Revert the previous change.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
0fb0cc75 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5ae96ec1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
1903f0e6 23#include "opcode/i386.h"
acd5c798
MK
24#include "arch-utils.h"
25#include "command.h"
26#include "dummy-frame.h"
6405b0a6 27#include "dwarf2-frame.h"
acd5c798 28#include "doublest.h"
c906108c 29#include "frame.h"
acd5c798
MK
30#include "frame-base.h"
31#include "frame-unwind.h"
c906108c 32#include "inferior.h"
acd5c798 33#include "gdbcmd.h"
c906108c 34#include "gdbcore.h"
e6bb342a 35#include "gdbtypes.h"
dfe01d39 36#include "objfiles.h"
acd5c798
MK
37#include "osabi.h"
38#include "regcache.h"
39#include "reggroups.h"
473f17b0 40#include "regset.h"
c0d1d883 41#include "symfile.h"
c906108c 42#include "symtab.h"
acd5c798 43#include "target.h"
fd0407d6 44#include "value.h"
a89aa300 45#include "dis-asm.h"
acd5c798 46
3d261580 47#include "gdb_assert.h"
acd5c798 48#include "gdb_string.h"
3d261580 49
d2a7c97a 50#include "i386-tdep.h"
61113f8b 51#include "i387-tdep.h"
d2a7c97a 52
7ad10968
HZ
53#include "record.h"
54#include <stdint.h>
55
c4fc7f1b 56/* Register names. */
c40e1eab 57
fc633446
MK
58static char *i386_register_names[] =
59{
60 "eax", "ecx", "edx", "ebx",
61 "esp", "ebp", "esi", "edi",
62 "eip", "eflags", "cs", "ss",
63 "ds", "es", "fs", "gs",
64 "st0", "st1", "st2", "st3",
65 "st4", "st5", "st6", "st7",
66 "fctrl", "fstat", "ftag", "fiseg",
67 "fioff", "foseg", "fooff", "fop",
68 "xmm0", "xmm1", "xmm2", "xmm3",
69 "xmm4", "xmm5", "xmm6", "xmm7",
70 "mxcsr"
71};
72
1cb97e17 73static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 74
c4fc7f1b 75/* Register names for MMX pseudo-registers. */
28fc6740
AC
76
77static char *i386_mmx_names[] =
78{
79 "mm0", "mm1", "mm2", "mm3",
80 "mm4", "mm5", "mm6", "mm7"
81};
c40e1eab 82
1cb97e17 83static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 84
28fc6740 85static int
5716833c 86i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 87{
5716833c
MK
88 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
89
90 if (mm0_regnum < 0)
91 return 0;
92
93 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
94}
95
5716833c 96/* SSE register? */
23a34459 97
5716833c
MK
98static int
99i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 100{
5716833c
MK
101 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
102
20a6ec49 103 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
104 return 0;
105
20a6ec49
MD
106 return (I387_XMM0_REGNUM (tdep) <= regnum
107 && regnum < I387_MXCSR_REGNUM (tdep));
23a34459
AC
108}
109
5716833c
MK
110static int
111i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 112{
5716833c
MK
113 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
114
20a6ec49 115 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
116 return 0;
117
20a6ec49 118 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
119}
120
5716833c 121/* FP register? */
23a34459
AC
122
123int
20a6ec49 124i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 125{
20a6ec49
MD
126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
127
128 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
129 return 0;
130
20a6ec49
MD
131 return (I387_ST0_REGNUM (tdep) <= regnum
132 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
133}
134
135int
20a6ec49 136i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 137{
20a6ec49
MD
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
139
140 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
141 return 0;
142
20a6ec49
MD
143 return (I387_FCTRL_REGNUM (tdep) <= regnum
144 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
145}
146
30b0e2d8 147/* Return the name of register REGNUM. */
fc633446 148
fa88f677 149const char *
d93859e2 150i386_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 151{
d93859e2 152 if (i386_mmx_regnum_p (gdbarch, regnum))
20a6ec49 153 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
fc633446 154
30b0e2d8
MK
155 if (regnum >= 0 && regnum < i386_num_register_names)
156 return i386_register_names[regnum];
70913449 157
c40e1eab 158 return NULL;
fc633446
MK
159}
160
c4fc7f1b 161/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
162 number used by GDB. */
163
8201327c 164static int
d3f73121 165i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 166{
20a6ec49
MD
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168
c4fc7f1b
MK
169 /* This implements what GCC calls the "default" register map
170 (dbx_register_map[]). */
171
85540d8c
MK
172 if (reg >= 0 && reg <= 7)
173 {
9872ad24
JB
174 /* General-purpose registers. The debug info calls %ebp
175 register 4, and %esp register 5. */
176 if (reg == 4)
177 return 5;
178 else if (reg == 5)
179 return 4;
180 else return reg;
85540d8c
MK
181 }
182 else if (reg >= 12 && reg <= 19)
183 {
184 /* Floating-point registers. */
20a6ec49 185 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
186 }
187 else if (reg >= 21 && reg <= 28)
188 {
189 /* SSE registers. */
20a6ec49 190 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
191 }
192 else if (reg >= 29 && reg <= 36)
193 {
194 /* MMX registers. */
20a6ec49 195 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
196 }
197
198 /* This will hopefully provoke a warning. */
d3f73121 199 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
200}
201
c4fc7f1b
MK
202/* Convert SVR4 register number REG to the appropriate register number
203 used by GDB. */
85540d8c 204
8201327c 205static int
d3f73121 206i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 207{
20a6ec49
MD
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209
c4fc7f1b
MK
210 /* This implements the GCC register map that tries to be compatible
211 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
212
213 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
214 numbers the floating point registers differently. */
215 if (reg >= 0 && reg <= 9)
216 {
acd5c798 217 /* General-purpose registers. */
85540d8c
MK
218 return reg;
219 }
220 else if (reg >= 11 && reg <= 18)
221 {
222 /* Floating-point registers. */
20a6ec49 223 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 224 }
c6f4c129 225 else if (reg >= 21 && reg <= 36)
85540d8c 226 {
c4fc7f1b 227 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 228 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
229 }
230
c6f4c129
JB
231 switch (reg)
232 {
20a6ec49
MD
233 case 37: return I387_FCTRL_REGNUM (tdep);
234 case 38: return I387_FSTAT_REGNUM (tdep);
235 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
236 case 40: return I386_ES_REGNUM;
237 case 41: return I386_CS_REGNUM;
238 case 42: return I386_SS_REGNUM;
239 case 43: return I386_DS_REGNUM;
240 case 44: return I386_FS_REGNUM;
241 case 45: return I386_GS_REGNUM;
242 }
243
85540d8c 244 /* This will hopefully provoke a warning. */
d3f73121 245 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 246}
5716833c 247
fc338970 248\f
917317f4 249
fc338970
MK
250/* This is the variable that is set with "set disassembly-flavor", and
251 its legitimate values. */
53904c9e
AC
252static const char att_flavor[] = "att";
253static const char intel_flavor[] = "intel";
254static const char *valid_flavors[] =
c5aa993b 255{
c906108c
SS
256 att_flavor,
257 intel_flavor,
258 NULL
259};
53904c9e 260static const char *disassembly_flavor = att_flavor;
acd5c798 261\f
c906108c 262
acd5c798
MK
263/* Use the program counter to determine the contents and size of a
264 breakpoint instruction. Return a pointer to a string of bytes that
265 encode a breakpoint instruction, store the length of the string in
266 *LEN and optionally adjust *PC to point to the correct memory
267 location for inserting the breakpoint.
c906108c 268
acd5c798
MK
269 On the i386 we have a single breakpoint that fits in a single byte
270 and can be inserted anywhere.
c906108c 271
acd5c798 272 This function is 64-bit safe. */
63c0089f
MK
273
274static const gdb_byte *
67d57894 275i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 276{
63c0089f
MK
277 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
278
acd5c798
MK
279 *len = sizeof (break_insn);
280 return break_insn;
c906108c 281}
237fc4c9
PA
282\f
283/* Displaced instruction handling. */
284
1903f0e6
DE
285/* Skip the legacy instruction prefixes in INSN.
286 Not all prefixes are valid for any particular insn
287 but we needn't care, the insn will fault if it's invalid.
288 The result is a pointer to the first opcode byte,
289 or NULL if we run off the end of the buffer. */
290
291static gdb_byte *
292i386_skip_prefixes (gdb_byte *insn, size_t max_len)
293{
294 gdb_byte *end = insn + max_len;
295
296 while (insn < end)
297 {
298 switch (*insn)
299 {
300 case DATA_PREFIX_OPCODE:
301 case ADDR_PREFIX_OPCODE:
302 case CS_PREFIX_OPCODE:
303 case DS_PREFIX_OPCODE:
304 case ES_PREFIX_OPCODE:
305 case FS_PREFIX_OPCODE:
306 case GS_PREFIX_OPCODE:
307 case SS_PREFIX_OPCODE:
308 case LOCK_PREFIX_OPCODE:
309 case REPE_PREFIX_OPCODE:
310 case REPNE_PREFIX_OPCODE:
311 ++insn;
312 continue;
313 default:
314 return insn;
315 }
316 }
317
318 return NULL;
319}
237fc4c9
PA
320
321static int
1903f0e6 322i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9
PA
323{
324 /* jmp far (absolute address in operand) */
325 if (insn[0] == 0xea)
326 return 1;
327
328 if (insn[0] == 0xff)
329 {
330 /* jump near, absolute indirect (/4) */
331 if ((insn[1] & 0x38) == 0x20)
332 return 1;
333
334 /* jump far, absolute indirect (/5) */
335 if ((insn[1] & 0x38) == 0x28)
336 return 1;
337 }
338
339 return 0;
340}
341
342static int
1903f0e6 343i386_absolute_call_p (const gdb_byte *insn)
237fc4c9
PA
344{
345 /* call far, absolute */
346 if (insn[0] == 0x9a)
347 return 1;
348
349 if (insn[0] == 0xff)
350 {
351 /* Call near, absolute indirect (/2) */
352 if ((insn[1] & 0x38) == 0x10)
353 return 1;
354
355 /* Call far, absolute indirect (/3) */
356 if ((insn[1] & 0x38) == 0x18)
357 return 1;
358 }
359
360 return 0;
361}
362
363static int
1903f0e6 364i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
365{
366 switch (insn[0])
367 {
368 case 0xc2: /* ret near, pop N bytes */
369 case 0xc3: /* ret near */
370 case 0xca: /* ret far, pop N bytes */
371 case 0xcb: /* ret far */
372 case 0xcf: /* iret */
373 return 1;
374
375 default:
376 return 0;
377 }
378}
379
380static int
1903f0e6 381i386_call_p (const gdb_byte *insn)
237fc4c9
PA
382{
383 if (i386_absolute_call_p (insn))
384 return 1;
385
386 /* call near, relative */
387 if (insn[0] == 0xe8)
388 return 1;
389
390 return 0;
391}
392
237fc4c9
PA
393/* Return non-zero if INSN is a system call, and set *LENGTHP to its
394 length in bytes. Otherwise, return zero. */
1903f0e6 395
237fc4c9 396static int
1903f0e6 397i386_syscall_p (const gdb_byte *insn, ULONGEST *lengthp)
237fc4c9
PA
398{
399 if (insn[0] == 0xcd)
400 {
401 *lengthp = 2;
402 return 1;
403 }
404
405 return 0;
406}
407
408/* Fix up the state of registers and memory after having single-stepped
409 a displaced instruction. */
1903f0e6 410
237fc4c9
PA
411void
412i386_displaced_step_fixup (struct gdbarch *gdbarch,
413 struct displaced_step_closure *closure,
414 CORE_ADDR from, CORE_ADDR to,
415 struct regcache *regs)
416{
e17a4113
UW
417 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
418
237fc4c9
PA
419 /* The offset we applied to the instruction's address.
420 This could well be negative (when viewed as a signed 32-bit
421 value), but ULONGEST won't reflect that, so take care when
422 applying it. */
423 ULONGEST insn_offset = to - from;
424
425 /* Since we use simple_displaced_step_copy_insn, our closure is a
426 copy of the instruction. */
427 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
428 /* The start of the insn, needed in case we see some prefixes. */
429 gdb_byte *insn_start = insn;
237fc4c9
PA
430
431 if (debug_displaced)
432 fprintf_unfiltered (gdb_stdlog,
5af949e3 433 "displaced: fixup (%s, %s), "
237fc4c9 434 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
435 paddress (gdbarch, from), paddress (gdbarch, to),
436 insn[0], insn[1]);
237fc4c9
PA
437
438 /* The list of issues to contend with here is taken from
439 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
440 Yay for Free Software! */
441
442 /* Relocate the %eip, if necessary. */
443
1903f0e6
DE
444 /* The instruction recognizers we use assume any leading prefixes
445 have been skipped. */
446 {
447 /* This is the size of the buffer in closure. */
448 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
449 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
450 /* If there are too many prefixes, just ignore the insn.
451 It will fault when run. */
452 if (opcode != NULL)
453 insn = opcode;
454 }
455
237fc4c9
PA
456 /* Except in the case of absolute or indirect jump or call
457 instructions, or a return instruction, the new eip is relative to
458 the displaced instruction; make it relative. Well, signal
459 handler returns don't need relocation either, but we use the
460 value of %eip to recognize those; see below. */
461 if (! i386_absolute_jmp_p (insn)
462 && ! i386_absolute_call_p (insn)
463 && ! i386_ret_p (insn))
464 {
465 ULONGEST orig_eip;
466 ULONGEST insn_len;
467
468 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
469
470 /* A signal trampoline system call changes the %eip, resuming
471 execution of the main program after the signal handler has
472 returned. That makes them like 'return' instructions; we
473 shouldn't relocate %eip.
474
475 But most system calls don't, and we do need to relocate %eip.
476
477 Our heuristic for distinguishing these cases: if stepping
478 over the system call instruction left control directly after
479 the instruction, the we relocate --- control almost certainly
480 doesn't belong in the displaced copy. Otherwise, we assume
481 the instruction has put control where it belongs, and leave
482 it unrelocated. Goodness help us if there are PC-relative
483 system calls. */
484 if (i386_syscall_p (insn, &insn_len)
1903f0e6 485 && orig_eip != to + (insn - insn_start) + insn_len)
237fc4c9
PA
486 {
487 if (debug_displaced)
488 fprintf_unfiltered (gdb_stdlog,
489 "displaced: syscall changed %%eip; "
490 "not relocating\n");
491 }
492 else
493 {
494 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
495
1903f0e6
DE
496 /* If we just stepped over a breakpoint insn, we don't backup
497 the pc on purpose; this is to match behaviour without
498 stepping. */
237fc4c9
PA
499
500 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
501
502 if (debug_displaced)
503 fprintf_unfiltered (gdb_stdlog,
504 "displaced: "
5af949e3
UW
505 "relocated %%eip from %s to %s\n",
506 paddress (gdbarch, orig_eip),
507 paddress (gdbarch, eip));
237fc4c9
PA
508 }
509 }
510
511 /* If the instruction was PUSHFL, then the TF bit will be set in the
512 pushed value, and should be cleared. We'll leave this for later,
513 since GDB already messes up the TF flag when stepping over a
514 pushfl. */
515
516 /* If the instruction was a call, the return address now atop the
517 stack is the address following the copied instruction. We need
518 to make it the address following the original instruction. */
519 if (i386_call_p (insn))
520 {
521 ULONGEST esp;
522 ULONGEST retaddr;
523 const ULONGEST retaddr_len = 4;
524
525 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 526 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 527 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 528 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
529
530 if (debug_displaced)
531 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
532 "displaced: relocated return addr at %s to %s\n",
533 paddress (gdbarch, esp),
534 paddress (gdbarch, retaddr));
237fc4c9
PA
535 }
536}
fc338970 537\f
acd5c798
MK
538#ifdef I386_REGNO_TO_SYMMETRY
539#error "The Sequent Symmetry is no longer supported."
