Split struct symtab into two: struct symtab and compunit_symtab.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
ecd75fc8 3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
45741a9c 31#include "infrun.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
df7e5265 49#include "x86-xstate.h"
d2a7c97a 50
7ad10968 51#include "record.h"
d02ed0bb 52#include "record-full.h"
7ad10968
HZ
53#include <stdint.h>
54
90884b2b 55#include "features/i386/i386.c"
c131fcee 56#include "features/i386/i386-avx.c"
1dbcd68c 57#include "features/i386/i386-mpx.c"
01f9f808 58#include "features/i386/i386-avx512.c"
3a13a53b 59#include "features/i386/i386-mmx.c"
90884b2b 60
6710bf39
SS
61#include "ax.h"
62#include "ax-gdb.h"
63
55aa24fb
SDJ
64#include "stap-probe.h"
65#include "user-regs.h"
66#include "cli/cli-utils.h"
67#include "expression.h"
68#include "parser-defs.h"
69#include <ctype.h>
70
c4fc7f1b 71/* Register names. */
c40e1eab 72
90884b2b 73static const char *i386_register_names[] =
fc633446
MK
74{
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86};
87
01f9f808
MS
88static const char *i386_zmm_names[] =
89{
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92};
93
94static const char *i386_zmmh_names[] =
95{
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98};
99
100static const char *i386_k_names[] =
101{
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104};
105
c131fcee
L
106static const char *i386_ymm_names[] =
107{
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110};
111
112static const char *i386_ymmh_names[] =
113{
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116};
117
1dbcd68c
WT
118static const char *i386_mpx_names[] =
119{
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121};
122
123/* Register names for MPX pseudo-registers. */
124
125static const char *i386_bnd_names[] =
126{
127 "bnd0", "bnd1", "bnd2", "bnd3"
128};
129
c4fc7f1b 130/* Register names for MMX pseudo-registers. */
28fc6740 131
90884b2b 132static const char *i386_mmx_names[] =
28fc6740
AC
133{
134 "mm0", "mm1", "mm2", "mm3",
135 "mm4", "mm5", "mm6", "mm7"
136};
c40e1eab 137
1ba53b71
L
138/* Register names for byte pseudo-registers. */
139
140static const char *i386_byte_names[] =
141{
142 "al", "cl", "dl", "bl",
143 "ah", "ch", "dh", "bh"
144};
145
146/* Register names for word pseudo-registers. */
147
148static const char *i386_word_names[] =
149{
150 "ax", "cx", "dx", "bx",
9cad29ac 151 "", "bp", "si", "di"
1ba53b71
L
152};
153
01f9f808
MS
154/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
155 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
156 we have 16 upper ZMM regs that have to be handled differently. */
157
158const int num_lower_zmm_regs = 16;
159
1ba53b71 160/* MMX register? */
c40e1eab 161
28fc6740 162static int
5716833c 163i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 164{
1ba53b71
L
165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
166 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
167
168 if (mm0_regnum < 0)
169 return 0;
170
1ba53b71
L
171 regnum -= mm0_regnum;
172 return regnum >= 0 && regnum < tdep->num_mmx_regs;
173}
174
175/* Byte register? */
176
177int
178i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
179{
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 regnum -= tdep->al_regnum;
183 return regnum >= 0 && regnum < tdep->num_byte_regs;
184}
185
186/* Word register? */
187
188int
189i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
190{
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 regnum -= tdep->ax_regnum;
194 return regnum >= 0 && regnum < tdep->num_word_regs;
195}
196
197/* Dword register? */
198
199int
200i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
201{
202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
203 int eax_regnum = tdep->eax_regnum;
204
205 if (eax_regnum < 0)
206 return 0;
207
208 regnum -= eax_regnum;
209 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
210}
211
01f9f808
MS
212/* AVX512 register? */
213
214int
215i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
216{
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218 int zmm0h_regnum = tdep->zmm0h_regnum;
219
220 if (zmm0h_regnum < 0)
221 return 0;
222
223 regnum -= zmm0h_regnum;
224 return regnum >= 0 && regnum < tdep->num_zmm_regs;
225}
226
227int
228i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
229{
230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
231 int zmm0_regnum = tdep->zmm0_regnum;
232
233 if (zmm0_regnum < 0)
234 return 0;
235
236 regnum -= zmm0_regnum;
237 return regnum >= 0 && regnum < tdep->num_zmm_regs;
238}
239
240int
241i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
242{
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 int k0_regnum = tdep->k0_regnum;
245
246 if (k0_regnum < 0)
247 return 0;
248
249 regnum -= k0_regnum;
250 return regnum >= 0 && regnum < I387_NUM_K_REGS;
251}
252
9191d390 253static int
c131fcee
L
254i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
255{
256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257 int ymm0h_regnum = tdep->ymm0h_regnum;
258
259 if (ymm0h_regnum < 0)
260 return 0;
261
262 regnum -= ymm0h_regnum;
263 return regnum >= 0 && regnum < tdep->num_ymm_regs;
264}
265
266/* AVX register? */
267
268int
269i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
270{
271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272 int ymm0_regnum = tdep->ymm0_regnum;
273
274 if (ymm0_regnum < 0)
275 return 0;
276
277 regnum -= ymm0_regnum;
278 return regnum >= 0 && regnum < tdep->num_ymm_regs;
279}
280
01f9f808
MS
281static int
282i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
283{
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 int ymm16h_regnum = tdep->ymm16h_regnum;
286
287 if (ymm16h_regnum < 0)
288 return 0;
289
290 regnum -= ymm16h_regnum;
291 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
292}
293
294int
295i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
296{
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 int ymm16_regnum = tdep->ymm16_regnum;
299
300 if (ymm16_regnum < 0)
301 return 0;
302
303 regnum -= ymm16_regnum;
304 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
305}
306
1dbcd68c
WT
307/* BND register? */
308
309int
310i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
311{
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
313 int bnd0_regnum = tdep->bnd0_regnum;
314
315 if (bnd0_regnum < 0)
316 return 0;
317
318 regnum -= bnd0_regnum;
319 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
320}
321
5716833c 322/* SSE register? */
23a34459 323
c131fcee
L
324int
325i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 326{
5716833c 327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 328 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 329
c131fcee 330 if (num_xmm_regs == 0)
5716833c
MK
331 return 0;
332
c131fcee
L
333 regnum -= I387_XMM0_REGNUM (tdep);
334 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
335}
336
01f9f808
MS
337/* XMM_512 register? */
338
339int
340i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
341{
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
344
345 if (num_xmm_avx512_regs == 0)
346 return 0;
347
348 regnum -= I387_XMM16_REGNUM (tdep);
349 return regnum >= 0 && regnum < num_xmm_avx512_regs;
350}
351
5716833c
MK
352static int
353i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 354{
5716833c
MK
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
20a6ec49 357 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
358 return 0;
359
20a6ec49 360 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
361}
362
5716833c 363/* FP register? */
23a34459
AC
364
365int
20a6ec49 366i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 367{
20a6ec49
MD
368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
369
370 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
371 return 0;
372
20a6ec49
MD
373 return (I387_ST0_REGNUM (tdep) <= regnum
374 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
375}
376
377int
20a6ec49 378i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 379{
20a6ec49
MD
380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
381
382 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
383 return 0;
384
20a6ec49
MD
385 return (I387_FCTRL_REGNUM (tdep) <= regnum
386 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
387}
388
1dbcd68c
WT
389/* BNDr (raw) register? */
390
391static int
392i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
393{
394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
395
396 if (I387_BND0R_REGNUM (tdep) < 0)
397 return 0;
398
399 regnum -= tdep->bnd0r_regnum;
400 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
401}
402
403/* BND control register? */
404
405static int
406i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
407{
408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409
410 if (I387_BNDCFGU_REGNUM (tdep) < 0)
411 return 0;
412
413 regnum -= I387_BNDCFGU_REGNUM (tdep);
414 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
415}
416
c131fcee
L
417/* Return the name of register REGNUM, or the empty string if it is
418 an anonymous register. */
419
420static const char *
421i386_register_name (struct gdbarch *gdbarch, int regnum)
422{
423 /* Hide the upper YMM registers. */
424 if (i386_ymmh_regnum_p (gdbarch, regnum))
425 return "";
426
01f9f808
MS
427 /* Hide the upper YMM16-31 registers. */
428 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
429 return "";
430
431 /* Hide the upper ZMM registers. */
432 if (i386_zmmh_regnum_p (gdbarch, regnum))
433 return "";
434
c131fcee
L
435 return tdesc_register_name (gdbarch, regnum);
436}
437
30b0e2d8 438/* Return the name of register REGNUM. */
fc633446 439
1ba53b71 440const char *
90884b2b 441i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 442{
1ba53b71 443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
444 if (i386_bnd_regnum_p (gdbarch, regnum))
445 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
446 if (i386_mmx_regnum_p (gdbarch, regnum))
447 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
448 else if (i386_ymm_regnum_p (gdbarch, regnum))
449 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
450 else if (i386_zmm_regnum_p (gdbarch, regnum))
451 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
452 else if (i386_byte_regnum_p (gdbarch, regnum))
453 return i386_byte_names[regnum - tdep->al_regnum];
454 else if (i386_word_regnum_p (gdbarch, regnum))
455 return i386_word_names[regnum - tdep->ax_regnum];
456
457 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
458}
459
c4fc7f1b 460/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
461 number used by GDB. */
462
8201327c 463static int
d3f73121 464i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 465{
20a6ec49
MD
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
c4fc7f1b
MK
468 /* This implements what GCC calls the "default" register map
469 (dbx_register_map[]). */
470
85540d8c
MK
471 if (reg >= 0 && reg <= 7)
472 {
9872ad24
JB
473 /* General-purpose registers. The debug info calls %ebp
474 register 4, and %esp register 5. */
475 if (reg == 4)
476 return 5;
477 else if (reg == 5)
478 return 4;
479 else return reg;
85540d8c
MK
480 }
481 else if (reg >= 12 && reg <= 19)
482 {
483 /* Floating-point registers. */
20a6ec49 484 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
485 }
486 else if (reg >= 21 && reg <= 28)
487 {
488 /* SSE registers. */
c131fcee
L
489 int ymm0_regnum = tdep->ymm0_regnum;
490
491 if (ymm0_regnum >= 0
492 && i386_xmm_regnum_p (gdbarch, reg))
493 return reg - 21 + ymm0_regnum;
494 else
495 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
496 }
497 else if (reg >= 29 && reg <= 36)
498 {
499 /* MMX registers. */
20a6ec49 500 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
501 }
502
503 /* This will hopefully provoke a warning. */
d3f73121 504 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
505}
506
c4fc7f1b
MK
507/* Convert SVR4 register number REG to the appropriate register number
508 used by GDB. */
85540d8c 509
8201327c 510static int
d3f73121 511i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 512{
20a6ec49
MD
513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
514
c4fc7f1b
MK
515 /* This implements the GCC register map that tries to be compatible
516 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
517
518 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
519 numbers the floating point registers differently. */
520 if (reg >= 0 && reg <= 9)
521 {
acd5c798 522 /* General-purpose registers. */
85540d8c
MK
523 return reg;
524 }
525 else if (reg >= 11 && reg <= 18)
526 {
527 /* Floating-point registers. */
20a6ec49 528 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 529 }
c6f4c129 530 else if (reg >= 21 && reg <= 36)
85540d8c 531 {
c4fc7f1b 532 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 533 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
534 }
535
c6f4c129
JB
536 switch (reg)
537 {
20a6ec49
MD
538 case 37: return I387_FCTRL_REGNUM (tdep);
539 case 38: return I387_FSTAT_REGNUM (tdep);
540 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
541 case 40: return I386_ES_REGNUM;
542 case 41: return I386_CS_REGNUM;
543 case 42: return I386_SS_REGNUM;
544 case 43: return I386_DS_REGNUM;
545 case 44: return I386_FS_REGNUM;
546 case 45: return I386_GS_REGNUM;
547 }
548
85540d8c 549 /* This will hopefully provoke a warning. */
d3f73121 550 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 551}
5716833c 552
fc338970 553\f
917317f4 554
fc338970
MK
555/* This is the variable that is set with "set disassembly-flavor", and
556 its legitimate values. */
53904c9e
AC
557static const char att_flavor[] = "att";
558static const char intel_flavor[] = "intel";
40478521 559static const char *const valid_flavors[] =
c5aa993b 560{
c906108c
SS
561 att_flavor,
562 intel_flavor,
563 NULL
564};
53904c9e 565static const char *disassembly_flavor = att_flavor;
acd5c798 566\f
c906108c 567
acd5c798
MK
568/* Use the program counter to determine the contents and size of a
569 breakpoint instruction. Return a pointer to a string of bytes that
570 encode a breakpoint instruction, store the length of the string in
571 *LEN and optionally adjust *PC to point to the correct memory
572 location for inserting the breakpoint.
c906108c 573
acd5c798
MK
574 On the i386 we have a single breakpoint that fits in a single byte
575 and can be inserted anywhere.
c906108c 576
acd5c798 577 This function is 64-bit safe. */
63c0089f
MK
578
579static const gdb_byte *
67d57894 580i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 581{
63c0089f
MK
582 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
583
acd5c798
MK
584 *len = sizeof (break_insn);
585 return break_insn;
c906108c 586}
237fc4c9
PA
587\f
588/* Displaced instruction handling. */
589
1903f0e6
DE
590/* Skip the legacy instruction prefixes in INSN.
591 Not all prefixes are valid for any particular insn
592 but we needn't care, the insn will fault if it's invalid.
593 The result is a pointer to the first opcode byte,
594 or NULL if we run off the end of the buffer. */
595
596static gdb_byte *
597i386_skip_prefixes (gdb_byte *insn, size_t max_len)
598{
599 gdb_byte *end = insn + max_len;
600
601 while (insn < end)
602 {
603 switch (*insn)
604 {
605 case DATA_PREFIX_OPCODE:
606 case ADDR_PREFIX_OPCODE:
607 case CS_PREFIX_OPCODE:
608 case DS_PREFIX_OPCODE:
609 case ES_PREFIX_OPCODE:
610 case FS_PREFIX_OPCODE:
611 case GS_PREFIX_OPCODE:
612 case SS_PREFIX_OPCODE:
613 case LOCK_PREFIX_OPCODE:
614 case REPE_PREFIX_OPCODE:
615 case REPNE_PREFIX_OPCODE:
616 ++insn;
617 continue;
618 default:
619 return insn;
620 }
621 }
622
623 return NULL;
624}
237fc4c9
PA
625
626static int
1903f0e6 627i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 628{
1777feb0 629 /* jmp far (absolute address in operand). */
237fc4c9
PA
630 if (insn[0] == 0xea)
631 return 1;
632
633 if (insn[0] == 0xff)
634 {
1777feb0 635 /* jump near, absolute indirect (/4). */
237fc4c9
PA
636 if ((insn[1] & 0x38) == 0x20)
637 return 1;
638
1777feb0 639 /* jump far, absolute indirect (/5). */
237fc4c9
PA
640 if ((insn[1] & 0x38) == 0x28)
641 return 1;
642 }
643
644 return 0;
645}
646
c2170eef
MM
647/* Return non-zero if INSN is a jump, zero otherwise. */
648
649static int
650i386_jmp_p (const gdb_byte *insn)
651{
652 /* jump short, relative. */
653 if (insn[0] == 0xeb)
654 return 1;
655
656 /* jump near, relative. */
657 if (insn[0] == 0xe9)
658 return 1;
659
660 return i386_absolute_jmp_p (insn);
661}
662
237fc4c9 663static int
1903f0e6 664i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 665{
1777feb0 666 /* call far, absolute. */
237fc4c9
PA
667 if (insn[0] == 0x9a)
668 return 1;
669
670 if (insn[0] == 0xff)
671 {
1777feb0 672 /* Call near, absolute indirect (/2). */
237fc4c9
PA
673 if ((insn[1] & 0x38) == 0x10)
674 return 1;
675
1777feb0 676 /* Call far, absolute indirect (/3). */
237fc4c9
PA
677 if ((insn[1] & 0x38) == 0x18)
678 return 1;
679 }
680
681 return 0;
682}
683
684static int
1903f0e6 685i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
686{
687 switch (insn[0])
688 {
1777feb0 689 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 690 case 0xc3: /* ret near */
1777feb0 691 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
692 case 0xcb: /* ret far */
693 case 0xcf: /* iret */
694 return 1;
695
696 default:
697 return 0;
698 }
699}
700
701static int
1903f0e6 702i386_call_p (const gdb_byte *insn)
237fc4c9
PA
703{
704 if (i386_absolute_call_p (insn))
705 return 1;
706
1777feb0 707 /* call near, relative. */
237fc4c9
PA
708 if (insn[0] == 0xe8)
709 return 1;
710
711 return 0;
712}
713
237fc4c9
PA
714/* Return non-zero if INSN is a system call, and set *LENGTHP to its
715 length in bytes. Otherwise, return zero. */
1903f0e6 716
237fc4c9 717static int
b55078be 718i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 719{
9a7f938f
JK
720 /* Is it 'int $0x80'? */
721 if ((insn[0] == 0xcd && insn[1] == 0x80)
722 /* Or is it 'sysenter'? */
723 || (insn[0] == 0x0f && insn[1] == 0x34)
724 /* Or is it 'syscall'? */
725 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
726 {
727 *lengthp = 2;
728 return 1;
729 }
730
731 return 0;
732}
733
c2170eef
MM
734/* The gdbarch insn_is_call method. */
735
736static int
737i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
738{
739 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
740
741 read_code (addr, buf, I386_MAX_INSN_LEN);
742 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
743
744 return i386_call_p (insn);
745}
746
747/* The gdbarch insn_is_ret method. */
748
749static int
750i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
751{
752 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
753
754 read_code (addr, buf, I386_MAX_INSN_LEN);
755 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
756
757 return i386_ret_p (insn);
758}
759
760/* The gdbarch insn_is_jump method. */
761
762static int
763i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
764{
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_jmp_p (insn);
771}
772
b55078be
DE
773/* Some kernels may run one past a syscall insn, so we have to cope.
774 Otherwise this is just simple_displaced_step_copy_insn. */
775
776struct displaced_step_closure *
777i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
778 CORE_ADDR from, CORE_ADDR to,
779 struct regcache *regs)
780{
781 size_t len = gdbarch_max_insn_length (gdbarch);
782 gdb_byte *buf = xmalloc (len);
783
784 read_memory (from, buf, len);
785
786 /* GDB may get control back after the insn after the syscall.
787 Presumably this is a kernel bug.
788 If this is a syscall, make sure there's a nop afterwards. */
789 {
790 int syscall_length;
791 gdb_byte *insn;
792
793 insn = i386_skip_prefixes (buf, len);
794 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
795 insn[syscall_length] = NOP_OPCODE;
796 }
797
798 write_memory (to, buf, len);
799
800 if (debug_displaced)
801 {
802 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
803 paddress (gdbarch, from), paddress (gdbarch, to));
804 displaced_step_dump_bytes (gdb_stdlog, buf, len);
805 }
806
807 return (struct displaced_step_closure *) buf;
808}
809
237fc4c9
PA
810/* Fix up the state of registers and memory after having single-stepped
811 a displaced instruction. */
1903f0e6 812
237fc4c9
PA
813void
814i386_displaced_step_fixup (struct gdbarch *gdbarch,
815 struct displaced_step_closure *closure,
816 CORE_ADDR from, CORE_ADDR to,
817 struct regcache *regs)
818{
e17a4113
UW
819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
820
237fc4c9
PA
821 /* The offset we applied to the instruction's address.
822 This could well be negative (when viewed as a signed 32-bit
823 value), but ULONGEST won't reflect that, so take care when
824 applying it. */
825 ULONGEST insn_offset = to - from;
826
827 /* Since we use simple_displaced_step_copy_insn, our closure is a
828 copy of the instruction. */
829 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
830 /* The start of the insn, needed in case we see some prefixes. */
831 gdb_byte *insn_start = insn;
237fc4c9
PA
832
833 if (debug_displaced)
834 fprintf_unfiltered (gdb_stdlog,
5af949e3 835 "displaced: fixup (%s, %s), "
237fc4c9 836 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
837 paddress (gdbarch, from), paddress (gdbarch, to),
838 insn[0], insn[1]);
237fc4c9
PA
839
840 /* The list of issues to contend with here is taken from
841 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
842 Yay for Free Software! */
843
844 /* Relocate the %eip, if necessary. */
845
1903f0e6
DE
846 /* The instruction recognizers we use assume any leading prefixes
847 have been skipped. */
848 {
849 /* This is the size of the buffer in closure. */
850 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
851 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
852 /* If there are too many prefixes, just ignore the insn.
853 It will fault when run. */
854 if (opcode != NULL)
855 insn = opcode;
856 }
857
237fc4c9
PA
858 /* Except in the case of absolute or indirect jump or call
859 instructions, or a return instruction, the new eip is relative to
860 the displaced instruction; make it relative. Well, signal
861 handler returns don't need relocation either, but we use the
862 value of %eip to recognize those; see below. */
863 if (! i386_absolute_jmp_p (insn)
864 && ! i386_absolute_call_p (insn)
865 && ! i386_ret_p (insn))
866 {
867 ULONGEST orig_eip;
b55078be 868 int insn_len;
237fc4c9
PA
869
870 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
871
872 /* A signal trampoline system call changes the %eip, resuming
873 execution of the main program after the signal handler has
874 returned. That makes them like 'return' instructions; we
875 shouldn't relocate %eip.
876
877 But most system calls don't, and we do need to relocate %eip.
878
879 Our heuristic for distinguishing these cases: if stepping
880 over the system call instruction left control directly after
881 the instruction, the we relocate --- control almost certainly
882 doesn't belong in the displaced copy. Otherwise, we assume
883 the instruction has put control where it belongs, and leave
884 it unrelocated. Goodness help us if there are PC-relative
885 system calls. */
886 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
887 && orig_eip != to + (insn - insn_start) + insn_len
888 /* GDB can get control back after the insn after the syscall.
889 Presumably this is a kernel bug.
890 i386_displaced_step_copy_insn ensures its a nop,
891 we add one to the length for it. */
892 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
893 {
894 if (debug_displaced)
895 fprintf_unfiltered (gdb_stdlog,
896 "displaced: syscall changed %%eip; "
897 "not relocating\n");
898 }
899 else
900 {
901 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
902
1903f0e6
DE
903 /* If we just stepped over a breakpoint insn, we don't backup
904 the pc on purpose; this is to match behaviour without
905 stepping. */
237fc4c9
PA
906
907 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
908
909 if (debug_displaced)
910 fprintf_unfiltered (gdb_stdlog,
911 "displaced: "
5af949e3
UW
912 "relocated %%eip from %s to %s\n",
913 paddress (gdbarch, orig_eip),
914 paddress (gdbarch, eip));
237fc4c9
PA
915 }
916 }
917
918 /* If the instruction was PUSHFL, then the TF bit will be set in the
919 pushed value, and should be cleared. We'll leave this for later,
920 since GDB already messes up the TF flag when stepping over a
921 pushfl. */
922
923 /* If the instruction was a call, the return address now atop the
924 stack is the address following the copied instruction. We need
925 to make it the address following the original instruction. */
926 if (i386_call_p (insn))
927 {
928 ULONGEST esp;
929 ULONGEST retaddr;
930 const ULONGEST retaddr_len = 4;
931
932 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 933 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 934 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 935 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
936
937 if (debug_displaced)
938 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
939 "displaced: relocated return addr at %s to %s\n",
940 paddress (gdbarch, esp),
941 paddress (gdbarch, retaddr));
237fc4c9
PA
942 }
943}
dde08ee1
PA
944
945static void
946append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
947{
948 target_write_memory (*to, buf, len);
949 *to += len;
950}
951
952static void
953i386_relocate_instruction (struct gdbarch *gdbarch,
954 CORE_ADDR *to, CORE_ADDR oldloc)
955{
956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
957 gdb_byte buf[I386_MAX_INSN_LEN];
958 int offset = 0, rel32, newrel;
959 int insn_length;
960 gdb_byte *insn = buf;
961
962 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
963
964 insn_length = gdb_buffered_insn_length (gdbarch, insn,
965 I386_MAX_INSN_LEN, oldloc);
966
967 /* Get past the prefixes. */
968 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
969
970 /* Adjust calls with 32-bit relative addresses as push/jump, with
971 the address pushed being the location where the original call in
972 the user program would return to. */
973 if (insn[0] == 0xe8)
974 {
975 gdb_byte push_buf[16];
976 unsigned int ret_addr;
977
978 /* Where "ret" in the original code will return to. */
979 ret_addr = oldloc + insn_length;
1777feb0 980 push_buf[0] = 0x68; /* pushq $... */
144db827 981 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
982 /* Push the push. */
983 append_insns (to, 5, push_buf);
984
985 /* Convert the relative call to a relative jump. */
986 insn[0] = 0xe9;
987
988 /* Adjust the destination offset. */
989 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
990 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
991 store_signed_integer (insn + 1, 4, byte_order, newrel);
992
993 if (debug_displaced)
994 fprintf_unfiltered (gdb_stdlog,
995 "Adjusted insn rel32=%s at %s to"
996 " rel32=%s at %s\n",
997 hex_string (rel32), paddress (gdbarch, oldloc),
998 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
999
1000 /* Write the adjusted jump into its displaced location. */
1001 append_insns (to, 5, insn);
1002 return;
1003 }
1004
1005 /* Adjust jumps with 32-bit relative addresses. Calls are already
1006 handled above. */
1007 if (insn[0] == 0xe9)
1008 offset = 1;
1009 /* Adjust conditional jumps. */
1010 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1011 offset = 2;
1012
1013 if (offset)
1014 {
1015 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1016 newrel = (oldloc - *to) + rel32;
f4a1794a 1017 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
dde08ee1
PA
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1024 }
1025
1026 /* Write the adjusted instructions into their displaced
1027 location. */
1028 append_insns (to, insn_length, buf);
1029}
1030
fc338970 1031\f
acd5c798
MK
1032#ifdef I386_REGNO_TO_SYMMETRY
1033#error "The Sequent Symmetry is no longer supported."
