2012-04-27 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
0b302171 3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
fd0407d6 42#include "value.h"
a89aa300 43#include "dis-asm.h"
7a697b8d 44#include "disasm.h"
c8d5aac9 45#include "remote.h"
8fbca658 46#include "exceptions.h"
3d261580 47#include "gdb_assert.h"
acd5c798 48#include "gdb_string.h"
3d261580 49
d2a7c97a 50#include "i386-tdep.h"
61113f8b 51#include "i387-tdep.h"
c131fcee 52#include "i386-xstate.h"
d2a7c97a 53
7ad10968
HZ
54#include "record.h"
55#include <stdint.h>
56
90884b2b 57#include "features/i386/i386.c"
c131fcee 58#include "features/i386/i386-avx.c"
3a13a53b 59#include "features/i386/i386-mmx.c"
90884b2b 60
6710bf39
SS
61#include "ax.h"
62#include "ax-gdb.h"
63
55aa24fb
SDJ
64#include "stap-probe.h"
65#include "user-regs.h"
66#include "cli/cli-utils.h"
67#include "expression.h"
68#include "parser-defs.h"
69#include <ctype.h>
70
c4fc7f1b 71/* Register names. */
c40e1eab 72
90884b2b 73static const char *i386_register_names[] =
fc633446
MK
74{
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86};
87
c131fcee
L
88static const char *i386_ymm_names[] =
89{
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92};
93
94static const char *i386_ymmh_names[] =
95{
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98};
99
c4fc7f1b 100/* Register names for MMX pseudo-registers. */
28fc6740 101
90884b2b 102static const char *i386_mmx_names[] =
28fc6740
AC
103{
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106};
c40e1eab 107
1ba53b71
L
108/* Register names for byte pseudo-registers. */
109
110static const char *i386_byte_names[] =
111{
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114};
115
116/* Register names for word pseudo-registers. */
117
118static const char *i386_word_names[] =
119{
120 "ax", "cx", "dx", "bx",
9cad29ac 121 "", "bp", "si", "di"
1ba53b71
L
122};
123
124/* MMX register? */
c40e1eab 125
28fc6740 126static int
5716833c 127i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 128{
1ba53b71
L
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
131
132 if (mm0_regnum < 0)
133 return 0;
134
1ba53b71
L
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137}
138
139/* Byte register? */
140
141int
142i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143{
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148}
149
150/* Word register? */
151
152int
153i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154{
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159}
160
161/* Dword register? */
162
163int
164i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165{
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
174}
175
9191d390 176static int
c131fcee
L
177i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178{
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187}
188
189/* AVX register? */
190
191int
192i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193{
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202}
203
5716833c 204/* SSE register? */
23a34459 205
c131fcee
L
206int
207i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 208{
5716833c 209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 211
c131fcee 212 if (num_xmm_regs == 0)
5716833c
MK
213 return 0;
214
c131fcee
L
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
217}
218
5716833c
MK
219static int
220i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 221{
5716833c
MK
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
20a6ec49 224 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
225 return 0;
226
20a6ec49 227 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
228}
229
5716833c 230/* FP register? */
23a34459
AC
231
232int
20a6ec49 233i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 234{
20a6ec49
MD
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
238 return 0;
239
20a6ec49
MD
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
242}
243
244int
20a6ec49 245i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 246{
20a6ec49
MD
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
250 return 0;
251
20a6ec49
MD
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
254}
255
c131fcee
L
256/* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259static const char *
260i386_register_name (struct gdbarch *gdbarch, int regnum)
261{
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267}
268
30b0e2d8 269/* Return the name of register REGNUM. */
fc633446 270
1ba53b71 271const char *
90884b2b 272i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 273{
1ba53b71
L
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
1ba53b71
L
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
285}
286
c4fc7f1b 287/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
288 number used by GDB. */
289
8201327c 290static int
d3f73121 291i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 292{
20a6ec49
MD
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
c4fc7f1b
MK
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
85540d8c
MK
298 if (reg >= 0 && reg <= 7)
299 {
9872ad24
JB
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
85540d8c
MK
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
20a6ec49 311 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
c131fcee
L
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
20a6ec49 327 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
328 }
329
330 /* This will hopefully provoke a warning. */
d3f73121 331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
332}
333
c4fc7f1b
MK
334/* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
85540d8c 336
8201327c 337static int
d3f73121 338i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 339{
20a6ec49
MD
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
c4fc7f1b
MK
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
acd5c798 349 /* General-purpose registers. */
85540d8c
MK
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
20a6ec49 355 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 356 }
c6f4c129 357 else if (reg >= 21 && reg <= 36)
85540d8c 358 {
c4fc7f1b 359 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 360 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
361 }
362
c6f4c129
JB
363 switch (reg)
364 {
20a6ec49
MD
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
85540d8c 376 /* This will hopefully provoke a warning. */
d3f73121 377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 378}
5716833c 379
fc338970 380\f
917317f4 381
fc338970
MK
382/* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
53904c9e
AC
384static const char att_flavor[] = "att";
385static const char intel_flavor[] = "intel";
40478521 386static const char *const valid_flavors[] =
c5aa993b 387{
c906108c
SS
388 att_flavor,
389 intel_flavor,
390 NULL
391};
53904c9e 392static const char *disassembly_flavor = att_flavor;
acd5c798 393\f
c906108c 394
acd5c798
MK
395/* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
c906108c 400
acd5c798
MK
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
c906108c 403
acd5c798 404 This function is 64-bit safe. */
63c0089f
MK
405
406static const gdb_byte *
67d57894 407i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 408{
63c0089f
MK
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
acd5c798
MK
411 *len = sizeof (break_insn);
412 return break_insn;
c906108c 413}
237fc4c9
PA
414\f
415/* Displaced instruction handling. */
416
1903f0e6
DE
417/* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423static gdb_byte *
424i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425{
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451}
237fc4c9
PA
452
453static int
1903f0e6 454i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 455{
1777feb0 456 /* jmp far (absolute address in operand). */
237fc4c9
PA
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
1777feb0 462 /* jump near, absolute indirect (/4). */
237fc4c9
PA
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
1777feb0 466 /* jump far, absolute indirect (/5). */
237fc4c9
PA
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472}
473
474static int
1903f0e6 475i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 476{
1777feb0 477 /* call far, absolute. */
237fc4c9
PA
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
1777feb0 483 /* Call near, absolute indirect (/2). */
237fc4c9
PA
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
1777feb0 487 /* Call far, absolute indirect (/3). */
237fc4c9
PA
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493}
494
495static int
1903f0e6 496i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
497{
498 switch (insn[0])
499 {
1777feb0 500 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 501 case 0xc3: /* ret near */
1777feb0 502 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510}
511
512static int
1903f0e6 513i386_call_p (const gdb_byte *insn)
237fc4c9
PA
514{
515 if (i386_absolute_call_p (insn))
516 return 1;
517
1777feb0 518 /* call near, relative. */
237fc4c9
PA
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523}
524
237fc4c9
PA
525/* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
1903f0e6 527
237fc4c9 528static int
b55078be 529i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 530{
9a7f938f
JK
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543}
544
b55078be
DE
545/* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548struct displaced_step_closure *
549i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552{
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580}
581
237fc4c9
PA
582/* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
1903f0e6 584
237fc4c9
PA
585void
586i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590{
e17a4113
UW
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
237fc4c9
PA
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
237fc4c9
PA
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
5af949e3 607 "displaced: fixup (%s, %s), "
237fc4c9 608 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
237fc4c9
PA
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
1903f0e6
DE
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
237fc4c9
PA
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
b55078be 640 int insn_len;
237fc4c9
PA
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
1903f0e6
DE
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
237fc4c9
PA
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
5af949e3
UW
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
237fc4c9
PA
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
237fc4c9
PA
714 }
715}
dde08ee1
PA
716
717static void
718append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719{
720 target_write_memory (*to, buf, len);
721 *to += len;
722}
723
724static void
725i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727{
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
1777feb0 752 push_buf[0] = 0x68; /* pushq $... */
dde08ee1
PA
753 memcpy (&push_buf[1], &ret_addr, 4);
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
f4a1794a 789 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
dde08ee1
PA
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801}
802
fc338970 803\f
acd5c798
MK
804#ifdef I386_REGNO_TO_SYMMETRY
805#error "The Sequent Symmetry is no longer supported."
806#endif
c906108c 807
acd5c798
MK
808/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
c906108c 811
acd5c798
MK
812/* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
a3386186 814#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
815
816struct i386_frame_cache
c906108c 817{
acd5c798
MK
818 /* Base address. */
819 CORE_ADDR base;
8fbca658 820 int base_p;
772562f8 821 LONGEST sp_offset;
acd5c798
MK
822 CORE_ADDR pc;
823
fd13a04a
AC
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 826 CORE_ADDR saved_sp;
e0c62198 827 int saved_sp_reg;
acd5c798
MK
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832};
833
834/* Allocate and initialize a frame cache. */
835
836static struct i386_frame_cache *
fd13a04a 837i386_alloc_frame_cache (void)
acd5c798
MK
838{
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
8fbca658 845 cache->base_p = 0;
acd5c798
MK
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
fd13a04a
AC
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
acd5c798 854 cache->saved_sp = 0;
e0c62198 855 cache->saved_sp_reg = -1;
acd5c798
MK
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862}
c906108c 863
acd5c798
MK
864/* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
c906108c 866
acd5c798 867static CORE_ADDR
e17a4113 868i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 869{
e17a4113 870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 871 gdb_byte op;
acd5c798
MK
872 long delta = 0;
873 int data16 = 0;
c906108c 874
3dcabaa8
MS
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
acd5c798 878 if (op == 0x66)
c906108c 879 {
c906108c 880 data16 = 1;
e17a4113 881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
882 }
883
acd5c798 884 switch (op)
c906108c
SS
885 {
886 case 0xe9:
fc338970 887 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
888 if (data16)
889 {
e17a4113 890 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 891
fc338970
MK
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
acd5c798 894 delta += 4;
c906108c
SS
895 }
896 else
897 {
e17a4113 898 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 899
acd5c798
MK
900 /* Include the size of the jmp instruction. */
901 delta += 5;
c906108c
SS
902 }
903 break;
904 case 0xeb:
fc338970 905 /* Relative jump, disp8 (ignore data16). */
e17a4113 906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 907
acd5c798 908 delta += data16 + 2;
c906108c
SS
909 break;
910 }
c906108c 911
acd5c798
MK
912 return pc + delta;
913}
fc338970 914
acd5c798
MK
915/* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
c906108c 920
acd5c798
MK
921static CORE_ADDR
922i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
c906108c 924{
acd5c798
MK
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
63c0089f
MK
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
c906108c 939
acd5c798
MK
940 if (current_pc <= pc)
941 return pc;
942
3dcabaa8
MS
943 if (target_read_memory (pc, &op, 1))
944 return pc;
c906108c 945
acd5c798
MK
946 if (op != 0x58) /* popl %eax */
947 return pc;
c906108c 948
3dcabaa8
MS
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
acd5c798
MK
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
c906108c 954
acd5c798 955 if (current_pc == pc)
c906108c 956 {
acd5c798
MK
957 cache->sp_offset += 4;
958 return current_pc;
c906108c
SS
959 }
960
acd5c798 961 if (current_pc == pc + 1)
c906108c 962 {
acd5c798
MK
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971}
972
973static CORE_ADDR
974i386_skip_probe (CORE_ADDR pc)
975{
976 /* A function may start with
fc338970 977
acd5c798
MK
978 pushl constant
979 call _probe
980 addl $4, %esp
fc338970 981
acd5c798
MK
982 followed by
983
984 pushl %ebp
fc338970 985
acd5c798 986 etc. */
63c0089f
MK
987 gdb_byte buf[8];
988 gdb_byte op;
fc338970 989
3dcabaa8
MS
990 if (target_read_memory (pc, &op, 1))
991 return pc;
acd5c798
MK
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
c906108c 996
acd5c798
MK
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
c906108c 999 if (op == 0x68)
acd5c798 1000 delta = 5;
c906108c 1001 else
acd5c798 1002 delta = 2;
c906108c 1003
acd5c798
MK
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1008 pc += delta + sizeof (buf);
c906108c
SS
1009 }
1010
acd5c798
MK
1011 return pc;
1012}
1013
92dd43fa
MK
1014/* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020static CORE_ADDR
1021i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023{
e0c62198
L
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
92dd43fa 1058 };
92dd43fa 1059
e0c62198
L
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1123 return pc;
1124
e0c62198
L
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
92dd43fa 1127
e0c62198 1128 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1129}
1130
37bdc87e 1131/* Maximum instruction length we need to handle. */
237fc4c9 1132#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1133
1134/* Instruction description. */
1135struct i386_insn
1136{
1137 size_t len;
237fc4c9
PA
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1140};
1141
a3fcb948 1142/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1143
a3fcb948
JG
1144static int
1145i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1146{
63c0089f 1147 gdb_byte op;
37bdc87e 1148
3dcabaa8 1149 if (target_read_memory (pc, &op, 1))
a3fcb948 1150 return 0;
37bdc87e 1151
a3fcb948 1152 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1153 {
a3fcb948
JG
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
37bdc87e 1157
a3fcb948
JG
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1160
a3fcb948
JG
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
613e8135 1163
a3fcb948
JG
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
37bdc87e 1168 }
a3fcb948
JG
1169 return insn_matched;
1170 }
1171 return 0;
1172}
1173
1174/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178static struct i386_insn *
1179i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180{
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
37bdc87e
MK
1187 }
1188
1189 return NULL;
1190}
1191
a3fcb948
JG
1192/* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195static int
1196i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197{
1198 CORE_ADDR current_pc;
1199 int ix, i;
1200 gdb_byte op;
1201 struct i386_insn *insn;
1202
1203 insn = i386_match_insn (pc, insn_patterns);
1204 if (insn == NULL)
1205 return 0;
1206
8bbdd3f4 1207 current_pc = pc;
a3fcb948
JG
1208 ix = insn - insn_patterns;
1209 for (i = ix - 1; i >= 0; i--)
1210 {
8bbdd3f4
MK
1211 current_pc -= insn_patterns[i].len;
1212
a3fcb948
JG
1213 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1214 return 0;
a3fcb948
JG
1215 }
1216
1217 current_pc = pc + insn->len;
1218 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1219 {
1220 if (!i386_match_pattern (current_pc, *insn))
1221 return 0;
1222
1223 current_pc += insn->len;
1224 }
1225
1226 return 1;
1227}
1228
37bdc87e
MK
1229/* Some special instructions that might be migrated by GCC into the
1230 part of the prologue that sets up the new stack frame. Because the
1231 stack frame hasn't been setup yet, no registers have been saved
1232 yet, and only the scratch registers %eax, %ecx and %edx can be
1233 touched. */
1234
1235struct i386_insn i386_frame_setup_skip_insns[] =
1236{
1777feb0 1237 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1238
1239 ??? Should we handle 16-bit operand-sizes here? */
1240
1241 /* `movb imm8, %al' and `movb imm8, %ah' */
1242 /* `movb imm8, %cl' and `movb imm8, %ch' */
1243 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1244 /* `movb imm8, %dl' and `movb imm8, %dh' */
1245 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1246 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1247 { 5, { 0xb8 }, { 0xfe } },
1248 /* `movl imm32, %edx' */
1249 { 5, { 0xba }, { 0xff } },
1250
1251 /* Check for `mov imm32, r32'. Note that there is an alternative
1252 encoding for `mov m32, %eax'.
1253
1254 ??? Should we handle SIB adressing here?
1255 ??? Should we handle 16-bit operand-sizes here? */
1256
1257 /* `movl m32, %eax' */
1258 { 5, { 0xa1 }, { 0xff } },
1259 /* `movl m32, %eax' and `mov; m32, %ecx' */
1260 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1261 /* `movl m32, %edx' */
1262 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1263
1264 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1265 Because of the symmetry, there are actually two ways to encode
1266 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1267 opcode bytes 0x31 and 0x33 for `xorl'. */
1268
1269 /* `subl %eax, %eax' */
1270 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1271 /* `subl %ecx, %ecx' */
1272 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1273 /* `subl %edx, %edx' */
1274 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1275 /* `xorl %eax, %eax' */
1276 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1277 /* `xorl %ecx, %ecx' */
1278 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1279 /* `xorl %edx, %edx' */
1280 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1281 { 0 }
1282};
1283
e11481da
PM
1284
1285/* Check whether PC points to a no-op instruction. */
1286static CORE_ADDR
1287i386_skip_noop (CORE_ADDR pc)
1288{
1289 gdb_byte op;
1290 int check = 1;
1291
3dcabaa8
MS
1292 if (target_read_memory (pc, &op, 1))
1293 return pc;
e11481da
PM
1294
1295 while (check)
1296 {
1297 check = 0;
1298 /* Ignore `nop' instruction. */
1299 if (op == 0x90)
1300 {
1301 pc += 1;
3dcabaa8
MS
1302 if (target_read_memory (pc, &op, 1))
1303 return pc;
e11481da
PM
1304 check = 1;
1305 }
1306 /* Ignore no-op instruction `mov %edi, %edi'.
1307 Microsoft system dlls often start with
1308 a `mov %edi,%edi' instruction.
1309 The 5 bytes before the function start are
1310 filled with `nop' instructions.
1311 This pattern can be used for hot-patching:
1312 The `mov %edi, %edi' instruction can be replaced by a
1313 near jump to the location of the 5 `nop' instructions
1314 which can be replaced by a 32-bit jump to anywhere
1315 in the 32-bit address space. */
1316
1317 else if (op == 0x8b)
1318 {
3dcabaa8
MS
1319 if (target_read_memory (pc + 1, &op, 1))
1320 return pc;
1321
e11481da
PM
1322 if (op == 0xff)
1323 {
1324 pc += 2;
3dcabaa8
MS
1325 if (target_read_memory (pc, &op, 1))
1326 return pc;
1327
e11481da
PM
1328 check = 1;
1329 }
1330 }
1331 }
1332 return pc;
1333}
1334
acd5c798
MK
1335/* Check whether PC points at a code that sets up a new stack frame.
1336 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1337 instruction after the sequence that sets up the frame or LIMIT,
1338 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1339
1340static CORE_ADDR
e17a4113
UW
1341i386_analyze_frame_setup (struct gdbarch *gdbarch,
1342 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1343 struct i386_frame_cache *cache)
1344{
e17a4113 1345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1346 struct i386_insn *insn;
63c0089f 1347 gdb_byte op;
26604a34 1348 int skip = 0;
acd5c798 1349
37bdc87e
MK
1350 if (limit <= pc)
1351 return limit;
acd5c798 1352
3dcabaa8
MS
1353 if (target_read_memory (pc, &op, 1))
1354 return pc;
acd5c798 1355
c906108c 1356 if (op == 0x55) /* pushl %ebp */
c5aa993b 1357 {
acd5c798
MK
1358 /* Take into account that we've executed the `pushl %ebp' that
1359 starts this instruction sequence. */
fd13a04a 1360 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1361 cache->sp_offset += 4;
37bdc87e 1362 pc++;
acd5c798
MK
1363
1364 /* If that's all, return now. */
37bdc87e
MK
1365 if (limit <= pc)
1366 return limit;
26604a34 1367
b4632131 1368 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1369 GCC into the prologue and skip them. At this point in the
1370 prologue, code should only touch the scratch registers %eax,
1371 %ecx and %edx, so while the number of posibilities is sheer,
1372 it is limited.
5daa5b4e 1373
26604a34
MK
1374 Make sure we only skip these instructions if we later see the
1375 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1376 while (pc + skip < limit)
26604a34 1377 {
37bdc87e
MK
1378 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1379 if (insn == NULL)
1380 break;
b4632131 1381
37bdc87e 1382 skip += insn->len;
26604a34
MK
1383 }
1384
37bdc87e
MK
1385 /* If that's all, return now. */
1386 if (limit <= pc + skip)
1387 return limit;
1388
3dcabaa8
MS
1389 if (target_read_memory (pc + skip, &op, 1))
1390 return pc + skip;
37bdc87e 1391
26604a34 1392 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 1393 switch (op)
c906108c
SS
1394 {
1395 case 0x8b:
e17a4113
UW
1396 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1397 != 0xec)
37bdc87e 1398 return pc;
c906108c
SS
1399 break;
1400 case 0x89:
e17a4113
UW
1401 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1402 != 0xe5)
37bdc87e 1403 return pc;
c906108c
SS
1404 break;
1405 default:
37bdc87e 1406 return pc;
c906108c 1407 }
acd5c798 1408
26604a34
MK
1409 /* OK, we actually have a frame. We just don't know how large
1410 it is yet. Set its size to zero. We'll adjust it if
1411 necessary. We also now commit to skipping the special
1412 instructions mentioned before. */
acd5c798 1413 cache->locals = 0;
37bdc87e 1414 pc += (skip + 2);
acd5c798
MK
1415
1416 /* If that's all, return now. */
37bdc87e
MK
1417 if (limit <= pc)
1418 return limit;
acd5c798 1419
fc338970
MK
1420 /* Check for stack adjustment
1421
acd5c798 1422 subl $XXX, %esp
fc338970 1423
fd35795f 1424 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1425 reg, so we don't have to worry about a data16 prefix. */
3dcabaa8
MS
1426 if (target_read_memory (pc, &op, 1))
1427 return pc;
c906108c
SS
1428 if (op == 0x83)
1429 {
fd35795f 1430 /* `subl' with 8-bit immediate. */
e17a4113 1431 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1432 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1433 return pc;
acd5c798 1434
37bdc87e
MK
1435 /* `subl' with signed 8-bit immediate (though it wouldn't
1436 make sense to be negative). */
e17a4113 1437 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
37bdc87e 1438 return pc + 3;
c906108c
SS
1439 }
1440 else if (op == 0x81)
1441 {
fd35795f 1442 /* Maybe it is `subl' with a 32-bit immediate. */
e17a4113 1443 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1444 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1445 return pc;
acd5c798 1446
fd35795f 1447 /* It is `subl' with a 32-bit immediate. */
e17a4113 1448 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
37bdc87e 1449 return pc + 6;
c906108c
SS
1450 }
1451 else
1452 {
acd5c798 1453 /* Some instruction other than `subl'. */
37bdc87e 1454 return pc;
c906108c
SS
1455 }
1456 }
37bdc87e 1457 else if (op == 0xc8) /* enter */
c906108c 1458 {
e17a4113 1459 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1460 return pc + 4;
c906108c 1461 }
21d0e8a4 1462
acd5c798 1463 return pc;
21d0e8a4
MK
1464}
1465
acd5c798
MK
1466/* Check whether PC points at code that saves registers on the stack.
1467 If so, it updates CACHE and returns the address of the first
1468 instruction after the register saves or CURRENT_PC, whichever is
1469 smaller. Otherwise, return PC. */
6bff26de
MK
1470
1471static CORE_ADDR
acd5c798
MK
1472i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1473 struct i386_frame_cache *cache)
6bff26de 1474{
99ab4326 1475 CORE_ADDR offset = 0;
63c0089f 1476 gdb_byte op;
99ab4326 1477 int i;
c0d1d883 1478
99ab4326
MK
1479 if (cache->locals > 0)
1480 offset -= cache->locals;
1481 for (i = 0; i < 8 && pc < current_pc; i++)
1482 {
3dcabaa8
MS
1483 if (target_read_memory (pc, &op, 1))
1484 return pc;
99ab4326
MK
1485 if (op < 0x50 || op > 0x57)
1486 break;
0d17c81d 1487
99ab4326
MK
1488 offset -= 4;
1489 cache->saved_regs[op - 0x50] = offset;
1490 cache->sp_offset += 4;
1491 pc++;
6bff26de
MK
1492 }
1493
acd5c798 1494 return pc;
22797942
AC
1495}
1496
acd5c798
MK
1497/* Do a full analysis of the prologue at PC and update CACHE
1498 accordingly. Bail out early if CURRENT_PC is reached. Return the
1499 address where the analysis stopped.
ed84f6c1 1500
fc338970
MK
1501 We handle these cases:
1502
1503 The startup sequence can be at the start of the function, or the
1504 function can start with a branch to startup code at the end.
1505
1506 %ebp can be set up with either the 'enter' instruction, or "pushl
1507 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1508 once used in the System V compiler).
1509
1510 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1511 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1512 16-bit unsigned argument for space to allocate, and the 'addl'
1513 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1514
1515 Next, the registers used by this function are pushed. With the
1516 System V compiler they will always be in the order: %edi, %esi,
1517 %ebx (and sometimes a harmless bug causes it to also save but not
1518 restore %eax); however, the code below is willing to see the pushes
1519 in any order, and will handle up to 8 of them.
1520
1521 If the setup sequence is at the end of the function, then the next
1522 instruction will be a branch back to the start. */
c906108c 1523
acd5c798 1524static CORE_ADDR
e17a4113
UW
1525i386_analyze_prologue (struct gdbarch *gdbarch,
1526 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1527 struct i386_frame_cache *cache)
c906108c 1528{
e11481da 1529 pc = i386_skip_noop (pc);
e17a4113 1530 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1531 pc = i386_analyze_struct_return (pc, current_pc, cache);
1532 pc = i386_skip_probe (pc);
92dd43fa 1533 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1534 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1535 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1536}
1537
fc338970 1538/* Return PC of first real instruction. */
c906108c 1539
3a1e71e3 1540static CORE_ADDR
6093d2eb 1541i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1542{
e17a4113
UW
1543 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1544
63c0089f 1545 static gdb_byte pic_pat[6] =
acd5c798
MK
1546 {
1547 0xe8, 0, 0, 0, 0, /* call 0x0 */
1548 0x5b, /* popl %ebx */
c5aa993b 1549 };
acd5c798
MK
1550 struct i386_frame_cache cache;
1551 CORE_ADDR pc;
63c0089f 1552 gdb_byte op;
acd5c798 1553 int i;
c5aa993b 1554
acd5c798 1555 cache.locals = -1;
e17a4113 1556 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1557 if (cache.locals < 0)
1558 return start_pc;
c5aa993b 1559
acd5c798 1560 /* Found valid frame setup. */
c906108c 1561
fc338970
MK
1562 /* The native cc on SVR4 in -K PIC mode inserts the following code
1563 to get the address of the global offset table (GOT) into register
acd5c798
MK
1564 %ebx:
1565
fc338970
MK
1566 call 0x0
1567 popl %ebx
1568 movl %ebx,x(%ebp) (optional)
1569 addl y,%ebx
1570
c906108c
SS
1571 This code is with the rest of the prologue (at the end of the
1572 function), so we have to skip it to get to the first real
1573 instruction at the start of the function. */
c5aa993b 1574
c906108c
SS
1575 for (i = 0; i < 6; i++)
1576 {
3dcabaa8
MS
1577 if (target_read_memory (pc + i, &op, 1))
1578 return pc;
1579
c5aa993b 1580 if (pic_pat[i] != op)
c906108c
SS
1581 break;
1582 }
1583 if (i == 6)
1584 {
acd5c798
MK
1585 int delta = 6;
1586
3dcabaa8
MS
1587 if (target_read_memory (pc + delta, &op, 1))
1588 return pc;
c906108c 1589
c5aa993b 1590 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1591 {
e17a4113 1592 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1593
fc338970 1594 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1595 delta += 3;
fc338970 1596 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1597 delta += 6;
fc338970 1598 else /* Unexpected instruction. */
acd5c798
MK
1599 delta = 0;
1600
3dcabaa8
MS
1601 if (target_read_memory (pc + delta, &op, 1))
1602 return pc;
c906108c 1603 }
acd5c798 1604
c5aa993b 1605 /* addl y,%ebx */
acd5c798 1606 if (delta > 0 && op == 0x81
e17a4113
UW
1607 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1608 == 0xc3)
c906108c 1609 {
acd5c798 1610 pc += delta + 6;
c906108c
SS
1611 }
1612 }
c5aa993b 1613
e63bbc88
MK
1614 /* If the function starts with a branch (to startup code at the end)
1615 the last instruction should bring us back to the first
1616 instruction of the real code. */
e17a4113
UW
1617 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1618 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1619
1620 return pc;
c906108c
SS
1621}
1622
4309257c
PM
1623/* Check that the code pointed to by PC corresponds to a call to
1624 __main, skip it if so. Return PC otherwise. */
1625
1626CORE_ADDR
1627i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1628{
e17a4113 1629 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1630 gdb_byte op;
1631
3dcabaa8
MS
1632 if (target_read_memory (pc, &op, 1))
1633 return pc;
4309257c
PM
1634 if (op == 0xe8)
1635 {
1636 gdb_byte buf[4];
1637
1638 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1639 {
1640 /* Make sure address is computed correctly as a 32bit
1641 integer even if CORE_ADDR is 64 bit wide. */
1642 struct minimal_symbol *s;
e17a4113 1643 CORE_ADDR call_dest;
4309257c 1644
e17a4113 1645 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1646 call_dest = call_dest & 0xffffffffU;
1647 s = lookup_minimal_symbol_by_pc (call_dest);
1648 if (s != NULL
1649 && SYMBOL_LINKAGE_NAME (s) != NULL
1650 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1651 pc += 5;
1652 }
1653 }
1654
1655 return pc;
1656}
1657
acd5c798 1658/* This function is 64-bit safe. */
93924b6b 1659
acd5c798
MK
1660static CORE_ADDR
1661i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1662{
63c0089f 1663 gdb_byte buf[8];
acd5c798 1664
875f8d0e 1665 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1666 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1667}
acd5c798 1668\f
93924b6b 1669
acd5c798 1670/* Normal frames. */
c5aa993b 1671
8fbca658
PA
1672static void
1673i386_frame_cache_1 (struct frame_info *this_frame,
1674 struct i386_frame_cache *cache)
a7769679 1675{
e17a4113
UW
1676 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1678 gdb_byte buf[4];
acd5c798
MK
1679 int i;
1680
8fbca658 1681 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1682
1683 /* In principle, for normal frames, %ebp holds the frame pointer,
1684 which holds the base address for the current stack frame.
