* configure.ac: Switch license to GPLv3.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5ae96ec1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798 29#include "doublest.h"
c906108c 30#include "frame.h"
acd5c798
MK
31#include "frame-base.h"
32#include "frame-unwind.h"
c906108c 33#include "inferior.h"
acd5c798 34#include "gdbcmd.h"
c906108c 35#include "gdbcore.h"
e6bb342a 36#include "gdbtypes.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
30b0e2d8 154/* Return the name of register REGNUM. */
fc633446 155
fa88f677 156const char *
30b0e2d8 157i386_register_name (int regnum)
fc633446 158{
30b0e2d8
MK
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
fc633446 161
30b0e2d8
MK
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
70913449 164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
f57d151a
UW
204 return gdbarch_num_regs (current_gdbarch)
205 + gdbarch_num_pseudo_regs (current_gdbarch);
85540d8c
MK
206}
207
c4fc7f1b
MK
208/* Convert SVR4 register number REG to the appropriate register number
209 used by GDB. */
85540d8c 210
8201327c 211static int
c4fc7f1b 212i386_svr4_reg_to_regnum (int reg)
85540d8c 213{
c4fc7f1b
MK
214 /* This implements the GCC register map that tries to be compatible
215 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
216
217 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
218 numbers the floating point registers differently. */
219 if (reg >= 0 && reg <= 9)
220 {
acd5c798 221 /* General-purpose registers. */
85540d8c
MK
222 return reg;
223 }
224 else if (reg >= 11 && reg <= 18)
225 {
226 /* Floating-point registers. */
5716833c 227 return reg - 11 + I387_ST0_REGNUM;
85540d8c 228 }
c6f4c129 229 else if (reg >= 21 && reg <= 36)
85540d8c 230 {
c4fc7f1b
MK
231 /* The SSE and MMX registers have the same numbers as with dbx. */
232 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
233 }
234
c6f4c129
JB
235 switch (reg)
236 {
237 case 37: return I387_FCTRL_REGNUM;
238 case 38: return I387_FSTAT_REGNUM;
239 case 39: return I387_MXCSR_REGNUM;
240 case 40: return I386_ES_REGNUM;
241 case 41: return I386_CS_REGNUM;
242 case 42: return I386_SS_REGNUM;
243 case 43: return I386_DS_REGNUM;
244 case 44: return I386_FS_REGNUM;
245 case 45: return I386_GS_REGNUM;
246 }
247
85540d8c 248 /* This will hopefully provoke a warning. */
f57d151a
UW
249 return gdbarch_num_regs (current_gdbarch)
250 + gdbarch_num_pseudo_regs (current_gdbarch);
85540d8c 251}
5716833c
MK
252
253#undef I387_ST0_REGNUM
254#undef I387_MM0_REGNUM
255#undef I387_NUM_XMM_REGS
fc338970 256\f
917317f4 257
fc338970
MK
258/* This is the variable that is set with "set disassembly-flavor", and
259 its legitimate values. */
53904c9e
AC
260static const char att_flavor[] = "att";
261static const char intel_flavor[] = "intel";
262static const char *valid_flavors[] =
c5aa993b 263{
c906108c
SS
264 att_flavor,
265 intel_flavor,
266 NULL
267};
53904c9e 268static const char *disassembly_flavor = att_flavor;
acd5c798 269\f
c906108c 270
acd5c798
MK
271/* Use the program counter to determine the contents and size of a
272 breakpoint instruction. Return a pointer to a string of bytes that
273 encode a breakpoint instruction, store the length of the string in
274 *LEN and optionally adjust *PC to point to the correct memory
275 location for inserting the breakpoint.
c906108c 276
acd5c798
MK
277 On the i386 we have a single breakpoint that fits in a single byte
278 and can be inserted anywhere.
c906108c 279
acd5c798 280 This function is 64-bit safe. */
63c0089f
MK
281
282static const gdb_byte *
acd5c798 283i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 284{
63c0089f
MK
285 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
286
acd5c798
MK
287 *len = sizeof (break_insn);
288 return break_insn;
c906108c 289}
fc338970 290\f
acd5c798
MK
291#ifdef I386_REGNO_TO_SYMMETRY
292#error "The Sequent Symmetry is no longer supported."
293#endif
c906108c 294
acd5c798
MK
295/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
296 and %esp "belong" to the calling function. Therefore these
297 registers should be saved if they're going to be modified. */
c906108c 298
acd5c798
MK
299/* The maximum number of saved registers. This should include all
300 registers mentioned above, and %eip. */
a3386186 301#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
302
303struct i386_frame_cache
c906108c 304{
acd5c798
MK
305 /* Base address. */
306 CORE_ADDR base;
772562f8 307 LONGEST sp_offset;
acd5c798
MK
308 CORE_ADDR pc;
309
fd13a04a
AC
310 /* Saved registers. */
311 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 312 CORE_ADDR saved_sp;
92dd43fa 313 int stack_align;
acd5c798
MK
314 int pc_in_eax;
315
316 /* Stack space reserved for local variables. */
317 long locals;
318};
319
320/* Allocate and initialize a frame cache. */
321
322static struct i386_frame_cache *
fd13a04a 323i386_alloc_frame_cache (void)
acd5c798
MK
324{
325 struct i386_frame_cache *cache;
326 int i;
327
328 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
329
330 /* Base address. */
331 cache->base = 0;
332 cache->sp_offset = -4;
333 cache->pc = 0;
334
fd13a04a
AC
335 /* Saved registers. We initialize these to -1 since zero is a valid
336 offset (that's where %ebp is supposed to be stored). */
337 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
338 cache->saved_regs[i] = -1;
acd5c798 339 cache->saved_sp = 0;
92dd43fa 340 cache->stack_align = 0;
acd5c798
MK
341 cache->pc_in_eax = 0;
342
343 /* Frameless until proven otherwise. */
344 cache->locals = -1;
345
346 return cache;
347}
c906108c 348
acd5c798
MK
349/* If the instruction at PC is a jump, return the address of its
350 target. Otherwise, return PC. */
c906108c 351
acd5c798
MK
352static CORE_ADDR
353i386_follow_jump (CORE_ADDR pc)
354{
63c0089f 355 gdb_byte op;
acd5c798
MK
356 long delta = 0;
357 int data16 = 0;
c906108c 358
24a2a654 359 read_memory_nobpt (pc, &op, 1);
acd5c798 360 if (op == 0x66)
c906108c 361 {
c906108c 362 data16 = 1;
acd5c798 363 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
364 }
365
acd5c798 366 switch (op)
c906108c
SS
367 {
368 case 0xe9:
fc338970 369 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
370 if (data16)
371 {
acd5c798 372 delta = read_memory_integer (pc + 2, 2);
c906108c 373
fc338970
MK
374 /* Include the size of the jmp instruction (including the
375 0x66 prefix). */
acd5c798 376 delta += 4;
c906108c
SS
377 }
378 else
379 {
acd5c798 380 delta = read_memory_integer (pc + 1, 4);
c906108c 381
acd5c798
MK
382 /* Include the size of the jmp instruction. */
383 delta += 5;
c906108c
SS
384 }
385 break;
386 case 0xeb:
fc338970 387 /* Relative jump, disp8 (ignore data16). */
acd5c798 388 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 389
acd5c798 390 delta += data16 + 2;
c906108c
SS
391 break;
392 }
c906108c 393
acd5c798
MK
394 return pc + delta;
395}
fc338970 396
acd5c798
MK
397/* Check whether PC points at a prologue for a function returning a
398 structure or union. If so, it updates CACHE and returns the
399 address of the first instruction after the code sequence that
400 removes the "hidden" argument from the stack or CURRENT_PC,
401 whichever is smaller. Otherwise, return PC. */
c906108c 402
acd5c798
MK
403static CORE_ADDR
404i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
405 struct i386_frame_cache *cache)
c906108c 406{
acd5c798
MK
407 /* Functions that return a structure or union start with:
408
409 popl %eax 0x58
410 xchgl %eax, (%esp) 0x87 0x04 0x24
411 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
412
413 (the System V compiler puts out the second `xchg' instruction,
414 and the assembler doesn't try to optimize it, so the 'sib' form
415 gets generated). This sequence is used to get the address of the
416 return buffer for a function that returns a structure. */
63c0089f
MK
417 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
418 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
419 gdb_byte buf[4];
420 gdb_byte op;
c906108c 421
acd5c798
MK
422 if (current_pc <= pc)
423 return pc;
424
24a2a654 425 read_memory_nobpt (pc, &op, 1);
c906108c 426
acd5c798
MK
427 if (op != 0x58) /* popl %eax */
428 return pc;
c906108c 429
24a2a654 430 read_memory_nobpt (pc + 1, buf, 4);
acd5c798
MK
431 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
432 return pc;
c906108c 433
acd5c798 434 if (current_pc == pc)
c906108c 435 {
acd5c798
MK
436 cache->sp_offset += 4;
437 return current_pc;
c906108c
SS
438 }
439
acd5c798 440 if (current_pc == pc + 1)
c906108c 441 {
acd5c798
MK
442 cache->pc_in_eax = 1;
443 return current_pc;
444 }
445
446 if (buf[1] == proto1[1])
447 return pc + 4;
448 else
449 return pc + 5;
450}
451
452static CORE_ADDR
453i386_skip_probe (CORE_ADDR pc)
454{
455 /* A function may start with
fc338970 456
acd5c798
MK
457 pushl constant
458 call _probe
459 addl $4, %esp
fc338970 460
acd5c798
MK
461 followed by
462
463 pushl %ebp
fc338970 464
acd5c798 465 etc. */
63c0089f
MK
466 gdb_byte buf[8];
467 gdb_byte op;
fc338970 468
24a2a654 469 read_memory_nobpt (pc, &op, 1);
acd5c798
MK
470
471 if (op == 0x68 || op == 0x6a)
472 {
473 int delta;
c906108c 474
acd5c798
MK
475 /* Skip past the `pushl' instruction; it has either a one-byte or a
476 four-byte operand, depending on the opcode. */
c906108c 477 if (op == 0x68)
acd5c798 478 delta = 5;
c906108c 479 else
acd5c798 480 delta = 2;
c906108c 481
acd5c798
MK
482 /* Read the following 8 bytes, which should be `call _probe' (6
483 bytes) followed by `addl $4,%esp' (2 bytes). */
484 read_memory (pc + delta, buf, sizeof (buf));