540#endif
c906108c 541
acd5c798
MK
542/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
543 and %esp "belong" to the calling function. Therefore these
544 registers should be saved if they're going to be modified. */
c906108c 545
acd5c798
MK
546/* The maximum number of saved registers. This should include all
547 registers mentioned above, and %eip. */
a3386186 548#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
549
550struct i386_frame_cache
c906108c 551{
acd5c798
MK
552 /* Base address. */
553 CORE_ADDR base;
772562f8 554 LONGEST sp_offset;
acd5c798
MK
555 CORE_ADDR pc;
556
fd13a04a
AC
557 /* Saved registers. */
558 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 559 CORE_ADDR saved_sp;
e0c62198 560 int saved_sp_reg;
acd5c798
MK
561 int pc_in_eax;
562
563 /* Stack space reserved for local variables. */
564 long locals;
565};
566
567/* Allocate and initialize a frame cache. */
568
569static struct i386_frame_cache *
fd13a04a 570i386_alloc_frame_cache (void)
acd5c798
MK
571{
572 struct i386_frame_cache *cache;
573 int i;
574
575 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
576
577 /* Base address. */
578 cache->base = 0;
579 cache->sp_offset = -4;
580 cache->pc = 0;
581
fd13a04a
AC
582 /* Saved registers. We initialize these to -1 since zero is a valid
583 offset (that's where %ebp is supposed to be stored). */
584 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
585 cache->saved_regs[i] = -1;
acd5c798 586 cache->saved_sp = 0;
e0c62198 587 cache->saved_sp_reg = -1;
acd5c798
MK
588 cache->pc_in_eax = 0;
589
590 /* Frameless until proven otherwise. */
591 cache->locals = -1;
592
593 return cache;
594}
c906108c 595
acd5c798
MK
596/* If the instruction at PC is a jump, return the address of its
597 target. Otherwise, return PC. */
c906108c 598
acd5c798 599static CORE_ADDR
e17a4113 600i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 601{
e17a4113 602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 603 gdb_byte op;
acd5c798
MK
604 long delta = 0;
605 int data16 = 0;
c906108c 606
8defab1a 607 target_read_memory (pc, &op, 1);
acd5c798 608 if (op == 0x66)
c906108c 609 {
c906108c 610 data16 = 1;
e17a4113 611 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
612 }
613
acd5c798 614 switch (op)
c906108c
SS
615 {
616 case 0xe9:
fc338970 617 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
618 if (data16)
619 {
e17a4113 620 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 621
fc338970
MK
622 /* Include the size of the jmp instruction (including the
623 0x66 prefix). */
acd5c798 624 delta += 4;
c906108c
SS
625 }
626 else
627 {
e17a4113 628 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 629
acd5c798
MK
630 /* Include the size of the jmp instruction. */
631 delta += 5;
c906108c
SS
632 }
633 break;
634 case 0xeb:
fc338970 635 /* Relative jump, disp8 (ignore data16). */
e17a4113 636 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 637
acd5c798 638 delta += data16 + 2;
c906108c
SS
639 break;
640 }
c906108c 641
acd5c798
MK
642 return pc + delta;
643}
fc338970 644
acd5c798
MK
645/* Check whether PC points at a prologue for a function returning a
646 structure or union. If so, it updates CACHE and returns the
647 address of the first instruction after the code sequence that
648 removes the "hidden" argument from the stack or CURRENT_PC,
649 whichever is smaller. Otherwise, return PC. */
c906108c 650
acd5c798
MK
651static CORE_ADDR
652i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
653 struct i386_frame_cache *cache)
c906108c 654{
acd5c798
MK
655 /* Functions that return a structure or union start with:
656
657 popl %eax 0x58
658 xchgl %eax, (%esp) 0x87 0x04 0x24
659 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
660
661 (the System V compiler puts out the second `xchg' instruction,
662 and the assembler doesn't try to optimize it, so the 'sib' form
663 gets generated). This sequence is used to get the address of the
664 return buffer for a function that returns a structure. */
63c0089f
MK
665 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
666 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
667 gdb_byte buf[4];
668 gdb_byte op;
c906108c 669
acd5c798
MK
670 if (current_pc <= pc)
671 return pc;
672
8defab1a 673 target_read_memory (pc, &op, 1);
c906108c 674
acd5c798
MK
675 if (op != 0x58) /* popl %eax */
676 return pc;
c906108c 677
8defab1a 678 target_read_memory (pc + 1, buf, 4);
acd5c798
MK
679 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
680 return pc;
c906108c 681
acd5c798 682 if (current_pc == pc)
c906108c 683 {
acd5c798
MK
684 cache->sp_offset += 4;
685 return current_pc;
c906108c
SS
686 }
687
acd5c798 688 if (current_pc == pc + 1)
c906108c 689 {
acd5c798
MK
690 cache->pc_in_eax = 1;
691 return current_pc;
692 }
693
694 if (buf[1] == proto1[1])
695 return pc + 4;
696 else
697 return pc + 5;
698}
699
700static CORE_ADDR
701i386_skip_probe (CORE_ADDR pc)
702{
703 /* A function may start with
fc338970 704
acd5c798
MK
705 pushl constant
706 call _probe
707 addl $4, %esp
fc338970 708
acd5c798
MK
709 followed by
710
711 pushl %ebp
fc338970 712
acd5c798 713 etc. */
63c0089f
MK
714 gdb_byte buf[8];
715 gdb_byte op;
fc338970 716
8defab1a 717 target_read_memory (pc, &op, 1);
acd5c798
MK
718
719 if (op == 0x68 || op == 0x6a)
720 {
721 int delta;
c906108c 722
acd5c798
MK
723 /* Skip past the `pushl' instruction; it has either a one-byte or a
724 four-byte operand, depending on the opcode. */
c906108c 725 if (op == 0x68)
acd5c798 726 delta = 5;
c906108c 727 else
acd5c798 728 delta = 2;
c906108c 729
acd5c798
MK
730 /* Read the following 8 bytes, which should be `call _probe' (6
731 bytes) followed by `addl $4,%esp' (2 bytes). */
732 read_memory (pc + delta, buf, sizeof (buf));
c906108c 733 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 734 pc += delta + sizeof (buf);
c906108c
SS
735 }
736
acd5c798
MK
737 return pc;
738}
739
92dd43fa
MK
740/* GCC 4.1 and later, can put code in the prologue to realign the
741 stack pointer. Check whether PC points to such code, and update
742 CACHE accordingly. Return the first instruction after the code
743 sequence or CURRENT_PC, whichever is smaller. If we don't
744 recognize the code, return PC. */
745
746static CORE_ADDR
747i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
748 struct i386_frame_cache *cache)
749{
e0c62198
L
750 /* There are 2 code sequences to re-align stack before the frame
751 gets set up:
752
753 1. Use a caller-saved saved register:
754
755 leal 4(%esp), %reg
756 andl $-XXX, %esp
757 pushl -4(%reg)
758
759 2. Use a callee-saved saved register:
760
761 pushl %reg
762 leal 8(%esp), %reg
763 andl $-XXX, %esp
764 pushl -4(%reg)
765
766 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
767
768 0x83 0xe4 0xf0 andl $-16, %esp
769 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
770 */
771
772 gdb_byte buf[14];
773 int reg;
774 int offset, offset_and;
775 static int regnums[8] = {
776 I386_EAX_REGNUM, /* %eax */
777 I386_ECX_REGNUM, /* %ecx */
778 I386_EDX_REGNUM, /* %edx */
779 I386_EBX_REGNUM, /* %ebx */
780 I386_ESP_REGNUM, /* %esp */
781 I386_EBP_REGNUM, /* %ebp */
782 I386_ESI_REGNUM, /* %esi */
783 I386_EDI_REGNUM /* %edi */
92dd43fa 784 };
92dd43fa 785
e0c62198
L
786 if (target_read_memory (pc, buf, sizeof buf))
787 return pc;
788
789 /* Check caller-saved saved register. The first instruction has
790 to be "leal 4(%esp), %reg". */
791 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
792 {
793 /* MOD must be binary 10 and R/M must be binary 100. */
794 if ((buf[1] & 0xc7) != 0x44)
795 return pc;
796
797 /* REG has register number. */
798 reg = (buf[1] >> 3) & 7;
799 offset = 4;
800 }
801 else
802 {
803 /* Check callee-saved saved register. The first instruction
804 has to be "pushl %reg". */
805 if ((buf[0] & 0xf8) != 0x50)
806 return pc;
807
808 /* Get register. */
809 reg = buf[0] & 0x7;
810
811 /* The next instruction has to be "leal 8(%esp), %reg". */
812 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
813 return pc;
814
815 /* MOD must be binary 10 and R/M must be binary 100. */
816 if ((buf[2] & 0xc7) != 0x44)
817 return pc;
818
819 /* REG has register number. Registers in pushl and leal have to
820 be the same. */
821 if (reg != ((buf[2] >> 3) & 7))
822 return pc;
823
824 offset = 5;
825 }
826
827 /* Rigister can't be %esp nor %ebp. */
828 if (reg == 4 || reg == 5)
829 return pc;
830
831 /* The next instruction has to be "andl $-XXX, %esp". */
832 if (buf[offset + 1] != 0xe4
833 || (buf[offset] != 0x81 && buf[offset] != 0x83))
834 return pc;
835
836 offset_and = offset;
837 offset += buf[offset] == 0x81 ? 6 : 3;
838
839 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
840 0xfc. REG must be binary 110 and MOD must be binary 01. */
841 if (buf[offset] != 0xff
842 || buf[offset + 2] != 0xfc
843 || (buf[offset + 1] & 0xf8) != 0x70)
844 return pc;
845
846 /* R/M has register. Registers in leal and pushl have to be the
847 same. */
848 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
849 return pc;
850
e0c62198
L
851 if (current_pc > pc + offset_and)
852 cache->saved_sp_reg = regnums[reg];
92dd43fa 853
e0c62198 854 return min (pc + offset + 3, current_pc);
92dd43fa
MK
855}
856
37bdc87e 857/* Maximum instruction length we need to handle. */
237fc4c9 858#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
859
860/* Instruction description. */
861struct i386_insn
862{
863 size_t len;
237fc4c9
PA
864 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
865 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
866};
867
868/* Search for the instruction at PC in the list SKIP_INSNS. Return
869 the first instruction description that matches. Otherwise, return
870 NULL. */
871
872static struct i386_insn *
873i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
874{
875 struct i386_insn *insn;
63c0089f 876 gdb_byte op;
37bdc87e 877
8defab1a 878 target_read_memory (pc, &op, 1);
37bdc87e
MK
879
880 for (insn = skip_insns; insn->len > 0; insn++)
881 {
882 if ((op & insn->mask[0]) == insn->insn[0])
883 {
237fc4c9 884 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
613e8135 885 int insn_matched = 1;
37bdc87e
MK
886 size_t i;
887
888 gdb_assert (insn->len > 1);
237fc4c9 889 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
37bdc87e 890
8defab1a 891 target_read_memory (pc + 1, buf, insn->len - 1);
37bdc87e
MK
892 for (i = 1; i < insn->len; i++)
893 {
894 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 895 insn_matched = 0;
37bdc87e 896 }
613e8135
MK
897
898 if (insn_matched)
899 return insn;
37bdc87e
MK
900 }
901 }
902
903 return NULL;
904}
905
906/* Some special instructions that might be migrated by GCC into the
907 part of the prologue that sets up the new stack frame. Because the
908 stack frame hasn't been setup yet, no registers have been saved
909 yet, and only the scratch registers %eax, %ecx and %edx can be
910 touched. */
911
912struct i386_insn i386_frame_setup_skip_insns[] =
913{
914 /* Check for `movb imm8, r' and `movl imm32, r'.
915
916 ??? Should we handle 16-bit operand-sizes here? */
917
918 /* `movb imm8, %al' and `movb imm8, %ah' */
919 /* `movb imm8, %cl' and `movb imm8, %ch' */
920 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
921 /* `movb imm8, %dl' and `movb imm8, %dh' */
922 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
923 /* `movl imm32, %eax' and `movl imm32, %ecx' */
924 { 5, { 0xb8 }, { 0xfe } },
925 /* `movl imm32, %edx' */
926 { 5, { 0xba }, { 0xff } },
927
928 /* Check for `mov imm32, r32'. Note that there is an alternative
929 encoding for `mov m32, %eax'.
930
931 ??? Should we handle SIB adressing here?
932 ??? Should we handle 16-bit operand-sizes here? */
933
934 /* `movl m32, %eax' */
935 { 5, { 0xa1 }, { 0xff } },
936 /* `movl m32, %eax' and `mov; m32, %ecx' */
937 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
938 /* `movl m32, %edx' */
939 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
940
941 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
942 Because of the symmetry, there are actually two ways to encode
943 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
944 opcode bytes 0x31 and 0x33 for `xorl'. */
945
946 /* `subl %eax, %eax' */
947 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
948 /* `subl %ecx, %ecx' */
949 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
950 /* `subl %edx, %edx' */
951 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
952 /* `xorl %eax, %eax' */
953 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
954 /* `xorl %ecx, %ecx' */
955 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
956 /* `xorl %edx, %edx' */
957 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
958 { 0 }
959};
960
e11481da
PM
961
962/* Check whether PC points to a no-op instruction. */
963static CORE_ADDR
964i386_skip_noop (CORE_ADDR pc)
965{
966 gdb_byte op;
967 int check = 1;
968
8defab1a 969 target_read_memory (pc, &op, 1);
e11481da
PM
970
971 while (check)
972 {
973 check = 0;
974 /* Ignore `nop' instruction. */
975 if (op == 0x90)
976 {
977 pc += 1;
8defab1a 978 target_read_memory (pc, &op, 1);
e11481da
PM
979 check = 1;
980 }
981 /* Ignore no-op instruction `mov %edi, %edi'.
982 Microsoft system dlls often start with
983 a `mov %edi,%edi' instruction.
984 The 5 bytes before the function start are
985 filled with `nop' instructions.
986 This pattern can be used for hot-patching:
987 The `mov %edi, %edi' instruction can be replaced by a
988 near jump to the location of the 5 `nop' instructions
989 which can be replaced by a 32-bit jump to anywhere
990 in the 32-bit address space. */
991
992 else if (op == 0x8b)
993 {
8defab1a 994 target_read_memory (pc + 1, &op, 1);
e11481da
PM
995 if (op == 0xff)
996 {
997 pc += 2;
8defab1a 998 target_read_memory (pc, &op, 1);
e11481da
PM
999 check = 1;
1000 }
1001 }
1002 }
1003 return pc;
1004}
1005
acd5c798
MK
1006/* Check whether PC points at a code that sets up a new stack frame.
1007 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1008 instruction after the sequence that sets up the frame or LIMIT,
1009 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1010
1011static CORE_ADDR
e17a4113
UW
1012i386_analyze_frame_setup (struct gdbarch *gdbarch,
1013 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1014 struct i386_frame_cache *cache)
1015{
e17a4113 1016 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1017 struct i386_insn *insn;
63c0089f 1018 gdb_byte op;
26604a34 1019 int skip = 0;
acd5c798 1020
37bdc87e
MK
1021 if (limit <= pc)
1022 return limit;
acd5c798 1023
8defab1a 1024 target_read_memory (pc, &op, 1);
acd5c798 1025
c906108c 1026 if (op == 0x55) /* pushl %ebp */
c5aa993b 1027 {
acd5c798
MK
1028 /* Take into account that we've executed the `pushl %ebp' that
1029 starts this instruction sequence. */
fd13a04a 1030 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1031 cache->sp_offset += 4;
37bdc87e 1032 pc++;
acd5c798
MK
1033
1034 /* If that's all, return now. */
37bdc87e
MK
1035 if (limit <= pc)
1036 return limit;
26604a34 1037
b4632131 1038 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1039 GCC into the prologue and skip them. At this point in the
1040 prologue, code should only touch the scratch registers %eax,
1041 %ecx and %edx, so while the number of posibilities is sheer,
1042 it is limited.
5daa5b4e 1043
26604a34
MK
1044 Make sure we only skip these instructions if we later see the
1045 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1046 while (pc + skip < limit)
26604a34 1047 {
37bdc87e
MK
1048 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1049 if (insn == NULL)
1050 break;
b4632131 1051
37bdc87e 1052 skip += insn->len;
26604a34
MK
1053 }
1054
37bdc87e
MK
1055 /* If that's all, return now. */
1056 if (limit <= pc + skip)
1057 return limit;
1058
8defab1a 1059 target_read_memory (pc + skip, &op, 1);
37bdc87e 1060
26604a34 1061 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 1062 switch (op)
c906108c
SS
1063 {
1064 case 0x8b:
e17a4113
UW
1065 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1066 != 0xec)
37bdc87e 1067 return pc;
c906108c
SS
1068 break;
1069 case 0x89:
e17a4113
UW
1070 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1071 != 0xe5)
37bdc87e 1072 return pc;
c906108c
SS
1073 break;
1074 default:
37bdc87e 1075 return pc;
c906108c 1076 }
acd5c798 1077
26604a34
MK
1078 /* OK, we actually have a frame. We just don't know how large
1079 it is yet. Set its size to zero. We'll adjust it if
1080 necessary. We also now commit to skipping the special
1081 instructions mentioned before. */
acd5c798 1082 cache->locals = 0;
37bdc87e 1083 pc += (skip + 2);
acd5c798
MK
1084
1085 /* If that's all, return now. */
37bdc87e
MK
1086 if (limit <= pc)
1087 return limit;
acd5c798 1088
fc338970
MK
1089 /* Check for stack adjustment
1090
acd5c798 1091 subl $XXX, %esp
fc338970 1092
fd35795f 1093 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1094 reg, so we don't have to worry about a data16 prefix. */
8defab1a 1095 target_read_memory (pc, &op, 1);
c906108c
SS
1096 if (op == 0x83)
1097 {
fd35795f 1098 /* `subl' with 8-bit immediate. */
e17a4113 1099 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1100 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1101 return pc;
acd5c798 1102
37bdc87e
MK
1103 /* `subl' with signed 8-bit immediate (though it wouldn't
1104 make sense to be negative). */
e17a4113 1105 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
37bdc87e 1106 return pc + 3;
c906108c
SS
1107 }
1108 else if (op == 0x81)
1109 {
fd35795f 1110 /* Maybe it is `subl' with a 32-bit immediate. */
e17a4113 1111 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1112 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1113 return pc;
acd5c798 1114
fd35795f 1115 /* It is `subl' with a 32-bit immediate. */
e17a4113 1116 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
37bdc87e 1117 return pc + 6;
c906108c
SS
1118 }
1119 else
1120 {
acd5c798 1121 /* Some instruction other than `subl'. */
37bdc87e 1122 return pc;
c906108c
SS
1123 }
1124 }
37bdc87e 1125 else if (op == 0xc8) /* enter */
c906108c 1126 {
e17a4113 1127 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1128 return pc + 4;
c906108c 1129 }
21d0e8a4 1130
acd5c798 1131 return pc;
21d0e8a4
MK
1132}
1133
acd5c798
MK
1134/* Check whether PC points at code that saves registers on the stack.
1135 If so, it updates CACHE and returns the address of the first
1136 instruction after the register saves or CURRENT_PC, whichever is
1137 smaller. Otherwise, return PC. */
6bff26de
MK
1138
1139static CORE_ADDR
acd5c798
MK
1140i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1141 struct i386_frame_cache *cache)
6bff26de 1142{
99ab4326 1143 CORE_ADDR offset = 0;
63c0089f 1144 gdb_byte op;
99ab4326 1145 int i;
c0d1d883 1146
99ab4326
MK
1147 if (cache->locals > 0)
1148 offset -= cache->locals;
1149 for (i = 0; i < 8 && pc < current_pc; i++)
1150 {
8defab1a 1151 target_read_memory (pc, &op, 1);
99ab4326
MK
1152 if (op < 0x50 || op > 0x57)
1153 break;
0d17c81d 1154
99ab4326
MK
1155 offset -= 4;
1156 cache->saved_regs[op - 0x50] = offset;
1157 cache->sp_offset += 4;
1158 pc++;
6bff26de
MK
1159 }
1160
acd5c798 1161 return pc;
22797942
AC
1162}
1163
acd5c798
MK
1164/* Do a full analysis of the prologue at PC and update CACHE
1165 accordingly. Bail out early if CURRENT_PC is reached. Return the
1166 address where the analysis stopped.
ed84f6c1 1167
fc338970
MK
1168 We handle these cases:
1169
1170 The startup sequence can be at the start of the function, or the
1171 function can start with a branch to startup code at the end.
1172
1173 %ebp can be set up with either the 'enter' instruction, or "pushl
1174 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1175 once used in the System V compiler).
1176
1177 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1178 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1179 16-bit unsigned argument for space to allocate, and the 'addl'
1180 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1181
1182 Next, the registers used by this function are pushed. With the
1183 System V compiler they will always be in the order: %edi, %esi,
1184 %ebx (and sometimes a harmless bug causes it to also save but not
1185 restore %eax); however, the code below is willing to see the pushes
1186 in any order, and will handle up to 8 of them.
1187
1188 If the setup sequence is at the end of the function, then the next
1189 instruction will be a branch back to the start. */
c906108c 1190
acd5c798 1191static CORE_ADDR
e17a4113
UW
1192i386_analyze_prologue (struct gdbarch *gdbarch,
1193 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1194 struct i386_frame_cache *cache)
c906108c 1195{
e11481da 1196 pc = i386_skip_noop (pc);
e17a4113 1197 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1198 pc = i386_analyze_struct_return (pc, current_pc, cache);
1199 pc = i386_skip_probe (pc);
92dd43fa 1200 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1201 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1202 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1203}
1204
fc338970 1205/* Return PC of first real instruction. */
c906108c 1206
3a1e71e3 1207static CORE_ADDR
6093d2eb 1208i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1209{
e17a4113
UW
1210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1211
63c0089f 1212 static gdb_byte pic_pat[6] =
acd5c798
MK
1213 {
1214 0xe8, 0, 0, 0, 0, /* call 0x0 */
1215 0x5b, /* popl %ebx */
c5aa993b 1216 };
acd5c798
MK
1217 struct i386_frame_cache cache;
1218 CORE_ADDR pc;
63c0089f 1219 gdb_byte op;
acd5c798 1220 int i;
c5aa993b 1221
acd5c798 1222 cache.locals = -1;
e17a4113 1223 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1224 if (cache.locals < 0)
1225 return start_pc;
c5aa993b 1226
acd5c798 1227 /* Found valid frame setup. */
c906108c 1228
fc338970
MK
1229 /* The native cc on SVR4 in -K PIC mode inserts the following code
1230 to get the address of the global offset table (GOT) into register
acd5c798
MK
1231 %ebx:
1232
fc338970
MK
1233 call 0x0
1234 popl %ebx
1235 movl %ebx,x(%ebp) (optional)
1236 addl y,%ebx
1237
c906108c
SS
1238 This code is with the rest of the prologue (at the end of the
1239 function), so we have to skip it to get to the first real
1240 instruction at the start of the function. */
c5aa993b 1241
c906108c
SS
1242 for (i = 0; i < 6; i++)
1243 {
8defab1a 1244 target_read_memory (pc + i, &op, 1);
c5aa993b 1245 if (pic_pat[i] != op)
c906108c
SS
1246 break;
1247 }
1248 if (i == 6)
1249 {
acd5c798
MK
1250 int delta = 6;
1251
8defab1a 1252 target_read_memory (pc + delta, &op, 1);
c906108c 1253
c5aa993b 1254 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1255 {
e17a4113 1256 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1257
fc338970 1258 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1259 delta += 3;
fc338970 1260 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1261 delta += 6;
fc338970 1262 else /* Unexpected instruction. */
acd5c798
MK
1263 delta = 0;
1264
8defab1a 1265 target_read_memory (pc + delta, &op, 1);
c906108c 1266 }
acd5c798 1267
c5aa993b 1268 /* addl y,%ebx */
acd5c798 1269 if (delta > 0 && op == 0x81
e17a4113
UW
1270 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1271 == 0xc3)
c906108c 1272 {
acd5c798 1273 pc += delta + 6;
c906108c
SS
1274 }
1275 }
c5aa993b 1276
e63bbc88
MK
1277 /* If the function starts with a branch (to startup code at the end)
1278 the last instruction should bring us back to the first
1279 instruction of the real code. */
e17a4113
UW
1280 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1281 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1282
1283 return pc;
c906108c
SS
1284}
1285
4309257c
PM
1286/* Check that the code pointed to by PC corresponds to a call to
1287 __main, skip it if so. Return PC otherwise. */
1288
1289CORE_ADDR
1290i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1291{
e17a4113 1292 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1293 gdb_byte op;
1294
1295 target_read_memory (pc, &op, 1);
1296 if (op == 0xe8)
1297 {
1298 gdb_byte buf[4];
1299
1300 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1301 {
1302 /* Make sure address is computed correctly as a 32bit
1303 integer even if CORE_ADDR is 64 bit wide. */
1304 struct minimal_symbol *s;
e17a4113 1305 CORE_ADDR call_dest;
4309257c 1306
e17a4113 1307 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1308 call_dest = call_dest & 0xffffffffU;
1309 s = lookup_minimal_symbol_by_pc (call_dest);
1310 if (s != NULL
1311 && SYMBOL_LINKAGE_NAME (s) != NULL
1312 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1313 pc += 5;
1314 }
1315 }
1316
1317 return pc;
1318}
1319
acd5c798 1320/* This function is 64-bit safe. */
93924b6b 1321
acd5c798
MK
1322static CORE_ADDR
1323i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1324{
63c0089f 1325 gdb_byte buf[8];
acd5c798 1326
875f8d0e 1327 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1328 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1329}
acd5c798 1330\f
93924b6b 1331
acd5c798 1332/* Normal frames. */
c5aa993b 1333
acd5c798 1334static struct i386_frame_cache *
10458914 1335i386_frame_cache (struct frame_info *this_frame, void **this_cache)
a7769679 1336{
e17a4113
UW
1337 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1338 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 1339 struct i386_frame_cache *cache;
63c0089f 1340 gdb_byte buf[4];
acd5c798
MK
1341 int i;
1342
1343 if (*this_cache)
1344 return *this_cache;
1345
fd13a04a 1346 cache = i386_alloc_frame_cache ();
acd5c798
MK
1347 *this_cache = cache;
1348
1349 /* In principle, for normal frames, %ebp holds the frame pointer,
1350 which holds the base address for the current stack frame.