1685 However, for functions that don't need it, the frame pointer is
1686 optional. For these "frameless" functions the frame pointer is
1687 actually the frame pointer of the calling frame. Signal
1688 trampolines are just a special case of a "frameless" function.
1689 They (usually) share their frame pointer with the frame that was
1690 in progress when the signal occurred. */
1691
10458914 1692 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1693 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1694 if (cache->base == 0)
620fa63a
PA
1695 {
1696 cache->base_p = 1;
1697 return;
1698 }
acd5c798
MK
1699
1700 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1701 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1702
acd5c798 1703 if (cache->pc != 0)
e17a4113
UW
1704 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1705 cache);
acd5c798
MK
1706
1707 if (cache->locals < 0)
1708 {
1709 /* We didn't find a valid frame, which means that CACHE->base
1710 currently holds the frame pointer for our calling frame. If
1711 we're at the start of a function, or somewhere half-way its
1712 prologue, the function's frame probably hasn't been fully
1713 setup yet. Try to reconstruct the base address for the stack
1714 frame by looking at the stack pointer. For truly "frameless"
1715 functions this might work too. */
1716
e0c62198 1717 if (cache->saved_sp_reg != -1)
92dd43fa 1718 {
8fbca658
PA
1719 /* Saved stack pointer has been saved. */
1720 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1721 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1722
92dd43fa
MK
1723 /* We're halfway aligning the stack. */
1724 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1725 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1726
1727 /* This will be added back below. */
1728 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1729 }
7618e12b
DJ
1730 else if (cache->pc != 0
1731 || target_read_memory (get_frame_pc (this_frame), buf, 1))
92dd43fa 1732 {
7618e12b
DJ
1733 /* We're in a known function, but did not find a frame
1734 setup. Assume that the function does not use %ebp.
1735 Alternatively, we may have jumped to an invalid
1736 address; in that case there is definitely no new
1737 frame in %ebp. */
10458914 1738 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1739 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1740 + cache->sp_offset;
92dd43fa 1741 }
7618e12b
DJ
1742 else
1743 /* We're in an unknown function. We could not find the start
1744 of the function to analyze the prologue; our best option is
1745 to assume a typical frame layout with the caller's %ebp
1746 saved. */
1747 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
1748 }
1749
8fbca658
PA
1750 if (cache->saved_sp_reg != -1)
1751 {
1752 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1753 register may be unavailable). */
1754 if (cache->saved_sp == 0
1755 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1756 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1757 }
acd5c798
MK
1758 /* Now that we have the base address for the stack frame we can
1759 calculate the value of %esp in the calling frame. */
8fbca658 1760 else if (cache->saved_sp == 0)
92dd43fa 1761 cache->saved_sp = cache->base + 8;
a7769679 1762
acd5c798
MK
1763 /* Adjust all the saved registers such that they contain addresses
1764 instead of offsets. */
1765 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1766 if (cache->saved_regs[i] != -1)
1767 cache->saved_regs[i] += cache->base;
acd5c798 1768
8fbca658
PA
1769 cache->base_p = 1;
1770}
1771
1772static struct i386_frame_cache *
1773i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1774{
1775 volatile struct gdb_exception ex;
1776 struct i386_frame_cache *cache;
1777
1778 if (*this_cache)
1779 return *this_cache;
1780
1781 cache = i386_alloc_frame_cache ();
1782 *this_cache = cache;
1783
1784 TRY_CATCH (ex, RETURN_MASK_ERROR)
1785 {
1786 i386_frame_cache_1 (this_frame, cache);
1787 }
1788 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1789 throw_exception (ex);
1790
acd5c798 1791 return cache;
a7769679
MK
1792}
1793
3a1e71e3 1794static void
10458914 1795i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1796 struct frame_id *this_id)
c906108c 1797{
10458914 1798 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1799
1800 /* This marks the outermost frame. */
1801 if (cache->base == 0)
1802 return;
1803
3e210248 1804 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1805 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1806}
1807
8fbca658
PA
1808static enum unwind_stop_reason
1809i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1810 void **this_cache)
1811{
1812 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1813
1814 if (!cache->base_p)
1815 return UNWIND_UNAVAILABLE;
1816
1817 /* This marks the outermost frame. */
1818 if (cache->base == 0)
1819 return UNWIND_OUTERMOST;
1820
1821 return UNWIND_NO_REASON;
1822}
1823
10458914
DJ
1824static struct value *
1825i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1826 int regnum)
acd5c798 1827{
10458914 1828 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1829
1830 gdb_assert (regnum >= 0);
1831
1832 /* The System V ABI says that:
1833
1834 "The flags register contains the system flags, such as the
1835 direction flag and the carry flag. The direction flag must be
1836 set to the forward (that is, zero) direction before entry and
1837 upon exit from a function. Other user flags have no specified
1838 role in the standard calling sequence and are not preserved."
1839
1840 To guarantee the "upon exit" part of that statement we fake a
1841 saved flags register that has its direction flag cleared.
1842
1843 Note that GCC doesn't seem to rely on the fact that the direction
1844 flag is cleared after a function return; it always explicitly
1845 clears the flag before operations where it matters.
1846
1847 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1848 right thing to do. The way we fake the flags register here makes
1849 it impossible to change it. */
1850
1851 if (regnum == I386_EFLAGS_REGNUM)
1852 {
10458914 1853 ULONGEST val;
c5aa993b 1854
10458914
DJ
1855 val = get_frame_register_unsigned (this_frame, regnum);
1856 val &= ~(1 << 10);
1857 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1858 }
1211c4e4 1859
acd5c798 1860 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1861 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 1862
fcf250e2
UW
1863 if (regnum == I386_ESP_REGNUM
1864 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
1865 {
1866 /* If the SP has been saved, but we don't know where, then this
1867 means that SAVED_SP_REG register was found unavailable back
1868 when we built the cache. */
fcf250e2 1869 if (cache->saved_sp == 0)
8fbca658
PA
1870 return frame_unwind_got_register (this_frame, regnum,
1871 cache->saved_sp_reg);
1872 else
1873 return frame_unwind_got_constant (this_frame, regnum,
1874 cache->saved_sp);
1875 }
acd5c798 1876
fd13a04a 1877 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1878 return frame_unwind_got_memory (this_frame, regnum,
1879 cache->saved_regs[regnum]);
fd13a04a 1880
10458914 1881 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1882}
1883
1884static const struct frame_unwind i386_frame_unwind =
1885{
1886 NORMAL_FRAME,
8fbca658 1887 i386_frame_unwind_stop_reason,
acd5c798 1888 i386_frame_this_id,
10458914
DJ
1889 i386_frame_prev_register,
1890 NULL,
1891 default_frame_sniffer
acd5c798 1892};
06da04c6
MS
1893
1894/* Normal frames, but in a function epilogue. */
1895
1896/* The epilogue is defined here as the 'ret' instruction, which will
1897 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1898 the function's stack frame. */
1899
1900static int
1901i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1902{
1903 gdb_byte insn;
e0d00bc7
JK
1904 struct symtab *symtab;
1905
1906 symtab = find_pc_symtab (pc);
1907 if (symtab && symtab->epilogue_unwind_valid)
1908 return 0;
06da04c6
MS
1909
1910 if (target_read_memory (pc, &insn, 1))
1911 return 0; /* Can't read memory at pc. */
1912
1913 if (insn != 0xc3) /* 'ret' instruction. */
1914 return 0;
1915
1916 return 1;
1917}
1918
1919static int
1920i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1921 struct frame_info *this_frame,
1922 void **this_prologue_cache)
1923{
1924 if (frame_relative_level (this_frame) == 0)
1925 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1926 get_frame_pc (this_frame));
1927 else
1928 return 0;
1929}
1930
1931static struct i386_frame_cache *
1932i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1933{
8fbca658 1934 volatile struct gdb_exception ex;
06da04c6 1935 struct i386_frame_cache *cache;
0d6c2135 1936 CORE_ADDR sp;
06da04c6
MS
1937
1938 if (*this_cache)
1939 return *this_cache;
1940
1941 cache = i386_alloc_frame_cache ();
1942 *this_cache = cache;
1943
8fbca658
PA
1944 TRY_CATCH (ex, RETURN_MASK_ERROR)
1945 {
0d6c2135 1946 cache->pc = get_frame_func (this_frame);
06da04c6 1947
0d6c2135
MK
1948 /* At this point the stack looks as if we just entered the
1949 function, with the return address at the top of the
1950 stack. */
1951 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1952 cache->base = sp + cache->sp_offset;
8fbca658 1953 cache->saved_sp = cache->base + 8;
8fbca658 1954 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 1955
8fbca658
PA
1956 cache->base_p = 1;
1957 }
1958 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1959 throw_exception (ex);
06da04c6
MS
1960
1961 return cache;
1962}
1963
8fbca658
PA
1964static enum unwind_stop_reason
1965i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1966 void **this_cache)
1967{
0d6c2135
MK
1968 struct i386_frame_cache *cache =
1969 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
1970
1971 if (!cache->base_p)
1972 return UNWIND_UNAVAILABLE;
1973
1974 return UNWIND_NO_REASON;
1975}
1976
06da04c6
MS
1977static void
1978i386_epilogue_frame_this_id (struct frame_info *this_frame,
1979 void **this_cache,
1980 struct frame_id *this_id)
1981{
0d6c2135
MK
1982 struct i386_frame_cache *cache =
1983 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 1984
8fbca658
PA
1985 if (!cache->base_p)
1986 return;
1987
06da04c6
MS
1988 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1989}
1990
0d6c2135
MK
1991static struct value *
1992i386_epilogue_frame_prev_register (struct frame_info *this_frame,
1993 void **this_cache, int regnum)
1994{
1995 /* Make sure we've initialized the cache. */
1996 i386_epilogue_frame_cache (this_frame, this_cache);
1997
1998 return i386_frame_prev_register (this_frame, this_cache, regnum);
1999}
2000
06da04c6
MS
2001static const struct frame_unwind i386_epilogue_frame_unwind =
2002{
2003 NORMAL_FRAME,
8fbca658 2004 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2005 i386_epilogue_frame_this_id,
0d6c2135 2006 i386_epilogue_frame_prev_register,
06da04c6
MS
2007 NULL,
2008 i386_epilogue_frame_sniffer
2009};
acd5c798
MK
2010\f
2011
a3fcb948
JG
2012/* Stack-based trampolines. */
2013
2014/* These trampolines are used on cross x86 targets, when taking the
2015 address of a nested function. When executing these trampolines,
2016 no stack frame is set up, so we are in a similar situation as in
2017 epilogues and i386_epilogue_frame_this_id can be re-used. */
2018
2019/* Static chain passed in register. */
2020
2021struct i386_insn i386_tramp_chain_in_reg_insns[] =
2022{
2023 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2024 { 5, { 0xb8 }, { 0xfe } },
2025
2026 /* `jmp imm32' */
2027 { 5, { 0xe9 }, { 0xff } },
2028
2029 {0}
2030};
2031
2032/* Static chain passed on stack (when regparm=3). */
2033
2034struct i386_insn i386_tramp_chain_on_stack_insns[] =
2035{
2036 /* `push imm32' */
2037 { 5, { 0x68 }, { 0xff } },
2038
2039 /* `jmp imm32' */
2040 { 5, { 0xe9 }, { 0xff } },
2041
2042 {0}
2043};
2044
2045/* Return whether PC points inside a stack trampoline. */
2046
2047static int
2048i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2049{
2050 gdb_byte insn;
2c02bd72 2051 const char *name;
a3fcb948
JG
2052
2053 /* A stack trampoline is detected if no name is associated
2054 to the current pc and if it points inside a trampoline
2055 sequence. */
2056
2057 find_pc_partial_function (pc, &name, NULL, NULL);
2058 if (name)
2059 return 0;
2060
2061 if (target_read_memory (pc, &insn, 1))
2062 return 0;
2063
2064 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2065 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2066 return 0;
2067
2068 return 1;
2069}
2070
2071static int
2072i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2073 struct frame_info *this_frame,
2074 void **this_cache)
a3fcb948
JG
2075{
2076 if (frame_relative_level (this_frame) == 0)
2077 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2078 get_frame_pc (this_frame));
2079 else
2080 return 0;
2081}
2082
2083static const struct frame_unwind i386_stack_tramp_frame_unwind =
2084{
2085 NORMAL_FRAME,
2086 i386_epilogue_frame_unwind_stop_reason,
2087 i386_epilogue_frame_this_id,
0d6c2135 2088 i386_epilogue_frame_prev_register,
a3fcb948
JG
2089 NULL,
2090 i386_stack_tramp_frame_sniffer
2091};
2092\f
6710bf39
SS
2093/* Generate a bytecode expression to get the value of the saved PC. */
2094
2095static void
2096i386_gen_return_address (struct gdbarch *gdbarch,
2097 struct agent_expr *ax, struct axs_value *value,
2098 CORE_ADDR scope)
2099{
2100 /* The following sequence assumes the traditional use of the base
2101 register. */
2102 ax_reg (ax, I386_EBP_REGNUM);
2103 ax_const_l (ax, 4);
2104 ax_simple (ax, aop_add);
2105 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2106 value->kind = axs_lvalue_memory;
2107}
2108\f
a3fcb948 2109
acd5c798
MK
2110/* Signal trampolines. */
2111
2112static struct i386_frame_cache *
10458914 2113i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2114{
e17a4113
UW
2115 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2117 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2118 volatile struct gdb_exception ex;
acd5c798 2119 struct i386_frame_cache *cache;
acd5c798 2120 CORE_ADDR addr;
63c0089f 2121 gdb_byte buf[4];
acd5c798
MK
2122
2123 if (*this_cache)
2124 return *this_cache;
2125
fd13a04a 2126 cache = i386_alloc_frame_cache ();
acd5c798 2127
8fbca658 2128 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2129 {
8fbca658
PA
2130 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2131 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2132
8fbca658
PA
2133 addr = tdep->sigcontext_addr (this_frame);
2134 if (tdep->sc_reg_offset)
2135 {
2136 int i;
a3386186 2137
8fbca658
PA
2138 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2139
2140 for (i = 0; i < tdep->sc_num_regs; i++)
2141 if (tdep->sc_reg_offset[i] != -1)
2142 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2143 }
2144 else
2145 {
2146 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2147 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2148 }
2149
2150 cache->base_p = 1;
a3386186 2151 }
8fbca658
PA
2152 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2153 throw_exception (ex);
acd5c798
MK
2154
2155 *this_cache = cache;
2156 return cache;
2157}
2158
8fbca658
PA
2159static enum unwind_stop_reason
2160i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2161 void **this_cache)
2162{
2163 struct i386_frame_cache *cache =
2164 i386_sigtramp_frame_cache (this_frame, this_cache);
2165
2166 if (!cache->base_p)
2167 return UNWIND_UNAVAILABLE;
2168
2169 return UNWIND_NO_REASON;
2170}
2171
acd5c798 2172static void
10458914 2173i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2174 struct frame_id *this_id)
2175{
2176 struct i386_frame_cache *cache =
10458914 2177 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2178
8fbca658
PA
2179 if (!cache->base_p)
2180 return;
2181
3e210248 2182 /* See the end of i386_push_dummy_call. */
10458914 2183 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
2184}
2185
10458914
DJ
2186static struct value *
2187i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2188 void **this_cache, int regnum)
acd5c798
MK
2189{
2190 /* Make sure we've initialized the cache. */
10458914 2191 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2192
10458914 2193 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2194}
c0d1d883 2195
10458914
DJ
2196static int
2197i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2198 struct frame_info *this_frame,
2199 void **this_prologue_cache)
acd5c798 2200{
10458914 2201 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2202
911bc6ee
MK
2203 /* We shouldn't even bother if we don't have a sigcontext_addr
2204 handler. */
2205 if (tdep->sigcontext_addr == NULL)
10458914 2206 return 0;
1c3545ae 2207
911bc6ee
MK
2208 if (tdep->sigtramp_p != NULL)
2209 {
10458914
DJ
2210 if (tdep->sigtramp_p (this_frame))
2211 return 1;
911bc6ee
MK
2212 }
2213
2214 if (tdep->sigtramp_start != 0)
2215 {
10458914 2216 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2217
2218 gdb_assert (tdep->sigtramp_end != 0);
2219 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2220 return 1;
911bc6ee 2221 }
acd5c798 2222
10458914 2223 return 0;
acd5c798 2224}
10458914
DJ
2225
2226static const struct frame_unwind i386_sigtramp_frame_unwind =
2227{
2228 SIGTRAMP_FRAME,
8fbca658 2229 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2230 i386_sigtramp_frame_this_id,
2231 i386_sigtramp_frame_prev_register,
2232 NULL,
2233 i386_sigtramp_frame_sniffer
2234};
acd5c798
MK
2235\f
2236
2237static CORE_ADDR
10458914 2238i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2239{
10458914 2240 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2241
2242 return cache->base;
2243}
2244
2245static const struct frame_base i386_frame_base =
2246{
2247 &i386_frame_unwind,
2248 i386_frame_base_address,
2249 i386_frame_base_address,
2250 i386_frame_base_address
2251};
2252
acd5c798 2253static struct frame_id
10458914 2254i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2255{
acd5c798
MK
2256 CORE_ADDR fp;
2257
10458914 2258 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2259
3e210248 2260 /* See the end of i386_push_dummy_call. */
10458914 2261 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2262}
e04e5beb
JM
2263
2264/* _Decimal128 function return values need 16-byte alignment on the
2265 stack. */
2266
2267static CORE_ADDR
2268i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2269{
2270 return sp & -(CORE_ADDR)16;
2271}
fc338970 2272\f
c906108c 2273
fc338970
MK
2274/* Figure out where the longjmp will land. Slurp the args out of the
2275 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2276 structure from which we extract the address that we will land at.
28bcfd30 2277 This address is copied into PC. This routine returns non-zero on
436675d3 2278 success. */
c906108c 2279
8201327c 2280static int
60ade65d 2281i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2282{
436675d3 2283 gdb_byte buf[4];
c906108c 2284 CORE_ADDR sp, jb_addr;
20a6ec49 2285 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2287 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2288
8201327c
MK
2289 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2290 longjmp will land. */
2291 if (jb_pc_offset == -1)
c906108c
SS
2292 return 0;
2293
436675d3 2294 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2295 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2296 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2297 return 0;
2298
e17a4113 2299 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2300 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2301 return 0;
c906108c 2302
e17a4113 2303 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2304 return 1;
2305}
fc338970 2306\f
c906108c 2307
7ccc1c74
JM
2308/* Check whether TYPE must be 16-byte-aligned when passed as a
2309 function argument. 16-byte vectors, _Decimal128 and structures or
2310 unions containing such types must be 16-byte-aligned; other
2311 arguments are 4-byte-aligned. */
2312
2313static int
2314i386_16_byte_align_p (struct type *type)
2315{
2316 type = check_typedef (type);
2317 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2318 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2319 && TYPE_LENGTH (type) == 16)
2320 return 1;
2321 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2322 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2323 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2324 || TYPE_CODE (type) == TYPE_CODE_UNION)
2325 {
2326 int i;
2327 for (i = 0; i < TYPE_NFIELDS (type); i++)
2328 {
2329 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2330 return 1;
2331 }
2332 }
2333 return 0;
2334}
2335
3a1e71e3 2336static CORE_ADDR
7d9b040b 2337i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2338 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2339 struct value **args, CORE_ADDR sp, int struct_return,
2340 CORE_ADDR struct_addr)
22f8ba57 2341{
e17a4113 2342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2343 gdb_byte buf[4];
acd5c798 2344 int i;
7ccc1c74
JM
2345 int write_pass;
2346 int args_space = 0;
acd5c798 2347
7ccc1c74
JM
2348 /* Determine the total space required for arguments and struct
2349 return address in a first pass (allowing for 16-byte-aligned
2350 arguments), then push arguments in a second pass. */
2351
2352 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2353 {
7ccc1c74
JM
2354 int args_space_used = 0;
2355 int have_16_byte_aligned_arg = 0;
2356
2357 if (struct_return)
2358 {
2359 if (write_pass)
2360 {
2361 /* Push value address. */
e17a4113 2362 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2363 write_memory (sp, buf, 4);
2364 args_space_used += 4;
2365 }
2366 else
2367 args_space += 4;
2368 }
2369
2370 for (i = 0; i < nargs; i++)
2371 {
2372 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2373
7ccc1c74
JM
2374 if (write_pass)
2375 {
2376 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2377 args_space_used = align_up (args_space_used, 16);
acd5c798 2378
7ccc1c74
JM
2379 write_memory (sp + args_space_used,
2380 value_contents_all (args[i]), len);
2381 /* The System V ABI says that:
acd5c798 2382
7ccc1c74
JM
2383 "An argument's size is increased, if necessary, to make it a
2384 multiple of [32-bit] words. This may require tail padding,
2385 depending on the size of the argument."
22f8ba57 2386
7ccc1c74
JM
2387 This makes sure the stack stays word-aligned. */
2388 args_space_used += align_up (len, 4);
2389 }
2390 else
2391 {
2392 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2393 {
2394 args_space = align_up (args_space, 16);
2395 have_16_byte_aligned_arg = 1;
2396 }
2397 args_space += align_up (len, 4);
2398 }
2399 }
2400
2401 if (!write_pass)
2402 {
2403 if (have_16_byte_aligned_arg)
2404 args_space = align_up (args_space, 16);
2405 sp -= args_space;
2406 }
22f8ba57
MK
2407 }
2408
acd5c798
MK
2409 /* Store return address. */
2410 sp -= 4;
e17a4113 2411 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2412 write_memory (sp, buf, 4);
2413
2414 /* Finally, update the stack pointer... */
e17a4113 2415 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2416 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2417
2418 /* ...and fake a frame pointer. */
2419 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2420
3e210248
AC
2421 /* MarkK wrote: This "+ 8" is all over the place:
2422 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2423 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2424 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2425 definition of the stack address of a frame. Otherwise frame id
2426 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2427 stack address *before* the function call as a frame's CFA. On
2428 the i386, when %ebp is used as a frame pointer, the offset
2429 between the contents %ebp and the CFA as defined by GCC. */
2430 return sp + 8;
22f8ba57
MK
2431}
2432
1a309862
MK
2433/* These registers are used for returning integers (and on some
2434 targets also for returning `struct' and `union' values when their
ef9dff19 2435 size and alignment match an integer type). */
acd5c798
MK
2436#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2437#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2438
c5e656c1
MK
2439/* Read, for architecture GDBARCH, a function return value of TYPE
2440 from REGCACHE, and copy that into VALBUF. */
1a309862 2441
3a1e71e3 2442static void
c5e656c1 2443i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2444 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2445{
c5e656c1 2446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2447 int len = TYPE_LENGTH (type);
63c0089f 2448 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2449
1e8d0a7b 2450 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2451 {
5716833c 2452 if (tdep->st0_regnum < 0)
1a309862 2453 {
8a3fe4f8 2454 warning (_("Cannot find floating-point return value."));
1a309862 2455 memset (valbuf, 0, len);
ef9dff19 2456 return;
1a309862
MK
2457 }
2458
c6ba6f0d
MK
2459 /* Floating-point return values can be found in %st(0). Convert
2460 its contents to the desired type. This is probably not
2461 exactly how it would happen on the target itself, but it is
2462 the best we can do. */
acd5c798 2463 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2464 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2465 }
2466 else
c5aa993b 2467 {
875f8d0e
UW
2468 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2469 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2470
2471 if (len <= low_size)
00f8375e 2472 {
0818c12a 2473 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2474 memcpy (valbuf, buf, len);
2475 }
d4f3574e
SS
2476 else if (len <= (low_size + high_size))
2477 {
0818c12a 2478 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2479 memcpy (valbuf, buf, low_size);
0818c12a 2480 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2481 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2482 }
2483 else
8e65ff28 2484 internal_error (__FILE__, __LINE__,
1777feb0
MS
2485 _("Cannot extract return value of %d bytes long."),
2486 len);
c906108c
SS
2487 }
2488}
2489
c5e656c1
MK
2490/* Write, for architecture GDBARCH, a function return value of TYPE
2491 from VALBUF into REGCACHE. */
ef9dff19 2492
3a1e71e3 2493static void
c5e656c1 2494i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2495 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2496{
c5e656c1 2497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2498 int len = TYPE_LENGTH (type);
2499
1e8d0a7b 2500 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2501 {
3d7f4f49 2502 ULONGEST fstat;
63c0089f 2503 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2504
5716833c 2505 if (tdep->st0_regnum < 0)
ef9dff19 2506 {
8a3fe4f8 2507 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2508 return;
2509 }
2510
635b0cc1
MK
2511 /* Returning floating-point values is a bit tricky. Apart from
2512 storing the return value in %st(0), we have to simulate the
2513 state of the FPU at function return point. */
2514
c6ba6f0d
MK
2515 /* Convert the value found in VALBUF to the extended
2516 floating-point format used by the FPU. This is probably
2517 not exactly how it would happen on the target itself, but
2518 it is the best we can do. */
27067745 2519 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2520 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2521
635b0cc1
MK
2522 /* Set the top of the floating-point register stack to 7. The
2523 actual value doesn't really matter, but 7 is what a normal
2524 function return would end up with if the program started out
2525 with a freshly initialized FPU. */
20a6ec49 2526 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2527 fstat |= (7 << 11);
20a6ec49 2528 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2529
635b0cc1
MK
2530 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2531 the floating-point register stack to 7, the appropriate value
2532 for the tag word is 0x3fff. */
20a6ec49 2533 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2534 }
2535 else
2536 {
875f8d0e
UW
2537 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2538 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2539
2540 if (len <= low_size)
3d7f4f49 2541 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2542 else if (len <= (low_size + high_size))
2543 {
3d7f4f49
MK
2544 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2545 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2546 len - low_size, valbuf + low_size);
ef9dff19
MK
2547 }
2548 else
8e65ff28 2549 internal_error (__FILE__, __LINE__,
e2e0b3e5 2550 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2551 }
2552}
fc338970 2553\f
ef9dff19 2554
8201327c
MK
2555/* This is the variable that is set with "set struct-convention", and
2556 its legitimate values. */
2557static const char default_struct_convention[] = "default";
2558static const char pcc_struct_convention[] = "pcc";
2559static const char reg_struct_convention[] = "reg";
40478521 2560static const char *const valid_conventions[] =
8201327c
MK
2561{
2562 default_struct_convention,
2563 pcc_struct_convention,
2564 reg_struct_convention,
2565 NULL
2566};
2567static const char *struct_convention = default_struct_convention;
2568
0e4377e1
JB
2569/* Return non-zero if TYPE, which is assumed to be a structure,
2570 a union type, or an array type, should be returned in registers
2571 for architecture GDBARCH. */
c5e656c1 2572
8201327c 2573static int
c5e656c1 2574i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2575{
c5e656c1
MK
2576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2577 enum type_code code = TYPE_CODE (type);
2578 int len = TYPE_LENGTH (type);
8201327c 2579
0e4377e1
JB
2580 gdb_assert (code == TYPE_CODE_STRUCT
2581 || code == TYPE_CODE_UNION
2582 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2583
2584 if (struct_convention == pcc_struct_convention
2585 || (struct_convention == default_struct_convention
2586 && tdep->struct_return == pcc_struct_return))
2587 return 0;
2588
9edde48e
MK
2589 /* Structures consisting of a single `float', `double' or 'long
2590 double' member are returned in %st(0). */
2591 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2592 {
2593 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2594 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2595 return (len == 4 || len == 8 || len == 12);
2596 }
2597
c5e656c1
MK
2598 return (len == 1 || len == 2 || len == 4 || len == 8);
2599}
2600
2601/* Determine, for architecture GDBARCH, how a return value of TYPE
2602 should be returned. If it is supposed to be returned in registers,
2603 and READBUF is non-zero, read the appropriate value from REGCACHE,
2604 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2605 from WRITEBUF into REGCACHE. */
2606
2607static enum return_value_convention
c055b101
CV
2608i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2609 struct type *type, struct regcache *regcache,
2610 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2611{
2612 enum type_code code = TYPE_CODE (type);
2613
5daa78cc
TJB
2614 if (((code == TYPE_CODE_STRUCT
2615 || code == TYPE_CODE_UNION
2616 || code == TYPE_CODE_ARRAY)
2617 && !i386_reg_struct_return_p (gdbarch, type))
2618 /* 128-bit decimal float uses the struct return convention. */
2619 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2620 {
2621 /* The System V ABI says that:
2622
2623 "A function that returns a structure or union also sets %eax
2624 to the value of the original address of the caller's area
2625 before it returns. Thus when the caller receives control
2626 again, the address of the returned object resides in register
2627 %eax and can be used to access the object."