c906108c 485 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 486 pc += delta + sizeof (buf);
c906108c
SS
487 }
488
acd5c798
MK
489 return pc;
490}
491
92dd43fa
MK
492/* GCC 4.1 and later, can put code in the prologue to realign the
493 stack pointer. Check whether PC points to such code, and update
494 CACHE accordingly. Return the first instruction after the code
495 sequence or CURRENT_PC, whichever is smaller. If we don't
496 recognize the code, return PC. */
497
498static CORE_ADDR
499i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
500 struct i386_frame_cache *cache)
501{
92a56b20
JB
502 /* The register used by the compiler to perform the stack re-alignment
503 is, in order of preference, either %ecx, %edx, or %eax. GCC should
504 never use %ebx as it always treats it as callee-saved, whereas
505 the compiler can only use caller-saved registers. */
ade52156 506 static const gdb_byte insns_ecx[10] = {
92dd43fa
MK
507 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
508 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
509 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
510 };
ade52156
JB
511 static const gdb_byte insns_edx[10] = {
512 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
513 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
514 0xff, 0x72, 0xfc /* pushl -4(%edx) */
515 };
516 static const gdb_byte insns_eax[10] = {
517 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
518 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
519 0xff, 0x70, 0xfc /* pushl -4(%eax) */
520 };
92dd43fa
MK
521 gdb_byte buf[10];
522
523 if (target_read_memory (pc, buf, sizeof buf)
ade52156
JB
524 || (memcmp (buf, insns_ecx, sizeof buf) != 0
525 && memcmp (buf, insns_edx, sizeof buf) != 0
526 && memcmp (buf, insns_eax, sizeof buf) != 0))
92dd43fa
MK
527 return pc;
528
529 if (current_pc > pc + 4)
530 cache->stack_align = 1;
531
532 return min (pc + 10, current_pc);
533}
534
37bdc87e
MK
535/* Maximum instruction length we need to handle. */
536#define I386_MAX_INSN_LEN 6
537
538/* Instruction description. */
539struct i386_insn
540{
541 size_t len;
63c0089f
MK
542 gdb_byte insn[I386_MAX_INSN_LEN];
543 gdb_byte mask[I386_MAX_INSN_LEN];
37bdc87e
MK
544};
545
546/* Search for the instruction at PC in the list SKIP_INSNS. Return
547 the first instruction description that matches. Otherwise, return
548 NULL. */
549
550static struct i386_insn *
551i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
552{
553 struct i386_insn *insn;
63c0089f 554 gdb_byte op;
37bdc87e 555
24a2a654 556 read_memory_nobpt (pc, &op, 1);
37bdc87e
MK
557
558 for (insn = skip_insns; insn->len > 0; insn++)
559 {
560 if ((op & insn->mask[0]) == insn->insn[0])
561 {
613e8135
MK
562 gdb_byte buf[I386_MAX_INSN_LEN - 1];
563 int insn_matched = 1;
37bdc87e
MK
564 size_t i;
565
566 gdb_assert (insn->len > 1);
567 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
568
24a2a654 569 read_memory_nobpt (pc + 1, buf, insn->len - 1);
37bdc87e
MK
570 for (i = 1; i < insn->len; i++)
571 {
572 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 573 insn_matched = 0;
37bdc87e 574 }
613e8135
MK
575
576 if (insn_matched)
577 return insn;
37bdc87e
MK
578 }
579 }
580
581 return NULL;
582}
583
584/* Some special instructions that might be migrated by GCC into the
585 part of the prologue that sets up the new stack frame. Because the
586 stack frame hasn't been setup yet, no registers have been saved
587 yet, and only the scratch registers %eax, %ecx and %edx can be
588 touched. */
589
590struct i386_insn i386_frame_setup_skip_insns[] =
591{
592 /* Check for `movb imm8, r' and `movl imm32, r'.
593
594 ??? Should we handle 16-bit operand-sizes here? */
595
596 /* `movb imm8, %al' and `movb imm8, %ah' */
597 /* `movb imm8, %cl' and `movb imm8, %ch' */
598 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
599 /* `movb imm8, %dl' and `movb imm8, %dh' */
600 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
601 /* `movl imm32, %eax' and `movl imm32, %ecx' */
602 { 5, { 0xb8 }, { 0xfe } },
603 /* `movl imm32, %edx' */
604 { 5, { 0xba }, { 0xff } },
605
606 /* Check for `mov imm32, r32'. Note that there is an alternative
607 encoding for `mov m32, %eax'.
608
609 ??? Should we handle SIB adressing here?
610 ??? Should we handle 16-bit operand-sizes here? */
611
612 /* `movl m32, %eax' */
613 { 5, { 0xa1 }, { 0xff } },
614 /* `movl m32, %eax' and `mov; m32, %ecx' */
615 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
616 /* `movl m32, %edx' */
617 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
618
619 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
620 Because of the symmetry, there are actually two ways to encode
621 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
622 opcode bytes 0x31 and 0x33 for `xorl'. */
623
624 /* `subl %eax, %eax' */
625 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
626 /* `subl %ecx, %ecx' */
627 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
628 /* `subl %edx, %edx' */
629 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
630 /* `xorl %eax, %eax' */
631 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
632 /* `xorl %ecx, %ecx' */
633 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
634 /* `xorl %edx, %edx' */
635 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
636 { 0 }
637};
638
acd5c798
MK
639/* Check whether PC points at a code that sets up a new stack frame.
640 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
641 instruction after the sequence that sets up the frame or LIMIT,
642 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
643
644static CORE_ADDR
37bdc87e 645i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
646 struct i386_frame_cache *cache)
647{
37bdc87e 648 struct i386_insn *insn;
63c0089f 649 gdb_byte op;
26604a34 650 int skip = 0;
acd5c798 651
37bdc87e
MK
652 if (limit <= pc)
653 return limit;
acd5c798 654
24a2a654 655 read_memory_nobpt (pc, &op, 1);
acd5c798 656
c906108c 657 if (op == 0x55) /* pushl %ebp */
c5aa993b 658 {
acd5c798
MK
659 /* Take into account that we've executed the `pushl %ebp' that
660 starts this instruction sequence. */
fd13a04a 661 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 662 cache->sp_offset += 4;
37bdc87e 663 pc++;
acd5c798
MK
664
665 /* If that's all, return now. */
37bdc87e
MK
666 if (limit <= pc)
667 return limit;
26604a34 668
b4632131 669 /* Check for some special instructions that might be migrated by
37bdc87e
MK
670 GCC into the prologue and skip them. At this point in the
671 prologue, code should only touch the scratch registers %eax,
672 %ecx and %edx, so while the number of posibilities is sheer,
673 it is limited.
5daa5b4e 674
26604a34
MK
675 Make sure we only skip these instructions if we later see the
676 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 677 while (pc + skip < limit)
26604a34 678 {
37bdc87e
MK
679 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
680 if (insn == NULL)
681 break;
b4632131 682
37bdc87e 683 skip += insn->len;
26604a34
MK
684 }
685
37bdc87e
MK
686 /* If that's all, return now. */
687 if (limit <= pc + skip)
688 return limit;
689
24a2a654 690 read_memory_nobpt (pc + skip, &op, 1);
37bdc87e 691
26604a34 692 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 693 switch (op)
c906108c
SS
694 {
695 case 0x8b:
37bdc87e
MK
696 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
697 return pc;
c906108c
SS
698 break;
699 case 0x89:
37bdc87e
MK
700 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
701 return pc;
c906108c
SS
702 break;
703 default:
37bdc87e 704 return pc;
c906108c 705 }
acd5c798 706
26604a34
MK
707 /* OK, we actually have a frame. We just don't know how large
708 it is yet. Set its size to zero. We'll adjust it if
709 necessary. We also now commit to skipping the special
710 instructions mentioned before. */
acd5c798 711 cache->locals = 0;
37bdc87e 712 pc += (skip + 2);
acd5c798
MK
713
714 /* If that's all, return now. */
37bdc87e
MK
715 if (limit <= pc)
716 return limit;
acd5c798 717
fc338970
MK
718 /* Check for stack adjustment
719
acd5c798 720 subl $XXX, %esp
fc338970 721
fd35795f 722 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 723 reg, so we don't have to worry about a data16 prefix. */
24a2a654 724 read_memory_nobpt (pc, &op, 1);
c906108c
SS
725 if (op == 0x83)
726 {
fd35795f 727 /* `subl' with 8-bit immediate. */
37bdc87e 728 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 729 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 730 return pc;
acd5c798 731
37bdc87e
MK
732 /* `subl' with signed 8-bit immediate (though it wouldn't
733 make sense to be negative). */
734 cache->locals = read_memory_integer (pc + 2, 1);
735 return pc + 3;
c906108c
SS
736 }
737 else if (op == 0x81)
738 {
fd35795f 739 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 740 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 741 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 742 return pc;
acd5c798 743
fd35795f 744 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
745 cache->locals = read_memory_integer (pc + 2, 4);
746 return pc + 6;
c906108c
SS
747 }
748 else
749 {
acd5c798 750 /* Some instruction other than `subl'. */
37bdc87e 751 return pc;
c906108c
SS
752 }
753 }
37bdc87e 754 else if (op == 0xc8) /* enter */
c906108c 755 {
acd5c798
MK
756 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
757 return pc + 4;
c906108c 758 }
21d0e8a4 759
acd5c798 760 return pc;
21d0e8a4
MK
761}
762
acd5c798
MK
763/* Check whether PC points at code that saves registers on the stack.
