gdb/riscv: Update test to support targets without FP hardware
[deliverable/binutils-gdb.git] / gdb / i387-tdep.c
CommitLineData
c906108c 1/* Intel 387 floating point stuff.
38edeab8 2
e2882c85 3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
21#include "frame.h"
786a90bb 22#include "gdbcore.h"
c906108c
SS
23#include "inferior.h"
24#include "language.h"
4e052eda 25#include "regcache.h"
f69fdf9b 26#include "target-float.h"
786a90bb
MK
27#include "value.h"
28
9a82579f 29#include "i386-tdep.h"
42c466d7 30#include "i387-tdep.h"
df7e5265 31#include "x86-xstate.h"
c906108c 32
de57eccd 33/* Print the floating point number specified by RAW. */
786a90bb 34
de57eccd 35static void
27067745
UW
36print_i387_value (struct gdbarch *gdbarch,
37 const gdb_byte *raw, struct ui_file *file)
de57eccd 38{
de57eccd
JM
39 /* We try to print 19 digits. The last digit may or may not contain
40 garbage, but we'd better print one too many. We need enough room
41 to print the value, 1 position for the sign, 1 for the decimal
42 point, 19 for the digits and 6 for the exponent adds up to 27. */
f69fdf9b
UW
43 const struct type *type = i387_ext_type (gdbarch);
44 std::string str = target_float_to_string (raw, type, " %-+27.19g");
8ba0dd51 45 fprintf_filtered (file, "%s", str.c_str ());
de57eccd
JM
46}
47
48/* Print the classification for the register contents RAW. */
786a90bb 49
de57eccd 50static void
27067745
UW
51print_i387_ext (struct gdbarch *gdbarch,
52 const gdb_byte *raw, struct ui_file *file)
de57eccd
JM
53{
54 int sign;
55 int integer;
56 unsigned int exponent;
57 unsigned long fraction[2];
58
59 sign = raw[9] & 0x80;
60 integer = raw[7] & 0x80;
61 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
62 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
63 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
64 | (raw[5] << 8) | raw[4]);
65
66 if (exponent == 0x7fff && integer)
67 {
68 if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000)
69 /* Infinity. */
61113f8b 70 fprintf_filtered (file, " %cInf", (sign ? '-' : '+'));
de57eccd
JM
71 else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000)
72 /* Real Indefinite (QNaN). */
61113f8b 73 fputs_unfiltered (" Real Indefinite (QNaN)", file);
de57eccd
JM
74 else if (fraction[1] & 0x40000000)
75 /* QNaN. */
61113f8b 76 fputs_filtered (" QNaN", file);
de57eccd
JM
77 else
78 /* SNaN. */
61113f8b 79 fputs_filtered (" SNaN", file);
de57eccd
JM
80 }
81 else if (exponent < 0x7fff && exponent > 0x0000 && integer)
82 /* Normal. */
27067745 83 print_i387_value (gdbarch, raw, file);
de57eccd
JM
84 else if (exponent == 0x0000)
85 {
86 /* Denormal or zero. */
27067745 87 print_i387_value (gdbarch, raw, file);
de57eccd
JM
88
89 if (integer)
90 /* Pseudo-denormal. */
61113f8b 91 fputs_filtered (" Pseudo-denormal", file);
de57eccd
JM
92 else if (fraction[0] || fraction[1])
93 /* Denormal. */
61113f8b 94 fputs_filtered (" Denormal", file);
de57eccd
JM
95 }
96 else
97 /* Unsupported. */
61113f8b 98 fputs_filtered (" Unsupported", file);
de57eccd
JM
99}
100
ad5f7d6e
PA
101/* Print the status word STATUS. If STATUS_P is false, then STATUS
102 was unavailable. */
786a90bb 103
de57eccd 104static void
ad5f7d6e
PA
105print_i387_status_word (int status_p,
106 unsigned int status, struct ui_file *file)
de57eccd 107{
ad5f7d6e
PA
108 fprintf_filtered (file, "Status Word: ");
109 if (!status_p)
110 {
111 fprintf_filtered (file, "%s\n", _("<unavailable>"));
112 return;
113 }
114
115 fprintf_filtered (file, "%s", hex_string_custom (status, 4));
61113f8b
MK
116 fputs_filtered (" ", file);
117 fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : " ");
118 fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : " ");
119 fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : " ");
120 fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : " ");
121 fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : " ");
122 fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : " ");
123 fputs_filtered (" ", file);
124 fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : " ");
125 fputs_filtered (" ", file);
126 fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : " ");
127 fputs_filtered (" ", file);
128 fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : " ");
129 fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : " ");
130 fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : " ");
131 fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : " ");
132
133 fputs_filtered ("\n", file);
134
135 fprintf_filtered (file,
136 " TOP: %d\n", ((status >> 11) & 7));
de57eccd
JM
137}
138
ad5f7d6e
PA
139/* Print the control word CONTROL. If CONTROL_P is false, then
140 CONTROL was unavailable. */
786a90bb 141
de57eccd 142static void
ad5f7d6e
PA
143print_i387_control_word (int control_p,
144 unsigned int control, struct ui_file *file)
de57eccd 145{
ad5f7d6e
PA
146 fprintf_filtered (file, "Control Word: ");
147 if (!control_p)
148 {
149 fprintf_filtered (file, "%s\n", _("<unavailable>"));
150 return;
151 }
152
153 fprintf_filtered (file, "%s", hex_string_custom (control, 4));
61113f8b
MK
154 fputs_filtered (" ", file);
155 fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : " ");
156 fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : " ");
157 fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : " ");
158 fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : " ");
159 fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : " ");
160 fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : " ");
de57eccd 161
61113f8b 162 fputs_filtered ("\n", file);
de57eccd 163
61113f8b 164 fputs_filtered (" PC: ", file);
de57eccd
JM
165 switch ((control >> 8) & 3)
166 {
167 case 0:
61113f8b 168 fputs_filtered ("Single Precision (24-bits)\n", file);
de57eccd
JM
169 break;
170 case 1:
61113f8b 171 fputs_filtered ("Reserved\n", file);
de57eccd
JM
172 break;
173 case 2:
61113f8b 174 fputs_filtered ("Double Precision (53-bits)\n", file);
de57eccd
JM
175 break;
176 case 3:
61113f8b 177 fputs_filtered ("Extended Precision (64-bits)\n", file);
de57eccd
JM
178 break;
179 }
180
61113f8b 181 fputs_filtered (" RC: ", file);
de57eccd
JM
182 switch ((control >> 10) & 3)
183 {
184 case 0:
61113f8b 185 fputs_filtered ("Round to nearest\n", file);
de57eccd
JM
186 break;
187 case 1:
61113f8b 188 fputs_filtered ("Round down\n", file);
de57eccd
JM
189 break;
190 case 2:
61113f8b 191 fputs_filtered ("Round up\n", file);
de57eccd
JM
192 break;
193 case 3:
61113f8b 194 fputs_filtered ("Round toward zero\n", file);
de57eccd
JM
195 break;
196 }
197}
198
9b949a49 199/* Print out the i387 floating point state. Note that we ignore FRAME