1351 However, for functions that don't need it, the frame pointer is
1352 optional. For these "frameless" functions the frame pointer is
1353 actually the frame pointer of the calling frame. Signal
1354 trampolines are just a special case of a "frameless" function.
1355 They (usually) share their frame pointer with the frame that was
1356 in progress when the signal occurred. */
1357
10458914 1358 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1359 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798
MK
1360 if (cache->base == 0)
1361 return cache;
1362
1363 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1364 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1365
10458914 1366 cache->pc = get_frame_func (this_frame);
acd5c798 1367 if (cache->pc != 0)
e17a4113
UW
1368 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1369 cache);
acd5c798 1370
e0c62198 1371 if (cache->saved_sp_reg != -1)
92dd43fa 1372 {
e0c62198
L
1373 /* Saved stack pointer has been saved. */
1374 get_frame_register (this_frame, cache->saved_sp_reg, buf);
e17a4113 1375 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
92dd43fa
MK
1376 }
1377
acd5c798
MK
1378 if (cache->locals < 0)
1379 {
1380 /* We didn't find a valid frame, which means that CACHE->base
1381 currently holds the frame pointer for our calling frame. If
1382 we're at the start of a function, or somewhere half-way its
1383 prologue, the function's frame probably hasn't been fully
1384 setup yet. Try to reconstruct the base address for the stack
1385 frame by looking at the stack pointer. For truly "frameless"
1386 functions this might work too. */
1387
e0c62198 1388 if (cache->saved_sp_reg != -1)
92dd43fa
MK
1389 {
1390 /* We're halfway aligning the stack. */
1391 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1392 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1393
1394 /* This will be added back below. */
1395 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1396 }
1397 else
1398 {
10458914 1399 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1400 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1401 + cache->sp_offset;
92dd43fa 1402 }
acd5c798
MK
1403 }
1404
1405 /* Now that we have the base address for the stack frame we can
1406 calculate the value of %esp in the calling frame. */
92dd43fa
MK
1407 if (cache->saved_sp == 0)
1408 cache->saved_sp = cache->base + 8;
a7769679 1409
acd5c798
MK
1410 /* Adjust all the saved registers such that they contain addresses
1411 instead of offsets. */
1412 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1413 if (cache->saved_regs[i] != -1)
1414 cache->saved_regs[i] += cache->base;
acd5c798
MK
1415
1416 return cache;
a7769679
MK
1417}
1418
3a1e71e3 1419static void
10458914 1420i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1421 struct frame_id *this_id)
c906108c 1422{
10458914 1423 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1424
1425 /* This marks the outermost frame. */
1426 if (cache->base == 0)
1427 return;
1428
3e210248 1429 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1430 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1431}
1432
10458914
DJ
1433static struct value *
1434i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1435 int regnum)
acd5c798 1436{
10458914 1437 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1438
1439 gdb_assert (regnum >= 0);
1440
1441 /* The System V ABI says that:
1442
1443 "The flags register contains the system flags, such as the
1444 direction flag and the carry flag. The direction flag must be
1445 set to the forward (that is, zero) direction before entry and
1446 upon exit from a function. Other user flags have no specified
1447 role in the standard calling sequence and are not preserved."
1448
1449 To guarantee the "upon exit" part of that statement we fake a
1450 saved flags register that has its direction flag cleared.
1451
1452 Note that GCC doesn't seem to rely on the fact that the direction
1453 flag is cleared after a function return; it always explicitly
1454 clears the flag before operations where it matters.
1455
1456 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1457 right thing to do. The way we fake the flags register here makes
1458 it impossible to change it. */
1459
1460 if (regnum == I386_EFLAGS_REGNUM)
1461 {
10458914 1462 ULONGEST val;
c5aa993b 1463
10458914
DJ
1464 val = get_frame_register_unsigned (this_frame, regnum);
1465 val &= ~(1 << 10);
1466 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1467 }
1211c4e4 1468
acd5c798 1469 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1470 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798
MK
1471
1472 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
10458914 1473 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
acd5c798 1474
fd13a04a 1475 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1476 return frame_unwind_got_memory (this_frame, regnum,
1477 cache->saved_regs[regnum]);
fd13a04a 1478
10458914 1479 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1480}
1481
1482static const struct frame_unwind i386_frame_unwind =
1483{
1484 NORMAL_FRAME,
1485 i386_frame_this_id,
10458914
DJ
1486 i386_frame_prev_register,
1487 NULL,
1488 default_frame_sniffer
acd5c798 1489};
06da04c6
MS
1490
1491/* Normal frames, but in a function epilogue. */
1492
1493/* The epilogue is defined here as the 'ret' instruction, which will
1494 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1495 the function's stack frame. */
1496
1497static int
1498i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1499{
1500 gdb_byte insn;
1501
1502 if (target_read_memory (pc, &insn, 1))
1503 return 0; /* Can't read memory at pc. */
1504
1505 if (insn != 0xc3) /* 'ret' instruction. */
1506 return 0;
1507
1508 return 1;
1509}
1510
1511static int
1512i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1513 struct frame_info *this_frame,
1514 void **this_prologue_cache)
1515{
1516 if (frame_relative_level (this_frame) == 0)
1517 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1518 get_frame_pc (this_frame));
1519 else
1520 return 0;
1521}
1522
1523static struct i386_frame_cache *
1524i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1525{
1526 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1527 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1528 struct i386_frame_cache *cache;
1529 gdb_byte buf[4];
1530
1531 if (*this_cache)
1532 return *this_cache;
1533
1534 cache = i386_alloc_frame_cache ();
1535 *this_cache = cache;
1536
1537 /* Cache base will be %esp plus cache->sp_offset (-4). */
1538 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1539 cache->base = extract_unsigned_integer (buf, 4,
1540 byte_order) + cache->sp_offset;
1541
1542 /* Cache pc will be the frame func. */
1543 cache->pc = get_frame_pc (this_frame);
1544
1545 /* The saved %esp will be at cache->base plus 8. */
1546 cache->saved_sp = cache->base + 8;
1547
1548 /* The saved %eip will be at cache->base plus 4. */
1549 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1550
1551 return cache;
1552}
1553
1554static void
1555i386_epilogue_frame_this_id (struct frame_info *this_frame,
1556 void **this_cache,
1557 struct frame_id *this_id)
1558{
1559 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1560 this_cache);
1561
1562 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1563}
1564
1565static const struct frame_unwind i386_epilogue_frame_unwind =
1566{
1567 NORMAL_FRAME,
1568 i386_epilogue_frame_this_id,
1569 i386_frame_prev_register,
1570 NULL,
1571 i386_epilogue_frame_sniffer
1572};
acd5c798
MK
1573\f
1574
1575/* Signal trampolines. */
1576
1577static struct i386_frame_cache *
10458914 1578i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 1579{
e17a4113
UW
1580 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1581 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1582 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 1583 struct i386_frame_cache *cache;
acd5c798 1584 CORE_ADDR addr;
63c0089f 1585 gdb_byte buf[4];
acd5c798
MK
1586
1587 if (*this_cache)
1588 return *this_cache;
1589
fd13a04a 1590 cache = i386_alloc_frame_cache ();
acd5c798 1591
10458914 1592 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 1593 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
acd5c798 1594
10458914 1595 addr = tdep->sigcontext_addr (this_frame);
a3386186
MK
1596 if (tdep->sc_reg_offset)
1597 {
1598 int i;
1599
1600 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1601
1602 for (i = 0; i < tdep->sc_num_regs; i++)
1603 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1604 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1605 }
1606 else
1607 {
fd13a04a
AC
1608 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1609 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1610 }
acd5c798
MK
1611
1612 *this_cache = cache;
1613 return cache;
1614}
1615
1616static void
10458914 1617i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
1618 struct frame_id *this_id)
1619{
1620 struct i386_frame_cache *cache =
10458914 1621 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1622
3e210248 1623 /* See the end of i386_push_dummy_call. */
10458914 1624 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
1625}
1626
10458914
DJ
1627static struct value *
1628i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1629 void **this_cache, int regnum)
acd5c798
MK
1630{
1631 /* Make sure we've initialized the cache. */
10458914 1632 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1633
10458914 1634 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 1635}
c0d1d883 1636
10458914
DJ
1637static int
1638i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1639 struct frame_info *this_frame,
1640 void **this_prologue_cache)
acd5c798 1641{
10458914 1642 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 1643
911bc6ee
MK
1644 /* We shouldn't even bother if we don't have a sigcontext_addr
1645 handler. */
1646 if (tdep->sigcontext_addr == NULL)
10458914 1647 return 0;
1c3545ae 1648
911bc6ee
MK
1649 if (tdep->sigtramp_p != NULL)
1650 {
10458914
DJ
1651 if (tdep->sigtramp_p (this_frame))
1652 return 1;
911bc6ee
MK
1653 }
1654
1655 if (tdep->sigtramp_start != 0)
1656 {
10458914 1657 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
1658
1659 gdb_assert (tdep->sigtramp_end != 0);
1660 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 1661 return 1;
911bc6ee 1662 }
acd5c798 1663
10458914 1664 return 0;
acd5c798 1665}
10458914
DJ
1666
1667static const struct frame_unwind i386_sigtramp_frame_unwind =
1668{
1669 SIGTRAMP_FRAME,
1670 i386_sigtramp_frame_this_id,
1671 i386_sigtramp_frame_prev_register,
1672 NULL,
1673 i386_sigtramp_frame_sniffer
1674};
acd5c798
MK
1675\f
1676
1677static CORE_ADDR
10458914 1678i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 1679{
10458914 1680 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1681
1682 return cache->base;
1683}
1684
1685static const struct frame_base i386_frame_base =
1686{
1687 &i386_frame_unwind,
1688 i386_frame_base_address,
1689 i386_frame_base_address,
1690 i386_frame_base_address
1691};
1692
acd5c798 1693static struct frame_id
10458914 1694i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 1695{
acd5c798
MK
1696 CORE_ADDR fp;
1697
10458914 1698 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 1699
3e210248 1700 /* See the end of i386_push_dummy_call. */
10458914 1701 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 1702}
fc338970 1703\f
c906108c 1704
fc338970
MK
1705/* Figure out where the longjmp will land. Slurp the args out of the
1706 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1707 structure from which we extract the address that we will land at.
28bcfd30 1708 This address is copied into PC. This routine returns non-zero on
436675d3 1709 success. */
c906108c 1710
8201327c 1711static int
60ade65d 1712i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1713{
436675d3 1714 gdb_byte buf[4];
c906108c 1715 CORE_ADDR sp, jb_addr;
20a6ec49 1716 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 1717 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 1718 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 1719
8201327c
MK
1720 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1721 longjmp will land. */
1722 if (jb_pc_offset == -1)
c906108c
SS
1723 return 0;
1724
436675d3 1725 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 1726 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 1727 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
1728 return 0;
1729
e17a4113 1730 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 1731 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 1732 return 0;
c906108c 1733
e17a4113 1734 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1735 return 1;
1736}
fc338970 1737\f
c906108c 1738
7ccc1c74
JM
1739/* Check whether TYPE must be 16-byte-aligned when passed as a
1740 function argument. 16-byte vectors, _Decimal128 and structures or
1741 unions containing such types must be 16-byte-aligned; other
1742 arguments are 4-byte-aligned. */
1743
1744static int
1745i386_16_byte_align_p (struct type *type)
1746{
1747 type = check_typedef (type);
1748 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1749 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
1750 && TYPE_LENGTH (type) == 16)
1751 return 1;
1752 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1753 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
1754 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1755 || TYPE_CODE (type) == TYPE_CODE_UNION)
1756 {
1757 int i;
1758 for (i = 0; i < TYPE_NFIELDS (type); i++)
1759 {
1760 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
1761 return 1;
1762 }
1763 }
1764 return 0;
1765}
1766
3a1e71e3 1767static CORE_ADDR
7d9b040b 1768i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1769 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1770 struct value **args, CORE_ADDR sp, int struct_return,
1771 CORE_ADDR struct_addr)
22f8ba57 1772{
e17a4113 1773 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1774 gdb_byte buf[4];
acd5c798 1775 int i;
7ccc1c74
JM
1776 int write_pass;
1777 int args_space = 0;
acd5c798 1778
7ccc1c74
JM
1779 /* Determine the total space required for arguments and struct
1780 return address in a first pass (allowing for 16-byte-aligned
1781 arguments), then push arguments in a second pass. */
1782
1783 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 1784 {
7ccc1c74
JM
1785 int args_space_used = 0;
1786 int have_16_byte_aligned_arg = 0;
1787
1788 if (struct_return)
1789 {
1790 if (write_pass)
1791 {
1792 /* Push value address. */
e17a4113 1793 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
1794 write_memory (sp, buf, 4);
1795 args_space_used += 4;
1796 }
1797 else
1798 args_space += 4;
1799 }
1800
1801 for (i = 0; i < nargs; i++)
1802 {
1803 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 1804
7ccc1c74
JM
1805 if (write_pass)
1806 {
1807 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1808 args_space_used = align_up (args_space_used, 16);
acd5c798 1809
7ccc1c74
JM
1810 write_memory (sp + args_space_used,
1811 value_contents_all (args[i]), len);
1812 /* The System V ABI says that:
acd5c798 1813
7ccc1c74
JM
1814 "An argument's size is increased, if necessary, to make it a
1815 multiple of [32-bit] words. This may require tail padding,
1816 depending on the size of the argument."
22f8ba57 1817
7ccc1c74
JM
1818 This makes sure the stack stays word-aligned. */
1819 args_space_used += align_up (len, 4);
1820 }
1821 else
1822 {
1823 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1824 {
1825 args_space = align_up (args_space, 16);
1826 have_16_byte_aligned_arg = 1;
1827 }
1828 args_space += align_up (len, 4);
1829 }
1830 }
1831
1832 if (!write_pass)
1833 {
1834 if (have_16_byte_aligned_arg)
1835 args_space = align_up (args_space, 16);
1836 sp -= args_space;
1837 }
22f8ba57
MK
1838 }
1839
acd5c798
MK
1840 /* Store return address. */
1841 sp -= 4;
e17a4113 1842 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
1843 write_memory (sp, buf, 4);
1844
1845 /* Finally, update the stack pointer... */
e17a4113 1846 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
1847 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1848
1849 /* ...and fake a frame pointer. */
1850 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1851
3e210248
AC
1852 /* MarkK wrote: This "+ 8" is all over the place:
1853 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 1854 i386_dummy_id). It's there, since all frame unwinders for
3e210248 1855 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
1856 definition of the stack address of a frame. Otherwise frame id
1857 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
1858 stack address *before* the function call as a frame's CFA. On
1859 the i386, when %ebp is used as a frame pointer, the offset
1860 between the contents %ebp and the CFA as defined by GCC. */
1861 return sp + 8;
22f8ba57
MK
1862}
1863
1a309862
MK
1864/* These registers are used for returning integers (and on some
1865 targets also for returning `struct' and `union' values when their
ef9dff19 1866 size and alignment match an integer type). */
acd5c798
MK
1867#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1868#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1869
c5e656c1
MK
1870/* Read, for architecture GDBARCH, a function return value of TYPE
1871 from REGCACHE, and copy that into VALBUF. */
1a309862 1872
3a1e71e3 1873static void
c5e656c1 1874i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1875 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1876{
c5e656c1 1877 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1878 int len = TYPE_LENGTH (type);
63c0089f 1879 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1880
1e8d0a7b 1881 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1882 {
5716833c 1883 if (tdep->st0_regnum < 0)
1a309862 1884 {
8a3fe4f8 1885 warning (_("Cannot find floating-point return value."));
1a309862 1886 memset (valbuf, 0, len);
ef9dff19 1887 return;
1a309862
MK
1888 }
1889
c6ba6f0d
MK
1890 /* Floating-point return values can be found in %st(0). Convert
1891 its contents to the desired type. This is probably not
1892 exactly how it would happen on the target itself, but it is
1893 the best we can do. */
acd5c798 1894 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 1895 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
1896 }
1897 else
c5aa993b 1898 {
875f8d0e
UW
1899 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1900 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1901
1902 if (len <= low_size)
00f8375e 1903 {
0818c12a 1904 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1905 memcpy (valbuf, buf, len);
1906 }
d4f3574e
SS
1907 else if (len <= (low_size + high_size))
1908 {
0818c12a 1909 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1910 memcpy (valbuf, buf, low_size);
0818c12a 1911 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1912 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1913 }
1914 else
8e65ff28 1915 internal_error (__FILE__, __LINE__,
e2e0b3e5 1916 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1917 }
1918}
1919
c5e656c1
MK
1920/* Write, for architecture GDBARCH, a function return value of TYPE
1921 from VALBUF into REGCACHE. */
ef9dff19 1922
3a1e71e3 1923static void
c5e656c1 1924i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1925 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1926{
c5e656c1 1927 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1928 int len = TYPE_LENGTH (type);
1929
1e8d0a7b 1930 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1931 {
3d7f4f49 1932 ULONGEST fstat;
63c0089f 1933 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1934
5716833c 1935 if (tdep->st0_regnum < 0)
ef9dff19 1936 {
8a3fe4f8 1937 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1938 return;
1939 }
1940
635b0cc1
MK
1941 /* Returning floating-point values is a bit tricky. Apart from
1942 storing the return value in %st(0), we have to simulate the
1943 state of the FPU at function return point. */
1944
c6ba6f0d
MK
1945 /* Convert the value found in VALBUF to the extended
1946 floating-point format used by the FPU. This is probably
1947 not exactly how it would happen on the target itself, but
1948 it is the best we can do. */
27067745 1949 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 1950 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1951
635b0cc1
MK
1952 /* Set the top of the floating-point register stack to 7. The
1953 actual value doesn't really matter, but 7 is what a normal
1954 function return would end up with if the program started out
1955 with a freshly initialized FPU. */
20a6ec49 1956 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 1957 fstat |= (7 << 11);
20a6ec49 1958 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 1959
635b0cc1
MK
1960 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1961 the floating-point register stack to 7, the appropriate value
1962 for the tag word is 0x3fff. */
20a6ec49 1963 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
1964 }
1965 else
1966 {
875f8d0e
UW
1967 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1968 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1969
1970 if (len <= low_size)
3d7f4f49 1971 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1972 else if (len <= (low_size + high_size))
1973 {
3d7f4f49
MK
1974 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1975 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1976 len - low_size, valbuf + low_size);
ef9dff19
MK
1977 }
1978 else
8e65ff28 1979 internal_error (__FILE__, __LINE__,
e2e0b3e5 1980 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
1981 }
1982}
fc338970 1983\f
ef9dff19 1984
8201327c
MK
1985/* This is the variable that is set with "set struct-convention", and
1986 its legitimate values. */
1987static const char default_struct_convention[] = "default";
1988static const char pcc_struct_convention[] = "pcc";
1989static const char reg_struct_convention[] = "reg";
1990static const char *valid_conventions[] =
1991{
1992 default_struct_convention,
1993 pcc_struct_convention,
1994 reg_struct_convention,
1995 NULL
1996};
1997static const char *struct_convention = default_struct_convention;
1998
0e4377e1
JB
1999/* Return non-zero if TYPE, which is assumed to be a structure,
2000 a union type, or an array type, should be returned in registers
2001 for architecture GDBARCH. */
c5e656c1 2002
8201327c 2003static int
c5e656c1 2004i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2005{
c5e656c1
MK
2006 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2007 enum type_code code = TYPE_CODE (type);
2008 int len = TYPE_LENGTH (type);
8201327c 2009
0e4377e1
JB
2010 gdb_assert (code == TYPE_CODE_STRUCT
2011 || code == TYPE_CODE_UNION
2012 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2013
2014 if (struct_convention == pcc_struct_convention
2015 || (struct_convention == default_struct_convention
2016 && tdep->struct_return == pcc_struct_return))
2017 return 0;
2018
9edde48e
MK
2019 /* Structures consisting of a single `float', `double' or 'long
2020 double' member are returned in %st(0). */
2021 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2022 {
2023 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2024 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2025 return (len == 4 || len == 8 || len == 12);
2026 }
2027
c5e656c1
MK
2028 return (len == 1 || len == 2 || len == 4 || len == 8);
2029}
2030
2031/* Determine, for architecture GDBARCH, how a return value of TYPE
2032 should be returned. If it is supposed to be returned in registers,
2033 and READBUF is non-zero, read the appropriate value from REGCACHE,
2034 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2035 from WRITEBUF into REGCACHE. */
2036
2037static enum return_value_convention
c055b101
CV
2038i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2039 struct type *type, struct regcache *regcache,
2040 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2041{
2042 enum type_code code = TYPE_CODE (type);
2043
5daa78cc
TJB
2044 if (((code == TYPE_CODE_STRUCT
2045 || code == TYPE_CODE_UNION
2046 || code == TYPE_CODE_ARRAY)
2047 && !i386_reg_struct_return_p (gdbarch, type))
2048 /* 128-bit decimal float uses the struct return convention. */
2049 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2050 {
2051 /* The System V ABI says that:
2052
2053 "A function that returns a structure or union also sets %eax
2054 to the value of the original address of the caller's area
2055 before it returns. Thus when the caller receives control
2056 again, the address of the returned object resides in register
2057 %eax and can be used to access the object."
