*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
dfe01d39 28#include "objfiles.h"
c906108c
SS
29#include "target.h"
30#include "floatformat.h"
c0d1d883 31#include "symfile.h"
c906108c
SS
32#include "symtab.h"
33#include "gdbcmd.h"
34#include "command.h"
b4a20239 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
d16aafd8 37#include "doublest.h"
fd0407d6 38#include "value.h"
3d261580
MK
39#include "gdb_assert.h"
40
d2a7c97a 41#include "i386-tdep.h"
61113f8b 42#include "i387-tdep.h"
d2a7c97a 43
fc633446
MK
44/* Names of the registers. The first 10 registers match the register
45 numbering scheme used by GCC for stabs and DWARF. */
46static char *i386_register_names[] =
47{
48 "eax", "ecx", "edx", "ebx",
49 "esp", "ebp", "esi", "edi",
50 "eip", "eflags", "cs", "ss",
51 "ds", "es", "fs", "gs",
52 "st0", "st1", "st2", "st3",
53 "st4", "st5", "st6", "st7",
54 "fctrl", "fstat", "ftag", "fiseg",
55 "fioff", "foseg", "fooff", "fop",
56 "xmm0", "xmm1", "xmm2", "xmm3",
57 "xmm4", "xmm5", "xmm6", "xmm7",
58 "mxcsr"
59};
60
28fc6740
AC
61/* MMX registers. */
62
63static char *i386_mmx_names[] =
64{
65 "mm0", "mm1", "mm2", "mm3",
66 "mm4", "mm5", "mm6", "mm7"
67};
68static const int mmx_num_regs = (sizeof (i386_mmx_names)
69 / sizeof (i386_mmx_names[0]));
70#define MM0_REGNUM (NUM_REGS)
71
72static int
73mmx_regnum_p (int reg)
74{
75 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
76}
77
fc633446
MK
78/* Return the name of register REG. */
79
fa88f677 80const char *
fc633446
MK
81i386_register_name (int reg)
82{
83 if (reg < 0)
84 return NULL;
28fc6740
AC
85 if (mmx_regnum_p (reg))
86 return i386_mmx_names[reg - MM0_REGNUM];
fc633446
MK
87 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
88 return NULL;
89
90 return i386_register_names[reg];
91}
92
85540d8c
MK
93/* Convert stabs register number REG to the appropriate register
94 number used by GDB. */
95
8201327c 96static int
85540d8c
MK
97i386_stab_reg_to_regnum (int reg)
98{
99 /* This implements what GCC calls the "default" register map. */
100 if (reg >= 0 && reg <= 7)
101 {
102 /* General registers. */
103 return reg;
104 }
105 else if (reg >= 12 && reg <= 19)
106 {
107 /* Floating-point registers. */
108 return reg - 12 + FP0_REGNUM;
109 }
110 else if (reg >= 21 && reg <= 28)
111 {
112 /* SSE registers. */
113 return reg - 21 + XMM0_REGNUM;
114 }
115 else if (reg >= 29 && reg <= 36)
116 {
117 /* MMX registers. */
7d12f766 118 return reg - 29 + MM0_REGNUM;
85540d8c
MK
119 }
120
121 /* This will hopefully provoke a warning. */
122 return NUM_REGS + NUM_PSEUDO_REGS;
123}
124
8201327c 125/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
126 number used by GDB. */
127
8201327c 128static int
85540d8c
MK
129i386_dwarf_reg_to_regnum (int reg)
130{
131 /* The DWARF register numbering includes %eip and %eflags, and
132 numbers the floating point registers differently. */
133 if (reg >= 0 && reg <= 9)
134 {
135 /* General registers. */
136 return reg;
137 }
138 else if (reg >= 11 && reg <= 18)
139 {
140 /* Floating-point registers. */
141 return reg - 11 + FP0_REGNUM;
142 }
143 else if (reg >= 21)
144 {
145 /* The SSE and MMX registers have identical numbers as in stabs. */
146 return i386_stab_reg_to_regnum (reg);
147 }
148
149 /* This will hopefully provoke a warning. */
150 return NUM_REGS + NUM_PSEUDO_REGS;
151}
fc338970 152\f
917317f4 153
fc338970
MK
154/* This is the variable that is set with "set disassembly-flavor", and
155 its legitimate values. */
53904c9e
AC
156static const char att_flavor[] = "att";
157static const char intel_flavor[] = "intel";
158static const char *valid_flavors[] =
c5aa993b 159{
c906108c
SS
160 att_flavor,
161 intel_flavor,
162 NULL
163};
53904c9e 164static const char *disassembly_flavor = att_flavor;
c906108c 165
fc338970
MK
166/* Stdio style buffering was used to minimize calls to ptrace, but
167 this buffering did not take into account that the code section
168 being accessed may not be an even number of buffers long (even if
169 the buffer is only sizeof(int) long). In cases where the code
170 section size happened to be a non-integral number of buffers long,
171 attempting to read the last buffer would fail. Simply using
172 target_read_memory and ignoring errors, rather than read_memory, is
173 not the correct solution, since legitimate access errors would then
174 be totally ignored. To properly handle this situation and continue
175 to use buffering would require that this code be able to determine
176 the minimum code section size granularity (not the alignment of the
177 section itself, since the actual failing case that pointed out this
178 problem had a section alignment of 4 but was not a multiple of 4
179 bytes long), on a target by target basis, and then adjust it's
180 buffer size accordingly. This is messy, but potentially feasible.
