Replace most calls to help_list and cmd_show_list
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
b811d2c2 3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
82ca8957 25#include "dwarf2/frame.h"
c906108c 26#include "frame.h"
acd5c798
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
c906108c 29#include "inferior.h"
45741a9c 30#include "infrun.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
3b2ca824 42#include "target-float.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
268a13a5 49#include "gdbsupport/x86-xstate.h"
1d509aa6 50#include "x86-tdep.h"
d2a7c97a 51
7ad10968 52#include "record.h"
d02ed0bb 53#include "record-full.h"
22916b07
YQ
54#include "target-descriptions.h"
55#include "arch/i386.h"
90884b2b 56
6710bf39
SS
57#include "ax.h"
58#include "ax-gdb.h"
59
55aa24fb
SDJ
60#include "stap-probe.h"
61#include "user-regs.h"
62#include "cli/cli-utils.h"
63#include "expression.h"
64#include "parser-defs.h"
65#include <ctype.h>
325fac50 66#include <algorithm>
7d7571f0 67#include <unordered_set>
55aa24fb 68
c4fc7f1b 69/* Register names. */
c40e1eab 70
90884b2b 71static const char *i386_register_names[] =
fc633446
MK
72{
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
83 "mxcsr"
84};
85
01f9f808
MS
86static const char *i386_zmm_names[] =
87{
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
90};
91
92static const char *i386_zmmh_names[] =
93{
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
96};
97
98static const char *i386_k_names[] =
99{
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
102};
103
c131fcee
L
104static const char *i386_ymm_names[] =
105{
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
108};
109
110static const char *i386_ymmh_names[] =
111{
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
114};
115
1dbcd68c
WT
116static const char *i386_mpx_names[] =
117{
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
119};
120
51547df6
MS
121static const char* i386_pkeys_names[] =
122{
123 "pkru"
124};
125
1dbcd68c
WT
126/* Register names for MPX pseudo-registers. */
127
128static const char *i386_bnd_names[] =
129{
130 "bnd0", "bnd1", "bnd2", "bnd3"
131};
132
c4fc7f1b 133/* Register names for MMX pseudo-registers. */
28fc6740 134
90884b2b 135static const char *i386_mmx_names[] =
28fc6740
AC
136{
137 "mm0", "mm1", "mm2", "mm3",
138 "mm4", "mm5", "mm6", "mm7"
139};
c40e1eab 140
1ba53b71
L
141/* Register names for byte pseudo-registers. */
142
143static const char *i386_byte_names[] =
144{
145 "al", "cl", "dl", "bl",
146 "ah", "ch", "dh", "bh"
147};
148
149/* Register names for word pseudo-registers. */
150
151static const char *i386_word_names[] =
152{
153 "ax", "cx", "dx", "bx",
9cad29ac 154 "", "bp", "si", "di"
1ba53b71
L
155};
156
01f9f808
MS
157/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
158 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
159 we have 16 upper ZMM regs that have to be handled differently. */
160
161const int num_lower_zmm_regs = 16;
162
1ba53b71 163/* MMX register? */
c40e1eab 164
28fc6740 165static int
5716833c 166i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 167{
1ba53b71
L
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
170
171 if (mm0_regnum < 0)
172 return 0;
173
1ba53b71
L
174 regnum -= mm0_regnum;
175 return regnum >= 0 && regnum < tdep->num_mmx_regs;
176}
177
178/* Byte register? */
179
180int
181i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
182{
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184
185 regnum -= tdep->al_regnum;
186 return regnum >= 0 && regnum < tdep->num_byte_regs;
187}
188
189/* Word register? */
190
191int
192i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
193{
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195
196 regnum -= tdep->ax_regnum;
197 return regnum >= 0 && regnum < tdep->num_word_regs;
198}
199
200/* Dword register? */
201
202int
203i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
204{
205 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
206 int eax_regnum = tdep->eax_regnum;
207
208 if (eax_regnum < 0)
209 return 0;
210
211 regnum -= eax_regnum;
212 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
213}
214
01f9f808
MS
215/* AVX512 register? */
216
217int
218i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
219{
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221 int zmm0h_regnum = tdep->zmm0h_regnum;
222
223 if (zmm0h_regnum < 0)
224 return 0;
225
226 regnum -= zmm0h_regnum;
227 return regnum >= 0 && regnum < tdep->num_zmm_regs;
228}
229
230int
231i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
232{
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234 int zmm0_regnum = tdep->zmm0_regnum;
235
236 if (zmm0_regnum < 0)
237 return 0;
238
239 regnum -= zmm0_regnum;
240 return regnum >= 0 && regnum < tdep->num_zmm_regs;
241}
242
243int
244i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
245{
246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
247 int k0_regnum = tdep->k0_regnum;
248
249 if (k0_regnum < 0)
250 return 0;
251
252 regnum -= k0_regnum;
253 return regnum >= 0 && regnum < I387_NUM_K_REGS;
254}
255
9191d390 256static int
c131fcee
L
257i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
258{
259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260 int ymm0h_regnum = tdep->ymm0h_regnum;
261
262 if (ymm0h_regnum < 0)
263 return 0;
264
265 regnum -= ymm0h_regnum;
266 return regnum >= 0 && regnum < tdep->num_ymm_regs;
267}
268
269/* AVX register? */
270
271int
272i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
273{
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 int ymm0_regnum = tdep->ymm0_regnum;
276
277 if (ymm0_regnum < 0)
278 return 0;
279
280 regnum -= ymm0_regnum;
281 return regnum >= 0 && regnum < tdep->num_ymm_regs;
282}
283
01f9f808
MS
284static int
285i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
286{
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288 int ymm16h_regnum = tdep->ymm16h_regnum;
289
290 if (ymm16h_regnum < 0)
291 return 0;
292
293 regnum -= ymm16h_regnum;
294 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
295}
296
297int
298i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
299{
300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
301 int ymm16_regnum = tdep->ymm16_regnum;
302
303 if (ymm16_regnum < 0)
304 return 0;
305
306 regnum -= ymm16_regnum;
307 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
308}
309
1dbcd68c
WT
310/* BND register? */
311
312int
313i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
314{
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 int bnd0_regnum = tdep->bnd0_regnum;
317
318 if (bnd0_regnum < 0)
319 return 0;
320
321 regnum -= bnd0_regnum;
322 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
323}
324
5716833c 325/* SSE register? */
23a34459 326
c131fcee
L
327int
328i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 329{
5716833c 330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 331 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 332
c131fcee 333 if (num_xmm_regs == 0)
5716833c
MK
334 return 0;
335
c131fcee
L
336 regnum -= I387_XMM0_REGNUM (tdep);
337 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
338}
339
01f9f808
MS
340/* XMM_512 register? */
341
342int
343i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
344{
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
347
348 if (num_xmm_avx512_regs == 0)
349 return 0;
350
351 regnum -= I387_XMM16_REGNUM (tdep);
352 return regnum >= 0 && regnum < num_xmm_avx512_regs;
353}
354
5716833c
MK
355static int
356i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 357{
5716833c
MK
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359
20a6ec49 360 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
361 return 0;
362
20a6ec49 363 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
364}
365
5716833c 366/* FP register? */
23a34459
AC
367
368int
20a6ec49 369i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 370{
20a6ec49
MD
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372
373 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
374 return 0;
375
20a6ec49
MD
376 return (I387_ST0_REGNUM (tdep) <= regnum
377 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
378}
379
380int
20a6ec49 381i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 382{
20a6ec49
MD
383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
384
385 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
386 return 0;
387
20a6ec49
MD
388 return (I387_FCTRL_REGNUM (tdep) <= regnum
389 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
390}
391
1dbcd68c
WT
392/* BNDr (raw) register? */
393
394static int
395i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
396{
397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
398
399 if (I387_BND0R_REGNUM (tdep) < 0)
400 return 0;
401
402 regnum -= tdep->bnd0r_regnum;
403 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
404}
405
406/* BND control register? */
407
408static int
409i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
410{
411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
412
413 if (I387_BNDCFGU_REGNUM (tdep) < 0)
414 return 0;
415
416 regnum -= I387_BNDCFGU_REGNUM (tdep);
417 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
418}
419
51547df6
MS
420/* PKRU register? */
421
422bool
423i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
424{
425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
426 int pkru_regnum = tdep->pkru_regnum;
427
428 if (pkru_regnum < 0)
429 return false;
430
431 regnum -= pkru_regnum;
432 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
433}
434
c131fcee
L
435/* Return the name of register REGNUM, or the empty string if it is
436 an anonymous register. */
437
438static const char *
439i386_register_name (struct gdbarch *gdbarch, int regnum)
440{
441 /* Hide the upper YMM registers. */
442 if (i386_ymmh_regnum_p (gdbarch, regnum))
443 return "";
444
01f9f808
MS
445 /* Hide the upper YMM16-31 registers. */
446 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
447 return "";
448
449 /* Hide the upper ZMM registers. */
450 if (i386_zmmh_regnum_p (gdbarch, regnum))
451 return "";
452
c131fcee
L
453 return tdesc_register_name (gdbarch, regnum);
454}
455
30b0e2d8 456/* Return the name of register REGNUM. */
fc633446 457
1ba53b71 458const char *
90884b2b 459i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 460{
1ba53b71 461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
462 if (i386_bnd_regnum_p (gdbarch, regnum))
463 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
464 if (i386_mmx_regnum_p (gdbarch, regnum))
465 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
466 else if (i386_ymm_regnum_p (gdbarch, regnum))
467 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
468 else if (i386_zmm_regnum_p (gdbarch, regnum))
469 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
470 else if (i386_byte_regnum_p (gdbarch, regnum))
471 return i386_byte_names[regnum - tdep->al_regnum];
472 else if (i386_word_regnum_p (gdbarch, regnum))
473 return i386_word_names[regnum - tdep->ax_regnum];
474
475 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
476}
477
c4fc7f1b 478/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
479 number used by GDB. */
480
8201327c 481static int
d3f73121 482i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 483{
20a6ec49
MD
484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
485
c4fc7f1b
MK
486 /* This implements what GCC calls the "default" register map
487 (dbx_register_map[]). */
488
85540d8c
MK
489 if (reg >= 0 && reg <= 7)
490 {
9872ad24
JB
491 /* General-purpose registers. The debug info calls %ebp
492 register 4, and %esp register 5. */
493 if (reg == 4)
494 return 5;
495 else if (reg == 5)
496 return 4;
497 else return reg;
85540d8c
MK
498 }
499 else if (reg >= 12 && reg <= 19)
500 {
501 /* Floating-point registers. */
20a6ec49 502 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
503 }
504 else if (reg >= 21 && reg <= 28)
505 {
506 /* SSE registers. */
c131fcee
L
507 int ymm0_regnum = tdep->ymm0_regnum;
508
509 if (ymm0_regnum >= 0
510 && i386_xmm_regnum_p (gdbarch, reg))
511 return reg - 21 + ymm0_regnum;
512 else
513 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
514 }
515 else if (reg >= 29 && reg <= 36)
516 {
517 /* MMX registers. */
20a6ec49 518 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
519 }
520
521 /* This will hopefully provoke a warning. */
f6efe3f8 522 return gdbarch_num_cooked_regs (gdbarch);
85540d8c
MK
523}
524
0fde2c53 525/* Convert SVR4 DWARF register number REG to the appropriate register number
c4fc7f1b 526 used by GDB. */
85540d8c 527
8201327c 528static int
0fde2c53 529i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 530{
20a6ec49
MD
531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
532
c4fc7f1b
MK
533 /* This implements the GCC register map that tries to be compatible
534 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
535
536 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
537 numbers the floating point registers differently. */
538 if (reg >= 0 && reg <= 9)
539 {
acd5c798 540 /* General-purpose registers. */
85540d8c
MK
541 return reg;
542 }
543 else if (reg >= 11 && reg <= 18)
544 {
545 /* Floating-point registers. */
20a6ec49 546 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 547 }
c6f4c129 548 else if (reg >= 21 && reg <= 36)
85540d8c 549 {
c4fc7f1b 550 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 551 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
552 }
553
c6f4c129
JB
554 switch (reg)
555 {
20a6ec49
MD
556 case 37: return I387_FCTRL_REGNUM (tdep);
557 case 38: return I387_FSTAT_REGNUM (tdep);
558 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
559 case 40: return I386_ES_REGNUM;
560 case 41: return I386_CS_REGNUM;
561 case 42: return I386_SS_REGNUM;
562 case 43: return I386_DS_REGNUM;
563 case 44: return I386_FS_REGNUM;
564 case 45: return I386_GS_REGNUM;
565 }
566
0fde2c53
DE
567 return -1;
568}
569
570/* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
571 num_regs + num_pseudo_regs for other debug formats. */
572
8f10c932 573int
0fde2c53
DE
574i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
575{
576 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
577
578 if (regnum == -1)
f6efe3f8 579 return gdbarch_num_cooked_regs (gdbarch);
0fde2c53 580 return regnum;
85540d8c 581}
5716833c 582
fc338970 583\f
917317f4 584
fc338970
MK
585/* This is the variable that is set with "set disassembly-flavor", and
586 its legitimate values. */
53904c9e
AC
587static const char att_flavor[] = "att";
588static const char intel_flavor[] = "intel";
40478521 589static const char *const valid_flavors[] =
c5aa993b 590{
c906108c
SS
591 att_flavor,
592 intel_flavor,
593 NULL
594};
53904c9e 595static const char *disassembly_flavor = att_flavor;
acd5c798 596\f
c906108c 597
acd5c798
MK
598/* Use the program counter to determine the contents and size of a
599 breakpoint instruction. Return a pointer to a string of bytes that
600 encode a breakpoint instruction, store the length of the string in
601 *LEN and optionally adjust *PC to point to the correct memory
602 location for inserting the breakpoint.
c906108c 603
acd5c798
MK
604 On the i386 we have a single breakpoint that fits in a single byte
605 and can be inserted anywhere.
c906108c 606
acd5c798 607 This function is 64-bit safe. */
63c0089f 608
04180708
YQ
609constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
610
611typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
63c0089f 612
237fc4c9
PA
613\f
614/* Displaced instruction handling. */
615
1903f0e6
DE
616/* Skip the legacy instruction prefixes in INSN.
617 Not all prefixes are valid for any particular insn
618 but we needn't care, the insn will fault if it's invalid.
619 The result is a pointer to the first opcode byte,
620 or NULL if we run off the end of the buffer. */
621
622static gdb_byte *
623i386_skip_prefixes (gdb_byte *insn, size_t max_len)
624{
625 gdb_byte *end = insn + max_len;
626
627 while (insn < end)
628 {
629 switch (*insn)
630 {
631 case DATA_PREFIX_OPCODE:
632 case ADDR_PREFIX_OPCODE:
633 case CS_PREFIX_OPCODE:
634 case DS_PREFIX_OPCODE:
635 case ES_PREFIX_OPCODE:
636 case FS_PREFIX_OPCODE:
637 case GS_PREFIX_OPCODE:
638 case SS_PREFIX_OPCODE:
639 case LOCK_PREFIX_OPCODE:
640 case REPE_PREFIX_OPCODE:
641 case REPNE_PREFIX_OPCODE:
642 ++insn;
643 continue;
644 default:
645 return insn;
646 }
647 }
648
649 return NULL;
650}
237fc4c9
PA
651
652static int
1903f0e6 653i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 654{
1777feb0 655 /* jmp far (absolute address in operand). */
237fc4c9
PA
656 if (insn[0] == 0xea)
657 return 1;
658
659 if (insn[0] == 0xff)
660 {
1777feb0 661 /* jump near, absolute indirect (/4). */
237fc4c9
PA
662 if ((insn[1] & 0x38) == 0x20)
663 return 1;
664
1777feb0 665 /* jump far, absolute indirect (/5). */
237fc4c9
PA
666 if ((insn[1] & 0x38) == 0x28)
667 return 1;
668 }
669
670 return 0;
671}
672
c2170eef
MM
673/* Return non-zero if INSN is a jump, zero otherwise. */
674
675static int
676i386_jmp_p (const gdb_byte *insn)
677{
678 /* jump short, relative. */
679 if (insn[0] == 0xeb)
680 return 1;
681
682 /* jump near, relative. */
683 if (insn[0] == 0xe9)
684 return 1;
685
686 return i386_absolute_jmp_p (insn);
687}
688
237fc4c9 689static int
1903f0e6 690i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 691{
1777feb0 692 /* call far, absolute. */
237fc4c9
PA
693 if (insn[0] == 0x9a)
694 return 1;
695
696 if (insn[0] == 0xff)
697 {
1777feb0 698 /* Call near, absolute indirect (/2). */
237fc4c9
PA
699 if ((insn[1] & 0x38) == 0x10)
700 return 1;
701
1777feb0 702 /* Call far, absolute indirect (/3). */
237fc4c9
PA
703 if ((insn[1] & 0x38) == 0x18)
704 return 1;
705 }
706
707 return 0;
708}
709
710static int
1903f0e6 711i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
712{
713 switch (insn[0])
714 {
1777feb0 715 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 716 case 0xc3: /* ret near */
1777feb0 717 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
718 case 0xcb: /* ret far */
719 case 0xcf: /* iret */
720 return 1;
721
722 default:
723 return 0;
724 }
725}
726
727static int
1903f0e6 728i386_call_p (const gdb_byte *insn)
237fc4c9
PA
729{
730 if (i386_absolute_call_p (insn))
731 return 1;
732
1777feb0 733 /* call near, relative. */
237fc4c9
PA
734 if (insn[0] == 0xe8)
735 return 1;
736
737 return 0;
738}
739
237fc4c9
PA
740/* Return non-zero if INSN is a system call, and set *LENGTHP to its
741 length in bytes. Otherwise, return zero. */
1903f0e6 742
237fc4c9 743static int
b55078be 744i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 745{
9a7f938f
JK
746 /* Is it 'int $0x80'? */
747 if ((insn[0] == 0xcd && insn[1] == 0x80)
748 /* Or is it 'sysenter'? */
749 || (insn[0] == 0x0f && insn[1] == 0x34)
750 /* Or is it 'syscall'? */
751 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
752 {
753 *lengthp = 2;
754 return 1;
755 }
756
757 return 0;
758}
759
c2170eef
MM
760/* The gdbarch insn_is_call method. */
761
762static int
763i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
764{
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_call_p (insn);
771}
772
773/* The gdbarch insn_is_ret method. */
774
775static int
776i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
777{
778 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
779
780 read_code (addr, buf, I386_MAX_INSN_LEN);
781 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
782
783 return i386_ret_p (insn);
784}
785
786/* The gdbarch insn_is_jump method. */
787
788static int
789i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
790{
791 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
792
793 read_code (addr, buf, I386_MAX_INSN_LEN);
794 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
795
796 return i386_jmp_p (insn);
797}
798
c2508e90 799/* Some kernels may run one past a syscall insn, so we have to cope. */
b55078be 800
fdb61c6c 801displaced_step_closure_up
b55078be
DE
802i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
803 CORE_ADDR from, CORE_ADDR to,
804 struct regcache *regs)
805{
806 size_t len = gdbarch_max_insn_length (gdbarch);
e8217e61
SM
807 std::unique_ptr<i386_displaced_step_closure> closure
808 (new i386_displaced_step_closure (len));
cfba9872 809 gdb_byte *buf = closure->buf.data ();
b55078be
DE
810
811 read_memory (from, buf, len);
812
813 /* GDB may get control back after the insn after the syscall.
814 Presumably this is a kernel bug.
815 If this is a syscall, make sure there's a nop afterwards. */
816 {
817 int syscall_length;
818 gdb_byte *insn;
819
820 insn = i386_skip_prefixes (buf, len);
821 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
822 insn[syscall_length] = NOP_OPCODE;
823 }
824
825 write_memory (to, buf, len);
826
827 if (debug_displaced)
828 {
829 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
830 paddress (gdbarch, from), paddress (gdbarch, to));
831 displaced_step_dump_bytes (gdb_stdlog, buf, len);
832 }
833
6d0cf446
BE
834 /* This is a work around for a problem with g++ 4.8. */
835 return displaced_step_closure_up (closure.release ());
b55078be
DE
836}
837
237fc4c9
PA
838/* Fix up the state of registers and memory after having single-stepped
839 a displaced instruction. */
1903f0e6 840
237fc4c9
PA
841void
842i386_displaced_step_fixup (struct gdbarch *gdbarch,
cfba9872 843 struct displaced_step_closure *closure_,
237fc4c9
PA
844 CORE_ADDR from, CORE_ADDR to,
845 struct regcache *regs)
846{
e17a4113
UW
847 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
848
237fc4c9
PA
849 /* The offset we applied to the instruction's address.
850 This could well be negative (when viewed as a signed 32-bit
851 value), but ULONGEST won't reflect that, so take care when
852 applying it. */
853 ULONGEST insn_offset = to - from;
854
cfba9872
SM
855 i386_displaced_step_closure *closure
856 = (i386_displaced_step_closure *) closure_;
857 gdb_byte *insn = closure->buf.data ();
1903f0e6
DE
858 /* The start of the insn, needed in case we see some prefixes. */
859 gdb_byte *insn_start = insn;
237fc4c9
PA
860
861 if (debug_displaced)
862 fprintf_unfiltered (gdb_stdlog,
5af949e3 863 "displaced: fixup (%s, %s), "
237fc4c9 864 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
865 paddress (gdbarch, from), paddress (gdbarch, to),
866 insn[0], insn[1]);
237fc4c9
PA
867
868 /* The list of issues to contend with here is taken from
869 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
870 Yay for Free Software! */
871
872 /* Relocate the %eip, if necessary. */
873
1903f0e6
DE
874 /* The instruction recognizers we use assume any leading prefixes
875 have been skipped. */
876 {
877 /* This is the size of the buffer in closure. */
878 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
879 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
880 /* If there are too many prefixes, just ignore the insn.
881 It will fault when run. */
882 if (opcode != NULL)
883 insn = opcode;
884 }
885
237fc4c9
PA
886 /* Except in the case of absolute or indirect jump or call
887 instructions, or a return instruction, the new eip is relative to
888 the displaced instruction; make it relative. Well, signal
889 handler returns don't need relocation either, but we use the
890 value of %eip to recognize those; see below. */
891 if (! i386_absolute_jmp_p (insn)
892 && ! i386_absolute_call_p (insn)
893 && ! i386_ret_p (insn))
894 {
895 ULONGEST orig_eip;
b55078be 896 int insn_len;
237fc4c9
PA
897
898 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
899
900 /* A signal trampoline system call changes the %eip, resuming
901 execution of the main program after the signal handler has
902 returned. That makes them like 'return' instructions; we
903 shouldn't relocate %eip.
904
905 But most system calls don't, and we do need to relocate %eip.
906
907 Our heuristic for distinguishing these cases: if stepping
908 over the system call instruction left control directly after
909 the instruction, the we relocate --- control almost certainly
910 doesn't belong in the displaced copy. Otherwise, we assume
911 the instruction has put control where it belongs, and leave
912 it unrelocated. Goodness help us if there are PC-relative
913 system calls. */
914 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
915 && orig_eip != to + (insn - insn_start) + insn_len
916 /* GDB can get control back after the insn after the syscall.
917 Presumably this is a kernel bug.
918 i386_displaced_step_copy_insn ensures its a nop,
919 we add one to the length for it. */
920 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
921 {
922 if (debug_displaced)
923 fprintf_unfiltered (gdb_stdlog,
924 "displaced: syscall changed %%eip; "
925 "not relocating\n");
926 }
927 else
928 {
929 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
930
1903f0e6
DE
931 /* If we just stepped over a breakpoint insn, we don't backup
932 the pc on purpose; this is to match behaviour without
933 stepping. */
237fc4c9
PA
934
935 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
936
937 if (debug_displaced)
938 fprintf_unfiltered (gdb_stdlog,
939 "displaced: "
5af949e3
UW
940 "relocated %%eip from %s to %s\n",
941 paddress (gdbarch, orig_eip),
942 paddress (gdbarch, eip));
237fc4c9
PA
943 }
944 }
945
946 /* If the instruction was PUSHFL, then the TF bit will be set in the
947 pushed value, and should be cleared. We'll leave this for later,
948 since GDB already messes up the TF flag when stepping over a
949 pushfl. */
950
951 /* If the instruction was a call, the return address now atop the
952 stack is the address following the copied instruction. We need
953 to make it the address following the original instruction. */
954 if (i386_call_p (insn))
955 {
956 ULONGEST esp;
957 ULONGEST retaddr;
958 const ULONGEST retaddr_len = 4;
959
960 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 961 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 962 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 963 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
964
965 if (debug_displaced)
966 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
967 "displaced: relocated return addr at %s to %s\n",
968 paddress (gdbarch, esp),
969 paddress (gdbarch, retaddr));
237fc4c9
PA
970 }
971}
dde08ee1
PA
972
973static void
974append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
975{
976 target_write_memory (*to, buf, len);
977 *to += len;
978}
979
980static void
981i386_relocate_instruction (struct gdbarch *gdbarch,
982 CORE_ADDR *to, CORE_ADDR oldloc)
983{
984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
985 gdb_byte buf[I386_MAX_INSN_LEN];
986 int offset = 0, rel32, newrel;
987 int insn_length;
988 gdb_byte *insn = buf;
989
990 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
991
992 insn_length = gdb_buffered_insn_length (gdbarch, insn,
993 I386_MAX_INSN_LEN, oldloc);
994
995 /* Get past the prefixes. */
996 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
997
998 /* Adjust calls with 32-bit relative addresses as push/jump, with
999 the address pushed being the location where the original call in
1000 the user program would return to. */
1001 if (insn[0] == 0xe8)
1002 {
1003 gdb_byte push_buf[16];
1004 unsigned int ret_addr;
1005
1006 /* Where "ret" in the original code will return to. */
1007 ret_addr = oldloc + insn_length;
1777feb0 1008 push_buf[0] = 0x68; /* pushq $... */
144db827 1009 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
1010 /* Push the push. */
1011 append_insns (to, 5, push_buf);
1012
1013 /* Convert the relative call to a relative jump. */
1014 insn[0] = 0xe9;
1015
1016 /* Adjust the destination offset. */
1017 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1018 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1019 store_signed_integer (insn + 1, 4, byte_order, newrel);
1020
1021 if (debug_displaced)
1022 fprintf_unfiltered (gdb_stdlog,
1023 "Adjusted insn rel32=%s at %s to"
1024 " rel32=%s at %s\n",
1025 hex_string (rel32), paddress (gdbarch, oldloc),
1026 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1027
1028 /* Write the adjusted jump into its displaced location. */
1029 append_insns (to, 5, insn);
1030 return;
1031 }
1032
1033 /* Adjust jumps with 32-bit relative addresses. Calls are already
1034 handled above. */
1035 if (insn[0] == 0xe9)
1036 offset = 1;
1037 /* Adjust conditional jumps. */
1038 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1039 offset = 2;
1040
1041 if (offset)
1042 {
1043 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1044 newrel = (oldloc - *to) + rel32;
f4a1794a 1045 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1046 if (debug_displaced)
1047 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1048 "Adjusted insn rel32=%s at %s to"
1049 " rel32=%s at %s\n",
dde08ee1
PA
1050 hex_string (rel32), paddress (gdbarch, oldloc),
1051 hex_string (newrel), paddress (gdbarch, *to));
1052 }
1053
1054 /* Write the adjusted instructions into their displaced
1055 location. */
1056 append_insns (to, insn_length, buf);
1057}
1058
fc338970 1059\f
acd5c798
MK
1060#ifdef I386_REGNO_TO_SYMMETRY
1061#error "The Sequent Symmetry is no longer supported."
1062#endif
c906108c 1063
acd5c798
MK
1064/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1065 and %esp "belong" to the calling function. Therefore these
1066 registers should be saved if they're going to be modified. */
c906108c 1067
acd5c798
MK
1068/* The maximum number of saved registers. This should include all
1069 registers mentioned above, and %eip. */
a3386186 1070#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1071
1072struct i386_frame_cache
c906108c 1073{
acd5c798
MK
1074 /* Base address. */
1075 CORE_ADDR base;
8fbca658 1076 int base_p;
772562f8 1077 LONGEST sp_offset;
acd5c798
MK
1078 CORE_ADDR pc;
1079
fd13a04a
AC
1080 /* Saved registers. */
1081 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1082 CORE_ADDR saved_sp;
e0c62198 1083 int saved_sp_reg;
acd5c798
MK
1084 int pc_in_eax;
1085
1086 /* Stack space reserved for local variables. */
1087 long locals;
1088};
1089
1090/* Allocate and initialize a frame cache. */
1091
1092static struct i386_frame_cache *
fd13a04a 1093i386_alloc_frame_cache (void)
acd5c798
MK
1094{
1095 struct i386_frame_cache *cache;
1096 int i;
1097
1098 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1099
1100 /* Base address. */
8fbca658 1101 cache->base_p = 0;
acd5c798
MK
1102 cache->base = 0;
1103 cache->sp_offset = -4;
1104 cache->pc = 0;
1105
fd13a04a
AC
1106 /* Saved registers. We initialize these to -1 since zero is a valid
1107 offset (that's where %ebp is supposed to be stored). */
1108 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1109 cache->saved_regs[i] = -1;
acd5c798 1110 cache->saved_sp = 0;
e0c62198 1111 cache->saved_sp_reg = -1;
acd5c798
MK
1112 cache->pc_in_eax = 0;
1113
1114 /* Frameless until proven otherwise. */
1115 cache->locals = -1;
1116
1117 return cache;
1118}
c906108c 1119
acd5c798
MK
1120/* If the instruction at PC is a jump, return the address of its
1121 target. Otherwise, return PC. */
c906108c 1122
acd5c798 1123static CORE_ADDR
e17a4113 1124i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1125{
e17a4113 1126 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1127 gdb_byte op;
acd5c798
MK
1128 long delta = 0;
1129 int data16 = 0;
c906108c 1130
0865b04a 1131 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1132 return pc;
1133
acd5c798 1134 if (op == 0x66)
c906108c 1135 {
c906108c 1136 data16 = 1;
0865b04a
YQ
1137
1138 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1139 }
1140
acd5c798 1141 switch (op)
c906108c
SS
1142 {
1143 case 0xe9:
fc338970 1144 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1145 if (data16)
1146 {
e17a4113 1147 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1148
fc338970
MK
1149 /* Include the size of the jmp instruction (including the
1150 0x66 prefix). */
acd5c798 1151 delta += 4;
c906108c
SS
1152 }
1153 else
1154 {
e17a4113 1155 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1156
acd5c798
MK
1157 /* Include the size of the jmp instruction. */
1158 delta += 5;
c906108c
SS
1159 }
1160 break;
1161 case 0xeb:
fc338970 1162 /* Relative jump, disp8 (ignore data16). */
e17a4113 1163 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1164
acd5c798 1165 delta += data16 + 2;
c906108c
SS
1166 break;
1167 }
c906108c 1168
acd5c798
MK
1169 return pc + delta;
1170}
fc338970 1171
acd5c798
MK
1172/* Check whether PC points at a prologue for a function returning a
1173 structure or union. If so, it updates CACHE and returns the
1174 address of the first instruction after the code sequence that
1175 removes the "hidden" argument from the stack or CURRENT_PC,
1176 whichever is smaller. Otherwise, return PC. */
c906108c 1177
acd5c798
MK
1178static CORE_ADDR
1179i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1180 struct i386_frame_cache *cache)
c906108c 1181{
acd5c798
MK
1182 /* Functions that return a structure or union start with:
1183
1184 popl %eax 0x58
1185 xchgl %eax, (%esp) 0x87 0x04 0x24
1186 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1187
1188 (the System V compiler puts out the second `xchg' instruction,
1189 and the assembler doesn't try to optimize it, so the 'sib' form
1190 gets generated). This sequence is used to get the address of the
1191 return buffer for a function that returns a structure. */
63c0089f
MK
1192 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1193 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1194 gdb_byte buf[4];
1195 gdb_byte op;
c906108c 1196
acd5c798
MK
1197 if (current_pc <= pc)
1198 return pc;
1199
0865b04a 1200 if (target_read_code (pc, &op, 1))
3dcabaa8 1201 return pc;
c906108c 1202
acd5c798
MK
1203 if (op != 0x58) /* popl %eax */
1204 return pc;
c906108c 1205
0865b04a 1206 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1207 return pc;
1208
acd5c798
MK
1209 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1210 return pc;
c906108c 1211
acd5c798 1212 if (current_pc == pc)
c906108c 1213 {
acd5c798
MK
1214 cache->sp_offset += 4;
1215 return current_pc;
c906108c
SS
1216 }
1217
acd5c798 1218 if (current_pc == pc + 1)
c906108c 1219 {
acd5c798
MK
1220 cache->pc_in_eax = 1;
1221 return current_pc;
1222 }
1223
1224 if (buf[1] == proto1[1])
1225 return pc + 4;
1226 else
1227 return pc + 5;
1228}
1229
1230static CORE_ADDR
1231i386_skip_probe (CORE_ADDR pc)
1232{
1233 /* A function may start with
fc338970 1234
acd5c798
MK
1235 pushl constant
1236 call _probe
1237 addl $4, %esp
fc338970 1238
acd5c798
MK
1239 followed by
1240
1241 pushl %ebp
fc338970 1242
acd5c798 1243 etc. */
63c0089f
MK
1244 gdb_byte buf[8];
1245 gdb_byte op;
fc338970 1246
0865b04a 1247 if (target_read_code (pc, &op, 1))
3dcabaa8 1248 return pc;
acd5c798
MK
1249
1250 if (op == 0x68 || op == 0x6a)
1251 {
1252 int delta;
c906108c 1253
acd5c798
MK
1254 /* Skip past the `pushl' instruction; it has either a one-byte or a
1255 four-byte operand, depending on the opcode. */
c906108c 1256 if (op == 0x68)
acd5c798 1257 delta = 5;
c906108c 1258 else
acd5c798 1259 delta = 2;
c906108c 1260
acd5c798
MK
1261 /* Read the following 8 bytes, which should be `call _probe' (6
1262 bytes) followed by `addl $4,%esp' (2 bytes). */
1263 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1264 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1265 pc += delta + sizeof (buf);
c906108c
SS
1266 }
1267
acd5c798
MK
1268 return pc;
1269}
1270
92dd43fa
MK
1271/* GCC 4.1 and later, can put code in the prologue to realign the
1272 stack pointer. Check whether PC points to such code, and update
1273 CACHE accordingly. Return the first instruction after the code
1274 sequence or CURRENT_PC, whichever is smaller. If we don't
1275 recognize the code, return PC. */
1276
1277static CORE_ADDR
1278i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1279 struct i386_frame_cache *cache)
1280{
e0c62198
L
1281 /* There are 2 code sequences to re-align stack before the frame
1282 gets set up:
1283
1284 1. Use a caller-saved saved register:
1285
1286 leal 4(%esp), %reg
1287 andl $-XXX, %esp
1288 pushl -4(%reg)
1289
1290 2. Use a callee-saved saved register:
1291
1292 pushl %reg
1293 leal 8(%esp), %reg
1294 andl $-XXX, %esp
1295 pushl -4(%reg)
1296
1297 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1298
1299 0x83 0xe4 0xf0 andl $-16, %esp
1300 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1301 */
1302
1303 gdb_byte buf[14];
1304 int reg;
1305 int offset, offset_and;
1306 static int regnums[8] = {
1307 I386_EAX_REGNUM, /* %eax */
1308 I386_ECX_REGNUM, /* %ecx */
1309 I386_EDX_REGNUM, /* %edx */
1310 I386_EBX_REGNUM, /* %ebx */
1311 I386_ESP_REGNUM, /* %esp */
1312 I386_EBP_REGNUM, /* %ebp */
1313 I386_ESI_REGNUM, /* %esi */
1314 I386_EDI_REGNUM /* %edi */
92dd43fa 1315 };
92dd43fa 1316
0865b04a 1317 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1318 return pc;
1319
1320 /* Check caller-saved saved register. The first instruction has
1321 to be "leal 4(%esp), %reg". */
1322 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1323 {
1324 /* MOD must be binary 10 and R/M must be binary 100. */
1325 if ((buf[1] & 0xc7) != 0x44)
1326 return pc;
1327
1328 /* REG has register number. */
1329 reg = (buf[1] >> 3) & 7;
1330 offset = 4;
1331 }
1332 else
1333 {
1334 /* Check callee-saved saved register. The first instruction
1335 has to be "pushl %reg". */
1336 if ((buf[0] & 0xf8) != 0x50)
1337 return pc;
1338
1339 /* Get register. */
1340 reg = buf[0] & 0x7;
1341
1342 /* The next instruction has to be "leal 8(%esp), %reg". */
1343 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1344 return pc;
1345
1346 /* MOD must be binary 10 and R/M must be binary 100. */
1347 if ((buf[2] & 0xc7) != 0x44)
1348 return pc;
1349
1350 /* REG has register number. Registers in pushl and leal have to
1351 be the same. */
1352 if (reg != ((buf[2] >> 3) & 7))
1353 return pc;
1354
1355 offset = 5;
1356 }
1357
1358 /* Rigister can't be %esp nor %ebp. */
1359 if (reg == 4 || reg == 5)
1360 return pc;
1361
1362 /* The next instruction has to be "andl $-XXX, %esp". */
1363 if (buf[offset + 1] != 0xe4
1364 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1365 return pc;
1366
1367 offset_and = offset;
1368 offset += buf[offset] == 0x81 ? 6 : 3;
1369
1370 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1371 0xfc. REG must be binary 110 and MOD must be binary 01. */
1372 if (buf[offset] != 0xff
1373 || buf[offset + 2] != 0xfc
1374 || (buf[offset + 1] & 0xf8) != 0x70)
1375 return pc;
1376
1377 /* R/M has register. Registers in leal and pushl have to be the
1378 same. */
1379 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1380 return pc;
1381
e0c62198
L
1382 if (current_pc > pc + offset_and)
1383 cache->saved_sp_reg = regnums[reg];
92dd43fa 1384
325fac50 1385 return std::min (pc + offset + 3, current_pc);
92dd43fa
MK
1386}
1387
37bdc87e 1388/* Maximum instruction length we need to handle. */
237fc4c9 1389#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1390
1391/* Instruction description. */
1392struct i386_insn
1393{
1394 size_t len;
237fc4c9
PA
1395 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1396 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1397};
1398
a3fcb948 1399/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1400
a3fcb948
JG
1401static int
1402i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1403{
63c0089f 1404 gdb_byte op;
37bdc87e 1405
0865b04a 1406 if (target_read_code (pc, &op, 1))
a3fcb948 1407 return 0;
37bdc87e 1408
a3fcb948 1409 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1410 {
a3fcb948
JG
1411 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1412 int insn_matched = 1;
1413 size_t i;
37bdc87e 1414
a3fcb948
JG
1415 gdb_assert (pattern.len > 1);
1416 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1417
0865b04a 1418 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1419 return 0;
613e8135 1420
a3fcb948
JG
1421 for (i = 1; i < pattern.len; i++)
1422 {
1423 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1424 insn_matched = 0;
37bdc87e 1425 }
a3fcb948
JG
1426 return insn_matched;
1427 }
1428 return 0;
1429}
1430
1431/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1432 the first instruction description that matches. Otherwise, return
1433 NULL. */
1434
1435static struct i386_insn *
1436i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1437{
1438 struct i386_insn *pattern;
1439
1440 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1441 {
1442 if (i386_match_pattern (pc, *pattern))
1443 return pattern;
37bdc87e
MK
1444 }
1445
1446 return NULL;
1447}
1448
a3fcb948
JG
1449/* Return whether PC points inside a sequence of instructions that
1450 matches INSN_PATTERNS. */
1451
1452static int
1453i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1454{
1455 CORE_ADDR current_pc;
1456 int ix, i;
a3fcb948
JG
1457 struct i386_insn *insn;
1458
1459 insn = i386_match_insn (pc, insn_patterns);
1460 if (insn == NULL)
1461 return 0;
1462
8bbdd3f4 1463 current_pc = pc;
a3fcb948
JG
1464 ix = insn - insn_patterns;
1465 for (i = ix - 1; i >= 0; i--)
1466 {
8bbdd3f4
MK
1467 current_pc -= insn_patterns[i].len;
1468
a3fcb948
JG
1469 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1470 return 0;
a3fcb948
JG
1471 }
1472
1473 current_pc = pc + insn->len;
1474 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1475 {
1476 if (!i386_match_pattern (current_pc, *insn))
1477 return 0;
1478
1479 current_pc += insn->len;
1480 }
1481
1482 return 1;
1483}
1484
37bdc87e
MK
1485/* Some special instructions that might be migrated by GCC into the
1486 part of the prologue that sets up the new stack frame. Because the
1487 stack frame hasn't been setup yet, no registers have been saved
1488 yet, and only the scratch registers %eax, %ecx and %edx can be
1489 touched. */
1490
1491struct i386_insn i386_frame_setup_skip_insns[] =
1492{
1777feb0 1493 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1494
1495 ??? Should we handle 16-bit operand-sizes here? */
1496
1497 /* `movb imm8, %al' and `movb imm8, %ah' */
1498 /* `movb imm8, %cl' and `movb imm8, %ch' */
1499 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1500 /* `movb imm8, %dl' and `movb imm8, %dh' */
1501 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1502 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1503 { 5, { 0xb8 }, { 0xfe } },
1504 /* `movl imm32, %edx' */
1505 { 5, { 0xba }, { 0xff } },
1506
1507 /* Check for `mov imm32, r32'. Note that there is an alternative
1508 encoding for `mov m32, %eax'.