1034#endif
c906108c 1035
acd5c798
MK
1036/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1037 and %esp "belong" to the calling function. Therefore these
1038 registers should be saved if they're going to be modified. */
c906108c 1039
acd5c798
MK
1040/* The maximum number of saved registers. This should include all
1041 registers mentioned above, and %eip. */
a3386186 1042#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1043
1044struct i386_frame_cache
c906108c 1045{
acd5c798
MK
1046 /* Base address. */
1047 CORE_ADDR base;
8fbca658 1048 int base_p;
772562f8 1049 LONGEST sp_offset;
acd5c798
MK
1050 CORE_ADDR pc;
1051
fd13a04a
AC
1052 /* Saved registers. */
1053 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1054 CORE_ADDR saved_sp;
e0c62198 1055 int saved_sp_reg;
acd5c798
MK
1056 int pc_in_eax;
1057
1058 /* Stack space reserved for local variables. */
1059 long locals;
1060};
1061
1062/* Allocate and initialize a frame cache. */
1063
1064static struct i386_frame_cache *
fd13a04a 1065i386_alloc_frame_cache (void)
acd5c798
MK
1066{
1067 struct i386_frame_cache *cache;
1068 int i;
1069
1070 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1071
1072 /* Base address. */
8fbca658 1073 cache->base_p = 0;
acd5c798
MK
1074 cache->base = 0;
1075 cache->sp_offset = -4;
1076 cache->pc = 0;
1077
fd13a04a
AC
1078 /* Saved registers. We initialize these to -1 since zero is a valid
1079 offset (that's where %ebp is supposed to be stored). */
1080 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1081 cache->saved_regs[i] = -1;
acd5c798 1082 cache->saved_sp = 0;
e0c62198 1083 cache->saved_sp_reg = -1;
acd5c798
MK
1084 cache->pc_in_eax = 0;
1085
1086 /* Frameless until proven otherwise. */
1087 cache->locals = -1;
1088
1089 return cache;
1090}
c906108c 1091
acd5c798
MK
1092/* If the instruction at PC is a jump, return the address of its
1093 target. Otherwise, return PC. */
c906108c 1094
acd5c798 1095static CORE_ADDR
e17a4113 1096i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1097{
e17a4113 1098 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1099 gdb_byte op;
acd5c798
MK
1100 long delta = 0;
1101 int data16 = 0;
c906108c 1102
0865b04a 1103 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1104 return pc;
1105
acd5c798 1106 if (op == 0x66)
c906108c 1107 {
c906108c 1108 data16 = 1;
0865b04a
YQ
1109
1110 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1111 }
1112
acd5c798 1113 switch (op)
c906108c
SS
1114 {
1115 case 0xe9:
fc338970 1116 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1117 if (data16)
1118 {
e17a4113 1119 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1120
fc338970
MK
1121 /* Include the size of the jmp instruction (including the
1122 0x66 prefix). */
acd5c798 1123 delta += 4;
c906108c
SS
1124 }
1125 else
1126 {
e17a4113 1127 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1128
acd5c798
MK
1129 /* Include the size of the jmp instruction. */
1130 delta += 5;
c906108c
SS
1131 }
1132 break;
1133 case 0xeb:
fc338970 1134 /* Relative jump, disp8 (ignore data16). */
e17a4113 1135 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1136
acd5c798 1137 delta += data16 + 2;
c906108c
SS
1138 break;
1139 }
c906108c 1140
acd5c798
MK
1141 return pc + delta;
1142}
fc338970 1143
acd5c798
MK
1144/* Check whether PC points at a prologue for a function returning a
1145 structure or union. If so, it updates CACHE and returns the
1146 address of the first instruction after the code sequence that
1147 removes the "hidden" argument from the stack or CURRENT_PC,
1148 whichever is smaller. Otherwise, return PC. */
c906108c 1149
acd5c798
MK
1150static CORE_ADDR
1151i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1152 struct i386_frame_cache *cache)
c906108c 1153{
acd5c798
MK
1154 /* Functions that return a structure or union start with:
1155
1156 popl %eax 0x58
1157 xchgl %eax, (%esp) 0x87 0x04 0x24
1158 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1159
1160 (the System V compiler puts out the second `xchg' instruction,
1161 and the assembler doesn't try to optimize it, so the 'sib' form
1162 gets generated). This sequence is used to get the address of the
1163 return buffer for a function that returns a structure. */
63c0089f
MK
1164 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1165 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1166 gdb_byte buf[4];
1167 gdb_byte op;
c906108c 1168
acd5c798
MK
1169 if (current_pc <= pc)
1170 return pc;
1171
0865b04a 1172 if (target_read_code (pc, &op, 1))
3dcabaa8 1173 return pc;
c906108c 1174
acd5c798
MK
1175 if (op != 0x58) /* popl %eax */
1176 return pc;
c906108c 1177
0865b04a 1178 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1179 return pc;
1180
acd5c798
MK
1181 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1182 return pc;
c906108c 1183
acd5c798 1184 if (current_pc == pc)
c906108c 1185 {
acd5c798
MK
1186 cache->sp_offset += 4;
1187 return current_pc;
c906108c
SS
1188 }
1189
acd5c798 1190 if (current_pc == pc + 1)
c906108c 1191 {
acd5c798
MK
1192 cache->pc_in_eax = 1;
1193 return current_pc;
1194 }
1195
1196 if (buf[1] == proto1[1])
1197 return pc + 4;
1198 else
1199 return pc + 5;
1200}
1201
1202static CORE_ADDR
1203i386_skip_probe (CORE_ADDR pc)
1204{
1205 /* A function may start with
fc338970 1206
acd5c798
MK
1207 pushl constant
1208 call _probe
1209 addl $4, %esp
fc338970 1210
acd5c798
MK
1211 followed by
1212
1213 pushl %ebp
fc338970 1214
acd5c798 1215 etc. */
63c0089f
MK
1216 gdb_byte buf[8];
1217 gdb_byte op;
fc338970 1218
0865b04a 1219 if (target_read_code (pc, &op, 1))
3dcabaa8 1220 return pc;
acd5c798
MK
1221
1222 if (op == 0x68 || op == 0x6a)
1223 {
1224 int delta;
c906108c 1225
acd5c798
MK
1226 /* Skip past the `pushl' instruction; it has either a one-byte or a
1227 four-byte operand, depending on the opcode. */
c906108c 1228 if (op == 0x68)
acd5c798 1229 delta = 5;
c906108c 1230 else
acd5c798 1231 delta = 2;
c906108c 1232
acd5c798
MK
1233 /* Read the following 8 bytes, which should be `call _probe' (6
1234 bytes) followed by `addl $4,%esp' (2 bytes). */
1235 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1236 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1237 pc += delta + sizeof (buf);
c906108c
SS
1238 }
1239
acd5c798
MK
1240 return pc;
1241}
1242
92dd43fa
MK
1243/* GCC 4.1 and later, can put code in the prologue to realign the
1244 stack pointer. Check whether PC points to such code, and update
1245 CACHE accordingly. Return the first instruction after the code
1246 sequence or CURRENT_PC, whichever is smaller. If we don't
1247 recognize the code, return PC. */
1248
1249static CORE_ADDR
1250i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1251 struct i386_frame_cache *cache)
1252{
e0c62198
L
1253 /* There are 2 code sequences to re-align stack before the frame
1254 gets set up:
1255
1256 1. Use a caller-saved saved register:
1257
1258 leal 4(%esp), %reg
1259 andl $-XXX, %esp
1260 pushl -4(%reg)
1261
1262 2. Use a callee-saved saved register:
1263
1264 pushl %reg
1265 leal 8(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1270
1271 0x83 0xe4 0xf0 andl $-16, %esp
1272 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1273 */
1274
1275 gdb_byte buf[14];
1276 int reg;
1277 int offset, offset_and;
1278 static int regnums[8] = {
1279 I386_EAX_REGNUM, /* %eax */
1280 I386_ECX_REGNUM, /* %ecx */
1281 I386_EDX_REGNUM, /* %edx */
1282 I386_EBX_REGNUM, /* %ebx */
1283 I386_ESP_REGNUM, /* %esp */
1284 I386_EBP_REGNUM, /* %ebp */
1285 I386_ESI_REGNUM, /* %esi */
1286 I386_EDI_REGNUM /* %edi */
92dd43fa 1287 };
92dd43fa 1288
0865b04a 1289 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1290 return pc;
1291
1292 /* Check caller-saved saved register. The first instruction has
1293 to be "leal 4(%esp), %reg". */
1294 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1295 {
1296 /* MOD must be binary 10 and R/M must be binary 100. */
1297 if ((buf[1] & 0xc7) != 0x44)
1298 return pc;
1299
1300 /* REG has register number. */
1301 reg = (buf[1] >> 3) & 7;
1302 offset = 4;
1303 }
1304 else
1305 {
1306 /* Check callee-saved saved register. The first instruction
1307 has to be "pushl %reg". */
1308 if ((buf[0] & 0xf8) != 0x50)
1309 return pc;
1310
1311 /* Get register. */
1312 reg = buf[0] & 0x7;
1313
1314 /* The next instruction has to be "leal 8(%esp), %reg". */
1315 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1316 return pc;
1317
1318 /* MOD must be binary 10 and R/M must be binary 100. */
1319 if ((buf[2] & 0xc7) != 0x44)
1320 return pc;
1321
1322 /* REG has register number. Registers in pushl and leal have to
1323 be the same. */
1324 if (reg != ((buf[2] >> 3) & 7))
1325 return pc;
1326
1327 offset = 5;
1328 }
1329
1330 /* Rigister can't be %esp nor %ebp. */
1331 if (reg == 4 || reg == 5)
1332 return pc;
1333
1334 /* The next instruction has to be "andl $-XXX, %esp". */
1335 if (buf[offset + 1] != 0xe4
1336 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1337 return pc;
1338
1339 offset_and = offset;
1340 offset += buf[offset] == 0x81 ? 6 : 3;
1341
1342 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1343 0xfc. REG must be binary 110 and MOD must be binary 01. */
1344 if (buf[offset] != 0xff
1345 || buf[offset + 2] != 0xfc
1346 || (buf[offset + 1] & 0xf8) != 0x70)
1347 return pc;
1348
1349 /* R/M has register. Registers in leal and pushl have to be the
1350 same. */
1351 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1352 return pc;
1353
e0c62198
L
1354 if (current_pc > pc + offset_and)
1355 cache->saved_sp_reg = regnums[reg];
92dd43fa 1356
e0c62198 1357 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1358}
1359
37bdc87e 1360/* Maximum instruction length we need to handle. */
237fc4c9 1361#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1362
1363/* Instruction description. */
1364struct i386_insn
1365{
1366 size_t len;
237fc4c9
PA
1367 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1368 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1369};
1370
a3fcb948 1371/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1372
a3fcb948
JG
1373static int
1374i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1375{
63c0089f 1376 gdb_byte op;
37bdc87e 1377
0865b04a 1378 if (target_read_code (pc, &op, 1))
a3fcb948 1379 return 0;
37bdc87e 1380
a3fcb948 1381 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1382 {
a3fcb948
JG
1383 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1384 int insn_matched = 1;
1385 size_t i;
37bdc87e 1386
a3fcb948
JG
1387 gdb_assert (pattern.len > 1);
1388 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1389
0865b04a 1390 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1391 return 0;
613e8135 1392
a3fcb948
JG
1393 for (i = 1; i < pattern.len; i++)
1394 {
1395 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1396 insn_matched = 0;
37bdc87e 1397 }
a3fcb948
JG
1398 return insn_matched;
1399 }
1400 return 0;
1401}
1402
1403/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1404 the first instruction description that matches. Otherwise, return
1405 NULL. */
1406
1407static struct i386_insn *
1408i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1409{
1410 struct i386_insn *pattern;
1411
1412 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1413 {
1414 if (i386_match_pattern (pc, *pattern))
1415 return pattern;
37bdc87e
MK
1416 }
1417
1418 return NULL;
1419}
1420
a3fcb948
JG
1421/* Return whether PC points inside a sequence of instructions that
1422 matches INSN_PATTERNS. */
1423
1424static int
1425i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1426{
1427 CORE_ADDR current_pc;
1428 int ix, i;
a3fcb948
JG
1429 struct i386_insn *insn;
1430
1431 insn = i386_match_insn (pc, insn_patterns);
1432 if (insn == NULL)
1433 return 0;
1434
8bbdd3f4 1435 current_pc = pc;
a3fcb948
JG
1436 ix = insn - insn_patterns;
1437 for (i = ix - 1; i >= 0; i--)
1438 {
8bbdd3f4
MK
1439 current_pc -= insn_patterns[i].len;
1440
a3fcb948
JG
1441 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1442 return 0;
a3fcb948
JG
1443 }
1444
1445 current_pc = pc + insn->len;
1446 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1447 {
1448 if (!i386_match_pattern (current_pc, *insn))
1449 return 0;
1450
1451 current_pc += insn->len;
1452 }
1453
1454 return 1;
1455}
1456
37bdc87e
MK
1457/* Some special instructions that might be migrated by GCC into the
1458 part of the prologue that sets up the new stack frame. Because the
1459 stack frame hasn't been setup yet, no registers have been saved
1460 yet, and only the scratch registers %eax, %ecx and %edx can be
1461 touched. */
1462
1463struct i386_insn i386_frame_setup_skip_insns[] =
1464{
1777feb0 1465 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1466
1467 ??? Should we handle 16-bit operand-sizes here? */
1468
1469 /* `movb imm8, %al' and `movb imm8, %ah' */
1470 /* `movb imm8, %cl' and `movb imm8, %ch' */
1471 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1472 /* `movb imm8, %dl' and `movb imm8, %dh' */
1473 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1474 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1475 { 5, { 0xb8 }, { 0xfe } },
1476 /* `movl imm32, %edx' */
1477 { 5, { 0xba }, { 0xff } },
1478
1479 /* Check for `mov imm32, r32'. Note that there is an alternative
1480 encoding for `mov m32, %eax'.
1481
1482 ??? Should we handle SIB adressing here?
1483 ??? Should we handle 16-bit operand-sizes here? */
1484
1485 /* `movl m32, %eax' */
1486 { 5, { 0xa1 }, { 0xff } },
1487 /* `movl m32, %eax' and `mov; m32, %ecx' */
1488 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1489 /* `movl m32, %edx' */
1490 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1491
1492 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1493 Because of the symmetry, there are actually two ways to encode
1494 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1495 opcode bytes 0x31 and 0x33 for `xorl'. */
1496
1497 /* `subl %eax, %eax' */
1498 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1499 /* `subl %ecx, %ecx' */
1500 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1501 /* `subl %edx, %edx' */
1502 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1503 /* `xorl %eax, %eax' */
1504 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1505 /* `xorl %ecx, %ecx' */
1506 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1507 /* `xorl %edx, %edx' */
1508 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1509 { 0 }
1510};
1511
e11481da
PM
1512
1513/* Check whether PC points to a no-op instruction. */
1514static CORE_ADDR
1515i386_skip_noop (CORE_ADDR pc)
1516{
1517 gdb_byte op;
1518 int check = 1;
1519
0865b04a 1520 if (target_read_code (pc, &op, 1))
3dcabaa8 1521 return pc;
e11481da
PM
1522
1523 while (check)
1524 {
1525 check = 0;
1526 /* Ignore `nop' instruction. */
1527 if (op == 0x90)
1528 {
1529 pc += 1;
0865b04a 1530 if (target_read_code (pc, &op, 1))
3dcabaa8 1531 return pc;
e11481da
PM
1532 check = 1;
1533 }
1534 /* Ignore no-op instruction `mov %edi, %edi'.
1535 Microsoft system dlls often start with
1536 a `mov %edi,%edi' instruction.
1537 The 5 bytes before the function start are
1538 filled with `nop' instructions.
1539 This pattern can be used for hot-patching:
1540 The `mov %edi, %edi' instruction can be replaced by a
1541 near jump to the location of the 5 `nop' instructions
1542 which can be replaced by a 32-bit jump to anywhere
1543 in the 32-bit address space. */
1544
1545 else if (op == 0x8b)
1546 {
0865b04a 1547 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1548 return pc;
1549
e11481da
PM
1550 if (op == 0xff)
1551 {
1552 pc += 2;
0865b04a 1553 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1554 return pc;
1555
e11481da
PM
1556 check = 1;
1557 }
1558 }
1559 }
1560 return pc;
1561}
1562
acd5c798
MK
1563/* Check whether PC points at a code that sets up a new stack frame.
1564 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1565 instruction after the sequence that sets up the frame or LIMIT,
1566 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1567
1568static CORE_ADDR
e17a4113
UW
1569i386_analyze_frame_setup (struct gdbarch *gdbarch,
1570 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1571 struct i386_frame_cache *cache)
1572{
e17a4113 1573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1574 struct i386_insn *insn;
63c0089f 1575 gdb_byte op;
26604a34 1576 int skip = 0;
acd5c798 1577
37bdc87e
MK
1578 if (limit <= pc)
1579 return limit;
acd5c798 1580
0865b04a 1581 if (target_read_code (pc, &op, 1))
3dcabaa8 1582 return pc;
acd5c798 1583
c906108c 1584 if (op == 0x55) /* pushl %ebp */
c5aa993b 1585 {
acd5c798
MK
1586 /* Take into account that we've executed the `pushl %ebp' that
1587 starts this instruction sequence. */
fd13a04a 1588 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1589 cache->sp_offset += 4;
37bdc87e 1590 pc++;
acd5c798
MK
1591
1592 /* If that's all, return now. */
37bdc87e
MK
1593 if (limit <= pc)
1594 return limit;
26604a34 1595
b4632131 1596 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1597 GCC into the prologue and skip them. At this point in the
1598 prologue, code should only touch the scratch registers %eax,
1599 %ecx and %edx, so while the number of posibilities is sheer,
1600 it is limited.
5daa5b4e 1601
26604a34
MK
1602 Make sure we only skip these instructions if we later see the
1603 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1604 while (pc + skip < limit)
26604a34 1605 {
37bdc87e
MK
1606 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1607 if (insn == NULL)
1608 break;
b4632131 1609
37bdc87e 1610 skip += insn->len;
26604a34
MK
1611 }
1612
37bdc87e
MK
1613 /* If that's all, return now. */
1614 if (limit <= pc + skip)
1615 return limit;
1616
0865b04a 1617 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1618 return pc + skip;
37bdc87e 1619
30f8135b
YQ
1620 /* The i386 prologue looks like
1621
1622 push %ebp
1623 mov %esp,%ebp
1624 sub $0x10,%esp
1625
1626 and a different prologue can be generated for atom.
1627
1628 push %ebp
1629 lea (%esp),%ebp
1630 lea -0x10(%esp),%esp
1631
1632 We handle both of them here. */
1633
acd5c798 1634 switch (op)
c906108c 1635 {
30f8135b 1636 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1637 case 0x8b:
0865b04a 1638 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1639 != 0xec)
37bdc87e 1640 return pc;
30f8135b 1641 pc += (skip + 2);
c906108c
SS
1642 break;
1643 case 0x89:
0865b04a 1644 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1645 != 0xe5)
37bdc87e 1646 return pc;
30f8135b
YQ
1647 pc += (skip + 2);
1648 break;
1649 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1650 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1651 != 0x242c)
1652 return pc;
1653 pc += (skip + 3);
c906108c
SS
1654 break;
1655 default:
37bdc87e 1656 return pc;
c906108c 1657 }
acd5c798 1658
26604a34
MK
1659 /* OK, we actually have a frame. We just don't know how large
1660 it is yet. Set its size to zero. We'll adjust it if
1661 necessary. We also now commit to skipping the special
1662 instructions mentioned before. */
acd5c798
MK
1663 cache->locals = 0;
1664
1665 /* If that's all, return now. */
37bdc87e
MK
1666 if (limit <= pc)
1667 return limit;
acd5c798 1668
fc338970
MK
1669 /* Check for stack adjustment
1670
acd5c798 1671 subl $XXX, %esp
30f8135b
YQ
1672 or
1673 lea -XXX(%esp),%esp
fc338970 1674
fd35795f 1675 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1676 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1677 if (target_read_code (pc, &op, 1))
3dcabaa8 1678 return pc;
c906108c
SS
1679 if (op == 0x83)
1680 {
fd35795f 1681 /* `subl' with 8-bit immediate. */
0865b04a 1682 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1683 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1684 return pc;
acd5c798 1685
37bdc87e
MK
1686 /* `subl' with signed 8-bit immediate (though it wouldn't
1687 make sense to be negative). */
0865b04a 1688 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1689 return pc + 3;
c906108c
SS
1690 }
1691 else if (op == 0x81)
1692 {
fd35795f 1693 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1694 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1695 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1696 return pc;
acd5c798 1697
fd35795f 1698 /* It is `subl' with a 32-bit immediate. */
0865b04a 1699 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1700 return pc + 6;
c906108c 1701 }
30f8135b
YQ
1702 else if (op == 0x8d)
1703 {
1704 /* The ModR/M byte is 0x64. */
0865b04a 1705 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1706 return pc;
1707 /* 'lea' with 8-bit displacement. */
0865b04a 1708 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1709 return pc + 4;
1710 }
c906108c
SS
1711 else
1712 {
30f8135b 1713 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1714 return pc;
c906108c
SS
1715 }
1716 }
37bdc87e 1717 else if (op == 0xc8) /* enter */
c906108c 1718 {
0865b04a 1719 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1720 return pc + 4;
c906108c 1721 }
21d0e8a4 1722
acd5c798 1723 return pc;
21d0e8a4
MK
1724}
1725
acd5c798
MK
1726/* Check whether PC points at code that saves registers on the stack.
1727 If so, it updates CACHE and returns the address of the first
1728 instruction after the register saves or CURRENT_PC, whichever is
1729 smaller. Otherwise, return PC. */
6bff26de
MK
1730
1731static CORE_ADDR
acd5c798
MK
1732i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1733 struct i386_frame_cache *cache)
6bff26de 1734{
99ab4326 1735 CORE_ADDR offset = 0;
63c0089f 1736 gdb_byte op;
99ab4326 1737 int i;
c0d1d883 1738
99ab4326
MK
1739 if (cache->locals > 0)
1740 offset -= cache->locals;
1741 for (i = 0; i < 8 && pc < current_pc; i++)
1742 {
0865b04a 1743 if (target_read_code (pc, &op, 1))
3dcabaa8 1744 return pc;
99ab4326
MK
1745 if (op < 0x50 || op > 0x57)
1746 break;
0d17c81d 1747
99ab4326
MK
1748 offset -= 4;
1749 cache->saved_regs[op - 0x50] = offset;
1750 cache->sp_offset += 4;
1751 pc++;
6bff26de
MK
1752 }
1753
acd5c798 1754 return pc;
22797942
AC
1755}
1756
acd5c798
MK
1757/* Do a full analysis of the prologue at PC and update CACHE
1758 accordingly. Bail out early if CURRENT_PC is reached. Return the
1759 address where the analysis stopped.
ed84f6c1 1760
fc338970
MK
1761 We handle these cases:
1762
1763 The startup sequence can be at the start of the function, or the
1764 function can start with a branch to startup code at the end.
1765
1766 %ebp can be set up with either the 'enter' instruction, or "pushl
1767 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1768 once used in the System V compiler).
1769
1770 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1771 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1772 16-bit unsigned argument for space to allocate, and the 'addl'
1773 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1774
1775 Next, the registers used by this function are pushed. With the
1776 System V compiler they will always be in the order: %edi, %esi,
1777 %ebx (and sometimes a harmless bug causes it to also save but not
1778 restore %eax); however, the code below is willing to see the pushes
1779 in any order, and will handle up to 8 of them.
1780
1781 If the setup sequence is at the end of the function, then the next
1782 instruction will be a branch back to the start. */
c906108c 1783
acd5c798 1784static CORE_ADDR
e17a4113
UW
1785i386_analyze_prologue (struct gdbarch *gdbarch,
1786 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1787 struct i386_frame_cache *cache)
c906108c 1788{
e11481da 1789 pc = i386_skip_noop (pc);
e17a4113 1790 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1791 pc = i386_analyze_struct_return (pc, current_pc, cache);
1792 pc = i386_skip_probe (pc);
92dd43fa 1793 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1794 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1795 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1796}
1797
fc338970 1798/* Return PC of first real instruction. */
c906108c 1799
3a1e71e3 1800static CORE_ADDR
6093d2eb 1801i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1802{
e17a4113
UW
1803 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1804
63c0089f 1805 static gdb_byte pic_pat[6] =
acd5c798
MK
1806 {
1807 0xe8, 0, 0, 0, 0, /* call 0x0 */
1808 0x5b, /* popl %ebx */
c5aa993b 1809 };
acd5c798
MK
1810 struct i386_frame_cache cache;
1811 CORE_ADDR pc;
63c0089f 1812 gdb_byte op;
acd5c798 1813 int i;
56bf0743 1814 CORE_ADDR func_addr;
4e879fc2 1815
56bf0743
KB
1816 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1817 {
1818 CORE_ADDR post_prologue_pc
1819 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1820 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
1821
1822 /* Clang always emits a line note before the prologue and another
1823 one after. We trust clang to emit usable line notes. */
1824 if (post_prologue_pc
43f3e411
DE
1825 && (cust != NULL
1826 && COMPUNIT_PRODUCER (cust) != NULL
1827 && strncmp (COMPUNIT_PRODUCER (cust), "clang ",
1828 sizeof ("clang ") - 1) == 0))
56bf0743
KB
1829 return max (start_pc, post_prologue_pc);
1830 }
1831
e0f33b1f 1832 cache.locals = -1;
e17a4113 1833 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1834 if (cache.locals < 0)
1835 return start_pc;
c5aa993b 1836
acd5c798 1837 /* Found valid frame setup. */
c906108c 1838
fc338970
MK
1839 /* The native cc on SVR4 in -K PIC mode inserts the following code
1840 to get the address of the global offset table (GOT) into register
acd5c798
MK
1841 %ebx:
1842
fc338970
MK
1843 call 0x0
1844 popl %ebx
1845 movl %ebx,x(%ebp) (optional)
1846 addl y,%ebx
1847
c906108c
SS
1848 This code is with the rest of the prologue (at the end of the
1849 function), so we have to skip it to get to the first real
1850 instruction at the start of the function. */
c5aa993b 1851
c906108c
SS
1852 for (i = 0; i < 6; i++)
1853 {
0865b04a 1854 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1855 return pc;
1856
c5aa993b 1857 if (pic_pat[i] != op)
c906108c
SS
1858 break;
1859 }
1860 if (i == 6)
1861 {
acd5c798
MK
1862 int delta = 6;
1863
0865b04a 1864 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1865 return pc;
c906108c 1866
c5aa993b 1867 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1868 {
0865b04a 1869 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1870
fc338970 1871 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1872 delta += 3;
fc338970 1873 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1874 delta += 6;
fc338970 1875 else /* Unexpected instruction. */
acd5c798
MK
1876 delta = 0;
1877
0865b04a 1878 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1879 return pc;
c906108c 1880 }
acd5c798 1881
c5aa993b 1882 /* addl y,%ebx */
acd5c798 1883 if (delta > 0 && op == 0x81
0865b04a 1884 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1885 == 0xc3)
c906108c 1886 {
acd5c798 1887 pc += delta + 6;
c906108c
SS
1888 }
1889 }
c5aa993b 1890
e63bbc88
MK
1891 /* If the function starts with a branch (to startup code at the end)
1892 the last instruction should bring us back to the first
1893 instruction of the real code. */
e17a4113
UW
1894 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1895 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1896
1897 return pc;
c906108c
SS
1898}
1899
4309257c
PM
1900/* Check that the code pointed to by PC corresponds to a call to
1901 __main, skip it if so. Return PC otherwise. */
1902
1903CORE_ADDR
1904i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1905{
e17a4113 1906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1907 gdb_byte op;
1908
0865b04a 1909 if (target_read_code (pc, &op, 1))
3dcabaa8 1910 return pc;
4309257c
PM
1911 if (op == 0xe8)
1912 {
1913 gdb_byte buf[4];
1914
0865b04a 1915 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1916 {
1917 /* Make sure address is computed correctly as a 32bit
1918 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1919 struct bound_minimal_symbol s;
e17a4113 1920 CORE_ADDR call_dest;
4309257c 1921
e17a4113 1922 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1923 call_dest = call_dest & 0xffffffffU;
1924 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1925 if (s.minsym != NULL
efd66ac6
TT
1926 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1927 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1928 pc += 5;
1929 }
1930 }
1931
1932 return pc;
1933}
1934
acd5c798 1935/* This function is 64-bit safe. */
93924b6b 1936
acd5c798
MK
1937static CORE_ADDR
1938i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1939{
63c0089f 1940 gdb_byte buf[8];
acd5c798 1941
875f8d0e 1942 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1943 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1944}
acd5c798 1945\f
93924b6b 1946
acd5c798 1947/* Normal frames. */
c5aa993b 1948
8fbca658
PA
1949static void
1950i386_frame_cache_1 (struct frame_info *this_frame,
1951 struct i386_frame_cache *cache)
a7769679 1952{
e17a4113
UW
1953 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1954 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1955 gdb_byte buf[4];
acd5c798
MK
1956 int i;
1957
8fbca658 1958 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1959
1960 /* In principle, for normal frames, %ebp holds the frame pointer,
1961 which holds the base address for the current stack frame.
1962 However, for functions that don't need it, the frame pointer is
1963 optional. For these "frameless" functions the frame pointer is
1964 actually the frame pointer of the calling frame. Signal
1965 trampolines are just a special case of a "frameless" function.
1966 They (usually) share their frame pointer with the frame that was
1967 in progress when the signal occurred. */
1968
10458914 1969 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1970 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1971 if (cache->base == 0)
620fa63a
PA
1972 {
1973 cache->base_p = 1;
1974 return;
1975 }
acd5c798
MK
1976
1977 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1978 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1979
acd5c798 1980 if (cache->pc != 0)
e17a4113
UW
1981 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1982 cache);
acd5c798
MK
1983
1984 if (cache->locals < 0)
1985 {
1986 /* We didn't find a valid frame, which means that CACHE->base
1987 currently holds the frame pointer for our calling frame. If
1988 we're at the start of a function, or somewhere half-way its
1989 prologue, the function's frame probably hasn't been fully
1990 setup yet. Try to reconstruct the base address for the stack
1991 frame by looking at the stack pointer. For truly "frameless"
1992 functions this might work too. */
1993
e0c62198 1994 if (cache->saved_sp_reg != -1)
92dd43fa 1995 {
8fbca658
PA
1996 /* Saved stack pointer has been saved. */
1997 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1998 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1999
92dd43fa
MK
2000 /* We're halfway aligning the stack. */
2001 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2002 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2003
2004 /* This will be added back below. */
2005 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2006 }
7618e12b 2007 else if (cache->pc != 0
0865b04a 2008 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2009 {
7618e12b
DJ
2010 /* We're in a known function, but did not find a frame
2011 setup. Assume that the function does not use %ebp.
2012 Alternatively, we may have jumped to an invalid
2013 address; in that case there is definitely no new
2014 frame in %ebp. */
10458914 2015 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2016 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2017 + cache->sp_offset;
92dd43fa 2018 }
7618e12b
DJ
2019 else
2020 /* We're in an unknown function. We could not find the start
2021 of the function to analyze the prologue; our best option is
2022 to assume a typical frame layout with the caller's %ebp
2023 saved. */
2024 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2025 }
2026
8fbca658
PA
2027 if (cache->saved_sp_reg != -1)
2028 {
2029 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2030 register may be unavailable). */
2031 if (cache->saved_sp == 0
ca9d61b9
JB
2032 && deprecated_frame_register_read (this_frame,
2033 cache->saved_sp_reg, buf))
8fbca658
PA
2034 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2035 }
acd5c798
MK
2036 /* Now that we have the base address for the stack frame we can
2037 calculate the value of %esp in the calling frame. */
8fbca658 2038 else if (cache->saved_sp == 0)
92dd43fa 2039 cache->saved_sp = cache->base + 8;
a7769679 2040
acd5c798
MK
2041 /* Adjust all the saved registers such that they contain addresses
2042 instead of offsets. */
2043 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2044 if (cache->saved_regs[i] != -1)
2045 cache->saved_regs[i] += cache->base;
acd5c798 2046
8fbca658
PA
2047 cache->base_p = 1;
2048}
2049
2050static struct i386_frame_cache *
2051i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2052{
2053 volatile struct gdb_exception ex;
2054 struct i386_frame_cache *cache;
2055
2056 if (*this_cache)
2057 return *this_cache;
2058
2059 cache = i386_alloc_frame_cache ();
2060 *this_cache = cache;
2061
2062 TRY_CATCH (ex, RETURN_MASK_ERROR)
2063 {
2064 i386_frame_cache_1 (this_frame, cache);
2065 }
2066 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2067 throw_exception (ex);
2068
acd5c798 2069 return cache;
a7769679
MK
2070}
2071
3a1e71e3 2072static void
10458914 2073i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2074 struct frame_id *this_id)
c906108c 2075{
10458914 2076 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2077
5ce0145d
PA
2078 if (!cache->base_p)
2079 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2080 else if (cache->base == 0)
2081 {
2082 /* This marks the outermost frame. */
2083 }
2084 else
2085 {
2086 /* See the end of i386_push_dummy_call. */
2087 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2088 }
acd5c798
MK
2089}
2090
8fbca658
PA
2091static enum unwind_stop_reason
2092i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2093 void **this_cache)
2094{
2095 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2096
2097 if (!cache->base_p)
2098 return UNWIND_UNAVAILABLE;
2099
2100 /* This marks the outermost frame. */
2101 if (cache->base == 0)
2102 return UNWIND_OUTERMOST;
2103
2104 return UNWIND_NO_REASON;
2105}
2106
10458914
DJ
2107static struct value *
2108i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2109 int regnum)
acd5c798 2110{
10458914 2111 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2112
2113 gdb_assert (regnum >= 0);
2114
2115 /* The System V ABI says that:
2116
2117 "The flags register contains the system flags, such as the
2118 direction flag and the carry flag. The direction flag must be
2119 set to the forward (that is, zero) direction before entry and
2120 upon exit from a function. Other user flags have no specified
2121 role in the standard calling sequence and are not preserved."
2122
2123 To guarantee the "upon exit" part of that statement we fake a
2124 saved flags register that has its direction flag cleared.
2125
2126 Note that GCC doesn't seem to rely on the fact that the direction
2127 flag is cleared after a function return; it always explicitly
2128 clears the flag before operations where it matters.
