].region_end += text_offset;
368 buf += 4;
c5aa993b 369 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
370 buf += 4;
371 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
372 table[i].Millicode = (tmp >> 30) & 0x1;
373 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
374 table[i].Region_description = (tmp >> 27) & 0x3;
375 table[i].reserved1 = (tmp >> 26) & 0x1;
376 table[i].Entry_SR = (tmp >> 25) & 0x1;
377 table[i].Entry_FR = (tmp >> 21) & 0xf;
378 table[i].Entry_GR = (tmp >> 16) & 0x1f;
379 table[i].Args_stored = (tmp >> 15) & 0x1;
380 table[i].Variable_Frame = (tmp >> 14) & 0x1;
381 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
382 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
383 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
384 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
385 table[i].Ada_Region = (tmp >> 9) & 0x1;
386 table[i].cxx_info = (tmp >> 8) & 0x1;
387 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
388 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
389 table[i].reserved2 = (tmp >> 5) & 0x1;
390 table[i].Save_SP = (tmp >> 4) & 0x1;
391 table[i].Save_RP = (tmp >> 3) & 0x1;
392 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
393 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
394 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 395 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
396 buf += 4;
397 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
398 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
399 table[i].Large_frame = (tmp >> 29) & 0x1;
400 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
401 table[i].reserved4 = (tmp >> 27) & 0x1;
402 table[i].Total_frame_size = tmp & 0x7ffffff;
403
c5aa993b 404 /* Stub unwinds are handled elsewhere. */
c906108c
SS
405 table[i].stub_unwind.stub_type = 0;
406 table[i].stub_unwind.padding = 0;
407 }
408 }
409}
410
411/* Read in the backtrace information stored in the `$UNWIND_START$' section of
412 the object file. This info is used mainly by find_unwind_entry() to find
413 out the stack frame size and frame pointer used by procedures. We put
414 everything on the psymbol obstack in the objfile so that it automatically
415 gets freed when the objfile is destroyed. */
416
417static void
fba45db2 418read_unwind_info (struct objfile *objfile)
c906108c 419{
d4f3574e
SS
420 asection *unwind_sec, *stub_unwind_sec;
421 unsigned unwind_size, stub_unwind_size, total_size;
422 unsigned index, unwind_entries;
c906108c
SS
423 unsigned stub_entries, total_entries;
424 CORE_ADDR text_offset;
425 struct obj_unwind_info *ui;
426 obj_private_data_t *obj_private;
427
428 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5aa993b
JM
429 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
430 sizeof (struct obj_unwind_info));
c906108c
SS
431
432 ui->table = NULL;
433 ui->cache = NULL;
434 ui->last = -1;
435
d4f3574e
SS
436 /* For reasons unknown the HP PA64 tools generate multiple unwinder
437 sections in a single executable. So we just iterate over every
438 section in the BFD looking for unwinder sections intead of trying
439 to do a lookup with bfd_get_section_by_name.
c906108c 440
d4f3574e
SS
441 First determine the total size of the unwind tables so that we
442 can allocate memory in a nice big hunk. */
443 total_entries = 0;
444 for (unwind_sec = objfile->obfd->sections;
445 unwind_sec;
446 unwind_sec = unwind_sec->next)
c906108c 447 {
d4f3574e
SS
448 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
449 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
450 {
451 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
452 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 453
d4f3574e
SS
454 total_entries += unwind_entries;
455 }
c906108c
SS
456 }
457
d4f3574e
SS
458 /* Now compute the size of the stub unwinds. Note the ELF tools do not
459 use stub unwinds at the curren time. */
460 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
461
c906108c
SS
462 if (stub_unwind_sec)
463 {
464 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
465 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
466 }
467 else
468 {
469 stub_unwind_size = 0;
470 stub_entries = 0;
471 }
472
473 /* Compute total number of unwind entries and their total size. */
d4f3574e 474 total_entries += stub_entries;
c906108c
SS
475 total_size = total_entries * sizeof (struct unwind_table_entry);
476
477 /* Allocate memory for the unwind table. */
478 ui->table = (struct unwind_table_entry *)
479 obstack_alloc (&objfile->psymbol_obstack, total_size);
c5aa993b 480 ui->last = total_entries - 1;
c906108c 481
d4f3574e
SS
482 /* Now read in each unwind section and internalize the standard unwind
483 entries. */
c906108c 484 index = 0;
d4f3574e
SS
485 for (unwind_sec = objfile->obfd->sections;
486 unwind_sec;
487 unwind_sec = unwind_sec->next)
488 {
489 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
490 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
491 {
492 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
493 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
494
495 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
496 unwind_entries, unwind_size, text_offset);
497 index += unwind_entries;
498 }
499 }
500
501 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
502 if (stub_unwind_size > 0)
503 {
504 unsigned int i;
505 char *buf = alloca (stub_unwind_size);
506
507 /* Read in the stub unwind entries. */
508 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
509 0, stub_unwind_size);
510
511 /* Now convert them into regular unwind entries. */
512 for (i = 0; i < stub_entries; i++, index++)
513 {
514 /* Clear out the next unwind entry. */
515 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
516
517 /* Convert offset & size into region_start and region_end.
518 Stuff away the stub type into "reserved" fields. */
519 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
520 (bfd_byte *) buf);
521 ui->table[index].region_start += text_offset;
522 buf += 4;
523 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 524 (bfd_byte *) buf);
c906108c
SS
525 buf += 2;
526 ui->table[index].region_end
c5aa993b
JM
527 = ui->table[index].region_start + 4 *
528 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
529 buf += 2;
530 }
531
532 }
533
534 /* Unwind table needs to be kept sorted. */
535 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
536 compare_unwind_entries);
537
538 /* Keep a pointer to the unwind information. */
c5aa993b 539 if (objfile->obj_private == NULL)
c906108c
SS
540 {
541 obj_private = (obj_private_data_t *)
c5aa993b
JM
542 obstack_alloc (&objfile->psymbol_obstack,
543 sizeof (obj_private_data_t));
c906108c 544 obj_private->unwind_info = NULL;
c5aa993b 545 obj_private->so_info = NULL;
53a5351d 546 obj_private->dp = 0;
c5aa993b 547
c906108c
SS
548 objfile->obj_private = (PTR) obj_private;
549 }
c5aa993b 550 obj_private = (obj_private_data_t *) objfile->obj_private;
c906108c
SS
551 obj_private->unwind_info = ui;
552}
553
554/* Lookup the unwind (stack backtrace) info for the given PC. We search all
555 of the objfiles seeking the unwind table entry for this PC. Each objfile
556 contains a sorted list of struct unwind_table_entry. Since we do a binary
557 search of the unwind tables, we depend upon them to be sorted. */
558
559struct unwind_table_entry *
fba45db2 560find_unwind_entry (CORE_ADDR pc)
c906108c
SS
561{
562 int first, middle, last;
563 struct objfile *objfile;
564
565 /* A function at address 0? Not in HP-UX! */
566 if (pc == (CORE_ADDR) 0)
567 return NULL;
568
569 ALL_OBJFILES (objfile)
c5aa993b
JM
570 {
571 struct obj_unwind_info *ui;
572 ui = NULL;
573 if (objfile->obj_private)
574 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
c906108c 575
c5aa993b
JM
576 if (!ui)
577 {
578 read_unwind_info (objfile);
579 if (objfile->obj_private == NULL)
104c1213 580 error ("Internal error reading unwind information.");
c5aa993b
JM
581 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
582 }
c906108c 583
c5aa993b 584 /* First, check the cache */
c906108c 585
c5aa993b
JM
586 if (ui->cache
587 && pc >= ui->cache->region_start
588 && pc <= ui->cache->region_end)
589 return ui->cache;
c906108c 590
c5aa993b 591 /* Not in the cache, do a binary search */
c906108c 592
c5aa993b
JM
593 first = 0;
594 last = ui->last;
c906108c 595
c5aa993b
JM
596 while (first <= last)
597 {
598 middle = (first + last) / 2;
599 if (pc >= ui->table[middle].region_start
600 && pc <= ui->table[middle].region_end)
601 {
602 ui->cache = &ui->table[middle];
603 return &ui->table[middle];
604 }
c906108c 605
c5aa993b
JM
606 if (pc < ui->table[middle].region_start)
607 last = middle - 1;
608 else
609 first = middle + 1;
610 }
611 } /* ALL_OBJFILES() */
c906108c
SS
612 return NULL;
613}
614
615/* Return the adjustment necessary to make for addresses on the stack
616 as presented by hpread.c.
617
618 This is necessary because of the stack direction on the PA and the
619 bizarre way in which someone (?) decided they wanted to handle
620 frame pointerless code in GDB. */
621int
fba45db2 622hpread_adjust_stack_address (CORE_ADDR func_addr)
c906108c
SS
623{
624 struct unwind_table_entry *u;
625
626 u = find_unwind_entry (func_addr);
627 if (!u)
628 return 0;
629 else
630 return u->Total_frame_size << 3;
631}
632
633/* Called to determine if PC is in an interrupt handler of some
634 kind. */
635
636static int
fba45db2 637pc_in_interrupt_handler (CORE_ADDR pc)
c906108c
SS
638{
639 struct unwind_table_entry *u;
640 struct minimal_symbol *msym_us;
641
642 u = find_unwind_entry (pc);
643 if (!u)
644 return 0;
645
646 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
647 its frame isn't a pure interrupt frame. Deal with this. */
648 msym_us = lookup_minimal_symbol_by_pc (pc);
649
d7bd68ca
AC
650 return (u->HP_UX_interrupt_marker
651 && !PC_IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)));
c906108c
SS
652}
653
654/* Called when no unwind descriptor was found for PC. Returns 1 if it
104c1213
JM
655 appears that PC is in a linker stub.
656
657 ?!? Need to handle stubs which appear in PA64 code. */
c906108c
SS
658
659static int
fba45db2 660pc_in_linker_stub (CORE_ADDR pc)
c906108c
SS
661{
662 int found_magic_instruction = 0;
663 int i;
664 char buf[4];
665
666 /* If unable to read memory, assume pc is not in a linker stub. */
667 if (target_read_memory (pc, buf, 4) != 0)
668 return 0;
669
670 /* We are looking for something like
671
672 ; $$dyncall jams RP into this special spot in the frame (RP')
673 ; before calling the "call stub"
674 ldw -18(sp),rp
675
676 ldsid (rp),r1 ; Get space associated with RP into r1
677 mtsp r1,sp ; Move it into space register 0
678 be,n 0(sr0),rp) ; back to your regularly scheduled program */
679
680 /* Maximum known linker stub size is 4 instructions. Search forward
681 from the given PC, then backward. */
682 for (i = 0; i < 4; i++)
683 {
684 /* If we hit something with an unwind, stop searching this direction. */
685
686 if (find_unwind_entry (pc + i * 4) != 0)
687 break;
688
689 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 690 return from a cross-space function call. */
c906108c
SS
691 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
692 {
693 found_magic_instruction = 1;
694 break;
695 }
696 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 697 here. */
c906108c
SS
698 }
699
700 if (found_magic_instruction != 0)
701 return 1;
702
703 /* Now look backward. */
704 for (i = 0; i < 4; i++)
705 {
706 /* If we hit something with an unwind, stop searching this direction. */
707
708 if (find_unwind_entry (pc - i * 4) != 0)
709 break;
710
711 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 712 return from a cross-space function call. */
c906108c
SS
713 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
714 {
715 found_magic_instruction = 1;
716 break;
717 }
718 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 719 here. */
c906108c
SS
720 }
721 return found_magic_instruction;
722}
723
724static int
fba45db2 725find_return_regnum (CORE_ADDR pc)
c906108c
SS
726{
727 struct unwind_table_entry *u;
728
729 u = find_unwind_entry (pc);
730
731 if (!u)
732 return RP_REGNUM;
733
734 if (u->Millicode)
735 return 31;
736
737 return RP_REGNUM;
738}
739
740/* Return size of frame, or -1 if we should use a frame pointer. */
741static int
fba45db2 742find_proc_framesize (CORE_ADDR pc)
c906108c
SS
743{
744 struct unwind_table_entry *u;
745 struct minimal_symbol *msym_us;
746
747 /* This may indicate a bug in our callers... */
c5aa993b 748 if (pc == (CORE_ADDR) 0)
c906108c 749 return -1;
c5aa993b 750
c906108c
SS
751 u = find_unwind_entry (pc);
752
753 if (!u)
754 {
755 if (pc_in_linker_stub (pc))
756 /* Linker stubs have a zero size frame. */
757 return 0;
758 else
759 return -1;
760 }
761
762 msym_us = lookup_minimal_symbol_by_pc (pc);
763
764 /* If Save_SP is set, and we're not in an interrupt or signal caller,
765 then we have a frame pointer. Use it. */
3fa41cdb
JL
766 if (u->Save_SP
767 && !pc_in_interrupt_handler (pc)
768 && msym_us
d7bd68ca 769 && !PC_IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
c906108c
SS
770 return -1;
771
772 return u->Total_frame_size << 3;
773}
774
775/* Return offset from sp at which rp is saved, or 0 if not saved. */
a14ed312 776static int rp_saved (CORE_ADDR);
c906108c
SS
777
778static int
fba45db2 779rp_saved (CORE_ADDR pc)
c906108c
SS
780{
781 struct unwind_table_entry *u;
782
783 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
784 if (pc == (CORE_ADDR) 0)
785 return 0;
786
787 u = find_unwind_entry (pc);
788
789 if (!u)
790 {
791 if (pc_in_linker_stub (pc))
792 /* This is the so-called RP'. */
793 return -24;
794 else
795 return 0;
796 }
797
798 if (u->Save_RP)
53a5351d 799 return (TARGET_PTR_BIT == 64 ? -16 : -20);
c906108c
SS
800 else if (u->stub_unwind.stub_type != 0)
801 {
802 switch (u->stub_unwind.stub_type)
803 {
804 case EXPORT:
805 case IMPORT:
806 return -24;
807 case PARAMETER_RELOCATION:
808 return -8;
809 default:
810 return 0;
811 }
812 }
813 else
814 return 0;
815}
816\f
817int
fba45db2 818frameless_function_invocation (struct frame_info *frame)
c906108c
SS
819{
820 struct unwind_table_entry *u;
821
822 u = find_unwind_entry (frame->pc);
823
824 if (u == 0)
825 return 0;
826
827 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
828}
829
d709c020
JB
830/* Immediately after a function call, return the saved pc.
831 Can't go through the frames for this because on some machines
832 the new frame is not set up until the new function executes
833 some instructions. */
834
c906108c 835CORE_ADDR
fba45db2 836saved_pc_after_call (struct frame_info *frame)
c906108c
SS
837{
838 int ret_regnum;
839 CORE_ADDR pc;
840 struct unwind_table_entry *u;
841
842 ret_regnum = find_return_regnum (get_frame_pc (frame));
843 pc = read_register (ret_regnum) & ~0x3;
c5aa993b 844
c906108c
SS
845 /* If PC is in a linker stub, then we need to dig the address
846 the stub will return to out of the stack. */
847 u = find_unwind_entry (pc);
848 if (u && u->stub_unwind.stub_type != 0)
849 return FRAME_SAVED_PC (frame);
850 else
851 return pc;
852}
853\f
854CORE_ADDR
fba45db2 855hppa_frame_saved_pc (struct frame_info *frame)
c906108c
SS
856{
857 CORE_ADDR pc = get_frame_pc (frame);
858 struct unwind_table_entry *u;
859 CORE_ADDR old_pc;
c5aa993b
JM
860 int spun_around_loop = 0;
861 int rp_offset = 0;
c906108c
SS
862
863 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
864 at the base of the frame in an interrupt handler. Registers within
865 are saved in the exact same order as GDB numbers registers. How
866 convienent. */
867 if (pc_in_interrupt_handler (pc))
53a5351d
JM
868 return read_memory_integer (frame->frame + PC_REGNUM * 4,
869 TARGET_PTR_BIT / 8) & ~0x3;
c906108c 870
104c1213
JM
871 if ((frame->pc >= frame->frame
872 && frame->pc <= (frame->frame
873 /* A call dummy is sized in words, but it is
874 actually a series of instructions. Account
875 for that scaling factor. */
876 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
877 * CALL_DUMMY_LENGTH)
878 /* Similarly we have to account for 64bit
879 wide register saves. */
880 + (32 * REGISTER_SIZE)
881 /* We always consider FP regs 8 bytes long. */
882 + (NUM_REGS - FP0_REGNUM) * 8
883 /* Similarly we have to account for 64bit
884 wide register saves. */
885 + (6 * REGISTER_SIZE))))
886 {
887 return read_memory_integer ((frame->frame
888 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
889 TARGET_PTR_BIT / 8) & ~0x3;
890 }
891
c906108c
SS
892#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
893 /* Deal with signal handler caller frames too. */
894 if (frame->signal_handler_caller)
895 {
896 CORE_ADDR rp;
897 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
898 return rp & ~0x3;
899 }
900#endif
901
902 if (frameless_function_invocation (frame))
903 {
904 int ret_regnum;
905
906 ret_regnum = find_return_regnum (pc);
907
908 /* If the next frame is an interrupt frame or a signal
c5aa993b
JM
909 handler caller, then we need to look in the saved
910 register area to get the return pointer (the values
911 in the registers may not correspond to anything useful). */
912 if (frame->next
c906108c
SS
913 && (frame->next->signal_handler_caller
914 || pc_in_interrupt_handler (frame->next->pc)))
915 {
916 struct frame_saved_regs saved_regs;
917
918 get_frame_saved_regs (frame->next, &saved_regs);
53a5351d
JM
919 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
920 TARGET_PTR_BIT / 8) & 0x2)
c906108c 921 {
53a5351d
JM
922 pc = read_memory_integer (saved_regs.regs[31],
923 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
924
925 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
926 with a return pointer in %rp and the kernel call with
927 a return pointer in %r31. We return the %rp variant
928 if %r31 is the same as frame->pc. */
c906108c 929 if (pc == frame->pc)
53a5351d
JM
930 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
931 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
932 }
933 else
53a5351d
JM
934 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
935 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
936 }
937 else
938 pc = read_register (ret_regnum) & ~0x3;
939 }
940 else
941 {
942 spun_around_loop = 0;
c5aa993b 943 old_pc = pc;
c906108c 944
c5aa993b 945 restart:
c906108c
SS
946 rp_offset = rp_saved (pc);
947
948 /* Similar to code in frameless function case. If the next
c5aa993b
JM
949 frame is a signal or interrupt handler, then dig the right
950 information out of the saved register info. */
c906108c
SS
951 if (rp_offset == 0
952 && frame->next
953 && (frame->next->signal_handler_caller
954 || pc_in_interrupt_handler (frame->next->pc)))
955 {
956 struct frame_saved_regs saved_regs;
957
958 get_frame_saved_regs (frame->next, &saved_regs);
53a5351d
JM
959 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
960 TARGET_PTR_BIT / 8) & 0x2)
c906108c 961 {
53a5351d
JM
962 pc = read_memory_integer (saved_regs.regs[31],
963 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
964
965 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
966 with a return pointer in %rp and the kernel call with
967 a return pointer in %r31. We return the %rp variant
968 if %r31 is the same as frame->pc. */
c906108c 969 if (pc == frame->pc)
53a5351d
JM
970 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
971 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
972 }
973 else
53a5351d
JM
974 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
975 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
976 }
977 else if (rp_offset == 0)
c5aa993b
JM
978 {
979 old_pc = pc;
980 pc = read_register (RP_REGNUM) & ~0x3;
981 }
c906108c 982 else
c5aa993b
JM
983 {
984 old_pc = pc;
53a5351d
JM
985 pc = read_memory_integer (frame->frame + rp_offset,
986 TARGET_PTR_BIT / 8) & ~0x3;
c5aa993b 987 }
c906108c
SS
988 }
989
990 /* If PC is inside a linker stub, then dig out the address the stub
991 will return to.