7d8d2918
MK
200 in the code below. That's OK since floating-point registers are
201 never saved on the stack. */
202
de57eccd 203void
61113f8b 204i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
8e186fd6 205 struct frame_info *frame, const char *args)
de57eccd 206{
5716833c 207 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
1d70089a 208 ULONGEST fctrl;
ad5f7d6e 209 int fctrl_p;
1d70089a 210 ULONGEST fstat;
ad5f7d6e 211 int fstat_p;
1d70089a 212 ULONGEST ftag;
ad5f7d6e 213 int ftag_p;
1d70089a 214 ULONGEST fiseg;
ad5f7d6e 215 int fiseg_p;
1d70089a 216 ULONGEST fioff;
ad5f7d6e 217 int fioff_p;
1d70089a 218 ULONGEST foseg;
ad5f7d6e 219 int foseg_p;
1d70089a 220 ULONGEST fooff;
ad5f7d6e 221 int fooff_p;
1d70089a 222 ULONGEST fop;
ad5f7d6e 223 int fop_p;
de57eccd
JM
224 int fpreg;
225 int top;
226
5716833c
MK
227 gdb_assert (gdbarch == get_frame_arch (frame));
228
ad5f7d6e
PA
229 fctrl_p = read_frame_register_unsigned (frame,
230 I387_FCTRL_REGNUM (tdep), &fctrl);
231 fstat_p = read_frame_register_unsigned (frame,
232 I387_FSTAT_REGNUM (tdep), &fstat);
233 ftag_p = read_frame_register_unsigned (frame,
234 I387_FTAG_REGNUM (tdep), &ftag);
235 fiseg_p = read_frame_register_unsigned (frame,
236 I387_FISEG_REGNUM (tdep), &fiseg);
237 fioff_p = read_frame_register_unsigned (frame,
238 I387_FIOFF_REGNUM (tdep), &fioff);
239 foseg_p = read_frame_register_unsigned (frame,
240 I387_FOSEG_REGNUM (tdep), &foseg);
241 fooff_p = read_frame_register_unsigned (frame,
242 I387_FOOFF_REGNUM (tdep), &fooff);
243 fop_p = read_frame_register_unsigned (frame,
244 I387_FOP_REGNUM (tdep), &fop);
245
246 if (fstat_p)
de57eccd 247 {
ad5f7d6e 248 top = ((fstat >> 11) & 7);
de57eccd 249
ad5f7d6e 250 for (fpreg = 7; fpreg >= 0; fpreg--)
de57eccd 251 {
ad5f7d6e
PA
252 struct value *regval;
253 int regnum;
254 int i;
255 int tag = -1;
256
257 fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg);
258
259 if (ftag_p)
260 {
261 tag = (ftag >> (fpreg * 2)) & 3;
262
263 switch (tag)
264 {
265 case 0:
266 fputs_filtered ("Valid ", file);
267 break;
268 case 1:
269 fputs_filtered ("Zero ", file);
270 break;
271 case 2:
272 fputs_filtered ("Special ", file);
273 break;
274 case 3:
275 fputs_filtered ("Empty ", file);
276 break;
277 }
278 }
279 else
280 fputs_filtered ("Unknown ", file);
281
282 regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep);
283 regval = get_frame_register_value (frame, regnum);
284
285 if (value_entirely_available (regval))
286 {
433730c9 287 const gdb_byte *raw = value_contents (regval);
ad5f7d6e
PA
288
289 fputs_filtered ("0x", file);
290 for (i = 9; i >= 0; i--)
291 fprintf_filtered (file, "%02x", raw[i]);
292
293 if (tag != -1 && tag != 3)
294 print_i387_ext (gdbarch, raw, file);
295 }
296 else
297 fprintf_filtered (file, "%s", _("<unavailable>"));
298
299 fputs_filtered ("\n", file);
de57eccd 300 }
de57eccd
JM
301 }
302
f16a25ae 303 fputs_filtered ("\n", file);
ad5f7d6e
PA
304 print_i387_status_word (fstat_p, fstat, file);
305 print_i387_control_word (fctrl_p, fctrl, file);
61113f8b 306 fprintf_filtered (file, "Tag Word: %s\n",
ad5f7d6e 307 ftag_p ? hex_string_custom (ftag, 4) : _("<unavailable>"));
61113f8b 308 fprintf_filtered (file, "Instruction Pointer: %s:",
ad5f7d6e
PA
309 fiseg_p ? hex_string_custom (fiseg, 2) : _("<unavailable>"));
310 fprintf_filtered (file, "%s\n",
311 fioff_p ? hex_string_custom (fioff, 8) : _("<unavailable>"));
61113f8b 312 fprintf_filtered (file, "Operand Pointer: %s:",
ad5f7d6e
PA
313 foseg_p ? hex_string_custom (foseg, 2) : _("<unavailable>"));
314 fprintf_filtered (file, "%s\n",
315 fooff_p ? hex_string_custom (fooff, 8) : _("<unavailable>"));
61113f8b 316 fprintf_filtered (file, "Opcode: %s\n",
ad5f7d6e
PA
317 fop_p
318 ? (hex_string_custom (fop ? (fop | 0xd800) : 0, 4))
319 : _("<unavailable>"));
de57eccd 320}
d532c08f
MK
321\f
322
83acabca
DJ
323/* Return nonzero if a value of type TYPE stored in register REGNUM
324 needs any special handling. */
325
326int
1777feb0
MS
327i387_convert_register_p (struct gdbarch *gdbarch, int regnum,
328 struct type *type)
83acabca 329{
20a6ec49 330 if (i386_fp_regnum_p (gdbarch, regnum))
83acabca
DJ
331 {
332 /* Floating point registers must be converted unless we are
8c8f9122
YQ
333 accessing them in their hardware type or TYPE is not float. */
334 if (type == i387_ext_type (gdbarch)
335 || TYPE_CODE (type) != TYPE_CODE_FLT)
83acabca
DJ
336 return 0;
337 else
338 return 1;
339 }
340
341 return 0;
342}
343
d532c08f
MK
344/* Read a value of type TYPE from register REGNUM in frame FRAME, and
345 return its contents in TO. */
346
8dccd430 347int
d532c08f 348i387_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
349 struct type *type, gdb_byte *to,
350 int *optimizedp, int *unavailablep)
d532c08f 351{
27067745 352 struct gdbarch *gdbarch = get_frame_arch (frame);
b4ad899f 353 gdb_byte from[I386_MAX_REGISTER_SIZE];
d532c08f 354
27067745 355 gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
d532c08f
MK
356
357 /* We only support floating-point values. */
358 if (TYPE_CODE (type) != TYPE_CODE_FLT)
359 {
8a3fe4f8
AC
360 warning (_("Cannot convert floating-point register value "
361 "to non-floating-point type."));
8dccd430
PA
362 *optimizedp = *unavailablep = 0;
363 return 0;
d532c08f
MK
364 }
365
83acabca 366 /* Convert to TYPE. */
d8e07dda
YQ
367 if (!get_frame_register_bytes (frame, regnum, 0,
368 register_size (gdbarch, regnum),
8dccd430
PA
369 from, optimizedp, unavailablep))
370 return 0;
371
3b2ca824 372 target_float_convert (from, i387_ext_type (gdbarch), to, type);
8dccd430
PA
373 *optimizedp = *unavailablep = 0;
374 return 1;
d532c08f
MK
375}
376
377/* Write the contents FROM of a value of type TYPE into register
378 REGNUM in frame FRAME. */
379
380void
381i387_value_to_register (struct frame_info *frame, int regnum,
42835c2b 382 struct type *type, const gdb_byte *from)
d532c08f 383{
27067745 384 struct gdbarch *gdbarch = get_frame_arch (frame);
b4ad899f 385 gdb_byte to[I386_MAX_REGISTER_SIZE];
d532c08f 386
27067745 387 gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
d532c08f
MK
388
389 /* We only support floating-point values. */
390 if (TYPE_CODE (type) != TYPE_CODE_FLT)
391 {
8a3fe4f8
AC
392 warning (_("Cannot convert non-floating-point type "
393 "to floating-point register value."));
d532c08f
MK
394 return;
395 }
396
83acabca 397 /* Convert from TYPE. */
3b2ca824 398 target_float_convert (from, type, to, i387_ext_type (gdbarch));
d532c08f
MK
399 put_frame_register (frame, regnum, to);
400}
401\f
e750d25e 402
786a90bb 403/* Handle FSAVE and FXSAVE formats. */
e750d25e
JT
404
