Remove trailing redundant `;'
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
0b302171 3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
fd0407d6 42#include "value.h"
a89aa300 43#include "dis-asm.h"
7a697b8d 44#include "disasm.h"
c8d5aac9 45#include "remote.h"
8fbca658 46#include "exceptions.h"
3d261580 47#include "gdb_assert.h"
acd5c798 48#include "gdb_string.h"
3d261580 49
d2a7c97a 50#include "i386-tdep.h"
61113f8b 51#include "i387-tdep.h"
c131fcee 52#include "i386-xstate.h"
d2a7c97a 53
7ad10968
HZ
54#include "record.h"
55#include <stdint.h>
56
90884b2b 57#include "features/i386/i386.c"
c131fcee 58#include "features/i386/i386-avx.c"
3a13a53b 59#include "features/i386/i386-mmx.c"
90884b2b 60
6710bf39
SS
61#include "ax.h"
62#include "ax-gdb.h"
63
55aa24fb
SDJ
64#include "stap-probe.h"
65#include "user-regs.h"
66#include "cli/cli-utils.h"
67#include "expression.h"
68#include "parser-defs.h"
69#include <ctype.h>
70
c4fc7f1b 71/* Register names. */
c40e1eab 72
90884b2b 73static const char *i386_register_names[] =
fc633446
MK
74{
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86};
87
c131fcee
L
88static const char *i386_ymm_names[] =
89{
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92};
93
94static const char *i386_ymmh_names[] =
95{
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98};
99
c4fc7f1b 100/* Register names for MMX pseudo-registers. */
28fc6740 101
90884b2b 102static const char *i386_mmx_names[] =
28fc6740
AC
103{
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106};
c40e1eab 107
1ba53b71
L
108/* Register names for byte pseudo-registers. */
109
110static const char *i386_byte_names[] =
111{
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114};
115
116/* Register names for word pseudo-registers. */
117
118static const char *i386_word_names[] =
119{
120 "ax", "cx", "dx", "bx",
9cad29ac 121 "", "bp", "si", "di"
1ba53b71
L
122};
123
124/* MMX register? */
c40e1eab 125
28fc6740 126static int
5716833c 127i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 128{
1ba53b71
L
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
131
132 if (mm0_regnum < 0)
133 return 0;
134
1ba53b71
L
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137}
138
139/* Byte register? */
140
141int
142i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143{
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148}
149
150/* Word register? */
151
152int
153i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154{
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159}
160
161/* Dword register? */
162
163int
164i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165{
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
174}
175
9191d390 176static int
c131fcee
L
177i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178{
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187}
188
189/* AVX register? */
190
191int
192i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193{
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202}
203
5716833c 204/* SSE register? */
23a34459 205
c131fcee
L
206int
207i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 208{
5716833c 209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 211
c131fcee 212 if (num_xmm_regs == 0)
5716833c
MK
213 return 0;
214
c131fcee
L
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
217}
218
5716833c
MK
219static int
220i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 221{
5716833c
MK
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
20a6ec49 224 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
225 return 0;
226
20a6ec49 227 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
228}
229
5716833c 230/* FP register? */
23a34459
AC
231
232int
20a6ec49 233i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 234{
20a6ec49
MD
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
238 return 0;
239
20a6ec49
MD
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
242}
243
244int
20a6ec49 245i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 246{
20a6ec49
MD
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
250 return 0;
251
20a6ec49
MD
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
254}
255
c131fcee
L
256/* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259static const char *
260i386_register_name (struct gdbarch *gdbarch, int regnum)
261{
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267}
268
30b0e2d8 269/* Return the name of register REGNUM. */
fc633446 270
1ba53b71 271const char *
90884b2b 272i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 273{
1ba53b71
L
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
1ba53b71
L
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
285}
286
c4fc7f1b 287/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
288 number used by GDB. */
289
8201327c 290static int
d3f73121 291i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 292{
20a6ec49
MD
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
c4fc7f1b
MK
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
85540d8c
MK
298 if (reg >= 0 && reg <= 7)
299 {
9872ad24
JB
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
85540d8c
MK
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
20a6ec49 311 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
c131fcee
L
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
20a6ec49 327 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
328 }
329
330 /* This will hopefully provoke a warning. */
d3f73121 331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
332}
333
c4fc7f1b
MK
334/* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
85540d8c 336
8201327c 337static int
d3f73121 338i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 339{
20a6ec49
MD
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
c4fc7f1b
MK
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
acd5c798 349 /* General-purpose registers. */
85540d8c
MK
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
20a6ec49 355 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 356 }
c6f4c129 357 else if (reg >= 21 && reg <= 36)
85540d8c 358 {
c4fc7f1b 359 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 360 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
361 }
362
c6f4c129
JB
363 switch (reg)
364 {
20a6ec49
MD
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
85540d8c 376 /* This will hopefully provoke a warning. */
d3f73121 377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 378}
5716833c 379
fc338970 380\f
917317f4 381
fc338970
MK
382/* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
53904c9e
AC
384static const char att_flavor[] = "att";
385static const char intel_flavor[] = "intel";
40478521 386static const char *const valid_flavors[] =
c5aa993b 387{
c906108c
SS
388 att_flavor,
389 intel_flavor,
390 NULL
391};
53904c9e 392static const char *disassembly_flavor = att_flavor;
acd5c798 393\f
c906108c 394
acd5c798
MK
395/* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
c906108c 400
acd5c798
MK
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
c906108c 403
acd5c798 404 This function is 64-bit safe. */
63c0089f
MK
405
406static const gdb_byte *
67d57894 407i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 408{
63c0089f
MK
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
acd5c798
MK
411 *len = sizeof (break_insn);
412 return break_insn;
c906108c 413}
237fc4c9
PA
414\f
415/* Displaced instruction handling. */
416
1903f0e6
DE
417/* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423static gdb_byte *
424i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425{
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451}
237fc4c9
PA
452
453static int
1903f0e6 454i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 455{
1777feb0 456 /* jmp far (absolute address in operand). */
237fc4c9
PA
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
1777feb0 462 /* jump near, absolute indirect (/4). */
237fc4c9
PA
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
1777feb0 466 /* jump far, absolute indirect (/5). */
237fc4c9
PA
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472}
473
474static int
1903f0e6 475i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 476{
1777feb0 477 /* call far, absolute. */
237fc4c9
PA
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
1777feb0 483 /* Call near, absolute indirect (/2). */
237fc4c9
PA
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
1777feb0 487 /* Call far, absolute indirect (/3). */
237fc4c9
PA
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493}
494
495static int
1903f0e6 496i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
497{
498 switch (insn[0])
499 {
1777feb0 500 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 501 case 0xc3: /* ret near */
1777feb0 502 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510}
511
512static int
1903f0e6 513i386_call_p (const gdb_byte *insn)
237fc4c9
PA
514{
515 if (i386_absolute_call_p (insn))
516 return 1;
517
1777feb0 518 /* call near, relative. */
237fc4c9
PA
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523}
524
237fc4c9
PA
525/* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
1903f0e6 527
237fc4c9 528static int
b55078be 529i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 530{
9a7f938f
JK
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543}
544
b55078be
DE
545/* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548struct displaced_step_closure *
549i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552{
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580}
581
237fc4c9
PA
582/* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
1903f0e6 584
237fc4c9
PA
585void
586i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590{
e17a4113
UW
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
237fc4c9
PA
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
237fc4c9
PA
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
5af949e3 607 "displaced: fixup (%s, %s), "
237fc4c9 608 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
237fc4c9
PA
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
1903f0e6
DE
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
237fc4c9
PA
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
b55078be 640 int insn_len;
237fc4c9
PA
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
1903f0e6
DE
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
237fc4c9
PA
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
5af949e3
UW
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
237fc4c9
PA
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
237fc4c9
PA
714 }
715}
dde08ee1
PA
716
717static void
718append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719{
720 target_write_memory (*to, buf, len);
721 *to += len;
722}
723
724static void
725i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727{
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
1777feb0 752 push_buf[0] = 0x68; /* pushq $... */
144db827 753 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
f4a1794a 789 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
dde08ee1
PA
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801}
802
fc338970 803\f
acd5c798
MK
804#ifdef I386_REGNO_TO_SYMMETRY
805#error "The Sequent Symmetry is no longer supported."
806#endif
c906108c 807
acd5c798
MK
808/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
c906108c 811
acd5c798
MK
812/* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
a3386186 814#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
815
816struct i386_frame_cache
c906108c 817{
acd5c798
MK
818 /* Base address. */
819 CORE_ADDR base;
8fbca658 820 int base_p;
772562f8 821 LONGEST sp_offset;
acd5c798
MK
822 CORE_ADDR pc;
823
fd13a04a
AC
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 826 CORE_ADDR saved_sp;
e0c62198 827 int saved_sp_reg;
acd5c798
MK
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832};
833
834/* Allocate and initialize a frame cache. */
835
836static struct i386_frame_cache *
fd13a04a 837i386_alloc_frame_cache (void)
acd5c798
MK
838{
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
8fbca658 845 cache->base_p = 0;
acd5c798
MK
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
fd13a04a
AC
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
acd5c798 854 cache->saved_sp = 0;
e0c62198 855 cache->saved_sp_reg = -1;
acd5c798
MK
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862}
c906108c 863
acd5c798
MK
864/* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
c906108c 866
acd5c798 867static CORE_ADDR
e17a4113 868i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 869{
e17a4113 870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 871 gdb_byte op;
acd5c798
MK
872 long delta = 0;
873 int data16 = 0;
c906108c 874
3dcabaa8
MS
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
acd5c798 878 if (op == 0x66)
c906108c 879 {
c906108c 880 data16 = 1;
e17a4113 881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
882 }
883
acd5c798 884 switch (op)
c906108c
SS
885 {
886 case 0xe9:
fc338970 887 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
888 if (data16)
889 {
e17a4113 890 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 891
fc338970
MK
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
acd5c798 894 delta += 4;
c906108c
SS
895 }
896 else
897 {
e17a4113 898 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 899
acd5c798
MK
900 /* Include the size of the jmp instruction. */
901 delta += 5;
c906108c
SS
902 }
903 break;
904 case 0xeb:
fc338970 905 /* Relative jump, disp8 (ignore data16). */
e17a4113 906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 907
acd5c798 908 delta += data16 + 2;
c906108c
SS
909 break;
910 }
c906108c 911
acd5c798
MK
912 return pc + delta;
913}
fc338970 914
acd5c798
MK
915/* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
c906108c 920
acd5c798
MK
921static CORE_ADDR
922i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
c906108c 924{
acd5c798
MK
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
63c0089f
MK
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
c906108c 939
acd5c798
MK
940 if (current_pc <= pc)
941 return pc;
942
3dcabaa8
MS
943 if (target_read_memory (pc, &op, 1))
944 return pc;
c906108c 945
acd5c798
MK
946 if (op != 0x58) /* popl %eax */
947 return pc;
c906108c 948
3dcabaa8
MS
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
acd5c798
MK
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
c906108c 954
acd5c798 955 if (current_pc == pc)
c906108c 956 {
acd5c798
MK
957 cache->sp_offset += 4;
958 return current_pc;
c906108c
SS
959 }
960
acd5c798 961 if (current_pc == pc + 1)
c906108c 962 {
acd5c798
MK
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971}
972
973static CORE_ADDR
974i386_skip_probe (CORE_ADDR pc)
975{
976 /* A function may start with
fc338970 977
acd5c798
MK
978 pushl constant
979 call _probe
980 addl $4, %esp
fc338970 981
acd5c798
MK
982 followed by
983
984 pushl %ebp
fc338970 985
acd5c798 986 etc. */
63c0089f
MK
987 gdb_byte buf[8];
988 gdb_byte op;
fc338970 989
3dcabaa8
MS
990 if (target_read_memory (pc, &op, 1))
991 return pc;
acd5c798
MK
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
c906108c 996
acd5c798
MK
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
c906108c 999 if (op == 0x68)
acd5c798 1000 delta = 5;
c906108c 1001 else
acd5c798 1002 delta = 2;
c906108c 1003
acd5c798
MK
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1008 pc += delta + sizeof (buf);
c906108c
SS
1009 }
1010
acd5c798
MK
1011 return pc;
1012}
1013
92dd43fa
MK
1014/* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020static CORE_ADDR
1021i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023{
e0c62198
L
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
92dd43fa 1058 };
92dd43fa 1059
e0c62198
L
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1123 return pc;
1124
e0c62198
L
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
92dd43fa 1127
e0c62198 1128 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1129}
1130
37bdc87e 1131/* Maximum instruction length we need to handle. */
237fc4c9 1132#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1133
1134/* Instruction description. */
1135struct i386_insn
1136{
1137 size_t len;
237fc4c9
PA
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1140};
1141
a3fcb948 1142/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1143
a3fcb948
JG
1144static int
1145i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1146{
63c0089f 1147 gdb_byte op;
37bdc87e 1148
3dcabaa8 1149 if (target_read_memory (pc, &op, 1))
a3fcb948 1150 return 0;
37bdc87e 1151
a3fcb948 1152 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1153 {
a3fcb948
JG
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
37bdc87e 1157
a3fcb948
JG
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1160
a3fcb948
JG
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
613e8135 1163
a3fcb948
JG
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
37bdc87e 1168 }
a3fcb948
JG
1169 return insn_matched;
1170 }
1171 return 0;
1172}
1173
1174/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178static struct i386_insn *
1179i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180{
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
37bdc87e
MK
1187 }
1188
1189 return NULL;
1190}
1191
a3fcb948
JG
1192/* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195static int
1196i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197{
1198 CORE_ADDR current_pc;
1199 int ix, i;
a3fcb948
JG
1200 struct i386_insn *insn;
1201
1202 insn = i386_match_insn (pc, insn_patterns);
1203 if (insn == NULL)
1204 return 0;
1205
8bbdd3f4 1206 current_pc = pc;
a3fcb948
JG
1207 ix = insn - insn_patterns;
1208 for (i = ix - 1; i >= 0; i--)
1209 {
8bbdd3f4
MK
1210 current_pc -= insn_patterns[i].len;
1211
a3fcb948
JG
1212 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1213 return 0;
a3fcb948
JG
1214 }
1215
1216 current_pc = pc + insn->len;
1217 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1218 {
1219 if (!i386_match_pattern (current_pc, *insn))
1220 return 0;
1221
1222 current_pc += insn->len;
1223 }
1224
1225 return 1;
1226}
1227
37bdc87e
MK
1228/* Some special instructions that might be migrated by GCC into the
1229 part of the prologue that sets up the new stack frame. Because the
1230 stack frame hasn't been setup yet, no registers have been saved
1231 yet, and only the scratch registers %eax, %ecx and %edx can be
1232 touched. */
1233
1234struct i386_insn i386_frame_setup_skip_insns[] =
1235{
1777feb0 1236 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1237
1238 ??? Should we handle 16-bit operand-sizes here? */
1239
1240 /* `movb imm8, %al' and `movb imm8, %ah' */
1241 /* `movb imm8, %cl' and `movb imm8, %ch' */
1242 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1243 /* `movb imm8, %dl' and `movb imm8, %dh' */
1244 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1245 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1246 { 5, { 0xb8 }, { 0xfe } },
1247 /* `movl imm32, %edx' */
1248 { 5, { 0xba }, { 0xff } },
1249
1250 /* Check for `mov imm32, r32'. Note that there is an alternative
1251 encoding for `mov m32, %eax'.
1252
1253 ??? Should we handle SIB adressing here?
1254 ??? Should we handle 16-bit operand-sizes here? */
1255
1256 /* `movl m32, %eax' */
1257 { 5, { 0xa1 }, { 0xff } },
1258 /* `movl m32, %eax' and `mov; m32, %ecx' */
1259 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1260 /* `movl m32, %edx' */
1261 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1262
1263 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1264 Because of the symmetry, there are actually two ways to encode
1265 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1266 opcode bytes 0x31 and 0x33 for `xorl'. */
1267
1268 /* `subl %eax, %eax' */
1269 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1270 /* `subl %ecx, %ecx' */
1271 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1272 /* `subl %edx, %edx' */
1273 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1274 /* `xorl %eax, %eax' */
1275 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1276 /* `xorl %ecx, %ecx' */
1277 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1278 /* `xorl %edx, %edx' */
1279 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1280 { 0 }
1281};
1282
e11481da
PM
1283
1284/* Check whether PC points to a no-op instruction. */
1285static CORE_ADDR
1286i386_skip_noop (CORE_ADDR pc)
1287{
1288 gdb_byte op;
1289 int check = 1;
1290
3dcabaa8
MS
1291 if (target_read_memory (pc, &op, 1))
1292 return pc;
e11481da
PM
1293
1294 while (check)
1295 {
1296 check = 0;
1297 /* Ignore `nop' instruction. */
1298 if (op == 0x90)
1299 {
1300 pc += 1;
3dcabaa8
MS
1301 if (target_read_memory (pc, &op, 1))
1302 return pc;
e11481da
PM
1303 check = 1;
1304 }
1305 /* Ignore no-op instruction `mov %edi, %edi'.
1306 Microsoft system dlls often start with
1307 a `mov %edi,%edi' instruction.
1308 The 5 bytes before the function start are
1309 filled with `nop' instructions.
1310 This pattern can be used for hot-patching:
1311 The `mov %edi, %edi' instruction can be replaced by a
1312 near jump to the location of the 5 `nop' instructions
1313 which can be replaced by a 32-bit jump to anywhere
1314 in the 32-bit address space. */
1315
1316 else if (op == 0x8b)
1317 {
3dcabaa8
MS
1318 if (target_read_memory (pc + 1, &op, 1))
1319 return pc;
1320
e11481da
PM
1321 if (op == 0xff)
1322 {
1323 pc += 2;
3dcabaa8
MS
1324 if (target_read_memory (pc, &op, 1))
1325 return pc;
1326
e11481da
PM
1327 check = 1;
1328 }
1329 }
1330 }
1331 return pc;
1332}
1333
acd5c798
MK
1334/* Check whether PC points at a code that sets up a new stack frame.
1335 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1336 instruction after the sequence that sets up the frame or LIMIT,
1337 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1338
1339static CORE_ADDR
e17a4113
UW
1340i386_analyze_frame_setup (struct gdbarch *gdbarch,
1341 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1342 struct i386_frame_cache *cache)
1343{
e17a4113 1344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1345 struct i386_insn *insn;
63c0089f 1346 gdb_byte op;
26604a34 1347 int skip = 0;
acd5c798 1348
37bdc87e
MK
1349 if (limit <= pc)
1350 return limit;
acd5c798 1351
3dcabaa8
MS
1352 if (target_read_memory (pc, &op, 1))
1353 return pc;
acd5c798 1354
c906108c 1355 if (op == 0x55) /* pushl %ebp */
c5aa993b 1356 {
acd5c798
MK
1357 /* Take into account that we've executed the `pushl %ebp' that
1358 starts this instruction sequence. */
fd13a04a 1359 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1360 cache->sp_offset += 4;
37bdc87e 1361 pc++;
acd5c798
MK
1362
1363 /* If that's all, return now. */
37bdc87e
MK
1364 if (limit <= pc)
1365 return limit;
26604a34 1366
b4632131 1367 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1368 GCC into the prologue and skip them. At this point in the
1369 prologue, code should only touch the scratch registers %eax,
1370 %ecx and %edx, so while the number of posibilities is sheer,
1371 it is limited.
5daa5b4e 1372
26604a34
MK
1373 Make sure we only skip these instructions if we later see the
1374 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1375 while (pc + skip < limit)
26604a34 1376 {
37bdc87e
MK
1377 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1378 if (insn == NULL)
1379 break;
b4632131 1380
37bdc87e 1381 skip += insn->len;
26604a34
MK
1382 }
1383
37bdc87e
MK
1384 /* If that's all, return now. */
1385 if (limit <= pc + skip)
1386 return limit;
1387
3dcabaa8
MS
1388 if (target_read_memory (pc + skip, &op, 1))
1389 return pc + skip;
37bdc87e 1390
26604a34 1391 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 1392 switch (op)
c906108c
SS
1393 {
1394 case 0x8b:
e17a4113
UW
1395 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1396 != 0xec)
37bdc87e 1397 return pc;
c906108c
SS
1398 break;
1399 case 0x89:
e17a4113
UW
1400 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1401 != 0xe5)
37bdc87e 1402 return pc;
c906108c
SS
1403 break;
1404 default:
37bdc87e 1405 return pc;
c906108c 1406 }
acd5c798 1407
26604a34
MK
1408 /* OK, we actually have a frame. We just don't know how large
1409 it is yet. Set its size to zero. We'll adjust it if
1410 necessary. We also now commit to skipping the special
1411 instructions mentioned before. */
acd5c798 1412 cache->locals = 0;
37bdc87e 1413 pc += (skip + 2);
acd5c798
MK
1414
1415 /* If that's all, return now. */
37bdc87e
MK
1416 if (limit <= pc)
1417 return limit;
acd5c798 1418
fc338970
MK
1419 /* Check for stack adjustment
1420
acd5c798 1421 subl $XXX, %esp
fc338970 1422
fd35795f 1423 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1424 reg, so we don't have to worry about a data16 prefix. */
3dcabaa8
MS
1425 if (target_read_memory (pc, &op, 1))
1426 return pc;
c906108c
SS
1427 if (op == 0x83)
1428 {
fd35795f 1429 /* `subl' with 8-bit immediate. */
e17a4113 1430 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1431 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1432 return pc;
acd5c798 1433
37bdc87e
MK
1434 /* `subl' with signed 8-bit immediate (though it wouldn't
1435 make sense to be negative). */
e17a4113 1436 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
37bdc87e 1437 return pc + 3;
c906108c
SS
1438 }
1439 else if (op == 0x81)
1440 {
fd35795f 1441 /* Maybe it is `subl' with a 32-bit immediate. */
e17a4113 1442 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1443 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1444 return pc;
acd5c798 1445
fd35795f 1446 /* It is `subl' with a 32-bit immediate. */
e17a4113 1447 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
37bdc87e 1448 return pc + 6;
c906108c
SS
1449 }
1450 else
1451 {
acd5c798 1452 /* Some instruction other than `subl'. */
37bdc87e 1453 return pc;
c906108c
SS
1454 }
1455 }
37bdc87e 1456 else if (op == 0xc8) /* enter */
c906108c 1457 {
e17a4113 1458 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1459 return pc + 4;
c906108c 1460 }
21d0e8a4 1461
acd5c798 1462 return pc;
21d0e8a4
MK
1463}
1464
acd5c798
MK
1465/* Check whether PC points at code that saves registers on the stack.
1466 If so, it updates CACHE and returns the address of the first
1467 instruction after the register saves or CURRENT_PC, whichever is
1468 smaller. Otherwise, return PC. */
6bff26de
MK
1469
1470static CORE_ADDR
acd5c798
MK
1471i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1472 struct i386_frame_cache *cache)
6bff26de 1473{
99ab4326 1474 CORE_ADDR offset = 0;
63c0089f 1475 gdb_byte op;
99ab4326 1476 int i;
c0d1d883 1477
99ab4326
MK
1478 if (cache->locals > 0)
1479 offset -= cache->locals;
1480 for (i = 0; i < 8 && pc < current_pc; i++)
1481 {
3dcabaa8
MS
1482 if (target_read_memory (pc, &op, 1))
1483 return pc;
99ab4326
MK
1484 if (op < 0x50 || op > 0x57)
1485 break;
0d17c81d 1486
99ab4326
MK
1487 offset -= 4;
1488 cache->saved_regs[op - 0x50] = offset;
1489 cache->sp_offset += 4;
1490 pc++;
6bff26de
MK
1491 }
1492
acd5c798 1493 return pc;
22797942
AC
1494}
1495
acd5c798
MK
1496/* Do a full analysis of the prologue at PC and update CACHE
1497 accordingly. Bail out early if CURRENT_PC is reached. Return the
1498 address where the analysis stopped.
ed84f6c1 1499
fc338970
MK
1500 We handle these cases:
1501
1502 The startup sequence can be at the start of the function, or the
1503 function can start with a branch to startup code at the end.
1504
1505 %ebp can be set up with either the 'enter' instruction, or "pushl
1506 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1507 once used in the System V compiler).
1508
1509 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1510 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1511 16-bit unsigned argument for space to allocate, and the 'addl'
1512 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1513
1514 Next, the registers used by this function are pushed. With the
1515 System V compiler they will always be in the order: %edi, %esi,
1516 %ebx (and sometimes a harmless bug causes it to also save but not
1517 restore %eax); however, the code below is willing to see the pushes
1518 in any order, and will handle up to 8 of them.
1519
1520 If the setup sequence is at the end of the function, then the next
1521 instruction will be a branch back to the start. */
c906108c 1522
acd5c798 1523static CORE_ADDR
e17a4113
UW
1524i386_analyze_prologue (struct gdbarch *gdbarch,
1525 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1526 struct i386_frame_cache *cache)
c906108c 1527{
e11481da 1528 pc = i386_skip_noop (pc);
e17a4113 1529 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1530 pc = i386_analyze_struct_return (pc, current_pc, cache);
1531 pc = i386_skip_probe (pc);
92dd43fa 1532 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1533 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1534 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1535}
1536
fc338970 1537/* Return PC of first real instruction. */
c906108c 1538
3a1e71e3 1539static CORE_ADDR
6093d2eb 1540i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1541{
e17a4113
UW
1542 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1543
63c0089f 1544 static gdb_byte pic_pat[6] =
acd5c798
MK
1545 {
1546 0xe8, 0, 0, 0, 0, /* call 0x0 */
1547 0x5b, /* popl %ebx */
c5aa993b 1548 };
acd5c798
MK
1549 struct i386_frame_cache cache;
1550 CORE_ADDR pc;
63c0089f 1551 gdb_byte op;
acd5c798 1552 int i;
c5aa993b 1553
acd5c798 1554 cache.locals = -1;
e17a4113 1555 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1556 if (cache.locals < 0)
1557 return start_pc;
c5aa993b 1558
acd5c798 1559 /* Found valid frame setup. */
c906108c 1560
fc338970
MK
1561 /* The native cc on SVR4 in -K PIC mode inserts the following code
1562 to get the address of the global offset table (GOT) into register
acd5c798
MK
1563 %ebx:
1564
fc338970
MK
1565 call 0x0
1566 popl %ebx
1567 movl %ebx,x(%ebp) (optional)
1568 addl y,%ebx
1569
c906108c
SS
1570 This code is with the rest of the prologue (at the end of the
1571 function), so we have to skip it to get to the first real
1572 instruction at the start of the function. */
c5aa993b 1573
c906108c
SS
1574 for (i = 0; i < 6; i++)
1575 {
3dcabaa8
MS
1576 if (target_read_memory (pc + i, &op, 1))
1577 return pc;
1578
c5aa993b 1579 if (pic_pat[i] != op)
c906108c
SS
1580 break;
1581 }
1582 if (i == 6)
1583 {
acd5c798
MK
1584 int delta = 6;
1585
3dcabaa8
MS
1586 if (target_read_memory (pc + delta, &op, 1))
1587 return pc;
c906108c 1588
c5aa993b 1589 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1590 {
e17a4113 1591 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1592
fc338970 1593 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1594 delta += 3;
fc338970 1595 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1596 delta += 6;
fc338970 1597 else /* Unexpected instruction. */
acd5c798
MK
1598 delta = 0;
1599
3dcabaa8
MS
1600 if (target_read_memory (pc + delta, &op, 1))
1601 return pc;
c906108c 1602 }
acd5c798 1603
c5aa993b 1604 /* addl y,%ebx */
acd5c798 1605 if (delta > 0 && op == 0x81
e17a4113
UW
1606 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1607 == 0xc3)
c906108c 1608 {
acd5c798 1609 pc += delta + 6;
c906108c
SS
1610 }
1611 }
c5aa993b 1612
e63bbc88
MK
1613 /* If the function starts with a branch (to startup code at the end)
1614 the last instruction should bring us back to the first
1615 instruction of the real code. */
e17a4113
UW
1616 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1617 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1618
1619 return pc;
c906108c
SS
1620}
1621
4309257c
PM
1622/* Check that the code pointed to by PC corresponds to a call to
1623 __main, skip it if so. Return PC otherwise. */
1624
1625CORE_ADDR
1626i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1627{
e17a4113 1628 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1629 gdb_byte op;
1630
3dcabaa8
MS
1631 if (target_read_memory (pc, &op, 1))
1632 return pc;
4309257c
PM
1633 if (op == 0xe8)
1634 {
1635 gdb_byte buf[4];
1636
1637 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1638 {
1639 /* Make sure address is computed correctly as a 32bit
1640 integer even if CORE_ADDR is 64 bit wide. */
1641 struct minimal_symbol *s;
e17a4113 1642 CORE_ADDR call_dest;
4309257c 1643
e17a4113 1644 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1645 call_dest = call_dest & 0xffffffffU;
1646 s = lookup_minimal_symbol_by_pc (call_dest);
1647 if (s != NULL
1648 && SYMBOL_LINKAGE_NAME (s) != NULL
1649 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1650 pc += 5;
1651 }
1652 }
1653
1654 return pc;
1655}
1656
acd5c798 1657/* This function is 64-bit safe. */
93924b6b 1658
acd5c798
MK
1659static CORE_ADDR
1660i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1661{
63c0089f 1662 gdb_byte buf[8];
acd5c798 1663
875f8d0e 1664 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1665 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1666}
acd5c798 1667\f
93924b6b 1668
acd5c798 1669/* Normal frames. */
c5aa993b 1670
8fbca658
PA
1671static void
1672i386_frame_cache_1 (struct frame_info *this_frame,
1673 struct i386_frame_cache *cache)
a7769679 1674{
e17a4113
UW
1675 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1677 gdb_byte buf[4];
acd5c798
MK
1678 int i;
1679
8fbca658 1680 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1681
1682 /* In principle, for normal frames, %ebp holds the frame pointer,
1683 which holds the base address for the current stack frame.