2628
2629 So the ABI guarantees that we can always find the return
2630 value just after the function has returned. */
2631
0e4377e1
JB
2632 /* Note that the ABI doesn't mention functions returning arrays,
2633 which is something possible in certain languages such as Ada.
2634 In this case, the value is returned as if it was wrapped in
2635 a record, so the convention applied to records also applies
2636 to arrays. */
2637
31db7b6c
MK
2638 if (readbuf)
2639 {
2640 ULONGEST addr;
2641
2642 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2643 read_memory (addr, readbuf, TYPE_LENGTH (type));
2644 }
2645
2646 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2647 }
c5e656c1
MK
2648
2649 /* This special case is for structures consisting of a single
9edde48e
MK
2650 `float', `double' or 'long double' member. These structures are
2651 returned in %st(0). For these structures, we call ourselves
2652 recursively, changing TYPE into the type of the first member of
2653 the structure. Since that should work for all structures that
2654 have only one member, we don't bother to check the member's type
2655 here. */
c5e656c1
MK
2656 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2657 {
2658 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
2659 return i386_return_value (gdbarch, func_type, type, regcache,
2660 readbuf, writebuf);
c5e656c1
MK
2661 }
2662
2663 if (readbuf)
2664 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2665 if (writebuf)
2666 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2667
c5e656c1 2668 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2669}
2670\f
2671
27067745
UW
2672struct type *
2673i387_ext_type (struct gdbarch *gdbarch)
2674{
2675 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2676
2677 if (!tdep->i387_ext_type)
90884b2b
L
2678 {
2679 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2680 gdb_assert (tdep->i387_ext_type != NULL);
2681 }
27067745
UW
2682
2683 return tdep->i387_ext_type;
2684}
2685
c131fcee
L
2686/* Construct vector type for pseudo YMM registers. We can't use
2687 tdesc_find_type since YMM isn't described in target description. */
2688
2689static struct type *
2690i386_ymm_type (struct gdbarch *gdbarch)
2691{
2692 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2693
2694 if (!tdep->i386_ymm_type)
2695 {
2696 const struct builtin_type *bt = builtin_type (gdbarch);
2697
2698 /* The type we're building is this: */
2699#if 0
2700 union __gdb_builtin_type_vec256i
2701 {
2702 int128_t uint128[2];
2703 int64_t v2_int64[4];
2704 int32_t v4_int32[8];
2705 int16_t v8_int16[16];
2706 int8_t v16_int8[32];
2707 double v2_double[4];
2708 float v4_float[8];
2709 };
2710#endif
2711
2712 struct type *t;
2713
2714 t = arch_composite_type (gdbarch,
2715 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2716 append_composite_type_field (t, "v8_float",
2717 init_vector_type (bt->builtin_float, 8));
2718 append_composite_type_field (t, "v4_double",
2719 init_vector_type (bt->builtin_double, 4));
2720 append_composite_type_field (t, "v32_int8",
2721 init_vector_type (bt->builtin_int8, 32));
2722 append_composite_type_field (t, "v16_int16",
2723 init_vector_type (bt->builtin_int16, 16));
2724 append_composite_type_field (t, "v8_int32",
2725 init_vector_type (bt->builtin_int32, 8));
2726 append_composite_type_field (t, "v4_int64",
2727 init_vector_type (bt->builtin_int64, 4));
2728 append_composite_type_field (t, "v2_int128",
2729 init_vector_type (bt->builtin_int128, 2));
2730
2731 TYPE_VECTOR (t) = 1;
0c5acf93 2732 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
2733 tdep->i386_ymm_type = t;
2734 }
2735
2736 return tdep->i386_ymm_type;
2737}
2738
794ac428 2739/* Construct vector type for MMX registers. */
90884b2b 2740static struct type *
794ac428
UW
2741i386_mmx_type (struct gdbarch *gdbarch)
2742{
2743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2744
2745 if (!tdep->i386_mmx_type)
2746 {
df4df182
UW
2747 const struct builtin_type *bt = builtin_type (gdbarch);
2748
794ac428
UW
2749 /* The type we're building is this: */
2750#if 0
2751 union __gdb_builtin_type_vec64i
2752 {
2753 int64_t uint64;
2754 int32_t v2_int32[2];
2755 int16_t v4_int16[4];
2756 int8_t v8_int8[8];
2757 };
2758#endif
2759
2760 struct type *t;
2761
e9bb382b
UW
2762 t = arch_composite_type (gdbarch,
2763 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2764
2765 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2766 append_composite_type_field (t, "v2_int32",
df4df182 2767 init_vector_type (bt->builtin_int32, 2));
794ac428 2768 append_composite_type_field (t, "v4_int16",
df4df182 2769 init_vector_type (bt->builtin_int16, 4));
794ac428 2770 append_composite_type_field (t, "v8_int8",
df4df182 2771 init_vector_type (bt->builtin_int8, 8));
794ac428 2772
876cecd0 2773 TYPE_VECTOR (t) = 1;
794ac428
UW
2774 TYPE_NAME (t) = "builtin_type_vec64i";
2775 tdep->i386_mmx_type = t;
2776 }
2777
2778 return tdep->i386_mmx_type;
2779}
2780
d7a0d72c 2781/* Return the GDB type object for the "standard" data type of data in
1777feb0 2782 register REGNUM. */
d7a0d72c 2783
3a1e71e3 2784static struct type *
90884b2b 2785i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2786{
1ba53b71
L
2787 if (i386_mmx_regnum_p (gdbarch, regnum))
2788 return i386_mmx_type (gdbarch);
c131fcee
L
2789 else if (i386_ymm_regnum_p (gdbarch, regnum))
2790 return i386_ymm_type (gdbarch);
1ba53b71
L
2791 else
2792 {
2793 const struct builtin_type *bt = builtin_type (gdbarch);
2794 if (i386_byte_regnum_p (gdbarch, regnum))
2795 return bt->builtin_int8;
2796 else if (i386_word_regnum_p (gdbarch, regnum))
2797 return bt->builtin_int16;
2798 else if (i386_dword_regnum_p (gdbarch, regnum))
2799 return bt->builtin_int32;
2800 }
2801
2802 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
2803}
2804
28fc6740 2805/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2806 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2807
2808static int
c86c27af 2809i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2810{
5716833c
MK
2811 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2812 int mmxreg, fpreg;
28fc6740
AC
2813 ULONGEST fstat;
2814 int tos;
c86c27af 2815
5716833c 2816 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2817 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2818 tos = (fstat >> 11) & 0x7;
5716833c
MK
2819 fpreg = (mmxreg + tos) % 8;
2820
20a6ec49 2821 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2822}
2823
3543a589
TT
2824/* A helper function for us by i386_pseudo_register_read_value and
2825 amd64_pseudo_register_read_value. It does all the work but reads
2826 the data into an already-allocated value. */
2827
2828void
2829i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2830 struct regcache *regcache,
2831 int regnum,
2832 struct value *result_value)
28fc6740 2833{
1ba53b71 2834 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 2835 enum register_status status;
3543a589 2836 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 2837
5716833c 2838 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2839 {
c86c27af
MK
2840 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2841
28fc6740 2842 /* Extract (always little endian). */
05d1431c
PA
2843 status = regcache_raw_read (regcache, fpnum, raw_buf);
2844 if (status != REG_VALID)
3543a589
TT
2845 mark_value_bytes_unavailable (result_value, 0,
2846 TYPE_LENGTH (value_type (result_value)));
2847 else
2848 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
2849 }
2850 else
1ba53b71
L
2851 {
2852 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2853
c131fcee
L
2854 if (i386_ymm_regnum_p (gdbarch, regnum))
2855 {
2856 regnum -= tdep->ymm0_regnum;
2857
1777feb0 2858 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
2859 status = regcache_raw_read (regcache,
2860 I387_XMM0_REGNUM (tdep) + regnum,
2861 raw_buf);
2862 if (status != REG_VALID)
3543a589
TT
2863 mark_value_bytes_unavailable (result_value, 0, 16);
2864 else
2865 memcpy (buf, raw_buf, 16);
c131fcee 2866 /* Read upper 128bits. */
05d1431c
PA
2867 status = regcache_raw_read (regcache,
2868 tdep->ymm0h_regnum + regnum,
2869 raw_buf);
2870 if (status != REG_VALID)
3543a589
TT
2871 mark_value_bytes_unavailable (result_value, 16, 32);
2872 else
2873 memcpy (buf + 16, raw_buf, 16);
c131fcee
L
2874 }
2875 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2876 {
2877 int gpnum = regnum - tdep->ax_regnum;
2878
2879 /* Extract (always little endian). */
05d1431c
PA
2880 status = regcache_raw_read (regcache, gpnum, raw_buf);
2881 if (status != REG_VALID)
3543a589
TT
2882 mark_value_bytes_unavailable (result_value, 0,
2883 TYPE_LENGTH (value_type (result_value)));
2884 else
2885 memcpy (buf, raw_buf, 2);
1ba53b71
L
2886 }
2887 else if (i386_byte_regnum_p (gdbarch, regnum))
2888 {
2889 /* Check byte pseudo registers last since this function will
2890 be called from amd64_pseudo_register_read, which handles
2891 byte pseudo registers differently. */
2892 int gpnum = regnum - tdep->al_regnum;
2893
2894 /* Extract (always little endian). We read both lower and
2895 upper registers. */
05d1431c
PA
2896 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2897 if (status != REG_VALID)
3543a589
TT
2898 mark_value_bytes_unavailable (result_value, 0,
2899 TYPE_LENGTH (value_type (result_value)));
2900 else if (gpnum >= 4)
1ba53b71
L
2901 memcpy (buf, raw_buf + 1, 1);
2902 else
2903 memcpy (buf, raw_buf, 1);
2904 }
2905 else
2906 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2907 }
3543a589
TT
2908}
2909
2910static struct value *
2911i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2912 struct regcache *regcache,
2913 int regnum)
2914{
2915 struct value *result;
2916
2917 result = allocate_value (register_type (gdbarch, regnum));
2918 VALUE_LVAL (result) = lval_register;
2919 VALUE_REGNUM (result) = regnum;
2920
2921 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 2922
3543a589 2923 return result;
28fc6740
AC
2924}
2925
1ba53b71 2926void
28fc6740 2927i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2928 int regnum, const gdb_byte *buf)
28fc6740 2929{
1ba53b71
L
2930 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2931
5716833c 2932 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2933 {
c86c27af
MK
2934 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2935
28fc6740 2936 /* Read ... */
1ba53b71 2937 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 2938 /* ... Modify ... (always little endian). */
1ba53b71 2939 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 2940 /* ... Write. */
1ba53b71 2941 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
2942 }
2943 else
1ba53b71
L
2944 {
2945 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2946
c131fcee
L
2947 if (i386_ymm_regnum_p (gdbarch, regnum))
2948 {
2949 regnum -= tdep->ymm0_regnum;
2950
2951 /* ... Write lower 128bits. */
2952 regcache_raw_write (regcache,
2953 I387_XMM0_REGNUM (tdep) + regnum,
2954 buf);
2955 /* ... Write upper 128bits. */
2956 regcache_raw_write (regcache,
2957 tdep->ymm0h_regnum + regnum,
2958 buf + 16);
2959 }
2960 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2961 {
2962 int gpnum = regnum - tdep->ax_regnum;
2963
2964 /* Read ... */
2965 regcache_raw_read (regcache, gpnum, raw_buf);
2966 /* ... Modify ... (always little endian). */
2967 memcpy (raw_buf, buf, 2);
2968 /* ... Write. */
2969 regcache_raw_write (regcache, gpnum, raw_buf);
2970 }
2971 else if (i386_byte_regnum_p (gdbarch, regnum))
2972 {
2973 /* Check byte pseudo registers last since this function will
2974 be called from amd64_pseudo_register_read, which handles
2975 byte pseudo registers differently. */
2976 int gpnum = regnum - tdep->al_regnum;
2977
2978 /* Read ... We read both lower and upper registers. */
2979 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2980 /* ... Modify ... (always little endian). */
2981 if (gpnum >= 4)
2982 memcpy (raw_buf + 1, buf, 1);
2983 else
2984 memcpy (raw_buf, buf, 1);
2985 /* ... Write. */
2986 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2987 }
2988 else
2989 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2990 }
28fc6740 2991}
ff2e87ac
AC
2992\f
2993
ff2e87ac
AC
2994/* Return the register number of the register allocated by GCC after
2995 REGNUM, or -1 if there is no such register. */
2996
2997static int
2998i386_next_regnum (int regnum)
2999{
3000 /* GCC allocates the registers in the order:
3001
3002 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3003
3004 Since storing a variable in %esp doesn't make any sense we return
3005 -1 for %ebp and for %esp itself. */
3006 static int next_regnum[] =
3007 {
3008 I386_EDX_REGNUM, /* Slot for %eax. */
3009 I386_EBX_REGNUM, /* Slot for %ecx. */
3010 I386_ECX_REGNUM, /* Slot for %edx. */
3011 I386_ESI_REGNUM, /* Slot for %ebx. */
3012 -1, -1, /* Slots for %esp and %ebp. */
3013 I386_EDI_REGNUM, /* Slot for %esi. */
3014 I386_EBP_REGNUM /* Slot for %edi. */
3015 };
3016
de5b9bb9 3017 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3018 return next_regnum[regnum];
28fc6740 3019
ff2e87ac
AC
3020 return -1;
3021}
3022
3023/* Return nonzero if a value of type TYPE stored in register REGNUM
3024 needs any special handling. */
d7a0d72c 3025
3a1e71e3 3026static int
1777feb0
MS
3027i386_convert_register_p (struct gdbarch *gdbarch,
3028 int regnum, struct type *type)
d7a0d72c 3029{
de5b9bb9
MK
3030 int len = TYPE_LENGTH (type);
3031
ff2e87ac
AC
3032 /* Values may be spread across multiple registers. Most debugging
3033 formats aren't expressive enough to specify the locations, so
3034 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3035 have a length that is a multiple of the word size, since GCC
3036 doesn't seem to put any other types into registers. */
3037 if (len > 4 && len % 4 == 0)
3038 {
3039 int last_regnum = regnum;
3040
3041 while (len > 4)
3042 {
3043 last_regnum = i386_next_regnum (last_regnum);
3044 len -= 4;
3045 }
3046
3047 if (last_regnum != -1)
3048 return 1;
3049 }
ff2e87ac 3050
0abe36f5 3051 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3052}
3053
ff2e87ac
AC
3054/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3055 return its contents in TO. */
ac27f131 3056
8dccd430 3057static int
ff2e87ac 3058i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3059 struct type *type, gdb_byte *to,
3060 int *optimizedp, int *unavailablep)
ac27f131 3061{
20a6ec49 3062 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3063 int len = TYPE_LENGTH (type);
de5b9bb9 3064
20a6ec49 3065 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3066 return i387_register_to_value (frame, regnum, type, to,
3067 optimizedp, unavailablep);
ff2e87ac 3068
fd35795f 3069 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3070
3071 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3072
de5b9bb9
MK
3073 while (len > 0)
3074 {
3075 gdb_assert (regnum != -1);
20a6ec49 3076 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3077
8dccd430
PA
3078 if (!get_frame_register_bytes (frame, regnum, 0,
3079 register_size (gdbarch, regnum),
3080 to, optimizedp, unavailablep))
3081 return 0;
3082
de5b9bb9
MK
3083 regnum = i386_next_regnum (regnum);
3084 len -= 4;
42835c2b 3085 to += 4;
de5b9bb9 3086 }
8dccd430
PA
3087
3088 *optimizedp = *unavailablep = 0;
3089 return 1;
ac27f131
MK
3090}
3091
ff2e87ac
AC
3092/* Write the contents FROM of a value of type TYPE into register
3093 REGNUM in frame FRAME. */
ac27f131 3094
3a1e71e3 3095static void
ff2e87ac 3096i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3097 struct type *type, const gdb_byte *from)
ac27f131 3098{
de5b9bb9 3099 int len = TYPE_LENGTH (type);
de5b9bb9 3100
20a6ec49 3101 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3102 {
d532c08f
MK
3103 i387_value_to_register (frame, regnum, type, from);
3104 return;
3105 }
3d261580 3106
fd35795f 3107 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3108
3109 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3110
de5b9bb9
MK
3111 while (len > 0)
3112 {
3113 gdb_assert (regnum != -1);
875f8d0e 3114 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3115
42835c2b 3116 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3117 regnum = i386_next_regnum (regnum);
3118 len -= 4;
42835c2b 3119 from += 4;
de5b9bb9 3120 }
ac27f131 3121}
ff2e87ac 3122\f
7fdafb5a
MK
3123/* Supply register REGNUM from the buffer specified by GREGS and LEN
3124 in the general-purpose register set REGSET to register cache
3125 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3126
20187ed5 3127void
473f17b0
MK
3128i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3129 int regnum, const void *gregs, size_t len)
3130{
9ea75c57 3131 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3132 const gdb_byte *regs = gregs;
473f17b0
MK
3133 int i;
3134
3135 gdb_assert (len == tdep->sizeof_gregset);
3136
3137 for (i = 0; i < tdep->gregset_num_regs; i++)
3138 {
3139 if ((regnum == i || regnum == -1)
3140 && tdep->gregset_reg_offset[i] != -1)
3141 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3142 }
3143}
3144
7fdafb5a
MK
3145/* Collect register REGNUM from the register cache REGCACHE and store
3146 it in the buffer specified by GREGS and LEN as described by the
3147 general-purpose register set REGSET. If REGNUM is -1, do this for
3148 all registers in REGSET. */
3149
3150void
3151i386_collect_gregset (const struct regset *regset,
3152 const struct regcache *regcache,
3153 int regnum, void *gregs, size_t len)
3154{
3155 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3156 gdb_byte *regs = gregs;
7fdafb5a
MK
3157 int i;
3158
3159 gdb_assert (len == tdep->sizeof_gregset);
3160
3161 for (i = 0; i < tdep->gregset_num_regs; i++)
3162 {
3163 if ((regnum == i || regnum == -1)
3164 && tdep->gregset_reg_offset[i] != -1)
3165 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3166 }
3167}
3168
3169/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3170 in the floating-point register set REGSET to register cache
3171 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3172
3173static void
3174i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3175 int regnum, const void *fpregs, size_t len)
3176{
9ea75c57 3177 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 3178
66a72d25
MK
3179 if (len == I387_SIZEOF_FXSAVE)
3180 {
3181 i387_supply_fxsave (regcache, regnum, fpregs);
3182 return;
3183 }
3184
473f17b0
MK
3185 gdb_assert (len == tdep->sizeof_fpregset);
3186 i387_supply_fsave (regcache, regnum, fpregs);
3187}
8446b36a 3188
2f305df1
MK
3189/* Collect register REGNUM from the register cache REGCACHE and store
3190 it in the buffer specified by FPREGS and LEN as described by the
3191 floating-point register set REGSET. If REGNUM is -1, do this for
3192 all registers in REGSET. */
7fdafb5a
MK
3193
3194static void
3195i386_collect_fpregset (const struct regset *regset,
3196 const struct regcache *regcache,
3197 int regnum, void *fpregs, size_t len)
3198{
3199 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3200
3201 if (len == I387_SIZEOF_FXSAVE)
3202 {
3203 i387_collect_fxsave (regcache, regnum, fpregs);
3204 return;
3205 }
3206
3207 gdb_assert (len == tdep->sizeof_fpregset);
3208 i387_collect_fsave (regcache, regnum, fpregs);
3209}
3210
c131fcee
L
3211/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3212
3213static void
3214i386_supply_xstateregset (const struct regset *regset,
3215 struct regcache *regcache, int regnum,
3216 const void *xstateregs, size_t len)
3217{
c131fcee
L
3218 i387_supply_xsave (regcache, regnum, xstateregs);
3219}
3220
3221/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3222
3223static void
3224i386_collect_xstateregset (const struct regset *regset,
3225 const struct regcache *regcache,
3226 int regnum, void *xstateregs, size_t len)
3227{
c131fcee
L
3228 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3229}
3230
8446b36a
MK
3231/* Return the appropriate register set for the core section identified
3232 by SECT_NAME and SECT_SIZE. */
3233
3234const struct regset *
3235i386_regset_from_core_section (struct gdbarch *gdbarch,
3236 const char *sect_name, size_t sect_size)
3237{
3238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3239
3240 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3241 {
3242 if (tdep->gregset == NULL)
7fdafb5a
MK
3243 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3244 i386_collect_gregset);
8446b36a
MK
3245 return tdep->gregset;
3246 }
3247
66a72d25
MK
3248 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3249 || (strcmp (sect_name, ".reg-xfp") == 0
3250 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
3251 {
3252 if (tdep->fpregset == NULL)
7fdafb5a
MK
3253 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3254 i386_collect_fpregset);
8446b36a
MK
3255 return tdep->fpregset;
3256 }
3257
c131fcee
L
3258 if (strcmp (sect_name, ".reg-xstate") == 0)
3259 {
3260 if (tdep->xstateregset == NULL)
3261 tdep->xstateregset = regset_alloc (gdbarch,
3262 i386_supply_xstateregset,
3263 i386_collect_xstateregset);
3264
3265 return tdep->xstateregset;
3266 }
3267
8446b36a
MK
3268 return NULL;
3269}
473f17b0 3270\f
fc338970 3271
fc338970 3272/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3273
3274CORE_ADDR
e17a4113
UW
3275i386_pe_skip_trampoline_code (struct frame_info *frame,
3276 CORE_ADDR pc, char *name)
c906108c 3277{
e17a4113
UW
3278 struct gdbarch *gdbarch = get_frame_arch (frame);
3279 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3280
3281 /* jmp *(dest) */
3282 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3283 {
e17a4113
UW
3284 unsigned long indirect =
3285 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3286 struct minimal_symbol *indsym =
fc338970 3287 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
0d5cff50 3288 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3289
c5aa993b 3290 if (symname)
c906108c 3291 {
c5aa993b
JM
3292 if (strncmp (symname, "__imp_", 6) == 0
3293 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3294 return name ? 1 :
3295 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3296 }
3297 }
fc338970 3298 return 0; /* Not a trampoline. */
c906108c 3299}
fc338970
MK
3300\f
3301
10458914
DJ
3302/* Return whether the THIS_FRAME corresponds to a sigtramp
3303 routine. */
8201327c 3304
4bd207ef 3305int
10458914 3306i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3307{
10458914 3308 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3309 const char *name;
911bc6ee
MK
3310
3311 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3312 return (name && strcmp ("_sigtramp", name) == 0);
3313}
3314\f
3315
fc338970
MK
3316/* We have two flavours of disassembly. The machinery on this page
3317 deals with switching between those. */
c906108c
SS
3318
3319static int
a89aa300 3320i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3321{
5e3397bb
MK
3322 gdb_assert (disassembly_flavor == att_flavor
3323 || disassembly_flavor == intel_flavor);
3324
3325 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3326 constified, cast to prevent a compiler warning. */
3327 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3328
3329 return print_insn_i386 (pc, info);
7a292a7a 3330}
fc338970 3331\f
3ce1502b 3332
8201327c
MK
3333/* There are a few i386 architecture variants that differ only
3334 slightly from the generic i386 target. For now, we don't give them
3335 their own source file, but include them here. As a consequence,
3336 they'll always be included. */
3ce1502b 3337
8201327c 3338/* System V Release 4 (SVR4). */
3ce1502b 3339
10458914
DJ
3340/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3341 routine. */
911bc6ee 3342
8201327c 3343static int
10458914 3344i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3345{
10458914 3346 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3347 const char *name;
911bc6ee 3348
acd5c798
MK
3349 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3350 currently unknown. */
911bc6ee 3351 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3352 return (name && (strcmp ("_sigreturn", name) == 0
3353 || strcmp ("_sigacthandler", name) == 0
3354 || strcmp ("sigvechandler", name) == 0));
3355}
d2a7c97a 3356
10458914
DJ
3357/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3358 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3359
3a1e71e3 3360static CORE_ADDR
10458914 3361i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3362{
e17a4113
UW
3363 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3364 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3365 gdb_byte buf[4];
acd5c798 3366 CORE_ADDR sp;
3ce1502b 3367
10458914 3368 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3369 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3370
e17a4113 3371 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3372}
55aa24fb
SDJ
3373
3374\f
3375
3376/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3377 gdbarch.h. */
3378
3379int
3380i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3381{
3382 return (*s == '$' /* Literal number. */
3383 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3384 || (*s == '(' && s[1] == '%') /* Register indirection. */
3385 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3386}
3387
3388/* Implementation of `gdbarch_stap_parse_special_token', as defined in
3389 gdbarch.h. */
3390
3391int
3392i386_stap_parse_special_token (struct gdbarch *gdbarch,
3393 struct stap_parse_info *p)
3394{
3395 const char *s = p->arg;
3396
