2004-07-23 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
931aecf5
AC
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798
MK
29#include "doublest.h"
30#include "floatformat.h"
c906108c 31#include "frame.h"
acd5c798
MK
32#include "frame-base.h"
33#include "frame-unwind.h"
c906108c 34#include "inferior.h"
acd5c798 35#include "gdbcmd.h"
c906108c 36#include "gdbcore.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
fc633446
MK
154/* Return the name of register REG. */
155
fa88f677 156const char *
fc633446
MK
157i386_register_name (int reg)
158{
5716833c
MK
159 if (i386_mmx_regnum_p (current_gdbarch, reg))
160 return i386_mmx_names[reg - I387_MM0_REGNUM];
fc633446 161
70913449
MK
162 if (reg >= 0 && reg < i386_num_register_names)
163 return i386_register_names[reg];
164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
c4fc7f1b
MK
207/* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
85540d8c 209
8201327c 210static int
c4fc7f1b 211i386_svr4_reg_to_regnum (int reg)
85540d8c 212{
c4fc7f1b
MK
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
acd5c798 220 /* General-purpose registers. */
85540d8c
MK
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
5716833c 226 return reg - 11 + I387_ST0_REGNUM;
85540d8c
MK
227 }
228 else if (reg >= 21)
229 {
c4fc7f1b
MK
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
232 }
233
234 /* This will hopefully provoke a warning. */
235 return NUM_REGS + NUM_PSEUDO_REGS;
236}
5716833c
MK
237
238#undef I387_ST0_REGNUM
239#undef I387_MM0_REGNUM
240#undef I387_NUM_XMM_REGS
fc338970 241\f
917317f4 242
fc338970
MK
243/* This is the variable that is set with "set disassembly-flavor", and
244 its legitimate values. */
53904c9e
AC
245static const char att_flavor[] = "att";
246static const char intel_flavor[] = "intel";
247static const char *valid_flavors[] =
c5aa993b 248{
c906108c
SS
249 att_flavor,
250 intel_flavor,
251 NULL
252};
53904c9e 253static const char *disassembly_flavor = att_flavor;
acd5c798 254\f
c906108c 255
acd5c798
MK
256/* Use the program counter to determine the contents and size of a
257 breakpoint instruction. Return a pointer to a string of bytes that
258 encode a breakpoint instruction, store the length of the string in
259 *LEN and optionally adjust *PC to point to the correct memory
260 location for inserting the breakpoint.
c906108c 261
acd5c798
MK
262 On the i386 we have a single breakpoint that fits in a single byte
263 and can be inserted anywhere.
c906108c 264
acd5c798
MK
265 This function is 64-bit safe. */
266
267static const unsigned char *
268i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 269{
acd5c798
MK
270 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
271
272 *len = sizeof (break_insn);
273 return break_insn;
c906108c 274}
fc338970 275\f
acd5c798
MK
276#ifdef I386_REGNO_TO_SYMMETRY
277#error "The Sequent Symmetry is no longer supported."
278#endif
c906108c 279
acd5c798
MK
280/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281 and %esp "belong" to the calling function. Therefore these
282 registers should be saved if they're going to be modified. */
c906108c 283
acd5c798
MK
284/* The maximum number of saved registers. This should include all
285 registers mentioned above, and %eip. */
a3386186 286#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
287
288struct i386_frame_cache
c906108c 289{
acd5c798
MK
290 /* Base address. */
291 CORE_ADDR base;
292 CORE_ADDR sp_offset;
293 CORE_ADDR pc;
294
fd13a04a
AC
295 /* Saved registers. */
296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
297 CORE_ADDR saved_sp;
298 int pc_in_eax;
299
300 /* Stack space reserved for local variables. */
301 long locals;
302};
303
304/* Allocate and initialize a frame cache. */
305
306static struct i386_frame_cache *
fd13a04a 307i386_alloc_frame_cache (void)
acd5c798
MK
308{
309 struct i386_frame_cache *cache;
310 int i;
311
312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314 /* Base address. */
315 cache->base = 0;
316 cache->sp_offset = -4;
317 cache->pc = 0;
318
fd13a04a
AC
319 /* Saved registers. We initialize these to -1 since zero is a valid
320 offset (that's where %ebp is supposed to be stored). */
321 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322 cache->saved_regs[i] = -1;
acd5c798
MK
323 cache->saved_sp = 0;
324 cache->pc_in_eax = 0;
325
326 /* Frameless until proven otherwise. */
327 cache->locals = -1;
328
329 return cache;
330}
c906108c 331
acd5c798
MK
332/* If the instruction at PC is a jump, return the address of its
333 target. Otherwise, return PC. */
c906108c 334
acd5c798
MK
335static CORE_ADDR
336i386_follow_jump (CORE_ADDR pc)
337{
338 unsigned char op;
339 long delta = 0;
340 int data16 = 0;
c906108c 341
acd5c798
MK
342 op = read_memory_unsigned_integer (pc, 1);
343 if (op == 0x66)
c906108c 344 {
c906108c 345 data16 = 1;
acd5c798 346 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
347 }
348
acd5c798 349 switch (op)
c906108c
SS
350 {
351 case 0xe9:
fc338970 352 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
353 if (data16)
354 {
acd5c798 355 delta = read_memory_integer (pc + 2, 2);
c906108c 356
fc338970
MK
357 /* Include the size of the jmp instruction (including the
358 0x66 prefix). */
acd5c798 359 delta += 4;
c906108c
SS
360 }
361 else
362 {
acd5c798 363 delta = read_memory_integer (pc + 1, 4);
c906108c 364
acd5c798
MK
365 /* Include the size of the jmp instruction. */
366 delta += 5;
c906108c
SS
367 }
368 break;
369 case 0xeb:
fc338970 370 /* Relative jump, disp8 (ignore data16). */
acd5c798 371 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 372
acd5c798 373 delta += data16 + 2;
c906108c
SS
374 break;
375 }
c906108c 376
acd5c798
MK
377 return pc + delta;
378}
fc338970 379
acd5c798
MK
380/* Check whether PC points at a prologue for a function returning a
381 structure or union. If so, it updates CACHE and returns the
382 address of the first instruction after the code sequence that
383 removes the "hidden" argument from the stack or CURRENT_PC,
384 whichever is smaller. Otherwise, return PC. */
c906108c 385
acd5c798
MK
386static CORE_ADDR
387i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388 struct i386_frame_cache *cache)
c906108c 389{
acd5c798
MK
390 /* Functions that return a structure or union start with:
391
392 popl %eax 0x58
393 xchgl %eax, (%esp) 0x87 0x04 0x24
394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
395
396 (the System V compiler puts out the second `xchg' instruction,
397 and the assembler doesn't try to optimize it, so the 'sib' form
398 gets generated). This sequence is used to get the address of the
399 return buffer for a function that returns a structure. */
400 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
401 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402 unsigned char buf[4];
c906108c
SS
403 unsigned char op;
404
acd5c798
MK
405 if (current_pc <= pc)
406 return pc;
407
408 op = read_memory_unsigned_integer (pc, 1);
c906108c 409
acd5c798
MK
410 if (op != 0x58) /* popl %eax */
411 return pc;
c906108c 412
acd5c798
MK
413 read_memory (pc + 1, buf, 4);
414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415 return pc;
c906108c 416
acd5c798 417 if (current_pc == pc)
c906108c 418 {
acd5c798
MK
419 cache->sp_offset += 4;
420 return current_pc;
c906108c
SS
421 }
422
acd5c798 423 if (current_pc == pc + 1)
c906108c 424 {
acd5c798
MK
425 cache->pc_in_eax = 1;
426 return current_pc;
427 }
428
429 if (buf[1] == proto1[1])
430 return pc + 4;
431 else
432 return pc + 5;
433}
434
435static CORE_ADDR
436i386_skip_probe (CORE_ADDR pc)
437{
438 /* A function may start with
fc338970 439
acd5c798
MK
440 pushl constant
441 call _probe
442 addl $4, %esp
fc338970 443
acd5c798
MK
444 followed by
445
446 pushl %ebp
fc338970 447
acd5c798
MK
448 etc. */
449 unsigned char buf[8];
450 unsigned char op;
fc338970 451
acd5c798
MK
452 op = read_memory_unsigned_integer (pc, 1);
453
454 if (op == 0x68 || op == 0x6a)
455 {
456 int delta;
c906108c 457
acd5c798
MK
458 /* Skip past the `pushl' instruction; it has either a one-byte or a
459 four-byte operand, depending on the opcode. */
c906108c 460 if (op == 0x68)
acd5c798 461 delta = 5;
c906108c 462 else
acd5c798 463 delta = 2;
c906108c 464
acd5c798
MK
465 /* Read the following 8 bytes, which should be `call _probe' (6
466 bytes) followed by `addl $4,%esp' (2 bytes). */
467 read_memory (pc + delta, buf, sizeof (buf));
c906108c 468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 469 pc += delta + sizeof (buf);
c906108c
SS
470 }
471
acd5c798
MK
472 return pc;
473}
474
475/* Check whether PC points at a code that sets up a new stack frame.