1684 However, for functions that don't need it, the frame pointer is
1685 optional. For these "frameless" functions the frame pointer is
1686 actually the frame pointer of the calling frame. Signal
1687 trampolines are just a special case of a "frameless" function.
1688 They (usually) share their frame pointer with the frame that was
1689 in progress when the signal occurred. */
1690
10458914 1691 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1692 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1693 if (cache->base == 0)
620fa63a
PA
1694 {
1695 cache->base_p = 1;
1696 return;
1697 }
acd5c798
MK
1698
1699 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1700 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1701
acd5c798 1702 if (cache->pc != 0)
e17a4113
UW
1703 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1704 cache);
acd5c798
MK
1705
1706 if (cache->locals < 0)
1707 {
1708 /* We didn't find a valid frame, which means that CACHE->base
1709 currently holds the frame pointer for our calling frame. If
1710 we're at the start of a function, or somewhere half-way its
1711 prologue, the function's frame probably hasn't been fully
1712 setup yet. Try to reconstruct the base address for the stack
1713 frame by looking at the stack pointer. For truly "frameless"
1714 functions this might work too. */
1715
e0c62198 1716 if (cache->saved_sp_reg != -1)
92dd43fa 1717 {
8fbca658
PA
1718 /* Saved stack pointer has been saved. */
1719 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1720 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1721
92dd43fa
MK
1722 /* We're halfway aligning the stack. */
1723 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1724 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1725
1726 /* This will be added back below. */
1727 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1728 }
7618e12b
DJ
1729 else if (cache->pc != 0
1730 || target_read_memory (get_frame_pc (this_frame), buf, 1))
92dd43fa 1731 {
7618e12b
DJ
1732 /* We're in a known function, but did not find a frame
1733 setup. Assume that the function does not use %ebp.
1734 Alternatively, we may have jumped to an invalid
1735 address; in that case there is definitely no new
1736 frame in %ebp. */
10458914 1737 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1738 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1739 + cache->sp_offset;
92dd43fa 1740 }
7618e12b
DJ
1741 else
1742 /* We're in an unknown function. We could not find the start
1743 of the function to analyze the prologue; our best option is
1744 to assume a typical frame layout with the caller's %ebp
1745 saved. */
1746 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
1747 }
1748
8fbca658
PA
1749 if (cache->saved_sp_reg != -1)
1750 {
1751 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1752 register may be unavailable). */
1753 if (cache->saved_sp == 0
1754 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1755 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1756 }
acd5c798
MK
1757 /* Now that we have the base address for the stack frame we can
1758 calculate the value of %esp in the calling frame. */
8fbca658 1759 else if (cache->saved_sp == 0)
92dd43fa 1760 cache->saved_sp = cache->base + 8;
a7769679 1761
acd5c798
MK
1762 /* Adjust all the saved registers such that they contain addresses
1763 instead of offsets. */
1764 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1765 if (cache->saved_regs[i] != -1)
1766 cache->saved_regs[i] += cache->base;
acd5c798 1767
8fbca658
PA
1768 cache->base_p = 1;
1769}
1770
1771static struct i386_frame_cache *
1772i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1773{
1774 volatile struct gdb_exception ex;
1775 struct i386_frame_cache *cache;
1776
1777 if (*this_cache)
1778 return *this_cache;
1779
1780 cache = i386_alloc_frame_cache ();
1781 *this_cache = cache;
1782
1783 TRY_CATCH (ex, RETURN_MASK_ERROR)
1784 {
1785 i386_frame_cache_1 (this_frame, cache);
1786 }
1787 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1788 throw_exception (ex);
1789
acd5c798 1790 return cache;
a7769679
MK
1791}
1792
3a1e71e3 1793static void
10458914 1794i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1795 struct frame_id *this_id)
c906108c 1796{
10458914 1797 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1798
1799 /* This marks the outermost frame. */
1800 if (cache->base == 0)
1801 return;
1802
3e210248 1803 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1804 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1805}
1806
8fbca658
PA
1807static enum unwind_stop_reason
1808i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1809 void **this_cache)
1810{
1811 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1812
1813 if (!cache->base_p)
1814 return UNWIND_UNAVAILABLE;
1815
1816 /* This marks the outermost frame. */
1817 if (cache->base == 0)
1818 return UNWIND_OUTERMOST;
1819
1820 return UNWIND_NO_REASON;
1821}
1822
10458914
DJ
1823static struct value *
1824i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1825 int regnum)
acd5c798 1826{
10458914 1827 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1828
1829 gdb_assert (regnum >= 0);
1830
1831 /* The System V ABI says that:
1832
1833 "The flags register contains the system flags, such as the
1834 direction flag and the carry flag. The direction flag must be
1835 set to the forward (that is, zero) direction before entry and
1836 upon exit from a function. Other user flags have no specified
1837 role in the standard calling sequence and are not preserved."
1838
1839 To guarantee the "upon exit" part of that statement we fake a
1840 saved flags register that has its direction flag cleared.
1841
1842 Note that GCC doesn't seem to rely on the fact that the direction
1843 flag is cleared after a function return; it always explicitly
1844 clears the flag before operations where it matters.
1845
1846 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1847 right thing to do. The way we fake the flags register here makes
1848 it impossible to change it. */
1849
1850 if (regnum == I386_EFLAGS_REGNUM)
1851 {
10458914 1852 ULONGEST val;
c5aa993b 1853
10458914
DJ
1854 val = get_frame_register_unsigned (this_frame, regnum);
1855 val &= ~(1 << 10);
1856 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1857 }
1211c4e4 1858
acd5c798 1859 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1860 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 1861
fcf250e2
UW
1862 if (regnum == I386_ESP_REGNUM
1863 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
1864 {
1865 /* If the SP has been saved, but we don't know where, then this
1866 means that SAVED_SP_REG register was found unavailable back
1867 when we built the cache. */
fcf250e2 1868 if (cache->saved_sp == 0)
8fbca658
PA
1869 return frame_unwind_got_register (this_frame, regnum,
1870 cache->saved_sp_reg);
1871 else
1872 return frame_unwind_got_constant (this_frame, regnum,
1873 cache->saved_sp);
1874 }
acd5c798 1875
fd13a04a 1876 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1877 return frame_unwind_got_memory (this_frame, regnum,
1878 cache->saved_regs[regnum]);
fd13a04a 1879
10458914 1880 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1881}
1882
1883static const struct frame_unwind i386_frame_unwind =
1884{
1885 NORMAL_FRAME,
8fbca658 1886 i386_frame_unwind_stop_reason,
acd5c798 1887 i386_frame_this_id,
10458914
DJ
1888 i386_frame_prev_register,
1889 NULL,
1890 default_frame_sniffer
acd5c798 1891};
06da04c6
MS
1892
1893/* Normal frames, but in a function epilogue. */
1894
1895/* The epilogue is defined here as the 'ret' instruction, which will
1896 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1897 the function's stack frame. */
1898
1899static int
1900i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1901{
1902 gdb_byte insn;
e0d00bc7
JK
1903 struct symtab *symtab;
1904
1905 symtab = find_pc_symtab (pc);
1906 if (symtab && symtab->epilogue_unwind_valid)
1907 return 0;
06da04c6
MS
1908
1909 if (target_read_memory (pc, &insn, 1))
1910 return 0; /* Can't read memory at pc. */
1911
1912 if (insn != 0xc3) /* 'ret' instruction. */
1913 return 0;
1914
1915 return 1;
1916}
1917
1918static int
1919i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1920 struct frame_info *this_frame,
1921 void **this_prologue_cache)
1922{
1923 if (frame_relative_level (this_frame) == 0)
1924 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1925 get_frame_pc (this_frame));
1926 else
1927 return 0;
1928}
1929
1930static struct i386_frame_cache *
1931i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1932{
8fbca658 1933 volatile struct gdb_exception ex;
06da04c6 1934 struct i386_frame_cache *cache;
0d6c2135 1935 CORE_ADDR sp;
06da04c6
MS
1936
1937 if (*this_cache)
1938 return *this_cache;
1939
1940 cache = i386_alloc_frame_cache ();
1941 *this_cache = cache;
1942
8fbca658
PA
1943 TRY_CATCH (ex, RETURN_MASK_ERROR)
1944 {
0d6c2135 1945 cache->pc = get_frame_func (this_frame);
06da04c6 1946
0d6c2135
MK
1947 /* At this point the stack looks as if we just entered the
1948 function, with the return address at the top of the
1949 stack. */
1950 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1951 cache->base = sp + cache->sp_offset;
8fbca658 1952 cache->saved_sp = cache->base + 8;
8fbca658 1953 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 1954
8fbca658
PA
1955 cache->base_p = 1;
1956 }
1957 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1958 throw_exception (ex);
06da04c6
MS
1959
1960 return cache;
1961}
1962
8fbca658
PA
1963static enum unwind_stop_reason
1964i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1965 void **this_cache)
1966{
0d6c2135
MK
1967 struct i386_frame_cache *cache =
1968 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
1969
1970 if (!cache->base_p)
1971 return UNWIND_UNAVAILABLE;
1972
1973 return UNWIND_NO_REASON;
1974}
1975
06da04c6
MS
1976static void
1977i386_epilogue_frame_this_id (struct frame_info *this_frame,
1978 void **this_cache,
1979 struct frame_id *this_id)
1980{
0d6c2135
MK
1981 struct i386_frame_cache *cache =
1982 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 1983
8fbca658
PA
1984 if (!cache->base_p)
1985 return;
1986
06da04c6
MS
1987 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1988}
1989
0d6c2135
MK
1990static struct value *
1991i386_epilogue_frame_prev_register (struct frame_info *this_frame,
1992 void **this_cache, int regnum)
1993{
1994 /* Make sure we've initialized the cache. */
1995 i386_epilogue_frame_cache (this_frame, this_cache);
1996
1997 return i386_frame_prev_register (this_frame, this_cache, regnum);
1998}
1999
06da04c6
MS
2000static const struct frame_unwind i386_epilogue_frame_unwind =
2001{
2002 NORMAL_FRAME,
8fbca658 2003 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2004 i386_epilogue_frame_this_id,
0d6c2135 2005 i386_epilogue_frame_prev_register,
06da04c6
MS
2006 NULL,
2007 i386_epilogue_frame_sniffer
2008};
acd5c798
MK
2009\f
2010
a3fcb948
JG
2011/* Stack-based trampolines. */
2012
2013/* These trampolines are used on cross x86 targets, when taking the
2014 address of a nested function. When executing these trampolines,
2015 no stack frame is set up, so we are in a similar situation as in
2016 epilogues and i386_epilogue_frame_this_id can be re-used. */
2017
2018/* Static chain passed in register. */
2019
2020struct i386_insn i386_tramp_chain_in_reg_insns[] =
2021{
2022 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2023 { 5, { 0xb8 }, { 0xfe } },
2024
2025 /* `jmp imm32' */
2026 { 5, { 0xe9 }, { 0xff } },
2027
2028 {0}
2029};
2030
2031/* Static chain passed on stack (when regparm=3). */
2032
2033struct i386_insn i386_tramp_chain_on_stack_insns[] =
2034{
2035 /* `push imm32' */
2036 { 5, { 0x68 }, { 0xff } },
2037
2038 /* `jmp imm32' */
2039 { 5, { 0xe9 }, { 0xff } },
2040
2041 {0}
2042};
2043
2044/* Return whether PC points inside a stack trampoline. */
2045
2046static int
2047i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2048{
2049 gdb_byte insn;
2c02bd72 2050 const char *name;
a3fcb948
JG
2051
2052 /* A stack trampoline is detected if no name is associated
2053 to the current pc and if it points inside a trampoline
2054 sequence. */
2055
2056 find_pc_partial_function (pc, &name, NULL, NULL);
2057 if (name)
2058 return 0;
2059
2060 if (target_read_memory (pc, &insn, 1))
2061 return 0;
2062
2063 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2064 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2065 return 0;
2066
2067 return 1;
2068}
2069
2070static int
2071i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2072 struct frame_info *this_frame,
2073 void **this_cache)
a3fcb948
JG
2074{
2075 if (frame_relative_level (this_frame) == 0)
2076 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2077 get_frame_pc (this_frame));
2078 else
2079 return 0;
2080}
2081
2082static const struct frame_unwind i386_stack_tramp_frame_unwind =
2083{
2084 NORMAL_FRAME,
2085 i386_epilogue_frame_unwind_stop_reason,
2086 i386_epilogue_frame_this_id,
0d6c2135 2087 i386_epilogue_frame_prev_register,
a3fcb948
JG
2088 NULL,
2089 i386_stack_tramp_frame_sniffer
2090};
2091\f
6710bf39
SS
2092/* Generate a bytecode expression to get the value of the saved PC. */
2093
2094static void
2095i386_gen_return_address (struct gdbarch *gdbarch,
2096 struct agent_expr *ax, struct axs_value *value,
2097 CORE_ADDR scope)
2098{
2099 /* The following sequence assumes the traditional use of the base
2100 register. */
2101 ax_reg (ax, I386_EBP_REGNUM);
2102 ax_const_l (ax, 4);
2103 ax_simple (ax, aop_add);
2104 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2105 value->kind = axs_lvalue_memory;
2106}
2107\f
a3fcb948 2108
acd5c798
MK
2109/* Signal trampolines. */
2110
2111static struct i386_frame_cache *
10458914 2112i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2113{
e17a4113
UW
2114 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2115 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2116 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2117 volatile struct gdb_exception ex;
acd5c798 2118 struct i386_frame_cache *cache;
acd5c798 2119 CORE_ADDR addr;
63c0089f 2120 gdb_byte buf[4];
acd5c798
MK
2121
2122 if (*this_cache)
2123 return *this_cache;
2124
fd13a04a 2125 cache = i386_alloc_frame_cache ();
acd5c798 2126
8fbca658 2127 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2128 {
8fbca658
PA
2129 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2130 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2131
8fbca658
PA
2132 addr = tdep->sigcontext_addr (this_frame);
2133 if (tdep->sc_reg_offset)
2134 {
2135 int i;
a3386186 2136
8fbca658
PA
2137 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2138
2139 for (i = 0; i < tdep->sc_num_regs; i++)
2140 if (tdep->sc_reg_offset[i] != -1)
2141 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2142 }
2143 else
2144 {
2145 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2146 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2147 }
2148
2149 cache->base_p = 1;
a3386186 2150 }
8fbca658
PA
2151 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2152 throw_exception (ex);
acd5c798
MK
2153
2154 *this_cache = cache;
2155 return cache;
2156}
2157
8fbca658
PA
2158static enum unwind_stop_reason
2159i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2160 void **this_cache)
2161{
2162 struct i386_frame_cache *cache =
2163 i386_sigtramp_frame_cache (this_frame, this_cache);
2164
2165 if (!cache->base_p)
2166 return UNWIND_UNAVAILABLE;
2167
2168 return UNWIND_NO_REASON;
2169}
2170
acd5c798 2171static void
10458914 2172i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2173 struct frame_id *this_id)
2174{
2175 struct i386_frame_cache *cache =
10458914 2176 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2177
8fbca658
PA
2178 if (!cache->base_p)
2179 return;
2180
3e210248 2181 /* See the end of i386_push_dummy_call. */
10458914 2182 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
2183}
2184
10458914
DJ
2185static struct value *
2186i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2187 void **this_cache, int regnum)
acd5c798
MK
2188{
2189 /* Make sure we've initialized the cache. */
10458914 2190 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2191
10458914 2192 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2193}
c0d1d883 2194
10458914
DJ
2195static int
2196i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2197 struct frame_info *this_frame,
2198 void **this_prologue_cache)
acd5c798 2199{
10458914 2200 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2201
911bc6ee
MK
2202 /* We shouldn't even bother if we don't have a sigcontext_addr
2203 handler. */
2204 if (tdep->sigcontext_addr == NULL)
10458914 2205 return 0;
1c3545ae 2206
911bc6ee
MK
2207 if (tdep->sigtramp_p != NULL)
2208 {
10458914
DJ
2209 if (tdep->sigtramp_p (this_frame))
2210 return 1;
911bc6ee
MK
2211 }
2212
2213 if (tdep->sigtramp_start != 0)
2214 {
10458914 2215 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2216
2217 gdb_assert (tdep->sigtramp_end != 0);
2218 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2219 return 1;
911bc6ee 2220 }
acd5c798 2221
10458914 2222 return 0;
acd5c798 2223}
10458914
DJ
2224
2225static const struct frame_unwind i386_sigtramp_frame_unwind =
2226{
2227 SIGTRAMP_FRAME,
8fbca658 2228 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2229 i386_sigtramp_frame_this_id,
2230 i386_sigtramp_frame_prev_register,
2231 NULL,
2232 i386_sigtramp_frame_sniffer
2233};
acd5c798
MK
2234\f
2235
2236static CORE_ADDR
10458914 2237i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2238{
10458914 2239 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2240
2241 return cache->base;
2242}
2243
2244static const struct frame_base i386_frame_base =
2245{
2246 &i386_frame_unwind,
2247 i386_frame_base_address,
2248 i386_frame_base_address,
2249 i386_frame_base_address
2250};
2251
acd5c798 2252static struct frame_id
10458914 2253i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2254{
acd5c798
MK
2255 CORE_ADDR fp;
2256
10458914 2257 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2258
3e210248 2259 /* See the end of i386_push_dummy_call. */
10458914 2260 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2261}
e04e5beb
JM
2262
2263/* _Decimal128 function return values need 16-byte alignment on the
2264 stack. */
2265
2266static CORE_ADDR
2267i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2268{
2269 return sp & -(CORE_ADDR)16;
2270}
fc338970 2271\f
c906108c 2272
fc338970
MK
2273/* Figure out where the longjmp will land. Slurp the args out of the
2274 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2275 structure from which we extract the address that we will land at.
28bcfd30 2276 This address is copied into PC. This routine returns non-zero on
436675d3 2277 success. */
c906108c 2278
8201327c 2279static int
60ade65d 2280i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2281{
436675d3 2282 gdb_byte buf[4];
c906108c 2283 CORE_ADDR sp, jb_addr;
20a6ec49 2284 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2286 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2287
8201327c
MK
2288 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2289 longjmp will land. */
2290 if (jb_pc_offset == -1)
c906108c
SS
2291 return 0;
2292
436675d3 2293 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2294 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2295 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2296 return 0;
2297
e17a4113 2298 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2299 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2300 return 0;
c906108c 2301
e17a4113 2302 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2303 return 1;
2304}
fc338970 2305\f
c906108c 2306
7ccc1c74
JM
2307/* Check whether TYPE must be 16-byte-aligned when passed as a
2308 function argument. 16-byte vectors, _Decimal128 and structures or
2309 unions containing such types must be 16-byte-aligned; other
2310 arguments are 4-byte-aligned. */
2311
2312static int
2313i386_16_byte_align_p (struct type *type)
2314{
2315 type = check_typedef (type);
2316 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2317 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2318 && TYPE_LENGTH (type) == 16)
2319 return 1;
2320 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2321 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2322 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2323 || TYPE_CODE (type) == TYPE_CODE_UNION)
2324 {
2325 int i;
2326 for (i = 0; i < TYPE_NFIELDS (type); i++)
2327 {
2328 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2329 return 1;
2330 }
2331 }
2332 return 0;
2333}
2334
a9b8d892
JK
2335/* Implementation for set_gdbarch_push_dummy_code. */
2336
2337static CORE_ADDR
2338i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2339 struct value **args, int nargs, struct type *value_type,
2340 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2341 struct regcache *regcache)
2342{
2343 /* Use 0xcc breakpoint - 1 byte. */
2344 *bp_addr = sp - 1;
2345 *real_pc = funaddr;
2346
2347 /* Keep the stack aligned. */
2348 return sp - 16;
2349}
2350
3a1e71e3 2351static CORE_ADDR
7d9b040b 2352i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2353 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2354 struct value **args, CORE_ADDR sp, int struct_return,
2355 CORE_ADDR struct_addr)
22f8ba57 2356{
e17a4113 2357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2358 gdb_byte buf[4];
acd5c798 2359 int i;
7ccc1c74
JM
2360 int write_pass;
2361 int args_space = 0;
acd5c798 2362
7ccc1c74
JM
2363 /* Determine the total space required for arguments and struct
2364 return address in a first pass (allowing for 16-byte-aligned
2365 arguments), then push arguments in a second pass. */
2366
2367 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2368 {
7ccc1c74 2369 int args_space_used = 0;
7ccc1c74
JM
2370
2371 if (struct_return)
2372 {
2373 if (write_pass)
2374 {
2375 /* Push value address. */
e17a4113 2376 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2377 write_memory (sp, buf, 4);
2378 args_space_used += 4;
2379 }
2380 else
2381 args_space += 4;
2382 }
2383
2384 for (i = 0; i < nargs; i++)
2385 {
2386 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2387
7ccc1c74
JM
2388 if (write_pass)
2389 {
2390 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2391 args_space_used = align_up (args_space_used, 16);
acd5c798 2392
7ccc1c74
JM
2393 write_memory (sp + args_space_used,
2394 value_contents_all (args[i]), len);
2395 /* The System V ABI says that:
acd5c798 2396
7ccc1c74
JM
2397 "An argument's size is increased, if necessary, to make it a
2398 multiple of [32-bit] words. This may require tail padding,
2399 depending on the size of the argument."
22f8ba57 2400
7ccc1c74
JM
2401 This makes sure the stack stays word-aligned. */
2402 args_space_used += align_up (len, 4);
2403 }
2404 else
2405 {
2406 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2407 args_space = align_up (args_space, 16);
7ccc1c74
JM
2408 args_space += align_up (len, 4);
2409 }
2410 }
2411
2412 if (!write_pass)
2413 {
7ccc1c74 2414 sp -= args_space;
284c5a60
MK
2415
2416 /* The original System V ABI only requires word alignment,
2417 but modern incarnations need 16-byte alignment in order
2418 to support SSE. Since wasting a few bytes here isn't
2419 harmful we unconditionally enforce 16-byte alignment. */
2420 sp &= ~0xf;
7ccc1c74 2421 }
22f8ba57
MK
2422 }
2423
acd5c798
MK
2424 /* Store return address. */
2425 sp -= 4;
e17a4113 2426 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2427 write_memory (sp, buf, 4);
2428
2429 /* Finally, update the stack pointer... */
e17a4113 2430 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2431 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2432
2433 /* ...and fake a frame pointer. */
2434 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2435
3e210248
AC
2436 /* MarkK wrote: This "+ 8" is all over the place:
2437 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2438 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2439 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2440 definition of the stack address of a frame. Otherwise frame id
2441 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2442 stack address *before* the function call as a frame's CFA. On
2443 the i386, when %ebp is used as a frame pointer, the offset
2444 between the contents %ebp and the CFA as defined by GCC. */
2445 return sp + 8;
22f8ba57
MK
2446}
2447
1a309862
MK
2448/* These registers are used for returning integers (and on some
2449 targets also for returning `struct' and `union' values when their
ef9dff19 2450 size and alignment match an integer type). */
acd5c798
MK
2451#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2452#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2453
c5e656c1
MK
2454/* Read, for architecture GDBARCH, a function return value of TYPE
2455 from REGCACHE, and copy that into VALBUF. */
1a309862 2456
3a1e71e3 2457static void
c5e656c1 2458i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2459 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2460{
c5e656c1 2461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2462 int len = TYPE_LENGTH (type);
63c0089f 2463 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2464
1e8d0a7b 2465 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2466 {
5716833c 2467 if (tdep->st0_regnum < 0)
1a309862 2468 {
8a3fe4f8 2469 warning (_("Cannot find floating-point return value."));
1a309862 2470 memset (valbuf, 0, len);
ef9dff19 2471 return;
1a309862
MK
2472 }
2473
c6ba6f0d
MK
2474 /* Floating-point return values can be found in %st(0). Convert
2475 its contents to the desired type. This is probably not
2476 exactly how it would happen on the target itself, but it is
2477 the best we can do. */
acd5c798 2478 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2479 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2480 }
2481 else
c5aa993b 2482 {
875f8d0e
UW
2483 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2484 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2485
2486 if (len <= low_size)
00f8375e 2487 {
0818c12a 2488 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2489 memcpy (valbuf, buf, len);
2490 }
d4f3574e
SS
2491 else if (len <= (low_size + high_size))
2492 {
0818c12a 2493 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2494 memcpy (valbuf, buf, low_size);
0818c12a 2495 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2496 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2497 }
2498 else
8e65ff28 2499 internal_error (__FILE__, __LINE__,
1777feb0
MS
2500 _("Cannot extract return value of %d bytes long."),
2501 len);
c906108c
SS
2502 }
2503}
2504
c5e656c1
MK
2505/* Write, for architecture GDBARCH, a function return value of TYPE
2506 from VALBUF into REGCACHE. */
ef9dff19 2507
3a1e71e3 2508static void
c5e656c1 2509i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2510 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2511{
c5e656c1 2512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2513 int len = TYPE_LENGTH (type);
2514
1e8d0a7b 2515 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2516 {
3d7f4f49 2517 ULONGEST fstat;
63c0089f 2518 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2519
5716833c 2520 if (tdep->st0_regnum < 0)
ef9dff19 2521 {
8a3fe4f8 2522 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2523 return;
2524 }
2525
635b0cc1
MK
2526 /* Returning floating-point values is a bit tricky. Apart from
2527 storing the return value in %st(0), we have to simulate the
2528 state of the FPU at function return point. */
2529
c6ba6f0d
MK
2530 /* Convert the value found in VALBUF to the extended
2531 floating-point format used by the FPU. This is probably
2532 not exactly how it would happen on the target itself, but
2533 it is the best we can do. */
27067745 2534 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2535 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2536
635b0cc1
MK
2537 /* Set the top of the floating-point register stack to 7. The
2538 actual value doesn't really matter, but 7 is what a normal
2539 function return would end up with if the program started out
2540 with a freshly initialized FPU. */
20a6ec49 2541 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2542 fstat |= (7 << 11);
20a6ec49 2543 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2544
635b0cc1
MK
2545 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2546 the floating-point register stack to 7, the appropriate value
2547 for the tag word is 0x3fff. */
20a6ec49 2548 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2549 }
2550 else
2551 {
875f8d0e
UW
2552 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2553 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2554
2555 if (len <= low_size)
3d7f4f49 2556 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2557 else if (len <= (low_size + high_size))
2558 {
3d7f4f49
MK
2559 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2560 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2561 len - low_size, valbuf + low_size);
ef9dff19
MK
2562 }
2563 else
8e65ff28 2564 internal_error (__FILE__, __LINE__,
e2e0b3e5 2565 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2566 }
2567}
fc338970 2568\f
ef9dff19 2569
8201327c
MK
2570/* This is the variable that is set with "set struct-convention", and
2571 its legitimate values. */
2572static const char default_struct_convention[] = "default";
2573static const char pcc_struct_convention[] = "pcc";
2574static const char reg_struct_convention[] = "reg";
40478521 2575static const char *const valid_conventions[] =
8201327c
MK
2576{
2577 default_struct_convention,
2578 pcc_struct_convention,
2579 reg_struct_convention,
2580 NULL
2581};
2582static const char *struct_convention = default_struct_convention;
2583
0e4377e1
JB
2584/* Return non-zero if TYPE, which is assumed to be a structure,
2585 a union type, or an array type, should be returned in registers
2586 for architecture GDBARCH. */
c5e656c1 2587
8201327c 2588static int
c5e656c1 2589i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2590{
c5e656c1
MK
2591 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2592 enum type_code code = TYPE_CODE (type);
2593 int len = TYPE_LENGTH (type);
8201327c 2594
0e4377e1
JB
2595 gdb_assert (code == TYPE_CODE_STRUCT
2596 || code == TYPE_CODE_UNION
2597 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2598
2599 if (struct_convention == pcc_struct_convention
2600 || (struct_convention == default_struct_convention
2601 && tdep->struct_return == pcc_struct_return))
2602 return 0;
2603
9edde48e
MK
2604 /* Structures consisting of a single `float', `double' or 'long
2605 double' member are returned in %st(0). */
2606 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2607 {
2608 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2609 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2610 return (len == 4 || len == 8 || len == 12);
2611 }
2612
c5e656c1
MK
2613 return (len == 1 || len == 2 || len == 4 || len == 8);
2614}
2615
2616/* Determine, for architecture GDBARCH, how a return value of TYPE
2617 should be returned. If it is supposed to be returned in registers,
2618 and READBUF is non-zero, read the appropriate value from REGCACHE,
2619 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2620 from WRITEBUF into REGCACHE. */
2621
2622static enum return_value_convention
6a3a010b 2623i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2624 struct type *type, struct regcache *regcache,
2625 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2626{
2627 enum type_code code = TYPE_CODE (type);
2628
5daa78cc
TJB
2629 if (((code == TYPE_CODE_STRUCT
2630 || code == TYPE_CODE_UNION
2631 || code == TYPE_CODE_ARRAY)
2632 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2633 /* Complex double and long double uses the struct return covention. */
2634 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2635 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2636 /* 128-bit decimal float uses the struct return convention. */
2637 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2638 {
2639 /* The System V ABI says that:
2640
2641 "A function that returns a structure or union also sets %eax
2642 to the value of the original address of the caller's area
2643 before it returns. Thus when the caller receives control
2644 again, the address of the returned object resides in register
2645 %eax and can be used to access the object."