3397 /* In order to parse special tokens, we use a state-machine that go
3398 through every known token and try to get a match. */
3399 enum
3400 {
3401 TRIPLET,
3402 THREE_ARG_DISPLACEMENT,
3403 DONE
3404 } current_state;
3405
3406 current_state = TRIPLET;
3407
3408 /* The special tokens to be parsed here are:
3409
3410 - `register base + (register index * size) + offset', as represented
3411 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3412
3413 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3414 `*(-8 + 3 - 1 + (void *) $eax)'. */
3415
3416 while (current_state != DONE)
3417 {
3418 const char *s = p->arg;
3419
3420 switch (current_state)
3421 {
3422 case TRIPLET:
3423 {
3424 if (isdigit (*s) || *s == '-' || *s == '+')
3425 {
3426 int got_minus[3];
3427 int i;
3428 long displacements[3];
3429 const char *start;
3430 char *regname;
3431 int len;
3432 struct stoken str;
3433
3434 got_minus[0] = 0;
3435 if (*s == '+')
3436 ++s;
3437 else if (*s == '-')
3438 {
3439 ++s;
3440 got_minus[0] = 1;
3441 }
3442
3443 displacements[0] = strtol (s, (char **) &s, 10);
3444
3445 if (*s != '+' && *s != '-')
3446 {
3447 /* We are not dealing with a triplet. */
3448 break;
3449 }
3450
3451 got_minus[1] = 0;
3452 if (*s == '+')
3453 ++s;
3454 else
3455 {
3456 ++s;
3457 got_minus[1] = 1;
3458 }
3459
3460 displacements[1] = strtol (s, (char **) &s, 10);
3461
3462 if (*s != '+' && *s != '-')
3463 {
3464 /* We are not dealing with a triplet. */
3465 break;
3466 }
3467
3468 got_minus[2] = 0;
3469 if (*s == '+')
3470 ++s;
3471 else
3472 {
3473 ++s;
3474 got_minus[2] = 1;
3475 }
3476
3477 displacements[2] = strtol (s, (char **) &s, 10);
3478
3479 if (*s != '(' || s[1] != '%')
3480 break;
3481
3482 s += 2;
3483 start = s;
3484
3485 while (isalnum (*s))
3486 ++s;
3487
3488 if (*s++ != ')')
3489 break;
3490
3491 len = s - start;
3492 regname = alloca (len + 1);
3493
3494 strncpy (regname, start, len);
3495 regname[len] = '\0';
3496
3497 if (user_reg_map_name_to_regnum (gdbarch,
3498 regname, len) == -1)
3499 error (_("Invalid register name `%s' "
3500 "on expression `%s'."),
3501 regname, p->saved_arg);
3502
3503 for (i = 0; i < 3; i++)
3504 {
3505 write_exp_elt_opcode (OP_LONG);
3506 write_exp_elt_type
3507 (builtin_type (gdbarch)->builtin_long);
3508 write_exp_elt_longcst (displacements[i]);
3509 write_exp_elt_opcode (OP_LONG);
3510 if (got_minus[i])
3511 write_exp_elt_opcode (UNOP_NEG);
3512 }
3513
3514 write_exp_elt_opcode (OP_REGISTER);
3515 str.ptr = regname;
3516 str.length = len;
3517 write_exp_string (str);
3518 write_exp_elt_opcode (OP_REGISTER);
3519
3520 write_exp_elt_opcode (UNOP_CAST);
3521 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3522 write_exp_elt_opcode (UNOP_CAST);
3523
3524 write_exp_elt_opcode (BINOP_ADD);
3525 write_exp_elt_opcode (BINOP_ADD);
3526 write_exp_elt_opcode (BINOP_ADD);
3527
3528 write_exp_elt_opcode (UNOP_CAST);
3529 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3530 write_exp_elt_opcode (UNOP_CAST);
3531
3532 write_exp_elt_opcode (UNOP_IND);
3533
3534 p->arg = s;
3535
3536 return 1;
3537 }
3538 break;
3539 }
3540 case THREE_ARG_DISPLACEMENT:
3541 {
3542 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3543 {
3544 int offset_minus = 0;
3545 long offset = 0;
3546 int size_minus = 0;
3547 long size = 0;
3548 const char *start;
3549 char *base;
3550 int len_base;
3551 char *index;
3552 int len_index;
3553 struct stoken base_token, index_token;
3554
3555 if (*s == '+')
3556 ++s;
3557 else if (*s == '-')
3558 {
3559 ++s;
3560 offset_minus = 1;
3561 }
3562
3563 if (offset_minus && !isdigit (*s))
3564 break;
3565
3566 if (isdigit (*s))
3567 offset = strtol (s, (char **) &s, 10);
3568
3569 if (*s != '(' || s[1] != '%')
3570 break;
3571
3572 s += 2;
3573 start = s;
3574
3575 while (isalnum (*s))
3576 ++s;
3577
3578 if (*s != ',' || s[1] != '%')
3579 break;
3580
3581 len_base = s - start;
3582 base = alloca (len_base + 1);
3583 strncpy (base, start, len_base);
3584 base[len_base] = '\0';
3585
3586 if (user_reg_map_name_to_regnum (gdbarch,
3587 base, len_base) == -1)
3588 error (_("Invalid register name `%s' "
3589 "on expression `%s'."),
3590 base, p->saved_arg);
3591
3592 s += 2;
3593 start = s;
3594
3595 while (isalnum (*s))
3596 ++s;
3597
3598 len_index = s - start;
3599 index = alloca (len_index + 1);
3600 strncpy (index, start, len_index);
3601 index[len_index] = '\0';
3602
3603 if (user_reg_map_name_to_regnum (gdbarch,
3604 index, len_index) == -1)
3605 error (_("Invalid register name `%s' "
3606 "on expression `%s'."),
3607 index, p->saved_arg);
3608
3609 if (*s != ',' && *s != ')')
3610 break;
3611
3612 if (*s == ',')
3613 {
3614 ++s;
3615 if (*s == '+')
3616 ++s;
3617 else if (*s == '-')
3618 {
3619 ++s;
3620 size_minus = 1;
3621 }
3622
3623 size = strtol (s, (char **) &s, 10);
3624
3625 if (*s != ')')
3626 break;
3627 }
3628
3629 ++s;
3630
3631 if (offset)
3632 {
3633 write_exp_elt_opcode (OP_LONG);
3634 write_exp_elt_type
3635 (builtin_type (gdbarch)->builtin_long);
3636 write_exp_elt_longcst (offset);
3637 write_exp_elt_opcode (OP_LONG);
3638 if (offset_minus)
3639 write_exp_elt_opcode (UNOP_NEG);
3640 }
3641
3642 write_exp_elt_opcode (OP_REGISTER);
3643 base_token.ptr = base;
3644 base_token.length = len_base;
3645 write_exp_string (base_token);
3646 write_exp_elt_opcode (OP_REGISTER);
3647
3648 if (offset)
3649 write_exp_elt_opcode (BINOP_ADD);
3650
3651 write_exp_elt_opcode (OP_REGISTER);
3652 index_token.ptr = index;
3653 index_token.length = len_index;
3654 write_exp_string (index_token);
3655 write_exp_elt_opcode (OP_REGISTER);
3656
3657 if (size)
3658 {
3659 write_exp_elt_opcode (OP_LONG);
3660 write_exp_elt_type
3661 (builtin_type (gdbarch)->builtin_long);
3662 write_exp_elt_longcst (size);
3663 write_exp_elt_opcode (OP_LONG);
3664 if (size_minus)
3665 write_exp_elt_opcode (UNOP_NEG);
3666 write_exp_elt_opcode (BINOP_MUL);
3667 }
3668
3669 write_exp_elt_opcode (BINOP_ADD);
3670
3671 write_exp_elt_opcode (UNOP_CAST);
3672 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3673 write_exp_elt_opcode (UNOP_CAST);
3674
3675 write_exp_elt_opcode (UNOP_IND);
3676
3677 p->arg = s;
3678
3679 return 1;
3680 }
3681 break;
3682 }
3683 }
3684
3685 /* Advancing to the next state. */
3686 ++current_state;
3687 }
3688
3689 return 0;
3690}
3691
8201327c 3692\f
3ce1502b 3693
8201327c 3694/* Generic ELF. */
d2a7c97a 3695
8201327c
MK
3696void
3697i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3698{
c4fc7f1b
MK
3699 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3700 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
3701
3702 /* Registering SystemTap handlers. */
3703 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3704 set_gdbarch_stap_register_prefix (gdbarch, "%");
3705 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3706 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3707 set_gdbarch_stap_is_single_operand (gdbarch,
3708 i386_stap_is_single_operand);
3709 set_gdbarch_stap_parse_special_token (gdbarch,
3710 i386_stap_parse_special_token);
8201327c 3711}
3ce1502b 3712
8201327c 3713/* System V Release 4 (SVR4). */
3ce1502b 3714
8201327c
MK
3715void
3716i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3717{
3718 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3719
8201327c
MK
3720 /* System V Release 4 uses ELF. */
3721 i386_elf_init_abi (info, gdbarch);
3ce1502b 3722
dfe01d39 3723 /* System V Release 4 has shared libraries. */
dfe01d39
MK
3724 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3725
911bc6ee 3726 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 3727 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
3728 tdep->sc_pc_offset = 36 + 14 * 4;
3729 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 3730
8201327c 3731 tdep->jb_pc_offset = 20;
3ce1502b
MK
3732}
3733
8201327c 3734/* DJGPP. */
3ce1502b 3735
3a1e71e3 3736static void
8201327c 3737i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 3738{
8201327c 3739 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3740
911bc6ee
MK
3741 /* DJGPP doesn't have any special frames for signal handlers. */
3742 tdep->sigtramp_p = NULL;
3ce1502b 3743
8201327c 3744 tdep->jb_pc_offset = 36;
15430fc0
EZ
3745
3746 /* DJGPP does not support the SSE registers. */
3a13a53b
L
3747 if (! tdesc_has_registers (info.target_desc))
3748 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
3749
3750 /* Native compiler is GCC, which uses the SVR4 register numbering
3751 even in COFF and STABS. See the comment in i386_gdbarch_init,
3752 before the calls to set_gdbarch_stab_reg_to_regnum and
3753 set_gdbarch_sdb_reg_to_regnum. */
3754 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3755 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
3756
3757 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 3758}
8201327c 3759\f
2acceee2 3760
38c968cf
AC
3761/* i386 register groups. In addition to the normal groups, add "mmx"
3762 and "sse". */
3763
3764static struct reggroup *i386_sse_reggroup;
3765static struct reggroup *i386_mmx_reggroup;
3766
3767static void
3768i386_init_reggroups (void)
3769{
3770 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3771 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3772}
3773
3774static void
3775i386_add_reggroups (struct gdbarch *gdbarch)
3776{
3777 reggroup_add (gdbarch, i386_sse_reggroup);
3778 reggroup_add (gdbarch, i386_mmx_reggroup);
3779 reggroup_add (gdbarch, general_reggroup);
3780 reggroup_add (gdbarch, float_reggroup);
3781 reggroup_add (gdbarch, all_reggroup);
3782 reggroup_add (gdbarch, save_reggroup);
3783 reggroup_add (gdbarch, restore_reggroup);
3784 reggroup_add (gdbarch, vector_reggroup);
3785 reggroup_add (gdbarch, system_reggroup);
3786}
3787
3788int
3789i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3790 struct reggroup *group)
3791{
c131fcee
L
3792 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3793 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3794 ymm_regnum_p, ymmh_regnum_p;
acd5c798 3795
1ba53b71
L
3796 /* Don't include pseudo registers, except for MMX, in any register
3797 groups. */
c131fcee 3798 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
3799 return 0;
3800
c131fcee 3801 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3802 return 0;
3803
c131fcee 3804 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
3805 return 0;
3806
3807 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
3808 if (group == i386_mmx_reggroup)
3809 return mmx_regnum_p;
1ba53b71 3810
c131fcee
L
3811 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3812 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 3813 if (group == i386_sse_reggroup)
c131fcee
L
3814 return xmm_regnum_p || mxcsr_regnum_p;
3815
3816 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
38c968cf 3817 if (group == vector_reggroup)
c131fcee
L
3818 return (mmx_regnum_p
3819 || ymm_regnum_p
3820 || mxcsr_regnum_p
3821 || (xmm_regnum_p
3822 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3823 == I386_XSTATE_SSE_MASK)));
1ba53b71
L
3824
3825 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3826 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
3827 if (group == float_reggroup)
3828 return fp_regnum_p;
1ba53b71 3829
c131fcee
L
3830 /* For "info reg all", don't include upper YMM registers nor XMM
3831 registers when AVX is supported. */
3832 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3833 if (group == all_reggroup
3834 && ((xmm_regnum_p
3835 && (tdep->xcr0 & I386_XSTATE_AVX))
3836 || ymmh_regnum_p))
3837 return 0;
3838
38c968cf 3839 if (group == general_reggroup)
1ba53b71
L
3840 return (!fp_regnum_p
3841 && !mmx_regnum_p
c131fcee
L
3842 && !mxcsr_regnum_p
3843 && !xmm_regnum_p
3844 && !ymm_regnum_p
3845 && !ymmh_regnum_p);
acd5c798 3846
38c968cf
AC
3847 return default_register_reggroup_p (gdbarch, regnum, group);
3848}
38c968cf 3849\f
acd5c798 3850
f837910f
MK
3851/* Get the ARGIth function argument for the current function. */
3852
42c466d7 3853static CORE_ADDR
143985b7
AF
3854i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3855 struct type *type)
3856{
e17a4113
UW
3857 struct gdbarch *gdbarch = get_frame_arch (frame);
3858 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f837910f 3859 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 3860 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
3861}
3862
514f746b
AR
3863static void
3864i386_skip_permanent_breakpoint (struct regcache *regcache)
3865{
3866 CORE_ADDR current_pc = regcache_read_pc (regcache);
3867
3868 /* On i386, breakpoint is exactly 1 byte long, so we just
3869 adjust the PC in the regcache. */
3870 current_pc += 1;
3871 regcache_write_pc (regcache, current_pc);
3872}
3873
3874
7ad10968
HZ
3875#define PREFIX_REPZ 0x01
3876#define PREFIX_REPNZ 0x02
3877#define PREFIX_LOCK 0x04
3878#define PREFIX_DATA 0x08
3879#define PREFIX_ADDR 0x10
473f17b0 3880
7ad10968
HZ
3881/* operand size */
3882enum
3883{
3884 OT_BYTE = 0,
3885 OT_WORD,
3886 OT_LONG,
cf648174 3887 OT_QUAD,
a3c4230a 3888 OT_DQUAD,
7ad10968 3889};
473f17b0 3890
7ad10968
HZ
3891/* i386 arith/logic operations */
3892enum
3893{
3894 OP_ADDL,
3895 OP_ORL,
3896 OP_ADCL,
3897 OP_SBBL,
3898 OP_ANDL,
3899 OP_SUBL,
3900 OP_XORL,
3901 OP_CMPL,
3902};
5716833c 3903
7ad10968
HZ
3904struct i386_record_s
3905{
cf648174 3906 struct gdbarch *gdbarch;
7ad10968 3907 struct regcache *regcache;
df61f520 3908 CORE_ADDR orig_addr;
7ad10968
HZ
3909 CORE_ADDR addr;
3910 int aflag;
3911 int dflag;
3912 int override;
3913 uint8_t modrm;
3914 uint8_t mod, reg, rm;
3915 int ot;
cf648174
HZ
3916 uint8_t rex_x;
3917 uint8_t rex_b;
3918 int rip_offset;
3919 int popl_esp_hack;
3920 const int *regmap;
7ad10968 3921};
5716833c 3922
7ad10968 3923/* Parse "modrm" part in current memory address that irp->addr point to
1777feb0 3924 Return -1 if something wrong. */
5716833c 3925
7ad10968
HZ
3926static int
3927i386_record_modrm (struct i386_record_s *irp)
3928{
cf648174 3929 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 3930
7ad10968
HZ
3931 if (target_read_memory (irp->addr, &irp->modrm, 1))
3932 {
3933 if (record_debug)
3934 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3935 "addr %s len = 1.\n"),
3936 paddress (gdbarch, irp->addr));
7ad10968
HZ
3937 return -1;
3938 }
3939 irp->addr++;
3940 irp->mod = (irp->modrm >> 6) & 3;
3941 irp->reg = (irp->modrm >> 3) & 7;
3942 irp->rm = irp->modrm & 7;
5716833c 3943
7ad10968
HZ
3944 return 0;
3945}
d2a7c97a 3946
7ad10968
HZ
3947/* Get the memory address that current instruction write to and set it to
3948 the argument "addr".
1777feb0 3949 Return -1 if something wrong. */
8201327c 3950
7ad10968 3951static int
cf648174 3952i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 3953{
cf648174 3954 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
3955 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3956 gdb_byte buf[4];
3957 ULONGEST offset64;
21d0e8a4 3958
7ad10968
HZ
3959 *addr = 0;
3960 if (irp->aflag)
3961 {
3962 /* 32 bits */
3963 int havesib = 0;
3964 uint8_t scale = 0;
648d0c8b 3965 uint8_t byte;
7ad10968
HZ
3966 uint8_t index = 0;
3967 uint8_t base = irp->rm;
896fb97d 3968
7ad10968
HZ
3969 if (base == 4)
3970 {
3971 havesib = 1;
648d0c8b 3972 if (target_read_memory (irp->addr, &byte, 1))
7ad10968
HZ
3973 {
3974 if (record_debug)
3975 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3976 "at addr %s len = 1.\n"),
3977 paddress (gdbarch, irp->addr));
7ad10968
HZ
3978 return -1;
3979 }
3980 irp->addr++;
648d0c8b
MS
3981 scale = (byte >> 6) & 3;
3982 index = ((byte >> 3) & 7) | irp->rex_x;
3983 base = (byte & 7);
7ad10968 3984 }
cf648174 3985 base |= irp->rex_b;
21d0e8a4 3986
7ad10968
HZ
3987 switch (irp->mod)
3988 {
3989 case 0:
3990 if ((base & 7) == 5)
3991 {
3992 base = 0xff;
60a1502a 3993 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
3994 {
3995 if (record_debug)
3996 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3997 "memory at addr %s len = 4.\n"),
3998 paddress (gdbarch, irp->addr));
7ad10968
HZ
3999 return -1;
4000 }
4001 irp->addr += 4;
60a1502a 4002 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4003 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4004 *addr += irp->addr + irp->rip_offset;
7ad10968 4005 }
7ad10968
HZ
4006 break;
4007 case 1:
60a1502a 4008 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
4009 {
4010 if (record_debug)
4011 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
4012 "at addr %s len = 1.\n"),
4013 paddress (gdbarch, irp->addr));
7ad10968
HZ
4014 return -1;
4015 }
4016 irp->addr++;
60a1502a 4017 *addr = (int8_t) buf[0];
7ad10968
HZ
4018 break;
4019 case 2:
60a1502a 4020 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
4021 {
4022 if (record_debug)
4023 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
4024 "at addr %s len = 4.\n"),
4025 paddress (gdbarch, irp->addr));
7ad10968
HZ
4026 return -1;
4027 }
60a1502a 4028 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4029 irp->addr += 4;
4030 break;
4031 }
356a6b3e 4032
60a1502a 4033 offset64 = 0;
7ad10968 4034 if (base != 0xff)
cf648174
HZ
4035 {
4036 if (base == 4 && irp->popl_esp_hack)
4037 *addr += irp->popl_esp_hack;
4038 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4039 &offset64);
7ad10968 4040 }
cf648174
HZ
4041 if (irp->aflag == 2)
4042 {
60a1502a 4043 *addr += offset64;
cf648174
HZ
4044 }
4045 else
60a1502a 4046 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4047
7ad10968
HZ
4048 if (havesib && (index != 4 || scale != 0))
4049 {
cf648174 4050 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4051 &offset64);
cf648174 4052 if (irp->aflag == 2)
60a1502a 4053 *addr += offset64 << scale;
cf648174 4054 else
60a1502a 4055 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968
HZ
4056 }
4057 }
4058 else
4059 {
4060 /* 16 bits */
4061 switch (irp->mod)
4062 {
4063 case 0:
4064 if (irp->rm == 6)
4065 {
60a1502a 4066 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
4067 {
4068 if (record_debug)
4069 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
4070 "memory at addr %s len = 2.\n"),
4071 paddress (gdbarch, irp->addr));
7ad10968
HZ
4072 return -1;
4073 }
4074 irp->addr += 2;
60a1502a 4075 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4076 irp->rm = 0;
4077 goto no_rm;
4078 }
7ad10968
HZ
4079 break;
4080 case 1:
60a1502a 4081 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
4082 {
4083 if (record_debug)
4084 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
4085 "at addr %s len = 1.\n"),
4086 paddress (gdbarch, irp->addr));
7ad10968
HZ
4087 return -1;
4088 }
4089 irp->addr++;
60a1502a 4090 *addr = (int8_t) buf[0];
7ad10968
HZ
4091 break;
4092 case 2:
60a1502a 4093 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
4094 {
4095 if (record_debug)
4096 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
4097 "at addr %s len = 2.\n"),
4098 paddress (gdbarch, irp->addr));
7ad10968
HZ
4099 return -1;
4100 }
4101 irp->addr += 2;
60a1502a 4102 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4103 break;
4104 }
c4fc7f1b 4105
7ad10968
HZ
4106 switch (irp->rm)
4107 {
4108 case 0:
cf648174
HZ
4109 regcache_raw_read_unsigned (irp->regcache,
4110 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4111 &offset64);
4112 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4113 regcache_raw_read_unsigned (irp->regcache,
4114 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4115 &offset64);
4116 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4117 break;
4118 case 1:
cf648174
HZ
4119 regcache_raw_read_unsigned (irp->regcache,
4120 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4121 &offset64);
4122 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4123 regcache_raw_read_unsigned (irp->regcache,
4124 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4125 &offset64);
4126 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4127 break;
4128 case 2:
cf648174
HZ
4129 regcache_raw_read_unsigned (irp->regcache,
4130 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4131 &offset64);
4132 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4133 regcache_raw_read_unsigned (irp->regcache,
4134 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4135 &offset64);
4136 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4137 break;
4138 case 3:
cf648174
HZ
4139 regcache_raw_read_unsigned (irp->regcache,
4140 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4141 &offset64);
4142 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4143 regcache_raw_read_unsigned (irp->regcache,
4144 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4145 &offset64);
4146 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4147 break;
4148 case 4:
cf648174
HZ
4149 regcache_raw_read_unsigned (irp->regcache,
4150 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4151 &offset64);
4152 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4153 break;
4154 case 5:
cf648174
HZ
4155 regcache_raw_read_unsigned (irp->regcache,
4156 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4157 &offset64);
4158 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4159 break;
4160 case 6:
cf648174
HZ
4161 regcache_raw_read_unsigned (irp->regcache,
4162 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4163 &offset64);
4164 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4165 break;
4166 case 7:
cf648174
HZ
4167 regcache_raw_read_unsigned (irp->regcache,
4168 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4169 &offset64);
4170 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4171 break;
4172 }
4173 *addr &= 0xffff;
4174 }
c4fc7f1b 4175
01fe1b41 4176 no_rm:
7ad10968
HZ
4177 return 0;
4178}
c4fc7f1b 4179
7ad10968
HZ
4180/* Record the value of the memory that willbe changed in current instruction
4181 to "record_arch_list".
1777feb0 4182 Return -1 if something wrong. */
356a6b3e 4183
7ad10968
HZ
4184static int
4185i386_record_lea_modrm (struct i386_record_s *irp)
4186{
cf648174
HZ
4187 struct gdbarch *gdbarch = irp->gdbarch;
4188 uint64_t addr;
356a6b3e 4189
d7877f7e 4190 if (irp->override >= 0)
7ad10968 4191 {
bb08c432
HZ
4192 if (record_memory_query)
4193 {
4194 int q;
4195
4196 target_terminal_ours ();
4197 q = yquery (_("\
4198Process record ignores the memory change of instruction at address %s\n\
4199because it can't get the value of the segment register.\n\
4200Do you want to stop the program?"),
4201 paddress (gdbarch, irp->orig_addr));
4202 target_terminal_inferior ();
4203 if (q)
4204 return -1;
4205 }
4206
7ad10968
HZ
4207 return 0;
4208 }
61113f8b 4209
7ad10968
HZ
4210 if (i386_record_lea_modrm_addr (irp, &addr))
4211 return -1;
96297dab 4212
7ad10968
HZ
4213 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4214 return -1;
a62cc96e 4215
7ad10968
HZ
4216 return 0;
4217}
b6197528 4218
cf648174 4219/* Record the push operation to "record_arch_list".
1777feb0 4220 Return -1 if something wrong. */
cf648174
HZ
4221
4222static int
4223i386_record_push (struct i386_record_s *irp, int size)
4224{
648d0c8b 4225 ULONGEST addr;
cf648174
HZ
4226
4227 if (record_arch_list_add_reg (irp->regcache,
4228 irp->regmap[X86_RECORD_RESP_REGNUM]))
4229 return -1;
4230 regcache_raw_read_unsigned (irp->regcache,
4231 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b
MS
4232 &addr);
4233 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4234 return -1;
4235
4236 return 0;
4237}
4238
0289bdd7
MS
4239
4240/* Defines contents to record. */
4241#define I386_SAVE_FPU_REGS 0xfffd
4242#define I386_SAVE_FPU_ENV 0xfffe
4243#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4244
1777feb0
MS
4245/* Record the value of floating point registers which will be changed
4246 by the current instruction to "record_arch_list". Return -1 if
4247 something is wrong. */
0289bdd7
MS
4248
4249static int i386_record_floats (struct gdbarch *gdbarch,
4250 struct i386_record_s *ir,
4251 uint32_t iregnum)
4252{
4253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4254 int i;
4255
4256 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4257 happen. Currently we store st0-st7 registers, but we need not store all
4258 registers all the time, in future we use ftag register and record only
4259 those who are not marked as an empty. */
4260
4261 if (I386_SAVE_FPU_REGS == iregnum)
4262 {
4263 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4264 {
4265 if (record_arch_list_add_reg (ir->regcache, i))
4266 return -1;
4267 }
4268 }
4269 else if (I386_SAVE_FPU_ENV == iregnum)
4270 {
4271 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4272 {
4273 if (record_arch_list_add_reg (ir->regcache, i))
4274 return -1;
4275 }
4276 }
4277 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4278 {
4279 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4280 {
4281 if (record_arch_list_add_reg (ir->regcache, i))
4282 return -1;
4283 }
4284 }
4285 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4286 (iregnum <= I387_FOP_REGNUM (tdep)))
4287 {
4288 if (record_arch_list_add_reg (ir->regcache,iregnum))
4289 return -1;
4290 }
4291 else
4292 {
4293 /* Parameter error. */
4294 return -1;
4295 }
4296 if(I386_SAVE_FPU_ENV != iregnum)
4297 {
4298 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4299 {
4300 if (record_arch_list_add_reg (ir->regcache, i))
4301 return -1;
4302 }
4303 }
4304 return 0;
4305}
4306
7ad10968
HZ
4307/* Parse the current instruction and record the values of the registers and
4308 memory that will be changed in current instruction to "record_arch_list".
