gdb/testsuite/
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4c38e0a4 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
7b6bb8da 5 2010, 2011 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
1903f0e6 23#include "opcode/i386.h"
acd5c798
MK
24#include "arch-utils.h"
25#include "command.h"
26#include "dummy-frame.h"
6405b0a6 27#include "dwarf2-frame.h"
acd5c798 28#include "doublest.h"
c906108c 29#include "frame.h"
acd5c798
MK
30#include "frame-base.h"
31#include "frame-unwind.h"
c906108c 32#include "inferior.h"
acd5c798 33#include "gdbcmd.h"
c906108c 34#include "gdbcore.h"
e6bb342a 35#include "gdbtypes.h"
dfe01d39 36#include "objfiles.h"
acd5c798
MK
37#include "osabi.h"
38#include "regcache.h"
39#include "reggroups.h"
473f17b0 40#include "regset.h"
c0d1d883 41#include "symfile.h"
c906108c 42#include "symtab.h"
acd5c798 43#include "target.h"
fd0407d6 44#include "value.h"
a89aa300 45#include "dis-asm.h"
7a697b8d 46#include "disasm.h"
c8d5aac9 47#include "remote.h"
acd5c798 48
3d261580 49#include "gdb_assert.h"
acd5c798 50#include "gdb_string.h"
3d261580 51
d2a7c97a 52#include "i386-tdep.h"
61113f8b 53#include "i387-tdep.h"
c131fcee 54#include "i386-xstate.h"
d2a7c97a 55
7ad10968
HZ
56#include "record.h"
57#include <stdint.h>
58
90884b2b 59#include "features/i386/i386.c"
c131fcee 60#include "features/i386/i386-avx.c"
3a13a53b 61#include "features/i386/i386-mmx.c"
90884b2b 62
c4fc7f1b 63/* Register names. */
c40e1eab 64
90884b2b 65static const char *i386_register_names[] =
fc633446
MK
66{
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78};
79
c131fcee
L
80static const char *i386_ymm_names[] =
81{
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84};
85
86static const char *i386_ymmh_names[] =
87{
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90};
91
c4fc7f1b 92/* Register names for MMX pseudo-registers. */
28fc6740 93
90884b2b 94static const char *i386_mmx_names[] =
28fc6740
AC
95{
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98};
c40e1eab 99
1ba53b71
L
100/* Register names for byte pseudo-registers. */
101
102static const char *i386_byte_names[] =
103{
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106};
107
108/* Register names for word pseudo-registers. */
109
110static const char *i386_word_names[] =
111{
112 "ax", "cx", "dx", "bx",
9cad29ac 113 "", "bp", "si", "di"
1ba53b71
L
114};
115
116/* MMX register? */
c40e1eab 117
28fc6740 118static int
5716833c 119i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 120{
1ba53b71
L
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
123
124 if (mm0_regnum < 0)
125 return 0;
126
1ba53b71
L
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129}
130
131/* Byte register? */
132
133int
134i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135{
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140}
141
142/* Word register? */
143
144int
145i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146{
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151}
152
153/* Dword register? */
154
155int
156i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157{
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
166}
167
9191d390 168static int
c131fcee
L
169i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170{
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179}
180
181/* AVX register? */
182
183int
184i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185{
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194}
195
5716833c 196/* SSE register? */
23a34459 197
c131fcee
L
198int
199i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 200{
5716833c 201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 203
c131fcee 204 if (num_xmm_regs == 0)
5716833c
MK
205 return 0;
206
c131fcee
L
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
209}
210
5716833c
MK
211static int
212i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 213{
5716833c
MK
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
20a6ec49 216 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
217 return 0;
218
20a6ec49 219 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
220}
221
5716833c 222/* FP register? */
23a34459
AC
223
224int
20a6ec49 225i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 226{
20a6ec49
MD
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
230 return 0;
231
20a6ec49
MD
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
234}
235
236int
20a6ec49 237i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 238{
20a6ec49
MD
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
242 return 0;
243
20a6ec49
MD
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
246}
247
c131fcee
L
248/* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251static const char *
252i386_register_name (struct gdbarch *gdbarch, int regnum)
253{
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259}
260
30b0e2d8 261/* Return the name of register REGNUM. */
fc633446 262
1ba53b71 263const char *
90884b2b 264i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 265{
1ba53b71
L
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
1ba53b71
L
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
277}
278
c4fc7f1b 279/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
280 number used by GDB. */
281
8201327c 282static int
d3f73121 283i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 284{
20a6ec49
MD
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
c4fc7f1b
MK
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
85540d8c
MK
290 if (reg >= 0 && reg <= 7)
291 {
9872ad24
JB
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
85540d8c
MK
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
20a6ec49 303 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
c131fcee
L
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
20a6ec49 319 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
320 }
321
322 /* This will hopefully provoke a warning. */
d3f73121 323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
324}
325
c4fc7f1b
MK
326/* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
85540d8c 328
8201327c 329static int
d3f73121 330i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 331{
20a6ec49
MD
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
c4fc7f1b
MK
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
acd5c798 341 /* General-purpose registers. */
85540d8c
MK
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
20a6ec49 347 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 348 }
c6f4c129 349 else if (reg >= 21 && reg <= 36)
85540d8c 350 {
c4fc7f1b 351 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 352 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
353 }
354
c6f4c129
JB
355 switch (reg)
356 {
20a6ec49
MD
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
85540d8c 368 /* This will hopefully provoke a warning. */
d3f73121 369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 370}
5716833c 371
fc338970 372\f
917317f4 373
fc338970
MK
374/* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
53904c9e
AC
376static const char att_flavor[] = "att";
377static const char intel_flavor[] = "intel";
378static const char *valid_flavors[] =
c5aa993b 379{
c906108c
SS
380 att_flavor,
381 intel_flavor,
382 NULL
383};
53904c9e 384static const char *disassembly_flavor = att_flavor;
acd5c798 385\f
c906108c 386
acd5c798
MK
387/* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
c906108c 392
acd5c798
MK
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
c906108c 395
acd5c798 396 This function is 64-bit safe. */
63c0089f
MK
397
398static const gdb_byte *
67d57894 399i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 400{
63c0089f
MK
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
acd5c798
MK
403 *len = sizeof (break_insn);
404 return break_insn;
c906108c 405}
237fc4c9
PA
406\f
407/* Displaced instruction handling. */
408
1903f0e6
DE
409/* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415static gdb_byte *
416i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417{
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443}
237fc4c9
PA
444
445static int
1903f0e6 446i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 447{
1777feb0 448 /* jmp far (absolute address in operand). */
237fc4c9
PA
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
1777feb0 454 /* jump near, absolute indirect (/4). */
237fc4c9
PA
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
1777feb0 458 /* jump far, absolute indirect (/5). */
237fc4c9
PA
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464}
465
466static int
1903f0e6 467i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 468{
1777feb0 469 /* call far, absolute. */
237fc4c9
PA
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
1777feb0 475 /* Call near, absolute indirect (/2). */
237fc4c9
PA
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
1777feb0 479 /* Call far, absolute indirect (/3). */
237fc4c9
PA
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485}
486
487static int
1903f0e6 488i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
489{
490 switch (insn[0])
491 {
1777feb0 492 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 493 case 0xc3: /* ret near */
1777feb0 494 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502}
503
504static int
1903f0e6 505i386_call_p (const gdb_byte *insn)
237fc4c9
PA
506{
507 if (i386_absolute_call_p (insn))
508 return 1;
509
1777feb0 510 /* call near, relative. */
237fc4c9
PA
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515}
516
237fc4c9
PA
517/* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
1903f0e6 519
237fc4c9 520static int
b55078be 521i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9
PA
522{
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530}
531
b55078be
DE
532/* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535struct displaced_step_closure *
536i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539{
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567}
568
237fc4c9
PA
569/* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
1903f0e6 571
237fc4c9
PA
572void
573i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577{
e17a4113
UW
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
237fc4c9
PA
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
237fc4c9
PA
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
5af949e3 594 "displaced: fixup (%s, %s), "
237fc4c9 595 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
237fc4c9
PA
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
1903f0e6
DE
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
237fc4c9
PA
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
b55078be 627 int insn_len;
237fc4c9
PA
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
1903f0e6
DE
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
237fc4c9
PA
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
5af949e3
UW
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
237fc4c9
PA
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
237fc4c9
PA
701 }
702}
dde08ee1
PA
703
704static void
705append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706{
707 target_write_memory (*to, buf, len);
708 *to += len;
709}
710
711static void
712i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714{
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
1777feb0 739 push_buf[0] = 0x68; /* pushq $... */
dde08ee1
PA
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
750 store_signed_integer (insn + 1, 4, byte_order, newrel);
751
752 if (debug_displaced)
753 fprintf_unfiltered (gdb_stdlog,
754 "Adjusted insn rel32=%s at %s to"
755 " rel32=%s at %s\n",
756 hex_string (rel32), paddress (gdbarch, oldloc),
757 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
758
759 /* Write the adjusted jump into its displaced location. */
760 append_insns (to, 5, insn);
761 return;
762 }
763
764 /* Adjust jumps with 32-bit relative addresses. Calls are already
765 handled above. */
766 if (insn[0] == 0xe9)
767 offset = 1;
768 /* Adjust conditional jumps. */
769 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
770 offset = 2;
771
772 if (offset)
773 {
774 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
775 newrel = (oldloc - *to) + rel32;
f4a1794a 776 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
777 if (debug_displaced)
778 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
779 "Adjusted insn rel32=%s at %s to"
780 " rel32=%s at %s\n",
dde08ee1
PA
781 hex_string (rel32), paddress (gdbarch, oldloc),
782 hex_string (newrel), paddress (gdbarch, *to));
783 }
784
785 /* Write the adjusted instructions into their displaced
786 location. */
787 append_insns (to, insn_length, buf);
788}
789
fc338970 790\f
acd5c798
MK
791#ifdef I386_REGNO_TO_SYMMETRY
792#error "The Sequent Symmetry is no longer supported."
793#endif
c906108c 794
acd5c798
MK
795/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
796 and %esp "belong" to the calling function. Therefore these
797 registers should be saved if they're going to be modified. */
c906108c 798
acd5c798
MK
799/* The maximum number of saved registers. This should include all
800 registers mentioned above, and %eip. */
a3386186 801#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
802
803struct i386_frame_cache
c906108c 804{
acd5c798
MK
805 /* Base address. */
806 CORE_ADDR base;
772562f8 807 LONGEST sp_offset;
acd5c798
MK
808 CORE_ADDR pc;
809
fd13a04a
AC
810 /* Saved registers. */
811 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 812 CORE_ADDR saved_sp;
e0c62198 813 int saved_sp_reg;
acd5c798
MK
814 int pc_in_eax;
815
816 /* Stack space reserved for local variables. */
817 long locals;
818};
819
820/* Allocate and initialize a frame cache. */
821
822static struct i386_frame_cache *
fd13a04a 823i386_alloc_frame_cache (void)
acd5c798
MK
824{
825 struct i386_frame_cache *cache;
826 int i;
827
828 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
829
830 /* Base address. */
831 cache->base = 0;
832 cache->sp_offset = -4;
833 cache->pc = 0;
834
fd13a04a
AC
835 /* Saved registers. We initialize these to -1 since zero is a valid
836 offset (that's where %ebp is supposed to be stored). */
837 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
838 cache->saved_regs[i] = -1;
acd5c798 839 cache->saved_sp = 0;
e0c62198 840 cache->saved_sp_reg = -1;
acd5c798
MK
841 cache->pc_in_eax = 0;
842
843 /* Frameless until proven otherwise. */
844 cache->locals = -1;
845
846 return cache;
847}
c906108c 848
acd5c798
MK
849/* If the instruction at PC is a jump, return the address of its
850 target. Otherwise, return PC. */
c906108c 851
acd5c798 852static CORE_ADDR
e17a4113 853i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 854{
e17a4113 855 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 856 gdb_byte op;
acd5c798
MK
857 long delta = 0;
858 int data16 = 0;
c906108c 859
3dcabaa8
MS
860 if (target_read_memory (pc, &op, 1))
861 return pc;
862
acd5c798 863 if (op == 0x66)
c906108c 864 {
c906108c 865 data16 = 1;
e17a4113 866 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
867 }
868
acd5c798 869 switch (op)
c906108c
SS
870 {
871 case 0xe9:
fc338970 872 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
873 if (data16)
874 {
e17a4113 875 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 876
fc338970
MK
877 /* Include the size of the jmp instruction (including the
878 0x66 prefix). */
acd5c798 879 delta += 4;
c906108c
SS
880 }
881 else
882 {
e17a4113 883 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 884
acd5c798
MK
885 /* Include the size of the jmp instruction. */
886 delta += 5;
c906108c
SS
887 }
888 break;
889 case 0xeb:
fc338970 890 /* Relative jump, disp8 (ignore data16). */
e17a4113 891 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 892
acd5c798 893 delta += data16 + 2;
c906108c
SS
894 break;
895 }
c906108c 896
acd5c798
MK
897 return pc + delta;
898}
fc338970 899
acd5c798
MK
900/* Check whether PC points at a prologue for a function returning a
901 structure or union. If so, it updates CACHE and returns the
902 address of the first instruction after the code sequence that
903 removes the "hidden" argument from the stack or CURRENT_PC,
904 whichever is smaller. Otherwise, return PC. */
c906108c 905
acd5c798
MK
906static CORE_ADDR
907i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
908 struct i386_frame_cache *cache)
c906108c 909{
acd5c798
MK
910 /* Functions that return a structure or union start with:
911
912 popl %eax 0x58
913 xchgl %eax, (%esp) 0x87 0x04 0x24
914 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
915
916 (the System V compiler puts out the second `xchg' instruction,
917 and the assembler doesn't try to optimize it, so the 'sib' form
918 gets generated). This sequence is used to get the address of the
919 return buffer for a function that returns a structure. */
63c0089f
MK
920 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
921 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
922 gdb_byte buf[4];
923 gdb_byte op;
c906108c 924
acd5c798
MK
925 if (current_pc <= pc)
926 return pc;
927
3dcabaa8
MS
928 if (target_read_memory (pc, &op, 1))
929 return pc;
c906108c 930
acd5c798
MK
931 if (op != 0x58) /* popl %eax */
932 return pc;
c906108c 933
3dcabaa8
MS
934 if (target_read_memory (pc + 1, buf, 4))
935 return pc;
936
acd5c798
MK
937 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
938 return pc;
c906108c 939
acd5c798 940 if (current_pc == pc)
c906108c 941 {
acd5c798
MK
942 cache->sp_offset += 4;
943 return current_pc;
c906108c
SS
944 }
945
acd5c798 946 if (current_pc == pc + 1)
c906108c 947 {
acd5c798
MK
948 cache->pc_in_eax = 1;
949 return current_pc;
950 }
951
952 if (buf[1] == proto1[1])
953 return pc + 4;
954 else
955 return pc + 5;
956}
957
958static CORE_ADDR
959i386_skip_probe (CORE_ADDR pc)
960{
961 /* A function may start with
fc338970 962
acd5c798
MK
963 pushl constant
964 call _probe
965 addl $4, %esp
fc338970 966
acd5c798
MK
967 followed by
968
969 pushl %ebp
fc338970 970
acd5c798 971 etc. */
63c0089f
MK
972 gdb_byte buf[8];
973 gdb_byte op;
fc338970 974
3dcabaa8
MS
975 if (target_read_memory (pc, &op, 1))
976 return pc;
acd5c798
MK
977
978 if (op == 0x68 || op == 0x6a)
979 {
980 int delta;
c906108c 981
acd5c798
MK
982 /* Skip past the `pushl' instruction; it has either a one-byte or a
983 four-byte operand, depending on the opcode. */
c906108c 984 if (op == 0x68)
acd5c798 985 delta = 5;
c906108c 986 else
acd5c798 987 delta = 2;
c906108c 988
acd5c798
MK
989 /* Read the following 8 bytes, which should be `call _probe' (6
990 bytes) followed by `addl $4,%esp' (2 bytes). */
991 read_memory (pc + delta, buf, sizeof (buf));
c906108c 992 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 993 pc += delta + sizeof (buf);
c906108c
SS
994 }
995
acd5c798
MK
996 return pc;
997}
998
92dd43fa
MK
999/* GCC 4.1 and later, can put code in the prologue to realign the
1000 stack pointer. Check whether PC points to such code, and update
1001 CACHE accordingly. Return the first instruction after the code
1002 sequence or CURRENT_PC, whichever is smaller. If we don't
1003 recognize the code, return PC. */
1004
1005static CORE_ADDR
1006i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1007 struct i386_frame_cache *cache)
1008{
e0c62198
L
1009 /* There are 2 code sequences to re-align stack before the frame
1010 gets set up:
1011
1012 1. Use a caller-saved saved register:
1013
1014 leal 4(%esp), %reg
1015 andl $-XXX, %esp
1016 pushl -4(%reg)
1017
1018 2. Use a callee-saved saved register:
1019
1020 pushl %reg
1021 leal 8(%esp), %reg
1022 andl $-XXX, %esp
1023 pushl -4(%reg)
1024
1025 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1026
1027 0x83 0xe4 0xf0 andl $-16, %esp
1028 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1029 */
1030
1031 gdb_byte buf[14];
1032 int reg;
1033 int offset, offset_and;
1034 static int regnums[8] = {
1035 I386_EAX_REGNUM, /* %eax */
1036 I386_ECX_REGNUM, /* %ecx */
1037 I386_EDX_REGNUM, /* %edx */
1038 I386_EBX_REGNUM, /* %ebx */
1039 I386_ESP_REGNUM, /* %esp */
1040 I386_EBP_REGNUM, /* %ebp */
1041 I386_ESI_REGNUM, /* %esi */
1042 I386_EDI_REGNUM /* %edi */
92dd43fa 1043 };
92dd43fa 1044
e0c62198
L
1045 if (target_read_memory (pc, buf, sizeof buf))
1046 return pc;
1047
1048 /* Check caller-saved saved register. The first instruction has
1049 to be "leal 4(%esp), %reg". */
1050 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1051 {
1052 /* MOD must be binary 10 and R/M must be binary 100. */
1053 if ((buf[1] & 0xc7) != 0x44)
1054 return pc;
1055
1056 /* REG has register number. */
1057 reg = (buf[1] >> 3) & 7;
1058 offset = 4;
1059 }
1060 else
1061 {
1062 /* Check callee-saved saved register. The first instruction
1063 has to be "pushl %reg". */
1064 if ((buf[0] & 0xf8) != 0x50)
1065 return pc;
1066
1067 /* Get register. */
1068 reg = buf[0] & 0x7;
1069
1070 /* The next instruction has to be "leal 8(%esp), %reg". */
1071 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1072 return pc;
1073
1074 /* MOD must be binary 10 and R/M must be binary 100. */
1075 if ((buf[2] & 0xc7) != 0x44)
1076 return pc;
1077
1078 /* REG has register number. Registers in pushl and leal have to
1079 be the same. */
1080 if (reg != ((buf[2] >> 3) & 7))
1081 return pc;
1082
1083 offset = 5;
1084 }
1085
1086 /* Rigister can't be %esp nor %ebp. */
1087 if (reg == 4 || reg == 5)
1088 return pc;
1089
1090 /* The next instruction has to be "andl $-XXX, %esp". */
1091 if (buf[offset + 1] != 0xe4
1092 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1093 return pc;
1094
1095 offset_and = offset;
1096 offset += buf[offset] == 0x81 ? 6 : 3;
1097
1098 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1099 0xfc. REG must be binary 110 and MOD must be binary 01. */
1100 if (buf[offset] != 0xff
1101 || buf[offset + 2] != 0xfc
1102 || (buf[offset + 1] & 0xf8) != 0x70)
1103 return pc;
1104
1105 /* R/M has register. Registers in leal and pushl have to be the
1106 same. */
1107 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1108 return pc;
1109
e0c62198
L
1110 if (current_pc > pc + offset_and)
1111 cache->saved_sp_reg = regnums[reg];
92dd43fa 1112
e0c62198 1113 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1114}
1115
37bdc87e 1116/* Maximum instruction length we need to handle. */
237fc4c9 1117#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1118
1119/* Instruction description. */
1120struct i386_insn
1121{
1122 size_t len;
237fc4c9
PA
1123 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1124 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1125};
1126
1127/* Search for the instruction at PC in the list SKIP_INSNS. Return
1128 the first instruction description that matches. Otherwise, return
1129 NULL. */
1130
1131static struct i386_insn *
1132i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1133{
1134 struct i386_insn *insn;
63c0089f 1135 gdb_byte op;
37bdc87e 1136
3dcabaa8
MS
1137 if (target_read_memory (pc, &op, 1))
1138 return NULL;
37bdc87e
MK
1139
1140 for (insn = skip_insns; insn->len > 0; insn++)
1141 {
1142 if ((op & insn->mask[0]) == insn->insn[0])
1143 {
237fc4c9 1144 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
613e8135 1145 int insn_matched = 1;
37bdc87e
MK
1146 size_t i;
1147
1148 gdb_assert (insn->len > 1);
237fc4c9 1149 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
37bdc87e 1150
3dcabaa8
MS
1151 if (target_read_memory (pc + 1, buf, insn->len - 1))
1152 return NULL;
1153
37bdc87e
MK
1154 for (i = 1; i < insn->len; i++)
1155 {
1156 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 1157 insn_matched = 0;
37bdc87e 1158 }
613e8135
MK
1159
1160 if (insn_matched)
1161 return insn;
37bdc87e
MK
1162 }
1163 }
1164
1165 return NULL;
1166}
1167
1168/* Some special instructions that might be migrated by GCC into the
1169 part of the prologue that sets up the new stack frame. Because the
1170 stack frame hasn't been setup yet, no registers have been saved
1171 yet, and only the scratch registers %eax, %ecx and %edx can be
1172 touched. */
1173
1174struct i386_insn i386_frame_setup_skip_insns[] =
1175{
1777feb0 1176 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1177
1178 ??? Should we handle 16-bit operand-sizes here? */
1179
1180 /* `movb imm8, %al' and `movb imm8, %ah' */
1181 /* `movb imm8, %cl' and `movb imm8, %ch' */
1182 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1183 /* `movb imm8, %dl' and `movb imm8, %dh' */
1184 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1185 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1186 { 5, { 0xb8 }, { 0xfe } },
1187 /* `movl imm32, %edx' */
1188 { 5, { 0xba }, { 0xff } },
1189
1190 /* Check for `mov imm32, r32'. Note that there is an alternative
1191 encoding for `mov m32, %eax'.
1192
1193 ??? Should we handle SIB adressing here?
1194 ??? Should we handle 16-bit operand-sizes here? */
1195
1196 /* `movl m32, %eax' */
1197 { 5, { 0xa1 }, { 0xff } },
1198 /* `movl m32, %eax' and `mov; m32, %ecx' */
1199 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1200 /* `movl m32, %edx' */
1201 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1202
1203 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1204 Because of the symmetry, there are actually two ways to encode
1205 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1206 opcode bytes 0x31 and 0x33 for `xorl'. */
1207
1208 /* `subl %eax, %eax' */
1209 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1210 /* `subl %ecx, %ecx' */
1211 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1212 /* `subl %edx, %edx' */
1213 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1214 /* `xorl %eax, %eax' */
1215 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1216 /* `xorl %ecx, %ecx' */
1217 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1218 /* `xorl %edx, %edx' */
1219 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1220 { 0 }
1221};
1222
e11481da
PM
1223
1224/* Check whether PC points to a no-op instruction. */
1225static CORE_ADDR
1226i386_skip_noop (CORE_ADDR pc)
1227{
1228 gdb_byte op;
1229 int check = 1;
1230
3dcabaa8
MS
1231 if (target_read_memory (pc, &op, 1))
1232 return pc;
e11481da
PM
1233
1234 while (check)
1235 {
1236 check = 0;
1237 /* Ignore `nop' instruction. */
1238 if (op == 0x90)
1239 {
1240 pc += 1;
3dcabaa8
MS
1241 if (target_read_memory (pc, &op, 1))
1242 return pc;
e11481da
PM
1243 check = 1;
1244 }
1245 /* Ignore no-op instruction `mov %edi, %edi'.
1246 Microsoft system dlls often start with
1247 a `mov %edi,%edi' instruction.
1248 The 5 bytes before the function start are
1249 filled with `nop' instructions.
1250 This pattern can be used for hot-patching:
1251 The `mov %edi, %edi' instruction can be replaced by a
1252 near jump to the location of the 5 `nop' instructions
1253 which can be replaced by a 32-bit jump to anywhere
1254 in the 32-bit address space. */
1255
1256 else if (op == 0x8b)
1257 {
3dcabaa8
MS
1258 if (target_read_memory (pc + 1, &op, 1))
1259 return pc;
1260
e11481da
PM
1261 if (op == 0xff)
1262 {
1263 pc += 2;
3dcabaa8
MS
1264 if (target_read_memory (pc, &op, 1))
1265 return pc;
1266
e11481da
PM
1267 check = 1;
1268 }
1269 }
1270 }
1271 return pc;
1272}
1273
acd5c798
MK
1274/* Check whether PC points at a code that sets up a new stack frame.
1275 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1276 instruction after the sequence that sets up the frame or LIMIT,
1277 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1278
1279static CORE_ADDR
e17a4113
UW
1280i386_analyze_frame_setup (struct gdbarch *gdbarch,
1281 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1282 struct i386_frame_cache *cache)
1283{
e17a4113 1284 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1285 struct i386_insn *insn;
63c0089f 1286 gdb_byte op;
26604a34 1287 int skip = 0;
acd5c798 1288
37bdc87e
MK
1289 if (limit <= pc)
1290 return limit;
acd5c798 1291
3dcabaa8
MS
1292 if (target_read_memory (pc, &op, 1))
1293 return pc;
acd5c798 1294
c906108c 1295 if (op == 0x55) /* pushl %ebp */
c5aa993b 1296 {
acd5c798
MK
1297 /* Take into account that we've executed the `pushl %ebp' that
1298 starts this instruction sequence. */
fd13a04a 1299 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1300 cache->sp_offset += 4;
37bdc87e 1301 pc++;
acd5c798
MK
1302
1303 /* If that's all, return now. */
37bdc87e
MK
1304 if (limit <= pc)
1305 return limit;
26604a34 1306
b4632131 1307 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1308 GCC into the prologue and skip them. At this point in the
1309 prologue, code should only touch the scratch registers %eax,
1310 %ecx and %edx, so while the number of posibilities is sheer,
1311 it is limited.