405/* At fsave_offset[REGNUM] you'll find the offset to the location in
406 the data structure used by the "fsave" instruction where GDB
407 register REGNUM is stored. */
408
409static int fsave_offset[] =
410{
5716833c
MK
411 28 + 0 * 10, /* %st(0) ... */
412 28 + 1 * 10,
413 28 + 2 * 10,
414 28 + 3 * 10,
415 28 + 4 * 10,
416 28 + 5 * 10,
417 28 + 6 * 10,
418 28 + 7 * 10, /* ... %st(7). */
419 0, /* `fctrl' (16 bits). */
420 4, /* `fstat' (16 bits). */
421 8, /* `ftag' (16 bits). */
422 16, /* `fiseg' (16 bits). */
423 12, /* `fioff'. */
424 24, /* `foseg' (16 bits). */
425 20, /* `fooff'. */
426 18 /* `fop' (bottom 11 bits). */
e750d25e
JT
427};
428
20a6ec49
MD
429#define FSAVE_ADDR(tdep, fsave, regnum) \
430 (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)])
e750d25e
JT
431\f
432
41d041d6
MK
433/* Fill register REGNUM in REGCACHE with the appropriate value from
434 *FSAVE. This function masks off any of the reserved bits in
435 *FSAVE. */
e750d25e
JT
436
437void
41d041d6 438i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave)
e750d25e 439{
ac7936df 440 struct gdbarch *gdbarch = regcache->arch ();
e17a4113
UW
441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
442 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9a3c8263 443 const gdb_byte *regs = (const gdb_byte *) fsave;
e750d25e
JT
444 int i;
445
5716833c
MK
446 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
447
20a6ec49 448 for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
ed504bdf
MK
449 if (regnum == -1 || regnum == i)
450 {
451 if (fsave == NULL)
452 {
73e1c03f 453 regcache->raw_supply (i, NULL);
5716833c 454 continue;
ed504bdf
MK
455 }
456
457 /* Most of the FPU control registers occupy only 16 bits in the
458 fsave area. Give those a special treatment. */
20a6ec49
MD
459 if (i >= I387_FCTRL_REGNUM (tdep)
460 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
ed504bdf 461 {
b4ad899f 462 gdb_byte val[4];
ed504bdf 463
20a6ec49 464 memcpy (val, FSAVE_ADDR (tdep, regs, i), 2);
ed504bdf 465 val[2] = val[3] = 0;
20a6ec49 466 if (i == I387_FOP_REGNUM (tdep))
ed504bdf 467 val[1] &= ((1 << 3) - 1);
73e1c03f 468 regcache->raw_supply (i, val);
ed504bdf
MK
469 }
470 else
73e1c03f 471 regcache->raw_supply (i, FSAVE_ADDR (tdep, regs, i));
ed504bdf 472 }
b87bc0d8
MK
473
474 /* Provide dummy values for the SSE registers. */
20a6ec49 475 for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
b87bc0d8 476 if (regnum == -1 || regnum == i)
73e1c03f 477 regcache->raw_supply (i, NULL);
20a6ec49 478 if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep))
b87bc0d8 479 {
b4ad899f 480 gdb_byte buf[4];
b87bc0d8 481
8ee22052 482 store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL);
73e1c03f 483 regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf);
b87bc0d8 484 }
e750d25e
JT
485}
486
487/* Fill register REGNUM (if it is a floating-point register) in *FSAVE
63b6c53f
MK
488 with the value from REGCACHE. If REGNUM is -1, do this for all
489 registers. This function doesn't touch any of the reserved bits in
490 *FSAVE. */
e750d25e
JT
491
492void
63b6c53f 493i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave)
e750d25e 494{
ac7936df 495 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
9a3c8263 496 gdb_byte *regs = (gdb_byte *) fsave;
e750d25e
JT
497 int i;
498
5716833c
MK
499 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
500
20a6ec49 501 for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
e750d25e
JT
502 if (regnum == -1 || regnum == i)
503 {
504 /* Most of the FPU control registers occupy only 16 bits in
505 the fsave area. Give those a special treatment. */
20a6ec49
MD
506 if (i >= I387_FCTRL_REGNUM (tdep)
507 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
e750d25e 508 {
b4ad899f 509 gdb_byte buf[4];
e750d25e 510
34a79281 511 regcache->raw_collect (i, buf);
e750d25e 512
20a6ec49 513 if (i == I387_FOP_REGNUM (tdep))
e750d25e
JT
514 {
515 /* The opcode occupies only 11 bits. Make sure we
516 don't touch the other bits. */
517 buf[1] &= ((1 << 3) - 1);
20a6ec49 518 buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
e750d25e 519 }
20a6ec49 520 memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2);
e750d25e
JT
521 }
522 else
34a79281 523 regcache->raw_collect (i, FSAVE_ADDR (tdep, regs, i));
e750d25e
JT
524 }
525}
526\f
527
528/* At fxsave_offset[REGNUM] you'll find the offset to the location in
529 the data structure used by the "fxsave" instruction where GDB
530 register REGNUM is stored. */
531
532static int fxsave_offset[] =
533{
5716833c 534 32, /* %st(0) through ... */
e750d25e
JT
535 48,
536 64,
537 80,
538 96,
539 112,
540 128,
5716833c
MK
541 144, /* ... %st(7) (80 bits each). */
542 0, /* `fctrl' (16 bits). */
543 2, /* `fstat' (16 bits). */
544 4, /* `ftag' (16 bits). */
545 12, /* `fiseg' (16 bits). */
546 8, /* `fioff'. */
547 20, /* `foseg' (16 bits). */
548 16, /* `fooff'. */
549 6, /* `fop' (bottom 11 bits). */
550 160 + 0 * 16, /* %xmm0 through ... */
04c8243f
MK
551 160 + 1 * 16,
552 160 + 2 * 16,
553 160 + 3 * 16,
554 160 + 4 * 16,
555 160 + 5 * 16,
556 160 + 6 * 16,
557 160 + 7 * 16,
558 160 + 8 * 16,
559 160 + 9 * 16,
560 160 + 10 * 16,
561 160 + 11 * 16,
562 160 + 12 * 16,
563 160 + 13 * 16,
564 160 + 14 * 16,
5716833c 565 160 + 15 * 16, /* ... %xmm15 (128 bits each). */
e750d25e
JT
566};
567
20a6ec49
MD
568#define FXSAVE_ADDR(tdep, fxsave, regnum) \
569 (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)])
5716833c
MK
570
571/* We made an unfortunate choice in putting %mxcsr after the SSE
572 registers %xmm0-%xmm7 instead of before, since it makes supporting
573 the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we
574 don't include the offset for %mxcsr here above. */
575
576#define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24)
e750d25e 577
b4ad899f 578static int i387_tag (const gdb_byte *raw);
e750d25e
JT
579\f
580
41d041d6 581/* Fill register REGNUM in REGCACHE with the appropriate
ed504bdf
MK
582 floating-point or SSE register value from *FXSAVE. This function
583 masks off any of the reserved bits in *FXSAVE. */
e750d25e
JT
584
585void
41d041d6 586i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
e750d25e 587{
ac7936df 588 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
9a3c8263 589 const gdb_byte *regs = (const gdb_byte *) fxsave;
5716833c
MK
590 int i;
591
592 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
593 gdb_assert (tdep->num_xmm_regs > 0);
dff95cc7 594
20a6ec49 595 for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
ed504bdf
MK
596 if (regnum == -1 || regnum == i)
597 {
5716833c 598 if (regs == NULL)
ed504bdf 599 {