1777feb0 4309 Return -1 if something wrong. */
8201327c 4310
cf648174
HZ
4311#define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4312 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4313
a6b808b4 4314int
7ad10968 4315i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4316 CORE_ADDR input_addr)
7ad10968 4317{
60a1502a 4318 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4319 int prefixes = 0;
580879fc 4320 int regnum = 0;
425b824a
MS
4321 uint32_t opcode;
4322 uint8_t opcode8;
648d0c8b 4323 ULONGEST addr;
60a1502a 4324 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4325 struct i386_record_s ir;
0289bdd7 4326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4327 int rex = 0;
4328 uint8_t rex_w = -1;
4329 uint8_t rex_r = 0;
7ad10968 4330
8408d274 4331 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4332 ir.regcache = regcache;
648d0c8b
MS
4333 ir.addr = input_addr;
4334 ir.orig_addr = input_addr;
7ad10968
HZ
4335 ir.aflag = 1;
4336 ir.dflag = 1;
cf648174
HZ
4337 ir.override = -1;
4338 ir.popl_esp_hack = 0;
a3c4230a 4339 ir.regmap = tdep->record_regmap;
cf648174 4340 ir.gdbarch = gdbarch;
7ad10968
HZ
4341
4342 if (record_debug > 1)
4343 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4344 "addr = %s\n",
4345 paddress (gdbarch, ir.addr));
7ad10968
HZ
4346
4347 /* prefixes */
4348 while (1)
4349 {
425b824a 4350 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
4351 {
4352 if (record_debug)
4353 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
4354 "addr %s len = 1.\n"),
4355 paddress (gdbarch, ir.addr));
7ad10968
HZ
4356 return -1;
4357 }
4358 ir.addr++;
425b824a 4359 switch (opcode8) /* Instruction prefixes */
7ad10968 4360 {
01fe1b41 4361 case REPE_PREFIX_OPCODE:
7ad10968
HZ
4362 prefixes |= PREFIX_REPZ;
4363 break;
01fe1b41 4364 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
4365 prefixes |= PREFIX_REPNZ;
4366 break;
01fe1b41 4367 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
4368 prefixes |= PREFIX_LOCK;
4369 break;
01fe1b41 4370 case CS_PREFIX_OPCODE:
cf648174 4371 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 4372 break;
01fe1b41 4373 case SS_PREFIX_OPCODE:
cf648174 4374 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 4375 break;
01fe1b41 4376 case DS_PREFIX_OPCODE:
cf648174 4377 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 4378 break;
01fe1b41 4379 case ES_PREFIX_OPCODE:
cf648174 4380 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 4381 break;
01fe1b41 4382 case FS_PREFIX_OPCODE:
cf648174 4383 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 4384 break;
01fe1b41 4385 case GS_PREFIX_OPCODE:
cf648174 4386 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 4387 break;
01fe1b41 4388 case DATA_PREFIX_OPCODE:
7ad10968
HZ
4389 prefixes |= PREFIX_DATA;
4390 break;
01fe1b41 4391 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
4392 prefixes |= PREFIX_ADDR;
4393 break;
d691bec7
MS
4394 case 0x40: /* i386 inc %eax */
4395 case 0x41: /* i386 inc %ecx */
4396 case 0x42: /* i386 inc %edx */
4397 case 0x43: /* i386 inc %ebx */
4398 case 0x44: /* i386 inc %esp */
4399 case 0x45: /* i386 inc %ebp */
4400 case 0x46: /* i386 inc %esi */
4401 case 0x47: /* i386 inc %edi */
4402 case 0x48: /* i386 dec %eax */
4403 case 0x49: /* i386 dec %ecx */
4404 case 0x4a: /* i386 dec %edx */
4405 case 0x4b: /* i386 dec %ebx */
4406 case 0x4c: /* i386 dec %esp */
4407 case 0x4d: /* i386 dec %ebp */
4408 case 0x4e: /* i386 dec %esi */
4409 case 0x4f: /* i386 dec %edi */
4410 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
4411 {
4412 /* REX */
4413 rex = 1;
425b824a
MS
4414 rex_w = (opcode8 >> 3) & 1;
4415 rex_r = (opcode8 & 0x4) << 1;
4416 ir.rex_x = (opcode8 & 0x2) << 2;
4417 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 4418 }
d691bec7
MS
4419 else /* 32 bit target */
4420 goto out_prefixes;
cf648174 4421 break;
7ad10968
HZ
4422 default:
4423 goto out_prefixes;
4424 break;
4425 }
4426 }
01fe1b41 4427 out_prefixes:
cf648174
HZ
4428 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4429 {
4430 ir.dflag = 2;
4431 }
4432 else
4433 {
4434 if (prefixes & PREFIX_DATA)
4435 ir.dflag ^= 1;
4436 }
7ad10968
HZ
4437 if (prefixes & PREFIX_ADDR)
4438 ir.aflag ^= 1;
cf648174
HZ
4439 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4440 ir.aflag = 2;
7ad10968 4441
1777feb0 4442 /* Now check op code. */
425b824a 4443 opcode = (uint32_t) opcode8;
01fe1b41 4444 reswitch:
7ad10968
HZ
4445 switch (opcode)
4446 {
4447 case 0x0f:
425b824a 4448 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
4449 {
4450 if (record_debug)
4451 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
4452 "addr %s len = 1.\n"),
4453 paddress (gdbarch, ir.addr));
7ad10968
HZ
4454 return -1;
4455 }
4456 ir.addr++;
a3c4230a 4457 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
4458 goto reswitch;
4459 break;
93924b6b 4460
a38bba38 4461 case 0x00: /* arith & logic */
7ad10968
HZ
4462 case 0x01:
4463 case 0x02:
4464 case 0x03:
4465 case 0x04:
4466 case 0x05:
4467 case 0x08:
4468 case 0x09:
4469 case 0x0a:
4470 case 0x0b:
4471 case 0x0c:
4472 case 0x0d:
4473 case 0x10:
4474 case 0x11:
4475 case 0x12:
4476 case 0x13:
4477 case 0x14:
4478 case 0x15:
4479 case 0x18:
4480 case 0x19:
4481 case 0x1a:
4482 case 0x1b:
4483 case 0x1c:
4484 case 0x1d:
4485 case 0x20:
4486 case 0x21:
4487 case 0x22:
4488 case 0x23:
4489 case 0x24:
4490 case 0x25:
4491 case 0x28:
4492 case 0x29:
4493 case 0x2a:
4494 case 0x2b:
4495 case 0x2c:
4496 case 0x2d:
4497 case 0x30:
4498 case 0x31:
4499 case 0x32:
4500 case 0x33:
4501 case 0x34:
4502 case 0x35:
4503 case 0x38:
4504 case 0x39:
4505 case 0x3a:
4506 case 0x3b:
4507 case 0x3c:
4508 case 0x3d:
4509 if (((opcode >> 3) & 7) != OP_CMPL)
4510 {
4511 if ((opcode & 1) == 0)
4512 ir.ot = OT_BYTE;
4513 else
4514 ir.ot = ir.dflag + OT_WORD;
93924b6b 4515
7ad10968
HZ
4516 switch ((opcode >> 1) & 3)
4517 {
a38bba38 4518 case 0: /* OP Ev, Gv */
7ad10968
HZ
4519 if (i386_record_modrm (&ir))
4520 return -1;
4521 if (ir.mod != 3)
4522 {
4523 if (i386_record_lea_modrm (&ir))
4524 return -1;
4525 }
4526 else
4527 {
cf648174
HZ
4528 ir.rm |= ir.rex_b;
4529 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4530 ir.rm &= 0x3;
cf648174 4531 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4532 }
4533 break;
a38bba38 4534 case 1: /* OP Gv, Ev */
7ad10968
HZ
4535 if (i386_record_modrm (&ir))
4536 return -1;
cf648174
HZ
4537 ir.reg |= rex_r;
4538 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4539 ir.reg &= 0x3;
cf648174 4540 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4541 break;
a38bba38 4542 case 2: /* OP A, Iv */
cf648174 4543 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4544 break;
4545 }
4546 }
cf648174 4547 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4548 break;
42fdc8df 4549
a38bba38 4550 case 0x80: /* GRP1 */
7ad10968
HZ
4551 case 0x81:
4552 case 0x82:
4553 case 0x83:
4554 if (i386_record_modrm (&ir))
4555 return -1;
8201327c 4556
7ad10968
HZ
4557 if (ir.reg != OP_CMPL)
4558 {
4559 if ((opcode & 1) == 0)
4560 ir.ot = OT_BYTE;
4561 else
4562 ir.ot = ir.dflag + OT_WORD;
28fc6740 4563
7ad10968
HZ
4564 if (ir.mod != 3)
4565 {
cf648174
HZ
4566 if (opcode == 0x83)
4567 ir.rip_offset = 1;
4568 else
4569 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4570 if (i386_record_lea_modrm (&ir))
4571 return -1;
4572 }
4573 else
cf648174 4574 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 4575 }
cf648174 4576 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4577 break;
5e3397bb 4578
a38bba38 4579 case 0x40: /* inc */
7ad10968
HZ
4580 case 0x41:
4581 case 0x42:
4582 case 0x43:
4583 case 0x44:
4584 case 0x45:
4585 case 0x46:
4586 case 0x47:
a38bba38
MS
4587
4588 case 0x48: /* dec */
7ad10968
HZ
4589 case 0x49:
4590 case 0x4a:
4591 case 0x4b:
4592 case 0x4c:
4593 case 0x4d:
4594 case 0x4e:
4595 case 0x4f:
a38bba38 4596
cf648174
HZ
4597 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4598 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4599 break;
acd5c798 4600
a38bba38 4601 case 0xf6: /* GRP3 */
7ad10968
HZ
4602 case 0xf7:
4603 if ((opcode & 1) == 0)
4604 ir.ot = OT_BYTE;
4605 else
4606 ir.ot = ir.dflag + OT_WORD;
4607 if (i386_record_modrm (&ir))
4608 return -1;
acd5c798 4609
cf648174
HZ
4610 if (ir.mod != 3 && ir.reg == 0)
4611 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4612
7ad10968
HZ
4613 switch (ir.reg)
4614 {
a38bba38 4615 case 0: /* test */
cf648174 4616 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4617 break;
a38bba38
MS
4618 case 2: /* not */
4619 case 3: /* neg */
7ad10968
HZ
4620 if (ir.mod != 3)
4621 {
4622 if (i386_record_lea_modrm (&ir))
4623 return -1;
4624 }
4625 else
4626 {
cf648174
HZ
4627 ir.rm |= ir.rex_b;
4628 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4629 ir.rm &= 0x3;
cf648174 4630 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4631 }
a38bba38 4632 if (ir.reg == 3) /* neg */
cf648174 4633 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4634 break;
a38bba38
MS
4635 case 4: /* mul */
4636 case 5: /* imul */
4637 case 6: /* div */
4638 case 7: /* idiv */
cf648174 4639 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 4640 if (ir.ot != OT_BYTE)
cf648174
HZ
4641 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4642 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4643 break;
4644 default:
4645 ir.addr -= 2;
4646 opcode = opcode << 8 | ir.modrm;
4647 goto no_support;
4648 break;
4649 }
4650 break;
4651
a38bba38
MS
4652 case 0xfe: /* GRP4 */
4653 case 0xff: /* GRP5 */
7ad10968
HZ
4654 if (i386_record_modrm (&ir))
4655 return -1;
4656 if (ir.reg >= 2 && opcode == 0xfe)
4657 {
4658 ir.addr -= 2;
4659 opcode = opcode << 8 | ir.modrm;
4660 goto no_support;
4661 }
7ad10968
HZ
4662 switch (ir.reg)
4663 {
a38bba38
MS
4664 case 0: /* inc */
4665 case 1: /* dec */
cf648174
HZ
4666 if ((opcode & 1) == 0)
4667 ir.ot = OT_BYTE;
4668 else
4669 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4670 if (ir.mod != 3)
4671 {
4672 if (i386_record_lea_modrm (&ir))
4673 return -1;
4674 }
4675 else
4676 {
cf648174
HZ
4677 ir.rm |= ir.rex_b;
4678 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4679 ir.rm &= 0x3;
cf648174 4680 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4681 }
cf648174 4682 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4683 break;
a38bba38 4684 case 2: /* call */
cf648174
HZ
4685 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4686 ir.dflag = 2;
4687 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4688 return -1;
cf648174 4689 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4690 break;
a38bba38 4691 case 3: /* lcall */
cf648174
HZ
4692 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4693 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4694 return -1;
cf648174 4695 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4696 break;
a38bba38
MS
4697 case 4: /* jmp */
4698 case 5: /* ljmp */
cf648174
HZ
4699 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4700 break;
a38bba38 4701 case 6: /* push */
cf648174
HZ
4702 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4703 ir.dflag = 2;
4704 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4705 return -1;
7ad10968
HZ
4706 break;
4707 default:
4708 ir.addr -= 2;
4709 opcode = opcode << 8 | ir.modrm;
4710 goto no_support;
4711 break;
4712 }
4713 break;
4714
a38bba38 4715 case 0x84: /* test */
7ad10968
HZ
4716 case 0x85:
4717 case 0xa8:
4718 case 0xa9:
cf648174 4719 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4720 break;
4721
a38bba38 4722 case 0x98: /* CWDE/CBW */
cf648174 4723 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4724 break;
4725
a38bba38 4726 case 0x99: /* CDQ/CWD */
cf648174
HZ
4727 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4728 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4729 break;
4730
a38bba38 4731 case 0x0faf: /* imul */
7ad10968
HZ
4732 case 0x69:
4733 case 0x6b:
4734 ir.ot = ir.dflag + OT_WORD;
4735 if (i386_record_modrm (&ir))
4736 return -1;
cf648174
HZ
4737 if (opcode == 0x69)
4738 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4739 else if (opcode == 0x6b)
4740 ir.rip_offset = 1;
4741 ir.reg |= rex_r;
4742 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4743 ir.reg &= 0x3;
cf648174
HZ
4744 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4745 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4746 break;
4747
a38bba38 4748 case 0x0fc0: /* xadd */
7ad10968
HZ
4749 case 0x0fc1:
4750 if ((opcode & 1) == 0)
4751 ir.ot = OT_BYTE;
4752 else
4753 ir.ot = ir.dflag + OT_WORD;
4754 if (i386_record_modrm (&ir))
4755 return -1;
cf648174 4756 ir.reg |= rex_r;
7ad10968
HZ
4757 if (ir.mod == 3)
4758 {
cf648174 4759 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4760 ir.reg &= 0x3;
cf648174
HZ
4761 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4762 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4763 ir.rm &= 0x3;
cf648174 4764 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4765 }
4766 else
4767 {
4768 if (i386_record_lea_modrm (&ir))
4769 return -1;
cf648174 4770 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4771 ir.reg &= 0x3;
cf648174 4772 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4773 }
cf648174 4774 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4775 break;
4776
a38bba38 4777 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
4778 case 0x0fb1:
4779 if ((opcode & 1) == 0)
4780 ir.ot = OT_BYTE;
4781 else
4782 ir.ot = ir.dflag + OT_WORD;
4783 if (i386_record_modrm (&ir))
4784 return -1;
4785 if (ir.mod == 3)
4786 {
cf648174
HZ
4787 ir.reg |= rex_r;
4788 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4789 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4790 ir.reg &= 0x3;
cf648174 4791 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4792 }
4793 else
4794 {
cf648174 4795 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4796 if (i386_record_lea_modrm (&ir))
4797 return -1;
4798 }
cf648174 4799 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4800 break;
4801
a38bba38 4802 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
4803 if (i386_record_modrm (&ir))
4804 return -1;
4805 if (ir.mod == 3)
4806 {
4807 ir.addr -= 2;
4808 opcode = opcode << 8 | ir.modrm;
4809 goto no_support;
4810 }
cf648174
HZ
4811 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4812 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4813 if (i386_record_lea_modrm (&ir))
4814 return -1;
cf648174 4815 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4816 break;
4817
a38bba38 4818 case 0x50: /* push */
7ad10968
HZ
4819 case 0x51:
4820 case 0x52:
4821 case 0x53:
4822 case 0x54:
4823 case 0x55:
4824 case 0x56:
4825 case 0x57:
4826 case 0x68:
4827 case 0x6a:
cf648174
HZ
4828 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4829 ir.dflag = 2;
4830 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4831 return -1;
4832 break;
4833
a38bba38
MS
4834 case 0x06: /* push es */
4835 case 0x0e: /* push cs */
4836 case 0x16: /* push ss */
4837 case 0x1e: /* push ds */
cf648174
HZ
4838 if (ir.regmap[X86_RECORD_R8_REGNUM])
4839 {
4840 ir.addr -= 1;
4841 goto no_support;
4842 }
4843 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4844 return -1;
4845 break;
4846
a38bba38
MS
4847 case 0x0fa0: /* push fs */
4848 case 0x0fa8: /* push gs */
cf648174
HZ
4849 if (ir.regmap[X86_RECORD_R8_REGNUM])
4850 {
4851 ir.addr -= 2;
4852 goto no_support;
4853 }
4854 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4855 return -1;
cf648174
HZ
4856 break;
4857
a38bba38 4858 case 0x60: /* pusha */
cf648174
HZ
4859 if (ir.regmap[X86_RECORD_R8_REGNUM])
4860 {
4861 ir.addr -= 1;
4862 goto no_support;
4863 }
4864 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
4865 return -1;
4866 break;
4867
a38bba38 4868 case 0x58: /* pop */
7ad10968
HZ
4869 case 0x59:
4870 case 0x5a:
4871 case 0x5b:
4872 case 0x5c:
4873 case 0x5d:
4874 case 0x5e:
4875 case 0x5f:
cf648174
HZ
4876 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4877 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4878 break;
4879
a38bba38 4880 case 0x61: /* popa */
cf648174
HZ
4881 if (ir.regmap[X86_RECORD_R8_REGNUM])
4882 {
4883 ir.addr -= 1;
4884 goto no_support;
7ad10968 4885 }
425b824a
MS
4886 for (regnum = X86_RECORD_REAX_REGNUM;
4887 regnum <= X86_RECORD_REDI_REGNUM;
4888 regnum++)
4889 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
4890 break;
4891
a38bba38 4892 case 0x8f: /* pop */
cf648174
HZ
4893 if (ir.regmap[X86_RECORD_R8_REGNUM])
4894 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4895 else
4896 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4897 if (i386_record_modrm (&ir))
4898 return -1;
4899 if (ir.mod == 3)
cf648174 4900 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
4901 else
4902 {
cf648174 4903 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
4904 if (i386_record_lea_modrm (&ir))
4905 return -1;
4906 }
cf648174 4907 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
4908 break;
4909
a38bba38 4910 case 0xc8: /* enter */
cf648174
HZ
4911 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4912 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4913 ir.dflag = 2;
4914 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
4915 return -1;
4916 break;
4917
a38bba38 4918 case 0xc9: /* leave */
cf648174
HZ
4919 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4920 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
4921 break;
4922
a38bba38 4923 case 0x07: /* pop es */
cf648174
HZ
4924 if (ir.regmap[X86_RECORD_R8_REGNUM])
4925 {
4926 ir.addr -= 1;
4927 goto no_support;
4928 }
4929 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4930 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4931 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4932 break;
4933
a38bba38 4934 case 0x17: /* pop ss */
cf648174
HZ
4935 if (ir.regmap[X86_RECORD_R8_REGNUM])
4936 {
4937 ir.addr -= 1;
4938 goto no_support;
4939 }
4940 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4941 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4942 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4943 break;
4944
a38bba38 4945 case 0x1f: /* pop ds */
cf648174
HZ
4946 if (ir.regmap[X86_RECORD_R8_REGNUM])
4947 {
4948 ir.addr -= 1;
4949 goto no_support;
4950 }
4951 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4952 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4953 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4954 break;
4955
a38bba38 4956 case 0x0fa1: /* pop fs */
cf648174
HZ
4957 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4958 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4959 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4960 break;
4961
a38bba38 4962 case 0x0fa9: /* pop gs */
cf648174
HZ
4963 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4964 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4965 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4966 break;
4967
a38bba38 4968 case 0x88: /* mov */
7ad10968
HZ
4969 case 0x89:
4970 case 0xc6:
4971 case 0xc7:
4972 if ((opcode & 1) == 0)
4973 ir.ot = OT_BYTE;
4974 else
4975 ir.ot = ir.dflag + OT_WORD;
4976
4977 if (i386_record_modrm (&ir))
4978 return -1;
4979
4980 if (ir.mod != 3)
4981 {
cf648174
HZ
4982 if (opcode == 0xc6 || opcode == 0xc7)
4983 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4984 if (i386_record_lea_modrm (&ir))
4985 return -1;
4986 }
4987 else
4988 {
cf648174
HZ
4989 if (opcode == 0xc6 || opcode == 0xc7)
4990 ir.rm |= ir.rex_b;
4991 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4992 ir.rm &= 0x3;
cf648174 4993 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4994 }
7ad10968 4995 break;
cf648174 4996
a38bba38 4997 case 0x8a: /* mov */
7ad10968
HZ
4998 case 0x8b:
4999 if ((opcode & 1) == 0)
5000 ir.ot = OT_BYTE;
5001 else
5002 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5003 if (i386_record_modrm (&ir))
5004 return -1;
cf648174
HZ
5005 ir.reg |= rex_r;
5006 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5007 ir.reg &= 0x3;
cf648174
HZ
5008 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5009 break;
7ad10968 5010
a38bba38 5011 case 0x8c: /* mov seg */
cf648174 5012 if (i386_record_modrm (&ir))
7ad10968 5013 return -1;
cf648174
HZ
5014 if (ir.reg > 5)
5015 {
5016 ir.addr -= 2;
5017 opcode = opcode << 8 | ir.modrm;
5018 goto no_support;
5019 }
5020
5021 if (ir.mod == 3)
5022 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5023 else
5024 {
5025 ir.ot = OT_WORD;
5026 if (i386_record_lea_modrm (&ir))
5027 return -1;
5028 }
7ad10968
HZ
5029 break;
5030
a38bba38 5031 case 0x8e: /* mov seg */
7ad10968
HZ
5032 if (i386_record_modrm (&ir))
5033 return -1;
7ad10968
HZ
5034 switch (ir.reg)
5035 {
5036 case 0:
425b824a 5037 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5038 break;
5039 case 2:
425b824a 5040 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5041 break;
5042 case 3:
425b824a 5043 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5044 break;
5045 case 4:
425b824a 5046 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5047 break;
5048 case 5:
425b824a 5049 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5050 break;
5051 default:
5052 ir.addr -= 2;
5053 opcode = opcode << 8 | ir.modrm;
5054 goto no_support;
5055 break;
5056 }
425b824a 5057 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174 5058 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5059 break;
5060
a38bba38
MS
5061 case 0x0fb6: /* movzbS */
5062 case 0x0fb7: /* movzwS */
5063 case 0x0fbe: /* movsbS */
5064 case 0x0fbf: /* movswS */
7ad10968
HZ
5065 if (i386_record_modrm (&ir))
5066 return -1;
cf648174 5067 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5068 break;
5069
a38bba38 5070 case 0x8d: /* lea */
7ad10968
HZ
5071 if (i386_record_modrm (&ir))
5072 return -1;
5073 if (ir.mod == 3)
5074 {
5075 ir.addr -= 2;
5076 opcode = opcode << 8 | ir.modrm;
5077 goto no_support;
5078 }
7ad10968 5079 ir.ot = ir.dflag;
cf648174
HZ
5080 ir.reg |= rex_r;
5081 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5082 ir.reg &= 0x3;
cf648174 5083 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5084 break;
5085
a38bba38 5086 case 0xa0: /* mov EAX */
7ad10968 5087 case 0xa1:
a38bba38
MS
5088
5089 case 0xd7: /* xlat */
cf648174 5090 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5091 break;
5092
a38bba38 5093 case 0xa2: /* mov EAX */
7ad10968 5094 case 0xa3:
d7877f7e 5095 if (ir.override >= 0)
cf648174 5096 {
bb08c432
HZ
5097 if (record_memory_query)
5098 {
5099 int q;
5100
5101 target_terminal_ours ();
5102 q = yquery (_("\
5103Process record ignores the memory change of instruction at address %s\n\
5104because it can't get the value of the segment register.\n\
5105Do you want to stop the program?"),
5106 paddress (gdbarch, ir.orig_addr));
5107 target_terminal_inferior ();
5108 if (q)
5109 return -1;
5110 }
cf648174
HZ
5111 }
5112 else
5113 {
5114 if ((opcode & 1) == 0)
5115 ir.ot = OT_BYTE;
5116 else
5117 ir.ot = ir.dflag + OT_WORD;
5118 if (ir.aflag == 2)
5119 {
60a1502a 5120 if (target_read_memory (ir.addr, buf, 8))
cf648174
HZ
5121 {
5122 if (record_debug)
5123 printf_unfiltered (_("Process record: error reading "
5124 "memory at addr 0x%s len = 8.\n"),
5125 paddress (gdbarch, ir.addr));
5126 return -1;
5127 }
5128 ir.addr += 8;
60a1502a 5129 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5130 }
5131 else if (ir.aflag)
5132 {
60a1502a 5133 if (target_read_memory (ir.addr, buf, 4))
cf648174
HZ
5134 {
5135 if (record_debug)
5136 printf_unfiltered (_("Process record: error reading "
5137 "memory at addr 0x%s len = 4.\n"),
5138 paddress (gdbarch, ir.addr));
5139 return -1;
5140 }
5141 ir.addr += 4;
60a1502a 5142 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5143 }
5144 else
5145 {
60a1502a 5146 if (target_read_memory (ir.addr, buf, 2))
cf648174
HZ
5147 {
5148 if (record_debug)
5149 printf_unfiltered (_("Process record: error reading "
5150 "memory at addr 0x%s len = 2.\n"),
5151 paddress (gdbarch, ir.addr));
5152 return -1;
5153 }
5154 ir.addr += 2;
60a1502a 5155 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5156 }
648d0c8b 5157 if (record_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5158 return -1;
5159 }
7ad10968
HZ
5160 break;
5161
a38bba38 5162 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5163 case 0xb1:
5164 case 0xb2:
5165 case 0xb3:
5166 case 0xb4:
5167 case 0xb5:
5168 case 0xb6:
5169 case 0xb7:
cf648174
HZ
5170 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5171 ? ((opcode & 0x7) | ir.rex_b)
5172 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5173 break;
5174
a38bba38 5175 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5176 case 0xb9:
5177 case 0xba:
5178 case 0xbb:
5179 case 0xbc:
5180 case 0xbd:
5181 case 0xbe:
5182 case 0xbf:
cf648174 5183 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5184 break;
5185
a38bba38 5186 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5187 case 0x92:
5188 case 0x93:
5189 case 0x94:
5190 case 0x95:
5191 case 0x96:
5192 case 0x97:
cf648174
HZ
5193 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5194 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5195 break;
5196
a38bba38 5197 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5198 case 0x87:
5199 if ((opcode & 1) == 0)
5200 ir.ot = OT_BYTE;
5201 else
5202 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5203 if (i386_record_modrm (&ir))
5204 return -1;
7ad10968
HZ
5205 if (ir.mod == 3)
5206 {
86839d38 5207 ir.rm |= ir.rex_b;
cf648174
HZ
5208 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5209 ir.rm &= 0x3;
5210 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5211 }
5212 else
5213 {
5214 if (i386_record_lea_modrm (&ir))
5215 return -1;
5216 }
cf648174
HZ
5217 ir.reg |= rex_r;
5218 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5219 ir.reg &= 0x3;
cf648174 5220 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5221 break;
5222
a38bba38
MS
5223 case 0xc4: /* les Gv */