181 It probably needs the bfd library's help and support. For now, the
182 buffer size is set to 1. (FIXME -fnf) */
183
184#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
185static CORE_ADDR codestream_next_addr;
186static CORE_ADDR codestream_addr;
187static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
188static int codestream_off;
189static int codestream_cnt;
190
191#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
192#define codestream_peek() \
193 (codestream_cnt == 0 ? \
194 codestream_fill(1) : codestream_buf[codestream_off])
195#define codestream_get() \
196 (codestream_cnt-- == 0 ? \
197 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 198
c5aa993b 199static unsigned char
fba45db2 200codestream_fill (int peek_flag)
c906108c
SS
201{
202 codestream_addr = codestream_next_addr;
203 codestream_next_addr += CODESTREAM_BUFSIZ;
204 codestream_off = 0;
205 codestream_cnt = CODESTREAM_BUFSIZ;
206 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 207
c906108c 208 if (peek_flag)
c5aa993b 209 return (codestream_peek ());
c906108c 210 else
c5aa993b 211 return (codestream_get ());
c906108c
SS
212}
213
214static void
fba45db2 215codestream_seek (CORE_ADDR place)
c906108c
SS
216{
217 codestream_next_addr = place / CODESTREAM_BUFSIZ;
218 codestream_next_addr *= CODESTREAM_BUFSIZ;
219 codestream_cnt = 0;
220 codestream_fill (1);
c5aa993b 221 while (codestream_tell () != place)
c906108c
SS
222 codestream_get ();
223}
224
225static void
fba45db2 226codestream_read (unsigned char *buf, int count)
c906108c
SS
227{
228 unsigned char *p;
229 int i;
230 p = buf;
231 for (i = 0; i < count; i++)
232 *p++ = codestream_get ();
233}
fc338970 234\f
c906108c 235
fc338970 236/* If the next instruction is a jump, move to its target. */
c906108c
SS
237
238static void
fba45db2 239i386_follow_jump (void)
c906108c
SS
240{
241 unsigned char buf[4];
242 long delta;
243
244 int data16;
245 CORE_ADDR pos;
246
247 pos = codestream_tell ();
248
249 data16 = 0;
250 if (codestream_peek () == 0x66)
251 {
252 codestream_get ();
253 data16 = 1;
254 }
255
256 switch (codestream_get ())
257 {
258 case 0xe9:
fc338970 259 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
260 if (data16)
261 {
262 codestream_read (buf, 2);
263 delta = extract_signed_integer (buf, 2);
264
fc338970
MK
265 /* Include the size of the jmp instruction (including the
266 0x66 prefix). */
c5aa993b 267 pos += delta + 4;
c906108c
SS
268 }
269 else
270 {
271 codestream_read (buf, 4);
272 delta = extract_signed_integer (buf, 4);
273
274 pos += delta + 5;
275 }
276 break;
277 case 0xeb:
fc338970 278 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
279 codestream_read (buf, 1);
280 /* Sign-extend it. */
281 delta = extract_signed_integer (buf, 1);
282
283 pos += delta + 2;
284 break;
285 }
286 codestream_seek (pos);
287}
288
fc338970
MK
289/* Find & return the amount a local space allocated, and advance the
290 codestream to the first register push (if any).
291
292 If the entry sequence doesn't make sense, return -1, and leave
293 codestream pointer at a random spot. */
c906108c
SS
294
295static long
fba45db2 296i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
297{
298 unsigned char op;
299
300 codestream_seek (pc);
301
302 i386_follow_jump ();
303
304 op = codestream_get ();
305
306 if (op == 0x58) /* popl %eax */
307 {
fc338970
MK
308 /* This function must start with
309
310 popl %eax 0x58
311 xchgl %eax, (%esp) 0x87 0x04 0x24
312 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
313
314 (the System V compiler puts out the second `xchg'
315 instruction, and the assembler doesn't try to optimize it, so
316 the 'sib' form gets generated). This sequence is used to get
317 the address of the return buffer for a function that returns
318 a structure. */
c906108c
SS
319 int pos;
320 unsigned char buf[4];
fc338970
MK
321 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
322 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
323
c906108c
SS
324 pos = codestream_tell ();
325 codestream_read (buf, 4);
326 if (memcmp (buf, proto1, 3) == 0)
327 pos += 3;
328 else if (memcmp (buf, proto2, 4) == 0)
329 pos += 4;
330
331 codestream_seek (pos);
fc338970 332 op = codestream_get (); /* Update next opcode. */
c906108c
SS
333 }
334
335 if (op == 0x68 || op == 0x6a)
336 {
fc338970
MK
337 /* This function may start with
338
339 pushl constant
340 call _probe
341 addl $4, %esp
342
343 followed by
344
345 pushl %ebp
346
347 etc. */
c906108c
SS
348 int pos;
349 unsigned char buf[8];
350
fc338970 351 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
352 or a four-byte operand, depending on the opcode. */
353 pos = codestream_tell ();
354 if (op == 0x68)
355 pos += 4;
356 else
357 pos += 1;
358 codestream_seek (pos);
359
fc338970
MK
360 /* Read the following 8 bytes, which should be "call _probe" (6
361 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
362 codestream_read (buf, sizeof (buf));
363 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
364 pos += sizeof (buf);
365 codestream_seek (pos);
fc338970 366 op = codestream_get (); /* Update next opcode. */
c906108c
SS
367 }
368
369 if (op == 0x55) /* pushl %ebp */
c5aa993b 370 {
fc338970 371 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
372 switch (codestream_get ())
373 {
374 case 0x8b:
375 if (codestream_get () != 0xec)
fc338970 376 return -1;
c906108c
SS
377 break;
378 case 0x89:
379 if (codestream_get () != 0xe5)
fc338970 380 return -1;
c906108c
SS
381 break;
382 default:
fc338970 383 return -1;
c906108c 384 }
fc338970
MK
385 /* Check for stack adjustment
386
387 subl $XXX, %esp
388
389 NOTE: You can't subtract a 16 bit immediate from a 32 bit
390 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
391 op = codestream_peek ();
392 if (op == 0x83)
393 {
fc338970 394 /* `subl' with 8 bit immediate. */
c906108c
SS
395 codestream_get ();
396 if (codestream_get () != 0xec)
fc338970 397 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
398 {
399 codestream_seek (codestream_tell () - 2);
400 return 0;
401 }
fc338970
MK
402 /* `subl' with signed byte immediate (though it wouldn't
403 make sense to be negative). */
c5aa993b 404 return (codestream_get ());
c906108c
SS
405 }
406 else if (op == 0x81)
407 {
408 char buf[4];
fc338970 409 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 410 codestream_get ();
c906108c 411 if (codestream_get () != 0xec)
fc338970 412 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
413 {
414 codestream_seek (codestream_tell () - 2);
415 return 0;
416 }
fc338970 417 /* It is `subl' with a 32 bit immediate. */
c5aa993b 418 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
419 return extract_signed_integer (buf, 4);
420 }
421 else
422 {
fc338970 423 return 0;
c906108c
SS
424 }
425 }
426 else if (op == 0xc8)
427 {
428 char buf[2];
fc338970 429 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 430 codestream_read ((unsigned char *) buf, 2);
fc338970 431 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
432 return extract_unsigned_integer (buf, 2);
433 }
434 return (-1);
435}
436
6bff26de
MK
437/* Signal trampolines don't have a meaningful frame. The frame
438 pointer value we use is actually the frame pointer of the calling
439 frame -- that is, the frame which was in progress when the signal
440 trampoline was entered. GDB mostly treats this frame pointer value
441 as a magic cookie. We detect the case of a signal trampoline by
442 looking at the SIGNAL_HANDLER_CALLER field, which is set based on
443 PC_IN_SIGTRAMP.
444
445 When a signal trampoline is invoked from a frameless function, we
446 essentially have two frameless functions in a row. In this case,
447 we use the same magic cookie for three frames in a row. We detect
448 this case by seeing whether the next frame has
449 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
450 current frame is actually frameless. In this case, we need to get
451 the PC by looking at the SP register value stored in the signal
452 context.