2058
2059 So the ABI guarantees that we can always find the return
2060 value just after the function has returned. */
2061
0e4377e1
JB
2062 /* Note that the ABI doesn't mention functions returning arrays,
2063 which is something possible in certain languages such as Ada.
2064 In this case, the value is returned as if it was wrapped in
2065 a record, so the convention applied to records also applies
2066 to arrays. */
2067
31db7b6c
MK
2068 if (readbuf)
2069 {
2070 ULONGEST addr;
2071
2072 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2073 read_memory (addr, readbuf, TYPE_LENGTH (type));
2074 }
2075
2076 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2077 }
c5e656c1
MK
2078
2079 /* This special case is for structures consisting of a single
9edde48e
MK
2080 `float', `double' or 'long double' member. These structures are
2081 returned in %st(0). For these structures, we call ourselves
2082 recursively, changing TYPE into the type of the first member of
2083 the structure. Since that should work for all structures that
2084 have only one member, we don't bother to check the member's type
2085 here. */
c5e656c1
MK
2086 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2087 {
2088 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
2089 return i386_return_value (gdbarch, func_type, type, regcache,
2090 readbuf, writebuf);
c5e656c1
MK
2091 }
2092
2093 if (readbuf)
2094 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2095 if (writebuf)
2096 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2097
c5e656c1 2098 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2099}
2100\f
2101
209bd28e
UW
2102/* Construct types for ISA-specific registers. */
2103struct type *
2104i386_eflags_type (struct gdbarch *gdbarch)
2105{
2106 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5ae96ec1 2107
209bd28e
UW
2108 if (!tdep->i386_eflags_type)
2109 {
2110 struct type *type;
2111
e9bb382b 2112 type = arch_flags_type (gdbarch, "builtin_type_i386_eflags", 4);
209bd28e
UW
2113 append_flags_type_flag (type, 0, "CF");
2114 append_flags_type_flag (type, 1, NULL);
2115 append_flags_type_flag (type, 2, "PF");
2116 append_flags_type_flag (type, 4, "AF");
2117 append_flags_type_flag (type, 6, "ZF");
2118 append_flags_type_flag (type, 7, "SF");
2119 append_flags_type_flag (type, 8, "TF");
2120 append_flags_type_flag (type, 9, "IF");
2121 append_flags_type_flag (type, 10, "DF");
2122 append_flags_type_flag (type, 11, "OF");
2123 append_flags_type_flag (type, 14, "NT");
2124 append_flags_type_flag (type, 16, "RF");
2125 append_flags_type_flag (type, 17, "VM");
2126 append_flags_type_flag (type, 18, "AC");
2127 append_flags_type_flag (type, 19, "VIF");
2128 append_flags_type_flag (type, 20, "VIP");
2129 append_flags_type_flag (type, 21, "ID");
2130
2131 tdep->i386_eflags_type = type;
2132 }
5ae96ec1 2133
209bd28e
UW
2134 return tdep->i386_eflags_type;
2135}
2136
2137struct type *
2138i386_mxcsr_type (struct gdbarch *gdbarch)
5ae96ec1 2139{
209bd28e
UW
2140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2141
2142 if (!tdep->i386_mxcsr_type)
2143 {
2144 struct type *type;
2145
e9bb382b 2146 type = arch_flags_type (gdbarch, "builtin_type_i386_mxcsr", 4);
209bd28e
UW
2147 append_flags_type_flag (type, 0, "IE");
2148 append_flags_type_flag (type, 1, "DE");
2149 append_flags_type_flag (type, 2, "ZE");
2150 append_flags_type_flag (type, 3, "OE");
2151 append_flags_type_flag (type, 4, "UE");
2152 append_flags_type_flag (type, 5, "PE");
2153 append_flags_type_flag (type, 6, "DAZ");
2154 append_flags_type_flag (type, 7, "IM");
2155 append_flags_type_flag (type, 8, "DM");
2156 append_flags_type_flag (type, 9, "ZM");
2157 append_flags_type_flag (type, 10, "OM");
2158 append_flags_type_flag (type, 11, "UM");
2159 append_flags_type_flag (type, 12, "PM");
2160 append_flags_type_flag (type, 15, "FZ");
2161
2162 tdep->i386_mxcsr_type = type;
2163 }
2164
2165 return tdep->i386_mxcsr_type;
21b4b2f2
JB
2166}
2167
27067745
UW
2168struct type *
2169i387_ext_type (struct gdbarch *gdbarch)
2170{
2171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2172
2173 if (!tdep->i387_ext_type)
2174 tdep->i387_ext_type
e9bb382b 2175 = arch_float_type (gdbarch, -1, "builtin_type_i387_ext",
27067745
UW
2176 floatformats_i387_ext);
2177
2178 return tdep->i387_ext_type;
2179}
2180
794ac428
UW
2181/* Construct vector type for MMX registers. */
2182struct type *
2183i386_mmx_type (struct gdbarch *gdbarch)
2184{
2185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2186
2187 if (!tdep->i386_mmx_type)
2188 {
df4df182
UW
2189 const struct builtin_type *bt = builtin_type (gdbarch);
2190
794ac428
UW
2191 /* The type we're building is this: */
2192#if 0
2193 union __gdb_builtin_type_vec64i
2194 {
2195 int64_t uint64;
2196 int32_t v2_int32[2];
2197 int16_t v4_int16[4];
2198 int8_t v8_int8[8];
2199 };
2200#endif
2201
2202 struct type *t;
2203
e9bb382b
UW
2204 t = arch_composite_type (gdbarch,
2205 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2206
2207 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2208 append_composite_type_field (t, "v2_int32",
df4df182 2209 init_vector_type (bt->builtin_int32, 2));
794ac428 2210 append_composite_type_field (t, "v4_int16",
df4df182 2211 init_vector_type (bt->builtin_int16, 4));
794ac428 2212 append_composite_type_field (t, "v8_int8",
df4df182 2213 init_vector_type (bt->builtin_int8, 8));
794ac428 2214
876cecd0 2215 TYPE_VECTOR (t) = 1;
794ac428
UW
2216 TYPE_NAME (t) = "builtin_type_vec64i";
2217 tdep->i386_mmx_type = t;
2218 }
2219
2220 return tdep->i386_mmx_type;
2221}
2222
2223struct type *
2224i386_sse_type (struct gdbarch *gdbarch)
2225{
2226 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2227
2228 if (!tdep->i386_sse_type)
2229 {
df4df182
UW
2230 const struct builtin_type *bt = builtin_type (gdbarch);
2231
794ac428
UW
2232 /* The type we're building is this: */
2233#if 0
2234 union __gdb_builtin_type_vec128i
2235 {
2236 int128_t uint128;
2237 int64_t v2_int64[2];
2238 int32_t v4_int32[4];
2239 int16_t v8_int16[8];
2240 int8_t v16_int8[16];
2241 double v2_double[2];
2242 float v4_float[4];
2243 };
2244#endif
2245
2246 struct type *t;
2247
e9bb382b
UW
2248 t = arch_composite_type (gdbarch,
2249 "__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
794ac428 2250 append_composite_type_field (t, "v4_float",
df4df182 2251 init_vector_type (bt->builtin_float, 4));
794ac428 2252 append_composite_type_field (t, "v2_double",
df4df182 2253 init_vector_type (bt->builtin_double, 2));
794ac428 2254 append_composite_type_field (t, "v16_int8",
df4df182 2255 init_vector_type (bt->builtin_int8, 16));
794ac428 2256 append_composite_type_field (t, "v8_int16",
df4df182 2257 init_vector_type (bt->builtin_int16, 8));
794ac428 2258 append_composite_type_field (t, "v4_int32",
df4df182 2259 init_vector_type (bt->builtin_int32, 4));
794ac428 2260 append_composite_type_field (t, "v2_int64",
df4df182
UW
2261 init_vector_type (bt->builtin_int64, 2));
2262 append_composite_type_field (t, "uint128", bt->builtin_int128);
794ac428 2263
876cecd0 2264 TYPE_VECTOR (t) = 1;
794ac428
UW
2265 TYPE_NAME (t) = "builtin_type_vec128i";
2266 tdep->i386_sse_type = t;
2267 }
2268
2269 return tdep->i386_sse_type;
2270}
2271
d7a0d72c
MK
2272/* Return the GDB type object for the "standard" data type of data in
2273 register REGNUM. Perhaps %esi and %edi should go here, but
2274 potentially they could be used for things other than address. */
2275
3a1e71e3 2276static struct type *
4e259f09 2277i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2278{
ab533587 2279 if (regnum == I386_EIP_REGNUM)
0dfff4cb 2280 return builtin_type (gdbarch)->builtin_func_ptr;
ab533587 2281
5ae96ec1 2282 if (regnum == I386_EFLAGS_REGNUM)
209bd28e 2283 return i386_eflags_type (gdbarch);
5ae96ec1 2284
ab533587 2285 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
0dfff4cb 2286 return builtin_type (gdbarch)->builtin_data_ptr;
d7a0d72c 2287
20a6ec49 2288 if (i386_fp_regnum_p (gdbarch, regnum))
27067745 2289 return i387_ext_type (gdbarch);
d7a0d72c 2290
878d9193 2291 if (i386_mmx_regnum_p (gdbarch, regnum))
794ac428 2292 return i386_mmx_type (gdbarch);
878d9193 2293
5716833c 2294 if (i386_sse_regnum_p (gdbarch, regnum))
794ac428 2295 return i386_sse_type (gdbarch);
d7a0d72c 2296
20a6ec49 2297 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
209bd28e 2298 return i386_mxcsr_type (gdbarch);
878d9193 2299
0dfff4cb 2300 return builtin_type (gdbarch)->builtin_int;
d7a0d72c
MK
2301}
2302
28fc6740 2303/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2304 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2305
2306static int
c86c27af 2307i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2308{
5716833c
MK
2309 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2310 int mmxreg, fpreg;
28fc6740
AC
2311 ULONGEST fstat;
2312 int tos;
c86c27af 2313
5716833c 2314 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2315 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2316 tos = (fstat >> 11) & 0x7;
5716833c
MK
2317 fpreg = (mmxreg + tos) % 8;
2318
20a6ec49 2319 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2320}
2321
2322static void
2323i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2324 int regnum, gdb_byte *buf)
28fc6740 2325{
5716833c 2326 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2327 {
63c0089f 2328 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
2329 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2330
28fc6740 2331 /* Extract (always little endian). */
c86c27af 2332 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 2333 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
2334 }
2335 else
2336 regcache_raw_read (regcache, regnum, buf);
2337}
2338
2339static void
2340i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2341 int regnum, const gdb_byte *buf)
28fc6740 2342{
5716833c 2343 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2344 {
63c0089f 2345 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
2346 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2347
28fc6740
AC
2348 /* Read ... */
2349 regcache_raw_read (regcache, fpnum, mmx_buf);
2350 /* ... Modify ... (always little endian). */
f837910f 2351 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
2352 /* ... Write. */
2353 regcache_raw_write (regcache, fpnum, mmx_buf);
2354 }
2355 else
2356 regcache_raw_write (regcache, regnum, buf);
2357}
ff2e87ac
AC
2358\f
2359
ff2e87ac
AC
2360/* Return the register number of the register allocated by GCC after
2361 REGNUM, or -1 if there is no such register. */
2362
2363static int
2364i386_next_regnum (int regnum)
2365{
2366 /* GCC allocates the registers in the order:
2367
2368 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2369
2370 Since storing a variable in %esp doesn't make any sense we return
2371 -1 for %ebp and for %esp itself. */
2372 static int next_regnum[] =
2373 {
2374 I386_EDX_REGNUM, /* Slot for %eax. */
2375 I386_EBX_REGNUM, /* Slot for %ecx. */
2376 I386_ECX_REGNUM, /* Slot for %edx. */
2377 I386_ESI_REGNUM, /* Slot for %ebx. */
2378 -1, -1, /* Slots for %esp and %ebp. */
2379 I386_EDI_REGNUM, /* Slot for %esi. */
2380 I386_EBP_REGNUM /* Slot for %edi. */
2381 };
2382
de5b9bb9 2383 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 2384 return next_regnum[regnum];
28fc6740 2385
ff2e87ac
AC
2386 return -1;
2387}
2388
2389/* Return nonzero if a value of type TYPE stored in register REGNUM
2390 needs any special handling. */
d7a0d72c 2391
3a1e71e3 2392static int
0abe36f5 2393i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
d7a0d72c 2394{
de5b9bb9
MK
2395 int len = TYPE_LENGTH (type);
2396
ff2e87ac
AC
2397 /* Values may be spread across multiple registers. Most debugging
2398 formats aren't expressive enough to specify the locations, so
2399 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
2400 have a length that is a multiple of the word size, since GCC
2401 doesn't seem to put any other types into registers. */
2402 if (len > 4 && len % 4 == 0)
2403 {
2404 int last_regnum = regnum;
2405
2406 while (len > 4)
2407 {
2408 last_regnum = i386_next_regnum (last_regnum);
2409 len -= 4;
2410 }
2411
2412 if (last_regnum != -1)
2413 return 1;
2414 }
ff2e87ac 2415
0abe36f5 2416 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
2417}
2418
ff2e87ac
AC
2419/* Read a value of type TYPE from register REGNUM in frame FRAME, and
2420 return its contents in TO. */
ac27f131 2421
3a1e71e3 2422static void
ff2e87ac 2423i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 2424 struct type *type, gdb_byte *to)
ac27f131 2425{
20a6ec49 2426 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 2427 int len = TYPE_LENGTH (type);
de5b9bb9 2428
ff2e87ac
AC
2429 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2430 available in FRAME (i.e. if it wasn't saved)? */
3d261580 2431
20a6ec49 2432 if (i386_fp_regnum_p (gdbarch, regnum))
8d7f6b4a 2433 {
d532c08f
MK
2434 i387_register_to_value (frame, regnum, type, to);
2435 return;
8d7f6b4a 2436 }
ff2e87ac 2437
fd35795f 2438 /* Read a value spread across multiple registers. */
de5b9bb9
MK
2439
2440 gdb_assert (len > 4 && len % 4 == 0);
3d261580 2441
de5b9bb9
MK
2442 while (len > 0)
2443 {
2444 gdb_assert (regnum != -1);
20a6ec49 2445 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 2446
42835c2b 2447 get_frame_register (frame, regnum, to);
de5b9bb9
MK
2448 regnum = i386_next_regnum (regnum);
2449 len -= 4;
42835c2b 2450 to += 4;
de5b9bb9 2451 }
ac27f131
MK
2452}
2453
ff2e87ac
AC
2454/* Write the contents FROM of a value of type TYPE into register
2455 REGNUM in frame FRAME. */
ac27f131 2456
3a1e71e3 2457static void
ff2e87ac 2458i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 2459 struct type *type, const gdb_byte *from)
ac27f131 2460{
de5b9bb9 2461 int len = TYPE_LENGTH (type);
de5b9bb9 2462
20a6ec49 2463 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 2464 {
d532c08f
MK
2465 i387_value_to_register (frame, regnum, type, from);
2466 return;
2467 }
3d261580 2468
fd35795f 2469 /* Write a value spread across multiple registers. */
de5b9bb9
MK
2470
2471 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 2472
de5b9bb9
MK
2473 while (len > 0)
2474 {
2475 gdb_assert (regnum != -1);
875f8d0e 2476 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 2477
42835c2b 2478 put_frame_register (frame, regnum, from);
de5b9bb9
MK
2479 regnum = i386_next_regnum (regnum);
2480 len -= 4;
42835c2b 2481 from += 4;
de5b9bb9 2482 }
ac27f131 2483}
ff2e87ac 2484\f
7fdafb5a
MK
2485/* Supply register REGNUM from the buffer specified by GREGS and LEN
2486 in the general-purpose register set REGSET to register cache
2487 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 2488
20187ed5 2489void
473f17b0
MK
2490i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2491 int regnum, const void *gregs, size_t len)
2492{
9ea75c57 2493 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2494 const gdb_byte *regs = gregs;
473f17b0
MK
2495 int i;
2496
2497 gdb_assert (len == tdep->sizeof_gregset);
2498
2499 for (i = 0; i < tdep->gregset_num_regs; i++)
2500 {
2501 if ((regnum == i || regnum == -1)
2502 && tdep->gregset_reg_offset[i] != -1)
2503 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2504 }
2505}
2506
7fdafb5a
MK
2507/* Collect register REGNUM from the register cache REGCACHE and store
2508 it in the buffer specified by GREGS and LEN as described by the
2509 general-purpose register set REGSET. If REGNUM is -1, do this for
2510 all registers in REGSET. */
2511
2512void
2513i386_collect_gregset (const struct regset *regset,
2514 const struct regcache *regcache,
2515 int regnum, void *gregs, size_t len)
2516{
2517 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2518 gdb_byte *regs = gregs;
7fdafb5a
MK
2519 int i;
2520
2521 gdb_assert (len == tdep->sizeof_gregset);
2522
2523 for (i = 0; i < tdep->gregset_num_regs; i++)
2524 {
2525 if ((regnum == i || regnum == -1)
2526 && tdep->gregset_reg_offset[i] != -1)
2527 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2528 }
2529}
2530
2531/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2532 in the floating-point register set REGSET to register cache
2533 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2534
2535static void
2536i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2537 int regnum, const void *fpregs, size_t len)
2538{
9ea75c57 2539 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2540
66a72d25
MK
2541 if (len == I387_SIZEOF_FXSAVE)
2542 {
2543 i387_supply_fxsave (regcache, regnum, fpregs);
2544 return;
2545 }
2546
473f17b0
MK
2547 gdb_assert (len == tdep->sizeof_fpregset);
2548 i387_supply_fsave (regcache, regnum, fpregs);
2549}
8446b36a 2550
2f305df1
MK
2551/* Collect register REGNUM from the register cache REGCACHE and store
2552 it in the buffer specified by FPREGS and LEN as described by the
2553 floating-point register set REGSET. If REGNUM is -1, do this for
2554 all registers in REGSET. */
7fdafb5a
MK
2555
2556static void
2557i386_collect_fpregset (const struct regset *regset,
2558 const struct regcache *regcache,
2559 int regnum, void *fpregs, size_t len)
2560{
2561 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2562
2563 if (len == I387_SIZEOF_FXSAVE)
2564 {
2565 i387_collect_fxsave (regcache, regnum, fpregs);
2566 return;
2567 }