1509
85102364 1510 ??? Should we handle SIB addressing here?
37bdc87e
MK
1511 ??? Should we handle 16-bit operand-sizes here? */
1512
1513 /* `movl m32, %eax' */
1514 { 5, { 0xa1 }, { 0xff } },
1515 /* `movl m32, %eax' and `mov; m32, %ecx' */
1516 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1517 /* `movl m32, %edx' */
1518 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1519
1520 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1521 Because of the symmetry, there are actually two ways to encode
1522 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1523 opcode bytes 0x31 and 0x33 for `xorl'. */
1524
1525 /* `subl %eax, %eax' */
1526 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1527 /* `subl %ecx, %ecx' */
1528 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1529 /* `subl %edx, %edx' */
1530 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1531 /* `xorl %eax, %eax' */
1532 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1533 /* `xorl %ecx, %ecx' */
1534 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1535 /* `xorl %edx, %edx' */
1536 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1537 { 0 }
1538};
1539
e11481da
PM
1540
1541/* Check whether PC points to a no-op instruction. */
1542static CORE_ADDR
1543i386_skip_noop (CORE_ADDR pc)
1544{
1545 gdb_byte op;
1546 int check = 1;
1547
0865b04a 1548 if (target_read_code (pc, &op, 1))
3dcabaa8 1549 return pc;
e11481da
PM
1550
1551 while (check)
1552 {
1553 check = 0;
1554 /* Ignore `nop' instruction. */
1555 if (op == 0x90)
1556 {
1557 pc += 1;
0865b04a 1558 if (target_read_code (pc, &op, 1))
3dcabaa8 1559 return pc;
e11481da
PM
1560 check = 1;
1561 }
1562 /* Ignore no-op instruction `mov %edi, %edi'.
1563 Microsoft system dlls often start with
1564 a `mov %edi,%edi' instruction.
1565 The 5 bytes before the function start are
1566 filled with `nop' instructions.
1567 This pattern can be used for hot-patching:
1568 The `mov %edi, %edi' instruction can be replaced by a
1569 near jump to the location of the 5 `nop' instructions
1570 which can be replaced by a 32-bit jump to anywhere
1571 in the 32-bit address space. */
1572
1573 else if (op == 0x8b)
1574 {
0865b04a 1575 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1576 return pc;
1577
e11481da
PM
1578 if (op == 0xff)
1579 {
1580 pc += 2;
0865b04a 1581 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1582 return pc;
1583
e11481da
PM
1584 check = 1;
1585 }
1586 }
1587 }
1588 return pc;
1589}
1590
acd5c798
MK
1591/* Check whether PC points at a code that sets up a new stack frame.
1592 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1593 instruction after the sequence that sets up the frame or LIMIT,
1594 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1595
1596static CORE_ADDR
e17a4113
UW
1597i386_analyze_frame_setup (struct gdbarch *gdbarch,
1598 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1599 struct i386_frame_cache *cache)
1600{
e17a4113 1601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1602 struct i386_insn *insn;
63c0089f 1603 gdb_byte op;
26604a34 1604 int skip = 0;
acd5c798 1605
37bdc87e
MK
1606 if (limit <= pc)
1607 return limit;
acd5c798 1608
0865b04a 1609 if (target_read_code (pc, &op, 1))
3dcabaa8 1610 return pc;
acd5c798 1611
c906108c 1612 if (op == 0x55) /* pushl %ebp */
c5aa993b 1613 {
acd5c798
MK
1614 /* Take into account that we've executed the `pushl %ebp' that
1615 starts this instruction sequence. */
fd13a04a 1616 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1617 cache->sp_offset += 4;
37bdc87e 1618 pc++;
acd5c798
MK
1619
1620 /* If that's all, return now. */
37bdc87e
MK
1621 if (limit <= pc)
1622 return limit;
26604a34 1623
b4632131 1624 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1625 GCC into the prologue and skip them. At this point in the
1626 prologue, code should only touch the scratch registers %eax,
30baf67b 1627 %ecx and %edx, so while the number of possibilities is sheer,
37bdc87e 1628 it is limited.
5daa5b4e 1629
26604a34
MK
1630 Make sure we only skip these instructions if we later see the
1631 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1632 while (pc + skip < limit)
26604a34 1633 {
37bdc87e
MK
1634 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1635 if (insn == NULL)
1636 break;
b4632131 1637
37bdc87e 1638 skip += insn->len;
26604a34
MK
1639 }
1640
37bdc87e
MK
1641 /* If that's all, return now. */
1642 if (limit <= pc + skip)
1643 return limit;
1644
0865b04a 1645 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1646 return pc + skip;
37bdc87e 1647
30f8135b
YQ
1648 /* The i386 prologue looks like
1649
1650 push %ebp
1651 mov %esp,%ebp
1652 sub $0x10,%esp
1653
1654 and a different prologue can be generated for atom.
1655
1656 push %ebp
1657 lea (%esp),%ebp
1658 lea -0x10(%esp),%esp
1659
1660 We handle both of them here. */
1661
acd5c798 1662 switch (op)
c906108c 1663 {
30f8135b 1664 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1665 case 0x8b:
0865b04a 1666 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1667 != 0xec)
37bdc87e 1668 return pc;
30f8135b 1669 pc += (skip + 2);
c906108c
SS
1670 break;
1671 case 0x89:
0865b04a 1672 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1673 != 0xe5)
37bdc87e 1674 return pc;
30f8135b
YQ
1675 pc += (skip + 2);
1676 break;
1677 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1678 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1679 != 0x242c)
1680 return pc;
1681 pc += (skip + 3);
c906108c
SS
1682 break;
1683 default:
37bdc87e 1684 return pc;
c906108c 1685 }
acd5c798 1686
26604a34
MK
1687 /* OK, we actually have a frame. We just don't know how large
1688 it is yet. Set its size to zero. We'll adjust it if
1689 necessary. We also now commit to skipping the special
1690 instructions mentioned before. */
acd5c798
MK
1691 cache->locals = 0;
1692
1693 /* If that's all, return now. */
37bdc87e
MK
1694 if (limit <= pc)
1695 return limit;
acd5c798 1696
fc338970
MK
1697 /* Check for stack adjustment
1698
acd5c798 1699 subl $XXX, %esp
30f8135b
YQ
1700 or
1701 lea -XXX(%esp),%esp
fc338970 1702
fd35795f 1703 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1704 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1705 if (target_read_code (pc, &op, 1))
3dcabaa8 1706 return pc;
c906108c
SS
1707 if (op == 0x83)
1708 {
fd35795f 1709 /* `subl' with 8-bit immediate. */
0865b04a 1710 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1711 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1712 return pc;
acd5c798 1713
37bdc87e
MK
1714 /* `subl' with signed 8-bit immediate (though it wouldn't
1715 make sense to be negative). */
0865b04a 1716 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1717 return pc + 3;
c906108c
SS
1718 }
1719 else if (op == 0x81)
1720 {
fd35795f 1721 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1722 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1723 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1724 return pc;
acd5c798 1725
fd35795f 1726 /* It is `subl' with a 32-bit immediate. */
0865b04a 1727 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1728 return pc + 6;
c906108c 1729 }
30f8135b
YQ
1730 else if (op == 0x8d)
1731 {
1732 /* The ModR/M byte is 0x64. */
0865b04a 1733 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1734 return pc;
1735 /* 'lea' with 8-bit displacement. */
0865b04a 1736 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1737 return pc + 4;
1738 }
c906108c
SS
1739 else
1740 {
30f8135b 1741 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1742 return pc;
c906108c
SS
1743 }
1744 }
37bdc87e 1745 else if (op == 0xc8) /* enter */
c906108c 1746 {
0865b04a 1747 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1748 return pc + 4;
c906108c 1749 }
21d0e8a4 1750
acd5c798 1751 return pc;
21d0e8a4
MK
1752}
1753
acd5c798
MK
1754/* Check whether PC points at code that saves registers on the stack.
1755 If so, it updates CACHE and returns the address of the first
1756 instruction after the register saves or CURRENT_PC, whichever is
1757 smaller. Otherwise, return PC. */
6bff26de
MK
1758
1759static CORE_ADDR
acd5c798
MK
1760i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1761 struct i386_frame_cache *cache)
6bff26de 1762{
99ab4326 1763 CORE_ADDR offset = 0;
63c0089f 1764 gdb_byte op;
99ab4326 1765 int i;
c0d1d883 1766
99ab4326
MK
1767 if (cache->locals > 0)
1768 offset -= cache->locals;
1769 for (i = 0; i < 8 && pc < current_pc; i++)
1770 {
0865b04a 1771 if (target_read_code (pc, &op, 1))
3dcabaa8 1772 return pc;
99ab4326
MK
1773 if (op < 0x50 || op > 0x57)
1774 break;
0d17c81d 1775
99ab4326
MK
1776 offset -= 4;
1777 cache->saved_regs[op - 0x50] = offset;
1778 cache->sp_offset += 4;
1779 pc++;
6bff26de
MK
1780 }
1781
acd5c798 1782 return pc;
22797942
AC
1783}
1784
acd5c798
MK
1785/* Do a full analysis of the prologue at PC and update CACHE
1786 accordingly. Bail out early if CURRENT_PC is reached. Return the
1787 address where the analysis stopped.
ed84f6c1 1788
fc338970
MK
1789 We handle these cases:
1790
1791 The startup sequence can be at the start of the function, or the
1792 function can start with a branch to startup code at the end.
1793
1794 %ebp can be set up with either the 'enter' instruction, or "pushl
1795 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1796 once used in the System V compiler).
1797
1798 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1799 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1800 16-bit unsigned argument for space to allocate, and the 'addl'
1801 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1802
1803 Next, the registers used by this function are pushed. With the
1804 System V compiler they will always be in the order: %edi, %esi,
1805 %ebx (and sometimes a harmless bug causes it to also save but not
1806 restore %eax); however, the code below is willing to see the pushes
1807 in any order, and will handle up to 8 of them.
1808
1809 If the setup sequence is at the end of the function, then the next
1810 instruction will be a branch back to the start. */
c906108c 1811
acd5c798 1812static CORE_ADDR
e17a4113
UW
1813i386_analyze_prologue (struct gdbarch *gdbarch,
1814 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1815 struct i386_frame_cache *cache)
c906108c 1816{
e11481da 1817 pc = i386_skip_noop (pc);
e17a4113 1818 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1819 pc = i386_analyze_struct_return (pc, current_pc, cache);
1820 pc = i386_skip_probe (pc);
92dd43fa 1821 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1822 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1823 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1824}
1825
fc338970 1826/* Return PC of first real instruction. */
c906108c 1827
3a1e71e3 1828static CORE_ADDR
6093d2eb 1829i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1830{
e17a4113
UW
1831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1832
63c0089f 1833 static gdb_byte pic_pat[6] =
acd5c798
MK
1834 {
1835 0xe8, 0, 0, 0, 0, /* call 0x0 */
1836 0x5b, /* popl %ebx */
c5aa993b 1837 };
acd5c798
MK
1838 struct i386_frame_cache cache;
1839 CORE_ADDR pc;
63c0089f 1840 gdb_byte op;
acd5c798 1841 int i;
56bf0743 1842 CORE_ADDR func_addr;
4e879fc2 1843
56bf0743
KB
1844 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1845 {
1846 CORE_ADDR post_prologue_pc
1847 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1848 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
1849
1850 /* Clang always emits a line note before the prologue and another
1851 one after. We trust clang to emit usable line notes. */
1852 if (post_prologue_pc
43f3e411
DE
1853 && (cust != NULL
1854 && COMPUNIT_PRODUCER (cust) != NULL
61012eef 1855 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
325fac50 1856 return std::max (start_pc, post_prologue_pc);
56bf0743
KB
1857 }
1858
e0f33b1f 1859 cache.locals = -1;
e17a4113 1860 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1861 if (cache.locals < 0)
1862 return start_pc;
c5aa993b 1863
acd5c798 1864 /* Found valid frame setup. */
c906108c 1865
fc338970
MK
1866 /* The native cc on SVR4 in -K PIC mode inserts the following code
1867 to get the address of the global offset table (GOT) into register
acd5c798
MK
1868 %ebx:
1869
fc338970
MK
1870 call 0x0
1871 popl %ebx
1872 movl %ebx,x(%ebp) (optional)
1873 addl y,%ebx
1874
c906108c
SS
1875 This code is with the rest of the prologue (at the end of the
1876 function), so we have to skip it to get to the first real
1877 instruction at the start of the function. */
c5aa993b 1878
c906108c
SS
1879 for (i = 0; i < 6; i++)
1880 {
0865b04a 1881 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1882 return pc;
1883
c5aa993b 1884 if (pic_pat[i] != op)
c906108c
SS
1885 break;
1886 }
1887 if (i == 6)
1888 {
acd5c798
MK
1889 int delta = 6;
1890
0865b04a 1891 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1892 return pc;
c906108c 1893
c5aa993b 1894 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1895 {
0865b04a 1896 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1897
fc338970 1898 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1899 delta += 3;
fc338970 1900 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1901 delta += 6;
fc338970 1902 else /* Unexpected instruction. */
acd5c798
MK
1903 delta = 0;
1904
0865b04a 1905 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1906 return pc;
c906108c 1907 }
acd5c798 1908
c5aa993b 1909 /* addl y,%ebx */
acd5c798 1910 if (delta > 0 && op == 0x81
0865b04a 1911 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1912 == 0xc3)
c906108c 1913 {
acd5c798 1914 pc += delta + 6;
c906108c
SS
1915 }
1916 }
c5aa993b 1917
e63bbc88
MK
1918 /* If the function starts with a branch (to startup code at the end)
1919 the last instruction should bring us back to the first
1920 instruction of the real code. */
e17a4113
UW
1921 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1922 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1923
1924 return pc;
c906108c
SS
1925}
1926
4309257c
PM
1927/* Check that the code pointed to by PC corresponds to a call to
1928 __main, skip it if so. Return PC otherwise. */
1929
1930CORE_ADDR
1931i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1932{
e17a4113 1933 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1934 gdb_byte op;
1935
0865b04a 1936 if (target_read_code (pc, &op, 1))
3dcabaa8 1937 return pc;
4309257c
PM
1938 if (op == 0xe8)
1939 {
1940 gdb_byte buf[4];
1941
0865b04a 1942 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1943 {
1944 /* Make sure address is computed correctly as a 32bit
1945 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1946 struct bound_minimal_symbol s;
e17a4113 1947 CORE_ADDR call_dest;
4309257c 1948
e17a4113 1949 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1950 call_dest = call_dest & 0xffffffffU;
1951 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1952 if (s.minsym != NULL
c9d95fa3
CB
1953 && s.minsym->linkage_name () != NULL
1954 && strcmp (s.minsym->linkage_name (), "__main") == 0)
4309257c
PM
1955 pc += 5;
1956 }
1957 }
1958
1959 return pc;
1960}
1961
acd5c798 1962/* This function is 64-bit safe. */
93924b6b 1963
acd5c798
MK
1964static CORE_ADDR
1965i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1966{
63c0089f 1967 gdb_byte buf[8];
acd5c798 1968
875f8d0e 1969 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1970 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1971}
acd5c798 1972\f
93924b6b 1973
acd5c798 1974/* Normal frames. */
c5aa993b 1975
8fbca658
PA
1976static void
1977i386_frame_cache_1 (struct frame_info *this_frame,
1978 struct i386_frame_cache *cache)
a7769679 1979{
e17a4113
UW
1980 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1982 gdb_byte buf[4];
acd5c798
MK
1983 int i;
1984
8fbca658 1985 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1986
1987 /* In principle, for normal frames, %ebp holds the frame pointer,
1988 which holds the base address for the current stack frame.
1989 However, for functions that don't need it, the frame pointer is
1990 optional. For these "frameless" functions the frame pointer is
1991 actually the frame pointer of the calling frame. Signal
1992 trampolines are just a special case of a "frameless" function.
1993 They (usually) share their frame pointer with the frame that was
1994 in progress when the signal occurred. */
1995
10458914 1996 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1997 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1998 if (cache->base == 0)
620fa63a
PA
1999 {
2000 cache->base_p = 1;
2001 return;
2002 }
acd5c798
MK
2003
2004 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 2005 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 2006
acd5c798 2007 if (cache->pc != 0)
e17a4113
UW
2008 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2009 cache);
acd5c798
MK
2010
2011 if (cache->locals < 0)
2012 {
2013 /* We didn't find a valid frame, which means that CACHE->base
2014 currently holds the frame pointer for our calling frame. If
2015 we're at the start of a function, or somewhere half-way its
2016 prologue, the function's frame probably hasn't been fully
2017 setup yet. Try to reconstruct the base address for the stack
2018 frame by looking at the stack pointer. For truly "frameless"
2019 functions this might work too. */
2020
e0c62198 2021 if (cache->saved_sp_reg != -1)
92dd43fa 2022 {
8fbca658
PA
2023 /* Saved stack pointer has been saved. */
2024 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2025 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2026
92dd43fa
MK
2027 /* We're halfway aligning the stack. */
2028 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2029 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2030
2031 /* This will be added back below. */
2032 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2033 }
7618e12b 2034 else if (cache->pc != 0
0865b04a 2035 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2036 {
7618e12b
DJ
2037 /* We're in a known function, but did not find a frame
2038 setup. Assume that the function does not use %ebp.
2039 Alternatively, we may have jumped to an invalid
2040 address; in that case there is definitely no new
2041 frame in %ebp. */
10458914 2042 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2043 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2044 + cache->sp_offset;
92dd43fa 2045 }
7618e12b
DJ
2046 else
2047 /* We're in an unknown function. We could not find the start
2048 of the function to analyze the prologue; our best option is
2049 to assume a typical frame layout with the caller's %ebp
2050 saved. */
2051 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2052 }
2053
8fbca658
PA
2054 if (cache->saved_sp_reg != -1)
2055 {
2056 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2057 register may be unavailable). */
2058 if (cache->saved_sp == 0
ca9d61b9
JB
2059 && deprecated_frame_register_read (this_frame,
2060 cache->saved_sp_reg, buf))
8fbca658
PA
2061 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2062 }
acd5c798
MK
2063 /* Now that we have the base address for the stack frame we can
2064 calculate the value of %esp in the calling frame. */
8fbca658 2065 else if (cache->saved_sp == 0)
92dd43fa 2066 cache->saved_sp = cache->base + 8;
a7769679 2067
acd5c798
MK
2068 /* Adjust all the saved registers such that they contain addresses
2069 instead of offsets. */
2070 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2071 if (cache->saved_regs[i] != -1)
2072 cache->saved_regs[i] += cache->base;
acd5c798 2073
8fbca658
PA
2074 cache->base_p = 1;
2075}
2076
2077static struct i386_frame_cache *
2078i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2079{
8fbca658
PA
2080 struct i386_frame_cache *cache;
2081
2082 if (*this_cache)
9a3c8263 2083 return (struct i386_frame_cache *) *this_cache;
8fbca658
PA
2084
2085 cache = i386_alloc_frame_cache ();
2086 *this_cache = cache;
2087
a70b8144 2088 try
8fbca658
PA
2089 {
2090 i386_frame_cache_1 (this_frame, cache);
2091 }
230d2906 2092 catch (const gdb_exception_error &ex)
7556d4a4
PA
2093 {
2094 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2095 throw;
7556d4a4 2096 }
8fbca658 2097
acd5c798 2098 return cache;
a7769679
MK
2099}
2100
3a1e71e3 2101static void
10458914 2102i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2103 struct frame_id *this_id)
c906108c 2104{
10458914 2105 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2106
5ce0145d
PA
2107 if (!cache->base_p)
2108 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2109 else if (cache->base == 0)
2110 {
2111 /* This marks the outermost frame. */
2112 }
2113 else
2114 {
2115 /* See the end of i386_push_dummy_call. */
2116 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2117 }
acd5c798
MK
2118}
2119
8fbca658
PA
2120static enum unwind_stop_reason
2121i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2122 void **this_cache)
2123{
2124 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2125
2126 if (!cache->base_p)
2127 return UNWIND_UNAVAILABLE;
2128
2129 /* This marks the outermost frame. */
2130 if (cache->base == 0)
2131 return UNWIND_OUTERMOST;
2132
2133 return UNWIND_NO_REASON;
2134}
2135
10458914
DJ
2136static struct value *
2137i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2138 int regnum)
acd5c798 2139{
10458914 2140 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2141
2142 gdb_assert (regnum >= 0);
2143
2144 /* The System V ABI says that:
2145
2146 "The flags register contains the system flags, such as the
2147 direction flag and the carry flag. The direction flag must be
2148 set to the forward (that is, zero) direction before entry and
2149 upon exit from a function. Other user flags have no specified
2150 role in the standard calling sequence and are not preserved."
2151
2152 To guarantee the "upon exit" part of that statement we fake a
2153 saved flags register that has its direction flag cleared.
2154
2155 Note that GCC doesn't seem to rely on the fact that the direction
2156 flag is cleared after a function return; it always explicitly
2157 clears the flag before operations where it matters.
2158
2159 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2160 right thing to do. The way we fake the flags register here makes
2161 it impossible to change it. */
2162
2163 if (regnum == I386_EFLAGS_REGNUM)
2164 {
10458914 2165 ULONGEST val;
c5aa993b 2166
10458914
DJ
2167 val = get_frame_register_unsigned (this_frame, regnum);
2168 val &= ~(1 << 10);
2169 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2170 }
1211c4e4 2171
acd5c798 2172 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2173 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2174
fcf250e2
UW
2175 if (regnum == I386_ESP_REGNUM
2176 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2177 {
2178 /* If the SP has been saved, but we don't know where, then this
2179 means that SAVED_SP_REG register was found unavailable back
2180 when we built the cache. */
fcf250e2 2181 if (cache->saved_sp == 0)
8fbca658
PA
2182 return frame_unwind_got_register (this_frame, regnum,
2183 cache->saved_sp_reg);
2184 else
2185 return frame_unwind_got_constant (this_frame, regnum,
2186 cache->saved_sp);
2187 }
acd5c798 2188
fd13a04a 2189 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2190 return frame_unwind_got_memory (this_frame, regnum,
2191 cache->saved_regs[regnum]);
fd13a04a 2192
10458914 2193 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2194}
2195
2196static const struct frame_unwind i386_frame_unwind =
2197{
2198 NORMAL_FRAME,
8fbca658 2199 i386_frame_unwind_stop_reason,
acd5c798 2200 i386_frame_this_id,
10458914
DJ
2201 i386_frame_prev_register,
2202 NULL,
2203 default_frame_sniffer
acd5c798 2204};
06da04c6
MS
2205
2206/* Normal frames, but in a function epilogue. */
2207
c9cf6e20
MG
2208/* Implement the stack_frame_destroyed_p gdbarch method.
2209
2210 The epilogue is defined here as the 'ret' instruction, which will
06da04c6
MS
2211 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2212 the function's stack frame. */
2213
2214static int
c9cf6e20 2215i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
06da04c6
MS
2216{
2217 gdb_byte insn;
43f3e411 2218 struct compunit_symtab *cust;
e0d00bc7 2219
43f3e411
DE
2220 cust = find_pc_compunit_symtab (pc);
2221 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2222 return 0;
06da04c6
MS
2223
2224 if (target_read_memory (pc, &insn, 1))
2225 return 0; /* Can't read memory at pc. */
2226
2227 if (insn != 0xc3) /* 'ret' instruction. */
2228 return 0;
2229
2230 return 1;
2231}
2232
2233static int
2234i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2235 struct frame_info *this_frame,
2236 void **this_prologue_cache)
2237{
2238 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2239 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2240 get_frame_pc (this_frame));
06da04c6
MS
2241 else
2242 return 0;
2243}
2244
2245static struct i386_frame_cache *
2246i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2247{
06da04c6 2248 struct i386_frame_cache *cache;
0d6c2135 2249 CORE_ADDR sp;
06da04c6
MS
2250
2251 if (*this_cache)
9a3c8263 2252 return (struct i386_frame_cache *) *this_cache;
06da04c6
MS
2253
2254 cache = i386_alloc_frame_cache ();
2255 *this_cache = cache;
2256
a70b8144 2257 try
8fbca658 2258 {
0d6c2135 2259 cache->pc = get_frame_func (this_frame);
06da04c6 2260
0d6c2135
MK
2261 /* At this point the stack looks as if we just entered the
2262 function, with the return address at the top of the
2263 stack. */
2264 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2265 cache->base = sp + cache->sp_offset;
8fbca658 2266 cache->saved_sp = cache->base + 8;
8fbca658 2267 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2268
8fbca658
PA
2269 cache->base_p = 1;
2270 }
230d2906 2271 catch (const gdb_exception_error &ex)
7556d4a4
PA
2272 {
2273 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2274 throw;
7556d4a4 2275 }
06da04c6
MS
2276
2277 return cache;
2278}
2279
8fbca658
PA
2280static enum unwind_stop_reason
2281i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2282 void **this_cache)
2283{
0d6c2135
MK
2284 struct i386_frame_cache *cache =
2285 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2286
2287 if (!cache->base_p)
2288 return UNWIND_UNAVAILABLE;
2289
2290 return UNWIND_NO_REASON;
2291}
2292
06da04c6
MS
2293static void
2294i386_epilogue_frame_this_id (struct frame_info *this_frame,
2295 void **this_cache,
2296 struct frame_id *this_id)
2297{
0d6c2135
MK
2298 struct i386_frame_cache *cache =
2299 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2300
8fbca658 2301 if (!cache->base_p)
5ce0145d
PA
2302 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2303 else
2304 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2305}
2306
0d6c2135
MK
2307static struct value *
2308i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2309 void **this_cache, int regnum)
2310{
2311 /* Make sure we've initialized the cache. */
2312 i386_epilogue_frame_cache (this_frame, this_cache);
2313
2314 return i386_frame_prev_register (this_frame, this_cache, regnum);
2315}
2316
06da04c6
MS
2317static const struct frame_unwind i386_epilogue_frame_unwind =
2318{
2319 NORMAL_FRAME,
8fbca658 2320 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2321 i386_epilogue_frame_this_id,
0d6c2135 2322 i386_epilogue_frame_prev_register,
06da04c6
MS
2323 NULL,
2324 i386_epilogue_frame_sniffer
2325};
acd5c798
MK
2326\f
2327
a3fcb948
JG
2328/* Stack-based trampolines. */
2329
2330/* These trampolines are used on cross x86 targets, when taking the
2331 address of a nested function. When executing these trampolines,
2332 no stack frame is set up, so we are in a similar situation as in
2333 epilogues and i386_epilogue_frame_this_id can be re-used. */
2334
2335/* Static chain passed in register. */
2336
2337struct i386_insn i386_tramp_chain_in_reg_insns[] =
2338{
2339 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2340 { 5, { 0xb8 }, { 0xfe } },
2341
2342 /* `jmp imm32' */
2343 { 5, { 0xe9 }, { 0xff } },
2344
2345 {0}
2346};
2347
2348/* Static chain passed on stack (when regparm=3). */
2349
2350struct i386_insn i386_tramp_chain_on_stack_insns[] =
2351{
2352 /* `push imm32' */
2353 { 5, { 0x68 }, { 0xff } },
2354
2355 /* `jmp imm32' */
2356 { 5, { 0xe9 }, { 0xff } },
2357
2358 {0}
2359};
2360
2361/* Return whether PC points inside a stack trampoline. */
2362
2363static int
6df81a63 2364i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2365{
2366 gdb_byte insn;
2c02bd72 2367 const char *name;
a3fcb948
JG
2368
2369 /* A stack trampoline is detected if no name is associated
2370 to the current pc and if it points inside a trampoline
2371 sequence. */
2372
2373 find_pc_partial_function (pc, &name, NULL, NULL);
2374 if (name)
2375 return 0;
2376
2377 if (target_read_memory (pc, &insn, 1))
2378 return 0;
2379
2380 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2381 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2382 return 0;
2383
2384 return 1;
2385}
2386
2387static int
2388i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2389 struct frame_info *this_frame,
2390 void **this_cache)
a3fcb948
JG
2391{
2392 if (frame_relative_level (this_frame) == 0)
6df81a63 2393 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2394 else
2395 return 0;
2396}
2397
2398static const struct frame_unwind i386_stack_tramp_frame_unwind =
2399{
2400 NORMAL_FRAME,
2401 i386_epilogue_frame_unwind_stop_reason,
2402 i386_epilogue_frame_this_id,
0d6c2135 2403 i386_epilogue_frame_prev_register,
a3fcb948
JG
2404 NULL,
2405 i386_stack_tramp_frame_sniffer
2406};
2407\f
6710bf39
SS
2408/* Generate a bytecode expression to get the value of the saved PC. */
2409
2410static void
2411i386_gen_return_address (struct gdbarch *gdbarch,
2412 struct agent_expr *ax, struct axs_value *value,
2413 CORE_ADDR scope)
2414{
2415 /* The following sequence assumes the traditional use of the base
2416 register. */
2417 ax_reg (ax, I386_EBP_REGNUM);
2418 ax_const_l (ax, 4);
2419 ax_simple (ax, aop_add);
2420 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2421 value->kind = axs_lvalue_memory;
2422}
2423\f
a3fcb948 2424
acd5c798
MK
2425/* Signal trampolines. */
2426
2427static struct i386_frame_cache *
10458914 2428i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2429{
e17a4113
UW
2430 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2432 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 2433 struct i386_frame_cache *cache;
acd5c798 2434 CORE_ADDR addr;
63c0089f 2435 gdb_byte buf[4];
acd5c798
MK
2436
2437 if (*this_cache)
9a3c8263 2438 return (struct i386_frame_cache *) *this_cache;
acd5c798 2439
fd13a04a 2440 cache = i386_alloc_frame_cache ();
acd5c798 2441
a70b8144 2442 try
a3386186 2443 {
8fbca658
PA
2444 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2445 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2446
8fbca658
PA
2447 addr = tdep->sigcontext_addr (this_frame);
2448 if (tdep->sc_reg_offset)
2449 {
2450 int i;
a3386186 2451
8fbca658
PA
2452 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2453
2454 for (i = 0; i < tdep->sc_num_regs; i++)
2455 if (tdep->sc_reg_offset[i] != -1)
2456 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2457 }
2458 else
2459 {
2460 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2461 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2462 }
2463
2464 cache->base_p = 1;
a3386186 2465 }
230d2906 2466 catch (const gdb_exception_error &ex)
7556d4a4
PA
2467 {
2468 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2469 throw;
7556d4a4 2470 }
acd5c798
MK
2471
2472 *this_cache = cache;
2473 return cache;
2474}
2475
8fbca658
PA
2476static enum unwind_stop_reason
2477i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2478 void **this_cache)
2479{
2480 struct i386_frame_cache *cache =
2481 i386_sigtramp_frame_cache (this_frame, this_cache);
2482
2483 if (!cache->base_p)
2484 return UNWIND_UNAVAILABLE;
2485
2486 return UNWIND_NO_REASON;
2487}
2488
acd5c798 2489static void
10458914 2490i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2491 struct frame_id *this_id)
2492{
2493 struct i386_frame_cache *cache =
10458914 2494 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2495
8fbca658 2496 if (!cache->base_p)
5ce0145d
PA
2497 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2498 else
2499 {
2500 /* See the end of i386_push_dummy_call. */
2501 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2502 }
acd5c798
MK
2503}
2504
10458914
DJ
2505static struct value *
2506i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2507 void **this_cache, int regnum)
acd5c798
MK
2508{
2509 /* Make sure we've initialized the cache. */
10458914 2510 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2511
10458914 2512 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2513}
c0d1d883 2514
10458914
DJ
2515static int
2516i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2517 struct frame_info *this_frame,
2518 void **this_prologue_cache)
acd5c798 2519{
10458914 2520 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2521
911bc6ee
MK
2522 /* We shouldn't even bother if we don't have a sigcontext_addr
2523 handler. */
2524 if (tdep->sigcontext_addr == NULL)
10458914 2525 return 0;
1c3545ae 2526
911bc6ee
MK
2527 if (tdep->sigtramp_p != NULL)
2528 {
10458914
DJ
2529 if (tdep->sigtramp_p (this_frame))
2530 return 1;
911bc6ee
MK
2531 }
2532
2533 if (tdep->sigtramp_start != 0)
2534 {
10458914 2535 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2536
2537 gdb_assert (tdep->sigtramp_end != 0);
2538 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2539 return 1;
911bc6ee 2540 }
acd5c798 2541
10458914 2542 return 0;
acd5c798 2543}
10458914
DJ
2544
2545static const struct frame_unwind i386_sigtramp_frame_unwind =
2546{
2547 SIGTRAMP_FRAME,
8fbca658 2548 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2549 i386_sigtramp_frame_this_id,
2550 i386_sigtramp_frame_prev_register,
2551 NULL,
2552 i386_sigtramp_frame_sniffer
2553};
acd5c798
MK
2554\f
2555
2556static CORE_ADDR
10458914 2557i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2558{
10458914 2559 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2560
2561 return cache->base;
2562}
2563
2564static const struct frame_base i386_frame_base =
2565{
2566 &i386_frame_unwind,
2567 i386_frame_base_address,
2568 i386_frame_base_address,
2569 i386_frame_base_address
2570};
2571
acd5c798 2572static struct frame_id
10458914 2573i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2574{
acd5c798
MK
2575 CORE_ADDR fp;
2576
10458914 2577 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2578
3e210248 2579 /* See the end of i386_push_dummy_call. */
10458914 2580 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2581}
e04e5beb
JM
2582
2583/* _Decimal128 function return values need 16-byte alignment on the
2584 stack. */
2585
2586static CORE_ADDR
2587i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2588{
2589 return sp & -(CORE_ADDR)16;
2590}
fc338970 2591\f
c906108c 2592
fc338970
MK
2593/* Figure out where the longjmp will land. Slurp the args out of the
2594 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2595 structure from which we extract the address that we will land at.