2646
2647 So the ABI guarantees that we can always find the return
2648 value just after the function has returned. */
2649
0e4377e1
JB
2650 /* Note that the ABI doesn't mention functions returning arrays,
2651 which is something possible in certain languages such as Ada.
2652 In this case, the value is returned as if it was wrapped in
2653 a record, so the convention applied to records also applies
2654 to arrays. */
2655
31db7b6c
MK
2656 if (readbuf)
2657 {
2658 ULONGEST addr;
2659
2660 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2661 read_memory (addr, readbuf, TYPE_LENGTH (type));
2662 }
2663
2664 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2665 }
c5e656c1
MK
2666
2667 /* This special case is for structures consisting of a single
9edde48e
MK
2668 `float', `double' or 'long double' member. These structures are
2669 returned in %st(0). For these structures, we call ourselves
2670 recursively, changing TYPE into the type of the first member of
2671 the structure. Since that should work for all structures that
2672 have only one member, we don't bother to check the member's type
2673 here. */
c5e656c1
MK
2674 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2675 {
2676 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2677 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2678 readbuf, writebuf);
c5e656c1
MK
2679 }
2680
2681 if (readbuf)
2682 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2683 if (writebuf)
2684 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2685
c5e656c1 2686 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2687}
2688\f
2689
27067745
UW
2690struct type *
2691i387_ext_type (struct gdbarch *gdbarch)
2692{
2693 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2694
2695 if (!tdep->i387_ext_type)
90884b2b
L
2696 {
2697 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2698 gdb_assert (tdep->i387_ext_type != NULL);
2699 }
27067745
UW
2700
2701 return tdep->i387_ext_type;
2702}
2703
c131fcee
L
2704/* Construct vector type for pseudo YMM registers. We can't use
2705 tdesc_find_type since YMM isn't described in target description. */
2706
2707static struct type *
2708i386_ymm_type (struct gdbarch *gdbarch)
2709{
2710 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2711
2712 if (!tdep->i386_ymm_type)
2713 {
2714 const struct builtin_type *bt = builtin_type (gdbarch);
2715
2716 /* The type we're building is this: */
2717#if 0
2718 union __gdb_builtin_type_vec256i
2719 {
2720 int128_t uint128[2];
2721 int64_t v2_int64[4];
2722 int32_t v4_int32[8];
2723 int16_t v8_int16[16];
2724 int8_t v16_int8[32];
2725 double v2_double[4];
2726 float v4_float[8];
2727 };
2728#endif
2729
2730 struct type *t;
2731
2732 t = arch_composite_type (gdbarch,
2733 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2734 append_composite_type_field (t, "v8_float",
2735 init_vector_type (bt->builtin_float, 8));
2736 append_composite_type_field (t, "v4_double",
2737 init_vector_type (bt->builtin_double, 4));
2738 append_composite_type_field (t, "v32_int8",
2739 init_vector_type (bt->builtin_int8, 32));
2740 append_composite_type_field (t, "v16_int16",
2741 init_vector_type (bt->builtin_int16, 16));
2742 append_composite_type_field (t, "v8_int32",
2743 init_vector_type (bt->builtin_int32, 8));
2744 append_composite_type_field (t, "v4_int64",
2745 init_vector_type (bt->builtin_int64, 4));
2746 append_composite_type_field (t, "v2_int128",
2747 init_vector_type (bt->builtin_int128, 2));
2748
2749 TYPE_VECTOR (t) = 1;
0c5acf93 2750 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
2751 tdep->i386_ymm_type = t;
2752 }
2753
2754 return tdep->i386_ymm_type;
2755}
2756
794ac428 2757/* Construct vector type for MMX registers. */
90884b2b 2758static struct type *
794ac428
UW
2759i386_mmx_type (struct gdbarch *gdbarch)
2760{
2761 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2762
2763 if (!tdep->i386_mmx_type)
2764 {
df4df182
UW
2765 const struct builtin_type *bt = builtin_type (gdbarch);
2766
794ac428
UW
2767 /* The type we're building is this: */
2768#if 0
2769 union __gdb_builtin_type_vec64i
2770 {
2771 int64_t uint64;
2772 int32_t v2_int32[2];
2773 int16_t v4_int16[4];
2774 int8_t v8_int8[8];
2775 };
2776#endif
2777
2778 struct type *t;
2779
e9bb382b
UW
2780 t = arch_composite_type (gdbarch,
2781 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2782
2783 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2784 append_composite_type_field (t, "v2_int32",
df4df182 2785 init_vector_type (bt->builtin_int32, 2));
794ac428 2786 append_composite_type_field (t, "v4_int16",
df4df182 2787 init_vector_type (bt->builtin_int16, 4));
794ac428 2788 append_composite_type_field (t, "v8_int8",
df4df182 2789 init_vector_type (bt->builtin_int8, 8));
794ac428 2790
876cecd0 2791 TYPE_VECTOR (t) = 1;
794ac428
UW
2792 TYPE_NAME (t) = "builtin_type_vec64i";
2793 tdep->i386_mmx_type = t;
2794 }
2795
2796 return tdep->i386_mmx_type;
2797}
2798
d7a0d72c 2799/* Return the GDB type object for the "standard" data type of data in
1777feb0 2800 register REGNUM. */
d7a0d72c 2801
fff4548b 2802struct type *
90884b2b 2803i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2804{
1ba53b71
L
2805 if (i386_mmx_regnum_p (gdbarch, regnum))
2806 return i386_mmx_type (gdbarch);
c131fcee
L
2807 else if (i386_ymm_regnum_p (gdbarch, regnum))
2808 return i386_ymm_type (gdbarch);
1ba53b71
L
2809 else
2810 {
2811 const struct builtin_type *bt = builtin_type (gdbarch);
2812 if (i386_byte_regnum_p (gdbarch, regnum))
2813 return bt->builtin_int8;
2814 else if (i386_word_regnum_p (gdbarch, regnum))
2815 return bt->builtin_int16;
2816 else if (i386_dword_regnum_p (gdbarch, regnum))
2817 return bt->builtin_int32;
2818 }
2819
2820 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
2821}
2822
28fc6740 2823/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2824 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2825
2826static int
c86c27af 2827i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2828{
5716833c
MK
2829 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2830 int mmxreg, fpreg;
28fc6740
AC
2831 ULONGEST fstat;
2832 int tos;
c86c27af 2833
5716833c 2834 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2835 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2836 tos = (fstat >> 11) & 0x7;
5716833c
MK
2837 fpreg = (mmxreg + tos) % 8;
2838
20a6ec49 2839 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2840}
2841
3543a589
TT
2842/* A helper function for us by i386_pseudo_register_read_value and
2843 amd64_pseudo_register_read_value. It does all the work but reads
2844 the data into an already-allocated value. */
2845
2846void
2847i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2848 struct regcache *regcache,
2849 int regnum,
2850 struct value *result_value)
28fc6740 2851{
1ba53b71 2852 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 2853 enum register_status status;
3543a589 2854 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 2855
5716833c 2856 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2857 {
c86c27af
MK
2858 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2859
28fc6740 2860 /* Extract (always little endian). */
05d1431c
PA
2861 status = regcache_raw_read (regcache, fpnum, raw_buf);
2862 if (status != REG_VALID)
3543a589
TT
2863 mark_value_bytes_unavailable (result_value, 0,
2864 TYPE_LENGTH (value_type (result_value)));
2865 else
2866 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
2867 }
2868 else
1ba53b71
L
2869 {
2870 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2871
c131fcee
L
2872 if (i386_ymm_regnum_p (gdbarch, regnum))
2873 {
2874 regnum -= tdep->ymm0_regnum;
2875
1777feb0 2876 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
2877 status = regcache_raw_read (regcache,
2878 I387_XMM0_REGNUM (tdep) + regnum,
2879 raw_buf);
2880 if (status != REG_VALID)
3543a589
TT
2881 mark_value_bytes_unavailable (result_value, 0, 16);
2882 else
2883 memcpy (buf, raw_buf, 16);
c131fcee 2884 /* Read upper 128bits. */
05d1431c
PA
2885 status = regcache_raw_read (regcache,
2886 tdep->ymm0h_regnum + regnum,
2887 raw_buf);
2888 if (status != REG_VALID)
3543a589
TT
2889 mark_value_bytes_unavailable (result_value, 16, 32);
2890 else
2891 memcpy (buf + 16, raw_buf, 16);
c131fcee
L
2892 }
2893 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2894 {
2895 int gpnum = regnum - tdep->ax_regnum;
2896
2897 /* Extract (always little endian). */
05d1431c
PA
2898 status = regcache_raw_read (regcache, gpnum, raw_buf);
2899 if (status != REG_VALID)
3543a589
TT
2900 mark_value_bytes_unavailable (result_value, 0,
2901 TYPE_LENGTH (value_type (result_value)));
2902 else
2903 memcpy (buf, raw_buf, 2);
1ba53b71
L
2904 }
2905 else if (i386_byte_regnum_p (gdbarch, regnum))
2906 {
2907 /* Check byte pseudo registers last since this function will
2908 be called from amd64_pseudo_register_read, which handles
2909 byte pseudo registers differently. */
2910 int gpnum = regnum - tdep->al_regnum;
2911
2912 /* Extract (always little endian). We read both lower and
2913 upper registers. */
05d1431c
PA
2914 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2915 if (status != REG_VALID)
3543a589
TT
2916 mark_value_bytes_unavailable (result_value, 0,
2917 TYPE_LENGTH (value_type (result_value)));
2918 else if (gpnum >= 4)
1ba53b71
L
2919 memcpy (buf, raw_buf + 1, 1);
2920 else
2921 memcpy (buf, raw_buf, 1);
2922 }
2923 else
2924 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2925 }
3543a589
TT
2926}
2927
2928static struct value *
2929i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2930 struct regcache *regcache,
2931 int regnum)
2932{
2933 struct value *result;
2934
2935 result = allocate_value (register_type (gdbarch, regnum));
2936 VALUE_LVAL (result) = lval_register;
2937 VALUE_REGNUM (result) = regnum;
2938
2939 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 2940
3543a589 2941 return result;
28fc6740
AC
2942}
2943
1ba53b71 2944void
28fc6740 2945i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2946 int regnum, const gdb_byte *buf)
28fc6740 2947{
1ba53b71
L
2948 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2949
5716833c 2950 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2951 {
c86c27af
MK
2952 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2953
28fc6740 2954 /* Read ... */
1ba53b71 2955 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 2956 /* ... Modify ... (always little endian). */
1ba53b71 2957 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 2958 /* ... Write. */
1ba53b71 2959 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
2960 }
2961 else
1ba53b71
L
2962 {
2963 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2964
c131fcee
L
2965 if (i386_ymm_regnum_p (gdbarch, regnum))
2966 {
2967 regnum -= tdep->ymm0_regnum;
2968
2969 /* ... Write lower 128bits. */
2970 regcache_raw_write (regcache,
2971 I387_XMM0_REGNUM (tdep) + regnum,
2972 buf);
2973 /* ... Write upper 128bits. */
2974 regcache_raw_write (regcache,
2975 tdep->ymm0h_regnum + regnum,
2976 buf + 16);
2977 }
2978 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2979 {
2980 int gpnum = regnum - tdep->ax_regnum;
2981
2982 /* Read ... */
2983 regcache_raw_read (regcache, gpnum, raw_buf);
2984 /* ... Modify ... (always little endian). */
2985 memcpy (raw_buf, buf, 2);
2986 /* ... Write. */
2987 regcache_raw_write (regcache, gpnum, raw_buf);
2988 }
2989 else if (i386_byte_regnum_p (gdbarch, regnum))
2990 {
2991 /* Check byte pseudo registers last since this function will
2992 be called from amd64_pseudo_register_read, which handles
2993 byte pseudo registers differently. */
2994 int gpnum = regnum - tdep->al_regnum;
2995
2996 /* Read ... We read both lower and upper registers. */
2997 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2998 /* ... Modify ... (always little endian). */
2999 if (gpnum >= 4)
3000 memcpy (raw_buf + 1, buf, 1);
3001 else
3002 memcpy (raw_buf, buf, 1);
3003 /* ... Write. */
3004 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3005 }
3006 else
3007 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3008 }
28fc6740 3009}
ff2e87ac
AC
3010\f
3011
ff2e87ac
AC
3012/* Return the register number of the register allocated by GCC after
3013 REGNUM, or -1 if there is no such register. */
3014
3015static int
3016i386_next_regnum (int regnum)
3017{
3018 /* GCC allocates the registers in the order:
3019
3020 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3021
3022 Since storing a variable in %esp doesn't make any sense we return
3023 -1 for %ebp and for %esp itself. */
3024 static int next_regnum[] =
3025 {
3026 I386_EDX_REGNUM, /* Slot for %eax. */
3027 I386_EBX_REGNUM, /* Slot for %ecx. */
3028 I386_ECX_REGNUM, /* Slot for %edx. */
3029 I386_ESI_REGNUM, /* Slot for %ebx. */
3030 -1, -1, /* Slots for %esp and %ebp. */
3031 I386_EDI_REGNUM, /* Slot for %esi. */
3032 I386_EBP_REGNUM /* Slot for %edi. */
3033 };
3034
de5b9bb9 3035 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3036 return next_regnum[regnum];
28fc6740 3037
ff2e87ac
AC
3038 return -1;
3039}
3040
3041/* Return nonzero if a value of type TYPE stored in register REGNUM
3042 needs any special handling. */
d7a0d72c 3043
3a1e71e3 3044static int
1777feb0
MS
3045i386_convert_register_p (struct gdbarch *gdbarch,
3046 int regnum, struct type *type)
d7a0d72c 3047{
de5b9bb9
MK
3048 int len = TYPE_LENGTH (type);
3049
ff2e87ac
AC
3050 /* Values may be spread across multiple registers. Most debugging
3051 formats aren't expressive enough to specify the locations, so
3052 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3053 have a length that is a multiple of the word size, since GCC
3054 doesn't seem to put any other types into registers. */
3055 if (len > 4 && len % 4 == 0)
3056 {
3057 int last_regnum = regnum;
3058
3059 while (len > 4)
3060 {
3061 last_regnum = i386_next_regnum (last_regnum);
3062 len -= 4;
3063 }
3064
3065 if (last_regnum != -1)
3066 return 1;
3067 }
ff2e87ac 3068
0abe36f5 3069 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3070}
3071
ff2e87ac
AC
3072/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3073 return its contents in TO. */
ac27f131 3074
8dccd430 3075static int
ff2e87ac 3076i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3077 struct type *type, gdb_byte *to,
3078 int *optimizedp, int *unavailablep)
ac27f131 3079{
20a6ec49 3080 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3081 int len = TYPE_LENGTH (type);
de5b9bb9 3082
20a6ec49 3083 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3084 return i387_register_to_value (frame, regnum, type, to,
3085 optimizedp, unavailablep);
ff2e87ac 3086
fd35795f 3087 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3088
3089 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3090
de5b9bb9
MK
3091 while (len > 0)
3092 {
3093 gdb_assert (regnum != -1);
20a6ec49 3094 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3095
8dccd430
PA
3096 if (!get_frame_register_bytes (frame, regnum, 0,
3097 register_size (gdbarch, regnum),
3098 to, optimizedp, unavailablep))
3099 return 0;
3100
de5b9bb9
MK
3101 regnum = i386_next_regnum (regnum);
3102 len -= 4;
42835c2b 3103 to += 4;
de5b9bb9 3104 }
8dccd430
PA
3105
3106 *optimizedp = *unavailablep = 0;
3107 return 1;
ac27f131
MK
3108}
3109
ff2e87ac
AC
3110/* Write the contents FROM of a value of type TYPE into register
3111 REGNUM in frame FRAME. */
ac27f131 3112
3a1e71e3 3113static void
ff2e87ac 3114i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3115 struct type *type, const gdb_byte *from)
ac27f131 3116{
de5b9bb9 3117 int len = TYPE_LENGTH (type);
de5b9bb9 3118
20a6ec49 3119 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3120 {
d532c08f
MK
3121 i387_value_to_register (frame, regnum, type, from);
3122 return;
3123 }
3d261580 3124
fd35795f 3125 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3126
3127 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3128
de5b9bb9
MK
3129 while (len > 0)
3130 {
3131 gdb_assert (regnum != -1);
875f8d0e 3132 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3133
42835c2b 3134 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3135 regnum = i386_next_regnum (regnum);
3136 len -= 4;
42835c2b 3137 from += 4;
de5b9bb9 3138 }
ac27f131 3139}
ff2e87ac 3140\f
7fdafb5a
MK
3141/* Supply register REGNUM from the buffer specified by GREGS and LEN
3142 in the general-purpose register set REGSET to register cache
3143 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3144
20187ed5 3145void
473f17b0
MK
3146i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3147 int regnum, const void *gregs, size_t len)
3148{
9ea75c57 3149 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3150 const gdb_byte *regs = gregs;
473f17b0
MK
3151 int i;
3152
3153 gdb_assert (len == tdep->sizeof_gregset);
3154
3155 for (i = 0; i < tdep->gregset_num_regs; i++)
3156 {
3157 if ((regnum == i || regnum == -1)
3158 && tdep->gregset_reg_offset[i] != -1)
3159 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3160 }
3161}
3162
7fdafb5a
MK
3163/* Collect register REGNUM from the register cache REGCACHE and store
3164 it in the buffer specified by GREGS and LEN as described by the
3165 general-purpose register set REGSET. If REGNUM is -1, do this for
3166 all registers in REGSET. */
3167
3168void
3169i386_collect_gregset (const struct regset *regset,
3170 const struct regcache *regcache,
3171 int regnum, void *gregs, size_t len)
3172{
3173 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3174 gdb_byte *regs = gregs;
7fdafb5a
MK
3175 int i;
3176
3177 gdb_assert (len == tdep->sizeof_gregset);
3178
3179 for (i = 0; i < tdep->gregset_num_regs; i++)
3180 {
3181 if ((regnum == i || regnum == -1)
3182 && tdep->gregset_reg_offset[i] != -1)
3183 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3184 }
3185}
3186
3187/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3188 in the floating-point register set REGSET to register cache
3189 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3190
3191static void
3192i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3193 int regnum, const void *fpregs, size_t len)
3194{
9ea75c57 3195 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 3196
66a72d25
MK
3197 if (len == I387_SIZEOF_FXSAVE)
3198 {
3199 i387_supply_fxsave (regcache, regnum, fpregs);
3200 return;
3201 }
3202
473f17b0
MK
3203 gdb_assert (len == tdep->sizeof_fpregset);
3204 i387_supply_fsave (regcache, regnum, fpregs);
3205}
8446b36a 3206
2f305df1
MK
3207/* Collect register REGNUM from the register cache REGCACHE and store
3208 it in the buffer specified by FPREGS and LEN as described by the
3209 floating-point register set REGSET. If REGNUM is -1, do this for
3210 all registers in REGSET. */
7fdafb5a
MK
3211
3212static void
3213i386_collect_fpregset (const struct regset *regset,
3214 const struct regcache *regcache,
3215 int regnum, void *fpregs, size_t len)
3216{
3217 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3218
3219 if (len == I387_SIZEOF_FXSAVE)
3220 {
3221 i387_collect_fxsave (regcache, regnum, fpregs);
3222 return;
3223 }
3224
3225 gdb_assert (len == tdep->sizeof_fpregset);
3226 i387_collect_fsave (regcache, regnum, fpregs);
3227}
3228
c131fcee
L
3229/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3230
3231static void
3232i386_supply_xstateregset (const struct regset *regset,
3233 struct regcache *regcache, int regnum,
3234 const void *xstateregs, size_t len)
3235{
c131fcee
L
3236 i387_supply_xsave (regcache, regnum, xstateregs);
3237}
3238
3239/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3240
3241static void
3242i386_collect_xstateregset (const struct regset *regset,
3243 const struct regcache *regcache,
3244 int regnum, void *xstateregs, size_t len)
3245{
c131fcee
L
3246 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3247}
3248
8446b36a
MK
3249/* Return the appropriate register set for the core section identified
3250 by SECT_NAME and SECT_SIZE. */
3251
3252const struct regset *
3253i386_regset_from_core_section (struct gdbarch *gdbarch,
3254 const char *sect_name, size_t sect_size)
3255{
3256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3257
3258 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3259 {
3260 if (tdep->gregset == NULL)
7fdafb5a
MK
3261 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3262 i386_collect_gregset);
8446b36a
MK
3263 return tdep->gregset;
3264 }
3265
66a72d25
MK
3266 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3267 || (strcmp (sect_name, ".reg-xfp") == 0
3268 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
3269 {
3270 if (tdep->fpregset == NULL)
7fdafb5a
MK
3271 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3272 i386_collect_fpregset);
8446b36a
MK
3273 return tdep->fpregset;
3274 }
3275
c131fcee
L
3276 if (strcmp (sect_name, ".reg-xstate") == 0)
3277 {
3278 if (tdep->xstateregset == NULL)
3279 tdep->xstateregset = regset_alloc (gdbarch,
3280 i386_supply_xstateregset,
3281 i386_collect_xstateregset);
3282
3283 return tdep->xstateregset;
3284 }
3285
8446b36a
MK
3286 return NULL;
3287}
473f17b0 3288\f
fc338970 3289
fc338970 3290/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3291
3292CORE_ADDR
e17a4113
UW
3293i386_pe_skip_trampoline_code (struct frame_info *frame,
3294 CORE_ADDR pc, char *name)
c906108c 3295{
e17a4113
UW
3296 struct gdbarch *gdbarch = get_frame_arch (frame);
3297 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3298
3299 /* jmp *(dest) */
3300 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3301 {
e17a4113
UW
3302 unsigned long indirect =
3303 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3304 struct minimal_symbol *indsym =
fc338970 3305 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
0d5cff50 3306 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3307
c5aa993b 3308 if (symname)
c906108c 3309 {
c5aa993b
JM
3310 if (strncmp (symname, "__imp_", 6) == 0
3311 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3312 return name ? 1 :
3313 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3314 }
3315 }
fc338970 3316 return 0; /* Not a trampoline. */
c906108c 3317}
fc338970
MK
3318\f
3319
10458914
DJ
3320/* Return whether the THIS_FRAME corresponds to a sigtramp
3321 routine. */
8201327c 3322
4bd207ef 3323int
10458914 3324i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3325{
10458914 3326 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3327 const char *name;
911bc6ee
MK
3328
3329 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3330 return (name && strcmp ("_sigtramp", name) == 0);
3331}
3332\f
3333
fc338970
MK
3334/* We have two flavours of disassembly. The machinery on this page
3335 deals with switching between those. */
c906108c
SS
3336
3337static int
a89aa300 3338i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3339{
5e3397bb
MK
3340 gdb_assert (disassembly_flavor == att_flavor
3341 || disassembly_flavor == intel_flavor);
3342
3343 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3344 constified, cast to prevent a compiler warning. */
3345 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3346
3347 return print_insn_i386 (pc, info);
7a292a7a 3348}
fc338970 3349\f
3ce1502b 3350
8201327c
MK
3351/* There are a few i386 architecture variants that differ only
3352 slightly from the generic i386 target. For now, we don't give them
3353 their own source file, but include them here. As a consequence,
3354 they'll always be included. */
3ce1502b 3355
8201327c 3356/* System V Release 4 (SVR4). */
3ce1502b 3357
10458914
DJ
3358/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3359 routine. */
911bc6ee 3360
8201327c 3361static int
10458914 3362i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3363{
10458914 3364 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3365 const char *name;
911bc6ee 3366
acd5c798
MK
3367 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3368 currently unknown. */
911bc6ee 3369 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3370 return (name && (strcmp ("_sigreturn", name) == 0
3371 || strcmp ("_sigacthandler", name) == 0
3372 || strcmp ("sigvechandler", name) == 0));
3373}
d2a7c97a 3374
10458914
DJ
3375/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3376 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3377
3a1e71e3 3378static CORE_ADDR
10458914 3379i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3380{
e17a4113
UW
3381 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3382 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3383 gdb_byte buf[4];
acd5c798 3384 CORE_ADDR sp;
3ce1502b 3385
10458914 3386 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3387 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3388
e17a4113 3389 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3390}
55aa24fb
SDJ
3391
3392\f
3393
3394/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3395 gdbarch.h. */
3396
3397int
3398i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3399{
3400 return (*s == '$' /* Literal number. */
3401 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3402 || (*s == '(' && s[1] == '%') /* Register indirection. */
3403 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3404}
3405
3406/* Implementation of `gdbarch_stap_parse_special_token', as defined in
3407 gdbarch.h. */
3408
3409int
3410i386_stap_parse_special_token (struct gdbarch *gdbarch,