992
993 Don't do this for long branch stubs. Why? For some unknown reason
994 _start is marked as a long branch stub in hpux10. */
995 u = find_unwind_entry (pc);
996 if (u && u->stub_unwind.stub_type != 0
997 && u->stub_unwind.stub_type != LONG_BRANCH)
998 {
999 unsigned int insn;
1000
1001 /* If this is a dynamic executable, and we're in a signal handler,
c5aa993b
JM
1002 then the call chain will eventually point us into the stub for
1003 _sigreturn. Unlike most cases, we'll be pointed to the branch
1004 to the real sigreturn rather than the code after the real branch!.
c906108c 1005
c5aa993b
JM
1006 Else, try to dig the address the stub will return to in the normal
1007 fashion. */
c906108c
SS
1008 insn = read_memory_integer (pc, 4);
1009 if ((insn & 0xfc00e000) == 0xe8000000)
1010 return (pc + extract_17 (insn) + 8) & ~0x3;
1011 else
1012 {
c5aa993b
JM
1013 if (old_pc == pc)
1014 spun_around_loop++;
1015
1016 if (spun_around_loop > 1)
1017 {
1018 /* We're just about to go around the loop again with
1019 no more hope of success. Die. */
1020 error ("Unable to find return pc for this frame");
1021 }
1022 else
1023 goto restart;
c906108c
SS
1024 }
1025 }
1026
1027 return pc;
1028}
1029\f
1030/* We need to correct the PC and the FP for the outermost frame when we are
1031 in a system call. */
1032
1033void
fba45db2 1034init_extra_frame_info (int fromleaf, struct frame_info *frame)
c906108c
SS
1035{
1036 int flags;
1037 int framesize;
1038
1039 if (frame->next && !fromleaf)
1040 return;
1041
1042 /* If the next frame represents a frameless function invocation
1043 then we have to do some adjustments that are normally done by
1044 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1045 if (fromleaf)
1046 {
1047 /* Find the framesize of *this* frame without peeking at the PC
c5aa993b 1048 in the current frame structure (it isn't set yet). */
c906108c
SS
1049 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1050
1051 /* Now adjust our base frame accordingly. If we have a frame pointer
c5aa993b
JM
1052 use it, else subtract the size of this frame from the current
1053 frame. (we always want frame->frame to point at the lowest address
1054 in the frame). */
c906108c
SS
1055 if (framesize == -1)
1056 frame->frame = TARGET_READ_FP ();
1057 else
1058 frame->frame -= framesize;
1059 return;
1060 }
1061
1062 flags = read_register (FLAGS_REGNUM);
c5aa993b 1063 if (flags & 2) /* In system call? */
c906108c
SS
1064 frame->pc = read_register (31) & ~0x3;
1065
1066 /* The outermost frame is always derived from PC-framesize
1067
1068 One might think frameless innermost frames should have
1069 a frame->frame that is the same as the parent's frame->frame.
1070 That is wrong; frame->frame in that case should be the *high*
1071 address of the parent's frame. It's complicated as hell to
1072 explain, but the parent *always* creates some stack space for
1073 the child. So the child actually does have a frame of some
1074 sorts, and its base is the high address in its parent's frame. */
c5aa993b 1075 framesize = find_proc_framesize (frame->pc);
c906108c
SS
1076 if (framesize == -1)
1077 frame->frame = TARGET_READ_FP ();
1078 else
1079 frame->frame = read_register (SP_REGNUM) - framesize;
1080}
1081\f
1082/* Given a GDB frame, determine the address of the calling function's frame.
1083 This will be used to create a new GDB frame struct, and then
1084 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1085
1086 This may involve searching through prologues for several functions
1087 at boundaries where GCC calls HP C code, or where code which has
1088 a frame pointer calls code without a frame pointer. */
1089
1090CORE_ADDR
fba45db2 1091frame_chain (struct frame_info *frame)
c906108c
SS
1092{
1093 int my_framesize, caller_framesize;
1094 struct unwind_table_entry *u;
1095 CORE_ADDR frame_base;
1096 struct frame_info *tmp_frame;
1097
c2c6d25f
JM
1098 /* A frame in the current frame list, or zero. */
1099 struct frame_info *saved_regs_frame = 0;
1100 /* Where the registers were saved in saved_regs_frame.
1101 If saved_regs_frame is zero, this is garbage. */
1102 struct frame_saved_regs saved_regs;
1103
c5aa993b 1104 CORE_ADDR caller_pc;
c906108c
SS
1105
1106 struct minimal_symbol *min_frame_symbol;
c5aa993b
JM
1107 struct symbol *frame_symbol;
1108 char *frame_symbol_name;
c906108c
SS
1109
1110 /* If this is a threaded application, and we see the
1111 routine "__pthread_exit", treat it as the stack root
1112 for this thread. */
c5aa993b
JM
1113 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1114 frame_symbol = find_pc_function (frame->pc);
c906108c 1115
c5aa993b 1116 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
c906108c 1117 {
c5aa993b
JM
1118 /* The test above for "no user function name" would defend
1119 against the slim likelihood that a user might define a
1120 routine named "__pthread_exit" and then try to debug it.
1121
1122 If it weren't commented out, and you tried to debug the
1123 pthread library itself, you'd get errors.
1124
1125 So for today, we don't make that check. */
1126 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1127 if (frame_symbol_name != 0)
1128 {
1129 if (0 == strncmp (frame_symbol_name,
1130 THREAD_INITIAL_FRAME_SYMBOL,
1131 THREAD_INITIAL_FRAME_SYM_LEN))
1132 {
1133 /* Pretend we've reached the bottom of the stack. */
1134 return (CORE_ADDR) 0;
1135 }
1136 }
1137 } /* End of hacky code for threads. */
1138
c906108c
SS
1139 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1140 are easy; at *sp we have a full save state strucutre which we can
1141 pull the old stack pointer from. Also see frame_saved_pc for
1142 code to dig a saved PC out of the save state structure. */
1143 if (pc_in_interrupt_handler (frame->pc))
53a5351d
JM
1144 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1145 TARGET_PTR_BIT / 8);
c906108c
SS
1146#ifdef FRAME_BASE_BEFORE_SIGTRAMP
1147 else if (frame->signal_handler_caller)
1148 {
1149 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1150 }
1151#endif
1152 else
1153 frame_base = frame->frame;
1154
1155 /* Get frame sizes for the current frame and the frame of the
1156 caller. */
1157 my_framesize = find_proc_framesize (frame->pc);
c5aa993b 1158 caller_pc = FRAME_SAVED_PC (frame);
c906108c
SS
1159
1160 /* If we can't determine the caller's PC, then it's not likely we can
1161 really determine anything meaningful about its frame. We'll consider
1162 this to be stack bottom. */
1163 if (caller_pc == (CORE_ADDR) 0)
1164 return (CORE_ADDR) 0;
1165
c5aa993b 1166 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
c906108c
SS
1167
1168 /* If caller does not have a frame pointer, then its frame
1169 can be found at current_frame - caller_framesize. */
1170 if (caller_framesize != -1)
1171 {
1172 return frame_base - caller_framesize;
1173 }
1174 /* Both caller and callee have frame pointers and are GCC compiled
1175 (SAVE_SP bit in unwind descriptor is on for both functions.
1176 The previous frame pointer is found at the top of the current frame. */
1177 if (caller_framesize == -1 && my_framesize == -1)
1178 {
53a5351d 1179 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
c906108c
SS
1180 }
1181 /* Caller has a frame pointer, but callee does not. This is a little
1182 more difficult as GCC and HP C lay out locals and callee register save
1183 areas very differently.
1184
1185 The previous frame pointer could be in a register, or in one of
1186 several areas on the stack.
1187
1188 Walk from the current frame to the innermost frame examining
1189 unwind descriptors to determine if %r3 ever gets saved into the
1190 stack. If so return whatever value got saved into the stack.
1191 If it was never saved in the stack, then the value in %r3 is still
1192 valid, so use it.
1193
1194 We use information from unwind descriptors to determine if %r3
1195 is saved into the stack (Entry_GR field has this information). */
1196
c2c6d25f 1197 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
c906108c
SS
1198 {
1199 u = find_unwind_entry (tmp_frame->pc);
1200
1201 if (!u)
1202 {
1203 /* We could find this information by examining prologues. I don't
1204 think anyone has actually written any tools (not even "strip")
1205 which leave them out of an executable, so maybe this is a moot
1206 point. */
c5aa993b
JM
1207 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1208 code that doesn't have unwind entries. For example, stepping into
1209 the dynamic linker will give you a PC that has none. Thus, I've
1210 disabled this warning. */
c906108c
SS
1211#if 0
1212 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1213#endif
1214 return (CORE_ADDR) 0;
1215 }
1216
c2c6d25f 1217 if (u->Save_SP
c906108c
SS
1218 || tmp_frame->signal_handler_caller
1219 || pc_in_interrupt_handler (tmp_frame->pc))
1220 break;
c2c6d25f
JM
1221
1222 /* Entry_GR specifies the number of callee-saved general registers
1223 saved in the stack. It starts at %r3, so %r3 would be 1. */
1224 if (u->Entry_GR >= 1)
1225 {
1226 /* The unwind entry claims that r3 is saved here. However,
1227 in optimized code, GCC often doesn't actually save r3.
1228 We'll discover this if we look at the prologue. */
1229 get_frame_saved_regs (tmp_frame, &saved_regs);
1230 saved_regs_frame = tmp_frame;
1231
1232 /* If we have an address for r3, that's good. */
1233 if (saved_regs.regs[FP_REGNUM])
1234 break;
1235 }
c906108c
SS
1236 }
1237
1238 if (tmp_frame)
1239 {
1240 /* We may have walked down the chain into a function with a frame
c5aa993b 1241 pointer. */
c906108c
SS
1242 if (u->Save_SP
1243 && !tmp_frame->signal_handler_caller
1244 && !pc_in_interrupt_handler (tmp_frame->pc))
1245 {
53a5351d 1246 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
c906108c
SS
1247 }
1248 /* %r3 was saved somewhere in the stack. Dig it out. */
c5aa993b 1249 else
c906108c 1250 {
c906108c
SS
1251 /* Sick.
1252
1253 For optimization purposes many kernels don't have the
1254 callee saved registers into the save_state structure upon
1255 entry into the kernel for a syscall; the optimization
1256 is usually turned off if the process is being traced so
1257 that the debugger can get full register state for the
1258 process.
c5aa993b 1259
c906108c
SS
1260 This scheme works well except for two cases:
1261
c5aa993b
JM
1262 * Attaching to a process when the process is in the
1263 kernel performing a system call (debugger can't get
1264 full register state for the inferior process since
1265 the process wasn't being traced when it entered the
1266 system call).
c906108c 1267
c5aa993b
JM
1268 * Register state is not complete if the system call
1269 causes the process to core dump.
c906108c
SS
1270
1271
1272 The following heinous code is an attempt to deal with
1273 the lack of register state in a core dump. It will
1274 fail miserably if the function which performs the
1275 system call has a variable sized stack frame. */
1276
c2c6d25f
JM
1277 if (tmp_frame != saved_regs_frame)
1278 get_frame_saved_regs (tmp_frame, &saved_regs);
c906108c
SS
1279
1280 /* Abominable hack. */
1281 if (current_target.to_has_execution == 0
1282 && ((saved_regs.regs[FLAGS_REGNUM]
53a5351d
JM
1283 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1284 TARGET_PTR_BIT / 8)
c906108c
SS
1285 & 0x2))
1286 || (saved_regs.regs[FLAGS_REGNUM] == 0
1287 && read_register (FLAGS_REGNUM) & 0x2)))
1288 {
1289 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1290 if (!u)
1291 {
53a5351d
JM
1292 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1293 TARGET_PTR_BIT / 8);
c906108c
SS
1294 }
1295 else
1296 {
1297 return frame_base - (u->Total_frame_size << 3);
1298 }
1299 }
c5aa993b 1300
53a5351d
JM
1301 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1302 TARGET_PTR_BIT / 8);
c906108c
SS
1303 }
1304 }
1305 else
1306 {
c906108c
SS
1307 /* Get the innermost frame. */
1308 tmp_frame = frame;
1309 while (tmp_frame->next != NULL)
1310 tmp_frame = tmp_frame->next;
1311
c2c6d25f
JM
1312 if (tmp_frame != saved_regs_frame)
1313 get_frame_saved_regs (tmp_frame, &saved_regs);
1314
c906108c
SS
1315 /* Abominable hack. See above. */
1316 if (current_target.to_has_execution == 0
1317 && ((saved_regs.regs[FLAGS_REGNUM]
53a5351d
JM
1318 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1319 TARGET_PTR_BIT / 8)
c906108c
SS
1320 & 0x2))
1321 || (saved_regs.regs[FLAGS_REGNUM] == 0
c5aa993b 1322 && read_register (FLAGS_REGNUM) & 0x2)))
c906108c
SS
1323 {
1324 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1325 if (!u)
1326 {
53a5351d
JM
1327 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1328 TARGET_PTR_BIT / 8);
c906108c 1329 }
c5aa993b
JM
1330 else
1331 {
1332 return frame_base - (u->Total_frame_size << 3);
1333 }
c906108c 1334 }
c5aa993b 1335
c906108c 1336 /* The value in %r3 was never saved into the stack (thus %r3 still
c5aa993b 1337 holds the value of the previous frame pointer). */
c906108c
SS
1338 return TARGET_READ_FP ();
1339 }
1340}
c906108c 1341\f
c5aa993b 1342
c906108c
SS
1343/* To see if a frame chain is valid, see if the caller looks like it
1344 was compiled with gcc. */
1345
1346int
fba45db2 1347hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
1348{
1349 struct minimal_symbol *msym_us;
1350 struct minimal_symbol *msym_start;
1351 struct unwind_table_entry *u, *next_u = NULL;
1352 struct frame_info *next;
1353
1354 if (!chain)
1355 return 0;
1356
1357 u = find_unwind_entry (thisframe->pc);
1358
1359 if (u == NULL)
1360 return 1;
1361
1362 /* We can't just check that the same of msym_us is "_start", because
1363 someone idiotically decided that they were going to make a Ltext_end
1364 symbol with the same address. This Ltext_end symbol is totally
1365 indistinguishable (as nearly as I can tell) from the symbol for a function
1366 which is (legitimately, since it is in the user's namespace)
1367 named Ltext_end, so we can't just ignore it. */
1368 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1369 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1370 if (msym_us
1371 && msym_start
1372 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1373 return 0;
1374
1375 /* Grrrr. Some new idiot decided that they don't want _start for the
1376 PRO configurations; $START$ calls main directly.... Deal with it. */
1377 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1378 if (msym_us
1379 && msym_start
1380 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1381 return 0;
1382
1383 next = get_next_frame (thisframe);
1384 if (next)
1385 next_u = find_unwind_entry (next->pc);
1386
1387 /* If this frame does not save SP, has no stack, isn't a stub,
1388 and doesn't "call" an interrupt routine or signal handler caller,
1389 then its not valid. */
1390 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1391 || (thisframe->next && thisframe->next->signal_handler_caller)
1392 || (next_u && next_u->HP_UX_interrupt_marker))
1393 return 1;
1394
1395 if (pc_in_linker_stub (thisframe->pc))
1396 return 1;
1397
1398 return 0;
1399}
1400
1401/*
1402 These functions deal with saving and restoring register state
1403 around a function call in the inferior. They keep the stack
1404 double-word aligned; eventually, on an hp700, the stack will have
1405 to be aligned to a 64-byte boundary. */
1406
1407void
fba45db2 1408push_dummy_frame (struct inferior_status *inf_status)
c906108c
SS
1409{
1410 CORE_ADDR sp, pc, pcspace;
1411 register int regnum;
53a5351d 1412 CORE_ADDR int_buffer;
c906108c
SS
1413 double freg_buffer;
1414
1415 /* Oh, what a hack. If we're trying to perform an inferior call
1416 while the inferior is asleep, we have to make sure to clear
1417 the "in system call" bit in the flag register (the call will
1418 start after the syscall returns, so we're no longer in the system
1419 call!) This state is kept in "inf_status", change it there.
1420
1421 We also need a number of horrid hacks to deal with lossage in the
1422 PC queue registers (apparently they're not valid when the in syscall
1423 bit is set). */
39f77062 1424 pc = target_read_pc (inferior_ptid);
c906108c
SS
1425 int_buffer = read_register (FLAGS_REGNUM);
1426 if (int_buffer & 0x2)
1427 {
1428 unsigned int sid;
1429 int_buffer &= ~0x2;
7a292a7a
SS
1430 write_inferior_status_register (inf_status, 0, int_buffer);
1431 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1432 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1433 sid = (pc >> 30) & 0x3;
1434 if (sid == 0)
1435 pcspace = read_register (SR4_REGNUM);
1436 else
1437 pcspace = read_register (SR4_REGNUM + 4 + sid);
7a292a7a
SS
1438 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1439 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
c906108c
SS
1440 }
1441 else
1442 pcspace = read_register (PCSQ_HEAD_REGNUM);
1443
1444 /* Space for "arguments"; the RP goes in here. */
1445 sp = read_register (SP_REGNUM) + 48;
1446 int_buffer = read_register (RP_REGNUM) | 0x3;
53a5351d
JM
1447
1448 /* The 32bit and 64bit ABIs save the return pointer into different
1449 stack slots. */
1450 if (REGISTER_SIZE == 8)
1451 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1452 else
1453 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1454
1455 int_buffer = TARGET_READ_FP ();
53a5351d 1456 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1457
1458 write_register (FP_REGNUM, sp);
1459
53a5351d 1460 sp += 2 * REGISTER_SIZE;
c906108c
SS
1461
1462 for (regnum = 1; regnum < 32; regnum++)
1463 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1464 sp = push_word (sp, read_register (regnum));
1465
53a5351d
JM
1466 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1467 if (REGISTER_SIZE != 8)
1468 sp += 4;
c906108c
SS
1469
1470 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1471 {
73937e03
AC
1472 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1473 (char *) &freg_buffer, 8);
c5aa993b 1474 sp = push_bytes (sp, (char *) &freg_buffer, 8);
c906108c
SS
1475 }
1476 sp = push_word (sp, read_register (IPSW_REGNUM));
1477 sp = push_word (sp, read_register (SAR_REGNUM));
1478 sp = push_word (sp, pc);
1479 sp = push_word (sp, pcspace);
1480 sp = push_word (sp, pc + 4);
1481 sp = push_word (sp, pcspace);
1482 write_register (SP_REGNUM, sp);
1483}
1484
1485static void
fba45db2
KB
1486find_dummy_frame_regs (struct frame_info *frame,
1487 struct frame_saved_regs *frame_saved_regs)
c906108c
SS
1488{
1489 CORE_ADDR fp = frame->frame;
1490 int i;
1491
53a5351d
JM
1492 /* The 32bit and 64bit ABIs save RP into different locations. */
1493 if (REGISTER_SIZE == 8)
1494 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1495 else
1496 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1497
c906108c 1498 frame_saved_regs->regs[FP_REGNUM] = fp;
c906108c 1499
53a5351d
JM
1500 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1501
1502 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
c906108c
SS
1503 {
1504 if (i != FP_REGNUM)
1505 {
1506 frame_saved_regs->regs[i] = fp;
53a5351d 1507 fp += REGISTER_SIZE;
c906108c
SS
1508 }
1509 }
1510
53a5351d
JM
1511 /* This is not necessary or desirable for the 64bit ABI. */
1512 if (REGISTER_SIZE != 8)
1513 fp += 4;
1514
c906108c
SS
1515 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1516 frame_saved_regs->regs[i] = fp;
1517
1518 frame_saved_regs->regs[IPSW_REGNUM] = fp;
53a5351d
JM
1519 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1520 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1521 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1522 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1523 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
c906108c
SS
1524}
1525
1526void
fba45db2 1527hppa_pop_frame (void)
c906108c
SS
1528{
1529 register struct frame_info *frame = get_current_frame ();
1530 register CORE_ADDR fp, npc, target_pc;
1531 register int regnum;
1532 struct frame_saved_regs fsr;
1533 double freg_buffer;
1534
1535 fp = FRAME_FP (frame);
1536 get_frame_saved_regs (frame, &fsr);
1537
1538#ifndef NO_PC_SPACE_QUEUE_RESTORE
c5aa993b 1539 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
c906108c
SS
1540 restore_pc_queue (&fsr);
1541#endif
1542
1543 for (regnum = 31; regnum > 0; regnum--)
1544 if (fsr.regs[regnum])
53a5351d
JM
1545 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1546 REGISTER_SIZE));
c906108c 1547
c5aa993b 1548 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
c906108c
SS
1549 if (fsr.regs[regnum])
1550 {
c5aa993b 1551 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
73937e03
AC
1552 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1553 (char *) &freg_buffer, 8);
c906108c
SS
1554 }
1555
1556 if (fsr.regs[IPSW_REGNUM])
1557 write_register (IPSW_REGNUM,
53a5351d
JM
1558 read_memory_integer (fsr.regs[IPSW_REGNUM],
1559 REGISTER_SIZE));
c906108c
SS
1560
1561 if (fsr.regs[SAR_REGNUM])
1562 write_register (SAR_REGNUM,
53a5351d
JM
1563 read_memory_integer (fsr.regs[SAR_REGNUM],
1564 REGISTER_SIZE));
c906108c
SS
1565
1566 /* If the PC was explicitly saved, then just restore it. */
1567 if (fsr.regs[PCOQ_TAIL_REGNUM])
1568 {
53a5351d
JM
1569 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1570 REGISTER_SIZE);
c906108c
SS
1571 write_register (PCOQ_TAIL_REGNUM, npc);
1572 }
1573 /* Else use the value in %rp to set the new PC. */
c5aa993b 1574 else
c906108c
SS
1575 {
1576 npc = read_register (RP_REGNUM);
1577 write_pc (npc);
1578 }
1579
53a5351d 1580 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
c906108c 1581
c5aa993b 1582 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
c906108c
SS
1583 write_register (SP_REGNUM, fp - 48);
1584 else
1585 write_register (SP_REGNUM, fp);
1586
1587 /* The PC we just restored may be inside a return trampoline. If so
1588 we want to restart the inferior and run it through the trampoline.