28bcfd30 2596 This address is copied into PC. This routine returns non-zero on
436675d3 2597 success. */
c906108c 2598
8201327c 2599static int
60ade65d 2600i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2601{
436675d3 2602 gdb_byte buf[4];
c906108c 2603 CORE_ADDR sp, jb_addr;
20a6ec49 2604 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2606 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2607
8201327c
MK
2608 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2609 longjmp will land. */
2610 if (jb_pc_offset == -1)
c906108c
SS
2611 return 0;
2612
436675d3 2613 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2614 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2615 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2616 return 0;
2617
e17a4113 2618 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2619 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2620 return 0;
c906108c 2621
e17a4113 2622 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2623 return 1;
2624}
fc338970 2625\f
c906108c 2626
7ccc1c74
JM
2627/* Check whether TYPE must be 16-byte-aligned when passed as a
2628 function argument. 16-byte vectors, _Decimal128 and structures or
2629 unions containing such types must be 16-byte-aligned; other
2630 arguments are 4-byte-aligned. */
2631
2632static int
2633i386_16_byte_align_p (struct type *type)
2634{
2635 type = check_typedef (type);
2636 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2637 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2638 && TYPE_LENGTH (type) == 16)
2639 return 1;
2640 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2641 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2642 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2643 || TYPE_CODE (type) == TYPE_CODE_UNION)
2644 {
2645 int i;
2646 for (i = 0; i < TYPE_NFIELDS (type); i++)
2647 {
2648 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2649 return 1;
2650 }
2651 }
2652 return 0;
2653}
2654
a9b8d892
JK
2655/* Implementation for set_gdbarch_push_dummy_code. */
2656
2657static CORE_ADDR
2658i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2659 struct value **args, int nargs, struct type *value_type,
2660 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2661 struct regcache *regcache)
2662{
2663 /* Use 0xcc breakpoint - 1 byte. */
2664 *bp_addr = sp - 1;
2665 *real_pc = funaddr;
2666
2667 /* Keep the stack aligned. */
2668 return sp - 16;
2669}
2670
3a1e71e3 2671static CORE_ADDR
7d9b040b 2672i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a 2673 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
cf84fa6b
AH
2674 struct value **args, CORE_ADDR sp,
2675 function_call_return_method return_method,
6a65450a 2676 CORE_ADDR struct_addr)
22f8ba57 2677{
e17a4113 2678 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2679 gdb_byte buf[4];
acd5c798 2680 int i;
7ccc1c74
JM
2681 int write_pass;
2682 int args_space = 0;
acd5c798 2683
4a612d6f
WT
2684 /* BND registers can be in arbitrary values at the moment of the
2685 inferior call. This can cause boundary violations that are not
2686 due to a real bug or even desired by the user. The best to be done
2687 is set the BND registers to allow access to the whole memory, INIT
2688 state, before pushing the inferior call. */
2689 i387_reset_bnd_regs (gdbarch, regcache);
2690
7ccc1c74
JM
2691 /* Determine the total space required for arguments and struct
2692 return address in a first pass (allowing for 16-byte-aligned
2693 arguments), then push arguments in a second pass. */
2694
2695 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2696 {
7ccc1c74 2697 int args_space_used = 0;
7ccc1c74 2698
cf84fa6b 2699 if (return_method == return_method_struct)
7ccc1c74
JM
2700 {
2701 if (write_pass)
2702 {
2703 /* Push value address. */
e17a4113 2704 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2705 write_memory (sp, buf, 4);
2706 args_space_used += 4;
2707 }
2708 else
2709 args_space += 4;
2710 }
2711
2712 for (i = 0; i < nargs; i++)
2713 {
2714 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2715
7ccc1c74
JM
2716 if (write_pass)
2717 {
2718 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2719 args_space_used = align_up (args_space_used, 16);
acd5c798 2720
7ccc1c74
JM
2721 write_memory (sp + args_space_used,
2722 value_contents_all (args[i]), len);
2723 /* The System V ABI says that:
acd5c798 2724
7ccc1c74
JM
2725 "An argument's size is increased, if necessary, to make it a
2726 multiple of [32-bit] words. This may require tail padding,
2727 depending on the size of the argument."
22f8ba57 2728
7ccc1c74
JM
2729 This makes sure the stack stays word-aligned. */
2730 args_space_used += align_up (len, 4);
2731 }
2732 else
2733 {
2734 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2735 args_space = align_up (args_space, 16);
7ccc1c74
JM
2736 args_space += align_up (len, 4);
2737 }
2738 }
2739
2740 if (!write_pass)
2741 {
7ccc1c74 2742 sp -= args_space;
284c5a60
MK
2743
2744 /* The original System V ABI only requires word alignment,
2745 but modern incarnations need 16-byte alignment in order
2746 to support SSE. Since wasting a few bytes here isn't
2747 harmful we unconditionally enforce 16-byte alignment. */
2748 sp &= ~0xf;
7ccc1c74 2749 }
22f8ba57
MK
2750 }
2751
acd5c798
MK
2752 /* Store return address. */
2753 sp -= 4;
e17a4113 2754 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2755 write_memory (sp, buf, 4);
2756
2757 /* Finally, update the stack pointer... */
e17a4113 2758 store_unsigned_integer (buf, 4, byte_order, sp);
b66f5587 2759 regcache->cooked_write (I386_ESP_REGNUM, buf);
acd5c798
MK
2760
2761 /* ...and fake a frame pointer. */
b66f5587 2762 regcache->cooked_write (I386_EBP_REGNUM, buf);
acd5c798 2763
3e210248
AC
2764 /* MarkK wrote: This "+ 8" is all over the place:
2765 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2766 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2767 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2768 definition of the stack address of a frame. Otherwise frame id
2769 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2770 stack address *before* the function call as a frame's CFA. On
2771 the i386, when %ebp is used as a frame pointer, the offset
2772 between the contents %ebp and the CFA as defined by GCC. */
2773 return sp + 8;
22f8ba57
MK
2774}
2775
1a309862
MK
2776/* These registers are used for returning integers (and on some
2777 targets also for returning `struct' and `union' values when their
ef9dff19 2778 size and alignment match an integer type). */
acd5c798
MK
2779#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2780#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2781
c5e656c1
MK
2782/* Read, for architecture GDBARCH, a function return value of TYPE
2783 from REGCACHE, and copy that into VALBUF. */
1a309862 2784
3a1e71e3 2785static void
c5e656c1 2786i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2787 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2788{
c5e656c1 2789 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2790 int len = TYPE_LENGTH (type);
63c0089f 2791 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2792
1e8d0a7b 2793 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2794 {
5716833c 2795 if (tdep->st0_regnum < 0)
1a309862 2796 {
8a3fe4f8 2797 warning (_("Cannot find floating-point return value."));
1a309862 2798 memset (valbuf, 0, len);
ef9dff19 2799 return;
1a309862
MK
2800 }
2801
c6ba6f0d
MK
2802 /* Floating-point return values can be found in %st(0). Convert
2803 its contents to the desired type. This is probably not
2804 exactly how it would happen on the target itself, but it is
2805 the best we can do. */
0b883586 2806 regcache->raw_read (I386_ST0_REGNUM, buf);
3b2ca824 2807 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2808 }
2809 else
c5aa993b 2810 {
875f8d0e
UW
2811 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2812 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2813
2814 if (len <= low_size)
00f8375e 2815 {
0b883586 2816 regcache->raw_read (LOW_RETURN_REGNUM, buf);
00f8375e
MK
2817 memcpy (valbuf, buf, len);
2818 }
d4f3574e
SS
2819 else if (len <= (low_size + high_size))
2820 {
0b883586 2821 regcache->raw_read (LOW_RETURN_REGNUM, buf);
00f8375e 2822 memcpy (valbuf, buf, low_size);
0b883586 2823 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
63c0089f 2824 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2825 }
2826 else
8e65ff28 2827 internal_error (__FILE__, __LINE__,
1777feb0
MS
2828 _("Cannot extract return value of %d bytes long."),
2829 len);
c906108c
SS
2830 }
2831}
2832
c5e656c1
MK
2833/* Write, for architecture GDBARCH, a function return value of TYPE
2834 from VALBUF into REGCACHE. */
ef9dff19 2835
3a1e71e3 2836static void
c5e656c1 2837i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2838 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2839{
c5e656c1 2840 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2841 int len = TYPE_LENGTH (type);
2842
1e8d0a7b 2843 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2844 {
3d7f4f49 2845 ULONGEST fstat;
63c0089f 2846 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2847
5716833c 2848 if (tdep->st0_regnum < 0)
ef9dff19 2849 {
8a3fe4f8 2850 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2851 return;
2852 }
2853
635b0cc1
MK
2854 /* Returning floating-point values is a bit tricky. Apart from
2855 storing the return value in %st(0), we have to simulate the
2856 state of the FPU at function return point. */
2857
c6ba6f0d
MK
2858 /* Convert the value found in VALBUF to the extended
2859 floating-point format used by the FPU. This is probably
2860 not exactly how it would happen on the target itself, but
2861 it is the best we can do. */
3b2ca824 2862 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
10eaee5f 2863 regcache->raw_write (I386_ST0_REGNUM, buf);
ccb945b8 2864
635b0cc1
MK
2865 /* Set the top of the floating-point register stack to 7. The
2866 actual value doesn't really matter, but 7 is what a normal
2867 function return would end up with if the program started out
2868 with a freshly initialized FPU. */
20a6ec49 2869 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2870 fstat |= (7 << 11);
20a6ec49 2871 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2872
635b0cc1
MK
2873 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2874 the floating-point register stack to 7, the appropriate value
2875 for the tag word is 0x3fff. */
20a6ec49 2876 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2877 }
2878 else
2879 {
875f8d0e
UW
2880 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2881 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2882
2883 if (len <= low_size)
4f0420fd 2884 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2885 else if (len <= (low_size + high_size))
2886 {
10eaee5f 2887 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
4f0420fd
SM
2888 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2889 valbuf + low_size);
ef9dff19
MK
2890 }
2891 else
8e65ff28 2892 internal_error (__FILE__, __LINE__,
e2e0b3e5 2893 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2894 }
2895}
fc338970 2896\f
ef9dff19 2897
8201327c
MK
2898/* This is the variable that is set with "set struct-convention", and
2899 its legitimate values. */
2900static const char default_struct_convention[] = "default";
2901static const char pcc_struct_convention[] = "pcc";
2902static const char reg_struct_convention[] = "reg";
40478521 2903static const char *const valid_conventions[] =
8201327c
MK
2904{
2905 default_struct_convention,
2906 pcc_struct_convention,
2907 reg_struct_convention,
2908 NULL
2909};
2910static const char *struct_convention = default_struct_convention;
2911
0e4377e1
JB
2912/* Return non-zero if TYPE, which is assumed to be a structure,
2913 a union type, or an array type, should be returned in registers
2914 for architecture GDBARCH. */
c5e656c1 2915
8201327c 2916static int
c5e656c1 2917i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2918{
c5e656c1
MK
2919 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2920 enum type_code code = TYPE_CODE (type);
2921 int len = TYPE_LENGTH (type);
8201327c 2922
0e4377e1
JB
2923 gdb_assert (code == TYPE_CODE_STRUCT
2924 || code == TYPE_CODE_UNION
2925 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2926
2927 if (struct_convention == pcc_struct_convention
2928 || (struct_convention == default_struct_convention
2929 && tdep->struct_return == pcc_struct_return))
2930 return 0;
2931
9edde48e
MK
2932 /* Structures consisting of a single `float', `double' or 'long
2933 double' member are returned in %st(0). */
2934 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2935 {
2936 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2937 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2938 return (len == 4 || len == 8 || len == 12);
2939 }
2940
c5e656c1
MK
2941 return (len == 1 || len == 2 || len == 4 || len == 8);
2942}
2943
2944/* Determine, for architecture GDBARCH, how a return value of TYPE
2945 should be returned. If it is supposed to be returned in registers,
2946 and READBUF is non-zero, read the appropriate value from REGCACHE,
2947 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2948 from WRITEBUF into REGCACHE. */
2949
2950static enum return_value_convention
6a3a010b 2951i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2952 struct type *type, struct regcache *regcache,
2953 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2954{
2955 enum type_code code = TYPE_CODE (type);
2956
5daa78cc
TJB
2957 if (((code == TYPE_CODE_STRUCT
2958 || code == TYPE_CODE_UNION
2959 || code == TYPE_CODE_ARRAY)
2960 && !i386_reg_struct_return_p (gdbarch, type))
405feb71 2961 /* Complex double and long double uses the struct return convention. */
2445fd7b
MK
2962 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2963 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2964 /* 128-bit decimal float uses the struct return convention. */
2965 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2966 {
2967 /* The System V ABI says that:
2968
2969 "A function that returns a structure or union also sets %eax
2970 to the value of the original address of the caller's area
2971 before it returns. Thus when the caller receives control
2972 again, the address of the returned object resides in register
2973 %eax and can be used to access the object."
2974
2975 So the ABI guarantees that we can always find the return
2976 value just after the function has returned. */
2977
0e4377e1
JB
2978 /* Note that the ABI doesn't mention functions returning arrays,
2979 which is something possible in certain languages such as Ada.
2980 In this case, the value is returned as if it was wrapped in
2981 a record, so the convention applied to records also applies
2982 to arrays. */
2983
31db7b6c
MK
2984 if (readbuf)
2985 {
2986 ULONGEST addr;
2987
2988 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2989 read_memory (addr, readbuf, TYPE_LENGTH (type));
2990 }
2991
2992 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2993 }
c5e656c1
MK
2994
2995 /* This special case is for structures consisting of a single
9edde48e
MK
2996 `float', `double' or 'long double' member. These structures are
2997 returned in %st(0). For these structures, we call ourselves
2998 recursively, changing TYPE into the type of the first member of
2999 the structure. Since that should work for all structures that
3000 have only one member, we don't bother to check the member's type
3001 here. */
c5e656c1
MK
3002 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3003 {
3004 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 3005 return i386_return_value (gdbarch, function, type, regcache,
c055b101 3006 readbuf, writebuf);
c5e656c1
MK
3007 }
3008
3009 if (readbuf)
3010 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3011 if (writebuf)
3012 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 3013
c5e656c1 3014 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
3015}
3016\f
3017
27067745
UW
3018struct type *
3019i387_ext_type (struct gdbarch *gdbarch)
3020{
3021 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3022
3023 if (!tdep->i387_ext_type)
90884b2b
L
3024 {
3025 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3026 gdb_assert (tdep->i387_ext_type != NULL);
3027 }
27067745
UW
3028
3029 return tdep->i387_ext_type;
3030}
3031
1dbcd68c
WT
3032/* Construct type for pseudo BND registers. We can't use
3033 tdesc_find_type since a complement of one value has to be used
3034 to describe the upper bound. */
3035
3036static struct type *
3037i386_bnd_type (struct gdbarch *gdbarch)
3038{
3039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3040
3041
3042 if (!tdep->i386_bnd_type)
3043 {
870f88f7 3044 struct type *t;
1dbcd68c
WT
3045 const struct builtin_type *bt = builtin_type (gdbarch);
3046
3047 /* The type we're building is described bellow: */
3048#if 0
3049 struct __bound128
3050 {
3051 void *lbound;
3052 void *ubound; /* One complement of raw ubound field. */
3053 };
3054#endif
3055
3056 t = arch_composite_type (gdbarch,
3057 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3058
3059 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3060 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3061
3062 TYPE_NAME (t) = "builtin_type_bound128";
3063 tdep->i386_bnd_type = t;
3064 }
3065
3066 return tdep->i386_bnd_type;
3067}
3068
01f9f808
MS
3069/* Construct vector type for pseudo ZMM registers. We can't use
3070 tdesc_find_type since ZMM isn't described in target description. */
3071
3072static struct type *
3073i386_zmm_type (struct gdbarch *gdbarch)
3074{
3075 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3076
3077 if (!tdep->i386_zmm_type)
3078 {
3079 const struct builtin_type *bt = builtin_type (gdbarch);
3080
3081 /* The type we're building is this: */
3082#if 0
3083 union __gdb_builtin_type_vec512i
3084 {
3085 int128_t uint128[4];
3086 int64_t v4_int64[8];
3087 int32_t v8_int32[16];
3088 int16_t v16_int16[32];
3089 int8_t v32_int8[64];
3090 double v4_double[8];
3091 float v8_float[16];
3092 };
3093#endif
3094
3095 struct type *t;
3096
3097 t = arch_composite_type (gdbarch,
3098 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3099 append_composite_type_field (t, "v16_float",
3100 init_vector_type (bt->builtin_float, 16));
3101 append_composite_type_field (t, "v8_double",
3102 init_vector_type (bt->builtin_double, 8));
3103 append_composite_type_field (t, "v64_int8",
3104 init_vector_type (bt->builtin_int8, 64));
3105 append_composite_type_field (t, "v32_int16",
3106 init_vector_type (bt->builtin_int16, 32));
3107 append_composite_type_field (t, "v16_int32",
3108 init_vector_type (bt->builtin_int32, 16));
3109 append_composite_type_field (t, "v8_int64",
3110 init_vector_type (bt->builtin_int64, 8));
3111 append_composite_type_field (t, "v4_int128",
3112 init_vector_type (bt->builtin_int128, 4));
3113
3114 TYPE_VECTOR (t) = 1;
3115 TYPE_NAME (t) = "builtin_type_vec512i";
3116 tdep->i386_zmm_type = t;
3117 }
3118
3119 return tdep->i386_zmm_type;
3120}
3121
c131fcee
L
3122/* Construct vector type for pseudo YMM registers. We can't use
3123 tdesc_find_type since YMM isn't described in target description. */
3124
3125static struct type *
3126i386_ymm_type (struct gdbarch *gdbarch)
3127{
3128 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3129
3130 if (!tdep->i386_ymm_type)
3131 {
3132 const struct builtin_type *bt = builtin_type (gdbarch);
3133
3134 /* The type we're building is this: */
3135#if 0
3136 union __gdb_builtin_type_vec256i
3137 {
3138 int128_t uint128[2];
3139 int64_t v2_int64[4];
3140 int32_t v4_int32[8];
3141 int16_t v8_int16[16];
3142 int8_t v16_int8[32];
3143 double v2_double[4];
3144 float v4_float[8];
3145 };
3146#endif
3147
3148 struct type *t;
3149
3150 t = arch_composite_type (gdbarch,
3151 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3152 append_composite_type_field (t, "v8_float",
3153 init_vector_type (bt->builtin_float, 8));
3154 append_composite_type_field (t, "v4_double",
3155 init_vector_type (bt->builtin_double, 4));
3156 append_composite_type_field (t, "v32_int8",
3157 init_vector_type (bt->builtin_int8, 32));
3158 append_composite_type_field (t, "v16_int16",
3159 init_vector_type (bt->builtin_int16, 16));
3160 append_composite_type_field (t, "v8_int32",
3161 init_vector_type (bt->builtin_int32, 8));
3162 append_composite_type_field (t, "v4_int64",
3163 init_vector_type (bt->builtin_int64, 4));
3164 append_composite_type_field (t, "v2_int128",
3165 init_vector_type (bt->builtin_int128, 2));
3166
3167 TYPE_VECTOR (t) = 1;
0c5acf93 3168 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3169 tdep->i386_ymm_type = t;
3170 }
3171
3172 return tdep->i386_ymm_type;
3173}
3174
794ac428 3175/* Construct vector type for MMX registers. */
90884b2b 3176static struct type *
794ac428
UW
3177i386_mmx_type (struct gdbarch *gdbarch)
3178{
3179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3180
3181 if (!tdep->i386_mmx_type)
3182 {
df4df182
UW
3183 const struct builtin_type *bt = builtin_type (gdbarch);
3184
794ac428
UW
3185 /* The type we're building is this: */
3186#if 0
3187 union __gdb_builtin_type_vec64i
3188 {
3189 int64_t uint64;
3190 int32_t v2_int32[2];
3191 int16_t v4_int16[4];
3192 int8_t v8_int8[8];
3193 };
3194#endif
3195
3196 struct type *t;
3197
e9bb382b
UW
3198 t = arch_composite_type (gdbarch,
3199 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3200
3201 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3202 append_composite_type_field (t, "v2_int32",
df4df182 3203 init_vector_type (bt->builtin_int32, 2));
794ac428 3204 append_composite_type_field (t, "v4_int16",
df4df182 3205 init_vector_type (bt->builtin_int16, 4));
794ac428 3206 append_composite_type_field (t, "v8_int8",
df4df182 3207 init_vector_type (bt->builtin_int8, 8));
794ac428 3208
876cecd0 3209 TYPE_VECTOR (t) = 1;
794ac428
UW
3210 TYPE_NAME (t) = "builtin_type_vec64i";
3211 tdep->i386_mmx_type = t;
3212 }
3213
3214 return tdep->i386_mmx_type;
3215}
3216
d7a0d72c 3217/* Return the GDB type object for the "standard" data type of data in
1777feb0 3218 register REGNUM. */
d7a0d72c 3219
fff4548b 3220struct type *
90884b2b 3221i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3222{
1dbcd68c
WT
3223 if (i386_bnd_regnum_p (gdbarch, regnum))
3224 return i386_bnd_type (gdbarch);
1ba53b71
L
3225 if (i386_mmx_regnum_p (gdbarch, regnum))
3226 return i386_mmx_type (gdbarch);
c131fcee
L
3227 else if (i386_ymm_regnum_p (gdbarch, regnum))
3228 return i386_ymm_type (gdbarch);
01f9f808
MS
3229 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3230 return i386_ymm_type (gdbarch);
3231 else if (i386_zmm_regnum_p (gdbarch, regnum))
3232 return i386_zmm_type (gdbarch);
1ba53b71
L
3233 else
3234 {
3235 const struct builtin_type *bt = builtin_type (gdbarch);
3236 if (i386_byte_regnum_p (gdbarch, regnum))
3237 return bt->builtin_int8;
3238 else if (i386_word_regnum_p (gdbarch, regnum))
3239 return bt->builtin_int16;
3240 else if (i386_dword_regnum_p (gdbarch, regnum))
3241 return bt->builtin_int32;
01f9f808
MS
3242 else if (i386_k_regnum_p (gdbarch, regnum))
3243 return bt->builtin_int64;
1ba53b71
L
3244 }
3245
3246 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3247}
3248
28fc6740 3249/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3250 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3251
3252static int
849d0ba8 3253i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
28fc6740 3254{
ac7936df 3255 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
5716833c 3256 int mmxreg, fpreg;
28fc6740
AC
3257 ULONGEST fstat;
3258 int tos;
c86c27af 3259
5716833c 3260 mmxreg = regnum - tdep->mm0_regnum;
03f50fc8 3261 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3262 tos = (fstat >> 11) & 0x7;
5716833c
MK
3263 fpreg = (mmxreg + tos) % 8;
3264
20a6ec49 3265 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3266}
3267
3543a589
TT
3268/* A helper function for us by i386_pseudo_register_read_value and
3269 amd64_pseudo_register_read_value. It does all the work but reads
3270 the data into an already-allocated value. */
3271
3272void
3273i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
849d0ba8 3274 readable_regcache *regcache,
3543a589
TT
3275 int regnum,
3276 struct value *result_value)
28fc6740 3277{
975c21ab 3278 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
05d1431c 3279 enum register_status status;
3543a589 3280 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3281
5716833c 3282 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3283 {
c86c27af
MK
3284 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3285
28fc6740 3286 /* Extract (always little endian). */
03f50fc8 3287 status = regcache->raw_read (fpnum, raw_buf);
05d1431c 3288 if (status != REG_VALID)
3543a589
TT
3289 mark_value_bytes_unavailable (result_value, 0,
3290 TYPE_LENGTH (value_type (result_value)));
3291 else
3292 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3293 }
3294 else
1ba53b71
L
3295 {
3296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3297 if (i386_bnd_regnum_p (gdbarch, regnum))
3298 {
3299 regnum -= tdep->bnd0_regnum;
1ba53b71 3300
1dbcd68c 3301 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3302 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3303 raw_buf);
1dbcd68c
WT
3304 if (status != REG_VALID)
3305 mark_value_bytes_unavailable (result_value, 0, 16);
3306 else
3307 {
3308 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3309 LONGEST upper, lower;
3310 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3311
3312 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3313 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3314 upper = ~upper;
3315
3316 memcpy (buf, &lower, size);
3317 memcpy (buf + size, &upper, size);
3318 }
3319 }
01f9f808
MS
3320 else if (i386_k_regnum_p (gdbarch, regnum))
3321 {
3322 regnum -= tdep->k0_regnum;
3323
3324 /* Extract (always little endian). */
03f50fc8 3325 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
01f9f808
MS
3326 if (status != REG_VALID)
3327 mark_value_bytes_unavailable (result_value, 0, 8);
3328 else
3329 memcpy (buf, raw_buf, 8);
3330 }
3331 else if (i386_zmm_regnum_p (gdbarch, regnum))
3332 {
3333 regnum -= tdep->zmm0_regnum;
3334
3335 if (regnum < num_lower_zmm_regs)
3336 {
3337 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3338 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3339 raw_buf);
01f9f808
MS
3340 if (status != REG_VALID)
3341 mark_value_bytes_unavailable (result_value, 0, 16);
3342 else
3343 memcpy (buf, raw_buf, 16);
3344
3345 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3346 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3347 raw_buf);
01f9f808
MS
3348 if (status != REG_VALID)
3349 mark_value_bytes_unavailable (result_value, 16, 16);
3350 else
3351 memcpy (buf + 16, raw_buf, 16);
3352 }
3353 else
3354 {
3355 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3356 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3357 - num_lower_zmm_regs,
3358 raw_buf);
01f9f808
MS
3359 if (status != REG_VALID)
3360 mark_value_bytes_unavailable (result_value, 0, 16);
3361 else
3362 memcpy (buf, raw_buf, 16);
3363
3364 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3365 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3366 - num_lower_zmm_regs,
3367 raw_buf);
01f9f808
MS
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 16, 16);
3370 else
3371 memcpy (buf + 16, raw_buf, 16);
3372 }
3373
3374 /* Read upper 256bits. */
03f50fc8
YQ
3375 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3376 raw_buf);
01f9f808
MS
3377 if (status != REG_VALID)
3378 mark_value_bytes_unavailable (result_value, 32, 32);
3379 else
3380 memcpy (buf + 32, raw_buf, 32);
3381 }
1dbcd68c 3382 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3383 {
3384 regnum -= tdep->ymm0_regnum;
3385
1777feb0 3386 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3387 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3388 raw_buf);
05d1431c 3389 if (status != REG_VALID)
3543a589
TT
3390 mark_value_bytes_unavailable (result_value, 0, 16);
3391 else
3392 memcpy (buf, raw_buf, 16);
c131fcee 3393 /* Read upper 128bits. */
03f50fc8
YQ
3394 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3395 raw_buf);
05d1431c 3396 if (status != REG_VALID)
3543a589
TT
3397 mark_value_bytes_unavailable (result_value, 16, 32);
3398 else
3399 memcpy (buf + 16, raw_buf, 16);
c131fcee 3400 }
01f9f808
MS
3401 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3402 {
3403 regnum -= tdep->ymm16_regnum;
3404 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3405 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3406 raw_buf);
01f9f808
MS
3407 if (status != REG_VALID)
3408 mark_value_bytes_unavailable (result_value, 0, 16);
3409 else
3410 memcpy (buf, raw_buf, 16);
3411 /* Read upper 128bits. */
03f50fc8
YQ
3412 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3413 raw_buf);
01f9f808
MS
3414 if (status != REG_VALID)
3415 mark_value_bytes_unavailable (result_value, 16, 16);
3416 else
3417 memcpy (buf + 16, raw_buf, 16);
3418 }
c131fcee 3419 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3420 {
3421 int gpnum = regnum - tdep->ax_regnum;
3422
3423 /* Extract (always little endian). */
03f50fc8 3424 status = regcache->raw_read (gpnum, raw_buf);
05d1431c 3425 if (status != REG_VALID)
3543a589
TT
3426 mark_value_bytes_unavailable (result_value, 0,
3427 TYPE_LENGTH (value_type (result_value)));
3428 else
3429 memcpy (buf, raw_buf, 2);
1ba53b71
L
3430 }
3431 else if (i386_byte_regnum_p (gdbarch, regnum))
3432 {
1ba53b71
L
3433 int gpnum = regnum - tdep->al_regnum;
3434
3435 /* Extract (always little endian). We read both lower and
3436 upper registers. */
03f50fc8 3437 status = regcache->raw_read (gpnum % 4, raw_buf);
05d1431c 3438 if (status != REG_VALID)
3543a589
TT
3439 mark_value_bytes_unavailable (result_value, 0,
3440 TYPE_LENGTH (value_type (result_value)));
3441 else if (gpnum >= 4)
1ba53b71
L
3442 memcpy (buf, raw_buf + 1, 1);
3443 else
3444 memcpy (buf, raw_buf, 1);
3445 }
3446 else
3447 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3448 }
3543a589
TT
3449}
3450
3451static struct value *
3452i386_pseudo_register_read_value (struct gdbarch *gdbarch,
849d0ba8 3453 readable_regcache *regcache,
3543a589
TT
3454 int regnum)
3455{
3456 struct value *result;
3457
3458 result = allocate_value (register_type (gdbarch, regnum));
3459 VALUE_LVAL (result) = lval_register;
3460 VALUE_REGNUM (result) = regnum;
3461
3462 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3463
3543a589 3464 return result;
28fc6740
AC
3465}
3466
1ba53b71 3467void
28fc6740 3468i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3469 int regnum, const gdb_byte *buf)
28fc6740 3470{
975c21ab 3471 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
1ba53b71 3472
5716833c 3473 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3474 {
c86c27af
MK
3475 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3476
28fc6740 3477 /* Read ... */
0b883586 3478 regcache->raw_read (fpnum, raw_buf);
28fc6740 3479 /* ... Modify ... (always little endian). */
1ba53b71 3480 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3481 /* ... Write. */
10eaee5f 3482 regcache->raw_write (fpnum, raw_buf);
28fc6740
AC
3483 }
3484 else
1ba53b71
L
3485 {
3486 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3487
1dbcd68c
WT
3488 if (i386_bnd_regnum_p (gdbarch, regnum))
3489 {
3490 ULONGEST upper, lower;
3491 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3492 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3493
3494 /* New values from input value. */
3495 regnum -= tdep->bnd0_regnum;
3496 lower = extract_unsigned_integer (buf, size, byte_order);
3497 upper = extract_unsigned_integer (buf + size, size, byte_order);
3498
3499 /* Fetching register buffer. */
0b883586
SM
3500 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3501 raw_buf);
1dbcd68c
WT
3502
3503 upper = ~upper;
3504
3505 /* Set register bits. */
3506 memcpy (raw_buf, &lower, 8);
3507 memcpy (raw_buf + 8, &upper, 8);
3508
10eaee5f 3509 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
1dbcd68c 3510 }
01f9f808
MS
3511 else if (i386_k_regnum_p (gdbarch, regnum))
3512 {
3513 regnum -= tdep->k0_regnum;
3514
10eaee5f 3515 regcache->raw_write (tdep->k0_regnum + regnum, buf);
01f9f808
MS
3516 }
3517 else if (i386_zmm_regnum_p (gdbarch, regnum))
3518 {
3519 regnum -= tdep->zmm0_regnum;
3520
3521 if (regnum < num_lower_zmm_regs)
3522 {
3523 /* Write lower 128bits. */
10eaee5f 3524 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
01f9f808 3525 /* Write upper 128bits. */
10eaee5f 3526 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
01f9f808
MS
3527 }
3528 else
3529 {
3530 /* Write lower 128bits. */
10eaee5f
SM
3531 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3532 - num_lower_zmm_regs, buf);
01f9f808 3533 /* Write upper 128bits. */
10eaee5f
SM
3534 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3535 - num_lower_zmm_regs, buf + 16);
01f9f808
MS
3536 }
3537 /* Write upper 256bits. */
10eaee5f 3538 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
01f9f808 3539 }
1dbcd68c 3540 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3541 {
3542 regnum -= tdep->ymm0_regnum;
3543
3544 /* ... Write lower 128bits. */
10eaee5f 3545 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
c131fcee 3546 /* ... Write upper 128bits. */
10eaee5f 3547 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
c131fcee 3548 }
01f9f808
MS
3549 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3550 {
3551 regnum -= tdep->ymm16_regnum;
3552
3553 /* ... Write lower 128bits. */
10eaee5f 3554 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
01f9f808 3555 /* ... Write upper 128bits. */
10eaee5f 3556 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
01f9f808 3557 }
c131fcee 3558 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3559 {
3560 int gpnum = regnum - tdep->ax_regnum;
3561
3562 /* Read ... */
0b883586 3563 regcache->raw_read (gpnum, raw_buf);
1ba53b71
L
3564 /* ... Modify ... (always little endian). */
3565 memcpy (raw_buf, buf, 2);
3566 /* ... Write. */
10eaee5f 3567 regcache->raw_write (gpnum, raw_buf);
1ba53b71
L
3568 }
3569 else if (i386_byte_regnum_p (gdbarch, regnum))
3570 {
1ba53b71
L
3571 int gpnum = regnum - tdep->al_regnum;
3572
3573 /* Read ... We read both lower and upper registers. */
0b883586 3574 regcache->raw_read (gpnum % 4, raw_buf);
1ba53b71
L
3575 /* ... Modify ... (always little endian). */
3576 if (gpnum >= 4)
3577 memcpy (raw_buf + 1, buf, 1);
3578 else
3579 memcpy (raw_buf, buf, 1);
3580 /* ... Write. */
10eaee5f 3581 regcache->raw_write (gpnum % 4, raw_buf);
1ba53b71
L
3582 }
3583 else
