2002-04-24 Michal Ludvig <mludvig@suse.cz>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c
SS
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "frame.h"
28#include "bfd.h"
29#include "inferior.h"
30#include "value.h"
4e052eda 31#include "regcache.h"
e5d66720 32#include "completer.h"
c906108c
SS
33
34/* For argument passing to the inferior */
35#include "symtab.h"
36
37#ifdef USG
38#include <sys/types.h>
39#endif
40
41#include <dl.h>
42#include <sys/param.h>
43#include <signal.h>
44
45#include <sys/ptrace.h>
46#include <machine/save_state.h>
47
48#ifdef COFF_ENCAPSULATE
49#include "a.out.encap.h"
50#else
51#endif
52
c5aa993b 53/*#include <sys/user.h> After a.out.h */
c906108c
SS
54#include <sys/file.h>
55#include "gdb_stat.h"
03f2053f 56#include "gdb_wait.h"
c906108c
SS
57
58#include "gdbcore.h"
59#include "gdbcmd.h"
60#include "target.h"
61#include "symfile.h"
62#include "objfiles.h"
63
c906108c
SS
64/* To support detection of the pseudo-initial frame
65 that threads have. */
66#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
67#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
c5aa993b 68
a14ed312 69static int extract_5_load (unsigned int);
c906108c 70
a14ed312 71static unsigned extract_5R_store (unsigned int);
c906108c 72
a14ed312 73static unsigned extract_5r_store (unsigned int);
c906108c 74
a14ed312
KB
75static void find_dummy_frame_regs (struct frame_info *,
76 struct frame_saved_regs *);
c906108c 77
a14ed312 78static int find_proc_framesize (CORE_ADDR);
c906108c 79
a14ed312 80static int find_return_regnum (CORE_ADDR);
c906108c 81
a14ed312 82struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
c906108c 83
a14ed312 84static int extract_17 (unsigned int);
c906108c 85
a14ed312 86static unsigned deposit_21 (unsigned int, unsigned int);
c906108c 87
a14ed312 88static int extract_21 (unsigned);
c906108c 89
a14ed312 90static unsigned deposit_14 (int, unsigned int);
c906108c 91
a14ed312 92static int extract_14 (unsigned);
c906108c 93
a14ed312 94static void unwind_command (char *, int);
c906108c 95
a14ed312 96static int low_sign_extend (unsigned int, unsigned int);
c906108c 97
a14ed312 98static int sign_extend (unsigned int, unsigned int);
c906108c 99
a14ed312 100static int restore_pc_queue (struct frame_saved_regs *);
c906108c 101
a14ed312 102static int hppa_alignof (struct type *);
c906108c
SS
103
104/* To support multi-threading and stepping. */
a14ed312 105int hppa_prepare_to_proceed ();
c906108c 106
a14ed312 107static int prologue_inst_adjust_sp (unsigned long);
c906108c 108
a14ed312 109static int is_branch (unsigned long);
c906108c 110
a14ed312 111static int inst_saves_gr (unsigned long);
c906108c 112
a14ed312 113static int inst_saves_fr (unsigned long);
c906108c 114
a14ed312 115static int pc_in_interrupt_handler (CORE_ADDR);
c906108c 116
a14ed312 117static int pc_in_linker_stub (CORE_ADDR);
c906108c 118
a14ed312 119static int compare_unwind_entries (const void *, const void *);
c906108c 120
a14ed312 121static void read_unwind_info (struct objfile *);
c906108c 122
a14ed312
KB
123static void internalize_unwinds (struct objfile *,
124 struct unwind_table_entry *,
125 asection *, unsigned int,
126 unsigned int, CORE_ADDR);
127static void pa_print_registers (char *, int, int);
d9fcf2fb 128static void pa_strcat_registers (char *, int, int, struct ui_file *);
a14ed312
KB
129static void pa_register_look_aside (char *, int, long *);
130static void pa_print_fp_reg (int);
d9fcf2fb 131static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
a14ed312 132static void record_text_segment_lowaddr (bfd *, asection *, void *);
c906108c 133
c5aa993b
JM
134typedef struct
135 {
136 struct minimal_symbol *msym;
137 CORE_ADDR solib_handle;
a0b3c4fd 138 CORE_ADDR return_val;
c5aa993b
JM
139 }
140args_for_find_stub;
c906108c 141
a0b3c4fd 142static int cover_find_stub_with_shl_get (PTR);
c906108c 143
c5aa993b 144static int is_pa_2 = 0; /* False */
c906108c 145
c5aa993b 146/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
c906108c
SS
147extern int hp_som_som_object_present;
148
149/* In breakpoint.c */
150extern int exception_catchpoints_are_fragile;
151
152/* This is defined in valops.c. */
ea7c478f 153extern struct value *find_function_in_inferior (char *);
c906108c
SS
154
155/* Should call_function allocate stack space for a struct return? */
156int
fba45db2 157hppa_use_struct_convention (int gcc_p, struct type *type)
c906108c 158{
104c1213 159 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
c906108c 160}
c906108c 161\f
c5aa993b 162
c906108c
SS
163/* Routines to extract various sized constants out of hppa
164 instructions. */
165
166/* This assumes that no garbage lies outside of the lower bits of
167 value. */
168
169static int
fba45db2 170sign_extend (unsigned val, unsigned bits)
c906108c 171{
c5aa993b 172 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
173}
174
175/* For many immediate values the sign bit is the low bit! */
176
177static int
fba45db2 178low_sign_extend (unsigned val, unsigned bits)
c906108c 179{
c5aa993b 180 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
181}
182
183/* extract the immediate field from a ld{bhw}s instruction */
184
c906108c 185static int
fba45db2 186extract_5_load (unsigned word)
c906108c
SS
187{
188 return low_sign_extend (word >> 16 & MASK_5, 5);
189}
190
c906108c
SS
191/* extract the immediate field from a break instruction */
192
193static unsigned
fba45db2 194extract_5r_store (unsigned word)
c906108c
SS
195{
196 return (word & MASK_5);
197}
198
199/* extract the immediate field from a {sr}sm instruction */
200
201static unsigned
fba45db2 202extract_5R_store (unsigned word)
c906108c
SS
203{
204 return (word >> 16 & MASK_5);
205}
206
c906108c
SS
207/* extract a 14 bit immediate field */
208
209static int
fba45db2 210extract_14 (unsigned word)
c906108c
SS
211{
212 return low_sign_extend (word & MASK_14, 14);
213}
214
215/* deposit a 14 bit constant in a word */
216
217static unsigned
fba45db2 218deposit_14 (int opnd, unsigned word)
c906108c
SS
219{
220 unsigned sign = (opnd < 0 ? 1 : 0);
221
c5aa993b 222 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
c906108c
SS
223}
224
225/* extract a 21 bit constant */
226
227static int
fba45db2 228extract_21 (unsigned word)
c906108c
SS
229{
230 int val;
231
232 word &= MASK_21;
233 word <<= 11;
234 val = GET_FIELD (word, 20, 20);
235 val <<= 11;
236 val |= GET_FIELD (word, 9, 19);
237 val <<= 2;
238 val |= GET_FIELD (word, 5, 6);
239 val <<= 5;
240 val |= GET_FIELD (word, 0, 4);
241 val <<= 2;
242 val |= GET_FIELD (word, 7, 8);
243 return sign_extend (val, 21) << 11;
244}
245
246/* deposit a 21 bit constant in a word. Although 21 bit constants are
247 usually the top 21 bits of a 32 bit constant, we assume that only
248 the low 21 bits of opnd are relevant */
249
250static unsigned
fba45db2 251deposit_21 (unsigned opnd, unsigned word)
c906108c
SS
252{
253 unsigned val = 0;
254
255 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
256 val <<= 2;
257 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
258 val <<= 2;
259 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
260 val <<= 11;
261 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
262 val <<= 1;
263 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
264 return word | val;
265}
266
c906108c
SS
267/* extract a 17 bit constant from branch instructions, returning the
268 19 bit signed value. */
269
270static int
fba45db2 271extract_17 (unsigned word)
c906108c
SS
272{
273 return sign_extend (GET_FIELD (word, 19, 28) |
274 GET_FIELD (word, 29, 29) << 10 |
275 GET_FIELD (word, 11, 15) << 11 |
276 (word & 0x1) << 16, 17) << 2;
277}
278\f
279
280/* Compare the start address for two unwind entries returning 1 if
281 the first address is larger than the second, -1 if the second is
282 larger than the first, and zero if they are equal. */
283
284static int
fba45db2 285compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
286{
287 const struct unwind_table_entry *a = arg1;
288 const struct unwind_table_entry *b = arg2;
289
290 if (a->region_start > b->region_start)
291 return 1;
292 else if (a->region_start < b->region_start)
293 return -1;
294 else
295 return 0;
296}
297
53a5351d
JM
298static CORE_ADDR low_text_segment_address;
299
300static void
8fef05cc 301record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
53a5351d
JM
302{
303 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
304 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
305 && section->vma < low_text_segment_address)
306 low_text_segment_address = section->vma;
307}
308
c906108c 309static void
fba45db2
KB
310internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
311 asection *section, unsigned int entries, unsigned int size,
312 CORE_ADDR text_offset)
c906108c
SS
313{
314 /* We will read the unwind entries into temporary memory, then
315 fill in the actual unwind table. */
316 if (size > 0)
317 {
318 unsigned long tmp;
319 unsigned i;
320 char *buf = alloca (size);
321
53a5351d
JM
322 low_text_segment_address = -1;
323
324 /* If addresses are 64 bits wide, then unwinds are supposed to
c2c6d25f
JM
325 be segment relative offsets instead of absolute addresses.
326
327 Note that when loading a shared library (text_offset != 0) the
328 unwinds are already relative to the text_offset that will be
329 passed in. */
330 if (TARGET_PTR_BIT == 64 && text_offset == 0)
53a5351d
JM
331 {
332 bfd_map_over_sections (objfile->obfd,
333 record_text_segment_lowaddr, (PTR) NULL);
334
335 /* ?!? Mask off some low bits. Should this instead subtract
336 out the lowest section's filepos or something like that?
337 This looks very hokey to me. */
338 low_text_segment_address &= ~0xfff;
339 text_offset += low_text_segment_address;
340 }
341
c906108c
SS
342 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
343
344 /* Now internalize the information being careful to handle host/target
c5aa993b 345 endian issues. */
c906108c
SS
346 for (i = 0; i < entries; i++)
347 {
348 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 349 (bfd_byte *) buf);
c906108c
SS
350 table[i].region_start += text_offset;
351 buf += 4;
c5aa993b 352 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
353 table[i].region_end += text_offset;
354 buf += 4;
c5aa993b 355 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
356 buf += 4;
357 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
358 table[i].Millicode = (tmp >> 30) & 0x1;
359 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
360 table[i].Region_description = (tmp >> 27) & 0x3;
361 table[i].reserved1 = (tmp >> 26) & 0x1;
362 table[i].Entry_SR = (tmp >> 25) & 0x1;
363 table[i].Entry_FR = (tmp >> 21) & 0xf;
364 table[i].Entry_GR = (tmp >> 16) & 0x1f;
365 table[i].Args_stored = (tmp >> 15) & 0x1;
366 table[i].Variable_Frame = (tmp >> 14) & 0x1;
367 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
368 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
369 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
370 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
371 table[i].Ada_Region = (tmp >> 9) & 0x1;
372 table[i].cxx_info = (tmp >> 8) & 0x1;
373 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
374 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
375 table[i].reserved2 = (tmp >> 5) & 0x1;
376 table[i].Save_SP = (tmp >> 4) & 0x1;
377 table[i].Save_RP = (tmp >> 3) & 0x1;
378 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
379 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
380 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 381 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
382 buf += 4;
383 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
384 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
385 table[i].Large_frame = (tmp >> 29) & 0x1;
386 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
387 table[i].reserved4 = (tmp >> 27) & 0x1;
388 table[i].Total_frame_size = tmp & 0x7ffffff;
389
c5aa993b 390 /* Stub unwinds are handled elsewhere. */
c906108c
SS
391 table[i].stub_unwind.stub_type = 0;
392 table[i].stub_unwind.padding = 0;
393 }
394 }
395}
396
397/* Read in the backtrace information stored in the `$UNWIND_START$' section of
398 the object file. This info is used mainly by find_unwind_entry() to find
399 out the stack frame size and frame pointer used by procedures. We put
400 everything on the psymbol obstack in the objfile so that it automatically
401 gets freed when the objfile is destroyed. */
402
403static void
fba45db2 404read_unwind_info (struct objfile *objfile)
c906108c 405{
d4f3574e
SS
406 asection *unwind_sec, *stub_unwind_sec;
407 unsigned unwind_size, stub_unwind_size, total_size;
408 unsigned index, unwind_entries;
c906108c
SS
409 unsigned stub_entries, total_entries;
410 CORE_ADDR text_offset;
411 struct obj_unwind_info *ui;
412 obj_private_data_t *obj_private;
413
414 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5aa993b
JM
415 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
416 sizeof (struct obj_unwind_info));
c906108c
SS
417
418 ui->table = NULL;
419 ui->cache = NULL;
420 ui->last = -1;
421
d4f3574e
SS
422 /* For reasons unknown the HP PA64 tools generate multiple unwinder
423 sections in a single executable. So we just iterate over every
424 section in the BFD looking for unwinder sections intead of trying
425 to do a lookup with bfd_get_section_by_name.
c906108c 426
d4f3574e
SS
427 First determine the total size of the unwind tables so that we
428 can allocate memory in a nice big hunk. */
429 total_entries = 0;
430 for (unwind_sec = objfile->obfd->sections;
431 unwind_sec;
432 unwind_sec = unwind_sec->next)
c906108c 433 {
d4f3574e
SS
434 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
435 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
436 {
437 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
438 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 439
d4f3574e
SS
440 total_entries += unwind_entries;
441 }
c906108c
SS
442 }
443
d4f3574e
SS
444 /* Now compute the size of the stub unwinds. Note the ELF tools do not
445 use stub unwinds at the curren time. */
446 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
447
c906108c
SS
448 if (stub_unwind_sec)
449 {
450 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
451 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
452 }
453 else
454 {
455 stub_unwind_size = 0;
456 stub_entries = 0;
457 }
458
459 /* Compute total number of unwind entries and their total size. */
d4f3574e 460 total_entries += stub_entries;
c906108c
SS
461 total_size = total_entries * sizeof (struct unwind_table_entry);
462
463 /* Allocate memory for the unwind table. */
464 ui->table = (struct unwind_table_entry *)
465 obstack_alloc (&objfile->psymbol_obstack, total_size);
c5aa993b 466 ui->last = total_entries - 1;
c906108c 467
d4f3574e
SS
468 /* Now read in each unwind section and internalize the standard unwind
469 entries. */
c906108c 470 index = 0;
d4f3574e
SS
471 for (unwind_sec = objfile->obfd->sections;
472 unwind_sec;
473 unwind_sec = unwind_sec->next)
474 {
475 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
476 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
477 {
478 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
479 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
480
481 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
482 unwind_entries, unwind_size, text_offset);
483 index += unwind_entries;
484 }
485 }
486
487 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
488 if (stub_unwind_size > 0)
489 {
490 unsigned int i;
491 char *buf = alloca (stub_unwind_size);
492
493 /* Read in the stub unwind entries. */
494 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
495 0, stub_unwind_size);
496
497 /* Now convert them into regular unwind entries. */
498 for (i = 0; i < stub_entries; i++, index++)
499 {
500 /* Clear out the next unwind entry. */
501 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
502
503 /* Convert offset & size into region_start and region_end.
504 Stuff away the stub type into "reserved" fields. */
505 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
506 (bfd_byte *) buf);
507 ui->table[index].region_start += text_offset;
508 buf += 4;
509 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 510 (bfd_byte *) buf);
c906108c
SS
511 buf += 2;
512 ui->table[index].region_end
c5aa993b
JM
513 = ui->table[index].region_start + 4 *
514 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
515 buf += 2;
516 }
517
518 }
519
520 /* Unwind table needs to be kept sorted. */
521 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
522 compare_unwind_entries);
523
524 /* Keep a pointer to the unwind information. */
c5aa993b 525 if (objfile->obj_private == NULL)
c906108c
SS
526 {
527 obj_private = (obj_private_data_t *)
c5aa993b
JM
528 obstack_alloc (&objfile->psymbol_obstack,
529 sizeof (obj_private_data_t));
c906108c 530 obj_private->unwind_info = NULL;
c5aa993b 531 obj_private->so_info = NULL;
53a5351d 532 obj_private->dp = 0;
c5aa993b 533
c906108c
SS
534 objfile->obj_private = (PTR) obj_private;
535 }
c5aa993b 536 obj_private = (obj_private_data_t *) objfile->obj_private;
c906108c
SS
537 obj_private->unwind_info = ui;
538}
539
540/* Lookup the unwind (stack backtrace) info for the given PC. We search all
541 of the objfiles seeking the unwind table entry for this PC. Each objfile
542 contains a sorted list of struct unwind_table_entry. Since we do a binary
543 search of the unwind tables, we depend upon them to be sorted. */
544
545struct unwind_table_entry *
fba45db2 546find_unwind_entry (CORE_ADDR pc)
c906108c
SS
547{
548 int first, middle, last;
549 struct objfile *objfile;
550
551 /* A function at address 0? Not in HP-UX! */
552 if (pc == (CORE_ADDR) 0)
553 return NULL;
554
555 ALL_OBJFILES (objfile)
c5aa993b
JM
556 {
557 struct obj_unwind_info *ui;
558 ui = NULL;
559 if (objfile->obj_private)
560 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
c906108c 561
c5aa993b
JM
562 if (!ui)
563 {
564 read_unwind_info (objfile);
565 if (objfile->obj_private == NULL)
104c1213 566 error ("Internal error reading unwind information.");
c5aa993b
JM
567 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
568 }
c906108c 569
c5aa993b 570 /* First, check the cache */
c906108c 571
c5aa993b
JM
572 if (ui->cache
573 && pc >= ui->cache->region_start
574 && pc <= ui->cache->region_end)
575 return ui->cache;
c906108c 576
c5aa993b 577 /* Not in the cache, do a binary search */
c906108c 578
c5aa993b
JM
579 first = 0;
580 last = ui->last;
c906108c 581
c5aa993b
JM
582 while (first <= last)
583 {
584 middle = (first + last) / 2;
585 if (pc >= ui->table[middle].region_start
586 && pc <= ui->table[middle].region_end)
587 {
588 ui->cache = &ui->table[middle];
589 return &ui->table[middle];
590 }
c906108c 591
c5aa993b
JM
592 if (pc < ui->table[middle].region_start)
593 last = middle - 1;
594 else
595 first = middle + 1;
596 }
597 } /* ALL_OBJFILES() */
c906108c
SS
598 return NULL;
599}
600
601/* Return the adjustment necessary to make for addresses on the stack
602 as presented by hpread.c.
603
604 This is necessary because of the stack direction on the PA and the
605 bizarre way in which someone (?) decided they wanted to handle
606 frame pointerless code in GDB. */
607int
fba45db2 608hpread_adjust_stack_address (CORE_ADDR func_addr)
c906108c
SS
609{
610 struct unwind_table_entry *u;
611
612 u = find_unwind_entry (func_addr);
613 if (!u)
614 return 0;
615 else
616 return u->Total_frame_size << 3;
617}
618
619/* Called to determine if PC is in an interrupt handler of some
620 kind. */
621
622static int
fba45db2 623pc_in_interrupt_handler (CORE_ADDR pc)
c906108c
SS
624{
625 struct unwind_table_entry *u;
626 struct minimal_symbol *msym_us;
627
628 u = find_unwind_entry (pc);
629 if (!u)
630 return 0;
631
632 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
633 its frame isn't a pure interrupt frame. Deal with this. */
634 msym_us = lookup_minimal_symbol_by_pc (pc);
635
636 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
637}
638
639/* Called when no unwind descriptor was found for PC. Returns 1 if it
104c1213
JM
640 appears that PC is in a linker stub.