764 If so, it updates CACHE and returns the address of the first
765 instruction after the register saves or CURRENT_PC, whichever is
766 smaller. Otherwise, return PC. */
6bff26de
MK
767
768static CORE_ADDR
acd5c798
MK
769i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
770 struct i386_frame_cache *cache)
6bff26de 771{
99ab4326 772 CORE_ADDR offset = 0;
63c0089f 773 gdb_byte op;
99ab4326 774 int i;
c0d1d883 775
99ab4326
MK
776 if (cache->locals > 0)
777 offset -= cache->locals;
778 for (i = 0; i < 8 && pc < current_pc; i++)
779 {
24a2a654 780 read_memory_nobpt (pc, &op, 1);
99ab4326
MK
781 if (op < 0x50 || op > 0x57)
782 break;
0d17c81d 783
99ab4326
MK
784 offset -= 4;
785 cache->saved_regs[op - 0x50] = offset;
786 cache->sp_offset += 4;
787 pc++;
6bff26de
MK
788 }
789
acd5c798 790 return pc;
22797942
AC
791}
792
acd5c798
MK
793/* Do a full analysis of the prologue at PC and update CACHE
794 accordingly. Bail out early if CURRENT_PC is reached. Return the
795 address where the analysis stopped.
ed84f6c1 796
fc338970
MK
797 We handle these cases:
798
799 The startup sequence can be at the start of the function, or the
800 function can start with a branch to startup code at the end.
801
802 %ebp can be set up with either the 'enter' instruction, or "pushl
803 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
804 once used in the System V compiler).
805
806 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
807 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
808 16-bit unsigned argument for space to allocate, and the 'addl'
809 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
810
811 Next, the registers used by this function are pushed. With the
812 System V compiler they will always be in the order: %edi, %esi,
813 %ebx (and sometimes a harmless bug causes it to also save but not
814 restore %eax); however, the code below is willing to see the pushes
815 in any order, and will handle up to 8 of them.
816
817 If the setup sequence is at the end of the function, then the next
818 instruction will be a branch back to the start. */
c906108c 819
acd5c798
MK
820static CORE_ADDR
821i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
822 struct i386_frame_cache *cache)
c906108c 823{
acd5c798
MK
824 pc = i386_follow_jump (pc);
825 pc = i386_analyze_struct_return (pc, current_pc, cache);
826 pc = i386_skip_probe (pc);
92dd43fa 827 pc = i386_analyze_stack_align (pc, current_pc, cache);
acd5c798
MK
828 pc = i386_analyze_frame_setup (pc, current_pc, cache);
829 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
830}
831
fc338970 832/* Return PC of first real instruction. */
c906108c 833
3a1e71e3 834static CORE_ADDR
acd5c798 835i386_skip_prologue (CORE_ADDR start_pc)
c906108c 836{
63c0089f 837 static gdb_byte pic_pat[6] =
acd5c798
MK
838 {
839 0xe8, 0, 0, 0, 0, /* call 0x0 */
840 0x5b, /* popl %ebx */
c5aa993b 841 };
acd5c798
MK
842 struct i386_frame_cache cache;
843 CORE_ADDR pc;
63c0089f 844 gdb_byte op;
acd5c798 845 int i;
c5aa993b 846
acd5c798
MK
847 cache.locals = -1;
848 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
849 if (cache.locals < 0)
850 return start_pc;
c5aa993b 851
acd5c798 852 /* Found valid frame setup. */
c906108c 853
fc338970
MK
854 /* The native cc on SVR4 in -K PIC mode inserts the following code
855 to get the address of the global offset table (GOT) into register
acd5c798
MK
856 %ebx:
857
fc338970
MK
858 call 0x0
859 popl %ebx
860 movl %ebx,x(%ebp) (optional)
861 addl y,%ebx
862
c906108c
SS
863 This code is with the rest of the prologue (at the end of the
864 function), so we have to skip it to get to the first real
865 instruction at the start of the function. */
c5aa993b 866
c906108c
SS
867 for (i = 0; i < 6; i++)
868 {
24a2a654 869 read_memory_nobpt (pc + i, &op, 1);
c5aa993b 870 if (pic_pat[i] != op)
c906108c
SS
871 break;
872 }
873 if (i == 6)
874 {
acd5c798
MK
875 int delta = 6;
876
24a2a654 877 read_memory_nobpt (pc + delta, &op, 1);
c906108c 878
c5aa993b 879 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 880 {
acd5c798
MK
881 op = read_memory_unsigned_integer (pc + delta + 1, 1);
882
fc338970 883 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 884 delta += 3;
fc338970 885 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 886 delta += 6;
fc338970 887 else /* Unexpected instruction. */
acd5c798
MK
888 delta = 0;
889
24a2a654 890 read_memory_nobpt (pc + delta, &op, 1);
c906108c 891 }
acd5c798 892
c5aa993b 893 /* addl y,%ebx */
acd5c798 894 if (delta > 0 && op == 0x81
d5d6fca5 895 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
c906108c 896 {
acd5c798 897 pc += delta + 6;
c906108c
SS
898 }
899 }
c5aa993b 900
e63bbc88
MK
901 /* If the function starts with a branch (to startup code at the end)
902 the last instruction should bring us back to the first
903 instruction of the real code. */
904 if (i386_follow_jump (start_pc) != start_pc)
905 pc = i386_follow_jump (pc);
906
907 return pc;
c906108c
SS
908}
909
acd5c798 910/* This function is 64-bit safe. */
93924b6b 911
acd5c798
MK
912static CORE_ADDR
913i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 914{
63c0089f 915 gdb_byte buf[8];
acd5c798 916
3e8c568d 917 frame_unwind_register (next_frame, gdbarch_pc_regnum (current_gdbarch), buf);
acd5c798 918 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 919}
acd5c798 920\f
93924b6b 921
acd5c798 922/* Normal frames. */
c5aa993b 923
acd5c798
MK
924static struct i386_frame_cache *
925i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 926{
acd5c798 927 struct i386_frame_cache *cache;
63c0089f 928 gdb_byte buf[4];
acd5c798
MK
929 int i;
930
931 if (*this_cache)
932 return *this_cache;
933
fd13a04a 934 cache = i386_alloc_frame_cache ();
acd5c798
MK
935 *this_cache = cache;
936
937 /* In principle, for normal frames, %ebp holds the frame pointer,
938 which holds the base address for the current stack frame.
939 However, for functions that don't need it, the frame pointer is
940 optional. For these "frameless" functions the frame pointer is
941 actually the frame pointer of the calling frame. Signal
942 trampolines are just a special case of a "frameless" function.
943 They (usually) share their frame pointer with the frame that was
944 in progress when the signal occurred. */
945
946 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
947 cache->base = extract_unsigned_integer (buf, 4);
948 if (cache->base == 0)
949 return cache;
950
951 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 952 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 953
93d42b30 954 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
acd5c798
MK
955 if (cache->pc != 0)
956 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
957
92dd43fa
MK
958 if (cache->stack_align)
959 {
960 /* Saved stack pointer has been saved in %ecx. */
961 frame_unwind_register (next_frame, I386_ECX_REGNUM, buf);
962 cache->saved_sp = extract_unsigned_integer(buf, 4);
963 }
964
acd5c798
MK
965 if (cache->locals < 0)
966 {
967 /* We didn't find a valid frame, which means that CACHE->base
968 currently holds the frame pointer for our calling frame. If
969 we're at the start of a function, or somewhere half-way its
970 prologue, the function's frame probably hasn't been fully
971 setup yet. Try to reconstruct the base address for the stack
972 frame by looking at the stack pointer. For truly "frameless"
973 functions this might work too. */
974
92dd43fa
MK
975 if (cache->stack_align)
976 {
977 /* We're halfway aligning the stack. */
978 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
979 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
980
981 /* This will be added back below. */
982 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
983 }
984 else
985 {
986 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
987 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
988 }
acd5c798
MK
989 }
990
991 /* Now that we have the base address for the stack frame we can
992 calculate the value of %esp in the calling frame. */
92dd43fa
MK
993 if (cache->saved_sp == 0)
994 cache->saved_sp = cache->base + 8;
a7769679 995
acd5c798
MK
996 /* Adjust all the saved registers such that they contain addresses
997 instead of offsets. */
998 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
999 if (cache->saved_regs[i] != -1)
1000 cache->saved_regs[i] += cache->base;
acd5c798
MK
1001
1002 return cache;
a7769679
MK
1003}
1004
3a1e71e3 1005static void
acd5c798
MK
1006i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
1007 struct frame_id *this_id)
c906108c 1008{
acd5c798
MK
1009 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1010
1011 /* This marks the outermost frame. */
1012 if (cache->base == 0)
1013 return;
1014
3e210248 1015 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1016 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1017}
1018
1019static void
1020i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1021 int regnum, int *optimizedp,
1022 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1023 int *realnump, gdb_byte *valuep)
acd5c798
MK
1024{
1025 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1026
1027 gdb_assert (regnum >= 0);
1028
1029 /* The System V ABI says that:
1030
1031 "The flags register contains the system flags, such as the
1032 direction flag and the carry flag. The direction flag must be
1033 set to the forward (that is, zero) direction before entry and
1034 upon exit from a function. Other user flags have no specified
1035 role in the standard calling sequence and are not preserved."
1036
1037 To guarantee the "upon exit" part of that statement we fake a
1038 saved flags register that has its direction flag cleared.