2129
2130 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2131 right thing to do. The way we fake the flags register here makes
2132 it impossible to change it. */
2133
2134 if (regnum == I386_EFLAGS_REGNUM)
2135 {
10458914 2136 ULONGEST val;
c5aa993b 2137
10458914
DJ
2138 val = get_frame_register_unsigned (this_frame, regnum);
2139 val &= ~(1 << 10);
2140 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2141 }
1211c4e4 2142
acd5c798 2143 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2144 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2145
fcf250e2
UW
2146 if (regnum == I386_ESP_REGNUM
2147 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2148 {
2149 /* If the SP has been saved, but we don't know where, then this
2150 means that SAVED_SP_REG register was found unavailable back
2151 when we built the cache. */
fcf250e2 2152 if (cache->saved_sp == 0)
8fbca658
PA
2153 return frame_unwind_got_register (this_frame, regnum,
2154 cache->saved_sp_reg);
2155 else
2156 return frame_unwind_got_constant (this_frame, regnum,
2157 cache->saved_sp);
2158 }
acd5c798 2159
fd13a04a 2160 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2161 return frame_unwind_got_memory (this_frame, regnum,
2162 cache->saved_regs[regnum]);
fd13a04a 2163
10458914 2164 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2165}
2166
2167static const struct frame_unwind i386_frame_unwind =
2168{
2169 NORMAL_FRAME,
8fbca658 2170 i386_frame_unwind_stop_reason,
acd5c798 2171 i386_frame_this_id,
10458914
DJ
2172 i386_frame_prev_register,
2173 NULL,
2174 default_frame_sniffer
acd5c798 2175};
06da04c6
MS
2176
2177/* Normal frames, but in a function epilogue. */
2178
2179/* The epilogue is defined here as the 'ret' instruction, which will
2180 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2181 the function's stack frame. */
2182
2183static int
2184i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2185{
2186 gdb_byte insn;
43f3e411 2187 struct compunit_symtab *cust;
e0d00bc7 2188
43f3e411
DE
2189 cust = find_pc_compunit_symtab (pc);
2190 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2191 return 0;
06da04c6
MS
2192
2193 if (target_read_memory (pc, &insn, 1))
2194 return 0; /* Can't read memory at pc. */
2195
2196 if (insn != 0xc3) /* 'ret' instruction. */
2197 return 0;
2198
2199 return 1;
2200}
2201
2202static int
2203i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2204 struct frame_info *this_frame,
2205 void **this_prologue_cache)
2206{
2207 if (frame_relative_level (this_frame) == 0)
2208 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2209 get_frame_pc (this_frame));
2210 else
2211 return 0;
2212}
2213
2214static struct i386_frame_cache *
2215i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2216{
8fbca658 2217 volatile struct gdb_exception ex;
06da04c6 2218 struct i386_frame_cache *cache;
0d6c2135 2219 CORE_ADDR sp;
06da04c6
MS
2220
2221 if (*this_cache)
2222 return *this_cache;
2223
2224 cache = i386_alloc_frame_cache ();
2225 *this_cache = cache;
2226
8fbca658
PA
2227 TRY_CATCH (ex, RETURN_MASK_ERROR)
2228 {
0d6c2135 2229 cache->pc = get_frame_func (this_frame);
06da04c6 2230
0d6c2135
MK
2231 /* At this point the stack looks as if we just entered the
2232 function, with the return address at the top of the
2233 stack. */
2234 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2235 cache->base = sp + cache->sp_offset;
8fbca658 2236 cache->saved_sp = cache->base + 8;
8fbca658 2237 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2238
8fbca658
PA
2239 cache->base_p = 1;
2240 }
2241 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2242 throw_exception (ex);
06da04c6
MS
2243
2244 return cache;
2245}
2246
8fbca658
PA
2247static enum unwind_stop_reason
2248i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2249 void **this_cache)
2250{
0d6c2135
MK
2251 struct i386_frame_cache *cache =
2252 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2253
2254 if (!cache->base_p)
2255 return UNWIND_UNAVAILABLE;
2256
2257 return UNWIND_NO_REASON;
2258}
2259
06da04c6
MS
2260static void
2261i386_epilogue_frame_this_id (struct frame_info *this_frame,
2262 void **this_cache,
2263 struct frame_id *this_id)
2264{
0d6c2135
MK
2265 struct i386_frame_cache *cache =
2266 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2267
8fbca658 2268 if (!cache->base_p)
5ce0145d
PA
2269 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2270 else
2271 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2272}
2273
0d6c2135
MK
2274static struct value *
2275i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2276 void **this_cache, int regnum)
2277{
2278 /* Make sure we've initialized the cache. */
2279 i386_epilogue_frame_cache (this_frame, this_cache);
2280
2281 return i386_frame_prev_register (this_frame, this_cache, regnum);
2282}
2283
06da04c6
MS
2284static const struct frame_unwind i386_epilogue_frame_unwind =
2285{
2286 NORMAL_FRAME,
8fbca658 2287 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2288 i386_epilogue_frame_this_id,
0d6c2135 2289 i386_epilogue_frame_prev_register,
06da04c6
MS
2290 NULL,
2291 i386_epilogue_frame_sniffer
2292};
acd5c798
MK
2293\f
2294
a3fcb948
JG
2295/* Stack-based trampolines. */
2296
2297/* These trampolines are used on cross x86 targets, when taking the
2298 address of a nested function. When executing these trampolines,
2299 no stack frame is set up, so we are in a similar situation as in
2300 epilogues and i386_epilogue_frame_this_id can be re-used. */
2301
2302/* Static chain passed in register. */
2303
2304struct i386_insn i386_tramp_chain_in_reg_insns[] =
2305{
2306 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2307 { 5, { 0xb8 }, { 0xfe } },
2308
2309 /* `jmp imm32' */
2310 { 5, { 0xe9 }, { 0xff } },
2311
2312 {0}
2313};
2314
2315/* Static chain passed on stack (when regparm=3). */
2316
2317struct i386_insn i386_tramp_chain_on_stack_insns[] =
2318{
2319 /* `push imm32' */
2320 { 5, { 0x68 }, { 0xff } },
2321
2322 /* `jmp imm32' */
2323 { 5, { 0xe9 }, { 0xff } },
2324
2325 {0}
2326};
2327
2328/* Return whether PC points inside a stack trampoline. */
2329
2330static int
6df81a63 2331i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2332{
2333 gdb_byte insn;
2c02bd72 2334 const char *name;
a3fcb948
JG
2335
2336 /* A stack trampoline is detected if no name is associated
2337 to the current pc and if it points inside a trampoline
2338 sequence. */
2339
2340 find_pc_partial_function (pc, &name, NULL, NULL);
2341 if (name)
2342 return 0;
2343
2344 if (target_read_memory (pc, &insn, 1))
2345 return 0;
2346
2347 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2348 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2349 return 0;
2350
2351 return 1;
2352}
2353
2354static int
2355i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2356 struct frame_info *this_frame,
2357 void **this_cache)
a3fcb948
JG
2358{
2359 if (frame_relative_level (this_frame) == 0)
6df81a63 2360 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2361 else
2362 return 0;
2363}
2364
2365static const struct frame_unwind i386_stack_tramp_frame_unwind =
2366{
2367 NORMAL_FRAME,
2368 i386_epilogue_frame_unwind_stop_reason,
2369 i386_epilogue_frame_this_id,
0d6c2135 2370 i386_epilogue_frame_prev_register,
a3fcb948
JG
2371 NULL,
2372 i386_stack_tramp_frame_sniffer
2373};
2374\f
6710bf39
SS
2375/* Generate a bytecode expression to get the value of the saved PC. */
2376
2377static void
2378i386_gen_return_address (struct gdbarch *gdbarch,
2379 struct agent_expr *ax, struct axs_value *value,
2380 CORE_ADDR scope)
2381{
2382 /* The following sequence assumes the traditional use of the base
2383 register. */
2384 ax_reg (ax, I386_EBP_REGNUM);
2385 ax_const_l (ax, 4);
2386 ax_simple (ax, aop_add);
2387 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2388 value->kind = axs_lvalue_memory;
2389}
2390\f
a3fcb948 2391
acd5c798
MK
2392/* Signal trampolines. */
2393
2394static struct i386_frame_cache *
10458914 2395i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2396{
e17a4113
UW
2397 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2399 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2400 volatile struct gdb_exception ex;
acd5c798 2401 struct i386_frame_cache *cache;
acd5c798 2402 CORE_ADDR addr;
63c0089f 2403 gdb_byte buf[4];
acd5c798
MK
2404
2405 if (*this_cache)
2406 return *this_cache;
2407
fd13a04a 2408 cache = i386_alloc_frame_cache ();
acd5c798 2409
8fbca658 2410 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2411 {
8fbca658
PA
2412 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2413 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2414
8fbca658
PA
2415 addr = tdep->sigcontext_addr (this_frame);
2416 if (tdep->sc_reg_offset)
2417 {
2418 int i;
a3386186 2419
8fbca658
PA
2420 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2421
2422 for (i = 0; i < tdep->sc_num_regs; i++)
2423 if (tdep->sc_reg_offset[i] != -1)
2424 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2425 }
2426 else
2427 {
2428 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2429 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2430 }
2431
2432 cache->base_p = 1;
a3386186 2433 }
8fbca658
PA
2434 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2435 throw_exception (ex);
acd5c798
MK
2436
2437 *this_cache = cache;
2438 return cache;
2439}
2440
8fbca658
PA
2441static enum unwind_stop_reason
2442i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2443 void **this_cache)
2444{
2445 struct i386_frame_cache *cache =
2446 i386_sigtramp_frame_cache (this_frame, this_cache);
2447
2448 if (!cache->base_p)
2449 return UNWIND_UNAVAILABLE;
2450
2451 return UNWIND_NO_REASON;
2452}
2453
acd5c798 2454static void
10458914 2455i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2456 struct frame_id *this_id)
2457{
2458 struct i386_frame_cache *cache =
10458914 2459 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2460
8fbca658 2461 if (!cache->base_p)
5ce0145d
PA
2462 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2463 else
2464 {
2465 /* See the end of i386_push_dummy_call. */
2466 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2467 }
acd5c798
MK
2468}
2469
10458914
DJ
2470static struct value *
2471i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2472 void **this_cache, int regnum)
acd5c798
MK
2473{
2474 /* Make sure we've initialized the cache. */
10458914 2475 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2476
10458914 2477 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2478}
c0d1d883 2479
10458914
DJ
2480static int
2481i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2482 struct frame_info *this_frame,
2483 void **this_prologue_cache)
acd5c798 2484{
10458914 2485 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2486
911bc6ee
MK
2487 /* We shouldn't even bother if we don't have a sigcontext_addr
2488 handler. */
2489 if (tdep->sigcontext_addr == NULL)
10458914 2490 return 0;
1c3545ae 2491
911bc6ee
MK
2492 if (tdep->sigtramp_p != NULL)
2493 {
10458914
DJ
2494 if (tdep->sigtramp_p (this_frame))
2495 return 1;
911bc6ee
MK
2496 }
2497
2498 if (tdep->sigtramp_start != 0)
2499 {
10458914 2500 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2501
2502 gdb_assert (tdep->sigtramp_end != 0);
2503 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2504 return 1;
911bc6ee 2505 }
acd5c798 2506
10458914 2507 return 0;
acd5c798 2508}
10458914
DJ
2509
2510static const struct frame_unwind i386_sigtramp_frame_unwind =
2511{
2512 SIGTRAMP_FRAME,
8fbca658 2513 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2514 i386_sigtramp_frame_this_id,
2515 i386_sigtramp_frame_prev_register,
2516 NULL,
2517 i386_sigtramp_frame_sniffer
2518};
acd5c798
MK
2519\f
2520
2521static CORE_ADDR
10458914 2522i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2523{
10458914 2524 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2525
2526 return cache->base;
2527}
2528
2529static const struct frame_base i386_frame_base =
2530{
2531 &i386_frame_unwind,
2532 i386_frame_base_address,
2533 i386_frame_base_address,
2534 i386_frame_base_address
2535};
2536
acd5c798 2537static struct frame_id
10458914 2538i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2539{
acd5c798
MK
2540 CORE_ADDR fp;
2541
10458914 2542 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2543
3e210248 2544 /* See the end of i386_push_dummy_call. */
10458914 2545 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2546}
e04e5beb
JM
2547
2548/* _Decimal128 function return values need 16-byte alignment on the
2549 stack. */
2550
2551static CORE_ADDR
2552i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2553{
2554 return sp & -(CORE_ADDR)16;
2555}
fc338970 2556\f
c906108c 2557
fc338970
MK
2558/* Figure out where the longjmp will land. Slurp the args out of the
2559 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2560 structure from which we extract the address that we will land at.
28bcfd30 2561 This address is copied into PC. This routine returns non-zero on
436675d3 2562 success. */
c906108c 2563
8201327c 2564static int
60ade65d 2565i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2566{
436675d3 2567 gdb_byte buf[4];
c906108c 2568 CORE_ADDR sp, jb_addr;
20a6ec49 2569 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2571 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2572
8201327c
MK
2573 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2574 longjmp will land. */
2575 if (jb_pc_offset == -1)
c906108c
SS
2576 return 0;
2577
436675d3 2578 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2579 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2580 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2581 return 0;
2582
e17a4113 2583 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2584 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2585 return 0;
c906108c 2586
e17a4113 2587 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2588 return 1;
2589}
fc338970 2590\f
c906108c 2591
7ccc1c74
JM
2592/* Check whether TYPE must be 16-byte-aligned when passed as a
2593 function argument. 16-byte vectors, _Decimal128 and structures or
2594 unions containing such types must be 16-byte-aligned; other
2595 arguments are 4-byte-aligned. */
2596
2597static int
2598i386_16_byte_align_p (struct type *type)
2599{
2600 type = check_typedef (type);
2601 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2602 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2603 && TYPE_LENGTH (type) == 16)
2604 return 1;
2605 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2606 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2607 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2608 || TYPE_CODE (type) == TYPE_CODE_UNION)
2609 {
2610 int i;
2611 for (i = 0; i < TYPE_NFIELDS (type); i++)
2612 {
2613 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2614 return 1;
2615 }
2616 }
2617 return 0;
2618}
2619
a9b8d892
JK
2620/* Implementation for set_gdbarch_push_dummy_code. */
2621
2622static CORE_ADDR
2623i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2624 struct value **args, int nargs, struct type *value_type,
2625 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2626 struct regcache *regcache)
2627{
2628 /* Use 0xcc breakpoint - 1 byte. */
2629 *bp_addr = sp - 1;
2630 *real_pc = funaddr;
2631
2632 /* Keep the stack aligned. */
2633 return sp - 16;
2634}
2635
3a1e71e3 2636static CORE_ADDR
7d9b040b 2637i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2638 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2639 struct value **args, CORE_ADDR sp, int struct_return,
2640 CORE_ADDR struct_addr)
22f8ba57 2641{
e17a4113 2642 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2643 gdb_byte buf[4];
acd5c798 2644 int i;
7ccc1c74
JM
2645 int write_pass;
2646 int args_space = 0;
acd5c798 2647
7ccc1c74
JM
2648 /* Determine the total space required for arguments and struct
2649 return address in a first pass (allowing for 16-byte-aligned
2650 arguments), then push arguments in a second pass. */
2651
2652 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2653 {
7ccc1c74 2654 int args_space_used = 0;
7ccc1c74
JM
2655
2656 if (struct_return)
2657 {
2658 if (write_pass)
2659 {
2660 /* Push value address. */
e17a4113 2661 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2662 write_memory (sp, buf, 4);
2663 args_space_used += 4;
2664 }
2665 else
2666 args_space += 4;
2667 }
2668
2669 for (i = 0; i < nargs; i++)
2670 {
2671 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2672
7ccc1c74
JM
2673 if (write_pass)
2674 {
2675 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2676 args_space_used = align_up (args_space_used, 16);
acd5c798 2677
7ccc1c74
JM
2678 write_memory (sp + args_space_used,
2679 value_contents_all (args[i]), len);
2680 /* The System V ABI says that:
acd5c798 2681
7ccc1c74
JM
2682 "An argument's size is increased, if necessary, to make it a
2683 multiple of [32-bit] words. This may require tail padding,
2684 depending on the size of the argument."
22f8ba57 2685
7ccc1c74
JM
2686 This makes sure the stack stays word-aligned. */
2687 args_space_used += align_up (len, 4);
2688 }
2689 else
2690 {
2691 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2692 args_space = align_up (args_space, 16);
7ccc1c74
JM
2693 args_space += align_up (len, 4);
2694 }
2695 }
2696
2697 if (!write_pass)
2698 {
7ccc1c74 2699 sp -= args_space;
284c5a60
MK
2700
2701 /* The original System V ABI only requires word alignment,
2702 but modern incarnations need 16-byte alignment in order
2703 to support SSE. Since wasting a few bytes here isn't
2704 harmful we unconditionally enforce 16-byte alignment. */
2705 sp &= ~0xf;
7ccc1c74 2706 }
22f8ba57
MK
2707 }
2708
acd5c798
MK
2709 /* Store return address. */
2710 sp -= 4;
e17a4113 2711 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2712 write_memory (sp, buf, 4);
2713
2714 /* Finally, update the stack pointer... */
e17a4113 2715 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2716 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2717
2718 /* ...and fake a frame pointer. */
2719 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2720
3e210248
AC
2721 /* MarkK wrote: This "+ 8" is all over the place:
2722 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2723 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2724 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2725 definition of the stack address of a frame. Otherwise frame id
2726 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2727 stack address *before* the function call as a frame's CFA. On
2728 the i386, when %ebp is used as a frame pointer, the offset
2729 between the contents %ebp and the CFA as defined by GCC. */
2730 return sp + 8;
22f8ba57
MK
2731}
2732
1a309862
MK
2733/* These registers are used for returning integers (and on some
2734 targets also for returning `struct' and `union' values when their
ef9dff19 2735 size and alignment match an integer type). */
acd5c798
MK
2736#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2737#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2738
c5e656c1
MK
2739/* Read, for architecture GDBARCH, a function return value of TYPE
2740 from REGCACHE, and copy that into VALBUF. */
1a309862 2741
3a1e71e3 2742static void
c5e656c1 2743i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2744 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2745{
c5e656c1 2746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2747 int len = TYPE_LENGTH (type);
63c0089f 2748 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2749
1e8d0a7b 2750 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2751 {
5716833c 2752 if (tdep->st0_regnum < 0)
1a309862 2753 {
8a3fe4f8 2754 warning (_("Cannot find floating-point return value."));
1a309862 2755 memset (valbuf, 0, len);
ef9dff19 2756 return;
1a309862
MK
2757 }
2758
c6ba6f0d
MK
2759 /* Floating-point return values can be found in %st(0). Convert
2760 its contents to the desired type. This is probably not
2761 exactly how it would happen on the target itself, but it is
2762 the best we can do. */
acd5c798 2763 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2764 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2765 }
2766 else
c5aa993b 2767 {
875f8d0e
UW
2768 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2769 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2770
2771 if (len <= low_size)
00f8375e 2772 {
0818c12a 2773 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2774 memcpy (valbuf, buf, len);
2775 }
d4f3574e
SS
2776 else if (len <= (low_size + high_size))
2777 {
0818c12a 2778 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2779 memcpy (valbuf, buf, low_size);
0818c12a 2780 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2781 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2782 }
2783 else
8e65ff28 2784 internal_error (__FILE__, __LINE__,
1777feb0
MS
2785 _("Cannot extract return value of %d bytes long."),
2786 len);
c906108c
SS
2787 }
2788}
2789
c5e656c1
MK
2790/* Write, for architecture GDBARCH, a function return value of TYPE
2791 from VALBUF into REGCACHE. */
ef9dff19 2792
3a1e71e3 2793static void
c5e656c1 2794i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2795 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2796{
c5e656c1 2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2798 int len = TYPE_LENGTH (type);
2799
1e8d0a7b 2800 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2801 {
3d7f4f49 2802 ULONGEST fstat;
63c0089f 2803 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2804
5716833c 2805 if (tdep->st0_regnum < 0)
ef9dff19 2806 {
8a3fe4f8 2807 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2808 return;
2809 }
2810
635b0cc1
MK
2811 /* Returning floating-point values is a bit tricky. Apart from
2812 storing the return value in %st(0), we have to simulate the
2813 state of the FPU at function return point. */
2814
c6ba6f0d
MK
2815 /* Convert the value found in VALBUF to the extended
2816 floating-point format used by the FPU. This is probably
2817 not exactly how it would happen on the target itself, but
2818 it is the best we can do. */
27067745 2819 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2820 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2821
635b0cc1
MK
2822 /* Set the top of the floating-point register stack to 7. The
2823 actual value doesn't really matter, but 7 is what a normal
2824 function return would end up with if the program started out
2825 with a freshly initialized FPU. */
20a6ec49 2826 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2827 fstat |= (7 << 11);
20a6ec49 2828 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2829
635b0cc1
MK
2830 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2831 the floating-point register stack to 7, the appropriate value
2832 for the tag word is 0x3fff. */
20a6ec49 2833 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2834 }
2835 else
2836 {
875f8d0e
UW
2837 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2838 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2839
2840 if (len <= low_size)
3d7f4f49 2841 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2842 else if (len <= (low_size + high_size))
2843 {
3d7f4f49
MK
2844 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2845 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2846 len - low_size, valbuf + low_size);
ef9dff19
MK
2847 }
2848 else
8e65ff28 2849 internal_error (__FILE__, __LINE__,
e2e0b3e5 2850 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2851 }
2852}
fc338970 2853\f
ef9dff19 2854
8201327c
MK
2855/* This is the variable that is set with "set struct-convention", and
2856 its legitimate values. */
2857static const char default_struct_convention[] = "default";
2858static const char pcc_struct_convention[] = "pcc";
2859static const char reg_struct_convention[] = "reg";
40478521 2860static const char *const valid_conventions[] =
8201327c
MK
2861{
2862 default_struct_convention,
2863 pcc_struct_convention,
2864 reg_struct_convention,
2865 NULL
2866};
2867static const char *struct_convention = default_struct_convention;
2868
0e4377e1
JB
2869/* Return non-zero if TYPE, which is assumed to be a structure,
2870 a union type, or an array type, should be returned in registers
2871 for architecture GDBARCH. */
c5e656c1 2872
8201327c 2873static int
c5e656c1 2874i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2875{
c5e656c1
MK
2876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2877 enum type_code code = TYPE_CODE (type);
2878 int len = TYPE_LENGTH (type);
8201327c 2879
0e4377e1
JB
2880 gdb_assert (code == TYPE_CODE_STRUCT
2881 || code == TYPE_CODE_UNION
2882 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2883
2884 if (struct_convention == pcc_struct_convention
2885 || (struct_convention == default_struct_convention
2886 && tdep->struct_return == pcc_struct_return))
2887 return 0;
2888
9edde48e
MK
2889 /* Structures consisting of a single `float', `double' or 'long
2890 double' member are returned in %st(0). */
2891 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2892 {
2893 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2894 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2895 return (len == 4 || len == 8 || len == 12);
2896 }
2897
c5e656c1
MK
2898 return (len == 1 || len == 2 || len == 4 || len == 8);
2899}
2900
2901/* Determine, for architecture GDBARCH, how a return value of TYPE
2902 should be returned. If it is supposed to be returned in registers,
2903 and READBUF is non-zero, read the appropriate value from REGCACHE,
2904 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2905 from WRITEBUF into REGCACHE. */
2906
2907static enum return_value_convention
6a3a010b 2908i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2909 struct type *type, struct regcache *regcache,
2910 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2911{
2912 enum type_code code = TYPE_CODE (type);
2913
5daa78cc
TJB
2914 if (((code == TYPE_CODE_STRUCT
2915 || code == TYPE_CODE_UNION
2916 || code == TYPE_CODE_ARRAY)
2917 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2918 /* Complex double and long double uses the struct return covention. */
2919 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2920 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2921 /* 128-bit decimal float uses the struct return convention. */
2922 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2923 {
2924 /* The System V ABI says that:
2925
2926 "A function that returns a structure or union also sets %eax
2927 to the value of the original address of the caller's area
2928 before it returns. Thus when the caller receives control
2929 again, the address of the returned object resides in register
2930 %eax and can be used to access the object."
2931
2932 So the ABI guarantees that we can always find the return
2933 value just after the function has returned. */
2934
0e4377e1
JB
2935 /* Note that the ABI doesn't mention functions returning arrays,
2936 which is something possible in certain languages such as Ada.
2937 In this case, the value is returned as if it was wrapped in
2938 a record, so the convention applied to records also applies
2939 to arrays. */
2940
31db7b6c
MK
2941 if (readbuf)
2942 {
2943 ULONGEST addr;
2944
2945 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2946 read_memory (addr, readbuf, TYPE_LENGTH (type));
2947 }
2948
2949 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2950 }
c5e656c1
MK
2951
2952 /* This special case is for structures consisting of a single
9edde48e
MK
2953 `float', `double' or 'long double' member. These structures are
2954 returned in %st(0). For these structures, we call ourselves
2955 recursively, changing TYPE into the type of the first member of
2956 the structure. Since that should work for all structures that
2957 have only one member, we don't bother to check the member's type
2958 here. */
c5e656c1
MK
2959 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2960 {
2961 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2962 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2963 readbuf, writebuf);
c5e656c1
MK
2964 }
2965
2966 if (readbuf)
2967 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2968 if (writebuf)
2969 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2970
c5e656c1 2971 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2972}
2973\f
2974
27067745
UW
2975struct type *
2976i387_ext_type (struct gdbarch *gdbarch)
2977{
2978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2979
2980 if (!tdep->i387_ext_type)
90884b2b
L
2981 {
2982 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2983 gdb_assert (tdep->i387_ext_type != NULL);
2984 }
27067745
UW
2985
2986 return tdep->i387_ext_type;
2987}
2988
1dbcd68c
WT
2989/* Construct type for pseudo BND registers. We can't use
2990 tdesc_find_type since a complement of one value has to be used
2991 to describe the upper bound. */
2992
2993static struct type *
2994i386_bnd_type (struct gdbarch *gdbarch)
2995{
2996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2997
2998
2999 if (!tdep->i386_bnd_type)
3000 {
3001 struct type *t, *bound_t;
3002 const struct builtin_type *bt = builtin_type (gdbarch);
3003
3004 /* The type we're building is described bellow: */
3005#if 0
3006 struct __bound128
3007 {
3008 void *lbound;
3009 void *ubound; /* One complement of raw ubound field. */
3010 };
3011#endif
3012
3013 t = arch_composite_type (gdbarch,
3014 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3015
3016 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3017 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3018
3019 TYPE_NAME (t) = "builtin_type_bound128";
3020 tdep->i386_bnd_type = t;
3021 }
3022
3023 return tdep->i386_bnd_type;
3024}
3025
01f9f808
MS
3026/* Construct vector type for pseudo ZMM registers. We can't use
3027 tdesc_find_type since ZMM isn't described in target description. */
3028
3029static struct type *
3030i386_zmm_type (struct gdbarch *gdbarch)
3031{
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033
3034 if (!tdep->i386_zmm_type)
3035 {
3036 const struct builtin_type *bt = builtin_type (gdbarch);
3037
3038 /* The type we're building is this: */
3039#if 0
3040 union __gdb_builtin_type_vec512i
3041 {
3042 int128_t uint128[4];
3043 int64_t v4_int64[8];
3044 int32_t v8_int32[16];
3045 int16_t v16_int16[32];
3046 int8_t v32_int8[64];
3047 double v4_double[8];
3048 float v8_float[16];
3049 };
3050#endif
3051
3052 struct type *t;
3053
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3056 append_composite_type_field (t, "v16_float",
3057 init_vector_type (bt->builtin_float, 16));
3058 append_composite_type_field (t, "v8_double",
3059 init_vector_type (bt->builtin_double, 8));
3060 append_composite_type_field (t, "v64_int8",
3061 init_vector_type (bt->builtin_int8, 64));
3062 append_composite_type_field (t, "v32_int16",
3063 init_vector_type (bt->builtin_int16, 32));
3064 append_composite_type_field (t, "v16_int32",
3065 init_vector_type (bt->builtin_int32, 16));
3066 append_composite_type_field (t, "v8_int64",
3067 init_vector_type (bt->builtin_int64, 8));
3068 append_composite_type_field (t, "v4_int128",
3069 init_vector_type (bt->builtin_int128, 4));
3070
3071 TYPE_VECTOR (t) = 1;
3072 TYPE_NAME (t) = "builtin_type_vec512i";
3073 tdep->i386_zmm_type = t;
3074 }
3075
3076 return tdep->i386_zmm_type;
3077}
3078
c131fcee
L
3079/* Construct vector type for pseudo YMM registers. We can't use
3080 tdesc_find_type since YMM isn't described in target description. */
3081
3082static struct type *
3083i386_ymm_type (struct gdbarch *gdbarch)
3084{
3085 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3086
3087 if (!tdep->i386_ymm_type)
3088 {
3089 const struct builtin_type *bt = builtin_type (gdbarch);
3090
3091 /* The type we're building is this: */
3092#if 0
3093 union __gdb_builtin_type_vec256i
3094 {
3095 int128_t uint128[2];
3096 int64_t v2_int64[4];
3097 int32_t v4_int32[8];
3098 int16_t v8_int16[16];
3099 int8_t v16_int8[32];
3100 double v2_double[4];
3101 float v4_float[8];
3102 };
3103#endif
3104
3105 struct type *t;
3106
3107 t = arch_composite_type (gdbarch,
3108 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3109 append_composite_type_field (t, "v8_float",
3110 init_vector_type (bt->builtin_float, 8));
3111 append_composite_type_field (t, "v4_double",
3112 init_vector_type (bt->builtin_double, 4));
3113 append_composite_type_field (t, "v32_int8",
3114 init_vector_type (bt->builtin_int8, 32));
3115 append_composite_type_field (t, "v16_int16",
3116 init_vector_type (bt->builtin_int16, 16));
3117 append_composite_type_field (t, "v8_int32",
3118 init_vector_type (bt->builtin_int32, 8));
3119 append_composite_type_field (t, "v4_int64",
3120 init_vector_type (bt->builtin_int64, 4));
3121 append_composite_type_field (t, "v2_int128",
3122 init_vector_type (bt->builtin_int128, 2));
3123
3124 TYPE_VECTOR (t) = 1;
0c5acf93 3125 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3126 tdep->i386_ymm_type = t;
3127 }
3128
3129 return tdep->i386_ymm_type;
3130}
3131
794ac428 3132/* Construct vector type for MMX registers. */
90884b2b 3133static struct type *
794ac428
UW
3134i386_mmx_type (struct gdbarch *gdbarch)
3135{
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137
3138 if (!tdep->i386_mmx_type)
3139 {
df4df182
UW
3140 const struct builtin_type *bt = builtin_type (gdbarch);
3141
794ac428
UW
3142 /* The type we're building is this: */
3143#if 0
3144 union __gdb_builtin_type_vec64i
3145 {
3146 int64_t uint64;
3147 int32_t v2_int32[2];
3148 int16_t v4_int16[4];
3149 int8_t v8_int8[8];
3150 };
3151#endif
3152
3153 struct type *t;
3154
e9bb382b
UW
3155 t = arch_composite_type (gdbarch,
3156 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3157
3158 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3159 append_composite_type_field (t, "v2_int32",
df4df182 3160 init_vector_type (bt->builtin_int32, 2));
794ac428 3161 append_composite_type_field (t, "v4_int16",
df4df182 3162 init_vector_type (bt->builtin_int16, 4));
794ac428 3163 append_composite_type_field (t, "v8_int8",
df4df182 3164 init_vector_type (bt->builtin_int8, 8));
794ac428 3165
876cecd0 3166 TYPE_VECTOR (t) = 1;
794ac428
UW
3167 TYPE_NAME (t) = "builtin_type_vec64i";
3168 tdep->i386_mmx_type = t;
3169 }
3170
3171 return tdep->i386_mmx_type;
3172}
3173
d7a0d72c 3174/* Return the GDB type object for the "standard" data type of data in
1777feb0 3175 register REGNUM. */
d7a0d72c 3176
fff4548b 3177struct type *
90884b2b 3178i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3179{
1dbcd68c
WT
3180 if (i386_bnd_regnum_p (gdbarch, regnum))
3181 return i386_bnd_type (gdbarch);
1ba53b71
L
3182 if (i386_mmx_regnum_p (gdbarch, regnum))
3183 return i386_mmx_type (gdbarch);
c131fcee
L
3184 else if (i386_ymm_regnum_p (gdbarch, regnum))
3185 return i386_ymm_type (gdbarch);
01f9f808
MS
3186 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3187 return i386_ymm_type (gdbarch);
3188 else if (i386_zmm_regnum_p (gdbarch, regnum))
3189 return i386_zmm_type (gdbarch);
1ba53b71
L
3190 else
3191 {
3192 const struct builtin_type *bt = builtin_type (gdbarch);
3193 if (i386_byte_regnum_p (gdbarch, regnum))
3194 return bt->builtin_int8;
3195 else if (i386_word_regnum_p (gdbarch, regnum))
3196 return bt->builtin_int16;
3197 else if (i386_dword_regnum_p (gdbarch, regnum))
3198 return bt->builtin_int32;
01f9f808
MS
3199 else if (i386_k_regnum_p (gdbarch, regnum))
3200 return bt->builtin_int64;
1ba53b71
L
3201 }
3202
3203 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3204}
3205
28fc6740 3206/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3207 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3208
3209static int
c86c27af 3210i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 3211{
5716833c
MK
3212 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3213 int mmxreg, fpreg;
28fc6740
AC
3214 ULONGEST fstat;
3215 int tos;
c86c27af 3216
5716833c 3217 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 3218 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3219 tos = (fstat >> 11) & 0x7;
5716833c
MK
3220 fpreg = (mmxreg + tos) % 8;
3221
20a6ec49 3222 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3223}
3224
3543a589
TT
3225/* A helper function for us by i386_pseudo_register_read_value and
3226 amd64_pseudo_register_read_value. It does all the work but reads
3227 the data into an already-allocated value. */
3228
3229void
3230i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3231 struct regcache *regcache,
3232 int regnum,
3233 struct value *result_value)
28fc6740 3234{
1ba53b71 3235 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 3236 enum register_status status;
3543a589 3237 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3238
5716833c 3239 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3240 {
c86c27af
MK
3241 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3242
28fc6740 3243 /* Extract (always little endian). */
05d1431c
PA
3244 status = regcache_raw_read (regcache, fpnum, raw_buf);
3245 if (status != REG_VALID)
3543a589
TT
3246 mark_value_bytes_unavailable (result_value, 0,
3247 TYPE_LENGTH (value_type (result_value)));
3248 else
3249 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3250 }
3251 else
1ba53b71
L
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3254 if (i386_bnd_regnum_p (gdbarch, regnum))
3255 {
3256 regnum -= tdep->bnd0_regnum;
1ba53b71 3257
1dbcd68c
WT
3258 /* Extract (always little endian). Read lower 128bits. */
3259 status = regcache_raw_read (regcache,
3260 I387_BND0R_REGNUM (tdep) + regnum,
3261 raw_buf);
3262 if (status != REG_VALID)
3263 mark_value_bytes_unavailable (result_value, 0, 16);
3264 else
3265 {
3266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3267 LONGEST upper, lower;
3268 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3269
3270 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3271 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3272 upper = ~upper;
3273
3274 memcpy (buf, &lower, size);
3275 memcpy (buf + size, &upper, size);
3276 }
3277 }
01f9f808
MS
3278 else if (i386_k_regnum_p (gdbarch, regnum))
3279 {
3280 regnum -= tdep->k0_regnum;
3281
3282 /* Extract (always little endian). */
3283 status = regcache_raw_read (regcache,
3284 tdep->k0_regnum + regnum,
3285 raw_buf);
3286 if (status != REG_VALID)
3287 mark_value_bytes_unavailable (result_value, 0, 8);
3288 else
3289 memcpy (buf, raw_buf, 8);
3290 }
3291 else if (i386_zmm_regnum_p (gdbarch, regnum))
3292 {
3293 regnum -= tdep->zmm0_regnum;
3294
3295 if (regnum < num_lower_zmm_regs)
3296 {
3297 /* Extract (always little endian). Read lower 128bits. */
3298 status = regcache_raw_read (regcache,
3299 I387_XMM0_REGNUM (tdep) + regnum,
3300 raw_buf);
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3303 else
3304 memcpy (buf, raw_buf, 16);
3305