641
642 ?!? Need to handle stubs which appear in PA64 code. */
c906108c
SS
643
644static int
fba45db2 645pc_in_linker_stub (CORE_ADDR pc)
c906108c
SS
646{
647 int found_magic_instruction = 0;
648 int i;
649 char buf[4];
650
651 /* If unable to read memory, assume pc is not in a linker stub. */
652 if (target_read_memory (pc, buf, 4) != 0)
653 return 0;
654
655 /* We are looking for something like
656
657 ; $$dyncall jams RP into this special spot in the frame (RP')
658 ; before calling the "call stub"
659 ldw -18(sp),rp
660
661 ldsid (rp),r1 ; Get space associated with RP into r1
662 mtsp r1,sp ; Move it into space register 0
663 be,n 0(sr0),rp) ; back to your regularly scheduled program */
664
665 /* Maximum known linker stub size is 4 instructions. Search forward
666 from the given PC, then backward. */
667 for (i = 0; i < 4; i++)
668 {
669 /* If we hit something with an unwind, stop searching this direction. */
670
671 if (find_unwind_entry (pc + i * 4) != 0)
672 break;
673
674 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 675 return from a cross-space function call. */
c906108c
SS
676 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
677 {
678 found_magic_instruction = 1;
679 break;
680 }
681 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 682 here. */
c906108c
SS
683 }
684
685 if (found_magic_instruction != 0)
686 return 1;
687
688 /* Now look backward. */
689 for (i = 0; i < 4; i++)
690 {
691 /* If we hit something with an unwind, stop searching this direction. */
692
693 if (find_unwind_entry (pc - i * 4) != 0)
694 break;
695
696 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 697 return from a cross-space function call. */
c906108c
SS
698 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
699 {
700 found_magic_instruction = 1;
701 break;
702 }
703 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 704 here. */
c906108c
SS
705 }
706 return found_magic_instruction;
707}
708
709static int
fba45db2 710find_return_regnum (CORE_ADDR pc)
c906108c
SS
711{
712 struct unwind_table_entry *u;
713
714 u = find_unwind_entry (pc);
715
716 if (!u)
717 return RP_REGNUM;
718
719 if (u->Millicode)
720 return 31;
721
722 return RP_REGNUM;
723}
724
725/* Return size of frame, or -1 if we should use a frame pointer. */
726static int
fba45db2 727find_proc_framesize (CORE_ADDR pc)
c906108c
SS
728{
729 struct unwind_table_entry *u;
730 struct minimal_symbol *msym_us;
731
732 /* This may indicate a bug in our callers... */
c5aa993b 733 if (pc == (CORE_ADDR) 0)
c906108c 734 return -1;
c5aa993b 735
c906108c
SS
736 u = find_unwind_entry (pc);
737
738 if (!u)
739 {
740 if (pc_in_linker_stub (pc))
741 /* Linker stubs have a zero size frame. */
742 return 0;
743 else
744 return -1;
745 }
746
747 msym_us = lookup_minimal_symbol_by_pc (pc);
748
749 /* If Save_SP is set, and we're not in an interrupt or signal caller,
750 then we have a frame pointer. Use it. */
3fa41cdb
JL
751 if (u->Save_SP
752 && !pc_in_interrupt_handler (pc)
753 && msym_us
c906108c
SS
754 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
755 return -1;
756
757 return u->Total_frame_size << 3;
758}
759
760/* Return offset from sp at which rp is saved, or 0 if not saved. */
a14ed312 761static int rp_saved (CORE_ADDR);
c906108c
SS
762
763static int
fba45db2 764rp_saved (CORE_ADDR pc)
c906108c
SS
765{
766 struct unwind_table_entry *u;
767
768 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
769 if (pc == (CORE_ADDR) 0)
770 return 0;
771
772 u = find_unwind_entry (pc);
773
774 if (!u)
775 {
776 if (pc_in_linker_stub (pc))
777 /* This is the so-called RP'. */
778 return -24;
779 else
780 return 0;
781 }
782
783 if (u->Save_RP)
53a5351d 784 return (TARGET_PTR_BIT == 64 ? -16 : -20);
c906108c
SS
785 else if (u->stub_unwind.stub_type != 0)
786 {
787 switch (u->stub_unwind.stub_type)
788 {
789 case EXPORT:
790 case IMPORT:
791 return -24;
792 case PARAMETER_RELOCATION:
793 return -8;
794 default:
795 return 0;
796 }
797 }
798 else
799 return 0;
800}
801\f
802int
fba45db2 803frameless_function_invocation (struct frame_info *frame)
c906108c
SS
804{
805 struct unwind_table_entry *u;
806
807 u = find_unwind_entry (frame->pc);
808
809 if (u == 0)
810 return 0;
811
812 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
813}
814
815CORE_ADDR
fba45db2 816saved_pc_after_call (struct frame_info *frame)
c906108c
SS
817{
818 int ret_regnum;
819 CORE_ADDR pc;
820 struct unwind_table_entry *u;
821
822 ret_regnum = find_return_regnum (get_frame_pc (frame));
823 pc = read_register (ret_regnum) & ~0x3;
c5aa993b 824
c906108c
SS
825 /* If PC is in a linker stub, then we need to dig the address
826 the stub will return to out of the stack. */
827 u = find_unwind_entry (pc);
828 if (u && u->stub_unwind.stub_type != 0)
829 return FRAME_SAVED_PC (frame);
830 else
831 return pc;
832}
833\f
834CORE_ADDR
fba45db2 835hppa_frame_saved_pc (struct frame_info *frame)
c906108c
SS
836{
837 CORE_ADDR pc = get_frame_pc (frame);
838 struct unwind_table_entry *u;
839 CORE_ADDR old_pc;
c5aa993b
JM
840 int spun_around_loop = 0;
841 int rp_offset = 0;
c906108c
SS
842
843 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
844 at the base of the frame in an interrupt handler. Registers within
845 are saved in the exact same order as GDB numbers registers. How
846 convienent. */
847 if (pc_in_interrupt_handler (pc))
53a5351d
JM
848 return read_memory_integer (frame->frame + PC_REGNUM * 4,
849 TARGET_PTR_BIT / 8) & ~0x3;
c906108c 850
104c1213
JM
851 if ((frame->pc >= frame->frame
852 && frame->pc <= (frame->frame
853 /* A call dummy is sized in words, but it is
854 actually a series of instructions. Account
855 for that scaling factor. */
856 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
857 * CALL_DUMMY_LENGTH)
858 /* Similarly we have to account for 64bit
859 wide register saves. */
860 + (32 * REGISTER_SIZE)
861 /* We always consider FP regs 8 bytes long. */
862 + (NUM_REGS - FP0_REGNUM) * 8
863 /* Similarly we have to account for 64bit
864 wide register saves. */
865 + (6 * REGISTER_SIZE))))
866 {
867 return read_memory_integer ((frame->frame
868 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
869 TARGET_PTR_BIT / 8) & ~0x3;
870 }
871
c906108c
SS
872#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
873 /* Deal with signal handler caller frames too. */
874 if (frame->signal_handler_caller)
875 {
876 CORE_ADDR rp;
877 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
878 return rp & ~0x3;
879 }
880#endif
881
882 if (frameless_function_invocation (frame))
883 {
884 int ret_regnum;
885
886 ret_regnum = find_return_regnum (pc);
887
888 /* If the next frame is an interrupt frame or a signal
c5aa993b
JM
889 handler caller, then we need to look in the saved
890 register area to get the return pointer (the values
891 in the registers may not correspond to anything useful). */
892 if (frame->next
c906108c
SS
893 && (frame->next->signal_handler_caller
894 || pc_in_interrupt_handler (frame->next->pc)))
895 {
896 struct frame_saved_regs saved_regs;
897
898 get_frame_saved_regs (frame->next, &saved_regs);
53a5351d
JM
899 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
900 TARGET_PTR_BIT / 8) & 0x2)
c906108c 901 {
53a5351d
JM
902 pc = read_memory_integer (saved_regs.regs[31],
903 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
904
905 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
906 with a return pointer in %rp and the kernel call with
907 a return pointer in %r31. We return the %rp variant
908 if %r31 is the same as frame->pc. */
c906108c 909 if (pc == frame->pc)
53a5351d
JM
910 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
911 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
912 }
913 else
53a5351d
JM
914 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
915 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
916 }
917 else
918 pc = read_register (ret_regnum) & ~0x3;
919 }
920 else
921 {
922 spun_around_loop = 0;
c5aa993b 923 old_pc = pc;
c906108c 924
c5aa993b 925 restart:
c906108c
SS
926 rp_offset = rp_saved (pc);
927
928 /* Similar to code in frameless function case. If the next
c5aa993b
JM
929 frame is a signal or interrupt handler, then dig the right
930 information out of the saved register info. */
c906108c
SS
931 if (rp_offset == 0
932 && frame->next
933 && (frame->next->signal_handler_caller
934 || pc_in_interrupt_handler (frame->next->pc)))
935 {
936 struct frame_saved_regs saved_regs;
937
938 get_frame_saved_regs (frame->next, &saved_regs);
53a5351d
JM
939 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
940 TARGET_PTR_BIT / 8) & 0x2)
c906108c 941 {
53a5351d
JM
942 pc = read_memory_integer (saved_regs.regs[31],
943 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
944
945 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
946 with a return pointer in %rp and the kernel call with
947 a return pointer in %r31. We return the %rp variant
948 if %r31 is the same as frame->pc. */
c906108c 949 if (pc == frame->pc)
53a5351d
JM
950 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
951 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
952 }
953 else
53a5351d
JM
954 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
955 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
956 }
957 else if (rp_offset == 0)
c5aa993b
JM
958 {
959 old_pc = pc;
960 pc = read_register (RP_REGNUM) & ~0x3;
961 }
c906108c 962 else
c5aa993b
JM
963 {
964 old_pc = pc;
53a5351d
JM
965 pc = read_memory_integer (frame->frame + rp_offset,
966 TARGET_PTR_BIT / 8) & ~0x3;
c5aa993b 967 }
c906108c
SS
968 }
969
970 /* If PC is inside a linker stub, then dig out the address the stub
971 will return to.
972
973 Don't do this for long branch stubs. Why? For some unknown reason
974 _start is marked as a long branch stub in hpux10. */
975 u = find_unwind_entry (pc);
976 if (u && u->stub_unwind.stub_type != 0
977 && u->stub_unwind.stub_type != LONG_BRANCH)
978 {
979 unsigned int insn;
980
981 /* If this is a dynamic executable, and we're in a signal handler,
c5aa993b
JM
982 then the call chain will eventually point us into the stub for
983 _sigreturn. Unlike most cases, we'll be pointed to the branch
984 to the real sigreturn rather than the code after the real branch!.
c906108c 985
c5aa993b
JM
986 Else, try to dig the address the stub will return to in the normal
987 fashion. */
c906108c
SS
988 insn = read_memory_integer (pc, 4);
989 if ((insn & 0xfc00e000) == 0xe8000000)
990 return (pc + extract_17 (insn) + 8) & ~0x3;
991 else
992 {
c5aa993b
JM
993 if (old_pc == pc)
994 spun_around_loop++;
995
996 if (spun_around_loop > 1)
997 {
998 /* We're just about to go around the loop again with
999 no more hope of success. Die. */
1000 error ("Unable to find return pc for this frame");
1001 }
1002 else
1003 goto restart;
c906108c
SS
1004 }
1005 }
1006
1007 return pc;
1008}
1009\f
1010/* We need to correct the PC and the FP for the outermost frame when we are
1011 in a system call. */
1012
1013void
fba45db2 1014init_extra_frame_info (int fromleaf, struct frame_info *frame)
c906108c
SS
1015{
1016 int flags;
1017 int framesize;
1018
1019 if (frame->next && !fromleaf)
1020 return;
1021
1022 /* If the next frame represents a frameless function invocation
1023 then we have to do some adjustments that are normally done by
1024 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1025 if (fromleaf)
1026 {
1027 /* Find the framesize of *this* frame without peeking at the PC
c5aa993b 1028 in the current frame structure (it isn't set yet). */
c906108c
SS
1029 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1030
1031 /* Now adjust our base frame accordingly. If we have a frame pointer
c5aa993b
JM
1032 use it, else subtract the size of this frame from the current
1033 frame. (we always want frame->frame to point at the lowest address
1034 in the frame). */
c906108c
SS
1035 if (framesize == -1)
1036 frame->frame = TARGET_READ_FP ();
1037 else
1038 frame->frame -= framesize;
1039 return;
1040 }
1041
1042 flags = read_register (FLAGS_REGNUM);
c5aa993b 1043 if (flags & 2) /* In system call? */
c906108c
SS
1044 frame->pc = read_register (31) & ~0x3;
1045
1046 /* The outermost frame is always derived from PC-framesize
1047
1048 One might think frameless innermost frames should have
1049 a frame->frame that is the same as the parent's frame->frame.
1050 That is wrong; frame->frame in that case should be the *high*
1051 address of the parent's frame. It's complicated as hell to
1052 explain, but the parent *always* creates some stack space for
1053 the child. So the child actually does have a frame of some
1054 sorts, and its base is the high address in its parent's frame. */
c5aa993b 1055 framesize = find_proc_framesize (frame->pc);
c906108c
SS
1056 if (framesize == -1)
1057 frame->frame = TARGET_READ_FP ();
1058 else
1059 frame->frame = read_register (SP_REGNUM) - framesize;
1060}
1061\f
1062/* Given a GDB frame, determine the address of the calling function's frame.
1063 This will be used to create a new GDB frame struct, and then
1064 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1065
1066 This may involve searching through prologues for several functions
1067 at boundaries where GCC calls HP C code, or where code which has
1068 a frame pointer calls code without a frame pointer. */
1069
1070CORE_ADDR
fba45db2 1071frame_chain (struct frame_info *frame)
c906108c
SS
1072{
1073 int my_framesize, caller_framesize;
1074 struct unwind_table_entry *u;
1075 CORE_ADDR frame_base;
1076 struct frame_info *tmp_frame;
1077
c2c6d25f
JM
1078 /* A frame in the current frame list, or zero. */
1079 struct frame_info *saved_regs_frame = 0;
1080 /* Where the registers were saved in saved_regs_frame.
1081 If saved_regs_frame is zero, this is garbage. */
1082 struct frame_saved_regs saved_regs;
1083
c5aa993b 1084 CORE_ADDR caller_pc;
c906108c
SS
1085
1086 struct minimal_symbol *min_frame_symbol;
c5aa993b
JM
1087 struct symbol *frame_symbol;
1088 char *frame_symbol_name;
c906108c
SS
1089
1090 /* If this is a threaded application, and we see the
1091 routine "__pthread_exit", treat it as the stack root
1092 for this thread. */
c5aa993b
JM
1093 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1094 frame_symbol = find_pc_function (frame->pc);
c906108c 1095
c5aa993b 1096 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
c906108c 1097 {
c5aa993b
JM
1098 /* The test above for "no user function name" would defend
1099 against the slim likelihood that a user might define a
1100 routine named "__pthread_exit" and then try to debug it.
1101
1102 If it weren't commented out, and you tried to debug the
1103 pthread library itself, you'd get errors.
1104
1105 So for today, we don't make that check. */
1106 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1107 if (frame_symbol_name != 0)
1108 {
1109 if (0 == strncmp (frame_symbol_name,
1110 THREAD_INITIAL_FRAME_SYMBOL,
1111 THREAD_INITIAL_FRAME_SYM_LEN))
1112 {
1113 /* Pretend we've reached the bottom of the stack. */
1114 return (CORE_ADDR) 0;
1115 }
1116 }
1117 } /* End of hacky code for threads. */
1118
c906108c
SS
1119 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1120 are easy; at *sp we have a full save state strucutre which we can
1121 pull the old stack pointer from. Also see frame_saved_pc for
1122 code to dig a saved PC out of the save state structure. */
1123 if (pc_in_interrupt_handler (frame->pc))
53a5351d
JM
1124 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1125 TARGET_PTR_BIT / 8);
c906108c
SS
1126#ifdef FRAME_BASE_BEFORE_SIGTRAMP
1127 else if (frame->signal_handler_caller)
1128 {
1129 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1130 }
1131#endif
1132 else
1133 frame_base = frame->frame;
1134
1135 /* Get frame sizes for the current frame and the frame of the
1136 caller. */
1137 my_framesize = find_proc_framesize (frame->pc);
c5aa993b 1138 caller_pc = FRAME_SAVED_PC (frame);
c906108c
SS
1139
1140 /* If we can't determine the caller's PC, then it's not likely we can
1141 really determine anything meaningful about its frame. We'll consider
1142 this to be stack bottom. */
1143 if (caller_pc == (CORE_ADDR) 0)
1144 return (CORE_ADDR) 0;
1145
c5aa993b 1146 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
c906108c
SS
1147
1148 /* If caller does not have a frame pointer, then its frame
1149 can be found at current_frame - caller_framesize. */
1150 if (caller_framesize != -1)
1151 {
1152 return frame_base - caller_framesize;
1153 }
1154 /* Both caller and callee have frame pointers and are GCC compiled
1155 (SAVE_SP bit in unwind descriptor is on for both functions.
1156 The previous frame pointer is found at the top of the current frame. */
1157 if (caller_framesize == -1 && my_framesize == -1)
1158 {
53a5351d 1159 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
c906108c
SS
1160 }
1161 /* Caller has a frame pointer, but callee does not. This is a little
1162 more difficult as GCC and HP C lay out locals and callee register save
1163 areas very differently.
1164
1165 The previous frame pointer could be in a register, or in one of
1166 several areas on the stack.
1167
1168 Walk from the current frame to the innermost frame examining
1169 unwind descriptors to determine if %r3 ever gets saved into the
1170 stack. If so return whatever value got saved into the stack.
1171 If it was never saved in the stack, then the value in %r3 is still
1172 valid, so use it.
1173
1174 We use information from unwind descriptors to determine if %r3
1175 is saved into the stack (Entry_GR field has this information). */
1176
c2c6d25f 1177 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
c906108c
SS
1178 {
1179 u = find_unwind_entry (tmp_frame->pc);
1180
1181 if (!u)
1182 {
1183 /* We could find this information by examining prologues. I don't
1184 think anyone has actually written any tools (not even "strip")
1185 which leave them out of an executable, so maybe this is a moot
1186 point. */
c5aa993b
JM
1187 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1188 code that doesn't have unwind entries. For example, stepping into
1189 the dynamic linker will give you a PC that has none. Thus, I've
1190 disabled this warning. */
c906108c
SS
1191#if 0
1192 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1193#endif
1194 return (CORE_ADDR) 0;
1195 }
1196
c2c6d25f 1197 if (u->Save_SP
c906108c
SS
1198 || tmp_frame->signal_handler_caller
1199 || pc_in_interrupt_handler (tmp_frame->pc))
1200 break;
c2c6d25f
JM
1201
1202 /* Entry_GR specifies the number of callee-saved general registers
1203 saved in the stack. It starts at %r3, so %r3 would be 1. */
1204 if (u->Entry_GR >= 1)
1205 {
1206 /* The unwind entry claims that r3 is saved here. However,
1207 in optimized code, GCC often doesn't actually save r3.
1208 We'll discover this if we look at the prologue. */
1209 get_frame_saved_regs (tmp_frame, &saved_regs);
1210 saved_regs_frame = tmp_frame;
1211
1212 /* If we have an address for r3, that's good. */
1213 if (saved_regs.regs[FP_REGNUM])
1214 break;
1215 }
c906108c
SS
1216 }
1217
1218 if (tmp_frame)
1219 {
1220 /* We may have walked down the chain into a function with a frame
c5aa993b 1221 pointer. */
c906108c
SS
1222 if (u->Save_SP
1223 && !tmp_frame->signal_handler_caller
1224 && !pc_in_interrupt_handler (tmp_frame->pc))
1225 {
53a5351d 1226 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
c906108c
SS
1227 }
1228 /* %r3 was saved somewhere in the stack. Dig it out. */
c5aa993b 1229 else
c906108c 1230 {
c906108c
SS
1231 /* Sick.