73e1c03f 600 regcache->raw_supply (i, NULL);
ed504bdf
MK
601 continue;
602 }
932bb524 603
ed504bdf
MK
604 /* Most of the FPU control registers occupy only 16 bits in
605 the fxsave area. Give those a special treatment. */
20a6ec49
MD
606 if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
607 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
ed504bdf 608 {
b4ad899f 609 gdb_byte val[4];
ed504bdf 610
20a6ec49 611 memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
ed504bdf 612 val[2] = val[3] = 0;
20a6ec49 613 if (i == I387_FOP_REGNUM (tdep))
ed504bdf 614 val[1] &= ((1 << 3) - 1);
20a6ec49 615 else if (i== I387_FTAG_REGNUM (tdep))
ed504bdf
MK
616 {
617 /* The fxsave area contains a simplified version of
618 the tag word. We have to look at the actual 80-bit
619 FP data to recreate the traditional i387 tag word. */
620
621 unsigned long ftag = 0;
622 int fpreg;
623 int top;
624
20a6ec49
MD
625 top = ((FXSAVE_ADDR (tdep, regs,
626 I387_FSTAT_REGNUM (tdep)))[1] >> 3);
5716833c 627 top &= 0x7;
ed504bdf
MK
628
629 for (fpreg = 7; fpreg >= 0; fpreg--)
630 {
631 int tag;
632
633 if (val[0] & (1 << fpreg))
634 {
6d5e094a
MS
635 int thisreg = (fpreg + 8 - top) % 8
636 + I387_ST0_REGNUM (tdep);
637 tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
ed504bdf
MK
638 }
639 else
640 tag = 3; /* Empty */
641
642 ftag |= tag << (2 * fpreg);
643 }
644 val[0] = ftag & 0xff;
645 val[1] = (ftag >> 8) & 0xff;
646 }
73e1c03f 647 regcache->raw_supply (i, val);
ed504bdf
MK
648 }
649 else
73e1c03f 650 regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
ed504bdf 651 }
5716833c 652
20a6ec49 653 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
5716833c
MK
654 {
655 if (regs == NULL)
73e1c03f 656 regcache->raw_supply (I387_MXCSR_REGNUM (tdep), NULL);
5716833c 657 else
73e1c03f 658 regcache->raw_supply (I387_MXCSR_REGNUM (tdep),
5716833c
MK
659 FXSAVE_MXCSR_ADDR (regs));
660 }
e750d25e
JT
661}
662
663/* Fill register REGNUM (if it is a floating-point or SSE register) in
80571bff
MK
664 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
665 all registers. This function doesn't touch any of the reserved
666 bits in *FXSAVE. */
e750d25e
JT
667
668void
80571bff 669i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave)
e750d25e 670{
ac7936df 671 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
9a3c8263 672 gdb_byte *regs = (gdb_byte *) fxsave;
5716833c
MK
673 int i;
674
675 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
676 gdb_assert (tdep->num_xmm_regs > 0);
dff95cc7 677
20a6ec49 678 for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
e750d25e
JT
679 if (regnum == -1 || regnum == i)
680 {
681 /* Most of the FPU control registers occupy only 16 bits in
682 the fxsave area. Give those a special treatment. */
20a6ec49
MD
683 if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
684 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
e750d25e 685 {
b4ad899f 686 gdb_byte buf[4];
e750d25e 687
34a79281 688 regcache->raw_collect (i, buf);
e750d25e 689
31aeac78
L
690 if (i == I387_FOP_REGNUM (tdep))
691 {
692 /* The opcode occupies only 11 bits. Make sure we
693 don't touch the other bits. */
694 buf[1] &= ((1 << 3) - 1);
695 buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
696 }
697 else if (i == I387_FTAG_REGNUM (tdep))
698 {
699 /* Converting back is much easier. */
700
701 unsigned short ftag;
702 int fpreg;
703
704 ftag = (buf[1] << 8) | buf[0];
705 buf[0] = 0;
706 buf[1] = 0;
707
708 for (fpreg = 7; fpreg >= 0; fpreg--)
709 {
710 int tag = (ftag >> (fpreg * 2)) & 3;
711
712 if (tag != 3)
713 buf[0] |= (1 << fpreg);
714 }
715 }
716 memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2);
717 }
718 else
34a79281 719 regcache->raw_collect (i, FXSAVE_ADDR (tdep, regs, i));
31aeac78
L
720 }
721
722 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
34a79281 723 regcache->raw_collect (I387_MXCSR_REGNUM (tdep),
31aeac78
L
724 FXSAVE_MXCSR_ADDR (regs));
725}
726
727/* `xstate_bv' is at byte offset 512. */
728#define XSAVE_XSTATE_BV_ADDR(xsave) (xsave + 512)
729
730/* At xsave_avxh_offset[REGNUM] you'll find the offset to the location in
731 the upper 128bit of AVX register data structure used by the "xsave"
732 instruction where GDB register REGNUM is stored. */
733
734static int xsave_avxh_offset[] =
735{
736 576 + 0 * 16, /* Upper 128bit of %ymm0 through ... */
737 576 + 1 * 16,
738 576 + 2 * 16,
739 576 + 3 * 16,
740 576 + 4 * 16,
741 576 + 5 * 16,
742 576 + 6 * 16,
743 576 + 7 * 16,
744 576 + 8 * 16,
745 576 + 9 * 16,
746 576 + 10 * 16,
747 576 + 11 * 16,
748 576 + 12 * 16,
749 576 + 13 * 16,
750 576 + 14 * 16,
751 576 + 15 * 16 /* Upper 128bit of ... %ymm15 (128 bits each). */
752};
753
01f9f808
MS
754#define XSAVE_AVXH_ADDR(tdep, xsave, regnum) \
755 (xsave + xsave_avxh_offset[regnum - I387_YMM0H_REGNUM (tdep)])
756
757/* At xsave_ymm_avx512_offset[REGNUM] you'll find the offset to the location in
758 the upper 128bit of ZMM register data structure used by the "xsave"
759 instruction where GDB register REGNUM is stored. */
760
761static int xsave_ymm_avx512_offset[] =
762{
763 /* HI16_ZMM_area + 16 bytes + regnum* 64 bytes. */
764 1664 + 16 + 0 * 64, /* %ymm16 through... */
765 1664 + 16 + 1 * 64,
766 1664 + 16 + 2 * 64,
767 1664 + 16 + 3 * 64,
768 1664 + 16 + 4 * 64,
769 1664 + 16 + 5 * 64,
770 1664 + 16 + 6 * 64,
771 1664 + 16 + 7 * 64,
772 1664 + 16 + 8 * 64,
773 1664 + 16 + 9 * 64,
774 1664 + 16 + 10 * 64,
775 1664 + 16 + 11 * 64,
776 1664 + 16 + 12 * 64,
777 1664 + 16 + 13 * 64,
778 1664 + 16 + 14 * 64,
779 1664 + 16 + 15 * 64 /* ... %ymm31 (128 bits each). */
780};
781
782#define XSAVE_YMM_AVX512_ADDR(tdep, xsave, regnum) \
783 (xsave + xsave_ymm_avx512_offset[regnum - I387_YMM16H_REGNUM (tdep)])
784
785static int xsave_xmm_avx512_offset[] =
1dbcd68c 786{
01f9f808
MS
787 1664 + 0 * 64, /* %ymm16 through... */
788 1664 + 1 * 64,
789 1664 + 2 * 64,
790 1664 + 3 * 64,
791 1664 + 4 * 64,
792 1664 + 5 * 64,
793 1664 + 6 * 64,
794 1664 + 7 * 64,
795 1664 + 8 * 64,
796 1664 + 9 * 64,
797 1664 + 10 * 64,
798 1664 + 11 * 64,
799 1664 + 12 * 64,
800 1664 + 13 * 64,
801 1664 + 14 * 64,
802 1664 + 15 * 64 /* ... %ymm31 (128 bits each). */
803};
804
805#define XSAVE_XMM_AVX512_ADDR(tdep, xsave, regnum) \
806 (xsave + xsave_xmm_avx512_offset[regnum - I387_XMM16_REGNUM (tdep)])
807
808static int xsave_mpx_offset[] = {
1dbcd68c
WT
809 960 + 0 * 16, /* bnd0r...bnd3r registers. */
810 960 + 1 * 16,
811 960 + 2 * 16,
812 960 + 3 * 16,
813 1024 + 0 * 8, /* bndcfg ... bndstatus. */
814 1024 + 1 * 8,
815};
816
1dbcd68c
WT
817#define XSAVE_MPX_ADDR(tdep, xsave, regnum) \
818 (xsave + xsave_mpx_offset[regnum - I387_BND0R_REGNUM (tdep)])