476 If so, it updates CACHE and returns the address of the first
477 instruction after the sequence that sets removes the "hidden"
478 argument from the stack or CURRENT_PC, whichever is smaller.
479 Otherwise, return PC. */
480
481static CORE_ADDR
482i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
483 struct i386_frame_cache *cache)
484{
485 unsigned char op;
26604a34 486 int skip = 0;
acd5c798
MK
487
488 if (current_pc <= pc)
489 return current_pc;
490
491 op = read_memory_unsigned_integer (pc, 1);
492
c906108c 493 if (op == 0x55) /* pushl %ebp */
c5aa993b 494 {
acd5c798
MK
495 /* Take into account that we've executed the `pushl %ebp' that
496 starts this instruction sequence. */
fd13a04a 497 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
498 cache->sp_offset += 4;
499
500 /* If that's all, return now. */
501 if (current_pc <= pc + 1)
502 return current_pc;
503
acd5c798 504 op = read_memory_unsigned_integer (pc + 1, 1);
26604a34
MK
505
506 /* Check for some special instructions that might be migrated
507 by GCC into the prologue. We check for
508
509 xorl %ebx, %ebx
510 xorl %ecx, %ecx
511 xorl %edx, %edx
7270b6ed 512 xorl %eax, %eax
26604a34
MK
513
514 and the equivalent
515
516 subl %ebx, %ebx
517 subl %ecx, %ecx
518 subl %edx, %edx
7270b6ed 519 subl %eax, %eax
26604a34 520
5daa5b4e
MK
521 Because of the symmetry, there are actually two ways to
522 encode these instructions; with opcode bytes 0x29 and 0x2b
523 for `subl' and opcode bytes 0x31 and 0x33 for `xorl'.
524
26604a34
MK
525 Make sure we only skip these instructions if we later see the
526 `movl %esp, %ebp' that actually sets up the frame. */
5daa5b4e 527 while (op == 0x29 || op == 0x2b || op == 0x31 || op == 0x33)
26604a34
MK
528 {
529 op = read_memory_unsigned_integer (pc + skip + 2, 1);
530 switch (op)
531 {
532 case 0xdb: /* %ebx */
533 case 0xc9: /* %ecx */
534 case 0xd2: /* %edx */
7270b6ed 535 case 0xc0: /* %eax */
26604a34
MK
536 skip += 2;
537 break;
538 default:
539 return pc + 1;
540 }
541
542 op = read_memory_unsigned_integer (pc + skip + 1, 1);
543 }
544
545 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 546 switch (op)
c906108c
SS
547 {
548 case 0x8b:
26604a34 549 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xec)
acd5c798 550 return pc + 1;
c906108c
SS
551 break;
552 case 0x89:
26604a34 553 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xe5)
acd5c798 554 return pc + 1;
c906108c
SS
555 break;
556 default:
acd5c798 557 return pc + 1;
c906108c 558 }
acd5c798 559
26604a34
MK
560 /* OK, we actually have a frame. We just don't know how large
561 it is yet. Set its size to zero. We'll adjust it if
562 necessary. We also now commit to skipping the special
563 instructions mentioned before. */
acd5c798 564 cache->locals = 0;
26604a34 565 pc += skip;
acd5c798
MK
566
567 /* If that's all, return now. */
568 if (current_pc <= pc + 3)
569 return current_pc;
570
fc338970
MK
571 /* Check for stack adjustment
572
acd5c798 573 subl $XXX, %esp
fc338970 574
fd35795f 575 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 576 reg, so we don't have to worry about a data16 prefix. */
acd5c798 577 op = read_memory_unsigned_integer (pc + 3, 1);
c906108c
SS
578 if (op == 0x83)
579 {
fd35795f 580 /* `subl' with 8-bit immediate. */
acd5c798 581 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 582 /* Some instruction starting with 0x83 other than `subl'. */
acd5c798
MK
583 return pc + 3;
584
585 /* `subl' with signed byte immediate (though it wouldn't make
586 sense to be negative). */
587 cache->locals = read_memory_integer (pc + 5, 1);
588 return pc + 6;
c906108c
SS
589 }
590 else if (op == 0x81)
591 {
fd35795f 592 /* Maybe it is `subl' with a 32-bit immediate. */
acd5c798 593 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 594 /* Some instruction starting with 0x81 other than `subl'. */
acd5c798
MK
595 return pc + 3;
596
fd35795f 597 /* It is `subl' with a 32-bit immediate. */
acd5c798
MK
598 cache->locals = read_memory_integer (pc + 5, 4);
599 return pc + 9;
c906108c
SS
600 }
601 else
602 {
acd5c798
MK
603 /* Some instruction other than `subl'. */
604 return pc + 3;
c906108c
SS
605 }
606 }
acd5c798 607 else if (op == 0xc8) /* enter $XXX */
c906108c 608 {
acd5c798
MK
609 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
610 return pc + 4;
c906108c 611 }
21d0e8a4 612
acd5c798 613 return pc;
21d0e8a4
MK
614}
615
acd5c798
MK
616/* Check whether PC points at code that saves registers on the stack.
617 If so, it updates CACHE and returns the address of the first
618 instruction after the register saves or CURRENT_PC, whichever is
619 smaller. Otherwise, return PC. */
6bff26de
MK
620
621static CORE_ADDR
acd5c798
MK
622i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
623 struct i386_frame_cache *cache)
6bff26de 624{
99ab4326
MK
625 CORE_ADDR offset = 0;
626 unsigned char op;
627 int i;
c0d1d883 628
99ab4326
MK
629 if (cache->locals > 0)
630 offset -= cache->locals;
631 for (i = 0; i < 8 && pc < current_pc; i++)
632 {
633 op = read_memory_unsigned_integer (pc, 1);
634 if (op < 0x50 || op > 0x57)
635 break;
0d17c81d 636
99ab4326
MK
637 offset -= 4;
638 cache->saved_regs[op - 0x50] = offset;
639 cache->sp_offset += 4;
640 pc++;
6bff26de
MK
641 }
642
acd5c798 643 return pc;
22797942
AC
644}
645
acd5c798
MK
646/* Do a full analysis of the prologue at PC and update CACHE
647 accordingly. Bail out early if CURRENT_PC is reached. Return the
648 address where the analysis stopped.
ed84f6c1 649
fc338970
MK
650 We handle these cases:
651
652 The startup sequence can be at the start of the function, or the
653 function can start with a branch to startup code at the end.
654
655 %ebp can be set up with either the 'enter' instruction, or "pushl
656 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
657 once used in the System V compiler).
658
659 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
660 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
661 16-bit unsigned argument for space to allocate, and the 'addl'
662 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
663
664 Next, the registers used by this function are pushed. With the
665 System V compiler they will always be in the order: %edi, %esi,
666 %ebx (and sometimes a harmless bug causes it to also save but not
667 restore %eax); however, the code below is willing to see the pushes
668 in any order, and will handle up to 8 of them.