453
454 This should work in most cases except in horrible situations where
455 a signal occurs just as we enter a function but before the frame
c0d1d883
MK
456 has been set up. Incidentally, that's just what happens when we
457 call a function from GDB with a signal pending (there's a test in
458 the testsuite that makes this happen). Therefore we pretend that
459 we have a frameless function if we're stopped at the start of a
460 function. */
6bff26de
MK
461
462/* Return non-zero if we're dealing with a frameless signal, that is,
463 a signal trampoline invoked from a frameless function. */
464
465static int
466i386_frameless_signal_p (struct frame_info *frame)
467{
c0d1d883
MK
468 return (frame->next && frame->next->signal_handler_caller
469 && (frameless_look_for_prologue (frame)
470 || frame->pc == get_pc_function_start (frame->pc)));
6bff26de
MK
471}
472
c833a37e
MK
473/* Return the chain-pointer for FRAME. In the case of the i386, the
474 frame's nominal address is the address of a 4-byte word containing
475 the calling frame's address. */
476
8201327c 477static CORE_ADDR
c833a37e
MK
478i386_frame_chain (struct frame_info *frame)
479{
c0d1d883
MK
480 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
481 return frame->frame;
482
6bff26de
MK
483 if (frame->signal_handler_caller
484 || i386_frameless_signal_p (frame))
c833a37e
MK
485 return frame->frame;
486
487 if (! inside_entry_file (frame->pc))
488 return read_memory_unsigned_integer (frame->frame, 4);
489
490 return 0;
491}
492
539ffe0b
MK
493/* Determine whether the function invocation represented by FRAME does
494 not have a from on the stack associated with it. If it does not,
495 return non-zero, otherwise return zero. */
496
3a1e71e3 497static int
539ffe0b
MK
498i386_frameless_function_invocation (struct frame_info *frame)
499{
500 if (frame->signal_handler_caller)
501 return 0;
502
503 return frameless_look_for_prologue (frame);
504}
505
21d0e8a4
MK
506/* Assuming FRAME is for a sigtramp routine, return the saved program
507 counter. */
508
509static CORE_ADDR
510i386_sigtramp_saved_pc (struct frame_info *frame)
511{
512 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
513 CORE_ADDR addr;
514
515 addr = tdep->sigcontext_addr (frame);
516 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
517}
518
6bff26de
MK
519/* Assuming FRAME is for a sigtramp routine, return the saved stack
520 pointer. */
521
522static CORE_ADDR
523i386_sigtramp_saved_sp (struct frame_info *frame)
524{
525 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
526 CORE_ADDR addr;
527
528 addr = tdep->sigcontext_addr (frame);
529 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
530}
531
0d17c81d
MK
532/* Return the saved program counter for FRAME. */
533
8201327c 534static CORE_ADDR
0d17c81d
MK
535i386_frame_saved_pc (struct frame_info *frame)
536{
c0d1d883
MK
537 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
538 return generic_read_register_dummy (frame->pc, frame->frame,
539 PC_REGNUM);
540
0d17c81d 541 if (frame->signal_handler_caller)
21d0e8a4 542 return i386_sigtramp_saved_pc (frame);
0d17c81d 543
6bff26de
MK
544 if (i386_frameless_signal_p (frame))
545 {
546 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
547 return read_memory_unsigned_integer (sp, 4);
548 }
549
8201327c 550 return read_memory_unsigned_integer (frame->frame + 4, 4);
22797942
AC
551}
552
ed84f6c1
MK
553/* Immediately after a function call, return the saved pc. */
554
8201327c 555static CORE_ADDR
ed84f6c1
MK
556i386_saved_pc_after_call (struct frame_info *frame)
557{
6bff26de
MK
558 if (frame->signal_handler_caller)
559 return i386_sigtramp_saved_pc (frame);
560
ed84f6c1
MK
561 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
562}
563
c906108c
SS
564/* Return number of args passed to a frame.
565 Can return -1, meaning no way to tell. */
566
3a1e71e3 567static int
fba45db2 568i386_frame_num_args (struct frame_info *fi)
c906108c
SS
569{
570#if 1
571 return -1;
572#else
573 /* This loses because not only might the compiler not be popping the
fc338970
MK
574 args right after the function call, it might be popping args from
575 both this call and a previous one, and we would say there are
576 more args than there really are. */
c906108c 577
c5aa993b
JM
578 int retpc;
579 unsigned char op;
c906108c
SS
580 struct frame_info *pfi;
581
fc338970 582 /* On the i386, the instruction following the call could be:
c906108c
SS
583 popl %ecx - one arg
584 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 585 anything else - zero args. */
c906108c
SS
586
587 int frameless;
588
392a587b 589 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 590 if (frameless)
fc338970
MK
591 /* In the absence of a frame pointer, GDB doesn't get correct
592 values for nameless arguments. Return -1, so it doesn't print
593 any nameless arguments. */
c906108c
SS
594 return -1;
595
c5aa993b 596 pfi = get_prev_frame (fi);
c906108c
SS
597 if (pfi == 0)
598 {
fc338970
MK
599 /* NOTE: This can happen if we are looking at the frame for
600 main, because FRAME_CHAIN_VALID won't let us go into start.
601 If we have debugging symbols, that's not really a big deal;
602 it just means it will only show as many arguments to main as
603 are declared. */
c906108c
SS
604 return -1;
605 }
606 else
607 {
c5aa993b
JM
608 retpc = pfi->pc;
609 op = read_memory_integer (retpc, 1);
fc338970 610 if (op == 0x59) /* pop %ecx */
c5aa993b 611 return 1;
c906108c
SS
612 else if (op == 0x83)
613 {
c5aa993b
JM
614 op = read_memory_integer (retpc + 1, 1);
615 if (op == 0xc4)
616 /* addl $<signed imm 8 bits>, %esp */
617 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
618 else
619 return 0;
620 }
fc338970
MK
621 else if (op == 0x81) /* `add' with 32 bit immediate. */
622 {
c5aa993b
JM
623 op = read_memory_integer (retpc + 1, 1);
624 if (op == 0xc4)
625 /* addl $<imm 32>, %esp */
626 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
627 else
628 return 0;
629 }
630 else
631 {
632 return 0;
633 }
634 }
635#endif
636}
637
fc338970
MK
638/* Parse the first few instructions the function to see what registers
639 were stored.
640
641 We handle these cases:
642
643 The startup sequence can be at the start of the function, or the
644 function can start with a branch to startup code at the end.
645
646 %ebp can be set up with either the 'enter' instruction, or "pushl
647 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
648 once used in the System V compiler).
649
650 Local space is allocated just below the saved %ebp by either the
651 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
652 bit unsigned argument for space to allocate, and the 'addl'
653 instruction could have either a signed byte, or 32 bit immediate.