5daa5b4e 1312
26604a34
MK
1313 Make sure we only skip these instructions if we later see the
1314 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1315 while (pc + skip < limit)
26604a34 1316 {
37bdc87e
MK
1317 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1318 if (insn == NULL)
1319 break;
b4632131 1320
37bdc87e 1321 skip += insn->len;
26604a34
MK
1322 }
1323
37bdc87e
MK
1324 /* If that's all, return now. */
1325 if (limit <= pc + skip)
1326 return limit;
1327
3dcabaa8
MS
1328 if (target_read_memory (pc + skip, &op, 1))
1329 return pc + skip;
37bdc87e 1330
26604a34 1331 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 1332 switch (op)
c906108c
SS
1333 {
1334 case 0x8b:
e17a4113
UW
1335 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1336 != 0xec)
37bdc87e 1337 return pc;
c906108c
SS
1338 break;
1339 case 0x89:
e17a4113
UW
1340 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1341 != 0xe5)
37bdc87e 1342 return pc;
c906108c
SS
1343 break;
1344 default:
37bdc87e 1345 return pc;
c906108c 1346 }
acd5c798 1347
26604a34
MK
1348 /* OK, we actually have a frame. We just don't know how large
1349 it is yet. Set its size to zero. We'll adjust it if
1350 necessary. We also now commit to skipping the special
1351 instructions mentioned before. */
acd5c798 1352 cache->locals = 0;
37bdc87e 1353 pc += (skip + 2);
acd5c798
MK
1354
1355 /* If that's all, return now. */
37bdc87e
MK
1356 if (limit <= pc)
1357 return limit;
acd5c798 1358
fc338970
MK
1359 /* Check for stack adjustment
1360
acd5c798 1361 subl $XXX, %esp
fc338970 1362
fd35795f 1363 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1364 reg, so we don't have to worry about a data16 prefix. */
3dcabaa8
MS
1365 if (target_read_memory (pc, &op, 1))
1366 return pc;
c906108c
SS
1367 if (op == 0x83)
1368 {
fd35795f 1369 /* `subl' with 8-bit immediate. */
e17a4113 1370 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1371 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1372 return pc;
acd5c798 1373
37bdc87e
MK
1374 /* `subl' with signed 8-bit immediate (though it wouldn't
1375 make sense to be negative). */
e17a4113 1376 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
37bdc87e 1377 return pc + 3;
c906108c
SS
1378 }
1379 else if (op == 0x81)
1380 {
fd35795f 1381 /* Maybe it is `subl' with a 32-bit immediate. */
e17a4113 1382 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1383 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1384 return pc;
acd5c798 1385
fd35795f 1386 /* It is `subl' with a 32-bit immediate. */
e17a4113 1387 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
37bdc87e 1388 return pc + 6;
c906108c
SS
1389 }
1390 else
1391 {
acd5c798 1392 /* Some instruction other than `subl'. */
37bdc87e 1393 return pc;
c906108c
SS
1394 }
1395 }
37bdc87e 1396 else if (op == 0xc8) /* enter */
c906108c 1397 {
e17a4113 1398 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1399 return pc + 4;
c906108c 1400 }
21d0e8a4 1401
acd5c798 1402 return pc;
21d0e8a4
MK
1403}
1404
acd5c798
MK
1405/* Check whether PC points at code that saves registers on the stack.
1406 If so, it updates CACHE and returns the address of the first
1407 instruction after the register saves or CURRENT_PC, whichever is
1408 smaller. Otherwise, return PC. */
6bff26de
MK
1409
1410static CORE_ADDR
acd5c798
MK
1411i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1412 struct i386_frame_cache *cache)
6bff26de 1413{
99ab4326 1414 CORE_ADDR offset = 0;
63c0089f 1415 gdb_byte op;
99ab4326 1416 int i;
c0d1d883 1417
99ab4326
MK
1418 if (cache->locals > 0)
1419 offset -= cache->locals;
1420 for (i = 0; i < 8 && pc < current_pc; i++)
1421 {
3dcabaa8
MS
1422 if (target_read_memory (pc, &op, 1))
1423 return pc;
99ab4326
MK
1424 if (op < 0x50 || op > 0x57)
1425 break;
0d17c81d 1426
99ab4326
MK
1427 offset -= 4;
1428 cache->saved_regs[op - 0x50] = offset;
1429 cache->sp_offset += 4;
1430 pc++;
6bff26de
MK
1431 }
1432
acd5c798 1433 return pc;
22797942
AC
1434}
1435
acd5c798
MK
1436/* Do a full analysis of the prologue at PC and update CACHE
1437 accordingly. Bail out early if CURRENT_PC is reached. Return the
1438 address where the analysis stopped.
ed84f6c1 1439
fc338970
MK
1440 We handle these cases:
1441
1442 The startup sequence can be at the start of the function, or the
1443 function can start with a branch to startup code at the end.
1444
1445 %ebp can be set up with either the 'enter' instruction, or "pushl
1446 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1447 once used in the System V compiler).
1448
1449 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1450 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1451 16-bit unsigned argument for space to allocate, and the 'addl'
1452 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1453
1454 Next, the registers used by this function are pushed. With the
1455 System V compiler they will always be in the order: %edi, %esi,
1456 %ebx (and sometimes a harmless bug causes it to also save but not
1457 restore %eax); however, the code below is willing to see the pushes
1458 in any order, and will handle up to 8 of them.
1459
1460 If the setup sequence is at the end of the function, then the next
1461 instruction will be a branch back to the start. */
c906108c 1462
acd5c798 1463static CORE_ADDR
e17a4113
UW
1464i386_analyze_prologue (struct gdbarch *gdbarch,
1465 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1466 struct i386_frame_cache *cache)
c906108c 1467{
e11481da 1468 pc = i386_skip_noop (pc);
e17a4113 1469 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1470 pc = i386_analyze_struct_return (pc, current_pc, cache);
1471 pc = i386_skip_probe (pc);
92dd43fa 1472 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1473 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1474 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1475}
1476
fc338970 1477/* Return PC of first real instruction. */
c906108c 1478
3a1e71e3 1479static CORE_ADDR
6093d2eb 1480i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1481{
e17a4113
UW
1482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1483
63c0089f 1484 static gdb_byte pic_pat[6] =
acd5c798
MK
1485 {
1486 0xe8, 0, 0, 0, 0, /* call 0x0 */
1487 0x5b, /* popl %ebx */
c5aa993b 1488 };
acd5c798
MK
1489 struct i386_frame_cache cache;
1490 CORE_ADDR pc;
63c0089f 1491 gdb_byte op;
acd5c798 1492 int i;
c5aa993b 1493
acd5c798 1494 cache.locals = -1;
e17a4113 1495 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1496 if (cache.locals < 0)
1497 return start_pc;
c5aa993b 1498
acd5c798 1499 /* Found valid frame setup. */
c906108c 1500
fc338970
MK
1501 /* The native cc on SVR4 in -K PIC mode inserts the following code
1502 to get the address of the global offset table (GOT) into register
acd5c798
MK
1503 %ebx:
1504
fc338970
MK
1505 call 0x0
1506 popl %ebx
1507 movl %ebx,x(%ebp) (optional)
1508 addl y,%ebx
1509
c906108c
SS
1510 This code is with the rest of the prologue (at the end of the
1511 function), so we have to skip it to get to the first real
1512 instruction at the start of the function. */
c5aa993b 1513
c906108c
SS
1514 for (i = 0; i < 6; i++)
1515 {
3dcabaa8
MS
1516 if (target_read_memory (pc + i, &op, 1))
1517 return pc;
1518
c5aa993b 1519 if (pic_pat[i] != op)
c906108c
SS
1520 break;
1521 }
1522 if (i == 6)
1523 {
acd5c798
MK
1524 int delta = 6;
1525
3dcabaa8
MS
1526 if (target_read_memory (pc + delta, &op, 1))
1527 return pc;
c906108c 1528
c5aa993b 1529 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1530 {
e17a4113 1531 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1532
fc338970 1533 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1534 delta += 3;
fc338970 1535 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1536 delta += 6;
fc338970 1537 else /* Unexpected instruction. */
acd5c798
MK
1538 delta = 0;
1539
3dcabaa8
MS
1540 if (target_read_memory (pc + delta, &op, 1))
1541 return pc;
c906108c 1542 }
acd5c798 1543
c5aa993b 1544 /* addl y,%ebx */
acd5c798 1545 if (delta > 0 && op == 0x81
e17a4113
UW
1546 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1547 == 0xc3)
c906108c 1548 {
acd5c798 1549 pc += delta + 6;
c906108c
SS
1550 }
1551 }
c5aa993b 1552
e63bbc88
MK
1553 /* If the function starts with a branch (to startup code at the end)
1554 the last instruction should bring us back to the first
1555 instruction of the real code. */
e17a4113
UW
1556 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1557 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1558
1559 return pc;
c906108c
SS
1560}
1561
4309257c
PM
1562/* Check that the code pointed to by PC corresponds to a call to
1563 __main, skip it if so. Return PC otherwise. */
1564
1565CORE_ADDR
1566i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1567{
e17a4113 1568 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1569 gdb_byte op;
1570
3dcabaa8
MS
1571 if (target_read_memory (pc, &op, 1))
1572 return pc;
4309257c
PM
1573 if (op == 0xe8)
1574 {
1575 gdb_byte buf[4];
1576
1577 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1578 {
1579 /* Make sure address is computed correctly as a 32bit
1580 integer even if CORE_ADDR is 64 bit wide. */
1581 struct minimal_symbol *s;
e17a4113 1582 CORE_ADDR call_dest;
4309257c 1583
e17a4113 1584 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1585 call_dest = call_dest & 0xffffffffU;
1586 s = lookup_minimal_symbol_by_pc (call_dest);
1587 if (s != NULL
1588 && SYMBOL_LINKAGE_NAME (s) != NULL
1589 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1590 pc += 5;
1591 }
1592 }
1593
1594 return pc;
1595}
1596
acd5c798 1597/* This function is 64-bit safe. */
93924b6b 1598
acd5c798
MK
1599static CORE_ADDR
1600i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1601{
63c0089f 1602 gdb_byte buf[8];
acd5c798 1603
875f8d0e 1604 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1605 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1606}
acd5c798 1607\f
93924b6b 1608
acd5c798 1609/* Normal frames. */
c5aa993b 1610
acd5c798 1611static struct i386_frame_cache *
10458914 1612i386_frame_cache (struct frame_info *this_frame, void **this_cache)
a7769679 1613{
e17a4113
UW
1614 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1615 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 1616 struct i386_frame_cache *cache;
63c0089f 1617 gdb_byte buf[4];
acd5c798
MK
1618 int i;
1619
1620 if (*this_cache)
1621 return *this_cache;
1622
fd13a04a 1623 cache = i386_alloc_frame_cache ();
acd5c798
MK
1624 *this_cache = cache;
1625
1626 /* In principle, for normal frames, %ebp holds the frame pointer,
1627 which holds the base address for the current stack frame.
1628 However, for functions that don't need it, the frame pointer is
1629 optional. For these "frameless" functions the frame pointer is
1630 actually the frame pointer of the calling frame. Signal
1631 trampolines are just a special case of a "frameless" function.
1632 They (usually) share their frame pointer with the frame that was
1633 in progress when the signal occurred. */
1634
10458914 1635 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1636 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798
MK
1637 if (cache->base == 0)
1638 return cache;
1639
1640 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1641 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1642
10458914 1643 cache->pc = get_frame_func (this_frame);
acd5c798 1644 if (cache->pc != 0)
e17a4113
UW
1645 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1646 cache);
acd5c798 1647
e0c62198 1648 if (cache->saved_sp_reg != -1)
92dd43fa 1649 {
e0c62198
L
1650 /* Saved stack pointer has been saved. */
1651 get_frame_register (this_frame, cache->saved_sp_reg, buf);
e17a4113 1652 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
92dd43fa
MK
1653 }
1654
acd5c798
MK
1655 if (cache->locals < 0)
1656 {
1657 /* We didn't find a valid frame, which means that CACHE->base
1658 currently holds the frame pointer for our calling frame. If
1659 we're at the start of a function, or somewhere half-way its
1660 prologue, the function's frame probably hasn't been fully
1661 setup yet. Try to reconstruct the base address for the stack
1662 frame by looking at the stack pointer. For truly "frameless"
1663 functions this might work too. */
1664
e0c62198 1665 if (cache->saved_sp_reg != -1)
92dd43fa
MK
1666 {
1667 /* We're halfway aligning the stack. */
1668 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1669 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1670
1671 /* This will be added back below. */
1672 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1673 }
7618e12b
DJ
1674 else if (cache->pc != 0
1675 || target_read_memory (get_frame_pc (this_frame), buf, 1))
92dd43fa 1676 {
7618e12b
DJ
1677 /* We're in a known function, but did not find a frame
1678 setup. Assume that the function does not use %ebp.
1679 Alternatively, we may have jumped to an invalid
1680 address; in that case there is definitely no new
1681 frame in %ebp. */
10458914 1682 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1683 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1684 + cache->sp_offset;
92dd43fa 1685 }
7618e12b
DJ
1686 else
1687 /* We're in an unknown function. We could not find the start
1688 of the function to analyze the prologue; our best option is
1689 to assume a typical frame layout with the caller's %ebp
1690 saved. */
1691 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
1692 }
1693
1694 /* Now that we have the base address for the stack frame we can
1695 calculate the value of %esp in the calling frame. */
92dd43fa
MK
1696 if (cache->saved_sp == 0)
1697 cache->saved_sp = cache->base + 8;
a7769679 1698
acd5c798
MK
1699 /* Adjust all the saved registers such that they contain addresses
1700 instead of offsets. */
1701 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1702 if (cache->saved_regs[i] != -1)
1703 cache->saved_regs[i] += cache->base;
acd5c798
MK
1704
1705 return cache;
a7769679
MK
1706}
1707
3a1e71e3 1708static void
10458914 1709i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1710 struct frame_id *this_id)
c906108c 1711{
10458914 1712 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1713
1714 /* This marks the outermost frame. */
1715 if (cache->base == 0)
1716 return;
1717
3e210248 1718 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1719 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1720}
1721
10458914
DJ
1722static struct value *
1723i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1724 int regnum)
acd5c798 1725{
10458914 1726 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1727
1728 gdb_assert (regnum >= 0);
1729
1730 /* The System V ABI says that:
1731
1732 "The flags register contains the system flags, such as the
1733 direction flag and the carry flag. The direction flag must be
1734 set to the forward (that is, zero) direction before entry and
1735 upon exit from a function. Other user flags have no specified
1736 role in the standard calling sequence and are not preserved."
1737
1738 To guarantee the "upon exit" part of that statement we fake a
1739 saved flags register that has its direction flag cleared.
1740
1741 Note that GCC doesn't seem to rely on the fact that the direction
1742 flag is cleared after a function return; it always explicitly
1743 clears the flag before operations where it matters.
1744
1745 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1746 right thing to do. The way we fake the flags register here makes
1747 it impossible to change it. */
1748
1749 if (regnum == I386_EFLAGS_REGNUM)
1750 {
10458914 1751 ULONGEST val;
c5aa993b 1752
10458914
DJ
1753 val = get_frame_register_unsigned (this_frame, regnum);
1754 val &= ~(1 << 10);
1755 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1756 }
1211c4e4 1757
acd5c798 1758 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1759 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798
MK
1760
1761 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
10458914 1762 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
acd5c798 1763
fd13a04a 1764 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1765 return frame_unwind_got_memory (this_frame, regnum,
1766 cache->saved_regs[regnum]);
fd13a04a 1767
10458914 1768 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1769}
1770
1771static const struct frame_unwind i386_frame_unwind =
1772{
1773 NORMAL_FRAME,
1774 i386_frame_this_id,
10458914
DJ
1775 i386_frame_prev_register,
1776 NULL,
1777 default_frame_sniffer
acd5c798 1778};
06da04c6
MS
1779
1780/* Normal frames, but in a function epilogue. */
1781
1782/* The epilogue is defined here as the 'ret' instruction, which will
1783 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1784 the function's stack frame. */
1785
1786static int
1787i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1788{
1789 gdb_byte insn;
1790
1791 if (target_read_memory (pc, &insn, 1))
1792 return 0; /* Can't read memory at pc. */
1793
1794 if (insn != 0xc3) /* 'ret' instruction. */
1795 return 0;
1796
1797 return 1;
1798}
1799
1800static int
1801i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1802 struct frame_info *this_frame,
1803 void **this_prologue_cache)
1804{
1805 if (frame_relative_level (this_frame) == 0)
1806 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1807 get_frame_pc (this_frame));
1808 else
1809 return 0;
1810}
1811
1812static struct i386_frame_cache *
1813i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1814{
1815 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1816 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1817 struct i386_frame_cache *cache;
1818 gdb_byte buf[4];
1819
1820 if (*this_cache)
1821 return *this_cache;
1822
1823 cache = i386_alloc_frame_cache ();
1824 *this_cache = cache;
1825
1826 /* Cache base will be %esp plus cache->sp_offset (-4). */
1827 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1828 cache->base = extract_unsigned_integer (buf, 4,
1829 byte_order) + cache->sp_offset;
1830
1831 /* Cache pc will be the frame func. */
1832 cache->pc = get_frame_pc (this_frame);
1833
1834 /* The saved %esp will be at cache->base plus 8. */
1835 cache->saved_sp = cache->base + 8;
1836
1837 /* The saved %eip will be at cache->base plus 4. */
1838 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1839
1840 return cache;
1841}
1842
1843static void
1844i386_epilogue_frame_this_id (struct frame_info *this_frame,
1845 void **this_cache,
1846 struct frame_id *this_id)
1847{
1848 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1849 this_cache);
1850
1851 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1852}
1853
1854static const struct frame_unwind i386_epilogue_frame_unwind =
1855{
1856 NORMAL_FRAME,
1857 i386_epilogue_frame_this_id,
1858 i386_frame_prev_register,
1859 NULL,
1860 i386_epilogue_frame_sniffer
1861};
acd5c798
MK
1862\f
1863
1864/* Signal trampolines. */
1865
1866static struct i386_frame_cache *
10458914 1867i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 1868{
e17a4113
UW
1869 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1870 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 1872 struct i386_frame_cache *cache;
acd5c798 1873 CORE_ADDR addr;
63c0089f 1874 gdb_byte buf[4];
acd5c798
MK
1875
1876 if (*this_cache)
1877 return *this_cache;
1878
fd13a04a 1879 cache = i386_alloc_frame_cache ();
acd5c798 1880
10458914 1881 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 1882 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
acd5c798 1883
10458914 1884 addr = tdep->sigcontext_addr (this_frame);
a3386186
MK
1885 if (tdep->sc_reg_offset)
1886 {
1887 int i;
1888
1889 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1890
1891 for (i = 0; i < tdep->sc_num_regs; i++)
1892 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1893 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1894 }
1895 else
1896 {
fd13a04a
AC
1897 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1898 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1899 }
acd5c798
MK
1900
1901 *this_cache = cache;
1902 return cache;
1903}
1904
1905static void
10458914 1906i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
1907 struct frame_id *this_id)
1908{
1909 struct i386_frame_cache *cache =
10458914 1910 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1911
3e210248 1912 /* See the end of i386_push_dummy_call. */
10458914 1913 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
1914}
1915
10458914
DJ
1916static struct value *
1917i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1918 void **this_cache, int regnum)
acd5c798
MK
1919{
1920 /* Make sure we've initialized the cache. */
10458914 1921 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1922
10458914 1923 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 1924}
c0d1d883 1925
10458914
DJ
1926static int
1927i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1928 struct frame_info *this_frame,
1929 void **this_prologue_cache)
acd5c798 1930{
10458914 1931 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 1932
911bc6ee
MK
1933 /* We shouldn't even bother if we don't have a sigcontext_addr
1934 handler. */
1935 if (tdep->sigcontext_addr == NULL)
10458914 1936 return 0;
1c3545ae 1937
911bc6ee
MK
1938 if (tdep->sigtramp_p != NULL)
1939 {
10458914
DJ
1940 if (tdep->sigtramp_p (this_frame))
1941 return 1;
911bc6ee
MK
1942 }
1943
1944 if (tdep->sigtramp_start != 0)
1945 {
10458914 1946 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
1947
1948 gdb_assert (tdep->sigtramp_end != 0);
1949 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 1950 return 1;
911bc6ee 1951 }
acd5c798 1952
10458914 1953 return 0;
acd5c798 1954}
10458914
DJ
1955
1956static const struct frame_unwind i386_sigtramp_frame_unwind =
1957{
1958 SIGTRAMP_FRAME,
1959 i386_sigtramp_frame_this_id,
1960 i386_sigtramp_frame_prev_register,
1961 NULL,
1962 i386_sigtramp_frame_sniffer
1963};
acd5c798
MK
1964\f
1965
1966static CORE_ADDR
10458914 1967i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 1968{
10458914 1969 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1970
1971 return cache->base;
1972}
1973
1974static const struct frame_base i386_frame_base =
1975{
1976 &i386_frame_unwind,
1977 i386_frame_base_address,
1978 i386_frame_base_address,
1979 i386_frame_base_address
1980};
1981
acd5c798 1982static struct frame_id
10458914 1983i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 1984{
acd5c798
MK
1985 CORE_ADDR fp;
1986
10458914 1987 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 1988
3e210248 1989 /* See the end of i386_push_dummy_call. */
10458914 1990 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 1991}
fc338970 1992\f
c906108c 1993
fc338970
MK
1994/* Figure out where the longjmp will land. Slurp the args out of the
1995 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1996 structure from which we extract the address that we will land at.
28bcfd30 1997 This address is copied into PC. This routine returns non-zero on
436675d3 1998 success. */
c906108c 1999
8201327c 2000static int
60ade65d 2001i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2002{
436675d3 2003 gdb_byte buf[4];
c906108c 2004 CORE_ADDR sp, jb_addr;
20a6ec49 2005 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2006 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2007 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2008
8201327c
MK
2009 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2010 longjmp will land. */
2011 if (jb_pc_offset == -1)
c906108c
SS
2012 return 0;
2013
436675d3 2014 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2015 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2016 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2017 return 0;
2018
e17a4113 2019 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2020 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2021 return 0;
c906108c 2022
e17a4113 2023 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2024 return 1;
2025}
fc338970 2026\f
c906108c 2027
7ccc1c74
JM
2028/* Check whether TYPE must be 16-byte-aligned when passed as a
2029 function argument. 16-byte vectors, _Decimal128 and structures or
2030 unions containing such types must be 16-byte-aligned; other
2031 arguments are 4-byte-aligned. */
2032
2033static int
2034i386_16_byte_align_p (struct type *type)
2035{
2036 type = check_typedef (type);
2037 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2038 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2039 && TYPE_LENGTH (type) == 16)
2040 return 1;
2041 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2042 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2043 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2044 || TYPE_CODE (type) == TYPE_CODE_UNION)
2045 {
2046 int i;
2047 for (i = 0; i < TYPE_NFIELDS (type); i++)
2048 {
2049 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2050 return 1;
2051 }
2052 }
2053 return 0;
2054}
2055
3a1e71e3 2056static CORE_ADDR
7d9b040b 2057i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2058 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2059 struct value **args, CORE_ADDR sp, int struct_return,
2060 CORE_ADDR struct_addr)
22f8ba57 2061{
e17a4113 2062 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2063 gdb_byte buf[4];
acd5c798 2064 int i;
7ccc1c74
JM
2065 int write_pass;
2066 int args_space = 0;
acd5c798 2067
7ccc1c74
JM
2068 /* Determine the total space required for arguments and struct
2069 return address in a first pass (allowing for 16-byte-aligned
2070 arguments), then push arguments in a second pass. */
2071
2072 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2073 {
7ccc1c74
JM
2074 int args_space_used = 0;
2075 int have_16_byte_aligned_arg = 0;
2076
2077 if (struct_return)
2078 {
2079 if (write_pass)
2080 {
2081 /* Push value address. */
e17a4113 2082 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2083 write_memory (sp, buf, 4);
2084 args_space_used += 4;
2085 }
2086 else
2087 args_space += 4;
2088 }
2089
2090 for (i = 0; i < nargs; i++)
2091 {
2092 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2093
7ccc1c74
JM
2094 if (write_pass)
2095 {
2096 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2097 args_space_used = align_up (args_space_used, 16);
acd5c798 2098
7ccc1c74
JM
2099 write_memory (sp + args_space_used,
2100 value_contents_all (args[i]), len);
2101 /* The System V ABI says that:
acd5c798 2102
7ccc1c74
JM
2103 "An argument's size is increased, if necessary, to make it a
2104 multiple of [32-bit] words. This may require tail padding,
2105 depending on the size of the argument."