669
670 If the setup sequence is at the end of the function, then the next
671 instruction will be a branch back to the start. */
c906108c 672
acd5c798
MK
673static CORE_ADDR
674i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
675 struct i386_frame_cache *cache)
c906108c 676{
acd5c798
MK
677 pc = i386_follow_jump (pc);
678 pc = i386_analyze_struct_return (pc, current_pc, cache);
679 pc = i386_skip_probe (pc);
680 pc = i386_analyze_frame_setup (pc, current_pc, cache);
681 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
682}
683
fc338970 684/* Return PC of first real instruction. */
c906108c 685
3a1e71e3 686static CORE_ADDR
acd5c798 687i386_skip_prologue (CORE_ADDR start_pc)
c906108c 688{
c5aa993b 689 static unsigned char pic_pat[6] =
acd5c798
MK
690 {
691 0xe8, 0, 0, 0, 0, /* call 0x0 */
692 0x5b, /* popl %ebx */
c5aa993b 693 };
acd5c798
MK
694 struct i386_frame_cache cache;
695 CORE_ADDR pc;
696 unsigned char op;
697 int i;
c5aa993b 698
acd5c798
MK
699 cache.locals = -1;
700 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
701 if (cache.locals < 0)
702 return start_pc;
c5aa993b 703
acd5c798 704 /* Found valid frame setup. */
c906108c 705
fc338970
MK
706 /* The native cc on SVR4 in -K PIC mode inserts the following code
707 to get the address of the global offset table (GOT) into register
acd5c798
MK
708 %ebx:
709
fc338970
MK
710 call 0x0
711 popl %ebx
712 movl %ebx,x(%ebp) (optional)
713 addl y,%ebx
714
c906108c
SS
715 This code is with the rest of the prologue (at the end of the
716 function), so we have to skip it to get to the first real
717 instruction at the start of the function. */
c5aa993b 718
c906108c
SS
719 for (i = 0; i < 6; i++)
720 {
acd5c798 721 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 722 if (pic_pat[i] != op)
c906108c
SS
723 break;
724 }
725 if (i == 6)
726 {
acd5c798
MK
727 int delta = 6;
728
729 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 730
c5aa993b 731 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 732 {
acd5c798
MK
733 op = read_memory_unsigned_integer (pc + delta + 1, 1);
734
fc338970 735 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 736 delta += 3;
fc338970 737 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 738 delta += 6;
fc338970 739 else /* Unexpected instruction. */
acd5c798
MK
740 delta = 0;
741
742 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 743 }
acd5c798 744
c5aa993b 745 /* addl y,%ebx */
acd5c798
MK
746 if (delta > 0 && op == 0x81
747 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 748 {
acd5c798 749 pc += delta + 6;
c906108c
SS
750 }
751 }
c5aa993b 752
e63bbc88
MK
753 /* If the function starts with a branch (to startup code at the end)
754 the last instruction should bring us back to the first
755 instruction of the real code. */
756 if (i386_follow_jump (start_pc) != start_pc)
757 pc = i386_follow_jump (pc);
758
759 return pc;
c906108c
SS
760}
761
acd5c798 762/* This function is 64-bit safe. */
93924b6b 763
acd5c798
MK
764static CORE_ADDR
765i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 766{
acd5c798
MK
767 char buf[8];
768
769 frame_unwind_register (next_frame, PC_REGNUM, buf);
770 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 771}
acd5c798 772\f
93924b6b 773
acd5c798 774/* Normal frames. */
c5aa993b 775
acd5c798
MK
776static struct i386_frame_cache *
777i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 778{
acd5c798 779 struct i386_frame_cache *cache;
c0d1d883 780 char buf[4];
acd5c798
MK
781 int i;
782
783 if (*this_cache)
784 return *this_cache;
785
fd13a04a 786 cache = i386_alloc_frame_cache ();
acd5c798
MK
787 *this_cache = cache;
788
789 /* In principle, for normal frames, %ebp holds the frame pointer,
790 which holds the base address for the current stack frame.
791 However, for functions that don't need it, the frame pointer is
792 optional. For these "frameless" functions the frame pointer is
793 actually the frame pointer of the calling frame. Signal
794 trampolines are just a special case of a "frameless" function.
795 They (usually) share their frame pointer with the frame that was
796 in progress when the signal occurred. */
797
798 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
799 cache->base = extract_unsigned_integer (buf, 4);
800 if (cache->base == 0)
801 return cache;
802
803 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 804 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
805
806 cache->pc = frame_func_unwind (next_frame);
807 if (cache->pc != 0)
808 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
809
810 if (cache->locals < 0)
811 {
812 /* We didn't find a valid frame, which means that CACHE->base
813 currently holds the frame pointer for our calling frame. If
814 we're at the start of a function, or somewhere half-way its
815 prologue, the function's frame probably hasn't been fully
816 setup yet. Try to reconstruct the base address for the stack
817 frame by looking at the stack pointer. For truly "frameless"
818 functions this might work too. */
819
820 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
821 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
822 }
823
824 /* Now that we have the base address for the stack frame we can
825 calculate the value of %esp in the calling frame. */
826 cache->saved_sp = cache->base + 8;
a7769679 827
acd5c798
MK
828 /* Adjust all the saved registers such that they contain addresses
829 instead of offsets. */
830 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
831 if (cache->saved_regs[i] != -1)
832 cache->saved_regs[i] += cache->base;
acd5c798
MK
833
834 return cache;
a7769679
MK
835}
836
3a1e71e3 837static void
acd5c798
MK
838i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
839 struct frame_id *this_id)
c906108c 840{
acd5c798
MK
841 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
842
843 /* This marks the outermost frame. */
844 if (cache->base == 0)
845 return;
846
3e210248 847 /* See the end of i386_push_dummy_call. */
acd5c798
MK
848 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
849}
850
851static void
852i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
853 int regnum, int *optimizedp,
854 enum lval_type *lvalp, CORE_ADDR *addrp,
855 int *realnump, void *valuep)
856{
857 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
858
859 gdb_assert (regnum >= 0);
860
861 /* The System V ABI says that:
862
863 "The flags register contains the system flags, such as the
864 direction flag and the carry flag. The direction flag must be
865 set to the forward (that is, zero) direction before entry and
866 upon exit from a function. Other user flags have no specified
867 role in the standard calling sequence and are not preserved."
868
869 To guarantee the "upon exit" part of that statement we fake a
870 saved flags register that has its direction flag cleared.
871
872 Note that GCC doesn't seem to rely on the fact that the direction
873 flag is cleared after a function return; it always explicitly
874 clears the flag before operations where it matters.
