gdb: xtensa: drop gdb_target definition
[deliverable/binutils-gdb.git] / gdb / i387-tdep.c
CommitLineData
c906108c 1/* Intel 387 floating point stuff.
38edeab8 2
e2882c85 3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
21#include "frame.h"
786a90bb 22#include "gdbcore.h"
c906108c
SS
23#include "inferior.h"
24#include "language.h"
4e052eda 25#include "regcache.h"
f69fdf9b 26#include "target-float.h"
786a90bb
MK
27#include "value.h"
28
9a82579f 29#include "i386-tdep.h"
42c466d7 30#include "i387-tdep.h"
df7e5265 31#include "x86-xstate.h"
c906108c 32
de57eccd 33/* Print the floating point number specified by RAW. */
786a90bb 34
de57eccd 35static void
27067745
UW
36print_i387_value (struct gdbarch *gdbarch,
37 const gdb_byte *raw, struct ui_file *file)
de57eccd 38{
de57eccd
JM
39 /* We try to print 19 digits. The last digit may or may not contain
40 garbage, but we'd better print one too many. We need enough room
41 to print the value, 1 position for the sign, 1 for the decimal
42 point, 19 for the digits and 6 for the exponent adds up to 27. */
f69fdf9b
UW
43 const struct type *type = i387_ext_type (gdbarch);
44 std::string str = target_float_to_string (raw, type, " %-+27.19g");
8ba0dd51 45 fprintf_filtered (file, "%s", str.c_str ());
de57eccd
JM
46}
47
48/* Print the classification for the register contents RAW. */
786a90bb 49
de57eccd 50static void
27067745
UW
51print_i387_ext (struct gdbarch *gdbarch,
52 const gdb_byte *raw, struct ui_file *file)
de57eccd
JM
53{
54 int sign;
55 int integer;
56 unsigned int exponent;
57 unsigned long fraction[2];
58
59 sign = raw[9] & 0x80;
60 integer = raw[7] & 0x80;
61 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
62 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
63 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
64 | (raw[5] << 8) | raw[4]);
65
66 if (exponent == 0x7fff && integer)
67 {
68 if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000)
69 /* Infinity. */
61113f8b 70 fprintf_filtered (file, " %cInf", (sign ? '-' : '+'));
de57eccd
JM
71 else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000)
72 /* Real Indefinite (QNaN). */
61113f8b 73 fputs_unfiltered (" Real Indefinite (QNaN)", file);
de57eccd
JM
74 else if (fraction[1] & 0x40000000)
75 /* QNaN. */
61113f8b 76 fputs_filtered (" QNaN", file);
de57eccd
JM
77 else
78 /* SNaN. */
61113f8b 79 fputs_filtered (" SNaN", file);
de57eccd
JM
80 }
81 else if (exponent < 0x7fff && exponent > 0x0000 && integer)
82 /* Normal. */
27067745 83 print_i387_value (gdbarch, raw, file);
de57eccd
JM
84 else if (exponent == 0x0000)
85 {
86 /* Denormal or zero. */
27067745 87 print_i387_value (gdbarch, raw, file);
de57eccd
JM
88
89 if (integer)
90 /* Pseudo-denormal. */
61113f8b 91 fputs_filtered (" Pseudo-denormal", file);
de57eccd
JM
92 else if (fraction[0] || fraction[1])
93 /* Denormal. */
61113f8b 94 fputs_filtered (" Denormal", file);
de57eccd
JM
95 }
96 else
97 /* Unsupported. */
61113f8b 98 fputs_filtered (" Unsupported", file);
de57eccd
JM
99}
100
ad5f7d6e
PA
101/* Print the status word STATUS. If STATUS_P is false, then STATUS
102 was unavailable. */
786a90bb 103
de57eccd 104static void
ad5f7d6e
PA
105print_i387_status_word (int status_p,
106 unsigned int status, struct ui_file *file)
de57eccd 107{
ad5f7d6e
PA
108 fprintf_filtered (file, "Status Word: ");
109 if (!status_p)
110 {
111 fprintf_filtered (file, "%s\n", _("<unavailable>"));
112 return;
113 }
114
115 fprintf_filtered (file, "%s", hex_string_custom (status, 4));
61113f8b
MK
116 fputs_filtered (" ", file);
117 fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : " ");
118 fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : " ");
119 fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : " ");
120 fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : " ");
121 fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : " ");
122 fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : " ");
123 fputs_filtered (" ", file);
124 fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : " ");
125 fputs_filtered (" ", file);
126 fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : " ");
127 fputs_filtered (" ", file);
128 fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : " ");
129 fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : " ");
130 fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : " ");
131 fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : " ");
132
133 fputs_filtered ("\n", file);
134
135 fprintf_filtered (file,
136 " TOP: %d\n", ((status >> 11) & 7));
de57eccd
JM
137}
138
ad5f7d6e
PA
139/* Print the control word CONTROL. If CONTROL_P is false, then
140 CONTROL was unavailable. */
786a90bb 141
de57eccd 142static void
ad5f7d6e
PA
143print_i387_control_word (int control_p,
144 unsigned int control, struct ui_file *file)
de57eccd 145{
ad5f7d6e
PA
146 fprintf_filtered (file, "Control Word: ");
147 if (!control_p)
148 {
149 fprintf_filtered (file, "%s\n", _("<unavailable>"));
150 return;
151 }
152
153 fprintf_filtered (file, "%s", hex_string_custom (control, 4));
61113f8b
MK
154 fputs_filtered (" ", file);
155 fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : " ");
156 fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : " ");
157 fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : " ");
158 fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : " ");
159 fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : " ");
160 fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : " ");
de57eccd 161
61113f8b 162 fputs_filtered ("\n", file);
de57eccd 163
61113f8b 164 fputs_filtered (" PC: ", file);
de57eccd
JM
165 switch ((control >> 8) & 3)
166 {
167 case 0:
61113f8b 168 fputs_filtered ("Single Precision (24-bits)\n", file);
de57eccd
JM
169 break;
170 case 1:
61113f8b 171 fputs_filtered ("Reserved\n", file);
de57eccd
JM
172 break;
173 case 2:
61113f8b 174 fputs_filtered ("Double Precision (53-bits)\n", file);
de57eccd
JM
175 break;
176 case 3:
61113f8b 177 fputs_filtered ("Extended Precision (64-bits)\n", file);
de57eccd
JM
178 break;
179 }
180
61113f8b 181 fputs_filtered (" RC: ", file);
de57eccd
JM
182 switch ((control >> 10) & 3)
183 {
184 case 0:
61113f8b 185 fputs_filtered ("Round to nearest\n", file);
de57eccd
JM
186 break;
187 case 1:
61113f8b 188 fputs_filtered ("Round down\n", file);
de57eccd
JM
189 break;
190 case 2:
61113f8b 191 fputs_filtered ("Round up\n", file);
de57eccd
JM
192 break;
193 case 3:
61113f8b 194 fputs_filtered ("Round toward zero\n", file);
de57eccd
JM
195 break;
196 }
197}
198
9b949a49 199/* Print out the i387 floating point state. Note that we ignore FRAME
7d8d2918
MK
200 in the code below. That's OK since floating-point registers are
201 never saved on the stack. */
202
de57eccd 203void
61113f8b 204i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
8e186fd6 205 struct frame_info *frame, const char *args)
de57eccd 206{
5716833c 207 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
1d70089a 208 ULONGEST fctrl;
ad5f7d6e 209 int fctrl_p;
1d70089a 210 ULONGEST fstat;
ad5f7d6e 211 int fstat_p;
1d70089a 212 ULONGEST ftag;
ad5f7d6e 213 int ftag_p;
1d70089a 214 ULONGEST fiseg;
ad5f7d6e 215 int fiseg_p;
1d70089a 216 ULONGEST fioff;
ad5f7d6e 217 int fioff_p;
1d70089a 218 ULONGEST foseg;
ad5f7d6e 219 int foseg_p;
1d70089a 220 ULONGEST fooff;
ad5f7d6e 221 int fooff_p;
1d70089a 222 ULONGEST fop;
ad5f7d6e 223 int fop_p;
de57eccd
JM
224 int fpreg;
225 int top;
226
5716833c
MK
227 gdb_assert (gdbarch == get_frame_arch (frame));
228
ad5f7d6e
PA
229 fctrl_p = read_frame_register_unsigned (frame,
230 I387_FCTRL_REGNUM (tdep), &fctrl);
231 fstat_p = read_frame_register_unsigned (frame,
232 I387_FSTAT_REGNUM (tdep), &fstat);