22f8ba57 2106
7ccc1c74
JM
2107 This makes sure the stack stays word-aligned. */
2108 args_space_used += align_up (len, 4);
2109 }
2110 else
2111 {
2112 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2113 {
2114 args_space = align_up (args_space, 16);
2115 have_16_byte_aligned_arg = 1;
2116 }
2117 args_space += align_up (len, 4);
2118 }
2119 }
2120
2121 if (!write_pass)
2122 {
2123 if (have_16_byte_aligned_arg)
2124 args_space = align_up (args_space, 16);
2125 sp -= args_space;
2126 }
22f8ba57
MK
2127 }
2128
acd5c798
MK
2129 /* Store return address. */
2130 sp -= 4;
e17a4113 2131 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2132 write_memory (sp, buf, 4);
2133
2134 /* Finally, update the stack pointer... */
e17a4113 2135 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2136 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2137
2138 /* ...and fake a frame pointer. */
2139 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2140
3e210248
AC
2141 /* MarkK wrote: This "+ 8" is all over the place:
2142 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2143 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2144 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2145 definition of the stack address of a frame. Otherwise frame id
2146 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2147 stack address *before* the function call as a frame's CFA. On
2148 the i386, when %ebp is used as a frame pointer, the offset
2149 between the contents %ebp and the CFA as defined by GCC. */
2150 return sp + 8;
22f8ba57
MK
2151}
2152
1a309862
MK
2153/* These registers are used for returning integers (and on some
2154 targets also for returning `struct' and `union' values when their
ef9dff19 2155 size and alignment match an integer type). */
acd5c798
MK
2156#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2157#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2158
c5e656c1
MK
2159/* Read, for architecture GDBARCH, a function return value of TYPE
2160 from REGCACHE, and copy that into VALBUF. */
1a309862 2161
3a1e71e3 2162static void
c5e656c1 2163i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2164 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2165{
c5e656c1 2166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2167 int len = TYPE_LENGTH (type);
63c0089f 2168 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2169
1e8d0a7b 2170 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2171 {
5716833c 2172 if (tdep->st0_regnum < 0)
1a309862 2173 {
8a3fe4f8 2174 warning (_("Cannot find floating-point return value."));
1a309862 2175 memset (valbuf, 0, len);
ef9dff19 2176 return;
1a309862
MK
2177 }
2178
c6ba6f0d
MK
2179 /* Floating-point return values can be found in %st(0). Convert
2180 its contents to the desired type. This is probably not
2181 exactly how it would happen on the target itself, but it is
2182 the best we can do. */
acd5c798 2183 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2184 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2185 }
2186 else
c5aa993b 2187 {
875f8d0e
UW
2188 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2189 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2190
2191 if (len <= low_size)
00f8375e 2192 {
0818c12a 2193 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2194 memcpy (valbuf, buf, len);
2195 }
d4f3574e
SS
2196 else if (len <= (low_size + high_size))
2197 {
0818c12a 2198 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2199 memcpy (valbuf, buf, low_size);
0818c12a 2200 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2201 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2202 }
2203 else
8e65ff28 2204 internal_error (__FILE__, __LINE__,
1777feb0
MS
2205 _("Cannot extract return value of %d bytes long."),
2206 len);
c906108c
SS
2207 }
2208}
2209
c5e656c1
MK
2210/* Write, for architecture GDBARCH, a function return value of TYPE
2211 from VALBUF into REGCACHE. */
ef9dff19 2212
3a1e71e3 2213static void
c5e656c1 2214i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2215 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2216{
c5e656c1 2217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2218 int len = TYPE_LENGTH (type);
2219
1e8d0a7b 2220 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2221 {
3d7f4f49 2222 ULONGEST fstat;
63c0089f 2223 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2224
5716833c 2225 if (tdep->st0_regnum < 0)
ef9dff19 2226 {
8a3fe4f8 2227 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2228 return;
2229 }
2230
635b0cc1
MK
2231 /* Returning floating-point values is a bit tricky. Apart from
2232 storing the return value in %st(0), we have to simulate the
2233 state of the FPU at function return point. */
2234
c6ba6f0d
MK
2235 /* Convert the value found in VALBUF to the extended
2236 floating-point format used by the FPU. This is probably
2237 not exactly how it would happen on the target itself, but
2238 it is the best we can do. */
27067745 2239 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2240 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2241
635b0cc1
MK
2242 /* Set the top of the floating-point register stack to 7. The
2243 actual value doesn't really matter, but 7 is what a normal
2244 function return would end up with if the program started out
2245 with a freshly initialized FPU. */
20a6ec49 2246 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2247 fstat |= (7 << 11);
20a6ec49 2248 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2249
635b0cc1
MK
2250 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2251 the floating-point register stack to 7, the appropriate value
2252 for the tag word is 0x3fff. */
20a6ec49 2253 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2254 }
2255 else
2256 {
875f8d0e
UW
2257 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2258 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2259
2260 if (len <= low_size)
3d7f4f49 2261 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2262 else if (len <= (low_size + high_size))
2263 {
3d7f4f49
MK
2264 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2265 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2266 len - low_size, valbuf + low_size);
ef9dff19
MK
2267 }
2268 else
8e65ff28 2269 internal_error (__FILE__, __LINE__,
e2e0b3e5 2270 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2271 }
2272}
fc338970 2273\f
ef9dff19 2274
8201327c
MK
2275/* This is the variable that is set with "set struct-convention", and
2276 its legitimate values. */
2277static const char default_struct_convention[] = "default";
2278static const char pcc_struct_convention[] = "pcc";
2279static const char reg_struct_convention[] = "reg";
2280static const char *valid_conventions[] =
2281{
2282 default_struct_convention,
2283 pcc_struct_convention,
2284 reg_struct_convention,
2285 NULL
2286};
2287static const char *struct_convention = default_struct_convention;
2288
0e4377e1
JB
2289/* Return non-zero if TYPE, which is assumed to be a structure,
2290 a union type, or an array type, should be returned in registers
2291 for architecture GDBARCH. */
c5e656c1 2292
8201327c 2293static int
c5e656c1 2294i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2295{
c5e656c1
MK
2296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2297 enum type_code code = TYPE_CODE (type);
2298 int len = TYPE_LENGTH (type);
8201327c 2299
0e4377e1
JB
2300 gdb_assert (code == TYPE_CODE_STRUCT
2301 || code == TYPE_CODE_UNION
2302 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2303
2304 if (struct_convention == pcc_struct_convention
2305 || (struct_convention == default_struct_convention
2306 && tdep->struct_return == pcc_struct_return))
2307 return 0;
2308
9edde48e
MK
2309 /* Structures consisting of a single `float', `double' or 'long
2310 double' member are returned in %st(0). */
2311 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2312 {
2313 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2314 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2315 return (len == 4 || len == 8 || len == 12);
2316 }
2317
c5e656c1
MK
2318 return (len == 1 || len == 2 || len == 4 || len == 8);
2319}
2320
2321/* Determine, for architecture GDBARCH, how a return value of TYPE
2322 should be returned. If it is supposed to be returned in registers,
2323 and READBUF is non-zero, read the appropriate value from REGCACHE,
2324 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2325 from WRITEBUF into REGCACHE. */
2326
2327static enum return_value_convention
c055b101
CV
2328i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2329 struct type *type, struct regcache *regcache,
2330 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2331{
2332 enum type_code code = TYPE_CODE (type);
2333
5daa78cc
TJB
2334 if (((code == TYPE_CODE_STRUCT
2335 || code == TYPE_CODE_UNION
2336 || code == TYPE_CODE_ARRAY)
2337 && !i386_reg_struct_return_p (gdbarch, type))
2338 /* 128-bit decimal float uses the struct return convention. */
2339 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2340 {
2341 /* The System V ABI says that:
2342
2343 "A function that returns a structure or union also sets %eax
2344 to the value of the original address of the caller's area
2345 before it returns. Thus when the caller receives control
2346 again, the address of the returned object resides in register
2347 %eax and can be used to access the object."
2348
2349 So the ABI guarantees that we can always find the return
2350 value just after the function has returned. */
2351
0e4377e1
JB
2352 /* Note that the ABI doesn't mention functions returning arrays,
2353 which is something possible in certain languages such as Ada.
2354 In this case, the value is returned as if it was wrapped in
2355 a record, so the convention applied to records also applies
2356 to arrays. */
2357
31db7b6c
MK
2358 if (readbuf)
2359 {
2360 ULONGEST addr;
2361
2362 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2363 read_memory (addr, readbuf, TYPE_LENGTH (type));
2364 }
2365
2366 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2367 }
c5e656c1
MK
2368
2369 /* This special case is for structures consisting of a single
9edde48e
MK
2370 `float', `double' or 'long double' member. These structures are
2371 returned in %st(0). For these structures, we call ourselves
2372 recursively, changing TYPE into the type of the first member of
2373 the structure. Since that should work for all structures that
2374 have only one member, we don't bother to check the member's type
2375 here. */
c5e656c1
MK
2376 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2377 {
2378 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
2379 return i386_return_value (gdbarch, func_type, type, regcache,
2380 readbuf, writebuf);
c5e656c1
MK
2381 }
2382
2383 if (readbuf)
2384 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2385 if (writebuf)
2386 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2387
c5e656c1 2388 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2389}
2390\f
2391
27067745
UW
2392struct type *
2393i387_ext_type (struct gdbarch *gdbarch)
2394{
2395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2396
2397 if (!tdep->i387_ext_type)
90884b2b
L
2398 {
2399 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2400 gdb_assert (tdep->i387_ext_type != NULL);
2401 }
27067745
UW
2402
2403 return tdep->i387_ext_type;
2404}
2405
c131fcee
L
2406/* Construct vector type for pseudo YMM registers. We can't use
2407 tdesc_find_type since YMM isn't described in target description. */
2408
2409static struct type *
2410i386_ymm_type (struct gdbarch *gdbarch)
2411{
2412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2413
2414 if (!tdep->i386_ymm_type)
2415 {
2416 const struct builtin_type *bt = builtin_type (gdbarch);
2417
2418 /* The type we're building is this: */
2419#if 0
2420 union __gdb_builtin_type_vec256i
2421 {
2422 int128_t uint128[2];
2423 int64_t v2_int64[4];
2424 int32_t v4_int32[8];
2425 int16_t v8_int16[16];
2426 int8_t v16_int8[32];
2427 double v2_double[4];
2428 float v4_float[8];
2429 };
2430#endif
2431
2432 struct type *t;
2433
2434 t = arch_composite_type (gdbarch,
2435 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2436 append_composite_type_field (t, "v8_float",
2437 init_vector_type (bt->builtin_float, 8));
2438 append_composite_type_field (t, "v4_double",
2439 init_vector_type (bt->builtin_double, 4));
2440 append_composite_type_field (t, "v32_int8",
2441 init_vector_type (bt->builtin_int8, 32));
2442 append_composite_type_field (t, "v16_int16",
2443 init_vector_type (bt->builtin_int16, 16));
2444 append_composite_type_field (t, "v8_int32",
2445 init_vector_type (bt->builtin_int32, 8));
2446 append_composite_type_field (t, "v4_int64",
2447 init_vector_type (bt->builtin_int64, 4));
2448 append_composite_type_field (t, "v2_int128",
2449 init_vector_type (bt->builtin_int128, 2));
2450
2451 TYPE_VECTOR (t) = 1;
0c5acf93 2452 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
2453 tdep->i386_ymm_type = t;
2454 }
2455
2456 return tdep->i386_ymm_type;
2457}
2458
794ac428 2459/* Construct vector type for MMX registers. */
90884b2b 2460static struct type *
794ac428
UW
2461i386_mmx_type (struct gdbarch *gdbarch)
2462{
2463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2464
2465 if (!tdep->i386_mmx_type)
2466 {
df4df182
UW
2467 const struct builtin_type *bt = builtin_type (gdbarch);
2468
794ac428
UW
2469 /* The type we're building is this: */
2470#if 0
2471 union __gdb_builtin_type_vec64i
2472 {
2473 int64_t uint64;
2474 int32_t v2_int32[2];
2475 int16_t v4_int16[4];
2476 int8_t v8_int8[8];
2477 };
2478#endif
2479
2480 struct type *t;
2481
e9bb382b
UW
2482 t = arch_composite_type (gdbarch,
2483 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2484
2485 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2486 append_composite_type_field (t, "v2_int32",
df4df182 2487 init_vector_type (bt->builtin_int32, 2));
794ac428 2488 append_composite_type_field (t, "v4_int16",
df4df182 2489 init_vector_type (bt->builtin_int16, 4));
794ac428 2490 append_composite_type_field (t, "v8_int8",
df4df182 2491 init_vector_type (bt->builtin_int8, 8));
794ac428 2492
876cecd0 2493 TYPE_VECTOR (t) = 1;
794ac428
UW
2494 TYPE_NAME (t) = "builtin_type_vec64i";
2495 tdep->i386_mmx_type = t;
2496 }
2497
2498 return tdep->i386_mmx_type;
2499}
2500
d7a0d72c 2501/* Return the GDB type object for the "standard" data type of data in
1777feb0 2502 register REGNUM. */
d7a0d72c 2503
3a1e71e3 2504static struct type *
90884b2b 2505i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2506{
1ba53b71
L
2507 if (i386_mmx_regnum_p (gdbarch, regnum))
2508 return i386_mmx_type (gdbarch);
c131fcee
L
2509 else if (i386_ymm_regnum_p (gdbarch, regnum))
2510 return i386_ymm_type (gdbarch);
1ba53b71
L
2511 else
2512 {
2513 const struct builtin_type *bt = builtin_type (gdbarch);
2514 if (i386_byte_regnum_p (gdbarch, regnum))
2515 return bt->builtin_int8;
2516 else if (i386_word_regnum_p (gdbarch, regnum))
2517 return bt->builtin_int16;
2518 else if (i386_dword_regnum_p (gdbarch, regnum))
2519 return bt->builtin_int32;
2520 }
2521
2522 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
2523}
2524
28fc6740 2525/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2526 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2527
2528static int
c86c27af 2529i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2530{
5716833c
MK
2531 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2532 int mmxreg, fpreg;
28fc6740
AC
2533 ULONGEST fstat;
2534 int tos;
c86c27af 2535
5716833c 2536 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2537 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2538 tos = (fstat >> 11) & 0x7;
5716833c
MK
2539 fpreg = (mmxreg + tos) % 8;
2540
20a6ec49 2541 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2542}
2543
05d1431c 2544enum register_status
28fc6740 2545i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2546 int regnum, gdb_byte *buf)
28fc6740 2547{
1ba53b71 2548 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 2549 enum register_status status;
1ba53b71 2550
5716833c 2551 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2552 {
c86c27af
MK
2553 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2554
28fc6740 2555 /* Extract (always little endian). */
05d1431c
PA
2556 status = regcache_raw_read (regcache, fpnum, raw_buf);
2557 if (status != REG_VALID)
2558 return status;
1ba53b71 2559 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
2560 }
2561 else
1ba53b71
L
2562 {
2563 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2564
c131fcee
L
2565 if (i386_ymm_regnum_p (gdbarch, regnum))
2566 {
2567 regnum -= tdep->ymm0_regnum;
2568
1777feb0 2569 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
2570 status = regcache_raw_read (regcache,
2571 I387_XMM0_REGNUM (tdep) + regnum,
2572 raw_buf);
2573 if (status != REG_VALID)
2574 return status;
c131fcee
L
2575 memcpy (buf, raw_buf, 16);
2576 /* Read upper 128bits. */
05d1431c
PA
2577 status = regcache_raw_read (regcache,
2578 tdep->ymm0h_regnum + regnum,
2579 raw_buf);
2580 if (status != REG_VALID)
2581 return status;
c131fcee
L
2582 memcpy (buf + 16, raw_buf, 16);
2583 }
2584 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2585 {
2586 int gpnum = regnum - tdep->ax_regnum;
2587
2588 /* Extract (always little endian). */
05d1431c
PA
2589 status = regcache_raw_read (regcache, gpnum, raw_buf);
2590 if (status != REG_VALID)
2591 return status;
1ba53b71
L
2592 memcpy (buf, raw_buf, 2);
2593 }
2594 else if (i386_byte_regnum_p (gdbarch, regnum))
2595 {
2596 /* Check byte pseudo registers last since this function will
2597 be called from amd64_pseudo_register_read, which handles
2598 byte pseudo registers differently. */
2599 int gpnum = regnum - tdep->al_regnum;
2600
2601 /* Extract (always little endian). We read both lower and
2602 upper registers. */
05d1431c
PA
2603 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2604 if (status != REG_VALID)
2605 return status;
1ba53b71
L
2606 if (gpnum >= 4)
2607 memcpy (buf, raw_buf + 1, 1);
2608 else
2609 memcpy (buf, raw_buf, 1);
2610 }
2611 else
2612 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2613 }
05d1431c
PA
2614
2615 return REG_VALID;
28fc6740
AC
2616}
2617
1ba53b71 2618void
28fc6740 2619i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2620 int regnum, const gdb_byte *buf)
28fc6740 2621{
1ba53b71
L
2622 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2623
5716833c 2624 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2625 {
c86c27af
MK
2626 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2627
28fc6740 2628 /* Read ... */
1ba53b71 2629 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 2630 /* ... Modify ... (always little endian). */
1ba53b71 2631 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 2632 /* ... Write. */
1ba53b71 2633 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
2634 }
2635 else
1ba53b71
L
2636 {
2637 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2638
c131fcee
L
2639 if (i386_ymm_regnum_p (gdbarch, regnum))
2640 {
2641 regnum -= tdep->ymm0_regnum;
2642
2643 /* ... Write lower 128bits. */
2644 regcache_raw_write (regcache,
2645 I387_XMM0_REGNUM (tdep) + regnum,
2646 buf);
2647 /* ... Write upper 128bits. */
2648 regcache_raw_write (regcache,
2649 tdep->ymm0h_regnum + regnum,
2650 buf + 16);
2651 }
2652 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2653 {
2654 int gpnum = regnum - tdep->ax_regnum;
2655
2656 /* Read ... */
2657 regcache_raw_read (regcache, gpnum, raw_buf);
2658 /* ... Modify ... (always little endian). */
2659 memcpy (raw_buf, buf, 2);
2660 /* ... Write. */
2661 regcache_raw_write (regcache, gpnum, raw_buf);
2662 }
2663 else if (i386_byte_regnum_p (gdbarch, regnum))
2664 {
2665 /* Check byte pseudo registers last since this function will
2666 be called from amd64_pseudo_register_read, which handles
2667 byte pseudo registers differently. */
2668 int gpnum = regnum - tdep->al_regnum;
2669
2670 /* Read ... We read both lower and upper registers. */
2671 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2672 /* ... Modify ... (always little endian). */
2673 if (gpnum >= 4)
2674 memcpy (raw_buf + 1, buf, 1);
2675 else
2676 memcpy (raw_buf, buf, 1);
2677 /* ... Write. */
2678 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2679 }
2680 else
2681 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2682 }
28fc6740 2683}
ff2e87ac
AC
2684\f
2685
ff2e87ac
AC
2686/* Return the register number of the register allocated by GCC after
2687 REGNUM, or -1 if there is no such register. */
2688
2689static int
2690i386_next_regnum (int regnum)
2691{
2692 /* GCC allocates the registers in the order:
2693
2694 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2695
2696 Since storing a variable in %esp doesn't make any sense we return
2697 -1 for %ebp and for %esp itself. */
2698 static int next_regnum[] =
2699 {
2700 I386_EDX_REGNUM, /* Slot for %eax. */
2701 I386_EBX_REGNUM, /* Slot for %ecx. */
2702 I386_ECX_REGNUM, /* Slot for %edx. */
2703 I386_ESI_REGNUM, /* Slot for %ebx. */
2704 -1, -1, /* Slots for %esp and %ebp. */
2705 I386_EDI_REGNUM, /* Slot for %esi. */
2706 I386_EBP_REGNUM /* Slot for %edi. */
2707 };
2708
de5b9bb9 2709 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 2710 return next_regnum[regnum];
28fc6740 2711
ff2e87ac
AC
2712 return -1;
2713}
2714
2715/* Return nonzero if a value of type TYPE stored in register REGNUM
2716 needs any special handling. */
d7a0d72c 2717
3a1e71e3 2718static int
1777feb0
MS
2719i386_convert_register_p (struct gdbarch *gdbarch,
2720 int regnum, struct type *type)
d7a0d72c 2721{
de5b9bb9
MK
2722 int len = TYPE_LENGTH (type);
2723
ff2e87ac
AC
2724 /* Values may be spread across multiple registers. Most debugging
2725 formats aren't expressive enough to specify the locations, so
2726 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
2727 have a length that is a multiple of the word size, since GCC
2728 doesn't seem to put any other types into registers. */
2729 if (len > 4 && len % 4 == 0)
2730 {
2731 int last_regnum = regnum;
2732
2733 while (len > 4)
2734 {
2735 last_regnum = i386_next_regnum (last_regnum);
2736 len -= 4;
2737 }
2738
2739 if (last_regnum != -1)
2740 return 1;
2741 }
ff2e87ac 2742
0abe36f5 2743 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
2744}
2745
ff2e87ac
AC
2746/* Read a value of type TYPE from register REGNUM in frame FRAME, and
2747 return its contents in TO. */
ac27f131 2748
8dccd430 2749static int
ff2e87ac 2750i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
2751 struct type *type, gdb_byte *to,
2752 int *optimizedp, int *unavailablep)
ac27f131 2753{
20a6ec49 2754 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 2755 int len = TYPE_LENGTH (type);
de5b9bb9 2756
20a6ec49 2757 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
2758 return i387_register_to_value (frame, regnum, type, to,
2759 optimizedp, unavailablep);
ff2e87ac 2760
fd35795f 2761 /* Read a value spread across multiple registers. */
de5b9bb9
MK
2762
2763 gdb_assert (len > 4 && len % 4 == 0);
3d261580 2764
de5b9bb9
MK
2765 while (len > 0)
2766 {
2767 gdb_assert (regnum != -1);
20a6ec49 2768 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 2769
8dccd430
PA
2770 if (!get_frame_register_bytes (frame, regnum, 0,
2771 register_size (gdbarch, regnum),
2772 to, optimizedp, unavailablep))
2773 return 0;
2774
de5b9bb9
MK
2775 regnum = i386_next_regnum (regnum);
2776 len -= 4;
42835c2b 2777 to += 4;
de5b9bb9 2778 }
8dccd430
PA
2779
2780 *optimizedp = *unavailablep = 0;
2781 return 1;
ac27f131
MK
2782}
2783
ff2e87ac
AC
2784/* Write the contents FROM of a value of type TYPE into register
2785 REGNUM in frame FRAME. */
ac27f131 2786
3a1e71e3 2787static void
ff2e87ac 2788i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 2789 struct type *type, const gdb_byte *from)
ac27f131 2790{
de5b9bb9 2791 int len = TYPE_LENGTH (type);
de5b9bb9 2792
20a6ec49 2793 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 2794 {
d532c08f
MK
2795 i387_value_to_register (frame, regnum, type, from);
2796 return;
2797 }
3d261580 2798
fd35795f 2799 /* Write a value spread across multiple registers. */
de5b9bb9
MK
2800
2801 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 2802
de5b9bb9
MK
2803 while (len > 0)
2804 {
2805 gdb_assert (regnum != -1);
875f8d0e 2806 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 2807
42835c2b 2808 put_frame_register (frame, regnum, from);
de5b9bb9
MK
2809 regnum = i386_next_regnum (regnum);
2810 len -= 4;
42835c2b 2811 from += 4;
de5b9bb9 2812 }
ac27f131 2813}
ff2e87ac 2814\f
7fdafb5a
MK
2815/* Supply register REGNUM from the buffer specified by GREGS and LEN
2816 in the general-purpose register set REGSET to register cache
2817 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 2818
20187ed5 2819void
473f17b0
MK
2820i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2821 int regnum, const void *gregs, size_t len)
2822{
9ea75c57 2823 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2824 const gdb_byte *regs = gregs;
473f17b0
MK
2825 int i;
2826
2827 gdb_assert (len == tdep->sizeof_gregset);
2828
2829 for (i = 0; i < tdep->gregset_num_regs; i++)
2830 {
2831 if ((regnum == i || regnum == -1)
2832 && tdep->gregset_reg_offset[i] != -1)
2833 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2834 }
2835}
2836
7fdafb5a
MK
2837/* Collect register REGNUM from the register cache REGCACHE and store
2838 it in the buffer specified by GREGS and LEN as described by the
2839 general-purpose register set REGSET. If REGNUM is -1, do this for
2840 all registers in REGSET. */
2841
2842void
2843i386_collect_gregset (const struct regset *regset,
2844 const struct regcache *regcache,
2845 int regnum, void *gregs, size_t len)
2846{
2847 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2848 gdb_byte *regs = gregs;