1232
1233 For optimization purposes many kernels don't have the
1234 callee saved registers into the save_state structure upon
1235 entry into the kernel for a syscall; the optimization
1236 is usually turned off if the process is being traced so
1237 that the debugger can get full register state for the
1238 process.
c5aa993b 1239
c906108c
SS
1240 This scheme works well except for two cases:
1241
c5aa993b
JM
1242 * Attaching to a process when the process is in the
1243 kernel performing a system call (debugger can't get
1244 full register state for the inferior process since
1245 the process wasn't being traced when it entered the
1246 system call).
c906108c 1247
c5aa993b
JM
1248 * Register state is not complete if the system call
1249 causes the process to core dump.
c906108c
SS
1250
1251
1252 The following heinous code is an attempt to deal with
1253 the lack of register state in a core dump. It will
1254 fail miserably if the function which performs the
1255 system call has a variable sized stack frame. */
1256
c2c6d25f
JM
1257 if (tmp_frame != saved_regs_frame)
1258 get_frame_saved_regs (tmp_frame, &saved_regs);
c906108c
SS
1259
1260 /* Abominable hack. */
1261 if (current_target.to_has_execution == 0
1262 && ((saved_regs.regs[FLAGS_REGNUM]
53a5351d
JM
1263 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1264 TARGET_PTR_BIT / 8)
c906108c
SS
1265 & 0x2))
1266 || (saved_regs.regs[FLAGS_REGNUM] == 0
1267 && read_register (FLAGS_REGNUM) & 0x2)))
1268 {
1269 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1270 if (!u)
1271 {
53a5351d
JM
1272 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1273 TARGET_PTR_BIT / 8);
c906108c
SS
1274 }
1275 else
1276 {
1277 return frame_base - (u->Total_frame_size << 3);
1278 }
1279 }
c5aa993b 1280
53a5351d
JM
1281 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1282 TARGET_PTR_BIT / 8);
c906108c
SS
1283 }
1284 }
1285 else
1286 {
c906108c
SS
1287 /* Get the innermost frame. */
1288 tmp_frame = frame;
1289 while (tmp_frame->next != NULL)
1290 tmp_frame = tmp_frame->next;
1291
c2c6d25f
JM
1292 if (tmp_frame != saved_regs_frame)
1293 get_frame_saved_regs (tmp_frame, &saved_regs);
1294
c906108c
SS
1295 /* Abominable hack. See above. */
1296 if (current_target.to_has_execution == 0
1297 && ((saved_regs.regs[FLAGS_REGNUM]
53a5351d
JM
1298 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1299 TARGET_PTR_BIT / 8)
c906108c
SS
1300 & 0x2))
1301 || (saved_regs.regs[FLAGS_REGNUM] == 0
c5aa993b 1302 && read_register (FLAGS_REGNUM) & 0x2)))
c906108c
SS
1303 {
1304 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1305 if (!u)
1306 {
53a5351d
JM
1307 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1308 TARGET_PTR_BIT / 8);
c906108c 1309 }
c5aa993b
JM
1310 else
1311 {
1312 return frame_base - (u->Total_frame_size << 3);
1313 }
c906108c 1314 }
c5aa993b 1315
c906108c 1316 /* The value in %r3 was never saved into the stack (thus %r3 still
c5aa993b 1317 holds the value of the previous frame pointer). */
c906108c
SS
1318 return TARGET_READ_FP ();
1319 }
1320}
c906108c 1321\f
c5aa993b 1322
c906108c
SS
1323/* To see if a frame chain is valid, see if the caller looks like it
1324 was compiled with gcc. */
1325
1326int
fba45db2 1327hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
1328{
1329 struct minimal_symbol *msym_us;
1330 struct minimal_symbol *msym_start;
1331 struct unwind_table_entry *u, *next_u = NULL;
1332 struct frame_info *next;
1333
1334 if (!chain)
1335 return 0;
1336
1337 u = find_unwind_entry (thisframe->pc);
1338
1339 if (u == NULL)
1340 return 1;
1341
1342 /* We can't just check that the same of msym_us is "_start", because
1343 someone idiotically decided that they were going to make a Ltext_end
1344 symbol with the same address. This Ltext_end symbol is totally
1345 indistinguishable (as nearly as I can tell) from the symbol for a function
1346 which is (legitimately, since it is in the user's namespace)
1347 named Ltext_end, so we can't just ignore it. */
1348 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1349 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1350 if (msym_us
1351 && msym_start
1352 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1353 return 0;
1354
1355 /* Grrrr. Some new idiot decided that they don't want _start for the
1356 PRO configurations; $START$ calls main directly.... Deal with it. */
1357 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1358 if (msym_us
1359 && msym_start
1360 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1361 return 0;
1362
1363 next = get_next_frame (thisframe);
1364 if (next)
1365 next_u = find_unwind_entry (next->pc);
1366
1367 /* If this frame does not save SP, has no stack, isn't a stub,
1368 and doesn't "call" an interrupt routine or signal handler caller,
1369 then its not valid. */
1370 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1371 || (thisframe->next && thisframe->next->signal_handler_caller)
1372 || (next_u && next_u->HP_UX_interrupt_marker))
1373 return 1;
1374
1375 if (pc_in_linker_stub (thisframe->pc))
1376 return 1;
1377
1378 return 0;
1379}
1380
1381/*
1382 These functions deal with saving and restoring register state
1383 around a function call in the inferior. They keep the stack
1384 double-word aligned; eventually, on an hp700, the stack will have
1385 to be aligned to a 64-byte boundary. */
1386
1387void
fba45db2 1388push_dummy_frame (struct inferior_status *inf_status)
c906108c
SS
1389{
1390 CORE_ADDR sp, pc, pcspace;
1391 register int regnum;
53a5351d 1392 CORE_ADDR int_buffer;
c906108c
SS
1393 double freg_buffer;
1394
1395 /* Oh, what a hack. If we're trying to perform an inferior call
1396 while the inferior is asleep, we have to make sure to clear
1397 the "in system call" bit in the flag register (the call will
1398 start after the syscall returns, so we're no longer in the system
1399 call!) This state is kept in "inf_status", change it there.
1400
1401 We also need a number of horrid hacks to deal with lossage in the
1402 PC queue registers (apparently they're not valid when the in syscall
1403 bit is set). */
39f77062 1404 pc = target_read_pc (inferior_ptid);
c906108c
SS
1405 int_buffer = read_register (FLAGS_REGNUM);
1406 if (int_buffer & 0x2)
1407 {
1408 unsigned int sid;
1409 int_buffer &= ~0x2;
7a292a7a
SS
1410 write_inferior_status_register (inf_status, 0, int_buffer);
1411 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1412 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1413 sid = (pc >> 30) & 0x3;
1414 if (sid == 0)
1415 pcspace = read_register (SR4_REGNUM);
1416 else
1417 pcspace = read_register (SR4_REGNUM + 4 + sid);
7a292a7a
SS
1418 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1419 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
c906108c
SS
1420 }
1421 else
1422 pcspace = read_register (PCSQ_HEAD_REGNUM);
1423
1424 /* Space for "arguments"; the RP goes in here. */
1425 sp = read_register (SP_REGNUM) + 48;
1426 int_buffer = read_register (RP_REGNUM) | 0x3;
53a5351d
JM
1427
1428 /* The 32bit and 64bit ABIs save the return pointer into different
1429 stack slots. */
1430 if (REGISTER_SIZE == 8)
1431 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1432 else
1433 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1434
1435 int_buffer = TARGET_READ_FP ();
53a5351d 1436 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1437
1438 write_register (FP_REGNUM, sp);
1439
53a5351d 1440 sp += 2 * REGISTER_SIZE;
c906108c
SS
1441
1442 for (regnum = 1; regnum < 32; regnum++)
1443 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1444 sp = push_word (sp, read_register (regnum));
1445
53a5351d
JM
1446 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1447 if (REGISTER_SIZE != 8)
1448 sp += 4;
c906108c
SS
1449
1450 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1451 {
c5aa993b
JM
1452 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1453 sp = push_bytes (sp, (char *) &freg_buffer, 8);
c906108c
SS
1454 }
1455 sp = push_word (sp, read_register (IPSW_REGNUM));
1456 sp = push_word (sp, read_register (SAR_REGNUM));
1457 sp = push_word (sp, pc);
1458 sp = push_word (sp, pcspace);
1459 sp = push_word (sp, pc + 4);
1460 sp = push_word (sp, pcspace);
1461 write_register (SP_REGNUM, sp);
1462}
1463
1464static void
fba45db2
KB
1465find_dummy_frame_regs (struct frame_info *frame,
1466 struct frame_saved_regs *frame_saved_regs)
c906108c
SS
1467{
1468 CORE_ADDR fp = frame->frame;
1469 int i;
1470
53a5351d
JM
1471 /* The 32bit and 64bit ABIs save RP into different locations. */
1472 if (REGISTER_SIZE == 8)
1473 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1474 else
1475 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1476
c906108c 1477 frame_saved_regs->regs[FP_REGNUM] = fp;
c906108c 1478
53a5351d
JM
1479 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1480
1481 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
c906108c
SS
1482 {
1483 if (i != FP_REGNUM)
1484 {
1485 frame_saved_regs->regs[i] = fp;
53a5351d 1486 fp += REGISTER_SIZE;
c906108c
SS
1487 }
1488 }
1489
53a5351d
JM
1490 /* This is not necessary or desirable for the 64bit ABI. */
1491 if (REGISTER_SIZE != 8)
1492 fp += 4;
1493
c906108c
SS
1494 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1495 frame_saved_regs->regs[i] = fp;
1496
1497 frame_saved_regs->regs[IPSW_REGNUM] = fp;
53a5351d
JM
1498 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1499 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1500 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1501 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1502 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
c906108c
SS
1503}
1504
1505void
fba45db2 1506hppa_pop_frame (void)
c906108c
SS
1507{
1508 register struct frame_info *frame = get_current_frame ();
1509 register CORE_ADDR fp, npc, target_pc;
1510 register int regnum;
1511 struct frame_saved_regs fsr;
1512 double freg_buffer;
1513
1514 fp = FRAME_FP (frame);
1515 get_frame_saved_regs (frame, &fsr);
1516
1517#ifndef NO_PC_SPACE_QUEUE_RESTORE
c5aa993b 1518 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
c906108c
SS
1519 restore_pc_queue (&fsr);
1520#endif
1521
1522 for (regnum = 31; regnum > 0; regnum--)
1523 if (fsr.regs[regnum])
53a5351d
JM
1524 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1525 REGISTER_SIZE));
c906108c 1526
c5aa993b 1527 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
c906108c
SS
1528 if (fsr.regs[regnum])
1529 {
c5aa993b
JM
1530 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1531 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
c906108c
SS
1532 }
1533
1534 if (fsr.regs[IPSW_REGNUM])
1535 write_register (IPSW_REGNUM,
53a5351d
JM
1536 read_memory_integer (fsr.regs[IPSW_REGNUM],
1537 REGISTER_SIZE));
c906108c
SS
1538
1539 if (fsr.regs[SAR_REGNUM])
1540 write_register (SAR_REGNUM,
53a5351d
JM
1541 read_memory_integer (fsr.regs[SAR_REGNUM],
1542 REGISTER_SIZE));
c906108c
SS
1543
1544 /* If the PC was explicitly saved, then just restore it. */
1545 if (fsr.regs[PCOQ_TAIL_REGNUM])
1546 {
53a5351d
JM
1547 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1548 REGISTER_SIZE);
c906108c
SS
1549 write_register (PCOQ_TAIL_REGNUM, npc);
1550 }
1551 /* Else use the value in %rp to set the new PC. */
c5aa993b 1552 else
c906108c
SS
1553 {
1554 npc = read_register (RP_REGNUM);
1555 write_pc (npc);
1556 }
1557
53a5351d 1558 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
c906108c 1559
c5aa993b 1560 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
c906108c
SS
1561 write_register (SP_REGNUM, fp - 48);
1562 else
1563 write_register (SP_REGNUM, fp);
1564
1565 /* The PC we just restored may be inside a return trampoline. If so
1566 we want to restart the inferior and run it through the trampoline.
1567
1568 Do this by setting a momentary breakpoint at the location the
1569 trampoline returns to.
1570
1571 Don't skip through the trampoline if we're popping a dummy frame. */
1572 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1573 if (target_pc && !fsr.regs[IPSW_REGNUM])
1574 {
1575 struct symtab_and_line sal;
1576 struct breakpoint *breakpoint;
1577 struct cleanup *old_chain;
1578
1579 /* Set up our breakpoint. Set it to be silent as the MI code
c5aa993b 1580 for "return_command" will print the frame we returned to. */
c906108c
SS
1581 sal = find_pc_line (target_pc, 0);
1582 sal.pc = target_pc;
1583 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1584 breakpoint->silent = 1;
1585
1586 /* So we can clean things up. */
4d6140d9 1587 old_chain = make_cleanup_delete_breakpoint (breakpoint);
c906108c
SS
1588
1589 /* Start up the inferior. */
1590 clear_proceed_status ();
1591 proceed_to_finish = 1;
2acceee2 1592 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
c906108c
SS
1593
1594 /* Perform our cleanups. */
1595 do_cleanups (old_chain);
1596 }
1597 flush_cached_frames ();
1598}
1599
1600/* After returning to a dummy on the stack, restore the instruction
1601 queue space registers. */
1602
1603static int
fba45db2 1604restore_pc_queue (struct frame_saved_regs *fsr)
c906108c
SS
1605{
1606 CORE_ADDR pc = read_pc ();
53a5351d
JM
1607 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1608 TARGET_PTR_BIT / 8);
c906108c
SS
1609 struct target_waitstatus w;
1610 int insn_count;
1611
1612 /* Advance past break instruction in the call dummy. */
1613 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1614 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1615
1616 /* HPUX doesn't let us set the space registers or the space
1617 registers of the PC queue through ptrace. Boo, hiss.
1618 Conveniently, the call dummy has this sequence of instructions
1619 after the break:
c5aa993b
JM
1620 mtsp r21, sr0
1621 ble,n 0(sr0, r22)
1622
c906108c
SS
1623 So, load up the registers and single step until we are in the
1624 right place. */
1625
53a5351d
JM
1626 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1627 REGISTER_SIZE));
c906108c
SS
1628 write_register (22, new_pc);
1629
1630 for (insn_count = 0; insn_count < 3; insn_count++)
1631 {
1632 /* FIXME: What if the inferior gets a signal right now? Want to
c5aa993b
JM
1633 merge this into wait_for_inferior (as a special kind of
1634 watchpoint? By setting a breakpoint at the end? Is there
1635 any other choice? Is there *any* way to do this stuff with
1636 ptrace() or some equivalent?). */
c906108c 1637 resume (1, 0);
39f77062 1638 target_wait (inferior_ptid, &w);
c906108c
SS
1639
1640 if (w.kind == TARGET_WAITKIND_SIGNALLED)
c5aa993b
JM
1641 {
1642 stop_signal = w.value.sig;
1643 terminal_ours_for_output ();
1644 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
c906108c
SS
1645 target_signal_to_name (stop_signal),
1646 target_signal_to_string (stop_signal));
c5aa993b
JM
1647 gdb_flush (gdb_stdout);
1648 return 0;
1649 }
c906108c
SS
1650 }
1651 target_terminal_ours ();
1652 target_fetch_registers (-1);
1653 return 1;
1654}
1655
c2c6d25f
JM
1656
1657#ifdef PA20W_CALLING_CONVENTIONS
1658
53a5351d
JM
1659/* This function pushes a stack frame with arguments as part of the
1660 inferior function calling mechanism.
c906108c 1661
c2c6d25f
JM
1662 This is the version for the PA64, in which later arguments appear
1663 at higher addresses. (The stack always grows towards higher
1664 addresses.)
c906108c 1665
53a5351d
JM
1666 We simply allocate the appropriate amount of stack space and put
1667 arguments into their proper slots. The call dummy code will copy
1668 arguments into registers as needed by the ABI.
c906108c 1669
c2c6d25f
JM
1670 This ABI also requires that the caller provide an argument pointer
1671 to the callee, so we do that too. */
53a5351d 1672
c906108c 1673CORE_ADDR
ea7c478f 1674hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1675 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1676{
1677 /* array of arguments' offsets */
c5aa993b 1678 int *offset = (int *) alloca (nargs * sizeof (int));
53a5351d
JM
1679
1680 /* array of arguments' lengths: real lengths in bytes, not aligned to
1681 word size */
c5aa993b 1682 int *lengths = (int *) alloca (nargs * sizeof (int));
c906108c 1683
53a5351d
JM
1684 /* The value of SP as it was passed into this function after
1685 aligning. */
1686 CORE_ADDR orig_sp = STACK_ALIGN (sp);
c906108c 1687
53a5351d
JM
1688 /* The number of stack bytes occupied by the current argument. */
1689 int bytes_reserved;
1690
1691 /* The total number of bytes reserved for the arguments. */
1692 int cum_bytes_reserved = 0;
c906108c 1693
53a5351d
JM
1694 /* Similarly, but aligned. */
1695 int cum_bytes_aligned = 0;
1696 int i;
c5aa993b 1697
53a5351d 1698 /* Iterate over each argument provided by the user. */
c906108c
SS
1699 for (i = 0; i < nargs; i++)
1700 {
c2c6d25f
JM
1701 struct type *arg_type = VALUE_TYPE (args[i]);
1702
1703 /* Integral scalar values smaller than a register are padded on
1704 the left. We do this by promoting them to full-width,
1705 although the ABI says to pad them with garbage. */
1706 if (is_integral_type (arg_type)
1707 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1708 {
1709 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1710 ? builtin_type_unsigned_long
1711 : builtin_type_long),
1712 args[i]);
1713 arg_type = VALUE_TYPE (args[i]);
1714 }
1715
1716 lengths[i] = TYPE_LENGTH (arg_type);
c906108c 1717
53a5351d
JM
1718 /* Align the size of the argument to the word size for this
1719 target. */
1720 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
c906108c 1721
53a5351d
JM
1722 offset[i] = cum_bytes_reserved;
1723
c2c6d25f
JM
1724 /* Aggregates larger than eight bytes (the only types larger
1725 than eight bytes we have) are aligned on a 16-byte boundary,
1726 possibly padded on the right with garbage. This may leave an
1727 empty word on the stack, and thus an unused register, as per
1728 the ABI. */
1729 if (bytes_reserved > 8)
1730 {
1731 /* Round up the offset to a multiple of two slots. */
1732 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1733 & -(2*REGISTER_SIZE));
c906108c 1734
c2c6d25f
JM
1735 /* Note the space we've wasted, if any. */
1736 bytes_reserved += new_offset - offset[i];
1737 offset[i] = new_offset;
1738 }
53a5351d 1739
c2c6d25f
JM
1740 cum_bytes_reserved += bytes_reserved;
1741 }
1742
1743 /* CUM_BYTES_RESERVED already accounts for all the arguments
1744 passed by the user. However, the ABIs mandate minimum stack space
1745 allocations for outgoing arguments.
1746
1747 The ABIs also mandate minimum stack alignments which we must
1748 preserve. */
1749 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1750 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1751
1752 /* Now write each of the args at the proper offset down the stack. */
1753 for (i = 0; i < nargs; i++)
1754 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1755
1756 /* If a structure has to be returned, set up register 28 to hold its
1757 address */
1758 if (struct_return)
1759 write_register (28, struct_addr);
1760
1761 /* For the PA64 we must pass a pointer to the outgoing argument list.
1762 The ABI mandates that the pointer should point to the first byte of
1763 storage beyond the register flushback area.
1764
1765 However, the call dummy expects the outgoing argument pointer to
1766 be passed in register %r4. */
1767 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1768
1769 /* ?!? This needs further work. We need to set up the global data
1770 pointer for this procedure. This assumes the same global pointer
1771 for every procedure. The call dummy expects the dp value to
1772 be passed in register %r6. */
1773 write_register (6, read_register (27));
1774
1775 /* The stack will have 64 bytes of additional space for a frame marker. */
1776 return sp + 64;
1777}
1778
1779#else
1780
1781/* This function pushes a stack frame with arguments as part of the
1782 inferior function calling mechanism.
1783
1784 This is the version of the function for the 32-bit PA machines, in
1785 which later arguments appear at lower addresses. (The stack always
1786 grows towards higher addresses.)
1787
1788 We simply allocate the appropriate amount of stack space and put
1789 arguments into their proper slots. The call dummy code will copy
1790 arguments into registers as needed by the ABI. */
1791
1792CORE_ADDR
ea7c478f 1793hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1794 int struct_return, CORE_ADDR struct_addr)
c2c6d25f
JM
1795{
1796 /* array of arguments' offsets */
1797 int *offset = (int *) alloca (nargs * sizeof (int));
1798
1799 /* array of arguments' lengths: real lengths in bytes, not aligned to
1800 word size */
1801 int *lengths = (int *) alloca (nargs * sizeof (int));
1802
1803 /* The number of stack bytes occupied by the current argument. */
1804 int bytes_reserved;
1805
1806 /* The total number of bytes reserved for the arguments. */
1807 int cum_bytes_reserved = 0;
1808
1809 /* Similarly, but aligned. */
1810 int cum_bytes_aligned = 0;
1811 int i;
1812
1813 /* Iterate over each argument provided by the user. */
1814 for (i = 0; i < nargs; i++)
1815 {
1816 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1817
1818 /* Align the size of the argument to the word size for this
1819 target. */
1820 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1821
b6649e88
AC
1822 offset[i] = (cum_bytes_reserved
1823 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
c2c6d25f
JM
1824
1825 /* If the argument is a double word argument, then it needs to be
1826 double word aligned. */
53a5351d 1827 if ((bytes_reserved == 2 * REGISTER_SIZE)
c2c6d25f 1828 && (offset[i] % 2 * REGISTER_SIZE))
c5aa993b
JM
1829 {
1830 int new_offset = 0;
53a5351d
JM
1831 /* BYTES_RESERVED is already aligned to the word, so we put
1832 the argument at one word more down the stack.
1833
1834 This will leave one empty word on the stack, and one unused
1835 register as mandated by the ABI. */
1836 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1837 & -(2 * REGISTER_SIZE));
1838
1839 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
c5aa993b 1840 {
53a5351d
JM
1841 bytes_reserved += REGISTER_SIZE;
1842 offset[i] += REGISTER_SIZE;
c5aa993b
JM
1843 }
1844 }
c906108c
SS
1845
1846 cum_bytes_reserved += bytes_reserved;
1847
1848 }
1849
c2c6d25f
JM
1850 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1851 by the user. However, the ABI mandates minimum stack space
53a5351d
JM
1852 allocations for outgoing arguments.