233 ftag_p = read_frame_register_unsigned (frame,
234 I387_FTAG_REGNUM (tdep), &ftag);
235 fiseg_p = read_frame_register_unsigned (frame,
236 I387_FISEG_REGNUM (tdep), &fiseg);
237 fioff_p = read_frame_register_unsigned (frame,
238 I387_FIOFF_REGNUM (tdep), &fioff);
239 foseg_p = read_frame_register_unsigned (frame,
240 I387_FOSEG_REGNUM (tdep), &foseg);
241 fooff_p = read_frame_register_unsigned (frame,
242 I387_FOOFF_REGNUM (tdep), &fooff);
243 fop_p = read_frame_register_unsigned (frame,
244 I387_FOP_REGNUM (tdep), &fop);
245
246 if (fstat_p)
de57eccd 247 {
ad5f7d6e 248 top = ((fstat >> 11) & 7);
de57eccd 249
ad5f7d6e 250 for (fpreg = 7; fpreg >= 0; fpreg--)
de57eccd 251 {
ad5f7d6e
PA
252 struct value *regval;
253 int regnum;
254 int i;
255 int tag = -1;
256
257 fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg);
258
259 if (ftag_p)
260 {
261 tag = (ftag >> (fpreg * 2)) & 3;
262
263 switch (tag)
264 {
265 case 0:
266 fputs_filtered ("Valid ", file);
267 break;
268 case 1:
269 fputs_filtered ("Zero ", file);
270 break;
271 case 2:
272 fputs_filtered ("Special ", file);
273 break;
274 case 3:
275 fputs_filtered ("Empty ", file);
276 break;
277 }
278 }
279 else
280 fputs_filtered ("Unknown ", file);
281
282 regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep);
283 regval = get_frame_register_value (frame, regnum);
284
285 if (value_entirely_available (regval))
286 {
433730c9 287 const gdb_byte *raw = value_contents (regval);
ad5f7d6e
PA
288
289 fputs_filtered ("0x", file);
290 for (i = 9; i >= 0; i--)
291 fprintf_filtered (file, "%02x", raw[i]);
292
293 if (tag != -1 && tag != 3)
294 print_i387_ext (gdbarch, raw, file);
295 }
296 else
297 fprintf_filtered (file, "%s", _("<unavailable>"));
298
299 fputs_filtered ("\n", file);
de57eccd 300 }
de57eccd
JM
301 }
302
f16a25ae 303 fputs_filtered ("\n", file);
ad5f7d6e
PA
304 print_i387_status_word (fstat_p, fstat, file);
305 print_i387_control_word (fctrl_p, fctrl, file);
61113f8b 306 fprintf_filtered (file, "Tag Word: %s\n",
ad5f7d6e 307 ftag_p ? hex_string_custom (ftag, 4) : _("<unavailable>"));
61113f8b 308 fprintf_filtered (file, "Instruction Pointer: %s:",
ad5f7d6e
PA
309 fiseg_p ? hex_string_custom (fiseg, 2) : _("<unavailable>"));
310 fprintf_filtered (file, "%s\n",
311 fioff_p ? hex_string_custom (fioff, 8) : _("<unavailable>"));
61113f8b 312 fprintf_filtered (file, "Operand Pointer: %s:",
ad5f7d6e
PA
313 foseg_p ? hex_string_custom (foseg, 2) : _("<unavailable>"));
314 fprintf_filtered (file, "%s\n",
315 fooff_p ? hex_string_custom (fooff, 8) : _("<unavailable>"));
61113f8b 316 fprintf_filtered (file, "Opcode: %s\n",
ad5f7d6e
PA
317 fop_p
318 ? (hex_string_custom (fop ? (fop | 0xd800) : 0, 4))
319 : _("<unavailable>"));
de57eccd 320}
d532c08f
MK
321\f
322
83acabca
DJ
323/* Return nonzero if a value of type TYPE stored in register REGNUM
324 needs any special handling. */
325
326int
1777feb0
MS
327i387_convert_register_p (struct gdbarch *gdbarch, int regnum,
328 struct type *type)
83acabca 329{
20a6ec49 330 if (i386_fp_regnum_p (gdbarch, regnum))
83acabca
DJ
331 {
332 /* Floating point registers must be converted unless we are
8c8f9122
YQ
333 accessing them in their hardware type or TYPE is not float. */
334 if (type == i387_ext_type (gdbarch)
335 || TYPE_CODE (type) != TYPE_CODE_FLT)
83acabca
DJ
336 return 0;
337 else
338 return 1;
339 }
340
341 return 0;
342}
343
d532c08f
MK
344/* Read a value of type TYPE from register REGNUM in frame FRAME, and
345 return its contents in TO. */
346
8dccd430 347int
d532c08f 348i387_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
349 struct type *type, gdb_byte *to,
350 int *optimizedp, int *unavailablep)
d532c08f 351{
27067745 352 struct gdbarch *gdbarch = get_frame_arch (frame);
b4ad899f 353 gdb_byte from[I386_MAX_REGISTER_SIZE];
d532c08f 354
27067745 355 gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
d532c08f
MK
356
357 /* We only support floating-point values. */
358 if (TYPE_CODE (type) != TYPE_CODE_FLT)
359 {
8a3fe4f8
AC
360 warning (_("Cannot convert floating-point register value "
361 "to non-floating-point type."));
8dccd430
PA
362 *optimizedp = *unavailablep = 0;
363 return 0;
d532c08f
MK
364 }
365
83acabca 366 /* Convert to TYPE. */
d8e07dda
YQ
367 if (!get_frame_register_bytes (frame, regnum, 0,
368 register_size (gdbarch, regnum),
8dccd430
PA
369 from, optimizedp, unavailablep))
370 return 0;
371
3b2ca824 372 target_float_convert (from, i387_ext_type (gdbarch), to, type);
8dccd430
PA
373 *optimizedp = *unavailablep = 0;
374 return 1;
d532c08f
MK
375}
376
377/* Write the contents FROM of a value of type TYPE into register
378 REGNUM in frame FRAME. */
379
380void
381i387_value_to_register (struct frame_info *frame, int regnum,
42835c2b 382 struct type *type, const gdb_byte *from)
d532c08f 383{
27067745 384 struct gdbarch *gdbarch = get_frame_arch (frame);
b4ad899f 385 gdb_byte to[I386_MAX_REGISTER_SIZE];
d532c08f 386
27067745 387 gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
d532c08f
MK
388
389 /* We only support floating-point values. */
390 if (TYPE_CODE (type) != TYPE_CODE_FLT)
391 {
8a3fe4f8
AC
392 warning (_("Cannot convert non-floating-point type "
393 "to floating-point register value."));
d532c08f
MK
394 return;
395 }
396
83acabca 397 /* Convert from TYPE. */
3b2ca824 398 target_float_convert (from, type, to, i387_ext_type (gdbarch));
d532c08f
MK
399 put_frame_register (frame, regnum, to);
400}
401\f
e750d25e 402
786a90bb 403/* Handle FSAVE and FXSAVE formats. */
e750d25e
JT
404
405/* At fsave_offset[REGNUM] you'll find the offset to the location in
406 the data structure used by the "fsave" instruction where GDB
407 register REGNUM is stored. */
408
409static int fsave_offset[] =
410{
5716833c
MK
411 28 + 0 * 10, /* %st(0) ... */
412 28 + 1 * 10,
413 28 + 2 * 10,
414 28 + 3 * 10,
415 28 + 4 * 10,
416 28 + 5 * 10,
417 28 + 6 * 10,
418 28 + 7 * 10, /* ... %st(7). */
419 0, /* `fctrl' (16 bits). */
420 4, /* `fstat' (16 bits). */
421 8, /* `ftag' (16 bits). */
422 16, /* `fiseg' (16 bits). */
423 12, /* `fioff'. */
424 24, /* `foseg' (16 bits). */
425 20, /* `fooff'. */
426 18 /* `fop' (bottom 11 bits). */
e750d25e
JT
427};
428
20a6ec49
MD
429#define FSAVE_ADDR(tdep, fsave, regnum) \
430 (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)])
e750d25e
JT
431\f
432
41d041d6
MK
433/* Fill register REGNUM in REGCACHE with the appropriate value from
434 *FSAVE. This function masks off any of the reserved bits in
435 *FSAVE. */
e750d25e
JT
436
437void
41d041d6 438i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave)
e750d25e 439{
ac7936df 440 struct gdbarch *gdbarch = regcache->arch ();
e17a4113
UW
441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
442 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9a3c8263 443 const gdb_byte *regs = (const gdb_byte *) fsave;
e750d25e
JT
444 int i;
445
5716833c
MK
446 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
447
20a6ec49 448 for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
ed504bdf
MK
449 if (regnum == -1 || regnum == i)
450 {
451 if (fsave == NULL)
452 {
5716833c
MK
453 regcache_raw_supply (regcache, i, NULL);
454 continue;
ed504bdf
MK
455 }
456
457 /* Most of the FPU control registers occupy only 16 bits in the
458 fsave area. Give those a special treatment. */
20a6ec49
MD
459 if (i >= I387_FCTRL_REGNUM (tdep)
460 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
ed504bdf 461 {
b4ad899f 462 gdb_byte val[4];
ed504bdf 463
20a6ec49 464 memcpy (val, FSAVE_ADDR (tdep, regs, i), 2);
ed504bdf 465 val[2] = val[3] = 0;
20a6ec49 466 if (i == I387_FOP_REGNUM (tdep))
ed504bdf 467 val[1] &= ((1 << 3) - 1);
5716833c 468 regcache_raw_supply (regcache, i, val);
ed504bdf
MK
469 }
470 else