5224 case 0xc5: /* lds Gv */
cf648174
HZ
5225 if (ir.regmap[X86_RECORD_R8_REGNUM])
5226 {
5227 ir.addr -= 1;
5228 goto no_support;
5229 }
d3f323f3 5230 /* FALLTHROUGH */
a38bba38
MS
5231 case 0x0fb2: /* lss Gv */
5232 case 0x0fb4: /* lfs Gv */
5233 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5234 if (i386_record_modrm (&ir))
5235 return -1;
5236 if (ir.mod == 3)
5237 {
5238 if (opcode > 0xff)
5239 ir.addr -= 3;
5240 else
5241 ir.addr -= 2;
5242 opcode = opcode << 8 | ir.modrm;
5243 goto no_support;
5244 }
7ad10968
HZ
5245 switch (opcode)
5246 {
a38bba38 5247 case 0xc4: /* les Gv */
425b824a 5248 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5249 break;
a38bba38 5250 case 0xc5: /* lds Gv */
425b824a 5251 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5252 break;
a38bba38 5253 case 0x0fb2: /* lss Gv */
425b824a 5254 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5255 break;
a38bba38 5256 case 0x0fb4: /* lfs Gv */
425b824a 5257 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5258 break;
a38bba38 5259 case 0x0fb5: /* lgs Gv */
425b824a 5260 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5261 break;
5262 }
425b824a 5263 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174
HZ
5264 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5265 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5266 break;
5267
a38bba38 5268 case 0xc0: /* shifts */
7ad10968
HZ
5269 case 0xc1:
5270 case 0xd0:
5271 case 0xd1:
5272 case 0xd2:
5273 case 0xd3:
5274 if ((opcode & 1) == 0)
5275 ir.ot = OT_BYTE;
5276 else
5277 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5278 if (i386_record_modrm (&ir))
5279 return -1;
7ad10968
HZ
5280 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5281 {
5282 if (i386_record_lea_modrm (&ir))
5283 return -1;
5284 }
5285 else
5286 {
cf648174
HZ
5287 ir.rm |= ir.rex_b;
5288 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5289 ir.rm &= 0x3;
cf648174 5290 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5291 }
cf648174 5292 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5293 break;
5294
5295 case 0x0fa4:
5296 case 0x0fa5:
5297 case 0x0fac:
5298 case 0x0fad:
5299 if (i386_record_modrm (&ir))
5300 return -1;
5301 if (ir.mod == 3)
5302 {
5303 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5304 return -1;
5305 }
5306 else
5307 {
5308 if (i386_record_lea_modrm (&ir))
5309 return -1;
5310 }
5311 break;
5312
a38bba38 5313 case 0xd8: /* Floats. */
7ad10968
HZ
5314 case 0xd9:
5315 case 0xda:
5316 case 0xdb:
5317 case 0xdc:
5318 case 0xdd:
5319 case 0xde:
5320 case 0xdf:
5321 if (i386_record_modrm (&ir))
5322 return -1;
5323 ir.reg |= ((opcode & 7) << 3);
5324 if (ir.mod != 3)
5325 {
1777feb0 5326 /* Memory. */
955db0c0 5327 uint64_t addr64;
7ad10968 5328
955db0c0 5329 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5330 return -1;
5331 switch (ir.reg)
5332 {
7ad10968 5333 case 0x02:
0289bdd7
MS
5334 case 0x12:
5335 case 0x22:
5336 case 0x32:
5337 /* For fcom, ficom nothing to do. */
5338 break;
7ad10968 5339 case 0x03:
0289bdd7
MS
5340 case 0x13:
5341 case 0x23:
5342 case 0x33:
5343 /* For fcomp, ficomp pop FPU stack, store all. */
5344 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5345 return -1;
5346 break;
5347 case 0x00:
5348 case 0x01:
7ad10968
HZ
5349 case 0x04:
5350 case 0x05:
5351 case 0x06:
5352 case 0x07:
5353 case 0x10:
5354 case 0x11:
7ad10968
HZ
5355 case 0x14:
5356 case 0x15:
5357 case 0x16:
5358 case 0x17:
5359 case 0x20:
5360 case 0x21:
7ad10968
HZ
5361 case 0x24:
5362 case 0x25:
5363 case 0x26:
5364 case 0x27:
5365 case 0x30:
5366 case 0x31:
7ad10968
HZ
5367 case 0x34:
5368 case 0x35:
5369 case 0x36:
5370 case 0x37:
0289bdd7
MS
5371 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5372 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5373 of code, always affects st(0) register. */
5374 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5375 return -1;
7ad10968
HZ
5376 break;
5377 case 0x08:
5378 case 0x0a:
5379 case 0x0b:
5380 case 0x18:
5381 case 0x19:
5382 case 0x1a:
5383 case 0x1b:
0289bdd7 5384 case 0x1d:
7ad10968
HZ
5385 case 0x28:
5386 case 0x29:
5387 case 0x2a:
5388 case 0x2b:
5389 case 0x38:
5390 case 0x39:
5391 case 0x3a:
5392 case 0x3b:
0289bdd7
MS
5393 case 0x3c:
5394 case 0x3d:
7ad10968
HZ
5395 switch (ir.reg & 7)
5396 {
5397 case 0:
0289bdd7
MS
5398 /* Handling fld, fild. */
5399 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5400 return -1;
7ad10968
HZ
5401 break;
5402 case 1:
5403 switch (ir.reg >> 4)
5404 {
5405 case 0:
955db0c0 5406 if (record_arch_list_add_mem (addr64, 4))
7ad10968
HZ
5407 return -1;
5408 break;
5409 case 2:
955db0c0 5410 if (record_arch_list_add_mem (addr64, 8))
7ad10968
HZ
5411 return -1;
5412 break;
5413 case 3:
0289bdd7 5414 break;
7ad10968 5415 default:
955db0c0 5416 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5417 return -1;
5418 break;
5419 }
5420 break;
5421 default:
5422 switch (ir.reg >> 4)
5423 {
5424 case 0:
955db0c0 5425 if (record_arch_list_add_mem (addr64, 4))
0289bdd7
MS
5426 return -1;
5427 if (3 == (ir.reg & 7))
5428 {
5429 /* For fstp m32fp. */
5430 if (i386_record_floats (gdbarch, &ir,
5431 I386_SAVE_FPU_REGS))
5432 return -1;
5433 }
5434 break;
7ad10968 5435 case 1:
955db0c0 5436 if (record_arch_list_add_mem (addr64, 4))
7ad10968 5437 return -1;
0289bdd7
MS
5438 if ((3 == (ir.reg & 7))
5439 || (5 == (ir.reg & 7))
5440 || (7 == (ir.reg & 7)))
5441 {
5442 /* For fstp insn. */
5443 if (i386_record_floats (gdbarch, &ir,
5444 I386_SAVE_FPU_REGS))
5445 return -1;
5446 }
7ad10968
HZ
5447 break;
5448 case 2:
955db0c0 5449 if (record_arch_list_add_mem (addr64, 8))
7ad10968 5450 return -1;
0289bdd7
MS
5451 if (3 == (ir.reg & 7))
5452 {
5453 /* For fstp m64fp. */
5454 if (i386_record_floats (gdbarch, &ir,
5455 I386_SAVE_FPU_REGS))
5456 return -1;
5457 }
7ad10968
HZ
5458 break;
5459 case 3:
0289bdd7
MS
5460 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5461 {
5462 /* For fistp, fbld, fild, fbstp. */
5463 if (i386_record_floats (gdbarch, &ir,
5464 I386_SAVE_FPU_REGS))
5465 return -1;
5466 }
5467 /* Fall through */
7ad10968 5468 default:
955db0c0 5469 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5470 return -1;
5471 break;
5472 }
5473 break;
5474 }
5475 break;
5476 case 0x0c:
0289bdd7
MS
5477 /* Insn fldenv. */
5478 if (i386_record_floats (gdbarch, &ir,
5479 I386_SAVE_FPU_ENV_REG_STACK))
5480 return -1;
5481 break;
7ad10968 5482 case 0x0d:
0289bdd7
MS
5483 /* Insn fldcw. */
5484 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5485 return -1;
5486 break;
7ad10968 5487 case 0x2c:
0289bdd7
MS
5488 /* Insn frstor. */
5489 if (i386_record_floats (gdbarch, &ir,
5490 I386_SAVE_FPU_ENV_REG_STACK))
5491 return -1;
7ad10968
HZ
5492 break;
5493 case 0x0e:
5494 if (ir.dflag)
5495 {
955db0c0 5496 if (record_arch_list_add_mem (addr64, 28))
7ad10968
HZ
5497 return -1;
5498 }
5499 else
5500 {
955db0c0 5501 if (record_arch_list_add_mem (addr64, 14))
7ad10968
HZ
5502 return -1;
5503 }
5504 break;
5505 case 0x0f:
5506 case 0x2f:
955db0c0 5507 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5508 return -1;
0289bdd7
MS
5509 /* Insn fstp, fbstp. */
5510 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5511 return -1;
7ad10968
HZ
5512 break;
5513 case 0x1f:
5514 case 0x3e:
955db0c0 5515 if (record_arch_list_add_mem (addr64, 10))
7ad10968
HZ
5516 return -1;
5517 break;
5518 case 0x2e:
5519 if (ir.dflag)
5520 {
955db0c0 5521 if (record_arch_list_add_mem (addr64, 28))
7ad10968 5522 return -1;
955db0c0 5523 addr64 += 28;
7ad10968
HZ
5524 }
5525 else
5526 {
955db0c0 5527 if (record_arch_list_add_mem (addr64, 14))
7ad10968 5528 return -1;
955db0c0 5529 addr64 += 14;
7ad10968 5530 }
955db0c0 5531 if (record_arch_list_add_mem (addr64, 80))
7ad10968 5532 return -1;
0289bdd7
MS
5533 /* Insn fsave. */
5534 if (i386_record_floats (gdbarch, &ir,
5535 I386_SAVE_FPU_ENV_REG_STACK))
5536 return -1;
7ad10968
HZ
5537 break;
5538 case 0x3f:
955db0c0 5539 if (record_arch_list_add_mem (addr64, 8))
7ad10968 5540 return -1;
0289bdd7
MS
5541 /* Insn fistp. */
5542 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5543 return -1;
7ad10968
HZ
5544 break;
5545 default:
5546 ir.addr -= 2;
5547 opcode = opcode << 8 | ir.modrm;
5548 goto no_support;
5549 break;
5550 }
5551 }
0289bdd7
MS
5552 /* Opcode is an extension of modR/M byte. */
5553 else
5554 {
5555 switch (opcode)
5556 {
5557 case 0xd8:
5558 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5559 return -1;
5560 break;
5561 case 0xd9:
5562 if (0x0c == (ir.modrm >> 4))
5563 {
5564 if ((ir.modrm & 0x0f) <= 7)
5565 {
5566 if (i386_record_floats (gdbarch, &ir,
5567 I386_SAVE_FPU_REGS))
5568 return -1;
5569 }
5570 else
5571 {
5572 if (i386_record_floats (gdbarch, &ir,
5573 I387_ST0_REGNUM (tdep)))
5574 return -1;
5575 /* If only st(0) is changing, then we have already
5576 recorded. */
5577 if ((ir.modrm & 0x0f) - 0x08)
5578 {
5579 if (i386_record_floats (gdbarch, &ir,
5580 I387_ST0_REGNUM (tdep) +
5581 ((ir.modrm & 0x0f) - 0x08)))
5582 return -1;
5583 }
5584 }
5585 }
5586 else
5587 {
5588 switch (ir.modrm)
5589 {
5590 case 0xe0:
5591 case 0xe1:
5592 case 0xf0:
5593 case 0xf5:
5594 case 0xf8:
5595 case 0xfa:
5596 case 0xfc:
5597 case 0xfe:
5598 case 0xff:
5599 if (i386_record_floats (gdbarch, &ir,
5600 I387_ST0_REGNUM (tdep)))
5601 return -1;
5602 break;
5603 case 0xf1:
5604 case 0xf2:
5605 case 0xf3:
5606 case 0xf4:
5607 case 0xf6:
5608 case 0xf7:
5609 case 0xe8:
5610 case 0xe9:
5611 case 0xea:
5612 case 0xeb:
5613 case 0xec:
5614 case 0xed:
5615 case 0xee:
5616 case 0xf9:
5617 case 0xfb:
5618 if (i386_record_floats (gdbarch, &ir,
5619 I386_SAVE_FPU_REGS))
5620 return -1;
5621 break;
5622 case 0xfd:
5623 if (i386_record_floats (gdbarch, &ir,
5624 I387_ST0_REGNUM (tdep)))
5625 return -1;
5626 if (i386_record_floats (gdbarch, &ir,
5627 I387_ST0_REGNUM (tdep) + 1))
5628 return -1;
5629 break;
5630 }
5631 }
5632 break;
5633 case 0xda:
5634 if (0xe9 == ir.modrm)
5635 {
5636 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5637 return -1;
5638 }
5639 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5640 {
5641 if (i386_record_floats (gdbarch, &ir,
5642 I387_ST0_REGNUM (tdep)))
5643 return -1;
5644 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5645 {
5646 if (i386_record_floats (gdbarch, &ir,
5647 I387_ST0_REGNUM (tdep) +
5648 (ir.modrm & 0x0f)))
5649 return -1;
5650 }
5651 else if ((ir.modrm & 0x0f) - 0x08)
5652 {
5653 if (i386_record_floats (gdbarch, &ir,
5654 I387_ST0_REGNUM (tdep) +
5655 ((ir.modrm & 0x0f) - 0x08)))
5656 return -1;
5657 }
5658 }
5659 break;
5660 case 0xdb:
5661 if (0xe3 == ir.modrm)
5662 {
5663 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5664 return -1;
5665 }
5666 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5667 {
5668 if (i386_record_floats (gdbarch, &ir,
5669 I387_ST0_REGNUM (tdep)))
5670 return -1;
5671 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5672 {
5673 if (i386_record_floats (gdbarch, &ir,
5674 I387_ST0_REGNUM (tdep) +
5675 (ir.modrm & 0x0f)))
5676 return -1;
5677 }
5678 else if ((ir.modrm & 0x0f) - 0x08)
5679 {
5680 if (i386_record_floats (gdbarch, &ir,
5681 I387_ST0_REGNUM (tdep) +
5682 ((ir.modrm & 0x0f) - 0x08)))
5683 return -1;
5684 }
5685 }
5686 break;
5687 case 0xdc:
5688 if ((0x0c == ir.modrm >> 4)
5689 || (0x0d == ir.modrm >> 4)
5690 || (0x0f == ir.modrm >> 4))
5691 {
5692 if ((ir.modrm & 0x0f) <= 7)
5693 {
5694 if (i386_record_floats (gdbarch, &ir,
5695 I387_ST0_REGNUM (tdep) +
5696 (ir.modrm & 0x0f)))
5697 return -1;
5698 }
5699 else
5700 {
5701 if (i386_record_floats (gdbarch, &ir,
5702 I387_ST0_REGNUM (tdep) +
5703 ((ir.modrm & 0x0f) - 0x08)))
5704 return -1;
5705 }
5706 }
5707 break;
5708 case 0xdd:
5709 if (0x0c == ir.modrm >> 4)
5710 {
5711 if (i386_record_floats (gdbarch, &ir,
5712 I387_FTAG_REGNUM (tdep)))
5713 return -1;
5714 }
5715 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5716 {
5717 if ((ir.modrm & 0x0f) <= 7)
5718 {
5719 if (i386_record_floats (gdbarch, &ir,
5720 I387_ST0_REGNUM (tdep) +
5721 (ir.modrm & 0x0f)))
5722 return -1;
5723 }
5724 else
5725 {
5726 if (i386_record_floats (gdbarch, &ir,
5727 I386_SAVE_FPU_REGS))
5728 return -1;
5729 }
5730 }
5731 break;
5732 case 0xde:
5733 if ((0x0c == ir.modrm >> 4)
5734 || (0x0e == ir.modrm >> 4)
5735 || (0x0f == ir.modrm >> 4)
5736 || (0xd9 == ir.modrm))
5737 {
5738 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5739 return -1;
5740 }
5741 break;
5742 case 0xdf:
5743 if (0xe0 == ir.modrm)
5744 {
5745 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5746 return -1;
5747 }
5748 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5749 {
5750 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5751 return -1;
5752 }
5753 break;
5754 }
5755 }
7ad10968 5756 break;
7ad10968 5757 /* string ops */
a38bba38 5758 case 0xa4: /* movsS */
7ad10968 5759 case 0xa5:
a38bba38 5760 case 0xaa: /* stosS */
7ad10968 5761 case 0xab:
a38bba38 5762 case 0x6c: /* insS */
7ad10968 5763 case 0x6d:
cf648174 5764 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 5765 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
5766 &addr);
5767 if (addr)
cf648174 5768 {
77d7dc92
HZ
5769 ULONGEST es, ds;
5770
5771 if ((opcode & 1) == 0)
5772 ir.ot = OT_BYTE;
5773 else
5774 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
5775 regcache_raw_read_unsigned (ir.regcache,
5776 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 5777 &addr);
77d7dc92 5778
d7877f7e
HZ
5779 regcache_raw_read_unsigned (ir.regcache,
5780 ir.regmap[X86_RECORD_ES_REGNUM],
5781 &es);
5782 regcache_raw_read_unsigned (ir.regcache,
5783 ir.regmap[X86_RECORD_DS_REGNUM],
5784 &ds);
5785 if (ir.aflag && (es != ds))
77d7dc92
HZ
5786 {
5787 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
bb08c432
HZ
5788 if (record_memory_query)
5789 {
5790 int q;
5791
5792 target_terminal_ours ();
5793 q = yquery (_("\
5794Process record ignores the memory change of instruction at address %s\n\
5795because it can't get the value of the segment register.\n\
5796Do you want to stop the program?"),
5797 paddress (gdbarch, ir.orig_addr));
5798 target_terminal_inferior ();
5799 if (q)
5800 return -1;
5801 }
df61f520
HZ
5802 }
5803 else
5804 {
648d0c8b 5805 if (record_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 5806 return -1;
77d7dc92
HZ
5807 }
5808
5809 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5810 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92
HZ
5811 if (opcode == 0xa4 || opcode == 0xa5)
5812 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5813 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5814 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5815 }
cf648174 5816 break;
7ad10968 5817
a38bba38 5818 case 0xa6: /* cmpsS */
cf648174
HZ
5819 case 0xa7:
5820 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5821 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5822 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5823 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5824 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5825 break;
5826
a38bba38 5827 case 0xac: /* lodsS */
7ad10968 5828 case 0xad:
cf648174
HZ
5829 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5830 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5831 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5832 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5833 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5834 break;
5835
a38bba38 5836 case 0xae: /* scasS */
7ad10968 5837 case 0xaf:
cf648174 5838 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 5839 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5840 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5841 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5842 break;
5843
a38bba38 5844 case 0x6e: /* outsS */
cf648174
HZ
5845 case 0x6f:
5846 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5847 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5848 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5849 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5850 break;
5851
a38bba38 5852 case 0xe4: /* port I/O */
7ad10968
HZ
5853 case 0xe5:
5854 case 0xec:
5855 case 0xed:
cf648174
HZ
5856 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5857 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5858 break;
5859
5860 case 0xe6:
5861 case 0xe7:
5862 case 0xee:
5863 case 0xef:
5864 break;
5865
5866 /* control */
a38bba38
MS
5867 case 0xc2: /* ret im */
5868 case 0xc3: /* ret */
cf648174
HZ
5869 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5870 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5871 break;
5872
a38bba38
MS
5873 case 0xca: /* lret im */
5874 case 0xcb: /* lret */
5875 case 0xcf: /* iret */
cf648174
HZ
5876 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5877 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5878 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5879 break;
5880
a38bba38 5881 case 0xe8: /* call im */
cf648174
HZ
5882 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5883 ir.dflag = 2;
5884 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5885 return -1;
7ad10968
HZ
5886 break;
5887
a38bba38 5888 case 0x9a: /* lcall im */
cf648174
HZ
5889 if (ir.regmap[X86_RECORD_R8_REGNUM])
5890 {
5891 ir.addr -= 1;
5892 goto no_support;
5893 }
5894 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5895 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5896 return -1;
7ad10968
HZ
5897 break;
5898
a38bba38
MS
5899 case 0xe9: /* jmp im */
5900 case 0xea: /* ljmp im */
5901 case 0xeb: /* jmp Jb */
5902 case 0x70: /* jcc Jb */
7ad10968
HZ
5903 case 0x71:
5904 case 0x72:
5905 case 0x73:
5906 case 0x74:
5907 case 0x75:
5908 case 0x76:
5909 case 0x77:
5910 case 0x78:
5911 case 0x79:
5912 case 0x7a:
5913 case 0x7b:
5914 case 0x7c:
5915 case 0x7d:
5916 case 0x7e:
5917 case 0x7f:
a38bba38 5918 case 0x0f80: /* jcc Jv */
7ad10968
HZ
5919 case 0x0f81:
5920 case 0x0f82:
5921 case 0x0f83:
5922 case 0x0f84:
5923 case 0x0f85:
5924 case 0x0f86:
5925 case 0x0f87:
5926 case 0x0f88:
5927 case 0x0f89:
5928 case 0x0f8a:
5929 case 0x0f8b:
5930 case 0x0f8c:
5931 case 0x0f8d:
5932 case 0x0f8e:
5933 case 0x0f8f:
5934 break;
5935
a38bba38 5936 case 0x0f90: /* setcc Gv */
7ad10968
HZ
5937 case 0x0f91:
5938 case 0x0f92:
5939 case 0x0f93:
5940 case 0x0f94:
5941 case 0x0f95:
5942 case 0x0f96:
5943 case 0x0f97:
5944 case 0x0f98:
5945 case 0x0f99:
5946 case 0x0f9a:
5947 case 0x0f9b:
5948 case 0x0f9c:
5949 case 0x0f9d:
5950 case 0x0f9e:
5951 case 0x0f9f:
cf648174 5952 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5953 ir.ot = OT_BYTE;
5954 if (i386_record_modrm (&ir))
5955 return -1;
5956 if (ir.mod == 3)
cf648174
HZ
5957 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5958 : (ir.rm & 0x3));
7ad10968
HZ
5959 else
5960 {
5961 if (i386_record_lea_modrm (&ir))
5962 return -1;
5963 }
5964 break;
5965
a38bba38 5966 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
5967 case 0x0f41:
5968 case 0x0f42:
5969 case 0x0f43:
5970 case 0x0f44:
5971 case 0x0f45:
5972 case 0x0f46:
5973 case 0x0f47:
5974 case 0x0f48:
5975 case 0x0f49:
5976 case 0x0f4a:
5977 case 0x0f4b:
5978 case 0x0f4c:
5979 case 0x0f4d:
5980 case 0x0f4e:
5981 case 0x0f4f:
5982 if (i386_record_modrm (&ir))
5983 return -1;
cf648174 5984 ir.reg |= rex_r;
7ad10968
HZ
5985 if (ir.dflag == OT_BYTE)
5986 ir.reg &= 0x3;
cf648174 5987 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5988 break;
5989
5990 /* flags */
a38bba38 5991 case 0x9c: /* pushf */
cf648174
HZ
5992 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5993 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5994 ir.dflag = 2;
5995 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5996 return -1;
7ad10968
HZ
5997 break;
5998
a38bba38 5999 case 0x9d: /* popf */
cf648174
HZ
6000 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6001 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6002 break;
6003
a38bba38 6004 case 0x9e: /* sahf */
cf648174
HZ
6005 if (ir.regmap[X86_RECORD_R8_REGNUM])
6006 {
6007 ir.addr -= 1;
6008 goto no_support;
6009 }
d3f323f3 6010 /* FALLTHROUGH */
a38bba38
MS
6011 case 0xf5: /* cmc */
6012 case 0xf8: /* clc */
6013 case 0xf9: /* stc */
6014 case 0xfc: /* cld */
6015 case 0xfd: /* std */
cf648174 6016 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6017 break;
6018
a38bba38 6019 case 0x9f: /* lahf */
cf648174
HZ
6020 if (ir.regmap[X86_RECORD_R8_REGNUM])
6021 {
6022 ir.addr -= 1;
6023 goto no_support;
6024 }
6025 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6026 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6027 break;
6028
6029 /* bit operations */
a38bba38 6030 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6031 ir.ot = ir.dflag + OT_WORD;
6032 if (i386_record_modrm (&ir))
6033 return -1;
6034 if (ir.reg < 4)
6035 {
cf648174 6036 ir.addr -= 2;
7ad10968
HZ
6037 opcode = opcode << 8 | ir.modrm;
6038 goto no_support;
6039 }
cf648174 6040 if (ir.reg != 4)
7ad10968 6041 {
cf648174
HZ
6042 if (ir.mod == 3)
6043 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6044 else
6045 {
cf648174 6046 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6047 return -1;
6048 }
6049 }
cf648174 6050 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6051 break;
6052
a38bba38 6053 case 0x0fa3: /* bt Gv, Ev */
cf648174
HZ
6054 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6055 break;
6056
a38bba38
MS
6057 case 0x0fab: /* bts */
6058 case 0x0fb3: /* btr */
6059 case 0x0fbb: /* btc */
cf648174
HZ
6060 ir.ot = ir.dflag + OT_WORD;
6061 if (i386_record_modrm (&ir))
6062 return -1;
6063 if (ir.mod == 3)
6064 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6065 else
6066 {
955db0c0
MS
6067 uint64_t addr64;
6068 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6069 return -1;
6070 regcache_raw_read_unsigned (ir.regcache,
6071 ir.regmap[ir.reg | rex_r],
648d0c8b 6072 &addr);
cf648174
HZ
6073 switch (ir.dflag)
6074 {
6075 case 0:
648d0c8b 6076 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6077 break;
6078 case 1:
648d0c8b 6079 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6080 break;
6081 case 2:
648d0c8b 6082 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6083 break;
6084 }
955db0c0 6085 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6086 return -1;
6087 if (i386_record_lea_modrm (&ir))
6088 return -1;
6089 }
6090 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6091 break;
6092
a38bba38
MS
6093 case 0x0fbc: /* bsf */
6094 case 0x0fbd: /* bsr */
cf648174
HZ
6095 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6096 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6097 break;
6098
6099 /* bcd */
a38bba38
MS
6100 case 0x27: /* daa */
6101 case 0x2f: /* das */
6102 case 0x37: /* aaa */
6103 case 0x3f: /* aas */
6104 case 0xd4: /* aam */
6105 case 0xd5: /* aad */
cf648174
HZ
6106 if (ir.regmap[X86_RECORD_R8_REGNUM])
6107 {
6108 ir.addr -= 1;
6109 goto no_support;
6110 }
6111 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6112 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6113 break;
6114
6115 /* misc */
a38bba38 6116 case 0x90: /* nop */
7ad10968
HZ
6117 if (prefixes & PREFIX_LOCK)
6118 {
6119 ir.addr -= 1;
6120 goto no_support;
6121 }
6122 break;
6123
a38bba38 6124 case 0x9b: /* fwait */
425b824a 6125 if (target_read_memory (ir.addr, &opcode8, 1))
0289bdd7
MS
6126 {
6127 if (record_debug)
6128 printf_unfiltered (_("Process record: error reading memory at "
6129 "addr 0x%s len = 1.\n"),
6130 paddress (gdbarch, ir.addr));
6131 return -1;
6132 }
425b824a 6133 opcode = (uint32_t) opcode8;
0289bdd7
MS
6134 ir.addr++;
6135 goto reswitch;
7ad10968
HZ
6136 break;
6137
7ad10968 6138 /* XXX */
a38bba38 6139 case 0xcc: /* int3 */
a3c4230a 6140 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6141 "int3.\n"));
6142 ir.addr -= 1;
6143 goto no_support;
6144 break;
6145
7ad10968 6146 /* XXX */
a38bba38 6147 case 0xcd: /* int */
7ad10968
HZ
6148 {
6149 int ret;
425b824a
MS
6150 uint8_t interrupt;
6151 if (target_read_memory (ir.addr, &interrupt, 1))
7ad10968
HZ
6152 {
6153 if (record_debug)
6154 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
6155 "at addr %s len = 1.\n"),
6156 paddress (gdbarch, ir.addr));
7ad10968
HZ
6157 return -1;
6158 }
6159 ir.addr++;
425b824a 6160 if (interrupt != 0x80
a3c4230a 6161 || tdep->i386_intx80_record == NULL)
7ad10968 6162 {
a3c4230a 6163 printf_unfiltered (_("Process record does not support "
7ad10968 6164 "instruction int 0x%02x.\n"),
425b824a 6165 interrupt);
7ad10968
HZ
6166 ir.addr -= 2;
6167 goto no_support;
6168 }
a3c4230a 6169 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6170 if (ret)
6171 return ret;
6172 }
6173 break;
6174
7ad10968 6175 /* XXX */
a38bba38 6176 case 0xce: /* into */
a3c4230a 6177 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6178 "instruction into.\n"));
6179 ir.addr -= 1;
6180 goto no_support;
6181 break;
6182
a38bba38
MS
6183 case 0xfa: /* cli */
6184 case 0xfb: /* sti */
7ad10968
HZ
6185 break;
6186
a38bba38 6187 case 0x62: /* bound */
a3c4230a 6188 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6189 "instruction bound.\n"));
6190 ir.addr -= 1;
6191 goto no_support;
6192 break;
6193
a38bba38 6194 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6195 case 0x0fc9:
6196 case 0x0fca:
6197 case 0x0fcb:
6198 case 0x0fcc:
6199 case 0x0fcd:
6200 case 0x0fce:
6201 case 0x0fcf:
cf648174 6202 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6203 break;
6204
a38bba38 6205 case 0xd6: /* salc */
cf648174
HZ
6206 if (ir.regmap[X86_RECORD_R8_REGNUM])
6207 {
6208 ir.addr -= 1;
6209 goto no_support;
6210 }
6211 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6212 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6213 break;
6214
a38bba38
MS
6215 case 0xe0: /* loopnz */
6216 case 0xe1: /* loopz */
6217 case 0xe2: /* loop */
6218 case 0xe3: /* jecxz */
cf648174
HZ
6219 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6220 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6221 break;