1589
1590 Do this by setting a momentary breakpoint at the location the
1591 trampoline returns to.
1592
1593 Don't skip through the trampoline if we're popping a dummy frame. */
1594 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1595 if (target_pc && !fsr.regs[IPSW_REGNUM])
1596 {
1597 struct symtab_and_line sal;
1598 struct breakpoint *breakpoint;
1599 struct cleanup *old_chain;
1600
1601 /* Set up our breakpoint. Set it to be silent as the MI code
c5aa993b 1602 for "return_command" will print the frame we returned to. */
c906108c
SS
1603 sal = find_pc_line (target_pc, 0);
1604 sal.pc = target_pc;
1605 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1606 breakpoint->silent = 1;
1607
1608 /* So we can clean things up. */
4d6140d9 1609 old_chain = make_cleanup_delete_breakpoint (breakpoint);
c906108c
SS
1610
1611 /* Start up the inferior. */
1612 clear_proceed_status ();
1613 proceed_to_finish = 1;
2acceee2 1614 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
c906108c
SS
1615
1616 /* Perform our cleanups. */
1617 do_cleanups (old_chain);
1618 }
1619 flush_cached_frames ();
1620}
1621
1622/* After returning to a dummy on the stack, restore the instruction
1623 queue space registers. */
1624
1625static int
fba45db2 1626restore_pc_queue (struct frame_saved_regs *fsr)
c906108c
SS
1627{
1628 CORE_ADDR pc = read_pc ();
53a5351d
JM
1629 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1630 TARGET_PTR_BIT / 8);
c906108c
SS
1631 struct target_waitstatus w;
1632 int insn_count;
1633
1634 /* Advance past break instruction in the call dummy. */
1635 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1636 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1637
1638 /* HPUX doesn't let us set the space registers or the space
1639 registers of the PC queue through ptrace. Boo, hiss.
1640 Conveniently, the call dummy has this sequence of instructions
1641 after the break:
c5aa993b
JM
1642 mtsp r21, sr0
1643 ble,n 0(sr0, r22)
1644
c906108c
SS
1645 So, load up the registers and single step until we are in the
1646 right place. */
1647
53a5351d
JM
1648 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1649 REGISTER_SIZE));
c906108c
SS
1650 write_register (22, new_pc);
1651
1652 for (insn_count = 0; insn_count < 3; insn_count++)
1653 {
1654 /* FIXME: What if the inferior gets a signal right now? Want to
c5aa993b
JM
1655 merge this into wait_for_inferior (as a special kind of
1656 watchpoint? By setting a breakpoint at the end? Is there
1657 any other choice? Is there *any* way to do this stuff with
1658 ptrace() or some equivalent?). */
c906108c 1659 resume (1, 0);
39f77062 1660 target_wait (inferior_ptid, &w);
c906108c
SS
1661
1662 if (w.kind == TARGET_WAITKIND_SIGNALLED)
c5aa993b
JM
1663 {
1664 stop_signal = w.value.sig;
1665 terminal_ours_for_output ();
1666 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
c906108c
SS
1667 target_signal_to_name (stop_signal),
1668 target_signal_to_string (stop_signal));
c5aa993b
JM
1669 gdb_flush (gdb_stdout);
1670 return 0;
1671 }
c906108c
SS
1672 }
1673 target_terminal_ours ();
1674 target_fetch_registers (-1);
1675 return 1;
1676}
1677
c2c6d25f
JM
1678
1679#ifdef PA20W_CALLING_CONVENTIONS
1680
53a5351d
JM
1681/* This function pushes a stack frame with arguments as part of the
1682 inferior function calling mechanism.
c906108c 1683
c2c6d25f
JM
1684 This is the version for the PA64, in which later arguments appear
1685 at higher addresses. (The stack always grows towards higher
1686 addresses.)
c906108c 1687
53a5351d
JM
1688 We simply allocate the appropriate amount of stack space and put
1689 arguments into their proper slots. The call dummy code will copy
1690 arguments into registers as needed by the ABI.
c906108c 1691
c2c6d25f
JM
1692 This ABI also requires that the caller provide an argument pointer
1693 to the callee, so we do that too. */
53a5351d 1694
c906108c 1695CORE_ADDR
ea7c478f 1696hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1697 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1698{
1699 /* array of arguments' offsets */
c5aa993b 1700 int *offset = (int *) alloca (nargs * sizeof (int));
53a5351d
JM
1701
1702 /* array of arguments' lengths: real lengths in bytes, not aligned to
1703 word size */
c5aa993b 1704 int *lengths = (int *) alloca (nargs * sizeof (int));
c906108c 1705
53a5351d
JM
1706 /* The value of SP as it was passed into this function after
1707 aligning. */
1708 CORE_ADDR orig_sp = STACK_ALIGN (sp);
c906108c 1709
53a5351d
JM
1710 /* The number of stack bytes occupied by the current argument. */
1711 int bytes_reserved;
1712
1713 /* The total number of bytes reserved for the arguments. */
1714 int cum_bytes_reserved = 0;
c906108c 1715
53a5351d
JM
1716 /* Similarly, but aligned. */
1717 int cum_bytes_aligned = 0;
1718 int i;
c5aa993b 1719
53a5351d 1720 /* Iterate over each argument provided by the user. */
c906108c
SS
1721 for (i = 0; i < nargs; i++)
1722 {
c2c6d25f
JM
1723 struct type *arg_type = VALUE_TYPE (args[i]);
1724
1725 /* Integral scalar values smaller than a register are padded on
1726 the left. We do this by promoting them to full-width,
1727 although the ABI says to pad them with garbage. */
1728 if (is_integral_type (arg_type)
1729 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1730 {
1731 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1732 ? builtin_type_unsigned_long
1733 : builtin_type_long),
1734 args[i]);
1735 arg_type = VALUE_TYPE (args[i]);
1736 }
1737
1738 lengths[i] = TYPE_LENGTH (arg_type);
c906108c 1739
53a5351d
JM
1740 /* Align the size of the argument to the word size for this
1741 target. */
1742 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
c906108c 1743
53a5351d
JM
1744 offset[i] = cum_bytes_reserved;
1745
c2c6d25f
JM
1746 /* Aggregates larger than eight bytes (the only types larger
1747 than eight bytes we have) are aligned on a 16-byte boundary,
1748 possibly padded on the right with garbage. This may leave an
1749 empty word on the stack, and thus an unused register, as per
1750 the ABI. */
1751 if (bytes_reserved > 8)
1752 {
1753 /* Round up the offset to a multiple of two slots. */
1754 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1755 & -(2*REGISTER_SIZE));
c906108c 1756
c2c6d25f
JM
1757 /* Note the space we've wasted, if any. */
1758 bytes_reserved += new_offset - offset[i];
1759 offset[i] = new_offset;
1760 }
53a5351d 1761
c2c6d25f
JM
1762 cum_bytes_reserved += bytes_reserved;
1763 }
1764
1765 /* CUM_BYTES_RESERVED already accounts for all the arguments
1766 passed by the user. However, the ABIs mandate minimum stack space
1767 allocations for outgoing arguments.
1768
1769 The ABIs also mandate minimum stack alignments which we must
1770 preserve. */
1771 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1772 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1773
1774 /* Now write each of the args at the proper offset down the stack. */
1775 for (i = 0; i < nargs; i++)
1776 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1777
1778 /* If a structure has to be returned, set up register 28 to hold its
1779 address */
1780 if (struct_return)
1781 write_register (28, struct_addr);
1782
1783 /* For the PA64 we must pass a pointer to the outgoing argument list.
1784 The ABI mandates that the pointer should point to the first byte of
1785 storage beyond the register flushback area.
1786
1787 However, the call dummy expects the outgoing argument pointer to
1788 be passed in register %r4. */
1789 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1790
1791 /* ?!? This needs further work. We need to set up the global data
1792 pointer for this procedure. This assumes the same global pointer
1793 for every procedure. The call dummy expects the dp value to
1794 be passed in register %r6. */
1795 write_register (6, read_register (27));
1796
1797 /* The stack will have 64 bytes of additional space for a frame marker. */
1798 return sp + 64;
1799}
1800
1801#else
1802
1803/* This function pushes a stack frame with arguments as part of the
1804 inferior function calling mechanism.
1805
1806 This is the version of the function for the 32-bit PA machines, in
1807 which later arguments appear at lower addresses. (The stack always
1808 grows towards higher addresses.)
1809
1810 We simply allocate the appropriate amount of stack space and put
1811 arguments into their proper slots. The call dummy code will copy
1812 arguments into registers as needed by the ABI. */
1813
1814CORE_ADDR
ea7c478f 1815hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1816 int struct_return, CORE_ADDR struct_addr)
c2c6d25f
JM
1817{
1818 /* array of arguments' offsets */
1819 int *offset = (int *) alloca (nargs * sizeof (int));
1820
1821 /* array of arguments' lengths: real lengths in bytes, not aligned to
1822 word size */
1823 int *lengths = (int *) alloca (nargs * sizeof (int));
1824
1825 /* The number of stack bytes occupied by the current argument. */
1826 int bytes_reserved;
1827
1828 /* The total number of bytes reserved for the arguments. */
1829 int cum_bytes_reserved = 0;
1830
1831 /* Similarly, but aligned. */
1832 int cum_bytes_aligned = 0;
1833 int i;
1834
1835 /* Iterate over each argument provided by the user. */
1836 for (i = 0; i < nargs; i++)
1837 {
1838 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1839
1840 /* Align the size of the argument to the word size for this
1841 target. */
1842 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1843
b6649e88
AC
1844 offset[i] = (cum_bytes_reserved
1845 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
c2c6d25f
JM
1846
1847 /* If the argument is a double word argument, then it needs to be
1848 double word aligned. */
53a5351d 1849 if ((bytes_reserved == 2 * REGISTER_SIZE)
c2c6d25f 1850 && (offset[i] % 2 * REGISTER_SIZE))
c5aa993b
JM
1851 {
1852 int new_offset = 0;
53a5351d
JM
1853 /* BYTES_RESERVED is already aligned to the word, so we put
1854 the argument at one word more down the stack.
1855
1856 This will leave one empty word on the stack, and one unused
1857 register as mandated by the ABI. */
1858 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1859 & -(2 * REGISTER_SIZE));
1860
1861 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
c5aa993b 1862 {
53a5351d
JM
1863 bytes_reserved += REGISTER_SIZE;
1864 offset[i] += REGISTER_SIZE;
c5aa993b
JM
1865 }
1866 }
c906108c
SS
1867
1868 cum_bytes_reserved += bytes_reserved;
1869
1870 }
1871
c2c6d25f
JM
1872 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1873 by the user. However, the ABI mandates minimum stack space
53a5351d
JM
1874 allocations for outgoing arguments.
1875
c2c6d25f 1876 The ABI also mandates minimum stack alignments which we must
53a5351d 1877 preserve. */
c906108c 1878 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
53a5351d
JM
1879 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1880
1881 /* Now write each of the args at the proper offset down the stack.
53a5351d
JM
1882 ?!? We need to promote values to a full register instead of skipping
1883 words in the stack. */
c906108c
SS
1884 for (i = 0; i < nargs; i++)
1885 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
c906108c 1886
53a5351d
JM
1887 /* If a structure has to be returned, set up register 28 to hold its
1888 address */
c906108c
SS
1889 if (struct_return)
1890 write_register (28, struct_addr);
1891
53a5351d 1892 /* The stack will have 32 bytes of additional space for a frame marker. */
c906108c
SS
1893 return sp + 32;
1894}
1895
c2c6d25f 1896#endif
c906108c
SS
1897
1898/* elz: this function returns a value which is built looking at the given address.
1899 It is called from call_function_by_hand, in case we need to return a
1900 value which is larger than 64 bits, and it is stored in the stack rather than
1901 in the registers r28 and r29 or fr4.
1902 This function does the same stuff as value_being_returned in values.c, but
1903 gets the value from the stack rather than from the buffer where all the
1904 registers were saved when the function called completed. */
ea7c478f 1905struct value *
fba45db2 1906hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
c906108c 1907{
ea7c478f 1908 register struct value *val;
c906108c
SS
1909
1910 val = allocate_value (valtype);
1911 CHECK_TYPEDEF (valtype);
c5aa993b 1912 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
c906108c
SS
1913
1914 return val;
1915}
1916
1917
1918
1919/* elz: Used to lookup a symbol in the shared libraries.
c5aa993b
JM
1920 This function calls shl_findsym, indirectly through a
1921 call to __d_shl_get. __d_shl_get is in end.c, which is always
1922 linked in by the hp compilers/linkers.
1923 The call to shl_findsym cannot be made directly because it needs
1924 to be active in target address space.
1925 inputs: - minimal symbol pointer for the function we want to look up
1926 - address in target space of the descriptor for the library
1927 where we want to look the symbol up.
1928 This address is retrieved using the
1929 som_solib_get_solib_by_pc function (somsolib.c).
1930 output: - real address in the library of the function.
1931 note: the handle can be null, in which case shl_findsym will look for
1932 the symbol in all the loaded shared libraries.
1933 files to look at if you need reference on this stuff:
1934 dld.c, dld_shl_findsym.c
1935 end.c
1936 man entry for shl_findsym */
c906108c
SS
1937
1938CORE_ADDR
fba45db2 1939find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
c906108c 1940{
c5aa993b
JM
1941 struct symbol *get_sym, *symbol2;
1942 struct minimal_symbol *buff_minsym, *msymbol;
1943 struct type *ftype;
ea7c478f
AC
1944 struct value **args;
1945 struct value *funcval;
1946 struct value *val;
c5aa993b
JM
1947
1948 int x, namelen, err_value, tmp = -1;
1949 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1950 CORE_ADDR stub_addr;
1951
1952
ea7c478f 1953 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
c5aa993b
JM
1954 funcval = find_function_in_inferior ("__d_shl_get");
1955 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1956 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1957 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1958 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1959 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1960 namelen = strlen (SYMBOL_NAME (function));
1961 value_return_addr = endo_buff_addr + namelen;
1962 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1963
1964 /* do alignment */
1965 if ((x = value_return_addr % 64) != 0)
1966 value_return_addr = value_return_addr + 64 - x;
1967
1968 errno_return_addr = value_return_addr + 64;
1969
1970
1971 /* set up stuff needed by __d_shl_get in buffer in end.o */
1972
1973 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1974
1975 target_write_memory (value_return_addr, (char *) &tmp, 4);
1976
1977 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1978
1979 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1980 (char *) &handle, 4);
1981
1982 /* now prepare the arguments for the call */
1983
1984 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
4478b372
JB
1985 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1986 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
c5aa993b 1987 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
4478b372
JB
1988 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1989 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
c5aa993b
JM
1990
1991 /* now call the function */
1992
1993 val = call_function_by_hand (funcval, 6, args);
1994
1995 /* now get the results */
1996
1997 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1998
1999 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2000 if (stub_addr <= 0)
104c1213 2001 error ("call to __d_shl_get failed, error code is %d", err_value);
c5aa993b
JM
2002
2003 return (stub_addr);
c906108c
SS
2004}
2005
c5aa993b 2006/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
a0b3c4fd
JM
2007static int
2008cover_find_stub_with_shl_get (PTR args_untyped)
c906108c 2009{
a0b3c4fd
JM
2010 args_for_find_stub *args = args_untyped;
2011 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2012 return 0;
c906108c
SS
2013}
2014
c906108c
SS
2015/* Insert the specified number of args and function address
2016 into a call sequence of the above form stored at DUMMYNAME.
2017
2018 On the hppa we need to call the stack dummy through $$dyncall.
2019 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
2020 real_pc, which is the location where gdb should start up the
cce74817
JM
2021 inferior to do the function call.
2022
2023 This has to work across several versions of hpux, bsd, osf1. It has to
2024 work regardless of what compiler was used to build the inferior program.
2025 It should work regardless of whether or not end.o is available. It has
2026 to work even if gdb can not call into the dynamic loader in the inferior
2027 to query it for symbol names and addresses.
2028
2029 Yes, all those cases should work. Luckily code exists to handle most
2030 of them. The complexity is in selecting exactly what scheme should
2031 be used to perform the inferior call.
2032
2033 At the current time this routine is known not to handle cases where
2034 the program was linked with HP's compiler without including end.o.
2035
2036 Please contact Jeff Law (law@cygnus.com) before changing this code. */
c906108c
SS
2037
2038CORE_ADDR
fba45db2 2039hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 2040 struct value **args, struct type *type, int gcc_p)
c906108c
SS
2041{
2042 CORE_ADDR dyncall_addr;
2043 struct minimal_symbol *msymbol;
2044 struct minimal_symbol *trampoline;
2045 int flags = read_register (FLAGS_REGNUM);
cce74817
JM
2046 struct unwind_table_entry *u = NULL;
2047 CORE_ADDR new_stub = 0;
2048 CORE_ADDR solib_handle = 0;
2049
2050 /* Nonzero if we will use GCC's PLT call routine. This routine must be
c2c6d25f
JM
2051 passed an import stub, not a PLABEL. It is also necessary to set %r19
2052 (the PIC register) before performing the call.
c906108c 2053
cce74817
JM
2054 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2055 are calling the target directly. When using __d_plt_call we want to
2056 use a PLABEL instead of an import stub. */
2057 int using_gcc_plt_call = 1;
2058
53a5351d
JM
2059#ifdef GDB_TARGET_IS_HPPA_20W
2060 /* We currently use completely different code for the PA2.0W inferior
2061 function call sequences. This needs to be cleaned up. */
2062 {
2063 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2064 struct target_waitstatus w;
2065 int inst1, inst2;
2066 char buf[4];
2067 int status;
2068 struct objfile *objfile;
2069
2070 /* We can not modify the PC space queues directly, so we start
2071 up the inferior and execute a couple instructions to set the
2072 space queues so that they point to the call dummy in the stack. */
2073 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2074 sr5 = read_register (SR5_REGNUM);
2075 if (1)
2076 {
2077 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2078 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2079 if (target_read_memory (pcoqh, buf, 4) != 0)
2080 error ("Couldn't modify space queue\n");
2081 inst1 = extract_unsigned_integer (buf, 4);
2082
2083 if (target_read_memory (pcoqt, buf, 4) != 0)
2084 error ("Couldn't modify space queue\n");
2085 inst2 = extract_unsigned_integer (buf, 4);
2086
2087 /* BVE (r1) */
2088 *((int *) buf) = 0xe820d000;
2089 if (target_write_memory (pcoqh, buf, 4) != 0)
2090 error ("Couldn't modify space queue\n");
2091
2092 /* NOP */
2093 *((int *) buf) = 0x08000240;
2094 if (target_write_memory (pcoqt, buf, 4) != 0)
2095 {
2096 *((int *) buf) = inst1;
2097 target_write_memory (pcoqh, buf, 4);
2098 error ("Couldn't modify space queue\n");
2099 }
2100
2101 write_register (1, pc);
2102
2103 /* Single step twice, the BVE instruction will set the space queue
2104 such that it points to the PC value written immediately above
2105 (ie the call dummy). */
2106 resume (1, 0);
39f77062 2107 target_wait (inferior_ptid, &w);
53a5351d 2108 resume (1, 0);
39f77062 2109 target_wait (inferior_ptid, &w);
53a5351d
JM
2110
2111 /* Restore the two instructions at the old PC locations. */
2112 *((int *) buf) = inst1;
2113 target_write_memory (pcoqh, buf, 4);
2114 *((int *) buf) = inst2;
2115 target_write_memory (pcoqt, buf, 4);
2116 }
2117
2118 /* The call dummy wants the ultimate destination address initially
2119 in register %r5. */
2120 write_register (5, fun);
2121
2122 /* We need to see if this objfile has a different DP value than our
c2c6d25f 2123 own (it could be a shared library for example). */
53a5351d
JM
2124 ALL_OBJFILES (objfile)
2125 {
2126 struct obj_section *s;
2127 obj_private_data_t *obj_private;
2128
2129 /* See if FUN is in any section within this shared library. */
2130 for (s = objfile->sections; s < objfile->sections_end; s++)
2131 if (s->addr <= fun && fun < s->endaddr)
2132 break;
2133
2134 if (s >= objfile->sections_end)
2135 continue;
2136
2137 obj_private = (obj_private_data_t *) objfile->obj_private;
2138
2139 /* The DP value may be different for each objfile. But within an
2140 objfile each function uses the same dp value. Thus we do not need
2141 to grope around the opd section looking for dp values.