819
01f9f808
MS
820 /* At xsave_avx512__h_offset[REGNUM] you find the offset to the location
821 of the AVX512 opmask register data structure used by the "xsave"
822 instruction where GDB register REGNUM is stored. */
823
824static int xsave_avx512_k_offset[] =
825{
826 1088 + 0 * 8, /* %k0 through... */
827 1088 + 1 * 8,
828 1088 + 2 * 8,
829 1088 + 3 * 8,
830 1088 + 4 * 8,
831 1088 + 5 * 8,
832 1088 + 6 * 8,
833 1088 + 7 * 8 /* %k7 (64 bits each). */
834};
835
836#define XSAVE_AVX512_K_ADDR(tdep, xsave, regnum) \
837 (xsave + xsave_avx512_k_offset[regnum - I387_K0_REGNUM (tdep)])
838
839/* At xsave_avx512_zmm_h_offset[REGNUM] you find the offset to the location in
840 the upper 256bit of AVX512 ZMMH register data structure used by the "xsave"
841 instruction where GDB register REGNUM is stored. */
842
843static int xsave_avx512_zmm_h_offset[] =
844{
845 1152 + 0 * 32,
846 1152 + 1 * 32, /* Upper 256bit of %zmmh0 through... */
847 1152 + 2 * 32,
848 1152 + 3 * 32,
849 1152 + 4 * 32,
850 1152 + 5 * 32,
851 1152 + 6 * 32,
852 1152 + 7 * 32,
853 1152 + 8 * 32,
854 1152 + 9 * 32,
855 1152 + 10 * 32,
856 1152 + 11 * 32,
857 1152 + 12 * 32,
858 1152 + 13 * 32,
859 1152 + 14 * 32,
860 1152 + 15 * 32, /* Upper 256bit of... %zmmh15 (256 bits each). */
861 1664 + 32 + 0 * 64, /* Upper 256bit of... %zmmh16 (256 bits each). */
862 1664 + 32 + 1 * 64,
863 1664 + 32 + 2 * 64,
864 1664 + 32 + 3 * 64,
865 1664 + 32 + 4 * 64,
866 1664 + 32 + 5 * 64,
867 1664 + 32 + 6 * 64,
868 1664 + 32 + 7 * 64,
869 1664 + 32 + 8 * 64,
870 1664 + 32 + 9 * 64,
871 1664 + 32 + 10 * 64,
872 1664 + 32 + 11 * 64,
873 1664 + 32 + 12 * 64,
874 1664 + 32 + 13 * 64,
875 1664 + 32 + 14 * 64,
876 1664 + 32 + 15 * 64 /* Upper 256bit of... %zmmh31 (256 bits each). */
877};
878
879#define XSAVE_AVX512_ZMM_H_ADDR(tdep, xsave, regnum) \
880 (xsave + xsave_avx512_zmm_h_offset[regnum - I387_ZMM0H_REGNUM (tdep)])
881
51547df6
MS
882/* At xsave_pkeys_offset[REGNUM] you find the offset to the location
883 of the PKRU register data structure used by the "xsave"
884 instruction where GDB register REGNUM is stored. */
885
886static int xsave_pkeys_offset[] =
887{
8882688 + 0 * 8 /* %pkru (64 bits in XSTATE, 32-bit actually used by
889 instructions and applications). */
890};
891
892#define XSAVE_PKEYS_ADDR(tdep, xsave, regnum) \
893 (xsave + xsave_pkeys_offset[regnum - I387_PKRU_REGNUM (tdep)])
894
8ee22052
AB
895
896/* Extract from XSAVE a bitset of the features that are available on the
897 target, but which have not yet been enabled. */
898
899ULONGEST
900i387_xsave_get_clear_bv (struct gdbarch *gdbarch, const void *xsave)
901{
902 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
903 const gdb_byte *regs = (const gdb_byte *) xsave;
904 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
905
906 /* Get `xstat_bv'. The supported bits in `xstat_bv' are 8 bytes. */
907 ULONGEST xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
908 8, byte_order);
909
910 /* Clear part in vector registers if its bit in xstat_bv is zero. */
911 ULONGEST clear_bv = (~(xstate_bv)) & tdep->xcr0;
912
913 return clear_bv;
914}
915
31aeac78
L
916/* Similar to i387_supply_fxsave, but use XSAVE extended state. */
917
918void
919i387_supply_xsave (struct regcache *regcache, int regnum,
920 const void *xsave)
921{
ac7936df 922 struct gdbarch *gdbarch = regcache->arch ();
8ee22052 923 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
01f9f808 924 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 925 const gdb_byte *regs = (const gdb_byte *) xsave;
31aeac78 926 int i;
ff6527bb 927 ULONGEST clear_bv;
975c21ab 928 static const gdb_byte zero[I386_MAX_REGISTER_SIZE] = { 0 };
31aeac78
L
929 enum
930 {
931 none = 0x0,
932 x87 = 0x1,
933 sse = 0x2,
934 avxh = 0x4,
1dbcd68c 935 mpx = 0x8,
01f9f808
MS
936 avx512_k = 0x10,
937 avx512_zmm_h = 0x20,
938 avx512_ymmh_avx512 = 0x40,
939 avx512_xmm_avx512 = 0x80,
51547df6 940 pkeys = 0x100,
01f9f808 941 all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h
51547df6 942 | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys
31aeac78
L
943 } regclass;
944
275418ae 945 gdb_assert (regs != NULL);
31aeac78
L
946 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
947 gdb_assert (tdep->num_xmm_regs > 0);
948
949 if (regnum == -1)
950 regclass = all;
51547df6
MS
951 else if (regnum >= I387_PKRU_REGNUM (tdep)
952 && regnum < I387_PKEYSEND_REGNUM (tdep))
953 regclass = pkeys;
01f9f808
MS
954 else if (regnum >= I387_ZMM0H_REGNUM (tdep)
955 && regnum < I387_ZMMENDH_REGNUM (tdep))
956 regclass = avx512_zmm_h;
957 else if (regnum >= I387_K0_REGNUM (tdep)
958 && regnum < I387_KEND_REGNUM (tdep))
959 regclass = avx512_k;
960 else if (regnum >= I387_YMM16H_REGNUM (tdep)
961 && regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
962 regclass = avx512_ymmh_avx512;
963 else if (regnum >= I387_XMM16_REGNUM (tdep)
964 && regnum < I387_XMM_AVX512_END_REGNUM (tdep))
965 regclass = avx512_xmm_avx512;
31aeac78
L
966 else if (regnum >= I387_YMM0H_REGNUM (tdep)
967 && regnum < I387_YMMENDH_REGNUM (tdep))
968 regclass = avxh;
1dbcd68c
WT
969 else if (regnum >= I387_BND0R_REGNUM (tdep)
970 && regnum < I387_MPXEND_REGNUM (tdep))
971 regclass = mpx;
01f9f808 972 else if (regnum >= I387_XMM0_REGNUM (tdep)
31aeac78
L
973 && regnum < I387_MXCSR_REGNUM (tdep))
974 regclass = sse;
975 else if (regnum >= I387_ST0_REGNUM (tdep)
976 && regnum < I387_FCTRL_REGNUM (tdep))
977 regclass = x87;
978 else
979 regclass = none;
980
8ee22052 981 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
31aeac78 982
b4d36fb8
PA
983 /* With the delayed xsave mechanism, in between the program
984 starting, and the program accessing the vector registers for the
985 first time, the register's values are invalid. The kernel
986 initializes register states to zero when they are set the first
987 time in a program. This means that from the user-space programs'
988 perspective, it's the same as if the registers have always been
989 zero from the start of the program. Therefore, the debugger
275418ae 990 should provide the same illusion to the user. */
b4d36fb8 991
31aeac78
L
992 switch (regclass)
993 {
994 case none:
995 break;
996
51547df6
MS
997 case pkeys:
998 if ((clear_bv & X86_XSTATE_PKRU))
73e1c03f 999 regcache->raw_supply (regnum, zero);
51547df6 1000 else
73e1c03f 1001 regcache->raw_supply (regnum, XSAVE_PKEYS_ADDR (tdep, regs, regnum));
51547df6
MS
1002 return;
1003
01f9f808 1004 case avx512_zmm_h:
df7e5265 1005 if ((clear_bv & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
73e1c03f 1006 regcache->raw_supply (regnum, zero);
01f9f808 1007 else
73e1c03f
SM