7fdafb5a
MK
2849 int i;
2850
2851 gdb_assert (len == tdep->sizeof_gregset);
2852
2853 for (i = 0; i < tdep->gregset_num_regs; i++)
2854 {
2855 if ((regnum == i || regnum == -1)
2856 && tdep->gregset_reg_offset[i] != -1)
2857 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2858 }
2859}
2860
2861/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2862 in the floating-point register set REGSET to register cache
2863 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2864
2865static void
2866i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2867 int regnum, const void *fpregs, size_t len)
2868{
9ea75c57 2869 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2870
66a72d25
MK
2871 if (len == I387_SIZEOF_FXSAVE)
2872 {
2873 i387_supply_fxsave (regcache, regnum, fpregs);
2874 return;
2875 }
2876
473f17b0
MK
2877 gdb_assert (len == tdep->sizeof_fpregset);
2878 i387_supply_fsave (regcache, regnum, fpregs);
2879}
8446b36a 2880
2f305df1
MK
2881/* Collect register REGNUM from the register cache REGCACHE and store
2882 it in the buffer specified by FPREGS and LEN as described by the
2883 floating-point register set REGSET. If REGNUM is -1, do this for
2884 all registers in REGSET. */
7fdafb5a
MK
2885
2886static void
2887i386_collect_fpregset (const struct regset *regset,
2888 const struct regcache *regcache,
2889 int regnum, void *fpregs, size_t len)
2890{
2891 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2892
2893 if (len == I387_SIZEOF_FXSAVE)
2894 {
2895 i387_collect_fxsave (regcache, regnum, fpregs);
2896 return;
2897 }
2898
2899 gdb_assert (len == tdep->sizeof_fpregset);
2900 i387_collect_fsave (regcache, regnum, fpregs);
2901}
2902
c131fcee
L
2903/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
2904
2905static void
2906i386_supply_xstateregset (const struct regset *regset,
2907 struct regcache *regcache, int regnum,
2908 const void *xstateregs, size_t len)
2909{
c131fcee
L
2910 i387_supply_xsave (regcache, regnum, xstateregs);
2911}
2912
2913/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
2914
2915static void
2916i386_collect_xstateregset (const struct regset *regset,
2917 const struct regcache *regcache,
2918 int regnum, void *xstateregs, size_t len)
2919{
c131fcee
L
2920 i387_collect_xsave (regcache, regnum, xstateregs, 1);
2921}
2922
8446b36a
MK
2923/* Return the appropriate register set for the core section identified
2924 by SECT_NAME and SECT_SIZE. */
2925
2926const struct regset *
2927i386_regset_from_core_section (struct gdbarch *gdbarch,
2928 const char *sect_name, size_t sect_size)
2929{
2930 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2931
2932 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2933 {
2934 if (tdep->gregset == NULL)
7fdafb5a
MK
2935 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2936 i386_collect_gregset);
8446b36a
MK
2937 return tdep->gregset;
2938 }
2939
66a72d25
MK
2940 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2941 || (strcmp (sect_name, ".reg-xfp") == 0
2942 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2943 {
2944 if (tdep->fpregset == NULL)
7fdafb5a
MK
2945 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2946 i386_collect_fpregset);
8446b36a
MK
2947 return tdep->fpregset;
2948 }
2949
c131fcee
L
2950 if (strcmp (sect_name, ".reg-xstate") == 0)
2951 {
2952 if (tdep->xstateregset == NULL)
2953 tdep->xstateregset = regset_alloc (gdbarch,
2954 i386_supply_xstateregset,
2955 i386_collect_xstateregset);
2956
2957 return tdep->xstateregset;
2958 }
2959
8446b36a
MK
2960 return NULL;
2961}
473f17b0 2962\f
fc338970 2963
fc338970 2964/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2965
2966CORE_ADDR
e17a4113
UW
2967i386_pe_skip_trampoline_code (struct frame_info *frame,
2968 CORE_ADDR pc, char *name)
c906108c 2969{
e17a4113
UW
2970 struct gdbarch *gdbarch = get_frame_arch (frame);
2971 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2972
2973 /* jmp *(dest) */
2974 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 2975 {
e17a4113
UW
2976 unsigned long indirect =
2977 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 2978 struct minimal_symbol *indsym =
fc338970 2979 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2980 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2981
c5aa993b 2982 if (symname)
c906108c 2983 {
c5aa993b
JM
2984 if (strncmp (symname, "__imp_", 6) == 0
2985 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
2986 return name ? 1 :
2987 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
2988 }
2989 }
fc338970 2990 return 0; /* Not a trampoline. */
c906108c 2991}
fc338970
MK
2992\f
2993
10458914
DJ
2994/* Return whether the THIS_FRAME corresponds to a sigtramp
2995 routine. */
8201327c 2996
4bd207ef 2997int
10458914 2998i386_sigtramp_p (struct frame_info *this_frame)
8201327c 2999{
10458914 3000 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
3001 char *name;
3002
3003 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3004 return (name && strcmp ("_sigtramp", name) == 0);
3005}
3006\f
3007
fc338970
MK
3008/* We have two flavours of disassembly. The machinery on this page
3009 deals with switching between those. */
c906108c
SS
3010
3011static int
a89aa300 3012i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3013{
5e3397bb
MK
3014 gdb_assert (disassembly_flavor == att_flavor
3015 || disassembly_flavor == intel_flavor);
3016
3017 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3018 constified, cast to prevent a compiler warning. */
3019 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3020
3021 return print_insn_i386 (pc, info);
7a292a7a 3022}
fc338970 3023\f
3ce1502b 3024
8201327c
MK
3025/* There are a few i386 architecture variants that differ only
3026 slightly from the generic i386 target. For now, we don't give them
3027 their own source file, but include them here. As a consequence,
3028 they'll always be included. */
3ce1502b 3029
8201327c 3030/* System V Release 4 (SVR4). */
3ce1502b 3031
10458914
DJ
3032/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3033 routine. */
911bc6ee 3034
8201327c 3035static int
10458914 3036i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3037{
10458914 3038 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
3039 char *name;
3040
acd5c798
MK
3041 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3042 currently unknown. */
911bc6ee 3043 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3044 return (name && (strcmp ("_sigreturn", name) == 0
3045 || strcmp ("_sigacthandler", name) == 0
3046 || strcmp ("sigvechandler", name) == 0));
3047}
d2a7c97a 3048
10458914
DJ
3049/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3050 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3051
3a1e71e3 3052static CORE_ADDR
10458914 3053i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3054{
e17a4113
UW
3055 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3056 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3057 gdb_byte buf[4];
acd5c798 3058 CORE_ADDR sp;
3ce1502b 3059
10458914 3060 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3061 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3062
e17a4113 3063 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c
MK
3064}
3065\f
3ce1502b 3066
8201327c 3067/* Generic ELF. */
d2a7c97a 3068
8201327c
MK
3069void
3070i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3071{
c4fc7f1b
MK
3072 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3073 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 3074}
3ce1502b 3075
8201327c 3076/* System V Release 4 (SVR4). */
3ce1502b 3077
8201327c
MK
3078void
3079i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3080{
3081 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3082
8201327c
MK
3083 /* System V Release 4 uses ELF. */
3084 i386_elf_init_abi (info, gdbarch);
3ce1502b 3085
dfe01d39 3086 /* System V Release 4 has shared libraries. */
dfe01d39
MK
3087 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3088
911bc6ee 3089 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 3090 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
3091 tdep->sc_pc_offset = 36 + 14 * 4;
3092 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 3093
8201327c 3094 tdep->jb_pc_offset = 20;
3ce1502b
MK
3095}
3096
8201327c 3097/* DJGPP. */
3ce1502b 3098
3a1e71e3 3099static void
8201327c 3100i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 3101{
8201327c 3102 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3103
911bc6ee
MK
3104 /* DJGPP doesn't have any special frames for signal handlers. */
3105 tdep->sigtramp_p = NULL;
3ce1502b 3106
8201327c 3107 tdep->jb_pc_offset = 36;
15430fc0
EZ
3108
3109 /* DJGPP does not support the SSE registers. */
3a13a53b
L
3110 if (! tdesc_has_registers (info.target_desc))
3111 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
3112
3113 /* Native compiler is GCC, which uses the SVR4 register numbering
3114 even in COFF and STABS. See the comment in i386_gdbarch_init,
3115 before the calls to set_gdbarch_stab_reg_to_regnum and
3116 set_gdbarch_sdb_reg_to_regnum. */
3117 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3118 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
3119
3120 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 3121}
8201327c 3122\f
2acceee2 3123
38c968cf
AC
3124/* i386 register groups. In addition to the normal groups, add "mmx"
3125 and "sse". */
3126
3127static struct reggroup *i386_sse_reggroup;
3128static struct reggroup *i386_mmx_reggroup;
3129
3130static void
3131i386_init_reggroups (void)
3132{
3133 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3134 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3135}
3136
3137static void
3138i386_add_reggroups (struct gdbarch *gdbarch)
3139{
3140 reggroup_add (gdbarch, i386_sse_reggroup);
3141 reggroup_add (gdbarch, i386_mmx_reggroup);
3142 reggroup_add (gdbarch, general_reggroup);
3143 reggroup_add (gdbarch, float_reggroup);
3144 reggroup_add (gdbarch, all_reggroup);
3145 reggroup_add (gdbarch, save_reggroup);
3146 reggroup_add (gdbarch, restore_reggroup);
3147 reggroup_add (gdbarch, vector_reggroup);
3148 reggroup_add (gdbarch, system_reggroup);
3149}
3150
3151int
3152i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3153 struct reggroup *group)
3154{
c131fcee
L
3155 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3156 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3157 ymm_regnum_p, ymmh_regnum_p;
acd5c798 3158
1ba53b71
L
3159 /* Don't include pseudo registers, except for MMX, in any register
3160 groups. */
c131fcee 3161 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
3162 return 0;
3163
c131fcee 3164 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3165 return 0;
3166
c131fcee 3167 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
3168 return 0;
3169
3170 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
3171 if (group == i386_mmx_reggroup)
3172 return mmx_regnum_p;
1ba53b71 3173
c131fcee
L
3174 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3175 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 3176 if (group == i386_sse_reggroup)
c131fcee
L
3177 return xmm_regnum_p || mxcsr_regnum_p;
3178
3179 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
38c968cf 3180 if (group == vector_reggroup)
c131fcee
L
3181 return (mmx_regnum_p
3182 || ymm_regnum_p
3183 || mxcsr_regnum_p
3184 || (xmm_regnum_p
3185 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3186 == I386_XSTATE_SSE_MASK)));
1ba53b71
L
3187
3188 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3189 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
3190 if (group == float_reggroup)
3191 return fp_regnum_p;
1ba53b71 3192
c131fcee
L
3193 /* For "info reg all", don't include upper YMM registers nor XMM
3194 registers when AVX is supported. */
3195 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3196 if (group == all_reggroup
3197 && ((xmm_regnum_p
3198 && (tdep->xcr0 & I386_XSTATE_AVX))
3199 || ymmh_regnum_p))
3200 return 0;
3201
38c968cf 3202 if (group == general_reggroup)
1ba53b71
L
3203 return (!fp_regnum_p
3204 && !mmx_regnum_p
c131fcee
L
3205 && !mxcsr_regnum_p
3206 && !xmm_regnum_p
3207 && !ymm_regnum_p
3208 && !ymmh_regnum_p);
acd5c798 3209
38c968cf
AC
3210 return default_register_reggroup_p (gdbarch, regnum, group);
3211}
38c968cf 3212\f
acd5c798 3213
f837910f
MK
3214/* Get the ARGIth function argument for the current function. */
3215
42c466d7 3216static CORE_ADDR
143985b7
AF
3217i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3218 struct type *type)
3219{
e17a4113
UW
3220 struct gdbarch *gdbarch = get_frame_arch (frame);
3221 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f837910f 3222 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 3223 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
3224}
3225
514f746b
AR
3226static void
3227i386_skip_permanent_breakpoint (struct regcache *regcache)
3228{
3229 CORE_ADDR current_pc = regcache_read_pc (regcache);
3230
3231 /* On i386, breakpoint is exactly 1 byte long, so we just
3232 adjust the PC in the regcache. */
3233 current_pc += 1;
3234 regcache_write_pc (regcache, current_pc);
3235}
3236
3237
7ad10968
HZ
3238#define PREFIX_REPZ 0x01
3239#define PREFIX_REPNZ 0x02
3240#define PREFIX_LOCK 0x04
3241#define PREFIX_DATA 0x08
3242#define PREFIX_ADDR 0x10
473f17b0 3243
7ad10968
HZ
3244/* operand size */
3245enum
3246{
3247 OT_BYTE = 0,
3248 OT_WORD,
3249 OT_LONG,
cf648174 3250 OT_QUAD,
a3c4230a 3251 OT_DQUAD,
7ad10968 3252};
473f17b0 3253
7ad10968
HZ
3254/* i386 arith/logic operations */
3255enum
3256{
3257 OP_ADDL,
3258 OP_ORL,
3259 OP_ADCL,
3260 OP_SBBL,
3261 OP_ANDL,
3262 OP_SUBL,
3263 OP_XORL,
3264 OP_CMPL,
3265};
5716833c 3266
7ad10968
HZ
3267struct i386_record_s
3268{
cf648174 3269 struct gdbarch *gdbarch;
7ad10968 3270 struct regcache *regcache;
df61f520 3271 CORE_ADDR orig_addr;
7ad10968
HZ
3272 CORE_ADDR addr;
3273 int aflag;
3274 int dflag;
3275 int override;
3276 uint8_t modrm;
3277 uint8_t mod, reg, rm;
3278 int ot;
cf648174
HZ
3279 uint8_t rex_x;
3280 uint8_t rex_b;
3281 int rip_offset;
3282 int popl_esp_hack;
3283 const int *regmap;
7ad10968 3284};
5716833c 3285
7ad10968 3286/* Parse "modrm" part in current memory address that irp->addr point to
1777feb0 3287 Return -1 if something wrong. */
5716833c 3288
7ad10968
HZ
3289static int
3290i386_record_modrm (struct i386_record_s *irp)
3291{
cf648174 3292 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 3293
7ad10968
HZ
3294 if (target_read_memory (irp->addr, &irp->modrm, 1))
3295 {
3296 if (record_debug)
3297 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3298 "addr %s len = 1.\n"),
3299 paddress (gdbarch, irp->addr));
7ad10968
HZ
3300 return -1;
3301 }
3302 irp->addr++;
3303 irp->mod = (irp->modrm >> 6) & 3;
3304 irp->reg = (irp->modrm >> 3) & 7;
3305 irp->rm = irp->modrm & 7;
5716833c 3306
7ad10968
HZ
3307 return 0;
3308}
d2a7c97a 3309
7ad10968
HZ
3310/* Get the memory address that current instruction write to and set it to
3311 the argument "addr".
1777feb0 3312 Return -1 if something wrong. */
8201327c 3313
7ad10968 3314static int
cf648174 3315i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 3316{
cf648174 3317 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
3318 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3319 gdb_byte buf[4];
3320 ULONGEST offset64;
21d0e8a4 3321
7ad10968
HZ
3322 *addr = 0;
3323 if (irp->aflag)
3324 {
3325 /* 32 bits */
3326 int havesib = 0;
3327 uint8_t scale = 0;
648d0c8b 3328 uint8_t byte;
7ad10968
HZ
3329 uint8_t index = 0;
3330 uint8_t base = irp->rm;
896fb97d 3331
7ad10968
HZ
3332 if (base == 4)
3333 {
3334 havesib = 1;
648d0c8b 3335 if (target_read_memory (irp->addr, &byte, 1))
7ad10968
HZ
3336 {
3337 if (record_debug)
3338 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3339 "at addr %s len = 1.\n"),
3340 paddress (gdbarch, irp->addr));
7ad10968
HZ
3341 return -1;
3342 }
3343 irp->addr++;
648d0c8b
MS
3344 scale = (byte >> 6) & 3;
3345 index = ((byte >> 3) & 7) | irp->rex_x;
3346 base = (byte & 7);
7ad10968 3347 }
cf648174 3348 base |= irp->rex_b;
21d0e8a4 3349
7ad10968
HZ
3350 switch (irp->mod)
3351 {
3352 case 0:
3353 if ((base & 7) == 5)
3354 {
3355 base = 0xff;
60a1502a 3356 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
3357 {
3358 if (record_debug)
3359 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3360 "memory at addr %s len = 4.\n"),
3361 paddress (gdbarch, irp->addr));
7ad10968
HZ
3362 return -1;
3363 }
3364 irp->addr += 4;
60a1502a 3365 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
3366 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3367 *addr += irp->addr + irp->rip_offset;
7ad10968 3368 }
7ad10968
HZ
3369 break;
3370 case 1:
60a1502a 3371 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
3372 {
3373 if (record_debug)
3374 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3375 "at addr %s len = 1.\n"),
3376 paddress (gdbarch, irp->addr));
7ad10968
HZ
3377 return -1;
3378 }
3379 irp->addr++;
60a1502a 3380 *addr = (int8_t) buf[0];
7ad10968
HZ
3381 break;
3382 case 2:
60a1502a 3383 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
3384 {
3385 if (record_debug)
3386 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3387 "at addr %s len = 4.\n"),
3388 paddress (gdbarch, irp->addr));
7ad10968
HZ
3389 return -1;
3390 }
60a1502a 3391 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
3392 irp->addr += 4;
3393 break;
3394 }
356a6b3e 3395
60a1502a 3396 offset64 = 0;
7ad10968 3397 if (base != 0xff)
cf648174
HZ
3398 {
3399 if (base == 4 && irp->popl_esp_hack)
3400 *addr += irp->popl_esp_hack;
3401 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 3402 &offset64);
7ad10968 3403 }
cf648174
HZ
3404 if (irp->aflag == 2)
3405 {
60a1502a 3406 *addr += offset64;
cf648174
HZ
3407 }
3408 else
60a1502a 3409 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 3410
7ad10968
HZ
3411 if (havesib && (index != 4 || scale != 0))
3412 {
cf648174 3413 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 3414 &offset64);
cf648174 3415 if (irp->aflag == 2)
60a1502a 3416 *addr += offset64 << scale;
cf648174 3417 else
60a1502a 3418 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968
HZ
3419 }
3420 }
3421 else
3422 {
3423 /* 16 bits */
3424 switch (irp->mod)
3425 {
3426 case 0:
3427 if (irp->rm == 6)
3428 {
60a1502a 3429 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
3430 {
3431 if (record_debug)
3432 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3433 "memory at addr %s len = 2.\n"),
3434 paddress (gdbarch, irp->addr));
7ad10968
HZ
3435 return -1;
3436 }
3437 irp->addr += 2;
60a1502a 3438 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
3439 irp->rm = 0;
3440 goto no_rm;
3441 }
7ad10968
HZ
3442 break;
3443 case 1:
60a1502a 3444 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
3445 {
3446 if (record_debug)
3447 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3448 "at addr %s len = 1.\n"),
3449 paddress (gdbarch, irp->addr));
7ad10968
HZ
3450 return -1;
3451 }
3452 irp->addr++;
60a1502a 3453 *addr = (int8_t) buf[0];
7ad10968
HZ
3454 break;
3455 case 2:
60a1502a 3456 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
3457 {
3458 if (record_debug)
3459 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3460 "at addr %s len = 2.\n"),
3461 paddress (gdbarch, irp->addr));
7ad10968
HZ
3462 return -1;
3463 }
3464 irp->addr += 2;
60a1502a 3465 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
3466 break;
3467 }
c4fc7f1b 3468
7ad10968
HZ
3469 switch (irp->rm)
3470 {
3471 case 0:
cf648174
HZ
3472 regcache_raw_read_unsigned (irp->regcache,
3473 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3474 &offset64);
3475 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3476 regcache_raw_read_unsigned (irp->regcache,
3477 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3478 &offset64);
3479 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3480 break;
3481 case 1:
cf648174
HZ
3482 regcache_raw_read_unsigned (irp->regcache,
3483 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3484 &offset64);
3485 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3486 regcache_raw_read_unsigned (irp->regcache,
3487 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3488 &offset64);
3489 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3490 break;
3491 case 2:
cf648174
HZ
3492 regcache_raw_read_unsigned (irp->regcache,
3493 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3494 &offset64);
3495 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3496 regcache_raw_read_unsigned (irp->regcache,
3497 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3498 &offset64);
3499 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3500 break;
3501 case 3:
cf648174
HZ
3502 regcache_raw_read_unsigned (irp->regcache,
3503 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3504 &offset64);
3505 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3506 regcache_raw_read_unsigned (irp->regcache,
3507 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3508 &offset64);
3509 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3510 break;
3511 case 4:
cf648174
HZ
3512 regcache_raw_read_unsigned (irp->regcache,
3513 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3514 &offset64);
3515 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3516 break;
3517 case 5:
cf648174
HZ
3518 regcache_raw_read_unsigned (irp->regcache,
3519 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3520 &offset64);
3521 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3522 break;
3523 case 6:
cf648174
HZ
3524 regcache_raw_read_unsigned (irp->regcache,
3525 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3526 &offset64);
3527 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3528 break;
3529 case 7:
cf648174
HZ
3530 regcache_raw_read_unsigned (irp->regcache,
3531 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3532 &offset64);
3533 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3534 break;
3535 }
3536 *addr &= 0xffff;
3537 }
c4fc7f1b 3538
01fe1b41 3539 no_rm:
7ad10968
HZ
3540 return 0;
3541}
c4fc7f1b 3542
7ad10968
HZ
3543/* Record the value of the memory that willbe changed in current instruction
3544 to "record_arch_list".
1777feb0 3545 Return -1 if something wrong. */
356a6b3e 3546
7ad10968
HZ
3547static int
3548i386_record_lea_modrm (struct i386_record_s *irp)
3549{
cf648174
HZ
3550 struct gdbarch *gdbarch = irp->gdbarch;
3551 uint64_t addr;
356a6b3e 3552
d7877f7e 3553 if (irp->override >= 0)
7ad10968 3554 {
bb08c432
HZ
3555 if (record_memory_query)
3556 {
3557 int q;
3558
3559 target_terminal_ours ();
3560 q = yquery (_("\
3561Process record ignores the memory change of instruction at address %s\n\
3562because it can't get the value of the segment register.\n\
3563Do you want to stop the program?"),
3564 paddress (gdbarch, irp->orig_addr));
3565 target_terminal_inferior ();
3566 if (q)
3567 return -1;
3568 }
3569
7ad10968
HZ
3570 return 0;
3571 }
61113f8b 3572
7ad10968
HZ
3573 if (i386_record_lea_modrm_addr (irp, &addr))
3574 return -1;
96297dab 3575
7ad10968
HZ
3576 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3577 return -1;
a62cc96e 3578
7ad10968
HZ
3579 return 0;
3580}
b6197528 3581
cf648174 3582/* Record the push operation to "record_arch_list".
1777feb0 3583 Return -1 if something wrong. */
cf648174
HZ
3584
3585static int
3586i386_record_push (struct i386_record_s *irp, int size)
3587{
648d0c8b 3588 ULONGEST addr;
cf648174
HZ
3589
3590 if (record_arch_list_add_reg (irp->regcache,
3591 irp->regmap[X86_RECORD_RESP_REGNUM]))
3592 return -1;
3593 regcache_raw_read_unsigned (irp->regcache,
3594 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b
MS
3595 &addr);
3596 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
3597 return -1;
3598
3599 return 0;
3600}
3601
0289bdd7
MS
3602
3603/* Defines contents to record. */
3604#define I386_SAVE_FPU_REGS 0xfffd
3605#define I386_SAVE_FPU_ENV 0xfffe
3606#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3607
1777feb0
MS
3608/* Record the value of floating point registers which will be changed
3609 by the current instruction to "record_arch_list". Return -1 if
3610 something is wrong. */
0289bdd7
MS
3611
3612static int i386_record_floats (struct gdbarch *gdbarch,
3613 struct i386_record_s *ir,
3614 uint32_t iregnum)
3615{
3616 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3617 int i;
3618
3619 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3620 happen. Currently we store st0-st7 registers, but we need not store all
3621 registers all the time, in future we use ftag register and record only
3622 those who are not marked as an empty. */
3623
3624 if (I386_SAVE_FPU_REGS == iregnum)
3625 {
3626 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3627 {
3628 if (record_arch_list_add_reg (ir->regcache, i))
3629 return -1;
3630 }
3631 }
3632 else if (I386_SAVE_FPU_ENV == iregnum)
3633 {
3634 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3635 {
3636 if (record_arch_list_add_reg (ir->regcache, i))
3637 return -1;
3638 }
3639 }
3640 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3641 {
3642 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3643 {
3644 if (record_arch_list_add_reg (ir->regcache, i))
3645 return -1;
3646 }
3647 }
3648 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3649 (iregnum <= I387_FOP_REGNUM (tdep)))
3650 {
3651 if (record_arch_list_add_reg (ir->regcache,iregnum))
3652 return -1;
3653 }
3654 else
3655 {
3656 /* Parameter error. */
3657 return -1;
3658 }
3659 if(I386_SAVE_FPU_ENV != iregnum)
3660 {
3661 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3662 {
3663 if (record_arch_list_add_reg (ir->regcache, i))
3664 return -1;
3665 }
3666 }
3667 return 0;
3668}
3669
7ad10968
HZ
3670/* Parse the current instruction and record the values of the registers and
3671 memory that will be changed in current instruction to "record_arch_list".