20a6ec49 471 regcache_raw_supply (regcache, i, FSAVE_ADDR (tdep, regs, i));
ed504bdf 472 }
b87bc0d8
MK
473
474 /* Provide dummy values for the SSE registers. */
20a6ec49 475 for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
b87bc0d8
MK
476 if (regnum == -1 || regnum == i)
477 regcache_raw_supply (regcache, i, NULL);
20a6ec49 478 if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep))
b87bc0d8 479 {
b4ad899f 480 gdb_byte buf[4];
b87bc0d8 481
8ee22052 482 store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL);
20a6ec49 483 regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), buf);
b87bc0d8 484 }
e750d25e
JT
485}
486
487/* Fill register REGNUM (if it is a floating-point register) in *FSAVE
63b6c53f
MK
488 with the value from REGCACHE. If REGNUM is -1, do this for all
489 registers. This function doesn't touch any of the reserved bits in
490 *FSAVE. */
e750d25e
JT
491
492void
63b6c53f 493i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave)
e750d25e 494{
ac7936df 495 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
9a3c8263 496 gdb_byte *regs = (gdb_byte *) fsave;
e750d25e
JT
497 int i;
498
5716833c
MK
499 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
500
20a6ec49 501 for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
e750d25e
JT
502 if (regnum == -1 || regnum == i)
503 {
504 /* Most of the FPU control registers occupy only 16 bits in
505 the fsave area. Give those a special treatment. */
20a6ec49
MD
506 if (i >= I387_FCTRL_REGNUM (tdep)
507 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
e750d25e 508 {
b4ad899f 509 gdb_byte buf[4];
e750d25e 510
5716833c 511 regcache_raw_collect (regcache, i, buf);
e750d25e 512
20a6ec49 513 if (i == I387_FOP_REGNUM (tdep))
e750d25e
JT
514 {
515 /* The opcode occupies only 11 bits. Make sure we
516 don't touch the other bits. */
517 buf[1] &= ((1 << 3) - 1);
20a6ec49 518 buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
e750d25e 519 }
20a6ec49 520 memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2);
e750d25e
JT
521 }
522 else
20a6ec49 523 regcache_raw_collect (regcache, i, FSAVE_ADDR (tdep, regs, i));
e750d25e
JT
524 }
525}
526\f
527
528/* At fxsave_offset[REGNUM] you'll find the offset to the location in
529 the data structure used by the "fxsave" instruction where GDB
530 register REGNUM is stored. */
531
532static int fxsave_offset[] =
533{
5716833c 534 32, /* %st(0) through ... */
e750d25e
JT
535 48,
536 64,
537 80,
538 96,
539 112,
540 128,
5716833c
MK
541 144, /* ... %st(7) (80 bits each). */
542 0, /* `fctrl' (16 bits). */
543 2, /* `fstat' (16 bits). */
544 4, /* `ftag' (16 bits). */
545 12, /* `fiseg' (16 bits). */
546 8, /* `fioff'. */
547 20, /* `foseg' (16 bits). */
548 16, /* `fooff'. */
549 6, /* `fop' (bottom 11 bits). */
550 160 + 0 * 16, /* %xmm0 through ... */
04c8243f
MK
551 160 + 1 * 16,
552 160 + 2 * 16,
553 160 + 3 * 16,
554 160 + 4 * 16,
555 160 + 5 * 16,
556 160 + 6 * 16,
557 160 + 7 * 16,
558 160 + 8 * 16,
559 160 + 9 * 16,
560 160 + 10 * 16,
561 160 + 11 * 16,
562 160 + 12 * 16,
563 160 + 13 * 16,
564 160 + 14 * 16,
5716833c 565 160 + 15 * 16, /* ... %xmm15 (128 bits each). */
e750d25e
JT
566};
567
20a6ec49
MD
568#define FXSAVE_ADDR(tdep, fxsave, regnum) \
569 (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)])
5716833c
MK
570
571/* We made an unfortunate choice in putting %mxcsr after the SSE
572 registers %xmm0-%xmm7 instead of before, since it makes supporting
573 the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we
574 don't include the offset for %mxcsr here above. */
575
576#define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24)
e750d25e 577
b4ad899f 578static int i387_tag (const gdb_byte *raw);
e750d25e
JT
579\f
580
41d041d6 581/* Fill register REGNUM in REGCACHE with the appropriate
ed504bdf
MK
582 floating-point or SSE register value from *FXSAVE. This function
583 masks off any of the reserved bits in *FXSAVE. */
e750d25e
JT
584
585void
41d041d6 586i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
e750d25e 587{
ac7936df 588 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
9a3c8263 589 const gdb_byte *regs = (const gdb_byte *) fxsave;
5716833c
MK
590 int i;
591
592 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
593 gdb_assert (tdep->num_xmm_regs > 0);
dff95cc7 594
20a6ec49 595 for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
ed504bdf
MK
596 if (regnum == -1 || regnum == i)
597 {
5716833c 598 if (regs == NULL)
ed504bdf 599 {
5716833c 600 regcache_raw_supply (regcache, i, NULL);
ed504bdf
MK
601 continue;
602 }
932bb524 603
ed504bdf
MK
604 /* Most of the FPU control registers occupy only 16 bits in
605 the fxsave area. Give those a special treatment. */
20a6ec49
MD
606 if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
607 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
ed504bdf 608 {
b4ad899f 609 gdb_byte val[4];
ed504bdf 610
20a6ec49 611 memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
ed504bdf 612 val[2] = val[3] = 0;
20a6ec49 613 if (i == I387_FOP_REGNUM (tdep))
ed504bdf 614 val[1] &= ((1 << 3) - 1);
20a6ec49 615 else if (i== I387_FTAG_REGNUM (tdep))
ed504bdf
MK
616 {
617 /* The fxsave area contains a simplified version of
618 the tag word. We have to look at the actual 80-bit
619 FP data to recreate the traditional i387 tag word. */
620
621 unsigned long ftag = 0;
622 int fpreg;
623 int top;
624
20a6ec49
MD
625 top = ((FXSAVE_ADDR (tdep, regs,
626 I387_FSTAT_REGNUM (tdep)))[1] >> 3);
5716833c 627 top &= 0x7;
ed504bdf
MK
628
629 for (fpreg = 7; fpreg >= 0; fpreg--)
630 {
631 int tag;
632
633 if (val[0] & (1 << fpreg))
634 {
6d5e094a
MS
635 int thisreg = (fpreg + 8 - top) % 8
636 + I387_ST0_REGNUM (tdep);
637 tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
ed504bdf
MK
638 }
639 else
640 tag = 3; /* Empty */
641
642 ftag |= tag << (2 * fpreg);
643 }
644 val[0] = ftag & 0xff;
645 val[1] = (ftag >> 8) & 0xff;
646 }
5716833c 647 regcache_raw_supply (regcache, i, val);
ed504bdf
MK
648 }
649 else
20a6ec49 650 regcache_raw_supply (regcache, i, FXSAVE_ADDR (tdep, regs, i));
ed504bdf 651 }
5716833c 652
20a6ec49 653 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
5716833c
MK
654 {
655 if (regs == NULL)
20a6ec49 656 regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), NULL);
5716833c 657 else
20a6ec49 658 regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep),
5716833c
MK
659 FXSAVE_MXCSR_ADDR (regs));
660 }
e750d25e
JT
661}
662
663/* Fill register REGNUM (if it is a floating-point or SSE register) in
80571bff
MK
664 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
665 all registers. This function doesn't touch any of the reserved
666 bits in *FXSAVE. */
e750d25e
JT
667
668void
80571bff 669i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave)
e750d25e 670{
ac7936df 671 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
9a3c8263 672 gdb_byte *regs = (gdb_byte *) fxsave;
5716833c
MK
673 int i;
674
675 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
676 gdb_assert (tdep->num_xmm_regs > 0);
dff95cc7 677
20a6ec49 678 for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
e750d25e
JT
679 if (regnum == -1 || regnum == i)
680 {
681 /* Most of the FPU control registers occupy only 16 bits in
682 the fxsave area. Give those a special treatment. */
20a6ec49
MD
683 if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
684 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
e750d25e 685 {
b4ad899f 686 gdb_byte buf[4];
e750d25e 687
5716833c 688 regcache_raw_collect (regcache, i, buf);
e750d25e 689
31aeac78
L
690 if (i == I387_FOP_REGNUM (tdep))
691 {
692 /* The opcode occupies only 11 bits. Make sure we
693 don't touch the other bits. */
694 buf[1] &= ((1 << 3) - 1);