6222
a38bba38 6223 case 0x0f30: /* wrmsr */
a3c4230a 6224 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6225 "instruction wrmsr.\n"));
6226 ir.addr -= 2;
6227 goto no_support;
6228 break;
6229
a38bba38 6230 case 0x0f32: /* rdmsr */
a3c4230a 6231 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6232 "instruction rdmsr.\n"));
6233 ir.addr -= 2;
6234 goto no_support;
6235 break;
6236
a38bba38 6237 case 0x0f31: /* rdtsc */
f8c4f480
HZ
6238 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6239 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6240 break;
6241
a38bba38 6242 case 0x0f34: /* sysenter */
7ad10968
HZ
6243 {
6244 int ret;
cf648174
HZ
6245 if (ir.regmap[X86_RECORD_R8_REGNUM])
6246 {
6247 ir.addr -= 2;
6248 goto no_support;
6249 }
a3c4230a 6250 if (tdep->i386_sysenter_record == NULL)
7ad10968 6251 {
a3c4230a 6252 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6253 "instruction sysenter.\n"));
6254 ir.addr -= 2;
6255 goto no_support;
6256 }
a3c4230a 6257 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6258 if (ret)
6259 return ret;
6260 }
6261 break;
6262
a38bba38 6263 case 0x0f35: /* sysexit */
a3c4230a 6264 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6265 "instruction sysexit.\n"));
6266 ir.addr -= 2;
6267 goto no_support;
6268 break;
6269
a38bba38 6270 case 0x0f05: /* syscall */
cf648174
HZ
6271 {
6272 int ret;
a3c4230a 6273 if (tdep->i386_syscall_record == NULL)
cf648174 6274 {
a3c4230a 6275 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6276 "instruction syscall.\n"));
6277 ir.addr -= 2;
6278 goto no_support;
6279 }
a3c4230a 6280 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6281 if (ret)
6282 return ret;
6283 }
6284 break;
6285
a38bba38 6286 case 0x0f07: /* sysret */
a3c4230a 6287 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6288 "instruction sysret.\n"));
6289 ir.addr -= 2;
6290 goto no_support;
6291 break;
6292
a38bba38 6293 case 0x0fa2: /* cpuid */
cf648174
HZ
6294 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6295 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6296 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6297 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6298 break;
6299
a38bba38 6300 case 0xf4: /* hlt */
a3c4230a 6301 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6302 "instruction hlt.\n"));
6303 ir.addr -= 1;
6304 goto no_support;
6305 break;
6306
6307 case 0x0f00:
6308 if (i386_record_modrm (&ir))
6309 return -1;
6310 switch (ir.reg)
6311 {
a38bba38
MS
6312 case 0: /* sldt */
6313 case 1: /* str */
7ad10968 6314 if (ir.mod == 3)
cf648174 6315 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6316 else
6317 {
6318 ir.ot = OT_WORD;
6319 if (i386_record_lea_modrm (&ir))
6320 return -1;
6321 }
6322 break;
a38bba38
MS
6323 case 2: /* lldt */
6324 case 3: /* ltr */
7ad10968 6325 break;
a38bba38
MS
6326 case 4: /* verr */
6327 case 5: /* verw */
cf648174 6328 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6329 break;
6330 default:
6331 ir.addr -= 3;
6332 opcode = opcode << 8 | ir.modrm;
6333 goto no_support;
6334 break;
6335 }
6336 break;
6337
6338 case 0x0f01:
6339 if (i386_record_modrm (&ir))
6340 return -1;
6341 switch (ir.reg)
6342 {
a38bba38 6343 case 0: /* sgdt */
7ad10968 6344 {
955db0c0 6345 uint64_t addr64;
7ad10968
HZ
6346
6347 if (ir.mod == 3)
6348 {
6349 ir.addr -= 3;
6350 opcode = opcode << 8 | ir.modrm;
6351 goto no_support;
6352 }
d7877f7e 6353 if (ir.override >= 0)
7ad10968 6354 {
bb08c432
HZ
6355 if (record_memory_query)
6356 {
6357 int q;
6358
6359 target_terminal_ours ();
6360 q = yquery (_("\
6361Process record ignores the memory change of instruction at address %s\n\
6362because it can't get the value of the segment register.\n\
6363Do you want to stop the program?"),
6364 paddress (gdbarch, ir.orig_addr));
6365 target_terminal_inferior ();
6366 if (q)
6367 return -1;
6368 }
7ad10968
HZ
6369 }
6370 else
6371 {
955db0c0 6372 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6373 return -1;
955db0c0 6374 if (record_arch_list_add_mem (addr64, 2))
7ad10968 6375 return -1;
955db0c0 6376 addr64 += 2;
cf648174
HZ
6377 if (ir.regmap[X86_RECORD_R8_REGNUM])
6378 {
955db0c0 6379 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
6380 return -1;
6381 }
6382 else
6383 {
955db0c0 6384 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
6385 return -1;
6386 }
7ad10968
HZ
6387 }
6388 }
6389 break;
6390 case 1:
6391 if (ir.mod == 3)
6392 {
6393 switch (ir.rm)
6394 {
a38bba38 6395 case 0: /* monitor */
7ad10968 6396 break;
a38bba38 6397 case 1: /* mwait */
cf648174 6398 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6399 break;
6400 default:
6401 ir.addr -= 3;
6402 opcode = opcode << 8 | ir.modrm;
6403 goto no_support;
6404 break;
6405 }
6406 }
6407 else
6408 {
6409 /* sidt */
d7877f7e 6410 if (ir.override >= 0)
7ad10968 6411 {
bb08c432
HZ
6412 if (record_memory_query)
6413 {
6414 int q;
6415
6416 target_terminal_ours ();
6417 q = yquery (_("\
6418Process record ignores the memory change of instruction at address %s\n\
6419because it can't get the value of the segment register.\n\
6420Do you want to stop the program?"),
6421 paddress (gdbarch, ir.orig_addr));
6422 target_terminal_inferior ();
6423 if (q)
6424 return -1;
6425 }
7ad10968
HZ
6426 }
6427 else
6428 {
955db0c0 6429 uint64_t addr64;
7ad10968 6430
955db0c0 6431 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6432 return -1;
955db0c0 6433 if (record_arch_list_add_mem (addr64, 2))
7ad10968 6434 return -1;
955db0c0 6435 addr64 += 2;
cf648174
HZ
6436 if (ir.regmap[X86_RECORD_R8_REGNUM])
6437 {
955db0c0 6438 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
6439 return -1;
6440 }
6441 else
6442 {
955db0c0 6443 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
6444 return -1;
6445 }
7ad10968
HZ
6446 }
6447 }
6448 break;
a38bba38 6449 case 2: /* lgdt */
3800e645
MS
6450 if (ir.mod == 3)
6451 {
6452 /* xgetbv */
6453 if (ir.rm == 0)
6454 {
6455 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6456 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6457 break;
6458 }
6459 /* xsetbv */
6460 else if (ir.rm == 1)
6461 break;
6462 }
a38bba38 6463 case 3: /* lidt */
7ad10968
HZ
6464 if (ir.mod == 3)
6465 {
6466 ir.addr -= 3;
6467 opcode = opcode << 8 | ir.modrm;
6468 goto no_support;
6469 }
6470 break;
a38bba38 6471 case 4: /* smsw */
7ad10968
HZ
6472 if (ir.mod == 3)
6473 {
cf648174 6474 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
6475 return -1;
6476 }
6477 else
6478 {
6479 ir.ot = OT_WORD;
6480 if (i386_record_lea_modrm (&ir))
6481 return -1;
6482 }
cf648174 6483 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6484 break;
a38bba38 6485 case 6: /* lmsw */
cf648174
HZ
6486 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6487 break;
a38bba38 6488 case 7: /* invlpg */
cf648174
HZ
6489 if (ir.mod == 3)
6490 {
6491 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6492 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6493 else
6494 {
6495 ir.addr -= 3;
6496 opcode = opcode << 8 | ir.modrm;
6497 goto no_support;
6498 }
6499 }
6500 else
6501 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6502 break;
6503 default:
6504 ir.addr -= 3;
6505 opcode = opcode << 8 | ir.modrm;
6506 goto no_support;
7ad10968
HZ
6507 break;
6508 }
6509 break;
6510
a38bba38
MS
6511 case 0x0f08: /* invd */
6512 case 0x0f09: /* wbinvd */
7ad10968
HZ
6513 break;
6514
a38bba38 6515 case 0x63: /* arpl */
7ad10968
HZ
6516 if (i386_record_modrm (&ir))
6517 return -1;
cf648174
HZ
6518 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6519 {
6520 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6521 ? (ir.reg | rex_r) : ir.rm);
6522 }
7ad10968 6523 else
cf648174
HZ
6524 {
6525 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6526 if (i386_record_lea_modrm (&ir))
6527 return -1;
6528 }
6529 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6530 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6531 break;
6532
a38bba38
MS
6533 case 0x0f02: /* lar */
6534 case 0x0f03: /* lsl */
7ad10968
HZ
6535 if (i386_record_modrm (&ir))
6536 return -1;
cf648174
HZ
6537 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6538 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6539 break;
6540
6541 case 0x0f18:
cf648174
HZ
6542 if (i386_record_modrm (&ir))
6543 return -1;
6544 if (ir.mod == 3 && ir.reg == 3)
6545 {
6546 ir.addr -= 3;
6547 opcode = opcode << 8 | ir.modrm;
6548 goto no_support;
6549 }
7ad10968
HZ
6550 break;
6551
7ad10968
HZ
6552 case 0x0f19:
6553 case 0x0f1a:
6554 case 0x0f1b:
6555 case 0x0f1c:
6556 case 0x0f1d:
6557 case 0x0f1e:
6558 case 0x0f1f:
a38bba38 6559 /* nop (multi byte) */
7ad10968
HZ
6560 break;
6561
a38bba38
MS
6562 case 0x0f20: /* mov reg, crN */
6563 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
6564 if (i386_record_modrm (&ir))
6565 return -1;
6566 if ((ir.modrm & 0xc0) != 0xc0)
6567 {
cf648174 6568 ir.addr -= 3;
7ad10968
HZ
6569 opcode = opcode << 8 | ir.modrm;
6570 goto no_support;
6571 }
6572 switch (ir.reg)
6573 {
6574 case 0:
6575 case 2:
6576 case 3:
6577 case 4:
6578 case 8:
6579 if (opcode & 2)
cf648174 6580 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6581 else
cf648174 6582 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6583 break;
6584 default:
cf648174 6585 ir.addr -= 3;
7ad10968
HZ
6586 opcode = opcode << 8 | ir.modrm;
6587 goto no_support;
6588 break;
6589 }
6590 break;
6591
a38bba38
MS
6592 case 0x0f21: /* mov reg, drN */
6593 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
6594 if (i386_record_modrm (&ir))
6595 return -1;
6596 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6597 || ir.reg == 5 || ir.reg >= 8)
6598 {
cf648174 6599 ir.addr -= 3;
7ad10968
HZ
6600 opcode = opcode << 8 | ir.modrm;
6601 goto no_support;
6602 }
6603 if (opcode & 2)
cf648174 6604 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6605 else
cf648174 6606 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6607 break;
6608
a38bba38 6609 case 0x0f06: /* clts */
cf648174 6610 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6611 break;
6612
a3c4230a
HZ
6613 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6614
6615 case 0x0f0d: /* 3DNow! prefetch */
6616 break;
6617
6618 case 0x0f0e: /* 3DNow! femms */
6619 case 0x0f77: /* emms */
6620 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6621 goto no_support;
6622 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6623 break;
6624
6625 case 0x0f0f: /* 3DNow! data */
6626 if (i386_record_modrm (&ir))
6627 return -1;
6628 if (target_read_memory (ir.addr, &opcode8, 1))
6629 {
6630 printf_unfiltered (_("Process record: error reading memory at "
6631 "addr %s len = 1.\n"),
6632 paddress (gdbarch, ir.addr));
6633 return -1;
6634 }
6635 ir.addr++;
6636 switch (opcode8)
6637 {
6638 case 0x0c: /* 3DNow! pi2fw */
6639 case 0x0d: /* 3DNow! pi2fd */
6640 case 0x1c: /* 3DNow! pf2iw */
6641 case 0x1d: /* 3DNow! pf2id */
6642 case 0x8a: /* 3DNow! pfnacc */
6643 case 0x8e: /* 3DNow! pfpnacc */
6644 case 0x90: /* 3DNow! pfcmpge */
6645 case 0x94: /* 3DNow! pfmin */
6646 case 0x96: /* 3DNow! pfrcp */
6647 case 0x97: /* 3DNow! pfrsqrt */
6648 case 0x9a: /* 3DNow! pfsub */
6649 case 0x9e: /* 3DNow! pfadd */
6650 case 0xa0: /* 3DNow! pfcmpgt */
6651 case 0xa4: /* 3DNow! pfmax */
6652 case 0xa6: /* 3DNow! pfrcpit1 */
6653 case 0xa7: /* 3DNow! pfrsqit1 */
6654 case 0xaa: /* 3DNow! pfsubr */
6655 case 0xae: /* 3DNow! pfacc */
6656 case 0xb0: /* 3DNow! pfcmpeq */
6657 case 0xb4: /* 3DNow! pfmul */
6658 case 0xb6: /* 3DNow! pfrcpit2 */
6659 case 0xb7: /* 3DNow! pmulhrw */
6660 case 0xbb: /* 3DNow! pswapd */
6661 case 0xbf: /* 3DNow! pavgusb */
6662 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6663 goto no_support_3dnow_data;
6664 record_arch_list_add_reg (ir.regcache, ir.reg);
6665 break;
6666
6667 default:
6668no_support_3dnow_data:
6669 opcode = (opcode << 8) | opcode8;
6670 goto no_support;
6671 break;
6672 }
6673 break;
6674
6675 case 0x0faa: /* rsm */
6676 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6677 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6678 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6679 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6680 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6681 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6682 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6683 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6684 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6685 break;
6686
6687 case 0x0fae:
6688 if (i386_record_modrm (&ir))
6689 return -1;
6690 switch(ir.reg)
6691 {
6692 case 0: /* fxsave */
6693 {
6694 uint64_t tmpu64;
6695
6696 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6697 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6698 return -1;
6699 if (record_arch_list_add_mem (tmpu64, 512))
6700 return -1;
6701 }
6702 break;
6703
6704 case 1: /* fxrstor */
6705 {
6706 int i;
6707
6708 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6709
6710 for (i = I387_MM0_REGNUM (tdep);
6711 i386_mmx_regnum_p (gdbarch, i); i++)
6712 record_arch_list_add_reg (ir.regcache, i);
6713
6714 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 6715 i386_xmm_regnum_p (gdbarch, i); i++)
a3c4230a
HZ
6716 record_arch_list_add_reg (ir.regcache, i);
6717
6718 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6719 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6720
6721 for (i = I387_ST0_REGNUM (tdep);
6722 i386_fp_regnum_p (gdbarch, i); i++)
6723 record_arch_list_add_reg (ir.regcache, i);
6724
6725 for (i = I387_FCTRL_REGNUM (tdep);
6726 i386_fpc_regnum_p (gdbarch, i); i++)
6727 record_arch_list_add_reg (ir.regcache, i);
6728 }
6729 break;
6730
6731 case 2: /* ldmxcsr */
6732 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6733 goto no_support;
6734 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6735 break;
6736
6737 case 3: /* stmxcsr */
6738 ir.ot = OT_LONG;
6739 if (i386_record_lea_modrm (&ir))
6740 return -1;
6741 break;
6742
6743 case 5: /* lfence */
6744 case 6: /* mfence */
6745 case 7: /* sfence clflush */
6746 break;
6747
6748 default:
6749 opcode = (opcode << 8) | ir.modrm;
6750 goto no_support;
6751 break;
6752 }
6753 break;
6754
6755 case 0x0fc3: /* movnti */
6756 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6757 if (i386_record_modrm (&ir))
6758 return -1;
6759 if (ir.mod == 3)
6760 goto no_support;
6761 ir.reg |= rex_r;
6762 if (i386_record_lea_modrm (&ir))
6763 return -1;
6764 break;
6765
6766 /* Add prefix to opcode. */
6767 case 0x0f10:
6768 case 0x0f11:
6769 case 0x0f12:
6770 case 0x0f13:
6771 case 0x0f14:
6772 case 0x0f15:
6773 case 0x0f16:
6774 case 0x0f17:
6775 case 0x0f28:
6776 case 0x0f29:
6777 case 0x0f2a:
6778 case 0x0f2b:
6779 case 0x0f2c:
6780 case 0x0f2d:
6781 case 0x0f2e:
6782 case 0x0f2f:
6783 case 0x0f38:
6784 case 0x0f39:
6785 case 0x0f3a:
6786 case 0x0f50:
6787 case 0x0f51:
6788 case 0x0f52:
6789 case 0x0f53:
6790 case 0x0f54:
6791 case 0x0f55:
6792 case 0x0f56:
6793 case 0x0f57:
6794 case 0x0f58:
6795 case 0x0f59:
6796 case 0x0f5a:
6797 case 0x0f5b:
6798 case 0x0f5c:
6799 case 0x0f5d:
6800 case 0x0f5e:
6801 case 0x0f5f:
6802 case 0x0f60:
6803 case 0x0f61:
6804 case 0x0f62:
6805 case 0x0f63:
6806 case 0x0f64:
6807 case 0x0f65:
6808 case 0x0f66:
6809 case 0x0f67:
6810 case 0x0f68:
6811 case 0x0f69:
6812 case 0x0f6a:
6813 case 0x0f6b:
6814 case 0x0f6c:
6815 case 0x0f6d:
6816 case 0x0f6e:
6817 case 0x0f6f:
6818 case 0x0f70:
6819 case 0x0f71:
6820 case 0x0f72:
6821 case 0x0f73:
6822 case 0x0f74:
6823 case 0x0f75:
6824 case 0x0f76:
6825 case 0x0f7c:
6826 case 0x0f7d:
6827 case 0x0f7e:
6828 case 0x0f7f:
6829 case 0x0fb8:
6830 case 0x0fc2:
6831 case 0x0fc4:
6832 case 0x0fc5:
6833 case 0x0fc6:
6834 case 0x0fd0:
6835 case 0x0fd1:
6836 case 0x0fd2:
6837 case 0x0fd3:
6838 case 0x0fd4:
6839 case 0x0fd5:
6840 case 0x0fd6:
6841 case 0x0fd7:
6842 case 0x0fd8:
6843 case 0x0fd9:
6844 case 0x0fda:
6845 case 0x0fdb:
6846 case 0x0fdc:
6847 case 0x0fdd:
6848 case 0x0fde:
6849 case 0x0fdf:
6850 case 0x0fe0:
6851 case 0x0fe1:
6852 case 0x0fe2:
6853 case 0x0fe3:
6854 case 0x0fe4:
6855 case 0x0fe5:
6856 case 0x0fe6:
6857 case 0x0fe7:
6858 case 0x0fe8:
6859 case 0x0fe9:
6860 case 0x0fea:
6861 case 0x0feb:
6862 case 0x0fec:
6863 case 0x0fed:
6864 case 0x0fee:
6865 case 0x0fef:
6866 case 0x0ff0:
6867 case 0x0ff1:
6868 case 0x0ff2:
6869 case 0x0ff3:
6870 case 0x0ff4:
6871 case 0x0ff5:
6872 case 0x0ff6:
6873 case 0x0ff7:
6874 case 0x0ff8:
6875 case 0x0ff9:
6876 case 0x0ffa:
6877 case 0x0ffb:
6878 case 0x0ffc:
6879 case 0x0ffd:
6880 case 0x0ffe:
6881 switch (prefixes)
6882 {
6883 case PREFIX_REPNZ:
6884 opcode |= 0xf20000;
6885 break;
6886 case PREFIX_DATA:
6887 opcode |= 0x660000;
6888 break;
6889 case PREFIX_REPZ:
6890 opcode |= 0xf30000;
6891 break;
6892 }
6893reswitch_prefix_add:
6894 switch (opcode)
6895 {
6896 case 0x0f38:
6897 case 0x660f38:
6898 case 0xf20f38:
6899 case 0x0f3a:
6900 case 0x660f3a:
6901 if (target_read_memory (ir.addr, &opcode8, 1))
6902 {
6903 printf_unfiltered (_("Process record: error reading memory at "
6904 "addr %s len = 1.\n"),
6905 paddress (gdbarch, ir.addr));
6906 return -1;
6907 }
6908 ir.addr++;
6909 opcode = (uint32_t) opcode8 | opcode << 8;
6910 goto reswitch_prefix_add;
6911 break;
6912
6913 case 0x0f10: /* movups */
6914 case 0x660f10: /* movupd */
6915 case 0xf30f10: /* movss */
6916 case 0xf20f10: /* movsd */
6917 case 0x0f12: /* movlps */
6918 case 0x660f12: /* movlpd */
6919 case 0xf30f12: /* movsldup */
6920 case 0xf20f12: /* movddup */
6921 case 0x0f14: /* unpcklps */
6922 case 0x660f14: /* unpcklpd */
6923 case 0x0f15: /* unpckhps */
6924 case 0x660f15: /* unpckhpd */
6925 case 0x0f16: /* movhps */
6926 case 0x660f16: /* movhpd */
6927 case 0xf30f16: /* movshdup */
6928 case 0x0f28: /* movaps */
6929 case 0x660f28: /* movapd */
6930 case 0x0f2a: /* cvtpi2ps */
6931 case 0x660f2a: /* cvtpi2pd */
6932 case 0xf30f2a: /* cvtsi2ss */
6933 case 0xf20f2a: /* cvtsi2sd */
6934 case 0x0f2c: /* cvttps2pi */
6935 case 0x660f2c: /* cvttpd2pi */
6936 case 0x0f2d: /* cvtps2pi */
6937 case 0x660f2d: /* cvtpd2pi */
6938 case 0x660f3800: /* pshufb */
6939 case 0x660f3801: /* phaddw */
6940 case 0x660f3802: /* phaddd */
6941 case 0x660f3803: /* phaddsw */
6942 case 0x660f3804: /* pmaddubsw */
6943 case 0x660f3805: /* phsubw */
6944 case 0x660f3806: /* phsubd */
4f7d61a8 6945 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
6946 case 0x660f3808: /* psignb */
6947 case 0x660f3809: /* psignw */
6948 case 0x660f380a: /* psignd */
6949 case 0x660f380b: /* pmulhrsw */
6950 case 0x660f3810: /* pblendvb */
6951 case 0x660f3814: /* blendvps */
6952 case 0x660f3815: /* blendvpd */
6953 case 0x660f381c: /* pabsb */
6954 case 0x660f381d: /* pabsw */
6955 case 0x660f381e: /* pabsd */
6956 case 0x660f3820: /* pmovsxbw */
6957 case 0x660f3821: /* pmovsxbd */
6958 case 0x660f3822: /* pmovsxbq */
6959 case 0x660f3823: /* pmovsxwd */
6960 case 0x660f3824: /* pmovsxwq */
6961 case 0x660f3825: /* pmovsxdq */
6962 case 0x660f3828: /* pmuldq */
6963 case 0x660f3829: /* pcmpeqq */
6964 case 0x660f382a: /* movntdqa */
6965 case 0x660f3a08: /* roundps */
6966 case 0x660f3a09: /* roundpd */
6967 case 0x660f3a0a: /* roundss */
6968 case 0x660f3a0b: /* roundsd */
6969 case 0x660f3a0c: /* blendps */
6970 case 0x660f3a0d: /* blendpd */
6971 case 0x660f3a0e: /* pblendw */
6972 case 0x660f3a0f: /* palignr */
6973 case 0x660f3a20: /* pinsrb */
6974 case 0x660f3a21: /* insertps */
6975 case 0x660f3a22: /* pinsrd pinsrq */
6976 case 0x660f3a40: /* dpps */
6977 case 0x660f3a41: /* dppd */
6978 case 0x660f3a42: /* mpsadbw */
6979 case 0x660f3a60: /* pcmpestrm */
6980 case 0x660f3a61: /* pcmpestri */
6981 case 0x660f3a62: /* pcmpistrm */
6982 case 0x660f3a63: /* pcmpistri */
6983 case 0x0f51: /* sqrtps */
6984 case 0x660f51: /* sqrtpd */
6985 case 0xf20f51: /* sqrtsd */
6986 case 0xf30f51: /* sqrtss */
6987 case 0x0f52: /* rsqrtps */
6988 case 0xf30f52: /* rsqrtss */
6989 case 0x0f53: /* rcpps */
6990 case 0xf30f53: /* rcpss */
6991 case 0x0f54: /* andps */
6992 case 0x660f54: /* andpd */
6993 case 0x0f55: /* andnps */
6994 case 0x660f55: /* andnpd */
6995 case 0x0f56: /* orps */
6996 case 0x660f56: /* orpd */
6997 case 0x0f57: /* xorps */
6998 case 0x660f57: /* xorpd */
6999 case 0x0f58: /* addps */
7000 case 0x660f58: /* addpd */
7001 case 0xf20f58: /* addsd */
7002 case 0xf30f58: /* addss */
7003 case 0x0f59: /* mulps */
7004 case 0x660f59: /* mulpd */
7005 case 0xf20f59: /* mulsd */
7006 case 0xf30f59: /* mulss */
7007 case 0x0f5a: /* cvtps2pd */
7008 case 0x660f5a: /* cvtpd2ps */
7009 case 0xf20f5a: /* cvtsd2ss */
7010 case 0xf30f5a: /* cvtss2sd */
7011 case 0x0f5b: /* cvtdq2ps */
7012 case 0x660f5b: /* cvtps2dq */
7013 case 0xf30f5b: /* cvttps2dq */
7014 case 0x0f5c: /* subps */
7015 case 0x660f5c: /* subpd */
7016 case 0xf20f5c: /* subsd */
7017 case 0xf30f5c: /* subss */
7018 case 0x0f5d: /* minps */
7019 case 0x660f5d: /* minpd */
7020 case 0xf20f5d: /* minsd */
7021 case 0xf30f5d: /* minss */
7022 case 0x0f5e: /* divps */
7023 case 0x660f5e: /* divpd */
7024 case 0xf20f5e: /* divsd */
7025 case 0xf30f5e: /* divss */
7026 case 0x0f5f: /* maxps */
7027 case 0x660f5f: /* maxpd */
7028 case 0xf20f5f: /* maxsd */
7029 case 0xf30f5f: /* maxss */
7030 case 0x660f60: /* punpcklbw */
7031 case 0x660f61: /* punpcklwd */
7032 case 0x660f62: /* punpckldq */
7033 case 0x660f63: /* packsswb */
7034 case 0x660f64: /* pcmpgtb */
7035 case 0x660f65: /* pcmpgtw */
56d2815c 7036 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7037 case 0x660f67: /* packuswb */
7038 case 0x660f68: /* punpckhbw */
7039 case 0x660f69: /* punpckhwd */
7040 case 0x660f6a: /* punpckhdq */
7041 case 0x660f6b: /* packssdw */
7042 case 0x660f6c: /* punpcklqdq */
7043 case 0x660f6d: /* punpckhqdq */
7044 case 0x660f6e: /* movd */
7045 case 0x660f6f: /* movdqa */
7046 case 0xf30f6f: /* movdqu */
7047 case 0x660f70: /* pshufd */
7048 case 0xf20f70: /* pshuflw */
7049 case 0xf30f70: /* pshufhw */
7050 case 0x660f74: /* pcmpeqb */
7051 case 0x660f75: /* pcmpeqw */
56d2815c 7052 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7053 case 0x660f7c: /* haddpd */
7054 case 0xf20f7c: /* haddps */
7055 case 0x660f7d: /* hsubpd */
7056 case 0xf20f7d: /* hsubps */
7057 case 0xf30f7e: /* movq */
7058 case 0x0fc2: /* cmpps */
7059 case 0x660fc2: /* cmppd */
7060 case 0xf20fc2: /* cmpsd */
7061 case 0xf30fc2: /* cmpss */
7062 case 0x660fc4: /* pinsrw */
7063 case 0x0fc6: /* shufps */
7064 case 0x660fc6: /* shufpd */
7065 case 0x660fd0: /* addsubpd */
7066 case 0xf20fd0: /* addsubps */
7067 case 0x660fd1: /* psrlw */
7068 case 0x660fd2: /* psrld */
7069 case 0x660fd3: /* psrlq */
7070 case 0x660fd4: /* paddq */
7071 case 0x660fd5: /* pmullw */
7072 case 0xf30fd6: /* movq2dq */
7073 case 0x660fd8: /* psubusb */
7074 case 0x660fd9: /* psubusw */
7075 case 0x660fda: /* pminub */
7076 case 0x660fdb: /* pand */
7077 case 0x660fdc: /* paddusb */
7078 case 0x660fdd: /* paddusw */
7079 case 0x660fde: /* pmaxub */
7080 case 0x660fdf: /* pandn */
7081 case 0x660fe0: /* pavgb */
7082 case 0x660fe1: /* psraw */
7083 case 0x660fe2: /* psrad */
7084 case 0x660fe3: /* pavgw */
7085 case 0x660fe4: /* pmulhuw */
7086 case 0x660fe5: /* pmulhw */
7087 case 0x660fe6: /* cvttpd2dq */
7088 case 0xf20fe6: /* cvtpd2dq */
7089 case 0xf30fe6: /* cvtdq2pd */
7090 case 0x660fe8: /* psubsb */
7091 case 0x660fe9: /* psubsw */
7092 case 0x660fea: /* pminsw */
7093 case 0x660feb: /* por */
7094 case 0x660fec: /* paddsb */
7095 case 0x660fed: /* paddsw */
7096 case 0x660fee: /* pmaxsw */
7097 case 0x660fef: /* pxor */
4f7d61a8 7098 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7099 case 0x660ff1: /* psllw */
7100 case 0x660ff2: /* pslld */
7101 case 0x660ff3: /* psllq */
7102 case 0x660ff4: /* pmuludq */
7103 case 0x660ff5: /* pmaddwd */
7104 case 0x660ff6: /* psadbw */
7105 case 0x660ff8: /* psubb */
7106 case 0x660ff9: /* psubw */
56d2815c 7107 case 0x660ffa: /* psubd */
a3c4230a
HZ
7108 case 0x660ffb: /* psubq */
7109 case 0x660ffc: /* paddb */
7110 case 0x660ffd: /* paddw */
56d2815c 7111 case 0x660ffe: /* paddd */
a3c4230a
HZ
7112 if (i386_record_modrm (&ir))
7113 return -1;
7114 ir.reg |= rex_r;
c131fcee 7115 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a
HZ
7116 goto no_support;
7117 record_arch_list_add_reg (ir.regcache,
7118 I387_XMM0_REGNUM (tdep) + ir.reg);
7119 if ((opcode & 0xfffffffc) == 0x660f3a60)
7120 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7121 break;
7122
7123 case 0x0f11: /* movups */
7124 case 0x660f11: /* movupd */
7125 case 0xf30f11: /* movss */
7126 case 0xf20f11: /* movsd */
7127 case 0x0f13: /* movlps */
7128 case 0x660f13: /* movlpd */
7129 case 0x0f17: /* movhps */
7130 case 0x660f17: /* movhpd */
7131 case 0x0f29: /* movaps */
7132 case 0x660f29: /* movapd */
7133 case 0x660f3a14: /* pextrb */
7134 case 0x660f3a15: /* pextrw */
7135 case 0x660f3a16: /* pextrd pextrq */
7136 case 0x660f3a17: /* extractps */
7137 case 0x660f7f: /* movdqa */
7138 case 0xf30f7f: /* movdqu */
7139 if (i386_record_modrm (&ir))
7140 return -1;
7141 if (ir.mod == 3)
7142 {
7143 if (opcode == 0x0f13 || opcode == 0x660f13
7144 || opcode == 0x0f17 || opcode == 0x660f17)
7145 goto no_support;
7146 ir.rm |= ir.rex_b;
1777feb0
MS
7147 if (!i386_xmm_regnum_p (gdbarch,
7148 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7149 goto no_support;
7150 record_arch_list_add_reg (ir.regcache,
7151 I387_XMM0_REGNUM (tdep) + ir.rm);
7152 }
7153 else
7154 {
7155 switch (opcode)
7156 {
7157 case 0x660f3a14:
7158 ir.ot = OT_BYTE;
7159 break;
7160 case 0x660f3a15:
7161 ir.ot = OT_WORD;
7162 break;
7163 case 0x660f3a16:
7164 ir.ot = OT_LONG;
7165 break;
7166 case 0x660f3a17:
7167 ir.ot = OT_QUAD;
7168 break;
7169 default:
7170 ir.ot = OT_DQUAD;
7171 break;
7172 }
7173 if (i386_record_lea_modrm (&ir))
7174 return -1;
7175 }
7176 break;
7177
7178 case 0x0f2b: /* movntps */
7179 case 0x660f2b: /* movntpd */