3306 /* Extract (always little endian). Read upper 128bits. */
3307 status = regcache_raw_read (regcache,
3308 tdep->ymm0h_regnum + regnum,
3309 raw_buf);
3310 if (status != REG_VALID)
3311 mark_value_bytes_unavailable (result_value, 16, 16);
3312 else
3313 memcpy (buf + 16, raw_buf, 16);
3314 }
3315 else
3316 {
3317 /* Extract (always little endian). Read lower 128bits. */
3318 status = regcache_raw_read (regcache,
3319 I387_XMM16_REGNUM (tdep) + regnum
3320 - num_lower_zmm_regs,
3321 raw_buf);
3322 if (status != REG_VALID)
3323 mark_value_bytes_unavailable (result_value, 0, 16);
3324 else
3325 memcpy (buf, raw_buf, 16);
3326
3327 /* Extract (always little endian). Read upper 128bits. */
3328 status = regcache_raw_read (regcache,
3329 I387_YMM16H_REGNUM (tdep) + regnum
3330 - num_lower_zmm_regs,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 16, 16);
3334 else
3335 memcpy (buf + 16, raw_buf, 16);
3336 }
3337
3338 /* Read upper 256bits. */
3339 status = regcache_raw_read (regcache,
3340 tdep->zmm0h_regnum + regnum,
3341 raw_buf);
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 32, 32);
3344 else
3345 memcpy (buf + 32, raw_buf, 32);
3346 }
1dbcd68c 3347 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3348 {
3349 regnum -= tdep->ymm0_regnum;
3350
1777feb0 3351 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
3352 status = regcache_raw_read (regcache,
3353 I387_XMM0_REGNUM (tdep) + regnum,
3354 raw_buf);
3355 if (status != REG_VALID)
3543a589
TT
3356 mark_value_bytes_unavailable (result_value, 0, 16);
3357 else
3358 memcpy (buf, raw_buf, 16);
c131fcee 3359 /* Read upper 128bits. */
05d1431c
PA
3360 status = regcache_raw_read (regcache,
3361 tdep->ymm0h_regnum + regnum,
3362 raw_buf);
3363 if (status != REG_VALID)
3543a589
TT
3364 mark_value_bytes_unavailable (result_value, 16, 32);
3365 else
3366 memcpy (buf + 16, raw_buf, 16);
c131fcee 3367 }
01f9f808
MS
3368 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3369 {
3370 regnum -= tdep->ymm16_regnum;
3371 /* Extract (always little endian). Read lower 128bits. */
3372 status = regcache_raw_read (regcache,
3373 I387_XMM16_REGNUM (tdep) + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 0, 16);
3377 else
3378 memcpy (buf, raw_buf, 16);
3379 /* Read upper 128bits. */
3380 status = regcache_raw_read (regcache,
3381 tdep->ymm16h_regnum + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 16, 16);
3385 else
3386 memcpy (buf + 16, raw_buf, 16);
3387 }
c131fcee 3388 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3389 {
3390 int gpnum = regnum - tdep->ax_regnum;
3391
3392 /* Extract (always little endian). */
05d1431c
PA
3393 status = regcache_raw_read (regcache, gpnum, raw_buf);
3394 if (status != REG_VALID)
3543a589
TT
3395 mark_value_bytes_unavailable (result_value, 0,
3396 TYPE_LENGTH (value_type (result_value)));
3397 else
3398 memcpy (buf, raw_buf, 2);
1ba53b71
L
3399 }
3400 else if (i386_byte_regnum_p (gdbarch, regnum))
3401 {
3402 /* Check byte pseudo registers last since this function will
3403 be called from amd64_pseudo_register_read, which handles
3404 byte pseudo registers differently. */
3405 int gpnum = regnum - tdep->al_regnum;
3406
3407 /* Extract (always little endian). We read both lower and
3408 upper registers. */
05d1431c
PA
3409 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3410 if (status != REG_VALID)
3543a589
TT
3411 mark_value_bytes_unavailable (result_value, 0,
3412 TYPE_LENGTH (value_type (result_value)));
3413 else if (gpnum >= 4)
1ba53b71
L
3414 memcpy (buf, raw_buf + 1, 1);
3415 else
3416 memcpy (buf, raw_buf, 1);
3417 }
3418 else
3419 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3420 }
3543a589
TT
3421}
3422
3423static struct value *
3424i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3425 struct regcache *regcache,
3426 int regnum)
3427{
3428 struct value *result;
3429
3430 result = allocate_value (register_type (gdbarch, regnum));
3431 VALUE_LVAL (result) = lval_register;
3432 VALUE_REGNUM (result) = regnum;
3433
3434 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3435
3543a589 3436 return result;
28fc6740
AC
3437}
3438
1ba53b71 3439void
28fc6740 3440i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3441 int regnum, const gdb_byte *buf)
28fc6740 3442{
1ba53b71
L
3443 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3444
5716833c 3445 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3446 {
c86c27af
MK
3447 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3448
28fc6740 3449 /* Read ... */
1ba53b71 3450 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3451 /* ... Modify ... (always little endian). */
1ba53b71 3452 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3453 /* ... Write. */
1ba53b71 3454 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3455 }
3456 else
1ba53b71
L
3457 {
3458 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3459
1dbcd68c
WT
3460 if (i386_bnd_regnum_p (gdbarch, regnum))
3461 {
3462 ULONGEST upper, lower;
3463 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3464 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3465
3466 /* New values from input value. */
3467 regnum -= tdep->bnd0_regnum;
3468 lower = extract_unsigned_integer (buf, size, byte_order);
3469 upper = extract_unsigned_integer (buf + size, size, byte_order);
3470
3471 /* Fetching register buffer. */
3472 regcache_raw_read (regcache,
3473 I387_BND0R_REGNUM (tdep) + regnum,
3474 raw_buf);
3475
3476 upper = ~upper;
3477
3478 /* Set register bits. */
3479 memcpy (raw_buf, &lower, 8);
3480 memcpy (raw_buf + 8, &upper, 8);
3481
3482
3483 regcache_raw_write (regcache,
3484 I387_BND0R_REGNUM (tdep) + regnum,
3485 raw_buf);
3486 }
01f9f808
MS
3487 else if (i386_k_regnum_p (gdbarch, regnum))
3488 {
3489 regnum -= tdep->k0_regnum;
3490
3491 regcache_raw_write (regcache,
3492 tdep->k0_regnum + regnum,
3493 buf);
3494 }
3495 else if (i386_zmm_regnum_p (gdbarch, regnum))
3496 {
3497 regnum -= tdep->zmm0_regnum;
3498
3499 if (regnum < num_lower_zmm_regs)
3500 {
3501 /* Write lower 128bits. */
3502 regcache_raw_write (regcache,
3503 I387_XMM0_REGNUM (tdep) + regnum,
3504 buf);
3505 /* Write upper 128bits. */
3506 regcache_raw_write (regcache,
3507 I387_YMM0_REGNUM (tdep) + regnum,
3508 buf + 16);
3509 }
3510 else
3511 {
3512 /* Write lower 128bits. */
3513 regcache_raw_write (regcache,
3514 I387_XMM16_REGNUM (tdep) + regnum
3515 - num_lower_zmm_regs,
3516 buf);
3517 /* Write upper 128bits. */
3518 regcache_raw_write (regcache,
3519 I387_YMM16H_REGNUM (tdep) + regnum
3520 - num_lower_zmm_regs,
3521 buf + 16);
3522 }
3523 /* Write upper 256bits. */
3524 regcache_raw_write (regcache,
3525 tdep->zmm0h_regnum + regnum,
3526 buf + 32);
3527 }
1dbcd68c 3528 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3529 {
3530 regnum -= tdep->ymm0_regnum;
3531
3532 /* ... Write lower 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_XMM0_REGNUM (tdep) + regnum,
3535 buf);
3536 /* ... Write upper 128bits. */
3537 regcache_raw_write (regcache,
3538 tdep->ymm0h_regnum + regnum,
3539 buf + 16);
3540 }
01f9f808
MS
3541 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3542 {
3543 regnum -= tdep->ymm16_regnum;
3544
3545 /* ... Write lower 128bits. */
3546 regcache_raw_write (regcache,
3547 I387_XMM16_REGNUM (tdep) + regnum,
3548 buf);
3549 /* ... Write upper 128bits. */
3550 regcache_raw_write (regcache,
3551 tdep->ymm16h_regnum + regnum,
3552 buf + 16);
3553 }
c131fcee 3554 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3555 {
3556 int gpnum = regnum - tdep->ax_regnum;
3557
3558 /* Read ... */
3559 regcache_raw_read (regcache, gpnum, raw_buf);
3560 /* ... Modify ... (always little endian). */
3561 memcpy (raw_buf, buf, 2);
3562 /* ... Write. */
3563 regcache_raw_write (regcache, gpnum, raw_buf);
3564 }
3565 else if (i386_byte_regnum_p (gdbarch, regnum))
3566 {
3567 /* Check byte pseudo registers last since this function will
3568 be called from amd64_pseudo_register_read, which handles
3569 byte pseudo registers differently. */
3570 int gpnum = regnum - tdep->al_regnum;
3571
3572 /* Read ... We read both lower and upper registers. */
3573 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3574 /* ... Modify ... (always little endian). */
3575 if (gpnum >= 4)
3576 memcpy (raw_buf + 1, buf, 1);
3577 else
3578 memcpy (raw_buf, buf, 1);
3579 /* ... Write. */
3580 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3581 }
3582 else
3583 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3584 }
28fc6740 3585}
ff2e87ac
AC
3586\f
3587
ff2e87ac
AC
3588/* Return the register number of the register allocated by GCC after
3589 REGNUM, or -1 if there is no such register. */
3590
3591static int
3592i386_next_regnum (int regnum)
3593{
3594 /* GCC allocates the registers in the order:
3595
3596 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3597
3598 Since storing a variable in %esp doesn't make any sense we return
3599 -1 for %ebp and for %esp itself. */
3600 static int next_regnum[] =
3601 {
3602 I386_EDX_REGNUM, /* Slot for %eax. */
3603 I386_EBX_REGNUM, /* Slot for %ecx. */
3604 I386_ECX_REGNUM, /* Slot for %edx. */
3605 I386_ESI_REGNUM, /* Slot for %ebx. */
3606 -1, -1, /* Slots for %esp and %ebp. */
3607 I386_EDI_REGNUM, /* Slot for %esi. */
3608 I386_EBP_REGNUM /* Slot for %edi. */
3609 };
3610
de5b9bb9 3611 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3612 return next_regnum[regnum];
28fc6740 3613
ff2e87ac
AC
3614 return -1;
3615}
3616
3617/* Return nonzero if a value of type TYPE stored in register REGNUM
3618 needs any special handling. */
d7a0d72c 3619
3a1e71e3 3620static int
1777feb0
MS
3621i386_convert_register_p (struct gdbarch *gdbarch,
3622 int regnum, struct type *type)
d7a0d72c 3623{
de5b9bb9
MK
3624 int len = TYPE_LENGTH (type);
3625
ff2e87ac
AC
3626 /* Values may be spread across multiple registers. Most debugging
3627 formats aren't expressive enough to specify the locations, so
3628 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3629 have a length that is a multiple of the word size, since GCC
3630 doesn't seem to put any other types into registers. */
3631 if (len > 4 && len % 4 == 0)
3632 {
3633 int last_regnum = regnum;
3634
3635 while (len > 4)
3636 {
3637 last_regnum = i386_next_regnum (last_regnum);
3638 len -= 4;
3639 }
3640
3641 if (last_regnum != -1)
3642 return 1;
3643 }
ff2e87ac 3644
0abe36f5 3645 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3646}
3647
ff2e87ac
AC
3648/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3649 return its contents in TO. */
ac27f131 3650
8dccd430 3651static int
ff2e87ac 3652i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3653 struct type *type, gdb_byte *to,
3654 int *optimizedp, int *unavailablep)
ac27f131 3655{
20a6ec49 3656 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3657 int len = TYPE_LENGTH (type);
de5b9bb9 3658
20a6ec49 3659 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3660 return i387_register_to_value (frame, regnum, type, to,
3661 optimizedp, unavailablep);
ff2e87ac 3662
fd35795f 3663 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3664
3665 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3666
de5b9bb9
MK
3667 while (len > 0)
3668 {
3669 gdb_assert (regnum != -1);
20a6ec49 3670 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3671
8dccd430
PA
3672 if (!get_frame_register_bytes (frame, regnum, 0,
3673 register_size (gdbarch, regnum),
3674 to, optimizedp, unavailablep))
3675 return 0;
3676
de5b9bb9
MK
3677 regnum = i386_next_regnum (regnum);
3678 len -= 4;
42835c2b 3679 to += 4;
de5b9bb9 3680 }
8dccd430
PA
3681
3682 *optimizedp = *unavailablep = 0;
3683 return 1;
ac27f131
MK
3684}
3685
ff2e87ac
AC
3686/* Write the contents FROM of a value of type TYPE into register
3687 REGNUM in frame FRAME. */
ac27f131 3688
3a1e71e3 3689static void
ff2e87ac 3690i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3691 struct type *type, const gdb_byte *from)
ac27f131 3692{
de5b9bb9 3693 int len = TYPE_LENGTH (type);
de5b9bb9 3694
20a6ec49 3695 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3696 {
d532c08f
MK
3697 i387_value_to_register (frame, regnum, type, from);
3698 return;
3699 }
3d261580 3700
fd35795f 3701 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3702
3703 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3704
de5b9bb9
MK
3705 while (len > 0)
3706 {
3707 gdb_assert (regnum != -1);
875f8d0e 3708 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3709
42835c2b 3710 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3711 regnum = i386_next_regnum (regnum);
3712 len -= 4;
42835c2b 3713 from += 4;
de5b9bb9 3714 }
ac27f131 3715}
ff2e87ac 3716\f
7fdafb5a
MK
3717/* Supply register REGNUM from the buffer specified by GREGS and LEN
3718 in the general-purpose register set REGSET to register cache
3719 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3720
20187ed5 3721void
473f17b0
MK
3722i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3723 int regnum, const void *gregs, size_t len)
3724{
09424cff
AA
3725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3726 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3727 const gdb_byte *regs = gregs;
473f17b0
MK
3728 int i;
3729
3730 gdb_assert (len == tdep->sizeof_gregset);
3731
3732 for (i = 0; i < tdep->gregset_num_regs; i++)
3733 {
3734 if ((regnum == i || regnum == -1)
3735 && tdep->gregset_reg_offset[i] != -1)
3736 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3737 }
3738}
3739
7fdafb5a
MK
3740/* Collect register REGNUM from the register cache REGCACHE and store
3741 it in the buffer specified by GREGS and LEN as described by the
3742 general-purpose register set REGSET. If REGNUM is -1, do this for
3743 all registers in REGSET. */
3744
ecc37a5a 3745static void
7fdafb5a
MK
3746i386_collect_gregset (const struct regset *regset,
3747 const struct regcache *regcache,
3748 int regnum, void *gregs, size_t len)
3749{
09424cff
AA
3750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3751 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3752 gdb_byte *regs = gregs;
7fdafb5a
MK
3753 int i;
3754
3755 gdb_assert (len == tdep->sizeof_gregset);
3756
3757 for (i = 0; i < tdep->gregset_num_regs; i++)
3758 {
3759 if ((regnum == i || regnum == -1)
3760 && tdep->gregset_reg_offset[i] != -1)
3761 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3762 }
3763}
3764
3765/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3766 in the floating-point register set REGSET to register cache
3767 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3768
3769static void
3770i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3771 int regnum, const void *fpregs, size_t len)
3772{
09424cff
AA
3773 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3774 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3775
66a72d25
MK
3776 if (len == I387_SIZEOF_FXSAVE)
3777 {
3778 i387_supply_fxsave (regcache, regnum, fpregs);
3779 return;
3780 }
3781
473f17b0
MK
3782 gdb_assert (len == tdep->sizeof_fpregset);
3783 i387_supply_fsave (regcache, regnum, fpregs);
3784}
8446b36a 3785
2f305df1
MK
3786/* Collect register REGNUM from the register cache REGCACHE and store
3787 it in the buffer specified by FPREGS and LEN as described by the
3788 floating-point register set REGSET. If REGNUM is -1, do this for
3789 all registers in REGSET. */
7fdafb5a
MK
3790
3791static void
3792i386_collect_fpregset (const struct regset *regset,
3793 const struct regcache *regcache,
3794 int regnum, void *fpregs, size_t len)
3795{
09424cff
AA
3796 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3797 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3798
3799 if (len == I387_SIZEOF_FXSAVE)
3800 {
3801 i387_collect_fxsave (regcache, regnum, fpregs);
3802 return;
3803 }
3804
3805 gdb_assert (len == tdep->sizeof_fpregset);
3806 i387_collect_fsave (regcache, regnum, fpregs);
3807}
3808
ecc37a5a
AA
3809/* Register set definitions. */
3810
3811const struct regset i386_gregset =
3812 {
3813 NULL, i386_supply_gregset, i386_collect_gregset
3814 };
3815
8f0435f7 3816const struct regset i386_fpregset =
ecc37a5a
AA
3817 {
3818 NULL, i386_supply_fpregset, i386_collect_fpregset
3819 };
3820
490496c3 3821/* Default iterator over core file register note sections. */
8446b36a 3822
490496c3
AA
3823void
3824i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3825 iterate_over_regset_sections_cb *cb,
3826 void *cb_data,
3827 const struct regcache *regcache)
8446b36a
MK
3828{
3829 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3830
490496c3
AA
3831 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3832 if (tdep->sizeof_fpregset)
3833 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
8446b36a 3834}
473f17b0 3835\f
fc338970 3836
fc338970 3837/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3838
3839CORE_ADDR
e17a4113
UW
3840i386_pe_skip_trampoline_code (struct frame_info *frame,
3841 CORE_ADDR pc, char *name)
c906108c 3842{
e17a4113
UW
3843 struct gdbarch *gdbarch = get_frame_arch (frame);
3844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3845
3846 /* jmp *(dest) */
3847 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3848 {
e17a4113
UW
3849 unsigned long indirect =
3850 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3851 struct minimal_symbol *indsym =
7cbd4a93 3852 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
efd66ac6 3853 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3854
c5aa993b 3855 if (symname)
c906108c 3856 {
c5aa993b
JM
3857 if (strncmp (symname, "__imp_", 6) == 0
3858 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3859 return name ? 1 :
3860 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3861 }
3862 }
fc338970 3863 return 0; /* Not a trampoline. */
c906108c 3864}
fc338970
MK
3865\f
3866
10458914
DJ
3867/* Return whether the THIS_FRAME corresponds to a sigtramp
3868 routine. */
8201327c 3869
4bd207ef 3870int
10458914 3871i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3872{
10458914 3873 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3874 const char *name;
911bc6ee
MK
3875
3876 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3877 return (name && strcmp ("_sigtramp", name) == 0);
3878}
3879\f
3880
fc338970
MK
3881/* We have two flavours of disassembly. The machinery on this page
3882 deals with switching between those. */
c906108c
SS
3883
3884static int
a89aa300 3885i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3886{
5e3397bb
MK
3887 gdb_assert (disassembly_flavor == att_flavor
3888 || disassembly_flavor == intel_flavor);
3889
3890 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3891 constified, cast to prevent a compiler warning. */
3892 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3893
3894 return print_insn_i386 (pc, info);
7a292a7a 3895}
fc338970 3896\f
3ce1502b 3897
8201327c
MK
3898/* There are a few i386 architecture variants that differ only
3899 slightly from the generic i386 target. For now, we don't give them
3900 their own source file, but include them here. As a consequence,
3901 they'll always be included. */
3ce1502b 3902
8201327c 3903/* System V Release 4 (SVR4). */
3ce1502b 3904
10458914
DJ
3905/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3906 routine. */
911bc6ee 3907
8201327c 3908static int
10458914 3909i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3910{
10458914 3911 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3912 const char *name;
911bc6ee 3913
05b4bd79 3914 /* The origin of these symbols is currently unknown. */
911bc6ee 3915 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 3916 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
3917 || strcmp ("sigvechandler", name) == 0));
3918}
d2a7c97a 3919
10458914
DJ
3920/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3921 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3922
3a1e71e3 3923static CORE_ADDR
10458914 3924i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3925{
e17a4113
UW
3926 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3928 gdb_byte buf[4];
acd5c798 3929 CORE_ADDR sp;
3ce1502b 3930
10458914 3931 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3932 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3933
e17a4113 3934 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3935}
55aa24fb
SDJ
3936
3937\f
3938
3939/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3940 gdbarch.h. */
3941
3942int
3943i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3944{
3945 return (*s == '$' /* Literal number. */
3946 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3947 || (*s == '(' && s[1] == '%') /* Register indirection. */
3948 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3949}
3950
5acfdbae
SDJ
3951/* Helper function for i386_stap_parse_special_token.
3952
3953 This function parses operands of the form `-8+3+1(%rbp)', which
3954 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3955
3956 Return 1 if the operand was parsed successfully, zero
3957 otherwise. */
3958
3959static int
3960i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3961 struct stap_parse_info *p)
3962{
3963 const char *s = p->arg;
3964
3965 if (isdigit (*s) || *s == '-' || *s == '+')
3966 {
3967 int got_minus[3];
3968 int i;
3969 long displacements[3];
3970 const char *start;
3971 char *regname;
3972 int len;
3973 struct stoken str;
3974 char *endp;
3975
3976 got_minus[0] = 0;
3977 if (*s == '+')
3978 ++s;
3979 else if (*s == '-')
3980 {
3981 ++s;
3982 got_minus[0] = 1;
3983 }
3984
d7b30f67
SDJ
3985 if (!isdigit ((unsigned char) *s))
3986 return 0;
3987
5acfdbae
SDJ
3988 displacements[0] = strtol (s, &endp, 10);
3989 s = endp;
3990
3991 if (*s != '+' && *s != '-')
3992 {
3993 /* We are not dealing with a triplet. */
3994 return 0;
3995 }
3996
3997 got_minus[1] = 0;
3998 if (*s == '+')
3999 ++s;
4000 else
4001 {
4002 ++s;
4003 got_minus[1] = 1;
4004 }
4005
d7b30f67
SDJ
4006 if (!isdigit ((unsigned char) *s))
4007 return 0;
4008
5acfdbae
SDJ
4009 displacements[1] = strtol (s, &endp, 10);
4010 s = endp;
4011
4012 if (*s != '+' && *s != '-')
4013 {
4014 /* We are not dealing with a triplet. */
4015 return 0;
4016 }
4017
4018 got_minus[2] = 0;
4019 if (*s == '+')
4020 ++s;
4021 else
4022 {
4023 ++s;
4024 got_minus[2] = 1;
4025 }
4026
d7b30f67
SDJ
4027 if (!isdigit ((unsigned char) *s))
4028 return 0;
4029
5acfdbae
SDJ
4030 displacements[2] = strtol (s, &endp, 10);
4031 s = endp;
4032
4033 if (*s != '(' || s[1] != '%')
4034 return 0;
4035
4036 s += 2;
4037 start = s;
4038
4039 while (isalnum (*s))
4040 ++s;
4041
4042 if (*s++ != ')')
4043 return 0;
4044
d7b30f67 4045 len = s - start - 1;
5acfdbae
SDJ
4046 regname = alloca (len + 1);
4047
4048 strncpy (regname, start, len);
4049 regname[len] = '\0';
4050
4051 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4052 error (_("Invalid register name `%s' on expression `%s'."),
4053 regname, p->saved_arg);
4054
4055 for (i = 0; i < 3; i++)
4056 {
410a0ff2
SDJ
4057 write_exp_elt_opcode (&p->pstate, OP_LONG);
4058 write_exp_elt_type
4059 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4060 write_exp_elt_longcst (&p->pstate, displacements[i]);
4061 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4062 if (got_minus[i])
410a0ff2 4063 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4064 }
4065
410a0ff2 4066 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4067 str.ptr = regname;
4068 str.length = len;
410a0ff2
SDJ
4069 write_exp_string (&p->pstate, str);
4070 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4071
410a0ff2
SDJ
4072 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4073 write_exp_elt_type (&p->pstate,
4074 builtin_type (gdbarch)->builtin_data_ptr);
4075 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4076
410a0ff2
SDJ
4077 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4078 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4079 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4080
410a0ff2
SDJ
4081 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4082 write_exp_elt_type (&p->pstate,
4083 lookup_pointer_type (p->arg_type));
4084 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4085
410a0ff2 4086 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4087
4088 p->arg = s;
4089
4090 return 1;
4091 }
4092
4093 return 0;
4094}
4095
4096/* Helper function for i386_stap_parse_special_token.
4097
4098 This function parses operands of the form `register base +
4099 (register index * size) + offset', as represented in
4100 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4101
4102 Return 1 if the operand was parsed successfully, zero
4103 otherwise. */
4104
4105static int
4106i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4107 struct stap_parse_info *p)
4108{
4109 const char *s = p->arg;
4110
4111 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4112 {
4113 int offset_minus = 0;
4114 long offset = 0;
4115 int size_minus = 0;
4116 long size = 0;
4117 const char *start;
4118 char *base;
4119 int len_base;
4120 char *index;
4121 int len_index;
4122 struct stoken base_token, index_token;
4123
4124 if (*s == '+')
4125 ++s;
4126 else if (*s == '-')
4127 {
4128 ++s;
4129 offset_minus = 1;
4130 }
4131
4132 if (offset_minus && !isdigit (*s))
4133 return 0;
4134
4135 if (isdigit (*s))
4136 {
4137 char *endp;
4138
4139 offset = strtol (s, &endp, 10);
4140 s = endp;
4141 }
4142
4143 if (*s != '(' || s[1] != '%')
4144 return 0;
4145
4146 s += 2;
4147 start = s;
4148
4149 while (isalnum (*s))
4150 ++s;
4151
4152 if (*s != ',' || s[1] != '%')
4153 return 0;
4154
4155 len_base = s - start;
4156 base = alloca (len_base + 1);
4157 strncpy (base, start, len_base);
4158 base[len_base] = '\0';
4159
4160 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4161 error (_("Invalid register name `%s' on expression `%s'."),
4162 base, p->saved_arg);
4163
4164 s += 2;
4165 start = s;
4166
4167 while (isalnum (*s))
4168 ++s;
4169
4170 len_index = s - start;
4171 index = alloca (len_index + 1);
4172 strncpy (index, start, len_index);
4173 index[len_index] = '\0';
4174
4175 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4176 error (_("Invalid register name `%s' on expression `%s'."),
4177 index, p->saved_arg);
4178
4179 if (*s != ',' && *s != ')')
4180 return 0;
4181
4182 if (*s == ',')
4183 {
4184 char *endp;
4185
4186 ++s;
4187 if (*s == '+')
4188 ++s;
4189 else if (*s == '-')
4190 {
4191 ++s;
4192 size_minus = 1;
4193 }
4194
4195 size = strtol (s, &endp, 10);
4196 s = endp;
4197
4198 if (*s != ')')
4199 return 0;
4200 }
4201
4202 ++s;
4203
4204 if (offset)
4205 {
410a0ff2
SDJ
4206 write_exp_elt_opcode (&p->pstate, OP_LONG);
4207 write_exp_elt_type (&p->pstate,
4208 builtin_type (gdbarch)->builtin_long);
4209 write_exp_elt_longcst (&p->pstate, offset);
4210 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4211 if (offset_minus)
410a0ff2 4212 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4213 }
4214
410a0ff2 4215 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4216 base_token.ptr = base;
4217 base_token.length = len_base;
410a0ff2
SDJ
4218 write_exp_string (&p->pstate, base_token);
4219 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4220
4221 if (offset)
410a0ff2 4222 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4223
410a0ff2 4224 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4225 index_token.ptr = index;
4226 index_token.length = len_index;
410a0ff2
SDJ
4227 write_exp_string (&p->pstate, index_token);
4228 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4229
4230 if (size)
4231 {
410a0ff2
SDJ
4232 write_exp_elt_opcode (&p->pstate, OP_LONG);
4233 write_exp_elt_type (&p->pstate,
4234 builtin_type (gdbarch)->builtin_long);
4235 write_exp_elt_longcst (&p->pstate, size);
4236 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4237 if (size_minus)
410a0ff2
SDJ
4238 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4239 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4240 }
4241
410a0ff2 4242 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4243
410a0ff2
SDJ
4244 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4245 write_exp_elt_type (&p->pstate,
4246 lookup_pointer_type (p->arg_type));
4247 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4248
410a0ff2 4249 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4250
4251 p->arg = s;
4252
4253 return 1;
4254 }
4255
4256 return 0;
4257}
4258
55aa24fb
SDJ
4259/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4260 gdbarch.h. */
4261
4262int
4263i386_stap_parse_special_token (struct gdbarch *gdbarch,
4264 struct stap_parse_info *p)
4265{
55aa24fb
SDJ
4266 /* In order to parse special tokens, we use a state-machine that go
4267 through every known token and try to get a match. */
4268 enum
4269 {
4270 TRIPLET,
4271 THREE_ARG_DISPLACEMENT,
4272 DONE
4273 } current_state;
4274
4275 current_state = TRIPLET;
4276
4277 /* The special tokens to be parsed here are:
4278
4279 - `register base + (register index * size) + offset', as represented
4280 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4281
4282 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4283 `*(-8 + 3 - 1 + (void *) $eax)'. */
4284
4285 while (current_state != DONE)
4286 {
55aa24fb
SDJ
4287 switch (current_state)
4288 {
4289 case TRIPLET:
5acfdbae
SDJ
4290 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4291 return 1;
4292 break;
4293
55aa24fb 4294 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4295 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4296 return 1;
4297 break;
55aa24fb
SDJ
4298 }
4299
4300 /* Advancing to the next state. */
4301 ++current_state;
4302 }
4303
4304 return 0;
4305}
4306
8201327c 4307\f
3ce1502b 4308
8201327c 4309/* Generic ELF. */
d2a7c97a 4310
8201327c
MK
4311void
4312i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4313{
05c0465e
SDJ
4314 static const char *const stap_integer_prefixes[] = { "$", NULL };
4315 static const char *const stap_register_prefixes[] = { "%", NULL };
4316 static const char *const stap_register_indirection_prefixes[] = { "(",
4317 NULL };
4318 static const char *const stap_register_indirection_suffixes[] = { ")",
4319 NULL };
4320
c4fc7f1b
MK
4321 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4322 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4323
4324 /* Registering SystemTap handlers. */
05c0465e
SDJ
4325 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4326 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4327 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4328 stap_register_indirection_prefixes);
4329 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4330 stap_register_indirection_suffixes);
55aa24fb
SDJ
4331 set_gdbarch_stap_is_single_operand (gdbarch,
4332 i386_stap_is_single_operand);
4333 set_gdbarch_stap_parse_special_token (gdbarch,
4334 i386_stap_parse_special_token);
8201327c 4335}
3ce1502b 4336
8201327c 4337/* System V Release 4 (SVR4). */
3ce1502b 4338
8201327c
MK
4339void
4340i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4341{
4342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4343
8201327c
MK
4344 /* System V Release 4 uses ELF. */
4345 i386_elf_init_abi (info, gdbarch);
3ce1502b 4346
dfe01d39 4347 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4348 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4349
911bc6ee 4350 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4351 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4352 tdep->sc_pc_offset = 36 + 14 * 4;
4353 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4354
8201327c 4355 tdep->jb_pc_offset = 20;
3ce1502b
MK
4356}
4357
8201327c 4358/* DJGPP. */
3ce1502b 4359
3a1e71e3 4360static void
8201327c 4361i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 4362{
8201327c 4363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4364
911bc6ee
MK
4365 /* DJGPP doesn't have any special frames for signal handlers. */
4366 tdep->sigtramp_p = NULL;
3ce1502b 4367
8201327c 4368 tdep->jb_pc_offset = 36;
15430fc0
EZ
4369
4370 /* DJGPP does not support the SSE registers. */
3a13a53b
L
4371 if (! tdesc_has_registers (info.target_desc))
4372 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
4373
4374 /* Native compiler is GCC, which uses the SVR4 register numbering
4375 even in COFF and STABS. See the comment in i386_gdbarch_init,
4376 before the calls to set_gdbarch_stab_reg_to_regnum and
4377 set_gdbarch_sdb_reg_to_regnum. */
4378 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4379 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
4380
4381 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 4382}
8201327c 4383\f
2acceee2 4384
38c968cf
AC
4385/* i386 register groups. In addition to the normal groups, add "mmx"
4386 and "sse". */
4387
4388static struct reggroup *i386_sse_reggroup;
4389static struct reggroup *i386_mmx_reggroup;
4390
4391static void
4392i386_init_reggroups (void)
4393{
4394 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4395 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4396}
4397
4398static void
4399i386_add_reggroups (struct gdbarch *gdbarch)
4400{
4401 reggroup_add (gdbarch, i386_sse_reggroup);
4402 reggroup_add (gdbarch, i386_mmx_reggroup);
4403 reggroup_add (gdbarch, general_reggroup);
4404 reggroup_add (gdbarch, float_reggroup);
4405 reggroup_add (gdbarch, all_reggroup);
4406 reggroup_add (gdbarch, save_reggroup);
4407 reggroup_add (gdbarch, restore_reggroup);
4408 reggroup_add (gdbarch, vector_reggroup);
4409 reggroup_add (gdbarch, system_reggroup);
4410}
4411
4412int
4413i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4414 struct reggroup *group)
4415{
c131fcee
L
4416 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4417 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808
MS
4418 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4419 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4420 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4421 avx512_p, avx_p, sse_p;
acd5c798 4422
1ba53b71
L
4423 /* Don't include pseudo registers, except for MMX, in any register
4424 groups. */
c131fcee 4425 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4426 return 0;
4427
c131fcee 4428 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4429 return 0;
4430
c131fcee 4431 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4432 return 0;
4433
4434 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4435 if (group == i386_mmx_reggroup)
4436 return mmx_regnum_p;
1ba53b71 4437
c131fcee 4438 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4439 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4440 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4441 if (group == i386_sse_reggroup)
01f9f808 4442 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4443
4444 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4445 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4446 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4447
df7e5265
GB
4448 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4449 == X86_XSTATE_AVX512_MASK);
4450 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4451 == X86_XSTATE_AVX_MASK) && !avx512_p;
4452 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4453 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4454
38c968cf 4455 if (group == vector_reggroup)
c131fcee 4456 return (mmx_regnum_p
01f9f808
MS
4457 || (zmm_regnum_p && avx512_p)
4458 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4459 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4460 || mxcsr_regnum_p);
1ba53b71
L
4461
4462 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4463 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4464 if (group == float_reggroup)
4465 return fp_regnum_p;
1ba53b71 4466
c131fcee
L
4467 /* For "info reg all", don't include upper YMM registers nor XMM
4468 registers when AVX is supported. */
4469 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4470 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4471 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4472 if (group == all_reggroup
01f9f808
MS
4473 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4474 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4475 || ymmh_regnum_p
4476 || ymmh_avx512_regnum_p
4477 || zmmh_regnum_p))
c131fcee
L
4478 return 0;
4479
1dbcd68c
WT
4480 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4481 if (group == all_reggroup
df7e5265 4482 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4483 return bnd_regnum_p;
4484
4485 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4486 if (group == all_reggroup
df7e5265 4487 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4488 return 0;
4489
4490 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4491 if (group == all_reggroup
df7e5265 4492 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4493 return mpx_ctrl_regnum_p;
4494
38c968cf 4495 if (group == general_reggroup)
1ba53b71
L
4496 return (!fp_regnum_p
4497 && !mmx_regnum_p
c131fcee
L
4498 && !mxcsr_regnum_p
4499 && !xmm_regnum_p
01f9f808 4500 && !xmm_avx512_regnum_p
c131fcee 4501 && !ymm_regnum_p
1dbcd68c 4502 && !ymmh_regnum_p
01f9f808
MS
4503 && !ymm_avx512_regnum_p
4504 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4505 && !bndr_regnum_p
4506 && !bnd_regnum_p
01f9f808
MS
4507 && !mpx_ctrl_regnum_p
4508 && !zmm_regnum_p
4509 && !zmmh_regnum_p);
acd5c798 4510
38c968cf
AC
4511 return default_register_reggroup_p (gdbarch, regnum, group);
4512}
38c968cf 4513\f
acd5c798 4514
f837910f
MK
4515/* Get the ARGIth function argument for the current function. */
4516
42c466d7 4517static CORE_ADDR
143985b7
AF
4518i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4519 struct type *type)
4520{
e17a4113
UW
4521 struct gdbarch *gdbarch = get_frame_arch (frame);
4522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4523 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4524 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4525}
4526
7ad10968
HZ
4527#define PREFIX_REPZ 0x01
4528#define PREFIX_REPNZ 0x02
4529#define PREFIX_LOCK 0x04
4530#define PREFIX_DATA 0x08
4531#define PREFIX_ADDR 0x10
473f17b0 4532
7ad10968
HZ
4533/* operand size */
4534enum
4535{
4536 OT_BYTE = 0,
4537 OT_WORD,
4538 OT_LONG,
cf648174 4539 OT_QUAD,
a3c4230a 4540 OT_DQUAD,
7ad10968 4541};
473f17b0 4542
7ad10968
HZ
4543/* i386 arith/logic operations */
4544enum
4545{
4546 OP_ADDL,
4547 OP_ORL,
4548 OP_ADCL,
4549 OP_SBBL,
4550 OP_ANDL,
4551 OP_SUBL,
4552 OP_XORL,
4553 OP_CMPL,
4554};
5716833c 4555
7ad10968
HZ
4556struct i386_record_s
4557{
cf648174 4558 struct gdbarch *gdbarch;
7ad10968 4559 struct regcache *regcache;
df61f520 4560 CORE_ADDR orig_addr;
7ad10968
HZ
4561 CORE_ADDR addr;
4562 int aflag;
4563 int dflag;
4564 int override;
4565 uint8_t modrm;
4566 uint8_t mod, reg, rm;
4567 int ot;
cf648174
HZ
4568 uint8_t rex_x;
4569 uint8_t rex_b;
4570 int rip_offset;
4571 int popl_esp_hack;
4572 const int *regmap;
7ad10968 4573};
5716833c 4574
99c1624c
PA
4575/* Parse the "modrm" part of the memory address irp->addr points at.