1008 regcache->raw_supply (regnum,
1009 XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum));
01f9f808
MS
1010 return;
1011
1012 case avx512_k:
df7e5265 1013 if ((clear_bv & X86_XSTATE_K))
73e1c03f 1014 regcache->raw_supply (regnum, zero);
01f9f808 1015 else
73e1c03f 1016 regcache->raw_supply (regnum, XSAVE_AVX512_K_ADDR (tdep, regs, regnum));
01f9f808
MS
1017 return;
1018
1019 case avx512_ymmh_avx512:
df7e5265 1020 if ((clear_bv & X86_XSTATE_ZMM))
73e1c03f 1021 regcache->raw_supply (regnum, zero);
01f9f808 1022 else
73e1c03f
SM
1023 regcache->raw_supply (regnum,
1024 XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum));
01f9f808
MS
1025 return;
1026
1027 case avx512_xmm_avx512:
df7e5265 1028 if ((clear_bv & X86_XSTATE_ZMM))
73e1c03f 1029 regcache->raw_supply (regnum, zero);
01f9f808 1030 else
73e1c03f
SM
1031 regcache->raw_supply (regnum,
1032 XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum));
01f9f808
MS
1033 return;
1034
31aeac78 1035 case avxh:
df7e5265 1036 if ((clear_bv & X86_XSTATE_AVX))
73e1c03f 1037 regcache->raw_supply (regnum, zero);
31aeac78 1038 else
73e1c03f 1039 regcache->raw_supply (regnum, XSAVE_AVXH_ADDR (tdep, regs, regnum));
31aeac78
L
1040 return;
1041
1dbcd68c 1042 case mpx:
df7e5265 1043 if ((clear_bv & X86_XSTATE_BNDREGS))
73e1c03f 1044 regcache->raw_supply (regnum, zero);
1dbcd68c 1045 else
73e1c03f 1046 regcache->raw_supply (regnum, XSAVE_MPX_ADDR (tdep, regs, regnum));
1dbcd68c
WT
1047 return;
1048
31aeac78 1049 case sse:
df7e5265 1050 if ((clear_bv & X86_XSTATE_SSE))
73e1c03f 1051 regcache->raw_supply (regnum, zero);
31aeac78 1052 else
73e1c03f 1053 regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum));
31aeac78
L
1054 return;
1055
1056 case x87:
df7e5265 1057 if ((clear_bv & X86_XSTATE_X87))
73e1c03f 1058 regcache->raw_supply (regnum, zero);
31aeac78 1059 else
73e1c03f 1060 regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum));
31aeac78
L
1061 return;
1062
1063 case all:
51547df6
MS
1064 /* Handle PKEYS registers. */
1065 if ((tdep->xcr0 & X86_XSTATE_PKRU))
1066 {
1067 if ((clear_bv & X86_XSTATE_PKRU))
1068 {
1069 for (i = I387_PKRU_REGNUM (tdep);
1070 i < I387_PKEYSEND_REGNUM (tdep);
1071 i++)
73e1c03f 1072 regcache->raw_supply (i, zero);
51547df6
MS
1073 }
1074 else
1075 {
1076 for (i = I387_PKRU_REGNUM (tdep);
1077 i < I387_PKEYSEND_REGNUM (tdep);
1078 i++)
73e1c03f 1079 regcache->raw_supply (i, XSAVE_PKEYS_ADDR (tdep, regs, i));
51547df6
MS
1080 }
1081 }
1082
01f9f808 1083 /* Handle the upper ZMM registers. */
df7e5265 1084 if ((tdep->xcr0 & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
01f9f808 1085 {
df7e5265 1086 if ((clear_bv & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
01f9f808
MS
1087 {
1088 for (i = I387_ZMM0H_REGNUM (tdep);
1089 i < I387_ZMMENDH_REGNUM (tdep);
1090 i++)
73e1c03f 1091 regcache->raw_supply (i, zero);
01f9f808
MS
1092 }
1093 else
1094 {
1095 for (i = I387_ZMM0H_REGNUM (tdep);
1096 i < I387_ZMMENDH_REGNUM (tdep);
1097 i++)
73e1c03f
SM
1098 regcache->raw_supply (i,
1099 XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i));
01f9f808
MS
1100 }
1101 }
1102
1103 /* Handle AVX512 OpMask registers. */
df7e5265 1104 if ((tdep->xcr0 & X86_XSTATE_K))
01f9f808 1105 {
df7e5265 1106 if ((clear_bv & X86_XSTATE_K))
01f9f808
MS
1107 {
1108 for (i = I387_K0_REGNUM (tdep);
1109 i < I387_KEND_REGNUM (tdep);
1110 i++)
73e1c03f 1111 regcache->raw_supply (i, zero);
01f9f808
MS
1112 }
1113 else
1114 {
1115 for (i = I387_K0_REGNUM (tdep);
1116 i < I387_KEND_REGNUM (tdep);
1117 i++)
73e1c03f 1118 regcache->raw_supply (i, XSAVE_AVX512_K_ADDR (tdep, regs, i));
01f9f808
MS
1119 }
1120 }
1121
1122 /* Handle the YMM_AVX512 registers. */
df7e5265 1123 if ((tdep->xcr0 & X86_XSTATE_ZMM))
01f9f808 1124 {
df7e5265 1125 if ((clear_bv & X86_XSTATE_ZMM))
01f9f808
MS
1126 {
1127 for (i = I387_YMM16H_REGNUM (tdep);
1128 i < I387_YMMH_AVX512_END_REGNUM (tdep);
1129 i++)
73e1c03f 1130 regcache->raw_supply (i, zero);
01f9f808
MS
1131 for (i = I387_XMM16_REGNUM (tdep);
1132 i < I387_XMM_AVX512_END_REGNUM (tdep);
1133 i++)
73e1c03f 1134 regcache->raw_supply (i, zero);
01f9f808
MS
1135 }
1136 else
1137 {
1138 for (i = I387_YMM16H_REGNUM (tdep);
1139 i < I387_YMMH_AVX512_END_REGNUM (tdep);
1140 i++)
73e1c03f 1141 regcache->raw_supply (i, XSAVE_YMM_AVX512_ADDR (tdep, regs, i));
01f9f808
MS
1142 for (i = I387_XMM16_REGNUM (tdep);
1143 i < I387_XMM_AVX512_END_REGNUM (tdep);
1144 i++)
73e1c03f 1145 regcache->raw_supply (i, XSAVE_XMM_AVX512_ADDR (tdep, regs, i));
01f9f808
MS
1146 }
1147 }
86d31898 1148 /* Handle the upper YMM registers. */
df7e5265 1149 if ((tdep->xcr0 & X86_XSTATE_AVX))
31aeac78 1150 {
df7e5265 1151 if ((clear_bv & X86_XSTATE_AVX))
b4d36fb8
PA
1152 {
1153 for (i = I387_YMM0H_REGNUM (tdep);
1154 i < I387_YMMENDH_REGNUM (tdep);
1155 i++)
73e1c03f 1156 regcache->raw_supply (i, zero);
b4d36fb8 1157 }
31aeac78 1158 else
31aeac78 1159 {
b4d36fb8
PA
1160 for (i = I387_YMM0H_REGNUM (tdep);
1161 i < I387_YMMENDH_REGNUM (tdep);
1162 i++)
73e1c03f 1163 regcache->raw_supply (i, XSAVE_AVXH_ADDR (tdep, regs, i));
31aeac78
L
1164 }
1165 }
1166
1dbcd68c 1167 /* Handle the MPX registers. */
df7e5265 1168 if ((tdep->xcr0 & X86_XSTATE_BNDREGS))
1dbcd68c 1169 {
df7e5265 1170 if (clear_bv & X86_XSTATE_BNDREGS)
1dbcd68c
WT
1171 {
1172 for (i = I387_BND0R_REGNUM (tdep);
1173 i < I387_BNDCFGU_REGNUM (tdep); i++)
73e1c03f 1174 regcache->raw_supply (i, zero);
1dbcd68c
WT
1175 }
1176 else
1177 {
1178 for (i = I387_BND0R_REGNUM (tdep);
1179 i < I387_BNDCFGU_REGNUM (tdep); i++)
73e1c03f 1180 regcache->raw_supply (i, XSAVE_MPX_ADDR (tdep, regs, i));
1dbcd68c
WT
1181 }
1182 }
1183
1184 /* Handle the MPX registers. */
df7e5265 1185 if ((tdep->xcr0 & X86_XSTATE_BNDCFG))
1dbcd68c 1186 {
df7e5265 1187 if (clear_bv & X86_XSTATE_BNDCFG)
1dbcd68c
WT
1188 {
1189 for (i = I387_BNDCFGU_REGNUM (tdep);
1190 i < I387_MPXEND_REGNUM (tdep); i++)
73e1c03f 1191 regcache->raw_supply (i, zero);
1dbcd68c
WT
1192 }
1193 else
1194 {
1195 for (i = I387_BNDCFGU_REGNUM (tdep);
1196 i < I387_MPXEND_REGNUM (tdep); i++)
73e1c03f 1197 regcache->raw_supply (i, XSAVE_MPX_ADDR (tdep, regs, i));
1dbcd68c
WT
1198 }
1199 }
1200
31aeac78 1201 /* Handle the XMM registers. */
df7e5265 1202 if ((tdep->xcr0 & X86_XSTATE_SSE))
31aeac78 1203 {
df7e5265 1204 if ((clear_bv & X86_XSTATE_SSE))
b4d36fb8
PA
1205 {
1206 for (i = I387_XMM0_REGNUM (tdep);
1207 i < I387_MXCSR_REGNUM (tdep);
1208 i++)
73e1c03f 1209 regcache->raw_supply (i, zero);
b4d36fb8 1210 }
31aeac78 1211 else
31aeac78 1212 {
b4d36fb8
PA
1213 for (i = I387_XMM0_REGNUM (tdep);
1214 i < I387_MXCSR_REGNUM (tdep); i++)