1777feb0 3672 Return -1 if something wrong. */
8201327c 3673
cf648174
HZ
3674#define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3675 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3676
a6b808b4 3677int
7ad10968 3678i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 3679 CORE_ADDR input_addr)
7ad10968 3680{
60a1502a 3681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 3682 int prefixes = 0;
580879fc 3683 int regnum = 0;
425b824a
MS
3684 uint32_t opcode;
3685 uint8_t opcode8;
648d0c8b 3686 ULONGEST addr;
60a1502a 3687 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 3688 struct i386_record_s ir;
0289bdd7 3689 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
3690 int rex = 0;
3691 uint8_t rex_w = -1;
3692 uint8_t rex_r = 0;
7ad10968 3693
8408d274 3694 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 3695 ir.regcache = regcache;
648d0c8b
MS
3696 ir.addr = input_addr;
3697 ir.orig_addr = input_addr;
7ad10968
HZ
3698 ir.aflag = 1;
3699 ir.dflag = 1;
cf648174
HZ
3700 ir.override = -1;
3701 ir.popl_esp_hack = 0;
a3c4230a 3702 ir.regmap = tdep->record_regmap;
cf648174 3703 ir.gdbarch = gdbarch;
7ad10968
HZ
3704
3705 if (record_debug > 1)
3706 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
3707 "addr = %s\n",
3708 paddress (gdbarch, ir.addr));
7ad10968
HZ
3709
3710 /* prefixes */
3711 while (1)
3712 {
425b824a 3713 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
3714 {
3715 if (record_debug)
3716 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3717 "addr %s len = 1.\n"),
3718 paddress (gdbarch, ir.addr));
7ad10968
HZ
3719 return -1;
3720 }
3721 ir.addr++;
425b824a 3722 switch (opcode8) /* Instruction prefixes */
7ad10968 3723 {
01fe1b41 3724 case REPE_PREFIX_OPCODE:
7ad10968
HZ
3725 prefixes |= PREFIX_REPZ;
3726 break;
01fe1b41 3727 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
3728 prefixes |= PREFIX_REPNZ;
3729 break;
01fe1b41 3730 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
3731 prefixes |= PREFIX_LOCK;
3732 break;
01fe1b41 3733 case CS_PREFIX_OPCODE:
cf648174 3734 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 3735 break;
01fe1b41 3736 case SS_PREFIX_OPCODE:
cf648174 3737 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 3738 break;
01fe1b41 3739 case DS_PREFIX_OPCODE:
cf648174 3740 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 3741 break;
01fe1b41 3742 case ES_PREFIX_OPCODE:
cf648174 3743 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 3744 break;
01fe1b41 3745 case FS_PREFIX_OPCODE:
cf648174 3746 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 3747 break;
01fe1b41 3748 case GS_PREFIX_OPCODE:
cf648174 3749 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 3750 break;
01fe1b41 3751 case DATA_PREFIX_OPCODE:
7ad10968
HZ
3752 prefixes |= PREFIX_DATA;
3753 break;
01fe1b41 3754 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
3755 prefixes |= PREFIX_ADDR;
3756 break;
d691bec7
MS
3757 case 0x40: /* i386 inc %eax */
3758 case 0x41: /* i386 inc %ecx */
3759 case 0x42: /* i386 inc %edx */
3760 case 0x43: /* i386 inc %ebx */
3761 case 0x44: /* i386 inc %esp */
3762 case 0x45: /* i386 inc %ebp */
3763 case 0x46: /* i386 inc %esi */
3764 case 0x47: /* i386 inc %edi */
3765 case 0x48: /* i386 dec %eax */
3766 case 0x49: /* i386 dec %ecx */
3767 case 0x4a: /* i386 dec %edx */
3768 case 0x4b: /* i386 dec %ebx */
3769 case 0x4c: /* i386 dec %esp */
3770 case 0x4d: /* i386 dec %ebp */
3771 case 0x4e: /* i386 dec %esi */
3772 case 0x4f: /* i386 dec %edi */
3773 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
3774 {
3775 /* REX */
3776 rex = 1;
425b824a
MS
3777 rex_w = (opcode8 >> 3) & 1;
3778 rex_r = (opcode8 & 0x4) << 1;
3779 ir.rex_x = (opcode8 & 0x2) << 2;
3780 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 3781 }
d691bec7
MS
3782 else /* 32 bit target */
3783 goto out_prefixes;
cf648174 3784 break;
7ad10968
HZ
3785 default:
3786 goto out_prefixes;
3787 break;
3788 }
3789 }
01fe1b41 3790 out_prefixes:
cf648174
HZ
3791 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3792 {
3793 ir.dflag = 2;
3794 }
3795 else
3796 {
3797 if (prefixes & PREFIX_DATA)
3798 ir.dflag ^= 1;
3799 }
7ad10968
HZ
3800 if (prefixes & PREFIX_ADDR)
3801 ir.aflag ^= 1;
cf648174
HZ
3802 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3803 ir.aflag = 2;
7ad10968 3804
1777feb0 3805 /* Now check op code. */
425b824a 3806 opcode = (uint32_t) opcode8;
01fe1b41 3807 reswitch:
7ad10968
HZ
3808 switch (opcode)
3809 {
3810 case 0x0f:
425b824a 3811 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
3812 {
3813 if (record_debug)
3814 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3815 "addr %s len = 1.\n"),
3816 paddress (gdbarch, ir.addr));
7ad10968
HZ
3817 return -1;
3818 }
3819 ir.addr++;
a3c4230a 3820 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
3821 goto reswitch;
3822 break;
93924b6b 3823
a38bba38 3824 case 0x00: /* arith & logic */
7ad10968
HZ
3825 case 0x01:
3826 case 0x02:
3827 case 0x03:
3828 case 0x04:
3829 case 0x05:
3830 case 0x08:
3831 case 0x09:
3832 case 0x0a:
3833 case 0x0b:
3834 case 0x0c:
3835 case 0x0d:
3836 case 0x10:
3837 case 0x11:
3838 case 0x12:
3839 case 0x13:
3840 case 0x14:
3841 case 0x15:
3842 case 0x18:
3843 case 0x19:
3844 case 0x1a:
3845 case 0x1b:
3846 case 0x1c:
3847 case 0x1d:
3848 case 0x20:
3849 case 0x21:
3850 case 0x22:
3851 case 0x23:
3852 case 0x24:
3853 case 0x25:
3854 case 0x28:
3855 case 0x29:
3856 case 0x2a:
3857 case 0x2b:
3858 case 0x2c:
3859 case 0x2d:
3860 case 0x30:
3861 case 0x31:
3862 case 0x32:
3863 case 0x33:
3864 case 0x34:
3865 case 0x35:
3866 case 0x38:
3867 case 0x39:
3868 case 0x3a:
3869 case 0x3b:
3870 case 0x3c:
3871 case 0x3d:
3872 if (((opcode >> 3) & 7) != OP_CMPL)
3873 {
3874 if ((opcode & 1) == 0)
3875 ir.ot = OT_BYTE;
3876 else
3877 ir.ot = ir.dflag + OT_WORD;
93924b6b 3878
7ad10968
HZ
3879 switch ((opcode >> 1) & 3)
3880 {
a38bba38 3881 case 0: /* OP Ev, Gv */
7ad10968
HZ
3882 if (i386_record_modrm (&ir))
3883 return -1;
3884 if (ir.mod != 3)
3885 {
3886 if (i386_record_lea_modrm (&ir))
3887 return -1;
3888 }
3889 else
3890 {
cf648174
HZ
3891 ir.rm |= ir.rex_b;
3892 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3893 ir.rm &= 0x3;
cf648174 3894 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
3895 }
3896 break;
a38bba38 3897 case 1: /* OP Gv, Ev */
7ad10968
HZ
3898 if (i386_record_modrm (&ir))
3899 return -1;
cf648174
HZ
3900 ir.reg |= rex_r;
3901 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3902 ir.reg &= 0x3;
cf648174 3903 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 3904 break;
a38bba38 3905 case 2: /* OP A, Iv */
cf648174 3906 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
3907 break;
3908 }
3909 }
cf648174 3910 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3911 break;
42fdc8df 3912
a38bba38 3913 case 0x80: /* GRP1 */
7ad10968
HZ
3914 case 0x81:
3915 case 0x82:
3916 case 0x83:
3917 if (i386_record_modrm (&ir))
3918 return -1;
8201327c 3919
7ad10968
HZ
3920 if (ir.reg != OP_CMPL)
3921 {
3922 if ((opcode & 1) == 0)
3923 ir.ot = OT_BYTE;
3924 else
3925 ir.ot = ir.dflag + OT_WORD;
28fc6740 3926
7ad10968
HZ
3927 if (ir.mod != 3)
3928 {
cf648174
HZ
3929 if (opcode == 0x83)
3930 ir.rip_offset = 1;
3931 else
3932 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
3933 if (i386_record_lea_modrm (&ir))
3934 return -1;
3935 }
3936 else
cf648174 3937 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 3938 }
cf648174 3939 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3940 break;
5e3397bb 3941
a38bba38 3942 case 0x40: /* inc */
7ad10968
HZ
3943 case 0x41:
3944 case 0x42:
3945 case 0x43:
3946 case 0x44:
3947 case 0x45:
3948 case 0x46:
3949 case 0x47:
a38bba38
MS
3950
3951 case 0x48: /* dec */
7ad10968
HZ
3952 case 0x49:
3953 case 0x4a:
3954 case 0x4b:
3955 case 0x4c:
3956 case 0x4d:
3957 case 0x4e:
3958 case 0x4f:
a38bba38 3959
cf648174
HZ
3960 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3961 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3962 break;
acd5c798 3963
a38bba38 3964 case 0xf6: /* GRP3 */
7ad10968
HZ
3965 case 0xf7:
3966 if ((opcode & 1) == 0)
3967 ir.ot = OT_BYTE;
3968 else
3969 ir.ot = ir.dflag + OT_WORD;
3970 if (i386_record_modrm (&ir))
3971 return -1;
acd5c798 3972
cf648174
HZ
3973 if (ir.mod != 3 && ir.reg == 0)
3974 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3975
7ad10968
HZ
3976 switch (ir.reg)
3977 {
a38bba38 3978 case 0: /* test */
cf648174 3979 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3980 break;
a38bba38
MS
3981 case 2: /* not */
3982 case 3: /* neg */
7ad10968
HZ
3983 if (ir.mod != 3)
3984 {
3985 if (i386_record_lea_modrm (&ir))
3986 return -1;
3987 }
3988 else
3989 {
cf648174
HZ
3990 ir.rm |= ir.rex_b;
3991 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3992 ir.rm &= 0x3;
cf648174 3993 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 3994 }
a38bba38 3995 if (ir.reg == 3) /* neg */
cf648174 3996 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3997 break;
a38bba38
MS
3998 case 4: /* mul */
3999 case 5: /* imul */
4000 case 6: /* div */
4001 case 7: /* idiv */
cf648174 4002 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 4003 if (ir.ot != OT_BYTE)
cf648174
HZ
4004 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4005 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4006 break;
4007 default:
4008 ir.addr -= 2;
4009 opcode = opcode << 8 | ir.modrm;
4010 goto no_support;
4011 break;
4012 }
4013 break;
4014
a38bba38
MS
4015 case 0xfe: /* GRP4 */
4016 case 0xff: /* GRP5 */
7ad10968
HZ
4017 if (i386_record_modrm (&ir))
4018 return -1;
4019 if (ir.reg >= 2 && opcode == 0xfe)
4020 {
4021 ir.addr -= 2;
4022 opcode = opcode << 8 | ir.modrm;
4023 goto no_support;
4024 }
7ad10968
HZ
4025 switch (ir.reg)
4026 {
a38bba38
MS
4027 case 0: /* inc */
4028 case 1: /* dec */
cf648174
HZ
4029 if ((opcode & 1) == 0)
4030 ir.ot = OT_BYTE;
4031 else
4032 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4033 if (ir.mod != 3)
4034 {
4035 if (i386_record_lea_modrm (&ir))
4036 return -1;
4037 }
4038 else
4039 {
cf648174
HZ
4040 ir.rm |= ir.rex_b;
4041 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4042 ir.rm &= 0x3;
cf648174 4043 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4044 }
cf648174 4045 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4046 break;
a38bba38 4047 case 2: /* call */
cf648174
HZ
4048 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4049 ir.dflag = 2;
4050 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4051 return -1;
cf648174 4052 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4053 break;
a38bba38 4054 case 3: /* lcall */
cf648174
HZ
4055 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4056 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4057 return -1;
cf648174 4058 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4059 break;
a38bba38
MS
4060 case 4: /* jmp */
4061 case 5: /* ljmp */
cf648174
HZ
4062 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4063 break;
a38bba38 4064 case 6: /* push */
cf648174
HZ
4065 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4066 ir.dflag = 2;
4067 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4068 return -1;
7ad10968
HZ
4069 break;
4070 default:
4071 ir.addr -= 2;
4072 opcode = opcode << 8 | ir.modrm;
4073 goto no_support;
4074 break;
4075 }
4076 break;
4077
a38bba38 4078 case 0x84: /* test */
7ad10968
HZ
4079 case 0x85:
4080 case 0xa8:
4081 case 0xa9:
cf648174 4082 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4083 break;
4084
a38bba38 4085 case 0x98: /* CWDE/CBW */
cf648174 4086 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4087 break;
4088
a38bba38 4089 case 0x99: /* CDQ/CWD */
cf648174
HZ
4090 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4091 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4092 break;
4093
a38bba38 4094 case 0x0faf: /* imul */
7ad10968
HZ
4095 case 0x69:
4096 case 0x6b:
4097 ir.ot = ir.dflag + OT_WORD;
4098 if (i386_record_modrm (&ir))
4099 return -1;
cf648174
HZ
4100 if (opcode == 0x69)
4101 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4102 else if (opcode == 0x6b)
4103 ir.rip_offset = 1;
4104 ir.reg |= rex_r;
4105 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4106 ir.reg &= 0x3;
cf648174
HZ
4107 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4108 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4109 break;
4110
a38bba38 4111 case 0x0fc0: /* xadd */
7ad10968
HZ
4112 case 0x0fc1:
4113 if ((opcode & 1) == 0)
4114 ir.ot = OT_BYTE;
4115 else
4116 ir.ot = ir.dflag + OT_WORD;
4117 if (i386_record_modrm (&ir))
4118 return -1;
cf648174 4119 ir.reg |= rex_r;
7ad10968
HZ
4120 if (ir.mod == 3)
4121 {
cf648174 4122 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4123 ir.reg &= 0x3;
cf648174
HZ
4124 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4125 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4126 ir.rm &= 0x3;
cf648174 4127 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4128 }
4129 else
4130 {
4131 if (i386_record_lea_modrm (&ir))
4132 return -1;
cf648174 4133 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4134 ir.reg &= 0x3;
cf648174 4135 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4136 }
cf648174 4137 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4138 break;
4139
a38bba38 4140 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
4141 case 0x0fb1:
4142 if ((opcode & 1) == 0)
4143 ir.ot = OT_BYTE;
4144 else
4145 ir.ot = ir.dflag + OT_WORD;
4146 if (i386_record_modrm (&ir))
4147 return -1;
4148 if (ir.mod == 3)
4149 {
cf648174
HZ
4150 ir.reg |= rex_r;
4151 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4152 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4153 ir.reg &= 0x3;
cf648174 4154 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4155 }
4156 else
4157 {
cf648174 4158 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4159 if (i386_record_lea_modrm (&ir))
4160 return -1;
4161 }
cf648174 4162 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4163 break;
4164
a38bba38 4165 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
4166 if (i386_record_modrm (&ir))
4167 return -1;
4168 if (ir.mod == 3)
4169 {
4170 ir.addr -= 2;
4171 opcode = opcode << 8 | ir.modrm;
4172 goto no_support;
4173 }
cf648174
HZ
4174 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4175 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4176 if (i386_record_lea_modrm (&ir))
4177 return -1;
cf648174 4178 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4179 break;
4180
a38bba38 4181 case 0x50: /* push */
7ad10968
HZ
4182 case 0x51:
4183 case 0x52:
4184 case 0x53:
4185 case 0x54:
4186 case 0x55:
4187 case 0x56:
4188 case 0x57:
4189 case 0x68:
4190 case 0x6a:
cf648174
HZ
4191 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4192 ir.dflag = 2;
4193 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4194 return -1;
4195 break;
4196
a38bba38
MS
4197 case 0x06: /* push es */
4198 case 0x0e: /* push cs */
4199 case 0x16: /* push ss */
4200 case 0x1e: /* push ds */
cf648174
HZ
4201 if (ir.regmap[X86_RECORD_R8_REGNUM])
4202 {
4203 ir.addr -= 1;
4204 goto no_support;
4205 }
4206 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4207 return -1;
4208 break;
4209
a38bba38
MS
4210 case 0x0fa0: /* push fs */
4211 case 0x0fa8: /* push gs */
cf648174
HZ
4212 if (ir.regmap[X86_RECORD_R8_REGNUM])
4213 {
4214 ir.addr -= 2;
4215 goto no_support;
4216 }
4217 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4218 return -1;
cf648174
HZ
4219 break;
4220
a38bba38 4221 case 0x60: /* pusha */
cf648174
HZ
4222 if (ir.regmap[X86_RECORD_R8_REGNUM])
4223 {
4224 ir.addr -= 1;
4225 goto no_support;
4226 }
4227 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
4228 return -1;
4229 break;
4230
a38bba38 4231 case 0x58: /* pop */
7ad10968
HZ
4232 case 0x59:
4233 case 0x5a:
4234 case 0x5b:
4235 case 0x5c:
4236 case 0x5d:
4237 case 0x5e:
4238 case 0x5f:
cf648174
HZ
4239 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4240 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4241 break;
4242
a38bba38 4243 case 0x61: /* popa */
cf648174
HZ
4244 if (ir.regmap[X86_RECORD_R8_REGNUM])
4245 {
4246 ir.addr -= 1;
4247 goto no_support;
7ad10968 4248 }
425b824a
MS
4249 for (regnum = X86_RECORD_REAX_REGNUM;
4250 regnum <= X86_RECORD_REDI_REGNUM;
4251 regnum++)
4252 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
4253 break;
4254
a38bba38 4255 case 0x8f: /* pop */
cf648174
HZ
4256 if (ir.regmap[X86_RECORD_R8_REGNUM])
4257 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4258 else
4259 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4260 if (i386_record_modrm (&ir))
4261 return -1;
4262 if (ir.mod == 3)
cf648174 4263 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
4264 else
4265 {
cf648174 4266 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
4267 if (i386_record_lea_modrm (&ir))
4268 return -1;
4269 }
cf648174 4270 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
4271 break;
4272
a38bba38 4273 case 0xc8: /* enter */
cf648174
HZ
4274 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4275 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4276 ir.dflag = 2;
4277 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
4278 return -1;
4279 break;
4280
a38bba38 4281 case 0xc9: /* leave */
cf648174
HZ
4282 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4283 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
4284 break;
4285
a38bba38 4286 case 0x07: /* pop es */
cf648174
HZ
4287 if (ir.regmap[X86_RECORD_R8_REGNUM])
4288 {
4289 ir.addr -= 1;
4290 goto no_support;
4291 }
4292 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4293 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4294 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4295 break;
4296
a38bba38 4297 case 0x17: /* pop ss */
cf648174
HZ
4298 if (ir.regmap[X86_RECORD_R8_REGNUM])
4299 {
4300 ir.addr -= 1;
4301 goto no_support;
4302 }
4303 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4304 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4305 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4306 break;
4307
a38bba38 4308 case 0x1f: /* pop ds */
cf648174
HZ
4309 if (ir.regmap[X86_RECORD_R8_REGNUM])
4310 {
4311 ir.addr -= 1;
4312 goto no_support;
4313 }
4314 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4315 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4316 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4317 break;
4318
a38bba38 4319 case 0x0fa1: /* pop fs */
cf648174
HZ
4320 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4321 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4322 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4323 break;
4324
a38bba38 4325 case 0x0fa9: /* pop gs */
cf648174
HZ
4326 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4327 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4328 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4329 break;
4330
a38bba38 4331 case 0x88: /* mov */
7ad10968
HZ
4332 case 0x89:
4333 case 0xc6:
4334 case 0xc7:
4335 if ((opcode & 1) == 0)
4336 ir.ot = OT_BYTE;
4337 else
4338 ir.ot = ir.dflag + OT_WORD;
4339
4340 if (i386_record_modrm (&ir))
4341 return -1;
4342
4343 if (ir.mod != 3)
4344 {
cf648174
HZ
4345 if (opcode == 0xc6 || opcode == 0xc7)
4346 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4347 if (i386_record_lea_modrm (&ir))
4348 return -1;
4349 }
4350 else
4351 {
cf648174
HZ
4352 if (opcode == 0xc6 || opcode == 0xc7)
4353 ir.rm |= ir.rex_b;
4354 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4355 ir.rm &= 0x3;
cf648174 4356 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4357 }
7ad10968 4358 break;
cf648174 4359
a38bba38 4360 case 0x8a: /* mov */
7ad10968
HZ
4361 case 0x8b:
4362 if ((opcode & 1) == 0)
4363 ir.ot = OT_BYTE;
4364 else
4365 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4366 if (i386_record_modrm (&ir))
4367 return -1;
cf648174
HZ
4368 ir.reg |= rex_r;
4369 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4370 ir.reg &= 0x3;
cf648174
HZ
4371 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4372 break;
7ad10968 4373
a38bba38 4374 case 0x8c: /* mov seg */
cf648174 4375 if (i386_record_modrm (&ir))
7ad10968 4376 return -1;
cf648174
HZ
4377 if (ir.reg > 5)
4378 {
4379 ir.addr -= 2;
4380 opcode = opcode << 8 | ir.modrm;
4381 goto no_support;
4382 }
4383
4384 if (ir.mod == 3)
4385 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4386 else
4387 {
4388 ir.ot = OT_WORD;
4389 if (i386_record_lea_modrm (&ir))
4390 return -1;
4391 }
7ad10968
HZ
4392 break;
4393
a38bba38 4394 case 0x8e: /* mov seg */
7ad10968
HZ
4395 if (i386_record_modrm (&ir))
4396 return -1;
7ad10968
HZ
4397 switch (ir.reg)
4398 {
4399 case 0:
425b824a 4400 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
4401 break;
4402 case 2:
425b824a 4403 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
4404 break;
4405 case 3:
425b824a 4406 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
4407 break;
4408 case 4:
425b824a 4409 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
4410 break;
4411 case 5:
425b824a 4412 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
4413 break;
4414 default:
4415 ir.addr -= 2;
4416 opcode = opcode << 8 | ir.modrm;
4417 goto no_support;
4418 break;
4419 }
425b824a 4420 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174 4421 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4422 break;
4423
a38bba38
MS
4424 case 0x0fb6: /* movzbS */
4425 case 0x0fb7: /* movzwS */
4426 case 0x0fbe: /* movsbS */
4427 case 0x0fbf: /* movswS */
7ad10968
HZ
4428 if (i386_record_modrm (&ir))
4429 return -1;
cf648174 4430 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
4431 break;
4432
a38bba38 4433 case 0x8d: /* lea */
7ad10968
HZ
4434 if (i386_record_modrm (&ir))
4435 return -1;
4436 if (ir.mod == 3)
4437 {
4438 ir.addr -= 2;
4439 opcode = opcode << 8 | ir.modrm;
4440 goto no_support;
4441 }
7ad10968 4442 ir.ot = ir.dflag;
cf648174
HZ
4443 ir.reg |= rex_r;
4444 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4445 ir.reg &= 0x3;
cf648174 4446 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4447 break;
4448
a38bba38 4449 case 0xa0: /* mov EAX */
7ad10968 4450 case 0xa1:
a38bba38
MS
4451
4452 case 0xd7: /* xlat */
cf648174 4453 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4454 break;
4455
a38bba38 4456 case 0xa2: /* mov EAX */
7ad10968 4457 case 0xa3:
d7877f7e 4458 if (ir.override >= 0)
cf648174 4459 {
bb08c432
HZ
4460 if (record_memory_query)
4461 {
4462 int q;
4463
4464 target_terminal_ours ();
4465 q = yquery (_("\
4466Process record ignores the memory change of instruction at address %s\n\
4467because it can't get the value of the segment register.\n\
4468Do you want to stop the program?"),
4469 paddress (gdbarch, ir.orig_addr));
4470 target_terminal_inferior ();
4471 if (q)
4472 return -1;
4473 }
cf648174
HZ
4474 }
4475 else
4476 {
4477 if ((opcode & 1) == 0)
4478 ir.ot = OT_BYTE;
4479 else
4480 ir.ot = ir.dflag + OT_WORD;
4481 if (ir.aflag == 2)
4482 {
60a1502a 4483 if (target_read_memory (ir.addr, buf, 8))
cf648174
HZ
4484 {
4485 if (record_debug)
4486 printf_unfiltered (_("Process record: error reading "
4487 "memory at addr 0x%s len = 8.\n"),
4488 paddress (gdbarch, ir.addr));
4489 return -1;
4490 }
4491 ir.addr += 8;
60a1502a 4492 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
4493 }
4494 else if (ir.aflag)
4495 {
60a1502a 4496 if (target_read_memory (ir.addr, buf, 4))
cf648174
HZ
4497 {
4498 if (record_debug)
4499 printf_unfiltered (_("Process record: error reading "
4500 "memory at addr 0x%s len = 4.\n"),
4501 paddress (gdbarch, ir.addr));
4502 return -1;
4503 }
4504 ir.addr += 4;
60a1502a 4505 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
4506 }
4507 else
4508 {
60a1502a 4509 if (target_read_memory (ir.addr, buf, 2))
cf648174
HZ
4510 {
4511 if (record_debug)
4512 printf_unfiltered (_("Process record: error reading "
4513 "memory at addr 0x%s len = 2.\n"),
4514 paddress (gdbarch, ir.addr));
4515 return -1;
4516 }
4517 ir.addr += 2;
60a1502a 4518 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 4519 }
648d0c8b 4520 if (record_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
4521 return -1;
4522 }
7ad10968
HZ
4523 break;
4524
a38bba38 4525 case 0xb0: /* mov R, Ib */
7ad10968
HZ
4526 case 0xb1:
4527 case 0xb2:
4528 case 0xb3:
4529 case 0xb4:
4530 case 0xb5:
4531 case 0xb6:
4532 case 0xb7:
cf648174
HZ
4533 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4534 ? ((opcode & 0x7) | ir.rex_b)
4535 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
4536 break;
4537
a38bba38 4538 case 0xb8: /* mov R, Iv */
7ad10968
HZ
4539 case 0xb9:
4540 case 0xba:
4541 case 0xbb:
4542 case 0xbc:
4543 case 0xbd:
4544 case 0xbe:
4545 case 0xbf:
cf648174 4546 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4547 break;
4548
a38bba38 4549 case 0x91: /* xchg R, EAX */
7ad10968
HZ
4550 case 0x92:
4551 case 0x93:
4552 case 0x94:
4553 case 0x95:
4554 case 0x96:
4555 case 0x97:
cf648174
HZ
4556 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4557 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
4558 break;
4559
a38bba38 4560 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
4561 case 0x87:
4562 if ((opcode & 1) == 0)
4563 ir.ot = OT_BYTE;
4564 else
4565 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4566 if (i386_record_modrm (&ir))
4567 return -1;
7ad10968
HZ
4568 if (ir.mod == 3)
4569 {
86839d38 4570 ir.rm |= ir.rex_b;
cf648174
HZ
4571 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4572 ir.rm &= 0x3;
4573 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4574 }
4575 else
4576 {
4577 if (i386_record_lea_modrm (&ir))
4578 return -1;