4576 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4577
7ad10968
HZ
4578static int
4579i386_record_modrm (struct i386_record_s *irp)
4580{
cf648174 4581 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4582
4ffa4fc7
PA
4583 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4584 return -1;
4585
7ad10968
HZ
4586 irp->addr++;
4587 irp->mod = (irp->modrm >> 6) & 3;
4588 irp->reg = (irp->modrm >> 3) & 7;
4589 irp->rm = irp->modrm & 7;
5716833c 4590
7ad10968
HZ
4591 return 0;
4592}
d2a7c97a 4593
99c1624c
PA
4594/* Extract the memory address that the current instruction writes to,
4595 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4596
7ad10968 4597static int
cf648174 4598i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4599{
cf648174 4600 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4602 gdb_byte buf[4];
4603 ULONGEST offset64;
21d0e8a4 4604
7ad10968 4605 *addr = 0;
1e87984a 4606 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4607 {
1e87984a 4608 /* 32/64 bits */
7ad10968
HZ
4609 int havesib = 0;
4610 uint8_t scale = 0;
648d0c8b 4611 uint8_t byte;
7ad10968
HZ
4612 uint8_t index = 0;
4613 uint8_t base = irp->rm;
896fb97d 4614
7ad10968
HZ
4615 if (base == 4)
4616 {
4617 havesib = 1;
4ffa4fc7
PA
4618 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4619 return -1;
7ad10968 4620 irp->addr++;
648d0c8b
MS
4621 scale = (byte >> 6) & 3;
4622 index = ((byte >> 3) & 7) | irp->rex_x;
4623 base = (byte & 7);
7ad10968 4624 }
cf648174 4625 base |= irp->rex_b;
21d0e8a4 4626
7ad10968
HZ
4627 switch (irp->mod)
4628 {
4629 case 0:
4630 if ((base & 7) == 5)
4631 {
4632 base = 0xff;
4ffa4fc7
PA
4633 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4634 return -1;
7ad10968 4635 irp->addr += 4;
60a1502a 4636 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4637 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4638 *addr += irp->addr + irp->rip_offset;
7ad10968 4639 }
7ad10968
HZ
4640 break;
4641 case 1:
4ffa4fc7
PA
4642 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4643 return -1;
7ad10968 4644 irp->addr++;
60a1502a 4645 *addr = (int8_t) buf[0];
7ad10968
HZ
4646 break;
4647 case 2:
4ffa4fc7
PA
4648 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4649 return -1;
60a1502a 4650 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4651 irp->addr += 4;
4652 break;
4653 }
356a6b3e 4654
60a1502a 4655 offset64 = 0;
7ad10968 4656 if (base != 0xff)
cf648174
HZ
4657 {
4658 if (base == 4 && irp->popl_esp_hack)
4659 *addr += irp->popl_esp_hack;
4660 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4661 &offset64);
7ad10968 4662 }
cf648174
HZ
4663 if (irp->aflag == 2)
4664 {
60a1502a 4665 *addr += offset64;
cf648174
HZ
4666 }
4667 else
60a1502a 4668 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4669
7ad10968
HZ
4670 if (havesib && (index != 4 || scale != 0))
4671 {
cf648174 4672 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4673 &offset64);
cf648174 4674 if (irp->aflag == 2)
60a1502a 4675 *addr += offset64 << scale;
cf648174 4676 else
60a1502a 4677 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4678 }
e85596e0
L
4679
4680 if (!irp->aflag)
4681 {
4682 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4683 address from 32-bit to 64-bit. */
4684 *addr = (uint32_t) *addr;
4685 }
7ad10968
HZ
4686 }
4687 else
4688 {
4689 /* 16 bits */
4690 switch (irp->mod)
4691 {
4692 case 0:
4693 if (irp->rm == 6)
4694 {
4ffa4fc7
PA
4695 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4696 return -1;
7ad10968 4697 irp->addr += 2;
60a1502a 4698 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4699 irp->rm = 0;
4700 goto no_rm;
4701 }
7ad10968
HZ
4702 break;
4703 case 1:
4ffa4fc7
PA
4704 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4705 return -1;
7ad10968 4706 irp->addr++;
60a1502a 4707 *addr = (int8_t) buf[0];
7ad10968
HZ
4708 break;
4709 case 2:
4ffa4fc7
PA
4710 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4711 return -1;
7ad10968 4712 irp->addr += 2;
60a1502a 4713 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4714 break;
4715 }
c4fc7f1b 4716
7ad10968
HZ
4717 switch (irp->rm)
4718 {
4719 case 0:
cf648174
HZ
4720 regcache_raw_read_unsigned (irp->regcache,
4721 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4722 &offset64);
4723 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4724 regcache_raw_read_unsigned (irp->regcache,
4725 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4726 &offset64);
4727 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4728 break;
4729 case 1:
cf648174
HZ
4730 regcache_raw_read_unsigned (irp->regcache,
4731 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4732 &offset64);
4733 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4734 regcache_raw_read_unsigned (irp->regcache,
4735 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4736 &offset64);
4737 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4738 break;
4739 case 2:
cf648174
HZ
4740 regcache_raw_read_unsigned (irp->regcache,
4741 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4742 &offset64);
4743 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4744 regcache_raw_read_unsigned (irp->regcache,
4745 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4746 &offset64);
4747 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4748 break;
4749 case 3:
cf648174
HZ
4750 regcache_raw_read_unsigned (irp->regcache,
4751 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4752 &offset64);
4753 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4754 regcache_raw_read_unsigned (irp->regcache,
4755 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4756 &offset64);
4757 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4758 break;
4759 case 4:
cf648174
HZ
4760 regcache_raw_read_unsigned (irp->regcache,
4761 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4762 &offset64);
4763 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4764 break;
4765 case 5:
cf648174
HZ
4766 regcache_raw_read_unsigned (irp->regcache,
4767 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4768 &offset64);
4769 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4770 break;
4771 case 6:
cf648174
HZ
4772 regcache_raw_read_unsigned (irp->regcache,
4773 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4774 &offset64);
4775 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4776 break;
4777 case 7:
cf648174
HZ
4778 regcache_raw_read_unsigned (irp->regcache,
4779 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4780 &offset64);
4781 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4782 break;
4783 }
4784 *addr &= 0xffff;
4785 }
c4fc7f1b 4786
01fe1b41 4787 no_rm:
7ad10968
HZ
4788 return 0;
4789}
c4fc7f1b 4790
99c1624c
PA
4791/* Record the address and contents of the memory that will be changed
4792 by the current instruction. Return -1 if something goes wrong, 0
4793 otherwise. */
356a6b3e 4794
7ad10968
HZ
4795static int
4796i386_record_lea_modrm (struct i386_record_s *irp)
4797{
cf648174
HZ
4798 struct gdbarch *gdbarch = irp->gdbarch;
4799 uint64_t addr;
356a6b3e 4800
d7877f7e 4801 if (irp->override >= 0)
7ad10968 4802 {
25ea693b 4803 if (record_full_memory_query)
bb08c432
HZ
4804 {
4805 int q;
4806
4807 target_terminal_ours ();
4808 q = yquery (_("\
4809Process record ignores the memory change of instruction at address %s\n\
4810because it can't get the value of the segment register.\n\
4811Do you want to stop the program?"),
4812 paddress (gdbarch, irp->orig_addr));
4813 target_terminal_inferior ();
4814 if (q)
4815 return -1;
4816 }
4817
7ad10968
HZ
4818 return 0;
4819 }
61113f8b 4820
7ad10968
HZ
4821 if (i386_record_lea_modrm_addr (irp, &addr))
4822 return -1;
96297dab 4823
25ea693b 4824 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4825 return -1;
a62cc96e 4826
7ad10968
HZ
4827 return 0;
4828}
b6197528 4829
99c1624c
PA
4830/* Record the effects of a push operation. Return -1 if something
4831 goes wrong, 0 otherwise. */
cf648174
HZ
4832
4833static int
4834i386_record_push (struct i386_record_s *irp, int size)
4835{
648d0c8b 4836 ULONGEST addr;
cf648174 4837
25ea693b
MM
4838 if (record_full_arch_list_add_reg (irp->regcache,
4839 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4840 return -1;
4841 regcache_raw_read_unsigned (irp->regcache,
4842 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4843 &addr);
25ea693b 4844 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4845 return -1;
4846
4847 return 0;
4848}
4849
0289bdd7
MS
4850
4851/* Defines contents to record. */
4852#define I386_SAVE_FPU_REGS 0xfffd
4853#define I386_SAVE_FPU_ENV 0xfffe
4854#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4855
99c1624c
PA
4856/* Record the values of the floating point registers which will be
4857 changed by the current instruction. Returns -1 if something is
4858 wrong, 0 otherwise. */
0289bdd7
MS
4859
4860static int i386_record_floats (struct gdbarch *gdbarch,
4861 struct i386_record_s *ir,
4862 uint32_t iregnum)
4863{
4864 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4865 int i;
4866
4867 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4868 happen. Currently we store st0-st7 registers, but we need not store all
4869 registers all the time, in future we use ftag register and record only
4870 those who are not marked as an empty. */
4871
4872 if (I386_SAVE_FPU_REGS == iregnum)
4873 {
4874 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4875 {
25ea693b 4876 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4877 return -1;
4878 }
4879 }
4880 else if (I386_SAVE_FPU_ENV == iregnum)
4881 {
4882 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4883 {
25ea693b 4884 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4885 return -1;
4886 }
4887 }
4888 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4889 {
4890 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4891 {
25ea693b 4892 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4893 return -1;
4894 }
4895 }
4896 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4897 (iregnum <= I387_FOP_REGNUM (tdep)))
4898 {
25ea693b 4899 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
4900 return -1;
4901 }
4902 else
4903 {
4904 /* Parameter error. */
4905 return -1;
4906 }
4907 if(I386_SAVE_FPU_ENV != iregnum)
4908 {
4909 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4910 {
25ea693b 4911 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4912 return -1;
4913 }
4914 }
4915 return 0;
4916}
4917
99c1624c
PA
4918/* Parse the current instruction, and record the values of the
4919 registers and memory that will be changed by the current
4920 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4921
25ea693b
MM
4922#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4923 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 4924
a6b808b4 4925int
7ad10968 4926i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4927 CORE_ADDR input_addr)
7ad10968 4928{
60a1502a 4929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4930 int prefixes = 0;
580879fc 4931 int regnum = 0;
425b824a 4932 uint32_t opcode;
f4644a3f 4933 uint8_t opcode8;
648d0c8b 4934 ULONGEST addr;
60a1502a 4935 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4936 struct i386_record_s ir;
0289bdd7 4937 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4938 uint8_t rex_w = -1;
4939 uint8_t rex_r = 0;
7ad10968 4940
8408d274 4941 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4942 ir.regcache = regcache;
648d0c8b
MS
4943 ir.addr = input_addr;
4944 ir.orig_addr = input_addr;
7ad10968
HZ
4945 ir.aflag = 1;
4946 ir.dflag = 1;
cf648174
HZ
4947 ir.override = -1;
4948 ir.popl_esp_hack = 0;
a3c4230a 4949 ir.regmap = tdep->record_regmap;
cf648174 4950 ir.gdbarch = gdbarch;
7ad10968
HZ
4951
4952 if (record_debug > 1)
4953 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4954 "addr = %s\n",
4955 paddress (gdbarch, ir.addr));
7ad10968
HZ
4956
4957 /* prefixes */
4958 while (1)
4959 {
4ffa4fc7
PA
4960 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4961 return -1;
7ad10968 4962 ir.addr++;
425b824a 4963 switch (opcode8) /* Instruction prefixes */
7ad10968 4964 {
01fe1b41 4965 case REPE_PREFIX_OPCODE:
7ad10968
HZ
4966 prefixes |= PREFIX_REPZ;
4967 break;
01fe1b41 4968 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
4969 prefixes |= PREFIX_REPNZ;
4970 break;
01fe1b41 4971 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
4972 prefixes |= PREFIX_LOCK;
4973 break;
01fe1b41 4974 case CS_PREFIX_OPCODE:
cf648174 4975 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 4976 break;
01fe1b41 4977 case SS_PREFIX_OPCODE:
cf648174 4978 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 4979 break;
01fe1b41 4980 case DS_PREFIX_OPCODE:
cf648174 4981 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 4982 break;
01fe1b41 4983 case ES_PREFIX_OPCODE:
cf648174 4984 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 4985 break;
01fe1b41 4986 case FS_PREFIX_OPCODE:
cf648174 4987 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 4988 break;
01fe1b41 4989 case GS_PREFIX_OPCODE:
cf648174 4990 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 4991 break;
01fe1b41 4992 case DATA_PREFIX_OPCODE:
7ad10968
HZ
4993 prefixes |= PREFIX_DATA;
4994 break;
01fe1b41 4995 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
4996 prefixes |= PREFIX_ADDR;
4997 break;
d691bec7
MS
4998 case 0x40: /* i386 inc %eax */
4999 case 0x41: /* i386 inc %ecx */
5000 case 0x42: /* i386 inc %edx */
5001 case 0x43: /* i386 inc %ebx */
5002 case 0x44: /* i386 inc %esp */
5003 case 0x45: /* i386 inc %ebp */
5004 case 0x46: /* i386 inc %esi */
5005 case 0x47: /* i386 inc %edi */
5006 case 0x48: /* i386 dec %eax */
5007 case 0x49: /* i386 dec %ecx */
5008 case 0x4a: /* i386 dec %edx */
5009 case 0x4b: /* i386 dec %ebx */
5010 case 0x4c: /* i386 dec %esp */
5011 case 0x4d: /* i386 dec %ebp */
5012 case 0x4e: /* i386 dec %esi */
5013 case 0x4f: /* i386 dec %edi */
5014 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5015 {
5016 /* REX */
425b824a
MS
5017 rex_w = (opcode8 >> 3) & 1;
5018 rex_r = (opcode8 & 0x4) << 1;
5019 ir.rex_x = (opcode8 & 0x2) << 2;
5020 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5021 }
d691bec7
MS
5022 else /* 32 bit target */
5023 goto out_prefixes;
cf648174 5024 break;
7ad10968
HZ
5025 default:
5026 goto out_prefixes;
5027 break;
5028 }
5029 }
01fe1b41 5030 out_prefixes:
cf648174
HZ
5031 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5032 {
5033 ir.dflag = 2;
5034 }
5035 else
5036 {
5037 if (prefixes & PREFIX_DATA)
5038 ir.dflag ^= 1;
5039 }
7ad10968
HZ
5040 if (prefixes & PREFIX_ADDR)
5041 ir.aflag ^= 1;
cf648174
HZ
5042 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5043 ir.aflag = 2;
7ad10968 5044
1777feb0 5045 /* Now check op code. */
425b824a 5046 opcode = (uint32_t) opcode8;
01fe1b41 5047 reswitch:
7ad10968
HZ
5048 switch (opcode)
5049 {
5050 case 0x0f:
4ffa4fc7
PA
5051 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5052 return -1;
7ad10968 5053 ir.addr++;
a3c4230a 5054 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5055 goto reswitch;
5056 break;
93924b6b 5057
a38bba38 5058 case 0x00: /* arith & logic */
7ad10968
HZ
5059 case 0x01:
5060 case 0x02:
5061 case 0x03:
5062 case 0x04:
5063 case 0x05:
5064 case 0x08:
5065 case 0x09:
5066 case 0x0a:
5067 case 0x0b:
5068 case 0x0c:
5069 case 0x0d:
5070 case 0x10:
5071 case 0x11:
5072 case 0x12:
5073 case 0x13:
5074 case 0x14:
5075 case 0x15:
5076 case 0x18:
5077 case 0x19:
5078 case 0x1a:
5079 case 0x1b:
5080 case 0x1c:
5081 case 0x1d:
5082 case 0x20:
5083 case 0x21:
5084 case 0x22:
5085 case 0x23:
5086 case 0x24:
5087 case 0x25:
5088 case 0x28:
5089 case 0x29:
5090 case 0x2a:
5091 case 0x2b:
5092 case 0x2c:
5093 case 0x2d:
5094 case 0x30:
5095 case 0x31:
5096 case 0x32:
5097 case 0x33:
5098 case 0x34:
5099 case 0x35:
5100 case 0x38:
5101 case 0x39:
5102 case 0x3a:
5103 case 0x3b:
5104 case 0x3c:
5105 case 0x3d:
5106 if (((opcode >> 3) & 7) != OP_CMPL)
5107 {
5108 if ((opcode & 1) == 0)
5109 ir.ot = OT_BYTE;
5110 else
5111 ir.ot = ir.dflag + OT_WORD;
93924b6b 5112
7ad10968
HZ
5113 switch ((opcode >> 1) & 3)
5114 {
a38bba38 5115 case 0: /* OP Ev, Gv */
7ad10968
HZ
5116 if (i386_record_modrm (&ir))
5117 return -1;
5118 if (ir.mod != 3)
5119 {
5120 if (i386_record_lea_modrm (&ir))
5121 return -1;
5122 }
5123 else
5124 {
cf648174
HZ
5125 ir.rm |= ir.rex_b;
5126 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5127 ir.rm &= 0x3;
25ea693b 5128 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5129 }
5130 break;
a38bba38 5131 case 1: /* OP Gv, Ev */
7ad10968
HZ
5132 if (i386_record_modrm (&ir))
5133 return -1;
cf648174
HZ
5134 ir.reg |= rex_r;
5135 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5136 ir.reg &= 0x3;
25ea693b 5137 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5138 break;
a38bba38 5139 case 2: /* OP A, Iv */
25ea693b 5140 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5141 break;
5142 }
5143 }
25ea693b 5144 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5145 break;
42fdc8df 5146
a38bba38 5147 case 0x80: /* GRP1 */
7ad10968
HZ
5148 case 0x81:
5149 case 0x82:
5150 case 0x83:
5151 if (i386_record_modrm (&ir))
5152 return -1;
8201327c 5153
7ad10968
HZ
5154 if (ir.reg != OP_CMPL)
5155 {
5156 if ((opcode & 1) == 0)
5157 ir.ot = OT_BYTE;
5158 else
5159 ir.ot = ir.dflag + OT_WORD;
28fc6740 5160
7ad10968
HZ
5161 if (ir.mod != 3)
5162 {
cf648174
HZ
5163 if (opcode == 0x83)
5164 ir.rip_offset = 1;
5165 else
5166 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5167 if (i386_record_lea_modrm (&ir))
5168 return -1;
5169 }
5170 else
25ea693b 5171 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5172 }
25ea693b 5173 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5174 break;
5e3397bb 5175
a38bba38 5176 case 0x40: /* inc */
7ad10968
HZ
5177 case 0x41:
5178 case 0x42:
5179 case 0x43:
5180 case 0x44:
5181 case 0x45:
5182 case 0x46:
5183 case 0x47:
a38bba38
MS
5184
5185 case 0x48: /* dec */
7ad10968
HZ
5186 case 0x49:
5187 case 0x4a:
5188 case 0x4b:
5189 case 0x4c:
5190 case 0x4d:
5191 case 0x4e:
5192 case 0x4f:
a38bba38 5193
25ea693b
MM
5194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5196 break;
acd5c798 5197
a38bba38 5198 case 0xf6: /* GRP3 */
7ad10968
HZ
5199 case 0xf7:
5200 if ((opcode & 1) == 0)
5201 ir.ot = OT_BYTE;
5202 else
5203 ir.ot = ir.dflag + OT_WORD;
5204 if (i386_record_modrm (&ir))
5205 return -1;
acd5c798 5206
cf648174
HZ
5207 if (ir.mod != 3 && ir.reg == 0)
5208 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5209
7ad10968
HZ
5210 switch (ir.reg)
5211 {
a38bba38 5212 case 0: /* test */
25ea693b 5213 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5214 break;
a38bba38
MS
5215 case 2: /* not */
5216 case 3: /* neg */
7ad10968
HZ
5217 if (ir.mod != 3)
5218 {
5219 if (i386_record_lea_modrm (&ir))
5220 return -1;
5221 }
5222 else
5223 {
cf648174
HZ
5224 ir.rm |= ir.rex_b;
5225 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5226 ir.rm &= 0x3;
25ea693b 5227 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5228 }
a38bba38 5229 if (ir.reg == 3) /* neg */
25ea693b 5230 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5231 break;
a38bba38
MS
5232 case 4: /* mul */
5233 case 5: /* imul */
5234 case 6: /* div */
5235 case 7: /* idiv */
25ea693b 5236 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5237 if (ir.ot != OT_BYTE)
25ea693b
MM
5238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5240 break;
5241 default:
5242 ir.addr -= 2;
5243 opcode = opcode << 8 | ir.modrm;
5244 goto no_support;
5245 break;
5246 }
5247 break;
5248
a38bba38
MS
5249 case 0xfe: /* GRP4 */
5250 case 0xff: /* GRP5 */
7ad10968
HZ
5251 if (i386_record_modrm (&ir))
5252 return -1;
5253 if (ir.reg >= 2 && opcode == 0xfe)
5254 {
5255 ir.addr -= 2;
5256 opcode = opcode << 8 | ir.modrm;
5257 goto no_support;
5258 }
7ad10968
HZ
5259 switch (ir.reg)
5260 {
a38bba38
MS
5261 case 0: /* inc */
5262 case 1: /* dec */
cf648174
HZ
5263 if ((opcode & 1) == 0)
5264 ir.ot = OT_BYTE;
5265 else
5266 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5267 if (ir.mod != 3)
5268 {
5269 if (i386_record_lea_modrm (&ir))
5270 return -1;
5271 }
5272 else
5273 {
cf648174
HZ
5274 ir.rm |= ir.rex_b;
5275 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5276 ir.rm &= 0x3;
25ea693b 5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5278 }
25ea693b 5279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5280 break;
a38bba38 5281 case 2: /* call */
cf648174
HZ
5282 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5283 ir.dflag = 2;
5284 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5285 return -1;
25ea693b 5286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5287 break;
a38bba38 5288 case 3: /* lcall */
25ea693b 5289 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5290 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5291 return -1;
25ea693b 5292 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5293 break;
a38bba38
MS
5294 case 4: /* jmp */
5295 case 5: /* ljmp */
25ea693b 5296 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5297 break;
a38bba38 5298 case 6: /* push */
cf648174
HZ
5299 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5300 ir.dflag = 2;
5301 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5302 return -1;
7ad10968
HZ
5303 break;
5304 default:
5305 ir.addr -= 2;
5306 opcode = opcode << 8 | ir.modrm;
5307 goto no_support;
5308 break;
5309 }
5310 break;
5311
a38bba38 5312 case 0x84: /* test */
7ad10968
HZ
5313 case 0x85:
5314 case 0xa8:
5315 case 0xa9:
25ea693b 5316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5317 break;
5318
a38bba38 5319 case 0x98: /* CWDE/CBW */
25ea693b 5320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5321 break;
5322
a38bba38 5323 case 0x99: /* CDQ/CWD */
25ea693b
MM
5324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5326 break;
5327
a38bba38 5328 case 0x0faf: /* imul */
7ad10968
HZ
5329 case 0x69:
5330 case 0x6b:
5331 ir.ot = ir.dflag + OT_WORD;
5332 if (i386_record_modrm (&ir))
5333 return -1;
cf648174
HZ
5334 if (opcode == 0x69)
5335 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5336 else if (opcode == 0x6b)
5337 ir.rip_offset = 1;
5338 ir.reg |= rex_r;
5339 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5340 ir.reg &= 0x3;
25ea693b
MM
5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5343 break;
5344
a38bba38 5345 case 0x0fc0: /* xadd */
7ad10968
HZ
5346 case 0x0fc1:
5347 if ((opcode & 1) == 0)
5348 ir.ot = OT_BYTE;
5349 else
5350 ir.ot = ir.dflag + OT_WORD;
5351 if (i386_record_modrm (&ir))
5352 return -1;
cf648174 5353 ir.reg |= rex_r;
7ad10968
HZ
5354 if (ir.mod == 3)
5355 {
cf648174 5356 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5357 ir.reg &= 0x3;
25ea693b 5358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5359 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5360 ir.rm &= 0x3;
25ea693b 5361 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5362 }
5363 else
5364 {
5365 if (i386_record_lea_modrm (&ir))
5366 return -1;
cf648174 5367 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5368 ir.reg &= 0x3;
25ea693b 5369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5370 }
25ea693b 5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5372 break;
5373
a38bba38 5374 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5375 case 0x0fb1:
5376 if ((opcode & 1) == 0)
5377 ir.ot = OT_BYTE;
5378 else
5379 ir.ot = ir.dflag + OT_WORD;
5380 if (i386_record_modrm (&ir))
5381 return -1;
5382 if (ir.mod == 3)
5383 {
cf648174 5384 ir.reg |= rex_r;
25ea693b 5385 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5386 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5387 ir.reg &= 0x3;
25ea693b 5388 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5389 }
5390 else
5391 {
25ea693b 5392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5393 if (i386_record_lea_modrm (&ir))
5394 return -1;
5395 }
25ea693b 5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5397 break;
5398
a38bba38 5399 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
5400 if (i386_record_modrm (&ir))
5401 return -1;
5402 if (ir.mod == 3)
5403 {
5404 ir.addr -= 2;
5405 opcode = opcode << 8 | ir.modrm;
5406 goto no_support;
5407 }
25ea693b
MM
5408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5410 if (i386_record_lea_modrm (&ir))
5411 return -1;
25ea693b 5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5413 break;
5414
a38bba38 5415 case 0x50: /* push */
7ad10968
HZ
5416 case 0x51:
5417 case 0x52:
5418 case 0x53:
5419 case 0x54:
5420 case 0x55:
5421 case 0x56:
5422 case 0x57:
5423 case 0x68:
5424 case 0x6a:
cf648174
HZ
5425 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5426 ir.dflag = 2;
5427 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5428 return -1;
5429 break;
5430
a38bba38
MS
5431 case 0x06: /* push es */
5432 case 0x0e: /* push cs */
5433 case 0x16: /* push ss */
5434 case 0x1e: /* push ds */
cf648174
HZ
5435 if (ir.regmap[X86_RECORD_R8_REGNUM])
5436 {
5437 ir.addr -= 1;
5438 goto no_support;
5439 }
5440 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5441 return -1;
5442 break;
5443
a38bba38
MS
5444 case 0x0fa0: /* push fs */
5445 case 0x0fa8: /* push gs */
cf648174
HZ
5446 if (ir.regmap[X86_RECORD_R8_REGNUM])
5447 {
5448 ir.addr -= 2;
5449 goto no_support;
5450 }
5451 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5452 return -1;
cf648174
HZ
5453 break;
5454
a38bba38 5455 case 0x60: /* pusha */
cf648174
HZ
5456 if (ir.regmap[X86_RECORD_R8_REGNUM])
5457 {
5458 ir.addr -= 1;
5459 goto no_support;
5460 }
5461 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5462 return -1;
5463 break;
5464
a38bba38 5465 case 0x58: /* pop */
7ad10968
HZ
5466 case 0x59:
5467 case 0x5a:
5468 case 0x5b:
5469 case 0x5c:
5470 case 0x5d:
5471 case 0x5e:
5472 case 0x5f:
25ea693b
MM
5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5475 break;
5476
a38bba38 5477 case 0x61: /* popa */
cf648174
HZ
5478 if (ir.regmap[X86_RECORD_R8_REGNUM])
5479 {
5480 ir.addr -= 1;
5481 goto no_support;
7ad10968 5482 }
425b824a
MS
5483 for (regnum = X86_RECORD_REAX_REGNUM;
5484 regnum <= X86_RECORD_REDI_REGNUM;
5485 regnum++)
25ea693b 5486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5487 break;
5488
a38bba38 5489 case 0x8f: /* pop */
cf648174
HZ
5490 if (ir.regmap[X86_RECORD_R8_REGNUM])
5491 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5492 else
5493 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5494 if (i386_record_modrm (&ir))
5495 return -1;
5496 if (ir.mod == 3)
25ea693b 5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5498 else
5499 {
cf648174 5500 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5501 if (i386_record_lea_modrm (&ir))
5502 return -1;
5503 }
25ea693b 5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5505 break;
5506
a38bba38 5507 case 0xc8: /* enter */
25ea693b 5508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5509 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5510 ir.dflag = 2;
5511 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5512 return -1;
5513 break;
5514
a38bba38 5515 case 0xc9: /* leave */
25ea693b
MM
5516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5518 break;
5519
a38bba38 5520 case 0x07: /* pop es */
cf648174
HZ
5521 if (ir.regmap[X86_RECORD_R8_REGNUM])
5522 {
5523 ir.addr -= 1;
5524 goto no_support;
5525 }
25ea693b
MM
5526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5529 break;
5530
a38bba38 5531 case 0x17: /* pop ss */
cf648174
HZ
5532 if (ir.regmap[X86_RECORD_R8_REGNUM])
5533 {
5534 ir.addr -= 1;
5535 goto no_support;
5536 }
25ea693b
MM
5537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5540 break;
5541
a38bba38 5542 case 0x1f: /* pop ds */
cf648174
HZ
5543 if (ir.regmap[X86_RECORD_R8_REGNUM])
5544 {
5545 ir.addr -= 1;
5546 goto no_support;
5547 }
25ea693b
MM
5548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5551 break;
5552
a38bba38 5553 case 0x0fa1: /* pop fs */
25ea693b
MM
5554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5557 break;
5558
a38bba38 5559 case 0x0fa9: /* pop gs */
25ea693b
MM
5560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5563 break;
5564
a38bba38 5565 case 0x88: /* mov */
7ad10968
HZ
5566 case 0x89:
5567 case 0xc6:
5568 case 0xc7:
5569 if ((opcode & 1) == 0)
5570 ir.ot = OT_BYTE;
5571 else
5572 ir.ot = ir.dflag + OT_WORD;
5573
5574 if (i386_record_modrm (&ir))
5575 return -1;
5576
5577 if (ir.mod != 3)
5578 {
cf648174
HZ
5579 if (opcode == 0xc6 || opcode == 0xc7)
5580 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5581 if (i386_record_lea_modrm (&ir))
5582 return -1;
5583 }
5584 else
5585 {
cf648174
HZ
5586 if (opcode == 0xc6 || opcode == 0xc7)
5587 ir.rm |= ir.rex_b;