2142
2143 ?!? This is not strictly correct since we may be in a shared library
2144 and want to call back into the main program. To make that case
2145 work correctly we need to set obj_private->dp for the main program's
2146 objfile, then remove this conditional. */
2147 if (obj_private->dp)
2148 write_register (27, obj_private->dp);
2149 break;
2150 }
2151 return pc;
2152 }
2153#endif
2154
2155#ifndef GDB_TARGET_IS_HPPA_20W
cce74817 2156 /* Prefer __gcc_plt_call over the HP supplied routine because
c5aa993b 2157 __gcc_plt_call works for any number of arguments. */
c906108c 2158 trampoline = NULL;
cce74817
JM
2159 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2160 using_gcc_plt_call = 0;
2161
c906108c
SS
2162 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2163 if (msymbol == NULL)
cce74817 2164 error ("Can't find an address for $$dyncall trampoline");
c906108c
SS
2165
2166 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2167
2168 /* FUN could be a procedure label, in which case we have to get
cce74817
JM
2169 its real address and the value of its GOT/DP if we plan to
2170 call the routine via gcc_plt_call. */
2171 if ((fun & 0x2) && using_gcc_plt_call)
c906108c
SS
2172 {
2173 /* Get the GOT/DP value for the target function. It's
c5aa993b
JM
2174 at *(fun+4). Note the call dummy is *NOT* allowed to
2175 trash %r19 before calling the target function. */
53a5351d
JM
2176 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2177 REGISTER_SIZE));
c906108c
SS
2178
2179 /* Now get the real address for the function we are calling, it's
c5aa993b 2180 at *fun. */
53a5351d
JM
2181 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2182 TARGET_PTR_BIT / 8);
c906108c
SS
2183 }
2184 else
2185 {
2186
2187#ifndef GDB_TARGET_IS_PA_ELF
cce74817 2188 /* FUN could be an export stub, the real address of a function, or
c5aa993b
JM
2189 a PLABEL. When using gcc's PLT call routine we must call an import
2190 stub rather than the export stub or real function for lazy binding
2191 to work correctly
cce74817 2192
39f77062 2193 If we are using the gcc PLT call routine, then we need to
c5aa993b 2194 get the import stub for the target function. */
cce74817 2195 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
c906108c
SS
2196 {
2197 struct objfile *objfile;
2198 struct minimal_symbol *funsymbol, *stub_symbol;
2199 CORE_ADDR newfun = 0;
2200
2201 funsymbol = lookup_minimal_symbol_by_pc (fun);
2202 if (!funsymbol)
4ce44c66 2203 error ("Unable to find minimal symbol for target function.\n");
c906108c
SS
2204
2205 /* Search all the object files for an import symbol with the
2206 right name. */
2207 ALL_OBJFILES (objfile)
c5aa993b
JM
2208 {
2209 stub_symbol
2210 = lookup_minimal_symbol_solib_trampoline
2211 (SYMBOL_NAME (funsymbol), NULL, objfile);
2212
2213 if (!stub_symbol)
2214 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2215 NULL, objfile);
2216
2217 /* Found a symbol with the right name. */
2218 if (stub_symbol)
2219 {
2220 struct unwind_table_entry *u;
2221 /* It must be a shared library trampoline. */
2222 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2223 continue;
2224
2225 /* It must also be an import stub. */
2226 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
6426a772
JM
2227 if (u == NULL
2228 || (u->stub_unwind.stub_type != IMPORT
2229#ifdef GDB_NATIVE_HPUX_11
2230 /* Sigh. The hpux 10.20 dynamic linker will blow
2231 chunks if we perform a call to an unbound function
2232 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2233 linker will blow chunks if we do not call the
2234 unbound function via the IMPORT_SHLIB stub.
2235
2236 We currently have no way to select bevahior on just
2237 the target. However, we only support HPUX/SOM in
2238 native mode. So we conditinalize on a native
2239 #ifdef. Ugly. Ugly. Ugly */
2240 && u->stub_unwind.stub_type != IMPORT_SHLIB
2241#endif
2242 ))
c5aa993b
JM
2243 continue;
2244
2245 /* OK. Looks like the correct import stub. */
2246 newfun = SYMBOL_VALUE (stub_symbol);
2247 fun = newfun;
6426a772
JM
2248
2249 /* If we found an IMPORT stub, then we want to stop
2250 searching now. If we found an IMPORT_SHLIB, we want
2251 to continue the search in the hopes that we will find
2252 an IMPORT stub. */
2253 if (u->stub_unwind.stub_type == IMPORT)
2254 break;
c5aa993b
JM
2255 }
2256 }
cce74817
JM
2257
2258 /* Ouch. We did not find an import stub. Make an attempt to
2259 do the right thing instead of just croaking. Most of the
2260 time this will actually work. */
c906108c
SS
2261 if (newfun == 0)
2262 write_register (19, som_solib_get_got_by_pc (fun));
cce74817
JM
2263
2264 u = find_unwind_entry (fun);
c5aa993b 2265 if (u
cce74817
JM
2266 && (u->stub_unwind.stub_type == IMPORT
2267 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2268 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2269
2270 /* If we found the import stub in the shared library, then we have
2271 to set %r19 before we call the stub. */
2272 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2273 write_register (19, som_solib_get_got_by_pc (fun));
c906108c 2274 }
c906108c
SS
2275#endif
2276 }
2277
cce74817
JM
2278 /* If we are calling into another load module then have sr4export call the
2279 magic __d_plt_call routine which is linked in from end.o.
c906108c 2280
cce74817
JM
2281 You can't use _sr4export to make the call as the value in sp-24 will get
2282 fried and you end up returning to the wrong location. You can't call the
2283 target as the code to bind the PLT entry to a function can't return to a
2284 stack address.
2285
2286 Also, query the dynamic linker in the inferior to provide a suitable
2287 PLABEL for the target function. */
c5aa993b 2288 if (!using_gcc_plt_call)
c906108c
SS
2289 {
2290 CORE_ADDR new_fun;
2291
cce74817 2292 /* Get a handle for the shared library containing FUN. Given the
c5aa993b 2293 handle we can query the shared library for a PLABEL. */
cce74817 2294 solib_handle = som_solib_get_solib_by_pc (fun);
c906108c 2295
cce74817 2296 if (solib_handle)
c906108c 2297 {
cce74817 2298 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
c906108c 2299
cce74817
JM
2300 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2301
2302 if (trampoline == NULL)
2303 {
2304 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2305 }
2306
2307 /* This is where sr4export will jump to. */
2308 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2309
2310 /* If the function is in a shared library, then call __d_shl_get to
2311 get a PLABEL for the target function. */
2312 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2313
c5aa993b 2314 if (new_stub == 0)
cce74817 2315 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
c906108c
SS
2316
2317 /* We have to store the address of the stub in __shlib_funcptr. */
cce74817 2318 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
c5aa993b 2319 (struct objfile *) NULL);
c906108c 2320
cce74817
JM
2321 if (msymbol == NULL)
2322 error ("Can't find an address for __shlib_funcptr");
2323 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
c5aa993b 2324 (char *) &new_stub, 4);
c906108c
SS
2325
2326 /* We want sr4export to call __d_plt_call, so we claim it is
2327 the final target. Clear trampoline. */
cce74817
JM
2328 fun = new_fun;
2329 trampoline = NULL;
c906108c
SS
2330 }
2331 }
2332
2333 /* Store upper 21 bits of function address into ldil. fun will either be
2334 the final target (most cases) or __d_plt_call when calling into a shared
2335 library and __gcc_plt_call is not available. */
2336 store_unsigned_integer
2337 (&dummy[FUNC_LDIL_OFFSET],
2338 INSTRUCTION_SIZE,
2339 deposit_21 (fun >> 11,
2340 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2341 INSTRUCTION_SIZE)));
2342
2343 /* Store lower 11 bits of function address into ldo */
2344 store_unsigned_integer
2345 (&dummy[FUNC_LDO_OFFSET],
2346 INSTRUCTION_SIZE,
2347 deposit_14 (fun & MASK_11,
2348 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2349 INSTRUCTION_SIZE)));
2350#ifdef SR4EXPORT_LDIL_OFFSET
2351
2352 {
2353 CORE_ADDR trampoline_addr;
2354
2355 /* We may still need sr4export's address too. */
2356
2357 if (trampoline == NULL)
2358 {
2359 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2360 if (msymbol == NULL)
cce74817 2361 error ("Can't find an address for _sr4export trampoline");
c906108c
SS
2362
2363 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2364 }
2365 else
2366 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2367
2368
2369 /* Store upper 21 bits of trampoline's address into ldil */
2370 store_unsigned_integer
2371 (&dummy[SR4EXPORT_LDIL_OFFSET],
2372 INSTRUCTION_SIZE,
2373 deposit_21 (trampoline_addr >> 11,
2374 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2375 INSTRUCTION_SIZE)));
2376
2377 /* Store lower 11 bits of trampoline's address into ldo */
2378 store_unsigned_integer
2379 (&dummy[SR4EXPORT_LDO_OFFSET],
2380 INSTRUCTION_SIZE,
2381 deposit_14 (trampoline_addr & MASK_11,
2382 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2383 INSTRUCTION_SIZE)));
2384 }
2385#endif
2386
2387 write_register (22, pc);
2388
2389 /* If we are in a syscall, then we should call the stack dummy
2390 directly. $$dyncall is not needed as the kernel sets up the
2391 space id registers properly based on the value in %r31. In
2392 fact calling $$dyncall will not work because the value in %r22
2393 will be clobbered on the syscall exit path.
2394
2395 Similarly if the current PC is in a shared library. Note however,
2396 this scheme won't work if the shared library isn't mapped into
2397 the same space as the stack. */
2398 if (flags & 2)
2399 return pc;
2400#ifndef GDB_TARGET_IS_PA_ELF
39f77062 2401 else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid)))
c906108c
SS
2402 return pc;
2403#endif
2404 else
2405 return dyncall_addr;
53a5351d 2406#endif
c906108c
SS
2407}
2408
2409
2410
2411
2412/* If the pid is in a syscall, then the FP register is not readable.
2413 We'll return zero in that case, rather than attempting to read it
2414 and cause a warning. */
2415CORE_ADDR
fba45db2 2416target_read_fp (int pid)
c906108c
SS
2417{
2418 int flags = read_register (FLAGS_REGNUM);
2419
c5aa993b
JM
2420 if (flags & 2)
2421 {
2422 return (CORE_ADDR) 0;
2423 }
c906108c
SS
2424
2425 /* This is the only site that may directly read_register () the FP
2426 register. All others must use TARGET_READ_FP (). */
2427 return read_register (FP_REGNUM);
2428}
2429
2430
2431/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2432 bits. */
2433
2434CORE_ADDR
39f77062 2435target_read_pc (ptid_t ptid)
c906108c 2436{
39f77062 2437 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2438
2439 /* The following test does not belong here. It is OS-specific, and belongs
2440 in native code. */
2441 /* Test SS_INSYSCALL */
2442 if (flags & 2)
39f77062 2443 return read_register_pid (31, ptid) & ~0x3;
c906108c 2444
39f77062 2445 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
c906108c
SS
2446}
2447
2448/* Write out the PC. If currently in a syscall, then also write the new
2449 PC value into %r31. */
2450
2451void
39f77062 2452target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 2453{
39f77062 2454 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2455
2456 /* The following test does not belong here. It is OS-specific, and belongs
2457 in native code. */
2458 /* If in a syscall, then set %r31. Also make sure to get the
2459 privilege bits set correctly. */
2460 /* Test SS_INSYSCALL */
2461 if (flags & 2)
39f77062 2462 write_register_pid (31, v | 0x3, ptid);
c906108c 2463
39f77062
KB
2464 write_register_pid (PC_REGNUM, v, ptid);
2465 write_register_pid (NPC_REGNUM, v + 4, ptid);
c906108c
SS
2466}
2467
2468/* return the alignment of a type in bytes. Structures have the maximum
2469 alignment required by their fields. */
2470
2471static int
fba45db2 2472hppa_alignof (struct type *type)
c906108c
SS
2473{
2474 int max_align, align, i;
2475 CHECK_TYPEDEF (type);
2476 switch (TYPE_CODE (type))
2477 {
2478 case TYPE_CODE_PTR:
2479 case TYPE_CODE_INT:
2480 case TYPE_CODE_FLT:
2481 return TYPE_LENGTH (type);
2482 case TYPE_CODE_ARRAY:
2483 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2484 case TYPE_CODE_STRUCT:
2485 case TYPE_CODE_UNION:
2486 max_align = 1;
2487 for (i = 0; i < TYPE_NFIELDS (type); i++)
2488 {
2489 /* Bit fields have no real alignment. */
2490 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 2491 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
2492 {
2493 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2494 max_align = max (max_align, align);
2495 }
2496 }
2497 return max_align;
2498 default:
2499 return 4;
2500 }
2501}
2502
2503/* Print the register regnum, or all registers if regnum is -1 */
2504
2505void
fba45db2 2506pa_do_registers_info (int regnum, int fpregs)
c906108c 2507{
c5aa993b 2508 char raw_regs[REGISTER_BYTES];
c906108c
SS
2509 int i;
2510
2511 /* Make a copy of gdb's save area (may cause actual
2512 reads from the target). */
2513 for (i = 0; i < NUM_REGS; i++)
cda5a58a 2514 frame_register_read (selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2515
2516 if (regnum == -1)
2517 pa_print_registers (raw_regs, regnum, fpregs);
c5aa993b
JM
2518 else if (regnum < FP4_REGNUM)
2519 {
2520 long reg_val[2];
2521
2522 /* Why is the value not passed through "extract_signed_integer"
2523 as in "pa_print_registers" below? */
2524 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2525
2526 if (!is_pa_2)
2527 {
ce414844 2528 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2529 }
c906108c 2530 else
c5aa993b
JM
2531 {
2532 /* Fancy % formats to prevent leading zeros. */
2533 if (reg_val[0] == 0)
ce414844 2534 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2535 else
ce414844 2536 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
c5aa993b
JM
2537 reg_val[0], reg_val[1]);
2538 }
c906108c 2539 }
c906108c 2540 else
c5aa993b
JM
2541 /* Note that real floating point values only start at
2542 FP4_REGNUM. FP0 and up are just status and error
2543 registers, which have integral (bit) values. */
c906108c
SS
2544 pa_print_fp_reg (regnum);
2545}
2546
2547/********** new function ********************/
2548void
fba45db2
KB
2549pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2550 enum precision_type precision)
c906108c 2551{
c5aa993b 2552 char raw_regs[REGISTER_BYTES];
c906108c
SS
2553 int i;
2554
2555 /* Make a copy of gdb's save area (may cause actual
c5aa993b 2556 reads from the target). */
c906108c 2557 for (i = 0; i < NUM_REGS; i++)
cda5a58a 2558 frame_register_read (selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2559
2560 if (regnum == -1)
2561 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2562
c5aa993b
JM
2563 else if (regnum < FP4_REGNUM)
2564 {
2565 long reg_val[2];
2566
2567 /* Why is the value not passed through "extract_signed_integer"
2568 as in "pa_print_registers" below? */
2569 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
c906108c 2570
c5aa993b
JM
2571 if (!is_pa_2)
2572 {
ce414844 2573 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2574 }
c906108c 2575 else
c5aa993b
JM
2576 {
2577 /* Fancy % formats to prevent leading zeros. */
2578 if (reg_val[0] == 0)
ce414844 2579 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
c5aa993b
JM
2580 reg_val[1]);
2581 else
ce414844 2582 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
c5aa993b
JM
2583 reg_val[0], reg_val[1]);
2584 }
c906108c 2585 }
c906108c 2586 else
c5aa993b
JM
2587 /* Note that real floating point values only start at
2588 FP4_REGNUM. FP0 and up are just status and error
2589 registers, which have integral (bit) values. */
c906108c
SS
2590 pa_strcat_fp_reg (regnum, stream, precision);
2591}
2592
2593/* If this is a PA2.0 machine, fetch the real 64-bit register
2594 value. Otherwise use the info from gdb's saved register area.
2595
2596 Note that reg_val is really expected to be an array of longs,
2597 with two elements. */
2598static void
fba45db2 2599pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
c906108c 2600{
c5aa993b 2601 static int know_which = 0; /* False */
c906108c 2602
c5aa993b 2603 int regaddr;
c906108c
SS
2604 unsigned int offset;
2605 register int i;
c5aa993b
JM
2606 int start;
2607
2608
c906108c
SS
2609 char buf[MAX_REGISTER_RAW_SIZE];
2610 long long reg_val;
2611
c5aa993b
JM
2612 if (!know_which)
2613 {
2614 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2615 {
2616 is_pa_2 = (1 == 1);
2617 }
2618
2619 know_which = 1; /* True */
2620 }
c906108c
SS
2621
2622 raw_val[0] = 0;
2623 raw_val[1] = 0;
2624
c5aa993b
JM
2625 if (!is_pa_2)
2626 {
2627 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
c906108c 2628 return;
c5aa993b 2629 }
c906108c
SS
2630
2631 /* Code below copied from hppah-nat.c, with fixes for wide
2632 registers, using different area of save_state, etc. */
2633 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
c5aa993b
JM
2634 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2635 {
c906108c 2636 /* Use narrow regs area of save_state and default macro. */
c5aa993b
JM
2637 offset = U_REGS_OFFSET;
2638 regaddr = register_addr (regnum, offset);
2639 start = 1;
2640 }
2641 else
2642 {
c906108c
SS
2643 /* Use wide regs area, and calculate registers as 8 bytes wide.