4579 }
cf648174
HZ
4580 ir.reg |= rex_r;
4581 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4582 ir.reg &= 0x3;
cf648174 4583 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4584 break;
4585
a38bba38
MS
4586 case 0xc4: /* les Gv */
4587 case 0xc5: /* lds Gv */
cf648174
HZ
4588 if (ir.regmap[X86_RECORD_R8_REGNUM])
4589 {
4590 ir.addr -= 1;
4591 goto no_support;
4592 }
d3f323f3 4593 /* FALLTHROUGH */
a38bba38
MS
4594 case 0x0fb2: /* lss Gv */
4595 case 0x0fb4: /* lfs Gv */
4596 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
4597 if (i386_record_modrm (&ir))
4598 return -1;
4599 if (ir.mod == 3)
4600 {
4601 if (opcode > 0xff)
4602 ir.addr -= 3;
4603 else
4604 ir.addr -= 2;
4605 opcode = opcode << 8 | ir.modrm;
4606 goto no_support;
4607 }
7ad10968
HZ
4608 switch (opcode)
4609 {
a38bba38 4610 case 0xc4: /* les Gv */
425b824a 4611 regnum = X86_RECORD_ES_REGNUM;
7ad10968 4612 break;
a38bba38 4613 case 0xc5: /* lds Gv */
425b824a 4614 regnum = X86_RECORD_DS_REGNUM;
7ad10968 4615 break;
a38bba38 4616 case 0x0fb2: /* lss Gv */
425b824a 4617 regnum = X86_RECORD_SS_REGNUM;
7ad10968 4618 break;
a38bba38 4619 case 0x0fb4: /* lfs Gv */
425b824a 4620 regnum = X86_RECORD_FS_REGNUM;
7ad10968 4621 break;
a38bba38 4622 case 0x0fb5: /* lgs Gv */
425b824a 4623 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
4624 break;
4625 }
425b824a 4626 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174
HZ
4627 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4628 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4629 break;
4630
a38bba38 4631 case 0xc0: /* shifts */
7ad10968
HZ
4632 case 0xc1:
4633 case 0xd0:
4634 case 0xd1:
4635 case 0xd2:
4636 case 0xd3:
4637 if ((opcode & 1) == 0)
4638 ir.ot = OT_BYTE;
4639 else
4640 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4641 if (i386_record_modrm (&ir))
4642 return -1;
7ad10968
HZ
4643 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4644 {
4645 if (i386_record_lea_modrm (&ir))
4646 return -1;
4647 }
4648 else
4649 {
cf648174
HZ
4650 ir.rm |= ir.rex_b;
4651 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4652 ir.rm &= 0x3;
cf648174 4653 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4654 }
cf648174 4655 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4656 break;
4657
4658 case 0x0fa4:
4659 case 0x0fa5:
4660 case 0x0fac:
4661 case 0x0fad:
4662 if (i386_record_modrm (&ir))
4663 return -1;
4664 if (ir.mod == 3)
4665 {
4666 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4667 return -1;
4668 }
4669 else
4670 {
4671 if (i386_record_lea_modrm (&ir))
4672 return -1;
4673 }
4674 break;
4675
a38bba38 4676 case 0xd8: /* Floats. */
7ad10968
HZ
4677 case 0xd9:
4678 case 0xda:
4679 case 0xdb:
4680 case 0xdc:
4681 case 0xdd:
4682 case 0xde:
4683 case 0xdf:
4684 if (i386_record_modrm (&ir))
4685 return -1;
4686 ir.reg |= ((opcode & 7) << 3);
4687 if (ir.mod != 3)
4688 {
1777feb0 4689 /* Memory. */
955db0c0 4690 uint64_t addr64;
7ad10968 4691
955db0c0 4692 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
4693 return -1;
4694 switch (ir.reg)
4695 {
7ad10968 4696 case 0x02:
0289bdd7
MS
4697 case 0x12:
4698 case 0x22:
4699 case 0x32:
4700 /* For fcom, ficom nothing to do. */
4701 break;
7ad10968 4702 case 0x03:
0289bdd7
MS
4703 case 0x13:
4704 case 0x23:
4705 case 0x33:
4706 /* For fcomp, ficomp pop FPU stack, store all. */
4707 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4708 return -1;
4709 break;
4710 case 0x00:
4711 case 0x01:
7ad10968
HZ
4712 case 0x04:
4713 case 0x05:
4714 case 0x06:
4715 case 0x07:
4716 case 0x10:
4717 case 0x11:
7ad10968
HZ
4718 case 0x14:
4719 case 0x15:
4720 case 0x16:
4721 case 0x17:
4722 case 0x20:
4723 case 0x21:
7ad10968
HZ
4724 case 0x24:
4725 case 0x25:
4726 case 0x26:
4727 case 0x27:
4728 case 0x30:
4729 case 0x31:
7ad10968
HZ
4730 case 0x34:
4731 case 0x35:
4732 case 0x36:
4733 case 0x37:
0289bdd7
MS
4734 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4735 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4736 of code, always affects st(0) register. */
4737 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4738 return -1;
7ad10968
HZ
4739 break;
4740 case 0x08:
4741 case 0x0a:
4742 case 0x0b:
4743 case 0x18:
4744 case 0x19:
4745 case 0x1a:
4746 case 0x1b:
0289bdd7 4747 case 0x1d:
7ad10968
HZ
4748 case 0x28:
4749 case 0x29:
4750 case 0x2a:
4751 case 0x2b:
4752 case 0x38:
4753 case 0x39:
4754 case 0x3a:
4755 case 0x3b:
0289bdd7
MS
4756 case 0x3c:
4757 case 0x3d:
7ad10968
HZ
4758 switch (ir.reg & 7)
4759 {
4760 case 0:
0289bdd7
MS
4761 /* Handling fld, fild. */
4762 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4763 return -1;
7ad10968
HZ
4764 break;
4765 case 1:
4766 switch (ir.reg >> 4)
4767 {
4768 case 0:
955db0c0 4769 if (record_arch_list_add_mem (addr64, 4))
7ad10968
HZ
4770 return -1;
4771 break;
4772 case 2:
955db0c0 4773 if (record_arch_list_add_mem (addr64, 8))
7ad10968
HZ
4774 return -1;
4775 break;
4776 case 3:
0289bdd7 4777 break;
7ad10968 4778 default:
955db0c0 4779 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
4780 return -1;
4781 break;
4782 }
4783 break;
4784 default:
4785 switch (ir.reg >> 4)
4786 {
4787 case 0:
955db0c0 4788 if (record_arch_list_add_mem (addr64, 4))
0289bdd7
MS
4789 return -1;
4790 if (3 == (ir.reg & 7))
4791 {
4792 /* For fstp m32fp. */
4793 if (i386_record_floats (gdbarch, &ir,
4794 I386_SAVE_FPU_REGS))
4795 return -1;
4796 }
4797 break;
7ad10968 4798 case 1:
955db0c0 4799 if (record_arch_list_add_mem (addr64, 4))
7ad10968 4800 return -1;
0289bdd7
MS
4801 if ((3 == (ir.reg & 7))
4802 || (5 == (ir.reg & 7))
4803 || (7 == (ir.reg & 7)))
4804 {
4805 /* For fstp insn. */
4806 if (i386_record_floats (gdbarch, &ir,
4807 I386_SAVE_FPU_REGS))
4808 return -1;
4809 }
7ad10968
HZ
4810 break;
4811 case 2:
955db0c0 4812 if (record_arch_list_add_mem (addr64, 8))
7ad10968 4813 return -1;
0289bdd7
MS
4814 if (3 == (ir.reg & 7))
4815 {
4816 /* For fstp m64fp. */
4817 if (i386_record_floats (gdbarch, &ir,
4818 I386_SAVE_FPU_REGS))
4819 return -1;
4820 }
7ad10968
HZ
4821 break;
4822 case 3:
0289bdd7
MS
4823 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4824 {
4825 /* For fistp, fbld, fild, fbstp. */
4826 if (i386_record_floats (gdbarch, &ir,
4827 I386_SAVE_FPU_REGS))
4828 return -1;
4829 }
4830 /* Fall through */
7ad10968 4831 default:
955db0c0 4832 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
4833 return -1;
4834 break;
4835 }
4836 break;
4837 }
4838 break;
4839 case 0x0c:
0289bdd7
MS
4840 /* Insn fldenv. */
4841 if (i386_record_floats (gdbarch, &ir,
4842 I386_SAVE_FPU_ENV_REG_STACK))
4843 return -1;
4844 break;
7ad10968 4845 case 0x0d:
0289bdd7
MS
4846 /* Insn fldcw. */
4847 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4848 return -1;
4849 break;
7ad10968 4850 case 0x2c:
0289bdd7
MS
4851 /* Insn frstor. */
4852 if (i386_record_floats (gdbarch, &ir,
4853 I386_SAVE_FPU_ENV_REG_STACK))
4854 return -1;
7ad10968
HZ
4855 break;
4856 case 0x0e:
4857 if (ir.dflag)
4858 {
955db0c0 4859 if (record_arch_list_add_mem (addr64, 28))
7ad10968
HZ
4860 return -1;
4861 }
4862 else
4863 {
955db0c0 4864 if (record_arch_list_add_mem (addr64, 14))
7ad10968
HZ
4865 return -1;
4866 }
4867 break;
4868 case 0x0f:
4869 case 0x2f:
955db0c0 4870 if (record_arch_list_add_mem (addr64, 2))
7ad10968 4871 return -1;
0289bdd7
MS
4872 /* Insn fstp, fbstp. */
4873 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4874 return -1;
7ad10968
HZ
4875 break;
4876 case 0x1f:
4877 case 0x3e:
955db0c0 4878 if (record_arch_list_add_mem (addr64, 10))
7ad10968
HZ
4879 return -1;
4880 break;
4881 case 0x2e:
4882 if (ir.dflag)
4883 {
955db0c0 4884 if (record_arch_list_add_mem (addr64, 28))
7ad10968 4885 return -1;
955db0c0 4886 addr64 += 28;
7ad10968
HZ
4887 }
4888 else
4889 {
955db0c0 4890 if (record_arch_list_add_mem (addr64, 14))
7ad10968 4891 return -1;
955db0c0 4892 addr64 += 14;
7ad10968 4893 }
955db0c0 4894 if (record_arch_list_add_mem (addr64, 80))
7ad10968 4895 return -1;
0289bdd7
MS
4896 /* Insn fsave. */
4897 if (i386_record_floats (gdbarch, &ir,
4898 I386_SAVE_FPU_ENV_REG_STACK))
4899 return -1;
7ad10968
HZ
4900 break;
4901 case 0x3f:
955db0c0 4902 if (record_arch_list_add_mem (addr64, 8))
7ad10968 4903 return -1;
0289bdd7
MS
4904 /* Insn fistp. */
4905 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4906 return -1;
7ad10968
HZ
4907 break;
4908 default:
4909 ir.addr -= 2;
4910 opcode = opcode << 8 | ir.modrm;
4911 goto no_support;
4912 break;
4913 }
4914 }
0289bdd7
MS
4915 /* Opcode is an extension of modR/M byte. */
4916 else
4917 {
4918 switch (opcode)
4919 {
4920 case 0xd8:
4921 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4922 return -1;
4923 break;
4924 case 0xd9:
4925 if (0x0c == (ir.modrm >> 4))
4926 {
4927 if ((ir.modrm & 0x0f) <= 7)
4928 {
4929 if (i386_record_floats (gdbarch, &ir,
4930 I386_SAVE_FPU_REGS))
4931 return -1;
4932 }
4933 else
4934 {
4935 if (i386_record_floats (gdbarch, &ir,
4936 I387_ST0_REGNUM (tdep)))
4937 return -1;
4938 /* If only st(0) is changing, then we have already
4939 recorded. */
4940 if ((ir.modrm & 0x0f) - 0x08)
4941 {
4942 if (i386_record_floats (gdbarch, &ir,
4943 I387_ST0_REGNUM (tdep) +
4944 ((ir.modrm & 0x0f) - 0x08)))
4945 return -1;
4946 }
4947 }
4948 }
4949 else
4950 {
4951 switch (ir.modrm)
4952 {
4953 case 0xe0:
4954 case 0xe1:
4955 case 0xf0:
4956 case 0xf5:
4957 case 0xf8:
4958 case 0xfa:
4959 case 0xfc:
4960 case 0xfe:
4961 case 0xff:
4962 if (i386_record_floats (gdbarch, &ir,
4963 I387_ST0_REGNUM (tdep)))
4964 return -1;
4965 break;
4966 case 0xf1:
4967 case 0xf2:
4968 case 0xf3:
4969 case 0xf4:
4970 case 0xf6:
4971 case 0xf7:
4972 case 0xe8:
4973 case 0xe9:
4974 case 0xea:
4975 case 0xeb:
4976 case 0xec:
4977 case 0xed:
4978 case 0xee:
4979 case 0xf9:
4980 case 0xfb:
4981 if (i386_record_floats (gdbarch, &ir,
4982 I386_SAVE_FPU_REGS))
4983 return -1;
4984 break;
4985 case 0xfd:
4986 if (i386_record_floats (gdbarch, &ir,
4987 I387_ST0_REGNUM (tdep)))
4988 return -1;
4989 if (i386_record_floats (gdbarch, &ir,
4990 I387_ST0_REGNUM (tdep) + 1))
4991 return -1;
4992 break;
4993 }
4994 }
4995 break;
4996 case 0xda:
4997 if (0xe9 == ir.modrm)
4998 {
4999 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5000 return -1;
5001 }
5002 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5003 {
5004 if (i386_record_floats (gdbarch, &ir,
5005 I387_ST0_REGNUM (tdep)))
5006 return -1;
5007 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5008 {
5009 if (i386_record_floats (gdbarch, &ir,
5010 I387_ST0_REGNUM (tdep) +
5011 (ir.modrm & 0x0f)))
5012 return -1;
5013 }
5014 else if ((ir.modrm & 0x0f) - 0x08)
5015 {
5016 if (i386_record_floats (gdbarch, &ir,
5017 I387_ST0_REGNUM (tdep) +
5018 ((ir.modrm & 0x0f) - 0x08)))
5019 return -1;
5020 }
5021 }
5022 break;
5023 case 0xdb:
5024 if (0xe3 == ir.modrm)
5025 {
5026 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5027 return -1;
5028 }
5029 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5030 {
5031 if (i386_record_floats (gdbarch, &ir,
5032 I387_ST0_REGNUM (tdep)))
5033 return -1;
5034 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5035 {
5036 if (i386_record_floats (gdbarch, &ir,
5037 I387_ST0_REGNUM (tdep) +
5038 (ir.modrm & 0x0f)))
5039 return -1;
5040 }
5041 else if ((ir.modrm & 0x0f) - 0x08)
5042 {
5043 if (i386_record_floats (gdbarch, &ir,
5044 I387_ST0_REGNUM (tdep) +
5045 ((ir.modrm & 0x0f) - 0x08)))
5046 return -1;
5047 }
5048 }
5049 break;
5050 case 0xdc:
5051 if ((0x0c == ir.modrm >> 4)
5052 || (0x0d == ir.modrm >> 4)
5053 || (0x0f == ir.modrm >> 4))
5054 {
5055 if ((ir.modrm & 0x0f) <= 7)
5056 {
5057 if (i386_record_floats (gdbarch, &ir,
5058 I387_ST0_REGNUM (tdep) +
5059 (ir.modrm & 0x0f)))
5060 return -1;
5061 }
5062 else
5063 {
5064 if (i386_record_floats (gdbarch, &ir,
5065 I387_ST0_REGNUM (tdep) +
5066 ((ir.modrm & 0x0f) - 0x08)))
5067 return -1;
5068 }
5069 }
5070 break;
5071 case 0xdd:
5072 if (0x0c == ir.modrm >> 4)
5073 {
5074 if (i386_record_floats (gdbarch, &ir,
5075 I387_FTAG_REGNUM (tdep)))
5076 return -1;
5077 }
5078 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5079 {
5080 if ((ir.modrm & 0x0f) <= 7)
5081 {
5082 if (i386_record_floats (gdbarch, &ir,
5083 I387_ST0_REGNUM (tdep) +
5084 (ir.modrm & 0x0f)))
5085 return -1;
5086 }
5087 else
5088 {
5089 if (i386_record_floats (gdbarch, &ir,
5090 I386_SAVE_FPU_REGS))
5091 return -1;
5092 }
5093 }
5094 break;
5095 case 0xde:
5096 if ((0x0c == ir.modrm >> 4)
5097 || (0x0e == ir.modrm >> 4)
5098 || (0x0f == ir.modrm >> 4)
5099 || (0xd9 == ir.modrm))
5100 {
5101 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5102 return -1;
5103 }
5104 break;
5105 case 0xdf:
5106 if (0xe0 == ir.modrm)
5107 {
5108 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5109 return -1;
5110 }
5111 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5112 {
5113 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5114 return -1;
5115 }
5116 break;
5117 }
5118 }
7ad10968 5119 break;
7ad10968 5120 /* string ops */
a38bba38 5121 case 0xa4: /* movsS */
7ad10968 5122 case 0xa5:
a38bba38 5123 case 0xaa: /* stosS */
7ad10968 5124 case 0xab:
a38bba38 5125 case 0x6c: /* insS */
7ad10968 5126 case 0x6d:
cf648174 5127 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 5128 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
5129 &addr);
5130 if (addr)
cf648174 5131 {
77d7dc92
HZ
5132 ULONGEST es, ds;
5133
5134 if ((opcode & 1) == 0)
5135 ir.ot = OT_BYTE;
5136 else
5137 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
5138 regcache_raw_read_unsigned (ir.regcache,
5139 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 5140 &addr);
77d7dc92 5141
d7877f7e
HZ
5142 regcache_raw_read_unsigned (ir.regcache,
5143 ir.regmap[X86_RECORD_ES_REGNUM],
5144 &es);
5145 regcache_raw_read_unsigned (ir.regcache,
5146 ir.regmap[X86_RECORD_DS_REGNUM],
5147 &ds);
5148 if (ir.aflag && (es != ds))
77d7dc92
HZ
5149 {
5150 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
bb08c432
HZ
5151 if (record_memory_query)
5152 {
5153 int q;
5154
5155 target_terminal_ours ();
5156 q = yquery (_("\
5157Process record ignores the memory change of instruction at address %s\n\
5158because it can't get the value of the segment register.\n\
5159Do you want to stop the program?"),
5160 paddress (gdbarch, ir.orig_addr));
5161 target_terminal_inferior ();
5162 if (q)
5163 return -1;
5164 }
df61f520
HZ
5165 }
5166 else
5167 {
648d0c8b 5168 if (record_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 5169 return -1;
77d7dc92
HZ
5170 }
5171
5172 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5173 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92
HZ
5174 if (opcode == 0xa4 || opcode == 0xa5)
5175 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5176 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5177 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5178 }
cf648174 5179 break;
7ad10968 5180
a38bba38 5181 case 0xa6: /* cmpsS */
cf648174
HZ
5182 case 0xa7:
5183 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5184 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5185 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5186 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5187 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5188 break;
5189
a38bba38 5190 case 0xac: /* lodsS */
7ad10968 5191 case 0xad:
cf648174
HZ
5192 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5193 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5194 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5195 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5196 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5197 break;
5198
a38bba38 5199 case 0xae: /* scasS */
7ad10968 5200 case 0xaf:
cf648174 5201 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 5202 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5203 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5204 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5205 break;
5206
a38bba38 5207 case 0x6e: /* outsS */
cf648174
HZ
5208 case 0x6f:
5209 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5210 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5211 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5212 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5213 break;
5214
a38bba38 5215 case 0xe4: /* port I/O */
7ad10968
HZ
5216 case 0xe5:
5217 case 0xec:
5218 case 0xed:
cf648174
HZ
5219 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5220 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5221 break;
5222
5223 case 0xe6:
5224 case 0xe7:
5225 case 0xee:
5226 case 0xef:
5227 break;
5228
5229 /* control */
a38bba38
MS
5230 case 0xc2: /* ret im */
5231 case 0xc3: /* ret */
cf648174
HZ
5232 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5233 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5234 break;
5235
a38bba38
MS
5236 case 0xca: /* lret im */
5237 case 0xcb: /* lret */
5238 case 0xcf: /* iret */
cf648174
HZ
5239 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5240 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5241 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5242 break;
5243
a38bba38 5244 case 0xe8: /* call im */
cf648174
HZ
5245 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5246 ir.dflag = 2;
5247 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5248 return -1;
7ad10968
HZ
5249 break;
5250
a38bba38 5251 case 0x9a: /* lcall im */
cf648174
HZ
5252 if (ir.regmap[X86_RECORD_R8_REGNUM])
5253 {
5254 ir.addr -= 1;
5255 goto no_support;
5256 }
5257 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5258 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5259 return -1;
7ad10968
HZ
5260 break;
5261
a38bba38
MS
5262 case 0xe9: /* jmp im */
5263 case 0xea: /* ljmp im */
5264 case 0xeb: /* jmp Jb */
5265 case 0x70: /* jcc Jb */
7ad10968
HZ
5266 case 0x71:
5267 case 0x72:
5268 case 0x73:
5269 case 0x74:
5270 case 0x75:
5271 case 0x76:
5272 case 0x77:
5273 case 0x78:
5274 case 0x79:
5275 case 0x7a:
5276 case 0x7b:
5277 case 0x7c:
5278 case 0x7d:
5279 case 0x7e:
5280 case 0x7f:
a38bba38 5281 case 0x0f80: /* jcc Jv */
7ad10968
HZ
5282 case 0x0f81:
5283 case 0x0f82:
5284 case 0x0f83:
5285 case 0x0f84:
5286 case 0x0f85:
5287 case 0x0f86:
5288 case 0x0f87:
5289 case 0x0f88:
5290 case 0x0f89:
5291 case 0x0f8a:
5292 case 0x0f8b:
5293 case 0x0f8c:
5294 case 0x0f8d:
5295 case 0x0f8e:
5296 case 0x0f8f:
5297 break;
5298
a38bba38 5299 case 0x0f90: /* setcc Gv */
7ad10968
HZ
5300 case 0x0f91:
5301 case 0x0f92:
5302 case 0x0f93:
5303 case 0x0f94:
5304 case 0x0f95:
5305 case 0x0f96:
5306 case 0x0f97:
5307 case 0x0f98:
5308 case 0x0f99:
5309 case 0x0f9a:
5310 case 0x0f9b:
5311 case 0x0f9c:
5312 case 0x0f9d:
5313 case 0x0f9e:
5314 case 0x0f9f:
cf648174 5315 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5316 ir.ot = OT_BYTE;
5317 if (i386_record_modrm (&ir))
5318 return -1;
5319 if (ir.mod == 3)
cf648174
HZ
5320 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5321 : (ir.rm & 0x3));
7ad10968
HZ
5322 else
5323 {
5324 if (i386_record_lea_modrm (&ir))
5325 return -1;
5326 }
5327 break;
5328
a38bba38 5329 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
5330 case 0x0f41:
5331 case 0x0f42:
5332 case 0x0f43:
5333 case 0x0f44:
5334 case 0x0f45:
5335 case 0x0f46:
5336 case 0x0f47:
5337 case 0x0f48:
5338 case 0x0f49:
5339 case 0x0f4a:
5340 case 0x0f4b:
5341 case 0x0f4c:
5342 case 0x0f4d:
5343 case 0x0f4e:
5344 case 0x0f4f:
5345 if (i386_record_modrm (&ir))
5346 return -1;
cf648174 5347 ir.reg |= rex_r;
7ad10968
HZ
5348 if (ir.dflag == OT_BYTE)
5349 ir.reg &= 0x3;
cf648174 5350 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5351 break;
5352
5353 /* flags */
a38bba38 5354 case 0x9c: /* pushf */
cf648174
HZ
5355 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5356 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5357 ir.dflag = 2;
5358 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5359 return -1;
7ad10968
HZ
5360 break;
5361
a38bba38 5362 case 0x9d: /* popf */
cf648174
HZ
5363 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5364 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5365 break;
5366
a38bba38 5367 case 0x9e: /* sahf */
cf648174
HZ
5368 if (ir.regmap[X86_RECORD_R8_REGNUM])
5369 {
5370 ir.addr -= 1;
5371 goto no_support;
5372 }
d3f323f3 5373 /* FALLTHROUGH */
a38bba38
MS
5374 case 0xf5: /* cmc */
5375 case 0xf8: /* clc */
5376 case 0xf9: /* stc */
5377 case 0xfc: /* cld */
5378 case 0xfd: /* std */
cf648174 5379 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5380 break;
5381
a38bba38 5382 case 0x9f: /* lahf */
cf648174
HZ
5383 if (ir.regmap[X86_RECORD_R8_REGNUM])
5384 {
5385 ir.addr -= 1;
5386 goto no_support;
5387 }
5388 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5389 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5390 break;
5391
5392 /* bit operations */
a38bba38 5393 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
5394 ir.ot = ir.dflag + OT_WORD;
5395 if (i386_record_modrm (&ir))
5396 return -1;
5397 if (ir.reg < 4)
5398 {
cf648174 5399 ir.addr -= 2;
7ad10968
HZ
5400 opcode = opcode << 8 | ir.modrm;
5401 goto no_support;
5402 }
cf648174 5403 if (ir.reg != 4)
7ad10968 5404 {
cf648174
HZ
5405 if (ir.mod == 3)
5406 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5407 else
5408 {
cf648174 5409 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
5410 return -1;
5411 }
5412 }
cf648174 5413 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5414 break;
5415
a38bba38 5416 case 0x0fa3: /* bt Gv, Ev */
cf648174
HZ
5417 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5418 break;
5419
a38bba38
MS
5420 case 0x0fab: /* bts */
5421 case 0x0fb3: /* btr */
5422 case 0x0fbb: /* btc */
cf648174
HZ
5423 ir.ot = ir.dflag + OT_WORD;
5424 if (i386_record_modrm (&ir))
5425 return -1;
5426 if (ir.mod == 3)
5427 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5428 else
5429 {
955db0c0
MS
5430 uint64_t addr64;
5431 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
5432 return -1;
5433 regcache_raw_read_unsigned (ir.regcache,
5434 ir.regmap[ir.reg | rex_r],
648d0c8b 5435 &addr);
cf648174
HZ
5436 switch (ir.dflag)
5437 {
5438 case 0:
648d0c8b 5439 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
5440 break;
5441 case 1:
648d0c8b 5442 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
5443 break;
5444 case 2:
648d0c8b 5445 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
5446 break;
5447 }
955db0c0 5448 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
5449 return -1;
5450 if (i386_record_lea_modrm (&ir))
5451 return -1;
5452 }
5453 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5454 break;
5455
a38bba38
MS
5456 case 0x0fbc: /* bsf */
5457 case 0x0fbd: /* bsr */
cf648174
HZ
5458 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5459 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5460 break;
5461
5462 /* bcd */
a38bba38
MS
5463 case 0x27: /* daa */
5464 case 0x2f: /* das */
5465 case 0x37: /* aaa */
5466 case 0x3f: /* aas */
5467 case 0xd4: /* aam */
5468 case 0xd5: /* aad */
cf648174
HZ
5469 if (ir.regmap[X86_RECORD_R8_REGNUM])
5470 {
5471 ir.addr -= 1;
5472 goto no_support;
5473 }
5474 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5475 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5476 break;
5477
5478 /* misc */
a38bba38 5479 case 0x90: /* nop */
7ad10968
HZ
5480 if (prefixes & PREFIX_LOCK)
5481 {
5482 ir.addr -= 1;
5483 goto no_support;
5484 }
5485 break;
5486
a38bba38 5487 case 0x9b: /* fwait */
425b824a 5488 if (target_read_memory (ir.addr, &opcode8, 1))
0289bdd7
MS
5489 {
5490 if (record_debug)
5491 printf_unfiltered (_("Process record: error reading memory at "
5492 "addr 0x%s len = 1.\n"),
5493 paddress (gdbarch, ir.addr));
5494 return -1;
5495 }
425b824a 5496 opcode = (uint32_t) opcode8;
0289bdd7
MS
5497 ir.addr++;
5498 goto reswitch;
7ad10968
HZ
5499 break;
5500
7ad10968 5501 /* XXX */
a38bba38 5502 case 0xcc: /* int3 */
a3c4230a 5503 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
5504 "int3.\n"));
5505 ir.addr -= 1;
5506 goto no_support;
5507 break;
5508
7ad10968 5509 /* XXX */
a38bba38 5510 case 0xcd: /* int */
7ad10968
HZ
5511 {
5512 int ret;
425b824a
MS
5513 uint8_t interrupt;
5514 if (target_read_memory (ir.addr, &interrupt, 1))
7ad10968
HZ
5515 {
5516 if (record_debug)
5517 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
5518 "at addr %s len = 1.\n"),
5519 paddress (gdbarch, ir.addr));
7ad10968
HZ
5520 return -1;
5521 }
5522 ir.addr++;
425b824a 5523 if (interrupt != 0x80
a3c4230a 5524 || tdep->i386_intx80_record == NULL)
7ad10968 5525 {
a3c4230a 5526 printf_unfiltered (_("Process record does not support "
7ad10968 5527 "instruction int 0x%02x.\n"),
425b824a 5528 interrupt);
7ad10968
HZ
5529 ir.addr -= 2;
5530 goto no_support;
5531 }
a3c4230a 5532 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
5533 if (ret)
5534 return ret;
5535 }
5536 break;
5537
7ad10968 5538 /* XXX */
a38bba38 5539 case 0xce: /* into */
a3c4230a 5540 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5541 "instruction into.\n"));
5542 ir.addr -= 1;
5543 goto no_support;
5544 break;
5545
a38bba38
MS
5546 case 0xfa: /* cli */
5547 case 0xfb: /* sti */
7ad10968
HZ
5548 break;
5549
a38bba38 5550 case 0x62: /* bound */
a3c4230a 5551 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5552 "instruction bound.\n"));
5553 ir.addr -= 1;
5554 goto no_support;
5555 break;
5556
a38bba38 5557 case 0x0fc8: /* bswap reg */
7ad10968
HZ
5558 case 0x0fc9:
5559 case 0x0fca:
5560 case 0x0fcb:
5561 case 0x0fcc:
5562 case 0x0fcd:
5563 case 0x0fce:
5564 case 0x0fcf:
cf648174 5565 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
5566 break;
5567
a38bba38 5568 case 0xd6: /* salc */
cf648174
HZ