3584 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3585 }
28fc6740 3586}
62e5fd57
MK
3587
3588/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3589
3590int
3591i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3592 struct agent_expr *ax, int regnum)
3593{
3594 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3595
3596 if (i386_mmx_regnum_p (gdbarch, regnum))
3597 {
3598 /* MMX to FPU register mapping depends on current TOS. Let's just
3599 not care and collect everything... */
3600 int i;
3601
3602 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3603 for (i = 0; i < 8; i++)
3604 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3605 return 0;
3606 }
3607 else if (i386_bnd_regnum_p (gdbarch, regnum))
3608 {
3609 regnum -= tdep->bnd0_regnum;
3610 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3611 return 0;
3612 }
3613 else if (i386_k_regnum_p (gdbarch, regnum))
3614 {
3615 regnum -= tdep->k0_regnum;
3616 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3617 return 0;
3618 }
3619 else if (i386_zmm_regnum_p (gdbarch, regnum))
3620 {
3621 regnum -= tdep->zmm0_regnum;
3622 if (regnum < num_lower_zmm_regs)
3623 {
3624 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3625 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3626 }
3627 else
3628 {
3629 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3630 - num_lower_zmm_regs);
3631 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3632 - num_lower_zmm_regs);
3633 }
3634 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3635 return 0;
3636 }
3637 else if (i386_ymm_regnum_p (gdbarch, regnum))
3638 {
3639 regnum -= tdep->ymm0_regnum;
3640 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3641 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3642 return 0;
3643 }
3644 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3645 {
3646 regnum -= tdep->ymm16_regnum;
3647 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3648 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3649 return 0;
3650 }
3651 else if (i386_word_regnum_p (gdbarch, regnum))
3652 {
3653 int gpnum = regnum - tdep->ax_regnum;
3654
3655 ax_reg_mask (ax, gpnum);
3656 return 0;
3657 }
3658 else if (i386_byte_regnum_p (gdbarch, regnum))
3659 {
3660 int gpnum = regnum - tdep->al_regnum;
3661
3662 ax_reg_mask (ax, gpnum % 4);
3663 return 0;
3664 }
3665 else
3666 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3667 return 1;
3668}
ff2e87ac
AC
3669\f
3670
ff2e87ac
AC
3671/* Return the register number of the register allocated by GCC after
3672 REGNUM, or -1 if there is no such register. */
3673
3674static int
3675i386_next_regnum (int regnum)
3676{
3677 /* GCC allocates the registers in the order:
3678
3679 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3680
3681 Since storing a variable in %esp doesn't make any sense we return
3682 -1 for %ebp and for %esp itself. */
3683 static int next_regnum[] =
3684 {
3685 I386_EDX_REGNUM, /* Slot for %eax. */
3686 I386_EBX_REGNUM, /* Slot for %ecx. */
3687 I386_ECX_REGNUM, /* Slot for %edx. */
3688 I386_ESI_REGNUM, /* Slot for %ebx. */
3689 -1, -1, /* Slots for %esp and %ebp. */
3690 I386_EDI_REGNUM, /* Slot for %esi. */
3691 I386_EBP_REGNUM /* Slot for %edi. */
3692 };
3693
de5b9bb9 3694 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3695 return next_regnum[regnum];
28fc6740 3696
ff2e87ac
AC
3697 return -1;
3698}
3699
3700/* Return nonzero if a value of type TYPE stored in register REGNUM
3701 needs any special handling. */
d7a0d72c 3702
3a1e71e3 3703static int
1777feb0
MS
3704i386_convert_register_p (struct gdbarch *gdbarch,
3705 int regnum, struct type *type)
d7a0d72c 3706{
de5b9bb9
MK
3707 int len = TYPE_LENGTH (type);
3708
ff2e87ac
AC
3709 /* Values may be spread across multiple registers. Most debugging
3710 formats aren't expressive enough to specify the locations, so
3711 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3712 have a length that is a multiple of the word size, since GCC
3713 doesn't seem to put any other types into registers. */
3714 if (len > 4 && len % 4 == 0)
3715 {
3716 int last_regnum = regnum;
3717
3718 while (len > 4)
3719 {
3720 last_regnum = i386_next_regnum (last_regnum);
3721 len -= 4;
3722 }
3723
3724 if (last_regnum != -1)
3725 return 1;
3726 }
ff2e87ac 3727
0abe36f5 3728 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3729}
3730
ff2e87ac
AC
3731/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3732 return its contents in TO. */
ac27f131 3733
8dccd430 3734static int
ff2e87ac 3735i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3736 struct type *type, gdb_byte *to,
3737 int *optimizedp, int *unavailablep)
ac27f131 3738{
20a6ec49 3739 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3740 int len = TYPE_LENGTH (type);
de5b9bb9 3741
20a6ec49 3742 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3743 return i387_register_to_value (frame, regnum, type, to,
3744 optimizedp, unavailablep);
ff2e87ac 3745
fd35795f 3746 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3747
3748 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3749
de5b9bb9
MK
3750 while (len > 0)
3751 {
3752 gdb_assert (regnum != -1);
20a6ec49 3753 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3754
8dccd430
PA
3755 if (!get_frame_register_bytes (frame, regnum, 0,
3756 register_size (gdbarch, regnum),
3757 to, optimizedp, unavailablep))
3758 return 0;
3759
de5b9bb9
MK
3760 regnum = i386_next_regnum (regnum);
3761 len -= 4;
42835c2b 3762 to += 4;
de5b9bb9 3763 }
8dccd430
PA
3764
3765 *optimizedp = *unavailablep = 0;
3766 return 1;
ac27f131
MK
3767}
3768
ff2e87ac
AC
3769/* Write the contents FROM of a value of type TYPE into register
3770 REGNUM in frame FRAME. */
ac27f131 3771
3a1e71e3 3772static void
ff2e87ac 3773i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3774 struct type *type, const gdb_byte *from)
ac27f131 3775{
de5b9bb9 3776 int len = TYPE_LENGTH (type);
de5b9bb9 3777
20a6ec49 3778 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3779 {
d532c08f
MK
3780 i387_value_to_register (frame, regnum, type, from);
3781 return;
3782 }
3d261580 3783
fd35795f 3784 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3785
3786 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3787
de5b9bb9
MK
3788 while (len > 0)
3789 {
3790 gdb_assert (regnum != -1);
875f8d0e 3791 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3792
42835c2b 3793 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3794 regnum = i386_next_regnum (regnum);
3795 len -= 4;
42835c2b 3796 from += 4;
de5b9bb9 3797 }
ac27f131 3798}
ff2e87ac 3799\f
7fdafb5a
MK
3800/* Supply register REGNUM from the buffer specified by GREGS and LEN
3801 in the general-purpose register set REGSET to register cache
3802 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3803
20187ed5 3804void
473f17b0
MK
3805i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3806 int regnum, const void *gregs, size_t len)
3807{
ac7936df 3808 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3809 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3810 const gdb_byte *regs = (const gdb_byte *) gregs;
473f17b0
MK
3811 int i;
3812
1528345d 3813 gdb_assert (len >= tdep->sizeof_gregset);
473f17b0
MK
3814
3815 for (i = 0; i < tdep->gregset_num_regs; i++)
3816 {
3817 if ((regnum == i || regnum == -1)
3818 && tdep->gregset_reg_offset[i] != -1)
73e1c03f 3819 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
473f17b0
MK
3820 }
3821}
3822
7fdafb5a
MK
3823/* Collect register REGNUM from the register cache REGCACHE and store
3824 it in the buffer specified by GREGS and LEN as described by the
3825 general-purpose register set REGSET. If REGNUM is -1, do this for
3826 all registers in REGSET. */
3827
ecc37a5a 3828static void
7fdafb5a
MK
3829i386_collect_gregset (const struct regset *regset,
3830 const struct regcache *regcache,
3831 int regnum, void *gregs, size_t len)
3832{
ac7936df 3833 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3834 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3835 gdb_byte *regs = (gdb_byte *) gregs;
7fdafb5a
MK
3836 int i;
3837
1528345d 3838 gdb_assert (len >= tdep->sizeof_gregset);
7fdafb5a
MK
3839
3840 for (i = 0; i < tdep->gregset_num_regs; i++)
3841 {
3842 if ((regnum == i || regnum == -1)
3843 && tdep->gregset_reg_offset[i] != -1)
34a79281 3844 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
7fdafb5a
MK
3845 }
3846}
3847
3848/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3849 in the floating-point register set REGSET to register cache
3850 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3851
3852static void
3853i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3854 int regnum, const void *fpregs, size_t len)
3855{
ac7936df 3856 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3857 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3858
66a72d25
MK
3859 if (len == I387_SIZEOF_FXSAVE)
3860 {
3861 i387_supply_fxsave (regcache, regnum, fpregs);
3862 return;
3863 }
3864
1528345d 3865 gdb_assert (len >= tdep->sizeof_fpregset);
473f17b0
MK
3866 i387_supply_fsave (regcache, regnum, fpregs);
3867}
8446b36a 3868
2f305df1
MK
3869/* Collect register REGNUM from the register cache REGCACHE and store
3870 it in the buffer specified by FPREGS and LEN as described by the
3871 floating-point register set REGSET. If REGNUM is -1, do this for
3872 all registers in REGSET. */
7fdafb5a
MK
3873
3874static void
3875i386_collect_fpregset (const struct regset *regset,
3876 const struct regcache *regcache,
3877 int regnum, void *fpregs, size_t len)
3878{
ac7936df 3879 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3880 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3881
3882 if (len == I387_SIZEOF_FXSAVE)
3883 {
3884 i387_collect_fxsave (regcache, regnum, fpregs);
3885 return;
3886 }
3887
1528345d 3888 gdb_assert (len >= tdep->sizeof_fpregset);
7fdafb5a
MK
3889 i387_collect_fsave (regcache, regnum, fpregs);
3890}
3891
ecc37a5a
AA
3892/* Register set definitions. */
3893
3894const struct regset i386_gregset =
3895 {
3896 NULL, i386_supply_gregset, i386_collect_gregset
3897 };
3898
8f0435f7 3899const struct regset i386_fpregset =
ecc37a5a
AA
3900 {
3901 NULL, i386_supply_fpregset, i386_collect_fpregset
3902 };
3903
490496c3 3904/* Default iterator over core file register note sections. */
8446b36a 3905
490496c3
AA
3906void
3907i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3908 iterate_over_regset_sections_cb *cb,
3909 void *cb_data,
3910 const struct regcache *regcache)
8446b36a
MK
3911{
3912 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3913
a616bb94
AH
3914 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3915 cb_data);
490496c3 3916 if (tdep->sizeof_fpregset)
a616bb94
AH
3917 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3918 NULL, cb_data);
8446b36a 3919}
473f17b0 3920\f
fc338970 3921
fc338970 3922/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3923
3924CORE_ADDR
e17a4113
UW
3925i386_pe_skip_trampoline_code (struct frame_info *frame,
3926 CORE_ADDR pc, char *name)
c906108c 3927{
e17a4113
UW
3928 struct gdbarch *gdbarch = get_frame_arch (frame);
3929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3930
3931 /* jmp *(dest) */
3932 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3933 {
e17a4113
UW
3934 unsigned long indirect =
3935 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3936 struct minimal_symbol *indsym =
7cbd4a93 3937 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
c9d95fa3 3938 const char *symname = indsym ? indsym->linkage_name () : 0;
c906108c 3939
c5aa993b 3940 if (symname)
c906108c 3941 {
61012eef
GB
3942 if (startswith (symname, "__imp_")
3943 || startswith (symname, "_imp_"))
e17a4113
UW
3944 return name ? 1 :
3945 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3946 }
3947 }
fc338970 3948 return 0; /* Not a trampoline. */
c906108c 3949}
fc338970
MK
3950\f
3951
10458914
DJ
3952/* Return whether the THIS_FRAME corresponds to a sigtramp
3953 routine. */
8201327c 3954
4bd207ef 3955int
10458914 3956i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3957{
10458914 3958 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3959 const char *name;
911bc6ee
MK
3960
3961 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3962 return (name && strcmp ("_sigtramp", name) == 0);
3963}
3964\f
3965
fc338970
MK
3966/* We have two flavours of disassembly. The machinery on this page
3967 deals with switching between those. */
c906108c
SS
3968
3969static int
a89aa300 3970i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3971{
5e3397bb
MK
3972 gdb_assert (disassembly_flavor == att_flavor
3973 || disassembly_flavor == intel_flavor);
3974
f995bbe8 3975 info->disassembler_options = disassembly_flavor;
5e3397bb 3976
6394c606 3977 return default_print_insn (pc, info);
7a292a7a 3978}
fc338970 3979\f
3ce1502b 3980
8201327c
MK
3981/* There are a few i386 architecture variants that differ only
3982 slightly from the generic i386 target. For now, we don't give them
3983 their own source file, but include them here. As a consequence,
3984 they'll always be included. */
3ce1502b 3985
8201327c 3986/* System V Release 4 (SVR4). */
3ce1502b 3987
10458914
DJ
3988/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3989 routine. */
911bc6ee 3990
8201327c 3991static int
10458914 3992i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3993{
10458914 3994 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3995 const char *name;
911bc6ee 3996
05b4bd79 3997 /* The origin of these symbols is currently unknown. */
911bc6ee 3998 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 3999 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
4000 || strcmp ("sigvechandler", name) == 0));
4001}
d2a7c97a 4002
10458914
DJ
4003/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4004 address of the associated sigcontext (ucontext) structure. */
3ce1502b 4005
3a1e71e3 4006static CORE_ADDR
10458914 4007i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 4008{
e17a4113
UW
4009 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4010 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 4011 gdb_byte buf[4];
acd5c798 4012 CORE_ADDR sp;
3ce1502b 4013
10458914 4014 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 4015 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 4016
e17a4113 4017 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 4018}
55aa24fb
SDJ
4019
4020\f
4021
4022/* Implementation of `gdbarch_stap_is_single_operand', as defined in
4023 gdbarch.h. */
4024
4025int
4026i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4027{
4028 return (*s == '$' /* Literal number. */
4029 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4030 || (*s == '(' && s[1] == '%') /* Register indirection. */
4031 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4032}
4033
5acfdbae
SDJ
4034/* Helper function for i386_stap_parse_special_token.
4035
4036 This function parses operands of the form `-8+3+1(%rbp)', which
4037 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4038
af2d9bee 4039 Return true if the operand was parsed successfully, false
5acfdbae
SDJ
4040 otherwise. */
4041
af2d9bee 4042static bool
5acfdbae
SDJ
4043i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4044 struct stap_parse_info *p)
4045{
4046 const char *s = p->arg;
4047
4048 if (isdigit (*s) || *s == '-' || *s == '+')
4049 {
af2d9bee 4050 bool got_minus[3];
5acfdbae
SDJ
4051 int i;
4052 long displacements[3];
4053 const char *start;
4054 char *regname;
4055 int len;
4056 struct stoken str;
4057 char *endp;
4058
af2d9bee 4059 got_minus[0] = false;
5acfdbae
SDJ
4060 if (*s == '+')
4061 ++s;
4062 else if (*s == '-')
4063 {
4064 ++s;
af2d9bee 4065 got_minus[0] = true;
5acfdbae
SDJ
4066 }
4067
d7b30f67 4068 if (!isdigit ((unsigned char) *s))
af2d9bee 4069 return false;
d7b30f67 4070
5acfdbae
SDJ
4071 displacements[0] = strtol (s, &endp, 10);
4072 s = endp;
4073
4074 if (*s != '+' && *s != '-')
4075 {
4076 /* We are not dealing with a triplet. */
af2d9bee 4077 return false;
5acfdbae
SDJ
4078 }
4079
af2d9bee 4080 got_minus[1] = false;
5acfdbae
SDJ
4081 if (*s == '+')
4082 ++s;
4083 else
4084 {
4085 ++s;
af2d9bee 4086 got_minus[1] = true;
5acfdbae
SDJ
4087 }
4088
d7b30f67 4089 if (!isdigit ((unsigned char) *s))
af2d9bee 4090 return false;
d7b30f67 4091
5acfdbae
SDJ
4092 displacements[1] = strtol (s, &endp, 10);
4093 s = endp;
4094
4095 if (*s != '+' && *s != '-')
4096 {
4097 /* We are not dealing with a triplet. */
af2d9bee 4098 return false;
5acfdbae
SDJ
4099 }
4100
af2d9bee 4101 got_minus[2] = false;
5acfdbae
SDJ
4102 if (*s == '+')
4103 ++s;
4104 else
4105 {
4106 ++s;
af2d9bee 4107 got_minus[2] = true;
5acfdbae
SDJ
4108 }
4109
d7b30f67 4110 if (!isdigit ((unsigned char) *s))
af2d9bee 4111 return false;
d7b30f67 4112
5acfdbae
SDJ
4113 displacements[2] = strtol (s, &endp, 10);
4114 s = endp;
4115
4116 if (*s != '(' || s[1] != '%')
af2d9bee 4117 return false;
5acfdbae
SDJ
4118
4119 s += 2;
4120 start = s;
4121
4122 while (isalnum (*s))
4123 ++s;
4124
4125 if (*s++ != ')')
af2d9bee 4126 return false;
5acfdbae 4127
d7b30f67 4128 len = s - start - 1;
224c3ddb 4129 regname = (char *) alloca (len + 1);
5acfdbae
SDJ
4130
4131 strncpy (regname, start, len);
4132 regname[len] = '\0';
4133
4134 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4135 error (_("Invalid register name `%s' on expression `%s'."),
4136 regname, p->saved_arg);
4137
4138 for (i = 0; i < 3; i++)
4139 {
410a0ff2
SDJ
4140 write_exp_elt_opcode (&p->pstate, OP_LONG);
4141 write_exp_elt_type
4142 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4143 write_exp_elt_longcst (&p->pstate, displacements[i]);
4144 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4145 if (got_minus[i])
410a0ff2 4146 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4147 }
4148
410a0ff2 4149 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4150 str.ptr = regname;
4151 str.length = len;
410a0ff2
SDJ
4152 write_exp_string (&p->pstate, str);
4153 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4154
410a0ff2
SDJ
4155 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4156 write_exp_elt_type (&p->pstate,
4157 builtin_type (gdbarch)->builtin_data_ptr);
4158 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4159
410a0ff2
SDJ
4160 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4161 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4162 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4163
410a0ff2
SDJ
4164 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4165 write_exp_elt_type (&p->pstate,
4166 lookup_pointer_type (p->arg_type));
4167 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4168
410a0ff2 4169 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4170
4171 p->arg = s;
4172
af2d9bee 4173 return true;
5acfdbae
SDJ
4174 }
4175
af2d9bee 4176 return false;
5acfdbae
SDJ
4177}
4178
4179/* Helper function for i386_stap_parse_special_token.
4180
4181 This function parses operands of the form `register base +
4182 (register index * size) + offset', as represented in
4183 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4184
af2d9bee 4185 Return true if the operand was parsed successfully, false
5acfdbae
SDJ
4186 otherwise. */
4187
af2d9bee 4188static bool
5acfdbae
SDJ
4189i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4190 struct stap_parse_info *p)
4191{
4192 const char *s = p->arg;
4193
4194 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4195 {
af2d9bee 4196 bool offset_minus = false;
5acfdbae 4197 long offset = 0;
af2d9bee 4198 bool size_minus = false;
5acfdbae
SDJ
4199 long size = 0;
4200 const char *start;
4201 char *base;
4202 int len_base;
4203 char *index;
4204 int len_index;
4205 struct stoken base_token, index_token;
4206
4207 if (*s == '+')
4208 ++s;
4209 else if (*s == '-')
4210 {
4211 ++s;
af2d9bee 4212 offset_minus = true;
5acfdbae
SDJ
4213 }
4214
4215 if (offset_minus && !isdigit (*s))
af2d9bee 4216 return false;
5acfdbae
SDJ
4217
4218 if (isdigit (*s))
4219 {
4220 char *endp;
4221
4222 offset = strtol (s, &endp, 10);
4223 s = endp;
4224 }
4225
4226 if (*s != '(' || s[1] != '%')
af2d9bee 4227 return false;
5acfdbae
SDJ
4228
4229 s += 2;
4230 start = s;
4231
4232 while (isalnum (*s))
4233 ++s;
4234
4235 if (*s != ',' || s[1] != '%')
af2d9bee 4236 return false;
5acfdbae
SDJ
4237
4238 len_base = s - start;
224c3ddb 4239 base = (char *) alloca (len_base + 1);
5acfdbae
SDJ
4240 strncpy (base, start, len_base);
4241 base[len_base] = '\0';
4242
4243 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4244 error (_("Invalid register name `%s' on expression `%s'."),
4245 base, p->saved_arg);
4246
4247 s += 2;
4248 start = s;
4249
4250 while (isalnum (*s))
4251 ++s;
4252
4253 len_index = s - start;
224c3ddb 4254 index = (char *) alloca (len_index + 1);
5acfdbae
SDJ
4255 strncpy (index, start, len_index);
4256 index[len_index] = '\0';
4257
4258 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4259 error (_("Invalid register name `%s' on expression `%s'."),
4260 index, p->saved_arg);
4261
4262 if (*s != ',' && *s != ')')
af2d9bee 4263 return false;
5acfdbae
SDJ
4264
4265 if (*s == ',')
4266 {
4267 char *endp;
4268
4269 ++s;
4270 if (*s == '+')
4271 ++s;
4272 else if (*s == '-')
4273 {
4274 ++s;
af2d9bee 4275 size_minus = true;
5acfdbae
SDJ
4276 }
4277
4278 size = strtol (s, &endp, 10);
4279 s = endp;
4280
4281 if (*s != ')')
af2d9bee 4282 return false;
5acfdbae
SDJ
4283 }
4284
4285 ++s;
4286
4287 if (offset)
4288 {
410a0ff2
SDJ
4289 write_exp_elt_opcode (&p->pstate, OP_LONG);
4290 write_exp_elt_type (&p->pstate,
4291 builtin_type (gdbarch)->builtin_long);
4292 write_exp_elt_longcst (&p->pstate, offset);
4293 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4294 if (offset_minus)
410a0ff2 4295 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4296 }
4297
410a0ff2 4298 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4299 base_token.ptr = base;
4300 base_token.length = len_base;
410a0ff2
SDJ
4301 write_exp_string (&p->pstate, base_token);
4302 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4303
4304 if (offset)
410a0ff2 4305 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4306
410a0ff2 4307 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4308 index_token.ptr = index;
4309 index_token.length = len_index;
410a0ff2
SDJ
4310 write_exp_string (&p->pstate, index_token);
4311 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4312
4313 if (size)
4314 {
410a0ff2
SDJ
4315 write_exp_elt_opcode (&p->pstate, OP_LONG);
4316 write_exp_elt_type (&p->pstate,
4317 builtin_type (gdbarch)->builtin_long);
4318 write_exp_elt_longcst (&p->pstate, size);
4319 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4320 if (size_minus)
410a0ff2
SDJ
4321 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4322 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4323 }
4324
410a0ff2 4325 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4326
410a0ff2
SDJ
4327 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4328 write_exp_elt_type (&p->pstate,
4329 lookup_pointer_type (p->arg_type));
4330 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4331
410a0ff2 4332 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4333
4334 p->arg = s;
4335
af2d9bee 4336 return true;
5acfdbae
SDJ
4337 }
4338
af2d9bee 4339 return false;
5acfdbae
SDJ
4340}
4341
55aa24fb
SDJ
4342/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4343 gdbarch.h. */
4344
4345int
4346i386_stap_parse_special_token (struct gdbarch *gdbarch,
4347 struct stap_parse_info *p)
4348{
55aa24fb
SDJ
4349 /* In order to parse special tokens, we use a state-machine that go
4350 through every known token and try to get a match. */
4351 enum
4352 {
4353 TRIPLET,
4354 THREE_ARG_DISPLACEMENT,
4355 DONE
570dc176
TT
4356 };
4357 int current_state;
55aa24fb
SDJ
4358
4359 current_state = TRIPLET;
4360
4361 /* The special tokens to be parsed here are:
4362
4363 - `register base + (register index * size) + offset', as represented
4364 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4365
4366 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4367 `*(-8 + 3 - 1 + (void *) $eax)'. */
4368
4369 while (current_state != DONE)
4370 {
55aa24fb
SDJ
4371 switch (current_state)
4372 {
4373 case TRIPLET:
5acfdbae
SDJ
4374 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4375 return 1;
4376 break;
4377
55aa24fb 4378 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4379 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4380 return 1;
4381 break;
55aa24fb
SDJ
4382 }
4383
4384 /* Advancing to the next state. */
4385 ++current_state;
4386 }
4387
4388 return 0;
4389}
4390
7d7571f0
SDJ
4391/* Implementation of 'gdbarch_stap_adjust_register', as defined in
4392 gdbarch.h. */
4393
6b78c3f8 4394static std::string
7d7571f0 4395i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
6b78c3f8 4396 const std::string &regname, int regnum)
7d7571f0
SDJ
4397{
4398 static const std::unordered_set<std::string> reg_assoc
4399 = { "ax", "bx", "cx", "dx",
4400 "si", "di", "bp", "sp" };
4401
6b78c3f8
AB
4402 /* If we are dealing with a register whose size is less than the size
4403 specified by the "[-]N@" prefix, and it is one of the registers that
4404 we know has an extended variant available, then use the extended
4405 version of the register instead. */
4406 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4407 && reg_assoc.find (regname) != reg_assoc.end ())
4408 return "e" + regname;
7d7571f0 4409
6b78c3f8
AB
4410 /* Otherwise, just use the requested register. */
4411 return regname;
7d7571f0
SDJ
4412}
4413
8201327c 4414\f
3ce1502b 4415
ac04f72b
TT
4416/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4417 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4418
4419static const char *
4420i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4421{
4422 return "(x86_64|i.86)";
4423}
4424
4425\f
4426
1d509aa6
MM
4427/* Implement the "in_indirect_branch_thunk" gdbarch function. */
4428
4429static bool
4430i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4431{
4432 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4433 I386_EAX_REGNUM, I386_EIP_REGNUM);
4434}
4435
8201327c 4436/* Generic ELF. */
d2a7c97a 4437
8201327c
MK
4438void
4439i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4440{
05c0465e
SDJ
4441 static const char *const stap_integer_prefixes[] = { "$", NULL };
4442 static const char *const stap_register_prefixes[] = { "%", NULL };
4443 static const char *const stap_register_indirection_prefixes[] = { "(",
4444 NULL };
4445 static const char *const stap_register_indirection_suffixes[] = { ")",
4446 NULL };
4447
c4fc7f1b
MK
4448 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4449 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4450
4451 /* Registering SystemTap handlers. */
05c0465e
SDJ
4452 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4453 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4454 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4455 stap_register_indirection_prefixes);
4456 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4457 stap_register_indirection_suffixes);
55aa24fb
SDJ
4458 set_gdbarch_stap_is_single_operand (gdbarch,
4459 i386_stap_is_single_operand);
4460 set_gdbarch_stap_parse_special_token (gdbarch,
4461 i386_stap_parse_special_token);
7d7571f0
SDJ
4462 set_gdbarch_stap_adjust_register (gdbarch,
4463 i386_stap_adjust_register);
1d509aa6
MM
4464
4465 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4466 i386_in_indirect_branch_thunk);
8201327c 4467}
3ce1502b 4468
8201327c 4469/* System V Release 4 (SVR4). */
3ce1502b 4470
8201327c
MK
4471void
4472i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4473{
4474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4475
8201327c
MK
4476 /* System V Release 4 uses ELF. */
4477 i386_elf_init_abi (info, gdbarch);
3ce1502b 4478
dfe01d39 4479 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4480 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4481
911bc6ee 4482 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4483 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4484 tdep->sc_pc_offset = 36 + 14 * 4;
4485 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4486
8201327c 4487 tdep->jb_pc_offset = 20;
3ce1502b
MK
4488}
4489
8201327c 4490\f
2acceee2 4491
38c968cf
AC
4492/* i386 register groups. In addition to the normal groups, add "mmx"
4493 and "sse". */
4494
4495static struct reggroup *i386_sse_reggroup;
4496static struct reggroup *i386_mmx_reggroup;
4497
4498static void
4499i386_init_reggroups (void)
4500{
4501 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4502 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4503}
4504
4505static void
4506i386_add_reggroups (struct gdbarch *gdbarch)
4507{
4508 reggroup_add (gdbarch, i386_sse_reggroup);
4509 reggroup_add (gdbarch, i386_mmx_reggroup);
4510 reggroup_add (gdbarch, general_reggroup);
4511 reggroup_add (gdbarch, float_reggroup);
4512 reggroup_add (gdbarch, all_reggroup);
4513 reggroup_add (gdbarch, save_reggroup);
4514 reggroup_add (gdbarch, restore_reggroup);
4515 reggroup_add (gdbarch, vector_reggroup);
4516 reggroup_add (gdbarch, system_reggroup);
4517}
4518
4519int
4520i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4521 struct reggroup *group)
4522{
c131fcee
L
4523 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4524 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808 4525 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
798a7429
SM
4526 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4527 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
51547df6 4528 avx512_p, avx_p, sse_p, pkru_regnum_p;
acd5c798 4529
1ba53b71
L
4530 /* Don't include pseudo registers, except for MMX, in any register
4531 groups. */
c131fcee 4532 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4533 return 0;
4534
c131fcee 4535 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4536 return 0;
4537
c131fcee 4538 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4539 return 0;
4540
4541 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4542 if (group == i386_mmx_reggroup)
4543 return mmx_regnum_p;
1ba53b71 4544
51547df6 4545 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
c131fcee 4546 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4547 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4548 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4549 if (group == i386_sse_reggroup)
01f9f808 4550 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4551
4552 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4553 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4554 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4555
22049425
MS
4556 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4557 == X86_XSTATE_AVX_AVX512_MASK);
4558 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4559 == X86_XSTATE_AVX_MASK) && !avx512_p;
22049425 4560 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4561 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4562
38c968cf 4563 if (group == vector_reggroup)
c131fcee 4564 return (mmx_regnum_p
01f9f808
MS
4565 || (zmm_regnum_p && avx512_p)
4566 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4567 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4568 || mxcsr_regnum_p);
1ba53b71
L
4569
4570 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4571 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4572 if (group == float_reggroup)
4573 return fp_regnum_p;
1ba53b71 4574
c131fcee
L
4575 /* For "info reg all", don't include upper YMM registers nor XMM
4576 registers when AVX is supported. */
4577 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4578 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4579 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4580 if (group == all_reggroup
01f9f808
MS
4581 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4582 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4583 || ymmh_regnum_p
4584 || ymmh_avx512_regnum_p
4585 || zmmh_regnum_p))
c131fcee
L
4586 return 0;
4587
1dbcd68c
WT
4588 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4589 if (group == all_reggroup
df7e5265 4590 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4591 return bnd_regnum_p;
4592
4593 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4594 if (group == all_reggroup
df7e5265 4595 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4596 return 0;
4597
4598 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4599 if (group == all_reggroup
df7e5265 4600 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4601 return mpx_ctrl_regnum_p;
4602
38c968cf 4603 if (group == general_reggroup)
1ba53b71
L
4604 return (!fp_regnum_p
4605 && !mmx_regnum_p
c131fcee
L
4606 && !mxcsr_regnum_p
4607 && !xmm_regnum_p
01f9f808 4608 && !xmm_avx512_regnum_p
c131fcee 4609 && !ymm_regnum_p
1dbcd68c 4610 && !ymmh_regnum_p
01f9f808
MS
4611 && !ymm_avx512_regnum_p
4612 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4613 && !bndr_regnum_p
4614 && !bnd_regnum_p
01f9f808
MS
4615 && !mpx_ctrl_regnum_p
4616 && !zmm_regnum_p
51547df6
MS
4617 && !zmmh_regnum_p
4618 && !pkru_regnum_p);
acd5c798 4619
38c968cf
AC
4620 return default_register_reggroup_p (gdbarch, regnum, group);
4621}
38c968cf 4622\f
acd5c798 4623
f837910f
MK
4624/* Get the ARGIth function argument for the current function. */
4625
42c466d7 4626static CORE_ADDR
143985b7
AF
4627i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4628 struct type *type)
4629{
e17a4113
UW
4630 struct gdbarch *gdbarch = get_frame_arch (frame);
4631 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4632 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4633 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4634}
4635
7ad10968
HZ
4636#define PREFIX_REPZ 0x01
4637#define PREFIX_REPNZ 0x02
4638#define PREFIX_LOCK 0x04
4639#define PREFIX_DATA 0x08
4640#define PREFIX_ADDR 0x10
473f17b0 4641
7ad10968
HZ
4642/* operand size */
4643enum
4644{
4645 OT_BYTE = 0,
4646 OT_WORD,
4647 OT_LONG,
cf648174 4648 OT_QUAD,
a3c4230a 4649 OT_DQUAD,
7ad10968 4650};
473f17b0 4651
7ad10968
HZ
4652/* i386 arith/logic operations */
4653enum
4654{
4655 OP_ADDL,
4656 OP_ORL,
4657 OP_ADCL,
4658 OP_SBBL,
4659 OP_ANDL,
4660 OP_SUBL,
4661 OP_XORL,
4662 OP_CMPL,
4663};
5716833c 4664
7ad10968
HZ
4665struct i386_record_s
4666{
cf648174 4667 struct gdbarch *gdbarch;
7ad10968 4668 struct regcache *regcache;
df61f520 4669 CORE_ADDR orig_addr;
7ad10968
HZ
4670 CORE_ADDR addr;
4671 int aflag;
4672 int dflag;
4673 int override;
4674 uint8_t modrm;
4675 uint8_t mod, reg, rm;
4676 int ot;
cf648174
HZ
4677 uint8_t rex_x;
4678 uint8_t rex_b;
4679 int rip_offset;
4680 int popl_esp_hack;
4681 const int *regmap;
7ad10968 4682};
5716833c 4683
99c1624c
PA
4684/* Parse the "modrm" part of the memory address irp->addr points at.