2644
2645 We'd like to do this, but current version of "C" doesn't
2646 permit "offsetof":
2647
c5aa993b 2648 offset = offsetof(save_state_t, ss_wide);
c906108c
SS
2649
2650 Note that to avoid "C" doing typed pointer arithmetic, we
2651 have to cast away the type in our offset calculation:
2652 otherwise we get an offset of 1! */
2653
7a292a7a 2654 /* NB: save_state_t is not available before HPUX 9.
c5aa993b 2655 The ss_wide field is not available previous to HPUX 10.20,
7a292a7a
SS
2656 so to avoid compile-time warnings, we only compile this for
2657 PA 2.0 processors. This control path should only be followed
2658 if we're debugging a PA 2.0 processor, so this should not cause
2659 problems. */
2660
c906108c
SS
2661 /* #if the following code out so that this file can still be
2662 compiled on older HPUX boxes (< 10.20) which don't have
2663 this structure/structure member. */
2664#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2665 save_state_t temp;
2666
2667 offset = ((int) &temp.ss_wide) - ((int) &temp);
2668 regaddr = offset + regnum * 8;
c5aa993b 2669 start = 0;
c906108c 2670#endif
c5aa993b
JM
2671 }
2672
2673 for (i = start; i < 2; i++)
c906108c
SS
2674 {
2675 errno = 0;
39f77062 2676 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
c5aa993b 2677 (PTRACE_ARG3_TYPE) regaddr, 0);
c906108c
SS
2678 if (errno != 0)
2679 {
2680 /* Warning, not error, in case we are attached; sometimes the
2681 kernel doesn't let us at the registers. */
2682 char *err = safe_strerror (errno);
2683 char *msg = alloca (strlen (err) + 128);
2684 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2685 warning (msg);
2686 goto error_exit;
2687 }
2688
2689 regaddr += sizeof (long);
2690 }
c5aa993b 2691
c906108c 2692 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
c5aa993b 2693 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
c906108c
SS
2694
2695error_exit:
2696 ;
2697}
2698
2699/* "Info all-reg" command */
c5aa993b 2700
c906108c 2701static void
fba45db2 2702pa_print_registers (char *raw_regs, int regnum, int fpregs)
c906108c 2703{
c5aa993b 2704 int i, j;
adf40b2e
JM
2705 /* Alas, we are compiled so that "long long" is 32 bits */
2706 long raw_val[2];
c906108c 2707 long long_val;
a0b3c4fd 2708 int rows = 48, columns = 2;
c906108c 2709
adf40b2e 2710 for (i = 0; i < rows; i++)
c906108c 2711 {
adf40b2e 2712 for (j = 0; j < columns; j++)
c906108c 2713 {
adf40b2e
JM
2714 /* We display registers in column-major order. */
2715 int regnum = i + j * rows;
2716
c5aa993b
JM
2717 /* Q: Why is the value passed through "extract_signed_integer",
2718 while above, in "pa_do_registers_info" it isn't?
2719 A: ? */
adf40b2e 2720 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
c5aa993b
JM
2721
2722 /* Even fancier % formats to prevent leading zeros
2723 and still maintain the output in columns. */
2724 if (!is_pa_2)
2725 {
2726 /* Being big-endian, on this machine the low bits
2727 (the ones we want to look at) are in the second longword. */
2728 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844 2729 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2730 REGISTER_NAME (regnum), long_val);
c5aa993b
JM
2731 }
2732 else
2733 {
2734 /* raw_val = extract_signed_integer(&raw_val, 8); */
2735 if (raw_val[0] == 0)
ce414844 2736 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2737 REGISTER_NAME (regnum), raw_val[1]);
c5aa993b 2738 else
ce414844 2739 printf_filtered ("%10.10s: %8lx%8.8lx ",
a0b3c4fd 2740 REGISTER_NAME (regnum),
c5aa993b
JM
2741 raw_val[0], raw_val[1]);
2742 }
c906108c
SS
2743 }
2744 printf_unfiltered ("\n");
2745 }
c5aa993b 2746
c906108c 2747 if (fpregs)
c5aa993b 2748 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2749 pa_print_fp_reg (i);
2750}
2751
c5aa993b 2752/************* new function ******************/
c906108c 2753static void
fba45db2
KB
2754pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2755 struct ui_file *stream)
c906108c 2756{
c5aa993b
JM
2757 int i, j;
2758 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
c906108c
SS
2759 long long_val;
2760 enum precision_type precision;
2761
2762 precision = unspecified_precision;
2763
2764 for (i = 0; i < 18; i++)
2765 {
2766 for (j = 0; j < 4; j++)
2767 {
c5aa993b
JM
2768 /* Q: Why is the value passed through "extract_signed_integer",
2769 while above, in "pa_do_registers_info" it isn't?
2770 A: ? */
2771 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2772
2773 /* Even fancier % formats to prevent leading zeros
2774 and still maintain the output in columns. */
2775 if (!is_pa_2)
2776 {
2777 /* Being big-endian, on this machine the low bits
2778 (the ones we want to look at) are in the second longword. */
2779 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844
AC
2780 fprintf_filtered (stream, "%8.8s: %8lx ",
2781 REGISTER_NAME (i + (j * 18)), long_val);
c5aa993b
JM
2782 }
2783 else
2784 {
2785 /* raw_val = extract_signed_integer(&raw_val, 8); */
2786 if (raw_val[0] == 0)
ce414844
AC
2787 fprintf_filtered (stream, "%8.8s: %8lx ",
2788 REGISTER_NAME (i + (j * 18)), raw_val[1]);
c5aa993b 2789 else
ce414844
AC
2790 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2791 REGISTER_NAME (i + (j * 18)), raw_val[0],
2792 raw_val[1]);
c5aa993b 2793 }
c906108c
SS
2794 }
2795 fprintf_unfiltered (stream, "\n");
2796 }
c5aa993b 2797
c906108c 2798 if (fpregs)
c5aa993b 2799 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2800 pa_strcat_fp_reg (i, stream, precision);
2801}
2802
2803static void
fba45db2 2804pa_print_fp_reg (int i)
c906108c
SS
2805{
2806 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2807 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2808
2809 /* Get 32bits of data. */
cda5a58a 2810 frame_register_read (selected_frame, i, raw_buffer);
c906108c
SS
2811
2812 /* Put it in the buffer. No conversions are ever necessary. */
2813 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2814
2815 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2816 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2817 fputs_filtered ("(single precision) ", gdb_stdout);
2818
2819 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2820 1, 0, Val_pretty_default);
2821 printf_filtered ("\n");
2822
2823 /* If "i" is even, then this register can also be a double-precision
2824 FP register. Dump it out as such. */
2825 if ((i % 2) == 0)
2826 {
2827 /* Get the data in raw format for the 2nd half. */
cda5a58a 2828 frame_register_read (selected_frame, i + 1, raw_buffer);
c906108c
SS
2829
2830 /* Copy it into the appropriate part of the virtual buffer. */
2831 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2832 REGISTER_RAW_SIZE (i));
2833
2834 /* Dump it as a double. */
2835 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2836 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2837 fputs_filtered ("(double precision) ", gdb_stdout);
2838
2839 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2840 1, 0, Val_pretty_default);
2841 printf_filtered ("\n");
2842 }
2843}
2844
2845/*************** new function ***********************/
2846static void
fba45db2 2847pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
c906108c
SS
2848{
2849 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2850 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2851
2852 fputs_filtered (REGISTER_NAME (i), stream);
2853 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2854
2855 /* Get 32bits of data. */
cda5a58a 2856 frame_register_read (selected_frame, i, raw_buffer);
c906108c
SS
2857
2858 /* Put it in the buffer. No conversions are ever necessary. */
2859 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2860
2861 if (precision == double_precision && (i % 2) == 0)
2862 {
2863
c5aa993b
JM
2864 char raw_buf[MAX_REGISTER_RAW_SIZE];
2865
2866 /* Get the data in raw format for the 2nd half. */
cda5a58a 2867 frame_register_read (selected_frame, i + 1, raw_buf);
c5aa993b
JM
2868
2869 /* Copy it into the appropriate part of the virtual buffer. */
2870 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
c906108c 2871
c5aa993b
JM
2872 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2873 1, 0, Val_pretty_default);
c906108c
SS
2874
2875 }
c5aa993b
JM
2876 else
2877 {
2878 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2879 1, 0, Val_pretty_default);
2880 }
c906108c
SS
2881
2882}
2883
2884/* Return one if PC is in the call path of a trampoline, else return zero.
2885
2886 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2887 just shared library trampolines (import, export). */
2888
2889int
fba45db2 2890in_solib_call_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
2891{
2892 struct minimal_symbol *minsym;
2893 struct unwind_table_entry *u;
2894 static CORE_ADDR dyncall = 0;
2895 static CORE_ADDR sr4export = 0;
2896
c2c6d25f
JM
2897#ifdef GDB_TARGET_IS_HPPA_20W
2898 /* PA64 has a completely different stub/trampoline scheme. Is it
2899 better? Maybe. It's certainly harder to determine with any
2900 certainty that we are in a stub because we can not refer to the
2901 unwinders to help.
2902
2903 The heuristic is simple. Try to lookup the current PC value in th
2904 minimal symbol table. If that fails, then assume we are not in a
2905 stub and return.
2906
2907 Then see if the PC value falls within the section bounds for the
2908 section containing the minimal symbol we found in the first
2909 step. If it does, then assume we are not in a stub and return.
2910
2911 Finally peek at the instructions to see if they look like a stub. */
2912 {
2913 struct minimal_symbol *minsym;
2914 asection *sec;
2915 CORE_ADDR addr;
2916 int insn, i;
2917
2918 minsym = lookup_minimal_symbol_by_pc (pc);
2919 if (! minsym)
2920 return 0;
2921
2922 sec = SYMBOL_BFD_SECTION (minsym);
2923
2924 if (sec->vma <= pc
2925 && sec->vma + sec->_cooked_size < pc)
2926 return 0;
2927
2928 /* We might be in a stub. Peek at the instructions. Stubs are 3
2929 instructions long. */
2930 insn = read_memory_integer (pc, 4);
2931
b84a8afe 2932 /* Find out where we think we are within the stub. */
c2c6d25f
JM
2933 if ((insn & 0xffffc00e) == 0x53610000)
2934 addr = pc;
2935 else if ((insn & 0xffffffff) == 0xe820d000)
2936 addr = pc - 4;
2937 else if ((insn & 0xffffc00e) == 0x537b0000)
2938 addr = pc - 8;
2939 else
2940 return 0;
2941
2942 /* Now verify each insn in the range looks like a stub instruction. */
2943 insn = read_memory_integer (addr, 4);
2944 if ((insn & 0xffffc00e) != 0x53610000)
2945 return 0;
2946
2947 /* Now verify each insn in the range looks like a stub instruction. */
2948 insn = read_memory_integer (addr + 4, 4);
2949 if ((insn & 0xffffffff) != 0xe820d000)
2950 return 0;
2951
2952 /* Now verify each insn in the range looks like a stub instruction. */
2953 insn = read_memory_integer (addr + 8, 4);
2954 if ((insn & 0xffffc00e) != 0x537b0000)
2955 return 0;
2956
2957 /* Looks like a stub. */
2958 return 1;
2959 }
2960#endif
2961
2962 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2963 new exec file */
c906108c
SS
2964
2965 /* First see if PC is in one of the two C-library trampolines. */
2966 if (!dyncall)
2967 {
2968 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2969 if (minsym)
2970 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2971 else
2972 dyncall = -1;
2973 }
2974
2975 if (!sr4export)
2976 {
2977 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2978 if (minsym)
2979 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2980 else
2981 sr4export = -1;
2982 }
2983
2984 if (pc == dyncall || pc == sr4export)
2985 return 1;
2986
104c1213
JM
2987 minsym = lookup_minimal_symbol_by_pc (pc);
2988 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
2989 return 1;
2990
c906108c
SS
2991 /* Get the unwind descriptor corresponding to PC, return zero
2992 if no unwind was found. */
2993 u = find_unwind_entry (pc);
2994 if (!u)
2995 return 0;
2996
2997 /* If this isn't a linker stub, then return now. */
2998 if (u->stub_unwind.stub_type == 0)
2999 return 0;
3000
3001 /* By definition a long-branch stub is a call stub. */
3002 if (u->stub_unwind.stub_type == LONG_BRANCH)
3003 return 1;
3004
3005 /* The call and return path execute the same instructions within
3006 an IMPORT stub! So an IMPORT stub is both a call and return
3007 trampoline. */
3008 if (u->stub_unwind.stub_type == IMPORT)
3009 return 1;
3010
3011 /* Parameter relocation stubs always have a call path and may have a
3012 return path. */
3013 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3014 || u->stub_unwind.stub_type == EXPORT)
3015 {
3016 CORE_ADDR addr;
3017
3018 /* Search forward from the current PC until we hit a branch
c5aa993b 3019 or the end of the stub. */
c906108c
SS
3020 for (addr = pc; addr <= u->region_end; addr += 4)
3021 {
3022 unsigned long insn;
3023
3024 insn = read_memory_integer (addr, 4);
3025
3026 /* Does it look like a bl? If so then it's the call path, if
3027 we find a bv or be first, then we're on the return path. */
3028 if ((insn & 0xfc00e000) == 0xe8000000)
3029 return 1;
3030 else if ((insn & 0xfc00e001) == 0xe800c000
3031 || (insn & 0xfc000000) == 0xe0000000)
3032 return 0;
3033 }
3034
3035 /* Should never happen. */
104c1213
JM
3036 warning ("Unable to find branch in parameter relocation stub.\n");
3037 return 0;
c906108c
SS
3038 }
3039
3040 /* Unknown stub type. For now, just return zero. */
104c1213 3041 return 0;
c906108c
SS
3042}
3043
3044/* Return one if PC is in the return path of a trampoline, else return zero.
3045
3046 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3047 just shared library trampolines (import, export). */
3048
3049int
fba45db2 3050in_solib_return_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3051{
3052 struct unwind_table_entry *u;
3053
3054 /* Get the unwind descriptor corresponding to PC, return zero
3055 if no unwind was found. */
3056 u = find_unwind_entry (pc);
3057 if (!u)
3058 return 0;
3059
3060 /* If this isn't a linker stub or it's just a long branch stub, then
3061 return zero. */
3062 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3063 return 0;
3064
3065 /* The call and return path execute the same instructions within
3066 an IMPORT stub! So an IMPORT stub is both a call and return
3067 trampoline. */
3068 if (u->stub_unwind.stub_type == IMPORT)
3069 return 1;
3070
3071 /* Parameter relocation stubs always have a call path and may have a
3072 return path. */
3073 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3074 || u->stub_unwind.stub_type == EXPORT)
3075 {
3076 CORE_ADDR addr;
3077
3078 /* Search forward from the current PC until we hit a branch
c5aa993b 3079 or the end of the stub. */
c906108c
SS
3080 for (addr = pc; addr <= u->region_end; addr += 4)
3081 {
3082 unsigned long insn;
3083
3084 insn = read_memory_integer (addr, 4);
3085
3086 /* Does it look like a bl? If so then it's the call path, if
3087 we find a bv or be first, then we're on the return path. */
3088 if ((insn & 0xfc00e000) == 0xe8000000)
3089 return 0;
3090 else if ((insn & 0xfc00e001) == 0xe800c000
3091 || (insn & 0xfc000000) == 0xe0000000)
3092 return 1;
3093 }
3094
3095 /* Should never happen. */
104c1213
JM
3096 warning ("Unable to find branch in parameter relocation stub.\n");
3097 return 0;
c906108c
SS
3098 }
3099
3100 /* Unknown stub type. For now, just return zero. */
104c1213 3101 return 0;
c906108c
SS
3102
3103}
3104
3105/* Figure out if PC is in a trampoline, and if so find out where
3106 the trampoline will jump to. If not in a trampoline, return zero.
3107
3108 Simple code examination probably is not a good idea since the code
3109 sequences in trampolines can also appear in user code.
3110
3111 We use unwinds and information from the minimal symbol table to
3112 determine when we're in a trampoline. This won't work for ELF
3113 (yet) since it doesn't create stub unwind entries. Whether or
3114 not ELF will create stub unwinds or normal unwinds for linker
3115 stubs is still being debated.
3116
3117 This should handle simple calls through dyncall or sr4export,
3118 long calls, argument relocation stubs, and dyncall/sr4export
3119 calling an argument relocation stub. It even handles some stubs
3120 used in dynamic executables. */
3121
c906108c 3122CORE_ADDR
fba45db2 3123skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c
SS
3124{
3125 long orig_pc = pc;
3126 long prev_inst, curr_inst, loc;
3127 static CORE_ADDR dyncall = 0;
3128 static CORE_ADDR dyncall_external = 0;
3129 static CORE_ADDR sr4export = 0;
3130 struct minimal_symbol *msym;
3131 struct unwind_table_entry *u;
3132
c2c6d25f
JM
3133 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3134 new exec file */
c906108c
SS
3135
3136 if (!dyncall)
3137 {
3138 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3139 if (msym)
3140 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3141 else
3142 dyncall = -1;
3143 }
3144
3145 if (!dyncall_external)
3146 {
3147 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3148 if (msym)
3149 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3150 else
3151 dyncall_external = -1;
3152 }
3153
3154 if (!sr4export)
3155 {
3156 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3157 if (msym)
3158 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3159 else
3160 sr4export = -1;
3161 }
3162
3163 /* Addresses passed to dyncall may *NOT* be the actual address
3164 of the function. So we may have to do something special. */
3165 if (pc == dyncall)
3166 {
3167 pc = (CORE_ADDR) read_register (22);
3168
3169 /* If bit 30 (counting from the left) is on, then pc is the address of
c5aa993b
JM
3170 the PLT entry for this function, not the address of the function
3171 itself. Bit 31 has meaning too, but only for MPE. */
c906108c 3172 if (pc & 0x2)
53a5351d 3173 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3174 }
3175 if (pc == dyncall_external)
3176 {
3177 pc = (CORE_ADDR) read_register (22);
53a5351d 3178 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3179 }
3180 else if (pc == sr4export)
3181 pc = (CORE_ADDR) (read_register (22));
3182
3183 /* Get the unwind descriptor corresponding to PC, return zero
3184 if no unwind was found. */
3185 u = find_unwind_entry (pc);
3186 if (!u)
3187 return 0;
3188
3189 /* If this isn't a linker stub, then return now. */
3190 /* elz: attention here! (FIXME) because of a compiler/linker
3191 error, some stubs which should have a non zero stub_unwind.stub_type
3192 have unfortunately a value of zero. So this function would return here
3193 as if we were not in a trampoline. To fix this, we go look at the partial
3194 symbol information, which reports this guy as a stub.
3195 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3196 partial symbol information is also wrong sometimes. This is because
3197 when it is entered (somread.c::som_symtab_read()) it can happen that
3198 if the type of the symbol (from the som) is Entry, and the symbol is
3199 in a shared library, then it can also be a trampoline. This would
3200 be OK, except that I believe the way they decide if we are ina shared library
3201 does not work. SOOOO..., even if we have a regular function w/o trampolines
3202 its minimal symbol can be assigned type mst_solib_trampoline.
3203 Also, if we find that the symbol is a real stub, then we fix the unwind
3204 descriptor, and define the stub type to be EXPORT.
c5aa993b 3205 Hopefully this is correct most of the times. */
c906108c 3206 if (u->stub_unwind.stub_type == 0)
c5aa993b 3207 {
c906108c
SS
3208
3209/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3210 we can delete all the code which appears between the lines */
3211/*--------------------------------------------------------------------------*/
c5aa993b 3212 msym = lookup_minimal_symbol_by_pc (pc);
c906108c 3213
c5aa993b
JM
3214 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3215 return orig_pc == pc ? 0 : pc & ~0x3;
3216
3217 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3218 {
3219 struct objfile *objfile;
3220 struct minimal_symbol *msymbol;
3221 int function_found = 0;
3222
3223 /* go look if there is another minimal symbol with the same name as
3224 this one, but with type mst_text. This would happen if the msym
3225 is an actual trampoline, in which case there would be another
3226 symbol with the same name corresponding to the real function */
3227
3228 ALL_MSYMBOLS (objfile, msymbol)
3229 {
3230 if (MSYMBOL_TYPE (msymbol) == mst_text
3231 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3232 {
3233 function_found = 1;
3234 break;
3235 }
3236 }
3237
3238 if (function_found)
3239 /* the type of msym is correct (mst_solib_trampoline), but
3240 the unwind info is wrong, so set it to the correct value */
3241 u->stub_unwind.stub_type = EXPORT;
3242 else
3243 /* the stub type info in the unwind is correct (this is not a
3244 trampoline), but the msym type information is wrong, it
3245 should be mst_text. So we need to fix the msym, and also
3246 get out of this function */
3247 {
3248 MSYMBOL_TYPE (msym) = mst_text;
3249 return orig_pc == pc ? 0 : pc & ~0x3;
3250 }
3251 }
c906108c 3252
c906108c 3253/*--------------------------------------------------------------------------*/
c5aa993b 3254 }
c906108c
SS
3255
3256 /* It's a stub. Search for a branch and figure out where it goes.