3411 struct stap_parse_info *p)
3412{
55aa24fb
SDJ
3413 /* In order to parse special tokens, we use a state-machine that go
3414 through every known token and try to get a match. */
3415 enum
3416 {
3417 TRIPLET,
3418 THREE_ARG_DISPLACEMENT,
3419 DONE
3420 } current_state;
3421
3422 current_state = TRIPLET;
3423
3424 /* The special tokens to be parsed here are:
3425
3426 - `register base + (register index * size) + offset', as represented
3427 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3428
3429 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3430 `*(-8 + 3 - 1 + (void *) $eax)'. */
3431
3432 while (current_state != DONE)
3433 {
3434 const char *s = p->arg;
3435
3436 switch (current_state)
3437 {
3438 case TRIPLET:
3439 {
3440 if (isdigit (*s) || *s == '-' || *s == '+')
3441 {
3442 int got_minus[3];
3443 int i;
3444 long displacements[3];
3445 const char *start;
3446 char *regname;
3447 int len;
3448 struct stoken str;
3449
3450 got_minus[0] = 0;
3451 if (*s == '+')
3452 ++s;
3453 else if (*s == '-')
3454 {
3455 ++s;
3456 got_minus[0] = 1;
3457 }
3458
3459 displacements[0] = strtol (s, (char **) &s, 10);
3460
3461 if (*s != '+' && *s != '-')
3462 {
3463 /* We are not dealing with a triplet. */
3464 break;
3465 }
3466
3467 got_minus[1] = 0;
3468 if (*s == '+')
3469 ++s;
3470 else
3471 {
3472 ++s;
3473 got_minus[1] = 1;
3474 }
3475
3476 displacements[1] = strtol (s, (char **) &s, 10);
3477
3478 if (*s != '+' && *s != '-')
3479 {
3480 /* We are not dealing with a triplet. */
3481 break;
3482 }
3483
3484 got_minus[2] = 0;
3485 if (*s == '+')
3486 ++s;
3487 else
3488 {
3489 ++s;
3490 got_minus[2] = 1;
3491 }
3492
3493 displacements[2] = strtol (s, (char **) &s, 10);
3494
3495 if (*s != '(' || s[1] != '%')
3496 break;
3497
3498 s += 2;
3499 start = s;
3500
3501 while (isalnum (*s))
3502 ++s;
3503
3504 if (*s++ != ')')
3505 break;
3506
3507 len = s - start;
3508 regname = alloca (len + 1);
3509
3510 strncpy (regname, start, len);
3511 regname[len] = '\0';
3512
3513 if (user_reg_map_name_to_regnum (gdbarch,
3514 regname, len) == -1)
3515 error (_("Invalid register name `%s' "
3516 "on expression `%s'."),
3517 regname, p->saved_arg);
3518
3519 for (i = 0; i < 3; i++)
3520 {
3521 write_exp_elt_opcode (OP_LONG);
3522 write_exp_elt_type
3523 (builtin_type (gdbarch)->builtin_long);
3524 write_exp_elt_longcst (displacements[i]);
3525 write_exp_elt_opcode (OP_LONG);
3526 if (got_minus[i])
3527 write_exp_elt_opcode (UNOP_NEG);
3528 }
3529
3530 write_exp_elt_opcode (OP_REGISTER);
3531 str.ptr = regname;
3532 str.length = len;
3533 write_exp_string (str);
3534 write_exp_elt_opcode (OP_REGISTER);
3535
3536 write_exp_elt_opcode (UNOP_CAST);
3537 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3538 write_exp_elt_opcode (UNOP_CAST);
3539
3540 write_exp_elt_opcode (BINOP_ADD);
3541 write_exp_elt_opcode (BINOP_ADD);
3542 write_exp_elt_opcode (BINOP_ADD);
3543
3544 write_exp_elt_opcode (UNOP_CAST);
3545 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3546 write_exp_elt_opcode (UNOP_CAST);
3547
3548 write_exp_elt_opcode (UNOP_IND);
3549
3550 p->arg = s;
3551
3552 return 1;
3553 }
3554 break;
3555 }
3556 case THREE_ARG_DISPLACEMENT:
3557 {
3558 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3559 {
3560 int offset_minus = 0;
3561 long offset = 0;
3562 int size_minus = 0;
3563 long size = 0;
3564 const char *start;
3565 char *base;
3566 int len_base;
3567 char *index;
3568 int len_index;
3569 struct stoken base_token, index_token;
3570
3571 if (*s == '+')
3572 ++s;
3573 else if (*s == '-')
3574 {
3575 ++s;
3576 offset_minus = 1;
3577 }
3578
3579 if (offset_minus && !isdigit (*s))
3580 break;
3581
3582 if (isdigit (*s))
3583 offset = strtol (s, (char **) &s, 10);
3584
3585 if (*s != '(' || s[1] != '%')
3586 break;
3587
3588 s += 2;
3589 start = s;
3590
3591 while (isalnum (*s))
3592 ++s;
3593
3594 if (*s != ',' || s[1] != '%')
3595 break;
3596
3597 len_base = s - start;
3598 base = alloca (len_base + 1);
3599 strncpy (base, start, len_base);
3600 base[len_base] = '\0';
3601
3602 if (user_reg_map_name_to_regnum (gdbarch,
3603 base, len_base) == -1)
3604 error (_("Invalid register name `%s' "
3605 "on expression `%s'."),
3606 base, p->saved_arg);
3607
3608 s += 2;
3609 start = s;
3610
3611 while (isalnum (*s))
3612 ++s;
3613
3614 len_index = s - start;
3615 index = alloca (len_index + 1);
3616 strncpy (index, start, len_index);
3617 index[len_index] = '\0';
3618
3619 if (user_reg_map_name_to_regnum (gdbarch,
3620 index, len_index) == -1)
3621 error (_("Invalid register name `%s' "
3622 "on expression `%s'."),
3623 index, p->saved_arg);
3624
3625 if (*s != ',' && *s != ')')
3626 break;
3627
3628 if (*s == ',')
3629 {
3630 ++s;
3631 if (*s == '+')
3632 ++s;
3633 else if (*s == '-')
3634 {
3635 ++s;
3636 size_minus = 1;
3637 }
3638
3639 size = strtol (s, (char **) &s, 10);
3640
3641 if (*s != ')')
3642 break;
3643 }
3644
3645 ++s;
3646
3647 if (offset)
3648 {
3649 write_exp_elt_opcode (OP_LONG);
3650 write_exp_elt_type
3651 (builtin_type (gdbarch)->builtin_long);
3652 write_exp_elt_longcst (offset);
3653 write_exp_elt_opcode (OP_LONG);
3654 if (offset_minus)
3655 write_exp_elt_opcode (UNOP_NEG);
3656 }
3657
3658 write_exp_elt_opcode (OP_REGISTER);
3659 base_token.ptr = base;
3660 base_token.length = len_base;
3661 write_exp_string (base_token);
3662 write_exp_elt_opcode (OP_REGISTER);
3663
3664 if (offset)
3665 write_exp_elt_opcode (BINOP_ADD);
3666
3667 write_exp_elt_opcode (OP_REGISTER);
3668 index_token.ptr = index;
3669 index_token.length = len_index;
3670 write_exp_string (index_token);
3671 write_exp_elt_opcode (OP_REGISTER);
3672
3673 if (size)
3674 {
3675 write_exp_elt_opcode (OP_LONG);
3676 write_exp_elt_type
3677 (builtin_type (gdbarch)->builtin_long);
3678 write_exp_elt_longcst (size);
3679 write_exp_elt_opcode (OP_LONG);
3680 if (size_minus)
3681 write_exp_elt_opcode (UNOP_NEG);
3682 write_exp_elt_opcode (BINOP_MUL);
3683 }
3684
3685 write_exp_elt_opcode (BINOP_ADD);
3686
3687 write_exp_elt_opcode (UNOP_CAST);
3688 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3689 write_exp_elt_opcode (UNOP_CAST);
3690
3691 write_exp_elt_opcode (UNOP_IND);
3692
3693 p->arg = s;
3694
3695 return 1;
3696 }
3697 break;
3698 }
3699 }
3700
3701 /* Advancing to the next state. */
3702 ++current_state;
3703 }
3704
3705 return 0;
3706}
3707
8201327c 3708\f
3ce1502b 3709
8201327c 3710/* Generic ELF. */
d2a7c97a 3711
8201327c
MK
3712void
3713i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3714{
c4fc7f1b
MK
3715 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3716 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
3717
3718 /* Registering SystemTap handlers. */
3719 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3720 set_gdbarch_stap_register_prefix (gdbarch, "%");
3721 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3722 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3723 set_gdbarch_stap_is_single_operand (gdbarch,
3724 i386_stap_is_single_operand);
3725 set_gdbarch_stap_parse_special_token (gdbarch,
3726 i386_stap_parse_special_token);
8201327c 3727}
3ce1502b 3728
8201327c 3729/* System V Release 4 (SVR4). */
3ce1502b 3730
8201327c
MK
3731void
3732i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3733{
3734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3735
8201327c
MK
3736 /* System V Release 4 uses ELF. */
3737 i386_elf_init_abi (info, gdbarch);
3ce1502b 3738
dfe01d39 3739 /* System V Release 4 has shared libraries. */
dfe01d39
MK
3740 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3741
911bc6ee 3742 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 3743 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
3744 tdep->sc_pc_offset = 36 + 14 * 4;
3745 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 3746
8201327c 3747 tdep->jb_pc_offset = 20;
3ce1502b
MK
3748}
3749
8201327c 3750/* DJGPP. */
3ce1502b 3751
3a1e71e3 3752static void
8201327c 3753i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 3754{
8201327c 3755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3756
911bc6ee
MK
3757 /* DJGPP doesn't have any special frames for signal handlers. */
3758 tdep->sigtramp_p = NULL;
3ce1502b 3759
8201327c 3760 tdep->jb_pc_offset = 36;
15430fc0
EZ
3761
3762 /* DJGPP does not support the SSE registers. */
3a13a53b
L
3763 if (! tdesc_has_registers (info.target_desc))
3764 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
3765
3766 /* Native compiler is GCC, which uses the SVR4 register numbering
3767 even in COFF and STABS. See the comment in i386_gdbarch_init,
3768 before the calls to set_gdbarch_stab_reg_to_regnum and
3769 set_gdbarch_sdb_reg_to_regnum. */
3770 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3771 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
3772
3773 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 3774}
8201327c 3775\f
2acceee2 3776
38c968cf
AC
3777/* i386 register groups. In addition to the normal groups, add "mmx"
3778 and "sse". */
3779
3780static struct reggroup *i386_sse_reggroup;
3781static struct reggroup *i386_mmx_reggroup;
3782
3783static void
3784i386_init_reggroups (void)
3785{
3786 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3787 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3788}
3789
3790static void
3791i386_add_reggroups (struct gdbarch *gdbarch)
3792{
3793 reggroup_add (gdbarch, i386_sse_reggroup);
3794 reggroup_add (gdbarch, i386_mmx_reggroup);
3795 reggroup_add (gdbarch, general_reggroup);
3796 reggroup_add (gdbarch, float_reggroup);
3797 reggroup_add (gdbarch, all_reggroup);
3798 reggroup_add (gdbarch, save_reggroup);
3799 reggroup_add (gdbarch, restore_reggroup);
3800 reggroup_add (gdbarch, vector_reggroup);
3801 reggroup_add (gdbarch, system_reggroup);
3802}
3803
3804int
3805i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3806 struct reggroup *group)
3807{
c131fcee
L
3808 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3809 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3810 ymm_regnum_p, ymmh_regnum_p;
acd5c798 3811
1ba53b71
L
3812 /* Don't include pseudo registers, except for MMX, in any register
3813 groups. */
c131fcee 3814 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
3815 return 0;
3816
c131fcee 3817 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3818 return 0;
3819
c131fcee 3820 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
3821 return 0;
3822
3823 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
3824 if (group == i386_mmx_reggroup)
3825 return mmx_regnum_p;
1ba53b71 3826
c131fcee
L
3827 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3828 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 3829 if (group == i386_sse_reggroup)
c131fcee
L
3830 return xmm_regnum_p || mxcsr_regnum_p;
3831
3832 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
38c968cf 3833 if (group == vector_reggroup)
c131fcee
L
3834 return (mmx_regnum_p
3835 || ymm_regnum_p
3836 || mxcsr_regnum_p
3837 || (xmm_regnum_p
3838 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3839 == I386_XSTATE_SSE_MASK)));
1ba53b71
L
3840
3841 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3842 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
3843 if (group == float_reggroup)
3844 return fp_regnum_p;
1ba53b71 3845
c131fcee
L
3846 /* For "info reg all", don't include upper YMM registers nor XMM
3847 registers when AVX is supported. */
3848 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3849 if (group == all_reggroup
3850 && ((xmm_regnum_p
3851 && (tdep->xcr0 & I386_XSTATE_AVX))
3852 || ymmh_regnum_p))
3853 return 0;
3854
38c968cf 3855 if (group == general_reggroup)
1ba53b71
L
3856 return (!fp_regnum_p
3857 && !mmx_regnum_p
c131fcee
L
3858 && !mxcsr_regnum_p
3859 && !xmm_regnum_p
3860 && !ymm_regnum_p
3861 && !ymmh_regnum_p);
acd5c798 3862
38c968cf
AC
3863 return default_register_reggroup_p (gdbarch, regnum, group);
3864}
38c968cf 3865\f
acd5c798 3866
f837910f
MK
3867/* Get the ARGIth function argument for the current function. */
3868
42c466d7 3869static CORE_ADDR
143985b7
AF
3870i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3871 struct type *type)
3872{
e17a4113
UW
3873 struct gdbarch *gdbarch = get_frame_arch (frame);
3874 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 3875 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 3876 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
3877}
3878
514f746b
AR
3879static void
3880i386_skip_permanent_breakpoint (struct regcache *regcache)
3881{
3882 CORE_ADDR current_pc = regcache_read_pc (regcache);
3883
3884 /* On i386, breakpoint is exactly 1 byte long, so we just
3885 adjust the PC in the regcache. */
3886 current_pc += 1;
3887 regcache_write_pc (regcache, current_pc);
3888}
3889
3890
7ad10968
HZ
3891#define PREFIX_REPZ 0x01
3892#define PREFIX_REPNZ 0x02
3893#define PREFIX_LOCK 0x04
3894#define PREFIX_DATA 0x08
3895#define PREFIX_ADDR 0x10
473f17b0 3896
7ad10968
HZ
3897/* operand size */
3898enum
3899{
3900 OT_BYTE = 0,
3901 OT_WORD,
3902 OT_LONG,
cf648174 3903 OT_QUAD,
a3c4230a 3904 OT_DQUAD,
7ad10968 3905};
473f17b0 3906
7ad10968
HZ
3907/* i386 arith/logic operations */
3908enum
3909{
3910 OP_ADDL,
3911 OP_ORL,
3912 OP_ADCL,
3913 OP_SBBL,
3914 OP_ANDL,
3915 OP_SUBL,
3916 OP_XORL,
3917 OP_CMPL,
3918};
5716833c 3919
7ad10968
HZ
3920struct i386_record_s
3921{
cf648174 3922 struct gdbarch *gdbarch;
7ad10968 3923 struct regcache *regcache;
df61f520 3924 CORE_ADDR orig_addr;
7ad10968
HZ
3925 CORE_ADDR addr;
3926 int aflag;
3927 int dflag;
3928 int override;
3929 uint8_t modrm;
3930 uint8_t mod, reg, rm;
3931 int ot;
cf648174
HZ
3932 uint8_t rex_x;
3933 uint8_t rex_b;
3934 int rip_offset;
3935 int popl_esp_hack;
3936 const int *regmap;
7ad10968 3937};
5716833c 3938
99c1624c
PA
3939/* Parse the "modrm" part of the memory address irp->addr points at.
3940 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 3941
7ad10968
HZ
3942static int
3943i386_record_modrm (struct i386_record_s *irp)
3944{
cf648174 3945 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 3946
4ffa4fc7
PA
3947 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
3948 return -1;
3949
7ad10968
HZ
3950 irp->addr++;
3951 irp->mod = (irp->modrm >> 6) & 3;
3952 irp->reg = (irp->modrm >> 3) & 7;
3953 irp->rm = irp->modrm & 7;
5716833c 3954
7ad10968
HZ
3955 return 0;
3956}
d2a7c97a 3957
99c1624c
PA
3958/* Extract the memory address that the current instruction writes to,
3959 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 3960
7ad10968 3961static int
cf648174 3962i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 3963{
cf648174 3964 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
3965 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3966 gdb_byte buf[4];
3967 ULONGEST offset64;
21d0e8a4 3968
7ad10968
HZ
3969 *addr = 0;
3970 if (irp->aflag)
3971 {
3972 /* 32 bits */
3973 int havesib = 0;
3974 uint8_t scale = 0;
648d0c8b 3975 uint8_t byte;
7ad10968
HZ
3976 uint8_t index = 0;
3977 uint8_t base = irp->rm;
896fb97d 3978
7ad10968
HZ
3979 if (base == 4)
3980 {
3981 havesib = 1;
4ffa4fc7
PA
3982 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
3983 return -1;
7ad10968 3984 irp->addr++;
648d0c8b
MS
3985 scale = (byte >> 6) & 3;
3986 index = ((byte >> 3) & 7) | irp->rex_x;
3987 base = (byte & 7);
7ad10968 3988 }
cf648174 3989 base |= irp->rex_b;
21d0e8a4 3990
7ad10968
HZ
3991 switch (irp->mod)
3992 {
3993 case 0:
3994 if ((base & 7) == 5)
3995 {
3996 base = 0xff;
4ffa4fc7
PA
3997 if (record_read_memory (gdbarch, irp->addr, buf, 4))
3998 return -1;
7ad10968 3999 irp->addr += 4;
60a1502a 4000 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4001 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4002 *addr += irp->addr + irp->rip_offset;
7ad10968 4003 }
7ad10968
HZ
4004 break;
4005 case 1:
4ffa4fc7
PA
4006 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4007 return -1;
7ad10968 4008 irp->addr++;
60a1502a 4009 *addr = (int8_t) buf[0];
7ad10968
HZ
4010 break;
4011 case 2:
4ffa4fc7
PA
4012 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4013 return -1;
60a1502a 4014 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4015 irp->addr += 4;
4016 break;
4017 }
356a6b3e 4018
60a1502a 4019 offset64 = 0;
7ad10968 4020 if (base != 0xff)
cf648174
HZ
4021 {
4022 if (base == 4 && irp->popl_esp_hack)
4023 *addr += irp->popl_esp_hack;
4024 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4025 &offset64);
7ad10968 4026 }
cf648174
HZ
4027 if (irp->aflag == 2)
4028 {
60a1502a 4029 *addr += offset64;
cf648174
HZ
4030 }
4031 else
60a1502a 4032 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4033
7ad10968
HZ
4034 if (havesib && (index != 4 || scale != 0))
4035 {
cf648174 4036 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4037 &offset64);
cf648174 4038 if (irp->aflag == 2)
60a1502a 4039 *addr += offset64 << scale;
cf648174 4040 else
60a1502a 4041 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968
HZ
4042 }
4043 }
4044 else
4045 {
4046 /* 16 bits */
4047 switch (irp->mod)
4048 {
4049 case 0:
4050 if (irp->rm == 6)
4051 {
4ffa4fc7
PA
4052 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4053 return -1;
7ad10968 4054 irp->addr += 2;
60a1502a 4055 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4056 irp->rm = 0;
4057 goto no_rm;
4058 }
7ad10968
HZ
4059 break;
4060 case 1:
4ffa4fc7
PA
4061 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4062 return -1;
7ad10968 4063 irp->addr++;
60a1502a 4064 *addr = (int8_t) buf[0];
7ad10968
HZ
4065 break;
4066 case 2:
4ffa4fc7
PA
4067 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4068 return -1;
7ad10968 4069 irp->addr += 2;
60a1502a 4070 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4071 break;
4072 }
c4fc7f1b 4073
7ad10968
HZ
4074 switch (irp->rm)
4075 {
4076 case 0:
cf648174
HZ
4077 regcache_raw_read_unsigned (irp->regcache,
4078 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4079 &offset64);
4080 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4081 regcache_raw_read_unsigned (irp->regcache,
4082 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4083 &offset64);
4084 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4085 break;
4086 case 1:
cf648174
HZ
4087 regcache_raw_read_unsigned (irp->regcache,
4088 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4089 &offset64);
4090 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4091 regcache_raw_read_unsigned (irp->regcache,
4092 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4093 &offset64);
4094 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4095 break;
4096 case 2:
cf648174
HZ
4097 regcache_raw_read_unsigned (irp->regcache,
4098 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4099 &offset64);
4100 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4101 regcache_raw_read_unsigned (irp->regcache,
4102 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4103 &offset64);
4104 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4105 break;
4106 case 3:
cf648174
HZ
4107 regcache_raw_read_unsigned (irp->regcache,
4108 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4109 &offset64);
4110 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4111 regcache_raw_read_unsigned (irp->regcache,
4112 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4113 &offset64);
4114 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4115 break;
4116 case 4:
cf648174
HZ
4117 regcache_raw_read_unsigned (irp->regcache,
4118 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4119 &offset64);
4120 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4121 break;
4122 case 5:
cf648174
HZ
4123 regcache_raw_read_unsigned (irp->regcache,
4124 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4125 &offset64);
4126 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4127 break;
4128 case 6:
cf648174
HZ
4129 regcache_raw_read_unsigned (irp->regcache,
4130 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4131 &offset64);
4132 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4133 break;
4134 case 7:
cf648174
HZ
4135 regcache_raw_read_unsigned (irp->regcache,
4136 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4137 &offset64);
4138 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4139 break;
4140 }
4141 *addr &= 0xffff;
4142 }
c4fc7f1b 4143
01fe1b41 4144 no_rm:
7ad10968
HZ
4145 return 0;
4146}
c4fc7f1b 4147
99c1624c
PA
4148/* Record the address and contents of the memory that will be changed
4149 by the current instruction. Return -1 if something goes wrong, 0
4150 otherwise. */
356a6b3e 4151
7ad10968
HZ
4152static int
4153i386_record_lea_modrm (struct i386_record_s *irp)
4154{
cf648174
HZ
4155 struct gdbarch *gdbarch = irp->gdbarch;
4156 uint64_t addr;
356a6b3e 4157
d7877f7e 4158 if (irp->override >= 0)
7ad10968 4159 {
bb08c432
HZ
4160 if (record_memory_query)
4161 {
4162 int q;
4163
4164 target_terminal_ours ();
4165 q = yquery (_("\
4166Process record ignores the memory change of instruction at address %s\n\
4167because it can't get the value of the segment register.\n\
4168Do you want to stop the program?"),
4169 paddress (gdbarch, irp->orig_addr));
4170 target_terminal_inferior ();
4171 if (q)
4172 return -1;
4173 }
4174
7ad10968
HZ
4175 return 0;
4176 }
61113f8b 4177
7ad10968
HZ
4178 if (i386_record_lea_modrm_addr (irp, &addr))
4179 return -1;
96297dab 4180
7ad10968
HZ
4181 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4182 return -1;
a62cc96e 4183
7ad10968
HZ
4184 return 0;
4185}
b6197528 4186
99c1624c
PA
4187/* Record the effects of a push operation. Return -1 if something
4188 goes wrong, 0 otherwise. */
cf648174
HZ
4189
4190static int
4191i386_record_push (struct i386_record_s *irp, int size)
4192{
648d0c8b 4193 ULONGEST addr;
cf648174
HZ
4194
4195 if (record_arch_list_add_reg (irp->regcache,
4196 irp->regmap[X86_RECORD_RESP_REGNUM]))
4197 return -1;
4198 regcache_raw_read_unsigned (irp->regcache,
4199 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b
MS
4200 &addr);
4201 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4202 return -1;
4203
4204 return 0;
4205}
4206
0289bdd7
MS
4207
4208/* Defines contents to record. */
4209#define I386_SAVE_FPU_REGS 0xfffd
4210#define I386_SAVE_FPU_ENV 0xfffe
4211#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4212
99c1624c
PA
4213/* Record the values of the floating point registers which will be
4214 changed by the current instruction. Returns -1 if something is
4215 wrong, 0 otherwise. */
0289bdd7
MS
4216
4217static int i386_record_floats (struct gdbarch *gdbarch,
4218 struct i386_record_s *ir,
4219 uint32_t iregnum)
4220{
4221 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4222 int i;
4223
4224 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4225 happen. Currently we store st0-st7 registers, but we need not store all
4226 registers all the time, in future we use ftag register and record only
4227 those who are not marked as an empty. */
4228
4229 if (I386_SAVE_FPU_REGS == iregnum)
4230 {
4231 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4232 {
4233 if (record_arch_list_add_reg (ir->regcache, i))
4234 return -1;
4235 }
4236 }
4237 else if (I386_SAVE_FPU_ENV == iregnum)
4238 {
4239 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4240 {
4241 if (record_arch_list_add_reg (ir->regcache, i))
4242 return -1;
4243 }
4244 }
4245 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4246 {
4247 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4248 {
4249 if (record_arch_list_add_reg (ir->regcache, i))
4250 return -1;
4251 }
4252 }
4253 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4254 (iregnum <= I387_FOP_REGNUM (tdep)))
4255 {
4256 if (record_arch_list_add_reg (ir->regcache,iregnum))
4257 return -1;
4258 }
4259 else
4260 {
4261 /* Parameter error. */
4262 return -1;
4263 }
4264 if(I386_SAVE_FPU_ENV != iregnum)
4265 {
4266 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4267 {
4268 if (record_arch_list_add_reg (ir->regcache, i))
4269 return -1;
4270 }
4271 }
4272 return 0;
4273}
4274
99c1624c
PA
4275/* Parse the current instruction, and record the values of the
4276 registers and memory that will be changed by the current
4277 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4278
cf648174
HZ
4279#define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4280 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4281
a6b808b4 4282int
7ad10968 4283i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4284 CORE_ADDR input_addr)
7ad10968 4285{
60a1502a 4286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4287 int prefixes = 0;
580879fc 4288 int regnum = 0;
425b824a 4289 uint32_t opcode;
f4644a3f 4290 uint8_t opcode8;
648d0c8b 4291 ULONGEST addr;
60a1502a 4292 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4293 struct i386_record_s ir;
0289bdd7 4294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4295 int rex = 0;
4296 uint8_t rex_w = -1;
4297 uint8_t rex_r = 0;
7ad10968 4298
8408d274 4299 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4300 ir.regcache = regcache;
648d0c8b
MS
4301 ir.addr = input_addr;
4302 ir.orig_addr = input_addr;
7ad10968
HZ
4303 ir.aflag = 1;
4304 ir.dflag = 1;
cf648174
HZ
4305 ir.override = -1;
4306 ir.popl_esp_hack = 0;
a3c4230a 4307 ir.regmap = tdep->record_regmap;
cf648174 4308 ir.gdbarch = gdbarch;
7ad10968
HZ
4309
4310 if (record_debug > 1)