695 buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
696 }
697 else if (i == I387_FTAG_REGNUM (tdep))
698 {
699 /* Converting back is much easier. */
700
701 unsigned short ftag;
702 int fpreg;
703
704 ftag = (buf[1] << 8) | buf[0];
705 buf[0] = 0;
706 buf[1] = 0;
707
708 for (fpreg = 7; fpreg >= 0; fpreg--)
709 {
710 int tag = (ftag >> (fpreg * 2)) & 3;
711
712 if (tag != 3)
713 buf[0] |= (1 << fpreg);
714 }
715 }
716 memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2);
717 }
718 else
719 regcache_raw_collect (regcache, i, FXSAVE_ADDR (tdep, regs, i));
720 }
721
722 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
723 regcache_raw_collect (regcache, I387_MXCSR_REGNUM (tdep),
724 FXSAVE_MXCSR_ADDR (regs));
725}
726
727/* `xstate_bv' is at byte offset 512. */
728#define XSAVE_XSTATE_BV_ADDR(xsave) (xsave + 512)
729
730/* At xsave_avxh_offset[REGNUM] you'll find the offset to the location in
731 the upper 128bit of AVX register data structure used by the "xsave"
732 instruction where GDB register REGNUM is stored. */
733
734static int xsave_avxh_offset[] =
735{
736 576 + 0 * 16, /* Upper 128bit of %ymm0 through ... */
737 576 + 1 * 16,
738 576 + 2 * 16,
739 576 + 3 * 16,
740 576 + 4 * 16,
741 576 + 5 * 16,
742 576 + 6 * 16,
743 576 + 7 * 16,
744 576 + 8 * 16,
745 576 + 9 * 16,
746 576 + 10 * 16,
747 576 + 11 * 16,
748 576 + 12 * 16,
749 576 + 13 * 16,
750 576 + 14 * 16,
751 576 + 15 * 16 /* Upper 128bit of ... %ymm15 (128 bits each). */
752};
753
01f9f808
MS
754#define XSAVE_AVXH_ADDR(tdep, xsave, regnum) \
755 (xsave + xsave_avxh_offset[regnum - I387_YMM0H_REGNUM (tdep)])
756
757/* At xsave_ymm_avx512_offset[REGNUM] you'll find the offset to the location in
758 the upper 128bit of ZMM register data structure used by the "xsave"
759 instruction where GDB register REGNUM is stored. */
760
761static int xsave_ymm_avx512_offset[] =
762{
763 /* HI16_ZMM_area + 16 bytes + regnum* 64 bytes. */
764 1664 + 16 + 0 * 64, /* %ymm16 through... */
765 1664 + 16 + 1 * 64,
766 1664 + 16 + 2 * 64,
767 1664 + 16 + 3 * 64,
768 1664 + 16 + 4 * 64,
769 1664 + 16 + 5 * 64,
770 1664 + 16 + 6 * 64,
771 1664 + 16 + 7 * 64,
772 1664 + 16 + 8 * 64,
773 1664 + 16 + 9 * 64,
774 1664 + 16 + 10 * 64,
775 1664 + 16 + 11 * 64,
776 1664 + 16 + 12 * 64,
777 1664 + 16 + 13 * 64,
778 1664 + 16 + 14 * 64,
779 1664 + 16 + 15 * 64 /* ... %ymm31 (128 bits each). */
780};
781
782#define XSAVE_YMM_AVX512_ADDR(tdep, xsave, regnum) \
783 (xsave + xsave_ymm_avx512_offset[regnum - I387_YMM16H_REGNUM (tdep)])
784
785static int xsave_xmm_avx512_offset[] =
1dbcd68c 786{
01f9f808
MS
787 1664 + 0 * 64, /* %ymm16 through... */
788 1664 + 1 * 64,
789 1664 + 2 * 64,
790 1664 + 3 * 64,
791 1664 + 4 * 64,
792 1664 + 5 * 64,
793 1664 + 6 * 64,
794 1664 + 7 * 64,
795 1664 + 8 * 64,
796 1664 + 9 * 64,
797 1664 + 10 * 64,
798 1664 + 11 * 64,
799 1664 + 12 * 64,
800 1664 + 13 * 64,
801 1664 + 14 * 64,
802 1664 + 15 * 64 /* ... %ymm31 (128 bits each). */
803};
804
805#define XSAVE_XMM_AVX512_ADDR(tdep, xsave, regnum) \
806 (xsave + xsave_xmm_avx512_offset[regnum - I387_XMM16_REGNUM (tdep)])
807
808static int xsave_mpx_offset[] = {
1dbcd68c
WT
809 960 + 0 * 16, /* bnd0r...bnd3r registers. */
810 960 + 1 * 16,
811 960 + 2 * 16,
812 960 + 3 * 16,
813 1024 + 0 * 8, /* bndcfg ... bndstatus. */
814 1024 + 1 * 8,
815};
816
1dbcd68c
WT
817#define XSAVE_MPX_ADDR(tdep, xsave, regnum) \
818 (xsave + xsave_mpx_offset[regnum - I387_BND0R_REGNUM (tdep)])
819
01f9f808
MS
820 /* At xsave_avx512__h_offset[REGNUM] you find the offset to the location
821 of the AVX512 opmask register data structure used by the "xsave"
822 instruction where GDB register REGNUM is stored. */
823
824static int xsave_avx512_k_offset[] =
825{
826 1088 + 0 * 8, /* %k0 through... */
827 1088 + 1 * 8,
828 1088 + 2 * 8,
829 1088 + 3 * 8,
830 1088 + 4 * 8,
831 1088 + 5 * 8,
832 1088 + 6 * 8,
833 1088 + 7 * 8 /* %k7 (64 bits each). */
834};
835
836#define XSAVE_AVX512_K_ADDR(tdep, xsave, regnum) \
837 (xsave + xsave_avx512_k_offset[regnum - I387_K0_REGNUM (tdep)])
838
839/* At xsave_avx512_zmm_h_offset[REGNUM] you find the offset to the location in
840 the upper 256bit of AVX512 ZMMH register data structure used by the "xsave"
841 instruction where GDB register REGNUM is stored. */
842
843static int xsave_avx512_zmm_h_offset[] =
844{
845 1152 + 0 * 32,
846 1152 + 1 * 32, /* Upper 256bit of %zmmh0 through... */
847 1152 + 2 * 32,
848 1152 + 3 * 32,
849 1152 + 4 * 32,
850 1152 + 5 * 32,
851 1152 + 6 * 32,
852 1152 + 7 * 32,
853 1152 + 8 * 32,
854 1152 + 9 * 32,
855 1152 + 10 * 32,
856 1152 + 11 * 32,
857 1152 + 12 * 32,
858 1152 + 13 * 32,
859 1152 + 14 * 32,
860 1152 + 15 * 32, /* Upper 256bit of... %zmmh15 (256 bits each). */
861 1664 + 32 + 0 * 64, /* Upper 256bit of... %zmmh16 (256 bits each). */
862 1664 + 32 + 1 * 64,
863 1664 + 32 + 2 * 64,
864 1664 + 32 + 3 * 64,
865 1664 + 32 + 4 * 64,
866 1664 + 32 + 5 * 64,
867 1664 + 32 + 6 * 64,
868 1664 + 32 + 7 * 64,
869 1664 + 32 + 8 * 64,
870 1664 + 32 + 9 * 64,
871 1664 + 32 + 10 * 64,
872 1664 + 32 + 11 * 64,
873 1664 + 32 + 12 * 64,
874 1664 + 32 + 13 * 64,
875 1664 + 32 + 14 * 64,
876 1664 + 32 + 15 * 64 /* Upper 256bit of... %zmmh31 (256 bits each). */
877};
878
879#define XSAVE_AVX512_ZMM_H_ADDR(tdep, xsave, regnum) \
880 (xsave + xsave_avx512_zmm_h_offset[regnum - I387_ZMM0H_REGNUM (tdep)])
881
51547df6
MS
882/* At xsave_pkeys_offset[REGNUM] you find the offset to the location
883 of the PKRU register data structure used by the "xsave"
884 instruction where GDB register REGNUM is stored. */
885
886static int xsave_pkeys_offset[] =
887{
8882688 + 0 * 8 /* %pkru (64 bits in XSTATE, 32-bit actually used by
889 instructions and applications). */
890};
891
892#define XSAVE_PKEYS_ADDR(tdep, xsave, regnum) \
893 (xsave + xsave_pkeys_offset[regnum - I387_PKRU_REGNUM (tdep)])
894
8ee22052
AB
895
896/* Extract from XSAVE a bitset of the features that are available on the
897 target, but which have not yet been enabled. */
898
899ULONGEST
900i387_xsave_get_clear_bv (struct gdbarch *gdbarch, const void *xsave)
901{
902 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
903 const gdb_byte *regs = (const gdb_byte *) xsave;
904 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
905
906 /* Get `xstat_bv'. The supported bits in `xstat_bv' are 8 bytes. */
907 ULONGEST xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
908 8, byte_order);
909
910 /* Clear part in vector registers if its bit in xstat_bv is zero. */
911 ULONGEST clear_bv = (~(xstate_bv)) & tdep->xcr0;
912
913 return clear_bv;
914}
915
31aeac78
L
916/* Similar to i387_supply_fxsave, but use XSAVE extended state. */
917
918void
919i387_supply_xsave (struct regcache *regcache, int regnum,
920 const void *xsave)
921{
ac7936df 922 struct gdbarch *gdbarch = regcache->arch ();
8ee22052 923 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
01f9f808 924 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 925 const gdb_byte *regs = (const gdb_byte *) xsave;
31aeac78 926 int i;
ff6527bb 927 ULONGEST clear_bv;
975c21ab 928 static const gdb_byte zero[I386_MAX_REGISTER_SIZE] = { 0 };
31aeac78
L
929 enum
930 {
931 none = 0x0,
932 x87 = 0x1,
933 sse = 0x2,
934 avxh = 0x4,
1dbcd68c 935 mpx = 0x8,
01f9f808
MS
936 avx512_k = 0x10,
937 avx512_zmm_h = 0x20,
938 avx512_ymmh_avx512 = 0x40,
939 avx512_xmm_avx512 = 0x80,
51547df6 940 pkeys = 0x100,
01f9f808 941 all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h
51547df6 942 | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys
31aeac78
L
943 } regclass;
944
275418ae 945 gdb_assert (regs != NULL);
31aeac78
L
946 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
947 gdb_assert (tdep->num_xmm_regs > 0);
948
949 if (regnum == -1)