1039
1040 Note that GCC doesn't seem to rely on the fact that the direction
1041 flag is cleared after a function return; it always explicitly
1042 clears the flag before operations where it matters.
1043
1044 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1045 right thing to do. The way we fake the flags register here makes
1046 it impossible to change it. */
1047
1048 if (regnum == I386_EFLAGS_REGNUM)
1049 {
1050 *optimizedp = 0;
1051 *lvalp = not_lval;
1052 *addrp = 0;
1053 *realnump = -1;
1054 if (valuep)
1055 {
1056 ULONGEST val;
c5aa993b 1057
acd5c798 1058 /* Clear the direction flag. */
f837910f
MK
1059 val = frame_unwind_register_unsigned (next_frame,
1060 I386_EFLAGS_REGNUM);
acd5c798
MK
1061 val &= ~(1 << 10);
1062 store_unsigned_integer (valuep, 4, val);
1063 }
1064
1065 return;
1066 }
1211c4e4 1067
acd5c798 1068 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 1069 {
00b25ff3
AC
1070 *optimizedp = 0;
1071 *lvalp = lval_register;
1072 *addrp = 0;
1073 *realnump = I386_EAX_REGNUM;
1074 if (valuep)
1075 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1076 return;
1077 }
1078
1079 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1080 {
1081 *optimizedp = 0;
1082 *lvalp = not_lval;
1083 *addrp = 0;
1084 *realnump = -1;
1085 if (valuep)
c906108c 1086 {
acd5c798
MK
1087 /* Store the value. */
1088 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1089 }
acd5c798 1090 return;
c906108c 1091 }
acd5c798 1092
fd13a04a
AC
1093 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1094 {
1095 *optimizedp = 0;
1096 *lvalp = lval_memory;
1097 *addrp = cache->saved_regs[regnum];
1098 *realnump = -1;
1099 if (valuep)
1100 {
1101 /* Read the value in from memory. */
1102 read_memory (*addrp, valuep,
1103 register_size (current_gdbarch, regnum));
1104 }
1105 return;
1106 }
1107
00b25ff3
AC
1108 *optimizedp = 0;
1109 *lvalp = lval_register;
1110 *addrp = 0;
1111 *realnump = regnum;
1112 if (valuep)
1113 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1114}
1115
1116static const struct frame_unwind i386_frame_unwind =
1117{
1118 NORMAL_FRAME,
1119 i386_frame_this_id,
1120 i386_frame_prev_register
1121};
1122
1123static const struct frame_unwind *
336d1bba 1124i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1125{
1126 return &i386_frame_unwind;
1127}
1128\f
1129
1130/* Signal trampolines. */
1131
1132static struct i386_frame_cache *
1133i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1134{
1135 struct i386_frame_cache *cache;
1136 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1137 CORE_ADDR addr;
63c0089f 1138 gdb_byte buf[4];
acd5c798
MK
1139
1140 if (*this_cache)
1141 return *this_cache;
1142
fd13a04a 1143 cache = i386_alloc_frame_cache ();
acd5c798
MK
1144
1145 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1146 cache->base = extract_unsigned_integer (buf, 4) - 4;
1147
1148 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1149 if (tdep->sc_reg_offset)
1150 {
1151 int i;
1152
1153 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1154
1155 for (i = 0; i < tdep->sc_num_regs; i++)
1156 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1157 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1158 }
1159 else
1160 {
fd13a04a
AC
1161 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1162 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1163 }
acd5c798
MK
1164
1165 *this_cache = cache;
1166 return cache;
1167}
1168
1169static void
1170i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1171 struct frame_id *this_id)
1172{
1173 struct i386_frame_cache *cache =
1174 i386_sigtramp_frame_cache (next_frame, this_cache);
1175
3e210248 1176 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1177 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1178}
1179
1180static void
1181i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1182 void **this_cache,
1183 int regnum, int *optimizedp,
1184 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1185 int *realnump, gdb_byte *valuep)
acd5c798
MK
1186{
1187 /* Make sure we've initialized the cache. */
1188 i386_sigtramp_frame_cache (next_frame, this_cache);
1189
1190 i386_frame_prev_register (next_frame, this_cache, regnum,
1191 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1192}
c0d1d883 1193
acd5c798
MK
1194static const struct frame_unwind i386_sigtramp_frame_unwind =
1195{
1196 SIGTRAMP_FRAME,
1197 i386_sigtramp_frame_this_id,
1198 i386_sigtramp_frame_prev_register
1199};
1200
1201static const struct frame_unwind *
336d1bba 1202i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1203{
911bc6ee 1204 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1205
911bc6ee
MK
1206 /* We shouldn't even bother if we don't have a sigcontext_addr
1207 handler. */
1208 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1209 return NULL;
1210
911bc6ee
MK
1211 if (tdep->sigtramp_p != NULL)
1212 {
1213 if (tdep->sigtramp_p (next_frame))
1214 return &i386_sigtramp_frame_unwind;
1215 }
1216
1217 if (tdep->sigtramp_start != 0)
1218 {
1219 CORE_ADDR pc = frame_pc_unwind (next_frame);
1220
1221 gdb_assert (tdep->sigtramp_end != 0);
1222 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1223 return &i386_sigtramp_frame_unwind;
1224 }
acd5c798
MK
1225
1226 return NULL;
1227}
1228\f
1229
1230static CORE_ADDR
1231i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1232{
1233 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1234
1235 return cache->base;
1236}
1237
1238static const struct frame_base i386_frame_base =
1239{
1240 &i386_frame_unwind,
1241 i386_frame_base_address,
1242 i386_frame_base_address,
1243 i386_frame_base_address
1244};
1245
acd5c798
MK
1246static struct frame_id
1247i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1248{
63c0089f 1249 gdb_byte buf[4];
acd5c798
MK
1250 CORE_ADDR fp;
1251
1252 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1253 fp = extract_unsigned_integer (buf, 4);
1254
3e210248 1255 /* See the end of i386_push_dummy_call. */
acd5c798 1256 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1257}
fc338970 1258\f
c906108c 1259
fc338970
MK
1260/* Figure out where the longjmp will land. Slurp the args out of the
1261 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1262 structure from which we extract the address that we will land at.
28bcfd30 1263 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1264 success.
1265
1266 This function is 64-bit safe. */
c906108c 1267
8201327c 1268static int
60ade65d 1269i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1270{
63c0089f 1271 gdb_byte buf[8];
c906108c 1272 CORE_ADDR sp, jb_addr;
60ade65d 1273 int jb_pc_offset = gdbarch_tdep (get_frame_arch (frame))->jb_pc_offset;
f9d3c2a8 1274 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1275
8201327c
MK
1276 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1277 longjmp will land. */
1278 if (jb_pc_offset == -1)
c906108c
SS
1279 return 0;
1280
f837910f
MK
1281 /* Don't use I386_ESP_REGNUM here, since this function is also used
1282 for AMD64. */
3e8c568d 1283 get_frame_register (frame, gdbarch_sp_regnum (current_gdbarch), buf);
f837910f 1284 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1285 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1286 return 0;
1287
f837910f 1288 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1289 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1290 return 0;
c906108c 1291
f9d3c2a8 1292 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1293 return 1;
1294}
fc338970 1295\f
c906108c 1296
3a1e71e3 1297static CORE_ADDR
7d9b040b 1298i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1299 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1300 struct value **args, CORE_ADDR sp, int struct_return,
1301 CORE_ADDR struct_addr)
22f8ba57 1302{
63c0089f 1303 gdb_byte buf[4];
acd5c798
MK
1304 int i;
1305
1306 /* Push arguments in reverse order. */
1307 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1308 {
4754a64e 1309 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1310
1311 /* The System V ABI says that:
1312
1313 "An argument's size is increased, if necessary, to make it a
1314 multiple of [32-bit] words. This may require tail padding,
1315 depending on the size of the argument."