2568
2569 gdb_assert (len == tdep->sizeof_fpregset);
2570 i387_collect_fsave (regcache, regnum, fpregs);
2571}
2572
8446b36a
MK
2573/* Return the appropriate register set for the core section identified
2574 by SECT_NAME and SECT_SIZE. */
2575
2576const struct regset *
2577i386_regset_from_core_section (struct gdbarch *gdbarch,
2578 const char *sect_name, size_t sect_size)
2579{
2580 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2581
2582 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2583 {
2584 if (tdep->gregset == NULL)
7fdafb5a
MK
2585 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2586 i386_collect_gregset);
8446b36a
MK
2587 return tdep->gregset;
2588 }
2589
66a72d25
MK
2590 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2591 || (strcmp (sect_name, ".reg-xfp") == 0
2592 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2593 {
2594 if (tdep->fpregset == NULL)
7fdafb5a
MK
2595 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2596 i386_collect_fpregset);
8446b36a
MK
2597 return tdep->fpregset;
2598 }
2599
2600 return NULL;
2601}
473f17b0 2602\f
fc338970 2603
fc338970 2604/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2605
2606CORE_ADDR
e17a4113
UW
2607i386_pe_skip_trampoline_code (struct frame_info *frame,
2608 CORE_ADDR pc, char *name)
c906108c 2609{
e17a4113
UW
2610 struct gdbarch *gdbarch = get_frame_arch (frame);
2611 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2612
2613 /* jmp *(dest) */
2614 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 2615 {
e17a4113
UW
2616 unsigned long indirect =
2617 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 2618 struct minimal_symbol *indsym =
fc338970 2619 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2620 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2621
c5aa993b 2622 if (symname)
c906108c 2623 {
c5aa993b
JM
2624 if (strncmp (symname, "__imp_", 6) == 0
2625 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
2626 return name ? 1 :
2627 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
2628 }
2629 }
fc338970 2630 return 0; /* Not a trampoline. */
c906108c 2631}
fc338970
MK
2632\f
2633
10458914
DJ
2634/* Return whether the THIS_FRAME corresponds to a sigtramp
2635 routine. */
8201327c 2636
4bd207ef 2637int
10458914 2638i386_sigtramp_p (struct frame_info *this_frame)
8201327c 2639{
10458914 2640 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2641 char *name;
2642
2643 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2644 return (name && strcmp ("_sigtramp", name) == 0);
2645}
2646\f
2647
fc338970
MK
2648/* We have two flavours of disassembly. The machinery on this page
2649 deals with switching between those. */
c906108c
SS
2650
2651static int
a89aa300 2652i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2653{
5e3397bb
MK
2654 gdb_assert (disassembly_flavor == att_flavor
2655 || disassembly_flavor == intel_flavor);
2656
2657 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2658 constified, cast to prevent a compiler warning. */
2659 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
2660
2661 return print_insn_i386 (pc, info);
7a292a7a 2662}
fc338970 2663\f
3ce1502b 2664
8201327c
MK
2665/* There are a few i386 architecture variants that differ only
2666 slightly from the generic i386 target. For now, we don't give them
2667 their own source file, but include them here. As a consequence,
2668 they'll always be included. */
3ce1502b 2669
8201327c 2670/* System V Release 4 (SVR4). */
3ce1502b 2671
10458914
DJ
2672/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2673 routine. */
911bc6ee 2674
8201327c 2675static int
10458914 2676i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 2677{
10458914 2678 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2679 char *name;
2680
acd5c798
MK
2681 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2682 currently unknown. */
911bc6ee 2683 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2684 return (name && (strcmp ("_sigreturn", name) == 0
2685 || strcmp ("_sigacthandler", name) == 0
2686 || strcmp ("sigvechandler", name) == 0));
2687}
d2a7c97a 2688
10458914
DJ
2689/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2690 address of the associated sigcontext (ucontext) structure. */
3ce1502b 2691
3a1e71e3 2692static CORE_ADDR
10458914 2693i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 2694{
e17a4113
UW
2695 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2696 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2697 gdb_byte buf[4];
acd5c798 2698 CORE_ADDR sp;
3ce1502b 2699
10458914 2700 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 2701 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 2702
e17a4113 2703 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c
MK
2704}
2705\f
3ce1502b 2706
8201327c 2707/* Generic ELF. */
d2a7c97a 2708
8201327c
MK
2709void
2710i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2711{
c4fc7f1b
MK
2712 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2713 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2714}
3ce1502b 2715
8201327c 2716/* System V Release 4 (SVR4). */
3ce1502b 2717
8201327c
MK
2718void
2719i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2720{
2721 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2722
8201327c
MK
2723 /* System V Release 4 uses ELF. */
2724 i386_elf_init_abi (info, gdbarch);
3ce1502b 2725
dfe01d39 2726 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2727 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2728
911bc6ee 2729 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2730 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2731 tdep->sc_pc_offset = 36 + 14 * 4;
2732 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2733
8201327c 2734 tdep->jb_pc_offset = 20;
3ce1502b
MK
2735}
2736
8201327c 2737/* DJGPP. */
3ce1502b 2738
3a1e71e3 2739static void
8201327c 2740i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2741{
8201327c 2742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2743
911bc6ee
MK
2744 /* DJGPP doesn't have any special frames for signal handlers. */
2745 tdep->sigtramp_p = NULL;
3ce1502b 2746
8201327c 2747 tdep->jb_pc_offset = 36;
15430fc0
EZ
2748
2749 /* DJGPP does not support the SSE registers. */
2750 tdep->num_xmm_regs = 0;
2751 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
3d22076f
EZ
2752
2753 /* Native compiler is GCC, which uses the SVR4 register numbering
2754 even in COFF and STABS. See the comment in i386_gdbarch_init,
2755 before the calls to set_gdbarch_stab_reg_to_regnum and
2756 set_gdbarch_sdb_reg_to_regnum. */
2757 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2758 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3ce1502b 2759}
8201327c 2760\f
2acceee2 2761
38c968cf
AC
2762/* i386 register groups. In addition to the normal groups, add "mmx"
2763 and "sse". */
2764
2765static struct reggroup *i386_sse_reggroup;
2766static struct reggroup *i386_mmx_reggroup;
2767
2768static void
2769i386_init_reggroups (void)
2770{
2771 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2772 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2773}
2774
2775static void
2776i386_add_reggroups (struct gdbarch *gdbarch)
2777{
2778 reggroup_add (gdbarch, i386_sse_reggroup);
2779 reggroup_add (gdbarch, i386_mmx_reggroup);
2780 reggroup_add (gdbarch, general_reggroup);
2781 reggroup_add (gdbarch, float_reggroup);
2782 reggroup_add (gdbarch, all_reggroup);
2783 reggroup_add (gdbarch, save_reggroup);
2784 reggroup_add (gdbarch, restore_reggroup);
2785 reggroup_add (gdbarch, vector_reggroup);
2786 reggroup_add (gdbarch, system_reggroup);
2787}
2788
2789int
2790i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2791 struct reggroup *group)
2792{
5716833c
MK
2793 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2794 || i386_mxcsr_regnum_p (gdbarch, regnum));
20a6ec49
MD
2795 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2796 || i386_fpc_regnum_p (gdbarch, regnum));
5716833c 2797 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2798
38c968cf
AC
2799 if (group == i386_mmx_reggroup)
2800 return mmx_regnum_p;
2801 if (group == i386_sse_reggroup)
2802 return sse_regnum_p;
2803 if (group == vector_reggroup)
2804 return (mmx_regnum_p || sse_regnum_p);
2805 if (group == float_reggroup)
2806 return fp_regnum_p;
2807 if (group == general_reggroup)
2808 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2809
38c968cf
AC
2810 return default_register_reggroup_p (gdbarch, regnum, group);
2811}
38c968cf 2812\f
acd5c798 2813
f837910f
MK
2814/* Get the ARGIth function argument for the current function. */
2815
42c466d7 2816static CORE_ADDR
143985b7
AF
2817i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2818 struct type *type)
2819{
e17a4113
UW
2820 struct gdbarch *gdbarch = get_frame_arch (frame);
2821 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f837910f 2822 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 2823 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
2824}
2825
514f746b
AR
2826static void
2827i386_skip_permanent_breakpoint (struct regcache *regcache)
2828{
2829 CORE_ADDR current_pc = regcache_read_pc (regcache);
2830
2831 /* On i386, breakpoint is exactly 1 byte long, so we just
2832 adjust the PC in the regcache. */
2833 current_pc += 1;
2834 regcache_write_pc (regcache, current_pc);
2835}
2836
2837
7ad10968
HZ
2838#define PREFIX_REPZ 0x01
2839#define PREFIX_REPNZ 0x02
2840#define PREFIX_LOCK 0x04
2841#define PREFIX_DATA 0x08
2842#define PREFIX_ADDR 0x10
473f17b0 2843
7ad10968
HZ
2844/* operand size */
2845enum
2846{
2847 OT_BYTE = 0,
2848 OT_WORD,
2849 OT_LONG,
2850};
473f17b0 2851
7ad10968
HZ
2852/* i386 arith/logic operations */
2853enum
2854{
2855 OP_ADDL,
2856 OP_ORL,
2857 OP_ADCL,
2858 OP_SBBL,
2859 OP_ANDL,
2860 OP_SUBL,
2861 OP_XORL,
2862 OP_CMPL,
2863};
5716833c 2864
7ad10968
HZ
2865struct i386_record_s
2866{
2867 struct regcache *regcache;
2868 CORE_ADDR addr;
2869 int aflag;
2870 int dflag;
2871 int override;
2872 uint8_t modrm;
2873 uint8_t mod, reg, rm;
2874 int ot;
2875};
5716833c 2876
7ad10968
HZ
2877/* Parse "modrm" part in current memory address that irp->addr point to
2878 Return -1 if something wrong. */
5716833c 2879
7ad10968
HZ
2880static int
2881i386_record_modrm (struct i386_record_s *irp)
2882{
5af949e3
UW
2883 struct gdbarch *gdbarch = get_regcache_arch (irp->regcache);
2884
7ad10968
HZ
2885 if (target_read_memory (irp->addr, &irp->modrm, 1))
2886 {
2887 if (record_debug)
2888 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
2889 "addr %s len = 1.\n"),
2890 paddress (gdbarch, irp->addr));
7ad10968
HZ
2891 return -1;
2892 }
2893 irp->addr++;
2894 irp->mod = (irp->modrm >> 6) & 3;
2895 irp->reg = (irp->modrm >> 3) & 7;
2896 irp->rm = irp->modrm & 7;
5716833c 2897
7ad10968
HZ
2898 return 0;
2899}
d2a7c97a 2900
7ad10968
HZ
2901/* Get the memory address that current instruction write to and set it to
2902 the argument "addr".
2903 Return -1 if something wrong. */
8201327c 2904
7ad10968
HZ
2905static int
2906i386_record_lea_modrm_addr (struct i386_record_s *irp, uint32_t * addr)
2907{
5af949e3 2908 struct gdbarch *gdbarch = get_regcache_arch (irp->regcache);
7ad10968
HZ
2909 uint8_t tmpu8;
2910 uint16_t tmpu16;
2911 uint32_t tmpu32;
21d0e8a4 2912
7ad10968
HZ
2913 *addr = 0;
2914 if (irp->aflag)
2915 {
2916 /* 32 bits */
2917 int havesib = 0;
2918 uint8_t scale = 0;
2919 uint8_t index = 0;
2920 uint8_t base = irp->rm;
896fb97d 2921
7ad10968
HZ
2922 if (base == 4)
2923 {
2924 havesib = 1;
2925 if (target_read_memory (irp->addr, &tmpu8, 1))
2926 {
2927 if (record_debug)
2928 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
2929 "at addr %s len = 1.\n"),
2930 paddress (gdbarch, irp->addr));
7ad10968
HZ
2931 return -1;
2932 }
2933 irp->addr++;
2934 scale = (tmpu8 >> 6) & 3;
2935 index = ((tmpu8 >> 3) & 7);
2936 base = (tmpu8 & 7);
2937 }
21d0e8a4 2938
7ad10968
HZ
2939 switch (irp->mod)
2940 {
2941 case 0:
2942 if ((base & 7) == 5)
2943 {
2944 base = 0xff;
2945 if (target_read_memory (irp->addr, (gdb_byte *) addr, 4))
2946 {
2947 if (record_debug)
2948 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
2949 "memory at addr %s len = 4.\n"),
2950 paddress (gdbarch, irp->addr));
7ad10968
HZ
2951 return -1;
2952 }
2953 irp->addr += 4;
2954 }
2955 else
2956 {
2957 *addr = 0;
2958 }
2959 break;
2960 case 1:
2961 if (target_read_memory (irp->addr, &tmpu8, 1))
2962 {
2963 if (record_debug)
2964 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
2965 "at addr %s len = 1.\n"),
2966 paddress (gdbarch, irp->addr));
7ad10968
HZ
2967 return -1;
2968 }
2969 irp->addr++;
2970 *addr = (int8_t) tmpu8;
2971 break;
2972 case 2:
2973 if (target_read_memory (irp->addr, (gdb_byte *) addr, 4))
2974 {
2975 if (record_debug)
2976 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
2977 "at addr %s len = 4.\n"),
2978 paddress (gdbarch, irp->addr));
7ad10968
HZ
2979 return -1;
2980 }
2981 irp->addr += 4;
2982 break;
2983 }
356a6b3e 2984
7ad10968
HZ
2985 if (base != 0xff)
2986 {
2987 regcache_raw_read (irp->regcache, base, (gdb_byte *) & tmpu32);
2988 *addr += tmpu32;
2989 }
c4fc7f1b 2990
7ad10968
HZ
2991 /* XXX: index == 4 is always invalid */
2992 if (havesib && (index != 4 || scale != 0))
2993 {
2994 regcache_raw_read (irp->regcache, index, (gdb_byte *) & tmpu32);
2995 *addr += tmpu32 << scale;
2996 }
2997 }
2998 else
2999 {
3000 /* 16 bits */
3001 switch (irp->mod)
3002 {
3003 case 0:
3004 if (irp->rm == 6)
3005 {
3006 if (target_read_memory
3007 (irp->addr, (gdb_byte *) & tmpu16, 2))
3008 {
3009 if (record_debug)
3010 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3011 "memory at addr %s len = 2.\n"),
3012 paddress (gdbarch, irp->addr));
7ad10968
HZ
3013 return -1;
3014 }
3015 irp->addr += 2;
3016 *addr = (int16_t) tmpu16;
3017 irp->rm = 0;
3018 goto no_rm;
3019 }
3020 else
3021 {
3022 *addr = 0;
3023 }
3024 break;
3025 case 1:
3026 if (target_read_memory (irp->addr, &tmpu8, 1))
3027 {
3028 if (record_debug)
3029 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3030 "at addr %s len = 1.\n"),
3031 paddress (gdbarch, irp->addr));
7ad10968
HZ
3032 return -1;
3033 }
3034 irp->addr++;
3035 *addr = (int8_t) tmpu8;
3036 break;
3037 case 2:
3038 if (target_read_memory (irp->addr, (gdb_byte *) & tmpu16, 2))
3039 {
3040 if (record_debug)
3041 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3042 "at addr %s len = 2.\n"),
3043 paddress (gdbarch, irp->addr));
7ad10968
HZ
3044 return -1;
3045 }
3046 irp->addr += 2;
3047 *addr = (int16_t) tmpu16;
3048 break;
3049 }
c4fc7f1b 3050
7ad10968
HZ
3051 switch (irp->rm)
3052 {
3053 case 0:
3054 regcache_raw_read (irp->regcache, I386_EBX_REGNUM,
3055 (gdb_byte *) & tmpu32);
3056 *addr += tmpu32;
3057 regcache_raw_read (irp->regcache, I386_ESI_REGNUM,
3058 (gdb_byte *) & tmpu32);
3059 *addr += tmpu32;
3060 break;
3061 case 1:
3062 regcache_raw_read (irp->regcache, I386_EBX_REGNUM,
3063 (gdb_byte *) & tmpu32);
3064 *addr += tmpu32;
3065 regcache_raw_read (irp->regcache, I386_EDI_REGNUM,
3066 (gdb_byte *) & tmpu32);
3067 *addr += tmpu32;
3068 break;
3069 case 2:
3070 regcache_raw_read (irp->regcache, I386_EBP_REGNUM,
3071 (gdb_byte *) & tmpu32);
3072 *addr += tmpu32;
3073 regcache_raw_read (irp->regcache, I386_ESI_REGNUM,
3074 (gdb_byte *) & tmpu32);
3075 *addr += tmpu32;
3076 break;
3077 case 3:
3078 regcache_raw_read (irp->regcache, I386_EBP_REGNUM,
3079 (gdb_byte *) & tmpu32);
3080 *addr += tmpu32;
3081 regcache_raw_read (irp->regcache, I386_EDI_REGNUM,
3082 (gdb_byte *) & tmpu32);
3083 *addr += tmpu32;
3084 break;
3085 case 4:
3086 regcache_raw_read (irp->regcache, I386_ESI_REGNUM,
3087 (gdb_byte *) & tmpu32);
3088 *addr += tmpu32;
3089 break;
3090 case 5:
3091 regcache_raw_read (irp->regcache, I386_EDI_REGNUM,
3092 (gdb_byte *) & tmpu32);
3093 *addr += tmpu32;
3094 break;
3095 case 6:
3096 regcache_raw_read (irp->regcache, I386_EBP_REGNUM,
3097 (gdb_byte *) & tmpu32);
3098 *addr += tmpu32;
3099 break;
3100 case 7:
3101 regcache_raw_read (irp->regcache, I386_EBX_REGNUM,
3102 (gdb_byte *) & tmpu32);
3103 *addr += tmpu32;
3104 break;
3105 }
3106 *addr &= 0xffff;
3107 }
c4fc7f1b 3108
7ad10968
HZ
3109no_rm:
3110 return 0;
3111}
c4fc7f1b 3112
7ad10968
HZ
3113/* Record the value of the memory that willbe changed in current instruction
3114 to "record_arch_list".
3115 Return -1 if something wrong. */
356a6b3e 3116
7ad10968
HZ
3117static int
3118i386_record_lea_modrm (struct i386_record_s *irp)
3119{
5af949e3 3120 struct gdbarch *gdbarch = get_regcache_arch (irp->regcache);
7ad10968 3121 uint32_t addr;
356a6b3e 3122
7ad10968
HZ
3123 if (irp->override)
3124 {
3125 if (record_debug)
3126 printf_unfiltered (_("Process record ignores the memory change "
5af949e3 3127 "of instruction at address %s because it "
7ad10968 3128 "can't get the value of the segment register.\n"),
5af949e3 3129 paddress (gdbarch, irp->addr));
7ad10968
HZ
3130 return 0;
3131 }
61113f8b 3132
7ad10968
HZ
3133 if (i386_record_lea_modrm_addr (irp, &addr))
3134 return -1;
96297dab 3135
7ad10968
HZ
3136 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3137 return -1;
a62cc96e 3138
7ad10968
HZ
3139 return 0;
3140}
b6197528 3141
7ad10968
HZ
3142/* Parse the current instruction and record the values of the registers and
3143 memory that will be changed in current instruction to "record_arch_list".