950 regclass = all;
51547df6
MS
951 else if (regnum >= I387_PKRU_REGNUM (tdep)
952 && regnum < I387_PKEYSEND_REGNUM (tdep))
953 regclass = pkeys;
01f9f808
MS
954 else if (regnum >= I387_ZMM0H_REGNUM (tdep)
955 && regnum < I387_ZMMENDH_REGNUM (tdep))
956 regclass = avx512_zmm_h;
957 else if (regnum >= I387_K0_REGNUM (tdep)
958 && regnum < I387_KEND_REGNUM (tdep))
959 regclass = avx512_k;
960 else if (regnum >= I387_YMM16H_REGNUM (tdep)
961 && regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
962 regclass = avx512_ymmh_avx512;
963 else if (regnum >= I387_XMM16_REGNUM (tdep)
964 && regnum < I387_XMM_AVX512_END_REGNUM (tdep))
965 regclass = avx512_xmm_avx512;
31aeac78
L
966 else if (regnum >= I387_YMM0H_REGNUM (tdep)
967 && regnum < I387_YMMENDH_REGNUM (tdep))
968 regclass = avxh;
1dbcd68c
WT
969 else if (regnum >= I387_BND0R_REGNUM (tdep)
970 && regnum < I387_MPXEND_REGNUM (tdep))
971 regclass = mpx;
01f9f808 972 else if (regnum >= I387_XMM0_REGNUM (tdep)
31aeac78
L
973 && regnum < I387_MXCSR_REGNUM (tdep))
974 regclass = sse;
975 else if (regnum >= I387_ST0_REGNUM (tdep)
976 && regnum < I387_FCTRL_REGNUM (tdep))
977 regclass = x87;
978 else
979 regclass = none;
980
8ee22052 981 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
31aeac78 982
b4d36fb8
PA
983 /* With the delayed xsave mechanism, in between the program
984 starting, and the program accessing the vector registers for the
985 first time, the register's values are invalid. The kernel
986 initializes register states to zero when they are set the first
987 time in a program. This means that from the user-space programs'
988 perspective, it's the same as if the registers have always been
989 zero from the start of the program. Therefore, the debugger
275418ae 990 should provide the same illusion to the user. */
b4d36fb8 991
31aeac78
L
992 switch (regclass)
993 {
994 case none:
995 break;
996
51547df6
MS
997 case pkeys:
998 if ((clear_bv & X86_XSTATE_PKRU))
999 regcache_raw_supply (regcache, regnum, zero);
1000 else
1001 regcache_raw_supply (regcache, regnum,
1002 XSAVE_PKEYS_ADDR (tdep, regs, regnum));
1003 return;
1004
01f9f808 1005 case avx512_zmm_h:
df7e5265 1006 if ((clear_bv & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
01f9f808
MS
1007 regcache_raw_supply (regcache, regnum, zero);
1008 else
1009 regcache_raw_supply (regcache, regnum,
1010 XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum));
1011 return;
1012
1013 case avx512_k:
df7e5265 1014 if ((clear_bv & X86_XSTATE_K))
01f9f808
MS
1015 regcache_raw_supply (regcache, regnum, zero);
1016 else
1017 regcache_raw_supply (regcache, regnum,
1018 XSAVE_AVX512_K_ADDR (tdep, regs, regnum));
1019 return;
1020
1021 case avx512_ymmh_avx512:
df7e5265 1022 if ((clear_bv & X86_XSTATE_ZMM))
01f9f808
MS
1023 regcache_raw_supply (regcache, regnum, zero);
1024 else
1025 regcache_raw_supply (regcache, regnum,
1026 XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum));
1027 return;
1028
1029 case avx512_xmm_avx512:
df7e5265 1030 if ((clear_bv & X86_XSTATE_ZMM))
01f9f808
MS
1031 regcache_raw_supply (regcache, regnum, zero);
1032 else
1033 regcache_raw_supply (regcache, regnum,
1034 XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum));
1035 return;
1036
31aeac78 1037 case avxh:
df7e5265 1038 if ((clear_bv & X86_XSTATE_AVX))
275418ae 1039 regcache_raw_supply (regcache, regnum, zero);
31aeac78 1040 else
b4d36fb8
PA
1041 regcache_raw_supply (regcache, regnum,
1042 XSAVE_AVXH_ADDR (tdep, regs, regnum));
31aeac78
L
1043 return;
1044
1dbcd68c 1045 case mpx:
df7e5265 1046 if ((clear_bv & X86_XSTATE_BNDREGS))
1dbcd68c
WT
1047 regcache_raw_supply (regcache, regnum, zero);
1048 else
1049 regcache_raw_supply (regcache, regnum,
1050 XSAVE_MPX_ADDR (tdep, regs, regnum));
1051 return;
1052
31aeac78 1053 case sse:
df7e5265 1054 if ((clear_bv & X86_XSTATE_SSE))
275418ae 1055 regcache_raw_supply (regcache, regnum, zero);
31aeac78 1056 else
b4d36fb8
PA
1057 regcache_raw_supply (regcache, regnum,
1058 FXSAVE_ADDR (tdep, regs, regnum));
31aeac78
L
1059 return;
1060
1061 case x87:
df7e5265 1062 if ((clear_bv & X86_XSTATE_X87))
275418ae 1063 regcache_raw_supply (regcache, regnum, zero);
31aeac78 1064 else
b4d36fb8
PA
1065 regcache_raw_supply (regcache, regnum,
1066 FXSAVE_ADDR (tdep, regs, regnum));
31aeac78
L
1067 return;
1068
1069 case all:
51547df6
MS
1070 /* Handle PKEYS registers. */
1071 if ((tdep->xcr0 & X86_XSTATE_PKRU))
1072 {
1073 if ((clear_bv & X86_XSTATE_PKRU))
1074 {
1075 for (i = I387_PKRU_REGNUM (tdep);
1076 i < I387_PKEYSEND_REGNUM (tdep);
1077 i++)
1078 regcache_raw_supply (regcache, i, zero);
1079 }
1080 else
1081 {
1082 for (i = I387_PKRU_REGNUM (tdep);
1083 i < I387_PKEYSEND_REGNUM (tdep);
1084 i++)
1085 regcache_raw_supply (regcache, i,
1086 XSAVE_PKEYS_ADDR (tdep, regs, i));
1087 }
1088 }
1089
01f9f808 1090 /* Handle the upper ZMM registers. */
df7e5265 1091 if ((tdep->xcr0 & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
01f9f808 1092 {
df7e5265 1093 if ((clear_bv & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
01f9f808
MS
1094 {
1095 for (i = I387_ZMM0H_REGNUM (tdep);
1096 i < I387_ZMMENDH_REGNUM (tdep);
1097 i++)
1098 regcache_raw_supply (regcache, i, zero);
1099 }
1100 else
1101 {
1102 for (i = I387_ZMM0H_REGNUM (tdep);
1103 i < I387_ZMMENDH_REGNUM (tdep);
1104 i++)
1105 regcache_raw_supply (regcache, i,
1106 XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i));
1107 }
1108 }
1109
1110 /* Handle AVX512 OpMask registers. */
df7e5265 1111 if ((tdep->xcr0 & X86_XSTATE_K))
01f9f808 1112 {
df7e5265 1113 if ((clear_bv & X86_XSTATE_K))
01f9f808
MS
1114 {
1115 for (i = I387_K0_REGNUM (tdep);
1116 i < I387_KEND_REGNUM (tdep);
1117 i++)
1118 regcache_raw_supply (regcache, i, zero);
1119 }
1120 else
1121 {
1122 for (i = I387_K0_REGNUM (tdep);
1123 i < I387_KEND_REGNUM (tdep);
1124 i++)
1125 regcache_raw_supply (regcache, i,
1126 XSAVE_AVX512_K_ADDR (tdep, regs, i));
1127 }
1128 }
1129
1130 /* Handle the YMM_AVX512 registers. */
df7e5265 1131 if ((tdep->xcr0 & X86_XSTATE_ZMM))
01f9f808 1132 {
df7e5265 1133 if ((clear_bv & X86_XSTATE_ZMM))
01f9f808
MS
1134 {
1135 for (i = I387_YMM16H_REGNUM (tdep);
1136 i < I387_YMMH_AVX512_END_REGNUM (tdep);
1137 i++)
1138 regcache_raw_supply (regcache, i, zero);
1139 for (i = I387_XMM16_REGNUM (tdep);
1140 i < I387_XMM_AVX512_END_REGNUM (tdep);
1141 i++)
1142 regcache_raw_supply (regcache, i, zero);
1143 }
1144 else
1145 {
1146 for (i = I387_YMM16H_REGNUM (tdep);
1147 i < I387_YMMH_AVX512_END_REGNUM (tdep);
1148 i++)
1149 regcache_raw_supply (regcache, i,
1150 XSAVE_YMM_AVX512_ADDR (tdep, regs, i));
1151 for (i = I387_XMM16_REGNUM (tdep);
1152 i < I387_XMM_AVX512_END_REGNUM (tdep);
1153 i++)
1154 regcache_raw_supply (regcache, i,
1155 XSAVE_XMM_AVX512_ADDR (tdep, regs, i));
1156 }
1157 }
86d31898 1158 /* Handle the upper YMM registers. */
df7e5265 1159 if ((tdep->xcr0 & X86_XSTATE_AVX))
31aeac78 1160 {
df7e5265 1161 if ((clear_bv & X86_XSTATE_AVX))
b4d36fb8
PA
1162 {
1163 for (i = I387_YMM0H_REGNUM (tdep);
1164 i < I387_YMMENDH_REGNUM (tdep);
1165 i++)
275418ae 1166 regcache_raw_supply (regcache, i, zero);
b4d36fb8 1167 }
31aeac78 1168 else
31aeac78 1169 {
b4d36fb8
PA
1170 for (i = I387_YMM0H_REGNUM (tdep);
1171 i < I387_YMMENDH_REGNUM (tdep);
1172 i++)
1173 regcache_raw_supply (regcache, i,
1174 XSAVE_AVXH_ADDR (tdep, regs, i));
31aeac78
L
1175 }
1176 }
1177
1dbcd68c 1178 /* Handle the MPX registers. */
df7e5265 1179 if ((tdep->xcr0 & X86_XSTATE_BNDREGS))
1dbcd68c 1180 {
df7e5265 1181 if (clear_bv & X86_XSTATE_BNDREGS)
1dbcd68c
WT
1182 {
1183 for (i = I387_BND0R_REGNUM (tdep);
1184 i < I387_BNDCFGU_REGNUM (tdep); i++)
1185 regcache_raw_supply (regcache, i, zero);
1186 }
1187 else
1188 {