3257 Note we have to handle multi insn branch sequences like ldil;ble.
3258 Most (all?) other branches can be determined by examining the contents
3259 of certain registers and the stack. */
3260
3261 loc = pc;
3262 curr_inst = 0;
3263 prev_inst = 0;
3264 while (1)
3265 {
3266 /* Make sure we haven't walked outside the range of this stub. */
3267 if (u != find_unwind_entry (loc))
3268 {
3269 warning ("Unable to find branch in linker stub");
3270 return orig_pc == pc ? 0 : pc & ~0x3;
3271 }
3272
3273 prev_inst = curr_inst;
3274 curr_inst = read_memory_integer (loc, 4);
3275
3276 /* Does it look like a branch external using %r1? Then it's the
c5aa993b 3277 branch from the stub to the actual function. */
c906108c
SS
3278 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3279 {
3280 /* Yup. See if the previous instruction loaded
3281 a value into %r1. If so compute and return the jump address. */
3282 if ((prev_inst & 0xffe00000) == 0x20200000)
3283 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3284 else
3285 {
3286 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3287 return orig_pc == pc ? 0 : pc & ~0x3;
3288 }
3289 }
3290
3291 /* Does it look like a be 0(sr0,%r21)? OR
3292 Does it look like a be, n 0(sr0,%r21)? OR
3293 Does it look like a bve (r21)? (this is on PA2.0)
3294 Does it look like a bve, n(r21)? (this is also on PA2.0)
3295 That's the branch from an
c5aa993b 3296 import stub to an export stub.
c906108c 3297
c5aa993b
JM
3298 It is impossible to determine the target of the branch via
3299 simple examination of instructions and/or data (consider
3300 that the address in the plabel may be the address of the
3301 bind-on-reference routine in the dynamic loader).
c906108c 3302
c5aa993b 3303 So we have try an alternative approach.
c906108c 3304
c5aa993b
JM
3305 Get the name of the symbol at our current location; it should
3306 be a stub symbol with the same name as the symbol in the
3307 shared library.
c906108c 3308
c5aa993b
JM
3309 Then lookup a minimal symbol with the same name; we should
3310 get the minimal symbol for the target routine in the shared
3311 library as those take precedence of import/export stubs. */
c906108c 3312 if ((curr_inst == 0xe2a00000) ||
c5aa993b
JM
3313 (curr_inst == 0xe2a00002) ||
3314 (curr_inst == 0xeaa0d000) ||
3315 (curr_inst == 0xeaa0d002))
c906108c
SS
3316 {
3317 struct minimal_symbol *stubsym, *libsym;
3318
3319 stubsym = lookup_minimal_symbol_by_pc (loc);
3320 if (stubsym == NULL)
3321 {
ce414844 3322 warning ("Unable to find symbol for 0x%lx", loc);
c906108c
SS
3323 return orig_pc == pc ? 0 : pc & ~0x3;
3324 }
3325
3326 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3327 if (libsym == NULL)
3328 {
3329 warning ("Unable to find library symbol for %s\n",
3330 SYMBOL_NAME (stubsym));
3331 return orig_pc == pc ? 0 : pc & ~0x3;
3332 }
3333
3334 return SYMBOL_VALUE (libsym);
3335 }
3336
3337 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
c5aa993b
JM
3338 branch from the stub to the actual function. */
3339 /*elz */
c906108c
SS
3340 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3341 || (curr_inst & 0xffe0e000) == 0xe8000000
c5aa993b 3342 || (curr_inst & 0xffe0e000) == 0xe800A000)
c906108c
SS
3343 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3344
3345 /* Does it look like bv (rp)? Note this depends on the
c5aa993b
JM
3346 current stack pointer being the same as the stack
3347 pointer in the stub itself! This is a branch on from the
3348 stub back to the original caller. */
3349 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
c906108c
SS
3350 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3351 {
3352 /* Yup. See if the previous instruction loaded
3353 rp from sp - 8. */
3354 if (prev_inst == 0x4bc23ff1)
3355 return (read_memory_integer
3356 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3357 else
3358 {
3359 warning ("Unable to find restore of %%rp before bv (%%rp).");
3360 return orig_pc == pc ? 0 : pc & ~0x3;
3361 }
3362 }
3363
3364 /* elz: added this case to capture the new instruction
3365 at the end of the return part of an export stub used by
3366 the PA2.0: BVE, n (rp) */
3367 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3368 {
c5aa993b 3369 return (read_memory_integer
53a5351d 3370 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3371 }
3372
3373 /* What about be,n 0(sr0,%rp)? It's just another way we return to
c5aa993b 3374 the original caller from the stub. Used in dynamic executables. */
c906108c
SS
3375 else if (curr_inst == 0xe0400002)
3376 {
3377 /* The value we jump to is sitting in sp - 24. But that's
3378 loaded several instructions before the be instruction.
3379 I guess we could check for the previous instruction being
3380 mtsp %r1,%sr0 if we want to do sanity checking. */
c5aa993b 3381 return (read_memory_integer
53a5351d 3382 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3383 }
3384
3385 /* Haven't found the branch yet, but we're still in the stub.
c5aa993b 3386 Keep looking. */
c906108c
SS
3387 loc += 4;
3388 }
3389}
3390
3391
3392/* For the given instruction (INST), return any adjustment it makes
3393 to the stack pointer or zero for no adjustment.
3394
3395 This only handles instructions commonly found in prologues. */
3396
3397static int
fba45db2 3398prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
3399{
3400 /* This must persist across calls. */
3401 static int save_high21;
3402
3403 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3404 if ((inst & 0xffffc000) == 0x37de0000)
3405 return extract_14 (inst);
3406
3407 /* stwm X,D(sp) */
3408 if ((inst & 0xffe00000) == 0x6fc00000)
3409 return extract_14 (inst);
3410
104c1213
JM
3411 /* std,ma X,D(sp) */
3412 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 3413 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 3414
c906108c
SS
3415 /* addil high21,%r1; ldo low11,(%r1),%r30)
3416 save high bits in save_high21 for later use. */
3417 if ((inst & 0xffe00000) == 0x28200000)
3418 {
3419 save_high21 = extract_21 (inst);
3420 return 0;
3421 }
3422
3423 if ((inst & 0xffff0000) == 0x343e0000)
3424 return save_high21 + extract_14 (inst);
3425
3426 /* fstws as used by the HP compilers. */
3427 if ((inst & 0xffffffe0) == 0x2fd01220)
3428 return extract_5_load (inst);
3429
3430 /* No adjustment. */
3431 return 0;
3432}
3433
3434/* Return nonzero if INST is a branch of some kind, else return zero. */
3435
3436static int
fba45db2 3437is_branch (unsigned long inst)
c906108c
SS
3438{
3439 switch (inst >> 26)
3440 {
3441 case 0x20:
3442 case 0x21:
3443 case 0x22:
3444 case 0x23:
7be570e7 3445 case 0x27:
c906108c
SS
3446 case 0x28:
3447 case 0x29:
3448 case 0x2a:
3449 case 0x2b:
7be570e7 3450 case 0x2f:
c906108c
SS
3451 case 0x30:
3452 case 0x31:
3453 case 0x32:
3454 case 0x33:
3455 case 0x38:
3456 case 0x39:
3457 case 0x3a:
7be570e7 3458 case 0x3b:
c906108c
SS
3459 return 1;
3460
3461 default:
3462 return 0;
3463 }
3464}
3465
3466/* Return the register number for a GR which is saved by INST or
3467 zero it INST does not save a GR. */
3468
3469static int
fba45db2 3470inst_saves_gr (unsigned long inst)
c906108c
SS
3471{
3472 /* Does it look like a stw? */
7be570e7
JM
3473 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3474 || (inst >> 26) == 0x1f
3475 || ((inst >> 26) == 0x1f
3476 && ((inst >> 6) == 0xa)))
3477 return extract_5R_store (inst);
3478
3479 /* Does it look like a std? */
3480 if ((inst >> 26) == 0x1c
3481 || ((inst >> 26) == 0x03
3482 && ((inst >> 6) & 0xf) == 0xb))
c906108c
SS
3483 return extract_5R_store (inst);
3484
3485 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3486 if ((inst >> 26) == 0x1b)
3487 return extract_5R_store (inst);
3488
3489 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3490 too. */
7be570e7
JM
3491 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3492 || ((inst >> 26) == 0x3
3493 && (((inst >> 6) & 0xf) == 0x8
3494 || (inst >> 6) & 0xf) == 0x9))
c906108c 3495 return extract_5R_store (inst);
c5aa993b 3496
c906108c
SS
3497 return 0;
3498}
3499
3500/* Return the register number for a FR which is saved by INST or
3501 zero it INST does not save a FR.
3502
3503 Note we only care about full 64bit register stores (that's the only
3504 kind of stores the prologue will use).
3505
3506 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3507
3508static int
fba45db2 3509inst_saves_fr (unsigned long inst)
c906108c 3510{
7be570e7 3511 /* is this an FSTD ? */
c906108c
SS
3512 if ((inst & 0xfc00dfc0) == 0x2c001200)
3513 return extract_5r_store (inst);
7be570e7
JM
3514 if ((inst & 0xfc000002) == 0x70000002)
3515 return extract_5R_store (inst);
3516 /* is this an FSTW ? */
c906108c
SS
3517 if ((inst & 0xfc00df80) == 0x24001200)
3518 return extract_5r_store (inst);
7be570e7
JM
3519 if ((inst & 0xfc000002) == 0x7c000000)
3520 return extract_5R_store (inst);
c906108c
SS
3521 return 0;
3522}
3523
3524/* Advance PC across any function entry prologue instructions
3525 to reach some "real" code.
3526
3527 Use information in the unwind table to determine what exactly should
3528 be in the prologue. */
3529
3530
3531CORE_ADDR
fba45db2 3532skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
3533{
3534 char buf[4];
3535 CORE_ADDR orig_pc = pc;
3536 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3537 unsigned long args_stored, status, i, restart_gr, restart_fr;
3538 struct unwind_table_entry *u;
3539
3540 restart_gr = 0;
3541 restart_fr = 0;
3542
3543restart:
3544 u = find_unwind_entry (pc);
3545 if (!u)
3546 return pc;
3547
c5aa993b 3548 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
3549 if ((pc & ~0x3) != u->region_start)
3550 return pc;
3551
3552 /* This is how much of a frame adjustment we need to account for. */
3553 stack_remaining = u->Total_frame_size << 3;
3554
3555 /* Magic register saves we want to know about. */
3556 save_rp = u->Save_RP;
3557 save_sp = u->Save_SP;
3558
3559 /* An indication that args may be stored into the stack. Unfortunately
3560 the HPUX compilers tend to set this in cases where no args were
3561 stored too!. */
3562 args_stored = 1;
3563
3564 /* Turn the Entry_GR field into a bitmask. */
3565 save_gr = 0;
3566 for (i = 3; i < u->Entry_GR + 3; i++)
3567 {
3568 /* Frame pointer gets saved into a special location. */
3569 if (u->Save_SP && i == FP_REGNUM)
3570 continue;
3571
3572 save_gr |= (1 << i);
3573 }
3574 save_gr &= ~restart_gr;
3575
3576 /* Turn the Entry_FR field into a bitmask too. */
3577 save_fr = 0;
3578 for (i = 12; i < u->Entry_FR + 12; i++)
3579 save_fr |= (1 << i);
3580 save_fr &= ~restart_fr;
3581
3582 /* Loop until we find everything of interest or hit a branch.
3583
3584 For unoptimized GCC code and for any HP CC code this will never ever
3585 examine any user instructions.
3586
3587 For optimzied GCC code we're faced with problems. GCC will schedule
3588 its prologue and make prologue instructions available for delay slot
3589 filling. The end result is user code gets mixed in with the prologue
3590 and a prologue instruction may be in the delay slot of the first branch
3591 or call.
3592
3593 Some unexpected things are expected with debugging optimized code, so
3594 we allow this routine to walk past user instructions in optimized
3595 GCC code. */
3596 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3597 || args_stored)
3598 {
3599 unsigned int reg_num;
3600 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3601 unsigned long old_save_rp, old_save_sp, next_inst;
3602
3603 /* Save copies of all the triggers so we can compare them later
c5aa993b 3604 (only for HPC). */
c906108c
SS
3605 old_save_gr = save_gr;
3606 old_save_fr = save_fr;
3607 old_save_rp = save_rp;
3608 old_save_sp = save_sp;
3609 old_stack_remaining = stack_remaining;
3610
3611 status = target_read_memory (pc, buf, 4);
3612 inst = extract_unsigned_integer (buf, 4);
c5aa993b 3613
c906108c
SS
3614 /* Yow! */
3615 if (status != 0)
3616 return pc;
3617
3618 /* Note the interesting effects of this instruction. */
3619 stack_remaining -= prologue_inst_adjust_sp (inst);
3620
7be570e7
JM
3621 /* There are limited ways to store the return pointer into the
3622 stack. */
3623 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
3624 save_rp = 0;
3625
104c1213 3626 /* These are the only ways we save SP into the stack. At this time
c5aa993b 3627 the HP compilers never bother to save SP into the stack. */
104c1213
JM
3628 if ((inst & 0xffffc000) == 0x6fc10000
3629 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
3630 save_sp = 0;
3631
6426a772
JM
3632 /* Are we loading some register with an offset from the argument
3633 pointer? */
3634 if ((inst & 0xffe00000) == 0x37a00000
3635 || (inst & 0xffffffe0) == 0x081d0240)
3636 {
3637 pc += 4;
3638 continue;
3639 }
3640
c906108c
SS
3641 /* Account for general and floating-point register saves. */
3642 reg_num = inst_saves_gr (inst);
3643 save_gr &= ~(1 << reg_num);
3644
3645 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3646 Unfortunately args_stored only tells us that some arguments
3647 where stored into the stack. Not how many or what kind!
c906108c 3648
c5aa993b
JM
3649 This is a kludge as on the HP compiler sets this bit and it
3650 never does prologue scheduling. So once we see one, skip past
3651 all of them. We have similar code for the fp arg stores below.
c906108c 3652
c5aa993b
JM
3653 FIXME. Can still die if we have a mix of GR and FR argument
3654 stores! */
6426a772 3655 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 3656 {
6426a772 3657 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
3658 {
3659 pc += 4;
3660 status = target_read_memory (pc, buf, 4);
3661 inst = extract_unsigned_integer (buf, 4);
3662 if (status != 0)
3663 return pc;
3664 reg_num = inst_saves_gr (inst);
3665 }
3666 args_stored = 0;
3667 continue;
3668 }
3669
3670 reg_num = inst_saves_fr (inst);
3671 save_fr &= ~(1 << reg_num);
3672
3673 status = target_read_memory (pc + 4, buf, 4);
3674 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 3675
c906108c
SS
3676 /* Yow! */
3677 if (status != 0)
3678 return pc;
3679
3680 /* We've got to be read to handle the ldo before the fp register
c5aa993b 3681 save. */
c906108c
SS
3682 if ((inst & 0xfc000000) == 0x34000000
3683 && inst_saves_fr (next_inst) >= 4
6426a772 3684 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3685 {
3686 /* So we drop into the code below in a reasonable state. */
3687 reg_num = inst_saves_fr (next_inst);
3688 pc -= 4;
3689 }
3690
3691 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3692 This is a kludge as on the HP compiler sets this bit and it
3693 never does prologue scheduling. So once we see one, skip past
3694 all of them. */
6426a772 3695 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 3696 {
6426a772 3697 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3698 {
3699 pc += 8;
3700 status = target_read_memory (pc, buf, 4);
3701 inst = extract_unsigned_integer (buf, 4);
3702 if (status != 0)
3703 return pc;
3704 if ((inst & 0xfc000000) != 0x34000000)
3705 break;
3706 status = target_read_memory (pc + 4, buf, 4);
3707 next_inst = extract_unsigned_integer (buf, 4);
3708 if (status != 0)
3709 return pc;
3710 reg_num = inst_saves_fr (next_inst);
3711 }
3712 args_stored = 0;
3713 continue;
3714 }
3715
3716 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3717 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3718 if (is_branch (inst))
3719 break;
3720
3721 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
3722 arguments were stored into the stack (boo hiss). This could
3723 cause this code to then skip a bunch of user insns (up to the
3724 first branch).
3725
3726 To combat this we try to identify when args_stored was bogusly
3727 set and clear it. We only do this when args_stored is nonzero,
3728 all other resources are accounted for, and nothing changed on
3729 this pass. */
c906108c 3730 if (args_stored
c5aa993b 3731 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
3732 && old_save_gr == save_gr && old_save_fr == save_fr
3733 && old_save_rp == save_rp && old_save_sp == save_sp
3734 && old_stack_remaining == stack_remaining)
3735 break;
c5aa993b 3736
c906108c
SS
3737 /* Bump the PC. */
3738 pc += 4;
3739 }
3740
3741 /* We've got a tenative location for the end of the prologue. However
3742 because of limitations in the unwind descriptor mechanism we may
3743 have went too far into user code looking for the save of a register
3744 that does not exist. So, if there registers we expected to be saved
3745 but never were, mask them out and restart.
3746
3747 This should only happen in optimized code, and should be very rare. */
c5aa993b 3748 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
3749 {
3750 pc = orig_pc;
3751 restart_gr = save_gr;
3752 restart_fr = save_fr;
3753 goto restart;
3754 }
3755
3756 return pc;
3757}
3758
3759
7be570e7
JM
3760/* Return the address of the PC after the last prologue instruction if
3761 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
3762
3763static CORE_ADDR
fba45db2 3764after_prologue (CORE_ADDR pc)
c906108c
SS
3765{
3766 struct symtab_and_line sal;
3767 CORE_ADDR func_addr, func_end;
3768 struct symbol *f;
3769
7be570e7
JM
3770 /* If we can not find the symbol in the partial symbol table, then
3771 there is no hope we can determine the function's start address
3772 with this code. */
c906108c 3773 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 3774 return 0;
c906108c 3775
7be570e7 3776 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
3777 sal = find_pc_line (func_addr, 0);
3778
7be570e7
JM
3779 /* There are only two cases to consider. First, the end of the source line
3780 is within the function bounds. In that case we return the end of the
3781 source line. Second is the end of the source line extends beyond the
3782 bounds of the current function. We need to use the slow code to
3783 examine instructions in that case.
c906108c 3784
7be570e7
JM
3785 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3786 the wrong thing to do. In fact, it should be entirely possible for this
3787 function to always return zero since the slow instruction scanning code
3788 is supposed to *always* work. If it does not, then it is a bug. */
3789 if (sal.end < func_end)
3790 return sal.end;
c5aa993b 3791 else
7be570e7 3792 return 0;
c906108c
SS
3793}
3794
3795/* To skip prologues, I use this predicate. Returns either PC itself
3796 if the code at PC does not look like a function prologue; otherwise
3797 returns an address that (if we're lucky) follows the prologue. If
3798 LENIENT, then we must skip everything which is involved in setting
3799 up the frame (it's OK to skip more, just so long as we don't skip
3800 anything which might clobber the registers which are being saved.
3801 Currently we must not skip more on the alpha, but we might the lenient
3802 stuff some day. */
3803
3804CORE_ADDR
fba45db2 3805hppa_skip_prologue (CORE_ADDR pc)
c906108c 3806{
c5aa993b
JM
3807 unsigned long inst;
3808 int offset;
3809 CORE_ADDR post_prologue_pc;
3810 char buf[4];
c906108c 3811
c5aa993b
JM
3812 /* See if we can determine the end of the prologue via the symbol table.
3813 If so, then return either PC, or the PC after the prologue, whichever
3814 is greater. */
c906108c 3815
c5aa993b 3816 post_prologue_pc = after_prologue (pc);
c906108c 3817
7be570e7
JM
3818 /* If after_prologue returned a useful address, then use it. Else
3819 fall back on the instruction skipping code.
3820
3821 Some folks have claimed this causes problems because the breakpoint
3822 may be the first instruction of the prologue. If that happens, then
3823 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
3824 if (post_prologue_pc != 0)
3825 return max (pc, post_prologue_pc);
c5aa993b
JM
3826 else
3827 return (skip_prologue_hard_way (pc));
c906108c
SS
3828}
3829
3830/* Put here the code to store, into a struct frame_saved_regs,
3831 the addresses of the saved registers of frame described by FRAME_INFO.