875
876 FIXME: kettenis/20030316: I'm not quite sure whether this is the
877 right thing to do. The way we fake the flags register here makes
878 it impossible to change it. */
879
880 if (regnum == I386_EFLAGS_REGNUM)
881 {
882 *optimizedp = 0;
883 *lvalp = not_lval;
884 *addrp = 0;
885 *realnump = -1;
886 if (valuep)
887 {
888 ULONGEST val;
c5aa993b 889
acd5c798 890 /* Clear the direction flag. */
f837910f
MK
891 val = frame_unwind_register_unsigned (next_frame,
892 I386_EFLAGS_REGNUM);
acd5c798
MK
893 val &= ~(1 << 10);
894 store_unsigned_integer (valuep, 4, val);
895 }
896
897 return;
898 }
1211c4e4 899
acd5c798 900 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 901 {
acd5c798
MK
902 frame_register_unwind (next_frame, I386_EAX_REGNUM,
903 optimizedp, lvalp, addrp, realnump, valuep);
904 return;
905 }
906
907 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
908 {
909 *optimizedp = 0;
910 *lvalp = not_lval;
911 *addrp = 0;
912 *realnump = -1;
913 if (valuep)
c906108c 914 {
acd5c798
MK
915 /* Store the value. */
916 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 917 }
acd5c798 918 return;
c906108c 919 }
acd5c798 920
fd13a04a
AC
921 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
922 {
923 *optimizedp = 0;
924 *lvalp = lval_memory;
925 *addrp = cache->saved_regs[regnum];
926 *realnump = -1;
927 if (valuep)
928 {
929 /* Read the value in from memory. */
930 read_memory (*addrp, valuep,
931 register_size (current_gdbarch, regnum));
932 }
933 return;
934 }
935
936 frame_register_unwind (next_frame, regnum,
937 optimizedp, lvalp, addrp, realnump, valuep);
acd5c798
MK
938}
939
940static const struct frame_unwind i386_frame_unwind =
941{
942 NORMAL_FRAME,
943 i386_frame_this_id,
944 i386_frame_prev_register
945};
946
947static const struct frame_unwind *
336d1bba 948i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
949{
950 return &i386_frame_unwind;
951}
952\f
953
954/* Signal trampolines. */
955
956static struct i386_frame_cache *
957i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
958{
959 struct i386_frame_cache *cache;
960 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
961 CORE_ADDR addr;
962 char buf[4];
963
964 if (*this_cache)
965 return *this_cache;
966
fd13a04a 967 cache = i386_alloc_frame_cache ();
acd5c798
MK
968
969 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
970 cache->base = extract_unsigned_integer (buf, 4) - 4;
971
972 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
973 if (tdep->sc_reg_offset)
974 {
975 int i;
976
977 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
978
979 for (i = 0; i < tdep->sc_num_regs; i++)
980 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 981 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
982 }
983 else
984 {
fd13a04a
AC
985 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
986 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 987 }
acd5c798
MK
988
989 *this_cache = cache;
990 return cache;
991}
992
993static void
994i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
995 struct frame_id *this_id)
996{
997 struct i386_frame_cache *cache =
998 i386_sigtramp_frame_cache (next_frame, this_cache);
999
3e210248 1000 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1001 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1002}
1003
1004static void
1005i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1006 void **this_cache,
1007 int regnum, int *optimizedp,
1008 enum lval_type *lvalp, CORE_ADDR *addrp,
1009 int *realnump, void *valuep)
1010{
1011 /* Make sure we've initialized the cache. */
1012 i386_sigtramp_frame_cache (next_frame, this_cache);
1013
1014 i386_frame_prev_register (next_frame, this_cache, regnum,
1015 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1016}
c0d1d883 1017
acd5c798
MK
1018static const struct frame_unwind i386_sigtramp_frame_unwind =
1019{
1020 SIGTRAMP_FRAME,
1021 i386_sigtramp_frame_this_id,
1022 i386_sigtramp_frame_prev_register
1023};
1024
1025static const struct frame_unwind *
336d1bba 1026i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1027{
911bc6ee 1028 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1029
911bc6ee
MK
1030 /* We shouldn't even bother if we don't have a sigcontext_addr
1031 handler. */
1032 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1033 return NULL;
1034
911bc6ee
MK
1035 if (tdep->sigtramp_p != NULL)
1036 {
1037 if (tdep->sigtramp_p (next_frame))
1038 return &i386_sigtramp_frame_unwind;
1039 }
1040
1041 if (tdep->sigtramp_start != 0)
1042 {
1043 CORE_ADDR pc = frame_pc_unwind (next_frame);
1044
1045 gdb_assert (tdep->sigtramp_end != 0);
1046 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1047 return &i386_sigtramp_frame_unwind;
1048 }
acd5c798
MK
1049
1050 return NULL;
1051}
1052\f
1053
1054static CORE_ADDR
1055i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1056{
1057 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1058
1059 return cache->base;
1060}
1061
1062static const struct frame_base i386_frame_base =
1063{
1064 &i386_frame_unwind,
1065 i386_frame_base_address,
1066 i386_frame_base_address,
1067 i386_frame_base_address
1068};
1069
acd5c798
MK
1070static struct frame_id
1071i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1072{
1073 char buf[4];
1074 CORE_ADDR fp;
1075
1076 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1077 fp = extract_unsigned_integer (buf, 4);
1078
3e210248 1079 /* See the end of i386_push_dummy_call. */
acd5c798 1080 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1081}
fc338970 1082\f
c906108c 1083
fc338970
MK
1084/* Figure out where the longjmp will land. Slurp the args out of the
1085 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1086 structure from which we extract the address that we will land at.
28bcfd30 1087 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1088 success.
1089
1090 This function is 64-bit safe. */
c906108c 1091
8201327c
MK
1092static int
1093i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1094{
28bcfd30 1095 char buf[8];
c906108c 1096 CORE_ADDR sp, jb_addr;
8201327c 1097 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1098 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1099
8201327c
MK
1100 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1101 longjmp will land. */
1102 if (jb_pc_offset == -1)
c906108c
SS
1103 return 0;
1104
f837910f
MK
1105 /* Don't use I386_ESP_REGNUM here, since this function is also used
1106 for AMD64. */
1107 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1108 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1109 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1110 return 0;
1111
f837910f 1112 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1113 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1114 return 0;
c906108c 1115
f9d3c2a8 1116 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1117 return 1;
1118}
fc338970 1119\f
c906108c 1120
3a1e71e3 1121static CORE_ADDR
7d9b040b 1122i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1123 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1124 struct value **args, CORE_ADDR sp, int struct_return,
1125 CORE_ADDR struct_addr)
22f8ba57 1126{
acd5c798
MK
1127 char buf[4];
1128 int i;
1129
1130 /* Push arguments in reverse order. */
1131 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1132 {
acd5c798
MK
1133 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1134
1135 /* The System V ABI says that:
1136
1137 "An argument's size is increased, if necessary, to make it a
1138 multiple of [32-bit] words. This may require tail padding,
1139 depending on the size of the argument."
1140
1141 This makes sure the stack says word-aligned. */
1142 sp -= (len + 3) & ~3;
1143 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1144 }
22f8ba57 1145
acd5c798
MK
1146 /* Push value address. */
1147 if (struct_return)
1148 {
22f8ba57 1149 sp -= 4;
fbd9dcd3 1150 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1151 write_memory (sp, buf, 4);
1152 }
1153
acd5c798
MK
1154 /* Store return address. */
1155 sp -= 4;
6a65450a 1156 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1157 write_memory (sp, buf, 4);
1158
1159 /* Finally, update the stack pointer... */
1160 store_unsigned_integer (buf, 4, sp);
1161 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1162
1163 /* ...and fake a frame pointer. */
1164 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1165
3e210248
AC
1166 /* MarkK wrote: This "+ 8" is all over the place:
1167 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1168 i386_unwind_dummy_id). It's there, since all frame unwinders for
1169 a given target have to agree (within a certain margin) on the
fd35795f 1170 definition of the stack address of a frame. Otherwise
3e210248
AC
1171 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1172 stack address *before* the function call as a frame's CFA. On
1173 the i386, when %ebp is used as a frame pointer, the offset
1174 between the contents %ebp and the CFA as defined by GCC. */
1175 return sp + 8;
22f8ba57
MK
1176}
1177
1a309862
MK
1178/* These registers are used for returning integers (and on some
1179 targets also for returning `struct' and `union' values when their
ef9dff19 1180 size and alignment match an integer type). */
acd5c798
MK
1181#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1182#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1183
c5e656c1
MK
1184/* Read, for architecture GDBARCH, a function return value of TYPE