5569 if (ir.regmap[X86_RECORD_R8_REGNUM])
5570 {
5571 ir.addr -= 1;
5572 goto no_support;
5573 }
5574 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5575 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5576 break;
5577
a38bba38
MS
5578 case 0xe0: /* loopnz */
5579 case 0xe1: /* loopz */
5580 case 0xe2: /* loop */
5581 case 0xe3: /* jecxz */
cf648174
HZ
5582 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5583 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5584 break;
5585
a38bba38 5586 case 0x0f30: /* wrmsr */
a3c4230a 5587 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5588 "instruction wrmsr.\n"));
5589 ir.addr -= 2;
5590 goto no_support;
5591 break;
5592
a38bba38 5593 case 0x0f32: /* rdmsr */
a3c4230a 5594 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5595 "instruction rdmsr.\n"));
5596 ir.addr -= 2;
5597 goto no_support;
5598 break;
5599
a38bba38 5600 case 0x0f31: /* rdtsc */
f8c4f480
HZ
5601 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5602 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5603 break;
5604
a38bba38 5605 case 0x0f34: /* sysenter */
7ad10968
HZ
5606 {
5607 int ret;
cf648174
HZ
5608 if (ir.regmap[X86_RECORD_R8_REGNUM])
5609 {
5610 ir.addr -= 2;
5611 goto no_support;
5612 }
a3c4230a 5613 if (tdep->i386_sysenter_record == NULL)
7ad10968 5614 {
a3c4230a 5615 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5616 "instruction sysenter.\n"));
5617 ir.addr -= 2;
5618 goto no_support;
5619 }
a3c4230a 5620 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
5621 if (ret)
5622 return ret;
5623 }
5624 break;
5625
a38bba38 5626 case 0x0f35: /* sysexit */
a3c4230a 5627 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5628 "instruction sysexit.\n"));
5629 ir.addr -= 2;
5630 goto no_support;
5631 break;
5632
a38bba38 5633 case 0x0f05: /* syscall */
cf648174
HZ
5634 {
5635 int ret;
a3c4230a 5636 if (tdep->i386_syscall_record == NULL)
cf648174 5637 {
a3c4230a 5638 printf_unfiltered (_("Process record does not support "
cf648174
HZ
5639 "instruction syscall.\n"));
5640 ir.addr -= 2;
5641 goto no_support;
5642 }
a3c4230a 5643 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
5644 if (ret)
5645 return ret;
5646 }
5647 break;
5648
a38bba38 5649 case 0x0f07: /* sysret */
a3c4230a 5650 printf_unfiltered (_("Process record does not support "
cf648174
HZ
5651 "instruction sysret.\n"));
5652 ir.addr -= 2;
5653 goto no_support;
5654 break;
5655
a38bba38 5656 case 0x0fa2: /* cpuid */
cf648174
HZ
5657 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5658 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5659 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5660 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
5661 break;
5662
a38bba38 5663 case 0xf4: /* hlt */
a3c4230a 5664 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5665 "instruction hlt.\n"));
5666 ir.addr -= 1;
5667 goto no_support;
5668 break;
5669
5670 case 0x0f00:
5671 if (i386_record_modrm (&ir))
5672 return -1;
5673 switch (ir.reg)
5674 {
a38bba38
MS
5675 case 0: /* sldt */
5676 case 1: /* str */
7ad10968 5677 if (ir.mod == 3)
cf648174 5678 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5679 else
5680 {
5681 ir.ot = OT_WORD;
5682 if (i386_record_lea_modrm (&ir))
5683 return -1;
5684 }
5685 break;
a38bba38
MS
5686 case 2: /* lldt */
5687 case 3: /* ltr */
7ad10968 5688 break;
a38bba38
MS
5689 case 4: /* verr */
5690 case 5: /* verw */
cf648174 5691 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5692 break;
5693 default:
5694 ir.addr -= 3;
5695 opcode = opcode << 8 | ir.modrm;
5696 goto no_support;
5697 break;
5698 }
5699 break;
5700
5701 case 0x0f01:
5702 if (i386_record_modrm (&ir))
5703 return -1;
5704 switch (ir.reg)
5705 {
a38bba38 5706 case 0: /* sgdt */
7ad10968 5707 {
955db0c0 5708 uint64_t addr64;
7ad10968
HZ
5709
5710 if (ir.mod == 3)
5711 {
5712 ir.addr -= 3;
5713 opcode = opcode << 8 | ir.modrm;
5714 goto no_support;
5715 }
d7877f7e 5716 if (ir.override >= 0)
7ad10968 5717 {
bb08c432
HZ
5718 if (record_memory_query)
5719 {
5720 int q;
5721
5722 target_terminal_ours ();
5723 q = yquery (_("\
5724Process record ignores the memory change of instruction at address %s\n\
5725because it can't get the value of the segment register.\n\
5726Do you want to stop the program?"),
5727 paddress (gdbarch, ir.orig_addr));
5728 target_terminal_inferior ();
5729 if (q)
5730 return -1;
5731 }
7ad10968
HZ
5732 }
5733 else
5734 {
955db0c0 5735 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 5736 return -1;
955db0c0 5737 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5738 return -1;
955db0c0 5739 addr64 += 2;
cf648174
HZ
5740 if (ir.regmap[X86_RECORD_R8_REGNUM])
5741 {
955db0c0 5742 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
5743 return -1;
5744 }
5745 else
5746 {
955db0c0 5747 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
5748 return -1;
5749 }
7ad10968
HZ
5750 }
5751 }
5752 break;
5753 case 1:
5754 if (ir.mod == 3)
5755 {
5756 switch (ir.rm)
5757 {
a38bba38 5758 case 0: /* monitor */
7ad10968 5759 break;
a38bba38 5760 case 1: /* mwait */
cf648174 5761 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5762 break;
5763 default:
5764 ir.addr -= 3;
5765 opcode = opcode << 8 | ir.modrm;
5766 goto no_support;
5767 break;
5768 }
5769 }
5770 else
5771 {
5772 /* sidt */
d7877f7e 5773 if (ir.override >= 0)
7ad10968 5774 {
bb08c432
HZ
5775 if (record_memory_query)
5776 {
5777 int q;
5778
5779 target_terminal_ours ();
5780 q = yquery (_("\
5781Process record ignores the memory change of instruction at address %s\n\
5782because it can't get the value of the segment register.\n\
5783Do you want to stop the program?"),
5784 paddress (gdbarch, ir.orig_addr));
5785 target_terminal_inferior ();
5786 if (q)
5787 return -1;
5788 }
7ad10968
HZ
5789 }
5790 else
5791 {
955db0c0 5792 uint64_t addr64;
7ad10968 5793
955db0c0 5794 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 5795 return -1;
955db0c0 5796 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5797 return -1;
955db0c0 5798 addr64 += 2;
cf648174
HZ
5799 if (ir.regmap[X86_RECORD_R8_REGNUM])
5800 {
955db0c0 5801 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
5802 return -1;
5803 }
5804 else
5805 {
955db0c0 5806 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
5807 return -1;
5808 }
7ad10968
HZ
5809 }
5810 }
5811 break;
a38bba38 5812 case 2: /* lgdt */
3800e645
MS
5813 if (ir.mod == 3)
5814 {
5815 /* xgetbv */
5816 if (ir.rm == 0)
5817 {
5818 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5819 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5820 break;
5821 }
5822 /* xsetbv */
5823 else if (ir.rm == 1)
5824 break;
5825 }
a38bba38 5826 case 3: /* lidt */
7ad10968
HZ
5827 if (ir.mod == 3)
5828 {
5829 ir.addr -= 3;
5830 opcode = opcode << 8 | ir.modrm;
5831 goto no_support;
5832 }
5833 break;
a38bba38 5834 case 4: /* smsw */
7ad10968
HZ
5835 if (ir.mod == 3)
5836 {
cf648174 5837 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
5838 return -1;
5839 }
5840 else
5841 {
5842 ir.ot = OT_WORD;
5843 if (i386_record_lea_modrm (&ir))
5844 return -1;
5845 }
cf648174 5846 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5847 break;
a38bba38 5848 case 6: /* lmsw */
cf648174
HZ
5849 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5850 break;
a38bba38 5851 case 7: /* invlpg */
cf648174
HZ
5852 if (ir.mod == 3)
5853 {
5854 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5855 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5856 else
5857 {
5858 ir.addr -= 3;
5859 opcode = opcode << 8 | ir.modrm;
5860 goto no_support;
5861 }
5862 }
5863 else
5864 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5865 break;
5866 default:
5867 ir.addr -= 3;
5868 opcode = opcode << 8 | ir.modrm;
5869 goto no_support;
7ad10968
HZ
5870 break;
5871 }
5872 break;
5873
a38bba38
MS
5874 case 0x0f08: /* invd */
5875 case 0x0f09: /* wbinvd */
7ad10968
HZ
5876 break;
5877
a38bba38 5878 case 0x63: /* arpl */
7ad10968
HZ
5879 if (i386_record_modrm (&ir))
5880 return -1;
cf648174
HZ
5881 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5882 {
5883 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5884 ? (ir.reg | rex_r) : ir.rm);
5885 }
7ad10968 5886 else
cf648174
HZ
5887 {
5888 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5889 if (i386_record_lea_modrm (&ir))
5890 return -1;
5891 }
5892 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5893 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5894 break;
5895
a38bba38
MS
5896 case 0x0f02: /* lar */
5897 case 0x0f03: /* lsl */
7ad10968
HZ
5898 if (i386_record_modrm (&ir))
5899 return -1;
cf648174
HZ
5900 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5901 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5902 break;
5903
5904 case 0x0f18:
cf648174
HZ
5905 if (i386_record_modrm (&ir))
5906 return -1;
5907 if (ir.mod == 3 && ir.reg == 3)
5908 {
5909 ir.addr -= 3;
5910 opcode = opcode << 8 | ir.modrm;
5911 goto no_support;
5912 }
7ad10968
HZ
5913 break;
5914
7ad10968
HZ
5915 case 0x0f19:
5916 case 0x0f1a:
5917 case 0x0f1b:
5918 case 0x0f1c:
5919 case 0x0f1d:
5920 case 0x0f1e:
5921 case 0x0f1f:
a38bba38 5922 /* nop (multi byte) */
7ad10968
HZ
5923 break;
5924
a38bba38
MS
5925 case 0x0f20: /* mov reg, crN */
5926 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
5927 if (i386_record_modrm (&ir))
5928 return -1;
5929 if ((ir.modrm & 0xc0) != 0xc0)
5930 {
cf648174 5931 ir.addr -= 3;
7ad10968
HZ
5932 opcode = opcode << 8 | ir.modrm;
5933 goto no_support;
5934 }
5935 switch (ir.reg)
5936 {
5937 case 0:
5938 case 2:
5939 case 3:
5940 case 4:
5941 case 8:
5942 if (opcode & 2)
cf648174 5943 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5944 else
cf648174 5945 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5946 break;
5947 default:
cf648174 5948 ir.addr -= 3;
7ad10968
HZ
5949 opcode = opcode << 8 | ir.modrm;
5950 goto no_support;
5951 break;
5952 }
5953 break;
5954
a38bba38
MS
5955 case 0x0f21: /* mov reg, drN */
5956 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
5957 if (i386_record_modrm (&ir))
5958 return -1;
5959 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5960 || ir.reg == 5 || ir.reg >= 8)
5961 {
cf648174 5962 ir.addr -= 3;
7ad10968
HZ
5963 opcode = opcode << 8 | ir.modrm;
5964 goto no_support;
5965 }
5966 if (opcode & 2)
cf648174 5967 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5968 else
cf648174 5969 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5970 break;
5971
a38bba38 5972 case 0x0f06: /* clts */
cf648174 5973 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5974 break;
5975
a3c4230a
HZ
5976 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
5977
5978 case 0x0f0d: /* 3DNow! prefetch */
5979 break;
5980
5981 case 0x0f0e: /* 3DNow! femms */
5982 case 0x0f77: /* emms */
5983 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
5984 goto no_support;
5985 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
5986 break;
5987
5988 case 0x0f0f: /* 3DNow! data */
5989 if (i386_record_modrm (&ir))
5990 return -1;
5991 if (target_read_memory (ir.addr, &opcode8, 1))
5992 {
5993 printf_unfiltered (_("Process record: error reading memory at "
5994 "addr %s len = 1.\n"),
5995 paddress (gdbarch, ir.addr));
5996 return -1;
5997 }
5998 ir.addr++;
5999 switch (opcode8)
6000 {
6001 case 0x0c: /* 3DNow! pi2fw */
6002 case 0x0d: /* 3DNow! pi2fd */
6003 case 0x1c: /* 3DNow! pf2iw */
6004 case 0x1d: /* 3DNow! pf2id */
6005 case 0x8a: /* 3DNow! pfnacc */
6006 case 0x8e: /* 3DNow! pfpnacc */
6007 case 0x90: /* 3DNow! pfcmpge */
6008 case 0x94: /* 3DNow! pfmin */
6009 case 0x96: /* 3DNow! pfrcp */
6010 case 0x97: /* 3DNow! pfrsqrt */
6011 case 0x9a: /* 3DNow! pfsub */
6012 case 0x9e: /* 3DNow! pfadd */
6013 case 0xa0: /* 3DNow! pfcmpgt */
6014 case 0xa4: /* 3DNow! pfmax */
6015 case 0xa6: /* 3DNow! pfrcpit1 */
6016 case 0xa7: /* 3DNow! pfrsqit1 */
6017 case 0xaa: /* 3DNow! pfsubr */
6018 case 0xae: /* 3DNow! pfacc */
6019 case 0xb0: /* 3DNow! pfcmpeq */
6020 case 0xb4: /* 3DNow! pfmul */
6021 case 0xb6: /* 3DNow! pfrcpit2 */
6022 case 0xb7: /* 3DNow! pmulhrw */
6023 case 0xbb: /* 3DNow! pswapd */
6024 case 0xbf: /* 3DNow! pavgusb */
6025 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6026 goto no_support_3dnow_data;
6027 record_arch_list_add_reg (ir.regcache, ir.reg);
6028 break;
6029
6030 default:
6031no_support_3dnow_data:
6032 opcode = (opcode << 8) | opcode8;
6033 goto no_support;
6034 break;
6035 }
6036 break;
6037
6038 case 0x0faa: /* rsm */
6039 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6040 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6041 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6042 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6043 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6044 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6045 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6046 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6047 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6048 break;
6049
6050 case 0x0fae:
6051 if (i386_record_modrm (&ir))
6052 return -1;
6053 switch(ir.reg)
6054 {
6055 case 0: /* fxsave */
6056 {
6057 uint64_t tmpu64;
6058
6059 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6060 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6061 return -1;
6062 if (record_arch_list_add_mem (tmpu64, 512))
6063 return -1;
6064 }
6065 break;
6066
6067 case 1: /* fxrstor */
6068 {
6069 int i;
6070
6071 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6072
6073 for (i = I387_MM0_REGNUM (tdep);
6074 i386_mmx_regnum_p (gdbarch, i); i++)
6075 record_arch_list_add_reg (ir.regcache, i);
6076
6077 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 6078 i386_xmm_regnum_p (gdbarch, i); i++)
a3c4230a
HZ
6079 record_arch_list_add_reg (ir.regcache, i);
6080
6081 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6082 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6083
6084 for (i = I387_ST0_REGNUM (tdep);
6085 i386_fp_regnum_p (gdbarch, i); i++)
6086 record_arch_list_add_reg (ir.regcache, i);
6087
6088 for (i = I387_FCTRL_REGNUM (tdep);
6089 i386_fpc_regnum_p (gdbarch, i); i++)
6090 record_arch_list_add_reg (ir.regcache, i);
6091 }
6092 break;
6093
6094 case 2: /* ldmxcsr */
6095 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6096 goto no_support;
6097 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6098 break;
6099
6100 case 3: /* stmxcsr */
6101 ir.ot = OT_LONG;
6102 if (i386_record_lea_modrm (&ir))
6103 return -1;
6104 break;
6105
6106 case 5: /* lfence */
6107 case 6: /* mfence */
6108 case 7: /* sfence clflush */
6109 break;
6110
6111 default:
6112 opcode = (opcode << 8) | ir.modrm;
6113 goto no_support;
6114 break;
6115 }
6116 break;
6117
6118 case 0x0fc3: /* movnti */
6119 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6120 if (i386_record_modrm (&ir))
6121 return -1;
6122 if (ir.mod == 3)
6123 goto no_support;
6124 ir.reg |= rex_r;
6125 if (i386_record_lea_modrm (&ir))
6126 return -1;
6127 break;
6128
6129 /* Add prefix to opcode. */
6130 case 0x0f10:
6131 case 0x0f11:
6132 case 0x0f12:
6133 case 0x0f13:
6134 case 0x0f14:
6135 case 0x0f15:
6136 case 0x0f16:
6137 case 0x0f17:
6138 case 0x0f28:
6139 case 0x0f29:
6140 case 0x0f2a:
6141 case 0x0f2b:
6142 case 0x0f2c:
6143 case 0x0f2d:
6144 case 0x0f2e:
6145 case 0x0f2f:
6146 case 0x0f38:
6147 case 0x0f39:
6148 case 0x0f3a:
6149 case 0x0f50:
6150 case 0x0f51:
6151 case 0x0f52:
6152 case 0x0f53:
6153 case 0x0f54:
6154 case 0x0f55:
6155 case 0x0f56:
6156 case 0x0f57:
6157 case 0x0f58:
6158 case 0x0f59:
6159 case 0x0f5a:
6160 case 0x0f5b:
6161 case 0x0f5c:
6162 case 0x0f5d:
6163 case 0x0f5e:
6164 case 0x0f5f:
6165 case 0x0f60:
6166 case 0x0f61:
6167 case 0x0f62:
6168 case 0x0f63:
6169 case 0x0f64:
6170 case 0x0f65:
6171 case 0x0f66:
6172 case 0x0f67:
6173 case 0x0f68:
6174 case 0x0f69:
6175 case 0x0f6a:
6176 case 0x0f6b:
6177 case 0x0f6c:
6178 case 0x0f6d:
6179 case 0x0f6e:
6180 case 0x0f6f:
6181 case 0x0f70:
6182 case 0x0f71:
6183 case 0x0f72:
6184 case 0x0f73:
6185 case 0x0f74:
6186 case 0x0f75:
6187 case 0x0f76:
6188 case 0x0f7c:
6189 case 0x0f7d:
6190 case 0x0f7e:
6191 case 0x0f7f:
6192 case 0x0fb8:
6193 case 0x0fc2:
6194 case 0x0fc4:
6195 case 0x0fc5:
6196 case 0x0fc6:
6197 case 0x0fd0:
6198 case 0x0fd1:
6199 case 0x0fd2:
6200 case 0x0fd3:
6201 case 0x0fd4:
6202 case 0x0fd5:
6203 case 0x0fd6:
6204 case 0x0fd7:
6205 case 0x0fd8:
6206 case 0x0fd9:
6207 case 0x0fda:
6208 case 0x0fdb:
6209 case 0x0fdc:
6210 case 0x0fdd:
6211 case 0x0fde:
6212 case 0x0fdf:
6213 case 0x0fe0:
6214 case 0x0fe1:
6215 case 0x0fe2:
6216 case 0x0fe3:
6217 case 0x0fe4:
6218 case 0x0fe5:
6219 case 0x0fe6:
6220 case 0x0fe7:
6221 case 0x0fe8:
6222 case 0x0fe9:
6223 case 0x0fea:
6224 case 0x0feb:
6225 case 0x0fec:
6226 case 0x0fed:
6227 case 0x0fee:
6228 case 0x0fef:
6229 case 0x0ff0:
6230 case 0x0ff1:
6231 case 0x0ff2:
6232 case 0x0ff3:
6233 case 0x0ff4:
6234 case 0x0ff5:
6235 case 0x0ff6:
6236 case 0x0ff7:
6237 case 0x0ff8:
6238 case 0x0ff9:
6239 case 0x0ffa:
6240 case 0x0ffb:
6241 case 0x0ffc:
6242 case 0x0ffd:
6243 case 0x0ffe:
6244 switch (prefixes)
6245 {
6246 case PREFIX_REPNZ:
6247 opcode |= 0xf20000;
6248 break;
6249 case PREFIX_DATA:
6250 opcode |= 0x660000;
6251 break;
6252 case PREFIX_REPZ:
6253 opcode |= 0xf30000;
6254 break;
6255 }
6256reswitch_prefix_add:
6257 switch (opcode)
6258 {
6259 case 0x0f38:
6260 case 0x660f38:
6261 case 0xf20f38:
6262 case 0x0f3a:
6263 case 0x660f3a:
6264 if (target_read_memory (ir.addr, &opcode8, 1))
6265 {
6266 printf_unfiltered (_("Process record: error reading memory at "
6267 "addr %s len = 1.\n"),
6268 paddress (gdbarch, ir.addr));
6269 return -1;
6270 }
6271 ir.addr++;
6272 opcode = (uint32_t) opcode8 | opcode << 8;
6273 goto reswitch_prefix_add;
6274 break;
6275
6276 case 0x0f10: /* movups */
6277 case 0x660f10: /* movupd */
6278 case 0xf30f10: /* movss */
6279 case 0xf20f10: /* movsd */
6280 case 0x0f12: /* movlps */
6281 case 0x660f12: /* movlpd */
6282 case 0xf30f12: /* movsldup */
6283 case 0xf20f12: /* movddup */
6284 case 0x0f14: /* unpcklps */
6285 case 0x660f14: /* unpcklpd */
6286 case 0x0f15: /* unpckhps */
6287 case 0x660f15: /* unpckhpd */
6288 case 0x0f16: /* movhps */
6289 case 0x660f16: /* movhpd */
6290 case 0xf30f16: /* movshdup */
6291 case 0x0f28: /* movaps */
6292 case 0x660f28: /* movapd */
6293 case 0x0f2a: /* cvtpi2ps */
6294 case 0x660f2a: /* cvtpi2pd */
6295 case 0xf30f2a: /* cvtsi2ss */
6296 case 0xf20f2a: /* cvtsi2sd */
6297 case 0x0f2c: /* cvttps2pi */
6298 case 0x660f2c: /* cvttpd2pi */
6299 case 0x0f2d: /* cvtps2pi */
6300 case 0x660f2d: /* cvtpd2pi */
6301 case 0x660f3800: /* pshufb */
6302 case 0x660f3801: /* phaddw */
6303 case 0x660f3802: /* phaddd */
6304 case 0x660f3803: /* phaddsw */
6305 case 0x660f3804: /* pmaddubsw */
6306 case 0x660f3805: /* phsubw */
6307 case 0x660f3806: /* phsubd */
4f7d61a8 6308 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
6309 case 0x660f3808: /* psignb */
6310 case 0x660f3809: /* psignw */
6311 case 0x660f380a: /* psignd */
6312 case 0x660f380b: /* pmulhrsw */
6313 case 0x660f3810: /* pblendvb */
6314 case 0x660f3814: /* blendvps */
6315 case 0x660f3815: /* blendvpd */
6316 case 0x660f381c: /* pabsb */
6317 case 0x660f381d: /* pabsw */
6318 case 0x660f381e: /* pabsd */
6319 case 0x660f3820: /* pmovsxbw */
6320 case 0x660f3821: /* pmovsxbd */
6321 case 0x660f3822: /* pmovsxbq */
6322 case 0x660f3823: /* pmovsxwd */
6323 case 0x660f3824: /* pmovsxwq */
6324 case 0x660f3825: /* pmovsxdq */
6325 case 0x660f3828: /* pmuldq */
6326 case 0x660f3829: /* pcmpeqq */
6327 case 0x660f382a: /* movntdqa */
6328 case 0x660f3a08: /* roundps */
6329 case 0x660f3a09: /* roundpd */
6330 case 0x660f3a0a: /* roundss */
6331 case 0x660f3a0b: /* roundsd */
6332 case 0x660f3a0c: /* blendps */
6333 case 0x660f3a0d: /* blendpd */
6334 case 0x660f3a0e: /* pblendw */
6335 case 0x660f3a0f: /* palignr */
6336 case 0x660f3a20: /* pinsrb */
6337 case 0x660f3a21: /* insertps */
6338 case 0x660f3a22: /* pinsrd pinsrq */
6339 case 0x660f3a40: /* dpps */
6340 case 0x660f3a41: /* dppd */
6341 case 0x660f3a42: /* mpsadbw */
6342 case 0x660f3a60: /* pcmpestrm */
6343 case 0x660f3a61: /* pcmpestri */
6344 case 0x660f3a62: /* pcmpistrm */
6345 case 0x660f3a63: /* pcmpistri */
6346 case 0x0f51: /* sqrtps */
6347 case 0x660f51: /* sqrtpd */
6348 case 0xf20f51: /* sqrtsd */
6349 case 0xf30f51: /* sqrtss */
6350 case 0x0f52: /* rsqrtps */
6351 case 0xf30f52: /* rsqrtss */
6352 case 0x0f53: /* rcpps */
6353 case 0xf30f53: /* rcpss */
6354 case 0x0f54: /* andps */
6355 case 0x660f54: /* andpd */
6356 case 0x0f55: /* andnps */
6357 case 0x660f55: /* andnpd */
6358 case 0x0f56: /* orps */
6359 case 0x660f56: /* orpd */
6360 case 0x0f57: /* xorps */
6361 case 0x660f57: /* xorpd */
6362 case 0x0f58: /* addps */
6363 case 0x660f58: /* addpd */
6364 case 0xf20f58: /* addsd */
6365 case 0xf30f58: /* addss */
6366 case 0x0f59: /* mulps */
6367 case 0x660f59: /* mulpd */
6368 case 0xf20f59: /* mulsd */
6369 case 0xf30f59: /* mulss */
6370 case 0x0f5a: /* cvtps2pd */
6371 case 0x660f5a: /* cvtpd2ps */
6372 case 0xf20f5a: /* cvtsd2ss */
6373 case 0xf30f5a: /* cvtss2sd */
6374 case 0x0f5b: /* cvtdq2ps */
6375 case 0x660f5b: /* cvtps2dq */
6376 case 0xf30f5b: /* cvttps2dq */
6377 case 0x0f5c: /* subps */
6378 case 0x660f5c: /* subpd */
6379 case 0xf20f5c: /* subsd */
6380 case 0xf30f5c: /* subss */
6381 case 0x0f5d: /* minps */
6382 case 0x660f5d: /* minpd */
6383 case 0xf20f5d: /* minsd */
6384 case 0xf30f5d: /* minss */
6385 case 0x0f5e: /* divps */
6386 case 0x660f5e: /* divpd */
6387 case 0xf20f5e: /* divsd */
6388 case 0xf30f5e: /* divss */
6389 case 0x0f5f: /* maxps */
6390 case 0x660f5f: /* maxpd */
6391 case 0xf20f5f: /* maxsd */
6392 case 0xf30f5f: /* maxss */
6393 case 0x660f60: /* punpcklbw */
6394 case 0x660f61: /* punpcklwd */
6395 case 0x660f62: /* punpckldq */
6396 case 0x660f63: /* packsswb */
6397 case 0x660f64: /* pcmpgtb */
6398 case 0x660f65: /* pcmpgtw */
56d2815c 6399 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
6400 case 0x660f67: /* packuswb */
6401 case 0x660f68: /* punpckhbw */
6402 case 0x660f69: /* punpckhwd */
6403 case 0x660f6a: /* punpckhdq */
6404 case 0x660f6b: /* packssdw */
6405 case 0x660f6c: /* punpcklqdq */
6406 case 0x660f6d: /* punpckhqdq */
6407 case 0x660f6e: /* movd */
6408 case 0x660f6f: /* movdqa */
6409 case 0xf30f6f: /* movdqu */
6410 case 0x660f70: /* pshufd */
6411 case 0xf20f70: /* pshuflw */
6412 case 0xf30f70: /* pshufhw */
6413 case 0x660f74: /* pcmpeqb */
6414 case 0x660f75: /* pcmpeqw */
56d2815c 6415 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
6416 case 0x660f7c: /* haddpd */
6417 case 0xf20f7c: /* haddps */
6418 case 0x660f7d: /* hsubpd */
6419 case 0xf20f7d: /* hsubps */
6420 case 0xf30f7e: /* movq */
6421 case 0x0fc2: /* cmpps */
6422 case 0x660fc2: /* cmppd */
6423 case 0xf20fc2: /* cmpsd */
6424 case 0xf30fc2: /* cmpss */
6425 case 0x660fc4: /* pinsrw */
6426 case 0x0fc6: /* shufps */
6427 case 0x660fc6: /* shufpd */
6428 case 0x660fd0: /* addsubpd */
6429 case 0xf20fd0: /* addsubps */
6430 case 0x660fd1: /* psrlw */
6431 case 0x660fd2: /* psrld */
6432 case 0x660fd3: /* psrlq */
6433 case 0x660fd4: /* paddq */
6434 case 0x660fd5: /* pmullw */
6435 case 0xf30fd6: /* movq2dq */
6436 case 0x660fd8: /* psubusb */
6437 case 0x660fd9: /* psubusw */
6438 case 0x660fda: /* pminub */
6439 case 0x660fdb: /* pand */
6440 case 0x660fdc: /* paddusb */
6441 case 0x660fdd: /* paddusw */
6442 case 0x660fde: /* pmaxub */
6443 case 0x660fdf: /* pandn */
6444 case 0x660fe0: /* pavgb */
6445 case 0x660fe1: /* psraw */
6446 case 0x660fe2: /* psrad */
6447 case 0x660fe3: /* pavgw */
6448 case 0x660fe4: /* pmulhuw */
6449 case 0x660fe5: /* pmulhw */
6450 case 0x660fe6: /* cvttpd2dq */
6451 case 0xf20fe6: /* cvtpd2dq */
6452 case 0xf30fe6: /* cvtdq2pd */
6453 case 0x660fe8: /* psubsb */
6454 case 0x660fe9: /* psubsw */
6455 case 0x660fea: /* pminsw */
6456 case 0x660feb: /* por */
6457 case 0x660fec: /* paddsb */
6458 case 0x660fed: /* paddsw */
6459 case 0x660fee: /* pmaxsw */
6460 case 0x660fef: /* pxor */
4f7d61a8 6461 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
6462 case 0x660ff1: /* psllw */
6463 case 0x660ff2: /* pslld */
6464 case 0x660ff3: /* psllq */
6465 case 0x660ff4: /* pmuludq */
6466 case 0x660ff5: /* pmaddwd */
6467 case 0x660ff6: /* psadbw */
6468 case 0x660ff8: /* psubb */
6469 case 0x660ff9: /* psubw */
56d2815c 6470 case 0x660ffa: /* psubd */
a3c4230a
HZ
6471 case 0x660ffb: /* psubq */
6472 case 0x660ffc: /* paddb */
6473 case 0x660ffd: /* paddw */
56d2815c 6474 case 0x660ffe: /* paddd */
a3c4230a
HZ
6475 if (i386_record_modrm (&ir))
6476 return -1;
6477 ir.reg |= rex_r;
c131fcee 6478 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a
HZ
6479 goto no_support;
6480 record_arch_list_add_reg (ir.regcache,
6481 I387_XMM0_REGNUM (tdep) + ir.reg);
6482 if ((opcode & 0xfffffffc) == 0x660f3a60)
6483 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6484 break;
6485
6486 case 0x0f11: /* movups */
6487 case 0x660f11: /* movupd */
6488 case 0xf30f11: /* movss */
6489 case 0xf20f11: /* movsd */
6490 case 0x0f13: /* movlps */
6491 case 0x660f13: /* movlpd */
6492 case 0x0f17: /* movhps */
6493 case 0x660f17: /* movhpd */
6494 case 0x0f29: /* movaps */
6495 case 0x660f29: /* movapd */
6496 case 0x660f3a14: /* pextrb */
6497 case 0x660f3a15: /* pextrw */
6498 case 0x660f3a16: /* pextrd pextrq */
6499 case 0x660f3a17: /* extractps */
6500 case 0x660f7f: /* movdqa */
6501 case 0xf30f7f: /* movdqu */
6502 if (i386_record_modrm (&ir))
6503 return -1;
6504 if (ir.mod == 3)
6505 {
6506 if (opcode == 0x0f13 || opcode == 0x660f13