1316
cf913f37 1317 This makes sure the stack stays word-aligned. */
acd5c798 1318 sp -= (len + 3) & ~3;
46615f07 1319 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1320 }
22f8ba57 1321
acd5c798
MK
1322 /* Push value address. */
1323 if (struct_return)
1324 {
22f8ba57 1325 sp -= 4;
fbd9dcd3 1326 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1327 write_memory (sp, buf, 4);
1328 }
1329
acd5c798
MK
1330 /* Store return address. */
1331 sp -= 4;
6a65450a 1332 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1333 write_memory (sp, buf, 4);
1334
1335 /* Finally, update the stack pointer... */
1336 store_unsigned_integer (buf, 4, sp);
1337 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1338
1339 /* ...and fake a frame pointer. */
1340 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1341
3e210248
AC
1342 /* MarkK wrote: This "+ 8" is all over the place:
1343 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1344 i386_unwind_dummy_id). It's there, since all frame unwinders for
1345 a given target have to agree (within a certain margin) on the
fd35795f 1346 definition of the stack address of a frame. Otherwise
3e210248
AC
1347 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1348 stack address *before* the function call as a frame's CFA. On
1349 the i386, when %ebp is used as a frame pointer, the offset
1350 between the contents %ebp and the CFA as defined by GCC. */
1351 return sp + 8;
22f8ba57
MK
1352}
1353
1a309862
MK
1354/* These registers are used for returning integers (and on some
1355 targets also for returning `struct' and `union' values when their
ef9dff19 1356 size and alignment match an integer type). */
acd5c798
MK
1357#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1358#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1359
c5e656c1
MK
1360/* Read, for architecture GDBARCH, a function return value of TYPE
1361 from REGCACHE, and copy that into VALBUF. */
1a309862 1362
3a1e71e3 1363static void
c5e656c1 1364i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1365 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1366{
c5e656c1 1367 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1368 int len = TYPE_LENGTH (type);
63c0089f 1369 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1370
1e8d0a7b 1371 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1372 {
5716833c 1373 if (tdep->st0_regnum < 0)
1a309862 1374 {
8a3fe4f8 1375 warning (_("Cannot find floating-point return value."));
1a309862 1376 memset (valbuf, 0, len);
ef9dff19 1377 return;
1a309862
MK
1378 }
1379
c6ba6f0d
MK
1380 /* Floating-point return values can be found in %st(0). Convert
1381 its contents to the desired type. This is probably not
1382 exactly how it would happen on the target itself, but it is
1383 the best we can do. */
acd5c798 1384 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1385 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1386 }
1387 else
c5aa993b 1388 {
f837910f
MK
1389 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1390 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1391
1392 if (len <= low_size)
00f8375e 1393 {
0818c12a 1394 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1395 memcpy (valbuf, buf, len);
1396 }
d4f3574e
SS
1397 else if (len <= (low_size + high_size))
1398 {
0818c12a 1399 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1400 memcpy (valbuf, buf, low_size);
0818c12a 1401 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1402 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1403 }
1404 else
8e65ff28 1405 internal_error (__FILE__, __LINE__,
e2e0b3e5 1406 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1407 }
1408}
1409
c5e656c1
MK
1410/* Write, for architecture GDBARCH, a function return value of TYPE
1411 from VALBUF into REGCACHE. */
ef9dff19 1412
3a1e71e3 1413static void
c5e656c1 1414i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1415 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1416{
c5e656c1 1417 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1418 int len = TYPE_LENGTH (type);
1419
5716833c
MK
1420 /* Define I387_ST0_REGNUM such that we use the proper definitions
1421 for the architecture. */
1422#define I387_ST0_REGNUM I386_ST0_REGNUM
1423
1e8d0a7b 1424 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1425 {
3d7f4f49 1426 ULONGEST fstat;
63c0089f 1427 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1428
5716833c 1429 if (tdep->st0_regnum < 0)
ef9dff19 1430 {
8a3fe4f8 1431 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1432 return;
1433 }
1434
635b0cc1
MK
1435 /* Returning floating-point values is a bit tricky. Apart from
1436 storing the return value in %st(0), we have to simulate the
1437 state of the FPU at function return point. */
1438
c6ba6f0d
MK
1439 /* Convert the value found in VALBUF to the extended
1440 floating-point format used by the FPU. This is probably
1441 not exactly how it would happen on the target itself, but
1442 it is the best we can do. */
1443 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1444 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1445
635b0cc1
MK
1446 /* Set the top of the floating-point register stack to 7. The
1447 actual value doesn't really matter, but 7 is what a normal
1448 function return would end up with if the program started out
1449 with a freshly initialized FPU. */
5716833c 1450 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1451 fstat |= (7 << 11);
5716833c 1452 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1453
635b0cc1
MK
1454 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1455 the floating-point register stack to 7, the appropriate value
1456 for the tag word is 0x3fff. */
5716833c 1457 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1458 }
1459 else
1460 {
f837910f
MK
1461 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1462 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1463
1464 if (len <= low_size)
3d7f4f49 1465 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1466 else if (len <= (low_size + high_size))
1467 {
3d7f4f49
MK
1468 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1469 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1470 len - low_size, valbuf + low_size);
ef9dff19
MK
1471 }
1472 else
8e65ff28 1473 internal_error (__FILE__, __LINE__,
e2e0b3e5 1474 _("Cannot store return value of %d bytes long."), len);
ef9dff19 1475 }
5716833c
MK
1476
1477#undef I387_ST0_REGNUM
ef9dff19 1478}
fc338970 1479\f
ef9dff19 1480
8201327c
MK
1481/* This is the variable that is set with "set struct-convention", and
1482 its legitimate values. */
1483static const char default_struct_convention[] = "default";
1484static const char pcc_struct_convention[] = "pcc";
1485static const char reg_struct_convention[] = "reg";
1486static const char *valid_conventions[] =
1487{
1488 default_struct_convention,
1489 pcc_struct_convention,
1490 reg_struct_convention,
1491 NULL
1492};
1493static const char *struct_convention = default_struct_convention;
1494
0e4377e1
JB
1495/* Return non-zero if TYPE, which is assumed to be a structure,
1496 a union type, or an array type, should be returned in registers
1497 for architecture GDBARCH. */
c5e656c1 1498
8201327c 1499static int
c5e656c1 1500i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1501{
c5e656c1
MK
1502 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1503 enum type_code code = TYPE_CODE (type);
1504 int len = TYPE_LENGTH (type);
8201327c 1505
0e4377e1
JB
1506 gdb_assert (code == TYPE_CODE_STRUCT
1507 || code == TYPE_CODE_UNION
1508 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
1509
1510 if (struct_convention == pcc_struct_convention
1511 || (struct_convention == default_struct_convention
1512 && tdep->struct_return == pcc_struct_return))
1513 return 0;
1514
9edde48e
MK
1515 /* Structures consisting of a single `float', `double' or 'long
1516 double' member are returned in %st(0). */
1517 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1518 {
1519 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1520 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1521 return (len == 4 || len == 8 || len == 12);
1522 }
1523
c5e656c1
MK
1524 return (len == 1 || len == 2 || len == 4 || len == 8);
1525}
1526
1527/* Determine, for architecture GDBARCH, how a return value of TYPE
1528 should be returned. If it is supposed to be returned in registers,
1529 and READBUF is non-zero, read the appropriate value from REGCACHE,
1530 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1531 from WRITEBUF into REGCACHE. */
1532
1533static enum return_value_convention
1534i386_return_value (struct gdbarch *gdbarch, struct type *type,
42835c2b
MK
1535 struct regcache *regcache, gdb_byte *readbuf,
1536 const gdb_byte *writebuf)
c5e656c1
MK
1537{
1538 enum type_code code = TYPE_CODE (type);
1539
0e4377e1
JB
1540 if ((code == TYPE_CODE_STRUCT
1541 || code == TYPE_CODE_UNION
1542 || code == TYPE_CODE_ARRAY)
c5e656c1 1543 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1544 {
1545 /* The System V ABI says that:
1546
1547 "A function that returns a structure or union also sets %eax
1548 to the value of the original address of the caller's area
1549 before it returns. Thus when the caller receives control
1550 again, the address of the returned object resides in register
1551 %eax and can be used to access the object."
1552
1553 So the ABI guarantees that we can always find the return
1554 value just after the function has returned. */
1555
0e4377e1
JB
1556 /* Note that the ABI doesn't mention functions returning arrays,
1557 which is something possible in certain languages such as Ada.
1558 In this case, the value is returned as if it was wrapped in
1559 a record, so the convention applied to records also applies
1560 to arrays. */
1561
31db7b6c
MK
1562 if (readbuf)
1563 {
1564 ULONGEST addr;
1565
1566 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1567 read_memory (addr, readbuf, TYPE_LENGTH (type));
1568 }
1569
1570 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1571 }
c5e656c1
MK
1572
1573 /* This special case is for structures consisting of a single
9edde48e
MK
1574 `float', `double' or 'long double' member. These structures are
1575 returned in %st(0). For these structures, we call ourselves
1576 recursively, changing TYPE into the type of the first member of
1577 the structure. Since that should work for all structures that
1578 have only one member, we don't bother to check the member's type
1579 here. */
c5e656c1
MK
1580 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1581 {
1582 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1583 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1584 }
1585
1586 if (readbuf)
1587 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1588 if (writebuf)
1589 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1590
c5e656c1 1591 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1592}
1593\f
1594
5ae96ec1
MK
1595/* Type for %eflags. */
1596struct type *i386_eflags_type;
1597
794ac428 1598/* Type for %mxcsr. */
878d9193 1599struct type *i386_mxcsr_type;
5ae96ec1
MK
1600
1601/* Construct types for ISA-specific registers. */
1602static void
1603i386_init_types (void)