654
655 Next, the registers used by this function are pushed. With the
656 System V compiler they will always be in the order: %edi, %esi,
657 %ebx (and sometimes a harmless bug causes it to also save but not
658 restore %eax); however, the code below is willing to see the pushes
659 in any order, and will handle up to 8 of them.
660
661 If the setup sequence is at the end of the function, then the next
662 instruction will be a branch back to the start. */
c906108c 663
3a1e71e3 664static void
fba45db2 665i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
666{
667 long locals = -1;
668 unsigned char op;
fc338970 669 CORE_ADDR addr;
c906108c
SS
670 CORE_ADDR pc;
671 int i;
c5aa993b 672
1211c4e4
AC
673 if (fip->saved_regs)
674 return;
675
676 frame_saved_regs_zalloc (fip);
c5aa993b 677
c906108c
SS
678 pc = get_pc_function_start (fip->pc);
679 if (pc != 0)
680 locals = i386_get_frame_setup (pc);
c5aa993b
JM
681
682 if (locals >= 0)
c906108c 683 {
fc338970 684 addr = fip->frame - 4 - locals;
c5aa993b 685 for (i = 0; i < 8; i++)
c906108c
SS
686 {
687 op = codestream_get ();
688 if (op < 0x50 || op > 0x57)
689 break;
690#ifdef I386_REGNO_TO_SYMMETRY
691 /* Dynix uses different internal numbering. Ick. */
fc338970 692 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 693#else
fc338970 694 fip->saved_regs[op - 0x50] = addr;
c906108c 695#endif
fc338970 696 addr -= 4;
c906108c
SS
697 }
698 }
c5aa993b 699
1211c4e4
AC
700 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
701 fip->saved_regs[FP_REGNUM] = fip->frame;
c906108c
SS
702}
703
fc338970 704/* Return PC of first real instruction. */
c906108c 705
3a1e71e3 706static CORE_ADDR
93924b6b 707i386_skip_prologue (CORE_ADDR pc)
c906108c
SS
708{
709 unsigned char op;
710 int i;
c5aa993b 711 static unsigned char pic_pat[6] =
fc338970
MK
712 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
713 0x5b, /* popl %ebx */
c5aa993b 714 };
c906108c 715 CORE_ADDR pos;
c5aa993b 716
c906108c
SS
717 if (i386_get_frame_setup (pc) < 0)
718 return (pc);
c5aa993b 719
fc338970
MK
720 /* Found valid frame setup -- codestream now points to start of push
721 instructions for saving registers. */
c5aa993b 722
fc338970 723 /* Skip over register saves. */
c906108c
SS
724 for (i = 0; i < 8; i++)
725 {
726 op = codestream_peek ();
fc338970 727 /* Break if not `pushl' instrunction. */
c5aa993b 728 if (op < 0x50 || op > 0x57)
c906108c
SS
729 break;
730 codestream_get ();
731 }
732
fc338970
MK
733 /* The native cc on SVR4 in -K PIC mode inserts the following code
734 to get the address of the global offset table (GOT) into register
735 %ebx
736
737 call 0x0
738 popl %ebx
739 movl %ebx,x(%ebp) (optional)
740 addl y,%ebx
741
c906108c
SS
742 This code is with the rest of the prologue (at the end of the
743 function), so we have to skip it to get to the first real
744 instruction at the start of the function. */
c5aa993b 745
c906108c
SS
746 pos = codestream_tell ();
747 for (i = 0; i < 6; i++)
748 {
749 op = codestream_get ();
c5aa993b 750 if (pic_pat[i] != op)
c906108c
SS
751 break;
752 }
753 if (i == 6)
754 {
755 unsigned char buf[4];
756 long delta = 6;
757
758 op = codestream_get ();
c5aa993b 759 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
760 {
761 op = codestream_get ();
fc338970 762 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
763 {
764 delta += 3;
765 codestream_read (buf, 1);
766 }
fc338970 767 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
768 {
769 delta += 6;
770 codestream_read (buf, 4);
771 }
fc338970 772 else /* Unexpected instruction. */
c5aa993b
JM
773 delta = -1;
774 op = codestream_get ();
c906108c 775 }
c5aa993b
JM
776 /* addl y,%ebx */
777 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 778 {
c5aa993b 779 pos += delta + 6;
c906108c
SS
780 }
781 }
782 codestream_seek (pos);
c5aa993b 783
c906108c 784 i386_follow_jump ();
c5aa993b 785
c906108c
SS
786 return (codestream_tell ());
787}
788
93924b6b
MK
789/* Use the program counter to determine the contents and size of a
790 breakpoint instruction. Return a pointer to a string of bytes that
791 encode a breakpoint instruction, store the length of the string in
792 *LEN and optionally adjust *PC to point to the correct memory
793 location for inserting the breakpoint.
794
795 On the i386 we have a single breakpoint that fits in a single byte
796 and can be inserted anywhere. */
797
798static const unsigned char *
799i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
800{
801 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
802
803 *len = sizeof (break_insn);
804 return break_insn;
805}
806
c0d1d883
MK
807/* Push the return address (pointing to the call dummy) onto the stack
808 and return the new value for the stack pointer. */
c5aa993b 809
c0d1d883
MK
810static CORE_ADDR
811i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
a7769679 812{
c0d1d883 813 char buf[4];
a7769679 814
c0d1d883
MK
815 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
816 write_memory (sp - 4, buf, 4);
817 return sp - 4;
a7769679
MK
818}
819
3a1e71e3 820static void
c0d1d883 821i386_do_pop_frame (struct frame_info *frame)
c906108c 822{
c906108c
SS
823 CORE_ADDR fp;
824 int regnum;
00f8375e 825 char regbuf[I386_MAX_REGISTER_SIZE];
c5aa993b 826
c906108c 827 fp = FRAME_FP (frame);
1211c4e4
AC
828 i386_frame_init_saved_regs (frame);
829
c5aa993b 830 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 831 {
fc338970
MK
832 CORE_ADDR addr;
833 addr = frame->saved_regs[regnum];
834 if (addr)
c906108c 835 {
fc338970 836 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
c2848c82 837 write_register_gen (regnum, regbuf);
c906108c
SS
838 }
839 }
840 write_register (FP_REGNUM, read_memory_integer (fp, 4));
841 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
842 write_register (SP_REGNUM, fp + 8);
843 flush_cached_frames ();
844}
c0d1d883
MK
845
846static void
847i386_pop_frame (void)
848{
849 generic_pop_current_frame (i386_do_pop_frame);
850}
fc338970 851\f
c906108c 852
fc338970
MK
853/* Figure out where the longjmp will land. Slurp the args out of the
854 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c
MK
855 structure from which we extract the address that we will land at.