73e1c03f 1215 regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
31aeac78
L
1216 }
1217 }
1218
1219 /* Handle the x87 registers. */
df7e5265 1220 if ((tdep->xcr0 & X86_XSTATE_X87))
31aeac78 1221 {
df7e5265 1222 if ((clear_bv & X86_XSTATE_X87))
b4d36fb8
PA
1223 {
1224 for (i = I387_ST0_REGNUM (tdep);
1225 i < I387_FCTRL_REGNUM (tdep);
1226 i++)
73e1c03f 1227 regcache->raw_supply (i, zero);
b4d36fb8 1228 }
31aeac78 1229 else
31aeac78 1230 {
b4d36fb8
PA
1231 for (i = I387_ST0_REGNUM (tdep);
1232 i < I387_FCTRL_REGNUM (tdep);
1233 i++)
73e1c03f 1234 regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
31aeac78
L
1235 }
1236 }
1237 break;
1238 }
1239
1240 /* Only handle x87 control registers. */
1241 for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
1242 if (regnum == -1 || regnum == i)
1243 {
8ee22052
AB
1244 if (clear_bv & X86_XSTATE_X87)
1245 {
1246 if (i == I387_FCTRL_REGNUM (tdep))
1247 {
1248 gdb_byte buf[4];
1249
1250 store_unsigned_integer (buf, 4, byte_order,
1251 I387_FCTRL_INIT_VAL);
73e1c03f 1252 regcache->raw_supply (i, buf);
8ee22052
AB
1253 }
1254 else if (i == I387_FTAG_REGNUM (tdep))
1255 {
1256 gdb_byte buf[4];
1257
1258 store_unsigned_integer (buf, 4, byte_order, 0xffff);
73e1c03f 1259 regcache->raw_supply (i, buf);
8ee22052
AB
1260 }
1261 else
73e1c03f 1262 regcache->raw_supply (i, zero);
8ee22052 1263 }
31aeac78
L
1264 /* Most of the FPU control registers occupy only 16 bits in
1265 the xsave extended state. Give those a special treatment. */
8ee22052
AB
1266 else if (i != I387_FIOFF_REGNUM (tdep)
1267 && i != I387_FOOFF_REGNUM (tdep))
31aeac78
L
1268 {
1269 gdb_byte val[4];
1270
1271 memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
1272 val[2] = val[3] = 0;
1273 if (i == I387_FOP_REGNUM (tdep))
1274 val[1] &= ((1 << 3) - 1);
8ee22052 1275 else if (i == I387_FTAG_REGNUM (tdep))
31aeac78
L
1276 {
1277 /* The fxsave area contains a simplified version of
1278 the tag word. We have to look at the actual 80-bit
1279 FP data to recreate the traditional i387 tag word. */
1280
1281 unsigned long ftag = 0;
1282 int fpreg;
1283 int top;
1284
1285 top = ((FXSAVE_ADDR (tdep, regs,
1286 I387_FSTAT_REGNUM (tdep)))[1] >> 3);
1287 top &= 0x7;
1288
1289 for (fpreg = 7; fpreg >= 0; fpreg--)
1290 {
1291 int tag;
1292
1293 if (val[0] & (1 << fpreg))
1294 {
e5b3d7d6 1295 int thisreg = (fpreg + 8 - top) % 8
31aeac78 1296 + I387_ST0_REGNUM (tdep);
e5b3d7d6 1297 tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
31aeac78
L
1298 }
1299 else
1300 tag = 3; /* Empty */
1301
1302 ftag |= tag << (2 * fpreg);
1303 }
1304 val[0] = ftag & 0xff;
1305 val[1] = (ftag >> 8) & 0xff;
1306 }
73e1c03f 1307 regcache->raw_supply (i, val);
31aeac78 1308 }
8ee22052 1309 else
73e1c03f 1310 regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
31aeac78
L
1311 }
1312
1313 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
8ee22052
AB
1314 {
1315 /* The MXCSR register is placed into the xsave buffer if either the
1316 AVX or SSE features are enabled. */
1317 if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE))
1318 == (X86_XSTATE_AVX | X86_XSTATE_SSE))
1319 {
1320 gdb_byte buf[4];
1321
1322 store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL);
73e1c03f 1323 regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf);
8ee22052
AB
1324 }
1325 else
73e1c03f
SM
1326 regcache->raw_supply (I387_MXCSR_REGNUM (tdep),
1327 FXSAVE_MXCSR_ADDR (regs));
8ee22052 1328 }
31aeac78
L
1329}
1330
1331/* Similar to i387_collect_fxsave, but use XSAVE extended state. */
1332
1333void
1334i387_collect_xsave (const struct regcache *regcache, int regnum,
1335 void *xsave, int gcore)
1336{
ac7936df 1337 struct gdbarch *gdbarch = regcache->arch ();
8ee22052 1338 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
01f9f808 1339 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8ee22052
AB
1340 gdb_byte *p, *regs = (gdb_byte *) xsave;
1341 gdb_byte raw[I386_MAX_REGISTER_SIZE];
1342 ULONGEST initial_xstate_bv, clear_bv, xstate_bv = 0;
35f1fea3 1343 unsigned int i;
31aeac78
L
1344 enum
1345 {
8ee22052
AB
1346 x87_ctrl_or_mxcsr = 0x1,
1347 x87 = 0x2,
1348 sse = 0x4,
1349 avxh = 0x8,
1350 mpx = 0x10,
1351 avx512_k = 0x20,
1352 avx512_zmm_h = 0x40,
1353 avx512_ymmh_avx512 = 0x80,
1354 avx512_xmm_avx512 = 0x100,
1355 pkeys = 0x200,
01f9f808 1356 all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h
51547df6 1357 | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys
31aeac78
L
1358 } regclass;
1359
1360 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
1361 gdb_assert (tdep->num_xmm_regs > 0);
1362
1363 if (regnum == -1)
1364 regclass = all;
51547df6
MS
1365 else if (regnum >= I387_PKRU_REGNUM (tdep)
1366 && regnum < I387_PKEYSEND_REGNUM (tdep))
1367 regclass = pkeys;
01f9f808
MS
1368 else if (regnum >= I387_ZMM0H_REGNUM (tdep)
1369 && regnum < I387_ZMMENDH_REGNUM (tdep))
1370 regclass = avx512_zmm_h;
1371 else if (regnum >= I387_K0_REGNUM (tdep)
1372 && regnum < I387_KEND_REGNUM (tdep))
1373 regclass = avx512_k;
1374 else if (regnum >= I387_YMM16H_REGNUM (tdep)
1375 && regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
1376 regclass = avx512_ymmh_avx512;
1377 else if (regnum >= I387_XMM16_REGNUM (tdep)
1378 && regnum < I387_XMM_AVX512_END_REGNUM (tdep))
1379 regclass = avx512_xmm_avx512;
31aeac78
L
1380 else if (regnum >= I387_YMM0H_REGNUM (tdep)
1381 && regnum < I387_YMMENDH_REGNUM (tdep))
1382 regclass = avxh;
1dbcd68c
WT
1383 else if (regnum >= I387_BND0R_REGNUM (tdep)
1384 && regnum < I387_MPXEND_REGNUM (tdep))
1385 regclass = mpx;
1386 else if (regnum >= I387_XMM0_REGNUM (tdep)
31aeac78
L
1387 && regnum < I387_MXCSR_REGNUM (tdep))
1388 regclass = sse;
1389 else if (regnum >= I387_ST0_REGNUM (tdep)
1390 && regnum < I387_FCTRL_REGNUM (tdep))
1391 regclass = x87;
8ee22052
AB
1392 else if ((regnum >= I387_FCTRL_REGNUM (tdep)
1393 && regnum < I387_XMM0_REGNUM (tdep))
1394 || regnum == I387_MXCSR_REGNUM (tdep))
1395 regclass = x87_ctrl_or_mxcsr;
31aeac78 1396 else
8ee22052 1397 internal_error (__FILE__, __LINE__, _("invalid i387 regnum %d"), regnum);
31aeac78
L
1398
1399 if (gcore)
1400 {
1401 /* Clear XSAVE extended state. */
df7e5265 1402 memset (regs, 0, X86_XSTATE_SIZE (tdep->xcr0));
31aeac78
L
1403
1404 /* Update XCR0 and `xstate_bv' with XCR0 for gcore. */
1405 if (tdep->xsave_xcr0_offset != -1)
1406 memcpy (regs + tdep->xsave_xcr0_offset, &tdep->xcr0, 8);
1407 memcpy (XSAVE_XSTATE_BV_ADDR (regs), &tdep->xcr0, 8);
1408 }
1409
8ee22052
AB
1410 /* The supported bits in `xstat_bv' are 8 bytes. */
1411 initial_xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
1412 8, byte_order);
1413 clear_bv = (~(initial_xstate_bv)) & tdep->xcr0;