6507 || opcode == 0x0f17 || opcode == 0x660f17)
6508 goto no_support;
6509 ir.rm |= ir.rex_b;
1777feb0
MS
6510 if (!i386_xmm_regnum_p (gdbarch,
6511 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6512 goto no_support;
6513 record_arch_list_add_reg (ir.regcache,
6514 I387_XMM0_REGNUM (tdep) + ir.rm);
6515 }
6516 else
6517 {
6518 switch (opcode)
6519 {
6520 case 0x660f3a14:
6521 ir.ot = OT_BYTE;
6522 break;
6523 case 0x660f3a15:
6524 ir.ot = OT_WORD;
6525 break;
6526 case 0x660f3a16:
6527 ir.ot = OT_LONG;
6528 break;
6529 case 0x660f3a17:
6530 ir.ot = OT_QUAD;
6531 break;
6532 default:
6533 ir.ot = OT_DQUAD;
6534 break;
6535 }
6536 if (i386_record_lea_modrm (&ir))
6537 return -1;
6538 }
6539 break;
6540
6541 case 0x0f2b: /* movntps */
6542 case 0x660f2b: /* movntpd */
6543 case 0x0fe7: /* movntq */
6544 case 0x660fe7: /* movntdq */
6545 if (ir.mod == 3)
6546 goto no_support;
6547 if (opcode == 0x0fe7)
6548 ir.ot = OT_QUAD;
6549 else
6550 ir.ot = OT_DQUAD;
6551 if (i386_record_lea_modrm (&ir))
6552 return -1;
6553 break;
6554
6555 case 0xf30f2c: /* cvttss2si */
6556 case 0xf20f2c: /* cvttsd2si */
6557 case 0xf30f2d: /* cvtss2si */
6558 case 0xf20f2d: /* cvtsd2si */
6559 case 0xf20f38f0: /* crc32 */
6560 case 0xf20f38f1: /* crc32 */
6561 case 0x0f50: /* movmskps */
6562 case 0x660f50: /* movmskpd */
6563 case 0x0fc5: /* pextrw */
6564 case 0x660fc5: /* pextrw */
6565 case 0x0fd7: /* pmovmskb */
6566 case 0x660fd7: /* pmovmskb */
6567 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6568 break;
6569
6570 case 0x0f3800: /* pshufb */
6571 case 0x0f3801: /* phaddw */
6572 case 0x0f3802: /* phaddd */
6573 case 0x0f3803: /* phaddsw */
6574 case 0x0f3804: /* pmaddubsw */
6575 case 0x0f3805: /* phsubw */
6576 case 0x0f3806: /* phsubd */
4f7d61a8 6577 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
6578 case 0x0f3808: /* psignb */
6579 case 0x0f3809: /* psignw */
6580 case 0x0f380a: /* psignd */
6581 case 0x0f380b: /* pmulhrsw */
6582 case 0x0f381c: /* pabsb */
6583 case 0x0f381d: /* pabsw */
6584 case 0x0f381e: /* pabsd */
6585 case 0x0f382b: /* packusdw */
6586 case 0x0f3830: /* pmovzxbw */
6587 case 0x0f3831: /* pmovzxbd */
6588 case 0x0f3832: /* pmovzxbq */
6589 case 0x0f3833: /* pmovzxwd */
6590 case 0x0f3834: /* pmovzxwq */
6591 case 0x0f3835: /* pmovzxdq */
6592 case 0x0f3837: /* pcmpgtq */
6593 case 0x0f3838: /* pminsb */
6594 case 0x0f3839: /* pminsd */
6595 case 0x0f383a: /* pminuw */
6596 case 0x0f383b: /* pminud */
6597 case 0x0f383c: /* pmaxsb */
6598 case 0x0f383d: /* pmaxsd */
6599 case 0x0f383e: /* pmaxuw */
6600 case 0x0f383f: /* pmaxud */
6601 case 0x0f3840: /* pmulld */
6602 case 0x0f3841: /* phminposuw */
6603 case 0x0f3a0f: /* palignr */
6604 case 0x0f60: /* punpcklbw */
6605 case 0x0f61: /* punpcklwd */
6606 case 0x0f62: /* punpckldq */
6607 case 0x0f63: /* packsswb */
6608 case 0x0f64: /* pcmpgtb */
6609 case 0x0f65: /* pcmpgtw */
56d2815c 6610 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
6611 case 0x0f67: /* packuswb */
6612 case 0x0f68: /* punpckhbw */
6613 case 0x0f69: /* punpckhwd */
6614 case 0x0f6a: /* punpckhdq */
6615 case 0x0f6b: /* packssdw */
6616 case 0x0f6e: /* movd */
6617 case 0x0f6f: /* movq */
6618 case 0x0f70: /* pshufw */
6619 case 0x0f74: /* pcmpeqb */
6620 case 0x0f75: /* pcmpeqw */
56d2815c 6621 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
6622 case 0x0fc4: /* pinsrw */
6623 case 0x0fd1: /* psrlw */
6624 case 0x0fd2: /* psrld */
6625 case 0x0fd3: /* psrlq */
6626 case 0x0fd4: /* paddq */
6627 case 0x0fd5: /* pmullw */
6628 case 0xf20fd6: /* movdq2q */
6629 case 0x0fd8: /* psubusb */
6630 case 0x0fd9: /* psubusw */
6631 case 0x0fda: /* pminub */
6632 case 0x0fdb: /* pand */
6633 case 0x0fdc: /* paddusb */
6634 case 0x0fdd: /* paddusw */
6635 case 0x0fde: /* pmaxub */
6636 case 0x0fdf: /* pandn */
6637 case 0x0fe0: /* pavgb */
6638 case 0x0fe1: /* psraw */
6639 case 0x0fe2: /* psrad */
6640 case 0x0fe3: /* pavgw */
6641 case 0x0fe4: /* pmulhuw */
6642 case 0x0fe5: /* pmulhw */
6643 case 0x0fe8: /* psubsb */
6644 case 0x0fe9: /* psubsw */
6645 case 0x0fea: /* pminsw */
6646 case 0x0feb: /* por */
6647 case 0x0fec: /* paddsb */
6648 case 0x0fed: /* paddsw */
6649 case 0x0fee: /* pmaxsw */
6650 case 0x0fef: /* pxor */
6651 case 0x0ff1: /* psllw */
6652 case 0x0ff2: /* pslld */
6653 case 0x0ff3: /* psllq */
6654 case 0x0ff4: /* pmuludq */
6655 case 0x0ff5: /* pmaddwd */
6656 case 0x0ff6: /* psadbw */
6657 case 0x0ff8: /* psubb */
6658 case 0x0ff9: /* psubw */
56d2815c 6659 case 0x0ffa: /* psubd */
a3c4230a
HZ
6660 case 0x0ffb: /* psubq */
6661 case 0x0ffc: /* paddb */
6662 case 0x0ffd: /* paddw */
56d2815c 6663 case 0x0ffe: /* paddd */
a3c4230a
HZ
6664 if (i386_record_modrm (&ir))
6665 return -1;
6666 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6667 goto no_support;
6668 record_arch_list_add_reg (ir.regcache,
6669 I387_MM0_REGNUM (tdep) + ir.reg);
6670 break;
6671
6672 case 0x0f71: /* psllw */
6673 case 0x0f72: /* pslld */
6674 case 0x0f73: /* psllq */
6675 if (i386_record_modrm (&ir))
6676 return -1;
6677 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6678 goto no_support;
6679 record_arch_list_add_reg (ir.regcache,
6680 I387_MM0_REGNUM (tdep) + ir.rm);
6681 break;
6682
6683 case 0x660f71: /* psllw */
6684 case 0x660f72: /* pslld */
6685 case 0x660f73: /* psllq */
6686 if (i386_record_modrm (&ir))
6687 return -1;
6688 ir.rm |= ir.rex_b;
c131fcee 6689 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6690 goto no_support;
6691 record_arch_list_add_reg (ir.regcache,
6692 I387_XMM0_REGNUM (tdep) + ir.rm);
6693 break;
6694
6695 case 0x0f7e: /* movd */
6696 case 0x660f7e: /* movd */
6697 if (i386_record_modrm (&ir))
6698 return -1;
6699 if (ir.mod == 3)
6700 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6701 else
6702 {
6703 if (ir.dflag == 2)
6704 ir.ot = OT_QUAD;
6705 else
6706 ir.ot = OT_LONG;
6707 if (i386_record_lea_modrm (&ir))
6708 return -1;
6709 }
6710 break;
6711
6712 case 0x0f7f: /* movq */
6713 if (i386_record_modrm (&ir))
6714 return -1;
6715 if (ir.mod == 3)
6716 {
6717 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6718 goto no_support;
6719 record_arch_list_add_reg (ir.regcache,
6720 I387_MM0_REGNUM (tdep) + ir.rm);
6721 }
6722 else
6723 {
6724 ir.ot = OT_QUAD;
6725 if (i386_record_lea_modrm (&ir))
6726 return -1;
6727 }
6728 break;
6729
6730 case 0xf30fb8: /* popcnt */
6731 if (i386_record_modrm (&ir))
6732 return -1;
6733 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6734 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6735 break;
6736
6737 case 0x660fd6: /* movq */
6738 if (i386_record_modrm (&ir))
6739 return -1;
6740 if (ir.mod == 3)
6741 {
6742 ir.rm |= ir.rex_b;
1777feb0
MS
6743 if (!i386_xmm_regnum_p (gdbarch,
6744 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6745 goto no_support;
6746 record_arch_list_add_reg (ir.regcache,
6747 I387_XMM0_REGNUM (tdep) + ir.rm);
6748 }
6749 else
6750 {
6751 ir.ot = OT_QUAD;
6752 if (i386_record_lea_modrm (&ir))
6753 return -1;
6754 }
6755 break;
6756
6757 case 0x660f3817: /* ptest */
6758 case 0x0f2e: /* ucomiss */
6759 case 0x660f2e: /* ucomisd */
6760 case 0x0f2f: /* comiss */
6761 case 0x660f2f: /* comisd */
6762 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6763 break;
6764
6765 case 0x0ff7: /* maskmovq */
6766 regcache_raw_read_unsigned (ir.regcache,
6767 ir.regmap[X86_RECORD_REDI_REGNUM],
6768 &addr);
6769 if (record_arch_list_add_mem (addr, 64))
6770 return -1;
6771 break;
6772
6773 case 0x660ff7: /* maskmovdqu */
6774 regcache_raw_read_unsigned (ir.regcache,
6775 ir.regmap[X86_RECORD_REDI_REGNUM],
6776 &addr);
6777 if (record_arch_list_add_mem (addr, 128))
6778 return -1;
6779 break;
6780
6781 default:
6782 goto no_support;
6783 break;
6784 }
6785 break;
7ad10968
HZ
6786
6787 default:
7ad10968
HZ
6788 goto no_support;
6789 break;
6790 }
6791
cf648174
HZ
6792 /* In the future, maybe still need to deal with need_dasm. */
6793 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7ad10968
HZ
6794 if (record_arch_list_add_end ())
6795 return -1;
6796
6797 return 0;
6798
01fe1b41 6799 no_support:
a3c4230a
HZ
6800 printf_unfiltered (_("Process record does not support instruction 0x%02x "
6801 "at address %s.\n"),
6802 (unsigned int) (opcode),
6803 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
6804 return -1;
6805}
6806
cf648174
HZ
6807static const int i386_record_regmap[] =
6808{
6809 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6810 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6811 0, 0, 0, 0, 0, 0, 0, 0,
6812 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6813 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6814};
6815
7a697b8d
SS
6816/* Check that the given address appears suitable for a fast
6817 tracepoint, which on x86 means that we need an instruction of at
6818 least 5 bytes, so that we can overwrite it with a 4-byte-offset
6819 jump and not have to worry about program jumps to an address in the
6820 middle of the tracepoint jump. Returns 1 if OK, and writes a size
6821 of instruction to replace, and 0 if not, plus an explanatory
6822 string. */
6823
6824static int
6825i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6826 CORE_ADDR addr, int *isize, char **msg)
6827{
6828 int len, jumplen;
6829 static struct ui_file *gdb_null = NULL;
6830
6831 /* This is based on the target agent using a 4-byte relative jump.
6832 Alternate future possibilities include 8-byte offset for x86-84,
6833 or 3-byte jumps if the program has trampoline space close by. */
6834 jumplen = 5;
6835
6836 /* Dummy file descriptor for the disassembler. */
6837 if (!gdb_null)
6838 gdb_null = ui_file_new ();
6839
6840 /* Check for fit. */
6841 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6842 if (len < jumplen)
6843 {
6844 /* Return a bit of target-specific detail to add to the caller's
6845 generic failure message. */
6846 if (msg)
1777feb0
MS
6847 *msg = xstrprintf (_("; instruction is only %d bytes long, "
6848 "need at least %d bytes for the jump"),
7a697b8d
SS
6849 len, jumplen);
6850 return 0;
6851 }
6852
6853 if (isize)
6854 *isize = len;
6855 if (msg)
6856 *msg = NULL;
6857 return 1;
6858}
6859
90884b2b
L
6860static int
6861i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6862 struct tdesc_arch_data *tdesc_data)
6863{
6864 const struct target_desc *tdesc = tdep->tdesc;
c131fcee
L
6865 const struct tdesc_feature *feature_core;
6866 const struct tdesc_feature *feature_sse, *feature_avx;
90884b2b
L
6867 int i, num_regs, valid_p;
6868
6869 if (! tdesc_has_registers (tdesc))
6870 return 0;
6871
6872 /* Get core registers. */
6873 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
6874 if (feature_core == NULL)
6875 return 0;
90884b2b
L
6876
6877 /* Get SSE registers. */
c131fcee 6878 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 6879
c131fcee
L
6880 /* Try AVX registers. */
6881 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6882
90884b2b
L
6883 valid_p = 1;
6884
c131fcee
L
6885 /* The XCR0 bits. */
6886 if (feature_avx)
6887 {
3a13a53b
L
6888 /* AVX register description requires SSE register description. */
6889 if (!feature_sse)
6890 return 0;
6891
c131fcee
L
6892 tdep->xcr0 = I386_XSTATE_AVX_MASK;
6893
6894 /* It may have been set by OSABI initialization function. */
6895 if (tdep->num_ymm_regs == 0)
6896 {
6897 tdep->ymmh_register_names = i386_ymmh_names;
6898 tdep->num_ymm_regs = 8;
6899 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
6900 }
6901
6902 for (i = 0; i < tdep->num_ymm_regs; i++)
6903 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
6904 tdep->ymm0h_regnum + i,
6905 tdep->ymmh_register_names[i]);
6906 }
3a13a53b 6907 else if (feature_sse)
c131fcee 6908 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
6909 else
6910 {
6911 tdep->xcr0 = I386_XSTATE_X87_MASK;
6912 tdep->num_xmm_regs = 0;
6913 }
c131fcee 6914
90884b2b
L
6915 num_regs = tdep->num_core_regs;
6916 for (i = 0; i < num_regs; i++)
6917 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
6918 tdep->register_names[i]);
6919
3a13a53b
L
6920 if (feature_sse)
6921 {
6922 /* Need to include %mxcsr, so add one. */
6923 num_regs += tdep->num_xmm_regs + 1;
6924 for (; i < num_regs; i++)
6925 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
6926 tdep->register_names[i]);
6927 }
90884b2b
L
6928
6929 return valid_p;
6930}
6931
7ad10968
HZ
6932\f
6933static struct gdbarch *
6934i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6935{
6936 struct gdbarch_tdep *tdep;
6937 struct gdbarch *gdbarch;
90884b2b
L
6938 struct tdesc_arch_data *tdesc_data;
6939 const struct target_desc *tdesc;
1ba53b71 6940 int mm0_regnum;
c131fcee 6941 int ymm0_regnum;
7ad10968
HZ
6942
6943 /* If there is already a candidate, use it. */
6944 arches = gdbarch_list_lookup_by_info (arches, &info);
6945 if (arches != NULL)
6946 return arches->gdbarch;
6947
6948 /* Allocate space for the new architecture. */
6949 tdep = XCALLOC (1, struct gdbarch_tdep);
6950 gdbarch = gdbarch_alloc (&info, tdep);
6951
6952 /* General-purpose registers. */
6953 tdep->gregset = NULL;
6954 tdep->gregset_reg_offset = NULL;
6955 tdep->gregset_num_regs = I386_NUM_GREGS;
6956 tdep->sizeof_gregset = 0;
6957
6958 /* Floating-point registers. */
6959 tdep->fpregset = NULL;
6960 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
6961
c131fcee
L
6962 tdep->xstateregset = NULL;
6963
7ad10968
HZ
6964 /* The default settings include the FPU registers, the MMX registers
6965 and the SSE registers. This can be overridden for a specific ABI
6966 by adjusting the members `st0_regnum', `mm0_regnum' and
6967 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 6968 will show up in the output of "info all-registers". */
7ad10968
HZ
6969
6970 tdep->st0_regnum = I386_ST0_REGNUM;
6971
7ad10968
HZ
6972 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
6973 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
6974
6975 tdep->jb_pc_offset = -1;
6976 tdep->struct_return = pcc_struct_return;
6977 tdep->sigtramp_start = 0;
6978 tdep->sigtramp_end = 0;
6979 tdep->sigtramp_p = i386_sigtramp_p;
6980 tdep->sigcontext_addr = NULL;
6981 tdep->sc_reg_offset = NULL;
6982 tdep->sc_pc_offset = -1;
6983 tdep->sc_sp_offset = -1;
6984
c131fcee
L
6985 tdep->xsave_xcr0_offset = -1;
6986
cf648174
HZ
6987 tdep->record_regmap = i386_record_regmap;
6988
7ad10968
HZ
6989 /* The format used for `long double' on almost all i386 targets is
6990 the i387 extended floating-point format. In fact, of all targets
6991 in the GCC 2.95 tree, only OSF/1 does it different, and insists
6992 on having a `long double' that's not `long' at all. */
6993 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
6994
6995 /* Although the i387 extended floating-point has only 80 significant
6996 bits, a `long double' actually takes up 96, probably to enforce
6997 alignment. */
6998 set_gdbarch_long_double_bit (gdbarch, 96);
6999
7ad10968
HZ
7000 /* Register numbers of various important registers. */
7001 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7002 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7003 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7004 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7005
7006 /* NOTE: kettenis/20040418: GCC does have two possible register
7007 numbering schemes on the i386: dbx and SVR4. These schemes
7008 differ in how they number %ebp, %esp, %eflags, and the
7009 floating-point registers, and are implemented by the arrays
7010 dbx_register_map[] and svr4_dbx_register_map in
7011 gcc/config/i386.c. GCC also defines a third numbering scheme in
7012 gcc/config/i386.c, which it designates as the "default" register
7013 map used in 64bit mode. This last register numbering scheme is
7014 implemented in dbx64_register_map, and is used for AMD64; see
7015 amd64-tdep.c.
7016
7017 Currently, each GCC i386 target always uses the same register
7018 numbering scheme across all its supported debugging formats
7019 i.e. SDB (COFF), stabs and DWARF 2. This is because
7020 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7021 DBX_REGISTER_NUMBER macro which is defined by each target's
7022 respective config header in a manner independent of the requested
7023 output debugging format.
7024
7025 This does not match the arrangement below, which presumes that
7026 the SDB and stabs numbering schemes differ from the DWARF and
7027 DWARF 2 ones. The reason for this arrangement is that it is
7028 likely to get the numbering scheme for the target's
7029 default/native debug format right. For targets where GCC is the
7030 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7031 targets where the native toolchain uses a different numbering
7032 scheme for a particular debug format (stabs-in-ELF on Solaris)
7033 the defaults below will have to be overridden, like
7034 i386_elf_init_abi() does. */
7035
7036 /* Use the dbx register numbering scheme for stabs and COFF. */
7037 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7038 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7039
7040 /* Use the SVR4 register numbering scheme for DWARF 2. */
7041 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7042
7043 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7044 be in use on any of the supported i386 targets. */
7045
7046 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7047
7048 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7049
7050 /* Call dummy code. */
7051 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7052
7053 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7054 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7055 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7056
7057 set_gdbarch_return_value (gdbarch, i386_return_value);
7058
7059 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7060
7061 /* Stack grows downward. */
7062 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7063
7064 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7065 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7066 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7067
7068 set_gdbarch_frame_args_skip (gdbarch, 8);
7069
7ad10968
HZ
7070 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7071
7072 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7073
7074 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7075
7076 /* Add the i386 register groups. */
7077 i386_add_reggroups (gdbarch);
90884b2b 7078 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 7079
143985b7
AF
7080 /* Helper for function argument information. */
7081 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7082
06da04c6
MS
7083 /* Hook the function epilogue frame unwinder. This unwinder is
7084 appended to the list first, so that it supercedes the Dwarf
7085 unwinder in function epilogues (where the Dwarf unwinder
7086 currently fails). */
7087 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7088
7089 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7090 to the list before the prologue-based unwinders, so that Dwarf
7091 CFI info will be used if it is available. */
10458914 7092 dwarf2_append_unwinders (gdbarch);
6405b0a6 7093
acd5c798 7094 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 7095
1ba53b71 7096 /* Pseudo registers may be changed by amd64_init_abi. */
90884b2b
L
7097 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7098 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7099
7100 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7101 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7102
c131fcee
L
7103 /* Override the normal target description method to make the AVX
7104 upper halves anonymous. */
7105 set_gdbarch_register_name (gdbarch, i386_register_name);
7106
7107 /* Even though the default ABI only includes general-purpose registers,
7108 floating-point registers and the SSE registers, we have to leave a
7109 gap for the upper AVX registers. */
7110 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
90884b2b
L
7111
7112 /* Get the x86 target description from INFO. */
7113 tdesc = info.target_desc;
7114 if (! tdesc_has_registers (tdesc))
7115 tdesc = tdesc_i386;
7116 tdep->tdesc = tdesc;
7117
7118 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7119 tdep->register_names = i386_register_names;
7120
c131fcee
L
7121 /* No upper YMM registers. */
7122 tdep->ymmh_register_names = NULL;
7123 tdep->ymm0h_regnum = -1;
7124
1ba53b71
L
7125 tdep->num_byte_regs = 8;
7126 tdep->num_word_regs = 8;
7127 tdep->num_dword_regs = 0;
7128 tdep->num_mmx_regs = 8;
c131fcee 7129 tdep->num_ymm_regs = 0;
1ba53b71 7130
90884b2b
L
7131 tdesc_data = tdesc_data_alloc ();
7132
dde08ee1
PA
7133 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7134
3ce1502b 7135 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 7136 info.tdep_info = (void *) tdesc_data;
4be87837 7137 gdbarch_init_osabi (info, gdbarch);
3ce1502b 7138
c131fcee
L
7139 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7140 {
7141 tdesc_data_cleanup (tdesc_data);
7142 xfree (tdep);
7143 gdbarch_free (gdbarch);
7144 return NULL;
7145 }
7146
1ba53b71
L
7147 /* Wire in pseudo registers. Number of pseudo registers may be
7148 changed. */
7149 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7150 + tdep->num_word_regs
7151 + tdep->num_dword_regs
c131fcee
L
7152 + tdep->num_mmx_regs
7153 + tdep->num_ymm_regs));
1ba53b71 7154
90884b2b
L
7155 /* Target description may be changed. */
7156 tdesc = tdep->tdesc;
7157
90884b2b
L
7158 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7159
7160 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7161 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7162
1ba53b71
L
7163 /* Make %al the first pseudo-register. */
7164 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7165 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7166
c131fcee 7167 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
7168 if (tdep->num_dword_regs)
7169 {
1c6272a6 7170 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
7171 tdep->eax_regnum = ymm0_regnum;
7172 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
7173 }
7174 else
7175 tdep->eax_regnum = -1;
7176
c131fcee
L
7177 mm0_regnum = ymm0_regnum;
7178 if (tdep->num_ymm_regs)
7179 {
1c6272a6 7180 /* Support YMM pseudo-register if it is available. */
c131fcee
L
7181 tdep->ymm0_regnum = ymm0_regnum;
7182 mm0_regnum += tdep->num_ymm_regs;
7183 }
7184 else
7185 tdep->ymm0_regnum = -1;
7186
1ba53b71
L
7187 if (tdep->num_mmx_regs != 0)
7188 {
1c6272a6 7189 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71
L
7190 tdep->mm0_regnum = mm0_regnum;
7191 }
7192 else
7193 tdep->mm0_regnum = -1;
7194
06da04c6 7195 /* Hook in the legacy prologue-based unwinders last (fallback). */
10458914
DJ
7196 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7197 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 7198
8446b36a
MK
7199 /* If we have a register mapping, enable the generic core file
7200 support, unless it has already been enabled. */
7201 if (tdep->gregset_reg_offset
7202 && !gdbarch_regset_from_core_section_p (gdbarch))
7203 set_gdbarch_regset_from_core_section (gdbarch,
7204 i386_regset_from_core_section);
7205
514f746b
AR
7206 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7207 i386_skip_permanent_breakpoint);
7208
7a697b8d
SS
7209 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7210 i386_fast_tracepoint_valid_at);
7211
a62cc96e
AC
7212 return gdbarch;
7213}
7214
8201327c
MK
7215static enum gdb_osabi
7216i386_coff_osabi_sniffer (bfd *abfd)
7217{
762c5349
MK
7218 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7219 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
7220 return GDB_OSABI_GO32;
7221
7222 return GDB_OSABI_UNKNOWN;
7223}
8201327c
MK
7224\f
7225
28e9e0f0
MK
7226/* Provide a prototype to silence -Wmissing-prototypes. */
7227void _initialize_i386_tdep (void);
7228
c906108c 7229void
fba45db2 7230_initialize_i386_tdep (void)
c906108c 7231{
a62cc96e
AC
7232 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7233
fc338970 7234 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
7235 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7236 &disassembly_flavor, _("\
7237Set the disassembly flavor."), _("\
7238Show the disassembly flavor."), _("\
7239The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7240 NULL,
7241 NULL, /* FIXME: i18n: */
7242 &setlist, &showlist);
8201327c
MK
7243
7244 /* Add the variable that controls the convention for returning
7245 structs. */
7ab04401
AC
7246 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7247 &struct_convention, _("\
7248Set the convention for returning small structs."), _("\
7249Show the convention for returning small structs."), _("\
7250Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7251is \"default\"."),
7252 NULL,
7253 NULL, /* FIXME: i18n: */
7254 &setlist, &showlist);
8201327c
MK
7255
7256 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7257 i386_coff_osabi_sniffer);
8201327c 7258
05816f70 7259 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 7260 i386_svr4_init_abi);
05816f70 7261 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 7262 i386_go32_init_abi);
38c968cf 7263
209bd28e 7264 /* Initialize the i386-specific register groups. */
38c968cf 7265 i386_init_reggroups ();
90884b2b
L
7266
7267 /* Initialize the standard target descriptions. */
7268 initialize_tdesc_i386 ();
3a13a53b 7269 initialize_tdesc_i386_mmx ();
c131fcee 7270 initialize_tdesc_i386_avx ();
c8d5aac9
L
7271
7272 /* Tell remote stub that we support XML target description. */
7273 register_remote_support_xml ("i386");
c906108c 7274}
This page took 2.264807 seconds and 4 git commands to generate.