4685 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4686
7ad10968
HZ
4687static int
4688i386_record_modrm (struct i386_record_s *irp)
4689{
cf648174 4690 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4691
4ffa4fc7
PA
4692 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4693 return -1;
4694
7ad10968
HZ
4695 irp->addr++;
4696 irp->mod = (irp->modrm >> 6) & 3;
4697 irp->reg = (irp->modrm >> 3) & 7;
4698 irp->rm = irp->modrm & 7;
5716833c 4699
7ad10968
HZ
4700 return 0;
4701}
d2a7c97a 4702
99c1624c
PA
4703/* Extract the memory address that the current instruction writes to,
4704 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4705
7ad10968 4706static int
cf648174 4707i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4708{
cf648174 4709 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4710 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4711 gdb_byte buf[4];
4712 ULONGEST offset64;
21d0e8a4 4713
7ad10968 4714 *addr = 0;
1e87984a 4715 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4716 {
1e87984a 4717 /* 32/64 bits */
7ad10968
HZ
4718 int havesib = 0;
4719 uint8_t scale = 0;
648d0c8b 4720 uint8_t byte;
7ad10968
HZ
4721 uint8_t index = 0;
4722 uint8_t base = irp->rm;
896fb97d 4723
7ad10968
HZ
4724 if (base == 4)
4725 {
4726 havesib = 1;
4ffa4fc7
PA
4727 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4728 return -1;
7ad10968 4729 irp->addr++;
648d0c8b
MS
4730 scale = (byte >> 6) & 3;
4731 index = ((byte >> 3) & 7) | irp->rex_x;
4732 base = (byte & 7);
7ad10968 4733 }
cf648174 4734 base |= irp->rex_b;
21d0e8a4 4735
7ad10968
HZ
4736 switch (irp->mod)
4737 {
4738 case 0:
4739 if ((base & 7) == 5)
4740 {
4741 base = 0xff;
4ffa4fc7
PA
4742 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4743 return -1;
7ad10968 4744 irp->addr += 4;
60a1502a 4745 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4746 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4747 *addr += irp->addr + irp->rip_offset;
7ad10968 4748 }
7ad10968
HZ
4749 break;
4750 case 1:
4ffa4fc7
PA
4751 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4752 return -1;
7ad10968 4753 irp->addr++;
60a1502a 4754 *addr = (int8_t) buf[0];
7ad10968
HZ
4755 break;
4756 case 2:
4ffa4fc7
PA
4757 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4758 return -1;
60a1502a 4759 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4760 irp->addr += 4;
4761 break;
4762 }
356a6b3e 4763
60a1502a 4764 offset64 = 0;
7ad10968 4765 if (base != 0xff)
cf648174
HZ
4766 {
4767 if (base == 4 && irp->popl_esp_hack)
4768 *addr += irp->popl_esp_hack;
4769 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4770 &offset64);
7ad10968 4771 }
cf648174
HZ
4772 if (irp->aflag == 2)
4773 {
60a1502a 4774 *addr += offset64;
cf648174
HZ
4775 }
4776 else
60a1502a 4777 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4778
7ad10968
HZ
4779 if (havesib && (index != 4 || scale != 0))
4780 {
cf648174 4781 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4782 &offset64);
cf648174 4783 if (irp->aflag == 2)
60a1502a 4784 *addr += offset64 << scale;
cf648174 4785 else
60a1502a 4786 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4787 }
e85596e0
L
4788
4789 if (!irp->aflag)
4790 {
4791 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4792 address from 32-bit to 64-bit. */
4793 *addr = (uint32_t) *addr;
4794 }
7ad10968
HZ
4795 }
4796 else
4797 {
4798 /* 16 bits */
4799 switch (irp->mod)
4800 {
4801 case 0:
4802 if (irp->rm == 6)
4803 {
4ffa4fc7
PA
4804 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4805 return -1;
7ad10968 4806 irp->addr += 2;
60a1502a 4807 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4808 irp->rm = 0;
4809 goto no_rm;
4810 }
7ad10968
HZ
4811 break;
4812 case 1:
4ffa4fc7
PA
4813 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4814 return -1;
7ad10968 4815 irp->addr++;
60a1502a 4816 *addr = (int8_t) buf[0];
7ad10968
HZ
4817 break;
4818 case 2:
4ffa4fc7
PA
4819 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4820 return -1;
7ad10968 4821 irp->addr += 2;
60a1502a 4822 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4823 break;
4824 }
c4fc7f1b 4825
7ad10968
HZ
4826 switch (irp->rm)
4827 {
4828 case 0:
cf648174
HZ
4829 regcache_raw_read_unsigned (irp->regcache,
4830 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4831 &offset64);
4832 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4833 regcache_raw_read_unsigned (irp->regcache,
4834 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4835 &offset64);
4836 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4837 break;
4838 case 1:
cf648174
HZ
4839 regcache_raw_read_unsigned (irp->regcache,
4840 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4841 &offset64);
4842 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4843 regcache_raw_read_unsigned (irp->regcache,
4844 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4845 &offset64);
4846 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4847 break;
4848 case 2:
cf648174
HZ
4849 regcache_raw_read_unsigned (irp->regcache,
4850 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4851 &offset64);
4852 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4853 regcache_raw_read_unsigned (irp->regcache,
4854 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4855 &offset64);
4856 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4857 break;
4858 case 3:
cf648174
HZ
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4861 &offset64);
4862 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4863 regcache_raw_read_unsigned (irp->regcache,
4864 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4865 &offset64);
4866 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4867 break;
4868 case 4:
cf648174
HZ
4869 regcache_raw_read_unsigned (irp->regcache,
4870 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4871 &offset64);
4872 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4873 break;
4874 case 5:
cf648174
HZ
4875 regcache_raw_read_unsigned (irp->regcache,
4876 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4877 &offset64);
4878 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4879 break;
4880 case 6:
cf648174
HZ
4881 regcache_raw_read_unsigned (irp->regcache,
4882 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4883 &offset64);
4884 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4885 break;
4886 case 7:
cf648174
HZ
4887 regcache_raw_read_unsigned (irp->regcache,
4888 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4889 &offset64);
4890 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4891 break;
4892 }
4893 *addr &= 0xffff;
4894 }
c4fc7f1b 4895
01fe1b41 4896 no_rm:
7ad10968
HZ
4897 return 0;
4898}
c4fc7f1b 4899
99c1624c
PA
4900/* Record the address and contents of the memory that will be changed
4901 by the current instruction. Return -1 if something goes wrong, 0
4902 otherwise. */
356a6b3e 4903
7ad10968
HZ
4904static int
4905i386_record_lea_modrm (struct i386_record_s *irp)
4906{
cf648174
HZ
4907 struct gdbarch *gdbarch = irp->gdbarch;
4908 uint64_t addr;
356a6b3e 4909
d7877f7e 4910 if (irp->override >= 0)
7ad10968 4911 {
25ea693b 4912 if (record_full_memory_query)
bb08c432 4913 {
651ce16a 4914 if (yquery (_("\
bb08c432
HZ
4915Process record ignores the memory change of instruction at address %s\n\
4916because it can't get the value of the segment register.\n\
4917Do you want to stop the program?"),
651ce16a
PA
4918 paddress (gdbarch, irp->orig_addr)))
4919 return -1;
bb08c432
HZ
4920 }
4921
7ad10968
HZ
4922 return 0;
4923 }
61113f8b 4924
7ad10968
HZ
4925 if (i386_record_lea_modrm_addr (irp, &addr))
4926 return -1;
96297dab 4927
25ea693b 4928 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4929 return -1;
a62cc96e 4930
7ad10968
HZ
4931 return 0;
4932}
b6197528 4933
99c1624c
PA
4934/* Record the effects of a push operation. Return -1 if something
4935 goes wrong, 0 otherwise. */
cf648174
HZ
4936
4937static int
4938i386_record_push (struct i386_record_s *irp, int size)
4939{
648d0c8b 4940 ULONGEST addr;
cf648174 4941
25ea693b
MM
4942 if (record_full_arch_list_add_reg (irp->regcache,
4943 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4944 return -1;
4945 regcache_raw_read_unsigned (irp->regcache,
4946 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4947 &addr);
25ea693b 4948 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4949 return -1;
4950
4951 return 0;
4952}
4953
0289bdd7
MS
4954
4955/* Defines contents to record. */
4956#define I386_SAVE_FPU_REGS 0xfffd
4957#define I386_SAVE_FPU_ENV 0xfffe
4958#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4959
99c1624c
PA
4960/* Record the values of the floating point registers which will be
4961 changed by the current instruction. Returns -1 if something is
4962 wrong, 0 otherwise. */
0289bdd7
MS
4963
4964static int i386_record_floats (struct gdbarch *gdbarch,
4965 struct i386_record_s *ir,
4966 uint32_t iregnum)
4967{
4968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4969 int i;
4970
4971 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4972 happen. Currently we store st0-st7 registers, but we need not store all
4973 registers all the time, in future we use ftag register and record only
4974 those who are not marked as an empty. */
4975
4976 if (I386_SAVE_FPU_REGS == iregnum)
4977 {
4978 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4979 {
25ea693b 4980 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4981 return -1;
4982 }
4983 }
4984 else if (I386_SAVE_FPU_ENV == iregnum)
4985 {
4986 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4987 {
25ea693b 4988 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4989 return -1;
4990 }
4991 }
4992 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4993 {
4994 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4995 {
25ea693b 4996 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4997 return -1;
4998 }
4999 }
5000 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5001 (iregnum <= I387_FOP_REGNUM (tdep)))
5002 {
25ea693b 5003 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
5004 return -1;
5005 }
5006 else
5007 {
5008 /* Parameter error. */
5009 return -1;
5010 }
5011 if(I386_SAVE_FPU_ENV != iregnum)
5012 {
5013 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5014 {
25ea693b 5015 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5016 return -1;
5017 }
5018 }
5019 return 0;
5020}
5021
99c1624c
PA
5022/* Parse the current instruction, and record the values of the
5023 registers and memory that will be changed by the current
5024 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 5025
25ea693b
MM
5026#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5027 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 5028
a6b808b4 5029int
7ad10968 5030i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 5031 CORE_ADDR input_addr)
7ad10968 5032{
60a1502a 5033 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 5034 int prefixes = 0;
580879fc 5035 int regnum = 0;
425b824a 5036 uint32_t opcode;
f4644a3f 5037 uint8_t opcode8;
648d0c8b 5038 ULONGEST addr;
975c21ab 5039 gdb_byte buf[I386_MAX_REGISTER_SIZE];
7ad10968 5040 struct i386_record_s ir;
0289bdd7 5041 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
5042 uint8_t rex_w = -1;
5043 uint8_t rex_r = 0;
7ad10968 5044
8408d274 5045 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 5046 ir.regcache = regcache;
648d0c8b
MS
5047 ir.addr = input_addr;
5048 ir.orig_addr = input_addr;
7ad10968
HZ
5049 ir.aflag = 1;
5050 ir.dflag = 1;
cf648174
HZ
5051 ir.override = -1;
5052 ir.popl_esp_hack = 0;
a3c4230a 5053 ir.regmap = tdep->record_regmap;
cf648174 5054 ir.gdbarch = gdbarch;
7ad10968
HZ
5055
5056 if (record_debug > 1)
5057 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
5058 "addr = %s\n",
5059 paddress (gdbarch, ir.addr));
7ad10968
HZ
5060
5061 /* prefixes */
5062 while (1)
5063 {
4ffa4fc7
PA
5064 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5065 return -1;
7ad10968 5066 ir.addr++;
425b824a 5067 switch (opcode8) /* Instruction prefixes */
7ad10968 5068 {
01fe1b41 5069 case REPE_PREFIX_OPCODE:
7ad10968
HZ
5070 prefixes |= PREFIX_REPZ;
5071 break;
01fe1b41 5072 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
5073 prefixes |= PREFIX_REPNZ;
5074 break;
01fe1b41 5075 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
5076 prefixes |= PREFIX_LOCK;
5077 break;
01fe1b41 5078 case CS_PREFIX_OPCODE:
cf648174 5079 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5080 break;
01fe1b41 5081 case SS_PREFIX_OPCODE:
cf648174 5082 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5083 break;
01fe1b41 5084 case DS_PREFIX_OPCODE:
cf648174 5085 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5086 break;
01fe1b41 5087 case ES_PREFIX_OPCODE:
cf648174 5088 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5089 break;
01fe1b41 5090 case FS_PREFIX_OPCODE:
cf648174 5091 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5092 break;
01fe1b41 5093 case GS_PREFIX_OPCODE:
cf648174 5094 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5095 break;
01fe1b41 5096 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5097 prefixes |= PREFIX_DATA;
5098 break;
01fe1b41 5099 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5100 prefixes |= PREFIX_ADDR;
5101 break;
d691bec7
MS
5102 case 0x40: /* i386 inc %eax */
5103 case 0x41: /* i386 inc %ecx */
5104 case 0x42: /* i386 inc %edx */
5105 case 0x43: /* i386 inc %ebx */
5106 case 0x44: /* i386 inc %esp */
5107 case 0x45: /* i386 inc %ebp */
5108 case 0x46: /* i386 inc %esi */
5109 case 0x47: /* i386 inc %edi */
5110 case 0x48: /* i386 dec %eax */
5111 case 0x49: /* i386 dec %ecx */
5112 case 0x4a: /* i386 dec %edx */
5113 case 0x4b: /* i386 dec %ebx */
5114 case 0x4c: /* i386 dec %esp */
5115 case 0x4d: /* i386 dec %ebp */
5116 case 0x4e: /* i386 dec %esi */
5117 case 0x4f: /* i386 dec %edi */
5118 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5119 {
5120 /* REX */
425b824a
MS
5121 rex_w = (opcode8 >> 3) & 1;
5122 rex_r = (opcode8 & 0x4) << 1;
5123 ir.rex_x = (opcode8 & 0x2) << 2;
5124 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5125 }
d691bec7
MS
5126 else /* 32 bit target */
5127 goto out_prefixes;
cf648174 5128 break;
7ad10968
HZ
5129 default:
5130 goto out_prefixes;
5131 break;
5132 }
5133 }
01fe1b41 5134 out_prefixes:
cf648174
HZ
5135 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5136 {
5137 ir.dflag = 2;
5138 }
5139 else
5140 {
5141 if (prefixes & PREFIX_DATA)
5142 ir.dflag ^= 1;
5143 }
7ad10968
HZ
5144 if (prefixes & PREFIX_ADDR)
5145 ir.aflag ^= 1;
cf648174
HZ
5146 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5147 ir.aflag = 2;
7ad10968 5148
1777feb0 5149 /* Now check op code. */
425b824a 5150 opcode = (uint32_t) opcode8;
01fe1b41 5151 reswitch:
7ad10968
HZ
5152 switch (opcode)
5153 {
5154 case 0x0f:
4ffa4fc7
PA
5155 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5156 return -1;
7ad10968 5157 ir.addr++;
a3c4230a 5158 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5159 goto reswitch;
5160 break;
93924b6b 5161
a38bba38 5162 case 0x00: /* arith & logic */
7ad10968
HZ
5163 case 0x01:
5164 case 0x02:
5165 case 0x03:
5166 case 0x04:
5167 case 0x05:
5168 case 0x08:
5169 case 0x09:
5170 case 0x0a:
5171 case 0x0b:
5172 case 0x0c:
5173 case 0x0d:
5174 case 0x10:
5175 case 0x11:
5176 case 0x12:
5177 case 0x13:
5178 case 0x14:
5179 case 0x15:
5180 case 0x18:
5181 case 0x19:
5182 case 0x1a:
5183 case 0x1b:
5184 case 0x1c:
5185 case 0x1d:
5186 case 0x20:
5187 case 0x21:
5188 case 0x22:
5189 case 0x23:
5190 case 0x24:
5191 case 0x25:
5192 case 0x28:
5193 case 0x29:
5194 case 0x2a:
5195 case 0x2b:
5196 case 0x2c:
5197 case 0x2d:
5198 case 0x30:
5199 case 0x31:
5200 case 0x32:
5201 case 0x33:
5202 case 0x34:
5203 case 0x35:
5204 case 0x38:
5205 case 0x39:
5206 case 0x3a:
5207 case 0x3b:
5208 case 0x3c:
5209 case 0x3d:
5210 if (((opcode >> 3) & 7) != OP_CMPL)
5211 {
5212 if ((opcode & 1) == 0)
5213 ir.ot = OT_BYTE;
5214 else
5215 ir.ot = ir.dflag + OT_WORD;
93924b6b 5216
7ad10968
HZ
5217 switch ((opcode >> 1) & 3)
5218 {
a38bba38 5219 case 0: /* OP Ev, Gv */
7ad10968
HZ
5220 if (i386_record_modrm (&ir))
5221 return -1;
5222 if (ir.mod != 3)
5223 {
5224 if (i386_record_lea_modrm (&ir))
5225 return -1;
5226 }
5227 else
5228 {
cf648174
HZ
5229 ir.rm |= ir.rex_b;
5230 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5231 ir.rm &= 0x3;
25ea693b 5232 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5233 }
5234 break;
a38bba38 5235 case 1: /* OP Gv, Ev */
7ad10968
HZ
5236 if (i386_record_modrm (&ir))
5237 return -1;
cf648174
HZ
5238 ir.reg |= rex_r;
5239 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5240 ir.reg &= 0x3;
25ea693b 5241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5242 break;
a38bba38 5243 case 2: /* OP A, Iv */
25ea693b 5244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5245 break;
5246 }
5247 }
25ea693b 5248 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5249 break;
42fdc8df 5250
a38bba38 5251 case 0x80: /* GRP1 */
7ad10968
HZ
5252 case 0x81:
5253 case 0x82:
5254 case 0x83:
5255 if (i386_record_modrm (&ir))
5256 return -1;
8201327c 5257
7ad10968
HZ
5258 if (ir.reg != OP_CMPL)
5259 {
5260 if ((opcode & 1) == 0)
5261 ir.ot = OT_BYTE;
5262 else
5263 ir.ot = ir.dflag + OT_WORD;
28fc6740 5264
7ad10968
HZ
5265 if (ir.mod != 3)
5266 {
cf648174
HZ
5267 if (opcode == 0x83)
5268 ir.rip_offset = 1;
5269 else
5270 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5271 if (i386_record_lea_modrm (&ir))
5272 return -1;
5273 }
5274 else
25ea693b 5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5276 }
25ea693b 5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5278 break;
5e3397bb 5279
a38bba38 5280 case 0x40: /* inc */
7ad10968
HZ
5281 case 0x41:
5282 case 0x42:
5283 case 0x43:
5284 case 0x44:
5285 case 0x45:
5286 case 0x46:
5287 case 0x47:
a38bba38
MS
5288
5289 case 0x48: /* dec */
7ad10968
HZ
5290 case 0x49:
5291 case 0x4a:
5292 case 0x4b:
5293 case 0x4c:
5294 case 0x4d:
5295 case 0x4e:
5296 case 0x4f:
a38bba38 5297
25ea693b
MM
5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5300 break;
acd5c798 5301
a38bba38 5302 case 0xf6: /* GRP3 */
7ad10968
HZ
5303 case 0xf7:
5304 if ((opcode & 1) == 0)
5305 ir.ot = OT_BYTE;
5306 else
5307 ir.ot = ir.dflag + OT_WORD;
5308 if (i386_record_modrm (&ir))
5309 return -1;
acd5c798 5310
cf648174
HZ
5311 if (ir.mod != 3 && ir.reg == 0)
5312 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5313
7ad10968
HZ
5314 switch (ir.reg)
5315 {
a38bba38 5316 case 0: /* test */
25ea693b 5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5318 break;
a38bba38
MS
5319 case 2: /* not */
5320 case 3: /* neg */
7ad10968
HZ
5321 if (ir.mod != 3)
5322 {
5323 if (i386_record_lea_modrm (&ir))
5324 return -1;
5325 }
5326 else
5327 {
cf648174
HZ
5328 ir.rm |= ir.rex_b;
5329 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5330 ir.rm &= 0x3;
25ea693b 5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5332 }
a38bba38 5333 if (ir.reg == 3) /* neg */
25ea693b 5334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5335 break;
a38bba38
MS
5336 case 4: /* mul */
5337 case 5: /* imul */
5338 case 6: /* div */
5339 case 7: /* idiv */
25ea693b 5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5341 if (ir.ot != OT_BYTE)
25ea693b
MM
5342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5344 break;
5345 default:
5346 ir.addr -= 2;
5347 opcode = opcode << 8 | ir.modrm;
5348 goto no_support;
5349 break;
5350 }
5351 break;
5352
a38bba38
MS
5353 case 0xfe: /* GRP4 */
5354 case 0xff: /* GRP5 */
7ad10968
HZ
5355 if (i386_record_modrm (&ir))
5356 return -1;
5357 if (ir.reg >= 2 && opcode == 0xfe)
5358 {
5359 ir.addr -= 2;
5360 opcode = opcode << 8 | ir.modrm;
5361 goto no_support;
5362 }
7ad10968
HZ
5363 switch (ir.reg)
5364 {
a38bba38
MS
5365 case 0: /* inc */
5366 case 1: /* dec */
cf648174
HZ
5367 if ((opcode & 1) == 0)
5368 ir.ot = OT_BYTE;
5369 else
5370 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5371 if (ir.mod != 3)
5372 {
5373 if (i386_record_lea_modrm (&ir))
5374 return -1;
5375 }
5376 else
5377 {
cf648174
HZ
5378 ir.rm |= ir.rex_b;
5379 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5380 ir.rm &= 0x3;
25ea693b 5381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5382 }
25ea693b 5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5384 break;
a38bba38 5385 case 2: /* call */
cf648174
HZ
5386 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5387 ir.dflag = 2;
5388 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5389 return -1;
25ea693b 5390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5391 break;
a38bba38 5392 case 3: /* lcall */
25ea693b 5393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5394 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5395 return -1;
25ea693b 5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5397 break;
a38bba38
MS
5398 case 4: /* jmp */
5399 case 5: /* ljmp */
25ea693b 5400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5401 break;
a38bba38 5402 case 6: /* push */
cf648174
HZ
5403 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5404 ir.dflag = 2;
5405 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5406 return -1;
7ad10968
HZ
5407 break;
5408 default:
5409 ir.addr -= 2;
5410 opcode = opcode << 8 | ir.modrm;
5411 goto no_support;
5412 break;
5413 }
5414 break;
5415
a38bba38 5416 case 0x84: /* test */
7ad10968
HZ
5417 case 0x85:
5418 case 0xa8:
5419 case 0xa9:
25ea693b 5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5421 break;
5422
a38bba38 5423 case 0x98: /* CWDE/CBW */
25ea693b 5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5425 break;
5426
a38bba38 5427 case 0x99: /* CDQ/CWD */
25ea693b
MM
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5430 break;
5431
a38bba38 5432 case 0x0faf: /* imul */
7ad10968
HZ
5433 case 0x69:
5434 case 0x6b:
5435 ir.ot = ir.dflag + OT_WORD;
5436 if (i386_record_modrm (&ir))
5437 return -1;
cf648174
HZ
5438 if (opcode == 0x69)
5439 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5440 else if (opcode == 0x6b)
5441 ir.rip_offset = 1;
5442 ir.reg |= rex_r;
5443 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5444 ir.reg &= 0x3;
25ea693b
MM
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5447 break;
5448
a38bba38 5449 case 0x0fc0: /* xadd */
7ad10968
HZ
5450 case 0x0fc1:
5451 if ((opcode & 1) == 0)
5452 ir.ot = OT_BYTE;
5453 else
5454 ir.ot = ir.dflag + OT_WORD;
5455 if (i386_record_modrm (&ir))
5456 return -1;
cf648174 5457 ir.reg |= rex_r;
7ad10968
HZ
5458 if (ir.mod == 3)
5459 {
cf648174 5460 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5461 ir.reg &= 0x3;
25ea693b 5462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5463 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5464 ir.rm &= 0x3;
25ea693b 5465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5466 }
5467 else
5468 {
5469 if (i386_record_lea_modrm (&ir))
5470 return -1;
cf648174 5471 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5472 ir.reg &= 0x3;
25ea693b 5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5474 }
25ea693b 5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5476 break;
5477
a38bba38 5478 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5479 case 0x0fb1:
5480 if ((opcode & 1) == 0)
5481 ir.ot = OT_BYTE;
5482 else
5483 ir.ot = ir.dflag + OT_WORD;
5484 if (i386_record_modrm (&ir))
5485 return -1;
5486 if (ir.mod == 3)
5487 {
cf648174 5488 ir.reg |= rex_r;
25ea693b 5489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5490 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5491 ir.reg &= 0x3;
25ea693b 5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5493 }
5494 else
5495 {
25ea693b 5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5497 if (i386_record_lea_modrm (&ir))
5498 return -1;
5499 }
25ea693b 5500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5501 break;
5502
20b477a7 5503 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
7ad10968
HZ
5504 if (i386_record_modrm (&ir))
5505 return -1;
5506 if (ir.mod == 3)
5507 {
20b477a7
LM
5508 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5509 an extended opcode. rdrand has bits 110 (/6) and rdseed
5510 has bits 111 (/7). */
5511 if (ir.reg == 6 || ir.reg == 7)
5512 {
5513 /* The storage register is described by the 3 R/M bits, but the
5514 REX.B prefix may be used to give access to registers
5515 R8~R15. In this case ir.rex_b + R/M will give us the register
5516 in the range R8~R15.