1185 from REGCACHE, and copy that into VALBUF. */
1a309862 1186
3a1e71e3 1187static void
c5e656c1
MK
1188i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1189 struct regcache *regcache, void *valbuf)
c906108c 1190{
c5e656c1 1191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1192 int len = TYPE_LENGTH (type);
00f8375e 1193 char buf[I386_MAX_REGISTER_SIZE];
1a309862 1194
1e8d0a7b 1195 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1196 {
5716833c 1197 if (tdep->st0_regnum < 0)
1a309862
MK
1198 {
1199 warning ("Cannot find floating-point return value.");
1200 memset (valbuf, 0, len);
ef9dff19 1201 return;
1a309862
MK
1202 }
1203
c6ba6f0d
MK
1204 /* Floating-point return values can be found in %st(0). Convert
1205 its contents to the desired type. This is probably not
1206 exactly how it would happen on the target itself, but it is
1207 the best we can do. */
acd5c798 1208 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1209 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1210 }
1211 else
c5aa993b 1212 {
f837910f
MK
1213 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1214 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1215
1216 if (len <= low_size)
00f8375e 1217 {
0818c12a 1218 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1219 memcpy (valbuf, buf, len);
1220 }
d4f3574e
SS
1221 else if (len <= (low_size + high_size))
1222 {
0818c12a 1223 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1224 memcpy (valbuf, buf, low_size);
0818c12a 1225 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
c8048956 1226 memcpy ((char *) valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1227 }
1228 else
8e65ff28
AC
1229 internal_error (__FILE__, __LINE__,
1230 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1231 }
1232}
1233
c5e656c1
MK
1234/* Write, for architecture GDBARCH, a function return value of TYPE
1235 from VALBUF into REGCACHE. */
ef9dff19 1236
3a1e71e3 1237static void
c5e656c1
MK
1238i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1239 struct regcache *regcache, const void *valbuf)
ef9dff19 1240{
c5e656c1 1241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1242 int len = TYPE_LENGTH (type);
1243
5716833c
MK
1244 /* Define I387_ST0_REGNUM such that we use the proper definitions
1245 for the architecture. */
1246#define I387_ST0_REGNUM I386_ST0_REGNUM
1247
1e8d0a7b 1248 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1249 {
3d7f4f49 1250 ULONGEST fstat;
5716833c 1251 char buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1252
5716833c 1253 if (tdep->st0_regnum < 0)
ef9dff19
MK
1254 {
1255 warning ("Cannot set floating-point return value.");
1256 return;
1257 }
1258
635b0cc1
MK
1259 /* Returning floating-point values is a bit tricky. Apart from
1260 storing the return value in %st(0), we have to simulate the
1261 state of the FPU at function return point. */
1262
c6ba6f0d
MK
1263 /* Convert the value found in VALBUF to the extended
1264 floating-point format used by the FPU. This is probably
1265 not exactly how it would happen on the target itself, but
1266 it is the best we can do. */
1267 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1268 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1269
635b0cc1
MK
1270 /* Set the top of the floating-point register stack to 7. The
1271 actual value doesn't really matter, but 7 is what a normal
1272 function return would end up with if the program started out
1273 with a freshly initialized FPU. */
5716833c 1274 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1275 fstat |= (7 << 11);
5716833c 1276 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1277
635b0cc1
MK
1278 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1279 the floating-point register stack to 7, the appropriate value
1280 for the tag word is 0x3fff. */
5716833c 1281 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1282 }
1283 else
1284 {
f837910f
MK
1285 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1286 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1287
1288 if (len <= low_size)
3d7f4f49 1289 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1290 else if (len <= (low_size + high_size))
1291 {
3d7f4f49
MK
1292 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1293 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1294 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1295 }
1296 else
8e65ff28
AC
1297 internal_error (__FILE__, __LINE__,
1298 "Cannot store return value of %d bytes long.", len);
ef9dff19 1299 }
5716833c
MK
1300
1301#undef I387_ST0_REGNUM
ef9dff19 1302}
fc338970 1303\f
ef9dff19 1304
8201327c
MK
1305/* This is the variable that is set with "set struct-convention", and
1306 its legitimate values. */
1307static const char default_struct_convention[] = "default";
1308static const char pcc_struct_convention[] = "pcc";
1309static const char reg_struct_convention[] = "reg";
1310static const char *valid_conventions[] =
1311{
1312 default_struct_convention,
1313 pcc_struct_convention,
1314 reg_struct_convention,
1315 NULL
1316};
1317static const char *struct_convention = default_struct_convention;
1318
c5e656c1
MK
1319/* Return non-zero if TYPE, which is assumed to be a structure or
1320 union type, should be returned in registers for architecture
1321 GDBARCH. */
1322
8201327c 1323static int
c5e656c1 1324i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1325{
c5e656c1
MK
1326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1327 enum type_code code = TYPE_CODE (type);
1328 int len = TYPE_LENGTH (type);
8201327c 1329
c5e656c1
MK
1330 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1331
1332 if (struct_convention == pcc_struct_convention
1333 || (struct_convention == default_struct_convention
1334 && tdep->struct_return == pcc_struct_return))
1335 return 0;
1336
1337 return (len == 1 || len == 2 || len == 4 || len == 8);
1338}
1339
1340/* Determine, for architecture GDBARCH, how a return value of TYPE
1341 should be returned. If it is supposed to be returned in registers,
1342 and READBUF is non-zero, read the appropriate value from REGCACHE,
1343 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1344 from WRITEBUF into REGCACHE. */
1345
1346static enum return_value_convention
1347i386_return_value (struct gdbarch *gdbarch, struct type *type,
1348 struct regcache *regcache, void *readbuf,
1349 const void *writebuf)
1350{
1351 enum type_code code = TYPE_CODE (type);
1352
1353 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1354 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1355 {
1356 /* The System V ABI says that:
1357
1358 "A function that returns a structure or union also sets %eax
1359 to the value of the original address of the caller's area
1360 before it returns. Thus when the caller receives control
1361 again, the address of the returned object resides in register
1362 %eax and can be used to access the object."
1363
1364 So the ABI guarantees that we can always find the return
1365 value just after the function has returned. */
1366
1367 if (readbuf)
1368 {
1369 ULONGEST addr;
1370
1371 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1372 read_memory (addr, readbuf, TYPE_LENGTH (type));
1373 }
1374
1375 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1376 }
c5e656c1
MK
1377
1378 /* This special case is for structures consisting of a single
1379 `float' or `double' member. These structures are returned in
1380 %st(0). For these structures, we call ourselves recursively,
1381 changing TYPE into the type of the first member of the structure.
1382 Since that should work for all structures that have only one
1383 member, we don't bother to check the member's type here. */
1384 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1385 {
1386 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1387 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1388 }
1389
1390 if (readbuf)
1391 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1392 if (writebuf)
1393 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1394
c5e656c1 1395 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1396}
1397\f
1398
d7a0d72c
MK
1399/* Return the GDB type object for the "standard" data type of data in
1400 register REGNUM. Perhaps %esi and %edi should go here, but
1401 potentially they could be used for things other than address. */
1402
3a1e71e3 1403static struct type *
4e259f09 1404i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1405{
acd5c798
MK
1406 if (regnum == I386_EIP_REGNUM
1407 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
d7a0d72c
MK
1408 return lookup_pointer_type (builtin_type_void);
1409
23a34459 1410 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1411 return builtin_type_i387_ext;
d7a0d72c 1412
5716833c 1413 if (i386_sse_regnum_p (gdbarch, regnum))
3139facc 1414 return builtin_type_vec128i;
d7a0d72c 1415
5716833c 1416 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740
AC
1417 return builtin_type_vec64i;
1418
d7a0d72c
MK
1419 return builtin_type_int;
1420}
1421
28fc6740 1422/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1423 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1424
1425static int
c86c27af 1426i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1427{
5716833c
MK
1428 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1429 int mmxreg, fpreg;
28fc6740
AC
1430 ULONGEST fstat;
1431 int tos;
c86c27af 1432
5716833c
MK
1433 /* Define I387_ST0_REGNUM such that we use the proper definitions
1434 for REGCACHE's architecture. */