4311 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4312 "addr = %s\n",
4313 paddress (gdbarch, ir.addr));
7ad10968
HZ
4314
4315 /* prefixes */
4316 while (1)
4317 {
4ffa4fc7
PA
4318 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4319 return -1;
7ad10968 4320 ir.addr++;
425b824a 4321 switch (opcode8) /* Instruction prefixes */
7ad10968 4322 {
01fe1b41 4323 case REPE_PREFIX_OPCODE:
7ad10968
HZ
4324 prefixes |= PREFIX_REPZ;
4325 break;
01fe1b41 4326 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
4327 prefixes |= PREFIX_REPNZ;
4328 break;
01fe1b41 4329 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
4330 prefixes |= PREFIX_LOCK;
4331 break;
01fe1b41 4332 case CS_PREFIX_OPCODE:
cf648174 4333 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 4334 break;
01fe1b41 4335 case SS_PREFIX_OPCODE:
cf648174 4336 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 4337 break;
01fe1b41 4338 case DS_PREFIX_OPCODE:
cf648174 4339 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 4340 break;
01fe1b41 4341 case ES_PREFIX_OPCODE:
cf648174 4342 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 4343 break;
01fe1b41 4344 case FS_PREFIX_OPCODE:
cf648174 4345 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 4346 break;
01fe1b41 4347 case GS_PREFIX_OPCODE:
cf648174 4348 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 4349 break;
01fe1b41 4350 case DATA_PREFIX_OPCODE:
7ad10968
HZ
4351 prefixes |= PREFIX_DATA;
4352 break;
01fe1b41 4353 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
4354 prefixes |= PREFIX_ADDR;
4355 break;
d691bec7
MS
4356 case 0x40: /* i386 inc %eax */
4357 case 0x41: /* i386 inc %ecx */
4358 case 0x42: /* i386 inc %edx */
4359 case 0x43: /* i386 inc %ebx */
4360 case 0x44: /* i386 inc %esp */
4361 case 0x45: /* i386 inc %ebp */
4362 case 0x46: /* i386 inc %esi */
4363 case 0x47: /* i386 inc %edi */
4364 case 0x48: /* i386 dec %eax */
4365 case 0x49: /* i386 dec %ecx */
4366 case 0x4a: /* i386 dec %edx */
4367 case 0x4b: /* i386 dec %ebx */
4368 case 0x4c: /* i386 dec %esp */
4369 case 0x4d: /* i386 dec %ebp */
4370 case 0x4e: /* i386 dec %esi */
4371 case 0x4f: /* i386 dec %edi */
4372 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
4373 {
4374 /* REX */
4375 rex = 1;
425b824a
MS
4376 rex_w = (opcode8 >> 3) & 1;
4377 rex_r = (opcode8 & 0x4) << 1;
4378 ir.rex_x = (opcode8 & 0x2) << 2;
4379 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 4380 }
d691bec7
MS
4381 else /* 32 bit target */
4382 goto out_prefixes;
cf648174 4383 break;
7ad10968
HZ
4384 default:
4385 goto out_prefixes;
4386 break;
4387 }
4388 }
01fe1b41 4389 out_prefixes:
cf648174
HZ
4390 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4391 {
4392 ir.dflag = 2;
4393 }
4394 else
4395 {
4396 if (prefixes & PREFIX_DATA)
4397 ir.dflag ^= 1;
4398 }
7ad10968
HZ
4399 if (prefixes & PREFIX_ADDR)
4400 ir.aflag ^= 1;
cf648174
HZ
4401 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4402 ir.aflag = 2;
7ad10968 4403
1777feb0 4404 /* Now check op code. */
425b824a 4405 opcode = (uint32_t) opcode8;
01fe1b41 4406 reswitch:
7ad10968
HZ
4407 switch (opcode)
4408 {
4409 case 0x0f:
4ffa4fc7
PA
4410 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4411 return -1;
7ad10968 4412 ir.addr++;
a3c4230a 4413 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
4414 goto reswitch;
4415 break;
93924b6b 4416
a38bba38 4417 case 0x00: /* arith & logic */
7ad10968
HZ
4418 case 0x01:
4419 case 0x02:
4420 case 0x03:
4421 case 0x04:
4422 case 0x05:
4423 case 0x08:
4424 case 0x09:
4425 case 0x0a:
4426 case 0x0b:
4427 case 0x0c:
4428 case 0x0d:
4429 case 0x10:
4430 case 0x11:
4431 case 0x12:
4432 case 0x13:
4433 case 0x14:
4434 case 0x15:
4435 case 0x18:
4436 case 0x19:
4437 case 0x1a:
4438 case 0x1b:
4439 case 0x1c:
4440 case 0x1d:
4441 case 0x20:
4442 case 0x21:
4443 case 0x22:
4444 case 0x23:
4445 case 0x24:
4446 case 0x25:
4447 case 0x28:
4448 case 0x29:
4449 case 0x2a:
4450 case 0x2b:
4451 case 0x2c:
4452 case 0x2d:
4453 case 0x30:
4454 case 0x31:
4455 case 0x32:
4456 case 0x33:
4457 case 0x34:
4458 case 0x35:
4459 case 0x38:
4460 case 0x39:
4461 case 0x3a:
4462 case 0x3b:
4463 case 0x3c:
4464 case 0x3d:
4465 if (((opcode >> 3) & 7) != OP_CMPL)
4466 {
4467 if ((opcode & 1) == 0)
4468 ir.ot = OT_BYTE;
4469 else
4470 ir.ot = ir.dflag + OT_WORD;
93924b6b 4471
7ad10968
HZ
4472 switch ((opcode >> 1) & 3)
4473 {
a38bba38 4474 case 0: /* OP Ev, Gv */
7ad10968
HZ
4475 if (i386_record_modrm (&ir))
4476 return -1;
4477 if (ir.mod != 3)
4478 {
4479 if (i386_record_lea_modrm (&ir))
4480 return -1;
4481 }
4482 else
4483 {
cf648174
HZ
4484 ir.rm |= ir.rex_b;
4485 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4486 ir.rm &= 0x3;
cf648174 4487 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4488 }
4489 break;
a38bba38 4490 case 1: /* OP Gv, Ev */
7ad10968
HZ
4491 if (i386_record_modrm (&ir))
4492 return -1;
cf648174
HZ
4493 ir.reg |= rex_r;
4494 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4495 ir.reg &= 0x3;
cf648174 4496 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4497 break;
a38bba38 4498 case 2: /* OP A, Iv */
cf648174 4499 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4500 break;
4501 }
4502 }
cf648174 4503 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4504 break;
42fdc8df 4505
a38bba38 4506 case 0x80: /* GRP1 */
7ad10968
HZ
4507 case 0x81:
4508 case 0x82:
4509 case 0x83:
4510 if (i386_record_modrm (&ir))
4511 return -1;
8201327c 4512
7ad10968
HZ
4513 if (ir.reg != OP_CMPL)
4514 {
4515 if ((opcode & 1) == 0)
4516 ir.ot = OT_BYTE;
4517 else
4518 ir.ot = ir.dflag + OT_WORD;
28fc6740 4519
7ad10968
HZ
4520 if (ir.mod != 3)
4521 {
cf648174
HZ
4522 if (opcode == 0x83)
4523 ir.rip_offset = 1;
4524 else
4525 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4526 if (i386_record_lea_modrm (&ir))
4527 return -1;
4528 }
4529 else
cf648174 4530 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 4531 }
cf648174 4532 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4533 break;
5e3397bb 4534
a38bba38 4535 case 0x40: /* inc */
7ad10968
HZ
4536 case 0x41:
4537 case 0x42:
4538 case 0x43:
4539 case 0x44:
4540 case 0x45:
4541 case 0x46:
4542 case 0x47:
a38bba38
MS
4543
4544 case 0x48: /* dec */
7ad10968
HZ
4545 case 0x49:
4546 case 0x4a:
4547 case 0x4b:
4548 case 0x4c:
4549 case 0x4d:
4550 case 0x4e:
4551 case 0x4f:
a38bba38 4552
cf648174
HZ
4553 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4554 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4555 break;
acd5c798 4556
a38bba38 4557 case 0xf6: /* GRP3 */
7ad10968
HZ
4558 case 0xf7:
4559 if ((opcode & 1) == 0)
4560 ir.ot = OT_BYTE;
4561 else
4562 ir.ot = ir.dflag + OT_WORD;
4563 if (i386_record_modrm (&ir))
4564 return -1;
acd5c798 4565
cf648174
HZ
4566 if (ir.mod != 3 && ir.reg == 0)
4567 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4568
7ad10968
HZ
4569 switch (ir.reg)
4570 {
a38bba38 4571 case 0: /* test */
cf648174 4572 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4573 break;
a38bba38
MS
4574 case 2: /* not */
4575 case 3: /* neg */
7ad10968
HZ
4576 if (ir.mod != 3)
4577 {
4578 if (i386_record_lea_modrm (&ir))
4579 return -1;
4580 }
4581 else
4582 {
cf648174
HZ
4583 ir.rm |= ir.rex_b;
4584 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4585 ir.rm &= 0x3;
cf648174 4586 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4587 }
a38bba38 4588 if (ir.reg == 3) /* neg */
cf648174 4589 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4590 break;
a38bba38
MS
4591 case 4: /* mul */
4592 case 5: /* imul */
4593 case 6: /* div */
4594 case 7: /* idiv */
cf648174 4595 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 4596 if (ir.ot != OT_BYTE)
cf648174
HZ
4597 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4598 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4599 break;
4600 default:
4601 ir.addr -= 2;
4602 opcode = opcode << 8 | ir.modrm;
4603 goto no_support;
4604 break;
4605 }
4606 break;
4607
a38bba38
MS
4608 case 0xfe: /* GRP4 */
4609 case 0xff: /* GRP5 */
7ad10968
HZ
4610 if (i386_record_modrm (&ir))
4611 return -1;
4612 if (ir.reg >= 2 && opcode == 0xfe)
4613 {
4614 ir.addr -= 2;
4615 opcode = opcode << 8 | ir.modrm;
4616 goto no_support;
4617 }
7ad10968
HZ
4618 switch (ir.reg)
4619 {
a38bba38
MS
4620 case 0: /* inc */
4621 case 1: /* dec */
cf648174
HZ
4622 if ((opcode & 1) == 0)
4623 ir.ot = OT_BYTE;
4624 else
4625 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4626 if (ir.mod != 3)
4627 {
4628 if (i386_record_lea_modrm (&ir))
4629 return -1;
4630 }
4631 else
4632 {
cf648174
HZ
4633 ir.rm |= ir.rex_b;
4634 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4635 ir.rm &= 0x3;
cf648174 4636 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4637 }
cf648174 4638 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4639 break;
a38bba38 4640 case 2: /* call */
cf648174
HZ
4641 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4642 ir.dflag = 2;
4643 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4644 return -1;
cf648174 4645 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4646 break;
a38bba38 4647 case 3: /* lcall */
cf648174
HZ
4648 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4649 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4650 return -1;
cf648174 4651 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4652 break;
a38bba38
MS
4653 case 4: /* jmp */
4654 case 5: /* ljmp */
cf648174
HZ
4655 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4656 break;
a38bba38 4657 case 6: /* push */
cf648174
HZ
4658 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4659 ir.dflag = 2;
4660 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4661 return -1;
7ad10968
HZ
4662 break;
4663 default:
4664 ir.addr -= 2;
4665 opcode = opcode << 8 | ir.modrm;
4666 goto no_support;
4667 break;
4668 }
4669 break;
4670
a38bba38 4671 case 0x84: /* test */
7ad10968
HZ
4672 case 0x85:
4673 case 0xa8:
4674 case 0xa9:
cf648174 4675 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4676 break;
4677
a38bba38 4678 case 0x98: /* CWDE/CBW */
cf648174 4679 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4680 break;
4681
a38bba38 4682 case 0x99: /* CDQ/CWD */
cf648174
HZ
4683 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4684 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4685 break;
4686
a38bba38 4687 case 0x0faf: /* imul */
7ad10968
HZ
4688 case 0x69:
4689 case 0x6b:
4690 ir.ot = ir.dflag + OT_WORD;
4691 if (i386_record_modrm (&ir))
4692 return -1;
cf648174
HZ
4693 if (opcode == 0x69)
4694 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4695 else if (opcode == 0x6b)
4696 ir.rip_offset = 1;
4697 ir.reg |= rex_r;
4698 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4699 ir.reg &= 0x3;
cf648174
HZ
4700 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4701 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4702 break;
4703
a38bba38 4704 case 0x0fc0: /* xadd */
7ad10968
HZ
4705 case 0x0fc1:
4706 if ((opcode & 1) == 0)
4707 ir.ot = OT_BYTE;
4708 else
4709 ir.ot = ir.dflag + OT_WORD;
4710 if (i386_record_modrm (&ir))
4711 return -1;
cf648174 4712 ir.reg |= rex_r;
7ad10968
HZ
4713 if (ir.mod == 3)
4714 {
cf648174 4715 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4716 ir.reg &= 0x3;
cf648174
HZ
4717 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4718 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4719 ir.rm &= 0x3;
cf648174 4720 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4721 }
4722 else
4723 {
4724 if (i386_record_lea_modrm (&ir))
4725 return -1;
cf648174 4726 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4727 ir.reg &= 0x3;
cf648174 4728 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4729 }
cf648174 4730 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4731 break;
4732
a38bba38 4733 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
4734 case 0x0fb1:
4735 if ((opcode & 1) == 0)
4736 ir.ot = OT_BYTE;
4737 else
4738 ir.ot = ir.dflag + OT_WORD;
4739 if (i386_record_modrm (&ir))
4740 return -1;
4741 if (ir.mod == 3)
4742 {
cf648174
HZ
4743 ir.reg |= rex_r;
4744 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4745 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4746 ir.reg &= 0x3;
cf648174 4747 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4748 }
4749 else
4750 {
cf648174 4751 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4752 if (i386_record_lea_modrm (&ir))
4753 return -1;
4754 }
cf648174 4755 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4756 break;
4757
a38bba38 4758 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
4759 if (i386_record_modrm (&ir))
4760 return -1;
4761 if (ir.mod == 3)
4762 {
4763 ir.addr -= 2;
4764 opcode = opcode << 8 | ir.modrm;
4765 goto no_support;
4766 }
cf648174
HZ
4767 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4768 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4769 if (i386_record_lea_modrm (&ir))
4770 return -1;
cf648174 4771 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4772 break;
4773
a38bba38 4774 case 0x50: /* push */
7ad10968
HZ
4775 case 0x51:
4776 case 0x52:
4777 case 0x53:
4778 case 0x54:
4779 case 0x55:
4780 case 0x56:
4781 case 0x57:
4782 case 0x68:
4783 case 0x6a:
cf648174
HZ
4784 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4785 ir.dflag = 2;
4786 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4787 return -1;
4788 break;
4789
a38bba38
MS
4790 case 0x06: /* push es */
4791 case 0x0e: /* push cs */
4792 case 0x16: /* push ss */
4793 case 0x1e: /* push ds */
cf648174
HZ
4794 if (ir.regmap[X86_RECORD_R8_REGNUM])
4795 {
4796 ir.addr -= 1;
4797 goto no_support;
4798 }
4799 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4800 return -1;
4801 break;
4802
a38bba38
MS
4803 case 0x0fa0: /* push fs */
4804 case 0x0fa8: /* push gs */
cf648174
HZ
4805 if (ir.regmap[X86_RECORD_R8_REGNUM])
4806 {
4807 ir.addr -= 2;
4808 goto no_support;
4809 }
4810 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4811 return -1;
cf648174
HZ
4812 break;
4813
a38bba38 4814 case 0x60: /* pusha */
cf648174
HZ
4815 if (ir.regmap[X86_RECORD_R8_REGNUM])
4816 {
4817 ir.addr -= 1;
4818 goto no_support;
4819 }
4820 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
4821 return -1;
4822 break;
4823
a38bba38 4824 case 0x58: /* pop */
7ad10968
HZ
4825 case 0x59:
4826 case 0x5a:
4827 case 0x5b:
4828 case 0x5c:
4829 case 0x5d:
4830 case 0x5e:
4831 case 0x5f:
cf648174
HZ
4832 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4833 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4834 break;
4835
a38bba38 4836 case 0x61: /* popa */
cf648174
HZ
4837 if (ir.regmap[X86_RECORD_R8_REGNUM])
4838 {
4839 ir.addr -= 1;
4840 goto no_support;
7ad10968 4841 }
425b824a
MS
4842 for (regnum = X86_RECORD_REAX_REGNUM;
4843 regnum <= X86_RECORD_REDI_REGNUM;
4844 regnum++)
4845 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
4846 break;
4847
a38bba38 4848 case 0x8f: /* pop */
cf648174
HZ
4849 if (ir.regmap[X86_RECORD_R8_REGNUM])
4850 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4851 else
4852 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4853 if (i386_record_modrm (&ir))
4854 return -1;
4855 if (ir.mod == 3)
cf648174 4856 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
4857 else
4858 {
cf648174 4859 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
4860 if (i386_record_lea_modrm (&ir))
4861 return -1;
4862 }
cf648174 4863 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
4864 break;
4865
a38bba38 4866 case 0xc8: /* enter */
cf648174
HZ
4867 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4868 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4869 ir.dflag = 2;
4870 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
4871 return -1;
4872 break;
4873
a38bba38 4874 case 0xc9: /* leave */
cf648174
HZ
4875 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4876 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
4877 break;
4878
a38bba38 4879 case 0x07: /* pop es */
cf648174
HZ
4880 if (ir.regmap[X86_RECORD_R8_REGNUM])
4881 {
4882 ir.addr -= 1;
4883 goto no_support;
4884 }
4885 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4886 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4887 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4888 break;
4889
a38bba38 4890 case 0x17: /* pop ss */
cf648174
HZ
4891 if (ir.regmap[X86_RECORD_R8_REGNUM])
4892 {
4893 ir.addr -= 1;
4894 goto no_support;
4895 }
4896 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4897 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4898 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4899 break;
4900
a38bba38 4901 case 0x1f: /* pop ds */
cf648174
HZ
4902 if (ir.regmap[X86_RECORD_R8_REGNUM])
4903 {
4904 ir.addr -= 1;
4905 goto no_support;
4906 }
4907 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4908 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4909 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4910 break;
4911
a38bba38 4912 case 0x0fa1: /* pop fs */
cf648174
HZ
4913 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4914 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4915 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4916 break;
4917
a38bba38 4918 case 0x0fa9: /* pop gs */
cf648174
HZ
4919 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4920 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4921 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4922 break;
4923
a38bba38 4924 case 0x88: /* mov */
7ad10968
HZ
4925 case 0x89:
4926 case 0xc6:
4927 case 0xc7:
4928 if ((opcode & 1) == 0)
4929 ir.ot = OT_BYTE;
4930 else
4931 ir.ot = ir.dflag + OT_WORD;
4932
4933 if (i386_record_modrm (&ir))
4934 return -1;
4935
4936 if (ir.mod != 3)
4937 {
cf648174
HZ
4938 if (opcode == 0xc6 || opcode == 0xc7)
4939 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4940 if (i386_record_lea_modrm (&ir))
4941 return -1;
4942 }
4943 else
4944 {
cf648174
HZ
4945 if (opcode == 0xc6 || opcode == 0xc7)
4946 ir.rm |= ir.rex_b;
4947 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4948 ir.rm &= 0x3;
cf648174 4949 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4950 }
7ad10968 4951 break;
cf648174 4952
a38bba38 4953 case 0x8a: /* mov */
7ad10968
HZ
4954 case 0x8b:
4955 if ((opcode & 1) == 0)
4956 ir.ot = OT_BYTE;
4957 else
4958 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4959 if (i386_record_modrm (&ir))
4960 return -1;
cf648174
HZ
4961 ir.reg |= rex_r;
4962 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4963 ir.reg &= 0x3;
cf648174
HZ
4964 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4965 break;
7ad10968 4966
a38bba38 4967 case 0x8c: /* mov seg */
cf648174 4968 if (i386_record_modrm (&ir))
7ad10968 4969 return -1;
cf648174
HZ
4970 if (ir.reg > 5)
4971 {
4972 ir.addr -= 2;
4973 opcode = opcode << 8 | ir.modrm;
4974 goto no_support;
4975 }
4976
4977 if (ir.mod == 3)
4978 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4979 else
4980 {
4981 ir.ot = OT_WORD;
4982 if (i386_record_lea_modrm (&ir))
4983 return -1;
4984 }
7ad10968
HZ
4985 break;
4986
a38bba38 4987 case 0x8e: /* mov seg */
7ad10968
HZ
4988 if (i386_record_modrm (&ir))
4989 return -1;
7ad10968
HZ
4990 switch (ir.reg)
4991 {
4992 case 0:
425b824a 4993 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
4994 break;
4995 case 2:
425b824a 4996 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
4997 break;
4998 case 3:
425b824a 4999 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5000 break;
5001 case 4:
425b824a 5002 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5003 break;
5004 case 5:
425b824a 5005 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5006 break;
5007 default:
5008 ir.addr -= 2;
5009 opcode = opcode << 8 | ir.modrm;
5010 goto no_support;
5011 break;
5012 }
425b824a 5013 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174 5014 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5015 break;
5016
a38bba38
MS
5017 case 0x0fb6: /* movzbS */
5018 case 0x0fb7: /* movzwS */
5019 case 0x0fbe: /* movsbS */
5020 case 0x0fbf: /* movswS */
7ad10968
HZ
5021 if (i386_record_modrm (&ir))
5022 return -1;
cf648174 5023 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5024 break;
5025
a38bba38 5026 case 0x8d: /* lea */
7ad10968
HZ
5027 if (i386_record_modrm (&ir))
5028 return -1;
5029 if (ir.mod == 3)
5030 {
5031 ir.addr -= 2;
5032 opcode = opcode << 8 | ir.modrm;
5033 goto no_support;
5034 }
7ad10968 5035 ir.ot = ir.dflag;
cf648174
HZ
5036 ir.reg |= rex_r;
5037 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5038 ir.reg &= 0x3;
cf648174 5039 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5040 break;
5041
a38bba38 5042 case 0xa0: /* mov EAX */
7ad10968 5043 case 0xa1:
a38bba38
MS
5044
5045 case 0xd7: /* xlat */
cf648174 5046 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5047 break;
5048
a38bba38 5049 case 0xa2: /* mov EAX */
7ad10968 5050 case 0xa3:
d7877f7e 5051 if (ir.override >= 0)
cf648174 5052 {
bb08c432
HZ
5053 if (record_memory_query)
5054 {
5055 int q;
5056
5057 target_terminal_ours ();
5058 q = yquery (_("\
5059Process record ignores the memory change of instruction at address %s\n\
5060because it can't get the value of the segment register.\n\
5061Do you want to stop the program?"),
5062 paddress (gdbarch, ir.orig_addr));
5063 target_terminal_inferior ();
5064 if (q)
5065 return -1;
5066 }
cf648174
HZ
5067 }
5068 else
5069 {
5070 if ((opcode & 1) == 0)
5071 ir.ot = OT_BYTE;
5072 else
5073 ir.ot = ir.dflag + OT_WORD;
5074 if (ir.aflag == 2)
5075 {
4ffa4fc7
PA
5076 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5077 return -1;
cf648174 5078 ir.addr += 8;
60a1502a 5079 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5080 }
5081 else if (ir.aflag)
5082 {
4ffa4fc7
PA
5083 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5084 return -1;
cf648174 5085 ir.addr += 4;
60a1502a 5086 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5087 }
5088 else
5089 {
4ffa4fc7
PA
5090 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5091 return -1;
cf648174 5092 ir.addr += 2;
60a1502a 5093 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5094 }
648d0c8b 5095 if (record_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5096 return -1;
5097 }
7ad10968
HZ
5098 break;
5099
a38bba38 5100 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5101 case 0xb1:
5102 case 0xb2:
5103 case 0xb3:
5104 case 0xb4:
5105 case 0xb5:
5106 case 0xb6:
5107 case 0xb7:
cf648174
HZ
5108 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5109 ? ((opcode & 0x7) | ir.rex_b)
5110 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5111 break;
5112
a38bba38 5113 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5114 case 0xb9:
5115 case 0xba:
5116 case 0xbb:
5117 case 0xbc:
5118 case 0xbd:
5119 case 0xbe:
5120 case 0xbf:
cf648174 5121 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5122 break;
5123
a38bba38 5124 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5125 case 0x92:
5126 case 0x93:
5127 case 0x94:
5128 case 0x95:
5129 case 0x96:
5130 case 0x97:
cf648174
HZ
5131 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5132 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5133 break;
5134
a38bba38 5135 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5136 case 0x87:
5137 if ((opcode & 1) == 0)
5138 ir.ot = OT_BYTE;
5139 else
5140 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5141 if (i386_record_modrm (&ir))
5142 return -1;
7ad10968
HZ
5143 if (ir.mod == 3)
5144 {
86839d38 5145 ir.rm |= ir.rex_b;
cf648174
HZ
5146 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5147 ir.rm &= 0x3;
5148 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5149 }
5150 else
5151 {
5152 if (i386_record_lea_modrm (&ir))
5153 return -1;
5154 }
cf648174
HZ
5155 ir.reg |= rex_r;
5156 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5157 ir.reg &= 0x3;
cf648174 5158 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5159 break;
5160
a38bba38
MS
5161 case 0xc4: /* les Gv */
5162 case 0xc5: /* lds Gv */
cf648174
HZ
5163 if (ir.regmap[X86_RECORD_R8_REGNUM])
5164 {
5165 ir.addr -= 1;
5166 goto no_support;
5167 }
d3f323f3 5168 /* FALLTHROUGH */
a38bba38
MS
5169 case 0x0fb2: /* lss Gv */
5170 case 0x0fb4: /* lfs Gv */
5171 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5172 if (i386_record_modrm (&ir))
5173 return -1;
5174 if (ir.mod == 3)
5175 {
5176 if (opcode > 0xff)
5177 ir.addr -= 3;
5178 else
5179 ir.addr -= 2;
5180 opcode = opcode << 8 | ir.modrm;
5181 goto no_support;
5182 }
7ad10968
HZ
5183 switch (opcode)
5184 {
a38bba38 5185 case 0xc4: /* les Gv */
425b824a 5186 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5187 break;
a38bba38 5188 case 0xc5: /* lds Gv */
425b824a 5189 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5190 break;
a38bba38 5191 case 0x0fb2: /* lss Gv */
425b824a 5192 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5193 break;
a38bba38 5194 case 0x0fb4: /* lfs Gv */
425b824a 5195 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5196 break;
a38bba38 5197 case 0x0fb5: /* lgs Gv */
425b824a 5198 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5199 break;
5200 }
425b824a 5201 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174
HZ
5202 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5203 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5204 break;
5205
a38bba38 5206 case 0xc0: /* shifts */