856 This address is copied into PC. This routine returns true on
fc338970 857 success. */
c906108c 858
8201327c
MK
859static int
860i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 861{
8201327c 862 char buf[4];
c906108c 863 CORE_ADDR sp, jb_addr;
8201327c 864 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
c906108c 865
8201327c
MK
866 /* If JB_PC_OFFSET is -1, we have no way to find out where the
867 longjmp will land. */
868 if (jb_pc_offset == -1)
c906108c
SS
869 return 0;
870
8201327c
MK
871 sp = read_register (SP_REGNUM);
872 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
873 return 0;
874
8201327c
MK
875 jb_addr = extract_address (buf, 4);
876 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
877 return 0;
c906108c 878
8201327c 879 *pc = extract_address (buf, 4);
c906108c
SS
880 return 1;
881}
fc338970 882\f
c906108c 883
3a1e71e3 884static CORE_ADDR
ea7c478f 885i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
22f8ba57
MK
886 int struct_return, CORE_ADDR struct_addr)
887{
888 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
889
890 if (struct_return)
891 {
892 char buf[4];
893
894 sp -= 4;
895 store_address (buf, 4, struct_addr);
896 write_memory (sp, buf, 4);
897 }
898
899 return sp;
900}
901
3a1e71e3 902static void
22f8ba57
MK
903i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
904{
905 /* Do nothing. Everything was already done by i386_push_arguments. */
906}
907
1a309862
MK
908/* These registers are used for returning integers (and on some
909 targets also for returning `struct' and `union' values when their
ef9dff19 910 size and alignment match an integer type). */
1a309862
MK
911#define LOW_RETURN_REGNUM 0 /* %eax */
912#define HIGH_RETURN_REGNUM 2 /* %edx */
913
914/* Extract from an array REGBUF containing the (raw) register state, a
915 function return value of TYPE, and copy that, in virtual format,
916 into VALBUF. */
917
3a1e71e3 918static void
00f8375e 919i386_extract_return_value (struct type *type, struct regcache *regcache,
ebba8386 920 void *dst)
c906108c 921{
ebba8386 922 bfd_byte *valbuf = dst;
1a309862 923 int len = TYPE_LENGTH (type);
00f8375e 924 char buf[I386_MAX_REGISTER_SIZE];
1a309862 925
1e8d0a7b
MK
926 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
927 && TYPE_NFIELDS (type) == 1)
3df1b9b4 928 {
00f8375e 929 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
930 return;
931 }
1e8d0a7b
MK
932
933 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 934 {
356a6b3e 935 if (FP0_REGNUM == 0)
1a309862
MK
936 {
937 warning ("Cannot find floating-point return value.");
938 memset (valbuf, 0, len);
ef9dff19 939 return;
1a309862
MK
940 }
941
c6ba6f0d
MK
942 /* Floating-point return values can be found in %st(0). Convert
943 its contents to the desired type. This is probably not
944 exactly how it would happen on the target itself, but it is
945 the best we can do. */
0818c12a 946 regcache_raw_read (regcache, FP0_REGNUM, buf);
00f8375e 947 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
948 }
949 else
c5aa993b 950 {
d4f3574e
SS
951 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
952 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
953
954 if (len <= low_size)
00f8375e 955 {
0818c12a 956 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
957 memcpy (valbuf, buf, len);
958 }
d4f3574e
SS
959 else if (len <= (low_size + high_size))
960 {
0818c12a 961 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 962 memcpy (valbuf, buf, low_size);
0818c12a 963 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
00f8375e 964 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
965 }
966 else
8e65ff28
AC
967 internal_error (__FILE__, __LINE__,
968 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
969 }
970}
971
ef9dff19
MK
972/* Write into the appropriate registers a function return value stored
973 in VALBUF of type TYPE, given in virtual format. */
974
3a1e71e3 975static void
3d7f4f49
MK
976i386_store_return_value (struct type *type, struct regcache *regcache,
977 const void *valbuf)
ef9dff19
MK
978{
979 int len = TYPE_LENGTH (type);
980
1e8d0a7b
MK
981 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
982 && TYPE_NFIELDS (type) == 1)
3df1b9b4 983 {
3d7f4f49 984 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
985 return;
986 }
1e8d0a7b
MK
987
988 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 989 {
3d7f4f49 990 ULONGEST fstat;
c6ba6f0d 991 char buf[FPU_REG_RAW_SIZE];
ccb945b8 992
356a6b3e 993 if (FP0_REGNUM == 0)
ef9dff19
MK
994 {
995 warning ("Cannot set floating-point return value.");
996 return;
997 }
998
635b0cc1
MK
999 /* Returning floating-point values is a bit tricky. Apart from
1000 storing the return value in %st(0), we have to simulate the
1001 state of the FPU at function return point. */
1002
c6ba6f0d
MK
1003 /* Convert the value found in VALBUF to the extended
1004 floating-point format used by the FPU. This is probably
1005 not exactly how it would happen on the target itself, but
1006 it is the best we can do. */
1007 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
3d7f4f49 1008 regcache_raw_write (regcache, FP0_REGNUM, buf);
ccb945b8 1009
635b0cc1
MK
1010 /* Set the top of the floating-point register stack to 7. The
1011 actual value doesn't really matter, but 7 is what a normal
1012 function return would end up with if the program started out
1013 with a freshly initialized FPU. */
3d7f4f49 1014 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
ccb945b8 1015 fstat |= (7 << 11);
3d7f4f49 1016 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
ccb945b8 1017
635b0cc1
MK
1018 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1019 the floating-point register stack to 7, the appropriate value
1020 for the tag word is 0x3fff. */
3d7f4f49 1021 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1022 }
1023 else
1024 {
1025 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1026 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1027
1028 if (len <= low_size)
3d7f4f49 1029 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1030 else if (len <= (low_size + high_size))
1031 {
3d7f4f49
MK
1032 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1033 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1034 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1035 }
1036 else
8e65ff28
AC
1037 internal_error (__FILE__, __LINE__,
1038 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1039 }
1040}
f7af9647
MK
1041
1042/* Extract from an array REGBUF containing the (raw) register state
1043 the address in which a function should return its structure value,
1044 as a CORE_ADDR. */
1045
3a1e71e3 1046static CORE_ADDR
00f8375e 1047i386_extract_struct_value_address (struct regcache *regcache)
f7af9647 1048{
a378f419
AC
1049 /* NOTE: cagney/2002-08-12: Replaced a call to
1050 regcache_raw_read_as_address() with a call to
1051 regcache_cooked_read_unsigned(). The old, ...as_address function
1052 was eventually calling extract_unsigned_integer (via
1053 extract_address) to unpack the registers value. The below is
1054 doing an unsigned extract so that it is functionally equivalent.