1435#define I387_ST0_REGNUM tdep->st0_regnum
1436
1437 mmxreg = regnum - tdep->mm0_regnum;
1438 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1439 tos = (fstat >> 11) & 0x7;
5716833c
MK
1440 fpreg = (mmxreg + tos) % 8;
1441
1442 return (I387_ST0_REGNUM + fpreg);
c86c27af 1443
5716833c 1444#undef I387_ST0_REGNUM
28fc6740
AC
1445}
1446
1447static void
1448i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1449 int regnum, void *buf)
1450{
5716833c 1451 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1452 {
d9d9c31f 1453 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1454 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1455
28fc6740 1456 /* Extract (always little endian). */
c86c27af 1457 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1458 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1459 }
1460 else
1461 regcache_raw_read (regcache, regnum, buf);
1462}
1463
1464static void
1465i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1466 int regnum, const void *buf)
1467{
5716833c 1468 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1469 {
d9d9c31f 1470 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1471 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1472
28fc6740
AC
1473 /* Read ... */
1474 regcache_raw_read (regcache, fpnum, mmx_buf);
1475 /* ... Modify ... (always little endian). */
f837910f 1476 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1477 /* ... Write. */
1478 regcache_raw_write (regcache, fpnum, mmx_buf);
1479 }
1480 else
1481 regcache_raw_write (regcache, regnum, buf);
1482}
ff2e87ac
AC
1483\f
1484
ff2e87ac
AC
1485/* Return the register number of the register allocated by GCC after
1486 REGNUM, or -1 if there is no such register. */
1487
1488static int
1489i386_next_regnum (int regnum)
1490{
1491 /* GCC allocates the registers in the order:
1492
1493 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1494
1495 Since storing a variable in %esp doesn't make any sense we return
1496 -1 for %ebp and for %esp itself. */
1497 static int next_regnum[] =
1498 {
1499 I386_EDX_REGNUM, /* Slot for %eax. */
1500 I386_EBX_REGNUM, /* Slot for %ecx. */
1501 I386_ECX_REGNUM, /* Slot for %edx. */
1502 I386_ESI_REGNUM, /* Slot for %ebx. */
1503 -1, -1, /* Slots for %esp and %ebp. */
1504 I386_EDI_REGNUM, /* Slot for %esi. */
1505 I386_EBP_REGNUM /* Slot for %edi. */
1506 };
1507
de5b9bb9 1508 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1509 return next_regnum[regnum];
28fc6740 1510
ff2e87ac
AC
1511 return -1;
1512}
1513
1514/* Return nonzero if a value of type TYPE stored in register REGNUM
1515 needs any special handling. */
d7a0d72c 1516
3a1e71e3 1517static int
ff2e87ac 1518i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1519{
de5b9bb9
MK
1520 int len = TYPE_LENGTH (type);
1521
ff2e87ac
AC
1522 /* Values may be spread across multiple registers. Most debugging
1523 formats aren't expressive enough to specify the locations, so
1524 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1525 have a length that is a multiple of the word size, since GCC
1526 doesn't seem to put any other types into registers. */
1527 if (len > 4 && len % 4 == 0)
1528 {
1529 int last_regnum = regnum;
1530
1531 while (len > 4)
1532 {
1533 last_regnum = i386_next_regnum (last_regnum);
1534 len -= 4;
1535 }
1536
1537 if (last_regnum != -1)
1538 return 1;
1539 }
ff2e87ac 1540
23a34459 1541 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1542}
1543
ff2e87ac
AC
1544/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1545 return its contents in TO. */
ac27f131 1546
3a1e71e3 1547static void
ff2e87ac
AC
1548i386_register_to_value (struct frame_info *frame, int regnum,
1549 struct type *type, void *to)
ac27f131 1550{
de5b9bb9
MK
1551 int len = TYPE_LENGTH (type);
1552 char *buf = to;
1553
ff2e87ac
AC
1554 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1555 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1556
ff2e87ac 1557 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1558 {
d532c08f
MK
1559 i387_register_to_value (frame, regnum, type, to);
1560 return;
8d7f6b4a 1561 }
ff2e87ac 1562
fd35795f 1563 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1564
1565 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1566
de5b9bb9
MK
1567 while (len > 0)
1568 {
1569 gdb_assert (regnum != -1);
1570 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1571
f837910f 1572 get_frame_register (frame, regnum, buf);
de5b9bb9
MK
1573 regnum = i386_next_regnum (regnum);
1574 len -= 4;
1575 buf += 4;
1576 }
ac27f131
MK
1577}
1578
ff2e87ac
AC
1579/* Write the contents FROM of a value of type TYPE into register
1580 REGNUM in frame FRAME. */
ac27f131 1581
3a1e71e3 1582static void
ff2e87ac
AC
1583i386_value_to_register (struct frame_info *frame, int regnum,
1584 struct type *type, const void *from)
ac27f131 1585{
de5b9bb9
MK
1586 int len = TYPE_LENGTH (type);
1587 const char *buf = from;
1588
ff2e87ac 1589 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1590 {
d532c08f
MK
1591 i387_value_to_register (frame, regnum, type, from);
1592 return;
1593 }
3d261580 1594
fd35795f 1595 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1596
1597 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1598
de5b9bb9
MK
1599 while (len > 0)
1600 {
1601 gdb_assert (regnum != -1);
1602 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1603
de5b9bb9
MK
1604 put_frame_register (frame, regnum, buf);
1605 regnum = i386_next_regnum (regnum);
1606 len -= 4;
1607 buf += 4;
1608 }
ac27f131 1609}
ff2e87ac 1610\f
7fdafb5a
MK
1611/* Supply register REGNUM from the buffer specified by GREGS and LEN
1612 in the general-purpose register set REGSET to register cache
1613 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1614
20187ed5 1615void
473f17b0
MK
1616i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1617 int regnum, const void *gregs, size_t len)
1618{
9ea75c57 1619 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0
MK
1620 const char *regs = gregs;
1621 int i;
1622
1623 gdb_assert (len == tdep->sizeof_gregset);
1624
1625 for (i = 0; i < tdep->gregset_num_regs; i++)
1626 {
1627 if ((regnum == i || regnum == -1)
1628 && tdep->gregset_reg_offset[i] != -1)
1629 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1630 }
1631}
1632
7fdafb5a
MK
1633/* Collect register REGNUM from the register cache REGCACHE and store
1634 it in the buffer specified by GREGS and LEN as described by the
1635 general-purpose register set REGSET. If REGNUM is -1, do this for
1636 all registers in REGSET. */
1637
1638void
1639i386_collect_gregset (const struct regset *regset,
1640 const struct regcache *regcache,
1641 int regnum, void *gregs, size_t len)
1642{
1643 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1644 char *regs = gregs;
1645 int i;
1646
1647 gdb_assert (len == tdep->sizeof_gregset);
1648
1649 for (i = 0; i < tdep->gregset_num_regs; i++)
1650 {
1651 if ((regnum == i || regnum == -1)
1652 && tdep->gregset_reg_offset[i] != -1)
1653 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1654 }
1655}
1656
1657/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1658 in the floating-point register set REGSET to register cache
1659 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1660
1661static void
1662i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1663 int regnum, const void *fpregs, size_t len)
1664{
9ea75c57 1665 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 1666
66a72d25
MK
1667 if (len == I387_SIZEOF_FXSAVE)
1668 {
1669 i387_supply_fxsave (regcache, regnum, fpregs);
1670 return;
1671 }
1672
473f17b0
MK
1673 gdb_assert (len == tdep->sizeof_fpregset);
1674 i387_supply_fsave (regcache, regnum, fpregs);
1675}
8446b36a 1676
2f305df1
MK
1677/* Collect register REGNUM from the register cache REGCACHE and store
1678 it in the buffer specified by FPREGS and LEN as described by the
1679 floating-point register set REGSET. If REGNUM is -1, do this for
1680 all registers in REGSET. */
7fdafb5a
MK
1681
1682static void
1683i386_collect_fpregset (const struct regset *regset,
1684 const struct regcache *regcache,
1685 int regnum, void *fpregs, size_t len)
1686{
1687 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1688
1689 if (len == I387_SIZEOF_FXSAVE)
1690 {
1691 i387_collect_fxsave (regcache, regnum, fpregs);
1692 return;
1693 }
1694
1695 gdb_assert (len == tdep->sizeof_fpregset);
1696 i387_collect_fsave (regcache, regnum, fpregs);
1697}
1698
8446b36a
MK
1699/* Return the appropriate register set for the core section identified
1700 by SECT_NAME and SECT_SIZE. */
1701
1702const struct regset *
1703i386_regset_from_core_section (struct gdbarch *gdbarch,
1704 const char *sect_name, size_t sect_size)
1705{
1706 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1707
1708 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1709 {
1710 if (tdep->gregset == NULL)
7fdafb5a
MK
1711 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1712 i386_collect_gregset);
8446b36a
MK
1713 return tdep->gregset;
1714 }
1715
66a72d25
MK
1716 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1717 || (strcmp (sect_name, ".reg-xfp") == 0
1718 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
1719 {
1720 if (tdep->fpregset == NULL)
7fdafb5a
MK
1721 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1722 i386_collect_fpregset);
8446b36a
MK
1723 return tdep->fpregset;
1724 }
1725
1726 return NULL;
1727}
473f17b0 1728\f
fc338970 1729
c906108c 1730#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1731/* SunPRO encodes the static variables. This is not related to C++