1853
c2c6d25f 1854 The ABI also mandates minimum stack alignments which we must
53a5351d 1855 preserve. */
c906108c 1856 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
53a5351d
JM
1857 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1858
1859 /* Now write each of the args at the proper offset down the stack.
53a5351d
JM
1860 ?!? We need to promote values to a full register instead of skipping
1861 words in the stack. */
c906108c
SS
1862 for (i = 0; i < nargs; i++)
1863 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
c906108c 1864
53a5351d
JM
1865 /* If a structure has to be returned, set up register 28 to hold its
1866 address */
c906108c
SS
1867 if (struct_return)
1868 write_register (28, struct_addr);
1869
53a5351d 1870 /* The stack will have 32 bytes of additional space for a frame marker. */
c906108c
SS
1871 return sp + 32;
1872}
1873
c2c6d25f 1874#endif
c906108c
SS
1875
1876/* elz: this function returns a value which is built looking at the given address.
1877 It is called from call_function_by_hand, in case we need to return a
1878 value which is larger than 64 bits, and it is stored in the stack rather than
1879 in the registers r28 and r29 or fr4.
1880 This function does the same stuff as value_being_returned in values.c, but
1881 gets the value from the stack rather than from the buffer where all the
1882 registers were saved when the function called completed. */
ea7c478f 1883struct value *
fba45db2 1884hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
c906108c 1885{
ea7c478f 1886 register struct value *val;
c906108c
SS
1887
1888 val = allocate_value (valtype);
1889 CHECK_TYPEDEF (valtype);
c5aa993b 1890 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
c906108c
SS
1891
1892 return val;
1893}
1894
1895
1896
1897/* elz: Used to lookup a symbol in the shared libraries.
c5aa993b
JM
1898 This function calls shl_findsym, indirectly through a
1899 call to __d_shl_get. __d_shl_get is in end.c, which is always
1900 linked in by the hp compilers/linkers.
1901 The call to shl_findsym cannot be made directly because it needs
1902 to be active in target address space.
1903 inputs: - minimal symbol pointer for the function we want to look up
1904 - address in target space of the descriptor for the library
1905 where we want to look the symbol up.
1906 This address is retrieved using the
1907 som_solib_get_solib_by_pc function (somsolib.c).
1908 output: - real address in the library of the function.
1909 note: the handle can be null, in which case shl_findsym will look for
1910 the symbol in all the loaded shared libraries.
1911 files to look at if you need reference on this stuff:
1912 dld.c, dld_shl_findsym.c
1913 end.c
1914 man entry for shl_findsym */
c906108c
SS
1915
1916CORE_ADDR
fba45db2 1917find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
c906108c 1918{
c5aa993b
JM
1919 struct symbol *get_sym, *symbol2;
1920 struct minimal_symbol *buff_minsym, *msymbol;
1921 struct type *ftype;
ea7c478f
AC
1922 struct value **args;
1923 struct value *funcval;
1924 struct value *val;
c5aa993b
JM
1925
1926 int x, namelen, err_value, tmp = -1;
1927 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1928 CORE_ADDR stub_addr;
1929
1930
ea7c478f 1931 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
c5aa993b
JM
1932 funcval = find_function_in_inferior ("__d_shl_get");
1933 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1934 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1935 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1936 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1937 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1938 namelen = strlen (SYMBOL_NAME (function));
1939 value_return_addr = endo_buff_addr + namelen;
1940 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1941
1942 /* do alignment */
1943 if ((x = value_return_addr % 64) != 0)
1944 value_return_addr = value_return_addr + 64 - x;
1945
1946 errno_return_addr = value_return_addr + 64;
1947
1948
1949 /* set up stuff needed by __d_shl_get in buffer in end.o */
1950
1951 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1952
1953 target_write_memory (value_return_addr, (char *) &tmp, 4);
1954
1955 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1956
1957 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1958 (char *) &handle, 4);
1959
1960 /* now prepare the arguments for the call */
1961
1962 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
4478b372
JB
1963 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1964 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
c5aa993b 1965 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
4478b372
JB
1966 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1967 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
c5aa993b
JM
1968
1969 /* now call the function */
1970
1971 val = call_function_by_hand (funcval, 6, args);
1972
1973 /* now get the results */
1974
1975 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1976
1977 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
1978 if (stub_addr <= 0)
104c1213 1979 error ("call to __d_shl_get failed, error code is %d", err_value);
c5aa993b
JM
1980
1981 return (stub_addr);
c906108c
SS
1982}
1983
c5aa993b 1984/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
a0b3c4fd
JM
1985static int
1986cover_find_stub_with_shl_get (PTR args_untyped)
c906108c 1987{
a0b3c4fd
JM
1988 args_for_find_stub *args = args_untyped;
1989 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
1990 return 0;
c906108c
SS
1991}
1992
c906108c
SS
1993/* Insert the specified number of args and function address
1994 into a call sequence of the above form stored at DUMMYNAME.
1995
1996 On the hppa we need to call the stack dummy through $$dyncall.
1997 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1998 real_pc, which is the location where gdb should start up the
cce74817
JM
1999 inferior to do the function call.
2000
2001 This has to work across several versions of hpux, bsd, osf1. It has to
2002 work regardless of what compiler was used to build the inferior program.
2003 It should work regardless of whether or not end.o is available. It has
2004 to work even if gdb can not call into the dynamic loader in the inferior
2005 to query it for symbol names and addresses.
2006
2007 Yes, all those cases should work. Luckily code exists to handle most
2008 of them. The complexity is in selecting exactly what scheme should
2009 be used to perform the inferior call.
2010
2011 At the current time this routine is known not to handle cases where
2012 the program was linked with HP's compiler without including end.o.
2013
2014 Please contact Jeff Law (law@cygnus.com) before changing this code. */
c906108c
SS
2015
2016CORE_ADDR
fba45db2 2017hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 2018 struct value **args, struct type *type, int gcc_p)
c906108c
SS
2019{
2020 CORE_ADDR dyncall_addr;
2021 struct minimal_symbol *msymbol;
2022 struct minimal_symbol *trampoline;
2023 int flags = read_register (FLAGS_REGNUM);
cce74817
JM
2024 struct unwind_table_entry *u = NULL;
2025 CORE_ADDR new_stub = 0;
2026 CORE_ADDR solib_handle = 0;
2027
2028 /* Nonzero if we will use GCC's PLT call routine. This routine must be
c2c6d25f
JM
2029 passed an import stub, not a PLABEL. It is also necessary to set %r19
2030 (the PIC register) before performing the call.
c906108c 2031
cce74817
JM
2032 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2033 are calling the target directly. When using __d_plt_call we want to
2034 use a PLABEL instead of an import stub. */
2035 int using_gcc_plt_call = 1;
2036
53a5351d
JM
2037#ifdef GDB_TARGET_IS_HPPA_20W
2038 /* We currently use completely different code for the PA2.0W inferior
2039 function call sequences. This needs to be cleaned up. */
2040 {
2041 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2042 struct target_waitstatus w;
2043 int inst1, inst2;
2044 char buf[4];
2045 int status;
2046 struct objfile *objfile;
2047
2048 /* We can not modify the PC space queues directly, so we start
2049 up the inferior and execute a couple instructions to set the
2050 space queues so that they point to the call dummy in the stack. */
2051 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2052 sr5 = read_register (SR5_REGNUM);
2053 if (1)
2054 {
2055 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2056 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2057 if (target_read_memory (pcoqh, buf, 4) != 0)
2058 error ("Couldn't modify space queue\n");
2059 inst1 = extract_unsigned_integer (buf, 4);
2060
2061 if (target_read_memory (pcoqt, buf, 4) != 0)
2062 error ("Couldn't modify space queue\n");
2063 inst2 = extract_unsigned_integer (buf, 4);
2064
2065 /* BVE (r1) */
2066 *((int *) buf) = 0xe820d000;
2067 if (target_write_memory (pcoqh, buf, 4) != 0)
2068 error ("Couldn't modify space queue\n");
2069
2070 /* NOP */
2071 *((int *) buf) = 0x08000240;
2072 if (target_write_memory (pcoqt, buf, 4) != 0)
2073 {
2074 *((int *) buf) = inst1;
2075 target_write_memory (pcoqh, buf, 4);
2076 error ("Couldn't modify space queue\n");
2077 }
2078
2079 write_register (1, pc);
2080
2081 /* Single step twice, the BVE instruction will set the space queue
2082 such that it points to the PC value written immediately above
2083 (ie the call dummy). */
2084 resume (1, 0);
39f77062 2085 target_wait (inferior_ptid, &w);
53a5351d 2086 resume (1, 0);
39f77062 2087 target_wait (inferior_ptid, &w);
53a5351d
JM
2088
2089 /* Restore the two instructions at the old PC locations. */
2090 *((int *) buf) = inst1;
2091 target_write_memory (pcoqh, buf, 4);
2092 *((int *) buf) = inst2;
2093 target_write_memory (pcoqt, buf, 4);
2094 }
2095
2096 /* The call dummy wants the ultimate destination address initially
2097 in register %r5. */
2098 write_register (5, fun);
2099
2100 /* We need to see if this objfile has a different DP value than our
c2c6d25f 2101 own (it could be a shared library for example). */
53a5351d
JM
2102 ALL_OBJFILES (objfile)
2103 {
2104 struct obj_section *s;
2105 obj_private_data_t *obj_private;
2106
2107 /* See if FUN is in any section within this shared library. */
2108 for (s = objfile->sections; s < objfile->sections_end; s++)
2109 if (s->addr <= fun && fun < s->endaddr)
2110 break;
2111
2112 if (s >= objfile->sections_end)
2113 continue;
2114
2115 obj_private = (obj_private_data_t *) objfile->obj_private;
2116
2117 /* The DP value may be different for each objfile. But within an
2118 objfile each function uses the same dp value. Thus we do not need
2119 to grope around the opd section looking for dp values.
2120
2121 ?!? This is not strictly correct since we may be in a shared library
2122 and want to call back into the main program. To make that case
2123 work correctly we need to set obj_private->dp for the main program's
2124 objfile, then remove this conditional. */
2125 if (obj_private->dp)
2126 write_register (27, obj_private->dp);
2127 break;
2128 }
2129 return pc;
2130 }
2131#endif
2132
2133#ifndef GDB_TARGET_IS_HPPA_20W
cce74817 2134 /* Prefer __gcc_plt_call over the HP supplied routine because
c5aa993b 2135 __gcc_plt_call works for any number of arguments. */
c906108c 2136 trampoline = NULL;
cce74817
JM
2137 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2138 using_gcc_plt_call = 0;
2139
c906108c
SS
2140 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2141 if (msymbol == NULL)
cce74817 2142 error ("Can't find an address for $$dyncall trampoline");
c906108c
SS
2143
2144 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2145
2146 /* FUN could be a procedure label, in which case we have to get
cce74817
JM
2147 its real address and the value of its GOT/DP if we plan to
2148 call the routine via gcc_plt_call. */
2149 if ((fun & 0x2) && using_gcc_plt_call)
c906108c
SS
2150 {
2151 /* Get the GOT/DP value for the target function. It's
c5aa993b
JM
2152 at *(fun+4). Note the call dummy is *NOT* allowed to
2153 trash %r19 before calling the target function. */
53a5351d
JM
2154 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2155 REGISTER_SIZE));
c906108c
SS
2156
2157 /* Now get the real address for the function we are calling, it's
c5aa993b 2158 at *fun. */
53a5351d
JM
2159 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2160 TARGET_PTR_BIT / 8);
c906108c
SS
2161 }
2162 else
2163 {
2164
2165#ifndef GDB_TARGET_IS_PA_ELF
cce74817 2166 /* FUN could be an export stub, the real address of a function, or
c5aa993b
JM
2167 a PLABEL. When using gcc's PLT call routine we must call an import
2168 stub rather than the export stub or real function for lazy binding
2169 to work correctly
cce74817 2170
39f77062 2171 If we are using the gcc PLT call routine, then we need to
c5aa993b 2172 get the import stub for the target function. */
cce74817 2173 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
c906108c
SS
2174 {
2175 struct objfile *objfile;
2176 struct minimal_symbol *funsymbol, *stub_symbol;
2177 CORE_ADDR newfun = 0;
2178
2179 funsymbol = lookup_minimal_symbol_by_pc (fun);
2180 if (!funsymbol)
4ce44c66 2181 error ("Unable to find minimal symbol for target function.\n");
c906108c
SS
2182
2183 /* Search all the object files for an import symbol with the
2184 right name. */
2185 ALL_OBJFILES (objfile)
c5aa993b
JM
2186 {
2187 stub_symbol
2188 = lookup_minimal_symbol_solib_trampoline
2189 (SYMBOL_NAME (funsymbol), NULL, objfile);
2190
2191 if (!stub_symbol)
2192 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2193 NULL, objfile);
2194
2195 /* Found a symbol with the right name. */
2196 if (stub_symbol)
2197 {
2198 struct unwind_table_entry *u;
2199 /* It must be a shared library trampoline. */
2200 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2201 continue;
2202
2203 /* It must also be an import stub. */
2204 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
6426a772
JM
2205 if (u == NULL
2206 || (u->stub_unwind.stub_type != IMPORT
2207#ifdef GDB_NATIVE_HPUX_11
2208 /* Sigh. The hpux 10.20 dynamic linker will blow
2209 chunks if we perform a call to an unbound function
2210 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2211 linker will blow chunks if we do not call the
2212 unbound function via the IMPORT_SHLIB stub.
2213
2214 We currently have no way to select bevahior on just
2215 the target. However, we only support HPUX/SOM in
2216 native mode. So we conditinalize on a native
2217 #ifdef. Ugly. Ugly. Ugly */
2218 && u->stub_unwind.stub_type != IMPORT_SHLIB
2219#endif
2220 ))
c5aa993b
JM
2221 continue;
2222
2223 /* OK. Looks like the correct import stub. */
2224 newfun = SYMBOL_VALUE (stub_symbol);
2225 fun = newfun;
6426a772
JM
2226
2227 /* If we found an IMPORT stub, then we want to stop
2228 searching now. If we found an IMPORT_SHLIB, we want
2229 to continue the search in the hopes that we will find
2230 an IMPORT stub. */
2231 if (u->stub_unwind.stub_type == IMPORT)
2232 break;
c5aa993b
JM
2233 }
2234 }
cce74817
JM
2235
2236 /* Ouch. We did not find an import stub. Make an attempt to
2237 do the right thing instead of just croaking. Most of the
2238 time this will actually work. */
c906108c
SS
2239 if (newfun == 0)
2240 write_register (19, som_solib_get_got_by_pc (fun));
cce74817
JM
2241
2242 u = find_unwind_entry (fun);
c5aa993b 2243 if (u
cce74817
JM
2244 && (u->stub_unwind.stub_type == IMPORT
2245 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2246 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2247
2248 /* If we found the import stub in the shared library, then we have
2249 to set %r19 before we call the stub. */
2250 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2251 write_register (19, som_solib_get_got_by_pc (fun));
c906108c 2252 }
c906108c
SS
2253#endif
2254 }
2255
cce74817
JM
2256 /* If we are calling into another load module then have sr4export call the
2257 magic __d_plt_call routine which is linked in from end.o.
c906108c 2258
cce74817
JM
2259 You can't use _sr4export to make the call as the value in sp-24 will get
2260 fried and you end up returning to the wrong location. You can't call the
2261 target as the code to bind the PLT entry to a function can't return to a
2262 stack address.
2263
2264 Also, query the dynamic linker in the inferior to provide a suitable
2265 PLABEL for the target function. */
c5aa993b 2266 if (!using_gcc_plt_call)
c906108c
SS
2267 {
2268 CORE_ADDR new_fun;
2269
cce74817 2270 /* Get a handle for the shared library containing FUN. Given the
c5aa993b 2271 handle we can query the shared library for a PLABEL. */
cce74817 2272 solib_handle = som_solib_get_solib_by_pc (fun);
c906108c 2273
cce74817 2274 if (solib_handle)
c906108c 2275 {
cce74817 2276 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
c906108c 2277
cce74817
JM
2278 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2279
2280 if (trampoline == NULL)
2281 {
2282 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2283 }
2284
2285 /* This is where sr4export will jump to. */
2286 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2287
2288 /* If the function is in a shared library, then call __d_shl_get to
2289 get a PLABEL for the target function. */
2290 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2291
c5aa993b 2292 if (new_stub == 0)
cce74817 2293 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
c906108c
SS
2294
2295 /* We have to store the address of the stub in __shlib_funcptr. */
cce74817 2296 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
c5aa993b 2297 (struct objfile *) NULL);
c906108c 2298
cce74817
JM
2299 if (msymbol == NULL)
2300 error ("Can't find an address for __shlib_funcptr");
2301 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
c5aa993b 2302 (char *) &new_stub, 4);
c906108c
SS
2303
2304 /* We want sr4export to call __d_plt_call, so we claim it is
2305 the final target. Clear trampoline. */
cce74817
JM
2306 fun = new_fun;
2307 trampoline = NULL;
c906108c
SS
2308 }
2309 }
2310
2311 /* Store upper 21 bits of function address into ldil. fun will either be
2312 the final target (most cases) or __d_plt_call when calling into a shared
2313 library and __gcc_plt_call is not available. */
2314 store_unsigned_integer
2315 (&dummy[FUNC_LDIL_OFFSET],
2316 INSTRUCTION_SIZE,
2317 deposit_21 (fun >> 11,
2318 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2319 INSTRUCTION_SIZE)));
2320
2321 /* Store lower 11 bits of function address into ldo */
2322 store_unsigned_integer
2323 (&dummy[FUNC_LDO_OFFSET],
2324 INSTRUCTION_SIZE,
2325 deposit_14 (fun & MASK_11,
2326 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2327 INSTRUCTION_SIZE)));
2328#ifdef SR4EXPORT_LDIL_OFFSET
2329
2330 {
2331 CORE_ADDR trampoline_addr;
2332
2333 /* We may still need sr4export's address too. */
2334
2335 if (trampoline == NULL)
2336 {
2337 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2338 if (msymbol == NULL)
cce74817 2339 error ("Can't find an address for _sr4export trampoline");
c906108c
SS
2340
2341 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2342 }
2343 else
2344 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2345
2346
2347 /* Store upper 21 bits of trampoline's address into ldil */
2348 store_unsigned_integer
2349 (&dummy[SR4EXPORT_LDIL_OFFSET],
2350 INSTRUCTION_SIZE,
2351 deposit_21 (trampoline_addr >> 11,
2352 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2353 INSTRUCTION_SIZE)));
2354
2355 /* Store lower 11 bits of trampoline's address into ldo */
2356 store_unsigned_integer
2357 (&dummy[SR4EXPORT_LDO_OFFSET],
2358 INSTRUCTION_SIZE,
2359 deposit_14 (trampoline_addr & MASK_11,
2360 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2361 INSTRUCTION_SIZE)));
2362 }
2363#endif
2364
2365 write_register (22, pc);
2366
2367 /* If we are in a syscall, then we should call the stack dummy
2368 directly. $$dyncall is not needed as the kernel sets up the
2369 space id registers properly based on the value in %r31. In
2370 fact calling $$dyncall will not work because the value in %r22
2371 will be clobbered on the syscall exit path.
2372
2373 Similarly if the current PC is in a shared library. Note however,
2374 this scheme won't work if the shared library isn't mapped into
2375 the same space as the stack. */
2376 if (flags & 2)
2377 return pc;
2378#ifndef GDB_TARGET_IS_PA_ELF
39f77062 2379 else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid)))
c906108c
SS
2380 return pc;
2381#endif
2382 else
2383 return dyncall_addr;
53a5351d 2384#endif
c906108c
SS
2385}
2386
2387
2388
2389
2390/* If the pid is in a syscall, then the FP register is not readable.