1055 The read needs to be cooked as, otherwise, it will never
1056 correctly return the value of a register in the [NUM_REGS
1057 .. NUM_REGS+NUM_PSEUDO_REGS) range. */
1058 ULONGEST val;
1059 regcache_cooked_read_unsigned (regcache, LOW_RETURN_REGNUM, &val);
1060 return val;
f7af9647 1061}
fc338970 1062\f
ef9dff19 1063
8201327c
MK
1064/* This is the variable that is set with "set struct-convention", and
1065 its legitimate values. */
1066static const char default_struct_convention[] = "default";
1067static const char pcc_struct_convention[] = "pcc";
1068static const char reg_struct_convention[] = "reg";
1069static const char *valid_conventions[] =
1070{
1071 default_struct_convention,
1072 pcc_struct_convention,
1073 reg_struct_convention,
1074 NULL
1075};
1076static const char *struct_convention = default_struct_convention;
1077
1078static int
1079i386_use_struct_convention (int gcc_p, struct type *type)
1080{
1081 enum struct_return struct_return;
1082
1083 if (struct_convention == default_struct_convention)
1084 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1085 else if (struct_convention == pcc_struct_convention)
1086 struct_return = pcc_struct_return;
1087 else
1088 struct_return = reg_struct_return;
1089
1090 return generic_use_struct_convention (struct_return == reg_struct_return,
1091 type);
1092}
1093\f
1094
d7a0d72c
MK
1095/* Return the GDB type object for the "standard" data type of data in
1096 register REGNUM. Perhaps %esi and %edi should go here, but
1097 potentially they could be used for things other than address. */
1098
3a1e71e3 1099static struct type *
d7a0d72c
MK
1100i386_register_virtual_type (int regnum)
1101{
1102 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1103 return lookup_pointer_type (builtin_type_void);
1104
66da5fd8 1105 if (FP_REGNUM_P (regnum))
c6ba6f0d 1106 return builtin_type_i387_ext;
d7a0d72c 1107
66da5fd8 1108 if (SSE_REGNUM_P (regnum))
3139facc 1109 return builtin_type_vec128i;
d7a0d72c 1110
28fc6740
AC
1111 if (mmx_regnum_p (regnum))
1112 return builtin_type_vec64i;
1113
d7a0d72c
MK
1114 return builtin_type_int;
1115}
1116
28fc6740
AC
1117/* Map a cooked register onto a raw register or memory. For the i386,
1118 the MMX registers need to be mapped onto floating point registers. */
1119
1120static int
1121mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1122{
1123 int mmxi;
1124 ULONGEST fstat;
1125 int tos;
1126 int fpi;
1127 mmxi = regnum - MM0_REGNUM;
1128 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1129 tos = (fstat >> 11) & 0x7;
1130 fpi = (mmxi + tos) % 8;
1131 return (FP0_REGNUM + fpi);
1132}
1133
1134static void
1135i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1136 int regnum, void *buf)
1137{
1138 if (mmx_regnum_p (regnum))
1139 {
1140 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1141 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1142 regcache_raw_read (regcache, fpnum, mmx_buf);
1143 /* Extract (always little endian). */
1144 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1145 }
1146 else
1147 regcache_raw_read (regcache, regnum, buf);
1148}
1149
1150static void
1151i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1152 int regnum, const void *buf)
1153{
1154 if (mmx_regnum_p (regnum))
1155 {
1156 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1157 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1158 /* Read ... */
1159 regcache_raw_read (regcache, fpnum, mmx_buf);
1160 /* ... Modify ... (always little endian). */
1161 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1162 /* ... Write. */
1163 regcache_raw_write (regcache, fpnum, mmx_buf);
1164 }
1165 else
1166 regcache_raw_write (regcache, regnum, buf);
1167}
1168
d7a0d72c
MK
1169/* Return true iff register REGNUM's virtual format is different from
1170 its raw format. Note that this definition assumes that the host
1171 supports IEEE 32-bit floats, since it doesn't say that SSE
1172 registers need conversion. Even if we can't find a counterexample,
1173 this is still sloppy. */
1174
3a1e71e3 1175static int
d7a0d72c
MK
1176i386_register_convertible (int regnum)
1177{
66da5fd8 1178 return FP_REGNUM_P (regnum);
d7a0d72c
MK
1179}
1180
ac27f131 1181/* Convert data from raw format for register REGNUM in buffer FROM to
3d261580 1182 virtual format with type TYPE in buffer TO. */
ac27f131 1183
3a1e71e3 1184static void
ac27f131
MK
1185i386_register_convert_to_virtual (int regnum, struct type *type,
1186 char *from, char *to)
1187{
66da5fd8 1188 gdb_assert (FP_REGNUM_P (regnum));
3d261580
MK
1189
1190 /* We only support floating-point values. */
8d7f6b4a
MK
1191 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1192 {
1193 warning ("Cannot convert floating-point register value "
1194 "to non-floating-point type.");
1195 memset (to, 0, TYPE_LENGTH (type));
1196 return;
1197 }
3d261580 1198
c6ba6f0d
MK
1199 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1200 the extended floating-point format used by the FPU. */
1201 convert_typed_floating (from, builtin_type_i387_ext, to, type);
ac27f131
MK
1202}
1203
1204/* Convert data from virtual format with type TYPE in buffer FROM to
3d261580 1205 raw format for register REGNUM in buffer TO. */
ac27f131 1206
3a1e71e3 1207static void
ac27f131
MK
1208i386_register_convert_to_raw (struct type *type, int regnum,
1209 char *from, char *to)
1210{
66da5fd8 1211 gdb_assert (FP_REGNUM_P (regnum));
c6ba6f0d
MK
1212
1213 /* We only support floating-point values. */
1214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1215 {
1216 warning ("Cannot convert non-floating-point type "
1217 "to floating-point register value.");
1218 memset (to, 0, TYPE_LENGTH (type));
1219 return;
1220 }
3d261580 1221
c6ba6f0d
MK
1222 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1223 to the extended floating-point format used by the FPU. */
1224 convert_typed_floating (from, type, to, builtin_type_i387_ext);
ac27f131 1225}
ac27f131 1226\f
fc338970 1227
c906108c 1228#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1229/* SunPRO encodes the static variables. This is not related to C++
1230 mangling, it is done for C too. */
c906108c
SS
1231
1232char *
fba45db2 1233sunpro_static_transform_name (char *name)
c906108c
SS
1234{
1235 char *p;
1236 if (IS_STATIC_TRANSFORM_NAME (name))
1237 {
fc338970
MK
1238 /* For file-local statics there will be a period, a bunch of
1239 junk (the contents of which match a string given in the
c5aa993b
JM
1240 N_OPT), a period and the name. For function-local statics
1241 there will be a bunch of junk (which seems to change the
1242 second character from 'A' to 'B'), a period, the name of the
1243 function, and the name. So just skip everything before the
1244 last period. */
c906108c
SS
1245 p = strrchr (name, '.');
1246 if (p != NULL)
1247 name = p + 1;
1248 }