1732 mangling, it is done for C too. */
c906108c
SS
1733
1734char *
fba45db2 1735sunpro_static_transform_name (char *name)
c906108c
SS
1736{
1737 char *p;
1738 if (IS_STATIC_TRANSFORM_NAME (name))
1739 {
fc338970
MK
1740 /* For file-local statics there will be a period, a bunch of
1741 junk (the contents of which match a string given in the
c5aa993b
JM
1742 N_OPT), a period and the name. For function-local statics
1743 there will be a bunch of junk (which seems to change the
1744 second character from 'A' to 'B'), a period, the name of the
1745 function, and the name. So just skip everything before the
1746 last period. */
c906108c
SS
1747 p = strrchr (name, '.');
1748 if (p != NULL)
1749 name = p + 1;
1750 }
1751 return name;
1752}
1753#endif /* STATIC_TRANSFORM_NAME */
fc338970 1754\f
c906108c 1755
fc338970 1756/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1757
1758CORE_ADDR
1cce71eb 1759i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1760{
fc338970 1761 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1762 {
c5aa993b 1763 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1764 struct minimal_symbol *indsym =
fc338970 1765 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1766 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1767
c5aa993b 1768 if (symname)
c906108c 1769 {
c5aa993b
JM
1770 if (strncmp (symname, "__imp_", 6) == 0
1771 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1772 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1773 }
1774 }
fc338970 1775 return 0; /* Not a trampoline. */
c906108c 1776}
fc338970
MK
1777\f
1778
377d9ebd 1779/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 1780 sigtramp routine. */
8201327c
MK
1781
1782static int
911bc6ee 1783i386_sigtramp_p (struct frame_info *next_frame)
8201327c 1784{
911bc6ee
MK
1785 CORE_ADDR pc = frame_pc_unwind (next_frame);
1786 char *name;
1787
1788 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1789 return (name && strcmp ("_sigtramp", name) == 0);
1790}
1791\f
1792
fc338970
MK
1793/* We have two flavours of disassembly. The machinery on this page
1794 deals with switching between those. */
c906108c
SS
1795
1796static int
a89aa300 1797i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 1798{
5e3397bb
MK
1799 gdb_assert (disassembly_flavor == att_flavor
1800 || disassembly_flavor == intel_flavor);
1801
1802 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1803 constified, cast to prevent a compiler warning. */
1804 info->disassembler_options = (char *) disassembly_flavor;
1805 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1806
1807 return print_insn_i386 (pc, info);
7a292a7a 1808}
fc338970 1809\f
3ce1502b 1810
8201327c
MK
1811/* There are a few i386 architecture variants that differ only
1812 slightly from the generic i386 target. For now, we don't give them
1813 their own source file, but include them here. As a consequence,
1814 they'll always be included. */
3ce1502b 1815
8201327c 1816/* System V Release 4 (SVR4). */
3ce1502b 1817
377d9ebd 1818/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
1819 sigtramp routine. */
1820
8201327c 1821static int
911bc6ee 1822i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 1823{
911bc6ee
MK
1824 CORE_ADDR pc = frame_pc_unwind (next_frame);
1825 char *name;
1826
acd5c798
MK
1827 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1828 currently unknown. */
911bc6ee 1829 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1830 return (name && (strcmp ("_sigreturn", name) == 0
1831 || strcmp ("_sigacthandler", name) == 0
1832 || strcmp ("sigvechandler", name) == 0));
1833}
d2a7c97a 1834
acd5c798
MK
1835/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1836 routine, return the address of the associated sigcontext (ucontext)
1837 structure. */
3ce1502b 1838
3a1e71e3 1839static CORE_ADDR
acd5c798 1840i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 1841{
acd5c798
MK
1842 char buf[4];
1843 CORE_ADDR sp;
3ce1502b 1844
acd5c798
MK
1845 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1846 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 1847
acd5c798 1848 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
1849}
1850\f
3ce1502b 1851
8201327c 1852/* Generic ELF. */
d2a7c97a 1853
8201327c
MK
1854void
1855i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1856{
c4fc7f1b
MK
1857 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
1858 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 1859}
3ce1502b 1860
8201327c 1861/* System V Release 4 (SVR4). */
3ce1502b 1862
8201327c
MK
1863void
1864i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1865{
1866 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1867
8201327c
MK
1868 /* System V Release 4 uses ELF. */
1869 i386_elf_init_abi (info, gdbarch);
3ce1502b 1870
dfe01d39
MK
1871 /* System V Release 4 has shared libraries. */
1872 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1873 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1874
911bc6ee 1875 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 1876 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
1877 tdep->sc_pc_offset = 36 + 14 * 4;
1878 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 1879
8201327c 1880 tdep->jb_pc_offset = 20;
3ce1502b
MK
1881}
1882
8201327c 1883/* DJGPP. */
3ce1502b 1884
3a1e71e3 1885static void
8201327c 1886i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1887{
8201327c 1888 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1889
911bc6ee
MK
1890 /* DJGPP doesn't have any special frames for signal handlers. */
1891 tdep->sigtramp_p = NULL;
3ce1502b 1892
8201327c 1893 tdep->jb_pc_offset = 36;
3ce1502b
MK
1894}
1895
8201327c 1896/* NetWare. */
3ce1502b 1897
3a1e71e3 1898static void
8201327c 1899i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1900{
8201327c 1901 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1902
8201327c 1903 tdep->jb_pc_offset = 24;
d2a7c97a 1904}
8201327c 1905\f
2acceee2 1906
38c968cf
AC
1907/* i386 register groups. In addition to the normal groups, add "mmx"
1908 and "sse". */
1909
1910static struct reggroup *i386_sse_reggroup;
1911static struct reggroup *i386_mmx_reggroup;
1912
1913static void
1914i386_init_reggroups (void)
1915{
1916 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1917 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1918}
1919
1920static void
1921i386_add_reggroups (struct gdbarch *gdbarch)
1922{
1923 reggroup_add (gdbarch, i386_sse_reggroup);
1924 reggroup_add (gdbarch, i386_mmx_reggroup);
1925 reggroup_add (gdbarch, general_reggroup);
1926 reggroup_add (gdbarch, float_reggroup);
1927 reggroup_add (gdbarch, all_reggroup);
1928 reggroup_add (gdbarch, save_reggroup);
1929 reggroup_add (gdbarch, restore_reggroup);
1930 reggroup_add (gdbarch, vector_reggroup);
1931 reggroup_add (gdbarch, system_reggroup);
1932}
1933
1934int
1935i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1936 struct reggroup *group)
1937{
5716833c
MK
1938 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
1939 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
1940 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1941 || i386_fpc_regnum_p (regnum));
5716833c 1942 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 1943
38c968cf
AC
1944 if (group == i386_mmx_reggroup)
1945 return mmx_regnum_p;
1946 if (group == i386_sse_reggroup)
1947 return sse_regnum_p;
1948 if (group == vector_reggroup)
1949 return (mmx_regnum_p || sse_regnum_p);
1950 if (group == float_reggroup)
1951 return fp_regnum_p;
1952 if (group == general_reggroup)
1953 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 1954
38c968cf
AC
1955 return default_register_reggroup_p (gdbarch, regnum, group);
1956}
38c968cf 1957\f
acd5c798 1958
f837910f
MK
1959/* Get the ARGIth function argument for the current function. */
1960
42c466d7 1961static CORE_ADDR
143985b7
AF
1962i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1963 struct type *type)
1964{
f837910f
MK
1965 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
1966 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
1967}
1968
1969\f
3a1e71e3 1970static struct gdbarch *
a62cc96e
AC
1971i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1972{
cd3c07fc 1973 struct gdbarch_tdep *tdep;
a62cc96e
AC
1974 struct gdbarch *gdbarch;
1975
4be87837
DJ
1976 /* If there is already a candidate, use it. */
1977 arches = gdbarch_list_lookup_by_info (arches, &info);
1978 if (arches != NULL)
1979 return arches->gdbarch;
a62cc96e
AC
1980
1981 /* Allocate space for the new architecture. */
1982 tdep = XMALLOC (struct gdbarch_tdep);
1983 gdbarch = gdbarch_alloc (&info, tdep);
1984
473f17b0
MK
1985 /* General-purpose registers. */
1986 tdep->gregset = NULL;
1987 tdep->gregset_reg_offset = NULL;
1988 tdep->gregset_num_regs = I386_NUM_GREGS;
1989 tdep->sizeof_gregset = 0;
1990
1991 /* Floating-point registers. */
1992 tdep->fpregset = NULL;
1993 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
1994
5716833c 1995 /* The default settings include the FPU registers, the MMX registers
fd35795f 1996 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
1997 by adjusting the members `st0_regnum', `mm0_regnum' and
1998 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
1999 will show up in the output of "info all-registers". Ideally we
2000 should try to autodetect whether they are available, such that we
2001 can prevent "info all-registers" from displaying registers that
2002 aren't available.