1604{
1605 struct type *type;
1606
1607 type = init_flags_type ("builtin_type_i386_eflags", 4);
1608 append_flags_type_flag (type, 0, "CF");
1609 append_flags_type_flag (type, 1, NULL);
1610 append_flags_type_flag (type, 2, "PF");
1611 append_flags_type_flag (type, 4, "AF");
1612 append_flags_type_flag (type, 6, "ZF");
1613 append_flags_type_flag (type, 7, "SF");
1614 append_flags_type_flag (type, 8, "TF");
1615 append_flags_type_flag (type, 9, "IF");
1616 append_flags_type_flag (type, 10, "DF");
1617 append_flags_type_flag (type, 11, "OF");
1618 append_flags_type_flag (type, 14, "NT");
1619 append_flags_type_flag (type, 16, "RF");
1620 append_flags_type_flag (type, 17, "VM");
1621 append_flags_type_flag (type, 18, "AC");
1622 append_flags_type_flag (type, 19, "VIF");
1623 append_flags_type_flag (type, 20, "VIP");
1624 append_flags_type_flag (type, 21, "ID");
1625 i386_eflags_type = type;
21b4b2f2 1626
878d9193
MK
1627 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1628 append_flags_type_flag (type, 0, "IE");
1629 append_flags_type_flag (type, 1, "DE");
1630 append_flags_type_flag (type, 2, "ZE");
1631 append_flags_type_flag (type, 3, "OE");
1632 append_flags_type_flag (type, 4, "UE");
1633 append_flags_type_flag (type, 5, "PE");
1634 append_flags_type_flag (type, 6, "DAZ");
1635 append_flags_type_flag (type, 7, "IM");
1636 append_flags_type_flag (type, 8, "DM");
1637 append_flags_type_flag (type, 9, "ZM");
1638 append_flags_type_flag (type, 10, "OM");
1639 append_flags_type_flag (type, 11, "UM");
1640 append_flags_type_flag (type, 12, "PM");
1641 append_flags_type_flag (type, 15, "FZ");
1642 i386_mxcsr_type = type;
21b4b2f2
JB
1643}
1644
794ac428
UW
1645/* Construct vector type for MMX registers. */
1646struct type *
1647i386_mmx_type (struct gdbarch *gdbarch)
1648{
1649 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1650
1651 if (!tdep->i386_mmx_type)
1652 {
1653 /* The type we're building is this: */
1654#if 0
1655 union __gdb_builtin_type_vec64i
1656 {
1657 int64_t uint64;
1658 int32_t v2_int32[2];
1659 int16_t v4_int16[4];
1660 int8_t v8_int8[8];
1661 };
1662#endif
1663
1664 struct type *t;
1665
1666 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1667 append_composite_type_field (t, "uint64", builtin_type_int64);
1668 append_composite_type_field (t, "v2_int32",
1669 init_vector_type (builtin_type_int32, 2));
1670 append_composite_type_field (t, "v4_int16",
1671 init_vector_type (builtin_type_int16, 4));
1672 append_composite_type_field (t, "v8_int8",
1673 init_vector_type (builtin_type_int8, 8));
1674
1675 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1676 TYPE_NAME (t) = "builtin_type_vec64i";
1677 tdep->i386_mmx_type = t;
1678 }
1679
1680 return tdep->i386_mmx_type;
1681}
1682
1683struct type *
1684i386_sse_type (struct gdbarch *gdbarch)
1685{
1686 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1687
1688 if (!tdep->i386_sse_type)
1689 {
1690 /* The type we're building is this: */
1691#if 0
1692 union __gdb_builtin_type_vec128i
1693 {
1694 int128_t uint128;
1695 int64_t v2_int64[2];
1696 int32_t v4_int32[4];
1697 int16_t v8_int16[8];
1698 int8_t v16_int8[16];
1699 double v2_double[2];
1700 float v4_float[4];
1701 };
1702#endif
1703
1704 struct type *t;
1705
1706 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1707 append_composite_type_field (t, "v4_float",
1708 init_vector_type (builtin_type_float, 4));
1709 append_composite_type_field (t, "v2_double",
1710 init_vector_type (builtin_type_double, 2));
1711 append_composite_type_field (t, "v16_int8",
1712 init_vector_type (builtin_type_int8, 16));
1713 append_composite_type_field (t, "v8_int16",
1714 init_vector_type (builtin_type_int16, 8));
1715 append_composite_type_field (t, "v4_int32",
1716 init_vector_type (builtin_type_int32, 4));
1717 append_composite_type_field (t, "v2_int64",
1718 init_vector_type (builtin_type_int64, 2));
1719 append_composite_type_field (t, "uint128", builtin_type_int128);
1720
1721 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1722 TYPE_NAME (t) = "builtin_type_vec128i";
1723 tdep->i386_sse_type = t;
1724 }
1725
1726 return tdep->i386_sse_type;
1727}
1728
d7a0d72c
MK
1729/* Return the GDB type object for the "standard" data type of data in
1730 register REGNUM. Perhaps %esi and %edi should go here, but
1731 potentially they could be used for things other than address. */
1732
3a1e71e3 1733static struct type *
4e259f09 1734i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1735{
ab533587
MK
1736 if (regnum == I386_EIP_REGNUM)
1737 return builtin_type_void_func_ptr;
1738
5ae96ec1
MK
1739 if (regnum == I386_EFLAGS_REGNUM)
1740 return i386_eflags_type;
1741
ab533587
MK
1742 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1743 return builtin_type_void_data_ptr;
d7a0d72c 1744
23a34459 1745 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1746 return builtin_type_i387_ext;
d7a0d72c 1747
878d9193 1748 if (i386_mmx_regnum_p (gdbarch, regnum))
794ac428 1749 return i386_mmx_type (gdbarch);
878d9193 1750
5716833c 1751 if (i386_sse_regnum_p (gdbarch, regnum))
794ac428 1752 return i386_sse_type (gdbarch);
d7a0d72c 1753
878d9193
MK
1754#define I387_ST0_REGNUM I386_ST0_REGNUM
1755#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
1756
1757 if (regnum == I387_MXCSR_REGNUM)
1758 return i386_mxcsr_type;
1759
1760#undef I387_ST0_REGNUM
1761#undef I387_NUM_XMM_REGS
28fc6740 1762
d7a0d72c
MK
1763 return builtin_type_int;
1764}
1765
28fc6740 1766/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1767 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1768
1769static int
c86c27af 1770i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1771{
5716833c
MK
1772 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1773 int mmxreg, fpreg;
28fc6740
AC
1774 ULONGEST fstat;
1775 int tos;
c86c27af 1776
5716833c
MK
1777 /* Define I387_ST0_REGNUM such that we use the proper definitions
1778 for REGCACHE's architecture. */
1779#define I387_ST0_REGNUM tdep->st0_regnum
1780
1781 mmxreg = regnum - tdep->mm0_regnum;
1782 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1783 tos = (fstat >> 11) & 0x7;
5716833c
MK
1784 fpreg = (mmxreg + tos) % 8;
1785
1786 return (I387_ST0_REGNUM + fpreg);
c86c27af 1787
5716833c 1788#undef I387_ST0_REGNUM
28fc6740
AC
1789}
1790
1791static void
1792i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1793 int regnum, gdb_byte *buf)
28fc6740 1794{
5716833c 1795 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1796 {
63c0089f 1797 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1798 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1799
28fc6740 1800 /* Extract (always little endian). */
c86c27af 1801 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1802 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1803 }
1804 else
1805 regcache_raw_read (regcache, regnum, buf);
1806}
1807
1808static void
1809i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1810 int regnum, const gdb_byte *buf)
28fc6740 1811{
5716833c 1812 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1813 {
63c0089f 1814 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1815 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1816
28fc6740
AC
1817 /* Read ... */
1818 regcache_raw_read (regcache, fpnum, mmx_buf);
1819 /* ... Modify ... (always little endian). */
f837910f 1820 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1821 /* ... Write. */
1822 regcache_raw_write (regcache, fpnum, mmx_buf);
1823 }
1824 else
1825 regcache_raw_write (regcache, regnum, buf);
1826}
ff2e87ac
AC
1827\f
1828
ff2e87ac
AC
1829/* Return the register number of the register allocated by GCC after
1830 REGNUM, or -1 if there is no such register. */
1831
1832static int
1833i386_next_regnum (int regnum)
1834{
1835 /* GCC allocates the registers in the order:
1836
1837 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1838
1839 Since storing a variable in %esp doesn't make any sense we return
1840 -1 for %ebp and for %esp itself. */
1841 static int next_regnum[] =
1842 {
1843 I386_EDX_REGNUM, /* Slot for %eax. */
1844 I386_EBX_REGNUM, /* Slot for %ecx. */
1845 I386_ECX_REGNUM, /* Slot for %edx. */
1846 I386_ESI_REGNUM, /* Slot for %ebx. */
1847 -1, -1, /* Slots for %esp and %ebp. */
1848 I386_EDI_REGNUM, /* Slot for %esi. */
1849 I386_EBP_REGNUM /* Slot for %edi. */
1850 };
1851
de5b9bb9 1852 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1853 return next_regnum[regnum];
28fc6740 1854
ff2e87ac
AC
1855 return -1;
1856}
1857
1858/* Return nonzero if a value of type TYPE stored in register REGNUM
1859 needs any special handling. */
d7a0d72c 1860
3a1e71e3 1861static int
ff2e87ac 1862i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1863{
de5b9bb9
MK
1864 int len = TYPE_LENGTH (type);
1865
ff2e87ac
AC
1866 /* Values may be spread across multiple registers. Most debugging
1867 formats aren't expressive enough to specify the locations, so
1868 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1869 have a length that is a multiple of the word size, since GCC
1870 doesn't seem to put any other types into registers. */
1871 if (len > 4 && len % 4 == 0)
1872 {
1873 int last_regnum = regnum;
1874
1875 while (len > 4)
1876 {
1877 last_regnum = i386_next_regnum (last_regnum);
1878 len -= 4;
1879 }
1880
1881 if (last_regnum != -1)
1882 return 1;
1883 }
ff2e87ac 1884
23a34459 1885 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1886}
1887
ff2e87ac
AC
1888/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1889 return its contents in TO. */
ac27f131 1890
3a1e71e3 1891static void
ff2e87ac 1892i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 1893 struct type *type, gdb_byte *to)
ac27f131 1894{
de5b9bb9 1895 int len = TYPE_LENGTH (type);
de5b9bb9 1896
ff2e87ac
AC
1897 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1898 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1899
ff2e87ac 1900 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1901 {
d532c08f
MK
1902 i387_register_to_value (frame, regnum, type, to);
1903 return;
8d7f6b4a 1904 }
ff2e87ac 1905
fd35795f 1906 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1907
1908 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1909
de5b9bb9
MK
1910 while (len > 0)
1911 {
1912 gdb_assert (regnum != -1);
1913 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1914
42835c2b 1915 get_frame_register (frame, regnum, to);
de5b9bb9
MK
1916 regnum = i386_next_regnum (regnum);
1917 len -= 4;
42835c2b 1918 to += 4;
de5b9bb9 1919 }
ac27f131
MK
1920}
1921
ff2e87ac
AC
1922/* Write the contents FROM of a value of type TYPE into register
1923 REGNUM in frame FRAME. */
ac27f131 1924
3a1e71e3 1925static void
ff2e87ac 1926i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 1927 struct type *type, const gdb_byte *from)
ac27f131 1928{
de5b9bb9 1929 int len = TYPE_LENGTH (type);
de5b9bb9 1930
ff2e87ac 1931 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1932 {
d532c08f
MK
1933 i387_value_to_register (frame, regnum, type, from);
1934 return;
1935 }
3d261580 1936
fd35795f 1937 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1938
1939 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1940
de5b9bb9
MK
1941 while (len > 0)