3832 This includes special registers such as pc and fp saved in special
3833 ways in the stack frame. sp is even more special:
3834 the address we return for it IS the sp for the next frame. */
3835
3836void
fba45db2
KB
3837hppa_frame_find_saved_regs (struct frame_info *frame_info,
3838 struct frame_saved_regs *frame_saved_regs)
c906108c
SS
3839{
3840 CORE_ADDR pc;
3841 struct unwind_table_entry *u;
3842 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3843 int status, i, reg;
3844 char buf[4];
3845 int fp_loc = -1;
d4f3574e 3846 int final_iteration;
c906108c
SS
3847
3848 /* Zero out everything. */
3849 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3850
3851 /* Call dummy frames always look the same, so there's no need to
3852 examine the dummy code to determine locations of saved registers;
3853 instead, let find_dummy_frame_regs fill in the correct offsets
3854 for the saved registers. */
3855 if ((frame_info->pc >= frame_info->frame
53a5351d
JM
3856 && frame_info->pc <= (frame_info->frame
3857 /* A call dummy is sized in words, but it is
3858 actually a series of instructions. Account
3859 for that scaling factor. */
3860 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3861 * CALL_DUMMY_LENGTH)
3862 /* Similarly we have to account for 64bit
3863 wide register saves. */
3864 + (32 * REGISTER_SIZE)
3865 /* We always consider FP regs 8 bytes long. */
3866 + (NUM_REGS - FP0_REGNUM) * 8
3867 /* Similarly we have to account for 64bit
3868 wide register saves. */
3869 + (6 * REGISTER_SIZE))))
c906108c
SS
3870 find_dummy_frame_regs (frame_info, frame_saved_regs);
3871
3872 /* Interrupt handlers are special too. They lay out the register
3873 state in the exact same order as the register numbers in GDB. */
3874 if (pc_in_interrupt_handler (frame_info->pc))
3875 {
3876 for (i = 0; i < NUM_REGS; i++)
3877 {
3878 /* SP is a little special. */
3879 if (i == SP_REGNUM)
3880 frame_saved_regs->regs[SP_REGNUM]
53a5351d
JM
3881 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3882 TARGET_PTR_BIT / 8);
c906108c
SS
3883 else
3884 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3885 }
3886 return;
3887 }
3888
3889#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3890 /* Handle signal handler callers. */
3891 if (frame_info->signal_handler_caller)
3892 {
3893 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3894 return;
3895 }
3896#endif
3897
3898 /* Get the starting address of the function referred to by the PC
3899 saved in frame. */
3900 pc = get_pc_function_start (frame_info->pc);
3901
3902 /* Yow! */
3903 u = find_unwind_entry (pc);
3904 if (!u)
3905 return;
3906
3907 /* This is how much of a frame adjustment we need to account for. */
3908 stack_remaining = u->Total_frame_size << 3;
3909
3910 /* Magic register saves we want to know about. */
3911 save_rp = u->Save_RP;
3912 save_sp = u->Save_SP;
3913
3914 /* Turn the Entry_GR field into a bitmask. */
3915 save_gr = 0;
3916 for (i = 3; i < u->Entry_GR + 3; i++)
3917 {
3918 /* Frame pointer gets saved into a special location. */
3919 if (u->Save_SP && i == FP_REGNUM)
3920 continue;
3921
3922 save_gr |= (1 << i);
3923 }
3924
3925 /* Turn the Entry_FR field into a bitmask too. */
3926 save_fr = 0;
3927 for (i = 12; i < u->Entry_FR + 12; i++)
3928 save_fr |= (1 << i);
3929
3930 /* The frame always represents the value of %sp at entry to the
3931 current function (and is thus equivalent to the "saved" stack
3932 pointer. */
3933 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3934
3935 /* Loop until we find everything of interest or hit a branch.
3936
3937 For unoptimized GCC code and for any HP CC code this will never ever
3938 examine any user instructions.
3939
7be570e7 3940 For optimized GCC code we're faced with problems. GCC will schedule
c906108c
SS
3941 its prologue and make prologue instructions available for delay slot
3942 filling. The end result is user code gets mixed in with the prologue
3943 and a prologue instruction may be in the delay slot of the first branch
3944 or call.
3945
3946 Some unexpected things are expected with debugging optimized code, so
3947 we allow this routine to walk past user instructions in optimized
3948 GCC code. */
d4f3574e
SS
3949 final_iteration = 0;
3950 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3951 && pc <= frame_info->pc)
c906108c
SS
3952 {
3953 status = target_read_memory (pc, buf, 4);
3954 inst = extract_unsigned_integer (buf, 4);
3955
3956 /* Yow! */
3957 if (status != 0)
3958 return;
3959
3960 /* Note the interesting effects of this instruction. */
3961 stack_remaining -= prologue_inst_adjust_sp (inst);
3962
104c1213
JM
3963 /* There are limited ways to store the return pointer into the
3964 stack. */
c2c6d25f 3965 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
c906108c
SS
3966 {
3967 save_rp = 0;
3968 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3969 }
c2c6d25f
JM
3970 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3971 {
3972 save_rp = 0;
3973 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
3974 }
c906108c 3975
104c1213
JM
3976 /* Note if we saved SP into the stack. This also happens to indicate
3977 the location of the saved frame pointer. */
c2c6d25f
JM
3978 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
3979 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
104c1213
JM
3980 {
3981 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
3982 save_sp = 0;
3983 }
c906108c
SS
3984
3985 /* Account for general and floating-point register saves. */
3986 reg = inst_saves_gr (inst);
3987 if (reg >= 3 && reg <= 18
3988 && (!u->Save_SP || reg != FP_REGNUM))
3989 {
3990 save_gr &= ~(1 << reg);
3991
3992 /* stwm with a positive displacement is a *post modify*. */
3993 if ((inst >> 26) == 0x1b
3994 && extract_14 (inst) >= 0)
3995 frame_saved_regs->regs[reg] = frame_info->frame;
104c1213
JM
3996 /* A std has explicit post_modify forms. */
3997 else if ((inst & 0xfc00000c0) == 0x70000008)
3998 frame_saved_regs->regs[reg] = frame_info->frame;
c906108c
SS
3999 else
4000 {
104c1213
JM
4001 CORE_ADDR offset;
4002
4003 if ((inst >> 26) == 0x1c)
d4f3574e 4004 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213
JM
4005 else if ((inst >> 26) == 0x03)
4006 offset = low_sign_extend (inst & 0x1f, 5);
4007 else
4008 offset = extract_14 (inst);
4009
c906108c
SS
4010 /* Handle code with and without frame pointers. */
4011 if (u->Save_SP)
4012 frame_saved_regs->regs[reg]
104c1213 4013 = frame_info->frame + offset;
c906108c
SS
4014 else
4015 frame_saved_regs->regs[reg]
104c1213
JM
4016 = (frame_info->frame + (u->Total_frame_size << 3)
4017 + offset);
c906108c
SS
4018 }
4019 }
4020
4021
4022 /* GCC handles callee saved FP regs a little differently.
4023
c5aa993b
JM
4024 It emits an instruction to put the value of the start of
4025 the FP store area into %r1. It then uses fstds,ma with
4026 a basereg of %r1 for the stores.
c906108c 4027
c5aa993b
JM
4028 HP CC emits them at the current stack pointer modifying
4029 the stack pointer as it stores each register. */
c906108c
SS
4030
4031 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4032 if ((inst & 0xffffc000) == 0x34610000
4033 || (inst & 0xffffc000) == 0x37c10000)
4034 fp_loc = extract_14 (inst);
c5aa993b 4035
c906108c
SS
4036 reg = inst_saves_fr (inst);
4037 if (reg >= 12 && reg <= 21)
4038 {
4039 /* Note +4 braindamage below is necessary because the FP status
4040 registers are internally 8 registers rather than the expected
4041 4 registers. */
4042 save_fr &= ~(1 << reg);
4043 if (fp_loc == -1)
4044 {
4045 /* 1st HP CC FP register store. After this instruction
c5aa993b
JM
4046 we've set enough state that the GCC and HPCC code are
4047 both handled in the same manner. */
c906108c
SS
4048 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4049 fp_loc = 8;
4050 }
4051 else
4052 {
4053 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4054 = frame_info->frame + fp_loc;
4055 fp_loc += 8;
4056 }
4057 }
4058
39f77062 4059 /* Quit if we hit any kind of branch the previous iteration. */
d4f3574e 4060 if (final_iteration)
c906108c
SS
4061 break;
4062
d4f3574e
SS
4063 /* We want to look precisely one instruction beyond the branch
4064 if we have not found everything yet. */
4065 if (is_branch (inst))
4066 final_iteration = 1;
4067
c906108c
SS
4068 /* Bump the PC. */
4069 pc += 4;
4070 }
4071}
4072
4073
4074/* Exception handling support for the HP-UX ANSI C++ compiler.
4075 The compiler (aCC) provides a callback for exception events;
4076 GDB can set a breakpoint on this callback and find out what
4077 exception event has occurred. */
4078
4079/* The name of the hook to be set to point to the callback function */
c5aa993b
JM
4080static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4081/* The name of the function to be used to set the hook value */
4082static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4083/* The name of the callback function in end.o */
c906108c 4084static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
c5aa993b
JM
4085/* Name of function in end.o on which a break is set (called by above) */
4086static char HP_ACC_EH_break[] = "__d_eh_break";
4087/* Name of flag (in end.o) that enables catching throws */
4088static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4089/* Name of flag (in end.o) that enables catching catching */
4090static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4091/* The enum used by aCC */
4092typedef enum
4093 {
4094 __EH_NOTIFY_THROW,
4095 __EH_NOTIFY_CATCH
4096 }
4097__eh_notification;
c906108c
SS
4098
4099/* Is exception-handling support available with this executable? */
4100static int hp_cxx_exception_support = 0;
4101/* Has the initialize function been run? */
4102int hp_cxx_exception_support_initialized = 0;
4103/* Similar to above, but imported from breakpoint.c -- non-target-specific */
4104extern int exception_support_initialized;
4105/* Address of __eh_notify_hook */
a0b3c4fd 4106static CORE_ADDR eh_notify_hook_addr = 0;
c906108c 4107/* Address of __d_eh_notify_callback */
a0b3c4fd 4108static CORE_ADDR eh_notify_callback_addr = 0;
c906108c 4109/* Address of __d_eh_break */
a0b3c4fd 4110static CORE_ADDR eh_break_addr = 0;
c906108c 4111/* Address of __d_eh_catch_catch */
a0b3c4fd 4112static CORE_ADDR eh_catch_catch_addr = 0;
c906108c 4113/* Address of __d_eh_catch_throw */
a0b3c4fd 4114static CORE_ADDR eh_catch_throw_addr = 0;
c906108c 4115/* Sal for __d_eh_break */
a0b3c4fd 4116static struct symtab_and_line *break_callback_sal = 0;
c906108c
SS
4117
4118/* Code in end.c expects __d_pid to be set in the inferior,
4119 otherwise __d_eh_notify_callback doesn't bother to call
4120 __d_eh_break! So we poke the pid into this symbol
4121 ourselves.
4122 0 => success
c5aa993b 4123 1 => failure */
c906108c 4124int
fba45db2 4125setup_d_pid_in_inferior (void)
c906108c
SS
4126{
4127 CORE_ADDR anaddr;
c5aa993b
JM
4128 struct minimal_symbol *msymbol;
4129 char buf[4]; /* FIXME 32x64? */
4130
c906108c
SS
4131 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4132 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4133 if (msymbol == NULL)
4134 {
4135 warning ("Unable to find __d_pid symbol in object file.");
4136 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4137 return 1;
4138 }
4139
4140 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
39f77062 4141 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
c5aa993b 4142 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
c906108c
SS
4143 {
4144 warning ("Unable to write __d_pid");
4145 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4146 return 1;
4147 }
4148 return 0;
4149}
4150
4151/* Initialize exception catchpoint support by looking for the
4152 necessary hooks/callbacks in end.o, etc., and set the hook value to
4153 point to the required debug function
4154
4155 Return 0 => failure
c5aa993b 4156 1 => success */
c906108c
SS
4157
4158static int
fba45db2 4159initialize_hp_cxx_exception_support (void)
c906108c
SS
4160{
4161 struct symtabs_and_lines sals;
c5aa993b
JM
4162 struct cleanup *old_chain;
4163 struct cleanup *canonical_strings_chain = NULL;
c906108c 4164 int i;
c5aa993b
JM
4165 char *addr_start;
4166 char *addr_end = NULL;
4167 char **canonical = (char **) NULL;
c906108c 4168 int thread = -1;
c5aa993b
JM
4169 struct symbol *sym = NULL;
4170 struct minimal_symbol *msym = NULL;
4171 struct objfile *objfile;
c906108c
SS
4172 asection *shlib_info;
4173
4174 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4175 recursion is a possibility because finding the hook for exception
4176 callbacks involves making a call in the inferior, which means
4177 re-inserting breakpoints which can re-invoke this code */
4178
c5aa993b
JM
4179 static int recurse = 0;
4180 if (recurse > 0)
c906108c
SS
4181 {
4182 hp_cxx_exception_support_initialized = 0;
4183 exception_support_initialized = 0;
4184 return 0;
4185 }
4186
4187 hp_cxx_exception_support = 0;
4188
4189 /* First check if we have seen any HP compiled objects; if not,
4190 it is very unlikely that HP's idiosyncratic callback mechanism
4191 for exception handling debug support will be available!
4192 This will percolate back up to breakpoint.c, where our callers
4193 will decide to try the g++ exception-handling support instead. */
4194 if (!hp_som_som_object_present)
4195 return 0;
c5aa993b 4196
c906108c
SS
4197 /* We have a SOM executable with SOM debug info; find the hooks */
4198
4199 /* First look for the notify hook provided by aCC runtime libs */
4200 /* If we find this symbol, we conclude that the executable must
4201 have HP aCC exception support built in. If this symbol is not
4202 found, even though we're a HP SOM-SOM file, we may have been
4203 built with some other compiler (not aCC). This results percolates
4204 back up to our callers in breakpoint.c which can decide to
4205 try the g++ style of exception support instead.
4206 If this symbol is found but the other symbols we require are
4207 not found, there is something weird going on, and g++ support
4208 should *not* be tried as an alternative.
c5aa993b 4209
c906108c
SS
4210 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4211 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
c5aa993b 4212
c906108c
SS
4213 /* libCsup has this hook; it'll usually be non-debuggable */
4214 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4215 if (msym)
4216 {
4217 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4218 hp_cxx_exception_support = 1;
c5aa993b 4219 }
c906108c
SS
4220 else
4221 {
4222 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4223 warning ("Executable may not have been compiled debuggable with HP aCC.");
4224 warning ("GDB will be unable to intercept exception events.");
4225 eh_notify_hook_addr = 0;
4226 hp_cxx_exception_support = 0;
4227 return 0;
4228 }
4229
c906108c 4230 /* Next look for the notify callback routine in end.o */
c5aa993b 4231 /* This is always available in the SOM symbol dictionary if end.o is linked in */
c906108c
SS
4232 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4233 if (msym)
4234 {
4235 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4236 hp_cxx_exception_support = 1;
c5aa993b
JM
4237 }
4238 else
c906108c
SS
4239 {
4240 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4241 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4242 warning ("GDB will be unable to intercept exception events.");
4243 eh_notify_callback_addr = 0;
4244 return 0;
4245 }
4246
53a5351d 4247#ifndef GDB_TARGET_IS_HPPA_20W
c906108c
SS
4248 /* Check whether the executable is dynamically linked or archive bound */
4249 /* With an archive-bound executable we can use the raw addresses we find
4250 for the callback function, etc. without modification. For an executable
4251 with shared libraries, we have to do more work to find the plabel, which
4252 can be the target of a call through $$dyncall from the aCC runtime support
4253 library (libCsup) which is linked shared by default by aCC. */
4254 /* This test below was copied from somsolib.c/somread.c. It may not be a very
c5aa993b 4255 reliable one to test that an executable is linked shared. pai/1997-07-18 */
c906108c
SS
4256 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4257 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4258 {
4259 /* The minsym we have has the local code address, but that's not the
4260 plabel that can be used by an inter-load-module call. */
4261 /* Find solib handle for main image (which has end.o), and use that
4262 and the min sym as arguments to __d_shl_get() (which does the equivalent
c5aa993b 4263 of shl_findsym()) to find the plabel. */
c906108c
SS
4264
4265 args_for_find_stub args;
4266 static char message[] = "Error while finding exception callback hook:\n";
c5aa993b 4267
c906108c
SS
4268 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4269 args.msym = msym;
a0b3c4fd 4270 args.return_val = 0;
c5aa993b 4271
c906108c 4272 recurse++;
a0b3c4fd
JM
4273 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4274 RETURN_MASK_ALL);
4275 eh_notify_callback_addr = args.return_val;
c906108c 4276 recurse--;
c5aa993b 4277
c906108c 4278 exception_catchpoints_are_fragile = 1;
c5aa993b 4279
c906108c 4280 if (!eh_notify_callback_addr)
c5aa993b
JM
4281 {
4282 /* We can get here either if there is no plabel in the export list
1faa59a8 4283 for the main image, or if something strange happened (?) */
c5aa993b
JM
4284 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4285 warning ("GDB will not be able to intercept exception events.");
4286 return 0;
4287 }
c906108c
SS
4288 }
4289 else
4290 exception_catchpoints_are_fragile = 0;
53a5351d 4291#endif
c906108c 4292
c906108c 4293 /* Now, look for the breakpointable routine in end.o */
c5aa993b 4294 /* This should also be available in the SOM symbol dict. if end.o linked in */
c906108c
SS
4295 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4296 if (msym)
4297 {
4298 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4299 hp_cxx_exception_support = 1;
c5aa993b 4300 }
c906108c
SS
4301 else
4302 {
4303 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4304 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4305 warning ("GDB will be unable to intercept exception events.");
4306 eh_break_addr = 0;
4307 return 0;
4308 }
4309
c906108c
SS
4310 /* Next look for the catch enable flag provided in end.o */
4311 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4312 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4313 if (sym) /* sometimes present in debug info */
c906108c
SS
4314 {
4315 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4316 hp_cxx_exception_support = 1;
4317 }
c5aa993b
JM
4318 else
4319 /* otherwise look in SOM symbol dict. */
c906108c
SS
4320 {
4321 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4322 if (msym)
c5aa993b
JM
4323 {
4324 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4325 hp_cxx_exception_support = 1;
4326 }
c906108c 4327 else
c5aa993b
JM
4328 {
4329 warning ("Unable to enable interception of exception catches.");
4330 warning ("Executable may not have been compiled debuggable with HP aCC.");
4331 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4332 return 0;
4333 }
c906108c
SS
4334 }
4335
c906108c
SS
4336 /* Next look for the catch enable flag provided end.o */
4337 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4338 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4339 if (sym) /* sometimes present in debug info */
c906108c
SS
4340 {
4341 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4342 hp_cxx_exception_support = 1;
4343 }
c5aa993b
JM
4344 else
4345 /* otherwise look in SOM symbol dict. */
c906108c
SS
4346 {
4347 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4348 if (msym)
c5aa993b
JM
4349 {
4350 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4351 hp_cxx_exception_support = 1;
4352 }
c906108c 4353 else
c5aa993b
JM
4354 {
4355 warning ("Unable to enable interception of exception throws.");
4356 warning ("Executable may not have been compiled debuggable with HP aCC.");
4357 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4358 return 0;
4359 }
c906108c
SS
4360 }
4361
c5aa993b
JM
4362 /* Set the flags */
4363 hp_cxx_exception_support = 2; /* everything worked so far */
c906108c
SS
4364 hp_cxx_exception_support_initialized = 1;
4365 exception_support_initialized = 1;
4366
4367 return 1;
4368}
4369
4370/* Target operation for enabling or disabling interception of
4371 exception events.
4372 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4373 ENABLE is either 0 (disable) or 1 (enable).