7ad10968
HZ
5207 case 0xc1:
5208 case 0xd0:
5209 case 0xd1:
5210 case 0xd2:
5211 case 0xd3:
5212 if ((opcode & 1) == 0)
5213 ir.ot = OT_BYTE;
5214 else
5215 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5216 if (i386_record_modrm (&ir))
5217 return -1;
7ad10968
HZ
5218 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5219 {
5220 if (i386_record_lea_modrm (&ir))
5221 return -1;
5222 }
5223 else
5224 {
cf648174
HZ
5225 ir.rm |= ir.rex_b;
5226 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5227 ir.rm &= 0x3;
cf648174 5228 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5229 }
cf648174 5230 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5231 break;
5232
5233 case 0x0fa4:
5234 case 0x0fa5:
5235 case 0x0fac:
5236 case 0x0fad:
5237 if (i386_record_modrm (&ir))
5238 return -1;
5239 if (ir.mod == 3)
5240 {
5241 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5242 return -1;
5243 }
5244 else
5245 {
5246 if (i386_record_lea_modrm (&ir))
5247 return -1;
5248 }
5249 break;
5250
a38bba38 5251 case 0xd8: /* Floats. */
7ad10968
HZ
5252 case 0xd9:
5253 case 0xda:
5254 case 0xdb:
5255 case 0xdc:
5256 case 0xdd:
5257 case 0xde:
5258 case 0xdf:
5259 if (i386_record_modrm (&ir))
5260 return -1;
5261 ir.reg |= ((opcode & 7) << 3);
5262 if (ir.mod != 3)
5263 {
1777feb0 5264 /* Memory. */
955db0c0 5265 uint64_t addr64;
7ad10968 5266
955db0c0 5267 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5268 return -1;
5269 switch (ir.reg)
5270 {
7ad10968 5271 case 0x02:
0289bdd7
MS
5272 case 0x12:
5273 case 0x22:
5274 case 0x32:
5275 /* For fcom, ficom nothing to do. */
5276 break;
7ad10968 5277 case 0x03:
0289bdd7
MS
5278 case 0x13:
5279 case 0x23:
5280 case 0x33:
5281 /* For fcomp, ficomp pop FPU stack, store all. */
5282 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5283 return -1;
5284 break;
5285 case 0x00:
5286 case 0x01:
7ad10968
HZ
5287 case 0x04:
5288 case 0x05:
5289 case 0x06:
5290 case 0x07:
5291 case 0x10:
5292 case 0x11:
7ad10968
HZ
5293 case 0x14:
5294 case 0x15:
5295 case 0x16:
5296 case 0x17:
5297 case 0x20:
5298 case 0x21:
7ad10968
HZ
5299 case 0x24:
5300 case 0x25:
5301 case 0x26:
5302 case 0x27:
5303 case 0x30:
5304 case 0x31:
7ad10968
HZ
5305 case 0x34:
5306 case 0x35:
5307 case 0x36:
5308 case 0x37:
0289bdd7
MS
5309 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5310 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5311 of code, always affects st(0) register. */
5312 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5313 return -1;
7ad10968
HZ
5314 break;
5315 case 0x08:
5316 case 0x0a:
5317 case 0x0b:
5318 case 0x18:
5319 case 0x19:
5320 case 0x1a:
5321 case 0x1b:
0289bdd7 5322 case 0x1d:
7ad10968
HZ
5323 case 0x28:
5324 case 0x29:
5325 case 0x2a:
5326 case 0x2b:
5327 case 0x38:
5328 case 0x39:
5329 case 0x3a:
5330 case 0x3b:
0289bdd7
MS
5331 case 0x3c:
5332 case 0x3d:
7ad10968
HZ
5333 switch (ir.reg & 7)
5334 {
5335 case 0:
0289bdd7
MS
5336 /* Handling fld, fild. */
5337 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5338 return -1;
7ad10968
HZ
5339 break;
5340 case 1:
5341 switch (ir.reg >> 4)
5342 {
5343 case 0:
955db0c0 5344 if (record_arch_list_add_mem (addr64, 4))
7ad10968
HZ
5345 return -1;
5346 break;
5347 case 2:
955db0c0 5348 if (record_arch_list_add_mem (addr64, 8))
7ad10968
HZ
5349 return -1;
5350 break;
5351 case 3:
0289bdd7 5352 break;
7ad10968 5353 default:
955db0c0 5354 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5355 return -1;
5356 break;
5357 }
5358 break;
5359 default:
5360 switch (ir.reg >> 4)
5361 {
5362 case 0:
955db0c0 5363 if (record_arch_list_add_mem (addr64, 4))
0289bdd7
MS
5364 return -1;
5365 if (3 == (ir.reg & 7))
5366 {
5367 /* For fstp m32fp. */
5368 if (i386_record_floats (gdbarch, &ir,
5369 I386_SAVE_FPU_REGS))
5370 return -1;
5371 }
5372 break;
7ad10968 5373 case 1:
955db0c0 5374 if (record_arch_list_add_mem (addr64, 4))
7ad10968 5375 return -1;
0289bdd7
MS
5376 if ((3 == (ir.reg & 7))
5377 || (5 == (ir.reg & 7))
5378 || (7 == (ir.reg & 7)))
5379 {
5380 /* For fstp insn. */
5381 if (i386_record_floats (gdbarch, &ir,
5382 I386_SAVE_FPU_REGS))
5383 return -1;
5384 }
7ad10968
HZ
5385 break;
5386 case 2:
955db0c0 5387 if (record_arch_list_add_mem (addr64, 8))
7ad10968 5388 return -1;
0289bdd7
MS
5389 if (3 == (ir.reg & 7))
5390 {
5391 /* For fstp m64fp. */
5392 if (i386_record_floats (gdbarch, &ir,
5393 I386_SAVE_FPU_REGS))
5394 return -1;
5395 }
7ad10968
HZ
5396 break;
5397 case 3:
0289bdd7
MS
5398 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5399 {
5400 /* For fistp, fbld, fild, fbstp. */
5401 if (i386_record_floats (gdbarch, &ir,
5402 I386_SAVE_FPU_REGS))
5403 return -1;
5404 }
5405 /* Fall through */
7ad10968 5406 default:
955db0c0 5407 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5408 return -1;
5409 break;
5410 }
5411 break;
5412 }
5413 break;
5414 case 0x0c:
0289bdd7
MS
5415 /* Insn fldenv. */
5416 if (i386_record_floats (gdbarch, &ir,
5417 I386_SAVE_FPU_ENV_REG_STACK))
5418 return -1;
5419 break;
7ad10968 5420 case 0x0d:
0289bdd7
MS
5421 /* Insn fldcw. */
5422 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5423 return -1;
5424 break;
7ad10968 5425 case 0x2c:
0289bdd7
MS
5426 /* Insn frstor. */
5427 if (i386_record_floats (gdbarch, &ir,
5428 I386_SAVE_FPU_ENV_REG_STACK))
5429 return -1;
7ad10968
HZ
5430 break;
5431 case 0x0e:
5432 if (ir.dflag)
5433 {
955db0c0 5434 if (record_arch_list_add_mem (addr64, 28))
7ad10968
HZ
5435 return -1;
5436 }
5437 else
5438 {
955db0c0 5439 if (record_arch_list_add_mem (addr64, 14))
7ad10968
HZ
5440 return -1;
5441 }
5442 break;
5443 case 0x0f:
5444 case 0x2f:
955db0c0 5445 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5446 return -1;
0289bdd7
MS
5447 /* Insn fstp, fbstp. */
5448 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5449 return -1;
7ad10968
HZ
5450 break;
5451 case 0x1f:
5452 case 0x3e:
955db0c0 5453 if (record_arch_list_add_mem (addr64, 10))
7ad10968
HZ
5454 return -1;
5455 break;
5456 case 0x2e:
5457 if (ir.dflag)
5458 {
955db0c0 5459 if (record_arch_list_add_mem (addr64, 28))
7ad10968 5460 return -1;
955db0c0 5461 addr64 += 28;
7ad10968
HZ
5462 }
5463 else
5464 {
955db0c0 5465 if (record_arch_list_add_mem (addr64, 14))
7ad10968 5466 return -1;
955db0c0 5467 addr64 += 14;
7ad10968 5468 }
955db0c0 5469 if (record_arch_list_add_mem (addr64, 80))
7ad10968 5470 return -1;
0289bdd7
MS
5471 /* Insn fsave. */
5472 if (i386_record_floats (gdbarch, &ir,
5473 I386_SAVE_FPU_ENV_REG_STACK))
5474 return -1;
7ad10968
HZ
5475 break;
5476 case 0x3f:
955db0c0 5477 if (record_arch_list_add_mem (addr64, 8))
7ad10968 5478 return -1;
0289bdd7
MS
5479 /* Insn fistp. */
5480 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5481 return -1;
7ad10968
HZ
5482 break;
5483 default:
5484 ir.addr -= 2;
5485 opcode = opcode << 8 | ir.modrm;
5486 goto no_support;
5487 break;
5488 }
5489 }
0289bdd7
MS
5490 /* Opcode is an extension of modR/M byte. */
5491 else
5492 {
5493 switch (opcode)
5494 {
5495 case 0xd8:
5496 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5497 return -1;
5498 break;
5499 case 0xd9:
5500 if (0x0c == (ir.modrm >> 4))
5501 {
5502 if ((ir.modrm & 0x0f) <= 7)
5503 {
5504 if (i386_record_floats (gdbarch, &ir,
5505 I386_SAVE_FPU_REGS))
5506 return -1;
5507 }
5508 else
5509 {
5510 if (i386_record_floats (gdbarch, &ir,
5511 I387_ST0_REGNUM (tdep)))
5512 return -1;
5513 /* If only st(0) is changing, then we have already
5514 recorded. */
5515 if ((ir.modrm & 0x0f) - 0x08)
5516 {
5517 if (i386_record_floats (gdbarch, &ir,
5518 I387_ST0_REGNUM (tdep) +
5519 ((ir.modrm & 0x0f) - 0x08)))
5520 return -1;
5521 }
5522 }
5523 }
5524 else
5525 {
5526 switch (ir.modrm)
5527 {
5528 case 0xe0:
5529 case 0xe1:
5530 case 0xf0:
5531 case 0xf5:
5532 case 0xf8:
5533 case 0xfa:
5534 case 0xfc:
5535 case 0xfe:
5536 case 0xff:
5537 if (i386_record_floats (gdbarch, &ir,
5538 I387_ST0_REGNUM (tdep)))
5539 return -1;
5540 break;
5541 case 0xf1:
5542 case 0xf2:
5543 case 0xf3:
5544 case 0xf4:
5545 case 0xf6:
5546 case 0xf7:
5547 case 0xe8:
5548 case 0xe9:
5549 case 0xea:
5550 case 0xeb:
5551 case 0xec:
5552 case 0xed:
5553 case 0xee:
5554 case 0xf9:
5555 case 0xfb:
5556 if (i386_record_floats (gdbarch, &ir,
5557 I386_SAVE_FPU_REGS))
5558 return -1;
5559 break;
5560 case 0xfd:
5561 if (i386_record_floats (gdbarch, &ir,
5562 I387_ST0_REGNUM (tdep)))
5563 return -1;
5564 if (i386_record_floats (gdbarch, &ir,
5565 I387_ST0_REGNUM (tdep) + 1))
5566 return -1;
5567 break;
5568 }
5569 }
5570 break;
5571 case 0xda:
5572 if (0xe9 == ir.modrm)
5573 {
5574 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5575 return -1;
5576 }
5577 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5578 {
5579 if (i386_record_floats (gdbarch, &ir,
5580 I387_ST0_REGNUM (tdep)))
5581 return -1;
5582 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5583 {
5584 if (i386_record_floats (gdbarch, &ir,
5585 I387_ST0_REGNUM (tdep) +
5586 (ir.modrm & 0x0f)))
5587 return -1;
5588 }
5589 else if ((ir.modrm & 0x0f) - 0x08)
5590 {
5591 if (i386_record_floats (gdbarch, &ir,
5592 I387_ST0_REGNUM (tdep) +
5593 ((ir.modrm & 0x0f) - 0x08)))
5594 return -1;
5595 }
5596 }
5597 break;
5598 case 0xdb:
5599 if (0xe3 == ir.modrm)
5600 {
5601 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5602 return -1;
5603 }
5604 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5605 {
5606 if (i386_record_floats (gdbarch, &ir,
5607 I387_ST0_REGNUM (tdep)))
5608 return -1;
5609 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5610 {
5611 if (i386_record_floats (gdbarch, &ir,
5612 I387_ST0_REGNUM (tdep) +
5613 (ir.modrm & 0x0f)))
5614 return -1;
5615 }
5616 else if ((ir.modrm & 0x0f) - 0x08)
5617 {
5618 if (i386_record_floats (gdbarch, &ir,
5619 I387_ST0_REGNUM (tdep) +
5620 ((ir.modrm & 0x0f) - 0x08)))
5621 return -1;
5622 }
5623 }
5624 break;
5625 case 0xdc:
5626 if ((0x0c == ir.modrm >> 4)
5627 || (0x0d == ir.modrm >> 4)
5628 || (0x0f == ir.modrm >> 4))
5629 {
5630 if ((ir.modrm & 0x0f) <= 7)
5631 {
5632 if (i386_record_floats (gdbarch, &ir,
5633 I387_ST0_REGNUM (tdep) +
5634 (ir.modrm & 0x0f)))
5635 return -1;
5636 }
5637 else
5638 {
5639 if (i386_record_floats (gdbarch, &ir,
5640 I387_ST0_REGNUM (tdep) +
5641 ((ir.modrm & 0x0f) - 0x08)))
5642 return -1;
5643 }
5644 }
5645 break;
5646 case 0xdd:
5647 if (0x0c == ir.modrm >> 4)
5648 {
5649 if (i386_record_floats (gdbarch, &ir,
5650 I387_FTAG_REGNUM (tdep)))
5651 return -1;
5652 }
5653 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5654 {
5655 if ((ir.modrm & 0x0f) <= 7)
5656 {
5657 if (i386_record_floats (gdbarch, &ir,
5658 I387_ST0_REGNUM (tdep) +
5659 (ir.modrm & 0x0f)))
5660 return -1;
5661 }
5662 else
5663 {
5664 if (i386_record_floats (gdbarch, &ir,
5665 I386_SAVE_FPU_REGS))
5666 return -1;
5667 }
5668 }
5669 break;
5670 case 0xde:
5671 if ((0x0c == ir.modrm >> 4)
5672 || (0x0e == ir.modrm >> 4)
5673 || (0x0f == ir.modrm >> 4)
5674 || (0xd9 == ir.modrm))
5675 {
5676 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5677 return -1;
5678 }
5679 break;
5680 case 0xdf:
5681 if (0xe0 == ir.modrm)
5682 {
5683 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5684 return -1;
5685 }
5686 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5687 {
5688 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5689 return -1;
5690 }
5691 break;
5692 }
5693 }
7ad10968 5694 break;
7ad10968 5695 /* string ops */
a38bba38 5696 case 0xa4: /* movsS */
7ad10968 5697 case 0xa5:
a38bba38 5698 case 0xaa: /* stosS */
7ad10968 5699 case 0xab:
a38bba38 5700 case 0x6c: /* insS */
7ad10968 5701 case 0x6d:
cf648174 5702 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 5703 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
5704 &addr);
5705 if (addr)
cf648174 5706 {
77d7dc92
HZ
5707 ULONGEST es, ds;
5708
5709 if ((opcode & 1) == 0)
5710 ir.ot = OT_BYTE;
5711 else
5712 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
5713 regcache_raw_read_unsigned (ir.regcache,
5714 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 5715 &addr);
77d7dc92 5716
d7877f7e
HZ
5717 regcache_raw_read_unsigned (ir.regcache,
5718 ir.regmap[X86_RECORD_ES_REGNUM],
5719 &es);
5720 regcache_raw_read_unsigned (ir.regcache,
5721 ir.regmap[X86_RECORD_DS_REGNUM],
5722 &ds);
5723 if (ir.aflag && (es != ds))
77d7dc92
HZ
5724 {
5725 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
bb08c432
HZ
5726 if (record_memory_query)
5727 {
5728 int q;
5729
5730 target_terminal_ours ();
5731 q = yquery (_("\
5732Process record ignores the memory change of instruction at address %s\n\
5733because it can't get the value of the segment register.\n\
5734Do you want to stop the program?"),
5735 paddress (gdbarch, ir.orig_addr));
5736 target_terminal_inferior ();
5737 if (q)
5738 return -1;
5739 }
df61f520
HZ
5740 }
5741 else
5742 {
648d0c8b 5743 if (record_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 5744 return -1;
77d7dc92
HZ
5745 }
5746
5747 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5748 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92
HZ
5749 if (opcode == 0xa4 || opcode == 0xa5)
5750 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5751 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5752 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5753 }
cf648174 5754 break;
7ad10968 5755
a38bba38 5756 case 0xa6: /* cmpsS */
cf648174
HZ
5757 case 0xa7:
5758 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5759 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5760 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5761 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5762 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5763 break;
5764
a38bba38 5765 case 0xac: /* lodsS */
7ad10968 5766 case 0xad:
cf648174
HZ
5767 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5768 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5769 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5770 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5771 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5772 break;
5773
a38bba38 5774 case 0xae: /* scasS */
7ad10968 5775 case 0xaf:
cf648174 5776 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 5777 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5778 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5779 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5780 break;
5781
a38bba38 5782 case 0x6e: /* outsS */
cf648174
HZ
5783 case 0x6f:
5784 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5785 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5786 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5787 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5788 break;
5789
a38bba38 5790 case 0xe4: /* port I/O */
7ad10968
HZ
5791 case 0xe5:
5792 case 0xec:
5793 case 0xed:
cf648174
HZ
5794 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5795 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5796 break;
5797
5798 case 0xe6:
5799 case 0xe7:
5800 case 0xee:
5801 case 0xef:
5802 break;
5803
5804 /* control */
a38bba38
MS
5805 case 0xc2: /* ret im */
5806 case 0xc3: /* ret */
cf648174
HZ
5807 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5808 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5809 break;
5810
a38bba38
MS
5811 case 0xca: /* lret im */
5812 case 0xcb: /* lret */
5813 case 0xcf: /* iret */
cf648174
HZ
5814 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5815 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5816 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5817 break;
5818
a38bba38 5819 case 0xe8: /* call im */
cf648174
HZ
5820 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5821 ir.dflag = 2;
5822 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5823 return -1;
7ad10968
HZ
5824 break;
5825
a38bba38 5826 case 0x9a: /* lcall im */
cf648174
HZ
5827 if (ir.regmap[X86_RECORD_R8_REGNUM])
5828 {
5829 ir.addr -= 1;
5830 goto no_support;
5831 }
5832 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5833 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5834 return -1;
7ad10968
HZ
5835 break;
5836
a38bba38
MS
5837 case 0xe9: /* jmp im */
5838 case 0xea: /* ljmp im */
5839 case 0xeb: /* jmp Jb */
5840 case 0x70: /* jcc Jb */
7ad10968
HZ
5841 case 0x71:
5842 case 0x72:
5843 case 0x73:
5844 case 0x74:
5845 case 0x75:
5846 case 0x76:
5847 case 0x77:
5848 case 0x78:
5849 case 0x79:
5850 case 0x7a:
5851 case 0x7b:
5852 case 0x7c:
5853 case 0x7d:
5854 case 0x7e:
5855 case 0x7f:
a38bba38 5856 case 0x0f80: /* jcc Jv */
7ad10968
HZ
5857 case 0x0f81:
5858 case 0x0f82:
5859 case 0x0f83:
5860 case 0x0f84:
5861 case 0x0f85:
5862 case 0x0f86:
5863 case 0x0f87:
5864 case 0x0f88:
5865 case 0x0f89:
5866 case 0x0f8a:
5867 case 0x0f8b:
5868 case 0x0f8c:
5869 case 0x0f8d:
5870 case 0x0f8e:
5871 case 0x0f8f:
5872 break;
5873
a38bba38 5874 case 0x0f90: /* setcc Gv */
7ad10968
HZ
5875 case 0x0f91:
5876 case 0x0f92:
5877 case 0x0f93:
5878 case 0x0f94:
5879 case 0x0f95:
5880 case 0x0f96:
5881 case 0x0f97:
5882 case 0x0f98:
5883 case 0x0f99:
5884 case 0x0f9a:
5885 case 0x0f9b:
5886 case 0x0f9c:
5887 case 0x0f9d:
5888 case 0x0f9e:
5889 case 0x0f9f:
cf648174 5890 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5891 ir.ot = OT_BYTE;
5892 if (i386_record_modrm (&ir))
5893 return -1;
5894 if (ir.mod == 3)
cf648174
HZ
5895 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5896 : (ir.rm & 0x3));
7ad10968
HZ
5897 else
5898 {
5899 if (i386_record_lea_modrm (&ir))
5900 return -1;
5901 }
5902 break;
5903
a38bba38 5904 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
5905 case 0x0f41:
5906 case 0x0f42:
5907 case 0x0f43:
5908 case 0x0f44:
5909 case 0x0f45:
5910 case 0x0f46:
5911 case 0x0f47:
5912 case 0x0f48:
5913 case 0x0f49:
5914 case 0x0f4a:
5915 case 0x0f4b:
5916 case 0x0f4c:
5917 case 0x0f4d:
5918 case 0x0f4e:
5919 case 0x0f4f:
5920 if (i386_record_modrm (&ir))
5921 return -1;
cf648174 5922 ir.reg |= rex_r;
7ad10968
HZ
5923 if (ir.dflag == OT_BYTE)
5924 ir.reg &= 0x3;
cf648174 5925 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5926 break;
5927
5928 /* flags */
a38bba38 5929 case 0x9c: /* pushf */
cf648174
HZ
5930 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5931 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5932 ir.dflag = 2;
5933 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5934 return -1;
7ad10968
HZ
5935 break;
5936
a38bba38 5937 case 0x9d: /* popf */
cf648174
HZ
5938 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5939 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5940 break;
5941
a38bba38 5942 case 0x9e: /* sahf */
cf648174
HZ
5943 if (ir.regmap[X86_RECORD_R8_REGNUM])
5944 {
5945 ir.addr -= 1;
5946 goto no_support;
5947 }
d3f323f3 5948 /* FALLTHROUGH */
a38bba38
MS
5949 case 0xf5: /* cmc */
5950 case 0xf8: /* clc */
5951 case 0xf9: /* stc */
5952 case 0xfc: /* cld */
5953 case 0xfd: /* std */
cf648174 5954 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5955 break;
5956
a38bba38 5957 case 0x9f: /* lahf */
cf648174
HZ
5958 if (ir.regmap[X86_RECORD_R8_REGNUM])
5959 {
5960 ir.addr -= 1;
5961 goto no_support;
5962 }
5963 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5964 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5965 break;
5966
5967 /* bit operations */
a38bba38 5968 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
5969 ir.ot = ir.dflag + OT_WORD;
5970 if (i386_record_modrm (&ir))
5971 return -1;
5972 if (ir.reg < 4)
5973 {
cf648174 5974 ir.addr -= 2;
7ad10968
HZ
5975 opcode = opcode << 8 | ir.modrm;
5976 goto no_support;
5977 }
cf648174 5978 if (ir.reg != 4)
7ad10968 5979 {
cf648174
HZ
5980 if (ir.mod == 3)
5981 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5982 else
5983 {
cf648174 5984 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
5985 return -1;
5986 }
5987 }
cf648174 5988 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5989 break;
5990
a38bba38 5991 case 0x0fa3: /* bt Gv, Ev */
cf648174
HZ
5992 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5993 break;
5994
a38bba38
MS
5995 case 0x0fab: /* bts */
5996 case 0x0fb3: /* btr */
5997 case 0x0fbb: /* btc */
cf648174
HZ
5998 ir.ot = ir.dflag + OT_WORD;
5999 if (i386_record_modrm (&ir))
6000 return -1;
6001 if (ir.mod == 3)
6002 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6003 else
6004 {
955db0c0
MS
6005 uint64_t addr64;
6006 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6007 return -1;
6008 regcache_raw_read_unsigned (ir.regcache,
6009 ir.regmap[ir.reg | rex_r],
648d0c8b 6010 &addr);
cf648174
HZ
6011 switch (ir.dflag)
6012 {
6013 case 0:
648d0c8b 6014 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6015 break;
6016 case 1:
648d0c8b 6017 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6018 break;
6019 case 2:
648d0c8b 6020 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6021 break;
6022 }
955db0c0 6023 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6024 return -1;
6025 if (i386_record_lea_modrm (&ir))
6026 return -1;
6027 }
6028 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6029 break;
6030
a38bba38
MS
6031 case 0x0fbc: /* bsf */
6032 case 0x0fbd: /* bsr */
cf648174
HZ
6033 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6034 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6035 break;
6036
6037 /* bcd */
a38bba38
MS
6038 case 0x27: /* daa */
6039 case 0x2f: /* das */
6040 case 0x37: /* aaa */
6041 case 0x3f: /* aas */
6042 case 0xd4: /* aam */
6043 case 0xd5: /* aad */
cf648174
HZ
6044 if (ir.regmap[X86_RECORD_R8_REGNUM])
6045 {
6046 ir.addr -= 1;
6047 goto no_support;
6048 }
6049 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6050 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6051 break;
6052
6053 /* misc */
a38bba38 6054 case 0x90: /* nop */
7ad10968
HZ
6055 if (prefixes & PREFIX_LOCK)
6056 {
6057 ir.addr -= 1;
6058 goto no_support;
6059 }
6060 break;
6061
a38bba38 6062 case 0x9b: /* fwait */
4ffa4fc7
PA
6063 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6064 return -1;
425b824a 6065 opcode = (uint32_t) opcode8;
0289bdd7
MS
6066 ir.addr++;
6067 goto reswitch;
7ad10968
HZ
6068 break;
6069
7ad10968 6070 /* XXX */
a38bba38 6071 case 0xcc: /* int3 */
a3c4230a 6072 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6073 "int3.\n"));
6074 ir.addr -= 1;
6075 goto no_support;
6076 break;
6077
7ad10968 6078 /* XXX */
a38bba38 6079 case 0xcd: /* int */
7ad10968
HZ
6080 {
6081 int ret;
425b824a 6082 uint8_t interrupt;
4ffa4fc7
PA
6083 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6084 return -1;
7ad10968 6085 ir.addr++;
425b824a 6086 if (interrupt != 0x80
a3c4230a 6087 || tdep->i386_intx80_record == NULL)
7ad10968 6088 {
a3c4230a 6089 printf_unfiltered (_("Process record does not support "
7ad10968 6090 "instruction int 0x%02x.\n"),
425b824a 6091 interrupt);
7ad10968
HZ
6092 ir.addr -= 2;
6093 goto no_support;
6094 }
a3c4230a 6095 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6096 if (ret)
6097 return ret;
6098 }
6099 break;
6100
7ad10968 6101 /* XXX */
a38bba38 6102 case 0xce: /* into */
a3c4230a 6103 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6104 "instruction into.\n"));
6105 ir.addr -= 1;
6106 goto no_support;
6107 break;
6108
a38bba38
MS
6109 case 0xfa: /* cli */
6110 case 0xfb: /* sti */
7ad10968
HZ
6111 break;
6112
a38bba38 6113 case 0x62: /* bound */
a3c4230a 6114 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6115 "instruction bound.\n"));
6116 ir.addr -= 1;
6117 goto no_support;
6118 break;
6119
a38bba38 6120 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6121 case 0x0fc9:
6122 case 0x0fca:
6123 case 0x0fcb:
6124 case 0x0fcc:
6125 case 0x0fcd:
6126 case 0x0fce:
6127 case 0x0fcf:
cf648174 6128 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6129 break;
6130
a38bba38 6131 case 0xd6: /* salc */
cf648174
HZ
6132 if (ir.regmap[X86_RECORD_R8_REGNUM])
6133 {
6134 ir.addr -= 1;
6135 goto no_support;
6136 }
6137 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6138 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6139 break;
6140
a38bba38
MS
6141 case 0xe0: /* loopnz */
6142 case 0xe1: /* loopz */
6143 case 0xe2: /* loop */
6144 case 0xe3: /* jecxz */
cf648174
HZ
6145 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6146 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6147 break;
6148
a38bba38 6149 case 0x0f30: /* wrmsr */
a3c4230a 6150 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6151 "instruction wrmsr.\n"));
6152 ir.addr -= 2;
6153 goto no_support;
6154 break;
6155
a38bba38 6156 case 0x0f32: /* rdmsr */
a3c4230a 6157 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6158 "instruction rdmsr.\n"));
6159 ir.addr -= 2;
6160 goto no_support;
6161 break;
6162
a38bba38 6163 case 0x0f31: /* rdtsc */
f8c4f480
HZ
6164 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6165 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6166 break;
6167
a38bba38 6168 case 0x0f34: /* sysenter */
7ad10968
HZ
6169 {
6170 int ret;
cf648174
HZ
6171 if (ir.regmap[X86_RECORD_R8_REGNUM])
6172 {
6173 ir.addr -= 2;
6174 goto no_support;
6175 }
a3c4230a 6176 if (tdep->i386_sysenter_record == NULL)
7ad10968 6177 {
a3c4230a 6178 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6179 "instruction sysenter.\n"));
6180 ir.addr -= 2;
6181 goto no_support;
6182 }
a3c4230a 6183 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6184 if (ret)
6185 return ret;
6186 }
6187 break;
6188