1189 for (i = I387_BND0R_REGNUM (tdep);
1190 i < I387_BNDCFGU_REGNUM (tdep); i++)
1191 regcache_raw_supply (regcache, i,
1192 XSAVE_MPX_ADDR (tdep, regs, i));
1193 }
1194 }
1195
1196 /* Handle the MPX registers. */
df7e5265 1197 if ((tdep->xcr0 & X86_XSTATE_BNDCFG))
1dbcd68c 1198 {
df7e5265 1199 if (clear_bv & X86_XSTATE_BNDCFG)
1dbcd68c
WT
1200 {
1201 for (i = I387_BNDCFGU_REGNUM (tdep);
1202 i < I387_MPXEND_REGNUM (tdep); i++)
1203 regcache_raw_supply (regcache, i, zero);
1204 }
1205 else
1206 {
1207 for (i = I387_BNDCFGU_REGNUM (tdep);
1208 i < I387_MPXEND_REGNUM (tdep); i++)
1209 regcache_raw_supply (regcache, i,
1210 XSAVE_MPX_ADDR (tdep, regs, i));
1211 }
1212 }
1213
31aeac78 1214 /* Handle the XMM registers. */
df7e5265 1215 if ((tdep->xcr0 & X86_XSTATE_SSE))
31aeac78 1216 {
df7e5265 1217 if ((clear_bv & X86_XSTATE_SSE))
b4d36fb8
PA
1218 {
1219 for (i = I387_XMM0_REGNUM (tdep);
1220 i < I387_MXCSR_REGNUM (tdep);
1221 i++)
275418ae 1222 regcache_raw_supply (regcache, i, zero);
b4d36fb8 1223 }
31aeac78 1224 else
31aeac78 1225 {
b4d36fb8
PA
1226 for (i = I387_XMM0_REGNUM (tdep);
1227 i < I387_MXCSR_REGNUM (tdep); i++)
1228 regcache_raw_supply (regcache, i,
1229 FXSAVE_ADDR (tdep, regs, i));
31aeac78
L
1230 }
1231 }
1232
1233 /* Handle the x87 registers. */
df7e5265 1234 if ((tdep->xcr0 & X86_XSTATE_X87))
31aeac78 1235 {
df7e5265 1236 if ((clear_bv & X86_XSTATE_X87))
b4d36fb8
PA
1237 {
1238 for (i = I387_ST0_REGNUM (tdep);
1239 i < I387_FCTRL_REGNUM (tdep);
1240 i++)
275418ae 1241 regcache_raw_supply (regcache, i, zero);
b4d36fb8 1242 }
31aeac78 1243 else
31aeac78 1244 {
b4d36fb8
PA
1245 for (i = I387_ST0_REGNUM (tdep);
1246 i < I387_FCTRL_REGNUM (tdep);
1247 i++)
1248 regcache_raw_supply (regcache, i, FXSAVE_ADDR (tdep, regs, i));
31aeac78
L
1249 }
1250 }
1251 break;
1252 }
1253
1254 /* Only handle x87 control registers. */
1255 for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
1256 if (regnum == -1 || regnum == i)
1257 {
8ee22052
AB
1258 if (clear_bv & X86_XSTATE_X87)
1259 {
1260 if (i == I387_FCTRL_REGNUM (tdep))
1261 {
1262 gdb_byte buf[4];
1263
1264 store_unsigned_integer (buf, 4, byte_order,
1265 I387_FCTRL_INIT_VAL);
1266 regcache_raw_supply (regcache, i, buf);
1267 }
1268 else if (i == I387_FTAG_REGNUM (tdep))
1269 {
1270 gdb_byte buf[4];
1271
1272 store_unsigned_integer (buf, 4, byte_order, 0xffff);
1273 regcache_raw_supply (regcache, i, buf);
1274 }
1275 else
1276 regcache_raw_supply (regcache, i, zero);
1277 }
31aeac78
L
1278 /* Most of the FPU control registers occupy only 16 bits in
1279 the xsave extended state. Give those a special treatment. */
8ee22052
AB
1280 else if (i != I387_FIOFF_REGNUM (tdep)
1281 && i != I387_FOOFF_REGNUM (tdep))
31aeac78
L
1282 {
1283 gdb_byte val[4];
1284
1285 memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
1286 val[2] = val[3] = 0;
1287 if (i == I387_FOP_REGNUM (tdep))
1288 val[1] &= ((1 << 3) - 1);
8ee22052 1289 else if (i == I387_FTAG_REGNUM (tdep))
31aeac78
L
1290 {
1291 /* The fxsave area contains a simplified version of
1292 the tag word. We have to look at the actual 80-bit
1293 FP data to recreate the traditional i387 tag word. */
1294
1295 unsigned long ftag = 0;
1296 int fpreg;
1297 int top;
1298
1299 top = ((FXSAVE_ADDR (tdep, regs,
1300 I387_FSTAT_REGNUM (tdep)))[1] >> 3);
1301 top &= 0x7;
1302
1303 for (fpreg = 7; fpreg >= 0; fpreg--)
1304 {
1305 int tag;
1306
1307 if (val[0] & (1 << fpreg))
1308 {
e5b3d7d6 1309 int thisreg = (fpreg + 8 - top) % 8
31aeac78 1310 + I387_ST0_REGNUM (tdep);
e5b3d7d6 1311 tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
31aeac78
L
1312 }
1313 else
1314 tag = 3; /* Empty */
1315
1316 ftag |= tag << (2 * fpreg);
1317 }
1318 val[0] = ftag & 0xff;
1319 val[1] = (ftag >> 8) & 0xff;
1320 }
1321 regcache_raw_supply (regcache, i, val);
1322 }
8ee22052 1323 else
31aeac78
L
1324 regcache_raw_supply (regcache, i, FXSAVE_ADDR (tdep, regs, i));
1325 }
1326
1327 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
8ee22052
AB
1328 {
1329 /* The MXCSR register is placed into the xsave buffer if either the
1330 AVX or SSE features are enabled. */
1331 if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE))
1332 == (X86_XSTATE_AVX | X86_XSTATE_SSE))
1333 {
1334 gdb_byte buf[4];
1335
1336 store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL);
1337 regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), buf);
1338 }
1339 else
1340 regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep),
1341 FXSAVE_MXCSR_ADDR (regs));
1342 }
31aeac78
L
1343}
1344
1345/* Similar to i387_collect_fxsave, but use XSAVE extended state. */
1346
1347void
1348i387_collect_xsave (const struct regcache *regcache, int regnum,
1349 void *xsave, int gcore)
1350{
ac7936df 1351 struct gdbarch *gdbarch = regcache->arch ();
8ee22052 1352 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
01f9f808 1353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8ee22052
AB
1354 gdb_byte *p, *regs = (gdb_byte *) xsave;
1355 gdb_byte raw[I386_MAX_REGISTER_SIZE];
1356 ULONGEST initial_xstate_bv, clear_bv, xstate_bv = 0;
31aeac78
L
1357 int i;
1358 enum
1359 {
8ee22052
AB
1360 x87_ctrl_or_mxcsr = 0x1,
1361 x87 = 0x2,
1362 sse = 0x4,
1363 avxh = 0x8,
1364 mpx = 0x10,
1365 avx512_k = 0x20,
1366 avx512_zmm_h = 0x40,
1367 avx512_ymmh_avx512 = 0x80,
1368 avx512_xmm_avx512 = 0x100,
1369 pkeys = 0x200,
01f9f808 1370 all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h
51547df6 1371 | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys
31aeac78
L
1372 } regclass;
1373
1374 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
1375 gdb_assert (tdep->num_xmm_regs > 0);
1376
1377 if (regnum == -1)
1378 regclass = all;
51547df6
MS
1379 else if (regnum >= I387_PKRU_REGNUM (tdep)
1380 && regnum < I387_PKEYSEND_REGNUM (tdep))
1381 regclass = pkeys;
01f9f808
MS
1382 else if (regnum >= I387_ZMM0H_REGNUM (tdep)
1383 && regnum < I387_ZMMENDH_REGNUM (tdep))
1384 regclass = avx512_zmm_h;
1385 else if (regnum >= I387_K0_REGNUM (tdep)
1386 && regnum < I387_KEND_REGNUM (tdep))
1387 regclass = avx512_k;
1388 else if (regnum >= I387_YMM16H_REGNUM (tdep)
1389 && regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
1390 regclass = avx512_ymmh_avx512;
1391 else if (regnum >= I387_XMM16_REGNUM (tdep)
1392 && regnum < I387_XMM_AVX512_END_REGNUM (tdep))
1393 regclass = avx512_xmm_avx512;
31aeac78
L
1394 else if (regnum >= I387_YMM0H_REGNUM (tdep)
1395 && regnum < I387_YMMENDH_REGNUM (tdep))
1396 regclass = avxh;
1dbcd68c
WT
1397 else if (regnum >= I387_BND0R_REGNUM (tdep)
1398 && regnum < I387_MPXEND_REGNUM (tdep))
1399 regclass = mpx;
1400 else if (regnum >= I387_XMM0_REGNUM (tdep)
31aeac78
L
1401 && regnum < I387_MXCSR_REGNUM (tdep))
1402 regclass = sse;
1403 else if (regnum >= I387_ST0_REGNUM (tdep)
1404 && regnum < I387_FCTRL_REGNUM (tdep))
1405 regclass = x87;
8ee22052
AB
1406 else if ((regnum >= I387_FCTRL_REGNUM (tdep)
1407 && regnum < I387_XMM0_REGNUM (tdep))
1408 || regnum == I387_MXCSR_REGNUM (tdep))
1409 regclass = x87_ctrl_or_mxcsr;
31aeac78 1410 else
8ee22052 1411 internal_error (__FILE__, __LINE__, _("invalid i387 regnum %d"), regnum);
31aeac78
L
1412
1413 if (gcore)
1414 {
1415 /* Clear XSAVE extended state. */
df7e5265 1416 memset (regs, 0, X86_XSTATE_SIZE (tdep->xcr0));
31aeac78
L
1417
1418 /* Update XCR0 and `xstate_bv' with XCR0 for gcore. */
1419 if (tdep->xsave_xcr0_offset != -1)
1420 memcpy (regs + tdep->xsave_xcr0_offset, &tdep->xcr0, 8);
1421 memcpy (XSAVE_XSTATE_BV_ADDR (regs), &tdep->xcr0, 8);
1422 }
1423
8ee22052
AB
1424 /* The supported bits in `xstat_bv' are 8 bytes. */
1425 initial_xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
1426 8, byte_order);
1427 clear_bv = (~(initial_xstate_bv)) & tdep->xcr0;