2391 We'll return zero in that case, rather than attempting to read it
2392 and cause a warning. */
2393CORE_ADDR
fba45db2 2394target_read_fp (int pid)
c906108c
SS
2395{
2396 int flags = read_register (FLAGS_REGNUM);
2397
c5aa993b
JM
2398 if (flags & 2)
2399 {
2400 return (CORE_ADDR) 0;
2401 }
c906108c
SS
2402
2403 /* This is the only site that may directly read_register () the FP
2404 register. All others must use TARGET_READ_FP (). */
2405 return read_register (FP_REGNUM);
2406}
2407
2408
2409/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2410 bits. */
2411
2412CORE_ADDR
39f77062 2413target_read_pc (ptid_t ptid)
c906108c 2414{
39f77062 2415 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2416
2417 /* The following test does not belong here. It is OS-specific, and belongs
2418 in native code. */
2419 /* Test SS_INSYSCALL */
2420 if (flags & 2)
39f77062 2421 return read_register_pid (31, ptid) & ~0x3;
c906108c 2422
39f77062 2423 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
c906108c
SS
2424}
2425
2426/* Write out the PC. If currently in a syscall, then also write the new
2427 PC value into %r31. */
2428
2429void
39f77062 2430target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 2431{
39f77062 2432 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2433
2434 /* The following test does not belong here. It is OS-specific, and belongs
2435 in native code. */
2436 /* If in a syscall, then set %r31. Also make sure to get the
2437 privilege bits set correctly. */
2438 /* Test SS_INSYSCALL */
2439 if (flags & 2)
39f77062 2440 write_register_pid (31, v | 0x3, ptid);
c906108c 2441
39f77062
KB
2442 write_register_pid (PC_REGNUM, v, ptid);
2443 write_register_pid (NPC_REGNUM, v + 4, ptid);
c906108c
SS
2444}
2445
2446/* return the alignment of a type in bytes. Structures have the maximum
2447 alignment required by their fields. */
2448
2449static int
fba45db2 2450hppa_alignof (struct type *type)
c906108c
SS
2451{
2452 int max_align, align, i;
2453 CHECK_TYPEDEF (type);
2454 switch (TYPE_CODE (type))
2455 {
2456 case TYPE_CODE_PTR:
2457 case TYPE_CODE_INT:
2458 case TYPE_CODE_FLT:
2459 return TYPE_LENGTH (type);
2460 case TYPE_CODE_ARRAY:
2461 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2462 case TYPE_CODE_STRUCT:
2463 case TYPE_CODE_UNION:
2464 max_align = 1;
2465 for (i = 0; i < TYPE_NFIELDS (type); i++)
2466 {
2467 /* Bit fields have no real alignment. */
2468 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 2469 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
2470 {
2471 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2472 max_align = max (max_align, align);
2473 }
2474 }
2475 return max_align;
2476 default:
2477 return 4;
2478 }
2479}
2480
2481/* Print the register regnum, or all registers if regnum is -1 */
2482
2483void
fba45db2 2484pa_do_registers_info (int regnum, int fpregs)
c906108c 2485{
c5aa993b 2486 char raw_regs[REGISTER_BYTES];
c906108c
SS
2487 int i;
2488
2489 /* Make a copy of gdb's save area (may cause actual
2490 reads from the target). */
2491 for (i = 0; i < NUM_REGS; i++)
cda5a58a 2492 frame_register_read (selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2493
2494 if (regnum == -1)
2495 pa_print_registers (raw_regs, regnum, fpregs);
c5aa993b
JM
2496 else if (regnum < FP4_REGNUM)
2497 {
2498 long reg_val[2];
2499
2500 /* Why is the value not passed through "extract_signed_integer"
2501 as in "pa_print_registers" below? */
2502 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2503
2504 if (!is_pa_2)
2505 {
ce414844 2506 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2507 }
c906108c 2508 else
c5aa993b
JM
2509 {
2510 /* Fancy % formats to prevent leading zeros. */
2511 if (reg_val[0] == 0)
ce414844 2512 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2513 else
ce414844 2514 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
c5aa993b
JM
2515 reg_val[0], reg_val[1]);
2516 }
c906108c 2517 }
c906108c 2518 else
c5aa993b
JM
2519 /* Note that real floating point values only start at
2520 FP4_REGNUM. FP0 and up are just status and error
2521 registers, which have integral (bit) values. */
c906108c
SS
2522 pa_print_fp_reg (regnum);
2523}
2524
2525/********** new function ********************/
2526void
fba45db2
KB
2527pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2528 enum precision_type precision)
c906108c 2529{
c5aa993b 2530 char raw_regs[REGISTER_BYTES];
c906108c
SS
2531 int i;
2532
2533 /* Make a copy of gdb's save area (may cause actual
c5aa993b 2534 reads from the target). */
c906108c 2535 for (i = 0; i < NUM_REGS; i++)
cda5a58a 2536 frame_register_read (selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2537
2538 if (regnum == -1)
2539 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2540
c5aa993b
JM
2541 else if (regnum < FP4_REGNUM)
2542 {
2543 long reg_val[2];
2544
2545 /* Why is the value not passed through "extract_signed_integer"
2546 as in "pa_print_registers" below? */
2547 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
c906108c 2548
c5aa993b
JM
2549 if (!is_pa_2)
2550 {
ce414844 2551 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2552 }
c906108c 2553 else
c5aa993b
JM
2554 {
2555 /* Fancy % formats to prevent leading zeros. */
2556 if (reg_val[0] == 0)
ce414844 2557 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
c5aa993b
JM
2558 reg_val[1]);
2559 else
ce414844 2560 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
c5aa993b
JM
2561 reg_val[0], reg_val[1]);
2562 }
c906108c 2563 }
c906108c 2564 else
c5aa993b
JM
2565 /* Note that real floating point values only start at
2566 FP4_REGNUM. FP0 and up are just status and error
2567 registers, which have integral (bit) values. */
c906108c
SS
2568 pa_strcat_fp_reg (regnum, stream, precision);
2569}
2570
2571/* If this is a PA2.0 machine, fetch the real 64-bit register
2572 value. Otherwise use the info from gdb's saved register area.
2573
2574 Note that reg_val is really expected to be an array of longs,
2575 with two elements. */
2576static void
fba45db2 2577pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
c906108c 2578{
c5aa993b 2579 static int know_which = 0; /* False */
c906108c 2580
c5aa993b 2581 int regaddr;
c906108c
SS
2582 unsigned int offset;
2583 register int i;
c5aa993b
JM
2584 int start;
2585
2586
c906108c
SS
2587 char buf[MAX_REGISTER_RAW_SIZE];
2588 long long reg_val;
2589
c5aa993b
JM
2590 if (!know_which)
2591 {
2592 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2593 {
2594 is_pa_2 = (1 == 1);
2595 }
2596
2597 know_which = 1; /* True */
2598 }
c906108c
SS
2599
2600 raw_val[0] = 0;
2601 raw_val[1] = 0;
2602
c5aa993b
JM
2603 if (!is_pa_2)
2604 {
2605 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
c906108c 2606 return;
c5aa993b 2607 }
c906108c
SS
2608
2609 /* Code below copied from hppah-nat.c, with fixes for wide
2610 registers, using different area of save_state, etc. */
2611 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
c5aa993b
JM
2612 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2613 {
c906108c 2614 /* Use narrow regs area of save_state and default macro. */
c5aa993b
JM
2615 offset = U_REGS_OFFSET;
2616 regaddr = register_addr (regnum, offset);
2617 start = 1;
2618 }
2619 else
2620 {
c906108c
SS
2621 /* Use wide regs area, and calculate registers as 8 bytes wide.
2622
2623 We'd like to do this, but current version of "C" doesn't
2624 permit "offsetof":
2625
c5aa993b 2626 offset = offsetof(save_state_t, ss_wide);
c906108c
SS
2627
2628 Note that to avoid "C" doing typed pointer arithmetic, we
2629 have to cast away the type in our offset calculation:
2630 otherwise we get an offset of 1! */
2631
7a292a7a 2632 /* NB: save_state_t is not available before HPUX 9.
c5aa993b 2633 The ss_wide field is not available previous to HPUX 10.20,
7a292a7a
SS
2634 so to avoid compile-time warnings, we only compile this for
2635 PA 2.0 processors. This control path should only be followed
2636 if we're debugging a PA 2.0 processor, so this should not cause
2637 problems. */
2638
c906108c
SS
2639 /* #if the following code out so that this file can still be
2640 compiled on older HPUX boxes (< 10.20) which don't have
2641 this structure/structure member. */
2642#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2643 save_state_t temp;
2644
2645 offset = ((int) &temp.ss_wide) - ((int) &temp);
2646 regaddr = offset + regnum * 8;
c5aa993b 2647 start = 0;
c906108c 2648#endif
c5aa993b
JM
2649 }
2650
2651 for (i = start; i < 2; i++)
c906108c
SS
2652 {
2653 errno = 0;
39f77062 2654 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
c5aa993b 2655 (PTRACE_ARG3_TYPE) regaddr, 0);
c906108c
SS
2656 if (errno != 0)
2657 {
2658 /* Warning, not error, in case we are attached; sometimes the
2659 kernel doesn't let us at the registers. */
2660 char *err = safe_strerror (errno);
2661 char *msg = alloca (strlen (err) + 128);
2662 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2663 warning (msg);
2664 goto error_exit;
2665 }
2666
2667 regaddr += sizeof (long);
2668 }
c5aa993b 2669
c906108c 2670 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
c5aa993b 2671 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
c906108c
SS
2672
2673error_exit:
2674 ;
2675}
2676
2677/* "Info all-reg" command */
c5aa993b 2678
c906108c 2679static void
fba45db2 2680pa_print_registers (char *raw_regs, int regnum, int fpregs)
c906108c 2681{
c5aa993b 2682 int i, j;
adf40b2e
JM
2683 /* Alas, we are compiled so that "long long" is 32 bits */
2684 long raw_val[2];
c906108c 2685 long long_val;
a0b3c4fd 2686 int rows = 48, columns = 2;
c906108c 2687
adf40b2e 2688 for (i = 0; i < rows; i++)
c906108c 2689 {
adf40b2e 2690 for (j = 0; j < columns; j++)
c906108c 2691 {
adf40b2e
JM
2692 /* We display registers in column-major order. */
2693 int regnum = i + j * rows;
2694
c5aa993b
JM
2695 /* Q: Why is the value passed through "extract_signed_integer",
2696 while above, in "pa_do_registers_info" it isn't?
2697 A: ? */
adf40b2e 2698 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
c5aa993b
JM
2699
2700 /* Even fancier % formats to prevent leading zeros
2701 and still maintain the output in columns. */
2702 if (!is_pa_2)
2703 {
2704 /* Being big-endian, on this machine the low bits
2705 (the ones we want to look at) are in the second longword. */
2706 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844 2707 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2708 REGISTER_NAME (regnum), long_val);
c5aa993b
JM
2709 }
2710 else
2711 {
2712 /* raw_val = extract_signed_integer(&raw_val, 8); */
2713 if (raw_val[0] == 0)
ce414844 2714 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2715 REGISTER_NAME (regnum), raw_val[1]);
c5aa993b 2716 else
ce414844 2717 printf_filtered ("%10.10s: %8lx%8.8lx ",
a0b3c4fd 2718 REGISTER_NAME (regnum),
c5aa993b
JM
2719 raw_val[0], raw_val[1]);
2720 }
c906108c
SS
2721 }
2722 printf_unfiltered ("\n");
2723 }
c5aa993b 2724
c906108c 2725 if (fpregs)
c5aa993b 2726 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2727 pa_print_fp_reg (i);
2728}
2729
c5aa993b 2730/************* new function ******************/
c906108c 2731static void
fba45db2
KB
2732pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2733 struct ui_file *stream)
c906108c 2734{
c5aa993b
JM
2735 int i, j;
2736 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
c906108c
SS
2737 long long_val;
2738 enum precision_type precision;
2739
2740 precision = unspecified_precision;
2741
2742 for (i = 0; i < 18; i++)
2743 {
2744 for (j = 0; j < 4; j++)
2745 {
c5aa993b
JM
2746 /* Q: Why is the value passed through "extract_signed_integer",
2747 while above, in "pa_do_registers_info" it isn't?
2748 A: ? */
2749 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2750
2751 /* Even fancier % formats to prevent leading zeros
2752 and still maintain the output in columns. */
2753 if (!is_pa_2)
2754 {
2755 /* Being big-endian, on this machine the low bits
2756 (the ones we want to look at) are in the second longword. */
2757 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844
AC
2758 fprintf_filtered (stream, "%8.8s: %8lx ",
2759 REGISTER_NAME (i + (j * 18)), long_val);
c5aa993b
JM
2760 }
2761 else
2762 {
2763 /* raw_val = extract_signed_integer(&raw_val, 8); */
2764 if (raw_val[0] == 0)
ce414844
AC
2765 fprintf_filtered (stream, "%8.8s: %8lx ",
2766 REGISTER_NAME (i + (j * 18)), raw_val[1]);
c5aa993b 2767 else
ce414844
AC
2768 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2769 REGISTER_NAME (i + (j * 18)), raw_val[0],
2770 raw_val[1]);
c5aa993b 2771 }
c906108c
SS
2772 }
2773 fprintf_unfiltered (stream, "\n");
2774 }
c5aa993b 2775
c906108c 2776 if (fpregs)
c5aa993b 2777 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2778 pa_strcat_fp_reg (i, stream, precision);
2779}
2780
2781static void
fba45db2 2782pa_print_fp_reg (int i)
c906108c
SS
2783{
2784 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2785 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2786
2787 /* Get 32bits of data. */
cda5a58a 2788 frame_register_read (selected_frame, i, raw_buffer);
c906108c
SS
2789
2790 /* Put it in the buffer. No conversions are ever necessary. */
2791 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2792
2793 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2794 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2795 fputs_filtered ("(single precision) ", gdb_stdout);
2796
2797 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2798 1, 0, Val_pretty_default);
2799 printf_filtered ("\n");
2800
2801 /* If "i" is even, then this register can also be a double-precision
2802 FP register. Dump it out as such. */
2803 if ((i % 2) == 0)
2804 {
2805 /* Get the data in raw format for the 2nd half. */
cda5a58a 2806 frame_register_read (selected_frame, i + 1, raw_buffer);
c906108c
SS
2807
2808 /* Copy it into the appropriate part of the virtual buffer. */
2809 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2810 REGISTER_RAW_SIZE (i));
2811
2812 /* Dump it as a double. */
2813 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2814 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2815 fputs_filtered ("(double precision) ", gdb_stdout);
2816
2817 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2818 1, 0, Val_pretty_default);
2819 printf_filtered ("\n");
2820 }
2821}
2822
2823/*************** new function ***********************/
2824static void
fba45db2 2825pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
c906108c
SS
2826{
2827 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2828 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2829
2830 fputs_filtered (REGISTER_NAME (i), stream);
2831 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2832
2833 /* Get 32bits of data. */
cda5a58a 2834 frame_register_read (selected_frame, i, raw_buffer);
c906108c
SS
2835
2836 /* Put it in the buffer. No conversions are ever necessary. */
2837 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2838
2839 if (precision == double_precision && (i % 2) == 0)
2840 {
2841
c5aa993b
JM
2842 char raw_buf[MAX_REGISTER_RAW_SIZE];
2843
2844 /* Get the data in raw format for the 2nd half. */
cda5a58a 2845 frame_register_read (selected_frame, i + 1, raw_buf);
c5aa993b
JM
2846
2847 /* Copy it into the appropriate part of the virtual buffer. */
2848 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
c906108c 2849
c5aa993b
JM
2850 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2851 1, 0, Val_pretty_default);
c906108c
SS
2852
2853 }
c5aa993b
JM
2854 else
2855 {
2856 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2857 1, 0, Val_pretty_default);
2858 }
c906108c
SS
2859
2860}
2861
2862/* Return one if PC is in the call path of a trampoline, else return zero.
2863
2864 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2865 just shared library trampolines (import, export). */
2866
2867int
fba45db2 2868in_solib_call_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
2869{
2870 struct minimal_symbol *minsym;
2871 struct unwind_table_entry *u;
2872 static CORE_ADDR dyncall = 0;
2873 static CORE_ADDR sr4export = 0;
2874
c2c6d25f
JM
2875#ifdef GDB_TARGET_IS_HPPA_20W
2876 /* PA64 has a completely different stub/trampoline scheme. Is it
2877 better? Maybe. It's certainly harder to determine with any
2878 certainty that we are in a stub because we can not refer to the
2879 unwinders to help.
2880
2881 The heuristic is simple. Try to lookup the current PC value in th
2882 minimal symbol table. If that fails, then assume we are not in a
2883 stub and return.
2884
2885 Then see if the PC value falls within the section bounds for the
2886 section containing the minimal symbol we found in the first
2887 step. If it does, then assume we are not in a stub and return.
2888
2889 Finally peek at the instructions to see if they look like a stub. */
2890 {
2891 struct minimal_symbol *minsym;
2892 asection *sec;
2893 CORE_ADDR addr;
2894 int insn, i;
2895
2896 minsym = lookup_minimal_symbol_by_pc (pc);
2897 if (! minsym)
2898 return 0;
2899
2900 sec = SYMBOL_BFD_SECTION (minsym);
2901
2902 if (sec->vma <= pc
2903 && sec->vma + sec->_cooked_size < pc)
2904 return 0;
2905
2906 /* We might be in a stub. Peek at the instructions. Stubs are 3
2907 instructions long. */
2908 insn = read_memory_integer (pc, 4);
2909
b84a8afe 2910 /* Find out where we think we are within the stub. */
c2c6d25f
JM
2911 if ((insn & 0xffffc00e) == 0x53610000)
2912 addr = pc;
2913 else if ((insn & 0xffffffff) == 0xe820d000)
2914 addr = pc - 4;
2915 else if ((insn & 0xffffc00e) == 0x537b0000)
2916 addr = pc - 8;
2917 else
2918 return 0;
2919
2920 /* Now verify each insn in the range looks like a stub instruction. */
2921 insn = read_memory_integer (addr, 4);
2922 if ((insn & 0xffffc00e) != 0x53610000)
2923 return 0;
2924
2925 /* Now verify each insn in the range looks like a stub instruction. */
2926 insn = read_memory_integer (addr + 4, 4);
2927 if ((insn & 0xffffffff) != 0xe820d000)
2928 return 0;
2929
2930 /* Now verify each insn in the range looks like a stub instruction. */
2931 insn = read_memory_integer (addr + 8, 4);
2932 if ((insn & 0xffffc00e) != 0x537b0000)
2933 return 0;
2934
2935 /* Looks like a stub. */
2936 return 1;
2937 }
2938#endif
2939
2940 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2941 new exec file */
c906108c
SS
2942
2943 /* First see if PC is in one of the two C-library trampolines. */
2944 if (!dyncall)
2945 {
2946 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2947 if (minsym)
2948 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2949 else
2950 dyncall = -1;
2951 }
2952
2953 if (!sr4export)
2954 {
2955 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2956 if (minsym)
2957 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2958 else
2959 sr4export = -1;
2960 }
2961
2962 if (pc == dyncall || pc == sr4export)
2963 return 1;
2964
104c1213
JM
2965 minsym = lookup_minimal_symbol_by_pc (pc);
2966 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
2967 return 1;
2968
c906108c
SS
2969 /* Get the unwind descriptor corresponding to PC, return zero
2970 if no unwind was found. */
2971 u = find_unwind_entry (pc);
2972 if (!u)
2973 return 0;
2974
2975 /* If this isn't a linker stub, then return now. */
2976 if (u->stub_unwind.stub_type == 0)
2977 return 0;
2978
2979 /* By definition a long-branch stub is a call stub. */
2980 if (u->stub_unwind.stub_type == LONG_BRANCH)
2981 return 1;
2982
2983 /* The call and return path execute the same instructions within
2984 an IMPORT stub! So an IMPORT stub is both a call and return
2985 trampoline. */
2986 if (u->stub_unwind.stub_type == IMPORT)
2987 return 1;
2988
2989 /* Parameter relocation stubs always have a call path and may have a
2990 return path. */
2991 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2992 || u->stub_unwind.stub_type == EXPORT)
2993 {
2994 CORE_ADDR addr;
2995
2996 /* Search forward from the current PC until we hit a branch
c5aa993b 2997 or the end of the stub. */
c906108c
SS
2998 for (addr = pc; addr <= u->region_end; addr += 4)
2999 {
3000 unsigned long insn;
3001
3002 insn = read_memory_integer (addr, 4);
3003
3004 /* Does it look like a bl? If so then it's the call path, if
3005 we find a bv or be first, then we're on the return path. */
3006 if ((insn & 0xfc00e000) == 0xe8000000)
3007 return 1;
3008 else if ((insn & 0xfc00e001) == 0xe800c000
3009 || (insn & 0xfc000000) == 0xe0000000)
3010 return 0;
3011 }
3012
3013 /* Should never happen. */
104c1213
JM
3014 warning ("Unable to find branch in parameter relocation stub.\n");
3015 return 0;
c906108c
SS
3016 }
3017
3018 /* Unknown stub type. For now, just return zero. */
104c1213 3019 return 0;
c906108c
SS
3020}
3021
3022/* Return one if PC is in the return path of a trampoline, else return zero.