5588 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5589 ir.rm &= 0x3;
25ea693b 5590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5591 }
7ad10968 5592 break;
cf648174 5593
a38bba38 5594 case 0x8a: /* mov */
7ad10968
HZ
5595 case 0x8b:
5596 if ((opcode & 1) == 0)
5597 ir.ot = OT_BYTE;
5598 else
5599 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5600 if (i386_record_modrm (&ir))
5601 return -1;
cf648174
HZ
5602 ir.reg |= rex_r;
5603 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5604 ir.reg &= 0x3;
25ea693b 5605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5606 break;
7ad10968 5607
a38bba38 5608 case 0x8c: /* mov seg */
cf648174 5609 if (i386_record_modrm (&ir))
7ad10968 5610 return -1;
cf648174
HZ
5611 if (ir.reg > 5)
5612 {
5613 ir.addr -= 2;
5614 opcode = opcode << 8 | ir.modrm;
5615 goto no_support;
5616 }
5617
5618 if (ir.mod == 3)
25ea693b 5619 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5620 else
5621 {
5622 ir.ot = OT_WORD;
5623 if (i386_record_lea_modrm (&ir))
5624 return -1;
5625 }
7ad10968
HZ
5626 break;
5627
a38bba38 5628 case 0x8e: /* mov seg */
7ad10968
HZ
5629 if (i386_record_modrm (&ir))
5630 return -1;
7ad10968
HZ
5631 switch (ir.reg)
5632 {
5633 case 0:
425b824a 5634 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5635 break;
5636 case 2:
425b824a 5637 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5638 break;
5639 case 3:
425b824a 5640 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5641 break;
5642 case 4:
425b824a 5643 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5644 break;
5645 case 5:
425b824a 5646 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5647 break;
5648 default:
5649 ir.addr -= 2;
5650 opcode = opcode << 8 | ir.modrm;
5651 goto no_support;
5652 break;
5653 }
25ea693b
MM
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5656 break;
5657
a38bba38
MS
5658 case 0x0fb6: /* movzbS */
5659 case 0x0fb7: /* movzwS */
5660 case 0x0fbe: /* movsbS */
5661 case 0x0fbf: /* movswS */
7ad10968
HZ
5662 if (i386_record_modrm (&ir))
5663 return -1;
25ea693b 5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5665 break;
5666
a38bba38 5667 case 0x8d: /* lea */
7ad10968
HZ
5668 if (i386_record_modrm (&ir))
5669 return -1;
5670 if (ir.mod == 3)
5671 {
5672 ir.addr -= 2;
5673 opcode = opcode << 8 | ir.modrm;
5674 goto no_support;
5675 }
7ad10968 5676 ir.ot = ir.dflag;
cf648174
HZ
5677 ir.reg |= rex_r;
5678 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5679 ir.reg &= 0x3;
25ea693b 5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5681 break;
5682
a38bba38 5683 case 0xa0: /* mov EAX */
7ad10968 5684 case 0xa1:
a38bba38
MS
5685
5686 case 0xd7: /* xlat */
25ea693b 5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5688 break;
5689
a38bba38 5690 case 0xa2: /* mov EAX */
7ad10968 5691 case 0xa3:
d7877f7e 5692 if (ir.override >= 0)
cf648174 5693 {
25ea693b 5694 if (record_full_memory_query)
bb08c432
HZ
5695 {
5696 int q;
5697
5698 target_terminal_ours ();
5699 q = yquery (_("\
5700Process record ignores the memory change of instruction at address %s\n\
5701because it can't get the value of the segment register.\n\
5702Do you want to stop the program?"),
5703 paddress (gdbarch, ir.orig_addr));
5704 target_terminal_inferior ();
5705 if (q)
5706 return -1;
5707 }
cf648174
HZ
5708 }
5709 else
5710 {
5711 if ((opcode & 1) == 0)
5712 ir.ot = OT_BYTE;
5713 else
5714 ir.ot = ir.dflag + OT_WORD;
5715 if (ir.aflag == 2)
5716 {
4ffa4fc7
PA
5717 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5718 return -1;
cf648174 5719 ir.addr += 8;
60a1502a 5720 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5721 }
5722 else if (ir.aflag)
5723 {
4ffa4fc7
PA
5724 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5725 return -1;
cf648174 5726 ir.addr += 4;
60a1502a 5727 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5728 }
5729 else
5730 {
4ffa4fc7
PA
5731 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5732 return -1;
cf648174 5733 ir.addr += 2;
60a1502a 5734 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5735 }
25ea693b 5736 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5737 return -1;
5738 }
7ad10968
HZ
5739 break;
5740
a38bba38 5741 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5742 case 0xb1:
5743 case 0xb2:
5744 case 0xb3:
5745 case 0xb4:
5746 case 0xb5:
5747 case 0xb6:
5748 case 0xb7:
25ea693b
MM
5749 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5750 ? ((opcode & 0x7) | ir.rex_b)
5751 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5752 break;
5753
a38bba38 5754 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5755 case 0xb9:
5756 case 0xba:
5757 case 0xbb:
5758 case 0xbc:
5759 case 0xbd:
5760 case 0xbe:
5761 case 0xbf:
25ea693b 5762 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5763 break;
5764
a38bba38 5765 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5766 case 0x92:
5767 case 0x93:
5768 case 0x94:
5769 case 0x95:
5770 case 0x96:
5771 case 0x97:
25ea693b
MM
5772 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5774 break;
5775
a38bba38 5776 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5777 case 0x87:
5778 if ((opcode & 1) == 0)
5779 ir.ot = OT_BYTE;
5780 else
5781 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5782 if (i386_record_modrm (&ir))
5783 return -1;
7ad10968
HZ
5784 if (ir.mod == 3)
5785 {
86839d38 5786 ir.rm |= ir.rex_b;
cf648174
HZ
5787 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5788 ir.rm &= 0x3;
25ea693b 5789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5790 }
5791 else
5792 {
5793 if (i386_record_lea_modrm (&ir))
5794 return -1;
5795 }
cf648174
HZ
5796 ir.reg |= rex_r;
5797 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5798 ir.reg &= 0x3;
25ea693b 5799 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5800 break;
5801
a38bba38
MS
5802 case 0xc4: /* les Gv */
5803 case 0xc5: /* lds Gv */
cf648174
HZ
5804 if (ir.regmap[X86_RECORD_R8_REGNUM])
5805 {
5806 ir.addr -= 1;
5807 goto no_support;
5808 }
d3f323f3 5809 /* FALLTHROUGH */
a38bba38
MS
5810 case 0x0fb2: /* lss Gv */
5811 case 0x0fb4: /* lfs Gv */
5812 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5813 if (i386_record_modrm (&ir))
5814 return -1;
5815 if (ir.mod == 3)
5816 {
5817 if (opcode > 0xff)
5818 ir.addr -= 3;
5819 else
5820 ir.addr -= 2;
5821 opcode = opcode << 8 | ir.modrm;
5822 goto no_support;
5823 }
7ad10968
HZ
5824 switch (opcode)
5825 {
a38bba38 5826 case 0xc4: /* les Gv */
425b824a 5827 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5828 break;
a38bba38 5829 case 0xc5: /* lds Gv */
425b824a 5830 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5831 break;
a38bba38 5832 case 0x0fb2: /* lss Gv */
425b824a 5833 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5834 break;
a38bba38 5835 case 0x0fb4: /* lfs Gv */
425b824a 5836 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5837 break;
a38bba38 5838 case 0x0fb5: /* lgs Gv */
425b824a 5839 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5840 break;
5841 }
25ea693b
MM
5842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5843 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5845 break;
5846
a38bba38 5847 case 0xc0: /* shifts */
7ad10968
HZ
5848 case 0xc1:
5849 case 0xd0:
5850 case 0xd1:
5851 case 0xd2:
5852 case 0xd3:
5853 if ((opcode & 1) == 0)
5854 ir.ot = OT_BYTE;
5855 else
5856 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5857 if (i386_record_modrm (&ir))
5858 return -1;
7ad10968
HZ
5859 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5860 {
5861 if (i386_record_lea_modrm (&ir))
5862 return -1;
5863 }
5864 else
5865 {
cf648174
HZ
5866 ir.rm |= ir.rex_b;
5867 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5868 ir.rm &= 0x3;
25ea693b 5869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5870 }
25ea693b 5871 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5872 break;
5873
5874 case 0x0fa4:
5875 case 0x0fa5:
5876 case 0x0fac:
5877 case 0x0fad:
5878 if (i386_record_modrm (&ir))
5879 return -1;
5880 if (ir.mod == 3)
5881 {
25ea693b 5882 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
5883 return -1;
5884 }
5885 else
5886 {
5887 if (i386_record_lea_modrm (&ir))
5888 return -1;
5889 }
5890 break;
5891
a38bba38 5892 case 0xd8: /* Floats. */
7ad10968
HZ
5893 case 0xd9:
5894 case 0xda:
5895 case 0xdb:
5896 case 0xdc:
5897 case 0xdd:
5898 case 0xde:
5899 case 0xdf:
5900 if (i386_record_modrm (&ir))
5901 return -1;
5902 ir.reg |= ((opcode & 7) << 3);
5903 if (ir.mod != 3)
5904 {
1777feb0 5905 /* Memory. */
955db0c0 5906 uint64_t addr64;
7ad10968 5907
955db0c0 5908 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5909 return -1;
5910 switch (ir.reg)
5911 {
7ad10968 5912 case 0x02:
0289bdd7
MS
5913 case 0x12:
5914 case 0x22:
5915 case 0x32:
5916 /* For fcom, ficom nothing to do. */
5917 break;
7ad10968 5918 case 0x03:
0289bdd7
MS
5919 case 0x13:
5920 case 0x23:
5921 case 0x33:
5922 /* For fcomp, ficomp pop FPU stack, store all. */
5923 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5924 return -1;
5925 break;
5926 case 0x00:
5927 case 0x01:
7ad10968
HZ
5928 case 0x04:
5929 case 0x05:
5930 case 0x06:
5931 case 0x07:
5932 case 0x10:
5933 case 0x11:
7ad10968
HZ
5934 case 0x14:
5935 case 0x15:
5936 case 0x16:
5937 case 0x17:
5938 case 0x20:
5939 case 0x21:
7ad10968
HZ
5940 case 0x24:
5941 case 0x25:
5942 case 0x26:
5943 case 0x27:
5944 case 0x30:
5945 case 0x31:
7ad10968
HZ
5946 case 0x34:
5947 case 0x35:
5948 case 0x36:
5949 case 0x37:
0289bdd7
MS
5950 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5951 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5952 of code, always affects st(0) register. */
5953 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5954 return -1;
7ad10968
HZ
5955 break;
5956 case 0x08:
5957 case 0x0a:
5958 case 0x0b:
5959 case 0x18:
5960 case 0x19:
5961 case 0x1a:
5962 case 0x1b:
0289bdd7 5963 case 0x1d:
7ad10968
HZ
5964 case 0x28:
5965 case 0x29:
5966 case 0x2a:
5967 case 0x2b:
5968 case 0x38:
5969 case 0x39:
5970 case 0x3a:
5971 case 0x3b:
0289bdd7
MS
5972 case 0x3c:
5973 case 0x3d:
7ad10968
HZ
5974 switch (ir.reg & 7)
5975 {
5976 case 0:
0289bdd7
MS
5977 /* Handling fld, fild. */
5978 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5979 return -1;
7ad10968
HZ
5980 break;
5981 case 1:
5982 switch (ir.reg >> 4)
5983 {
5984 case 0:
25ea693b 5985 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
5986 return -1;
5987 break;
5988 case 2:
25ea693b 5989 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
5990 return -1;
5991 break;
5992 case 3:
0289bdd7 5993 break;
7ad10968 5994 default:
25ea693b 5995 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5996 return -1;
5997 break;
5998 }
5999 break;
6000 default:
6001 switch (ir.reg >> 4)
6002 {
6003 case 0:
25ea693b 6004 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6005 return -1;
6006 if (3 == (ir.reg & 7))
6007 {
6008 /* For fstp m32fp. */
6009 if (i386_record_floats (gdbarch, &ir,
6010 I386_SAVE_FPU_REGS))
6011 return -1;
6012 }
6013 break;
7ad10968 6014 case 1:
25ea693b 6015 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6016 return -1;
0289bdd7
MS
6017 if ((3 == (ir.reg & 7))
6018 || (5 == (ir.reg & 7))
6019 || (7 == (ir.reg & 7)))
6020 {
6021 /* For fstp insn. */
6022 if (i386_record_floats (gdbarch, &ir,
6023 I386_SAVE_FPU_REGS))
6024 return -1;
6025 }
7ad10968
HZ
6026 break;
6027 case 2:
25ea693b 6028 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6029 return -1;
0289bdd7
MS
6030 if (3 == (ir.reg & 7))
6031 {
6032 /* For fstp m64fp. */
6033 if (i386_record_floats (gdbarch, &ir,
6034 I386_SAVE_FPU_REGS))
6035 return -1;
6036 }
7ad10968
HZ
6037 break;
6038 case 3:
0289bdd7
MS
6039 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6040 {
6041 /* For fistp, fbld, fild, fbstp. */
6042 if (i386_record_floats (gdbarch, &ir,
6043 I386_SAVE_FPU_REGS))
6044 return -1;
6045 }
6046 /* Fall through */
7ad10968 6047 default:
25ea693b 6048 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6049 return -1;
6050 break;
6051 }
6052 break;
6053 }
6054 break;
6055 case 0x0c:
0289bdd7
MS
6056 /* Insn fldenv. */
6057 if (i386_record_floats (gdbarch, &ir,
6058 I386_SAVE_FPU_ENV_REG_STACK))
6059 return -1;
6060 break;
7ad10968 6061 case 0x0d:
0289bdd7
MS
6062 /* Insn fldcw. */
6063 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6064 return -1;
6065 break;
7ad10968 6066 case 0x2c:
0289bdd7
MS
6067 /* Insn frstor. */
6068 if (i386_record_floats (gdbarch, &ir,
6069 I386_SAVE_FPU_ENV_REG_STACK))
6070 return -1;
7ad10968
HZ
6071 break;
6072 case 0x0e:
6073 if (ir.dflag)
6074 {
25ea693b 6075 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6076 return -1;
6077 }
6078 else
6079 {
25ea693b 6080 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6081 return -1;
6082 }
6083 break;
6084 case 0x0f:
6085 case 0x2f:
25ea693b 6086 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6087 return -1;
0289bdd7
MS
6088 /* Insn fstp, fbstp. */
6089 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6090 return -1;
7ad10968
HZ
6091 break;
6092 case 0x1f:
6093 case 0x3e:
25ea693b 6094 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6095 return -1;
6096 break;
6097 case 0x2e:
6098 if (ir.dflag)
6099 {
25ea693b 6100 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6101 return -1;
955db0c0 6102 addr64 += 28;
7ad10968
HZ
6103 }
6104 else
6105 {
25ea693b 6106 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6107 return -1;
955db0c0 6108 addr64 += 14;
7ad10968 6109 }
25ea693b 6110 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6111 return -1;
0289bdd7
MS
6112 /* Insn fsave. */
6113 if (i386_record_floats (gdbarch, &ir,
6114 I386_SAVE_FPU_ENV_REG_STACK))
6115 return -1;
7ad10968
HZ
6116 break;
6117 case 0x3f:
25ea693b 6118 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6119 return -1;
0289bdd7
MS
6120 /* Insn fistp. */
6121 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6122 return -1;
7ad10968
HZ
6123 break;
6124 default:
6125 ir.addr -= 2;
6126 opcode = opcode << 8 | ir.modrm;
6127 goto no_support;
6128 break;
6129 }
6130 }
0289bdd7
MS
6131 /* Opcode is an extension of modR/M byte. */
6132 else
6133 {
6134 switch (opcode)
6135 {
6136 case 0xd8:
6137 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6138 return -1;
6139 break;
6140 case 0xd9:
6141 if (0x0c == (ir.modrm >> 4))
6142 {
6143 if ((ir.modrm & 0x0f) <= 7)
6144 {
6145 if (i386_record_floats (gdbarch, &ir,
6146 I386_SAVE_FPU_REGS))
6147 return -1;
6148 }
6149 else
6150 {
6151 if (i386_record_floats (gdbarch, &ir,
6152 I387_ST0_REGNUM (tdep)))
6153 return -1;
6154 /* If only st(0) is changing, then we have already
6155 recorded. */
6156 if ((ir.modrm & 0x0f) - 0x08)
6157 {
6158 if (i386_record_floats (gdbarch, &ir,
6159 I387_ST0_REGNUM (tdep) +
6160 ((ir.modrm & 0x0f) - 0x08)))
6161 return -1;
6162 }
6163 }
6164 }
6165 else
6166 {
6167 switch (ir.modrm)
6168 {
6169 case 0xe0:
6170 case 0xe1:
6171 case 0xf0:
6172 case 0xf5:
6173 case 0xf8:
6174 case 0xfa:
6175 case 0xfc:
6176 case 0xfe:
6177 case 0xff:
6178 if (i386_record_floats (gdbarch, &ir,
6179 I387_ST0_REGNUM (tdep)))
6180 return -1;
6181 break;
6182 case 0xf1:
6183 case 0xf2:
6184 case 0xf3:
6185 case 0xf4:
6186 case 0xf6:
6187 case 0xf7:
6188 case 0xe8:
6189 case 0xe9:
6190 case 0xea:
6191 case 0xeb:
6192 case 0xec:
6193 case 0xed:
6194 case 0xee:
6195 case 0xf9:
6196 case 0xfb:
6197 if (i386_record_floats (gdbarch, &ir,
6198 I386_SAVE_FPU_REGS))
6199 return -1;
6200 break;
6201 case 0xfd:
6202 if (i386_record_floats (gdbarch, &ir,
6203 I387_ST0_REGNUM (tdep)))
6204 return -1;
6205 if (i386_record_floats (gdbarch, &ir,
6206 I387_ST0_REGNUM (tdep) + 1))
6207 return -1;
6208 break;
6209 }
6210 }
6211 break;
6212 case 0xda:
6213 if (0xe9 == ir.modrm)
6214 {
6215 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6216 return -1;
6217 }
6218 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6219 {
6220 if (i386_record_floats (gdbarch, &ir,
6221 I387_ST0_REGNUM (tdep)))
6222 return -1;
6223 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6224 {
6225 if (i386_record_floats (gdbarch, &ir,
6226 I387_ST0_REGNUM (tdep) +
6227 (ir.modrm & 0x0f)))
6228 return -1;
6229 }
6230 else if ((ir.modrm & 0x0f) - 0x08)
6231 {
6232 if (i386_record_floats (gdbarch, &ir,
6233 I387_ST0_REGNUM (tdep) +
6234 ((ir.modrm & 0x0f) - 0x08)))
6235 return -1;
6236 }
6237 }
6238 break;
6239 case 0xdb:
6240 if (0xe3 == ir.modrm)
6241 {
6242 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6243 return -1;
6244 }
6245 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6246 {
6247 if (i386_record_floats (gdbarch, &ir,
6248 I387_ST0_REGNUM (tdep)))
6249 return -1;
6250 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6251 {
6252 if (i386_record_floats (gdbarch, &ir,
6253 I387_ST0_REGNUM (tdep) +
6254 (ir.modrm & 0x0f)))
6255 return -1;
6256 }
6257 else if ((ir.modrm & 0x0f) - 0x08)
6258 {
6259 if (i386_record_floats (gdbarch, &ir,
6260 I387_ST0_REGNUM (tdep) +
6261 ((ir.modrm & 0x0f) - 0x08)))
6262 return -1;
6263 }
6264 }
6265 break;
6266 case 0xdc:
6267 if ((0x0c == ir.modrm >> 4)
6268 || (0x0d == ir.modrm >> 4)
6269 || (0x0f == ir.modrm >> 4))
6270 {
6271 if ((ir.modrm & 0x0f) <= 7)
6272 {
6273 if (i386_record_floats (gdbarch, &ir,
6274 I387_ST0_REGNUM (tdep) +
6275 (ir.modrm & 0x0f)))
6276 return -1;
6277 }
6278 else
6279 {
6280 if (i386_record_floats (gdbarch, &ir,
6281 I387_ST0_REGNUM (tdep) +
6282 ((ir.modrm & 0x0f) - 0x08)))
6283 return -1;
6284 }
6285 }
6286 break;
6287 case 0xdd:
6288 if (0x0c == ir.modrm >> 4)
6289 {
6290 if (i386_record_floats (gdbarch, &ir,
6291 I387_FTAG_REGNUM (tdep)))
6292 return -1;
6293 }
6294 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6295 {
6296 if ((ir.modrm & 0x0f) <= 7)
6297 {
6298 if (i386_record_floats (gdbarch, &ir,
6299 I387_ST0_REGNUM (tdep) +
6300 (ir.modrm & 0x0f)))
6301 return -1;
6302 }
6303 else
6304 {
6305 if (i386_record_floats (gdbarch, &ir,
6306 I386_SAVE_FPU_REGS))
6307 return -1;
6308 }
6309 }
6310 break;
6311 case 0xde:
6312 if ((0x0c == ir.modrm >> 4)
6313 || (0x0e == ir.modrm >> 4)
6314 || (0x0f == ir.modrm >> 4)
6315 || (0xd9 == ir.modrm))
6316 {
6317 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6318 return -1;
6319 }
6320 break;
6321 case 0xdf:
6322 if (0xe0 == ir.modrm)
6323 {
25ea693b
MM
6324 if (record_full_arch_list_add_reg (ir.regcache,
6325 I386_EAX_REGNUM))
0289bdd7
MS
6326 return -1;
6327 }
6328 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6329 {
6330 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6331 return -1;
6332 }
6333 break;
6334 }
6335 }
7ad10968 6336 break;
7ad10968 6337 /* string ops */
a38bba38 6338 case 0xa4: /* movsS */
7ad10968 6339 case 0xa5:
a38bba38 6340 case 0xaa: /* stosS */
7ad10968 6341 case 0xab:
a38bba38 6342 case 0x6c: /* insS */
7ad10968 6343 case 0x6d:
cf648174 6344 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6345 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6346 &addr);
6347 if (addr)
cf648174 6348 {
77d7dc92
HZ
6349 ULONGEST es, ds;
6350
6351 if ((opcode & 1) == 0)
6352 ir.ot = OT_BYTE;
6353 else
6354 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6355 regcache_raw_read_unsigned (ir.regcache,
6356 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6357 &addr);
77d7dc92 6358
d7877f7e
HZ
6359 regcache_raw_read_unsigned (ir.regcache,
6360 ir.regmap[X86_RECORD_ES_REGNUM],
6361 &es);
6362 regcache_raw_read_unsigned (ir.regcache,
6363 ir.regmap[X86_RECORD_DS_REGNUM],
6364 &ds);
6365 if (ir.aflag && (es != ds))
77d7dc92
HZ
6366 {
6367 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6368 if (record_full_memory_query)
bb08c432
HZ
6369 {
6370 int q;
6371
6372 target_terminal_ours ();
6373 q = yquery (_("\
6374Process record ignores the memory change of instruction at address %s\n\
6375because it can't get the value of the segment register.\n\
6376Do you want to stop the program?"),
6377 paddress (gdbarch, ir.orig_addr));
6378 target_terminal_inferior ();
6379 if (q)
6380 return -1;
6381 }
df61f520
HZ
6382 }
6383 else
6384 {
25ea693b 6385 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6386 return -1;
77d7dc92
HZ
6387 }
6388
6389 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6391 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6395 }
cf648174 6396 break;
7ad10968 6397
a38bba38 6398 case 0xa6: /* cmpsS */
cf648174 6399 case 0xa7:
25ea693b
MM
6400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6402 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6405 break;
6406
a38bba38 6407 case 0xac: /* lodsS */
7ad10968 6408 case 0xad:
25ea693b
MM
6409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6410 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6411 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6413 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6414 break;
6415
a38bba38 6416 case 0xae: /* scasS */
7ad10968 6417 case 0xaf:
25ea693b 6418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6419 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6422 break;
6423
a38bba38 6424 case 0x6e: /* outsS */
cf648174 6425 case 0x6f:
25ea693b 6426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6427 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6430 break;
6431
a38bba38 6432 case 0xe4: /* port I/O */
7ad10968
HZ
6433 case 0xe5:
6434 case 0xec:
6435 case 0xed:
25ea693b
MM
6436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6438 break;
6439
6440 case 0xe6:
6441 case 0xe7:
6442 case 0xee:
6443 case 0xef:
6444 break;
6445
6446 /* control */
a38bba38
MS
6447 case 0xc2: /* ret im */
6448 case 0xc3: /* ret */
25ea693b
MM
6449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6451 break;
6452
a38bba38
MS
6453 case 0xca: /* lret im */
6454 case 0xcb: /* lret */
6455 case 0xcf: /* iret */
25ea693b
MM
6456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6459 break;
6460
a38bba38 6461 case 0xe8: /* call im */
cf648174
HZ
6462 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6463 ir.dflag = 2;
6464 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6465 return -1;
7ad10968
HZ
6466 break;
6467
a38bba38 6468 case 0x9a: /* lcall im */
cf648174
HZ
6469 if (ir.regmap[X86_RECORD_R8_REGNUM])
6470 {
6471 ir.addr -= 1;
6472 goto no_support;
6473 }
25ea693b 6474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6475 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6476 return -1;
7ad10968
HZ
6477 break;
6478
a38bba38
MS
6479 case 0xe9: /* jmp im */
6480 case 0xea: /* ljmp im */
6481 case 0xeb: /* jmp Jb */
6482 case 0x70: /* jcc Jb */
7ad10968
HZ
6483 case 0x71:
6484 case 0x72:
6485 case 0x73:
6486 case 0x74:
6487 case 0x75:
6488 case 0x76:
6489 case 0x77:
6490 case 0x78:
6491 case 0x79:
6492 case 0x7a:
6493 case 0x7b:
6494 case 0x7c:
6495 case 0x7d:
6496 case 0x7e:
6497 case 0x7f:
a38bba38 6498 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6499 case 0x0f81:
6500 case 0x0f82:
6501 case 0x0f83:
6502 case 0x0f84:
6503 case 0x0f85:
6504 case 0x0f86:
6505 case 0x0f87:
6506 case 0x0f88:
6507 case 0x0f89:
6508 case 0x0f8a:
6509 case 0x0f8b:
6510 case 0x0f8c:
6511 case 0x0f8d:
6512 case 0x0f8e:
6513 case 0x0f8f:
6514 break;
6515
a38bba38 6516 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6517 case 0x0f91:
6518 case 0x0f92:
6519 case 0x0f93:
6520 case 0x0f94:
6521 case 0x0f95:
6522 case 0x0f96:
6523 case 0x0f97:
6524 case 0x0f98:
6525 case 0x0f99:
6526 case 0x0f9a:
6527 case 0x0f9b:
6528 case 0x0f9c:
6529 case 0x0f9d:
6530 case 0x0f9e:
6531 case 0x0f9f:
25ea693b 6532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6533 ir.ot = OT_BYTE;
6534 if (i386_record_modrm (&ir))
6535 return -1;
6536 if (ir.mod == 3)
25ea693b
MM
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6538 : (ir.rm & 0x3));
7ad10968
HZ
6539 else
6540 {
6541 if (i386_record_lea_modrm (&ir))
6542 return -1;
6543 }
6544 break;
6545
a38bba38 6546 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6547 case 0x0f41:
6548 case 0x0f42:
6549 case 0x0f43:
6550 case 0x0f44:
6551 case 0x0f45:
6552 case 0x0f46:
6553 case 0x0f47:
6554 case 0x0f48:
6555 case 0x0f49:
6556 case 0x0f4a:
6557 case 0x0f4b:
6558 case 0x0f4c:
6559 case 0x0f4d:
6560 case 0x0f4e:
6561 case 0x0f4f:
6562 if (i386_record_modrm (&ir))
6563 return -1;
cf648174 6564 ir.reg |= rex_r;
7ad10968
HZ
6565 if (ir.dflag == OT_BYTE)
6566 ir.reg &= 0x3;
25ea693b 6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6568 break;
6569
6570 /* flags */
a38bba38 6571 case 0x9c: /* pushf */
25ea693b 6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6573 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6574 ir.dflag = 2;
6575 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6576 return -1;
7ad10968
HZ
6577 break;
6578
a38bba38 6579 case 0x9d: /* popf */
25ea693b
MM
6580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6581 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6582 break;
6583
a38bba38 6584 case 0x9e: /* sahf */
cf648174
HZ
6585 if (ir.regmap[X86_RECORD_R8_REGNUM])
6586 {
6587 ir.addr -= 1;
6588 goto no_support;
6589 }
d3f323f3 6590 /* FALLTHROUGH */
a38bba38
MS
6591 case 0xf5: /* cmc */
6592 case 0xf8: /* clc */
6593 case 0xf9: /* stc */
6594 case 0xfc: /* cld */
6595 case 0xfd: /* std */
25ea693b 6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6597 break;
6598
a38bba38 6599 case 0x9f: /* lahf */
cf648174
HZ
6600 if (ir.regmap[X86_RECORD_R8_REGNUM])
6601 {
6602 ir.addr -= 1;
6603 goto no_support;
6604 }
25ea693b
MM
6605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6607 break;
6608
6609 /* bit operations */
a38bba38 6610 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6611 ir.ot = ir.dflag + OT_WORD;
6612 if (i386_record_modrm (&ir))
6613 return -1;
6614 if (ir.reg < 4)
6615 {
cf648174 6616 ir.addr -= 2;
7ad10968
HZ
6617 opcode = opcode << 8 | ir.modrm;
6618 goto no_support;
6619 }
cf648174 6620 if (ir.reg != 4)
7ad10968 6621 {
cf648174 6622 if (ir.mod == 3)
25ea693b 6623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6624 else
6625 {
cf648174 6626 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6627 return -1;
6628 }
6629 }
25ea693b 6630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6631 break;
6632
a38bba38 6633 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6635 break;
6636
a38bba38
MS
6637 case 0x0fab: /* bts */
6638 case 0x0fb3: /* btr */
6639 case 0x0fbb: /* btc */
cf648174
HZ
6640 ir.ot = ir.dflag + OT_WORD;
6641 if (i386_record_modrm (&ir))
6642 return -1;
6643 if (ir.mod == 3)
25ea693b 6644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6645 else
6646 {
955db0c0
MS
6647 uint64_t addr64;
6648 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6649 return -1;
6650 regcache_raw_read_unsigned (ir.regcache,
6651 ir.regmap[ir.reg | rex_r],
648d0c8b 6652 &addr);
cf648174
HZ
6653 switch (ir.dflag)
6654 {
6655 case 0:
648d0c8b 6656 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6657 break;
6658 case 1:
648d0c8b 6659 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6660 break;
6661 case 2:
648d0c8b 6662 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6663 break;
6664 }
25ea693b 6665 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6666 return -1;
6667 if (i386_record_lea_modrm (&ir))
6668 return -1;
6669 }
25ea693b 6670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6671 break;
6672
a38bba38
MS
6673 case 0x0fbc: /* bsf */
6674 case 0x0fbd: /* bsr */
25ea693b
MM
6675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6677 break;
6678
6679 /* bcd */
a38bba38
MS
6680 case 0x27: /* daa */
6681 case 0x2f: /* das */
6682 case 0x37: /* aaa */
6683 case 0x3f: /* aas */
6684 case 0xd4: /* aam */
6685 case 0xd5: /* aad */
cf648174
HZ
6686 if (ir.regmap[X86_RECORD_R8_REGNUM])
6687 {
6688 ir.addr -= 1;
6689 goto no_support;
6690 }
25ea693b
MM
6691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6693 break;
6694
6695 /* misc */
a38bba38 6696 case 0x90: /* nop */
7ad10968
HZ
6697 if (prefixes & PREFIX_LOCK)
6698 {
6699 ir.addr -= 1;
6700 goto no_support;
6701 }
6702 break;
6703
a38bba38 6704 case 0x9b: /* fwait */
4ffa4fc7
PA
6705 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6706 return -1;
425b824a 6707 opcode = (uint32_t) opcode8;
0289bdd7
MS
6708 ir.addr++;
6709 goto reswitch;
7ad10968
HZ
6710 break;
6711
7ad10968 6712 /* XXX */
a38bba38 6713 case 0xcc: /* int3 */
a3c4230a 6714 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6715 "int3.\n"));
6716 ir.addr -= 1;
6717 goto no_support;
6718 break;
6719
7ad10968 6720 /* XXX */
a38bba38 6721 case 0xcd: /* int */
7ad10968
HZ
6722 {
6723 int ret;
425b824a 6724 uint8_t interrupt;
4ffa4fc7
PA
6725 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6726 return -1;
7ad10968 6727 ir.addr++;
425b824a 6728 if (interrupt != 0x80
a3c4230a 6729 || tdep->i386_intx80_record == NULL)
7ad10968 6730 {