1428
1429 /* The XSAVE buffer was filled lazily by the kernel. Only those
1430 features that are enabled were written into the buffer, disabled
1431 features left the buffer uninitialised. In order to identify if any
1432 registers have changed we will be comparing the register cache
1433 version to the version in the XSAVE buffer, it is important then that
1434 at this point we initialise to the default values any features in
1435 XSAVE that are not yet initialised.
1436
1437 This could be made more efficient, we know which features (from
1438 REGNUM) we will be potentially updating, and could limit ourselves to
1439 only clearing that feature. However, the extra complexity does not
1440 seem justified at this point. */
1441 if (clear_bv)
31aeac78 1442 {
8ee22052
AB
1443 if ((clear_bv & X86_XSTATE_PKRU))
1444 for (i = I387_PKRU_REGNUM (tdep);
1445 i < I387_PKEYSEND_REGNUM (tdep); i++)
1446 memset (XSAVE_PKEYS_ADDR (tdep, regs, i), 0, 4);
31aeac78 1447
8ee22052
AB
1448 if ((clear_bv & X86_XSTATE_BNDREGS))
1449 for (i = I387_BND0R_REGNUM (tdep);
1450 i < I387_BNDCFGU_REGNUM (tdep); i++)
1451 memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 16);
51547df6 1452
8ee22052
AB
1453 if ((clear_bv & X86_XSTATE_BNDCFG))
1454 for (i = I387_BNDCFGU_REGNUM (tdep);
1455 i < I387_MPXEND_REGNUM (tdep); i++)
1456 memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 8);
1dbcd68c 1457
8ee22052
AB
1458 if ((clear_bv & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
1459 for (i = I387_ZMM0H_REGNUM (tdep);
1460 i < I387_ZMMENDH_REGNUM (tdep); i++)
1461 memset (XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i), 0, 32);
1dbcd68c 1462
8ee22052
AB
1463 if ((clear_bv & X86_XSTATE_K))
1464 for (i = I387_K0_REGNUM (tdep);
1465 i < I387_KEND_REGNUM (tdep); i++)
1466 memset (XSAVE_AVX512_K_ADDR (tdep, regs, i), 0, 8);
01f9f808 1467
8ee22052
AB
1468 if ((clear_bv & X86_XSTATE_ZMM))
1469 {
1470 for (i = I387_YMM16H_REGNUM (tdep);
1471 i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
1472 memset (XSAVE_YMM_AVX512_ADDR (tdep, regs, i), 0, 16);
1473 for (i = I387_XMM16_REGNUM (tdep);
1474 i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
1475 memset (XSAVE_XMM_AVX512_ADDR (tdep, regs, i), 0, 16);
1476 }
01f9f808 1477
8ee22052
AB
1478 if ((clear_bv & X86_XSTATE_AVX))
1479 for (i = I387_YMM0H_REGNUM (tdep);
1480 i < I387_YMMENDH_REGNUM (tdep); i++)
1481 memset (XSAVE_AVXH_ADDR (tdep, regs, i), 0, 16);
01f9f808 1482
8ee22052
AB
1483 if ((clear_bv & X86_XSTATE_SSE))
1484 for (i = I387_XMM0_REGNUM (tdep);
1485 i < I387_MXCSR_REGNUM (tdep); i++)
1486 memset (FXSAVE_ADDR (tdep, regs, i), 0, 16);
1487
1488 /* The mxcsr register is written into the xsave buffer if either AVX
1489 or SSE is enabled, so only clear it if both of those features
1490 require clearing. */
1491 if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE))
1492 == (X86_XSTATE_AVX | X86_XSTATE_SSE))
1493 store_unsigned_integer (FXSAVE_ADDR (tdep, regs, i), 2, byte_order,
1494 I387_MXCSR_INIT_VAL);
31aeac78 1495
8ee22052
AB
1496 if ((clear_bv & X86_XSTATE_X87))
1497 {
1498 for (i = I387_ST0_REGNUM (tdep);
1499 i < I387_FCTRL_REGNUM (tdep); i++)
1500 memset (FXSAVE_ADDR (tdep, regs, i), 0, 10);
31aeac78 1501
8ee22052
AB
1502 for (i = I387_FCTRL_REGNUM (tdep);
1503 i < I387_XMM0_REGNUM (tdep); i++)
1504 {
1505 if (i == I387_FCTRL_REGNUM (tdep))
1506 store_unsigned_integer (FXSAVE_ADDR (tdep, regs, i), 2,
1507 byte_order, I387_FCTRL_INIT_VAL);
1508 else
1509 memset (FXSAVE_ADDR (tdep, regs, i), 0,
1510 regcache_register_size (regcache, i));
1511 }
31aeac78 1512 }
8ee22052 1513 }
31aeac78 1514
8ee22052
AB
1515 if (regclass == all)
1516 {
1517 /* Check if any PKEYS registers are changed. */
1518 if ((tdep->xcr0 & X86_XSTATE_PKRU))
1519 for (i = I387_PKRU_REGNUM (tdep);
1520 i < I387_PKEYSEND_REGNUM (tdep); i++)
1521 {
1522 regcache_raw_collect (regcache, i, raw);
1523 p = XSAVE_PKEYS_ADDR (tdep, regs, i);
1524 if (memcmp (raw, p, 4) != 0)
51547df6 1525 {
8ee22052
AB
1526 xstate_bv |= X86_XSTATE_PKRU;
1527 memcpy (p, raw, 4);
51547df6 1528 }
8ee22052 1529 }
51547df6 1530
8ee22052
AB
1531 /* Check if any ZMMH registers are changed. */
1532 if ((tdep->xcr0 & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
1533 for (i = I387_ZMM0H_REGNUM (tdep);
1534 i < I387_ZMMENDH_REGNUM (tdep); i++)
1535 {
1536 regcache_raw_collect (regcache, i, raw);
1537 p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i);
1538 if (memcmp (raw, p, 32) != 0)
01f9f808 1539 {
8ee22052
AB
1540 xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM);
1541 memcpy (p, raw, 32);
01f9f808 1542 }
8ee22052 1543 }
01f9f808 1544
8ee22052
AB
1545 /* Check if any K registers are changed. */
1546 if ((tdep->xcr0 & X86_XSTATE_K))
1547 for (i = I387_K0_REGNUM (tdep);
1548 i < I387_KEND_REGNUM (tdep); i++)
1549 {
1550 regcache_raw_collect (regcache, i, raw);
1551 p = XSAVE_AVX512_K_ADDR (tdep, regs, i);
1552 if (memcmp (raw, p, 8) != 0)
01f9f808 1553 {
8ee22052
AB
1554 xstate_bv |= X86_XSTATE_K;
1555 memcpy (p, raw, 8);
01f9f808 1556 }
8ee22052 1557 }
01f9f808 1558
8ee22052
AB
1559 /* Check if any XMM or upper YMM registers are changed. */
1560 if ((tdep->xcr0 & X86_XSTATE_ZMM))
1561 {
1562 for (i = I387_YMM16H_REGNUM (tdep);
1563 i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
01f9f808 1564 {
8ee22052
AB
1565 regcache_raw_collect (regcache, i, raw);
1566 p = XSAVE_YMM_AVX512_ADDR (tdep, regs, i);
1567 if (memcmp (raw, p, 16) != 0)
01f9f808 1568 {
8ee22052
AB
1569 xstate_bv |= X86_XSTATE_ZMM;
1570 memcpy (p, raw, 16);
01f9f808 1571 }
8ee22052
AB
1572 }
1573 for (i = I387_XMM16_REGNUM (tdep);
1574 i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
1575 {
1576 regcache_raw_collect (regcache, i, raw);
1577 p = XSAVE_XMM_AVX512_ADDR (tdep, regs, i);
1578 if (memcmp (raw, p, 16) != 0)
01f9f808 1579 {
8ee22052
AB
1580 xstate_bv |= X86_XSTATE_ZMM;
1581 memcpy (p, raw, 16);
01f9f808
MS
1582 }
1583 }
8ee22052 1584 }
01f9f808 1585
8ee22052
AB
1586 /* Check if any upper MPX registers are changed. */
1587 if ((tdep->xcr0 & X86_XSTATE_BNDREGS))
1588 for (i = I387_BND0R_REGNUM (tdep);
1589 i < I387_BNDCFGU_REGNUM (tdep); i++)
1590 {
1591 regcache_raw_collect (regcache, i, raw);
1592 p = XSAVE_MPX_ADDR (tdep, regs, i);
1593 if (memcmp (raw, p, 16))
31aeac78 1594 {
8ee22052
AB
1595 xstate_bv |= X86_XSTATE_BNDREGS;
1596 memcpy (p, raw, 16);
31aeac78 1597 }
8ee22052
AB
1598 }
1599
1600 /* Check if any upper MPX registers are changed. */
1601 if ((tdep->xcr0 & X86_XSTATE_BNDCFG))
1602 for (i = I387_BNDCFGU_REGNUM (tdep);
1603 i < I387_MPXEND_REGNUM (tdep); i++)
1604 {
1605 regcache_raw_collect (regcache, i, raw);
1606 p = XSAVE_MPX_ADDR (tdep, regs, i);
1607 if (memcmp (raw, p, 8))
1dbcd68c 1608 {
8ee22052
AB
1609 xstate_bv |= X86_XSTATE_BNDCFG;
1610 memcpy (p, raw, 8);
1dbcd68c 1611 }
8ee22052 1612 }
1dbcd68c 1613
8ee22052
AB
1614 /* Check if any upper YMM registers are changed. */
1615 if ((tdep->xcr0 & X86_XSTATE_AVX))
1616 for (i = I387_YMM0H_REGNUM (tdep);
1617 i < I387_YMMENDH_REGNUM (tdep); i++)
1618 {
1619 regcache_raw_collect (regcache, i, raw);
1620 p = XSAVE_AVXH_ADDR (tdep, regs, i);
1621 if (memcmp (raw, p, 16))
1dbcd68c 1622 {
8ee22052
AB
1623 xstate_bv |= X86_XSTATE_AVX;
1624 memcpy (p, raw, 16);
1dbcd68c 1625 }
8ee22052 1626 }
31aeac78 1627
8ee22052
AB
1628 /* Check if any SSE registers are changed. */
1629 if ((tdep->xcr0 & X86_XSTATE_SSE))
1630 for (i = I387_XMM0_REGNUM (tdep);
1631 i < I387_MXCSR_REGNUM (tdep); i++)
1632 {
1633 regcache_raw_collect (regcache, i, raw);
1634 p = FXSAVE_ADDR (tdep, regs, i);
1635 if (memcmp (raw, p, 16))
31aeac78 1636 {
8ee22052
AB
1637 xstate_bv |= X86_XSTATE_SSE;
1638 memcpy (p, raw, 16);
31aeac78 1639 }
8ee22052 1640 }
31aeac78 1641
8ee22052
AB
1642 if ((tdep->xcr0 & X86_XSTATE_AVX) || (tdep->xcr0 & X86_XSTATE_SSE))
1643 {
1644 i = I387_MXCSR_REGNUM (tdep);
1645 regcache_raw_collect (regcache, i, raw);
1646 p = FXSAVE_ADDR (tdep, regs, i);
1647 if (memcmp (raw, p, 4))
1648 {
1649 /* Now, we need to mark one of either SSE of AVX as enabled.