5517
5518 REX.W may also be used to access 64-bit registers, but we
5519 already record entire registers and not just partial bits
5520 of them. */
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5522 /* These instructions also set conditional bits. */
5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5524 break;
5525 }
5526 else
5527 {
5528 /* We don't handle this particular instruction yet. */
5529 ir.addr -= 2;
5530 opcode = opcode << 8 | ir.modrm;
5531 goto no_support;
5532 }
7ad10968 5533 }
25ea693b
MM
5534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5536 if (i386_record_lea_modrm (&ir))
5537 return -1;
25ea693b 5538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5539 break;
5540
a38bba38 5541 case 0x50: /* push */
7ad10968
HZ
5542 case 0x51:
5543 case 0x52:
5544 case 0x53:
5545 case 0x54:
5546 case 0x55:
5547 case 0x56:
5548 case 0x57:
5549 case 0x68:
5550 case 0x6a:
cf648174
HZ
5551 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5552 ir.dflag = 2;
5553 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5554 return -1;
5555 break;
5556
a38bba38
MS
5557 case 0x06: /* push es */
5558 case 0x0e: /* push cs */
5559 case 0x16: /* push ss */
5560 case 0x1e: /* push ds */
cf648174
HZ
5561 if (ir.regmap[X86_RECORD_R8_REGNUM])
5562 {
5563 ir.addr -= 1;
5564 goto no_support;
5565 }
5566 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5567 return -1;
5568 break;
5569
a38bba38
MS
5570 case 0x0fa0: /* push fs */
5571 case 0x0fa8: /* push gs */
cf648174
HZ
5572 if (ir.regmap[X86_RECORD_R8_REGNUM])
5573 {
5574 ir.addr -= 2;
5575 goto no_support;
5576 }
5577 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5578 return -1;
cf648174
HZ
5579 break;
5580
a38bba38 5581 case 0x60: /* pusha */
cf648174
HZ
5582 if (ir.regmap[X86_RECORD_R8_REGNUM])
5583 {
5584 ir.addr -= 1;
5585 goto no_support;
5586 }
5587 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5588 return -1;
5589 break;
5590
a38bba38 5591 case 0x58: /* pop */
7ad10968
HZ
5592 case 0x59:
5593 case 0x5a:
5594 case 0x5b:
5595 case 0x5c:
5596 case 0x5d:
5597 case 0x5e:
5598 case 0x5f:
25ea693b
MM
5599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5600 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5601 break;
5602
a38bba38 5603 case 0x61: /* popa */
cf648174
HZ
5604 if (ir.regmap[X86_RECORD_R8_REGNUM])
5605 {
5606 ir.addr -= 1;
5607 goto no_support;
7ad10968 5608 }
425b824a
MS
5609 for (regnum = X86_RECORD_REAX_REGNUM;
5610 regnum <= X86_RECORD_REDI_REGNUM;
5611 regnum++)
25ea693b 5612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5613 break;
5614
a38bba38 5615 case 0x8f: /* pop */
cf648174
HZ
5616 if (ir.regmap[X86_RECORD_R8_REGNUM])
5617 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5618 else
5619 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5620 if (i386_record_modrm (&ir))
5621 return -1;
5622 if (ir.mod == 3)
25ea693b 5623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5624 else
5625 {
cf648174 5626 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5627 if (i386_record_lea_modrm (&ir))
5628 return -1;
5629 }
25ea693b 5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5631 break;
5632
a38bba38 5633 case 0xc8: /* enter */
25ea693b 5634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5635 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5636 ir.dflag = 2;
5637 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5638 return -1;
5639 break;
5640
a38bba38 5641 case 0xc9: /* leave */
25ea693b
MM
5642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5644 break;
5645
a38bba38 5646 case 0x07: /* pop es */
cf648174
HZ
5647 if (ir.regmap[X86_RECORD_R8_REGNUM])
5648 {
5649 ir.addr -= 1;
5650 goto no_support;
5651 }
25ea693b
MM
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5655 break;
5656
a38bba38 5657 case 0x17: /* pop ss */
cf648174
HZ
5658 if (ir.regmap[X86_RECORD_R8_REGNUM])
5659 {
5660 ir.addr -= 1;
5661 goto no_support;
5662 }
25ea693b
MM
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5666 break;
5667
a38bba38 5668 case 0x1f: /* pop ds */
cf648174
HZ
5669 if (ir.regmap[X86_RECORD_R8_REGNUM])
5670 {
5671 ir.addr -= 1;
5672 goto no_support;
5673 }
25ea693b
MM
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5677 break;
5678
a38bba38 5679 case 0x0fa1: /* pop fs */
25ea693b
MM
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5683 break;
5684
a38bba38 5685 case 0x0fa9: /* pop gs */
25ea693b
MM
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5689 break;
5690
a38bba38 5691 case 0x88: /* mov */
7ad10968
HZ
5692 case 0x89:
5693 case 0xc6:
5694 case 0xc7:
5695 if ((opcode & 1) == 0)
5696 ir.ot = OT_BYTE;
5697 else
5698 ir.ot = ir.dflag + OT_WORD;
5699
5700 if (i386_record_modrm (&ir))
5701 return -1;
5702
5703 if (ir.mod != 3)
5704 {
cf648174
HZ
5705 if (opcode == 0xc6 || opcode == 0xc7)
5706 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5707 if (i386_record_lea_modrm (&ir))
5708 return -1;
5709 }
5710 else
5711 {
cf648174
HZ
5712 if (opcode == 0xc6 || opcode == 0xc7)
5713 ir.rm |= ir.rex_b;
5714 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5715 ir.rm &= 0x3;
25ea693b 5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5717 }
7ad10968 5718 break;
cf648174 5719
a38bba38 5720 case 0x8a: /* mov */
7ad10968
HZ
5721 case 0x8b:
5722 if ((opcode & 1) == 0)
5723 ir.ot = OT_BYTE;
5724 else
5725 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5726 if (i386_record_modrm (&ir))
5727 return -1;
cf648174
HZ
5728 ir.reg |= rex_r;
5729 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5730 ir.reg &= 0x3;
25ea693b 5731 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5732 break;
7ad10968 5733
a38bba38 5734 case 0x8c: /* mov seg */
cf648174 5735 if (i386_record_modrm (&ir))
7ad10968 5736 return -1;
cf648174
HZ
5737 if (ir.reg > 5)
5738 {
5739 ir.addr -= 2;
5740 opcode = opcode << 8 | ir.modrm;
5741 goto no_support;
5742 }
5743
5744 if (ir.mod == 3)
25ea693b 5745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5746 else
5747 {
5748 ir.ot = OT_WORD;
5749 if (i386_record_lea_modrm (&ir))
5750 return -1;
5751 }
7ad10968
HZ
5752 break;
5753
a38bba38 5754 case 0x8e: /* mov seg */
7ad10968
HZ
5755 if (i386_record_modrm (&ir))
5756 return -1;
7ad10968
HZ
5757 switch (ir.reg)
5758 {
5759 case 0:
425b824a 5760 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5761 break;
5762 case 2:
425b824a 5763 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5764 break;
5765 case 3:
425b824a 5766 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5767 break;
5768 case 4:
425b824a 5769 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5770 break;
5771 case 5:
425b824a 5772 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5773 break;
5774 default:
5775 ir.addr -= 2;
5776 opcode = opcode << 8 | ir.modrm;
5777 goto no_support;
5778 break;
5779 }
25ea693b
MM
5780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5782 break;
5783
a38bba38
MS
5784 case 0x0fb6: /* movzbS */
5785 case 0x0fb7: /* movzwS */
5786 case 0x0fbe: /* movsbS */
5787 case 0x0fbf: /* movswS */
7ad10968
HZ
5788 if (i386_record_modrm (&ir))
5789 return -1;
25ea693b 5790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5791 break;
5792
a38bba38 5793 case 0x8d: /* lea */
7ad10968
HZ
5794 if (i386_record_modrm (&ir))
5795 return -1;
5796 if (ir.mod == 3)
5797 {
5798 ir.addr -= 2;
5799 opcode = opcode << 8 | ir.modrm;
5800 goto no_support;
5801 }
7ad10968 5802 ir.ot = ir.dflag;
cf648174
HZ
5803 ir.reg |= rex_r;
5804 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5805 ir.reg &= 0x3;
25ea693b 5806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5807 break;
5808
a38bba38 5809 case 0xa0: /* mov EAX */
7ad10968 5810 case 0xa1:
a38bba38
MS
5811
5812 case 0xd7: /* xlat */
25ea693b 5813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5814 break;
5815
a38bba38 5816 case 0xa2: /* mov EAX */
7ad10968 5817 case 0xa3:
d7877f7e 5818 if (ir.override >= 0)
cf648174 5819 {
25ea693b 5820 if (record_full_memory_query)
bb08c432 5821 {
651ce16a 5822 if (yquery (_("\
bb08c432
HZ
5823Process record ignores the memory change of instruction at address %s\n\
5824because it can't get the value of the segment register.\n\
5825Do you want to stop the program?"),
651ce16a 5826 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
5827 return -1;
5828 }
cf648174
HZ
5829 }
5830 else
5831 {
5832 if ((opcode & 1) == 0)
5833 ir.ot = OT_BYTE;
5834 else
5835 ir.ot = ir.dflag + OT_WORD;
5836 if (ir.aflag == 2)
5837 {
4ffa4fc7
PA
5838 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5839 return -1;
cf648174 5840 ir.addr += 8;
60a1502a 5841 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5842 }
5843 else if (ir.aflag)
5844 {
4ffa4fc7
PA
5845 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5846 return -1;
cf648174 5847 ir.addr += 4;
60a1502a 5848 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5849 }
5850 else
5851 {
4ffa4fc7
PA
5852 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5853 return -1;
cf648174 5854 ir.addr += 2;
60a1502a 5855 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5856 }
25ea693b 5857 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5858 return -1;
5859 }
7ad10968
HZ
5860 break;
5861
a38bba38 5862 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5863 case 0xb1:
5864 case 0xb2:
5865 case 0xb3:
5866 case 0xb4:
5867 case 0xb5:
5868 case 0xb6:
5869 case 0xb7:
25ea693b
MM
5870 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5871 ? ((opcode & 0x7) | ir.rex_b)
5872 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5873 break;
5874
a38bba38 5875 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5876 case 0xb9:
5877 case 0xba:
5878 case 0xbb:
5879 case 0xbc:
5880 case 0xbd:
5881 case 0xbe:
5882 case 0xbf:
25ea693b 5883 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5884 break;
5885
a38bba38 5886 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5887 case 0x92:
5888 case 0x93:
5889 case 0x94:
5890 case 0x95:
5891 case 0x96:
5892 case 0x97:
25ea693b
MM
5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5895 break;
5896
a38bba38 5897 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5898 case 0x87:
5899 if ((opcode & 1) == 0)
5900 ir.ot = OT_BYTE;
5901 else
5902 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5903 if (i386_record_modrm (&ir))
5904 return -1;
7ad10968
HZ
5905 if (ir.mod == 3)
5906 {
86839d38 5907 ir.rm |= ir.rex_b;
cf648174
HZ
5908 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5909 ir.rm &= 0x3;
25ea693b 5910 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5911 }
5912 else
5913 {
5914 if (i386_record_lea_modrm (&ir))
5915 return -1;
5916 }
cf648174
HZ
5917 ir.reg |= rex_r;
5918 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5919 ir.reg &= 0x3;
25ea693b 5920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5921 break;
5922
a38bba38
MS
5923 case 0xc4: /* les Gv */
5924 case 0xc5: /* lds Gv */
cf648174
HZ
5925 if (ir.regmap[X86_RECORD_R8_REGNUM])
5926 {
5927 ir.addr -= 1;
5928 goto no_support;
5929 }
d3f323f3 5930 /* FALLTHROUGH */
a38bba38
MS
5931 case 0x0fb2: /* lss Gv */
5932 case 0x0fb4: /* lfs Gv */
5933 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5934 if (i386_record_modrm (&ir))
5935 return -1;
5936 if (ir.mod == 3)
5937 {
5938 if (opcode > 0xff)
5939 ir.addr -= 3;
5940 else
5941 ir.addr -= 2;
5942 opcode = opcode << 8 | ir.modrm;
5943 goto no_support;
5944 }
7ad10968
HZ
5945 switch (opcode)
5946 {
a38bba38 5947 case 0xc4: /* les Gv */
425b824a 5948 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5949 break;
a38bba38 5950 case 0xc5: /* lds Gv */
425b824a 5951 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5952 break;
a38bba38 5953 case 0x0fb2: /* lss Gv */
425b824a 5954 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5955 break;
a38bba38 5956 case 0x0fb4: /* lfs Gv */
425b824a 5957 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5958 break;
a38bba38 5959 case 0x0fb5: /* lgs Gv */
425b824a 5960 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5961 break;
5962 }
25ea693b
MM
5963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5966 break;
5967
a38bba38 5968 case 0xc0: /* shifts */
7ad10968
HZ
5969 case 0xc1:
5970 case 0xd0:
5971 case 0xd1:
5972 case 0xd2:
5973 case 0xd3:
5974 if ((opcode & 1) == 0)
5975 ir.ot = OT_BYTE;
5976 else
5977 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5978 if (i386_record_modrm (&ir))
5979 return -1;
7ad10968
HZ
5980 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5981 {
5982 if (i386_record_lea_modrm (&ir))
5983 return -1;
5984 }
5985 else
5986 {
cf648174
HZ
5987 ir.rm |= ir.rex_b;
5988 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5989 ir.rm &= 0x3;
25ea693b 5990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5991 }
25ea693b 5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5993 break;
5994
5995 case 0x0fa4:
5996 case 0x0fa5:
5997 case 0x0fac:
5998 case 0x0fad:
5999 if (i386_record_modrm (&ir))
6000 return -1;
6001 if (ir.mod == 3)
6002 {
25ea693b 6003 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
6004 return -1;
6005 }
6006 else
6007 {
6008 if (i386_record_lea_modrm (&ir))
6009 return -1;
6010 }
6011 break;
6012
a38bba38 6013 case 0xd8: /* Floats. */
7ad10968
HZ
6014 case 0xd9:
6015 case 0xda:
6016 case 0xdb:
6017 case 0xdc:
6018 case 0xdd:
6019 case 0xde:
6020 case 0xdf:
6021 if (i386_record_modrm (&ir))
6022 return -1;
6023 ir.reg |= ((opcode & 7) << 3);
6024 if (ir.mod != 3)
6025 {
1777feb0 6026 /* Memory. */
955db0c0 6027 uint64_t addr64;
7ad10968 6028
955db0c0 6029 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
6030 return -1;
6031 switch (ir.reg)
6032 {
7ad10968 6033 case 0x02:
0289bdd7
MS
6034 case 0x12:
6035 case 0x22:
6036 case 0x32:
6037 /* For fcom, ficom nothing to do. */
6038 break;
7ad10968 6039 case 0x03:
0289bdd7
MS
6040 case 0x13:
6041 case 0x23:
6042 case 0x33:
6043 /* For fcomp, ficomp pop FPU stack, store all. */
6044 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6045 return -1;
6046 break;
6047 case 0x00:
6048 case 0x01:
7ad10968
HZ
6049 case 0x04:
6050 case 0x05:
6051 case 0x06:
6052 case 0x07:
6053 case 0x10:
6054 case 0x11:
7ad10968
HZ
6055 case 0x14:
6056 case 0x15:
6057 case 0x16:
6058 case 0x17:
6059 case 0x20:
6060 case 0x21:
7ad10968
HZ
6061 case 0x24:
6062 case 0x25:
6063 case 0x26:
6064 case 0x27:
6065 case 0x30:
6066 case 0x31:
7ad10968
HZ
6067 case 0x34:
6068 case 0x35:
6069 case 0x36:
6070 case 0x37:
0289bdd7
MS
6071 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6072 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6073 of code, always affects st(0) register. */
6074 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6075 return -1;
7ad10968
HZ
6076 break;
6077 case 0x08:
6078 case 0x0a:
6079 case 0x0b:
6080 case 0x18:
6081 case 0x19:
6082 case 0x1a:
6083 case 0x1b:
0289bdd7 6084 case 0x1d:
7ad10968
HZ
6085 case 0x28:
6086 case 0x29:
6087 case 0x2a:
6088 case 0x2b:
6089 case 0x38:
6090 case 0x39:
6091 case 0x3a:
6092 case 0x3b:
0289bdd7
MS
6093 case 0x3c:
6094 case 0x3d:
7ad10968
HZ
6095 switch (ir.reg & 7)
6096 {
6097 case 0:
0289bdd7
MS
6098 /* Handling fld, fild. */
6099 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6100 return -1;
7ad10968
HZ
6101 break;
6102 case 1:
6103 switch (ir.reg >> 4)
6104 {
6105 case 0:
25ea693b 6106 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6107 return -1;
6108 break;
6109 case 2:
25ea693b 6110 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6111 return -1;
6112 break;
6113 case 3:
0289bdd7 6114 break;
7ad10968 6115 default:
25ea693b 6116 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6117 return -1;
6118 break;
6119 }
6120 break;
6121 default:
6122 switch (ir.reg >> 4)
6123 {
6124 case 0:
25ea693b 6125 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6126 return -1;
6127 if (3 == (ir.reg & 7))
6128 {
6129 /* For fstp m32fp. */
6130 if (i386_record_floats (gdbarch, &ir,
6131 I386_SAVE_FPU_REGS))
6132 return -1;
6133 }
6134 break;
7ad10968 6135 case 1:
25ea693b 6136 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6137 return -1;
0289bdd7
MS
6138 if ((3 == (ir.reg & 7))
6139 || (5 == (ir.reg & 7))
6140 || (7 == (ir.reg & 7)))
6141 {
6142 /* For fstp insn. */
6143 if (i386_record_floats (gdbarch, &ir,
6144 I386_SAVE_FPU_REGS))
6145 return -1;
6146 }
7ad10968
HZ
6147 break;
6148 case 2:
25ea693b 6149 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6150 return -1;
0289bdd7
MS
6151 if (3 == (ir.reg & 7))
6152 {
6153 /* For fstp m64fp. */
6154 if (i386_record_floats (gdbarch, &ir,
6155 I386_SAVE_FPU_REGS))
6156 return -1;
6157 }
7ad10968
HZ
6158 break;
6159 case 3:
0289bdd7
MS
6160 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6161 {
6162 /* For fistp, fbld, fild, fbstp. */
6163 if (i386_record_floats (gdbarch, &ir,
6164 I386_SAVE_FPU_REGS))
6165 return -1;
6166 }
6167 /* Fall through */
7ad10968 6168 default:
25ea693b 6169 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6170 return -1;
6171 break;
6172 }
6173 break;
6174 }
6175 break;
6176 case 0x0c:
0289bdd7
MS
6177 /* Insn fldenv. */
6178 if (i386_record_floats (gdbarch, &ir,
6179 I386_SAVE_FPU_ENV_REG_STACK))
6180 return -1;
6181 break;
7ad10968 6182 case 0x0d:
0289bdd7
MS
6183 /* Insn fldcw. */
6184 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6185 return -1;
6186 break;
7ad10968 6187 case 0x2c:
0289bdd7
MS
6188 /* Insn frstor. */
6189 if (i386_record_floats (gdbarch, &ir,
6190 I386_SAVE_FPU_ENV_REG_STACK))
6191 return -1;
7ad10968
HZ
6192 break;
6193 case 0x0e:
6194 if (ir.dflag)
6195 {
25ea693b 6196 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6197 return -1;
6198 }
6199 else
6200 {
25ea693b 6201 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6202 return -1;
6203 }
6204 break;
6205 case 0x0f:
6206 case 0x2f:
25ea693b 6207 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6208 return -1;
0289bdd7
MS
6209 /* Insn fstp, fbstp. */
6210 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6211 return -1;
7ad10968
HZ
6212 break;
6213 case 0x1f:
6214 case 0x3e:
25ea693b 6215 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6216 return -1;
6217 break;
6218 case 0x2e:
6219 if (ir.dflag)
6220 {
25ea693b 6221 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6222 return -1;
955db0c0 6223 addr64 += 28;
7ad10968
HZ
6224 }
6225 else
6226 {
25ea693b 6227 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6228 return -1;
955db0c0 6229 addr64 += 14;
7ad10968 6230 }
25ea693b 6231 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6232 return -1;
0289bdd7
MS
6233 /* Insn fsave. */
6234 if (i386_record_floats (gdbarch, &ir,
6235 I386_SAVE_FPU_ENV_REG_STACK))
6236 return -1;
7ad10968
HZ
6237 break;
6238 case 0x3f:
25ea693b 6239 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6240 return -1;
0289bdd7
MS
6241 /* Insn fistp. */
6242 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6243 return -1;
7ad10968
HZ
6244 break;
6245 default:
6246 ir.addr -= 2;
6247 opcode = opcode << 8 | ir.modrm;
6248 goto no_support;
6249 break;
6250 }
6251 }
0289bdd7
MS
6252 /* Opcode is an extension of modR/M byte. */
6253 else
6254 {
6255 switch (opcode)
6256 {
6257 case 0xd8:
6258 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6259 return -1;
6260 break;
6261 case 0xd9:
6262 if (0x0c == (ir.modrm >> 4))
6263 {
6264 if ((ir.modrm & 0x0f) <= 7)
6265 {
6266 if (i386_record_floats (gdbarch, &ir,
6267 I386_SAVE_FPU_REGS))
6268 return -1;
6269 }
6270 else
6271 {
6272 if (i386_record_floats (gdbarch, &ir,
6273 I387_ST0_REGNUM (tdep)))
6274 return -1;
6275 /* If only st(0) is changing, then we have already
6276 recorded. */
6277 if ((ir.modrm & 0x0f) - 0x08)
6278 {
6279 if (i386_record_floats (gdbarch, &ir,
6280 I387_ST0_REGNUM (tdep) +
6281 ((ir.modrm & 0x0f) - 0x08)))
6282 return -1;
6283 }
6284 }
6285 }
6286 else
6287 {
6288 switch (ir.modrm)
6289 {
6290 case 0xe0:
6291 case 0xe1:
6292 case 0xf0:
6293 case 0xf5:
6294 case 0xf8:
6295 case 0xfa:
6296 case 0xfc:
6297 case 0xfe:
6298 case 0xff:
6299 if (i386_record_floats (gdbarch, &ir,
6300 I387_ST0_REGNUM (tdep)))
6301 return -1;
6302 break;
6303 case 0xf1:
6304 case 0xf2:
6305 case 0xf3:
6306 case 0xf4:
6307 case 0xf6:
6308 case 0xf7:
6309 case 0xe8:
6310 case 0xe9:
6311 case 0xea:
6312 case 0xeb:
6313 case 0xec:
6314 case 0xed:
6315 case 0xee:
6316 case 0xf9:
6317 case 0xfb:
6318 if (i386_record_floats (gdbarch, &ir,
6319 I386_SAVE_FPU_REGS))
6320 return -1;
6321 break;
6322 case 0xfd:
6323 if (i386_record_floats (gdbarch, &ir,
6324 I387_ST0_REGNUM (tdep)))
6325 return -1;
6326 if (i386_record_floats (gdbarch, &ir,
6327 I387_ST0_REGNUM (tdep) + 1))
6328 return -1;
6329 break;
6330 }
6331 }
6332 break;
6333 case 0xda:
6334 if (0xe9 == ir.modrm)
6335 {
6336 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6337 return -1;
6338 }
6339 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6340 {
6341 if (i386_record_floats (gdbarch, &ir,
6342 I387_ST0_REGNUM (tdep)))
6343 return -1;
6344 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6345 {
6346 if (i386_record_floats (gdbarch, &ir,
6347 I387_ST0_REGNUM (tdep) +
6348 (ir.modrm & 0x0f)))
6349 return -1;
6350 }
6351 else if ((ir.modrm & 0x0f) - 0x08)
6352 {
6353 if (i386_record_floats (gdbarch, &ir,
6354 I387_ST0_REGNUM (tdep) +
6355 ((ir.modrm & 0x0f) - 0x08)))
6356 return -1;
6357 }
6358 }
6359 break;
6360 case 0xdb:
6361 if (0xe3 == ir.modrm)
6362 {
6363 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6364 return -1;
6365 }
6366 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6367 {
6368 if (i386_record_floats (gdbarch, &ir,
6369 I387_ST0_REGNUM (tdep)))
6370 return -1;
6371 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6372 {
6373 if (i386_record_floats (gdbarch, &ir,
6374 I387_ST0_REGNUM (tdep) +
6375 (ir.modrm & 0x0f)))
6376 return -1;
6377 }
6378 else if ((ir.modrm & 0x0f) - 0x08)
6379 {
6380 if (i386_record_floats (gdbarch, &ir,
6381 I387_ST0_REGNUM (tdep) +
6382 ((ir.modrm & 0x0f) - 0x08)))
6383 return -1;
6384 }
6385 }
6386 break;
6387 case 0xdc:
6388 if ((0x0c == ir.modrm >> 4)
6389 || (0x0d == ir.modrm >> 4)
6390 || (0x0f == ir.modrm >> 4))
6391 {
6392 if ((ir.modrm & 0x0f) <= 7)
6393 {
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_ST0_REGNUM (tdep) +
6396 (ir.modrm & 0x0f)))
6397 return -1;
6398 }
6399 else
6400 {
6401 if (i386_record_floats (gdbarch, &ir,
6402 I387_ST0_REGNUM (tdep) +
6403 ((ir.modrm & 0x0f) - 0x08)))
6404 return -1;
6405 }
6406 }
6407 break;
6408 case 0xdd:
6409 if (0x0c == ir.modrm >> 4)
6410 {
6411 if (i386_record_floats (gdbarch, &ir,
6412 I387_FTAG_REGNUM (tdep)))
6413 return -1;
6414 }
6415 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6416 {
6417 if ((ir.modrm & 0x0f) <= 7)
6418 {
6419 if (i386_record_floats (gdbarch, &ir,
6420 I387_ST0_REGNUM (tdep) +
6421 (ir.modrm & 0x0f)))
6422 return -1;
6423 }
6424 else
6425 {
6426 if (i386_record_floats (gdbarch, &ir,
6427 I386_SAVE_FPU_REGS))
6428 return -1;
6429 }
6430 }
6431 break;
6432 case 0xde:
6433 if ((0x0c == ir.modrm >> 4)
6434 || (0x0e == ir.modrm >> 4)
6435 || (0x0f == ir.modrm >> 4)
6436 || (0xd9 == ir.modrm))
6437 {
6438 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6439 return -1;
6440 }
6441 break;
6442 case 0xdf:
6443 if (0xe0 == ir.modrm)
6444 {
25ea693b
MM
6445 if (record_full_arch_list_add_reg (ir.regcache,
6446 I386_EAX_REGNUM))
0289bdd7
MS
6447 return -1;
6448 }
6449 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6450 {
6451 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6452 return -1;
6453 }
6454 break;
6455 }
6456 }
7ad10968 6457 break;
7ad10968 6458 /* string ops */
a38bba38 6459 case 0xa4: /* movsS */
7ad10968 6460 case 0xa5:
a38bba38 6461 case 0xaa: /* stosS */
7ad10968 6462 case 0xab:
a38bba38 6463 case 0x6c: /* insS */
7ad10968 6464 case 0x6d:
cf648174 6465 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6466 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6467 &addr);
6468 if (addr)
cf648174 6469 {
77d7dc92
HZ
6470 ULONGEST es, ds;
6471
6472 if ((opcode & 1) == 0)
6473 ir.ot = OT_BYTE;
6474 else
6475 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6476 regcache_raw_read_unsigned (ir.regcache,
6477 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6478 &addr);
77d7dc92 6479
d7877f7e
HZ
6480 regcache_raw_read_unsigned (ir.regcache,
6481 ir.regmap[X86_RECORD_ES_REGNUM],
6482 &es);
6483 regcache_raw_read_unsigned (ir.regcache,
6484 ir.regmap[X86_RECORD_DS_REGNUM],
6485 &ds);
6486 if (ir.aflag && (es != ds))
77d7dc92
HZ
6487 {
6488 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6489 if (record_full_memory_query)
bb08c432 6490 {
651ce16a 6491 if (yquery (_("\
bb08c432
HZ
6492Process record ignores the memory change of instruction at address %s\n\
6493because it can't get the value of the segment register.\n\
6494Do you want to stop the program?"),
651ce16a 6495 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
6496 return -1;
6497 }
df61f520
HZ
6498 }
6499 else
6500 {
25ea693b 6501 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6502 return -1;
77d7dc92
HZ
6503 }
6504
6505 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6507 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6511 }
cf648174 6512 break;
7ad10968 6513
a38bba38 6514 case 0xa6: /* cmpsS */
cf648174 6515 case 0xa7:
25ea693b
MM
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6518 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6521 break;
6522
a38bba38 6523 case 0xac: /* lodsS */
7ad10968 6524 case 0xad:
25ea693b
MM
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6527 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6530 break;
6531
a38bba38 6532 case 0xae: /* scasS */
7ad10968 6533 case 0xaf:
25ea693b 6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6535 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6538 break;
6539
a38bba38 6540 case 0x6e: /* outsS */
cf648174 6541 case 0x6f:
25ea693b 6542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6543 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6546 break;
6547
a38bba38 6548 case 0xe4: /* port I/O */
7ad10968
HZ
6549 case 0xe5:
6550 case 0xec:
6551 case 0xed:
25ea693b
MM
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6554 break;
6555
6556 case 0xe6:
6557 case 0xe7:
6558 case 0xee:
6559 case 0xef:
6560 break;
6561
6562 /* control */
a38bba38
MS
6563 case 0xc2: /* ret im */
6564 case 0xc3: /* ret */
25ea693b
MM
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6567 break;
6568
a38bba38
MS
6569 case 0xca: /* lret im */
6570 case 0xcb: /* lret */
6571 case 0xcf: /* iret */
25ea693b
MM
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6575 break;
6576
a38bba38 6577 case 0xe8: /* call im */
cf648174
HZ
6578 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6579 ir.dflag = 2;
6580 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6581 return -1;
7ad10968
HZ
6582 break;
6583
a38bba38 6584 case 0x9a: /* lcall im */
cf648174
HZ
6585 if (ir.regmap[X86_RECORD_R8_REGNUM])
6586 {
6587 ir.addr -= 1;
6588 goto no_support;
6589 }
25ea693b 6590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6591 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6592 return -1;
7ad10968
HZ
6593 break;
6594
a38bba38
MS
6595 case 0xe9: /* jmp im */
6596 case 0xea: /* ljmp im */
6597 case 0xeb: /* jmp Jb */
6598 case 0x70: /* jcc Jb */
7ad10968
HZ
6599 case 0x71:
6600 case 0x72:
6601 case 0x73:
6602 case 0x74:
6603 case 0x75:
6604 case 0x76:
6605 case 0x77:
6606 case 0x78:
6607 case 0x79:
6608 case 0x7a:
6609 case 0x7b:
6610 case 0x7c:
6611 case 0x7d:
6612 case 0x7e:
6613 case 0x7f:
a38bba38 6614 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6615 case 0x0f81:
6616 case 0x0f82:
6617 case 0x0f83:
6618 case 0x0f84:
6619 case 0x0f85:
6620 case 0x0f86:
6621 case 0x0f87:
6622 case 0x0f88:
6623 case 0x0f89:
6624 case 0x0f8a:
6625 case 0x0f8b:
6626 case 0x0f8c:
6627 case 0x0f8d:
6628 case 0x0f8e:
6629 case 0x0f8f:
6630 break;
6631
a38bba38 6632 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6633 case 0x0f91:
6634 case 0x0f92:
6635 case 0x0f93:
6636 case 0x0f94:
6637 case 0x0f95:
6638 case 0x0f96:
6639 case 0x0f97:
6640 case 0x0f98:
6641 case 0x0f99:
6642 case 0x0f9a:
6643 case 0x0f9b:
6644 case 0x0f9c:
6645 case 0x0f9d:
6646 case 0x0f9e:
6647 case 0x0f9f:
25ea693b 6648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6649 ir.ot = OT_BYTE;
6650 if (i386_record_modrm (&ir))
6651 return -1;
6652 if (ir.mod == 3)
25ea693b
MM
6653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6654 : (ir.rm & 0x3));
7ad10968
HZ
6655 else
6656 {
6657 if (i386_record_lea_modrm (&ir))
6658 return -1;
6659 }
6660 break;
6661
a38bba38 6662 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6663 case 0x0f41:
6664 case 0x0f42:
6665 case 0x0f43:
6666 case 0x0f44:
6667 case 0x0f45:
6668 case 0x0f46:
6669 case 0x0f47:
6670 case 0x0f48:
6671 case 0x0f49:
6672 case 0x0f4a:
6673 case 0x0f4b:
6674 case 0x0f4c:
6675 case 0x0f4d:
6676 case 0x0f4e:
6677 case 0x0f4f:
6678 if (i386_record_modrm (&ir))
6679 return -1;
cf648174 6680 ir.reg |= rex_r;
7ad10968
HZ
6681 if (ir.dflag == OT_BYTE)
6682 ir.reg &= 0x3;
25ea693b 6683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6684 break;
6685
6686 /* flags */
a38bba38 6687 case 0x9c: /* pushf */
25ea693b 6688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6689 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6690 ir.dflag = 2;
6691 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6692 return -1;
7ad10968
HZ
6693 break;
6694
a38bba38 6695 case 0x9d: /* popf */
25ea693b
MM
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6698 break;
6699
a38bba38 6700 case 0x9e: /* sahf */
cf648174
HZ
6701 if (ir.regmap[X86_RECORD_R8_REGNUM])
6702 {
6703 ir.addr -= 1;
6704 goto no_support;
6705 }
d3f323f3 6706 /* FALLTHROUGH */
a38bba38
MS
6707 case 0xf5: /* cmc */
6708 case 0xf8: /* clc */
6709 case 0xf9: /* stc */
6710 case 0xfc: /* cld */
6711 case 0xfd: /* std */
25ea693b 6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6713 break;
6714
a38bba38 6715 case 0x9f: /* lahf */
cf648174
HZ
6716 if (ir.regmap[X86_RECORD_R8_REGNUM])
6717 {
6718 ir.addr -= 1;
6719 goto no_support;
6720 }
25ea693b
MM
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6723 break;
6724
6725 /* bit operations */
a38bba38 6726 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6727 ir.ot = ir.dflag + OT_WORD;
6728 if (i386_record_modrm (&ir))
6729 return -1;
6730 if (ir.reg < 4)
6731 {
cf648174 6732 ir.addr -= 2;
7ad10968
HZ
6733 opcode = opcode << 8 | ir.modrm;
6734 goto no_support;
6735 }
cf648174 6736 if (ir.reg != 4)
7ad10968 6737 {
cf648174 6738 if (ir.mod == 3)
25ea693b 6739 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6740 else
6741 {
cf648174 6742 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6743 return -1;
6744 }
6745 }
25ea693b 6746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6747 break;
6748
a38bba38 6749 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6751 break;
6752
a38bba38
MS
6753 case 0x0fab: /* bts */
6754 case 0x0fb3: /* btr */
6755 case 0x0fbb: /* btc */
cf648174
HZ
6756 ir.ot = ir.dflag + OT_WORD;
6757 if (i386_record_modrm (&ir))
6758 return -1;
6759 if (ir.mod == 3)
25ea693b 6760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6761 else
6762 {
955db0c0
MS
6763 uint64_t addr64;
6764 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6765 return -1;
6766 regcache_raw_read_unsigned (ir.regcache,
6767 ir.regmap[ir.reg | rex_r],
648d0c8b 6768 &addr);
cf648174
HZ
6769 switch (ir.dflag)
6770 {
6771 case 0:
648d0c8b 6772 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6773 break;
6774 case 1:
648d0c8b 6775 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6776 break;
6777 case 2:
648d0c8b 6778 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6779 break;
6780 }
25ea693b 6781 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6782 return -1;
6783 if (i386_record_lea_modrm (&ir))
6784 return -1;
6785 }
25ea693b 6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6787 break;
6788
a38bba38
MS
6789 case 0x0fbc: /* bsf */
6790 case 0x0fbd: /* bsr */
25ea693b
MM
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6793 break;
6794
6795 /* bcd */
a38bba38
MS
6796 case 0x27: /* daa */
6797 case 0x2f: /* das */
6798 case 0x37: /* aaa */
6799 case 0x3f: /* aas */
6800 case 0xd4: /* aam */
6801 case 0xd5: /* aad */
cf648174
HZ
6802 if (ir.regmap[X86_RECORD_R8_REGNUM])
6803 {
6804 ir.addr -= 1;
6805 goto no_support;
6806 }
25ea693b
MM
6807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6809 break;
6810
6811 /* misc */
a38bba38 6812 case 0x90: /* nop */
7ad10968
HZ
6813 if (prefixes & PREFIX_LOCK)
6814 {
6815 ir.addr -= 1;
6816 goto no_support;
6817 }
6818 break;
6819
a38bba38 6820 case 0x9b: /* fwait */
4ffa4fc7
PA
6821 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6822 return -1;
425b824a 6823 opcode = (uint32_t) opcode8;
0289bdd7
MS
6824 ir.addr++;
6825 goto reswitch;
7ad10968
HZ
6826 break;
6827
7ad10968 6828 /* XXX */
a38bba38 6829 case 0xcc: /* int3 */
a3c4230a 6830 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6831 "int3.\n"));
6832 ir.addr -= 1;
6833 goto no_support;
6834 break;
6835
7ad10968 6836 /* XXX */
a38bba38 6837 case 0xcd: /* int */
7ad10968
HZ
6838 {
6839 int ret;
425b824a 6840 uint8_t interrupt;
4ffa4fc7
PA
6841 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6842 return -1;
7ad10968 6843 ir.addr++;
425b824a 6844 if (interrupt != 0x80
a3c4230a 6845 || tdep->i386_intx80_record == NULL)
7ad10968 6846 {
a3c4230a 6847 printf_unfiltered (_("Process record does not support "
7ad10968 6848 "instruction int 0x%02x.\n"),
425b824a 6849 interrupt);
7ad10968
HZ
6850 ir.addr -= 2;
6851 goto no_support;
6852 }
a3c4230a 6853 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6854 if (ret)
6855 return ret;
6856 }
6857 break;
6858
7ad10968 6859 /* XXX */
a38bba38 6860 case 0xce: /* into */
a3c4230a 6861 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6862 "instruction into.\n"));
6863 ir.addr -= 1;
6864 goto no_support;
6865 break;
6866
a38bba38
MS
6867 case 0xfa: /* cli */
6868 case 0xfb: /* sti */
7ad10968
HZ
6869 break;
6870
a38bba38 6871 case 0x62: /* bound */
a3c4230a 6872 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6873 "instruction bound.\n"));
6874 ir.addr -= 1;
6875 goto no_support;
6876 break;
6877
a38bba38 6878 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6879 case 0x0fc9:
6880 case 0x0fca:
6881 case 0x0fcb:
6882 case 0x0fcc:
6883 case 0x0fcd:
6884 case 0x0fce:
6885 case 0x0fcf:
25ea693b 6886 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6887 break;
6888
a38bba38 6889 case 0xd6: /* salc */
cf648174
HZ
6890 if (ir.regmap[X86_RECORD_R8_REGNUM])
6891 {
6892 ir.addr -= 1;
6893 goto no_support;
6894 }
25ea693b
MM
6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6897 break;
6898
a38bba38
MS
6899 case 0xe0: /* loopnz */
6900 case 0xe1: /* loopz */
6901 case 0xe2: /* loop */
6902 case 0xe3: /* jecxz */
25ea693b
MM
6903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6904 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6905 break;
6906
a38bba38 6907 case 0x0f30: /* wrmsr */
a3c4230a 6908 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6909 "instruction wrmsr.\n"));
6910 ir.addr -= 2;
6911 goto no_support;
6912 break;
6913
a38bba38 6914 case 0x0f32: /* rdmsr */
a3c4230a 6915 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6916 "instruction rdmsr.\n"));
6917 ir.addr -= 2;