7180 case 0x0fe7: /* movntq */
7181 case 0x660fe7: /* movntdq */
7182 if (ir.mod == 3)
7183 goto no_support;
7184 if (opcode == 0x0fe7)
7185 ir.ot = OT_QUAD;
7186 else
7187 ir.ot = OT_DQUAD;
7188 if (i386_record_lea_modrm (&ir))
7189 return -1;
7190 break;
7191
7192 case 0xf30f2c: /* cvttss2si */
7193 case 0xf20f2c: /* cvttsd2si */
7194 case 0xf30f2d: /* cvtss2si */
7195 case 0xf20f2d: /* cvtsd2si */
7196 case 0xf20f38f0: /* crc32 */
7197 case 0xf20f38f1: /* crc32 */
7198 case 0x0f50: /* movmskps */
7199 case 0x660f50: /* movmskpd */
7200 case 0x0fc5: /* pextrw */
7201 case 0x660fc5: /* pextrw */
7202 case 0x0fd7: /* pmovmskb */
7203 case 0x660fd7: /* pmovmskb */
7204 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7205 break;
7206
7207 case 0x0f3800: /* pshufb */
7208 case 0x0f3801: /* phaddw */
7209 case 0x0f3802: /* phaddd */
7210 case 0x0f3803: /* phaddsw */
7211 case 0x0f3804: /* pmaddubsw */
7212 case 0x0f3805: /* phsubw */
7213 case 0x0f3806: /* phsubd */
4f7d61a8 7214 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7215 case 0x0f3808: /* psignb */
7216 case 0x0f3809: /* psignw */
7217 case 0x0f380a: /* psignd */
7218 case 0x0f380b: /* pmulhrsw */
7219 case 0x0f381c: /* pabsb */
7220 case 0x0f381d: /* pabsw */
7221 case 0x0f381e: /* pabsd */
7222 case 0x0f382b: /* packusdw */
7223 case 0x0f3830: /* pmovzxbw */
7224 case 0x0f3831: /* pmovzxbd */
7225 case 0x0f3832: /* pmovzxbq */
7226 case 0x0f3833: /* pmovzxwd */
7227 case 0x0f3834: /* pmovzxwq */
7228 case 0x0f3835: /* pmovzxdq */
7229 case 0x0f3837: /* pcmpgtq */
7230 case 0x0f3838: /* pminsb */
7231 case 0x0f3839: /* pminsd */
7232 case 0x0f383a: /* pminuw */
7233 case 0x0f383b: /* pminud */
7234 case 0x0f383c: /* pmaxsb */
7235 case 0x0f383d: /* pmaxsd */
7236 case 0x0f383e: /* pmaxuw */
7237 case 0x0f383f: /* pmaxud */
7238 case 0x0f3840: /* pmulld */
7239 case 0x0f3841: /* phminposuw */
7240 case 0x0f3a0f: /* palignr */
7241 case 0x0f60: /* punpcklbw */
7242 case 0x0f61: /* punpcklwd */
7243 case 0x0f62: /* punpckldq */
7244 case 0x0f63: /* packsswb */
7245 case 0x0f64: /* pcmpgtb */
7246 case 0x0f65: /* pcmpgtw */
56d2815c 7247 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7248 case 0x0f67: /* packuswb */
7249 case 0x0f68: /* punpckhbw */
7250 case 0x0f69: /* punpckhwd */
7251 case 0x0f6a: /* punpckhdq */
7252 case 0x0f6b: /* packssdw */
7253 case 0x0f6e: /* movd */
7254 case 0x0f6f: /* movq */
7255 case 0x0f70: /* pshufw */
7256 case 0x0f74: /* pcmpeqb */
7257 case 0x0f75: /* pcmpeqw */
56d2815c 7258 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7259 case 0x0fc4: /* pinsrw */
7260 case 0x0fd1: /* psrlw */
7261 case 0x0fd2: /* psrld */
7262 case 0x0fd3: /* psrlq */
7263 case 0x0fd4: /* paddq */
7264 case 0x0fd5: /* pmullw */
7265 case 0xf20fd6: /* movdq2q */
7266 case 0x0fd8: /* psubusb */
7267 case 0x0fd9: /* psubusw */
7268 case 0x0fda: /* pminub */
7269 case 0x0fdb: /* pand */
7270 case 0x0fdc: /* paddusb */
7271 case 0x0fdd: /* paddusw */
7272 case 0x0fde: /* pmaxub */
7273 case 0x0fdf: /* pandn */
7274 case 0x0fe0: /* pavgb */
7275 case 0x0fe1: /* psraw */
7276 case 0x0fe2: /* psrad */
7277 case 0x0fe3: /* pavgw */
7278 case 0x0fe4: /* pmulhuw */
7279 case 0x0fe5: /* pmulhw */
7280 case 0x0fe8: /* psubsb */
7281 case 0x0fe9: /* psubsw */
7282 case 0x0fea: /* pminsw */
7283 case 0x0feb: /* por */
7284 case 0x0fec: /* paddsb */
7285 case 0x0fed: /* paddsw */
7286 case 0x0fee: /* pmaxsw */
7287 case 0x0fef: /* pxor */
7288 case 0x0ff1: /* psllw */
7289 case 0x0ff2: /* pslld */
7290 case 0x0ff3: /* psllq */
7291 case 0x0ff4: /* pmuludq */
7292 case 0x0ff5: /* pmaddwd */
7293 case 0x0ff6: /* psadbw */
7294 case 0x0ff8: /* psubb */
7295 case 0x0ff9: /* psubw */
56d2815c 7296 case 0x0ffa: /* psubd */
a3c4230a
HZ
7297 case 0x0ffb: /* psubq */
7298 case 0x0ffc: /* paddb */
7299 case 0x0ffd: /* paddw */
56d2815c 7300 case 0x0ffe: /* paddd */
a3c4230a
HZ
7301 if (i386_record_modrm (&ir))
7302 return -1;
7303 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7304 goto no_support;
7305 record_arch_list_add_reg (ir.regcache,
7306 I387_MM0_REGNUM (tdep) + ir.reg);
7307 break;
7308
7309 case 0x0f71: /* psllw */
7310 case 0x0f72: /* pslld */
7311 case 0x0f73: /* psllq */
7312 if (i386_record_modrm (&ir))
7313 return -1;
7314 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7315 goto no_support;
7316 record_arch_list_add_reg (ir.regcache,
7317 I387_MM0_REGNUM (tdep) + ir.rm);
7318 break;
7319
7320 case 0x660f71: /* psllw */
7321 case 0x660f72: /* pslld */
7322 case 0x660f73: /* psllq */
7323 if (i386_record_modrm (&ir))
7324 return -1;
7325 ir.rm |= ir.rex_b;
c131fcee 7326 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7327 goto no_support;
7328 record_arch_list_add_reg (ir.regcache,
7329 I387_XMM0_REGNUM (tdep) + ir.rm);
7330 break;
7331
7332 case 0x0f7e: /* movd */
7333 case 0x660f7e: /* movd */
7334 if (i386_record_modrm (&ir))
7335 return -1;
7336 if (ir.mod == 3)
7337 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7338 else
7339 {
7340 if (ir.dflag == 2)
7341 ir.ot = OT_QUAD;
7342 else
7343 ir.ot = OT_LONG;
7344 if (i386_record_lea_modrm (&ir))
7345 return -1;
7346 }
7347 break;
7348
7349 case 0x0f7f: /* movq */
7350 if (i386_record_modrm (&ir))
7351 return -1;
7352 if (ir.mod == 3)
7353 {
7354 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7355 goto no_support;
7356 record_arch_list_add_reg (ir.regcache,
7357 I387_MM0_REGNUM (tdep) + ir.rm);
7358 }
7359 else
7360 {
7361 ir.ot = OT_QUAD;
7362 if (i386_record_lea_modrm (&ir))
7363 return -1;
7364 }
7365 break;
7366
7367 case 0xf30fb8: /* popcnt */
7368 if (i386_record_modrm (&ir))
7369 return -1;
7370 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7371 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7372 break;
7373
7374 case 0x660fd6: /* movq */
7375 if (i386_record_modrm (&ir))
7376 return -1;
7377 if (ir.mod == 3)
7378 {
7379 ir.rm |= ir.rex_b;
1777feb0
MS
7380 if (!i386_xmm_regnum_p (gdbarch,
7381 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7382 goto no_support;
7383 record_arch_list_add_reg (ir.regcache,
7384 I387_XMM0_REGNUM (tdep) + ir.rm);
7385 }
7386 else
7387 {
7388 ir.ot = OT_QUAD;
7389 if (i386_record_lea_modrm (&ir))
7390 return -1;
7391 }
7392 break;
7393
7394 case 0x660f3817: /* ptest */
7395 case 0x0f2e: /* ucomiss */
7396 case 0x660f2e: /* ucomisd */
7397 case 0x0f2f: /* comiss */
7398 case 0x660f2f: /* comisd */
7399 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7400 break;
7401
7402 case 0x0ff7: /* maskmovq */
7403 regcache_raw_read_unsigned (ir.regcache,
7404 ir.regmap[X86_RECORD_REDI_REGNUM],
7405 &addr);
7406 if (record_arch_list_add_mem (addr, 64))
7407 return -1;
7408 break;
7409
7410 case 0x660ff7: /* maskmovdqu */
7411 regcache_raw_read_unsigned (ir.regcache,
7412 ir.regmap[X86_RECORD_REDI_REGNUM],
7413 &addr);
7414 if (record_arch_list_add_mem (addr, 128))
7415 return -1;
7416 break;
7417
7418 default:
7419 goto no_support;
7420 break;
7421 }
7422 break;
7ad10968
HZ
7423
7424 default:
7ad10968
HZ
7425 goto no_support;
7426 break;
7427 }
7428
cf648174
HZ
7429 /* In the future, maybe still need to deal with need_dasm. */
7430 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7ad10968
HZ
7431 if (record_arch_list_add_end ())
7432 return -1;
7433
7434 return 0;
7435
01fe1b41 7436 no_support:
a3c4230a
HZ
7437 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7438 "at address %s.\n"),
7439 (unsigned int) (opcode),
7440 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
7441 return -1;
7442}
7443
cf648174
HZ
7444static const int i386_record_regmap[] =
7445{
7446 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7447 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7448 0, 0, 0, 0, 0, 0, 0, 0,
7449 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7450 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7451};
7452
7a697b8d 7453/* Check that the given address appears suitable for a fast
405f8e94 7454 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
7455 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7456 jump and not have to worry about program jumps to an address in the
405f8e94
SS
7457 middle of the tracepoint jump. On x86, it may be possible to use
7458 4-byte jumps with a 2-byte offset to a trampoline located in the
7459 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
7460 of instruction to replace, and 0 if not, plus an explanatory
7461 string. */
7462
7463static int
7464i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7465 CORE_ADDR addr, int *isize, char **msg)
7466{
7467 int len, jumplen;
7468 static struct ui_file *gdb_null = NULL;
7469
405f8e94
SS
7470 /* Ask the target for the minimum instruction length supported. */
7471 jumplen = target_get_min_fast_tracepoint_insn_len ();
7472
7473 if (jumplen < 0)
7474 {
7475 /* If the target does not support the get_min_fast_tracepoint_insn_len
7476 operation, assume that fast tracepoints will always be implemented
7477 using 4-byte relative jumps on both x86 and x86-64. */
7478 jumplen = 5;
7479 }
7480 else if (jumplen == 0)
7481 {
7482 /* If the target does support get_min_fast_tracepoint_insn_len but
7483 returns zero, then the IPA has not loaded yet. In this case,
7484 we optimistically assume that truncated 2-byte relative jumps
7485 will be available on x86, and compensate later if this assumption
7486 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7487 jumps will always be used. */
7488 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7489 }
7a697b8d
SS
7490
7491 /* Dummy file descriptor for the disassembler. */
7492 if (!gdb_null)
7493 gdb_null = ui_file_new ();
7494
7495 /* Check for fit. */
7496 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
7497 if (isize)
7498 *isize = len;
7499
7a697b8d
SS
7500 if (len < jumplen)
7501 {
7502 /* Return a bit of target-specific detail to add to the caller's
7503 generic failure message. */
7504 if (msg)
1777feb0
MS
7505 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7506 "need at least %d bytes for the jump"),
7a697b8d
SS
7507 len, jumplen);
7508 return 0;
7509 }
405f8e94
SS
7510 else
7511 {
7512 if (msg)
7513 *msg = NULL;
7514 return 1;
7515 }
7a697b8d
SS
7516}
7517
90884b2b
L
7518static int
7519i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7520 struct tdesc_arch_data *tdesc_data)
7521{
7522 const struct target_desc *tdesc = tdep->tdesc;
c131fcee
L
7523 const struct tdesc_feature *feature_core;
7524 const struct tdesc_feature *feature_sse, *feature_avx;
90884b2b
L
7525 int i, num_regs, valid_p;
7526
7527 if (! tdesc_has_registers (tdesc))
7528 return 0;
7529
7530 /* Get core registers. */
7531 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
7532 if (feature_core == NULL)
7533 return 0;
90884b2b
L
7534
7535 /* Get SSE registers. */
c131fcee 7536 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 7537
c131fcee
L
7538 /* Try AVX registers. */
7539 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7540
90884b2b
L
7541 valid_p = 1;
7542
c131fcee
L
7543 /* The XCR0 bits. */
7544 if (feature_avx)
7545 {
3a13a53b
L
7546 /* AVX register description requires SSE register description. */
7547 if (!feature_sse)
7548 return 0;
7549
c131fcee
L
7550 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7551
7552 /* It may have been set by OSABI initialization function. */
7553 if (tdep->num_ymm_regs == 0)
7554 {
7555 tdep->ymmh_register_names = i386_ymmh_names;
7556 tdep->num_ymm_regs = 8;
7557 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7558 }
7559
7560 for (i = 0; i < tdep->num_ymm_regs; i++)
7561 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7562 tdep->ymm0h_regnum + i,
7563 tdep->ymmh_register_names[i]);
7564 }
3a13a53b 7565 else if (feature_sse)
c131fcee 7566 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
7567 else
7568 {
7569 tdep->xcr0 = I386_XSTATE_X87_MASK;
7570 tdep->num_xmm_regs = 0;
7571 }
c131fcee 7572
90884b2b
L
7573 num_regs = tdep->num_core_regs;
7574 for (i = 0; i < num_regs; i++)
7575 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7576 tdep->register_names[i]);
7577
3a13a53b
L
7578 if (feature_sse)
7579 {
7580 /* Need to include %mxcsr, so add one. */
7581 num_regs += tdep->num_xmm_regs + 1;
7582 for (; i < num_regs; i++)
7583 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7584 tdep->register_names[i]);
7585 }
90884b2b
L
7586
7587 return valid_p;
7588}
7589
7ad10968
HZ
7590\f
7591static struct gdbarch *
7592i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7593{
7594 struct gdbarch_tdep *tdep;
7595 struct gdbarch *gdbarch;
90884b2b
L
7596 struct tdesc_arch_data *tdesc_data;
7597 const struct target_desc *tdesc;
1ba53b71 7598 int mm0_regnum;
c131fcee 7599 int ymm0_regnum;
7ad10968
HZ
7600
7601 /* If there is already a candidate, use it. */
7602 arches = gdbarch_list_lookup_by_info (arches, &info);
7603 if (arches != NULL)
7604 return arches->gdbarch;
7605
7606 /* Allocate space for the new architecture. */
7607 tdep = XCALLOC (1, struct gdbarch_tdep);
7608 gdbarch = gdbarch_alloc (&info, tdep);
7609
7610 /* General-purpose registers. */
7611 tdep->gregset = NULL;
7612 tdep->gregset_reg_offset = NULL;
7613 tdep->gregset_num_regs = I386_NUM_GREGS;
7614 tdep->sizeof_gregset = 0;
7615
7616 /* Floating-point registers. */
7617 tdep->fpregset = NULL;
7618 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7619
c131fcee
L
7620 tdep->xstateregset = NULL;
7621
7ad10968
HZ
7622 /* The default settings include the FPU registers, the MMX registers
7623 and the SSE registers. This can be overridden for a specific ABI
7624 by adjusting the members `st0_regnum', `mm0_regnum' and
7625 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 7626 will show up in the output of "info all-registers". */
7ad10968
HZ
7627
7628 tdep->st0_regnum = I386_ST0_REGNUM;
7629
7ad10968
HZ
7630 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7631 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7632
7633 tdep->jb_pc_offset = -1;
7634 tdep->struct_return = pcc_struct_return;
7635 tdep->sigtramp_start = 0;
7636 tdep->sigtramp_end = 0;
7637 tdep->sigtramp_p = i386_sigtramp_p;
7638 tdep->sigcontext_addr = NULL;
7639 tdep->sc_reg_offset = NULL;
7640 tdep->sc_pc_offset = -1;
7641 tdep->sc_sp_offset = -1;
7642
c131fcee
L
7643 tdep->xsave_xcr0_offset = -1;
7644
cf648174
HZ
7645 tdep->record_regmap = i386_record_regmap;
7646
205c306f
DM
7647 set_gdbarch_long_long_align_bit (gdbarch, 32);
7648
7ad10968
HZ
7649 /* The format used for `long double' on almost all i386 targets is
7650 the i387 extended floating-point format. In fact, of all targets
7651 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7652 on having a `long double' that's not `long' at all. */
7653 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7654
7655 /* Although the i387 extended floating-point has only 80 significant
7656 bits, a `long double' actually takes up 96, probably to enforce
7657 alignment. */
7658 set_gdbarch_long_double_bit (gdbarch, 96);
7659
7ad10968
HZ
7660 /* Register numbers of various important registers. */
7661 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7662 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7663 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7664 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7665
7666 /* NOTE: kettenis/20040418: GCC does have two possible register
7667 numbering schemes on the i386: dbx and SVR4. These schemes
7668 differ in how they number %ebp, %esp, %eflags, and the
7669 floating-point registers, and are implemented by the arrays
7670 dbx_register_map[] and svr4_dbx_register_map in
7671 gcc/config/i386.c. GCC also defines a third numbering scheme in
7672 gcc/config/i386.c, which it designates as the "default" register
7673 map used in 64bit mode. This last register numbering scheme is
7674 implemented in dbx64_register_map, and is used for AMD64; see
7675 amd64-tdep.c.
7676
7677 Currently, each GCC i386 target always uses the same register
7678 numbering scheme across all its supported debugging formats
7679 i.e. SDB (COFF), stabs and DWARF 2. This is because
7680 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7681 DBX_REGISTER_NUMBER macro which is defined by each target's
7682 respective config header in a manner independent of the requested
7683 output debugging format.
7684
7685 This does not match the arrangement below, which presumes that
7686 the SDB and stabs numbering schemes differ from the DWARF and
7687 DWARF 2 ones. The reason for this arrangement is that it is
7688 likely to get the numbering scheme for the target's
7689 default/native debug format right. For targets where GCC is the
7690 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7691 targets where the native toolchain uses a different numbering
7692 scheme for a particular debug format (stabs-in-ELF on Solaris)
7693 the defaults below will have to be overridden, like
7694 i386_elf_init_abi() does. */
7695
7696 /* Use the dbx register numbering scheme for stabs and COFF. */
7697 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7698 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7699
7700 /* Use the SVR4 register numbering scheme for DWARF 2. */
7701 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7702
7703 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7704 be in use on any of the supported i386 targets. */
7705
7706 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7707
7708 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7709
7710 /* Call dummy code. */
7711 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 7712 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
7713
7714 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7715 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7716 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7717
7718 set_gdbarch_return_value (gdbarch, i386_return_value);
7719
7720 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7721
7722 /* Stack grows downward. */
7723 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7724
7725 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7726 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7727 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7728
7729 set_gdbarch_frame_args_skip (gdbarch, 8);
7730
7ad10968
HZ
7731 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7732
7733 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7734
7735 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7736
7737 /* Add the i386 register groups. */
7738 i386_add_reggroups (gdbarch);
90884b2b 7739 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 7740
143985b7
AF
7741 /* Helper for function argument information. */
7742 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7743
06da04c6 7744 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
7745 appended to the list first, so that it supercedes the DWARF
7746 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
7747 currently fails). */
7748 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7749
7750 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 7751 to the list before the prologue-based unwinders, so that DWARF
06da04c6 7752 CFI info will be used if it is available. */
10458914 7753 dwarf2_append_unwinders (gdbarch);
6405b0a6 7754
acd5c798 7755 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 7756
1ba53b71 7757 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
7758 set_gdbarch_pseudo_register_read_value (gdbarch,
7759 i386_pseudo_register_read_value);
90884b2b
L
7760 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7761
7762 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7763 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7764
c131fcee
L
7765 /* Override the normal target description method to make the AVX
7766 upper halves anonymous. */
7767 set_gdbarch_register_name (gdbarch, i386_register_name);
7768
7769 /* Even though the default ABI only includes general-purpose registers,
7770 floating-point registers and the SSE registers, we have to leave a
7771 gap for the upper AVX registers. */
7772 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
90884b2b
L
7773
7774 /* Get the x86 target description from INFO. */
7775 tdesc = info.target_desc;
7776 if (! tdesc_has_registers (tdesc))
7777 tdesc = tdesc_i386;
7778 tdep->tdesc = tdesc;
7779
7780 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7781 tdep->register_names = i386_register_names;
7782
c131fcee
L
7783 /* No upper YMM registers. */
7784 tdep->ymmh_register_names = NULL;
7785 tdep->ymm0h_regnum = -1;
7786
1ba53b71
L
7787 tdep->num_byte_regs = 8;
7788 tdep->num_word_regs = 8;
7789 tdep->num_dword_regs = 0;
7790 tdep->num_mmx_regs = 8;
c131fcee 7791 tdep->num_ymm_regs = 0;
1ba53b71 7792
90884b2b
L
7793 tdesc_data = tdesc_data_alloc ();
7794
dde08ee1
PA
7795 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7796
6710bf39
SS
7797 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7798
3ce1502b 7799 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 7800 info.tdep_info = (void *) tdesc_data;
4be87837 7801 gdbarch_init_osabi (info, gdbarch);
3ce1502b 7802
c131fcee
L
7803 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7804 {
7805 tdesc_data_cleanup (tdesc_data);
7806 xfree (tdep);
7807 gdbarch_free (gdbarch);
7808 return NULL;
7809 }
7810
1ba53b71
L
7811 /* Wire in pseudo registers. Number of pseudo registers may be
7812 changed. */
7813 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7814 + tdep->num_word_regs
7815 + tdep->num_dword_regs
c131fcee
L
7816 + tdep->num_mmx_regs
7817 + tdep->num_ymm_regs));
1ba53b71 7818
90884b2b
L
7819 /* Target description may be changed. */
7820 tdesc = tdep->tdesc;
7821
90884b2b
L
7822 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7823
7824 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7825 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7826
1ba53b71
L
7827 /* Make %al the first pseudo-register. */
7828 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7829 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7830
c131fcee 7831 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
7832 if (tdep->num_dword_regs)
7833 {
1c6272a6 7834 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
7835 tdep->eax_regnum = ymm0_regnum;
7836 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
7837 }
7838 else
7839 tdep->eax_regnum = -1;
7840
c131fcee
L
7841 mm0_regnum = ymm0_regnum;
7842 if (tdep->num_ymm_regs)
7843 {
1c6272a6 7844 /* Support YMM pseudo-register if it is available. */
c131fcee
L
7845 tdep->ymm0_regnum = ymm0_regnum;
7846 mm0_regnum += tdep->num_ymm_regs;
7847 }
7848 else
7849 tdep->ymm0_regnum = -1;
7850
1ba53b71
L
7851 if (tdep->num_mmx_regs != 0)
7852 {
1c6272a6 7853 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71
L
7854 tdep->mm0_regnum = mm0_regnum;
7855 }
7856 else
7857 tdep->mm0_regnum = -1;
7858
06da04c6 7859 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 7860 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
7861 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7862 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 7863
8446b36a
MK
7864 /* If we have a register mapping, enable the generic core file
7865 support, unless it has already been enabled. */
7866 if (tdep->gregset_reg_offset
7867 && !gdbarch_regset_from_core_section_p (gdbarch))
7868 set_gdbarch_regset_from_core_section (gdbarch,
7869 i386_regset_from_core_section);
7870
514f746b
AR
7871 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7872 i386_skip_permanent_breakpoint);
7873
7a697b8d
SS
7874 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7875 i386_fast_tracepoint_valid_at);
7876
a62cc96e
AC
7877 return gdbarch;
7878}
7879
8201327c
MK
7880static enum gdb_osabi
7881i386_coff_osabi_sniffer (bfd *abfd)
7882{
762c5349
MK
7883 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7884 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
7885 return GDB_OSABI_GO32;
7886
7887 return GDB_OSABI_UNKNOWN;
7888}
8201327c
MK
7889\f
7890
28e9e0f0
MK
7891/* Provide a prototype to silence -Wmissing-prototypes. */
7892void _initialize_i386_tdep (void);
7893
c906108c 7894void
fba45db2 7895_initialize_i386_tdep (void)
c906108c 7896{
a62cc96e
AC
7897 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7898
fc338970 7899 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
7900 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7901 &disassembly_flavor, _("\
7902Set the disassembly flavor."), _("\
7903Show the disassembly flavor."), _("\
7904The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7905 NULL,
7906 NULL, /* FIXME: i18n: */
7907 &setlist, &showlist);
8201327c
MK
7908
7909 /* Add the variable that controls the convention for returning
7910 structs. */
7ab04401
AC
7911 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7912 &struct_convention, _("\
7913Set the convention for returning small structs."), _("\
7914Show the convention for returning small structs."), _("\
7915Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7916is \"default\"."),
7917 NULL,
7918 NULL, /* FIXME: i18n: */
7919 &setlist, &showlist);
8201327c
MK
7920
7921 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7922 i386_coff_osabi_sniffer);
8201327c 7923
05816f70 7924 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 7925 i386_svr4_init_abi);
05816f70 7926 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 7927 i386_go32_init_abi);
38c968cf 7928
209bd28e 7929 /* Initialize the i386-specific register groups. */
38c968cf 7930 i386_init_reggroups ();
90884b2b
L
7931
7932 /* Initialize the standard target descriptions. */
7933 initialize_tdesc_i386 ();
3a13a53b 7934 initialize_tdesc_i386_mmx ();
c131fcee 7935 initialize_tdesc_i386_avx ();
c8d5aac9
L
7936
7937 /* Tell remote stub that we support XML target description. */
7938 register_remote_support_xml ("i386");
c906108c 7939}
This page took 1.76907 seconds and 4 git commands to generate.