3023
3024 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3025 just shared library trampolines (import, export). */
3026
3027int
fba45db2 3028in_solib_return_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3029{
3030 struct unwind_table_entry *u;
3031
3032 /* Get the unwind descriptor corresponding to PC, return zero
3033 if no unwind was found. */
3034 u = find_unwind_entry (pc);
3035 if (!u)
3036 return 0;
3037
3038 /* If this isn't a linker stub or it's just a long branch stub, then
3039 return zero. */
3040 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3041 return 0;
3042
3043 /* The call and return path execute the same instructions within
3044 an IMPORT stub! So an IMPORT stub is both a call and return
3045 trampoline. */
3046 if (u->stub_unwind.stub_type == IMPORT)
3047 return 1;
3048
3049 /* Parameter relocation stubs always have a call path and may have a
3050 return path. */
3051 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3052 || u->stub_unwind.stub_type == EXPORT)
3053 {
3054 CORE_ADDR addr;
3055
3056 /* Search forward from the current PC until we hit a branch
c5aa993b 3057 or the end of the stub. */
c906108c
SS
3058 for (addr = pc; addr <= u->region_end; addr += 4)
3059 {
3060 unsigned long insn;
3061
3062 insn = read_memory_integer (addr, 4);
3063
3064 /* Does it look like a bl? If so then it's the call path, if
3065 we find a bv or be first, then we're on the return path. */
3066 if ((insn & 0xfc00e000) == 0xe8000000)
3067 return 0;
3068 else if ((insn & 0xfc00e001) == 0xe800c000
3069 || (insn & 0xfc000000) == 0xe0000000)
3070 return 1;
3071 }
3072
3073 /* Should never happen. */
104c1213
JM
3074 warning ("Unable to find branch in parameter relocation stub.\n");
3075 return 0;
c906108c
SS
3076 }
3077
3078 /* Unknown stub type. For now, just return zero. */
104c1213 3079 return 0;
c906108c
SS
3080
3081}
3082
3083/* Figure out if PC is in a trampoline, and if so find out where
3084 the trampoline will jump to. If not in a trampoline, return zero.
3085
3086 Simple code examination probably is not a good idea since the code
3087 sequences in trampolines can also appear in user code.
3088
3089 We use unwinds and information from the minimal symbol table to
3090 determine when we're in a trampoline. This won't work for ELF
3091 (yet) since it doesn't create stub unwind entries. Whether or
3092 not ELF will create stub unwinds or normal unwinds for linker
3093 stubs is still being debated.
3094
3095 This should handle simple calls through dyncall or sr4export,
3096 long calls, argument relocation stubs, and dyncall/sr4export
3097 calling an argument relocation stub. It even handles some stubs
3098 used in dynamic executables. */
3099
c906108c 3100CORE_ADDR
fba45db2 3101skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c
SS
3102{
3103 long orig_pc = pc;
3104 long prev_inst, curr_inst, loc;
3105 static CORE_ADDR dyncall = 0;
3106 static CORE_ADDR dyncall_external = 0;
3107 static CORE_ADDR sr4export = 0;
3108 struct minimal_symbol *msym;
3109 struct unwind_table_entry *u;
3110
c2c6d25f
JM
3111 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3112 new exec file */
c906108c
SS
3113
3114 if (!dyncall)
3115 {
3116 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3117 if (msym)
3118 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3119 else
3120 dyncall = -1;
3121 }
3122
3123 if (!dyncall_external)
3124 {
3125 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3126 if (msym)
3127 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3128 else
3129 dyncall_external = -1;
3130 }
3131
3132 if (!sr4export)
3133 {
3134 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3135 if (msym)
3136 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3137 else
3138 sr4export = -1;
3139 }
3140
3141 /* Addresses passed to dyncall may *NOT* be the actual address
3142 of the function. So we may have to do something special. */
3143 if (pc == dyncall)
3144 {
3145 pc = (CORE_ADDR) read_register (22);
3146
3147 /* If bit 30 (counting from the left) is on, then pc is the address of
c5aa993b
JM
3148 the PLT entry for this function, not the address of the function
3149 itself. Bit 31 has meaning too, but only for MPE. */
c906108c 3150 if (pc & 0x2)
53a5351d 3151 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3152 }
3153 if (pc == dyncall_external)
3154 {
3155 pc = (CORE_ADDR) read_register (22);
53a5351d 3156 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3157 }
3158 else if (pc == sr4export)
3159 pc = (CORE_ADDR) (read_register (22));
3160
3161 /* Get the unwind descriptor corresponding to PC, return zero
3162 if no unwind was found. */
3163 u = find_unwind_entry (pc);
3164 if (!u)
3165 return 0;
3166
3167 /* If this isn't a linker stub, then return now. */
3168 /* elz: attention here! (FIXME) because of a compiler/linker
3169 error, some stubs which should have a non zero stub_unwind.stub_type
3170 have unfortunately a value of zero. So this function would return here
3171 as if we were not in a trampoline. To fix this, we go look at the partial
3172 symbol information, which reports this guy as a stub.
3173 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3174 partial symbol information is also wrong sometimes. This is because
3175 when it is entered (somread.c::som_symtab_read()) it can happen that
3176 if the type of the symbol (from the som) is Entry, and the symbol is
3177 in a shared library, then it can also be a trampoline. This would
3178 be OK, except that I believe the way they decide if we are ina shared library
3179 does not work. SOOOO..., even if we have a regular function w/o trampolines
3180 its minimal symbol can be assigned type mst_solib_trampoline.
3181 Also, if we find that the symbol is a real stub, then we fix the unwind
3182 descriptor, and define the stub type to be EXPORT.
c5aa993b 3183 Hopefully this is correct most of the times. */
c906108c 3184 if (u->stub_unwind.stub_type == 0)
c5aa993b 3185 {
c906108c
SS
3186
3187/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3188 we can delete all the code which appears between the lines */
3189/*--------------------------------------------------------------------------*/
c5aa993b 3190 msym = lookup_minimal_symbol_by_pc (pc);
c906108c 3191
c5aa993b
JM
3192 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3193 return orig_pc == pc ? 0 : pc & ~0x3;
3194
3195 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3196 {
3197 struct objfile *objfile;
3198 struct minimal_symbol *msymbol;
3199 int function_found = 0;
3200
3201 /* go look if there is another minimal symbol with the same name as
3202 this one, but with type mst_text. This would happen if the msym
3203 is an actual trampoline, in which case there would be another
3204 symbol with the same name corresponding to the real function */
3205
3206 ALL_MSYMBOLS (objfile, msymbol)
3207 {
3208 if (MSYMBOL_TYPE (msymbol) == mst_text
3209 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3210 {
3211 function_found = 1;
3212 break;
3213 }
3214 }
3215
3216 if (function_found)
3217 /* the type of msym is correct (mst_solib_trampoline), but
3218 the unwind info is wrong, so set it to the correct value */
3219 u->stub_unwind.stub_type = EXPORT;
3220 else
3221 /* the stub type info in the unwind is correct (this is not a
3222 trampoline), but the msym type information is wrong, it
3223 should be mst_text. So we need to fix the msym, and also
3224 get out of this function */
3225 {
3226 MSYMBOL_TYPE (msym) = mst_text;
3227 return orig_pc == pc ? 0 : pc & ~0x3;
3228 }
3229 }
c906108c 3230
c906108c 3231/*--------------------------------------------------------------------------*/
c5aa993b 3232 }
c906108c
SS
3233
3234 /* It's a stub. Search for a branch and figure out where it goes.
3235 Note we have to handle multi insn branch sequences like ldil;ble.
3236 Most (all?) other branches can be determined by examining the contents
3237 of certain registers and the stack. */
3238
3239 loc = pc;
3240 curr_inst = 0;
3241 prev_inst = 0;
3242 while (1)
3243 {
3244 /* Make sure we haven't walked outside the range of this stub. */
3245 if (u != find_unwind_entry (loc))
3246 {
3247 warning ("Unable to find branch in linker stub");
3248 return orig_pc == pc ? 0 : pc & ~0x3;
3249 }
3250
3251 prev_inst = curr_inst;
3252 curr_inst = read_memory_integer (loc, 4);
3253
3254 /* Does it look like a branch external using %r1? Then it's the
c5aa993b 3255 branch from the stub to the actual function. */
c906108c
SS
3256 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3257 {
3258 /* Yup. See if the previous instruction loaded
3259 a value into %r1. If so compute and return the jump address. */
3260 if ((prev_inst & 0xffe00000) == 0x20200000)
3261 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3262 else
3263 {
3264 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3265 return orig_pc == pc ? 0 : pc & ~0x3;
3266 }
3267 }
3268
3269 /* Does it look like a be 0(sr0,%r21)? OR
3270 Does it look like a be, n 0(sr0,%r21)? OR
3271 Does it look like a bve (r21)? (this is on PA2.0)
3272 Does it look like a bve, n(r21)? (this is also on PA2.0)
3273 That's the branch from an
c5aa993b 3274 import stub to an export stub.
c906108c 3275
c5aa993b
JM
3276 It is impossible to determine the target of the branch via
3277 simple examination of instructions and/or data (consider
3278 that the address in the plabel may be the address of the
3279 bind-on-reference routine in the dynamic loader).
c906108c 3280
c5aa993b 3281 So we have try an alternative approach.
c906108c 3282
c5aa993b
JM
3283 Get the name of the symbol at our current location; it should
3284 be a stub symbol with the same name as the symbol in the
3285 shared library.
c906108c 3286
c5aa993b
JM
3287 Then lookup a minimal symbol with the same name; we should
3288 get the minimal symbol for the target routine in the shared
3289 library as those take precedence of import/export stubs. */
c906108c 3290 if ((curr_inst == 0xe2a00000) ||
c5aa993b
JM
3291 (curr_inst == 0xe2a00002) ||
3292 (curr_inst == 0xeaa0d000) ||
3293 (curr_inst == 0xeaa0d002))
c906108c
SS
3294 {
3295 struct minimal_symbol *stubsym, *libsym;
3296
3297 stubsym = lookup_minimal_symbol_by_pc (loc);
3298 if (stubsym == NULL)
3299 {
ce414844 3300 warning ("Unable to find symbol for 0x%lx", loc);
c906108c
SS
3301 return orig_pc == pc ? 0 : pc & ~0x3;
3302 }
3303
3304 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3305 if (libsym == NULL)
3306 {
3307 warning ("Unable to find library symbol for %s\n",
3308 SYMBOL_NAME (stubsym));
3309 return orig_pc == pc ? 0 : pc & ~0x3;
3310 }
3311
3312 return SYMBOL_VALUE (libsym);
3313 }
3314
3315 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
c5aa993b
JM
3316 branch from the stub to the actual function. */
3317 /*elz */
c906108c
SS
3318 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3319 || (curr_inst & 0xffe0e000) == 0xe8000000
c5aa993b 3320 || (curr_inst & 0xffe0e000) == 0xe800A000)
c906108c
SS
3321 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3322
3323 /* Does it look like bv (rp)? Note this depends on the
c5aa993b
JM
3324 current stack pointer being the same as the stack
3325 pointer in the stub itself! This is a branch on from the
3326 stub back to the original caller. */
3327 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
c906108c
SS
3328 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3329 {
3330 /* Yup. See if the previous instruction loaded
3331 rp from sp - 8. */
3332 if (prev_inst == 0x4bc23ff1)
3333 return (read_memory_integer
3334 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3335 else
3336 {
3337 warning ("Unable to find restore of %%rp before bv (%%rp).");
3338 return orig_pc == pc ? 0 : pc & ~0x3;
3339 }
3340 }
3341
3342 /* elz: added this case to capture the new instruction
3343 at the end of the return part of an export stub used by
3344 the PA2.0: BVE, n (rp) */
3345 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3346 {
c5aa993b 3347 return (read_memory_integer
53a5351d 3348 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3349 }
3350
3351 /* What about be,n 0(sr0,%rp)? It's just another way we return to
c5aa993b 3352 the original caller from the stub. Used in dynamic executables. */
c906108c
SS
3353 else if (curr_inst == 0xe0400002)
3354 {
3355 /* The value we jump to is sitting in sp - 24. But that's
3356 loaded several instructions before the be instruction.
3357 I guess we could check for the previous instruction being
3358 mtsp %r1,%sr0 if we want to do sanity checking. */
c5aa993b 3359 return (read_memory_integer
53a5351d 3360 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3361 }
3362
3363 /* Haven't found the branch yet, but we're still in the stub.
c5aa993b 3364 Keep looking. */
c906108c
SS
3365 loc += 4;
3366 }
3367}
3368
3369
3370/* For the given instruction (INST), return any adjustment it makes
3371 to the stack pointer or zero for no adjustment.
3372
3373 This only handles instructions commonly found in prologues. */
3374
3375static int
fba45db2 3376prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
3377{
3378 /* This must persist across calls. */
3379 static int save_high21;
3380
3381 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3382 if ((inst & 0xffffc000) == 0x37de0000)
3383 return extract_14 (inst);
3384
3385 /* stwm X,D(sp) */
3386 if ((inst & 0xffe00000) == 0x6fc00000)
3387 return extract_14 (inst);
3388
104c1213
JM
3389 /* std,ma X,D(sp) */
3390 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 3391 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 3392
c906108c
SS
3393 /* addil high21,%r1; ldo low11,(%r1),%r30)
3394 save high bits in save_high21 for later use. */
3395 if ((inst & 0xffe00000) == 0x28200000)
3396 {
3397 save_high21 = extract_21 (inst);
3398 return 0;
3399 }
3400
3401 if ((inst & 0xffff0000) == 0x343e0000)
3402 return save_high21 + extract_14 (inst);
3403
3404 /* fstws as used by the HP compilers. */
3405 if ((inst & 0xffffffe0) == 0x2fd01220)
3406 return extract_5_load (inst);
3407
3408 /* No adjustment. */
3409 return 0;
3410}
3411
3412/* Return nonzero if INST is a branch of some kind, else return zero. */
3413
3414static int
fba45db2 3415is_branch (unsigned long inst)
c906108c
SS
3416{
3417 switch (inst >> 26)
3418 {
3419 case 0x20:
3420 case 0x21:
3421 case 0x22:
3422 case 0x23:
7be570e7 3423 case 0x27:
c906108c
SS
3424 case 0x28:
3425 case 0x29:
3426 case 0x2a:
3427 case 0x2b:
7be570e7 3428 case 0x2f:
c906108c
SS
3429 case 0x30:
3430 case 0x31:
3431 case 0x32:
3432 case 0x33:
3433 case 0x38:
3434 case 0x39:
3435 case 0x3a:
7be570e7 3436 case 0x3b:
c906108c
SS
3437 return 1;
3438
3439 default:
3440 return 0;
3441 }
3442}
3443
3444/* Return the register number for a GR which is saved by INST or
3445 zero it INST does not save a GR. */
3446
3447static int
fba45db2 3448inst_saves_gr (unsigned long inst)
c906108c
SS
3449{
3450 /* Does it look like a stw? */
7be570e7
JM
3451 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3452 || (inst >> 26) == 0x1f
3453 || ((inst >> 26) == 0x1f
3454 && ((inst >> 6) == 0xa)))
3455 return extract_5R_store (inst);
3456
3457 /* Does it look like a std? */
3458 if ((inst >> 26) == 0x1c
3459 || ((inst >> 26) == 0x03
3460 && ((inst >> 6) & 0xf) == 0xb))
c906108c
SS
3461 return extract_5R_store (inst);
3462
3463 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3464 if ((inst >> 26) == 0x1b)
3465 return extract_5R_store (inst);
3466
3467 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3468 too. */
7be570e7
JM
3469 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3470 || ((inst >> 26) == 0x3
3471 && (((inst >> 6) & 0xf) == 0x8
3472 || (inst >> 6) & 0xf) == 0x9))
c906108c 3473 return extract_5R_store (inst);
c5aa993b 3474
c906108c
SS
3475 return 0;
3476}
3477
3478/* Return the register number for a FR which is saved by INST or
3479 zero it INST does not save a FR.
3480
3481 Note we only care about full 64bit register stores (that's the only
3482 kind of stores the prologue will use).
3483
3484 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3485
3486static int
fba45db2 3487inst_saves_fr (unsigned long inst)
c906108c 3488{
7be570e7 3489 /* is this an FSTD ? */
c906108c
SS
3490 if ((inst & 0xfc00dfc0) == 0x2c001200)
3491 return extract_5r_store (inst);
7be570e7
JM
3492 if ((inst & 0xfc000002) == 0x70000002)
3493 return extract_5R_store (inst);
3494 /* is this an FSTW ? */
c906108c
SS
3495 if ((inst & 0xfc00df80) == 0x24001200)
3496 return extract_5r_store (inst);
7be570e7
JM
3497 if ((inst & 0xfc000002) == 0x7c000000)
3498 return extract_5R_store (inst);
c906108c
SS
3499 return 0;
3500}
3501
3502/* Advance PC across any function entry prologue instructions
3503 to reach some "real" code.
3504
3505 Use information in the unwind table to determine what exactly should
3506 be in the prologue. */
3507
3508
3509CORE_ADDR
fba45db2 3510skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
3511{
3512 char buf[4];
3513 CORE_ADDR orig_pc = pc;
3514 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3515 unsigned long args_stored, status, i, restart_gr, restart_fr;
3516 struct unwind_table_entry *u;
3517
3518 restart_gr = 0;
3519 restart_fr = 0;
3520
3521restart:
3522 u = find_unwind_entry (pc);
3523 if (!u)
3524 return pc;
3525
c5aa993b 3526 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
3527 if ((pc & ~0x3) != u->region_start)
3528 return pc;
3529
3530 /* This is how much of a frame adjustment we need to account for. */
3531 stack_remaining = u->Total_frame_size << 3;
3532
3533 /* Magic register saves we want to know about. */
3534 save_rp = u->Save_RP;
3535 save_sp = u->Save_SP;
3536
3537 /* An indication that args may be stored into the stack. Unfortunately
3538 the HPUX compilers tend to set this in cases where no args were
3539 stored too!. */
3540 args_stored = 1;
3541
3542 /* Turn the Entry_GR field into a bitmask. */
3543 save_gr = 0;
3544 for (i = 3; i < u->Entry_GR + 3; i++)
3545 {
3546 /* Frame pointer gets saved into a special location. */
3547 if (u->Save_SP && i == FP_REGNUM)
3548 continue;
3549
3550 save_gr |= (1 << i);
3551 }
3552 save_gr &= ~restart_gr;
3553
3554 /* Turn the Entry_FR field into a bitmask too. */
3555 save_fr = 0;
3556 for (i = 12; i < u->Entry_FR + 12; i++)
3557 save_fr |= (1 << i);
3558 save_fr &= ~restart_fr;
3559
3560 /* Loop until we find everything of interest or hit a branch.
3561
3562 For unoptimized GCC code and for any HP CC code this will never ever
3563 examine any user instructions.
3564
3565 For optimzied GCC code we're faced with problems. GCC will schedule
3566 its prologue and make prologue instructions available for delay slot
3567 filling. The end result is user code gets mixed in with the prologue
3568 and a prologue instruction may be in the delay slot of the first branch
3569 or call.
3570
3571 Some unexpected things are expected with debugging optimized code, so
3572 we allow this routine to walk past user instructions in optimized
3573 GCC code. */
3574 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3575 || args_stored)
3576 {
3577 unsigned int reg_num;
3578 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3579 unsigned long old_save_rp, old_save_sp, next_inst;
3580
3581 /* Save copies of all the triggers so we can compare them later
c5aa993b 3582 (only for HPC). */
c906108c
SS
3583 old_save_gr = save_gr;
3584 old_save_fr = save_fr;
3585 old_save_rp = save_rp;
3586 old_save_sp = save_sp;
3587 old_stack_remaining = stack_remaining;
3588
3589 status = target_read_memory (pc, buf, 4);
3590 inst = extract_unsigned_integer (buf, 4);
c5aa993b 3591
c906108c
SS
3592 /* Yow! */
3593 if (status != 0)
3594 return pc;
3595
3596 /* Note the interesting effects of this instruction. */
3597 stack_remaining -= prologue_inst_adjust_sp (inst);
3598
7be570e7
JM
3599 /* There are limited ways to store the return pointer into the
3600 stack. */
3601 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
3602 save_rp = 0;
3603
104c1213 3604 /* These are the only ways we save SP into the stack. At this time
c5aa993b 3605 the HP compilers never bother to save SP into the stack. */
104c1213
JM
3606 if ((inst & 0xffffc000) == 0x6fc10000
3607 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
3608 save_sp = 0;
3609
6426a772
JM
3610 /* Are we loading some register with an offset from the argument
3611 pointer? */
3612 if ((inst & 0xffe00000) == 0x37a00000
3613 || (inst & 0xffffffe0) == 0x081d0240)
3614 {
3615 pc += 4;
3616 continue;
3617 }
3618
c906108c
SS
3619 /* Account for general and floating-point register saves. */
3620 reg_num = inst_saves_gr (inst);
3621 save_gr &= ~(1 << reg_num);
3622
3623 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3624 Unfortunately args_stored only tells us that some arguments
3625 where stored into the stack. Not how many or what kind!
c906108c 3626
c5aa993b
JM
3627 This is a kludge as on the HP compiler sets this bit and it
3628 never does prologue scheduling. So once we see one, skip past
3629 all of them. We have similar code for the fp arg stores below.
c906108c 3630
c5aa993b
JM
3631 FIXME. Can still die if we have a mix of GR and FR argument
3632 stores! */
6426a772 3633 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 3634 {
6426a772 3635 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
3636 {
3637 pc += 4;
3638 status = target_read_memory (pc, buf, 4);
3639 inst = extract_unsigned_integer (buf, 4);
3640 if (status != 0)
3641 return pc;
3642 reg_num = inst_saves_gr (inst);
3643 }
3644 args_stored = 0;
3645 continue;
3646 }
3647
3648 reg_num = inst_saves_fr (inst);
3649 save_fr &= ~(1 << reg_num);
3650
3651 status = target_read_memory (pc + 4, buf, 4);
3652 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 3653
c906108c
SS
3654 /* Yow! */
3655 if (status != 0)
3656 return pc;
3657
3658 /* We've got to be read to handle the ldo before the fp register
c5aa993b 3659 save. */
c906108c
SS
3660 if ((inst & 0xfc000000) == 0x34000000
3661 && inst_saves_fr (next_inst) >= 4
6426a772 3662 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3663 {
3664 /* So we drop into the code below in a reasonable state. */
3665 reg_num = inst_saves_fr (next_inst);
3666 pc -= 4;
3667 }
3668
3669 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3670 This is a kludge as on the HP compiler sets this bit and it
3671 never does prologue scheduling. So once we see one, skip past
3672 all of them. */
6426a772 3673 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 3674 {
6426a772 3675 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3676 {
3677 pc += 8;
3678 status = target_read_memory (pc, buf, 4);
3679 inst = extract_unsigned_integer (buf, 4);
3680 if (status != 0)
3681 return pc;
3682 if ((inst & 0xfc000000) != 0x34000000)
3683 break;
3684 status = target_read_memory (pc + 4, buf, 4);
3685 next_inst = extract_unsigned_integer (buf, 4);
3686 if (status != 0)
3687 return pc;
3688 reg_num = inst_saves_fr (next_inst);
3689 }
3690 args_stored = 0;
3691 continue;
3692 }
3693
3694 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3695 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3696 if (is_branch (inst))
3697 break;
3698
3699 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
3700 arguments were stored into the stack (boo hiss). This could
3701 cause this code to then skip a bunch of user insns (up to the
3702 first branch).