a3c4230a 6731 printf_unfiltered (_("Process record does not support "
7ad10968 6732 "instruction int 0x%02x.\n"),
425b824a 6733 interrupt);
7ad10968
HZ
6734 ir.addr -= 2;
6735 goto no_support;
6736 }
a3c4230a 6737 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6738 if (ret)
6739 return ret;
6740 }
6741 break;
6742
7ad10968 6743 /* XXX */
a38bba38 6744 case 0xce: /* into */
a3c4230a 6745 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6746 "instruction into.\n"));
6747 ir.addr -= 1;
6748 goto no_support;
6749 break;
6750
a38bba38
MS
6751 case 0xfa: /* cli */
6752 case 0xfb: /* sti */
7ad10968
HZ
6753 break;
6754
a38bba38 6755 case 0x62: /* bound */
a3c4230a 6756 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6757 "instruction bound.\n"));
6758 ir.addr -= 1;
6759 goto no_support;
6760 break;
6761
a38bba38 6762 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6763 case 0x0fc9:
6764 case 0x0fca:
6765 case 0x0fcb:
6766 case 0x0fcc:
6767 case 0x0fcd:
6768 case 0x0fce:
6769 case 0x0fcf:
25ea693b 6770 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6771 break;
6772
a38bba38 6773 case 0xd6: /* salc */
cf648174
HZ
6774 if (ir.regmap[X86_RECORD_R8_REGNUM])
6775 {
6776 ir.addr -= 1;
6777 goto no_support;
6778 }
25ea693b
MM
6779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6781 break;
6782
a38bba38
MS
6783 case 0xe0: /* loopnz */
6784 case 0xe1: /* loopz */
6785 case 0xe2: /* loop */
6786 case 0xe3: /* jecxz */
25ea693b
MM
6787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6789 break;
6790
a38bba38 6791 case 0x0f30: /* wrmsr */
a3c4230a 6792 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6793 "instruction wrmsr.\n"));
6794 ir.addr -= 2;
6795 goto no_support;
6796 break;
6797
a38bba38 6798 case 0x0f32: /* rdmsr */
a3c4230a 6799 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6800 "instruction rdmsr.\n"));
6801 ir.addr -= 2;
6802 goto no_support;
6803 break;
6804
a38bba38 6805 case 0x0f31: /* rdtsc */
25ea693b
MM
6806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6808 break;
6809
a38bba38 6810 case 0x0f34: /* sysenter */
7ad10968
HZ
6811 {
6812 int ret;
cf648174
HZ
6813 if (ir.regmap[X86_RECORD_R8_REGNUM])
6814 {
6815 ir.addr -= 2;
6816 goto no_support;
6817 }
a3c4230a 6818 if (tdep->i386_sysenter_record == NULL)
7ad10968 6819 {
a3c4230a 6820 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6821 "instruction sysenter.\n"));
6822 ir.addr -= 2;
6823 goto no_support;
6824 }
a3c4230a 6825 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6826 if (ret)
6827 return ret;
6828 }
6829 break;
6830
a38bba38 6831 case 0x0f35: /* sysexit */
a3c4230a 6832 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6833 "instruction sysexit.\n"));
6834 ir.addr -= 2;
6835 goto no_support;
6836 break;
6837
a38bba38 6838 case 0x0f05: /* syscall */
cf648174
HZ
6839 {
6840 int ret;
a3c4230a 6841 if (tdep->i386_syscall_record == NULL)
cf648174 6842 {
a3c4230a 6843 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6844 "instruction syscall.\n"));
6845 ir.addr -= 2;
6846 goto no_support;
6847 }
a3c4230a 6848 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6849 if (ret)
6850 return ret;
6851 }
6852 break;
6853
a38bba38 6854 case 0x0f07: /* sysret */
a3c4230a 6855 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6856 "instruction sysret.\n"));
6857 ir.addr -= 2;
6858 goto no_support;
6859 break;
6860
a38bba38 6861 case 0x0fa2: /* cpuid */
25ea693b
MM
6862 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6863 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6864 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6865 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6866 break;
6867
a38bba38 6868 case 0xf4: /* hlt */
a3c4230a 6869 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6870 "instruction hlt.\n"));
6871 ir.addr -= 1;
6872 goto no_support;
6873 break;
6874
6875 case 0x0f00:
6876 if (i386_record_modrm (&ir))
6877 return -1;
6878 switch (ir.reg)
6879 {
a38bba38
MS
6880 case 0: /* sldt */
6881 case 1: /* str */
7ad10968 6882 if (ir.mod == 3)
25ea693b 6883 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6884 else
6885 {
6886 ir.ot = OT_WORD;
6887 if (i386_record_lea_modrm (&ir))
6888 return -1;
6889 }
6890 break;
a38bba38
MS
6891 case 2: /* lldt */
6892 case 3: /* ltr */
7ad10968 6893 break;
a38bba38
MS
6894 case 4: /* verr */
6895 case 5: /* verw */
25ea693b 6896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6897 break;
6898 default:
6899 ir.addr -= 3;
6900 opcode = opcode << 8 | ir.modrm;
6901 goto no_support;
6902 break;
6903 }
6904 break;
6905
6906 case 0x0f01:
6907 if (i386_record_modrm (&ir))
6908 return -1;
6909 switch (ir.reg)
6910 {
a38bba38 6911 case 0: /* sgdt */
7ad10968 6912 {
955db0c0 6913 uint64_t addr64;
7ad10968
HZ
6914
6915 if (ir.mod == 3)
6916 {
6917 ir.addr -= 3;
6918 opcode = opcode << 8 | ir.modrm;
6919 goto no_support;
6920 }
d7877f7e 6921 if (ir.override >= 0)
7ad10968 6922 {
25ea693b 6923 if (record_full_memory_query)
bb08c432
HZ
6924 {
6925 int q;
6926
6927 target_terminal_ours ();
6928 q = yquery (_("\
6929Process record ignores the memory change of instruction at address %s\n\
6930because it can't get the value of the segment register.\n\
6931Do you want to stop the program?"),
6932 paddress (gdbarch, ir.orig_addr));
6933 target_terminal_inferior ();
6934 if (q)
6935 return -1;
6936 }
7ad10968
HZ
6937 }
6938 else
6939 {
955db0c0 6940 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6941 return -1;
25ea693b 6942 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6943 return -1;
955db0c0 6944 addr64 += 2;
cf648174
HZ
6945 if (ir.regmap[X86_RECORD_R8_REGNUM])
6946 {
25ea693b 6947 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
6948 return -1;
6949 }
6950 else
6951 {
25ea693b 6952 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
6953 return -1;
6954 }
7ad10968
HZ
6955 }
6956 }
6957 break;
6958 case 1:
6959 if (ir.mod == 3)
6960 {
6961 switch (ir.rm)
6962 {
a38bba38 6963 case 0: /* monitor */
7ad10968 6964 break;
a38bba38 6965 case 1: /* mwait */
25ea693b 6966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6967 break;
6968 default:
6969 ir.addr -= 3;
6970 opcode = opcode << 8 | ir.modrm;
6971 goto no_support;
6972 break;
6973 }
6974 }
6975 else
6976 {
6977 /* sidt */
d7877f7e 6978 if (ir.override >= 0)
7ad10968 6979 {
25ea693b 6980 if (record_full_memory_query)
bb08c432
HZ
6981 {
6982 int q;
6983
6984 target_terminal_ours ();
6985 q = yquery (_("\
6986Process record ignores the memory change of instruction at address %s\n\
6987because it can't get the value of the segment register.\n\
6988Do you want to stop the program?"),
6989 paddress (gdbarch, ir.orig_addr));
6990 target_terminal_inferior ();
6991 if (q)
6992 return -1;
6993 }
7ad10968
HZ
6994 }
6995 else
6996 {
955db0c0 6997 uint64_t addr64;
7ad10968 6998
955db0c0 6999 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7000 return -1;
25ea693b 7001 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7002 return -1;
955db0c0 7003 addr64 += 2;
cf648174
HZ
7004 if (ir.regmap[X86_RECORD_R8_REGNUM])
7005 {
25ea693b 7006 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7007 return -1;
7008 }
7009 else
7010 {
25ea693b 7011 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7012 return -1;
7013 }
7ad10968
HZ
7014 }
7015 }
7016 break;
a38bba38 7017 case 2: /* lgdt */
3800e645
MS
7018 if (ir.mod == 3)
7019 {
7020 /* xgetbv */
7021 if (ir.rm == 0)
7022 {
25ea693b
MM
7023 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7024 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7025 break;
7026 }
7027 /* xsetbv */
7028 else if (ir.rm == 1)
7029 break;
7030 }
a38bba38 7031 case 3: /* lidt */
7ad10968
HZ
7032 if (ir.mod == 3)
7033 {
7034 ir.addr -= 3;
7035 opcode = opcode << 8 | ir.modrm;
7036 goto no_support;
7037 }
7038 break;
a38bba38 7039 case 4: /* smsw */
7ad10968
HZ
7040 if (ir.mod == 3)
7041 {
25ea693b 7042 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7043 return -1;
7044 }
7045 else
7046 {
7047 ir.ot = OT_WORD;
7048 if (i386_record_lea_modrm (&ir))
7049 return -1;
7050 }
25ea693b 7051 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7052 break;
a38bba38 7053 case 6: /* lmsw */
25ea693b 7054 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7055 break;
a38bba38 7056 case 7: /* invlpg */
cf648174
HZ
7057 if (ir.mod == 3)
7058 {
7059 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7060 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7061 else
7062 {
7063 ir.addr -= 3;
7064 opcode = opcode << 8 | ir.modrm;
7065 goto no_support;
7066 }
7067 }
7068 else
25ea693b 7069 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7070 break;
7071 default:
7072 ir.addr -= 3;
7073 opcode = opcode << 8 | ir.modrm;
7074 goto no_support;
7ad10968
HZ
7075 break;
7076 }
7077 break;
7078
a38bba38
MS
7079 case 0x0f08: /* invd */
7080 case 0x0f09: /* wbinvd */
7ad10968
HZ
7081 break;
7082
a38bba38 7083 case 0x63: /* arpl */
7ad10968
HZ
7084 if (i386_record_modrm (&ir))
7085 return -1;
cf648174
HZ
7086 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7087 {
25ea693b
MM
7088 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7089 ? (ir.reg | rex_r) : ir.rm);
cf648174 7090 }
7ad10968 7091 else
cf648174
HZ
7092 {
7093 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7094 if (i386_record_lea_modrm (&ir))
7095 return -1;
7096 }
7097 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7098 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7099 break;
7100
a38bba38
MS
7101 case 0x0f02: /* lar */
7102 case 0x0f03: /* lsl */
7ad10968
HZ
7103 if (i386_record_modrm (&ir))
7104 return -1;
25ea693b
MM
7105 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7106 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7107 break;
7108
7109 case 0x0f18:
cf648174
HZ
7110 if (i386_record_modrm (&ir))
7111 return -1;
7112 if (ir.mod == 3 && ir.reg == 3)
7113 {
7114 ir.addr -= 3;
7115 opcode = opcode << 8 | ir.modrm;
7116 goto no_support;
7117 }
7ad10968
HZ
7118 break;
7119
7ad10968
HZ
7120 case 0x0f19:
7121 case 0x0f1a:
7122 case 0x0f1b:
7123 case 0x0f1c:
7124 case 0x0f1d:
7125 case 0x0f1e:
7126 case 0x0f1f:
a38bba38 7127 /* nop (multi byte) */
7ad10968
HZ
7128 break;
7129
a38bba38
MS
7130 case 0x0f20: /* mov reg, crN */
7131 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7132 if (i386_record_modrm (&ir))
7133 return -1;
7134 if ((ir.modrm & 0xc0) != 0xc0)
7135 {
cf648174 7136 ir.addr -= 3;
7ad10968
HZ
7137 opcode = opcode << 8 | ir.modrm;
7138 goto no_support;
7139 }
7140 switch (ir.reg)
7141 {
7142 case 0:
7143 case 2:
7144 case 3:
7145 case 4:
7146 case 8:
7147 if (opcode & 2)
25ea693b 7148 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7149 else
25ea693b 7150 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7151 break;
7152 default:
cf648174 7153 ir.addr -= 3;
7ad10968
HZ
7154 opcode = opcode << 8 | ir.modrm;
7155 goto no_support;
7156 break;
7157 }
7158 break;
7159
a38bba38
MS
7160 case 0x0f21: /* mov reg, drN */
7161 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7162 if (i386_record_modrm (&ir))
7163 return -1;
7164 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7165 || ir.reg == 5 || ir.reg >= 8)
7166 {
cf648174 7167 ir.addr -= 3;
7ad10968
HZ
7168 opcode = opcode << 8 | ir.modrm;
7169 goto no_support;
7170 }
7171 if (opcode & 2)
25ea693b 7172 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7173 else
25ea693b 7174 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7175 break;
7176
a38bba38 7177 case 0x0f06: /* clts */
25ea693b 7178 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7179 break;
7180
a3c4230a
HZ
7181 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7182
7183 case 0x0f0d: /* 3DNow! prefetch */
7184 break;
7185
7186 case 0x0f0e: /* 3DNow! femms */
7187 case 0x0f77: /* emms */
7188 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7189 goto no_support;
25ea693b 7190 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7191 break;
7192
7193 case 0x0f0f: /* 3DNow! data */
7194 if (i386_record_modrm (&ir))
7195 return -1;
4ffa4fc7
PA
7196 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7197 return -1;
a3c4230a
HZ
7198 ir.addr++;
7199 switch (opcode8)
7200 {
7201 case 0x0c: /* 3DNow! pi2fw */
7202 case 0x0d: /* 3DNow! pi2fd */
7203 case 0x1c: /* 3DNow! pf2iw */
7204 case 0x1d: /* 3DNow! pf2id */
7205 case 0x8a: /* 3DNow! pfnacc */
7206 case 0x8e: /* 3DNow! pfpnacc */
7207 case 0x90: /* 3DNow! pfcmpge */
7208 case 0x94: /* 3DNow! pfmin */
7209 case 0x96: /* 3DNow! pfrcp */
7210 case 0x97: /* 3DNow! pfrsqrt */
7211 case 0x9a: /* 3DNow! pfsub */
7212 case 0x9e: /* 3DNow! pfadd */
7213 case 0xa0: /* 3DNow! pfcmpgt */
7214 case 0xa4: /* 3DNow! pfmax */
7215 case 0xa6: /* 3DNow! pfrcpit1 */
7216 case 0xa7: /* 3DNow! pfrsqit1 */
7217 case 0xaa: /* 3DNow! pfsubr */
7218 case 0xae: /* 3DNow! pfacc */
7219 case 0xb0: /* 3DNow! pfcmpeq */
7220 case 0xb4: /* 3DNow! pfmul */
7221 case 0xb6: /* 3DNow! pfrcpit2 */
7222 case 0xb7: /* 3DNow! pmulhrw */
7223 case 0xbb: /* 3DNow! pswapd */
7224 case 0xbf: /* 3DNow! pavgusb */
7225 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7226 goto no_support_3dnow_data;
25ea693b 7227 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7228 break;
7229
7230 default:
7231no_support_3dnow_data:
7232 opcode = (opcode << 8) | opcode8;
7233 goto no_support;
7234 break;
7235 }
7236 break;
7237
7238 case 0x0faa: /* rsm */
25ea693b
MM
7239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7245 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7246 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7248 break;
7249
7250 case 0x0fae:
7251 if (i386_record_modrm (&ir))
7252 return -1;
7253 switch(ir.reg)
7254 {
7255 case 0: /* fxsave */
7256 {
7257 uint64_t tmpu64;
7258
25ea693b 7259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7260 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7261 return -1;
25ea693b 7262 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7263 return -1;
7264 }
7265 break;
7266
7267 case 1: /* fxrstor */
7268 {
7269 int i;
7270
25ea693b 7271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7272
7273 for (i = I387_MM0_REGNUM (tdep);
7274 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7275 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7276
7277 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7278 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7279 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7280
7281 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7282 record_full_arch_list_add_reg (ir.regcache,
7283 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7284
7285 for (i = I387_ST0_REGNUM (tdep);
7286 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7287 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7288
7289 for (i = I387_FCTRL_REGNUM (tdep);
7290 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7291 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7292 }
7293 break;
7294
7295 case 2: /* ldmxcsr */
7296 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7297 goto no_support;
25ea693b 7298 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7299 break;
7300
7301 case 3: /* stmxcsr */
7302 ir.ot = OT_LONG;
7303 if (i386_record_lea_modrm (&ir))
7304 return -1;
7305 break;
7306
7307 case 5: /* lfence */
7308 case 6: /* mfence */
7309 case 7: /* sfence clflush */
7310 break;
7311
7312 default:
7313 opcode = (opcode << 8) | ir.modrm;
7314 goto no_support;
7315 break;
7316 }
7317 break;
7318
7319 case 0x0fc3: /* movnti */
7320 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7321 if (i386_record_modrm (&ir))
7322 return -1;
7323 if (ir.mod == 3)
7324 goto no_support;
7325 ir.reg |= rex_r;
7326 if (i386_record_lea_modrm (&ir))
7327 return -1;
7328 break;
7329
7330 /* Add prefix to opcode. */
7331 case 0x0f10:
7332 case 0x0f11:
7333 case 0x0f12:
7334 case 0x0f13:
7335 case 0x0f14:
7336 case 0x0f15:
7337 case 0x0f16:
7338 case 0x0f17:
7339 case 0x0f28:
7340 case 0x0f29:
7341 case 0x0f2a:
7342 case 0x0f2b:
7343 case 0x0f2c:
7344 case 0x0f2d:
7345 case 0x0f2e:
7346 case 0x0f2f:
7347 case 0x0f38:
7348 case 0x0f39:
7349 case 0x0f3a:
7350 case 0x0f50:
7351 case 0x0f51:
7352 case 0x0f52:
7353 case 0x0f53:
7354 case 0x0f54:
7355 case 0x0f55:
7356 case 0x0f56:
7357 case 0x0f57:
7358 case 0x0f58:
7359 case 0x0f59:
7360 case 0x0f5a:
7361 case 0x0f5b:
7362 case 0x0f5c:
7363 case 0x0f5d:
7364 case 0x0f5e:
7365 case 0x0f5f:
7366 case 0x0f60:
7367 case 0x0f61:
7368 case 0x0f62:
7369 case 0x0f63:
7370 case 0x0f64:
7371 case 0x0f65:
7372 case 0x0f66:
7373 case 0x0f67:
7374 case 0x0f68:
7375 case 0x0f69:
7376 case 0x0f6a:
7377 case 0x0f6b:
7378 case 0x0f6c:
7379 case 0x0f6d:
7380 case 0x0f6e:
7381 case 0x0f6f:
7382 case 0x0f70:
7383 case 0x0f71:
7384 case 0x0f72:
7385 case 0x0f73:
7386 case 0x0f74:
7387 case 0x0f75:
7388 case 0x0f76:
7389 case 0x0f7c:
7390 case 0x0f7d:
7391 case 0x0f7e:
7392 case 0x0f7f:
7393 case 0x0fb8:
7394 case 0x0fc2:
7395 case 0x0fc4:
7396 case 0x0fc5:
7397 case 0x0fc6:
7398 case 0x0fd0:
7399 case 0x0fd1:
7400 case 0x0fd2:
7401 case 0x0fd3:
7402 case 0x0fd4:
7403 case 0x0fd5:
7404 case 0x0fd6:
7405 case 0x0fd7:
7406 case 0x0fd8:
7407 case 0x0fd9:
7408 case 0x0fda:
7409 case 0x0fdb:
7410 case 0x0fdc:
7411 case 0x0fdd:
7412 case 0x0fde:
7413 case 0x0fdf:
7414 case 0x0fe0:
7415 case 0x0fe1:
7416 case 0x0fe2:
7417 case 0x0fe3:
7418 case 0x0fe4:
7419 case 0x0fe5:
7420 case 0x0fe6:
7421 case 0x0fe7:
7422 case 0x0fe8:
7423 case 0x0fe9:
7424 case 0x0fea:
7425 case 0x0feb:
7426 case 0x0fec:
7427 case 0x0fed:
7428 case 0x0fee:
7429 case 0x0fef:
7430 case 0x0ff0:
7431 case 0x0ff1:
7432 case 0x0ff2:
7433 case 0x0ff3:
7434 case 0x0ff4:
7435 case 0x0ff5:
7436 case 0x0ff6:
7437 case 0x0ff7:
7438 case 0x0ff8:
7439 case 0x0ff9:
7440 case 0x0ffa:
7441 case 0x0ffb:
7442 case 0x0ffc:
7443 case 0x0ffd:
7444 case 0x0ffe:
f9fda3f5
L
7445 /* Mask out PREFIX_ADDR. */
7446 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7447 {
7448 case PREFIX_REPNZ:
7449 opcode |= 0xf20000;
7450 break;
7451 case PREFIX_DATA:
7452 opcode |= 0x660000;
7453 break;
7454 case PREFIX_REPZ:
7455 opcode |= 0xf30000;
7456 break;
7457 }
7458reswitch_prefix_add:
7459 switch (opcode)
7460 {
7461 case 0x0f38:
7462 case 0x660f38:
7463 case 0xf20f38:
7464 case 0x0f3a:
7465 case 0x660f3a:
4ffa4fc7
PA
7466 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7467 return -1;
a3c4230a
HZ
7468 ir.addr++;
7469 opcode = (uint32_t) opcode8 | opcode << 8;
7470 goto reswitch_prefix_add;
7471 break;
7472
7473 case 0x0f10: /* movups */
7474 case 0x660f10: /* movupd */
7475 case 0xf30f10: /* movss */
7476 case 0xf20f10: /* movsd */
7477 case 0x0f12: /* movlps */
7478 case 0x660f12: /* movlpd */
7479 case 0xf30f12: /* movsldup */
7480 case 0xf20f12: /* movddup */
7481 case 0x0f14: /* unpcklps */
7482 case 0x660f14: /* unpcklpd */
7483 case 0x0f15: /* unpckhps */
7484 case 0x660f15: /* unpckhpd */
7485 case 0x0f16: /* movhps */
7486 case 0x660f16: /* movhpd */
7487 case 0xf30f16: /* movshdup */
7488 case 0x0f28: /* movaps */
7489 case 0x660f28: /* movapd */
7490 case 0x0f2a: /* cvtpi2ps */
7491 case 0x660f2a: /* cvtpi2pd */
7492 case 0xf30f2a: /* cvtsi2ss */
7493 case 0xf20f2a: /* cvtsi2sd */
7494 case 0x0f2c: /* cvttps2pi */
7495 case 0x660f2c: /* cvttpd2pi */
7496 case 0x0f2d: /* cvtps2pi */
7497 case 0x660f2d: /* cvtpd2pi */
7498 case 0x660f3800: /* pshufb */
7499 case 0x660f3801: /* phaddw */
7500 case 0x660f3802: /* phaddd */
7501 case 0x660f3803: /* phaddsw */
7502 case 0x660f3804: /* pmaddubsw */
7503 case 0x660f3805: /* phsubw */
7504 case 0x660f3806: /* phsubd */
4f7d61a8 7505 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7506 case 0x660f3808: /* psignb */
7507 case 0x660f3809: /* psignw */
7508 case 0x660f380a: /* psignd */
7509 case 0x660f380b: /* pmulhrsw */
7510 case 0x660f3810: /* pblendvb */
7511 case 0x660f3814: /* blendvps */
7512 case 0x660f3815: /* blendvpd */
7513 case 0x660f381c: /* pabsb */
7514 case 0x660f381d: /* pabsw */
7515 case 0x660f381e: /* pabsd */
7516 case 0x660f3820: /* pmovsxbw */
7517 case 0x660f3821: /* pmovsxbd */
7518 case 0x660f3822: /* pmovsxbq */
7519 case 0x660f3823: /* pmovsxwd */
7520 case 0x660f3824: /* pmovsxwq */
7521 case 0x660f3825: /* pmovsxdq */
7522 case 0x660f3828: /* pmuldq */
7523 case 0x660f3829: /* pcmpeqq */
7524 case 0x660f382a: /* movntdqa */
7525 case 0x660f3a08: /* roundps */
7526 case 0x660f3a09: /* roundpd */
7527 case 0x660f3a0a: /* roundss */
7528 case 0x660f3a0b: /* roundsd */
7529 case 0x660f3a0c: /* blendps */
7530 case 0x660f3a0d: /* blendpd */
7531 case 0x660f3a0e: /* pblendw */
7532 case 0x660f3a0f: /* palignr */
7533 case 0x660f3a20: /* pinsrb */
7534 case 0x660f3a21: /* insertps */
7535 case 0x660f3a22: /* pinsrd pinsrq */
7536 case 0x660f3a40: /* dpps */
7537 case 0x660f3a41: /* dppd */
7538 case 0x660f3a42: /* mpsadbw */
7539 case 0x660f3a60: /* pcmpestrm */
7540 case 0x660f3a61: /* pcmpestri */
7541 case 0x660f3a62: /* pcmpistrm */
7542 case 0x660f3a63: /* pcmpistri */
7543 case 0x0f51: /* sqrtps */
7544 case 0x660f51: /* sqrtpd */
7545 case 0xf20f51: /* sqrtsd */
7546 case 0xf30f51: /* sqrtss */
7547 case 0x0f52: /* rsqrtps */
7548 case 0xf30f52: /* rsqrtss */
7549 case 0x0f53: /* rcpps */
7550 case 0xf30f53: /* rcpss */
7551 case 0x0f54: /* andps */
7552 case 0x660f54: /* andpd */
7553 case 0x0f55: /* andnps */
7554 case 0x660f55: /* andnpd */
7555 case 0x0f56: /* orps */
7556 case 0x660f56: /* orpd */
7557 case 0x0f57: /* xorps */
7558 case 0x660f57: /* xorpd */
7559 case 0x0f58: /* addps */
7560 case 0x660f58: /* addpd */
7561 case 0xf20f58: /* addsd */
7562 case 0xf30f58: /* addss */
7563 case 0x0f59: /* mulps */
7564 case 0x660f59: /* mulpd */
7565 case 0xf20f59: /* mulsd */
7566 case 0xf30f59: /* mulss */
7567 case 0x0f5a: /* cvtps2pd */
7568 case 0x660f5a: /* cvtpd2ps */
7569 case 0xf20f5a: /* cvtsd2ss */
7570 case 0xf30f5a: /* cvtss2sd */
7571 case 0x0f5b: /* cvtdq2ps */
7572 case 0x660f5b: /* cvtps2dq */
7573 case 0xf30f5b: /* cvttps2dq */
7574 case 0x0f5c: /* subps */
7575 case 0x660f5c: /* subpd */
7576 case 0xf20f5c: /* subsd */
7577 case 0xf30f5c: /* subss */
7578 case 0x0f5d: /* minps */
7579 case 0x660f5d: /* minpd */
7580 case 0xf20f5d: /* minsd */
7581 case 0xf30f5d: /* minss */
7582 case 0x0f5e: /* divps */
7583 case 0x660f5e: /* divpd */
7584 case 0xf20f5e: /* divsd */
7585 case 0xf30f5e: /* divss */
7586 case 0x0f5f: /* maxps */
7587 case 0x660f5f: /* maxpd */
7588 case 0xf20f5f: /* maxsd */
7589 case 0xf30f5f: /* maxss */
7590 case 0x660f60: /* punpcklbw */
7591 case 0x660f61: /* punpcklwd */
7592 case 0x660f62: /* punpckldq */
7593 case 0x660f63: /* packsswb */
7594 case 0x660f64: /* pcmpgtb */
7595 case 0x660f65: /* pcmpgtw */
56d2815c 7596 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7597 case 0x660f67: /* packuswb */
7598 case 0x660f68: /* punpckhbw */
7599 case 0x660f69: /* punpckhwd */
7600 case 0x660f6a: /* punpckhdq */
7601 case 0x660f6b: /* packssdw */
7602 case 0x660f6c: /* punpcklqdq */
7603 case 0x660f6d: /* punpckhqdq */
7604 case 0x660f6e: /* movd */
7605 case 0x660f6f: /* movdqa */
7606 case 0xf30f6f: /* movdqu */
7607 case 0x660f70: /* pshufd */
7608 case 0xf20f70: /* pshuflw */
7609 case 0xf30f70: /* pshufhw */
7610 case 0x660f74: /* pcmpeqb */
7611 case 0x660f75: /* pcmpeqw */
56d2815c 7612 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7613 case 0x660f7c: /* haddpd */
7614 case 0xf20f7c: /* haddps */
7615 case 0x660f7d: /* hsubpd */
7616 case 0xf20f7d: /* hsubps */
7617 case 0xf30f7e: /* movq */
7618 case 0x0fc2: /* cmpps */
7619 case 0x660fc2: /* cmppd */
7620 case 0xf20fc2: /* cmpsd */
7621 case 0xf30fc2: /* cmpss */
7622 case 0x660fc4: /* pinsrw */
7623 case 0x0fc6: /* shufps */
7624 case 0x660fc6: /* shufpd */
7625 case 0x660fd0: /* addsubpd */
7626 case 0xf20fd0: /* addsubps */
7627 case 0x660fd1: /* psrlw */
7628 case 0x660fd2: /* psrld */
7629 case 0x660fd3: /* psrlq */
7630 case 0x660fd4: /* paddq */
7631 case 0x660fd5: /* pmullw */
7632 case 0xf30fd6: /* movq2dq */
7633 case 0x660fd8: /* psubusb */
7634 case 0x660fd9: /* psubusw */
7635 case 0x660fda: /* pminub */
7636 case 0x660fdb: /* pand */
7637 case 0x660fdc: /* paddusb */
7638 case 0x660fdd: /* paddusw */
7639 case 0x660fde: /* pmaxub */
7640 case 0x660fdf: /* pandn */
7641 case 0x660fe0: /* pavgb */
7642 case 0x660fe1: /* psraw */
7643 case 0x660fe2: /* psrad */
7644 case 0x660fe3: /* pavgw */
7645 case 0x660fe4: /* pmulhuw */
7646 case 0x660fe5: /* pmulhw */
7647 case 0x660fe6: /* cvttpd2dq */
7648 case 0xf20fe6: /* cvtpd2dq */
7649 case 0xf30fe6: /* cvtdq2pd */
7650 case 0x660fe8: /* psubsb */
7651 case 0x660fe9: /* psubsw */
7652 case 0x660fea: /* pminsw */
7653 case 0x660feb: /* por */
7654 case 0x660fec: /* paddsb */
7655 case 0x660fed: /* paddsw */
7656 case 0x660fee: /* pmaxsw */
7657 case 0x660fef: /* pxor */
4f7d61a8 7658 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7659 case 0x660ff1: /* psllw */
7660 case 0x660ff2: /* pslld */
7661 case 0x660ff3: /* psllq */
7662 case 0x660ff4: /* pmuludq */
7663 case 0x660ff5: /* pmaddwd */
7664 case 0x660ff6: /* psadbw */
7665 case 0x660ff8: /* psubb */
7666 case 0x660ff9: /* psubw */
56d2815c 7667 case 0x660ffa: /* psubd */
a3c4230a
HZ
7668 case 0x660ffb: /* psubq */
7669 case 0x660ffc: /* paddb */
7670 case 0x660ffd: /* paddw */
56d2815c 7671 case 0x660ffe: /* paddd */
a3c4230a
HZ
7672 if (i386_record_modrm (&ir))
7673 return -1;
7674 ir.reg |= rex_r;
c131fcee 7675 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7676 goto no_support;
25ea693b
MM
7677 record_full_arch_list_add_reg (ir.regcache,
7678 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7679 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7681 break;
7682
7683 case 0x0f11: /* movups */
7684 case 0x660f11: /* movupd */
7685 case 0xf30f11: /* movss */
7686 case 0xf20f11: /* movsd */
7687 case 0x0f13: /* movlps */
7688 case 0x660f13: /* movlpd */
7689 case 0x0f17: /* movhps */
7690 case 0x660f17: /* movhpd */
7691 case 0x0f29: /* movaps */
7692 case 0x660f29: /* movapd */
7693 case 0x660f3a14: /* pextrb */
7694 case 0x660f3a15: /* pextrw */
7695 case 0x660f3a16: /* pextrd pextrq */
7696 case 0x660f3a17: /* extractps */
7697 case 0x660f7f: /* movdqa */
7698 case 0xf30f7f: /* movdqu */
7699 if (i386_record_modrm (&ir))
7700 return -1;
7701 if (ir.mod == 3)
7702 {
7703 if (opcode == 0x0f13 || opcode == 0x660f13
7704 || opcode == 0x0f17 || opcode == 0x660f17)
7705 goto no_support;
7706 ir.rm |= ir.rex_b;
1777feb0
MS
7707 if (!i386_xmm_regnum_p (gdbarch,
7708 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7709 goto no_support;
25ea693b
MM
7710 record_full_arch_list_add_reg (ir.regcache,
7711 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7712 }
7713 else
7714 {
7715 switch (opcode)
7716 {
7717 case 0x660f3a14:
7718 ir.ot = OT_BYTE;
7719 break;
7720 case 0x660f3a15:
7721 ir.ot = OT_WORD;
7722 break;
7723 case 0x660f3a16:
7724 ir.ot = OT_LONG;
7725 break;
7726 case 0x660f3a17:
7727 ir.ot = OT_QUAD;
7728 break;
7729 default:
7730 ir.ot = OT_DQUAD;
7731 break;
7732 }
7733 if (i386_record_lea_modrm (&ir))
7734 return -1;
7735 }
7736 break;
7737
7738 case 0x0f2b: /* movntps */
7739 case 0x660f2b: /* movntpd */
7740 case 0x0fe7: /* movntq */
7741 case 0x660fe7: /* movntdq */
7742 if (ir.mod == 3)
7743 goto no_support;
7744 if (opcode == 0x0fe7)
7745 ir.ot = OT_QUAD;
7746 else
7747 ir.ot = OT_DQUAD;
7748 if (i386_record_lea_modrm (&ir))
7749 return -1;
7750 break;
7751
7752 case 0xf30f2c: /* cvttss2si */
7753 case 0xf20f2c: /* cvttsd2si */
7754 case 0xf30f2d: /* cvtss2si */
7755 case 0xf20f2d: /* cvtsd2si */
7756 case 0xf20f38f0: /* crc32 */
7757 case 0xf20f38f1: /* crc32 */
7758 case 0x0f50: /* movmskps */
7759 case 0x660f50: /* movmskpd */
7760 case 0x0fc5: /* pextrw */
7761 case 0x660fc5: /* pextrw */
7762 case 0x0fd7: /* pmovmskb */
7763 case 0x660fd7: /* pmovmskb */
25ea693b 7764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7765 break;
7766
7767 case 0x0f3800: /* pshufb */
7768 case 0x0f3801: /* phaddw */
7769 case 0x0f3802: /* phaddd */
7770 case 0x0f3803: /* phaddsw */
7771 case 0x0f3804: /* pmaddubsw */
7772 case 0x0f3805: /* phsubw */
7773 case 0x0f3806: /* phsubd */
4f7d61a8 7774 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7775 case 0x0f3808: /* psignb */
7776 case 0x0f3809: /* psignw */
7777 case 0x0f380a: /* psignd */
7778 case 0x0f380b: /* pmulhrsw */
7779 case 0x0f381c: /* pabsb */
7780 case 0x0f381d: /* pabsw */
7781 case 0x0f381e: /* pabsd */
7782 case 0x0f382b: /* packusdw */
7783 case 0x0f3830: /* pmovzxbw */
7784 case 0x0f3831: /* pmovzxbd */
7785 case 0x0f3832: /* pmovzxbq */
7786 case 0x0f3833: /* pmovzxwd */
7787 case 0x0f3834: /* pmovzxwq */
7788 case 0x0f3835: /* pmovzxdq */
7789 case 0x0f3837: /* pcmpgtq */