1942 {
1943 gdb_assert (regnum != -1);
1944 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1945
42835c2b 1946 put_frame_register (frame, regnum, from);
de5b9bb9
MK
1947 regnum = i386_next_regnum (regnum);
1948 len -= 4;
42835c2b 1949 from += 4;
de5b9bb9 1950 }
ac27f131 1951}
ff2e87ac 1952\f
7fdafb5a
MK
1953/* Supply register REGNUM from the buffer specified by GREGS and LEN
1954 in the general-purpose register set REGSET to register cache
1955 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1956
20187ed5 1957void
473f17b0
MK
1958i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1959 int regnum, const void *gregs, size_t len)
1960{
9ea75c57 1961 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1962 const gdb_byte *regs = gregs;
473f17b0
MK
1963 int i;
1964
1965 gdb_assert (len == tdep->sizeof_gregset);
1966
1967 for (i = 0; i < tdep->gregset_num_regs; i++)
1968 {
1969 if ((regnum == i || regnum == -1)
1970 && tdep->gregset_reg_offset[i] != -1)
1971 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1972 }
1973}
1974
7fdafb5a
MK
1975/* Collect register REGNUM from the register cache REGCACHE and store
1976 it in the buffer specified by GREGS and LEN as described by the
1977 general-purpose register set REGSET. If REGNUM is -1, do this for
1978 all registers in REGSET. */
1979
1980void
1981i386_collect_gregset (const struct regset *regset,
1982 const struct regcache *regcache,
1983 int regnum, void *gregs, size_t len)
1984{
1985 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1986 gdb_byte *regs = gregs;
7fdafb5a
MK
1987 int i;
1988
1989 gdb_assert (len == tdep->sizeof_gregset);
1990
1991 for (i = 0; i < tdep->gregset_num_regs; i++)
1992 {
1993 if ((regnum == i || regnum == -1)
1994 && tdep->gregset_reg_offset[i] != -1)
1995 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1996 }
1997}
1998
1999/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2000 in the floating-point register set REGSET to register cache
2001 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2002
2003static void
2004i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2005 int regnum, const void *fpregs, size_t len)
2006{
9ea75c57 2007 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2008
66a72d25
MK
2009 if (len == I387_SIZEOF_FXSAVE)
2010 {
2011 i387_supply_fxsave (regcache, regnum, fpregs);
2012 return;
2013 }
2014
473f17b0
MK
2015 gdb_assert (len == tdep->sizeof_fpregset);
2016 i387_supply_fsave (regcache, regnum, fpregs);
2017}
8446b36a 2018
2f305df1
MK
2019/* Collect register REGNUM from the register cache REGCACHE and store
2020 it in the buffer specified by FPREGS and LEN as described by the
2021 floating-point register set REGSET. If REGNUM is -1, do this for
2022 all registers in REGSET. */
7fdafb5a
MK
2023
2024static void
2025i386_collect_fpregset (const struct regset *regset,
2026 const struct regcache *regcache,
2027 int regnum, void *fpregs, size_t len)
2028{
2029 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2030
2031 if (len == I387_SIZEOF_FXSAVE)
2032 {
2033 i387_collect_fxsave (regcache, regnum, fpregs);
2034 return;
2035 }
2036
2037 gdb_assert (len == tdep->sizeof_fpregset);
2038 i387_collect_fsave (regcache, regnum, fpregs);
2039}
2040
8446b36a
MK
2041/* Return the appropriate register set for the core section identified
2042 by SECT_NAME and SECT_SIZE. */
2043
2044const struct regset *
2045i386_regset_from_core_section (struct gdbarch *gdbarch,
2046 const char *sect_name, size_t sect_size)
2047{
2048 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2049
2050 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2051 {
2052 if (tdep->gregset == NULL)
7fdafb5a
MK
2053 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2054 i386_collect_gregset);
8446b36a
MK
2055 return tdep->gregset;
2056 }
2057
66a72d25
MK
2058 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2059 || (strcmp (sect_name, ".reg-xfp") == 0
2060 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2061 {
2062 if (tdep->fpregset == NULL)
7fdafb5a
MK
2063 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2064 i386_collect_fpregset);
8446b36a
MK
2065 return tdep->fpregset;
2066 }
2067
2068 return NULL;
2069}
473f17b0 2070\f
fc338970 2071
c906108c 2072#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
2073/* SunPRO encodes the static variables. This is not related to C++
2074 mangling, it is done for C too. */
c906108c
SS
2075
2076char *
fba45db2 2077sunpro_static_transform_name (char *name)
c906108c
SS
2078{
2079 char *p;
2080 if (IS_STATIC_TRANSFORM_NAME (name))
2081 {
fc338970
MK
2082 /* For file-local statics there will be a period, a bunch of
2083 junk (the contents of which match a string given in the
c5aa993b
JM
2084 N_OPT), a period and the name. For function-local statics
2085 there will be a bunch of junk (which seems to change the
2086 second character from 'A' to 'B'), a period, the name of the
2087 function, and the name. So just skip everything before the
2088 last period. */
c906108c
SS
2089 p = strrchr (name, '.');
2090 if (p != NULL)
2091 name = p + 1;
2092 }
2093 return name;
2094}
2095#endif /* STATIC_TRANSFORM_NAME */
fc338970 2096\f
c906108c 2097
fc338970 2098/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2099
2100CORE_ADDR
1cce71eb 2101i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 2102{
fc338970 2103 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 2104 {
c5aa993b 2105 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 2106 struct minimal_symbol *indsym =
fc338970 2107 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2108 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2109
c5aa993b 2110 if (symname)
c906108c 2111 {
c5aa993b
JM
2112 if (strncmp (symname, "__imp_", 6) == 0
2113 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
2114 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2115 }
2116 }
fc338970 2117 return 0; /* Not a trampoline. */
c906108c 2118}
fc338970
MK
2119\f
2120
377d9ebd 2121/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 2122 sigtramp routine. */
8201327c
MK
2123
2124static int
911bc6ee 2125i386_sigtramp_p (struct frame_info *next_frame)
8201327c 2126{
911bc6ee
MK
2127 CORE_ADDR pc = frame_pc_unwind (next_frame);
2128 char *name;
2129
2130 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2131 return (name && strcmp ("_sigtramp", name) == 0);
2132}
2133\f
2134
fc338970
MK
2135/* We have two flavours of disassembly. The machinery on this page
2136 deals with switching between those. */
c906108c
SS
2137
2138static int
a89aa300 2139i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2140{
5e3397bb
MK
2141 gdb_assert (disassembly_flavor == att_flavor
2142 || disassembly_flavor == intel_flavor);
2143
2144 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2145 constified, cast to prevent a compiler warning. */
2146 info->disassembler_options = (char *) disassembly_flavor;
2147 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
2148
2149 return print_insn_i386 (pc, info);
7a292a7a 2150}
fc338970 2151\f
3ce1502b 2152
8201327c
MK
2153/* There are a few i386 architecture variants that differ only
2154 slightly from the generic i386 target. For now, we don't give them
2155 their own source file, but include them here. As a consequence,
2156 they'll always be included. */
3ce1502b 2157
8201327c 2158/* System V Release 4 (SVR4). */
3ce1502b 2159
377d9ebd 2160/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
2161 sigtramp routine. */
2162
8201327c 2163static int
911bc6ee 2164i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 2165{
911bc6ee
MK
2166 CORE_ADDR pc = frame_pc_unwind (next_frame);
2167 char *name;
2168
acd5c798
MK
2169 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2170 currently unknown. */
911bc6ee 2171 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2172 return (name && (strcmp ("_sigreturn", name) == 0
2173 || strcmp ("_sigacthandler", name) == 0
2174 || strcmp ("sigvechandler", name) == 0));
2175}
d2a7c97a 2176
acd5c798
MK
2177/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2178 routine, return the address of the associated sigcontext (ucontext)
2179 structure. */
3ce1502b 2180
3a1e71e3 2181static CORE_ADDR
acd5c798 2182i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 2183{
63c0089f 2184 gdb_byte buf[4];
acd5c798 2185 CORE_ADDR sp;
3ce1502b 2186
acd5c798
MK
2187 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2188 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2189
acd5c798 2190 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2191}
2192\f
3ce1502b 2193
8201327c 2194/* Generic ELF. */
d2a7c97a 2195
8201327c
MK
2196void
2197i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2198{
c4fc7f1b
MK
2199 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2200 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2201}
3ce1502b 2202
8201327c 2203/* System V Release 4 (SVR4). */
3ce1502b 2204
8201327c
MK
2205void
2206i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2207{
2208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2209
8201327c
MK
2210 /* System V Release 4 uses ELF. */
2211 i386_elf_init_abi (info, gdbarch);
3ce1502b 2212
dfe01d39 2213 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2214 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2215
911bc6ee 2216 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2217 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2218 tdep->sc_pc_offset = 36 + 14 * 4;
2219 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2220
8201327c 2221 tdep->jb_pc_offset = 20;
3ce1502b
MK
2222}
2223
8201327c 2224/* DJGPP. */
3ce1502b 2225
3a1e71e3 2226static void
8201327c 2227i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2228{
8201327c 2229 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2230
911bc6ee
MK
2231 /* DJGPP doesn't have any special frames for signal handlers. */
2232 tdep->sigtramp_p = NULL;
3ce1502b 2233
8201327c 2234 tdep->jb_pc_offset = 36;
3ce1502b 2235}
8201327c 2236\f
2acceee2 2237
38c968cf
AC
2238/* i386 register groups. In addition to the normal groups, add "mmx"
2239 and "sse". */
2240
2241static struct reggroup *i386_sse_reggroup;
2242static struct reggroup *i386_mmx_reggroup;
2243
2244static void
2245i386_init_reggroups (void)
2246{
2247 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2248 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2249}
2250
2251static void
2252i386_add_reggroups (struct gdbarch *gdbarch)
2253{
2254 reggroup_add (gdbarch, i386_sse_reggroup);
2255 reggroup_add (gdbarch, i386_mmx_reggroup);
2256 reggroup_add (gdbarch, general_reggroup);
2257 reggroup_add (gdbarch, float_reggroup);
2258 reggroup_add (gdbarch, all_reggroup);
2259 reggroup_add (gdbarch, save_reggroup);
2260 reggroup_add (gdbarch, restore_reggroup);
2261 reggroup_add (gdbarch, vector_reggroup);
2262 reggroup_add (gdbarch, system_reggroup);
2263}
2264
2265int
2266i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2267 struct reggroup *group)
2268{
5716833c
MK
2269 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2270 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2271 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2272 || i386_fpc_regnum_p (regnum));