2003
2004 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2005 [the SSE registers] always (even when they don't exist) or never
2006 showing them to the user (even when they do exist), I prefer the
2007 former over the latter. */
2008
2009 tdep->st0_regnum = I386_ST0_REGNUM;
2010
2011 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2012 calculating the register number for %mm0 until we know the number
5716833c
MK
2013 of raw registers. */
2014 tdep->mm0_regnum = 0;
2015
2016 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2017 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2018
8201327c
MK
2019 tdep->jb_pc_offset = -1;
2020 tdep->struct_return = pcc_struct_return;
8201327c
MK
2021 tdep->sigtramp_start = 0;
2022 tdep->sigtramp_end = 0;
911bc6ee 2023 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2024 tdep->sigcontext_addr = NULL;
a3386186 2025 tdep->sc_reg_offset = NULL;
8201327c 2026 tdep->sc_pc_offset = -1;
21d0e8a4 2027 tdep->sc_sp_offset = -1;
8201327c 2028
896fb97d
MK
2029 /* The format used for `long double' on almost all i386 targets is
2030 the i387 extended floating-point format. In fact, of all targets
2031 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2032 on having a `long double' that's not `long' at all. */
2033 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 2034
66da5fd8 2035 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2036 bits, a `long double' actually takes up 96, probably to enforce
2037 alignment. */
2038 set_gdbarch_long_double_bit (gdbarch, 96);
2039
49ed40de
KB
2040 /* The default ABI includes general-purpose registers,
2041 floating-point registers, and the SSE registers. */
2042 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2043 set_gdbarch_register_name (gdbarch, i386_register_name);
2044 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2045
acd5c798
MK
2046 /* Register numbers of various important registers. */
2047 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2048 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2049 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2050 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2051
c4fc7f1b
MK
2052 /* NOTE: kettenis/20040418: GCC does have two possible register
2053 numbering schemes on the i386: dbx and SVR4. These schemes
2054 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2055 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2056 dbx_register_map[] and svr4_dbx_register_map in
2057 gcc/config/i386.c. GCC also defines a third numbering scheme in
2058 gcc/config/i386.c, which it designates as the "default" register
2059 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2060 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2061 amd64-tdep.c.
2062
2063 Currently, each GCC i386 target always uses the same register
2064 numbering scheme across all its supported debugging formats
2065 i.e. SDB (COFF), stabs and DWARF 2. This is because
2066 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2067 DBX_REGISTER_NUMBER macro which is defined by each target's
2068 respective config header in a manner independent of the requested
2069 output debugging format.
2070
2071 This does not match the arrangement below, which presumes that
2072 the SDB and stabs numbering schemes differ from the DWARF and
2073 DWARF 2 ones. The reason for this arrangement is that it is
2074 likely to get the numbering scheme for the target's
2075 default/native debug format right. For targets where GCC is the
2076 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2077 targets where the native toolchain uses a different numbering
2078 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2079 the defaults below will have to be overridden, like
2080 i386_elf_init_abi() does. */
c4fc7f1b
MK
2081
2082 /* Use the dbx register numbering scheme for stabs and COFF. */
2083 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2084 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2085
2086 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2087 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2088 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e
MK
2089
2090 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2091 be in use on any of the supported i386 targets. */
2092
61113f8b
MK
2093 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2094
8201327c 2095 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2096
a62cc96e 2097 /* Call dummy code. */
acd5c798 2098 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2099
ff2e87ac
AC
2100 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2101 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2102 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2103
c5e656c1 2104 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2105
93924b6b
MK
2106 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2107
2108 /* Stack grows downward. */
2109 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2110
2111 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2112 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2113
42fdc8df 2114 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2115
28fc6740 2116 /* Wire in the MMX registers. */
0f751ff2 2117 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2118 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2119 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2120
5e3397bb
MK
2121 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2122
acd5c798 2123 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2124
2125 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2126
38c968cf
AC
2127 /* Add the i386 register groups. */
2128 i386_add_reggroups (gdbarch);
2129 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2130
143985b7
AF
2131 /* Helper for function argument information. */
2132 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2133
6405b0a6 2134 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2135 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2136
acd5c798 2137 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2138
3ce1502b 2139 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2140 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2141
336d1bba
AC
2142 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2143 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2144
8446b36a
MK
2145 /* If we have a register mapping, enable the generic core file
2146 support, unless it has already been enabled. */
2147 if (tdep->gregset_reg_offset
2148 && !gdbarch_regset_from_core_section_p (gdbarch))
2149 set_gdbarch_regset_from_core_section (gdbarch,
2150 i386_regset_from_core_section);
2151
5716833c
MK
2152 /* Unless support for MMX has been disabled, make %mm0 the first
2153 pseudo-register. */
2154 if (tdep->mm0_regnum == 0)
2155 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2156
a62cc96e
AC
2157 return gdbarch;
2158}
2159
8201327c
MK
2160static enum gdb_osabi
2161i386_coff_osabi_sniffer (bfd *abfd)
2162{
762c5349
MK
2163 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2164 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2165 return GDB_OSABI_GO32;
2166
2167 return GDB_OSABI_UNKNOWN;
2168}
2169
2170static enum gdb_osabi
2171i386_nlm_osabi_sniffer (bfd *abfd)
2172{
2173 return GDB_OSABI_NETWARE;
2174}
2175\f
2176
28e9e0f0
MK
2177/* Provide a prototype to silence -Wmissing-prototypes. */
2178void _initialize_i386_tdep (void);
2179
c906108c 2180void
fba45db2 2181_initialize_i386_tdep (void)
c906108c 2182{
a62cc96e
AC
2183 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2184
fc338970 2185 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
2186 {
2187 struct cmd_list_element *new_cmd;
7a292a7a 2188
917317f4
JM
2189 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2190 valid_flavors,
1ed2a135 2191 &disassembly_flavor,
fc338970
MK
2192 "\
2193Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 2194and the default value is \"att\".",
917317f4 2195 &setlist);
917317f4
JM
2196 add_show_from_set (new_cmd, &showlist);
2197 }
8201327c
MK
2198
2199 /* Add the variable that controls the convention for returning
2200 structs. */
2201 {
2202 struct cmd_list_element *new_cmd;
2203
2204 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 2205 valid_conventions,
8201327c
MK
2206 &struct_convention, "\
2207Set the convention for returning small structs, valid values \
2208are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
2209 &setlist);
2210 add_show_from_set (new_cmd, &showlist);
2211 }
2212
2213 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2214 i386_coff_osabi_sniffer);
2215 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2216 i386_nlm_osabi_sniffer);
2217
05816f70 2218 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2219 i386_svr4_init_abi);
05816f70 2220 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2221 i386_go32_init_abi);
05816f70 2222 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2223 i386_nw_init_abi);
38c968cf
AC
2224
2225 /* Initialize the i386 specific register groups. */
2226 i386_init_reggroups ();
c906108c 2227}
This page took 0.513536 seconds and 4 git commands to generate.