1249 return name;
1250}
1251#endif /* STATIC_TRANSFORM_NAME */
fc338970 1252\f
c906108c 1253
fc338970 1254/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1255
1256CORE_ADDR
1cce71eb 1257i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1258{
fc338970 1259 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1260 {
c5aa993b 1261 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1262 struct minimal_symbol *indsym =
fc338970 1263 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
c5aa993b 1264 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
c906108c 1265
c5aa993b 1266 if (symname)
c906108c 1267 {
c5aa993b
JM
1268 if (strncmp (symname, "__imp_", 6) == 0
1269 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1270 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1271 }
1272 }
fc338970 1273 return 0; /* Not a trampoline. */
c906108c 1274}
fc338970
MK
1275\f
1276
8201327c
MK
1277/* Return non-zero if PC and NAME show that we are in a signal
1278 trampoline. */
1279
1280static int
1281i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1282{
1283 return (name && strcmp ("_sigtramp", name) == 0);
1284}
1285\f
1286
fc338970
MK
1287/* We have two flavours of disassembly. The machinery on this page
1288 deals with switching between those. */
c906108c
SS
1289
1290static int
fba45db2 1291gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1292{
1293 if (disassembly_flavor == att_flavor)
1294 return print_insn_i386_att (memaddr, info);
1295 else if (disassembly_flavor == intel_flavor)
1296 return print_insn_i386_intel (memaddr, info);
fc338970
MK
1297 /* Never reached -- disassembly_flavour is always either att_flavor
1298 or intel_flavor. */
e1e9e218 1299 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7a292a7a 1300}
fc338970 1301\f
3ce1502b 1302
8201327c
MK
1303/* There are a few i386 architecture variants that differ only
1304 slightly from the generic i386 target. For now, we don't give them
1305 their own source file, but include them here. As a consequence,
1306 they'll always be included. */
3ce1502b 1307
8201327c 1308/* System V Release 4 (SVR4). */
3ce1502b 1309
8201327c
MK
1310static int
1311i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1312{
8201327c
MK
1313 return (name && (strcmp ("_sigreturn", name) == 0
1314 || strcmp ("_sigacthandler", name) == 0
1315 || strcmp ("sigvechandler", name) == 0));
1316}
d2a7c97a 1317
21d0e8a4
MK
1318/* Get address of the pushed ucontext (sigcontext) on the stack for
1319 all three variants of SVR4 sigtramps. */
3ce1502b 1320
3a1e71e3 1321static CORE_ADDR
21d0e8a4 1322i386_svr4_sigcontext_addr (struct frame_info *frame)
8201327c 1323{
21d0e8a4 1324 int sigcontext_offset = -1;
8201327c
MK
1325 char *name = NULL;
1326
1327 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1328 if (name)
d2a7c97a 1329 {
8201327c 1330 if (strcmp (name, "_sigreturn") == 0)
21d0e8a4 1331 sigcontext_offset = 132;
8201327c 1332 else if (strcmp (name, "_sigacthandler") == 0)
21d0e8a4 1333 sigcontext_offset = 80;
8201327c 1334 else if (strcmp (name, "sigvechandler") == 0)
21d0e8a4 1335 sigcontext_offset = 120;
8201327c 1336 }
3ce1502b 1337
21d0e8a4
MK
1338 gdb_assert (sigcontext_offset != -1);
1339
8201327c 1340 if (frame->next)
21d0e8a4
MK
1341 return frame->next->frame + sigcontext_offset;
1342 return read_register (SP_REGNUM) + sigcontext_offset;
8201327c
MK
1343}
1344\f
3ce1502b 1345
8201327c 1346/* DJGPP. */
d2a7c97a 1347
8201327c
MK
1348static int
1349i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1350{
1351 /* DJGPP doesn't have any special frames for signal handlers. */
1352 return 0;
1353}
1354\f
d2a7c97a 1355
8201327c 1356/* Generic ELF. */
d2a7c97a 1357
8201327c
MK
1358void
1359i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1360{
1361 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1362 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1363}
3ce1502b 1364
8201327c 1365/* System V Release 4 (SVR4). */
3ce1502b 1366
8201327c
MK
1367void
1368i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1369{
1370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1371
8201327c
MK
1372 /* System V Release 4 uses ELF. */
1373 i386_elf_init_abi (info, gdbarch);
3ce1502b 1374
dfe01d39
MK
1375 /* System V Release 4 has shared libraries. */
1376 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1377 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1378
8201327c 1379 /* FIXME: kettenis/20020511: Why do we override this function here? */
b4671f85 1380 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
3ce1502b 1381
8201327c 1382 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4
MK
1383 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1384 tdep->sc_pc_offset = 14 * 4;
1385 tdep->sc_sp_offset = 7 * 4;
3ce1502b 1386
8201327c 1387 tdep->jb_pc_offset = 20;
3ce1502b
MK
1388}
1389
8201327c 1390/* DJGPP. */
3ce1502b 1391
3a1e71e3 1392static void
8201327c 1393i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1394{
8201327c 1395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1396
8201327c 1397 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1398
8201327c 1399 tdep->jb_pc_offset = 36;
3ce1502b
MK
1400}
1401
8201327c 1402/* NetWare. */
3ce1502b 1403
3a1e71e3 1404static void
8201327c 1405i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1406{
8201327c 1407 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1408
8201327c 1409 /* FIXME: kettenis/20020511: Why do we override this function here? */
b4671f85 1410 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
8201327c
MK
1411
1412 tdep->jb_pc_offset = 24;
d2a7c97a 1413}
8201327c 1414\f
2acceee2 1415
3a1e71e3 1416static struct gdbarch *
a62cc96e
AC
1417i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1418{
cd3c07fc 1419 struct gdbarch_tdep *tdep;
a62cc96e 1420 struct gdbarch *gdbarch;
8201327c 1421 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
a62cc96e 1422
8201327c 1423 /* Try to determine the OS ABI of the object we're loading. */
3ce1502b 1424 if (info.abfd != NULL)
8201327c 1425 osabi = gdbarch_lookup_osabi (info.abfd);
d2a7c97a 1426
3ce1502b 1427 /* Find a candidate among extant architectures. */
d2a7c97a
MK
1428 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1429 arches != NULL;
1430 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1431 {
8201327c 1432 /* Make sure the OS ABI selection matches. */
65d6d66a 1433 tdep = gdbarch_tdep (arches->gdbarch);
8201327c 1434 if (tdep && tdep->osabi == osabi)
65d6d66a 1435 return arches->gdbarch;
d2a7c97a 1436 }
a62cc96e
AC
1437
1438 /* Allocate space for the new architecture. */
1439 tdep = XMALLOC (struct gdbarch_tdep);
1440 gdbarch = gdbarch_alloc (&info, tdep);
1441
8201327c
MK
1442 tdep->osabi = osabi;
1443
1444 /* The i386 default settings don't include the SSE registers.