3703
3704 To combat this we try to identify when args_stored was bogusly
3705 set and clear it. We only do this when args_stored is nonzero,
3706 all other resources are accounted for, and nothing changed on
3707 this pass. */
c906108c 3708 if (args_stored
c5aa993b 3709 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
3710 && old_save_gr == save_gr && old_save_fr == save_fr
3711 && old_save_rp == save_rp && old_save_sp == save_sp
3712 && old_stack_remaining == stack_remaining)
3713 break;
c5aa993b 3714
c906108c
SS
3715 /* Bump the PC. */
3716 pc += 4;
3717 }
3718
3719 /* We've got a tenative location for the end of the prologue. However
3720 because of limitations in the unwind descriptor mechanism we may
3721 have went too far into user code looking for the save of a register
3722 that does not exist. So, if there registers we expected to be saved
3723 but never were, mask them out and restart.
3724
3725 This should only happen in optimized code, and should be very rare. */
c5aa993b 3726 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
3727 {
3728 pc = orig_pc;
3729 restart_gr = save_gr;
3730 restart_fr = save_fr;
3731 goto restart;
3732 }
3733
3734 return pc;
3735}
3736
3737
7be570e7
JM
3738/* Return the address of the PC after the last prologue instruction if
3739 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
3740
3741static CORE_ADDR
fba45db2 3742after_prologue (CORE_ADDR pc)
c906108c
SS
3743{
3744 struct symtab_and_line sal;
3745 CORE_ADDR func_addr, func_end;
3746 struct symbol *f;
3747
7be570e7
JM
3748 /* If we can not find the symbol in the partial symbol table, then
3749 there is no hope we can determine the function's start address
3750 with this code. */
c906108c 3751 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 3752 return 0;
c906108c 3753
7be570e7 3754 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
3755 sal = find_pc_line (func_addr, 0);
3756
7be570e7
JM
3757 /* There are only two cases to consider. First, the end of the source line
3758 is within the function bounds. In that case we return the end of the
3759 source line. Second is the end of the source line extends beyond the
3760 bounds of the current function. We need to use the slow code to
3761 examine instructions in that case.
c906108c 3762
7be570e7
JM
3763 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3764 the wrong thing to do. In fact, it should be entirely possible for this
3765 function to always return zero since the slow instruction scanning code
3766 is supposed to *always* work. If it does not, then it is a bug. */
3767 if (sal.end < func_end)
3768 return sal.end;
c5aa993b 3769 else
7be570e7 3770 return 0;
c906108c
SS
3771}
3772
3773/* To skip prologues, I use this predicate. Returns either PC itself
3774 if the code at PC does not look like a function prologue; otherwise
3775 returns an address that (if we're lucky) follows the prologue. If
3776 LENIENT, then we must skip everything which is involved in setting
3777 up the frame (it's OK to skip more, just so long as we don't skip
3778 anything which might clobber the registers which are being saved.
3779 Currently we must not skip more on the alpha, but we might the lenient
3780 stuff some day. */
3781
3782CORE_ADDR
fba45db2 3783hppa_skip_prologue (CORE_ADDR pc)
c906108c 3784{
c5aa993b
JM
3785 unsigned long inst;
3786 int offset;
3787 CORE_ADDR post_prologue_pc;
3788 char buf[4];
c906108c 3789
c5aa993b
JM
3790 /* See if we can determine the end of the prologue via the symbol table.
3791 If so, then return either PC, or the PC after the prologue, whichever
3792 is greater. */
c906108c 3793
c5aa993b 3794 post_prologue_pc = after_prologue (pc);
c906108c 3795
7be570e7
JM
3796 /* If after_prologue returned a useful address, then use it. Else
3797 fall back on the instruction skipping code.
3798
3799 Some folks have claimed this causes problems because the breakpoint
3800 may be the first instruction of the prologue. If that happens, then
3801 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
3802 if (post_prologue_pc != 0)
3803 return max (pc, post_prologue_pc);
c5aa993b
JM
3804 else
3805 return (skip_prologue_hard_way (pc));
c906108c
SS
3806}
3807
3808/* Put here the code to store, into a struct frame_saved_regs,
3809 the addresses of the saved registers of frame described by FRAME_INFO.
3810 This includes special registers such as pc and fp saved in special
3811 ways in the stack frame. sp is even more special:
3812 the address we return for it IS the sp for the next frame. */
3813
3814void
fba45db2
KB
3815hppa_frame_find_saved_regs (struct frame_info *frame_info,
3816 struct frame_saved_regs *frame_saved_regs)
c906108c
SS
3817{
3818 CORE_ADDR pc;
3819 struct unwind_table_entry *u;
3820 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3821 int status, i, reg;
3822 char buf[4];
3823 int fp_loc = -1;
d4f3574e 3824 int final_iteration;
c906108c
SS
3825
3826 /* Zero out everything. */
3827 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3828
3829 /* Call dummy frames always look the same, so there's no need to
3830 examine the dummy code to determine locations of saved registers;
3831 instead, let find_dummy_frame_regs fill in the correct offsets
3832 for the saved registers. */
3833 if ((frame_info->pc >= frame_info->frame
53a5351d
JM
3834 && frame_info->pc <= (frame_info->frame
3835 /* A call dummy is sized in words, but it is
3836 actually a series of instructions. Account
3837 for that scaling factor. */
3838 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3839 * CALL_DUMMY_LENGTH)
3840 /* Similarly we have to account for 64bit
3841 wide register saves. */
3842 + (32 * REGISTER_SIZE)
3843 /* We always consider FP regs 8 bytes long. */
3844 + (NUM_REGS - FP0_REGNUM) * 8
3845 /* Similarly we have to account for 64bit
3846 wide register saves. */
3847 + (6 * REGISTER_SIZE))))
c906108c
SS
3848 find_dummy_frame_regs (frame_info, frame_saved_regs);
3849
3850 /* Interrupt handlers are special too. They lay out the register
3851 state in the exact same order as the register numbers in GDB. */
3852 if (pc_in_interrupt_handler (frame_info->pc))
3853 {
3854 for (i = 0; i < NUM_REGS; i++)
3855 {
3856 /* SP is a little special. */
3857 if (i == SP_REGNUM)
3858 frame_saved_regs->regs[SP_REGNUM]
53a5351d
JM
3859 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3860 TARGET_PTR_BIT / 8);
c906108c
SS
3861 else
3862 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3863 }
3864 return;
3865 }
3866
3867#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3868 /* Handle signal handler callers. */
3869 if (frame_info->signal_handler_caller)
3870 {
3871 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3872 return;
3873 }
3874#endif
3875
3876 /* Get the starting address of the function referred to by the PC
3877 saved in frame. */
3878 pc = get_pc_function_start (frame_info->pc);
3879
3880 /* Yow! */
3881 u = find_unwind_entry (pc);
3882 if (!u)
3883 return;
3884
3885 /* This is how much of a frame adjustment we need to account for. */
3886 stack_remaining = u->Total_frame_size << 3;
3887
3888 /* Magic register saves we want to know about. */
3889 save_rp = u->Save_RP;
3890 save_sp = u->Save_SP;
3891
3892 /* Turn the Entry_GR field into a bitmask. */
3893 save_gr = 0;
3894 for (i = 3; i < u->Entry_GR + 3; i++)
3895 {
3896 /* Frame pointer gets saved into a special location. */
3897 if (u->Save_SP && i == FP_REGNUM)
3898 continue;
3899
3900 save_gr |= (1 << i);
3901 }
3902
3903 /* Turn the Entry_FR field into a bitmask too. */
3904 save_fr = 0;
3905 for (i = 12; i < u->Entry_FR + 12; i++)
3906 save_fr |= (1 << i);
3907
3908 /* The frame always represents the value of %sp at entry to the
3909 current function (and is thus equivalent to the "saved" stack
3910 pointer. */
3911 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3912
3913 /* Loop until we find everything of interest or hit a branch.
3914
3915 For unoptimized GCC code and for any HP CC code this will never ever
3916 examine any user instructions.
3917
7be570e7 3918 For optimized GCC code we're faced with problems. GCC will schedule
c906108c
SS
3919 its prologue and make prologue instructions available for delay slot
3920 filling. The end result is user code gets mixed in with the prologue
3921 and a prologue instruction may be in the delay slot of the first branch
3922 or call.
3923
3924 Some unexpected things are expected with debugging optimized code, so
3925 we allow this routine to walk past user instructions in optimized
3926 GCC code. */
d4f3574e
SS
3927 final_iteration = 0;
3928 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3929 && pc <= frame_info->pc)
c906108c
SS
3930 {
3931 status = target_read_memory (pc, buf, 4);
3932 inst = extract_unsigned_integer (buf, 4);
3933
3934 /* Yow! */
3935 if (status != 0)
3936 return;
3937
3938 /* Note the interesting effects of this instruction. */
3939 stack_remaining -= prologue_inst_adjust_sp (inst);
3940
104c1213
JM
3941 /* There are limited ways to store the return pointer into the
3942 stack. */
c2c6d25f 3943 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
c906108c
SS
3944 {
3945 save_rp = 0;
3946 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3947 }
c2c6d25f
JM
3948 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3949 {
3950 save_rp = 0;
3951 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
3952 }
c906108c 3953
104c1213
JM
3954 /* Note if we saved SP into the stack. This also happens to indicate
3955 the location of the saved frame pointer. */
c2c6d25f
JM
3956 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
3957 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
104c1213
JM
3958 {
3959 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
3960 save_sp = 0;
3961 }
c906108c
SS
3962
3963 /* Account for general and floating-point register saves. */
3964 reg = inst_saves_gr (inst);
3965 if (reg >= 3 && reg <= 18
3966 && (!u->Save_SP || reg != FP_REGNUM))
3967 {
3968 save_gr &= ~(1 << reg);
3969
3970 /* stwm with a positive displacement is a *post modify*. */
3971 if ((inst >> 26) == 0x1b
3972 && extract_14 (inst) >= 0)
3973 frame_saved_regs->regs[reg] = frame_info->frame;
104c1213
JM
3974 /* A std has explicit post_modify forms. */
3975 else if ((inst & 0xfc00000c0) == 0x70000008)
3976 frame_saved_regs->regs[reg] = frame_info->frame;
c906108c
SS
3977 else
3978 {
104c1213
JM
3979 CORE_ADDR offset;
3980
3981 if ((inst >> 26) == 0x1c)
d4f3574e 3982 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213
JM
3983 else if ((inst >> 26) == 0x03)
3984 offset = low_sign_extend (inst & 0x1f, 5);
3985 else
3986 offset = extract_14 (inst);
3987
c906108c
SS
3988 /* Handle code with and without frame pointers. */
3989 if (u->Save_SP)
3990 frame_saved_regs->regs[reg]
104c1213 3991 = frame_info->frame + offset;
c906108c
SS
3992 else
3993 frame_saved_regs->regs[reg]
104c1213
JM
3994 = (frame_info->frame + (u->Total_frame_size << 3)
3995 + offset);
c906108c
SS
3996 }
3997 }
3998
3999
4000 /* GCC handles callee saved FP regs a little differently.
4001
c5aa993b
JM
4002 It emits an instruction to put the value of the start of
4003 the FP store area into %r1. It then uses fstds,ma with
4004 a basereg of %r1 for the stores.
c906108c 4005
c5aa993b
JM
4006 HP CC emits them at the current stack pointer modifying
4007 the stack pointer as it stores each register. */
c906108c
SS
4008
4009 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4010 if ((inst & 0xffffc000) == 0x34610000
4011 || (inst & 0xffffc000) == 0x37c10000)
4012 fp_loc = extract_14 (inst);
c5aa993b 4013
c906108c
SS
4014 reg = inst_saves_fr (inst);
4015 if (reg >= 12 && reg <= 21)
4016 {
4017 /* Note +4 braindamage below is necessary because the FP status
4018 registers are internally 8 registers rather than the expected
4019 4 registers. */
4020 save_fr &= ~(1 << reg);
4021 if (fp_loc == -1)
4022 {
4023 /* 1st HP CC FP register store. After this instruction
c5aa993b
JM
4024 we've set enough state that the GCC and HPCC code are
4025 both handled in the same manner. */
c906108c
SS
4026 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4027 fp_loc = 8;
4028 }
4029 else
4030 {
4031 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4032 = frame_info->frame + fp_loc;
4033 fp_loc += 8;
4034 }
4035 }
4036
39f77062 4037 /* Quit if we hit any kind of branch the previous iteration. */
d4f3574e 4038 if (final_iteration)
c906108c
SS
4039 break;
4040
d4f3574e
SS
4041 /* We want to look precisely one instruction beyond the branch
4042 if we have not found everything yet. */
4043 if (is_branch (inst))
4044 final_iteration = 1;
4045
c906108c
SS
4046 /* Bump the PC. */
4047 pc += 4;
4048 }
4049}
4050
4051
4052/* Exception handling support for the HP-UX ANSI C++ compiler.
4053 The compiler (aCC) provides a callback for exception events;
4054 GDB can set a breakpoint on this callback and find out what
4055 exception event has occurred. */
4056
4057/* The name of the hook to be set to point to the callback function */
c5aa993b
JM
4058static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4059/* The name of the function to be used to set the hook value */
4060static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4061/* The name of the callback function in end.o */
c906108c 4062static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
c5aa993b
JM
4063/* Name of function in end.o on which a break is set (called by above) */
4064static char HP_ACC_EH_break[] = "__d_eh_break";
4065/* Name of flag (in end.o) that enables catching throws */
4066static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4067/* Name of flag (in end.o) that enables catching catching */
4068static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4069/* The enum used by aCC */
4070typedef enum
4071 {
4072 __EH_NOTIFY_THROW,
4073 __EH_NOTIFY_CATCH
4074 }
4075__eh_notification;
c906108c
SS
4076
4077/* Is exception-handling support available with this executable? */
4078static int hp_cxx_exception_support = 0;
4079/* Has the initialize function been run? */
4080int hp_cxx_exception_support_initialized = 0;
4081/* Similar to above, but imported from breakpoint.c -- non-target-specific */
4082extern int exception_support_initialized;
4083/* Address of __eh_notify_hook */
a0b3c4fd 4084static CORE_ADDR eh_notify_hook_addr = 0;
c906108c 4085/* Address of __d_eh_notify_callback */
a0b3c4fd 4086static CORE_ADDR eh_notify_callback_addr = 0;
c906108c 4087/* Address of __d_eh_break */
a0b3c4fd 4088static CORE_ADDR eh_break_addr = 0;
c906108c 4089/* Address of __d_eh_catch_catch */
a0b3c4fd 4090static CORE_ADDR eh_catch_catch_addr = 0;
c906108c 4091/* Address of __d_eh_catch_throw */
a0b3c4fd 4092static CORE_ADDR eh_catch_throw_addr = 0;
c906108c 4093/* Sal for __d_eh_break */
a0b3c4fd 4094static struct symtab_and_line *break_callback_sal = 0;
c906108c
SS
4095
4096/* Code in end.c expects __d_pid to be set in the inferior,
4097 otherwise __d_eh_notify_callback doesn't bother to call
4098 __d_eh_break! So we poke the pid into this symbol
4099 ourselves.
4100 0 => success
c5aa993b 4101 1 => failure */
c906108c 4102int
fba45db2 4103setup_d_pid_in_inferior (void)
c906108c
SS
4104{
4105 CORE_ADDR anaddr;
c5aa993b
JM
4106 struct minimal_symbol *msymbol;
4107 char buf[4]; /* FIXME 32x64? */
4108
c906108c
SS
4109 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4110 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4111 if (msymbol == NULL)
4112 {
4113 warning ("Unable to find __d_pid symbol in object file.");
4114 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4115 return 1;
4116 }
4117
4118 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
39f77062 4119 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
c5aa993b 4120 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
c906108c
SS
4121 {
4122 warning ("Unable to write __d_pid");
4123 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4124 return 1;
4125 }
4126 return 0;
4127}
4128
4129/* Initialize exception catchpoint support by looking for the
4130 necessary hooks/callbacks in end.o, etc., and set the hook value to
4131 point to the required debug function
4132
4133 Return 0 => failure
c5aa993b 4134 1 => success */
c906108c
SS
4135
4136static int
fba45db2 4137initialize_hp_cxx_exception_support (void)
c906108c
SS
4138{
4139 struct symtabs_and_lines sals;
c5aa993b
JM
4140 struct cleanup *old_chain;
4141 struct cleanup *canonical_strings_chain = NULL;
c906108c 4142 int i;
c5aa993b
JM
4143 char *addr_start;
4144 char *addr_end = NULL;
4145 char **canonical = (char **) NULL;
c906108c 4146 int thread = -1;
c5aa993b
JM
4147 struct symbol *sym = NULL;
4148 struct minimal_symbol *msym = NULL;
4149 struct objfile *objfile;
c906108c
SS
4150 asection *shlib_info;
4151
4152 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4153 recursion is a possibility because finding the hook for exception
4154 callbacks involves making a call in the inferior, which means
4155 re-inserting breakpoints which can re-invoke this code */
4156
c5aa993b
JM
4157 static int recurse = 0;
4158 if (recurse > 0)
c906108c
SS
4159 {
4160 hp_cxx_exception_support_initialized = 0;
4161 exception_support_initialized = 0;
4162 return 0;
4163 }
4164
4165 hp_cxx_exception_support = 0;
4166
4167 /* First check if we have seen any HP compiled objects; if not,
4168 it is very unlikely that HP's idiosyncratic callback mechanism
4169 for exception handling debug support will be available!
4170 This will percolate back up to breakpoint.c, where our callers
4171 will decide to try the g++ exception-handling support instead. */
4172 if (!hp_som_som_object_present)
4173 return 0;
c5aa993b 4174
c906108c
SS
4175 /* We have a SOM executable with SOM debug info; find the hooks */
4176
4177 /* First look for the notify hook provided by aCC runtime libs */
4178 /* If we find this symbol, we conclude that the executable must
4179 have HP aCC exception support built in. If this symbol is not
4180 found, even though we're a HP SOM-SOM file, we may have been
4181 built with some other compiler (not aCC). This results percolates
4182 back up to our callers in breakpoint.c which can decide to
4183 try the g++ style of exception support instead.