4374 Return value is NULL if no support found;
4375 -1 if something went wrong,
4376 or a pointer to a symtab/line struct if the breakpointable
c5aa993b 4377 address was found. */
c906108c 4378
c5aa993b 4379struct symtab_and_line *
fba45db2 4380child_enable_exception_callback (enum exception_event_kind kind, int enable)
c906108c
SS
4381{
4382 char buf[4];
4383
4384 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4385 if (!initialize_hp_cxx_exception_support ())
4386 return NULL;
4387
4388 switch (hp_cxx_exception_support)
4389 {
c5aa993b
JM
4390 case 0:
4391 /* Assuming no HP support at all */
4392 return NULL;
4393 case 1:
4394 /* HP support should be present, but something went wrong */
4395 return (struct symtab_and_line *) -1; /* yuck! */
4396 /* there may be other cases in the future */
c906108c 4397 }
c5aa993b 4398
c906108c 4399 /* Set the EH hook to point to the callback routine */
c5aa993b 4400 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
c906108c 4401 /* pai: (temp) FIXME should there be a pack operation first? */
c5aa993b 4402 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
c906108c
SS
4403 {
4404 warning ("Could not write to target memory for exception event callback.");
4405 warning ("Interception of exception events may not work.");
c5aa993b 4406 return (struct symtab_and_line *) -1;
c906108c
SS
4407 }
4408 if (enable)
4409 {
c5aa993b 4410 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
39f77062 4411 if (PIDGET (inferior_ptid) > 0)
c5aa993b
JM
4412 {
4413 if (setup_d_pid_in_inferior ())
4414 return (struct symtab_and_line *) -1;
4415 }
c906108c 4416 else
c5aa993b 4417 {
104c1213
JM
4418 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4419 return (struct symtab_and_line *) -1;
c5aa993b 4420 }
c906108c 4421 }
c5aa993b 4422
c906108c
SS
4423 switch (kind)
4424 {
c5aa993b
JM
4425 case EX_EVENT_THROW:
4426 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4427 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4428 {
4429 warning ("Couldn't enable exception throw interception.");
4430 return (struct symtab_and_line *) -1;
4431 }
4432 break;
4433 case EX_EVENT_CATCH:
4434 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4435 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4436 {
4437 warning ("Couldn't enable exception catch interception.");
4438 return (struct symtab_and_line *) -1;
4439 }
4440 break;
104c1213
JM
4441 default:
4442 error ("Request to enable unknown or unsupported exception event.");
c906108c 4443 }
c5aa993b 4444
c906108c
SS
4445 /* Copy break address into new sal struct, malloc'ing if needed. */
4446 if (!break_callback_sal)
4447 {
4448 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4449 }
fe39c653 4450 init_sal (break_callback_sal);
c906108c
SS
4451 break_callback_sal->symtab = NULL;
4452 break_callback_sal->pc = eh_break_addr;
4453 break_callback_sal->line = 0;
4454 break_callback_sal->end = eh_break_addr;
c5aa993b 4455
c906108c
SS
4456 return break_callback_sal;
4457}
4458
c5aa993b 4459/* Record some information about the current exception event */
c906108c 4460static struct exception_event_record current_ex_event;
c5aa993b
JM
4461/* Convenience struct */
4462static struct symtab_and_line null_symtab_and_line =
4463{NULL, 0, 0, 0};
c906108c
SS
4464
4465/* Report current exception event. Returns a pointer to a record
4466 that describes the kind of the event, where it was thrown from,
4467 and where it will be caught. More information may be reported
c5aa993b 4468 in the future */
c906108c 4469struct exception_event_record *
fba45db2 4470child_get_current_exception_event (void)
c906108c 4471{
c5aa993b
JM
4472 CORE_ADDR event_kind;
4473 CORE_ADDR throw_addr;
4474 CORE_ADDR catch_addr;
c906108c
SS
4475 struct frame_info *fi, *curr_frame;
4476 int level = 1;
4477
c5aa993b 4478 curr_frame = get_current_frame ();
c906108c
SS
4479 if (!curr_frame)
4480 return (struct exception_event_record *) NULL;
4481
4482 /* Go up one frame to __d_eh_notify_callback, because at the
4483 point when this code is executed, there's garbage in the
4484 arguments of __d_eh_break. */
4485 fi = find_relative_frame (curr_frame, &level);
4486 if (level != 0)
4487 return (struct exception_event_record *) NULL;
4488
0f7d239c 4489 select_frame (fi);
c906108c
SS
4490
4491 /* Read in the arguments */
4492 /* __d_eh_notify_callback() is called with 3 arguments:
c5aa993b
JM
4493 1. event kind catch or throw
4494 2. the target address if known
4495 3. a flag -- not sure what this is. pai/1997-07-17 */
4496 event_kind = read_register (ARG0_REGNUM);
c906108c
SS
4497 catch_addr = read_register (ARG1_REGNUM);
4498
4499 /* Now go down to a user frame */
4500 /* For a throw, __d_eh_break is called by
c5aa993b
JM
4501 __d_eh_notify_callback which is called by
4502 __notify_throw which is called
4503 from user code.
c906108c 4504 For a catch, __d_eh_break is called by
c5aa993b
JM
4505 __d_eh_notify_callback which is called by
4506 <stackwalking stuff> which is called by
4507 __throw__<stuff> or __rethrow_<stuff> which is called
4508 from user code. */
4509 /* FIXME: Don't use such magic numbers; search for the frames */
c906108c
SS
4510 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4511 fi = find_relative_frame (curr_frame, &level);
4512 if (level != 0)
4513 return (struct exception_event_record *) NULL;
4514
0f7d239c 4515 select_frame (fi);
c906108c
SS
4516 throw_addr = fi->pc;
4517
4518 /* Go back to original (top) frame */
0f7d239c 4519 select_frame (curr_frame);
c906108c
SS
4520
4521 current_ex_event.kind = (enum exception_event_kind) event_kind;
4522 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4523 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4524
4525 return &current_ex_event;
4526}
4527
c906108c 4528static void
fba45db2 4529unwind_command (char *exp, int from_tty)
c906108c
SS
4530{
4531 CORE_ADDR address;
4532 struct unwind_table_entry *u;
4533
4534 /* If we have an expression, evaluate it and use it as the address. */
4535
4536 if (exp != 0 && *exp != 0)
4537 address = parse_and_eval_address (exp);
4538 else
4539 return;
4540
4541 u = find_unwind_entry (address);
4542
4543 if (!u)
4544 {
4545 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4546 return;
4547 }
4548
ce414844
AC
4549 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4550 paddr_nz (host_pointer_to_address (u)));
c906108c
SS
4551
4552 printf_unfiltered ("\tregion_start = ");
4553 print_address (u->region_start, gdb_stdout);
4554
4555 printf_unfiltered ("\n\tregion_end = ");
4556 print_address (u->region_end, gdb_stdout);
4557
c906108c 4558#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
4559
4560 printf_unfiltered ("\n\tflags =");
4561 pif (Cannot_unwind);
4562 pif (Millicode);
4563 pif (Millicode_save_sr0);
4564 pif (Entry_SR);
4565 pif (Args_stored);
4566 pif (Variable_Frame);
4567 pif (Separate_Package_Body);
4568 pif (Frame_Extension_Millicode);
4569 pif (Stack_Overflow_Check);
4570 pif (Two_Instruction_SP_Increment);
4571 pif (Ada_Region);
4572 pif (Save_SP);
4573 pif (Save_RP);
4574 pif (Save_MRP_in_frame);
4575 pif (extn_ptr_defined);
4576 pif (Cleanup_defined);
4577 pif (MPE_XL_interrupt_marker);
4578 pif (HP_UX_interrupt_marker);
4579 pif (Large_frame);
4580
4581 putchar_unfiltered ('\n');
4582
c906108c 4583#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
4584
4585 pin (Region_description);
4586 pin (Entry_FR);
4587 pin (Entry_GR);
4588 pin (Total_frame_size);
4589}
c906108c
SS
4590
4591#ifdef PREPARE_TO_PROCEED
4592
4593/* If the user has switched threads, and there is a breakpoint
4594 at the old thread's pc location, then switch to that thread
4595 and return TRUE, else return FALSE and don't do a thread
4596 switch (or rather, don't seem to have done a thread switch).
4597
4598 Ptrace-based gdb will always return FALSE to the thread-switch
4599 query, and thus also to PREPARE_TO_PROCEED.
4600
4601 The important thing is whether there is a BPT instruction,
4602 not how many user breakpoints there are. So we have to worry
4603 about things like these:
4604
4605 o Non-bp stop -- NO
4606
4607 o User hits bp, no switch -- NO
4608
4609 o User hits bp, switches threads -- YES
4610
4611 o User hits bp, deletes bp, switches threads -- NO
4612
4613 o User hits bp, deletes one of two or more bps
c5aa993b 4614 at that PC, user switches threads -- YES
c906108c
SS
4615
4616 o Plus, since we're buffering events, the user may have hit a
c5aa993b
JM
4617 breakpoint, deleted the breakpoint and then gotten another
4618 hit on that same breakpoint on another thread which
4619 actually hit before the delete. (FIXME in breakpoint.c
4620 so that "dead" breakpoints are ignored?) -- NO
c906108c
SS
4621
4622 For these reasons, we have to violate information hiding and
4623 call "breakpoint_here_p". If core gdb thinks there is a bpt
4624 here, that's what counts, as core gdb is the one which is
e02bc4cc
DS
4625 putting the BPT instruction in and taking it out.
4626
4627 Note that this implementation is potentially redundant now that
8849f47d
JL
4628 default_prepare_to_proceed() has been added.
4629
4630 FIXME This may not support switching threads after Ctrl-C
4631 correctly. The default implementation does support this. */
c906108c 4632int
fba45db2 4633hppa_prepare_to_proceed (void)
c906108c
SS
4634{
4635 pid_t old_thread;
4636 pid_t current_thread;
4637
39f77062 4638 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
c906108c
SS
4639 if (old_thread != 0)
4640 {
4641 /* Switched over from "old_thread". Try to do
4642 as little work as possible, 'cause mostly
4643 we're going to switch back. */
4644 CORE_ADDR new_pc;
c5aa993b 4645 CORE_ADDR old_pc = read_pc ();
c906108c
SS
4646
4647 /* Yuk, shouldn't use global to specify current
4648 thread. But that's how gdb does it. */
39f77062
KB
4649 current_thread = PIDGET (inferior_ptid);
4650 inferior_ptid = pid_to_ptid (old_thread);
c906108c 4651
c5aa993b
JM
4652 new_pc = read_pc ();
4653 if (new_pc != old_pc /* If at same pc, no need */
c906108c 4654 && breakpoint_here_p (new_pc))
c5aa993b 4655 {
c906108c 4656 /* User hasn't deleted the BP.
c5aa993b 4657 Return TRUE, finishing switch to "old_thread". */
c906108c
SS
4658 flush_cached_frames ();
4659 registers_changed ();
4660#if 0
c5aa993b 4661 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
39f77062 4662 current_thread, PIDGET (inferior_ptid));
c906108c 4663#endif
c5aa993b 4664
c906108c 4665 return 1;
c5aa993b 4666 }
c906108c
SS
4667
4668 /* Otherwise switch back to the user-chosen thread. */
39f77062 4669 inferior_ptid = pid_to_ptid (current_thread);
c5aa993b 4670 new_pc = read_pc (); /* Re-prime register cache */
c906108c
SS
4671 }
4672
4673 return 0;
4674}
4675#endif /* PREPARE_TO_PROCEED */
4676
c2c6d25f 4677void
fba45db2 4678hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
4679{
4680 /* To step over a breakpoint instruction on the PA takes some
4681 fiddling with the instruction address queue.
4682
4683 When we stop at a breakpoint, the IA queue front (the instruction
4684 we're executing now) points at the breakpoint instruction, and
4685 the IA queue back (the next instruction to execute) points to
4686 whatever instruction we would execute after the breakpoint, if it
4687 were an ordinary instruction. This is the case even if the
4688 breakpoint is in the delay slot of a branch instruction.
4689
4690 Clearly, to step past the breakpoint, we need to set the queue
4691 front to the back. But what do we put in the back? What
4692 instruction comes after that one? Because of the branch delay
4693 slot, the next insn is always at the back + 4. */
4694 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4695 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4696
4697 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4698 /* We can leave the tail's space the same, since there's no jump. */
4699}
4700
1cdb71fe
JL
4701/* Copy the function value from VALBUF into the proper location
4702 for a function return.
4703
4704 Called only in the context of the "return" command. */
4705
4706void
4707hppa_store_return_value (struct type *type, char *valbuf)
4708{
4709 /* For software floating point, the return value goes into the
4710 integer registers. But we do not have any flag to key this on,
4711 so we always store the value into the integer registers.
4712
4713 If its a float value, then we also store it into the floating
4714 point registers. */
73937e03
AC
4715 deprecated_write_register_bytes (REGISTER_BYTE (28)
4716 + (TYPE_LENGTH (type) > 4
4717 ? (8 - TYPE_LENGTH (type))
4718 : (4 - TYPE_LENGTH (type))),
4719 valbuf, TYPE_LENGTH (type));
1cdb71fe 4720 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
73937e03
AC
4721 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4722 valbuf, TYPE_LENGTH (type));
1cdb71fe
JL
4723}
4724
4725/* Copy the function's return value into VALBUF.
4726
4727 This function is called only in the context of "target function calls",
4728 ie. when the debugger forces a function to be called in the child, and
4729 when the debugger forces a fucntion to return prematurely via the
4730 "return" command. */
4731
4732void
4733hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4734{
4735 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4736 memcpy (valbuf,
4737 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4738 TYPE_LENGTH (type));
4739 else
4740 memcpy (valbuf,
4741 ((char *)regbuf
4742 + REGISTER_BYTE (28)
4743 + (TYPE_LENGTH (type) > 4
4744 ? (8 - TYPE_LENGTH (type))
4745 : (4 - TYPE_LENGTH (type)))),
4746 TYPE_LENGTH (type));
4747}
4facf7e8 4748
d709c020
JB
4749int
4750hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4751{
4752 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4753 via a pointer regardless of its type or the compiler used. */
4754 return (TYPE_LENGTH (type) > 8);
4755}
4756
4757int
4758hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4759{
4760 /* Stack grows upward */
4761 return (lhs > rhs);
4762}
4763
4764CORE_ADDR
4765hppa_stack_align (CORE_ADDR sp)
4766{
4767 /* elz: adjust the quantity to the next highest value which is
4768 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4769 On hppa the sp must always be kept 64-bit aligned */
4770 return ((sp % 8) ? (sp + 7) & -8 : sp);
4771}
4772
4773int
4774hppa_pc_requires_run_before_use (CORE_ADDR pc)
4775{
4776 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4777
4778 An example of this occurs when an a.out is linked against a foo.sl.
4779 The foo.sl defines a global bar(), and the a.out declares a signature
4780 for bar(). However, the a.out doesn't directly call bar(), but passes
4781 its address in another call.
4782
4783 If you have this scenario and attempt to "break bar" before running,
4784 gdb will find a minimal symbol for bar() in the a.out. But that
4785 symbol's address will be negative. What this appears to denote is
4786 an index backwards from the base of the procedure linkage table (PLT)
4787 into the data linkage table (DLT), the end of which is contiguous
4788 with the start of the PLT. This is clearly not a valid address for
4789 us to set a breakpoint on.
4790
4791 Note that one must be careful in how one checks for a negative address.
4792 0xc0000000 is a legitimate address of something in a shared text
4793 segment, for example. Since I don't know what the possible range
4794 is of these "really, truly negative" addresses that come from the
4795 minimal symbols, I'm resorting to the gross hack of checking the
4796 top byte of the address for all 1's. Sigh. */
4797
4798 return (!target_has_stack && (pc & 0xFF000000));
4799}
4800
4801int
4802hppa_instruction_nullified (void)
4803{
4804 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4805 avoid the type cast. I'm leaving it as is for now as I'm doing
4806 semi-mechanical multiarching-related changes. */
4807 const int ipsw = (int) read_register (IPSW_REGNUM);
4808 const int flags = (int) read_register (FLAGS_REGNUM);
4809
4810 return ((ipsw & 0x00200000) && !(flags & 0x2));
4811}
4812
4813/* Index within the register vector of the first byte of the space i
4814 used for register REG_NR. */
4815
4816int
4817hppa_register_byte (int reg_nr)
4818{
4819 return reg_nr * 4;
4820}
4821
4822/* Return the GDB type object for the "standard" data type of data
4823 in register N. */
4824
4825struct type *
4826hppa_register_virtual_type (int reg_nr)
4827{
4828 if (reg_nr < FP4_REGNUM)
4829 return builtin_type_int;
4830 else
4831 return builtin_type_float;
4832}
4833
4834/* Store the address of the place in which to copy the structure the
4835 subroutine will return. This is called from call_function. */
4836
4837void
4838hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4839{
4840 write_register (28, addr);
4841}
4842
4843/* Return True if REGNUM is not a register available to the user
4844 through ptrace(). */
4845
4846int
4847hppa_cannot_store_register (int regnum)
4848{
4849 return (regnum == 0
4850 || regnum == PCSQ_HEAD_REGNUM
4851 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
4852 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
4853
4854}
4855
4856CORE_ADDR
4857hppa_frame_args_address (struct frame_info *fi)
4858{
4859 return fi->frame;
4860}
4861
4862CORE_ADDR
4863hppa_frame_locals_address (struct frame_info *fi)
4864{
4865 return fi->frame;
4866}
4867
4868CORE_ADDR
4869hppa_smash_text_address (CORE_ADDR addr)
4870{
4871 /* The low two bits of the PC on the PA contain the privilege level.
4872 Some genius implementing a (non-GCC) compiler apparently decided
4873 this means that "addresses" in a text section therefore include a
4874 privilege level, and thus symbol tables should contain these bits.
4875 This seems like a bonehead thing to do--anyway, it seems to work
4876 for our purposes to just ignore those bits. */
4877
4878 return (addr &= ~0x3);
4879}
4880
4881int
4882hppa_coerce_float_to_double (struct type *formal, struct type *actual)
4883{
4884 /* FIXME: For the pa, it appears that the debug info marks the
4885 parameters as floats regardless of whether the function is
4886 prototyped, but the actual values are passed as doubles for the
4887 non-prototyped case and floats for the prototyped case. Thus we
4888 choose to make the non-prototyped case work for C and break the
4889 prototyped case, since the non-prototyped case is probably much
4890 more common. */
4891 return (current_language -> la_language == language_c);
4892}
4893
e6e68f1f
JB
4894static struct gdbarch *
4895hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4896{
4897 struct gdbarch *gdbarch;
4898
4899 /* find a candidate among the list of pre-declared architectures. */
4900 arches = gdbarch_list_lookup_by_info (arches, &info);
4901 if (arches != NULL)
4902 return (arches->gdbarch);
4903
4904 /* If none found, then allocate and initialize one. */
4905 gdbarch = gdbarch_alloc (&info, NULL);
4906
4907 return gdbarch;
4908}
4909
4910static void
4911hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4912{
4913 /* Nothing to print for the moment. */
4914}
4915
4facf7e8
JB
4916void
4917_initialize_hppa_tdep (void)
4918{
4919 struct cmd_list_element *c;
4920 void break_at_finish_command (char *arg, int from_tty);
4921 void tbreak_at_finish_command (char *arg, int from_tty);
4922 void break_at_finish_at_depth_command (char *arg, int from_tty);
4923
e6e68f1f 4924 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8
JB
4925 tm_print_insn = print_insn_hppa;
4926
4927 add_cmd ("unwind", class_maintenance, unwind_command,
4928 "Print unwind table entry at given address.",
4929 &maintenanceprintlist);
4930
4931 deprecate_cmd (add_com ("xbreak", class_breakpoint,
4932 break_at_finish_command,
4933 concat ("Set breakpoint at procedure exit. \n\
4934Argument may be function name, or \"*\" and an address.\n\
4935If function is specified, break at end of code for that function.\n\
4936If an address is specified, break at the end of the function that contains \n\
4937that exact address.\n",
4938 "With no arg, uses current execution address of selected stack frame.\n\
4939This is useful for breaking on return to a stack frame.\n\
4940\n\
4941Multiple breakpoints at one place are permitted, and useful if conditional.\n\
4942\n\
4943Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
4944 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
4945 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
4946 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
4947 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
4948
4949 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
4950 tbreak_at_finish_command,
4951"Set temporary breakpoint at procedure exit. Either there should\n\
4952be no argument or the argument must be a depth.\n"), NULL);
4953 set_cmd_completer (c, location_completer);
4954
4955 if (xdb_commands)
4956 deprecate_cmd (add_com ("bx", class_breakpoint,
4957 break_at_finish_at_depth_command,
4958"Set breakpoint at procedure exit. Either there should\n\
4959be no argument or the argument must be a depth.\n"), NULL);
4960}
4961
This page took 0.50916 seconds and 4 git commands to generate.