6918 goto no_support;
6919 break;
6920
a38bba38 6921 case 0x0f31: /* rdtsc */
25ea693b
MM
6922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6924 break;
6925
a38bba38 6926 case 0x0f34: /* sysenter */
7ad10968
HZ
6927 {
6928 int ret;
cf648174
HZ
6929 if (ir.regmap[X86_RECORD_R8_REGNUM])
6930 {
6931 ir.addr -= 2;
6932 goto no_support;
6933 }
a3c4230a 6934 if (tdep->i386_sysenter_record == NULL)
7ad10968 6935 {
a3c4230a 6936 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6937 "instruction sysenter.\n"));
6938 ir.addr -= 2;
6939 goto no_support;
6940 }
a3c4230a 6941 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6942 if (ret)
6943 return ret;
6944 }
6945 break;
6946
a38bba38 6947 case 0x0f35: /* sysexit */
a3c4230a 6948 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6949 "instruction sysexit.\n"));
6950 ir.addr -= 2;
6951 goto no_support;
6952 break;
6953
a38bba38 6954 case 0x0f05: /* syscall */
cf648174
HZ
6955 {
6956 int ret;
a3c4230a 6957 if (tdep->i386_syscall_record == NULL)
cf648174 6958 {
a3c4230a 6959 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6960 "instruction syscall.\n"));
6961 ir.addr -= 2;
6962 goto no_support;
6963 }
a3c4230a 6964 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6965 if (ret)
6966 return ret;
6967 }
6968 break;
6969
a38bba38 6970 case 0x0f07: /* sysret */
a3c4230a 6971 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6972 "instruction sysret.\n"));
6973 ir.addr -= 2;
6974 goto no_support;
6975 break;
6976
a38bba38 6977 case 0x0fa2: /* cpuid */
25ea693b
MM
6978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6981 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6982 break;
6983
a38bba38 6984 case 0xf4: /* hlt */
a3c4230a 6985 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6986 "instruction hlt.\n"));
6987 ir.addr -= 1;
6988 goto no_support;
6989 break;
6990
6991 case 0x0f00:
6992 if (i386_record_modrm (&ir))
6993 return -1;
6994 switch (ir.reg)
6995 {
a38bba38
MS
6996 case 0: /* sldt */
6997 case 1: /* str */
7ad10968 6998 if (ir.mod == 3)
25ea693b 6999 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7000 else
7001 {
7002 ir.ot = OT_WORD;
7003 if (i386_record_lea_modrm (&ir))
7004 return -1;
7005 }
7006 break;
a38bba38
MS
7007 case 2: /* lldt */
7008 case 3: /* ltr */
7ad10968 7009 break;
a38bba38
MS
7010 case 4: /* verr */
7011 case 5: /* verw */
25ea693b 7012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7013 break;
7014 default:
7015 ir.addr -= 3;
7016 opcode = opcode << 8 | ir.modrm;
7017 goto no_support;
7018 break;
7019 }
7020 break;
7021
7022 case 0x0f01:
7023 if (i386_record_modrm (&ir))
7024 return -1;
7025 switch (ir.reg)
7026 {
a38bba38 7027 case 0: /* sgdt */
7ad10968 7028 {
955db0c0 7029 uint64_t addr64;
7ad10968
HZ
7030
7031 if (ir.mod == 3)
7032 {
7033 ir.addr -= 3;
7034 opcode = opcode << 8 | ir.modrm;
7035 goto no_support;
7036 }
d7877f7e 7037 if (ir.override >= 0)
7ad10968 7038 {
25ea693b 7039 if (record_full_memory_query)
bb08c432 7040 {
651ce16a 7041 if (yquery (_("\
bb08c432
HZ
7042Process record ignores the memory change of instruction at address %s\n\
7043because it can't get the value of the segment register.\n\
7044Do you want to stop the program?"),
651ce16a
PA
7045 paddress (gdbarch, ir.orig_addr)))
7046 return -1;
bb08c432 7047 }
7ad10968
HZ
7048 }
7049 else
7050 {
955db0c0 7051 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7052 return -1;
25ea693b 7053 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7054 return -1;
955db0c0 7055 addr64 += 2;
cf648174
HZ
7056 if (ir.regmap[X86_RECORD_R8_REGNUM])
7057 {
25ea693b 7058 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7059 return -1;
7060 }
7061 else
7062 {
25ea693b 7063 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7064 return -1;
7065 }
7ad10968
HZ
7066 }
7067 }
7068 break;
7069 case 1:
7070 if (ir.mod == 3)
7071 {
7072 switch (ir.rm)
7073 {
a38bba38 7074 case 0: /* monitor */
7ad10968 7075 break;
a38bba38 7076 case 1: /* mwait */
25ea693b 7077 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7078 break;
7079 default:
7080 ir.addr -= 3;
7081 opcode = opcode << 8 | ir.modrm;
7082 goto no_support;
7083 break;
7084 }
7085 }
7086 else
7087 {
7088 /* sidt */
d7877f7e 7089 if (ir.override >= 0)
7ad10968 7090 {
25ea693b 7091 if (record_full_memory_query)
bb08c432 7092 {
651ce16a 7093 if (yquery (_("\
bb08c432
HZ
7094Process record ignores the memory change of instruction at address %s\n\
7095because it can't get the value of the segment register.\n\
7096Do you want to stop the program?"),
651ce16a 7097 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
7098 return -1;
7099 }
7ad10968
HZ
7100 }
7101 else
7102 {
955db0c0 7103 uint64_t addr64;
7ad10968 7104
955db0c0 7105 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7106 return -1;
25ea693b 7107 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7108 return -1;
955db0c0 7109 addr64 += 2;
cf648174
HZ
7110 if (ir.regmap[X86_RECORD_R8_REGNUM])
7111 {
25ea693b 7112 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7113 return -1;
7114 }
7115 else
7116 {
25ea693b 7117 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7118 return -1;
7119 }
7ad10968
HZ
7120 }
7121 }
7122 break;
a38bba38 7123 case 2: /* lgdt */
3800e645
MS
7124 if (ir.mod == 3)
7125 {
7126 /* xgetbv */
7127 if (ir.rm == 0)
7128 {
25ea693b
MM
7129 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7130 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7131 break;
7132 }
7133 /* xsetbv */
7134 else if (ir.rm == 1)
7135 break;
7136 }
da0e1563 7137 /* Fall through. */
a38bba38 7138 case 3: /* lidt */
7ad10968
HZ
7139 if (ir.mod == 3)
7140 {
7141 ir.addr -= 3;
7142 opcode = opcode << 8 | ir.modrm;
7143 goto no_support;
7144 }
7145 break;
a38bba38 7146 case 4: /* smsw */
7ad10968
HZ
7147 if (ir.mod == 3)
7148 {
25ea693b 7149 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7150 return -1;
7151 }
7152 else
7153 {
7154 ir.ot = OT_WORD;
7155 if (i386_record_lea_modrm (&ir))
7156 return -1;
7157 }
25ea693b 7158 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7159 break;
a38bba38 7160 case 6: /* lmsw */
25ea693b 7161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7162 break;
a38bba38 7163 case 7: /* invlpg */
cf648174
HZ
7164 if (ir.mod == 3)
7165 {
7166 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7167 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7168 else
7169 {
7170 ir.addr -= 3;
7171 opcode = opcode << 8 | ir.modrm;
7172 goto no_support;
7173 }
7174 }
7175 else
25ea693b 7176 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7177 break;
7178 default:
7179 ir.addr -= 3;
7180 opcode = opcode << 8 | ir.modrm;
7181 goto no_support;
7ad10968
HZ
7182 break;
7183 }
7184 break;
7185
a38bba38
MS
7186 case 0x0f08: /* invd */
7187 case 0x0f09: /* wbinvd */
7ad10968
HZ
7188 break;
7189
a38bba38 7190 case 0x63: /* arpl */
7ad10968
HZ
7191 if (i386_record_modrm (&ir))
7192 return -1;
cf648174
HZ
7193 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7194 {
25ea693b
MM
7195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7196 ? (ir.reg | rex_r) : ir.rm);
cf648174 7197 }
7ad10968 7198 else
cf648174
HZ
7199 {
7200 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7201 if (i386_record_lea_modrm (&ir))
7202 return -1;
7203 }
7204 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7206 break;
7207
a38bba38
MS
7208 case 0x0f02: /* lar */
7209 case 0x0f03: /* lsl */
7ad10968
HZ
7210 if (i386_record_modrm (&ir))
7211 return -1;
25ea693b
MM
7212 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7213 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7214 break;
7215
7216 case 0x0f18:
cf648174
HZ
7217 if (i386_record_modrm (&ir))
7218 return -1;
7219 if (ir.mod == 3 && ir.reg == 3)
7220 {
7221 ir.addr -= 3;
7222 opcode = opcode << 8 | ir.modrm;
7223 goto no_support;
7224 }
7ad10968
HZ
7225 break;
7226
7ad10968
HZ
7227 case 0x0f19:
7228 case 0x0f1a:
7229 case 0x0f1b:
7230 case 0x0f1c:
7231 case 0x0f1d:
7232 case 0x0f1e:
7233 case 0x0f1f:
a38bba38 7234 /* nop (multi byte) */
7ad10968
HZ
7235 break;
7236
a38bba38
MS
7237 case 0x0f20: /* mov reg, crN */
7238 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7239 if (i386_record_modrm (&ir))
7240 return -1;
7241 if ((ir.modrm & 0xc0) != 0xc0)
7242 {
cf648174 7243 ir.addr -= 3;
7ad10968
HZ
7244 opcode = opcode << 8 | ir.modrm;
7245 goto no_support;
7246 }
7247 switch (ir.reg)
7248 {
7249 case 0:
7250 case 2:
7251 case 3:
7252 case 4:
7253 case 8:
7254 if (opcode & 2)
25ea693b 7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7256 else
25ea693b 7257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7258 break;
7259 default:
cf648174 7260 ir.addr -= 3;
7ad10968
HZ
7261 opcode = opcode << 8 | ir.modrm;
7262 goto no_support;
7263 break;
7264 }
7265 break;
7266
a38bba38
MS
7267 case 0x0f21: /* mov reg, drN */
7268 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7269 if (i386_record_modrm (&ir))
7270 return -1;
7271 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7272 || ir.reg == 5 || ir.reg >= 8)
7273 {
cf648174 7274 ir.addr -= 3;
7ad10968
HZ
7275 opcode = opcode << 8 | ir.modrm;
7276 goto no_support;
7277 }
7278 if (opcode & 2)
25ea693b 7279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7280 else
25ea693b 7281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7282 break;
7283
a38bba38 7284 case 0x0f06: /* clts */
25ea693b 7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7286 break;
7287
a3c4230a
HZ
7288 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7289
7290 case 0x0f0d: /* 3DNow! prefetch */
7291 break;
7292
7293 case 0x0f0e: /* 3DNow! femms */
7294 case 0x0f77: /* emms */
7295 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7296 goto no_support;
25ea693b 7297 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7298 break;
7299
7300 case 0x0f0f: /* 3DNow! data */
7301 if (i386_record_modrm (&ir))
7302 return -1;
4ffa4fc7
PA
7303 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7304 return -1;
a3c4230a
HZ
7305 ir.addr++;
7306 switch (opcode8)
7307 {
7308 case 0x0c: /* 3DNow! pi2fw */
7309 case 0x0d: /* 3DNow! pi2fd */
7310 case 0x1c: /* 3DNow! pf2iw */
7311 case 0x1d: /* 3DNow! pf2id */
7312 case 0x8a: /* 3DNow! pfnacc */
7313 case 0x8e: /* 3DNow! pfpnacc */
7314 case 0x90: /* 3DNow! pfcmpge */
7315 case 0x94: /* 3DNow! pfmin */
7316 case 0x96: /* 3DNow! pfrcp */
7317 case 0x97: /* 3DNow! pfrsqrt */
7318 case 0x9a: /* 3DNow! pfsub */
7319 case 0x9e: /* 3DNow! pfadd */
7320 case 0xa0: /* 3DNow! pfcmpgt */
7321 case 0xa4: /* 3DNow! pfmax */
7322 case 0xa6: /* 3DNow! pfrcpit1 */
7323 case 0xa7: /* 3DNow! pfrsqit1 */
7324 case 0xaa: /* 3DNow! pfsubr */
7325 case 0xae: /* 3DNow! pfacc */
7326 case 0xb0: /* 3DNow! pfcmpeq */
7327 case 0xb4: /* 3DNow! pfmul */
7328 case 0xb6: /* 3DNow! pfrcpit2 */
7329 case 0xb7: /* 3DNow! pmulhrw */
7330 case 0xbb: /* 3DNow! pswapd */
7331 case 0xbf: /* 3DNow! pavgusb */
7332 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7333 goto no_support_3dnow_data;
25ea693b 7334 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7335 break;
7336
7337 default:
7338no_support_3dnow_data:
7339 opcode = (opcode << 8) | opcode8;
7340 goto no_support;
7341 break;
7342 }
7343 break;
7344
7345 case 0x0faa: /* rsm */
25ea693b
MM
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7354 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7355 break;
7356
7357 case 0x0fae:
7358 if (i386_record_modrm (&ir))
7359 return -1;
7360 switch(ir.reg)
7361 {
7362 case 0: /* fxsave */
7363 {
7364 uint64_t tmpu64;
7365
25ea693b 7366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7367 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7368 return -1;
25ea693b 7369 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7370 return -1;
7371 }
7372 break;
7373
7374 case 1: /* fxrstor */
7375 {
7376 int i;
7377
25ea693b 7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7379
7380 for (i = I387_MM0_REGNUM (tdep);
7381 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7382 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7383
7384 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7385 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7386 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7387
7388 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7389 record_full_arch_list_add_reg (ir.regcache,
7390 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7391
7392 for (i = I387_ST0_REGNUM (tdep);
7393 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7394 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7395
7396 for (i = I387_FCTRL_REGNUM (tdep);
7397 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7398 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7399 }
7400 break;
7401
7402 case 2: /* ldmxcsr */
7403 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7404 goto no_support;
25ea693b 7405 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7406 break;
7407
7408 case 3: /* stmxcsr */
7409 ir.ot = OT_LONG;
7410 if (i386_record_lea_modrm (&ir))
7411 return -1;
7412 break;
7413
7414 case 5: /* lfence */
7415 case 6: /* mfence */
7416 case 7: /* sfence clflush */
7417 break;
7418
7419 default:
7420 opcode = (opcode << 8) | ir.modrm;
7421 goto no_support;
7422 break;
7423 }
7424 break;
7425
7426 case 0x0fc3: /* movnti */
7427 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7428 if (i386_record_modrm (&ir))
7429 return -1;
7430 if (ir.mod == 3)
7431 goto no_support;
7432 ir.reg |= rex_r;
7433 if (i386_record_lea_modrm (&ir))
7434 return -1;
7435 break;
7436
7437 /* Add prefix to opcode. */
7438 case 0x0f10:
7439 case 0x0f11:
7440 case 0x0f12:
7441 case 0x0f13:
7442 case 0x0f14:
7443 case 0x0f15:
7444 case 0x0f16:
7445 case 0x0f17:
7446 case 0x0f28:
7447 case 0x0f29:
7448 case 0x0f2a:
7449 case 0x0f2b:
7450 case 0x0f2c:
7451 case 0x0f2d:
7452 case 0x0f2e:
7453 case 0x0f2f:
7454 case 0x0f38:
7455 case 0x0f39:
7456 case 0x0f3a:
7457 case 0x0f50:
7458 case 0x0f51:
7459 case 0x0f52:
7460 case 0x0f53:
7461 case 0x0f54:
7462 case 0x0f55:
7463 case 0x0f56:
7464 case 0x0f57:
7465 case 0x0f58:
7466 case 0x0f59:
7467 case 0x0f5a:
7468 case 0x0f5b:
7469 case 0x0f5c:
7470 case 0x0f5d:
7471 case 0x0f5e:
7472 case 0x0f5f:
7473 case 0x0f60:
7474 case 0x0f61:
7475 case 0x0f62:
7476 case 0x0f63:
7477 case 0x0f64:
7478 case 0x0f65:
7479 case 0x0f66:
7480 case 0x0f67:
7481 case 0x0f68:
7482 case 0x0f69:
7483 case 0x0f6a:
7484 case 0x0f6b:
7485 case 0x0f6c:
7486 case 0x0f6d:
7487 case 0x0f6e:
7488 case 0x0f6f:
7489 case 0x0f70:
7490 case 0x0f71:
7491 case 0x0f72:
7492 case 0x0f73:
7493 case 0x0f74:
7494 case 0x0f75:
7495 case 0x0f76:
7496 case 0x0f7c:
7497 case 0x0f7d:
7498 case 0x0f7e:
7499 case 0x0f7f:
7500 case 0x0fb8:
7501 case 0x0fc2:
7502 case 0x0fc4:
7503 case 0x0fc5:
7504 case 0x0fc6:
7505 case 0x0fd0:
7506 case 0x0fd1:
7507 case 0x0fd2:
7508 case 0x0fd3:
7509 case 0x0fd4:
7510 case 0x0fd5:
7511 case 0x0fd6:
7512 case 0x0fd7:
7513 case 0x0fd8:
7514 case 0x0fd9:
7515 case 0x0fda:
7516 case 0x0fdb:
7517 case 0x0fdc:
7518 case 0x0fdd:
7519 case 0x0fde:
7520 case 0x0fdf:
7521 case 0x0fe0:
7522 case 0x0fe1:
7523 case 0x0fe2:
7524 case 0x0fe3:
7525 case 0x0fe4:
7526 case 0x0fe5:
7527 case 0x0fe6:
7528 case 0x0fe7:
7529 case 0x0fe8:
7530 case 0x0fe9:
7531 case 0x0fea:
7532 case 0x0feb:
7533 case 0x0fec:
7534 case 0x0fed:
7535 case 0x0fee:
7536 case 0x0fef:
7537 case 0x0ff0:
7538 case 0x0ff1:
7539 case 0x0ff2:
7540 case 0x0ff3:
7541 case 0x0ff4:
7542 case 0x0ff5:
7543 case 0x0ff6:
7544 case 0x0ff7:
7545 case 0x0ff8:
7546 case 0x0ff9:
7547 case 0x0ffa:
7548 case 0x0ffb:
7549 case 0x0ffc:
7550 case 0x0ffd:
7551 case 0x0ffe:
f9fda3f5
L
7552 /* Mask out PREFIX_ADDR. */
7553 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7554 {
7555 case PREFIX_REPNZ:
7556 opcode |= 0xf20000;
7557 break;
7558 case PREFIX_DATA:
7559 opcode |= 0x660000;
7560 break;
7561 case PREFIX_REPZ:
7562 opcode |= 0xf30000;
7563 break;
7564 }
7565reswitch_prefix_add:
7566 switch (opcode)
7567 {
7568 case 0x0f38:
7569 case 0x660f38:
7570 case 0xf20f38:
7571 case 0x0f3a:
7572 case 0x660f3a:
4ffa4fc7
PA
7573 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7574 return -1;
a3c4230a
HZ
7575 ir.addr++;
7576 opcode = (uint32_t) opcode8 | opcode << 8;
7577 goto reswitch_prefix_add;
7578 break;
7579
7580 case 0x0f10: /* movups */
7581 case 0x660f10: /* movupd */
7582 case 0xf30f10: /* movss */
7583 case 0xf20f10: /* movsd */
7584 case 0x0f12: /* movlps */
7585 case 0x660f12: /* movlpd */
7586 case 0xf30f12: /* movsldup */
7587 case 0xf20f12: /* movddup */
7588 case 0x0f14: /* unpcklps */
7589 case 0x660f14: /* unpcklpd */
7590 case 0x0f15: /* unpckhps */
7591 case 0x660f15: /* unpckhpd */
7592 case 0x0f16: /* movhps */
7593 case 0x660f16: /* movhpd */
7594 case 0xf30f16: /* movshdup */
7595 case 0x0f28: /* movaps */
7596 case 0x660f28: /* movapd */
7597 case 0x0f2a: /* cvtpi2ps */
7598 case 0x660f2a: /* cvtpi2pd */
7599 case 0xf30f2a: /* cvtsi2ss */
7600 case 0xf20f2a: /* cvtsi2sd */
7601 case 0x0f2c: /* cvttps2pi */
7602 case 0x660f2c: /* cvttpd2pi */
7603 case 0x0f2d: /* cvtps2pi */
7604 case 0x660f2d: /* cvtpd2pi */
7605 case 0x660f3800: /* pshufb */
7606 case 0x660f3801: /* phaddw */
7607 case 0x660f3802: /* phaddd */
7608 case 0x660f3803: /* phaddsw */
7609 case 0x660f3804: /* pmaddubsw */
7610 case 0x660f3805: /* phsubw */
7611 case 0x660f3806: /* phsubd */
4f7d61a8 7612 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7613 case 0x660f3808: /* psignb */
7614 case 0x660f3809: /* psignw */
7615 case 0x660f380a: /* psignd */
7616 case 0x660f380b: /* pmulhrsw */
7617 case 0x660f3810: /* pblendvb */
7618 case 0x660f3814: /* blendvps */
7619 case 0x660f3815: /* blendvpd */
7620 case 0x660f381c: /* pabsb */
7621 case 0x660f381d: /* pabsw */
7622 case 0x660f381e: /* pabsd */
7623 case 0x660f3820: /* pmovsxbw */
7624 case 0x660f3821: /* pmovsxbd */
7625 case 0x660f3822: /* pmovsxbq */
7626 case 0x660f3823: /* pmovsxwd */
7627 case 0x660f3824: /* pmovsxwq */
7628 case 0x660f3825: /* pmovsxdq */
7629 case 0x660f3828: /* pmuldq */
7630 case 0x660f3829: /* pcmpeqq */
7631 case 0x660f382a: /* movntdqa */
7632 case 0x660f3a08: /* roundps */
7633 case 0x660f3a09: /* roundpd */
7634 case 0x660f3a0a: /* roundss */
7635 case 0x660f3a0b: /* roundsd */
7636 case 0x660f3a0c: /* blendps */
7637 case 0x660f3a0d: /* blendpd */
7638 case 0x660f3a0e: /* pblendw */
7639 case 0x660f3a0f: /* palignr */
7640 case 0x660f3a20: /* pinsrb */
7641 case 0x660f3a21: /* insertps */
7642 case 0x660f3a22: /* pinsrd pinsrq */
7643 case 0x660f3a40: /* dpps */
7644 case 0x660f3a41: /* dppd */
7645 case 0x660f3a42: /* mpsadbw */
7646 case 0x660f3a60: /* pcmpestrm */
7647 case 0x660f3a61: /* pcmpestri */
7648 case 0x660f3a62: /* pcmpistrm */
7649 case 0x660f3a63: /* pcmpistri */
7650 case 0x0f51: /* sqrtps */
7651 case 0x660f51: /* sqrtpd */
7652 case 0xf20f51: /* sqrtsd */
7653 case 0xf30f51: /* sqrtss */
7654 case 0x0f52: /* rsqrtps */
7655 case 0xf30f52: /* rsqrtss */
7656 case 0x0f53: /* rcpps */
7657 case 0xf30f53: /* rcpss */
7658 case 0x0f54: /* andps */
7659 case 0x660f54: /* andpd */
7660 case 0x0f55: /* andnps */
7661 case 0x660f55: /* andnpd */
7662 case 0x0f56: /* orps */
7663 case 0x660f56: /* orpd */
7664 case 0x0f57: /* xorps */
7665 case 0x660f57: /* xorpd */
7666 case 0x0f58: /* addps */
7667 case 0x660f58: /* addpd */
7668 case 0xf20f58: /* addsd */
7669 case 0xf30f58: /* addss */
7670 case 0x0f59: /* mulps */
7671 case 0x660f59: /* mulpd */
7672 case 0xf20f59: /* mulsd */
7673 case 0xf30f59: /* mulss */
7674 case 0x0f5a: /* cvtps2pd */
7675 case 0x660f5a: /* cvtpd2ps */
7676 case 0xf20f5a: /* cvtsd2ss */
7677 case 0xf30f5a: /* cvtss2sd */
7678 case 0x0f5b: /* cvtdq2ps */
7679 case 0x660f5b: /* cvtps2dq */
7680 case 0xf30f5b: /* cvttps2dq */
7681 case 0x0f5c: /* subps */
7682 case 0x660f5c: /* subpd */
7683 case 0xf20f5c: /* subsd */
7684 case 0xf30f5c: /* subss */
7685 case 0x0f5d: /* minps */
7686 case 0x660f5d: /* minpd */
7687 case 0xf20f5d: /* minsd */
7688 case 0xf30f5d: /* minss */
7689 case 0x0f5e: /* divps */
7690 case 0x660f5e: /* divpd */
7691 case 0xf20f5e: /* divsd */
7692 case 0xf30f5e: /* divss */
7693 case 0x0f5f: /* maxps */
7694 case 0x660f5f: /* maxpd */
7695 case 0xf20f5f: /* maxsd */
7696 case 0xf30f5f: /* maxss */
7697 case 0x660f60: /* punpcklbw */
7698 case 0x660f61: /* punpcklwd */
7699 case 0x660f62: /* punpckldq */
7700 case 0x660f63: /* packsswb */
7701 case 0x660f64: /* pcmpgtb */
7702 case 0x660f65: /* pcmpgtw */
56d2815c 7703 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7704 case 0x660f67: /* packuswb */
7705 case 0x660f68: /* punpckhbw */
7706 case 0x660f69: /* punpckhwd */
7707 case 0x660f6a: /* punpckhdq */
7708 case 0x660f6b: /* packssdw */
7709 case 0x660f6c: /* punpcklqdq */
7710 case 0x660f6d: /* punpckhqdq */
7711 case 0x660f6e: /* movd */
7712 case 0x660f6f: /* movdqa */
7713 case 0xf30f6f: /* movdqu */
7714 case 0x660f70: /* pshufd */
7715 case 0xf20f70: /* pshuflw */
7716 case 0xf30f70: /* pshufhw */
7717 case 0x660f74: /* pcmpeqb */
7718 case 0x660f75: /* pcmpeqw */
56d2815c 7719 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7720 case 0x660f7c: /* haddpd */
7721 case 0xf20f7c: /* haddps */
7722 case 0x660f7d: /* hsubpd */
7723 case 0xf20f7d: /* hsubps */
7724 case 0xf30f7e: /* movq */
7725 case 0x0fc2: /* cmpps */
7726 case 0x660fc2: /* cmppd */
7727 case 0xf20fc2: /* cmpsd */
7728 case 0xf30fc2: /* cmpss */
7729 case 0x660fc4: /* pinsrw */
7730 case 0x0fc6: /* shufps */
7731 case 0x660fc6: /* shufpd */
7732 case 0x660fd0: /* addsubpd */
7733 case 0xf20fd0: /* addsubps */
7734 case 0x660fd1: /* psrlw */
7735 case 0x660fd2: /* psrld */
7736 case 0x660fd3: /* psrlq */
7737 case 0x660fd4: /* paddq */
7738 case 0x660fd5: /* pmullw */
7739 case 0xf30fd6: /* movq2dq */
7740 case 0x660fd8: /* psubusb */
7741 case 0x660fd9: /* psubusw */
7742 case 0x660fda: /* pminub */
7743 case 0x660fdb: /* pand */
7744 case 0x660fdc: /* paddusb */
7745 case 0x660fdd: /* paddusw */
7746 case 0x660fde: /* pmaxub */
7747 case 0x660fdf: /* pandn */
7748 case 0x660fe0: /* pavgb */
7749 case 0x660fe1: /* psraw */
7750 case 0x660fe2: /* psrad */
7751 case 0x660fe3: /* pavgw */
7752 case 0x660fe4: /* pmulhuw */
7753 case 0x660fe5: /* pmulhw */
7754 case 0x660fe6: /* cvttpd2dq */
7755 case 0xf20fe6: /* cvtpd2dq */
7756 case 0xf30fe6: /* cvtdq2pd */
7757 case 0x660fe8: /* psubsb */
7758 case 0x660fe9: /* psubsw */
7759 case 0x660fea: /* pminsw */
7760 case 0x660feb: /* por */
7761 case 0x660fec: /* paddsb */
7762 case 0x660fed: /* paddsw */
7763 case 0x660fee: /* pmaxsw */
7764 case 0x660fef: /* pxor */
4f7d61a8 7765 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7766 case 0x660ff1: /* psllw */
7767 case 0x660ff2: /* pslld */
7768 case 0x660ff3: /* psllq */
7769 case 0x660ff4: /* pmuludq */
7770 case 0x660ff5: /* pmaddwd */
7771 case 0x660ff6: /* psadbw */
7772 case 0x660ff8: /* psubb */
7773 case 0x660ff9: /* psubw */
56d2815c 7774 case 0x660ffa: /* psubd */
a3c4230a
HZ
7775 case 0x660ffb: /* psubq */
7776 case 0x660ffc: /* paddb */
7777 case 0x660ffd: /* paddw */
56d2815c 7778 case 0x660ffe: /* paddd */
a3c4230a
HZ
7779 if (i386_record_modrm (&ir))
7780 return -1;
7781 ir.reg |= rex_r;
c131fcee 7782 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7783 goto no_support;
25ea693b
MM
7784 record_full_arch_list_add_reg (ir.regcache,
7785 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7786 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7788 break;
7789
7790 case 0x0f11: /* movups */
7791 case 0x660f11: /* movupd */
7792 case 0xf30f11: /* movss */
7793 case 0xf20f11: /* movsd */
7794 case 0x0f13: /* movlps */
7795 case 0x660f13: /* movlpd */
7796 case 0x0f17: /* movhps */
7797 case 0x660f17: /* movhpd */
7798 case 0x0f29: /* movaps */
7799 case 0x660f29: /* movapd */
7800 case 0x660f3a14: /* pextrb */
7801 case 0x660f3a15: /* pextrw */
7802 case 0x660f3a16: /* pextrd pextrq */
7803 case 0x660f3a17: /* extractps */
7804 case 0x660f7f: /* movdqa */
7805 case 0xf30f7f: /* movdqu */
7806 if (i386_record_modrm (&ir))
7807 return -1;
7808 if (ir.mod == 3)
7809 {
7810 if (opcode == 0x0f13 || opcode == 0x660f13
7811 || opcode == 0x0f17 || opcode == 0x660f17)
7812 goto no_support;
7813 ir.rm |= ir.rex_b;
1777feb0
MS
7814 if (!i386_xmm_regnum_p (gdbarch,
7815 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7816 goto no_support;
25ea693b
MM
7817 record_full_arch_list_add_reg (ir.regcache,
7818 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7819 }
7820 else
7821 {
7822 switch (opcode)
7823 {
7824 case 0x660f3a14:
7825 ir.ot = OT_BYTE;
7826 break;
7827 case 0x660f3a15:
7828 ir.ot = OT_WORD;
7829 break;
7830 case 0x660f3a16:
7831 ir.ot = OT_LONG;
7832 break;
7833 case 0x660f3a17:
7834 ir.ot = OT_QUAD;
7835 break;
7836 default:
7837 ir.ot = OT_DQUAD;
7838 break;
7839 }
7840 if (i386_record_lea_modrm (&ir))
7841 return -1;
7842 }
7843 break;
7844
7845 case 0x0f2b: /* movntps */
7846 case 0x660f2b: /* movntpd */
7847 case 0x0fe7: /* movntq */
7848 case 0x660fe7: /* movntdq */
7849 if (ir.mod == 3)
7850 goto no_support;
7851 if (opcode == 0x0fe7)
7852 ir.ot = OT_QUAD;
7853 else
7854 ir.ot = OT_DQUAD;
7855 if (i386_record_lea_modrm (&ir))
7856 return -1;
7857 break;
7858
7859 case 0xf30f2c: /* cvttss2si */
7860 case 0xf20f2c: /* cvttsd2si */
7861 case 0xf30f2d: /* cvtss2si */
7862 case 0xf20f2d: /* cvtsd2si */
7863 case 0xf20f38f0: /* crc32 */
7864 case 0xf20f38f1: /* crc32 */
7865 case 0x0f50: /* movmskps */
7866 case 0x660f50: /* movmskpd */
7867 case 0x0fc5: /* pextrw */
7868 case 0x660fc5: /* pextrw */
7869 case 0x0fd7: /* pmovmskb */
7870 case 0x660fd7: /* pmovmskb */
25ea693b 7871 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7872 break;
7873
7874 case 0x0f3800: /* pshufb */
7875 case 0x0f3801: /* phaddw */
7876 case 0x0f3802: /* phaddd */
7877 case 0x0f3803: /* phaddsw */
7878 case 0x0f3804: /* pmaddubsw */
7879 case 0x0f3805: /* phsubw */
7880 case 0x0f3806: /* phsubd */
4f7d61a8 7881 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7882 case 0x0f3808: /* psignb */
7883 case 0x0f3809: /* psignw */
7884 case 0x0f380a: /* psignd */
7885 case 0x0f380b: /* pmulhrsw */
7886 case 0x0f381c: /* pabsb */
7887 case 0x0f381d: /* pabsw */
7888 case 0x0f381e: /* pabsd */
7889 case 0x0f382b: /* packusdw */
7890 case 0x0f3830: /* pmovzxbw */
7891 case 0x0f3831: /* pmovzxbd */
7892 case 0x0f3832: /* pmovzxbq */
7893 case 0x0f3833: /* pmovzxwd */
7894 case 0x0f3834: /* pmovzxwq */
7895 case 0x0f3835: /* pmovzxdq */
7896 case 0x0f3837: /* pcmpgtq */
7897 case 0x0f3838: /* pminsb */
7898 case 0x0f3839: /* pminsd */
7899 case 0x0f383a: /* pminuw */
7900 case 0x0f383b: /* pminud */
7901 case 0x0f383c: /* pmaxsb */
7902 case 0x0f383d: /* pmaxsd */
7903 case 0x0f383e: /* pmaxuw */
7904 case 0x0f383f: /* pmaxud */
7905 case 0x0f3840: /* pmulld */
7906 case 0x0f3841: /* phminposuw */
7907 case 0x0f3a0f: /* palignr */
7908 case 0x0f60: /* punpcklbw */
7909 case 0x0f61: /* punpcklwd */
7910 case 0x0f62: /* punpckldq */
7911 case 0x0f63: /* packsswb */
7912 case 0x0f64: /* pcmpgtb */
7913 case 0x0f65: /* pcmpgtw */
56d2815c 7914 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7915 case 0x0f67: /* packuswb */
7916 case 0x0f68: /* punpckhbw */
7917 case 0x0f69: /* punpckhwd */
7918 case 0x0f6a: /* punpckhdq */
7919 case 0x0f6b: /* packssdw */
7920 case 0x0f6e: /* movd */
7921 case 0x0f6f: /* movq */
7922 case 0x0f70: /* pshufw */
7923 case 0x0f74: /* pcmpeqb */
7924 case 0x0f75: /* pcmpeqw */
56d2815c 7925 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7926 case 0x0fc4: /* pinsrw */
7927 case 0x0fd1: /* psrlw */
7928 case 0x0fd2: /* psrld */
7929 case 0x0fd3: /* psrlq */
7930 case 0x0fd4: /* paddq */
7931 case 0x0fd5: /* pmullw */
7932 case 0xf20fd6: /* movdq2q */
7933 case 0x0fd8: /* psubusb */
7934 case 0x0fd9: /* psubusw */
7935 case 0x0fda: /* pminub */
7936 case 0x0fdb: /* pand */
7937 case 0x0fdc: /* paddusb */
7938 case 0x0fdd: /* paddusw */
7939 case 0x0fde: /* pmaxub */
7940 case 0x0fdf: /* pandn */
7941 case 0x0fe0: /* pavgb */
7942 case 0x0fe1: /* psraw */
7943 case 0x0fe2: /* psrad */
7944 case 0x0fe3: /* pavgw */
7945 case 0x0fe4: /* pmulhuw */
7946 case 0x0fe5: /* pmulhw */
7947 case 0x0fe8: /* psubsb */
7948 case 0x0fe9: /* psubsw */
7949 case 0x0fea: /* pminsw */
7950 case 0x0feb: /* por */
7951 case 0x0fec: /* paddsb */
7952 case 0x0fed: /* paddsw */
7953 case 0x0fee: /* pmaxsw */
7954 case 0x0fef: /* pxor */
7955 case 0x0ff1: /* psllw */
7956 case 0x0ff2: /* pslld */
7957 case 0x0ff3: /* psllq */
7958 case 0x0ff4: /* pmuludq */
7959 case 0x0ff5: /* pmaddwd */
7960 case 0x0ff6: /* psadbw */
7961 case 0x0ff8: /* psubb */
7962 case 0x0ff9: /* psubw */
56d2815c 7963 case 0x0ffa: /* psubd */
a3c4230a
HZ
7964 case 0x0ffb: /* psubq */
7965 case 0x0ffc: /* paddb */
7966 case 0x0ffd: /* paddw */
56d2815c 7967 case 0x0ffe: /* paddd */
a3c4230a
HZ
7968 if (i386_record_modrm (&ir))
7969 return -1;
7970 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7971 goto no_support;
25ea693b
MM
7972 record_full_arch_list_add_reg (ir.regcache,
7973 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7974 break;
7975
7976 case 0x0f71: /* psllw */
7977 case 0x0f72: /* pslld */
7978 case 0x0f73: /* psllq */
7979 if (i386_record_modrm (&ir))
7980 return -1;
7981 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7982 goto no_support;
25ea693b
MM
7983 record_full_arch_list_add_reg (ir.regcache,
7984 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7985 break;
7986
7987 case 0x660f71: /* psllw */
7988 case 0x660f72: /* pslld */
7989 case 0x660f73: /* psllq */
7990 if (i386_record_modrm (&ir))
7991 return -1;
7992 ir.rm |= ir.rex_b;
c131fcee 7993 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7994 goto no_support;
25ea693b
MM
7995 record_full_arch_list_add_reg (ir.regcache,
7996 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7997 break;
7998
7999 case 0x0f7e: /* movd */
8000 case 0x660f7e: /* movd */
8001 if (i386_record_modrm (&ir))
8002 return -1;
8003 if (ir.mod == 3)
25ea693b 8004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
8005 else
8006 {
8007 if (ir.dflag == 2)
8008 ir.ot = OT_QUAD;
8009 else
8010 ir.ot = OT_LONG;
8011 if (i386_record_lea_modrm (&ir))
8012 return -1;
8013 }
8014 break;
8015
8016 case 0x0f7f: /* movq */
8017 if (i386_record_modrm (&ir))
8018 return -1;
8019 if (ir.mod == 3)
8020 {
8021 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8022 goto no_support;
25ea693b
MM
8023 record_full_arch_list_add_reg (ir.regcache,
8024 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8025 }
8026 else
8027 {
8028 ir.ot = OT_QUAD;
8029 if (i386_record_lea_modrm (&ir))
8030 return -1;
8031 }
8032 break;
8033
8034 case 0xf30fb8: /* popcnt */
8035 if (i386_record_modrm (&ir))
8036 return -1;
25ea693b
MM
8037 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8038 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8039 break;
8040
8041 case 0x660fd6: /* movq */
8042 if (i386_record_modrm (&ir))
8043 return -1;
8044 if (ir.mod == 3)
8045 {
8046 ir.rm |= ir.rex_b;
1777feb0
MS
8047 if (!i386_xmm_regnum_p (gdbarch,
8048 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 8049 goto no_support;
25ea693b
MM
8050 record_full_arch_list_add_reg (ir.regcache,
8051 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8052 }
8053 else
8054 {
8055 ir.ot = OT_QUAD;
8056 if (i386_record_lea_modrm (&ir))
8057 return -1;
8058 }
8059 break;
8060
8061 case 0x660f3817: /* ptest */
8062 case 0x0f2e: /* ucomiss */
8063 case 0x660f2e: /* ucomisd */
8064 case 0x0f2f: /* comiss */
8065 case 0x660f2f: /* comisd */
25ea693b 8066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8067 break;
8068
8069 case 0x0ff7: /* maskmovq */
8070 regcache_raw_read_unsigned (ir.regcache,
8071 ir.regmap[X86_RECORD_REDI_REGNUM],
8072 &addr);
25ea693b 8073 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
8074 return -1;
8075 break;
8076
8077 case 0x660ff7: /* maskmovdqu */
8078 regcache_raw_read_unsigned (ir.regcache,
8079 ir.regmap[X86_RECORD_REDI_REGNUM],
8080 &addr);
25ea693b 8081 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
8082 return -1;
8083 break;
8084
8085 default:
8086 goto no_support;
8087 break;
8088 }
8089 break;
7ad10968
HZ
8090
8091 default:
7ad10968
HZ
8092 goto no_support;
8093 break;
8094 }
8095
cf648174 8096 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8098 if (record_full_arch_list_add_end ())
7ad10968
HZ
8099 return -1;
8100
8101 return 0;
8102
01fe1b41 8103 no_support:
a3c4230a
HZ
8104 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8105 "at address %s.\n"),
8106 (unsigned int) (opcode),
8107 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8108 return -1;
8109}
8110
cf648174
HZ
8111static const int i386_record_regmap[] =
8112{
8113 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8114 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8115 0, 0, 0, 0, 0, 0, 0, 0,
8116 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8117 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8118};
8119
7a697b8d 8120/* Check that the given address appears suitable for a fast
405f8e94 8121 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8122 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8123 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8124 middle of the tracepoint jump. On x86, it may be possible to use
8125 4-byte jumps with a 2-byte offset to a trampoline located in the
8126 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8127 of instruction to replace, and 0 if not, plus an explanatory
8128 string. */
8129
8130static int
6b940e6a 8131i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
281d762b 8132 std::string *msg)
7a697b8d
SS
8133{
8134 int len, jumplen;
7a697b8d 8135
405f8e94
SS
8136 /* Ask the target for the minimum instruction length supported. */
8137 jumplen = target_get_min_fast_tracepoint_insn_len ();
8138
8139 if (jumplen < 0)
8140 {
8141 /* If the target does not support the get_min_fast_tracepoint_insn_len
8142 operation, assume that fast tracepoints will always be implemented
8143 using 4-byte relative jumps on both x86 and x86-64. */
8144 jumplen = 5;
8145 }
8146 else if (jumplen == 0)
8147 {
8148 /* If the target does support get_min_fast_tracepoint_insn_len but
8149 returns zero, then the IPA has not loaded yet. In this case,
8150 we optimistically assume that truncated 2-byte relative jumps
8151 will be available on x86, and compensate later if this assumption
8152 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8153 jumps will always be used. */
8154 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8155 }
7a697b8d 8156
7a697b8d 8157 /* Check for fit. */
be85ce7d 8158 len = gdb_insn_length (gdbarch, addr);
405f8e94 8159
7a697b8d
SS
8160 if (len < jumplen)
8161 {
8162 /* Return a bit of target-specific detail to add to the caller's
8163 generic failure message. */
8164 if (msg)
281d762b
TT
8165 *msg = string_printf (_("; instruction is only %d bytes long, "
8166 "need at least %d bytes for the jump"),
8167 len, jumplen);
7a697b8d
SS
8168 return 0;
8169 }
405f8e94
SS
8170 else
8171 {
8172 if (msg)
281d762b 8173 msg->clear ();
405f8e94
SS
8174 return 1;
8175 }
7a697b8d
SS
8176}
8177
00d5215e
UW
8178/* Return a floating-point format for a floating-point variable of
8179 length LEN in bits. If non-NULL, NAME is the name of its type.