356a6b3e
MK
1445 FIXME: kettenis/20020614: They do include the FPU registers for
1446 now, which probably is not quite right. */
8201327c 1447 tdep->num_xmm_regs = 0;
d2a7c97a 1448
8201327c
MK
1449 tdep->jb_pc_offset = -1;
1450 tdep->struct_return = pcc_struct_return;
8201327c
MK
1451 tdep->sigtramp_start = 0;
1452 tdep->sigtramp_end = 0;
21d0e8a4 1453 tdep->sigcontext_addr = NULL;
8201327c 1454 tdep->sc_pc_offset = -1;
21d0e8a4 1455 tdep->sc_sp_offset = -1;
8201327c 1456
896fb97d
MK
1457 /* The format used for `long double' on almost all i386 targets is
1458 the i387 extended floating-point format. In fact, of all targets
1459 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1460 on having a `long double' that's not `long' at all. */
1461 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1462
66da5fd8 1463 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
1464 bits, a `long double' actually takes up 96, probably to enforce
1465 alignment. */
1466 set_gdbarch_long_double_bit (gdbarch, 96);
1467
356a6b3e
MK
1468 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1469 tm-symmetry.h currently override this. Sigh. */
1470 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
21d0e8a4 1471
66da5fd8
MK
1472 set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
1473 set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
1474 set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
1475 set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
1476 set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
356a6b3e
MK
1477
1478 /* Use the "default" register numbering scheme for stabs and COFF. */
1479 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1480 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1481
1482 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1483 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1484 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1485
1486 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1487 be in use on any of the supported i386 targets. */
1488
1489 set_gdbarch_register_name (gdbarch, i386_register_name);
1490 set_gdbarch_register_size (gdbarch, 4);
1491 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
00f8375e
MK
1492 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1493 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
b6197528 1494 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
356a6b3e 1495
61113f8b
MK
1496 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1497
8201327c 1498 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1499
c0d1d883 1500 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
a62cc96e
AC
1501
1502 /* Call dummy code. */
c0d1d883
MK
1503 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1504 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
8758dec1 1505 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
c0d1d883 1506 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
a62cc96e 1507 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
c0d1d883 1508 set_gdbarch_call_dummy_length (gdbarch, 0);
a62cc96e 1509 set_gdbarch_call_dummy_p (gdbarch, 1);
c0d1d883
MK
1510 set_gdbarch_call_dummy_words (gdbarch, NULL);
1511 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
a62cc96e 1512 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
c0d1d883 1513 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
a62cc96e 1514
b6197528
MK
1515 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1516 set_gdbarch_register_convert_to_virtual (gdbarch,
1517 i386_register_convert_to_virtual);
1518 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1519
7b4c2dce 1520 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
a62cc96e 1521
c0d1d883 1522 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
a62cc96e 1523
8758dec1
MK
1524 /* "An argument's size is increased, if necessary, to make it a
1525 multiple of [32-bit] words. This may require tail padding,
1526 depending on the size of the argument" -- from the x86 ABI. */
1527 set_gdbarch_parm_boundary (gdbarch, 32);
1528
00f8375e 1529 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
fc08ec52 1530 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
c0d1d883
MK
1531 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1532 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
fc08ec52
MK
1533 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1534 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
3d7f4f49 1535 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
00f8375e 1536 set_gdbarch_extract_struct_value_address (gdbarch,
fc08ec52 1537 i386_extract_struct_value_address);
8201327c
MK
1538 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1539
42fdc8df 1540 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
93924b6b
MK
1541 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1542
1543 /* Stack grows downward. */
1544 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1545
1546 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1547 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1548 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1549
8201327c
MK
1550 /* The following redefines make backtracing through sigtramp work.
1551 They manufacture a fake sigtramp frame and obtain the saved pc in
1552 sigtramp from the sigcontext structure which is pushed by the
1553 kernel on the user stack, along with a pointer to it. */
1554
42fdc8df
MK
1555 set_gdbarch_frame_args_skip (gdbarch, 8);
1556 set_gdbarch_frameless_function_invocation (gdbarch,
1557 i386_frameless_function_invocation);
8201327c 1558 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
c0d1d883 1559 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
8201327c 1560 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
42fdc8df
MK
1561 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1562 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
8201327c 1563 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
42fdc8df 1564 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
8201327c
MK
1565 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1566
28fc6740
AC
1567 /* Wire in the MMX registers. */
1568 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1569 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1570 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1571
3ce1502b 1572 /* Hook in ABI-specific overrides, if they have been registered. */
8201327c 1573 gdbarch_init_osabi (info, gdbarch, osabi);
3ce1502b 1574
a62cc96e
AC
1575 return gdbarch;
1576}
1577
8201327c
MK
1578static enum gdb_osabi
1579i386_coff_osabi_sniffer (bfd *abfd)
1580{
762c5349
MK
1581 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1582 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1583 return GDB_OSABI_GO32;
1584
1585 return GDB_OSABI_UNKNOWN;
1586}
1587
1588static enum gdb_osabi
1589i386_nlm_osabi_sniffer (bfd *abfd)
1590{
1591 return GDB_OSABI_NETWARE;
1592}
1593\f
1594
28e9e0f0
MK
1595/* Provide a prototype to silence -Wmissing-prototypes. */
1596void _initialize_i386_tdep (void);
1597
c906108c 1598void
fba45db2 1599_initialize_i386_tdep (void)
c906108c 1600{
a62cc96e
AC
1601 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1602
c906108c
SS
1603 tm_print_insn = gdb_print_insn_i386;
1604 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1605
fc338970 1606 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1607 {
1608 struct cmd_list_element *new_cmd;
7a292a7a 1609
917317f4
JM
1610 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1611 valid_flavors,
1ed2a135 1612 &disassembly_flavor,
fc338970
MK
1613 "\
1614Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1615and the default value is \"att\".",
917317f4 1616 &setlist);
917317f4
JM
1617 add_show_from_set (new_cmd, &showlist);
1618 }
8201327c
MK
1619
1620 /* Add the variable that controls the convention for returning
1621 structs. */
1622 {
1623 struct cmd_list_element *new_cmd;
1624
1625 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1626 valid_conventions,
1627 &struct_convention, "\
1628Set the convention for returning small structs, valid values \
1629are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1630 &setlist);
1631 add_show_from_set (new_cmd, &showlist);
1632 }
1633
1634 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1635 i386_coff_osabi_sniffer);
1636 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1637 i386_nlm_osabi_sniffer);
1638
1639 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1640 i386_svr4_init_abi);
1641 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1642 i386_go32_init_abi);
1643 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1644 i386_nw_init_abi);
c906108c 1645}
This page took 0.585627 seconds and 4 git commands to generate.