a38bba38 6189 case 0x0f35: /* sysexit */
a3c4230a 6190 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6191 "instruction sysexit.\n"));
6192 ir.addr -= 2;
6193 goto no_support;
6194 break;
6195
a38bba38 6196 case 0x0f05: /* syscall */
cf648174
HZ
6197 {
6198 int ret;
a3c4230a 6199 if (tdep->i386_syscall_record == NULL)
cf648174 6200 {
a3c4230a 6201 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6202 "instruction syscall.\n"));
6203 ir.addr -= 2;
6204 goto no_support;
6205 }
a3c4230a 6206 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6207 if (ret)
6208 return ret;
6209 }
6210 break;
6211
a38bba38 6212 case 0x0f07: /* sysret */
a3c4230a 6213 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6214 "instruction sysret.\n"));
6215 ir.addr -= 2;
6216 goto no_support;
6217 break;
6218
a38bba38 6219 case 0x0fa2: /* cpuid */
cf648174
HZ
6220 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6221 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6222 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6223 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6224 break;
6225
a38bba38 6226 case 0xf4: /* hlt */
a3c4230a 6227 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6228 "instruction hlt.\n"));
6229 ir.addr -= 1;
6230 goto no_support;
6231 break;
6232
6233 case 0x0f00:
6234 if (i386_record_modrm (&ir))
6235 return -1;
6236 switch (ir.reg)
6237 {
a38bba38
MS
6238 case 0: /* sldt */
6239 case 1: /* str */
7ad10968 6240 if (ir.mod == 3)
cf648174 6241 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6242 else
6243 {
6244 ir.ot = OT_WORD;
6245 if (i386_record_lea_modrm (&ir))
6246 return -1;
6247 }
6248 break;
a38bba38
MS
6249 case 2: /* lldt */
6250 case 3: /* ltr */
7ad10968 6251 break;
a38bba38
MS
6252 case 4: /* verr */
6253 case 5: /* verw */
cf648174 6254 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6255 break;
6256 default:
6257 ir.addr -= 3;
6258 opcode = opcode << 8 | ir.modrm;
6259 goto no_support;
6260 break;
6261 }
6262 break;
6263
6264 case 0x0f01:
6265 if (i386_record_modrm (&ir))
6266 return -1;
6267 switch (ir.reg)
6268 {
a38bba38 6269 case 0: /* sgdt */
7ad10968 6270 {
955db0c0 6271 uint64_t addr64;
7ad10968
HZ
6272
6273 if (ir.mod == 3)
6274 {
6275 ir.addr -= 3;
6276 opcode = opcode << 8 | ir.modrm;
6277 goto no_support;
6278 }
d7877f7e 6279 if (ir.override >= 0)
7ad10968 6280 {
bb08c432
HZ
6281 if (record_memory_query)
6282 {
6283 int q;
6284
6285 target_terminal_ours ();
6286 q = yquery (_("\
6287Process record ignores the memory change of instruction at address %s\n\
6288because it can't get the value of the segment register.\n\
6289Do you want to stop the program?"),
6290 paddress (gdbarch, ir.orig_addr));
6291 target_terminal_inferior ();
6292 if (q)
6293 return -1;
6294 }
7ad10968
HZ
6295 }
6296 else
6297 {
955db0c0 6298 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6299 return -1;
955db0c0 6300 if (record_arch_list_add_mem (addr64, 2))
7ad10968 6301 return -1;
955db0c0 6302 addr64 += 2;
cf648174
HZ
6303 if (ir.regmap[X86_RECORD_R8_REGNUM])
6304 {
955db0c0 6305 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
6306 return -1;
6307 }
6308 else
6309 {
955db0c0 6310 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
6311 return -1;
6312 }
7ad10968
HZ
6313 }
6314 }
6315 break;
6316 case 1:
6317 if (ir.mod == 3)
6318 {
6319 switch (ir.rm)
6320 {
a38bba38 6321 case 0: /* monitor */
7ad10968 6322 break;
a38bba38 6323 case 1: /* mwait */
cf648174 6324 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6325 break;
6326 default:
6327 ir.addr -= 3;
6328 opcode = opcode << 8 | ir.modrm;
6329 goto no_support;
6330 break;
6331 }
6332 }
6333 else
6334 {
6335 /* sidt */
d7877f7e 6336 if (ir.override >= 0)
7ad10968 6337 {
bb08c432
HZ
6338 if (record_memory_query)
6339 {
6340 int q;
6341
6342 target_terminal_ours ();
6343 q = yquery (_("\
6344Process record ignores the memory change of instruction at address %s\n\
6345because it can't get the value of the segment register.\n\
6346Do you want to stop the program?"),
6347 paddress (gdbarch, ir.orig_addr));
6348 target_terminal_inferior ();
6349 if (q)
6350 return -1;
6351 }
7ad10968
HZ
6352 }
6353 else
6354 {
955db0c0 6355 uint64_t addr64;
7ad10968 6356
955db0c0 6357 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6358 return -1;
955db0c0 6359 if (record_arch_list_add_mem (addr64, 2))
7ad10968 6360 return -1;
955db0c0 6361 addr64 += 2;
cf648174
HZ
6362 if (ir.regmap[X86_RECORD_R8_REGNUM])
6363 {
955db0c0 6364 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
6365 return -1;
6366 }
6367 else
6368 {
955db0c0 6369 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
6370 return -1;
6371 }
7ad10968
HZ
6372 }
6373 }
6374 break;
a38bba38 6375 case 2: /* lgdt */
3800e645
MS
6376 if (ir.mod == 3)
6377 {
6378 /* xgetbv */
6379 if (ir.rm == 0)
6380 {
6381 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6382 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6383 break;
6384 }
6385 /* xsetbv */
6386 else if (ir.rm == 1)
6387 break;
6388 }
a38bba38 6389 case 3: /* lidt */
7ad10968
HZ
6390 if (ir.mod == 3)
6391 {
6392 ir.addr -= 3;
6393 opcode = opcode << 8 | ir.modrm;
6394 goto no_support;
6395 }
6396 break;
a38bba38 6397 case 4: /* smsw */
7ad10968
HZ
6398 if (ir.mod == 3)
6399 {
cf648174 6400 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
6401 return -1;
6402 }
6403 else
6404 {
6405 ir.ot = OT_WORD;
6406 if (i386_record_lea_modrm (&ir))
6407 return -1;
6408 }
cf648174 6409 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6410 break;
a38bba38 6411 case 6: /* lmsw */
cf648174
HZ
6412 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6413 break;
a38bba38 6414 case 7: /* invlpg */
cf648174
HZ
6415 if (ir.mod == 3)
6416 {
6417 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6418 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6419 else
6420 {
6421 ir.addr -= 3;
6422 opcode = opcode << 8 | ir.modrm;
6423 goto no_support;
6424 }
6425 }
6426 else
6427 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6428 break;
6429 default:
6430 ir.addr -= 3;
6431 opcode = opcode << 8 | ir.modrm;
6432 goto no_support;
7ad10968
HZ
6433 break;
6434 }
6435 break;
6436
a38bba38
MS
6437 case 0x0f08: /* invd */
6438 case 0x0f09: /* wbinvd */
7ad10968
HZ
6439 break;
6440
a38bba38 6441 case 0x63: /* arpl */
7ad10968
HZ
6442 if (i386_record_modrm (&ir))
6443 return -1;
cf648174
HZ
6444 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6445 {
6446 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6447 ? (ir.reg | rex_r) : ir.rm);
6448 }
7ad10968 6449 else
cf648174
HZ
6450 {
6451 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6452 if (i386_record_lea_modrm (&ir))
6453 return -1;
6454 }
6455 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6456 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6457 break;
6458
a38bba38
MS
6459 case 0x0f02: /* lar */
6460 case 0x0f03: /* lsl */
7ad10968
HZ
6461 if (i386_record_modrm (&ir))
6462 return -1;
cf648174
HZ
6463 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6464 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6465 break;
6466
6467 case 0x0f18:
cf648174
HZ
6468 if (i386_record_modrm (&ir))
6469 return -1;
6470 if (ir.mod == 3 && ir.reg == 3)
6471 {
6472 ir.addr -= 3;
6473 opcode = opcode << 8 | ir.modrm;
6474 goto no_support;
6475 }
7ad10968
HZ
6476 break;
6477
7ad10968
HZ
6478 case 0x0f19:
6479 case 0x0f1a:
6480 case 0x0f1b:
6481 case 0x0f1c:
6482 case 0x0f1d:
6483 case 0x0f1e:
6484 case 0x0f1f:
a38bba38 6485 /* nop (multi byte) */
7ad10968
HZ
6486 break;
6487
a38bba38
MS
6488 case 0x0f20: /* mov reg, crN */
6489 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
6490 if (i386_record_modrm (&ir))
6491 return -1;
6492 if ((ir.modrm & 0xc0) != 0xc0)
6493 {
cf648174 6494 ir.addr -= 3;
7ad10968
HZ
6495 opcode = opcode << 8 | ir.modrm;
6496 goto no_support;
6497 }
6498 switch (ir.reg)
6499 {
6500 case 0:
6501 case 2:
6502 case 3:
6503 case 4:
6504 case 8:
6505 if (opcode & 2)
cf648174 6506 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6507 else
cf648174 6508 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6509 break;
6510 default:
cf648174 6511 ir.addr -= 3;
7ad10968
HZ
6512 opcode = opcode << 8 | ir.modrm;
6513 goto no_support;
6514 break;
6515 }
6516 break;
6517
a38bba38
MS
6518 case 0x0f21: /* mov reg, drN */
6519 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
6520 if (i386_record_modrm (&ir))
6521 return -1;
6522 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6523 || ir.reg == 5 || ir.reg >= 8)
6524 {
cf648174 6525 ir.addr -= 3;
7ad10968
HZ
6526 opcode = opcode << 8 | ir.modrm;
6527 goto no_support;
6528 }
6529 if (opcode & 2)
cf648174 6530 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6531 else
cf648174 6532 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6533 break;
6534
a38bba38 6535 case 0x0f06: /* clts */
cf648174 6536 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6537 break;
6538
a3c4230a
HZ
6539 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6540
6541 case 0x0f0d: /* 3DNow! prefetch */
6542 break;
6543
6544 case 0x0f0e: /* 3DNow! femms */
6545 case 0x0f77: /* emms */
6546 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6547 goto no_support;
6548 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6549 break;
6550
6551 case 0x0f0f: /* 3DNow! data */
6552 if (i386_record_modrm (&ir))
6553 return -1;
4ffa4fc7
PA
6554 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6555 return -1;
a3c4230a
HZ
6556 ir.addr++;
6557 switch (opcode8)
6558 {
6559 case 0x0c: /* 3DNow! pi2fw */
6560 case 0x0d: /* 3DNow! pi2fd */
6561 case 0x1c: /* 3DNow! pf2iw */
6562 case 0x1d: /* 3DNow! pf2id */
6563 case 0x8a: /* 3DNow! pfnacc */
6564 case 0x8e: /* 3DNow! pfpnacc */
6565 case 0x90: /* 3DNow! pfcmpge */
6566 case 0x94: /* 3DNow! pfmin */
6567 case 0x96: /* 3DNow! pfrcp */
6568 case 0x97: /* 3DNow! pfrsqrt */
6569 case 0x9a: /* 3DNow! pfsub */
6570 case 0x9e: /* 3DNow! pfadd */
6571 case 0xa0: /* 3DNow! pfcmpgt */
6572 case 0xa4: /* 3DNow! pfmax */
6573 case 0xa6: /* 3DNow! pfrcpit1 */
6574 case 0xa7: /* 3DNow! pfrsqit1 */
6575 case 0xaa: /* 3DNow! pfsubr */
6576 case 0xae: /* 3DNow! pfacc */
6577 case 0xb0: /* 3DNow! pfcmpeq */
6578 case 0xb4: /* 3DNow! pfmul */
6579 case 0xb6: /* 3DNow! pfrcpit2 */
6580 case 0xb7: /* 3DNow! pmulhrw */
6581 case 0xbb: /* 3DNow! pswapd */
6582 case 0xbf: /* 3DNow! pavgusb */
6583 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6584 goto no_support_3dnow_data;
6585 record_arch_list_add_reg (ir.regcache, ir.reg);
6586 break;
6587
6588 default:
6589no_support_3dnow_data:
6590 opcode = (opcode << 8) | opcode8;
6591 goto no_support;
6592 break;
6593 }
6594 break;
6595
6596 case 0x0faa: /* rsm */
6597 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6598 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6599 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6600 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6601 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6602 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6603 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6604 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6605 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6606 break;
6607
6608 case 0x0fae:
6609 if (i386_record_modrm (&ir))
6610 return -1;
6611 switch(ir.reg)
6612 {
6613 case 0: /* fxsave */
6614 {
6615 uint64_t tmpu64;
6616
6617 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6618 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6619 return -1;
6620 if (record_arch_list_add_mem (tmpu64, 512))
6621 return -1;
6622 }
6623 break;
6624
6625 case 1: /* fxrstor */
6626 {
6627 int i;
6628
6629 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6630
6631 for (i = I387_MM0_REGNUM (tdep);
6632 i386_mmx_regnum_p (gdbarch, i); i++)
6633 record_arch_list_add_reg (ir.regcache, i);
6634
6635 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 6636 i386_xmm_regnum_p (gdbarch, i); i++)
a3c4230a
HZ
6637 record_arch_list_add_reg (ir.regcache, i);
6638
6639 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6640 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6641
6642 for (i = I387_ST0_REGNUM (tdep);
6643 i386_fp_regnum_p (gdbarch, i); i++)
6644 record_arch_list_add_reg (ir.regcache, i);
6645
6646 for (i = I387_FCTRL_REGNUM (tdep);
6647 i386_fpc_regnum_p (gdbarch, i); i++)
6648 record_arch_list_add_reg (ir.regcache, i);
6649 }
6650 break;
6651
6652 case 2: /* ldmxcsr */
6653 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6654 goto no_support;
6655 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6656 break;
6657
6658 case 3: /* stmxcsr */
6659 ir.ot = OT_LONG;
6660 if (i386_record_lea_modrm (&ir))
6661 return -1;
6662 break;
6663
6664 case 5: /* lfence */
6665 case 6: /* mfence */
6666 case 7: /* sfence clflush */
6667 break;
6668
6669 default:
6670 opcode = (opcode << 8) | ir.modrm;
6671 goto no_support;
6672 break;
6673 }
6674 break;
6675
6676 case 0x0fc3: /* movnti */
6677 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6678 if (i386_record_modrm (&ir))
6679 return -1;
6680 if (ir.mod == 3)
6681 goto no_support;
6682 ir.reg |= rex_r;
6683 if (i386_record_lea_modrm (&ir))
6684 return -1;
6685 break;
6686
6687 /* Add prefix to opcode. */
6688 case 0x0f10:
6689 case 0x0f11:
6690 case 0x0f12:
6691 case 0x0f13:
6692 case 0x0f14:
6693 case 0x0f15:
6694 case 0x0f16:
6695 case 0x0f17:
6696 case 0x0f28:
6697 case 0x0f29:
6698 case 0x0f2a:
6699 case 0x0f2b:
6700 case 0x0f2c:
6701 case 0x0f2d:
6702 case 0x0f2e:
6703 case 0x0f2f:
6704 case 0x0f38:
6705 case 0x0f39:
6706 case 0x0f3a:
6707 case 0x0f50:
6708 case 0x0f51:
6709 case 0x0f52:
6710 case 0x0f53:
6711 case 0x0f54:
6712 case 0x0f55:
6713 case 0x0f56:
6714 case 0x0f57:
6715 case 0x0f58:
6716 case 0x0f59:
6717 case 0x0f5a:
6718 case 0x0f5b:
6719 case 0x0f5c:
6720 case 0x0f5d:
6721 case 0x0f5e:
6722 case 0x0f5f:
6723 case 0x0f60:
6724 case 0x0f61:
6725 case 0x0f62:
6726 case 0x0f63:
6727 case 0x0f64:
6728 case 0x0f65:
6729 case 0x0f66:
6730 case 0x0f67:
6731 case 0x0f68:
6732 case 0x0f69:
6733 case 0x0f6a:
6734 case 0x0f6b:
6735 case 0x0f6c:
6736 case 0x0f6d:
6737 case 0x0f6e:
6738 case 0x0f6f:
6739 case 0x0f70:
6740 case 0x0f71:
6741 case 0x0f72:
6742 case 0x0f73:
6743 case 0x0f74:
6744 case 0x0f75:
6745 case 0x0f76:
6746 case 0x0f7c:
6747 case 0x0f7d:
6748 case 0x0f7e:
6749 case 0x0f7f:
6750 case 0x0fb8:
6751 case 0x0fc2:
6752 case 0x0fc4:
6753 case 0x0fc5:
6754 case 0x0fc6:
6755 case 0x0fd0:
6756 case 0x0fd1:
6757 case 0x0fd2:
6758 case 0x0fd3:
6759 case 0x0fd4:
6760 case 0x0fd5:
6761 case 0x0fd6:
6762 case 0x0fd7:
6763 case 0x0fd8:
6764 case 0x0fd9:
6765 case 0x0fda:
6766 case 0x0fdb:
6767 case 0x0fdc:
6768 case 0x0fdd:
6769 case 0x0fde:
6770 case 0x0fdf:
6771 case 0x0fe0:
6772 case 0x0fe1:
6773 case 0x0fe2:
6774 case 0x0fe3:
6775 case 0x0fe4:
6776 case 0x0fe5:
6777 case 0x0fe6:
6778 case 0x0fe7:
6779 case 0x0fe8:
6780 case 0x0fe9:
6781 case 0x0fea:
6782 case 0x0feb:
6783 case 0x0fec:
6784 case 0x0fed:
6785 case 0x0fee:
6786 case 0x0fef:
6787 case 0x0ff0:
6788 case 0x0ff1:
6789 case 0x0ff2:
6790 case 0x0ff3:
6791 case 0x0ff4:
6792 case 0x0ff5:
6793 case 0x0ff6:
6794 case 0x0ff7:
6795 case 0x0ff8:
6796 case 0x0ff9:
6797 case 0x0ffa:
6798 case 0x0ffb:
6799 case 0x0ffc:
6800 case 0x0ffd:
6801 case 0x0ffe:
6802 switch (prefixes)
6803 {
6804 case PREFIX_REPNZ:
6805 opcode |= 0xf20000;
6806 break;
6807 case PREFIX_DATA:
6808 opcode |= 0x660000;
6809 break;
6810 case PREFIX_REPZ:
6811 opcode |= 0xf30000;
6812 break;
6813 }
6814reswitch_prefix_add:
6815 switch (opcode)
6816 {
6817 case 0x0f38:
6818 case 0x660f38:
6819 case 0xf20f38:
6820 case 0x0f3a:
6821 case 0x660f3a:
4ffa4fc7
PA
6822 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6823 return -1;
a3c4230a
HZ
6824 ir.addr++;
6825 opcode = (uint32_t) opcode8 | opcode << 8;
6826 goto reswitch_prefix_add;
6827 break;
6828
6829 case 0x0f10: /* movups */
6830 case 0x660f10: /* movupd */
6831 case 0xf30f10: /* movss */
6832 case 0xf20f10: /* movsd */
6833 case 0x0f12: /* movlps */
6834 case 0x660f12: /* movlpd */
6835 case 0xf30f12: /* movsldup */
6836 case 0xf20f12: /* movddup */
6837 case 0x0f14: /* unpcklps */
6838 case 0x660f14: /* unpcklpd */
6839 case 0x0f15: /* unpckhps */
6840 case 0x660f15: /* unpckhpd */
6841 case 0x0f16: /* movhps */
6842 case 0x660f16: /* movhpd */
6843 case 0xf30f16: /* movshdup */
6844 case 0x0f28: /* movaps */
6845 case 0x660f28: /* movapd */
6846 case 0x0f2a: /* cvtpi2ps */
6847 case 0x660f2a: /* cvtpi2pd */
6848 case 0xf30f2a: /* cvtsi2ss */
6849 case 0xf20f2a: /* cvtsi2sd */
6850 case 0x0f2c: /* cvttps2pi */
6851 case 0x660f2c: /* cvttpd2pi */
6852 case 0x0f2d: /* cvtps2pi */
6853 case 0x660f2d: /* cvtpd2pi */
6854 case 0x660f3800: /* pshufb */
6855 case 0x660f3801: /* phaddw */
6856 case 0x660f3802: /* phaddd */
6857 case 0x660f3803: /* phaddsw */
6858 case 0x660f3804: /* pmaddubsw */
6859 case 0x660f3805: /* phsubw */
6860 case 0x660f3806: /* phsubd */
4f7d61a8 6861 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
6862 case 0x660f3808: /* psignb */
6863 case 0x660f3809: /* psignw */
6864 case 0x660f380a: /* psignd */
6865 case 0x660f380b: /* pmulhrsw */
6866 case 0x660f3810: /* pblendvb */
6867 case 0x660f3814: /* blendvps */
6868 case 0x660f3815: /* blendvpd */
6869 case 0x660f381c: /* pabsb */
6870 case 0x660f381d: /* pabsw */
6871 case 0x660f381e: /* pabsd */
6872 case 0x660f3820: /* pmovsxbw */
6873 case 0x660f3821: /* pmovsxbd */
6874 case 0x660f3822: /* pmovsxbq */
6875 case 0x660f3823: /* pmovsxwd */
6876 case 0x660f3824: /* pmovsxwq */
6877 case 0x660f3825: /* pmovsxdq */
6878 case 0x660f3828: /* pmuldq */
6879 case 0x660f3829: /* pcmpeqq */
6880 case 0x660f382a: /* movntdqa */
6881 case 0x660f3a08: /* roundps */
6882 case 0x660f3a09: /* roundpd */
6883 case 0x660f3a0a: /* roundss */
6884 case 0x660f3a0b: /* roundsd */
6885 case 0x660f3a0c: /* blendps */
6886 case 0x660f3a0d: /* blendpd */
6887 case 0x660f3a0e: /* pblendw */
6888 case 0x660f3a0f: /* palignr */
6889 case 0x660f3a20: /* pinsrb */
6890 case 0x660f3a21: /* insertps */
6891 case 0x660f3a22: /* pinsrd pinsrq */
6892 case 0x660f3a40: /* dpps */
6893 case 0x660f3a41: /* dppd */
6894 case 0x660f3a42: /* mpsadbw */
6895 case 0x660f3a60: /* pcmpestrm */
6896 case 0x660f3a61: /* pcmpestri */
6897 case 0x660f3a62: /* pcmpistrm */
6898 case 0x660f3a63: /* pcmpistri */
6899 case 0x0f51: /* sqrtps */
6900 case 0x660f51: /* sqrtpd */
6901 case 0xf20f51: /* sqrtsd */
6902 case 0xf30f51: /* sqrtss */
6903 case 0x0f52: /* rsqrtps */
6904 case 0xf30f52: /* rsqrtss */
6905 case 0x0f53: /* rcpps */
6906 case 0xf30f53: /* rcpss */
6907 case 0x0f54: /* andps */
6908 case 0x660f54: /* andpd */
6909 case 0x0f55: /* andnps */
6910 case 0x660f55: /* andnpd */
6911 case 0x0f56: /* orps */
6912 case 0x660f56: /* orpd */
6913 case 0x0f57: /* xorps */
6914 case 0x660f57: /* xorpd */
6915 case 0x0f58: /* addps */
6916 case 0x660f58: /* addpd */
6917 case 0xf20f58: /* addsd */
6918 case 0xf30f58: /* addss */
6919 case 0x0f59: /* mulps */
6920 case 0x660f59: /* mulpd */
6921 case 0xf20f59: /* mulsd */
6922 case 0xf30f59: /* mulss */
6923 case 0x0f5a: /* cvtps2pd */
6924 case 0x660f5a: /* cvtpd2ps */
6925 case 0xf20f5a: /* cvtsd2ss */
6926 case 0xf30f5a: /* cvtss2sd */
6927 case 0x0f5b: /* cvtdq2ps */
6928 case 0x660f5b: /* cvtps2dq */
6929 case 0xf30f5b: /* cvttps2dq */
6930 case 0x0f5c: /* subps */
6931 case 0x660f5c: /* subpd */
6932 case 0xf20f5c: /* subsd */
6933 case 0xf30f5c: /* subss */
6934 case 0x0f5d: /* minps */
6935 case 0x660f5d: /* minpd */
6936 case 0xf20f5d: /* minsd */
6937 case 0xf30f5d: /* minss */
6938 case 0x0f5e: /* divps */
6939 case 0x660f5e: /* divpd */
6940 case 0xf20f5e: /* divsd */
6941 case 0xf30f5e: /* divss */
6942 case 0x0f5f: /* maxps */
6943 case 0x660f5f: /* maxpd */
6944 case 0xf20f5f: /* maxsd */
6945 case 0xf30f5f: /* maxss */
6946 case 0x660f60: /* punpcklbw */
6947 case 0x660f61: /* punpcklwd */
6948 case 0x660f62: /* punpckldq */
6949 case 0x660f63: /* packsswb */
6950 case 0x660f64: /* pcmpgtb */
6951 case 0x660f65: /* pcmpgtw */
56d2815c 6952 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
6953 case 0x660f67: /* packuswb */
6954 case 0x660f68: /* punpckhbw */
6955 case 0x660f69: /* punpckhwd */
6956 case 0x660f6a: /* punpckhdq */
6957 case 0x660f6b: /* packssdw */
6958 case 0x660f6c: /* punpcklqdq */
6959 case 0x660f6d: /* punpckhqdq */
6960 case 0x660f6e: /* movd */
6961 case 0x660f6f: /* movdqa */
6962 case 0xf30f6f: /* movdqu */
6963 case 0x660f70: /* pshufd */
6964 case 0xf20f70: /* pshuflw */
6965 case 0xf30f70: /* pshufhw */
6966 case 0x660f74: /* pcmpeqb */
6967 case 0x660f75: /* pcmpeqw */
56d2815c 6968 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
6969 case 0x660f7c: /* haddpd */
6970 case 0xf20f7c: /* haddps */
6971 case 0x660f7d: /* hsubpd */
6972 case 0xf20f7d: /* hsubps */
6973 case 0xf30f7e: /* movq */
6974 case 0x0fc2: /* cmpps */
6975 case 0x660fc2: /* cmppd */
6976 case 0xf20fc2: /* cmpsd */
6977 case 0xf30fc2: /* cmpss */
6978 case 0x660fc4: /* pinsrw */
6979 case 0x0fc6: /* shufps */
6980 case 0x660fc6: /* shufpd */
6981 case 0x660fd0: /* addsubpd */
6982 case 0xf20fd0: /* addsubps */
6983 case 0x660fd1: /* psrlw */
6984 case 0x660fd2: /* psrld */
6985 case 0x660fd3: /* psrlq */
6986 case 0x660fd4: /* paddq */
6987 case 0x660fd5: /* pmullw */
6988 case 0xf30fd6: /* movq2dq */
6989 case 0x660fd8: /* psubusb */
6990 case 0x660fd9: /* psubusw */
6991 case 0x660fda: /* pminub */
6992 case 0x660fdb: /* pand */
6993 case 0x660fdc: /* paddusb */
6994 case 0x660fdd: /* paddusw */
6995 case 0x660fde: /* pmaxub */
6996 case 0x660fdf: /* pandn */
6997 case 0x660fe0: /* pavgb */
6998 case 0x660fe1: /* psraw */
6999 case 0x660fe2: /* psrad */
7000 case 0x660fe3: /* pavgw */
7001 case 0x660fe4: /* pmulhuw */
7002 case 0x660fe5: /* pmulhw */
7003 case 0x660fe6: /* cvttpd2dq */
7004 case 0xf20fe6: /* cvtpd2dq */
7005 case 0xf30fe6: /* cvtdq2pd */
7006 case 0x660fe8: /* psubsb */
7007 case 0x660fe9: /* psubsw */
7008 case 0x660fea: /* pminsw */
7009 case 0x660feb: /* por */
7010 case 0x660fec: /* paddsb */
7011 case 0x660fed: /* paddsw */
7012 case 0x660fee: /* pmaxsw */
7013 case 0x660fef: /* pxor */
4f7d61a8 7014 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7015 case 0x660ff1: /* psllw */
7016 case 0x660ff2: /* pslld */
7017 case 0x660ff3: /* psllq */
7018 case 0x660ff4: /* pmuludq */
7019 case 0x660ff5: /* pmaddwd */
7020 case 0x660ff6: /* psadbw */
7021 case 0x660ff8: /* psubb */
7022 case 0x660ff9: /* psubw */
56d2815c 7023 case 0x660ffa: /* psubd */
a3c4230a
HZ
7024 case 0x660ffb: /* psubq */
7025 case 0x660ffc: /* paddb */
7026 case 0x660ffd: /* paddw */
56d2815c 7027 case 0x660ffe: /* paddd */
a3c4230a
HZ
7028 if (i386_record_modrm (&ir))
7029 return -1;
7030 ir.reg |= rex_r;
c131fcee 7031 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a
HZ
7032 goto no_support;
7033 record_arch_list_add_reg (ir.regcache,
7034 I387_XMM0_REGNUM (tdep) + ir.reg);
7035 if ((opcode & 0xfffffffc) == 0x660f3a60)
7036 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7037 break;
7038
7039 case 0x0f11: /* movups */
7040 case 0x660f11: /* movupd */
7041 case 0xf30f11: /* movss */
7042 case 0xf20f11: /* movsd */
7043 case 0x0f13: /* movlps */
7044 case 0x660f13: /* movlpd */
7045 case 0x0f17: /* movhps */
7046 case 0x660f17: /* movhpd */
7047 case 0x0f29: /* movaps */
7048 case 0x660f29: /* movapd */
7049 case 0x660f3a14: /* pextrb */
7050 case 0x660f3a15: /* pextrw */
7051 case 0x660f3a16: /* pextrd pextrq */
7052 case 0x660f3a17: /* extractps */
7053 case 0x660f7f: /* movdqa */
7054 case 0xf30f7f: /* movdqu */
7055 if (i386_record_modrm (&ir))
7056 return -1;
7057 if (ir.mod == 3)
7058 {
7059 if (opcode == 0x0f13 || opcode == 0x660f13
7060 || opcode == 0x0f17 || opcode == 0x660f17)
7061 goto no_support;
7062 ir.rm |= ir.rex_b;
1777feb0
MS
7063 if (!i386_xmm_regnum_p (gdbarch,
7064 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7065 goto no_support;
7066 record_arch_list_add_reg (ir.regcache,
7067 I387_XMM0_REGNUM (tdep) + ir.rm);
7068 }
7069 else
7070 {
7071 switch (opcode)
7072 {
7073 case 0x660f3a14:
7074 ir.ot = OT_BYTE;
7075 break;
7076 case 0x660f3a15:
7077 ir.ot = OT_WORD;
7078 break;
7079 case 0x660f3a16:
7080 ir.ot = OT_LONG;
7081 break;
7082 case 0x660f3a17:
7083 ir.ot = OT_QUAD;
7084 break;
7085 default:
7086 ir.ot = OT_DQUAD;
7087 break;
7088 }
7089 if (i386_record_lea_modrm (&ir))
7090 return -1;
7091 }
7092 break;
7093
7094 case 0x0f2b: /* movntps */
7095 case 0x660f2b: /* movntpd */
7096 case 0x0fe7: /* movntq */
7097 case 0x660fe7: /* movntdq */
7098 if (ir.mod == 3)
7099 goto no_support;
7100 if (opcode == 0x0fe7)
7101 ir.ot = OT_QUAD;
7102 else
7103 ir.ot = OT_DQUAD;
7104 if (i386_record_lea_modrm (&ir))
7105 return -1;
7106 break;
7107
7108 case 0xf30f2c: /* cvttss2si */
7109 case 0xf20f2c: /* cvttsd2si */
7110 case 0xf30f2d: /* cvtss2si */
7111 case 0xf20f2d: /* cvtsd2si */
7112 case 0xf20f38f0: /* crc32 */
7113 case 0xf20f38f1: /* crc32 */
7114 case 0x0f50: /* movmskps */
7115 case 0x660f50: /* movmskpd */
7116 case 0x0fc5: /* pextrw */
7117 case 0x660fc5: /* pextrw */
7118 case 0x0fd7: /* pmovmskb */
7119 case 0x660fd7: /* pmovmskb */
7120 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7121 break;
7122