8180 If no suitable type is found, return NULL. */
8181
cb8c24b6 8182static const struct floatformat **
00d5215e
UW
8183i386_floatformat_for_type (struct gdbarch *gdbarch,
8184 const char *name, int len)
8185{
8186 if (len == 128 && name)
8187 if (strcmp (name, "__float128") == 0
8188 || strcmp (name, "_Float128") == 0
34d11c68
AB
8189 || strcmp (name, "complex _Float128") == 0
8190 || strcmp (name, "complex(kind=16)") == 0
8191 || strcmp (name, "real(kind=16)") == 0)
00d5215e
UW
8192 return floatformats_ia64_quad;
8193
8194 return default_floatformat_for_type (gdbarch, name, len);
8195}
8196
90884b2b
L
8197static int
8198i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8199 struct tdesc_arch_data *tdesc_data)
8200{
8201 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8202 const struct tdesc_feature *feature_core;
01f9f808
MS
8203
8204 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
1163a4b7 8205 *feature_avx512, *feature_pkeys, *feature_segments;
90884b2b
L
8206 int i, num_regs, valid_p;
8207
8208 if (! tdesc_has_registers (tdesc))
8209 return 0;
8210
8211 /* Get core registers. */
8212 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8213 if (feature_core == NULL)
8214 return 0;
90884b2b
L
8215
8216 /* Get SSE registers. */
c131fcee 8217 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8218
c131fcee
L
8219 /* Try AVX registers. */
8220 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8221
1dbcd68c
WT
8222 /* Try MPX registers. */
8223 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8224
01f9f808
MS
8225 /* Try AVX512 registers. */
8226 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8227
1163a4b7
JB
8228 /* Try segment base registers. */
8229 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8230
51547df6
MS
8231 /* Try PKEYS */
8232 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8233
90884b2b
L
8234 valid_p = 1;
8235
c131fcee 8236 /* The XCR0 bits. */
01f9f808
MS
8237 if (feature_avx512)
8238 {
8239 /* AVX512 register description requires AVX register description. */
8240 if (!feature_avx)
8241 return 0;
8242
a1fa17ee 8243 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
01f9f808
MS
8244
8245 /* It may have been set by OSABI initialization function. */
8246 if (tdep->k0_regnum < 0)
8247 {
8248 tdep->k_register_names = i386_k_names;
8249 tdep->k0_regnum = I386_K0_REGNUM;
8250 }
8251
8252 for (i = 0; i < I387_NUM_K_REGS; i++)
8253 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8254 tdep->k0_regnum + i,
8255 i386_k_names[i]);
8256
8257 if (tdep->num_zmm_regs == 0)
8258 {
8259 tdep->zmmh_register_names = i386_zmmh_names;
8260 tdep->num_zmm_regs = 8;
8261 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8262 }
8263
8264 for (i = 0; i < tdep->num_zmm_regs; i++)
8265 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8266 tdep->zmm0h_regnum + i,
8267 tdep->zmmh_register_names[i]);
8268
8269 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8270 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8271 tdep->xmm16_regnum + i,
8272 tdep->xmm_avx512_register_names[i]);
8273
8274 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8275 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8276 tdep->ymm16h_regnum + i,
8277 tdep->ymm16h_register_names[i]);
8278 }
c131fcee
L
8279 if (feature_avx)
8280 {
3a13a53b
L
8281 /* AVX register description requires SSE register description. */
8282 if (!feature_sse)
8283 return 0;
8284
01f9f808 8285 if (!feature_avx512)
df7e5265 8286 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8287
8288 /* It may have been set by OSABI initialization function. */
8289 if (tdep->num_ymm_regs == 0)
8290 {
8291 tdep->ymmh_register_names = i386_ymmh_names;
8292 tdep->num_ymm_regs = 8;
8293 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8294 }
8295
8296 for (i = 0; i < tdep->num_ymm_regs; i++)
8297 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8298 tdep->ymm0h_regnum + i,
8299 tdep->ymmh_register_names[i]);
8300 }
3a13a53b 8301 else if (feature_sse)
df7e5265 8302 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8303 else
8304 {
df7e5265 8305 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8306 tdep->num_xmm_regs = 0;
8307 }
c131fcee 8308
90884b2b
L
8309 num_regs = tdep->num_core_regs;
8310 for (i = 0; i < num_regs; i++)
8311 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8312 tdep->register_names[i]);
8313
3a13a53b
L
8314 if (feature_sse)
8315 {
8316 /* Need to include %mxcsr, so add one. */
8317 num_regs += tdep->num_xmm_regs + 1;
8318 for (; i < num_regs; i++)
8319 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8320 tdep->register_names[i]);
8321 }
90884b2b 8322
1dbcd68c
WT
8323 if (feature_mpx)
8324 {
df7e5265 8325 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8326
8327 if (tdep->bnd0r_regnum < 0)
8328 {
8329 tdep->mpx_register_names = i386_mpx_names;
8330 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8331 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8332 }
8333
8334 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8335 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8336 I387_BND0R_REGNUM (tdep) + i,
8337 tdep->mpx_register_names[i]);
8338 }
8339
1163a4b7
JB
8340 if (feature_segments)
8341 {
8342 if (tdep->fsbase_regnum < 0)
8343 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8344 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8345 tdep->fsbase_regnum, "fs_base");
8346 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8347 tdep->fsbase_regnum + 1, "gs_base");
8348 }
8349
51547df6
MS
8350 if (feature_pkeys)
8351 {
8352 tdep->xcr0 |= X86_XSTATE_PKRU;
8353 if (tdep->pkru_regnum < 0)
8354 {
8355 tdep->pkeys_register_names = i386_pkeys_names;
8356 tdep->pkru_regnum = I386_PKRU_REGNUM;
8357 tdep->num_pkeys_regs = 1;
8358 }
8359
8360 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8361 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8362 I387_PKRU_REGNUM (tdep) + i,
8363 tdep->pkeys_register_names[i]);
8364 }
8365
90884b2b
L
8366 return valid_p;
8367}
8368
2b4424c3
TT
8369\f
8370
8371/* Implement the type_align gdbarch function. */
8372
8373static ULONGEST
8374i386_type_align (struct gdbarch *gdbarch, struct type *type)
8375{
8376 type = check_typedef (type);
8377
8378 if (gdbarch_ptr_bit (gdbarch) == 32)
8379 {
8380 if ((TYPE_CODE (type) == TYPE_CODE_INT
8381 || TYPE_CODE (type) == TYPE_CODE_FLT)
8382 && TYPE_LENGTH (type) > 4)
8383 return 4;
8384
8385 /* Handle x86's funny long double. */
8386 if (TYPE_CODE (type) == TYPE_CODE_FLT
8387 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8388 return 4;
8389 }
8390
5561fc30 8391 return 0;
2b4424c3
TT
8392}
8393
7ad10968 8394\f
ad9eb1fd
DE
8395/* Note: This is called for both i386 and amd64. */
8396
7ad10968
HZ
8397static struct gdbarch *
8398i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8399{
8400 struct gdbarch_tdep *tdep;
8401 struct gdbarch *gdbarch;
90884b2b
L
8402 struct tdesc_arch_data *tdesc_data;
8403 const struct target_desc *tdesc;
1ba53b71 8404 int mm0_regnum;
c131fcee 8405 int ymm0_regnum;
1dbcd68c
WT
8406 int bnd0_regnum;
8407 int num_bnd_cooked;
7ad10968
HZ
8408
8409 /* If there is already a candidate, use it. */
8410 arches = gdbarch_list_lookup_by_info (arches, &info);
8411 if (arches != NULL)
8412 return arches->gdbarch;
8413
ad9eb1fd 8414 /* Allocate space for the new architecture. Assume i386 for now. */
fc270c35 8415 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8416 gdbarch = gdbarch_alloc (&info, tdep);
8417
8418 /* General-purpose registers. */
7ad10968
HZ
8419 tdep->gregset_reg_offset = NULL;
8420 tdep->gregset_num_regs = I386_NUM_GREGS;
8421 tdep->sizeof_gregset = 0;
8422
8423 /* Floating-point registers. */
7ad10968 8424 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8425 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8426
8427 /* The default settings include the FPU registers, the MMX registers
8428 and the SSE registers. This can be overridden for a specific ABI
8429 by adjusting the members `st0_regnum', `mm0_regnum' and
8430 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8431 will show up in the output of "info all-registers". */
7ad10968
HZ
8432
8433 tdep->st0_regnum = I386_ST0_REGNUM;
8434
7ad10968
HZ
8435 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8436 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8437
8438 tdep->jb_pc_offset = -1;
8439 tdep->struct_return = pcc_struct_return;
8440 tdep->sigtramp_start = 0;
8441 tdep->sigtramp_end = 0;
8442 tdep->sigtramp_p = i386_sigtramp_p;
8443 tdep->sigcontext_addr = NULL;
8444 tdep->sc_reg_offset = NULL;
8445 tdep->sc_pc_offset = -1;
8446 tdep->sc_sp_offset = -1;
8447
c131fcee
L
8448 tdep->xsave_xcr0_offset = -1;
8449
cf648174
HZ
8450 tdep->record_regmap = i386_record_regmap;
8451
2b4424c3 8452 set_gdbarch_type_align (gdbarch, i386_type_align);
205c306f 8453
7ad10968
HZ
8454 /* The format used for `long double' on almost all i386 targets is
8455 the i387 extended floating-point format. In fact, of all targets
8456 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8457 on having a `long double' that's not `long' at all. */
8458 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8459
8460 /* Although the i387 extended floating-point has only 80 significant
8461 bits, a `long double' actually takes up 96, probably to enforce
8462 alignment. */
8463 set_gdbarch_long_double_bit (gdbarch, 96);
8464
00d5215e
UW
8465 /* Support for floating-point data type variants. */
8466 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8467
7ad10968
HZ
8468 /* Register numbers of various important registers. */
8469 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8470 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8471 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8472 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8473
8474 /* NOTE: kettenis/20040418: GCC does have two possible register
8475 numbering schemes on the i386: dbx and SVR4. These schemes
8476 differ in how they number %ebp, %esp, %eflags, and the
8477 floating-point registers, and are implemented by the arrays
8478 dbx_register_map[] and svr4_dbx_register_map in
8479 gcc/config/i386.c. GCC also defines a third numbering scheme in
8480 gcc/config/i386.c, which it designates as the "default" register
8481 map used in 64bit mode. This last register numbering scheme is
8482 implemented in dbx64_register_map, and is used for AMD64; see
8483 amd64-tdep.c.
8484
8485 Currently, each GCC i386 target always uses the same register
8486 numbering scheme across all its supported debugging formats
8487 i.e. SDB (COFF), stabs and DWARF 2. This is because
8488 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8489 DBX_REGISTER_NUMBER macro which is defined by each target's
8490 respective config header in a manner independent of the requested
8491 output debugging format.
8492
8493 This does not match the arrangement below, which presumes that
8494 the SDB and stabs numbering schemes differ from the DWARF and
8495 DWARF 2 ones. The reason for this arrangement is that it is
8496 likely to get the numbering scheme for the target's
8497 default/native debug format right. For targets where GCC is the
8498 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8499 targets where the native toolchain uses a different numbering
8500 scheme for a particular debug format (stabs-in-ELF on Solaris)
8501 the defaults below will have to be overridden, like
8502 i386_elf_init_abi() does. */
8503
8504 /* Use the dbx register numbering scheme for stabs and COFF. */
8505 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8506 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8507
8508 /* Use the SVR4 register numbering scheme for DWARF 2. */
0fde2c53 8509 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
7ad10968
HZ
8510
8511 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8512 be in use on any of the supported i386 targets. */
8513
8514 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8515
8516 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8517
8518 /* Call dummy code. */
a9b8d892
JK
8519 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8520 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8521 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8522 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8523
8524 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8525 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8526 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8527
8528 set_gdbarch_return_value (gdbarch, i386_return_value);
8529
8530 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8531
8532 /* Stack grows downward. */
8533 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8534
04180708
YQ
8535 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8536 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8537
7ad10968
HZ
8538 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8539 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8540
8541 set_gdbarch_frame_args_skip (gdbarch, 8);
8542
7ad10968
HZ
8543 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8544
8545 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8546
8547 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8548
8549 /* Add the i386 register groups. */
8550 i386_add_reggroups (gdbarch);
90884b2b 8551 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8552
143985b7
AF
8553 /* Helper for function argument information. */
8554 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8555
06da04c6 8556 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8557 appended to the list first, so that it supercedes the DWARF
8558 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8559 currently fails). */
8560 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8561
8562 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8563 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8564 CFI info will be used if it is available. */
10458914 8565 dwarf2_append_unwinders (gdbarch);
6405b0a6 8566
acd5c798 8567 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8568
1ba53b71 8569 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8570 set_gdbarch_pseudo_register_read_value (gdbarch,
8571 i386_pseudo_register_read_value);
90884b2b 8572 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
62e5fd57
MK
8573 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8574 i386_ax_pseudo_register_collect);
90884b2b
L
8575
8576 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8577 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8578
c131fcee
L
8579 /* Override the normal target description method to make the AVX
8580 upper halves anonymous. */
8581 set_gdbarch_register_name (gdbarch, i386_register_name);
8582
8583 /* Even though the default ABI only includes general-purpose registers,
8584 floating-point registers and the SSE registers, we have to leave a
01f9f808 8585 gap for the upper AVX, MPX and AVX512 registers. */
1163a4b7 8586 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
90884b2b 8587
ac04f72b
TT
8588 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8589
90884b2b
L
8590 /* Get the x86 target description from INFO. */
8591 tdesc = info.target_desc;
8592 if (! tdesc_has_registers (tdesc))
1163a4b7 8593 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
90884b2b
L
8594 tdep->tdesc = tdesc;
8595
8596 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8597 tdep->register_names = i386_register_names;
8598
c131fcee
L
8599 /* No upper YMM registers. */
8600 tdep->ymmh_register_names = NULL;
8601 tdep->ymm0h_regnum = -1;
8602
01f9f808
MS
8603 /* No upper ZMM registers. */
8604 tdep->zmmh_register_names = NULL;
8605 tdep->zmm0h_regnum = -1;
8606
8607 /* No high XMM registers. */
8608 tdep->xmm_avx512_register_names = NULL;
8609 tdep->xmm16_regnum = -1;
8610
8611 /* No upper YMM16-31 registers. */
8612 tdep->ymm16h_register_names = NULL;
8613 tdep->ymm16h_regnum = -1;
8614
1ba53b71
L
8615 tdep->num_byte_regs = 8;
8616 tdep->num_word_regs = 8;
8617 tdep->num_dword_regs = 0;
8618 tdep->num_mmx_regs = 8;
c131fcee 8619 tdep->num_ymm_regs = 0;
1ba53b71 8620
1dbcd68c
WT
8621 /* No MPX registers. */
8622 tdep->bnd0r_regnum = -1;
8623 tdep->bndcfgu_regnum = -1;
8624
01f9f808
MS
8625 /* No AVX512 registers. */
8626 tdep->k0_regnum = -1;
8627 tdep->num_zmm_regs = 0;
8628 tdep->num_ymm_avx512_regs = 0;
8629 tdep->num_xmm_avx512_regs = 0;
8630
51547df6
MS
8631 /* No PKEYS registers */
8632 tdep->pkru_regnum = -1;
8633 tdep->num_pkeys_regs = 0;
8634
1163a4b7
JB
8635 /* No segment base registers. */
8636 tdep->fsbase_regnum = -1;
8637
90884b2b
L
8638 tdesc_data = tdesc_data_alloc ();
8639
dde08ee1
PA
8640 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8641
6710bf39
SS
8642 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8643
c2170eef
MM
8644 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8645 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8646 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8647
ad9eb1fd
DE
8648 /* Hook in ABI-specific overrides, if they have been registered.
8649 Note: If INFO specifies a 64 bit arch, this is where we turn
8650 a 32-bit i386 into a 64-bit amd64. */
0dba2a6c 8651 info.tdesc_data = tdesc_data;
4be87837 8652 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8653
c131fcee
L
8654 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8655 {
8656 tdesc_data_cleanup (tdesc_data);
8657 xfree (tdep);
8658 gdbarch_free (gdbarch);
8659 return NULL;
8660 }
8661
1dbcd68c
WT
8662 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8663
1ba53b71
L
8664 /* Wire in pseudo registers. Number of pseudo registers may be
8665 changed. */
8666 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8667 + tdep->num_word_regs
8668 + tdep->num_dword_regs
c131fcee 8669 + tdep->num_mmx_regs
1dbcd68c 8670 + tdep->num_ymm_regs
01f9f808
MS
8671 + num_bnd_cooked
8672 + tdep->num_ymm_avx512_regs
8673 + tdep->num_zmm_regs));
1ba53b71 8674
90884b2b
L
8675 /* Target description may be changed. */
8676 tdesc = tdep->tdesc;
8677
90884b2b
L
8678 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8679
8680 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8681 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8682
1ba53b71
L
8683 /* Make %al the first pseudo-register. */
8684 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8685 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8686
c131fcee 8687 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8688 if (tdep->num_dword_regs)
8689 {
1c6272a6 8690 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8691 tdep->eax_regnum = ymm0_regnum;
8692 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8693 }
8694 else
8695 tdep->eax_regnum = -1;
8696
c131fcee
L
8697 mm0_regnum = ymm0_regnum;
8698 if (tdep->num_ymm_regs)
8699 {
1c6272a6 8700 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8701 tdep->ymm0_regnum = ymm0_regnum;
8702 mm0_regnum += tdep->num_ymm_regs;
8703 }
8704 else
8705 tdep->ymm0_regnum = -1;
8706
01f9f808
MS
8707 if (tdep->num_ymm_avx512_regs)
8708 {
8709 /* Support YMM16-31 pseudo registers if available. */
8710 tdep->ymm16_regnum = mm0_regnum;
8711 mm0_regnum += tdep->num_ymm_avx512_regs;
8712 }
8713 else
8714 tdep->ymm16_regnum = -1;
8715
8716 if (tdep->num_zmm_regs)
8717 {
8718 /* Support ZMM pseudo-register if it is available. */
8719 tdep->zmm0_regnum = mm0_regnum;
8720 mm0_regnum += tdep->num_zmm_regs;
8721 }
8722 else
8723 tdep->zmm0_regnum = -1;
8724
1dbcd68c 8725 bnd0_regnum = mm0_regnum;
1ba53b71
L
8726 if (tdep->num_mmx_regs != 0)
8727 {
1c6272a6 8728 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8729 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8730 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8731 }
8732 else
8733 tdep->mm0_regnum = -1;
8734
1dbcd68c
WT
8735 if (tdep->bnd0r_regnum > 0)
8736 tdep->bnd0_regnum = bnd0_regnum;
8737 else
8738 tdep-> bnd0_regnum = -1;
8739
06da04c6 8740 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8741 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8742 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8743 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8744
8446b36a
MK
8745 /* If we have a register mapping, enable the generic core file
8746 support, unless it has already been enabled. */
8747 if (tdep->gregset_reg_offset
8f0435f7 8748 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8749 set_gdbarch_iterate_over_regset_sections
8750 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8751
7a697b8d
SS
8752 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8753 i386_fast_tracepoint_valid_at);
8754
a62cc96e
AC
8755 return gdbarch;
8756}
8757
8201327c
MK
8758\f
8759
97de3545
JB
8760/* Return the target description for a specified XSAVE feature mask. */
8761
8762const struct target_desc *
1163a4b7 8763i386_target_description (uint64_t xcr0, bool segments)
97de3545 8764{
22916b07 8765 static target_desc *i386_tdescs \
1163a4b7 8766 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
22916b07
YQ
8767 target_desc **tdesc;
8768
8769 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8770 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8771 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8772 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
1163a4b7
JB
8773 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8774 [segments ? 1 : 0];
22916b07
YQ
8775
8776 if (*tdesc == NULL)
1163a4b7 8777 *tdesc = i386_create_target_description (xcr0, false, segments);
22916b07
YQ
8778
8779 return *tdesc;
97de3545
JB
8780}
8781
29c1c244
WT
8782#define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8783
8784/* Find the bound directory base address. */
8785
8786static unsigned long
8787i386_mpx_bd_base (void)
8788{
8789 struct regcache *rcache;
8790 struct gdbarch_tdep *tdep;
8791 ULONGEST ret;
8792 enum register_status regstatus;
29c1c244
WT
8793
8794 rcache = get_current_regcache ();
ac7936df 8795 tdep = gdbarch_tdep (rcache->arch ());
29c1c244
WT
8796
8797 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8798
8799 if (regstatus != REG_VALID)
8800 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8801
8802 return ret & MPX_BASE_MASK;
8803}
8804
012b3a21 8805int
29c1c244
WT
8806i386_mpx_enabled (void)
8807{
8808 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8809 const struct target_desc *tdesc = tdep->tdesc;
8810
8811 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8812}
8813
8814#define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8815#define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8816#define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8817#define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8818
8819/* Find the bound table entry given the pointer location and the base
8820 address of the table. */
8821
8822static CORE_ADDR
8823i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8824{
8825 CORE_ADDR offset1;
8826 CORE_ADDR offset2;
8827 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8828 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8829 CORE_ADDR bd_entry_addr;
8830 CORE_ADDR bt_addr;
8831 CORE_ADDR bd_entry;
8832 struct gdbarch *gdbarch = get_current_arch ();
8833 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8834
8835
8836 if (gdbarch_ptr_bit (gdbarch) == 64)
8837 {
966f0aef 8838 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
29c1c244
WT
8839 bd_ptr_r_shift = 20;
8840 bd_ptr_l_shift = 3;
8841 bt_select_r_shift = 3;
8842 bt_select_l_shift = 5;
966f0aef
WT
8843 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8844
8845 if ( sizeof (CORE_ADDR) == 4)
e00b3c9b
WT
8846 error (_("bound table examination not supported\
8847 for 64-bit process with 32-bit GDB"));
29c1c244
WT
8848 }
8849 else
8850 {
8851 mpx_bd_mask = MPX_BD_MASK_32;
8852 bd_ptr_r_shift = 12;
8853 bd_ptr_l_shift = 2;
8854 bt_select_r_shift = 2;
8855 bt_select_l_shift = 4;
8856 bt_mask = MPX_BT_MASK_32;
8857 }
8858
8859 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8860 bd_entry_addr = bd_base + offset1;
8861 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8862
8863 if ((bd_entry & 0x1) == 0)
8864 error (_("Invalid bounds directory entry at %s."),
8865 paddress (get_current_arch (), bd_entry_addr));
8866
8867 /* Clearing status bit. */
8868 bd_entry--;
8869 bt_addr = bd_entry & ~bt_select_r_shift;
8870 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8871
8872 return bt_addr + offset2;
8873}
8874
8875/* Print routine for the mpx bounds. */
8876
8877static void
8878i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8879{
8880 struct ui_out *uiout = current_uiout;
34f8ac9f 8881 LONGEST size;
29c1c244
WT
8882 struct gdbarch *gdbarch = get_current_arch ();
8883 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8884 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8885
8886 if (bounds_in_map == 1)
8887 {
112e8700
SM
8888 uiout->text ("Null bounds on map:");
8889 uiout->text (" pointer value = ");
8890 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8891 uiout->text (".");
8892 uiout->text ("\n");
29c1c244
WT
8893 }
8894 else
8895 {
112e8700
SM
8896 uiout->text ("{lbound = ");
8897 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8898 uiout->text (", ubound = ");
29c1c244
WT
8899
8900 /* The upper bound is stored in 1's complement. */
112e8700
SM
8901 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8902 uiout->text ("}: pointer value = ");
8903 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
29c1c244
WT
8904
8905 if (gdbarch_ptr_bit (gdbarch) == 64)
8906 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8907 else
8908 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8909
8910 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8911 -1 represents in this sense full memory access, and there is no need
8912 one to the size. */
8913
8914 size = (size > -1 ? size + 1 : size);
112e8700 8915 uiout->text (", size = ");
33eca680 8916 uiout->field_string ("size", plongest (size));
29c1c244 8917
112e8700
SM
8918 uiout->text (", metadata = ");
8919 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8920 uiout->text ("\n");
29c1c244
WT
8921 }
8922}
8923
8924/* Implement the command "show mpx bound". */
8925
8926static void
c4a3e68e 8927i386_mpx_info_bounds (const char *args, int from_tty)
29c1c244
WT
8928{
8929 CORE_ADDR bd_base = 0;
8930 CORE_ADDR addr;
8931 CORE_ADDR bt_entry_addr = 0;
8932 CORE_ADDR bt_entry[4];
8933 int i;
8934 struct gdbarch *gdbarch = get_current_arch ();
8935 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8936
ae71e7b5
MR
8937 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8938 || !i386_mpx_enabled ())
118ca224 8939 {
bc504a31 8940 printf_unfiltered (_("Intel Memory Protection Extensions not "
118ca224
PP
8941 "supported on this target.\n"));
8942 return;
8943 }
29c1c244
WT
8944
8945 if (args == NULL)
118ca224
PP
8946 {
8947 printf_unfiltered (_("Address of pointer variable expected.\n"));
8948 return;
8949 }
29c1c244
WT
8950
8951 addr = parse_and_eval_address (args);
8952
8953 bd_base = i386_mpx_bd_base ();
8954 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8955
8956 memset (bt_entry, 0, sizeof (bt_entry));
8957
8958 for (i = 0; i < 4; i++)
8959 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8960 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8961 data_ptr_type);
8962
8963 i386_mpx_print_bounds (bt_entry);
8964}
8965
8966/* Implement the command "set mpx bound". */
8967
8968static void
c4a3e68e 8969i386_mpx_set_bounds (const char *args, int from_tty)
29c1c244
WT
8970{
8971 CORE_ADDR bd_base = 0;
8972 CORE_ADDR addr, lower, upper;
8973 CORE_ADDR bt_entry_addr = 0;
8974 CORE_ADDR bt_entry[2];
8975 const char *input = args;
8976 int i;
8977 struct gdbarch *gdbarch = get_current_arch ();
8978 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8979 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8980
ae71e7b5
MR
8981 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8982 || !i386_mpx_enabled ())
bc504a31 8983 error (_("Intel Memory Protection Extensions not supported\
29c1c244
WT
8984 on this target."));
8985
8986 if (args == NULL)
8987 error (_("Pointer value expected."));
8988
8989 addr = value_as_address (parse_to_comma_and_eval (&input));
8990
8991 if (input[0] == ',')
8992 ++input;
8993 if (input[0] == '\0')
8994 error (_("wrong number of arguments: missing lower and upper bound."));
8995 lower = value_as_address (parse_to_comma_and_eval (&input));
8996
8997 if (input[0] == ',')
8998 ++input;
8999 if (input[0] == '\0')
9000 error (_("Wrong number of arguments; Missing upper bound."));
9001 upper = value_as_address (parse_to_comma_and_eval (&input));
9002
9003 bd_base = i386_mpx_bd_base ();
9004 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9005 for (i = 0; i < 2; i++)
9006 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 9007 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
9008 data_ptr_type);
9009 bt_entry[0] = (uint64_t) lower;
9010 bt_entry[1] = ~(uint64_t) upper;
9011
9012 for (i = 0; i < 2; i++)
132874d7
AB
9013 write_memory_unsigned_integer (bt_entry_addr
9014 + i * TYPE_LENGTH (data_ptr_type),
9015 TYPE_LENGTH (data_ptr_type), byte_order,
29c1c244
WT
9016 bt_entry[i]);
9017}
9018
9019static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9020
6c265988 9021void _initialize_i386_tdep ();
c906108c 9022void
6c265988 9023_initialize_i386_tdep ()
c906108c 9024{
a62cc96e
AC
9025 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9026
fc338970 9027 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
9028 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9029 &disassembly_flavor, _("\
9030Set the disassembly flavor."), _("\
9031Show the disassembly flavor."), _("\
9032The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9033 NULL,
9034 NULL, /* FIXME: i18n: */
9035 &setlist, &showlist);
8201327c
MK
9036
9037 /* Add the variable that controls the convention for returning
9038 structs. */
7ab04401
AC
9039 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9040 &struct_convention, _("\
9041Set the convention for returning small structs."), _("\
9042Show the convention for returning small structs."), _("\
9043Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9044is \"default\"."),
9045 NULL,
9046 NULL, /* FIXME: i18n: */
9047 &setlist, &showlist);
8201327c 9048
29c1c244
WT
9049 /* Add "mpx" prefix for the set commands. */
9050
0743fc83 9051 add_basic_prefix_cmd ("mpx", class_support, _("\
bc504a31 9052Set Intel Memory Protection Extensions specific variables."),
0743fc83
TT
9053 &mpx_set_cmdlist, "set mpx ",
9054 0 /* allow-unknown */, &setlist);
29c1c244
WT
9055
9056 /* Add "mpx" prefix for the show commands. */
9057
0743fc83 9058 add_show_prefix_cmd ("mpx", class_support, _("\
bc504a31 9059Show Intel Memory Protection Extensions specific variables."),
0743fc83
TT
9060 &mpx_show_cmdlist, "show mpx ",
9061 0 /* allow-unknown */, &showlist);
29c1c244
WT
9062
9063 /* Add "bound" command for the show mpx commands list. */
9064
9065 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9066 "Show the memory bounds for a given array/pointer storage\
9067 in the bound table.",
9068 &mpx_show_cmdlist);
9069
9070 /* Add "bound" command for the set mpx commands list. */
9071
9072 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9073 "Set the memory bounds for a given array/pointer storage\
9074 in the bound table.",
9075 &mpx_set_cmdlist);
9076
05816f70 9077 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 9078 i386_svr4_init_abi);
38c968cf 9079
209bd28e 9080 /* Initialize the i386-specific register groups. */
38c968cf 9081 i386_init_reggroups ();
90884b2b 9082
c8d5aac9
L
9083 /* Tell remote stub that we support XML target description. */
9084 register_remote_support_xml ("i386");
c906108c 9085}
This page took 3.059541 seconds and 4 git commands to generate.