3144 Return -1 if something wrong. */
8201327c 3145
a6b808b4 3146int
7ad10968
HZ
3147i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3148 CORE_ADDR addr)
3149{
3150 int prefixes = 0;
3151 uint8_t tmpu8;
3152 uint16_t tmpu16;
3153 uint32_t tmpu32;
3154 uint32_t opcode;
3155 struct i386_record_s ir;
3156
8408d274 3157 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968
HZ
3158 ir.regcache = regcache;
3159 ir.addr = addr;
3160 ir.aflag = 1;
3161 ir.dflag = 1;
3162
3163 if (record_debug > 1)
3164 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
3165 "addr = %s\n",
3166 paddress (gdbarch, ir.addr));
7ad10968
HZ
3167
3168 /* prefixes */
3169 while (1)
3170 {
3171 if (target_read_memory (ir.addr, &tmpu8, 1))
3172 {
3173 if (record_debug)
3174 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3175 "addr %s len = 1.\n"),
3176 paddress (gdbarch, ir.addr));
7ad10968
HZ
3177 return -1;
3178 }
3179 ir.addr++;
3180 switch (tmpu8)
3181 {
3182 case 0xf3:
3183 prefixes |= PREFIX_REPZ;
3184 break;
3185 case 0xf2:
3186 prefixes |= PREFIX_REPNZ;
3187 break;
3188 case 0xf0:
3189 prefixes |= PREFIX_LOCK;
3190 break;
3191 case 0x2e:
3192 ir.override = I386_CS_REGNUM;
3193 break;
3194 case 0x36:
3195 ir.override = I386_SS_REGNUM;
3196 break;
3197 case 0x3e:
3198 ir.override = I386_DS_REGNUM;
3199 break;
3200 case 0x26:
3201 ir.override = I386_ES_REGNUM;
3202 break;
3203 case 0x64:
3204 ir.override = I386_FS_REGNUM;
3205 break;
3206 case 0x65:
3207 ir.override = I386_GS_REGNUM;
3208 break;
3209 case 0x66:
3210 prefixes |= PREFIX_DATA;
3211 break;
3212 case 0x67:
3213 prefixes |= PREFIX_ADDR;
3214 break;
3215 default:
3216 goto out_prefixes;
3217 break;
3218 }
3219 }
3220out_prefixes:
3221 if (prefixes & PREFIX_DATA)
3222 ir.dflag ^= 1;
3223 if (prefixes & PREFIX_ADDR)
3224 ir.aflag ^= 1;
3225
3226 /* now check op code */
3227 opcode = (uint32_t) tmpu8;
3228reswitch:
3229 switch (opcode)
3230 {
3231 case 0x0f:
3232 if (target_read_memory (ir.addr, &tmpu8, 1))
3233 {
3234 if (record_debug)
3235 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3236 "addr %s len = 1.\n"),
3237 paddress (gdbarch, ir.addr));
7ad10968
HZ
3238 return -1;
3239 }
3240 ir.addr++;
3241 opcode = (uint16_t) tmpu8 | 0x0f00;
3242 goto reswitch;
3243 break;
93924b6b 3244
7ad10968
HZ
3245 /* arith & logic */
3246 case 0x00:
3247 case 0x01:
3248 case 0x02:
3249 case 0x03:
3250 case 0x04:
3251 case 0x05:
3252 case 0x08:
3253 case 0x09:
3254 case 0x0a:
3255 case 0x0b:
3256 case 0x0c:
3257 case 0x0d:
3258 case 0x10:
3259 case 0x11:
3260 case 0x12:
3261 case 0x13:
3262 case 0x14:
3263 case 0x15:
3264 case 0x18:
3265 case 0x19:
3266 case 0x1a:
3267 case 0x1b:
3268 case 0x1c:
3269 case 0x1d:
3270 case 0x20:
3271 case 0x21:
3272 case 0x22:
3273 case 0x23:
3274 case 0x24:
3275 case 0x25:
3276 case 0x28:
3277 case 0x29:
3278 case 0x2a:
3279 case 0x2b:
3280 case 0x2c:
3281 case 0x2d:
3282 case 0x30:
3283 case 0x31:
3284 case 0x32:
3285 case 0x33:
3286 case 0x34:
3287 case 0x35:
3288 case 0x38:
3289 case 0x39:
3290 case 0x3a:
3291 case 0x3b:
3292 case 0x3c:
3293 case 0x3d:
3294 if (((opcode >> 3) & 7) != OP_CMPL)
3295 {
3296 if ((opcode & 1) == 0)
3297 ir.ot = OT_BYTE;
3298 else
3299 ir.ot = ir.dflag + OT_WORD;
93924b6b 3300
7ad10968
HZ
3301 switch ((opcode >> 1) & 3)
3302 {
3303 /* OP Ev, Gv */
3304 case 0:
3305 if (i386_record_modrm (&ir))
3306 return -1;
3307 if (ir.mod != 3)
3308 {
3309 if (i386_record_lea_modrm (&ir))
3310 return -1;
3311 }
3312 else
3313 {
3314 if (ir.ot == OT_BYTE)
3315 ir.rm &= 0x3;
3316 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3317 return -1;
3318 }
3319 break;
3320 /* OP Gv, Ev */
3321 case 1:
3322 if (i386_record_modrm (&ir))
3323 return -1;
3324 if (ir.ot == OT_BYTE)
3325 ir.reg &= 0x3;
3326 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3327 return -1;
3328 break;
3329 /* OP A, Iv */
3330 case 2:
3331 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3332 return -1;
3333 break;
3334 }
3335 }
3336 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3337 return -1;
3338 break;
42fdc8df 3339
7ad10968
HZ
3340 /* GRP1 */
3341 case 0x80:
3342 case 0x81:
3343 case 0x82:
3344 case 0x83:
3345 if (i386_record_modrm (&ir))
3346 return -1;
8201327c 3347
7ad10968
HZ
3348 if (ir.reg != OP_CMPL)
3349 {
3350 if ((opcode & 1) == 0)
3351 ir.ot = OT_BYTE;
3352 else
3353 ir.ot = ir.dflag + OT_WORD;
28fc6740 3354
7ad10968
HZ
3355 if (ir.mod != 3)
3356 {
3357 if (i386_record_lea_modrm (&ir))
3358 return -1;
3359 }
3360 else
3361 {
3362 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3363 return -1;
3364 }
3365 }
3366 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3367 return -1;
3368 break;
5e3397bb 3369
7ad10968
HZ
3370 /* inv */
3371 case 0x40:
3372 case 0x41:
3373 case 0x42:
3374 case 0x43:
3375 case 0x44:
3376 case 0x45:
3377 case 0x46:
3378 case 0x47:
3379 /* dec */
3380 case 0x48:
3381 case 0x49:
3382 case 0x4a:
3383 case 0x4b:
3384 case 0x4c:
3385 case 0x4d:
3386 case 0x4e:
3387 case 0x4f:
3388 if (record_arch_list_add_reg (ir.regcache, opcode & 7))
3389 return -1;
3390 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3391 return -1;
3392 break;
acd5c798 3393
7ad10968
HZ
3394 /* GRP3 */
3395 case 0xf6:
3396 case 0xf7:
3397 if ((opcode & 1) == 0)
3398 ir.ot = OT_BYTE;
3399 else
3400 ir.ot = ir.dflag + OT_WORD;
3401 if (i386_record_modrm (&ir))
3402 return -1;
acd5c798 3403
7ad10968
HZ
3404 switch (ir.reg)
3405 {
3406 /* test */
3407 case 0:
3408 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3409 return -1;
3410 break;
3411 /* not */
3412 case 2:
3413 if (ir.mod != 3)
3414 {
3415 if (i386_record_lea_modrm (&ir))
3416 return -1;
3417 }
3418 else
3419 {
3420 if (ir.ot == OT_BYTE)
3421 ir.rm &= 0x3;
3422 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3423 return -1;
3424 }
3425 break;
3426 /* neg */
3427 case 3:
3428 if (ir.mod != 3)
3429 {
3430 if (i386_record_lea_modrm (&ir))
3431 return -1;
3432 }
3433 else
3434 {
3435 if (ir.ot == OT_BYTE)
3436 ir.rm &= 0x3;
3437 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3438 return -1;
3439 }
3440 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3441 return -1;
3442 break;
3443 /* mul */
3444 case 4:
3445 /* imul */
3446 case 5:
3447 /* div */
3448 case 6:
3449 /* idiv */
3450 case 7:
3451 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3452 return -1;
3453 if (ir.ot != OT_BYTE)
3454 {
3455 if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
3456 return -1;
3457 }
3458 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3459 return -1;
3460 break;
3461 default:
3462 ir.addr -= 2;
3463 opcode = opcode << 8 | ir.modrm;
3464 goto no_support;
3465 break;
3466 }
3467 break;
3468
3469 /* GRP4 */
3470 case 0xfe:
3471 /* GRP5 */
3472 case 0xff:
3473 if ((opcode & 1) == 0)
3474 ir.ot = OT_BYTE;
3475 else
3476 ir.ot = ir.dflag + OT_WORD;
3477 if (i386_record_modrm (&ir))
3478 return -1;
3479 if (ir.reg >= 2 && opcode == 0xfe)
3480 {
3481 ir.addr -= 2;
3482 opcode = opcode << 8 | ir.modrm;
3483 goto no_support;
3484 }
3485
3486 switch (ir.reg)
3487 {
3488 /* inc */
3489 case 0:
3490 /* dec */
3491 case 1:
3492 if (ir.mod != 3)
3493 {
3494 if (i386_record_lea_modrm (&ir))
3495 return -1;
3496 }
3497 else
3498 {
3499 if (ir.ot == OT_BYTE)
3500 ir.rm &= 0x3;
3501 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3502 return -1;
3503 }
3504 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3505 return -1;
3506 break;
3507 /* call */
3508 case 2:
3509 /* push */
3510 case 6:
3511 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3512 return -1;
3513 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3514 (gdb_byte *) & tmpu32);
3515 if (record_arch_list_add_mem
3516 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
3517 return -1;
3518 break;
3519 /* lcall */
3520 case 3:
3521 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3522 return -1;
3523 if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
3524 return -1;
3525 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3526 (gdb_byte *) & tmpu32);
3527 if (record_arch_list_add_mem
3528 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 2)), (1 << (ir.dflag + 2))))
3529 return -1;
3530 break;
3531 /* jmp */
3532 case 4:
3533 /* ljmp */
3534 case 5:
3535 break;
3536 default:
3537 ir.addr -= 2;
3538 opcode = opcode << 8 | ir.modrm;
3539 goto no_support;
3540 break;
3541 }
3542 break;
3543
3544 /* test */
3545 case 0x84:
3546 case 0x85:
3547 case 0xa8:
3548 case 0xa9:
3549 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3550 return -1;
3551 break;
3552
3553 /* CWDE/CBW */
3554 case 0x98:
3555 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3556 return -1;
3557 break;
3558
3559 /* CDQ/CWD */
3560 case 0x99:
3561 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3562 return -1;
3563 if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
3564 return -1;
3565 break;
3566
3567 /* imul */
3568 case 0x0faf:
3569 case 0x69:
3570 case 0x6b:
3571 ir.ot = ir.dflag + OT_WORD;
3572 if (i386_record_modrm (&ir))
3573 return -1;
3574 if (ir.ot == OT_BYTE)
3575 ir.reg &= 0x3;
3576 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3577 return -1;
3578 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3579 return -1;
3580 break;
3581
3582 /* xadd */
3583 case 0x0fc0:
3584 case 0x0fc1:
3585 if ((opcode & 1) == 0)
3586 ir.ot = OT_BYTE;
3587 else
3588 ir.ot = ir.dflag + OT_WORD;
3589 if (i386_record_modrm (&ir))
3590 return -1;
3591 if (ir.mod == 3)
3592 {
3593 if (ir.ot == OT_BYTE)
3594 ir.reg &= 0x3;
3595 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3596 return -1;
3597 if (ir.ot == OT_BYTE)
3598 ir.rm &= 0x3;
3599 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3600 return -1;
3601 }
3602 else
3603 {
3604 if (i386_record_lea_modrm (&ir))
3605 return -1;
3606 if (ir.ot == OT_BYTE)
3607 ir.reg &= 0x3;
3608 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3609 return -1;
3610 }
3611 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3612 return -1;
3613 break;
3614
3615 /* cmpxchg */
3616 case 0x0fb0:
3617 case 0x0fb1:
3618 if ((opcode & 1) == 0)
3619 ir.ot = OT_BYTE;
3620 else
3621 ir.ot = ir.dflag + OT_WORD;
3622 if (i386_record_modrm (&ir))
3623 return -1;
3624 if (ir.mod == 3)
3625 {
3626 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3627 return -1;
3628 if (ir.ot == OT_BYTE)
3629 ir.reg &= 0x3;
3630 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3631 return -1;
3632 }
3633 else
3634 {
3635 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3636 return -1;
3637 if (i386_record_lea_modrm (&ir))
3638 return -1;
3639 }
3640 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3641 return -1;
3642 break;
3643
3644 /* cmpxchg8b */
3645 case 0x0fc7:
3646 if (i386_record_modrm (&ir))
3647 return -1;
3648 if (ir.mod == 3)
3649 {
3650 ir.addr -= 2;
3651 opcode = opcode << 8 | ir.modrm;
3652 goto no_support;
3653 }
3654 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3655 return -1;
3656 if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
3657 return -1;
3658 if (i386_record_lea_modrm (&ir))
3659 return -1;
3660 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3661 return -1;
3662 break;
3663
3664 /* push */
3665 case 0x50:
3666 case 0x51:
3667 case 0x52:
3668 case 0x53:
3669 case 0x54:
3670 case 0x55:
3671 case 0x56:
3672 case 0x57:
3673 case 0x68:
3674 case 0x6a:
3675 /* push es */
3676 case 0x06:
3677 /* push cs */
3678 case 0x0e:
3679 /* push ss */
3680 case 0x16:
3681 /* push ds */
3682 case 0x1e:
3683 /* push fs */
3684 case 0x0fa0:
3685 /* push gs */
3686 case 0x0fa8:
3687 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3688 return -1;
3689 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3690 (gdb_byte *) & tmpu32);
3691 if (record_arch_list_add_mem
3692 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
3693 return -1;
3694 break;
3695
3696 /* pop */
3697 case 0x58:
3698 case 0x59:
3699 case 0x5a:
3700 case 0x5b:
3701 case 0x5c:
3702 case 0x5d:
3703 case 0x5e:
3704 case 0x5f:
3705 ir.ot = ir.dflag + OT_WORD;
3706 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3707 return -1;
3708 if (ir.ot == OT_BYTE)
3709 opcode &= 0x3;
3710 if (record_arch_list_add_reg (ir.regcache, opcode & 0x7))
3711 return -1;
3712 break;
3713
3714 /* pusha */
3715 case 0x60:
3716 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3717 return -1;
3718 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3719 (gdb_byte *) & tmpu32);
3720 if (record_arch_list_add_mem
3721 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 4)), (1 << (ir.dflag + 4))))
3722 return -1;
3723 break;
3724
3725 /* popa */
3726 case 0x61:
3727 for (tmpu8 = I386_EAX_REGNUM; tmpu8 <= I386_EDI_REGNUM; tmpu8++)
3728 {
3729 if (record_arch_list_add_reg (ir.regcache, tmpu8))
3730 return -1;
3731 }
3732 break;
3733
3734 /* pop */
3735 case 0x8f:
3736 ir.ot = ir.dflag + OT_WORD;
3737 if (i386_record_modrm (&ir))
3738 return -1;
3739 if (ir.mod == 3)
3740 {
3741 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3742 return -1;
3743 }
3744 else
3745 {
3746 if (i386_record_lea_modrm (&ir))
3747 return -1;
3748 }
3749 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3750 return -1;
3751 break;
3752
3753 /* enter */
3754 case 0xc8:
3755 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3756 return -1;
3757 if (record_arch_list_add_reg (ir.regcache, I386_EBP_REGNUM))
3758 return -1;
3759 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
3760 (gdb_byte *) & tmpu32);
3761 if (record_arch_list_add_mem
3762 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
3763 return -1;
3764 break;
3765
3766 /* leave */
3767 case 0xc9:
3768 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3769 return -1;
3770 if (record_arch_list_add_reg (ir.regcache, I386_EBP_REGNUM))
3771 return -1;
3772 break;
3773
3774 /* pop es */
3775 case 0x07:
3776 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3777 return -1;
3778 if (record_arch_list_add_reg (ir.regcache, I386_ES_REGNUM))
3779 return -1;
3780 break;
3781
3782 /* pop ss */
3783 case 0x17:
3784 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3785 return -1;
3786 if (record_arch_list_add_reg (ir.regcache, I386_SS_REGNUM))
3787 return -1;
3788 break;
3789
3790 /* pop ds */
3791 case 0x1f:
3792 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3793 return -1;
3794 if (record_arch_list_add_reg (ir.regcache, I386_DS_REGNUM))
3795 return -1;
3796 break;
3797
3798 /* pop fs */
3799 case 0x0fa1:
3800 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3801 return -1;
3802 if (record_arch_list_add_reg (ir.regcache, I386_FS_REGNUM))
3803 return -1;
3804 break;
3805
3806 /* pop gs */
3807 case 0x0fa9:
3808 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
3809 return -1;
3810 if (record_arch_list_add_reg (ir.regcache, I386_GS_REGNUM))
3811 return -1;
3812 break;
3813
3814 /* mov */
3815 case 0x88:
3816 case 0x89:
3817 case 0xc6:
3818 case 0xc7:
3819 if ((opcode & 1) == 0)
3820 ir.ot = OT_BYTE;
3821 else
3822 ir.ot = ir.dflag + OT_WORD;
3823
3824 if (i386_record_modrm (&ir))
3825 return -1;
3826
3827 if (ir.mod != 3)
3828 {
3829 if (i386_record_lea_modrm (&ir))
3830 return -1;
3831 }
3832 else
3833 {
3834 if (ir.ot == OT_BYTE)
3835 ir.rm &= 0x3;
3836 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3837 return -1;
3838 }
3839 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3840 return -1;
3841 break;
3842 /* mov */
3843 case 0x8a:
3844 case 0x8b:
3845 if ((opcode & 1) == 0)
3846 ir.ot = OT_BYTE;
3847 else
3848 ir.ot = ir.dflag + OT_WORD;
3849
3850 if (i386_record_modrm (&ir))
3851 return -1;
3852
3853 if (ir.ot == OT_BYTE)
3854 ir.reg &= 0x3;
3855 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3856 return -1;
3857
3858 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3859 return -1;
3860 break;
3861
3862 /* mov seg */
3863 case 0x8e:
3864 if (i386_record_modrm (&ir))
3865 return -1;
3866
3867 switch (ir.reg)
3868 {
3869 case 0:
3870 tmpu8 = I386_ES_REGNUM;
3871 break;
3872 case 2:
3873 tmpu8 = I386_SS_REGNUM;
3874 break;
3875 case 3:
3876 tmpu8 = I386_DS_REGNUM;
3877 break;
3878 case 4:
3879 tmpu8 = I386_FS_REGNUM;
3880 break;
3881 case 5:
3882 tmpu8 = I386_GS_REGNUM;
3883 break;
3884 default:
3885 ir.addr -= 2;
3886 opcode = opcode << 8 | ir.modrm;
3887 goto no_support;
3888 break;
3889 }
3890 if (record_arch_list_add_reg (ir.regcache, tmpu8))
3891 return -1;
3892
3893 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3894 return -1;
3895 break;
3896
3897 /* mov seg */
3898 case 0x8c:
3899 if (i386_record_modrm (&ir))
3900 return -1;
3901 if (ir.reg > 5)
3902 {
3903 ir.addr -= 2;
3904 opcode = opcode << 8 | ir.modrm;
3905 goto no_support;
3906 }
3907
3908 if (ir.mod == 3)
3909 {
3910 if (record_arch_list_add_reg (ir.regcache, ir.rm))
3911 return -1;
3912 }
3913 else
3914 {
3915 ir.ot = OT_WORD;
3916 if (i386_record_lea_modrm (&ir))
3917 return -1;
3918 }
3919
3920 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
3921 return -1;
3922 break;
3923
3924 /* movzbS */
3925 case 0x0fb6:
3926 /* movzwS */
3927 case 0x0fb7:
3928 /* movsbS */
3929 case 0x0fbe:
3930 /* movswS */
3931 case 0x0fbf:
3932 if (i386_record_modrm (&ir))
3933 return -1;
3934 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3935 return -1;
3936 break;
3937
3938 /* lea */
3939 case 0x8d:
3940 if (i386_record_modrm (&ir))
3941 return -1;
3942 if (ir.mod == 3)
3943 {
3944 ir.addr -= 2;
3945 opcode = opcode << 8 | ir.modrm;
3946 goto no_support;
3947 }
3948
3949 ir.ot = ir.dflag;
3950 if (ir.ot == OT_BYTE)
3951 ir.reg &= 0x3;
3952 if (record_arch_list_add_reg (ir.regcache, ir.reg))
3953 return -1;
3954 break;
3955
3956 /* mov EAX */
3957 case 0xa0:
3958 case 0xa1:
3959 /* xlat */
3960 case 0xd7:
3961 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
3962 return -1;
3963 break;
3964
3965 /* mov EAX */
3966 case 0xa2:
3967 case 0xa3:
3968 {
3969 uint32_t addr;
3970
3971 if (ir.override)
3972 {
3973 if (record_debug)
3974 printf_unfiltered (_("Process record ignores the memory change "
5af949e3 3975 "of instruction at address %s because "
7ad10968
HZ
3976 "it can't get the value of the segment "
3977 "register.\n"),
5af949e3 3978 paddress (gdbarch, ir.addr));
7ad10968
HZ
3979 }
3980 else
3981 {
3982 if ((opcode & 1) == 0)
3983 ir.ot = OT_BYTE;
3984 else