7790 case 0x0f3838: /* pminsb */
7791 case 0x0f3839: /* pminsd */
7792 case 0x0f383a: /* pminuw */
7793 case 0x0f383b: /* pminud */
7794 case 0x0f383c: /* pmaxsb */
7795 case 0x0f383d: /* pmaxsd */
7796 case 0x0f383e: /* pmaxuw */
7797 case 0x0f383f: /* pmaxud */
7798 case 0x0f3840: /* pmulld */
7799 case 0x0f3841: /* phminposuw */
7800 case 0x0f3a0f: /* palignr */
7801 case 0x0f60: /* punpcklbw */
7802 case 0x0f61: /* punpcklwd */
7803 case 0x0f62: /* punpckldq */
7804 case 0x0f63: /* packsswb */
7805 case 0x0f64: /* pcmpgtb */
7806 case 0x0f65: /* pcmpgtw */
56d2815c 7807 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7808 case 0x0f67: /* packuswb */
7809 case 0x0f68: /* punpckhbw */
7810 case 0x0f69: /* punpckhwd */
7811 case 0x0f6a: /* punpckhdq */
7812 case 0x0f6b: /* packssdw */
7813 case 0x0f6e: /* movd */
7814 case 0x0f6f: /* movq */
7815 case 0x0f70: /* pshufw */
7816 case 0x0f74: /* pcmpeqb */
7817 case 0x0f75: /* pcmpeqw */
56d2815c 7818 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7819 case 0x0fc4: /* pinsrw */
7820 case 0x0fd1: /* psrlw */
7821 case 0x0fd2: /* psrld */
7822 case 0x0fd3: /* psrlq */
7823 case 0x0fd4: /* paddq */
7824 case 0x0fd5: /* pmullw */
7825 case 0xf20fd6: /* movdq2q */
7826 case 0x0fd8: /* psubusb */
7827 case 0x0fd9: /* psubusw */
7828 case 0x0fda: /* pminub */
7829 case 0x0fdb: /* pand */
7830 case 0x0fdc: /* paddusb */
7831 case 0x0fdd: /* paddusw */
7832 case 0x0fde: /* pmaxub */
7833 case 0x0fdf: /* pandn */
7834 case 0x0fe0: /* pavgb */
7835 case 0x0fe1: /* psraw */
7836 case 0x0fe2: /* psrad */
7837 case 0x0fe3: /* pavgw */
7838 case 0x0fe4: /* pmulhuw */
7839 case 0x0fe5: /* pmulhw */
7840 case 0x0fe8: /* psubsb */
7841 case 0x0fe9: /* psubsw */
7842 case 0x0fea: /* pminsw */
7843 case 0x0feb: /* por */
7844 case 0x0fec: /* paddsb */
7845 case 0x0fed: /* paddsw */
7846 case 0x0fee: /* pmaxsw */
7847 case 0x0fef: /* pxor */
7848 case 0x0ff1: /* psllw */
7849 case 0x0ff2: /* pslld */
7850 case 0x0ff3: /* psllq */
7851 case 0x0ff4: /* pmuludq */
7852 case 0x0ff5: /* pmaddwd */
7853 case 0x0ff6: /* psadbw */
7854 case 0x0ff8: /* psubb */
7855 case 0x0ff9: /* psubw */
56d2815c 7856 case 0x0ffa: /* psubd */
a3c4230a
HZ
7857 case 0x0ffb: /* psubq */
7858 case 0x0ffc: /* paddb */
7859 case 0x0ffd: /* paddw */
56d2815c 7860 case 0x0ffe: /* paddd */
a3c4230a
HZ
7861 if (i386_record_modrm (&ir))
7862 return -1;
7863 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7864 goto no_support;
25ea693b
MM
7865 record_full_arch_list_add_reg (ir.regcache,
7866 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7867 break;
7868
7869 case 0x0f71: /* psllw */
7870 case 0x0f72: /* pslld */
7871 case 0x0f73: /* psllq */
7872 if (i386_record_modrm (&ir))
7873 return -1;
7874 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7875 goto no_support;
25ea693b
MM
7876 record_full_arch_list_add_reg (ir.regcache,
7877 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7878 break;
7879
7880 case 0x660f71: /* psllw */
7881 case 0x660f72: /* pslld */
7882 case 0x660f73: /* psllq */
7883 if (i386_record_modrm (&ir))
7884 return -1;
7885 ir.rm |= ir.rex_b;
c131fcee 7886 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7887 goto no_support;
25ea693b
MM
7888 record_full_arch_list_add_reg (ir.regcache,
7889 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7890 break;
7891
7892 case 0x0f7e: /* movd */
7893 case 0x660f7e: /* movd */
7894 if (i386_record_modrm (&ir))
7895 return -1;
7896 if (ir.mod == 3)
25ea693b 7897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
7898 else
7899 {
7900 if (ir.dflag == 2)
7901 ir.ot = OT_QUAD;
7902 else
7903 ir.ot = OT_LONG;
7904 if (i386_record_lea_modrm (&ir))
7905 return -1;
7906 }
7907 break;
7908
7909 case 0x0f7f: /* movq */
7910 if (i386_record_modrm (&ir))
7911 return -1;
7912 if (ir.mod == 3)
7913 {
7914 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7915 goto no_support;
25ea693b
MM
7916 record_full_arch_list_add_reg (ir.regcache,
7917 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7918 }
7919 else
7920 {
7921 ir.ot = OT_QUAD;
7922 if (i386_record_lea_modrm (&ir))
7923 return -1;
7924 }
7925 break;
7926
7927 case 0xf30fb8: /* popcnt */
7928 if (i386_record_modrm (&ir))
7929 return -1;
25ea693b
MM
7930 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7931 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7932 break;
7933
7934 case 0x660fd6: /* movq */
7935 if (i386_record_modrm (&ir))
7936 return -1;
7937 if (ir.mod == 3)
7938 {
7939 ir.rm |= ir.rex_b;
1777feb0
MS
7940 if (!i386_xmm_regnum_p (gdbarch,
7941 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7942 goto no_support;
25ea693b
MM
7943 record_full_arch_list_add_reg (ir.regcache,
7944 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7945 }
7946 else
7947 {
7948 ir.ot = OT_QUAD;
7949 if (i386_record_lea_modrm (&ir))
7950 return -1;
7951 }
7952 break;
7953
7954 case 0x660f3817: /* ptest */
7955 case 0x0f2e: /* ucomiss */
7956 case 0x660f2e: /* ucomisd */
7957 case 0x0f2f: /* comiss */
7958 case 0x660f2f: /* comisd */
25ea693b 7959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7960 break;
7961
7962 case 0x0ff7: /* maskmovq */
7963 regcache_raw_read_unsigned (ir.regcache,
7964 ir.regmap[X86_RECORD_REDI_REGNUM],
7965 &addr);
25ea693b 7966 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
7967 return -1;
7968 break;
7969
7970 case 0x660ff7: /* maskmovdqu */
7971 regcache_raw_read_unsigned (ir.regcache,
7972 ir.regmap[X86_RECORD_REDI_REGNUM],
7973 &addr);
25ea693b 7974 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
7975 return -1;
7976 break;
7977
7978 default:
7979 goto no_support;
7980 break;
7981 }
7982 break;
7ad10968
HZ
7983
7984 default:
7ad10968
HZ
7985 goto no_support;
7986 break;
7987 }
7988
cf648174 7989 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
7990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7991 if (record_full_arch_list_add_end ())
7ad10968
HZ
7992 return -1;
7993
7994 return 0;
7995
01fe1b41 7996 no_support:
a3c4230a
HZ
7997 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7998 "at address %s.\n"),
7999 (unsigned int) (opcode),
8000 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8001 return -1;
8002}
8003
cf648174
HZ
8004static const int i386_record_regmap[] =
8005{
8006 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8007 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8008 0, 0, 0, 0, 0, 0, 0, 0,
8009 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8010 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8011};
8012
7a697b8d 8013/* Check that the given address appears suitable for a fast
405f8e94 8014 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8015 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8016 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8017 middle of the tracepoint jump. On x86, it may be possible to use
8018 4-byte jumps with a 2-byte offset to a trampoline located in the
8019 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8020 of instruction to replace, and 0 if not, plus an explanatory
8021 string. */
8022
8023static int
8024i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8025 CORE_ADDR addr, int *isize, char **msg)
8026{
8027 int len, jumplen;
8028 static struct ui_file *gdb_null = NULL;
8029
405f8e94
SS
8030 /* Ask the target for the minimum instruction length supported. */
8031 jumplen = target_get_min_fast_tracepoint_insn_len ();
8032
8033 if (jumplen < 0)
8034 {
8035 /* If the target does not support the get_min_fast_tracepoint_insn_len
8036 operation, assume that fast tracepoints will always be implemented
8037 using 4-byte relative jumps on both x86 and x86-64. */
8038 jumplen = 5;
8039 }
8040 else if (jumplen == 0)
8041 {
8042 /* If the target does support get_min_fast_tracepoint_insn_len but
8043 returns zero, then the IPA has not loaded yet. In this case,
8044 we optimistically assume that truncated 2-byte relative jumps
8045 will be available on x86, and compensate later if this assumption
8046 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8047 jumps will always be used. */
8048 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8049 }
7a697b8d
SS
8050
8051 /* Dummy file descriptor for the disassembler. */
8052 if (!gdb_null)
8053 gdb_null = ui_file_new ();
8054
8055 /* Check for fit. */
8056 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
8057 if (isize)
8058 *isize = len;
8059
7a697b8d
SS
8060 if (len < jumplen)
8061 {
8062 /* Return a bit of target-specific detail to add to the caller's
8063 generic failure message. */
8064 if (msg)
1777feb0
MS
8065 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8066 "need at least %d bytes for the jump"),
7a697b8d
SS
8067 len, jumplen);
8068 return 0;
8069 }
405f8e94
SS
8070 else
8071 {
8072 if (msg)
8073 *msg = NULL;
8074 return 1;
8075 }
7a697b8d
SS
8076}
8077
90884b2b
L
8078static int
8079i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8080 struct tdesc_arch_data *tdesc_data)
8081{
8082 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8083 const struct tdesc_feature *feature_core;
01f9f808
MS
8084
8085 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8086 *feature_avx512;
90884b2b
L
8087 int i, num_regs, valid_p;
8088
8089 if (! tdesc_has_registers (tdesc))
8090 return 0;
8091
8092 /* Get core registers. */
8093 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8094 if (feature_core == NULL)
8095 return 0;
90884b2b
L
8096
8097 /* Get SSE registers. */
c131fcee 8098 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8099
c131fcee
L
8100 /* Try AVX registers. */
8101 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8102
1dbcd68c
WT
8103 /* Try MPX registers. */
8104 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8105
01f9f808
MS
8106 /* Try AVX512 registers. */
8107 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8108
90884b2b
L
8109 valid_p = 1;
8110
c131fcee 8111 /* The XCR0 bits. */
01f9f808
MS
8112 if (feature_avx512)
8113 {
8114 /* AVX512 register description requires AVX register description. */
8115 if (!feature_avx)
8116 return 0;
8117
df7e5265 8118 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
01f9f808
MS
8119
8120 /* It may have been set by OSABI initialization function. */
8121 if (tdep->k0_regnum < 0)
8122 {
8123 tdep->k_register_names = i386_k_names;
8124 tdep->k0_regnum = I386_K0_REGNUM;
8125 }
8126
8127 for (i = 0; i < I387_NUM_K_REGS; i++)
8128 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8129 tdep->k0_regnum + i,
8130 i386_k_names[i]);
8131
8132 if (tdep->num_zmm_regs == 0)
8133 {
8134 tdep->zmmh_register_names = i386_zmmh_names;
8135 tdep->num_zmm_regs = 8;
8136 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8137 }
8138
8139 for (i = 0; i < tdep->num_zmm_regs; i++)
8140 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8141 tdep->zmm0h_regnum + i,
8142 tdep->zmmh_register_names[i]);
8143
8144 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8145 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8146 tdep->xmm16_regnum + i,
8147 tdep->xmm_avx512_register_names[i]);
8148
8149 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8150 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8151 tdep->ymm16h_regnum + i,
8152 tdep->ymm16h_register_names[i]);
8153 }
c131fcee
L
8154 if (feature_avx)
8155 {
3a13a53b
L
8156 /* AVX register description requires SSE register description. */
8157 if (!feature_sse)
8158 return 0;
8159
01f9f808 8160 if (!feature_avx512)
df7e5265 8161 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8162
8163 /* It may have been set by OSABI initialization function. */
8164 if (tdep->num_ymm_regs == 0)
8165 {
8166 tdep->ymmh_register_names = i386_ymmh_names;
8167 tdep->num_ymm_regs = 8;
8168 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8169 }
8170
8171 for (i = 0; i < tdep->num_ymm_regs; i++)
8172 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8173 tdep->ymm0h_regnum + i,
8174 tdep->ymmh_register_names[i]);
8175 }
3a13a53b 8176 else if (feature_sse)
df7e5265 8177 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8178 else
8179 {
df7e5265 8180 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8181 tdep->num_xmm_regs = 0;
8182 }
c131fcee 8183
90884b2b
L
8184 num_regs = tdep->num_core_regs;
8185 for (i = 0; i < num_regs; i++)
8186 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8187 tdep->register_names[i]);
8188
3a13a53b
L
8189 if (feature_sse)
8190 {
8191 /* Need to include %mxcsr, so add one. */
8192 num_regs += tdep->num_xmm_regs + 1;
8193 for (; i < num_regs; i++)
8194 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8195 tdep->register_names[i]);
8196 }
90884b2b 8197
1dbcd68c
WT
8198 if (feature_mpx)
8199 {
df7e5265 8200 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8201
8202 if (tdep->bnd0r_regnum < 0)
8203 {
8204 tdep->mpx_register_names = i386_mpx_names;
8205 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8206 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8207 }
8208
8209 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8210 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8211 I387_BND0R_REGNUM (tdep) + i,
8212 tdep->mpx_register_names[i]);
8213 }
8214
90884b2b
L
8215 return valid_p;
8216}
8217
7ad10968
HZ
8218\f
8219static struct gdbarch *
8220i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8221{
8222 struct gdbarch_tdep *tdep;
8223 struct gdbarch *gdbarch;
90884b2b
L
8224 struct tdesc_arch_data *tdesc_data;
8225 const struct target_desc *tdesc;
1ba53b71 8226 int mm0_regnum;
c131fcee 8227 int ymm0_regnum;
1dbcd68c
WT
8228 int bnd0_regnum;
8229 int num_bnd_cooked;
01f9f808
MS
8230 int k0_regnum;
8231 int zmm0_regnum;
7ad10968
HZ
8232
8233 /* If there is already a candidate, use it. */
8234 arches = gdbarch_list_lookup_by_info (arches, &info);
8235 if (arches != NULL)
8236 return arches->gdbarch;
8237
8238 /* Allocate space for the new architecture. */
fc270c35 8239 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8240 gdbarch = gdbarch_alloc (&info, tdep);
8241
8242 /* General-purpose registers. */
7ad10968
HZ
8243 tdep->gregset_reg_offset = NULL;
8244 tdep->gregset_num_regs = I386_NUM_GREGS;
8245 tdep->sizeof_gregset = 0;
8246
8247 /* Floating-point registers. */
7ad10968 8248 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8249 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8250
8251 /* The default settings include the FPU registers, the MMX registers
8252 and the SSE registers. This can be overridden for a specific ABI
8253 by adjusting the members `st0_regnum', `mm0_regnum' and
8254 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8255 will show up in the output of "info all-registers". */
7ad10968
HZ
8256
8257 tdep->st0_regnum = I386_ST0_REGNUM;
8258
7ad10968
HZ
8259 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8260 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8261
8262 tdep->jb_pc_offset = -1;
8263 tdep->struct_return = pcc_struct_return;
8264 tdep->sigtramp_start = 0;
8265 tdep->sigtramp_end = 0;
8266 tdep->sigtramp_p = i386_sigtramp_p;
8267 tdep->sigcontext_addr = NULL;
8268 tdep->sc_reg_offset = NULL;
8269 tdep->sc_pc_offset = -1;
8270 tdep->sc_sp_offset = -1;
8271
c131fcee
L
8272 tdep->xsave_xcr0_offset = -1;
8273
cf648174
HZ
8274 tdep->record_regmap = i386_record_regmap;
8275
205c306f
DM
8276 set_gdbarch_long_long_align_bit (gdbarch, 32);
8277
7ad10968
HZ
8278 /* The format used for `long double' on almost all i386 targets is
8279 the i387 extended floating-point format. In fact, of all targets
8280 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8281 on having a `long double' that's not `long' at all. */
8282 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8283
8284 /* Although the i387 extended floating-point has only 80 significant
8285 bits, a `long double' actually takes up 96, probably to enforce
8286 alignment. */
8287 set_gdbarch_long_double_bit (gdbarch, 96);
8288
7ad10968
HZ
8289 /* Register numbers of various important registers. */
8290 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8291 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8292 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8293 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8294
8295 /* NOTE: kettenis/20040418: GCC does have two possible register
8296 numbering schemes on the i386: dbx and SVR4. These schemes
8297 differ in how they number %ebp, %esp, %eflags, and the
8298 floating-point registers, and are implemented by the arrays
8299 dbx_register_map[] and svr4_dbx_register_map in
8300 gcc/config/i386.c. GCC also defines a third numbering scheme in
8301 gcc/config/i386.c, which it designates as the "default" register
8302 map used in 64bit mode. This last register numbering scheme is
8303 implemented in dbx64_register_map, and is used for AMD64; see
8304 amd64-tdep.c.
8305
8306 Currently, each GCC i386 target always uses the same register
8307 numbering scheme across all its supported debugging formats
8308 i.e. SDB (COFF), stabs and DWARF 2. This is because
8309 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8310 DBX_REGISTER_NUMBER macro which is defined by each target's
8311 respective config header in a manner independent of the requested
8312 output debugging format.
8313
8314 This does not match the arrangement below, which presumes that
8315 the SDB and stabs numbering schemes differ from the DWARF and
8316 DWARF 2 ones. The reason for this arrangement is that it is
8317 likely to get the numbering scheme for the target's
8318 default/native debug format right. For targets where GCC is the
8319 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8320 targets where the native toolchain uses a different numbering
8321 scheme for a particular debug format (stabs-in-ELF on Solaris)
8322 the defaults below will have to be overridden, like
8323 i386_elf_init_abi() does. */
8324
8325 /* Use the dbx register numbering scheme for stabs and COFF. */
8326 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8327 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8328
8329 /* Use the SVR4 register numbering scheme for DWARF 2. */
8330 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8331
8332 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8333 be in use on any of the supported i386 targets. */
8334
8335 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8336
8337 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8338
8339 /* Call dummy code. */
a9b8d892
JK
8340 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8341 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8342 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8343 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8344
8345 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8346 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8347 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8348
8349 set_gdbarch_return_value (gdbarch, i386_return_value);
8350
8351 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8352
8353 /* Stack grows downward. */
8354 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8355
8356 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8357 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8358 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8359
8360 set_gdbarch_frame_args_skip (gdbarch, 8);
8361
7ad10968
HZ
8362 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8363
8364 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8365
8366 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8367
8368 /* Add the i386 register groups. */
8369 i386_add_reggroups (gdbarch);
90884b2b 8370 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8371
143985b7
AF
8372 /* Helper for function argument information. */
8373 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8374
06da04c6 8375 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8376 appended to the list first, so that it supercedes the DWARF
8377 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8378 currently fails). */
8379 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8380
8381 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8382 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8383 CFI info will be used if it is available. */
10458914 8384 dwarf2_append_unwinders (gdbarch);
6405b0a6 8385
acd5c798 8386 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8387
1ba53b71 8388 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8389 set_gdbarch_pseudo_register_read_value (gdbarch,
8390 i386_pseudo_register_read_value);
90884b2b
L
8391 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8392
8393 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8394 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8395
c131fcee
L
8396 /* Override the normal target description method to make the AVX
8397 upper halves anonymous. */
8398 set_gdbarch_register_name (gdbarch, i386_register_name);
8399
8400 /* Even though the default ABI only includes general-purpose registers,
8401 floating-point registers and the SSE registers, we have to leave a
01f9f808
MS
8402 gap for the upper AVX, MPX and AVX512 registers. */
8403 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
90884b2b
L
8404
8405 /* Get the x86 target description from INFO. */
8406 tdesc = info.target_desc;
8407 if (! tdesc_has_registers (tdesc))
8408 tdesc = tdesc_i386;
8409 tdep->tdesc = tdesc;
8410
8411 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8412 tdep->register_names = i386_register_names;
8413
c131fcee
L
8414 /* No upper YMM registers. */
8415 tdep->ymmh_register_names = NULL;
8416 tdep->ymm0h_regnum = -1;
8417
01f9f808
MS
8418 /* No upper ZMM registers. */
8419 tdep->zmmh_register_names = NULL;
8420 tdep->zmm0h_regnum = -1;
8421
8422 /* No high XMM registers. */
8423 tdep->xmm_avx512_register_names = NULL;
8424 tdep->xmm16_regnum = -1;
8425
8426 /* No upper YMM16-31 registers. */
8427 tdep->ymm16h_register_names = NULL;
8428 tdep->ymm16h_regnum = -1;
8429
1ba53b71
L
8430 tdep->num_byte_regs = 8;
8431 tdep->num_word_regs = 8;
8432 tdep->num_dword_regs = 0;
8433 tdep->num_mmx_regs = 8;
c131fcee 8434 tdep->num_ymm_regs = 0;
1ba53b71 8435
1dbcd68c
WT
8436 /* No MPX registers. */
8437 tdep->bnd0r_regnum = -1;
8438 tdep->bndcfgu_regnum = -1;
8439
01f9f808
MS
8440 /* No AVX512 registers. */
8441 tdep->k0_regnum = -1;
8442 tdep->num_zmm_regs = 0;
8443 tdep->num_ymm_avx512_regs = 0;
8444 tdep->num_xmm_avx512_regs = 0;
8445
90884b2b
L
8446 tdesc_data = tdesc_data_alloc ();
8447
dde08ee1
PA
8448 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8449
6710bf39
SS
8450 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8451
c2170eef
MM
8452 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8453 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8454 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8455
3ce1502b 8456 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 8457 info.tdep_info = (void *) tdesc_data;
4be87837 8458 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8459
c131fcee
L
8460 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8461 {
8462 tdesc_data_cleanup (tdesc_data);
8463 xfree (tdep);
8464 gdbarch_free (gdbarch);
8465 return NULL;
8466 }
8467
1dbcd68c
WT
8468 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8469
1ba53b71
L
8470 /* Wire in pseudo registers. Number of pseudo registers may be
8471 changed. */
8472 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8473 + tdep->num_word_regs
8474 + tdep->num_dword_regs
c131fcee 8475 + tdep->num_mmx_regs
1dbcd68c 8476 + tdep->num_ymm_regs
01f9f808
MS
8477 + num_bnd_cooked
8478 + tdep->num_ymm_avx512_regs
8479 + tdep->num_zmm_regs));
1ba53b71 8480
90884b2b
L
8481 /* Target description may be changed. */
8482 tdesc = tdep->tdesc;
8483
90884b2b
L
8484 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8485
8486 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8487 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8488
1ba53b71
L
8489 /* Make %al the first pseudo-register. */
8490 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8491 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8492
c131fcee 8493 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8494 if (tdep->num_dword_regs)
8495 {
1c6272a6 8496 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8497 tdep->eax_regnum = ymm0_regnum;
8498 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8499 }
8500 else
8501 tdep->eax_regnum = -1;
8502
c131fcee
L
8503 mm0_regnum = ymm0_regnum;
8504 if (tdep->num_ymm_regs)
8505 {
1c6272a6 8506 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8507 tdep->ymm0_regnum = ymm0_regnum;
8508 mm0_regnum += tdep->num_ymm_regs;
8509 }
8510 else
8511 tdep->ymm0_regnum = -1;
8512
01f9f808
MS
8513 if (tdep->num_ymm_avx512_regs)
8514 {
8515 /* Support YMM16-31 pseudo registers if available. */
8516 tdep->ymm16_regnum = mm0_regnum;
8517 mm0_regnum += tdep->num_ymm_avx512_regs;
8518 }
8519 else
8520 tdep->ymm16_regnum = -1;
8521
8522 if (tdep->num_zmm_regs)
8523 {
8524 /* Support ZMM pseudo-register if it is available. */
8525 tdep->zmm0_regnum = mm0_regnum;
8526 mm0_regnum += tdep->num_zmm_regs;
8527 }
8528 else
8529 tdep->zmm0_regnum = -1;
8530
1dbcd68c 8531 bnd0_regnum = mm0_regnum;
1ba53b71
L
8532 if (tdep->num_mmx_regs != 0)
8533 {
1c6272a6 8534 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8535 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8536 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8537 }
8538 else
8539 tdep->mm0_regnum = -1;
8540
1dbcd68c
WT
8541 if (tdep->bnd0r_regnum > 0)
8542 tdep->bnd0_regnum = bnd0_regnum;
8543 else
8544 tdep-> bnd0_regnum = -1;
8545
06da04c6 8546 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8547 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8548 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8549 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8550
8446b36a
MK
8551 /* If we have a register mapping, enable the generic core file
8552 support, unless it has already been enabled. */
8553 if (tdep->gregset_reg_offset
8f0435f7 8554 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8555 set_gdbarch_iterate_over_regset_sections
8556 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8557
7a697b8d
SS
8558 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8559 i386_fast_tracepoint_valid_at);
8560
a62cc96e
AC
8561 return gdbarch;
8562}
8563
8201327c
MK
8564static enum gdb_osabi
8565i386_coff_osabi_sniffer (bfd *abfd)
8566{
762c5349
MK
8567 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8568 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
8569 return GDB_OSABI_GO32;
8570
8571 return GDB_OSABI_UNKNOWN;
8572}
8201327c
MK
8573\f
8574
28e9e0f0
MK
8575/* Provide a prototype to silence -Wmissing-prototypes. */
8576void _initialize_i386_tdep (void);
8577
c906108c 8578void
fba45db2 8579_initialize_i386_tdep (void)
c906108c 8580{
a62cc96e
AC
8581 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8582
fc338970 8583 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
8584 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8585 &disassembly_flavor, _("\
8586Set the disassembly flavor."), _("\
8587Show the disassembly flavor."), _("\
8588The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8589 NULL,
8590 NULL, /* FIXME: i18n: */
8591 &setlist, &showlist);
8201327c
MK
8592
8593 /* Add the variable that controls the convention for returning
8594 structs. */
7ab04401
AC
8595 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8596 &struct_convention, _("\
8597Set the convention for returning small structs."), _("\
8598Show the convention for returning small structs."), _("\
8599Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8600is \"default\"."),
8601 NULL,
8602 NULL, /* FIXME: i18n: */
8603 &setlist, &showlist);
8201327c
MK
8604
8605 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8606 i386_coff_osabi_sniffer);
8201327c 8607
05816f70 8608 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 8609 i386_svr4_init_abi);
05816f70 8610 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 8611 i386_go32_init_abi);
38c968cf 8612
209bd28e 8613 /* Initialize the i386-specific register groups. */
38c968cf 8614 i386_init_reggroups ();
90884b2b
L
8615
8616 /* Initialize the standard target descriptions. */
8617 initialize_tdesc_i386 ();
3a13a53b 8618 initialize_tdesc_i386_mmx ();
c131fcee 8619 initialize_tdesc_i386_avx ();
1dbcd68c 8620 initialize_tdesc_i386_mpx ();
01f9f808 8621 initialize_tdesc_i386_avx512 ();
c8d5aac9
L
8622
8623 /* Tell remote stub that we support XML target description. */
8624 register_remote_support_xml ("i386");
c906108c 8625}
This page took 1.729377 seconds and 4 git commands to generate.