4184 If this symbol is found but the other symbols we require are
4185 not found, there is something weird going on, and g++ support
4186 should *not* be tried as an alternative.
c5aa993b 4187
c906108c
SS
4188 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4189 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
c5aa993b 4190
c906108c
SS
4191 /* libCsup has this hook; it'll usually be non-debuggable */
4192 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4193 if (msym)
4194 {
4195 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4196 hp_cxx_exception_support = 1;
c5aa993b 4197 }
c906108c
SS
4198 else
4199 {
4200 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4201 warning ("Executable may not have been compiled debuggable with HP aCC.");
4202 warning ("GDB will be unable to intercept exception events.");
4203 eh_notify_hook_addr = 0;
4204 hp_cxx_exception_support = 0;
4205 return 0;
4206 }
4207
c906108c 4208 /* Next look for the notify callback routine in end.o */
c5aa993b 4209 /* This is always available in the SOM symbol dictionary if end.o is linked in */
c906108c
SS
4210 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4211 if (msym)
4212 {
4213 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4214 hp_cxx_exception_support = 1;
c5aa993b
JM
4215 }
4216 else
c906108c
SS
4217 {
4218 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4219 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4220 warning ("GDB will be unable to intercept exception events.");
4221 eh_notify_callback_addr = 0;
4222 return 0;
4223 }
4224
53a5351d 4225#ifndef GDB_TARGET_IS_HPPA_20W
c906108c
SS
4226 /* Check whether the executable is dynamically linked or archive bound */
4227 /* With an archive-bound executable we can use the raw addresses we find
4228 for the callback function, etc. without modification. For an executable
4229 with shared libraries, we have to do more work to find the plabel, which
4230 can be the target of a call through $$dyncall from the aCC runtime support
4231 library (libCsup) which is linked shared by default by aCC. */
4232 /* This test below was copied from somsolib.c/somread.c. It may not be a very
c5aa993b 4233 reliable one to test that an executable is linked shared. pai/1997-07-18 */
c906108c
SS
4234 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4235 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4236 {
4237 /* The minsym we have has the local code address, but that's not the
4238 plabel that can be used by an inter-load-module call. */
4239 /* Find solib handle for main image (which has end.o), and use that
4240 and the min sym as arguments to __d_shl_get() (which does the equivalent
c5aa993b 4241 of shl_findsym()) to find the plabel. */
c906108c
SS
4242
4243 args_for_find_stub args;
4244 static char message[] = "Error while finding exception callback hook:\n";
c5aa993b 4245
c906108c
SS
4246 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4247 args.msym = msym;
a0b3c4fd 4248 args.return_val = 0;
c5aa993b 4249
c906108c 4250 recurse++;
a0b3c4fd
JM
4251 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4252 RETURN_MASK_ALL);
4253 eh_notify_callback_addr = args.return_val;
c906108c 4254 recurse--;
c5aa993b 4255
c906108c 4256 exception_catchpoints_are_fragile = 1;
c5aa993b 4257
c906108c 4258 if (!eh_notify_callback_addr)
c5aa993b
JM
4259 {
4260 /* We can get here either if there is no plabel in the export list
1faa59a8 4261 for the main image, or if something strange happened (?) */
c5aa993b
JM
4262 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4263 warning ("GDB will not be able to intercept exception events.");
4264 return 0;
4265 }
c906108c
SS
4266 }
4267 else
4268 exception_catchpoints_are_fragile = 0;
53a5351d 4269#endif
c906108c 4270
c906108c 4271 /* Now, look for the breakpointable routine in end.o */
c5aa993b 4272 /* This should also be available in the SOM symbol dict. if end.o linked in */
c906108c
SS
4273 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4274 if (msym)
4275 {
4276 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4277 hp_cxx_exception_support = 1;
c5aa993b 4278 }
c906108c
SS
4279 else
4280 {
4281 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4282 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4283 warning ("GDB will be unable to intercept exception events.");
4284 eh_break_addr = 0;
4285 return 0;
4286 }
4287
c906108c
SS
4288 /* Next look for the catch enable flag provided in end.o */
4289 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4290 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4291 if (sym) /* sometimes present in debug info */
c906108c
SS
4292 {
4293 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4294 hp_cxx_exception_support = 1;
4295 }
c5aa993b
JM
4296 else
4297 /* otherwise look in SOM symbol dict. */
c906108c
SS
4298 {
4299 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4300 if (msym)
c5aa993b
JM
4301 {
4302 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4303 hp_cxx_exception_support = 1;
4304 }
c906108c 4305 else
c5aa993b
JM
4306 {
4307 warning ("Unable to enable interception of exception catches.");
4308 warning ("Executable may not have been compiled debuggable with HP aCC.");
4309 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4310 return 0;
4311 }
c906108c
SS
4312 }
4313
c906108c
SS
4314 /* Next look for the catch enable flag provided end.o */
4315 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4316 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4317 if (sym) /* sometimes present in debug info */
c906108c
SS
4318 {
4319 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4320 hp_cxx_exception_support = 1;
4321 }
c5aa993b
JM
4322 else
4323 /* otherwise look in SOM symbol dict. */
c906108c
SS
4324 {
4325 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4326 if (msym)
c5aa993b
JM
4327 {
4328 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4329 hp_cxx_exception_support = 1;
4330 }
c906108c 4331 else
c5aa993b
JM
4332 {
4333 warning ("Unable to enable interception of exception throws.");
4334 warning ("Executable may not have been compiled debuggable with HP aCC.");
4335 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4336 return 0;
4337 }
c906108c
SS
4338 }
4339
c5aa993b
JM
4340 /* Set the flags */
4341 hp_cxx_exception_support = 2; /* everything worked so far */
c906108c
SS
4342 hp_cxx_exception_support_initialized = 1;
4343 exception_support_initialized = 1;
4344
4345 return 1;
4346}
4347
4348/* Target operation for enabling or disabling interception of
4349 exception events.
4350 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4351 ENABLE is either 0 (disable) or 1 (enable).
4352 Return value is NULL if no support found;
4353 -1 if something went wrong,
4354 or a pointer to a symtab/line struct if the breakpointable
c5aa993b 4355 address was found. */
c906108c 4356
c5aa993b 4357struct symtab_and_line *
fba45db2 4358child_enable_exception_callback (enum exception_event_kind kind, int enable)
c906108c
SS
4359{
4360 char buf[4];
4361
4362 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4363 if (!initialize_hp_cxx_exception_support ())
4364 return NULL;
4365
4366 switch (hp_cxx_exception_support)
4367 {
c5aa993b
JM
4368 case 0:
4369 /* Assuming no HP support at all */
4370 return NULL;
4371 case 1:
4372 /* HP support should be present, but something went wrong */
4373 return (struct symtab_and_line *) -1; /* yuck! */
4374 /* there may be other cases in the future */
c906108c 4375 }
c5aa993b 4376
c906108c 4377 /* Set the EH hook to point to the callback routine */
c5aa993b 4378 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
c906108c 4379 /* pai: (temp) FIXME should there be a pack operation first? */
c5aa993b 4380 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
c906108c
SS
4381 {
4382 warning ("Could not write to target memory for exception event callback.");
4383 warning ("Interception of exception events may not work.");
c5aa993b 4384 return (struct symtab_and_line *) -1;
c906108c
SS
4385 }
4386 if (enable)
4387 {
c5aa993b 4388 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
39f77062 4389 if (PIDGET (inferior_ptid) > 0)
c5aa993b
JM
4390 {
4391 if (setup_d_pid_in_inferior ())
4392 return (struct symtab_and_line *) -1;
4393 }
c906108c 4394 else
c5aa993b 4395 {
104c1213
JM
4396 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4397 return (struct symtab_and_line *) -1;
c5aa993b 4398 }
c906108c 4399 }
c5aa993b 4400
c906108c
SS
4401 switch (kind)
4402 {
c5aa993b
JM
4403 case EX_EVENT_THROW:
4404 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4405 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4406 {
4407 warning ("Couldn't enable exception throw interception.");
4408 return (struct symtab_and_line *) -1;
4409 }
4410 break;
4411 case EX_EVENT_CATCH:
4412 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4413 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4414 {
4415 warning ("Couldn't enable exception catch interception.");
4416 return (struct symtab_and_line *) -1;
4417 }
4418 break;
104c1213
JM
4419 default:
4420 error ("Request to enable unknown or unsupported exception event.");
c906108c 4421 }
c5aa993b 4422
c906108c
SS
4423 /* Copy break address into new sal struct, malloc'ing if needed. */
4424 if (!break_callback_sal)
4425 {
4426 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4427 }
c5aa993b 4428 INIT_SAL (break_callback_sal);
c906108c
SS
4429 break_callback_sal->symtab = NULL;
4430 break_callback_sal->pc = eh_break_addr;
4431 break_callback_sal->line = 0;
4432 break_callback_sal->end = eh_break_addr;
c5aa993b 4433
c906108c
SS
4434 return break_callback_sal;
4435}
4436
c5aa993b 4437/* Record some information about the current exception event */
c906108c 4438static struct exception_event_record current_ex_event;
c5aa993b
JM
4439/* Convenience struct */
4440static struct symtab_and_line null_symtab_and_line =
4441{NULL, 0, 0, 0};
c906108c
SS
4442
4443/* Report current exception event. Returns a pointer to a record
4444 that describes the kind of the event, where it was thrown from,
4445 and where it will be caught. More information may be reported
c5aa993b 4446 in the future */
c906108c 4447struct exception_event_record *
fba45db2 4448child_get_current_exception_event (void)
c906108c 4449{
c5aa993b
JM
4450 CORE_ADDR event_kind;
4451 CORE_ADDR throw_addr;
4452 CORE_ADDR catch_addr;
c906108c
SS
4453 struct frame_info *fi, *curr_frame;
4454 int level = 1;
4455
c5aa993b 4456 curr_frame = get_current_frame ();
c906108c
SS
4457 if (!curr_frame)
4458 return (struct exception_event_record *) NULL;
4459
4460 /* Go up one frame to __d_eh_notify_callback, because at the
4461 point when this code is executed, there's garbage in the
4462 arguments of __d_eh_break. */
4463 fi = find_relative_frame (curr_frame, &level);
4464 if (level != 0)
4465 return (struct exception_event_record *) NULL;
4466
4467 select_frame (fi, -1);
4468
4469 /* Read in the arguments */
4470 /* __d_eh_notify_callback() is called with 3 arguments:
c5aa993b
JM
4471 1. event kind catch or throw
4472 2. the target address if known
4473 3. a flag -- not sure what this is. pai/1997-07-17 */
4474 event_kind = read_register (ARG0_REGNUM);
c906108c
SS
4475 catch_addr = read_register (ARG1_REGNUM);
4476
4477 /* Now go down to a user frame */
4478 /* For a throw, __d_eh_break is called by
c5aa993b
JM
4479 __d_eh_notify_callback which is called by
4480 __notify_throw which is called
4481 from user code.
c906108c 4482 For a catch, __d_eh_break is called by
c5aa993b
JM
4483 __d_eh_notify_callback which is called by
4484 <stackwalking stuff> which is called by
4485 __throw__<stuff> or __rethrow_<stuff> which is called
4486 from user code. */
4487 /* FIXME: Don't use such magic numbers; search for the frames */
c906108c
SS
4488 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4489 fi = find_relative_frame (curr_frame, &level);
4490 if (level != 0)
4491 return (struct exception_event_record *) NULL;
4492
4493 select_frame (fi, -1);
4494 throw_addr = fi->pc;
4495
4496 /* Go back to original (top) frame */
4497 select_frame (curr_frame, -1);
4498
4499 current_ex_event.kind = (enum exception_event_kind) event_kind;
4500 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4501 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4502
4503 return &current_ex_event;
4504}
4505
c906108c 4506static void
fba45db2 4507unwind_command (char *exp, int from_tty)
c906108c
SS
4508{
4509 CORE_ADDR address;
4510 struct unwind_table_entry *u;
4511
4512 /* If we have an expression, evaluate it and use it as the address. */
4513
4514 if (exp != 0 && *exp != 0)
4515 address = parse_and_eval_address (exp);
4516 else
4517 return;
4518
4519 u = find_unwind_entry (address);
4520
4521 if (!u)
4522 {
4523 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4524 return;
4525 }
4526
ce414844
AC
4527 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4528 paddr_nz (host_pointer_to_address (u)));
c906108c
SS
4529
4530 printf_unfiltered ("\tregion_start = ");
4531 print_address (u->region_start, gdb_stdout);
4532
4533 printf_unfiltered ("\n\tregion_end = ");
4534 print_address (u->region_end, gdb_stdout);
4535
c906108c 4536#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
4537
4538 printf_unfiltered ("\n\tflags =");
4539 pif (Cannot_unwind);
4540 pif (Millicode);
4541 pif (Millicode_save_sr0);
4542 pif (Entry_SR);
4543 pif (Args_stored);
4544 pif (Variable_Frame);
4545 pif (Separate_Package_Body);
4546 pif (Frame_Extension_Millicode);
4547 pif (Stack_Overflow_Check);
4548 pif (Two_Instruction_SP_Increment);
4549 pif (Ada_Region);
4550 pif (Save_SP);
4551 pif (Save_RP);
4552 pif (Save_MRP_in_frame);
4553 pif (extn_ptr_defined);
4554 pif (Cleanup_defined);
4555 pif (MPE_XL_interrupt_marker);
4556 pif (HP_UX_interrupt_marker);
4557 pif (Large_frame);
4558
4559 putchar_unfiltered ('\n');
4560
c906108c 4561#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
4562
4563 pin (Region_description);
4564 pin (Entry_FR);
4565 pin (Entry_GR);
4566 pin (Total_frame_size);
4567}
c906108c
SS
4568
4569#ifdef PREPARE_TO_PROCEED
4570
4571/* If the user has switched threads, and there is a breakpoint
4572 at the old thread's pc location, then switch to that thread
4573 and return TRUE, else return FALSE and don't do a thread
4574 switch (or rather, don't seem to have done a thread switch).
4575
4576 Ptrace-based gdb will always return FALSE to the thread-switch
4577 query, and thus also to PREPARE_TO_PROCEED.
4578
4579 The important thing is whether there is a BPT instruction,
4580 not how many user breakpoints there are. So we have to worry
4581 about things like these:
4582
4583 o Non-bp stop -- NO
4584
4585 o User hits bp, no switch -- NO
4586
4587 o User hits bp, switches threads -- YES
4588
4589 o User hits bp, deletes bp, switches threads -- NO
4590
4591 o User hits bp, deletes one of two or more bps
c5aa993b 4592 at that PC, user switches threads -- YES
c906108c
SS
4593
4594 o Plus, since we're buffering events, the user may have hit a
c5aa993b
JM
4595 breakpoint, deleted the breakpoint and then gotten another
4596 hit on that same breakpoint on another thread which
4597 actually hit before the delete. (FIXME in breakpoint.c
4598 so that "dead" breakpoints are ignored?) -- NO
c906108c
SS
4599
4600 For these reasons, we have to violate information hiding and
4601 call "breakpoint_here_p". If core gdb thinks there is a bpt
4602 here, that's what counts, as core gdb is the one which is
e02bc4cc
DS
4603 putting the BPT instruction in and taking it out.
4604
4605 Note that this implementation is potentially redundant now that
8849f47d
JL
4606 default_prepare_to_proceed() has been added.
4607
4608 FIXME This may not support switching threads after Ctrl-C
4609 correctly. The default implementation does support this. */
c906108c 4610int
fba45db2 4611hppa_prepare_to_proceed (void)
c906108c
SS
4612{
4613 pid_t old_thread;
4614 pid_t current_thread;
4615
39f77062 4616 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
c906108c
SS
4617 if (old_thread != 0)
4618 {
4619 /* Switched over from "old_thread". Try to do
4620 as little work as possible, 'cause mostly
4621 we're going to switch back. */
4622 CORE_ADDR new_pc;
c5aa993b 4623 CORE_ADDR old_pc = read_pc ();
c906108c
SS
4624
4625 /* Yuk, shouldn't use global to specify current
4626 thread. But that's how gdb does it. */
39f77062
KB
4627 current_thread = PIDGET (inferior_ptid);
4628 inferior_ptid = pid_to_ptid (old_thread);
c906108c 4629
c5aa993b
JM
4630 new_pc = read_pc ();
4631 if (new_pc != old_pc /* If at same pc, no need */
c906108c 4632 && breakpoint_here_p (new_pc))
c5aa993b 4633 {
c906108c 4634 /* User hasn't deleted the BP.
c5aa993b 4635 Return TRUE, finishing switch to "old_thread". */
c906108c
SS
4636 flush_cached_frames ();
4637 registers_changed ();
4638#if 0
c5aa993b 4639 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
39f77062 4640 current_thread, PIDGET (inferior_ptid));
c906108c 4641#endif
c5aa993b 4642
c906108c 4643 return 1;
c5aa993b 4644 }
c906108c
SS
4645
4646 /* Otherwise switch back to the user-chosen thread. */
39f77062 4647 inferior_ptid = pid_to_ptid (current_thread);
c5aa993b 4648 new_pc = read_pc (); /* Re-prime register cache */
c906108c
SS
4649 }
4650
4651 return 0;
4652}
4653#endif /* PREPARE_TO_PROCEED */
4654
c2c6d25f 4655void
fba45db2 4656hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
4657{
4658 /* To step over a breakpoint instruction on the PA takes some
4659 fiddling with the instruction address queue.
4660
4661 When we stop at a breakpoint, the IA queue front (the instruction
4662 we're executing now) points at the breakpoint instruction, and
4663 the IA queue back (the next instruction to execute) points to
4664 whatever instruction we would execute after the breakpoint, if it
4665 were an ordinary instruction. This is the case even if the
4666 breakpoint is in the delay slot of a branch instruction.
4667
4668 Clearly, to step past the breakpoint, we need to set the queue
4669 front to the back. But what do we put in the back? What
4670 instruction comes after that one? Because of the branch delay
4671 slot, the next insn is always at the back + 4. */
4672 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4673 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4674
4675 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4676 /* We can leave the tail's space the same, since there's no jump. */
4677}
4678
c906108c 4679void
fba45db2 4680_initialize_hppa_tdep (void)
c906108c 4681{
502fd408
MS
4682 struct cmd_list_element *c;
4683 void break_at_finish_command (char *arg, int from_tty);
4684 void tbreak_at_finish_command (char *arg, int from_tty);
4685 void break_at_finish_at_depth_command (char *arg, int from_tty);
4686
c906108c
SS
4687 tm_print_insn = print_insn_hppa;
4688
c906108c
SS
4689 add_cmd ("unwind", class_maintenance, unwind_command,
4690 "Print unwind table entry at given address.",
4691 &maintenanceprintlist);
502fd408 4692
799f9e91
MS
4693 deprecate_cmd (add_com ("xbreak", class_breakpoint,
4694 break_at_finish_command,
4695 concat ("Set breakpoint at procedure exit. \n\
502fd408
MS
4696Argument may be function name, or \"*\" and an address.\n\
4697If function is specified, break at end of code for that function.\n\
4698If an address is specified, break at the end of the function that contains \n\
4699that exact address.\n",
4700 "With no arg, uses current execution address of selected stack frame.\n\
4701This is useful for breaking on return to a stack frame.\n\
4702\n\
4703Multiple breakpoints at one place are permitted, and useful if conditional.\n\
4704\n\
799f9e91
MS
4705Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
4706 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
4707 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
4708 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
4709 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
4710
4711 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
4712 tbreak_at_finish_command,
4713"Set temporary breakpoint at procedure exit. Either there should\n\
4714be no argument or the argument must be a depth.\n"), NULL);
5ba2abeb 4715 set_cmd_completer (c, location_completer);
799f9e91 4716
502fd408 4717 if (xdb_commands)
799f9e91
MS
4718 deprecate_cmd (add_com ("bx", class_breakpoint,
4719 break_at_finish_at_depth_command,
4720"Set breakpoint at procedure exit. Either there should\n\
4721be no argument or the argument must be a depth.\n"), NULL);
c906108c 4722}
1cdb71fe
JL
4723
4724/* Copy the function value from VALBUF into the proper location
4725 for a function return.
4726
4727 Called only in the context of the "return" command. */
4728
4729void
4730hppa_store_return_value (struct type *type, char *valbuf)
4731{
4732 /* For software floating point, the return value goes into the
4733 integer registers. But we do not have any flag to key this on,
4734 so we always store the value into the integer registers.
4735
4736 If its a float value, then we also store it into the floating
4737 point registers. */
4738 write_register_bytes (REGISTER_BYTE (28)
4739 + (TYPE_LENGTH (type) > 4
4740 ? (8 - TYPE_LENGTH (type))
4741 : (4 - TYPE_LENGTH (type))),
4742 valbuf,
4743 TYPE_LENGTH (type));
4744 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4745 write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4746 valbuf,
4747 TYPE_LENGTH (type));
4748}
4749
4750/* Copy the function's return value into VALBUF.
4751
4752 This function is called only in the context of "target function calls",
4753 ie. when the debugger forces a function to be called in the child, and
4754 when the debugger forces a fucntion to return prematurely via the
4755 "return" command. */
4756
4757void
4758hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4759{
4760 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4761 memcpy (valbuf,
4762 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4763 TYPE_LENGTH (type));
4764 else
4765 memcpy (valbuf,
4766 ((char *)regbuf
4767 + REGISTER_BYTE (28)
4768 + (TYPE_LENGTH (type) > 4
4769 ? (8 - TYPE_LENGTH (type))
4770 : (4 - TYPE_LENGTH (type)))),
4771 TYPE_LENGTH (type));
4772}
This page took 0.41593 seconds and 4 git commands to generate.