3985 ir.ot = ir.dflag + OT_WORD;
3986 if (ir.aflag)
3987 {
3988 if (target_read_memory
3989 (ir.addr, (gdb_byte *) & addr, 4))
3990 {
3991 if (record_debug)
3992 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3993 "memory at addr %s len = 4.\n"),
3994 paddress (gdbarch, ir.addr));
7ad10968
HZ
3995 return -1;
3996 }
3997 ir.addr += 4;
3998 }
3999 else
4000 {
4001 if (target_read_memory
4002 (ir.addr, (gdb_byte *) & tmpu16, 4))
4003 {
4004 if (record_debug)
4005 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
4006 "memory at addr %s len = 4.\n"),
4007 paddress (gdbarch, ir.addr));
7ad10968
HZ
4008 return -1;
4009 }
4010 ir.addr += 2;
4011 addr = tmpu16;
4012 }
4013 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4014 return -1;
4015 }
4016 }
4017 break;
4018
4019 /* mov R, Ib */
4020 case 0xb0:
4021 case 0xb1:
4022 case 0xb2:
4023 case 0xb3:
4024 case 0xb4:
4025 case 0xb5:
4026 case 0xb6:
4027 case 0xb7:
4028 if (record_arch_list_add_reg (ir.regcache, (opcode & 0x7) & 0x3))
4029 return -1;
4030 break;
4031
4032 /* mov R, Iv */
4033 case 0xb8:
4034 case 0xb9:
4035 case 0xba:
4036 case 0xbb:
4037 case 0xbc:
4038 case 0xbd:
4039 case 0xbe:
4040 case 0xbf:
4041 if (record_arch_list_add_reg (ir.regcache, opcode & 0x7))
4042 return -1;
4043 break;
4044
4045 /* xchg R, EAX */
4046 case 0x91:
4047 case 0x92:
4048 case 0x93:
4049 case 0x94:
4050 case 0x95:
4051 case 0x96:
4052 case 0x97:
4053 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4054 return -1;
4055 if (record_arch_list_add_reg (ir.regcache, opcode & 0x7))
4056 return -1;
4057 break;
4058
4059 /* xchg Ev, Gv */
4060 case 0x86:
4061 case 0x87:
4062 if ((opcode & 1) == 0)
4063 ir.ot = OT_BYTE;
4064 else
4065 ir.ot = ir.dflag + OT_WORD;
4066
4067 if (i386_record_modrm (&ir))
4068 return -1;
4069
4070 if (ir.mod == 3)
4071 {
4072 if (ir.ot == OT_BYTE)
4073 ir.rm &= 0x3;
4074 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4075 return -1;
4076 }
4077 else
4078 {
4079 if (i386_record_lea_modrm (&ir))
4080 return -1;
4081 }
4082
4083 if (ir.ot == OT_BYTE)
4084 ir.reg &= 0x3;
4085 if (record_arch_list_add_reg (ir.regcache, ir.reg))
4086 return -1;
4087 break;
4088
4089 /* les Gv */
4090 case 0xc4:
4091 /* lds Gv */
4092 case 0xc5:
4093 /* lss Gv */
4094 case 0x0fb2:
4095 /* lfs Gv */
4096 case 0x0fb4:
4097 /* lgs Gv */
4098 case 0x0fb5:
4099 if (i386_record_modrm (&ir))
4100 return -1;
4101 if (ir.mod == 3)
4102 {
4103 if (opcode > 0xff)
4104 ir.addr -= 3;
4105 else
4106 ir.addr -= 2;
4107 opcode = opcode << 8 | ir.modrm;
4108 goto no_support;
4109 }
4110
4111 switch (opcode)
4112 {
4113 /* les Gv */
4114 case 0xc4:
4115 tmpu8 = I386_ES_REGNUM;
4116 break;
4117 /* lds Gv */
4118 case 0xc5:
4119 tmpu8 = I386_DS_REGNUM;
4120 break;
4121 /* lss Gv */
4122 case 0x0fb2:
4123 tmpu8 = I386_SS_REGNUM;
4124 break;
4125 /* lfs Gv */
4126 case 0x0fb4:
4127 tmpu8 = I386_FS_REGNUM;
4128 break;
4129 /* lgs Gv */
4130 case 0x0fb5:
4131 tmpu8 = I386_GS_REGNUM;
4132 break;
4133 }
4134 if (record_arch_list_add_reg (ir.regcache, tmpu8))
4135 return -1;
4136
4137 if (record_arch_list_add_reg (ir.regcache, ir.reg))
4138 return -1;
4139 break;
4140
4141 /* shifts */
4142 case 0xc0:
4143 case 0xc1:
4144 case 0xd0:
4145 case 0xd1:
4146 case 0xd2:
4147 case 0xd3:
4148 if ((opcode & 1) == 0)
4149 ir.ot = OT_BYTE;
4150 else
4151 ir.ot = ir.dflag + OT_WORD;
4152
4153 if (i386_record_modrm (&ir))
4154 return -1;
4155
4156 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4157 {
4158 if (i386_record_lea_modrm (&ir))
4159 return -1;
4160 }
4161 else
4162 {
4163 if (ir.ot == OT_BYTE)
4164 ir.rm &= 0x3;
4165 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4166 return -1;
4167 }
4168
4169 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4170 return -1;
4171 break;
4172
4173 case 0x0fa4:
4174 case 0x0fa5:
4175 case 0x0fac:
4176 case 0x0fad:
4177 if (i386_record_modrm (&ir))
4178 return -1;
4179 if (ir.mod == 3)
4180 {
4181 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4182 return -1;
4183 }
4184 else
4185 {
4186 if (i386_record_lea_modrm (&ir))
4187 return -1;
4188 }
4189 break;
4190
4191 /* floats */
4192 /* It just record the memory change of instrcution. */
4193 case 0xd8:
4194 case 0xd9:
4195 case 0xda:
4196 case 0xdb:
4197 case 0xdc:
4198 case 0xdd:
4199 case 0xde:
4200 case 0xdf:
4201 if (i386_record_modrm (&ir))
4202 return -1;
4203 ir.reg |= ((opcode & 7) << 3);
4204 if (ir.mod != 3)
4205 {
4206 /* memory */
4207 uint32_t addr;
4208
4209 if (i386_record_lea_modrm_addr (&ir, &addr))
4210 return -1;
4211 switch (ir.reg)
4212 {
4213 case 0x00:
4214 case 0x01:
4215 case 0x02:
4216 case 0x03:
4217 case 0x04:
4218 case 0x05:
4219 case 0x06:
4220 case 0x07:
4221 case 0x10:
4222 case 0x11:
4223 case 0x12:
4224 case 0x13:
4225 case 0x14:
4226 case 0x15:
4227 case 0x16:
4228 case 0x17:
4229 case 0x20:
4230 case 0x21:
4231 case 0x22:
4232 case 0x23:
4233 case 0x24:
4234 case 0x25:
4235 case 0x26:
4236 case 0x27:
4237 case 0x30:
4238 case 0x31:
4239 case 0x32:
4240 case 0x33:
4241 case 0x34:
4242 case 0x35:
4243 case 0x36:
4244 case 0x37:
4245 break;
4246 case 0x08:
4247 case 0x0a:
4248 case 0x0b:
4249 case 0x18:
4250 case 0x19:
4251 case 0x1a:
4252 case 0x1b:
4253 case 0x28:
4254 case 0x29:
4255 case 0x2a:
4256 case 0x2b:
4257 case 0x38:
4258 case 0x39:
4259 case 0x3a:
4260 case 0x3b:
4261 switch (ir.reg & 7)
4262 {
4263 case 0:
4264 break;
4265 case 1:
4266 switch (ir.reg >> 4)
4267 {
4268 case 0:
4269 if (record_arch_list_add_mem (addr, 4))
4270 return -1;
4271 break;
4272 case 2:
4273 if (record_arch_list_add_mem (addr, 8))
4274 return -1;
4275 break;
4276 case 3:
4277 default:
4278 if (record_arch_list_add_mem (addr, 2))
4279 return -1;
4280 break;
4281 }
4282 break;
4283 default:
4284 switch (ir.reg >> 4)
4285 {
4286 case 0:
4287 case 1:
4288 if (record_arch_list_add_mem (addr, 4))
4289 return -1;
4290 break;
4291 case 2:
4292 if (record_arch_list_add_mem (addr, 8))
4293 return -1;
4294 break;
4295 case 3:
4296 default:
4297 if (record_arch_list_add_mem (addr, 2))
4298 return -1;
4299 break;
4300 }
4301 break;
4302 }
4303 break;
4304 case 0x0c:
4305 case 0x0d:
4306 case 0x1d:
4307 case 0x2c:
4308 case 0x3c:
4309 case 0x3d:
4310 break;
4311 case 0x0e:
4312 if (ir.dflag)
4313 {
4314 if (record_arch_list_add_mem (addr, 28))
4315 return -1;
4316 }
4317 else
4318 {
4319 if (record_arch_list_add_mem (addr, 14))
4320 return -1;
4321 }
4322 break;
4323 case 0x0f:
4324 case 0x2f:
4325 if (record_arch_list_add_mem (addr, 2))
4326 return -1;
4327 break;
4328 case 0x1f:
4329 case 0x3e:
4330 if (record_arch_list_add_mem (addr, 10))
4331 return -1;
4332 break;
4333 case 0x2e:
4334 if (ir.dflag)
4335 {
4336 if (record_arch_list_add_mem (addr, 28))
4337 return -1;
4338 addr += 28;
4339 }
4340 else
4341 {
4342 if (record_arch_list_add_mem (addr, 14))
4343 return -1;
4344 addr += 14;
4345 }
4346 if (record_arch_list_add_mem (addr, 80))
4347 return -1;
4348 break;
4349 case 0x3f:
4350 if (record_arch_list_add_mem (addr, 8))
4351 return -1;
4352 break;
4353 default:
4354 ir.addr -= 2;
4355 opcode = opcode << 8 | ir.modrm;
4356 goto no_support;
4357 break;
4358 }
4359 }
4360 break;
4361
4362 /* string ops */
4363 /* movsS */
4364 case 0xa4:
4365 case 0xa5:
4366 /* stosS */
4367 case 0xaa:
4368 case 0xab:
4369 /* insS */
4370 case 0x6c:
4371 case 0x6d:
4372 {
4373 uint32_t addr;
4374
4375 if ((opcode & 1) == 0)
4376 ir.ot = OT_BYTE;
4377 else
4378 ir.ot = ir.dflag + OT_WORD;
4379 if (opcode == 0xa4 || opcode == 0xa5)
4380 {
4381 if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
4382 return -1;
4383 }
4384 if (record_arch_list_add_reg (ir.regcache, I386_EDI_REGNUM))
4385 return -1;
4386
4387 regcache_raw_read (ir.regcache, I386_EDI_REGNUM,
4388 (gdb_byte *) & addr);
4389 if (!ir.aflag)
4390 {
4391 addr &= 0xffff;
4392 /* addr += ((uint32_t)read_register (I386_ES_REGNUM)) << 4; */
4393 if (record_debug)
4394 printf_unfiltered (_("Process record ignores the memory change "
5af949e3 4395 "of instruction at address %s because "
7ad10968
HZ
4396 "it can't get the value of the segment "
4397 "register.\n"),
5af949e3 4398 paddress (gdbarch, ir.addr));
7ad10968
HZ
4399 }
4400
4401 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4402 {
4403 uint32_t count;
4404
4405 regcache_raw_read (ir.regcache, I386_ECX_REGNUM,
4406 (gdb_byte *) & count);
4407 if (!ir.aflag)
4408 count &= 0xffff;
4409
4410 regcache_raw_read (ir.regcache, I386_EFLAGS_REGNUM,
4411 (gdb_byte *) & tmpu32);
4412 if ((tmpu32 >> 10) & 0x1)
4413 addr -= (count - 1) * (1 << ir.ot);
4414
4415 if (ir.aflag)
4416 {
4417 if (record_arch_list_add_mem (addr, count * (1 << ir.ot)))
4418 return -1;
4419 }
4420
4421 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4422 return -1;
4423 }
4424 else
4425 {
4426 if (ir.aflag)
4427 {
4428 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4429 return -1;
4430 }
4431 }
4432 }
4433 break;
4434
4435 /* lodsS */
4436 case 0xac:
4437 case 0xad:
4438 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4439 return -1;
4440 if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
4441 return -1;
4442 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4443 {
4444 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4445 return -1;
4446 }
4447 break;
4448
4449 /* outsS */
4450 case 0x6e:
4451 case 0x6f:
4452 if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
4453 return -1;
4454 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4455 {
4456 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4457 return -1;
4458 }
4459 break;
4460
4461 /* scasS */
4462 case 0xae:
4463 case 0xaf:
4464 if (record_arch_list_add_reg (ir.regcache, I386_EDI_REGNUM))
4465 return -1;
4466 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4467 {
4468 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4469 return -1;
4470 }
4471 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4472 return -1;
4473 break;
4474
4475 /* cmpsS */
4476 case 0xa6:
4477 case 0xa7:
4478 if (record_arch_list_add_reg (ir.regcache, I386_EDI_REGNUM))
4479 return -1;
4480 if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
4481 return -1;
4482 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
4483 {
4484 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4485 return -1;
4486 }
4487 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4488 return -1;
4489 break;
4490
4491 /* port I/O */
4492 case 0xe4:
4493 case 0xe5:
4494 case 0xec:
4495 case 0xed:
4496 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4497 return -1;
4498 break;
4499
4500 case 0xe6:
4501 case 0xe7:
4502 case 0xee:
4503 case 0xef:
4504 break;
4505
4506 /* control */
4507 /* ret im */
4508 case 0xc2:
4509 /* ret */
4510 case 0xc3:
4511 /* lret im */
4512 case 0xca:
4513 /* lret */
4514 case 0xcb:
4515 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4516 return -1;
4517 if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
4518 return -1;
4519 break;
4520
4521 /* iret */
4522 case 0xcf:
4523 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4524 return -1;
4525 if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
4526 return -1;
4527 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4528 return -1;
4529 break;
4530
4531 /* call im */
4532 case 0xe8:
4533 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4534 return -1;
4535 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
4536 (gdb_byte *) & tmpu32);
4537 if (record_arch_list_add_mem
4538 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
4539 return -1;
4540 break;
4541
4542 /* lcall im */
4543 case 0x9a:
4544 if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
4545 return -1;
4546 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4547 return -1;
4548 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
4549 (gdb_byte *) & tmpu32);
4550 if (record_arch_list_add_mem
4551 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 2)), (1 << (ir.dflag + 2))))
4552 return -1;
4553 break;
4554
4555 /* jmp im */
4556 case 0xe9:
4557 /* ljmp im */
4558 case 0xea:
4559 /* jmp Jb */
4560 case 0xeb:
4561 /* jcc Jb */
4562 case 0x70:
4563 case 0x71:
4564 case 0x72:
4565 case 0x73:
4566 case 0x74:
4567 case 0x75:
4568 case 0x76:
4569 case 0x77:
4570 case 0x78:
4571 case 0x79:
4572 case 0x7a:
4573 case 0x7b:
4574 case 0x7c:
4575 case 0x7d:
4576 case 0x7e:
4577 case 0x7f:
4578 /* jcc Jv */
4579 case 0x0f80:
4580 case 0x0f81:
4581 case 0x0f82:
4582 case 0x0f83:
4583 case 0x0f84:
4584 case 0x0f85:
4585 case 0x0f86:
4586 case 0x0f87:
4587 case 0x0f88:
4588 case 0x0f89:
4589 case 0x0f8a:
4590 case 0x0f8b:
4591 case 0x0f8c:
4592 case 0x0f8d:
4593 case 0x0f8e:
4594 case 0x0f8f:
4595 break;
4596
4597 /* setcc Gv */
4598 case 0x0f90:
4599 case 0x0f91:
4600 case 0x0f92:
4601 case 0x0f93:
4602 case 0x0f94:
4603 case 0x0f95:
4604 case 0x0f96:
4605 case 0x0f97:
4606 case 0x0f98:
4607 case 0x0f99:
4608 case 0x0f9a:
4609 case 0x0f9b:
4610 case 0x0f9c:
4611 case 0x0f9d:
4612 case 0x0f9e:
4613 case 0x0f9f:
4614 ir.ot = OT_BYTE;
4615 if (i386_record_modrm (&ir))
4616 return -1;
4617 if (ir.mod == 3)
4618 {
4619 if (record_arch_list_add_reg (ir.regcache, ir.rm & 0x3))
4620 return -1;
4621 }
4622 else
4623 {
4624 if (i386_record_lea_modrm (&ir))
4625 return -1;
4626 }
4627 break;
4628
4629 /* cmov Gv, Ev */
4630 case 0x0f40:
4631 case 0x0f41:
4632 case 0x0f42:
4633 case 0x0f43:
4634 case 0x0f44:
4635 case 0x0f45:
4636 case 0x0f46:
4637 case 0x0f47:
4638 case 0x0f48:
4639 case 0x0f49:
4640 case 0x0f4a:
4641 case 0x0f4b:
4642 case 0x0f4c:
4643 case 0x0f4d:
4644 case 0x0f4e:
4645 case 0x0f4f:
4646 if (i386_record_modrm (&ir))
4647 return -1;
4648 if (ir.dflag == OT_BYTE)
4649 ir.reg &= 0x3;
4650 if (record_arch_list_add_reg (ir.regcache, ir.reg & 0x3))
4651 return -1;
4652 break;
4653
4654 /* flags */
4655 /* pushf */
4656 case 0x9c:
4657 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4658 return -1;
4659 regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
4660 (gdb_byte *) & tmpu32);
4661 if (record_arch_list_add_mem
4662 ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
4663 return -1;
4664 break;
4665
4666 /* popf */
4667 case 0x9d:
4668 if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
4669 return -1;
4670 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4671 return -1;
4672 break;
4673
4674 /* sahf */
4675 case 0x9e:
4676 /* cmc */
4677 case 0xf5:
4678 /* clc */
4679 case 0xf8:
4680 /* stc */
4681 case 0xf9:
4682 /* cld */
4683 case 0xfc:
4684 /* std */
4685 case 0xfd:
4686 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4687 return -1;
4688 break;
4689
4690 /* lahf */
4691 case 0x9f:
4692 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4693 return -1;
4694 break;
4695
4696 /* bit operations */
4697 /* bt/bts/btr/btc Gv, im */
4698 case 0x0fba:
4699 /* bts */
4700 case 0x0fab:
4701 /* btr */
4702 case 0x0fb3:
4703 /* btc */
4704 case 0x0fbb:
4705 ir.ot = ir.dflag + OT_WORD;
4706 if (i386_record_modrm (&ir))
4707 return -1;
4708 if (ir.reg < 4)
4709 {
4710 ir.addr -= 3;
4711 opcode = opcode << 8 | ir.modrm;
4712 goto no_support;
4713 }
4714 ir.reg -= 4;
4715 if (ir.reg != 0)
4716 {
4717 if (ir.mod != 3)
4718 {
4719 if (i386_record_lea_modrm (&ir))
4720 return -1;
4721 }
4722 else
4723 {
4724 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4725 return -1;
4726 }
4727 }
4728 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4729 return -1;
4730 break;
4731
4732 /* bt Gv, Ev */
4733 case 0x0fa3:
4734 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4735 return -1;
4736 break;
4737
4738 /* bsf */
4739 case 0x0fbc:
4740 /* bsr */
4741 case 0x0fbd:
4742 if (record_arch_list_add_reg (ir.regcache, ir.reg))
4743 return -1;
4744 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4745 return -1;
4746 break;
4747
4748 /* bcd */
4749 /* daa */
4750 case 0x27:
4751 /* das */
4752 case 0x2f:
4753 /* aaa */
4754 case 0x37:
4755 /* aas */
4756 case 0x3f:
4757 /* aam */
4758 case 0xd4:
4759 /* aad */
4760 case 0xd5:
4761 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4762 return -1;
4763 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4764 return -1;
4765 break;
4766
4767 /* misc */
4768 /* nop */
4769 case 0x90:
4770 if (prefixes & PREFIX_LOCK)
4771 {
4772 ir.addr -= 1;
4773 goto no_support;
4774 }
4775 break;
4776
4777 /* fwait */
4778 /* XXX */
4779 case 0x9b:
4780 printf_unfiltered (_("Process record doesn't support instruction "
4781 "fwait.\n"));
4782 ir.addr -= 1;
4783 goto no_support;
4784 break;
4785
4786 /* int3 */
4787 /* XXX */
4788 case 0xcc:
4789 printf_unfiltered (_("Process record doesn't support instruction "
4790 "int3.\n"));
4791 ir.addr -= 1;
4792 goto no_support;
4793 break;
4794
4795 /* int */
4796 /* XXX */
4797 case 0xcd:
4798 {
4799 int ret;
4800 if (target_read_memory (ir.addr, &tmpu8, 1))
4801 {
4802 if (record_debug)
4803 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
4804 "at addr %s len = 1.\n"),
4805 paddress (gdbarch, ir.addr));
7ad10968
HZ
4806 return -1;
4807 }
4808 ir.addr++;
4809 if (tmpu8 != 0x80
4810 || gdbarch_tdep (gdbarch)->i386_intx80_record == NULL)
4811 {
4812 printf_unfiltered (_("Process record doesn't support "
4813 "instruction int 0x%02x.\n"),
4814 tmpu8);
4815 ir.addr -= 2;
4816 goto no_support;
4817 }
4818 ret = gdbarch_tdep (gdbarch)->i386_intx80_record (ir.regcache);
4819 if (ret)
4820 return ret;
4821 }
4822 break;
4823
4824 /* into */
4825 /* XXX */
4826 case 0xce:
4827 printf_unfiltered (_("Process record doesn't support "
4828 "instruction into.\n"));
4829 ir.addr -= 1;
4830 goto no_support;
4831 break;
4832
4833 /* cli */
4834 case 0xfa:
4835 /* sti */
4836 case 0xfb:
4837 break;
4838
4839 /* bound */
4840 case 0x62:
4841 printf_unfiltered (_("Process record doesn't support "
4842 "instruction bound.\n"));
4843 ir.addr -= 1;
4844 goto no_support;
4845 break;
4846
4847 /* bswap reg */
4848 case 0x0fc8:
4849 case 0x0fc9:
4850 case 0x0fca:
4851 case 0x0fcb:
4852 case 0x0fcc:
4853 case 0x0fcd:
4854 case 0x0fce:
4855 case 0x0fcf:
4856 if (record_arch_list_add_reg (ir.regcache, opcode & 7))
4857 return -1;
4858 break;
4859
4860 /* salc */
4861 case 0xd6:
4862 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4863 return -1;
4864 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4865 return -1;
4866 break;
4867
4868 /* loopnz */
4869 case 0xe0:
4870 /* loopz */
4871 case 0xe1:
4872 /* loop */
4873 case 0xe2:
4874 /* jecxz */
4875 case 0xe3:
4876 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4877 return -1;
4878 break;
4879
4880 /* wrmsr */
4881 case 0x0f30:
4882 printf_unfiltered (_("Process record doesn't support "
4883 "instruction wrmsr.\n"));
4884 ir.addr -= 2;
4885 goto no_support;
4886 break;
4887
4888 /* rdmsr */
4889 case 0x0f32:
4890 printf_unfiltered (_("Process record doesn't support "
4891 "instruction rdmsr.\n"));
4892 ir.addr -= 2;
4893 goto no_support;
4894 break;
4895
4896 /* rdtsc */
4897 case 0x0f31:
4898 printf_unfiltered (_("Process record doesn't support "
4899 "instruction rdtsc.\n"));
4900 ir.addr -= 2;
4901 goto no_support;
4902 break;
4903
4904 /* sysenter */
4905 case 0x0f34:
4906 {
4907 int ret;
4908 if (gdbarch_tdep (gdbarch)->i386_sysenter_record == NULL)
4909 {
4910 printf_unfiltered (_("Process record doesn't support "
4911 "instruction sysenter.\n"));
4912 ir.addr -= 2;
4913 goto no_support;
4914 }
4915 ret = gdbarch_tdep (gdbarch)->i386_sysenter_record (ir.regcache);
4916 if (ret)
4917 return ret;
4918 }
4919 break;
4920
4921 /* sysexit */
4922 case 0x0f35:
4923 printf_unfiltered (_("Process record doesn't support "
4924 "instruction sysexit.\n"));
4925 ir.addr -= 2;
4926 goto no_support;
4927 break;
4928
4929 /* cpuid */
4930 case 0x0fa2:
4931 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
4932 return -1;
4933 if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
4934 return -1;
4935 if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
4936 return -1;
4937 if (record_arch_list_add_reg (ir.regcache, I386_EBX_REGNUM))
4938 return -1;
4939 break;
4940
4941 /* hlt */
4942 case 0xf4:
4943 printf_unfiltered (_("Process record doesn't support "
4944 "instruction hlt.\n"));
4945 ir.addr -= 1;
4946 goto no_support;
4947 break;
4948
4949 case 0x0f00:
4950 if (i386_record_modrm (&ir))
4951 return -1;
4952 switch (ir.reg)
4953 {
4954 /* sldt */
4955 case 0:
4956 /* str */
4957 case 1:
4958 if (ir.mod == 3)
4959 {
4960 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4961 return -1;
4962 }
4963 else
4964 {
4965 ir.ot = OT_WORD;
4966 if (i386_record_lea_modrm (&ir))
4967 return -1;
4968 }
4969 break;
4970 /* lldt */
4971 case 2:
4972 /* ltr */
4973 case 3:
4974 break;
4975 /* verr */
4976 case 4:
4977 /* verw */
4978 case 5:
4979 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
4980 return -1;
4981 break;
4982 default:
4983 ir.addr -= 3;
4984 opcode = opcode << 8 | ir.modrm;
4985 goto no_support;
4986 break;
4987 }
4988 break;
4989
4990 case 0x0f01:
4991 if (i386_record_modrm (&ir))
4992 return -1;
4993 switch (ir.reg)
4994 {
4995 /* sgdt */
4996 case 0:
4997 {
4998 uint32_t addr;
4999
5000 if (ir.mod == 3)
5001 {
5002 ir.addr -= 3;
5003 opcode = opcode << 8 | ir.modrm;
5004 goto no_support;
5005 }
5006
5007 if (ir.override)
5008 {
5009 if (record_debug)
5010 printf_unfiltered (_("Process record ignores the memory "
5011 "change of instruction at "
5af949e3 5012 "address %s because it can't get "
7ad10968
HZ
5013 "the value of the segment "
5014 "register.\n"),
5af949e3 5015 paddress (gdbarch, ir.addr));
7ad10968
HZ
5016 }
5017 else
5018 {
5019 if (i386_record_lea_modrm_addr (&ir, &addr))
5020 return -1;
5021 if (record_arch_list_add_mem (addr, 2))
5022 return -1;
5023 addr += 2;
5024 if (record_arch_list_add_mem (addr, 4))
5025 return -1;
5026 }
5027 }
5028 break;
5029 case 1:
5030 if (ir.mod == 3)
5031 {
5032 switch (ir.rm)
5033 {
5034 /* monitor */
5035 case 0:
5036 break;
5037 /* mwait */
5038 case 1:
5039 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
5040 return -1;
5041 break;
5042 default:
5043 ir.addr -= 3;
5044 opcode = opcode << 8 | ir.modrm;
5045 goto no_support;
5046 break;
5047 }
5048 }
5049 else
5050 {
5051 /* sidt */
5052 if (ir.override)
5053 {
5054 if (record_debug)
5055 printf_unfiltered (_("Process record ignores the memory "
5056 "change of instruction at "
5af949e3 5057 "address %s because it can't get "
7ad10968
HZ
5058 "the value of the segment "
5059 "register.\n"),
5af949e3 5060 paddress (gdbarch, ir.addr));
7ad10968
HZ
5061 }
5062 else
5063 {
5064 uint32_t addr;
5065
5066 if (i386_record_lea_modrm_addr (&ir, &addr))
5067 return -1;
5068 if (record_arch_list_add_mem (addr, 2))
5069 return -1;
5070 addr += 2;
5071 if (record_arch_list_add_mem (addr, 4))
5072 return -1;
5073 }
5074 }
5075 break;
5076 /* lgdt */
5077 case 2:
5078 /* lidt */
5079 case 3:
5080 /* invlpg */
5081 case 7:
5082 default:
5083 if (ir.mod == 3)
5084 {
5085 ir.addr -= 3;
5086 opcode = opcode << 8 | ir.modrm;
5087 goto no_support;
5088 }
5089 break;
5090 /* smsw */
5091 case 4:
5092 if (ir.mod == 3)
5093 {
5094 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5095 return -1;
5096 }
5097 else
5098 {
5099 ir.ot = OT_WORD;
5100 if (i386_record_lea_modrm (&ir))
5101 return -1;
5102 }
5103 break;
5104 /* lmsw */
5105 case 6:
5106 break;
5107 }
5108 break;
5109
5110 /* invd */
5111 case 0x0f08:
5112 /* wbinvd */
5113 case 0x0f09:
5114 break;
5115
5116 /* arpl */
5117 case 0x63:
5118 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5119 if (i386_record_modrm (&ir))
5120 return -1;
5121 if (ir.mod != 3)
5122 {
5123 if (i386_record_lea_modrm (&ir))
5124 return -1;
5125 }
5126 else
5127 {
5128 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5129 return -1;
5130 }
5131 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
5132 return -1;
5133 break;
5134
5135 /* lar */
5136 case 0x0f02:
5137 /* lsl */
5138 case 0x0f03:
5139 if (i386_record_modrm (&ir))
5140 return -1;
5141 if (record_arch_list_add_reg (ir.regcache, ir.reg))
5142 return -1;
5143 if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
5144 return -1;
5145 break;
5146
5147 case 0x0f18:
5148 break;
5149
5150 /* nop (multi byte) */
5151 case 0x0f19:
5152 case 0x0f1a:
5153 case 0x0f1b:
5154 case 0x0f1c:
5155 case 0x0f1d:
5156 case 0x0f1e:
5157 case 0x0f1f:
5158 break;
5159
5160 /* mov reg, crN */
5161 case 0x0f20:
5162 /* mov crN, reg */
5163 case 0x0f22:
5164 if (i386_record_modrm (&ir))
5165 return -1;
5166 if ((ir.modrm & 0xc0) != 0xc0)
5167 {
5168 ir.addr -= 2;
5169 opcode = opcode << 8 | ir.modrm;
5170 goto no_support;
5171 }
5172 switch (ir.reg)
5173 {
5174 case 0:
5175 case 2:
5176 case 3:
5177 case 4:
5178 case 8:
5179 if (opcode & 2)
5180 {
5181 }
5182 else
5183 {
5184 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5185 return -1;
5186 }
5187 break;
5188 default:
5189 ir.addr -= 2;
5190 opcode = opcode << 8 | ir.modrm;
5191 goto no_support;
5192 break;
5193 }
5194 break;
5195
5196 /* mov reg, drN */
5197 case 0x0f21:
5198 /* mov drN, reg */
5199 case 0x0f23:
5200 if (i386_record_modrm (&ir))
5201 return -1;
5202 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5203 || ir.reg == 5 || ir.reg >= 8)
5204 {
5205 ir.addr -= 2;
5206 opcode = opcode << 8 | ir.modrm;
5207 goto no_support;
5208 }
5209 if (opcode & 2)
5210 {
5211 }
5212 else
5213 {
5214 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5215 return -1;
5216 }
5217 break;
5218
5219 /* clts */
5220 case 0x0f06:
5221 break;
5222
5223 /* MMX/SSE/SSE2/PNI support */
5224 /* XXX */
5225
5226 default:
5227 if (opcode > 0xff)
5228 ir.addr -= 2;
5229 else
5230 ir.addr -= 1;
5231 goto no_support;
5232 break;
5233 }
5234
5235/* In the future, Maybe still need to deal with need_dasm */
5236 if (record_arch_list_add_reg (ir.regcache, I386_EIP_REGNUM))
5237 return -1;
5238 if (record_arch_list_add_end ())
5239 return -1;
5240
5241 return 0;
5242
5243no_support:
5244 printf_unfiltered (_("Process record doesn't support instruction 0x%02x "
5af949e3
UW
5245 "at address %s.\n"),
5246 (unsigned int) (opcode), paddress (gdbarch, ir.addr));
7ad10968
HZ
5247 return -1;
5248}
5249
5250\f
5251static struct gdbarch *
5252i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5253{
5254 struct gdbarch_tdep *tdep;
5255 struct gdbarch *gdbarch;
5256
5257 /* If there is already a candidate, use it. */
5258 arches = gdbarch_list_lookup_by_info (arches, &info);
5259 if (arches != NULL)
5260 return arches->gdbarch;
5261
5262 /* Allocate space for the new architecture. */
5263 tdep = XCALLOC (1, struct gdbarch_tdep);
5264 gdbarch = gdbarch_alloc (&info, tdep);
5265
5266 /* General-purpose registers. */
5267 tdep->gregset = NULL;
5268 tdep->gregset_reg_offset = NULL;
5269 tdep->gregset_num_regs = I386_NUM_GREGS;
5270 tdep->sizeof_gregset = 0;
5271
5272 /* Floating-point registers. */
5273 tdep->fpregset = NULL;
5274 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
5275
5276 /* The default settings include the FPU registers, the MMX registers
5277 and the SSE registers. This can be overridden for a specific ABI
5278 by adjusting the members `st0_regnum', `mm0_regnum' and
5279 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
5280 will show up in the output of "info all-registers". Ideally we
5281 should try to autodetect whether they are available, such that we
5282 can prevent "info all-registers" from displaying registers that
5283 aren't available.
5284
5285 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
5286 [the SSE registers] always (even when they don't exist) or never
5287 showing them to the user (even when they do exist), I prefer the
5288 former over the latter. */
5289
5290 tdep->st0_regnum = I386_ST0_REGNUM;
5291
5292 /* The MMX registers are implemented as pseudo-registers. Put off
5293 calculating the register number for %mm0 until we know the number
5294 of raw registers. */
5295 tdep->mm0_regnum = 0;
5296
5297 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
5298 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
5299
5300 tdep->jb_pc_offset = -1;
5301 tdep->struct_return = pcc_struct_return;
5302 tdep->sigtramp_start = 0;
5303 tdep->sigtramp_end = 0;
5304 tdep->sigtramp_p = i386_sigtramp_p;
5305 tdep->sigcontext_addr = NULL;
5306 tdep->sc_reg_offset = NULL;
5307 tdep->sc_pc_offset = -1;
5308 tdep->sc_sp_offset = -1;
5309
5310 /* The format used for `long double' on almost all i386 targets is
5311 the i387 extended floating-point format. In fact, of all targets
5312 in the GCC 2.95 tree, only OSF/1 does it different, and insists
5313 on having a `long double' that's not `long' at all. */
5314 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
5315
5316 /* Although the i387 extended floating-point has only 80 significant
5317 bits, a `long double' actually takes up 96, probably to enforce
5318 alignment. */
5319 set_gdbarch_long_double_bit (gdbarch, 96);
5320
5321 /* The default ABI includes general-purpose registers,
5322 floating-point registers, and the SSE registers. */
5323 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
5324 set_gdbarch_register_name (gdbarch, i386_register_name);
5325 set_gdbarch_register_type (gdbarch, i386_register_type);
5326
5327 /* Register numbers of various important registers. */
5328 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
5329 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
5330 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
5331 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
5332
5333 /* NOTE: kettenis/20040418: GCC does have two possible register
5334 numbering schemes on the i386: dbx and SVR4. These schemes
5335 differ in how they number %ebp, %esp, %eflags, and the
5336 floating-point registers, and are implemented by the arrays
5337 dbx_register_map[] and svr4_dbx_register_map in
5338 gcc/config/i386.c. GCC also defines a third numbering scheme in
5339 gcc/config/i386.c, which it designates as the "default" register
5340 map used in 64bit mode. This last register numbering scheme is
5341 implemented in dbx64_register_map, and is used for AMD64; see
5342 amd64-tdep.c.
5343
5344 Currently, each GCC i386 target always uses the same register
5345 numbering scheme across all its supported debugging formats
5346 i.e. SDB (COFF), stabs and DWARF 2. This is because
5347 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
5348 DBX_REGISTER_NUMBER macro which is defined by each target's
5349 respective config header in a manner independent of the requested
5350 output debugging format.
5351
5352 This does not match the arrangement below, which presumes that
5353 the SDB and stabs numbering schemes differ from the DWARF and
5354 DWARF 2 ones. The reason for this arrangement is that it is
5355 likely to get the numbering scheme for the target's
5356 default/native debug format right. For targets where GCC is the
5357 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
5358 targets where the native toolchain uses a different numbering
5359 scheme for a particular debug format (stabs-in-ELF on Solaris)
5360 the defaults below will have to be overridden, like
5361 i386_elf_init_abi() does. */
5362
5363 /* Use the dbx register numbering scheme for stabs and COFF. */
5364 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
5365 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
5366
5367 /* Use the SVR4 register numbering scheme for DWARF 2. */
5368 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
5369
5370 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
5371 be in use on any of the supported i386 targets. */
5372
5373 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
5374
5375 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
5376
5377 /* Call dummy code. */
5378 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
5379
5380 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
5381 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
5382 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
5383
5384 set_gdbarch_return_value (gdbarch, i386_return_value);
5385
5386 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
5387
5388 /* Stack grows downward. */
5389 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5390
5391 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
5392 set_gdbarch_decr_pc_after_break (gdbarch, 1);
5393 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
5394
5395 set_gdbarch_frame_args_skip (gdbarch, 8);
5396
5397 /* Wire in the MMX registers. */
5398 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
5399 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
5400 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
5401
5402 set_gdbarch_print_insn (gdbarch, i386_print_insn);
5403
5404 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
5405
5406 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
5407
5408 /* Add the i386 register groups. */
5409 i386_add_reggroups (gdbarch);
5410 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
38c968cf 5411
143985b7
AF
5412 /* Helper for function argument information. */
5413 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
5414
06da04c6
MS
5415 /* Hook the function epilogue frame unwinder. This unwinder is
5416 appended to the list first, so that it supercedes the Dwarf
5417 unwinder in function epilogues (where the Dwarf unwinder
5418 currently fails). */
5419 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
5420
5421 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
5422 to the list before the prologue-based unwinders, so that Dwarf
5423 CFI info will be used if it is available. */
10458914 5424 dwarf2_append_unwinders (gdbarch);
6405b0a6 5425
acd5c798 5426 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 5427
3ce1502b 5428 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 5429 gdbarch_init_osabi (info, gdbarch);
3ce1502b 5430
06da04c6 5431 /* Hook in the legacy prologue-based unwinders last (fallback). */
10458914
DJ
5432 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
5433 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 5434
8446b36a
MK
5435 /* If we have a register mapping, enable the generic core file
5436 support, unless it has already been enabled. */
5437 if (tdep->gregset_reg_offset
5438 && !gdbarch_regset_from_core_section_p (gdbarch))
5439 set_gdbarch_regset_from_core_section (gdbarch,
5440 i386_regset_from_core_section);
5441
5716833c
MK
5442 /* Unless support for MMX has been disabled, make %mm0 the first
5443 pseudo-register. */
5444 if (tdep->mm0_regnum == 0)
5445 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
5446
514f746b
AR
5447 set_gdbarch_skip_permanent_breakpoint (gdbarch,
5448 i386_skip_permanent_breakpoint);
5449
a62cc96e
AC
5450 return gdbarch;
5451}
5452
8201327c
MK
5453static enum gdb_osabi
5454i386_coff_osabi_sniffer (bfd *abfd)
5455{
762c5349
MK
5456 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
5457 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
5458 return GDB_OSABI_GO32;
5459
5460 return GDB_OSABI_UNKNOWN;
5461}
8201327c
MK
5462\f
5463
28e9e0f0
MK
5464/* Provide a prototype to silence -Wmissing-prototypes. */
5465void _initialize_i386_tdep (void);
5466
c906108c 5467void
fba45db2 5468_initialize_i386_tdep (void)
c906108c 5469{
a62cc96e
AC
5470 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
5471
fc338970 5472 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
5473 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
5474 &disassembly_flavor, _("\
5475Set the disassembly flavor."), _("\
5476Show the disassembly flavor."), _("\
5477The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
5478 NULL,
5479 NULL, /* FIXME: i18n: */
5480 &setlist, &showlist);
8201327c
MK
5481
5482 /* Add the variable that controls the convention for returning
5483 structs. */
7ab04401
AC
5484 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
5485 &struct_convention, _("\
5486Set the convention for returning small structs."), _("\
5487Show the convention for returning small structs."), _("\
5488Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
5489is \"default\"."),
5490 NULL,
5491 NULL, /* FIXME: i18n: */
5492 &setlist, &showlist);
8201327c
MK
5493
5494 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
5495 i386_coff_osabi_sniffer);
8201327c 5496
05816f70 5497 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 5498 i386_svr4_init_abi);
05816f70 5499 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 5500 i386_go32_init_abi);
38c968cf 5501
209bd28e 5502 /* Initialize the i386-specific register groups. */
38c968cf 5503 i386_init_reggroups ();
c906108c 5504}
This page took 1.017244 seconds and 4 git commands to generate.