7123 case 0x0f3800: /* pshufb */
7124 case 0x0f3801: /* phaddw */
7125 case 0x0f3802: /* phaddd */
7126 case 0x0f3803: /* phaddsw */
7127 case 0x0f3804: /* pmaddubsw */
7128 case 0x0f3805: /* phsubw */
7129 case 0x0f3806: /* phsubd */
4f7d61a8 7130 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7131 case 0x0f3808: /* psignb */
7132 case 0x0f3809: /* psignw */
7133 case 0x0f380a: /* psignd */
7134 case 0x0f380b: /* pmulhrsw */
7135 case 0x0f381c: /* pabsb */
7136 case 0x0f381d: /* pabsw */
7137 case 0x0f381e: /* pabsd */
7138 case 0x0f382b: /* packusdw */
7139 case 0x0f3830: /* pmovzxbw */
7140 case 0x0f3831: /* pmovzxbd */
7141 case 0x0f3832: /* pmovzxbq */
7142 case 0x0f3833: /* pmovzxwd */
7143 case 0x0f3834: /* pmovzxwq */
7144 case 0x0f3835: /* pmovzxdq */
7145 case 0x0f3837: /* pcmpgtq */
7146 case 0x0f3838: /* pminsb */
7147 case 0x0f3839: /* pminsd */
7148 case 0x0f383a: /* pminuw */
7149 case 0x0f383b: /* pminud */
7150 case 0x0f383c: /* pmaxsb */
7151 case 0x0f383d: /* pmaxsd */
7152 case 0x0f383e: /* pmaxuw */
7153 case 0x0f383f: /* pmaxud */
7154 case 0x0f3840: /* pmulld */
7155 case 0x0f3841: /* phminposuw */
7156 case 0x0f3a0f: /* palignr */
7157 case 0x0f60: /* punpcklbw */
7158 case 0x0f61: /* punpcklwd */
7159 case 0x0f62: /* punpckldq */
7160 case 0x0f63: /* packsswb */
7161 case 0x0f64: /* pcmpgtb */
7162 case 0x0f65: /* pcmpgtw */
56d2815c 7163 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7164 case 0x0f67: /* packuswb */
7165 case 0x0f68: /* punpckhbw */
7166 case 0x0f69: /* punpckhwd */
7167 case 0x0f6a: /* punpckhdq */
7168 case 0x0f6b: /* packssdw */
7169 case 0x0f6e: /* movd */
7170 case 0x0f6f: /* movq */
7171 case 0x0f70: /* pshufw */
7172 case 0x0f74: /* pcmpeqb */
7173 case 0x0f75: /* pcmpeqw */
56d2815c 7174 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7175 case 0x0fc4: /* pinsrw */
7176 case 0x0fd1: /* psrlw */
7177 case 0x0fd2: /* psrld */
7178 case 0x0fd3: /* psrlq */
7179 case 0x0fd4: /* paddq */
7180 case 0x0fd5: /* pmullw */
7181 case 0xf20fd6: /* movdq2q */
7182 case 0x0fd8: /* psubusb */
7183 case 0x0fd9: /* psubusw */
7184 case 0x0fda: /* pminub */
7185 case 0x0fdb: /* pand */
7186 case 0x0fdc: /* paddusb */
7187 case 0x0fdd: /* paddusw */
7188 case 0x0fde: /* pmaxub */
7189 case 0x0fdf: /* pandn */
7190 case 0x0fe0: /* pavgb */
7191 case 0x0fe1: /* psraw */
7192 case 0x0fe2: /* psrad */
7193 case 0x0fe3: /* pavgw */
7194 case 0x0fe4: /* pmulhuw */
7195 case 0x0fe5: /* pmulhw */
7196 case 0x0fe8: /* psubsb */
7197 case 0x0fe9: /* psubsw */
7198 case 0x0fea: /* pminsw */
7199 case 0x0feb: /* por */
7200 case 0x0fec: /* paddsb */
7201 case 0x0fed: /* paddsw */
7202 case 0x0fee: /* pmaxsw */
7203 case 0x0fef: /* pxor */
7204 case 0x0ff1: /* psllw */
7205 case 0x0ff2: /* pslld */
7206 case 0x0ff3: /* psllq */
7207 case 0x0ff4: /* pmuludq */
7208 case 0x0ff5: /* pmaddwd */
7209 case 0x0ff6: /* psadbw */
7210 case 0x0ff8: /* psubb */
7211 case 0x0ff9: /* psubw */
56d2815c 7212 case 0x0ffa: /* psubd */
a3c4230a
HZ
7213 case 0x0ffb: /* psubq */
7214 case 0x0ffc: /* paddb */
7215 case 0x0ffd: /* paddw */
56d2815c 7216 case 0x0ffe: /* paddd */
a3c4230a
HZ
7217 if (i386_record_modrm (&ir))
7218 return -1;
7219 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7220 goto no_support;
7221 record_arch_list_add_reg (ir.regcache,
7222 I387_MM0_REGNUM (tdep) + ir.reg);
7223 break;
7224
7225 case 0x0f71: /* psllw */
7226 case 0x0f72: /* pslld */
7227 case 0x0f73: /* psllq */
7228 if (i386_record_modrm (&ir))
7229 return -1;
7230 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7231 goto no_support;
7232 record_arch_list_add_reg (ir.regcache,
7233 I387_MM0_REGNUM (tdep) + ir.rm);
7234 break;
7235
7236 case 0x660f71: /* psllw */
7237 case 0x660f72: /* pslld */
7238 case 0x660f73: /* psllq */
7239 if (i386_record_modrm (&ir))
7240 return -1;
7241 ir.rm |= ir.rex_b;
c131fcee 7242 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7243 goto no_support;
7244 record_arch_list_add_reg (ir.regcache,
7245 I387_XMM0_REGNUM (tdep) + ir.rm);
7246 break;
7247
7248 case 0x0f7e: /* movd */
7249 case 0x660f7e: /* movd */
7250 if (i386_record_modrm (&ir))
7251 return -1;
7252 if (ir.mod == 3)
7253 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7254 else
7255 {
7256 if (ir.dflag == 2)
7257 ir.ot = OT_QUAD;
7258 else
7259 ir.ot = OT_LONG;
7260 if (i386_record_lea_modrm (&ir))
7261 return -1;
7262 }
7263 break;
7264
7265 case 0x0f7f: /* movq */
7266 if (i386_record_modrm (&ir))
7267 return -1;
7268 if (ir.mod == 3)
7269 {
7270 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7271 goto no_support;
7272 record_arch_list_add_reg (ir.regcache,
7273 I387_MM0_REGNUM (tdep) + ir.rm);
7274 }
7275 else
7276 {
7277 ir.ot = OT_QUAD;
7278 if (i386_record_lea_modrm (&ir))
7279 return -1;
7280 }
7281 break;
7282
7283 case 0xf30fb8: /* popcnt */
7284 if (i386_record_modrm (&ir))
7285 return -1;
7286 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7287 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7288 break;
7289
7290 case 0x660fd6: /* movq */
7291 if (i386_record_modrm (&ir))
7292 return -1;
7293 if (ir.mod == 3)
7294 {
7295 ir.rm |= ir.rex_b;
1777feb0
MS
7296 if (!i386_xmm_regnum_p (gdbarch,
7297 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7298 goto no_support;
7299 record_arch_list_add_reg (ir.regcache,
7300 I387_XMM0_REGNUM (tdep) + ir.rm);
7301 }
7302 else
7303 {
7304 ir.ot = OT_QUAD;
7305 if (i386_record_lea_modrm (&ir))
7306 return -1;
7307 }
7308 break;
7309
7310 case 0x660f3817: /* ptest */
7311 case 0x0f2e: /* ucomiss */
7312 case 0x660f2e: /* ucomisd */
7313 case 0x0f2f: /* comiss */
7314 case 0x660f2f: /* comisd */
7315 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7316 break;
7317
7318 case 0x0ff7: /* maskmovq */
7319 regcache_raw_read_unsigned (ir.regcache,
7320 ir.regmap[X86_RECORD_REDI_REGNUM],
7321 &addr);
7322 if (record_arch_list_add_mem (addr, 64))
7323 return -1;
7324 break;
7325
7326 case 0x660ff7: /* maskmovdqu */
7327 regcache_raw_read_unsigned (ir.regcache,
7328 ir.regmap[X86_RECORD_REDI_REGNUM],
7329 &addr);
7330 if (record_arch_list_add_mem (addr, 128))
7331 return -1;
7332 break;
7333
7334 default:
7335 goto no_support;
7336 break;
7337 }
7338 break;
7ad10968
HZ
7339
7340 default:
7ad10968
HZ
7341 goto no_support;
7342 break;
7343 }
7344
cf648174
HZ
7345 /* In the future, maybe still need to deal with need_dasm. */
7346 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7ad10968
HZ
7347 if (record_arch_list_add_end ())
7348 return -1;
7349
7350 return 0;
7351
01fe1b41 7352 no_support:
a3c4230a
HZ
7353 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7354 "at address %s.\n"),
7355 (unsigned int) (opcode),
7356 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
7357 return -1;
7358}
7359
cf648174
HZ
7360static const int i386_record_regmap[] =
7361{
7362 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7363 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7364 0, 0, 0, 0, 0, 0, 0, 0,
7365 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7366 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7367};
7368
7a697b8d 7369/* Check that the given address appears suitable for a fast
405f8e94 7370 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
7371 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7372 jump and not have to worry about program jumps to an address in the
405f8e94
SS
7373 middle of the tracepoint jump. On x86, it may be possible to use
7374 4-byte jumps with a 2-byte offset to a trampoline located in the
7375 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
7376 of instruction to replace, and 0 if not, plus an explanatory
7377 string. */
7378
7379static int
7380i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7381 CORE_ADDR addr, int *isize, char **msg)
7382{
7383 int len, jumplen;
7384 static struct ui_file *gdb_null = NULL;
7385
405f8e94
SS
7386 /* Ask the target for the minimum instruction length supported. */
7387 jumplen = target_get_min_fast_tracepoint_insn_len ();
7388
7389 if (jumplen < 0)
7390 {
7391 /* If the target does not support the get_min_fast_tracepoint_insn_len
7392 operation, assume that fast tracepoints will always be implemented
7393 using 4-byte relative jumps on both x86 and x86-64. */
7394 jumplen = 5;
7395 }
7396 else if (jumplen == 0)
7397 {
7398 /* If the target does support get_min_fast_tracepoint_insn_len but
7399 returns zero, then the IPA has not loaded yet. In this case,
7400 we optimistically assume that truncated 2-byte relative jumps
7401 will be available on x86, and compensate later if this assumption
7402 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7403 jumps will always be used. */
7404 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7405 }
7a697b8d
SS
7406
7407 /* Dummy file descriptor for the disassembler. */
7408 if (!gdb_null)
7409 gdb_null = ui_file_new ();
7410
7411 /* Check for fit. */
7412 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
7413 if (isize)
7414 *isize = len;
7415
7a697b8d
SS
7416 if (len < jumplen)
7417 {
7418 /* Return a bit of target-specific detail to add to the caller's
7419 generic failure message. */
7420 if (msg)
1777feb0
MS
7421 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7422 "need at least %d bytes for the jump"),
7a697b8d
SS
7423 len, jumplen);
7424 return 0;
7425 }
405f8e94
SS
7426 else
7427 {
7428 if (msg)
7429 *msg = NULL;
7430 return 1;
7431 }
7a697b8d
SS
7432}
7433
90884b2b
L
7434static int
7435i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7436 struct tdesc_arch_data *tdesc_data)
7437{
7438 const struct target_desc *tdesc = tdep->tdesc;
c131fcee
L
7439 const struct tdesc_feature *feature_core;
7440 const struct tdesc_feature *feature_sse, *feature_avx;
90884b2b
L
7441 int i, num_regs, valid_p;
7442
7443 if (! tdesc_has_registers (tdesc))
7444 return 0;
7445
7446 /* Get core registers. */
7447 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
7448 if (feature_core == NULL)
7449 return 0;
90884b2b
L
7450
7451 /* Get SSE registers. */
c131fcee 7452 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 7453
c131fcee
L
7454 /* Try AVX registers. */
7455 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7456
90884b2b
L
7457 valid_p = 1;
7458
c131fcee
L
7459 /* The XCR0 bits. */
7460 if (feature_avx)
7461 {
3a13a53b
L
7462 /* AVX register description requires SSE register description. */
7463 if (!feature_sse)
7464 return 0;
7465
c131fcee
L
7466 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7467
7468 /* It may have been set by OSABI initialization function. */
7469 if (tdep->num_ymm_regs == 0)
7470 {
7471 tdep->ymmh_register_names = i386_ymmh_names;
7472 tdep->num_ymm_regs = 8;
7473 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7474 }
7475
7476 for (i = 0; i < tdep->num_ymm_regs; i++)
7477 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7478 tdep->ymm0h_regnum + i,
7479 tdep->ymmh_register_names[i]);
7480 }
3a13a53b 7481 else if (feature_sse)
c131fcee 7482 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
7483 else
7484 {
7485 tdep->xcr0 = I386_XSTATE_X87_MASK;
7486 tdep->num_xmm_regs = 0;
7487 }
c131fcee 7488
90884b2b
L
7489 num_regs = tdep->num_core_regs;
7490 for (i = 0; i < num_regs; i++)
7491 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7492 tdep->register_names[i]);
7493
3a13a53b
L
7494 if (feature_sse)
7495 {
7496 /* Need to include %mxcsr, so add one. */
7497 num_regs += tdep->num_xmm_regs + 1;
7498 for (; i < num_regs; i++)
7499 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7500 tdep->register_names[i]);
7501 }
90884b2b
L
7502
7503 return valid_p;
7504}
7505
7ad10968
HZ
7506\f
7507static struct gdbarch *
7508i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7509{
7510 struct gdbarch_tdep *tdep;
7511 struct gdbarch *gdbarch;
90884b2b
L
7512 struct tdesc_arch_data *tdesc_data;
7513 const struct target_desc *tdesc;
1ba53b71 7514 int mm0_regnum;
c131fcee 7515 int ymm0_regnum;
7ad10968
HZ
7516
7517 /* If there is already a candidate, use it. */
7518 arches = gdbarch_list_lookup_by_info (arches, &info);
7519 if (arches != NULL)
7520 return arches->gdbarch;
7521
7522 /* Allocate space for the new architecture. */
7523 tdep = XCALLOC (1, struct gdbarch_tdep);
7524 gdbarch = gdbarch_alloc (&info, tdep);
7525
7526 /* General-purpose registers. */
7527 tdep->gregset = NULL;
7528 tdep->gregset_reg_offset = NULL;
7529 tdep->gregset_num_regs = I386_NUM_GREGS;
7530 tdep->sizeof_gregset = 0;
7531
7532 /* Floating-point registers. */
7533 tdep->fpregset = NULL;
7534 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7535
c131fcee
L
7536 tdep->xstateregset = NULL;
7537
7ad10968
HZ
7538 /* The default settings include the FPU registers, the MMX registers
7539 and the SSE registers. This can be overridden for a specific ABI
7540 by adjusting the members `st0_regnum', `mm0_regnum' and
7541 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 7542 will show up in the output of "info all-registers". */
7ad10968
HZ
7543
7544 tdep->st0_regnum = I386_ST0_REGNUM;
7545
7ad10968
HZ
7546 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7547 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7548
7549 tdep->jb_pc_offset = -1;
7550 tdep->struct_return = pcc_struct_return;
7551 tdep->sigtramp_start = 0;
7552 tdep->sigtramp_end = 0;
7553 tdep->sigtramp_p = i386_sigtramp_p;
7554 tdep->sigcontext_addr = NULL;
7555 tdep->sc_reg_offset = NULL;
7556 tdep->sc_pc_offset = -1;
7557 tdep->sc_sp_offset = -1;
7558
c131fcee
L
7559 tdep->xsave_xcr0_offset = -1;
7560
cf648174
HZ
7561 tdep->record_regmap = i386_record_regmap;
7562
205c306f
DM
7563 set_gdbarch_long_long_align_bit (gdbarch, 32);
7564
7ad10968
HZ
7565 /* The format used for `long double' on almost all i386 targets is
7566 the i387 extended floating-point format. In fact, of all targets
7567 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7568 on having a `long double' that's not `long' at all. */
7569 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7570
7571 /* Although the i387 extended floating-point has only 80 significant
7572 bits, a `long double' actually takes up 96, probably to enforce
7573 alignment. */
7574 set_gdbarch_long_double_bit (gdbarch, 96);
7575
7ad10968
HZ
7576 /* Register numbers of various important registers. */
7577 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7578 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7579 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7580 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7581
7582 /* NOTE: kettenis/20040418: GCC does have two possible register
7583 numbering schemes on the i386: dbx and SVR4. These schemes
7584 differ in how they number %ebp, %esp, %eflags, and the
7585 floating-point registers, and are implemented by the arrays
7586 dbx_register_map[] and svr4_dbx_register_map in
7587 gcc/config/i386.c. GCC also defines a third numbering scheme in
7588 gcc/config/i386.c, which it designates as the "default" register
7589 map used in 64bit mode. This last register numbering scheme is
7590 implemented in dbx64_register_map, and is used for AMD64; see
7591 amd64-tdep.c.
7592
7593 Currently, each GCC i386 target always uses the same register
7594 numbering scheme across all its supported debugging formats
7595 i.e. SDB (COFF), stabs and DWARF 2. This is because
7596 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7597 DBX_REGISTER_NUMBER macro which is defined by each target's
7598 respective config header in a manner independent of the requested
7599 output debugging format.
7600
7601 This does not match the arrangement below, which presumes that
7602 the SDB and stabs numbering schemes differ from the DWARF and
7603 DWARF 2 ones. The reason for this arrangement is that it is
7604 likely to get the numbering scheme for the target's
7605 default/native debug format right. For targets where GCC is the
7606 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7607 targets where the native toolchain uses a different numbering
7608 scheme for a particular debug format (stabs-in-ELF on Solaris)
7609 the defaults below will have to be overridden, like
7610 i386_elf_init_abi() does. */
7611
7612 /* Use the dbx register numbering scheme for stabs and COFF. */
7613 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7614 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7615
7616 /* Use the SVR4 register numbering scheme for DWARF 2. */
7617 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7618
7619 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7620 be in use on any of the supported i386 targets. */
7621
7622 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7623
7624 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7625
7626 /* Call dummy code. */
a9b8d892
JK
7627 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7628 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 7629 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 7630 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
7631
7632 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7633 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7634 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7635
7636 set_gdbarch_return_value (gdbarch, i386_return_value);
7637
7638 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7639
7640 /* Stack grows downward. */
7641 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7642
7643 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7644 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7645 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7646
7647 set_gdbarch_frame_args_skip (gdbarch, 8);
7648
7ad10968
HZ
7649 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7650
7651 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7652
7653 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7654
7655 /* Add the i386 register groups. */
7656 i386_add_reggroups (gdbarch);
90884b2b 7657 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 7658
143985b7
AF
7659 /* Helper for function argument information. */
7660 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7661
06da04c6 7662 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
7663 appended to the list first, so that it supercedes the DWARF
7664 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
7665 currently fails). */
7666 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7667
7668 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 7669 to the list before the prologue-based unwinders, so that DWARF
06da04c6 7670 CFI info will be used if it is available. */
10458914 7671 dwarf2_append_unwinders (gdbarch);
6405b0a6 7672
acd5c798 7673 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 7674
1ba53b71 7675 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
7676 set_gdbarch_pseudo_register_read_value (gdbarch,
7677 i386_pseudo_register_read_value);
90884b2b
L
7678 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7679
7680 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7681 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7682
c131fcee
L
7683 /* Override the normal target description method to make the AVX
7684 upper halves anonymous. */
7685 set_gdbarch_register_name (gdbarch, i386_register_name);
7686
7687 /* Even though the default ABI only includes general-purpose registers,
7688 floating-point registers and the SSE registers, we have to leave a
7689 gap for the upper AVX registers. */
7690 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
90884b2b
L
7691
7692 /* Get the x86 target description from INFO. */
7693 tdesc = info.target_desc;
7694 if (! tdesc_has_registers (tdesc))
7695 tdesc = tdesc_i386;
7696 tdep->tdesc = tdesc;
7697
7698 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7699 tdep->register_names = i386_register_names;
7700
c131fcee
L
7701 /* No upper YMM registers. */
7702 tdep->ymmh_register_names = NULL;
7703 tdep->ymm0h_regnum = -1;
7704
1ba53b71
L
7705 tdep->num_byte_regs = 8;
7706 tdep->num_word_regs = 8;
7707 tdep->num_dword_regs = 0;
7708 tdep->num_mmx_regs = 8;
c131fcee 7709 tdep->num_ymm_regs = 0;
1ba53b71 7710
90884b2b
L
7711 tdesc_data = tdesc_data_alloc ();
7712
dde08ee1
PA
7713 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7714
6710bf39
SS
7715 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7716
3ce1502b 7717 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 7718 info.tdep_info = (void *) tdesc_data;
4be87837 7719 gdbarch_init_osabi (info, gdbarch);
3ce1502b 7720
c131fcee
L
7721 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7722 {
7723 tdesc_data_cleanup (tdesc_data);
7724 xfree (tdep);
7725 gdbarch_free (gdbarch);
7726 return NULL;
7727 }
7728
1ba53b71
L
7729 /* Wire in pseudo registers. Number of pseudo registers may be
7730 changed. */
7731 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7732 + tdep->num_word_regs
7733 + tdep->num_dword_regs
c131fcee
L
7734 + tdep->num_mmx_regs
7735 + tdep->num_ymm_regs));
1ba53b71 7736
90884b2b
L
7737 /* Target description may be changed. */
7738 tdesc = tdep->tdesc;
7739
90884b2b
L
7740 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7741
7742 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7743 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7744
1ba53b71
L
7745 /* Make %al the first pseudo-register. */
7746 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7747 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7748
c131fcee 7749 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
7750 if (tdep->num_dword_regs)
7751 {
1c6272a6 7752 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
7753 tdep->eax_regnum = ymm0_regnum;
7754 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
7755 }
7756 else
7757 tdep->eax_regnum = -1;
7758
c131fcee
L
7759 mm0_regnum = ymm0_regnum;
7760 if (tdep->num_ymm_regs)
7761 {
1c6272a6 7762 /* Support YMM pseudo-register if it is available. */
c131fcee
L
7763 tdep->ymm0_regnum = ymm0_regnum;
7764 mm0_regnum += tdep->num_ymm_regs;
7765 }
7766 else
7767 tdep->ymm0_regnum = -1;
7768
1ba53b71
L
7769 if (tdep->num_mmx_regs != 0)
7770 {
1c6272a6 7771 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71
L
7772 tdep->mm0_regnum = mm0_regnum;
7773 }
7774 else
7775 tdep->mm0_regnum = -1;
7776
06da04c6 7777 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 7778 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
7779 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7780 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 7781
8446b36a
MK
7782 /* If we have a register mapping, enable the generic core file
7783 support, unless it has already been enabled. */
7784 if (tdep->gregset_reg_offset
7785 && !gdbarch_regset_from_core_section_p (gdbarch))
7786 set_gdbarch_regset_from_core_section (gdbarch,
7787 i386_regset_from_core_section);
7788
514f746b
AR
7789 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7790 i386_skip_permanent_breakpoint);
7791
7a697b8d
SS
7792 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7793 i386_fast_tracepoint_valid_at);
7794
a62cc96e
AC
7795 return gdbarch;
7796}
7797
8201327c
MK
7798static enum gdb_osabi
7799i386_coff_osabi_sniffer (bfd *abfd)
7800{
762c5349
MK
7801 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7802 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
7803 return GDB_OSABI_GO32;
7804
7805 return GDB_OSABI_UNKNOWN;
7806}
8201327c
MK
7807\f
7808
28e9e0f0
MK
7809/* Provide a prototype to silence -Wmissing-prototypes. */
7810void _initialize_i386_tdep (void);
7811
c906108c 7812void
fba45db2 7813_initialize_i386_tdep (void)
c906108c 7814{
a62cc96e
AC
7815 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7816
fc338970 7817 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
7818 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7819 &disassembly_flavor, _("\
7820Set the disassembly flavor."), _("\
7821Show the disassembly flavor."), _("\
7822The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7823 NULL,
7824 NULL, /* FIXME: i18n: */
7825 &setlist, &showlist);
8201327c
MK
7826
7827 /* Add the variable that controls the convention for returning
7828 structs. */
7ab04401
AC
7829 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7830 &struct_convention, _("\
7831Set the convention for returning small structs."), _("\
7832Show the convention for returning small structs."), _("\
7833Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7834is \"default\"."),
7835 NULL,
7836 NULL, /* FIXME: i18n: */
7837 &setlist, &showlist);
8201327c
MK
7838
7839 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7840 i386_coff_osabi_sniffer);
8201327c 7841
05816f70 7842 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 7843 i386_svr4_init_abi);
05816f70 7844 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 7845 i386_go32_init_abi);
38c968cf 7846
209bd28e 7847 /* Initialize the i386-specific register groups. */
38c968cf 7848 i386_init_reggroups ();
90884b2b
L
7849
7850 /* Initialize the standard target descriptions. */
7851 initialize_tdesc_i386 ();
3a13a53b 7852 initialize_tdesc_i386_mmx ();
c131fcee 7853 initialize_tdesc_i386_avx ();
c8d5aac9
L
7854
7855 /* Tell remote stub that we support XML target description. */
7856 register_remote_support_xml ("i386");
c906108c 7857}
This page took 1.535371 seconds and 4 git commands to generate.