5716833c 2273 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2274
38c968cf
AC
2275 if (group == i386_mmx_reggroup)
2276 return mmx_regnum_p;
2277 if (group == i386_sse_reggroup)
2278 return sse_regnum_p;
2279 if (group == vector_reggroup)
2280 return (mmx_regnum_p || sse_regnum_p);
2281 if (group == float_reggroup)
2282 return fp_regnum_p;
2283 if (group == general_reggroup)
2284 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2285
38c968cf
AC
2286 return default_register_reggroup_p (gdbarch, regnum, group);
2287}
38c968cf 2288\f
acd5c798 2289
f837910f
MK
2290/* Get the ARGIth function argument for the current function. */
2291
42c466d7 2292static CORE_ADDR
143985b7
AF
2293i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2294 struct type *type)
2295{
f837910f
MK
2296 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2297 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2298}
2299
2300\f
3a1e71e3 2301static struct gdbarch *
a62cc96e
AC
2302i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2303{
cd3c07fc 2304 struct gdbarch_tdep *tdep;
a62cc96e
AC
2305 struct gdbarch *gdbarch;
2306
4be87837
DJ
2307 /* If there is already a candidate, use it. */
2308 arches = gdbarch_list_lookup_by_info (arches, &info);
2309 if (arches != NULL)
2310 return arches->gdbarch;
a62cc96e
AC
2311
2312 /* Allocate space for the new architecture. */
794ac428 2313 tdep = XCALLOC (1, struct gdbarch_tdep);
a62cc96e
AC
2314 gdbarch = gdbarch_alloc (&info, tdep);
2315
473f17b0
MK
2316 /* General-purpose registers. */
2317 tdep->gregset = NULL;
2318 tdep->gregset_reg_offset = NULL;
2319 tdep->gregset_num_regs = I386_NUM_GREGS;
2320 tdep->sizeof_gregset = 0;
2321
2322 /* Floating-point registers. */
2323 tdep->fpregset = NULL;
2324 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2325
5716833c 2326 /* The default settings include the FPU registers, the MMX registers
fd35795f 2327 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2328 by adjusting the members `st0_regnum', `mm0_regnum' and
2329 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2330 will show up in the output of "info all-registers". Ideally we
2331 should try to autodetect whether they are available, such that we
2332 can prevent "info all-registers" from displaying registers that
2333 aren't available.
2334
2335 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2336 [the SSE registers] always (even when they don't exist) or never
2337 showing them to the user (even when they do exist), I prefer the
2338 former over the latter. */
2339
2340 tdep->st0_regnum = I386_ST0_REGNUM;
2341
2342 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2343 calculating the register number for %mm0 until we know the number
5716833c
MK
2344 of raw registers. */
2345 tdep->mm0_regnum = 0;
2346
2347 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2348 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2349
8201327c
MK
2350 tdep->jb_pc_offset = -1;
2351 tdep->struct_return = pcc_struct_return;
8201327c
MK
2352 tdep->sigtramp_start = 0;
2353 tdep->sigtramp_end = 0;
911bc6ee 2354 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2355 tdep->sigcontext_addr = NULL;
a3386186 2356 tdep->sc_reg_offset = NULL;
8201327c 2357 tdep->sc_pc_offset = -1;
21d0e8a4 2358 tdep->sc_sp_offset = -1;
8201327c 2359
896fb97d
MK
2360 /* The format used for `long double' on almost all i386 targets is
2361 the i387 extended floating-point format. In fact, of all targets
2362 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2363 on having a `long double' that's not `long' at all. */
8da61cc4 2364 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
21d0e8a4 2365
66da5fd8 2366 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2367 bits, a `long double' actually takes up 96, probably to enforce
2368 alignment. */
2369 set_gdbarch_long_double_bit (gdbarch, 96);
2370
49ed40de
KB
2371 /* The default ABI includes general-purpose registers,
2372 floating-point registers, and the SSE registers. */
2373 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2374 set_gdbarch_register_name (gdbarch, i386_register_name);
2375 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2376
acd5c798
MK
2377 /* Register numbers of various important registers. */
2378 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2379 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2380 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2381 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2382
c4fc7f1b
MK
2383 /* NOTE: kettenis/20040418: GCC does have two possible register
2384 numbering schemes on the i386: dbx and SVR4. These schemes
2385 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2386 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2387 dbx_register_map[] and svr4_dbx_register_map in
2388 gcc/config/i386.c. GCC also defines a third numbering scheme in
2389 gcc/config/i386.c, which it designates as the "default" register
2390 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2391 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2392 amd64-tdep.c.
2393
2394 Currently, each GCC i386 target always uses the same register
2395 numbering scheme across all its supported debugging formats
2396 i.e. SDB (COFF), stabs and DWARF 2. This is because
2397 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2398 DBX_REGISTER_NUMBER macro which is defined by each target's
2399 respective config header in a manner independent of the requested
2400 output debugging format.
2401
2402 This does not match the arrangement below, which presumes that
2403 the SDB and stabs numbering schemes differ from the DWARF and
2404 DWARF 2 ones. The reason for this arrangement is that it is
2405 likely to get the numbering scheme for the target's
2406 default/native debug format right. For targets where GCC is the
2407 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2408 targets where the native toolchain uses a different numbering
2409 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2410 the defaults below will have to be overridden, like
2411 i386_elf_init_abi() does. */
c4fc7f1b
MK
2412
2413 /* Use the dbx register numbering scheme for stabs and COFF. */
2414 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2415 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2416
2417 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2418 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2419 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e 2420
055d23b8 2421 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
356a6b3e
MK
2422 be in use on any of the supported i386 targets. */
2423
61113f8b
MK
2424 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2425
8201327c 2426 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2427
a62cc96e 2428 /* Call dummy code. */
acd5c798 2429 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2430
ff2e87ac
AC
2431 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2432 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2433 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2434
c5e656c1 2435 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2436
93924b6b
MK
2437 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2438
2439 /* Stack grows downward. */
2440 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2441
2442 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2443 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2444
42fdc8df 2445 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2446
28fc6740 2447 /* Wire in the MMX registers. */
0f751ff2 2448 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2449 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2450 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2451
5e3397bb
MK
2452 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2453
acd5c798 2454 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2455
2456 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2457
38c968cf
AC
2458 /* Add the i386 register groups. */
2459 i386_add_reggroups (gdbarch);
2460 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2461
143985b7
AF
2462 /* Helper for function argument information. */
2463 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2464
6405b0a6 2465 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2466 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2467
acd5c798 2468 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2469
3ce1502b 2470 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2471 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2472
336d1bba
AC
2473 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2474 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2475
8446b36a
MK
2476 /* If we have a register mapping, enable the generic core file
2477 support, unless it has already been enabled. */
2478 if (tdep->gregset_reg_offset
2479 && !gdbarch_regset_from_core_section_p (gdbarch))
2480 set_gdbarch_regset_from_core_section (gdbarch,
2481 i386_regset_from_core_section);
2482
5716833c
MK
2483 /* Unless support for MMX has been disabled, make %mm0 the first
2484 pseudo-register. */
2485 if (tdep->mm0_regnum == 0)
2486 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2487
a62cc96e
AC
2488 return gdbarch;
2489}
2490
8201327c
MK
2491static enum gdb_osabi
2492i386_coff_osabi_sniffer (bfd *abfd)
2493{
762c5349
MK
2494 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2495 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2496 return GDB_OSABI_GO32;
2497
2498 return GDB_OSABI_UNKNOWN;
2499}
8201327c
MK
2500\f
2501
28e9e0f0
MK
2502/* Provide a prototype to silence -Wmissing-prototypes. */
2503void _initialize_i386_tdep (void);
2504
c906108c 2505void
fba45db2 2506_initialize_i386_tdep (void)
c906108c 2507{
a62cc96e
AC
2508 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2509
fc338970 2510 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2511 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2512 &disassembly_flavor, _("\
2513Set the disassembly flavor."), _("\
2514Show the disassembly flavor."), _("\
2515The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2516 NULL,
2517 NULL, /* FIXME: i18n: */
2518 &setlist, &showlist);
8201327c
MK
2519
2520 /* Add the variable that controls the convention for returning
2521 structs. */
7ab04401
AC
2522 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2523 &struct_convention, _("\
2524Set the convention for returning small structs."), _("\
2525Show the convention for returning small structs."), _("\
2526Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2527is \"default\"."),
2528 NULL,
2529 NULL, /* FIXME: i18n: */
2530 &setlist, &showlist);
8201327c
MK
2531
2532 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2533 i386_coff_osabi_sniffer);
8201327c 2534
05816f70 2535 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2536 i386_svr4_init_abi);
05816f70 2537 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2538 i386_go32_init_abi);
38c968cf 2539
5ae96ec1 2540 /* Initialize the i386-specific register groups & types. */
38c968cf 2541 i386_init_reggroups ();
5ae96ec1 2542 i386_init_types();
c906108c 2543}
This page took 0.98198 seconds and 4 git commands to generate.