1650 We could pick either. What we do is check to see if one
1651 of the features is already enabled, if it is then we leave
1652 it at that, otherwise we pick SSE. */
1653 if ((xstate_bv & (X86_XSTATE_SSE | X86_XSTATE_AVX)) == 0)
1654 xstate_bv |= X86_XSTATE_SSE;
1655 memcpy (p, raw, 4);
1656 }
1657 }
1658
1659 /* Check if any X87 registers are changed. Only the non-control
1660 registers are handled here, the control registers are all handled
1661 later on in this function. */
1662 if ((tdep->xcr0 & X86_XSTATE_X87))
1663 for (i = I387_ST0_REGNUM (tdep);
1664 i < I387_FCTRL_REGNUM (tdep); i++)
1665 {
1666 regcache_raw_collect (regcache, i, raw);
1667 p = FXSAVE_ADDR (tdep, regs, i);
1668 if (memcmp (raw, p, 10))
31aeac78 1669 {
8ee22052
AB
1670 xstate_bv |= X86_XSTATE_X87;
1671 memcpy (p, raw, 10);
31aeac78 1672 }
8ee22052
AB
1673 }
1674 }
1675 else
1676 {
1677 /* Check if REGNUM is changed. */
1678 regcache_raw_collect (regcache, regnum, raw);
31aeac78 1679
8ee22052
AB
1680 switch (regclass)
1681 {
1682 default:
1683 internal_error (__FILE__, __LINE__,
1684 _("invalid i387 regclass"));
1685
1686 case pkeys:
1687 /* This is a PKEYS register. */
1688 p = XSAVE_PKEYS_ADDR (tdep, regs, regnum);
1689 if (memcmp (raw, p, 4) != 0)
31aeac78 1690 {
8ee22052
AB
1691 xstate_bv |= X86_XSTATE_PKRU;
1692 memcpy (p, raw, 4);
1693 }
1694 break;
01f9f808 1695
8ee22052
AB
1696 case avx512_zmm_h:
1697 /* This is a ZMM register. */
1698 p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum);
1699 if (memcmp (raw, p, 32) != 0)
1700 {
1701 xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM);
1702 memcpy (p, raw, 32);
1703 }
1704 break;
1705 case avx512_k:
1706 /* This is a AVX512 mask register. */
1707 p = XSAVE_AVX512_K_ADDR (tdep, regs, regnum);
1708 if (memcmp (raw, p, 8) != 0)
1709 {
1710 xstate_bv |= X86_XSTATE_K;
1711 memcpy (p, raw, 8);
1712 }
1713 break;
01f9f808 1714
8ee22052
AB
1715 case avx512_ymmh_avx512:
1716 /* This is an upper YMM16-31 register. */
1717 p = XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum);
1718 if (memcmp (raw, p, 16) != 0)
1719 {
1720 xstate_bv |= X86_XSTATE_ZMM;
1721 memcpy (p, raw, 16);
1722 }
1723 break;
01f9f808 1724
8ee22052
AB
1725 case avx512_xmm_avx512:
1726 /* This is an upper XMM16-31 register. */
1727 p = XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum);
1728 if (memcmp (raw, p, 16) != 0)
1729 {
1730 xstate_bv |= X86_XSTATE_ZMM;
1731 memcpy (p, raw, 16);
1732 }
1733 break;
31aeac78 1734
8ee22052
AB
1735 case avxh:
1736 /* This is an upper YMM register. */
1737 p = XSAVE_AVXH_ADDR (tdep, regs, regnum);
1738 if (memcmp (raw, p, 16))
1739 {
1740 xstate_bv |= X86_XSTATE_AVX;
1741 memcpy (p, raw, 16);
1742 }
1743 break;
1dbcd68c 1744
8ee22052
AB
1745 case mpx:
1746 if (regnum < I387_BNDCFGU_REGNUM (tdep))
1747 {
1748 regcache_raw_collect (regcache, regnum, raw);
1749 p = XSAVE_MPX_ADDR (tdep, regs, regnum);
40936b0d
L
1750 if (memcmp (raw, p, 16))
1751 {
8ee22052 1752 xstate_bv |= X86_XSTATE_BNDREGS;
40936b0d
L
1753 memcpy (p, raw, 16);
1754 }
8ee22052
AB
1755 }
1756 else
1757 {
1758 p = XSAVE_MPX_ADDR (tdep, regs, regnum);
1759 xstate_bv |= X86_XSTATE_BNDCFG;
1760 memcpy (p, raw, 8);
1761 }
1762 break;
31aeac78 1763
8ee22052
AB
1764 case sse:
1765 /* This is an SSE register. */
1766 p = FXSAVE_ADDR (tdep, regs, regnum);
1767 if (memcmp (raw, p, 16))
1768 {
1769 xstate_bv |= X86_XSTATE_SSE;
1770 memcpy (p, raw, 16);
31aeac78 1771 }
8ee22052 1772 break;
40936b0d 1773
8ee22052
AB
1774 case x87:
1775 /* This is an x87 register. */
1776 p = FXSAVE_ADDR (tdep, regs, regnum);
1777 if (memcmp (raw, p, 10))
1778 {
1779 xstate_bv |= X86_XSTATE_X87;
1780 memcpy (p, raw, 10);
1781 }
1782 break;
40936b0d 1783
8ee22052
AB
1784 case x87_ctrl_or_mxcsr:
1785 /* We only handle MXCSR here. All other x87 control registers
1786 are handled separately below. */
1787 if (regnum == I387_MXCSR_REGNUM (tdep))
31aeac78 1788 {
8ee22052
AB
1789 p = FXSAVE_MXCSR_ADDR (regs);
1790 if (memcmp (raw, p, 2))
1791 {
1792 /* We're only setting MXCSR, so check the initial state
1793 to see if either of AVX or SSE are already enabled.
1794 If they are then we'll attribute this changed MXCSR to
1795 that feature. If neither feature is enabled, then
1796 we'll attribute this change to the SSE feature. */
1797 xstate_bv |= (initial_xstate_bv
1798 & (X86_XSTATE_AVX | X86_XSTATE_SSE));
1799 if ((xstate_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) == 0)
1800 xstate_bv |= X86_XSTATE_SSE;
1801 memcpy (p, raw, 2);
1802 }
31aeac78 1803 }
40936b0d 1804 }
31aeac78
L
1805 }
1806
1807 /* Only handle x87 control registers. */
1808 for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
1809 if (regnum == -1 || regnum == i)
1810 {
1811 /* Most of the FPU control registers occupy only 16 bits in
1812 the xsave extended state. Give those a special treatment. */
1813 if (i != I387_FIOFF_REGNUM (tdep)
1814 && i != I387_FOOFF_REGNUM (tdep))
1815 {
1816 gdb_byte buf[4];
1817
1818 regcache_raw_collect (regcache, i, buf);
1819
20a6ec49 1820 if (i == I387_FOP_REGNUM (tdep))
e750d25e
JT
1821 {
1822 /* The opcode occupies only 11 bits. Make sure we
40936b0d 1823 don't touch the other bits. */
e750d25e 1824 buf[1] &= ((1 << 3) - 1);
20a6ec49 1825 buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
e750d25e 1826 }
20a6ec49 1827 else if (i == I387_FTAG_REGNUM (tdep))
e750d25e
JT
1828 {
1829 /* Converting back is much easier. */
1830
1831 unsigned short ftag;
1832 int fpreg;
1833
1834 ftag = (buf[1] << 8) | buf[0];
1835 buf[0] = 0;
1836 buf[1] = 0;
1837
1838 for (fpreg = 7; fpreg >= 0; fpreg--)
1839 {
1840 int tag = (ftag >> (fpreg * 2)) & 3;
1841
1842 if (tag != 3)
1843 buf[0] |= (1 << fpreg);
1844 }
1845 }
8ee22052
AB
1846 p = FXSAVE_ADDR (tdep, regs, i);
1847 if (memcmp (p, buf, 2))
1848 {
1849 xstate_bv |= X86_XSTATE_X87;
1850 memcpy (p, buf, 2);
1851 }
e750d25e
JT
1852 }
1853 else
8ee22052
AB
1854 {
1855 int regsize;
1856
1857 regcache_raw_collect (regcache, i, raw);
1858 regsize = regcache_register_size (regcache, i);
1859 p = FXSAVE_ADDR (tdep, regs, i);
1860 if (memcmp (raw, p, regsize))
1861 {
1862 xstate_bv |= X86_XSTATE_X87;
1863 memcpy (p, raw, regsize);
1864 }
1865 }
e750d25e 1866 }
5716833c 1867
8ee22052
AB
1868 /* Update the corresponding bits in `xstate_bv' if any
1869 registers are changed. */
1870 if (xstate_bv)
1871 {
1872 /* The supported bits in `xstat_bv' are 8 bytes. */
1873 initial_xstate_bv |= xstate_bv;
1874 store_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
1875 8, byte_order,
1876 initial_xstate_bv);
1877 }
e750d25e
JT
1878}
1879
1880/* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
1881 *RAW. */
1882
1883static int
b4ad899f 1884i387_tag (const gdb_byte *raw)
e750d25e
JT
1885{
1886 int integer;
1887 unsigned int exponent;
1888 unsigned long fraction[2];
1889
1890 integer = raw[7] & 0x80;
1891 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
1892 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
1893 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
1894 | (raw[5] << 8) | raw[4]);
1895
1896 if (exponent == 0x7fff)
1897 {
1898 /* Special. */
1899 return (2);
1900 }
1901 else if (exponent == 0x0000)
1902 {
1903 if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
1904 {
1905 /* Zero. */
1906 return (1);
1907 }
1908 else
1909 {
1910 /* Special. */
1911 return (2);
1912 }
1913 }
1914 else
1915 {
1916 if (integer)
1917 {
1918 /* Valid. */
1919 return (0);
1920 }
1921 else
1922 {
1923 /* Special. */
1924 return (2);
1925 }
1926 }
1927}
efb1c01c
MK
1928
1929/* Prepare the FPU stack in REGCACHE for a function return. */
1930
1931void
1932i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache)
1933{
1934 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1935 ULONGEST fstat;
1936
efb1c01c
MK
1937 /* Set the top of the floating-point register stack to 7. The
1938 actual value doesn't really matter, but 7 is what a normal
1939 function return would end up with if the program started out with
1940 a freshly initialized FPU. */
20a6ec49 1941 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
efb1c01c 1942 fstat |= (7 << 11);
20a6ec49 1943 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
efb1c01c
MK
1944
1945 /* Mark %st(1) through %st(7) as empty. Since we set the top of the
1946 floating-point register stack to 7, the appropriate value for the
1947 tag word is 0x3fff. */
20a6ec49 1948 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
efb1c01c 1949
efb1c01c 1950}
4a612d6f
WT
1951
1952/* See i387-tdep.h. */
1953
1954void
1955i387_reset_bnd_regs (struct gdbarch *gdbarch, struct regcache *regcache)
1956{
1957 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1958
1959 if (I387_BND0R_REGNUM (tdep) > 0)
1960 {
1961 gdb_byte bnd_buf[16];
1962
1963 memset (bnd_buf, 0, 16);
1964 for (int i = 0; i < I387_NUM_BND_REGS; i++)
1965 regcache_raw_write (regcache, I387_BND0R_REGNUM (tdep) + i, bnd_buf);
1966 }
1967}
This page took 2.209945 seconds and 4 git commands to generate.