1414
1415 /* The XSAVE buffer was filled lazily by the kernel. Only those
1416 features that are enabled were written into the buffer, disabled
1417 features left the buffer uninitialised. In order to identify if any
1418 registers have changed we will be comparing the register cache
1419 version to the version in the XSAVE buffer, it is important then that
1420 at this point we initialise to the default values any features in
1421 XSAVE that are not yet initialised.
1422
1423 This could be made more efficient, we know which features (from
1424 REGNUM) we will be potentially updating, and could limit ourselves to
1425 only clearing that feature. However, the extra complexity does not
1426 seem justified at this point. */
1427 if (clear_bv)
31aeac78 1428 {
8ee22052
AB
1429 if ((clear_bv & X86_XSTATE_PKRU))
1430 for (i = I387_PKRU_REGNUM (tdep);
1431 i < I387_PKEYSEND_REGNUM (tdep); i++)
1432 memset (XSAVE_PKEYS_ADDR (tdep, regs, i), 0, 4);
31aeac78 1433
8ee22052
AB
1434 if ((clear_bv & X86_XSTATE_BNDREGS))
1435 for (i = I387_BND0R_REGNUM (tdep);
1436 i < I387_BNDCFGU_REGNUM (tdep); i++)
1437 memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 16);
51547df6 1438
8ee22052
AB
1439 if ((clear_bv & X86_XSTATE_BNDCFG))
1440 for (i = I387_BNDCFGU_REGNUM (tdep);
1441 i < I387_MPXEND_REGNUM (tdep); i++)
1442 memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 8);
1dbcd68c 1443
8ee22052
AB
1444 if ((clear_bv & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
1445 for (i = I387_ZMM0H_REGNUM (tdep);
1446 i < I387_ZMMENDH_REGNUM (tdep); i++)
1447 memset (XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i), 0, 32);
1dbcd68c 1448
8ee22052
AB
1449 if ((clear_bv & X86_XSTATE_K))
1450 for (i = I387_K0_REGNUM (tdep);
1451 i < I387_KEND_REGNUM (tdep); i++)
1452 memset (XSAVE_AVX512_K_ADDR (tdep, regs, i), 0, 8);
01f9f808 1453
8ee22052
AB
1454 if ((clear_bv & X86_XSTATE_ZMM))
1455 {
1456 for (i = I387_YMM16H_REGNUM (tdep);
1457 i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
1458 memset (XSAVE_YMM_AVX512_ADDR (tdep, regs, i), 0, 16);
1459 for (i = I387_XMM16_REGNUM (tdep);
1460 i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
1461 memset (XSAVE_XMM_AVX512_ADDR (tdep, regs, i), 0, 16);
1462 }
01f9f808 1463
8ee22052
AB
1464 if ((clear_bv & X86_XSTATE_AVX))
1465 for (i = I387_YMM0H_REGNUM (tdep);
1466 i < I387_YMMENDH_REGNUM (tdep); i++)
1467 memset (XSAVE_AVXH_ADDR (tdep, regs, i), 0, 16);
01f9f808 1468
8ee22052
AB
1469 if ((clear_bv & X86_XSTATE_SSE))
1470 for (i = I387_XMM0_REGNUM (tdep);
1471 i < I387_MXCSR_REGNUM (tdep); i++)
1472 memset (FXSAVE_ADDR (tdep, regs, i), 0, 16);
1473
1474 /* The mxcsr register is written into the xsave buffer if either AVX
1475 or SSE is enabled, so only clear it if both of those features
1476 require clearing. */
1477 if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE))
1478 == (X86_XSTATE_AVX | X86_XSTATE_SSE))
cf4912ae 1479 store_unsigned_integer (FXSAVE_MXCSR_ADDR (regs), 2, byte_order,
8ee22052 1480 I387_MXCSR_INIT_VAL);
31aeac78 1481
8ee22052
AB
1482 if ((clear_bv & X86_XSTATE_X87))
1483 {
1484 for (i = I387_ST0_REGNUM (tdep);
1485 i < I387_FCTRL_REGNUM (tdep); i++)
1486 memset (FXSAVE_ADDR (tdep, regs, i), 0, 10);
31aeac78 1487
8ee22052
AB
1488 for (i = I387_FCTRL_REGNUM (tdep);
1489 i < I387_XMM0_REGNUM (tdep); i++)
1490 {
1491 if (i == I387_FCTRL_REGNUM (tdep))
1492 store_unsigned_integer (FXSAVE_ADDR (tdep, regs, i), 2,
1493 byte_order, I387_FCTRL_INIT_VAL);
1494 else
1495 memset (FXSAVE_ADDR (tdep, regs, i), 0,
1496 regcache_register_size (regcache, i));
1497 }
31aeac78 1498 }
8ee22052 1499 }
31aeac78 1500
8ee22052
AB
1501 if (regclass == all)
1502 {
1503 /* Check if any PKEYS registers are changed. */
1504 if ((tdep->xcr0 & X86_XSTATE_PKRU))
1505 for (i = I387_PKRU_REGNUM (tdep);
1506 i < I387_PKEYSEND_REGNUM (tdep); i++)
1507 {
34a79281 1508 regcache->raw_collect (i, raw);
8ee22052
AB
1509 p = XSAVE_PKEYS_ADDR (tdep, regs, i);
1510 if (memcmp (raw, p, 4) != 0)
51547df6 1511 {
8ee22052
AB
1512 xstate_bv |= X86_XSTATE_PKRU;
1513 memcpy (p, raw, 4);
51547df6 1514 }
8ee22052 1515 }
51547df6 1516
8ee22052
AB
1517 /* Check if any ZMMH registers are changed. */
1518 if ((tdep->xcr0 & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
1519 for (i = I387_ZMM0H_REGNUM (tdep);
1520 i < I387_ZMMENDH_REGNUM (tdep); i++)
1521 {
34a79281 1522 regcache->raw_collect (i, raw);
8ee22052
AB
1523 p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i);
1524 if (memcmp (raw, p, 32) != 0)
01f9f808 1525 {
8ee22052
AB
1526 xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM);
1527 memcpy (p, raw, 32);
01f9f808 1528 }
8ee22052 1529 }
01f9f808 1530
8ee22052
AB
1531 /* Check if any K registers are changed. */
1532 if ((tdep->xcr0 & X86_XSTATE_K))
1533 for (i = I387_K0_REGNUM (tdep);
1534 i < I387_KEND_REGNUM (tdep); i++)
1535 {
34a79281 1536 regcache->raw_collect (i, raw);
8ee22052
AB
1537 p = XSAVE_AVX512_K_ADDR (tdep, regs, i);
1538 if (memcmp (raw, p, 8) != 0)
01f9f808 1539 {
8ee22052
AB
1540 xstate_bv |= X86_XSTATE_K;
1541 memcpy (p, raw, 8);
01f9f808 1542 }
8ee22052 1543 }
01f9f808 1544
8ee22052
AB
1545 /* Check if any XMM or upper YMM registers are changed. */
1546 if ((tdep->xcr0 & X86_XSTATE_ZMM))
1547 {
1548 for (i = I387_YMM16H_REGNUM (tdep);
1549 i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
01f9f808 1550 {
34a79281 1551 regcache->raw_collect (i, raw);
8ee22052
AB
1552 p = XSAVE_YMM_AVX512_ADDR (tdep, regs, i);
1553 if (memcmp (raw, p, 16) != 0)
01f9f808 1554 {
8ee22052
AB
1555 xstate_bv |= X86_XSTATE_ZMM;
1556 memcpy (p, raw, 16);
01f9f808 1557 }
8ee22052
AB
1558 }
1559 for (i = I387_XMM16_REGNUM (tdep);
1560 i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
1561 {
34a79281 1562 regcache->raw_collect (i, raw);
8ee22052
AB
1563 p = XSAVE_XMM_AVX512_ADDR (tdep, regs, i);
1564 if (memcmp (raw, p, 16) != 0)
01f9f808 1565 {
8ee22052
AB
1566 xstate_bv |= X86_XSTATE_ZMM;
1567 memcpy (p, raw, 16);
01f9f808
MS
1568 }
1569 }
8ee22052 1570 }
01f9f808 1571
8ee22052
AB
1572 /* Check if any upper MPX registers are changed. */
1573 if ((tdep->xcr0 & X86_XSTATE_BNDREGS))
1574 for (i = I387_BND0R_REGNUM (tdep);
1575 i < I387_BNDCFGU_REGNUM (tdep); i++)
1576 {
34a79281 1577 regcache->raw_collect (i, raw);
8ee22052
AB
1578 p = XSAVE_MPX_ADDR (tdep, regs, i);
1579 if (memcmp (raw, p, 16))
31aeac78 1580 {
8ee22052
AB
1581 xstate_bv |= X86_XSTATE_BNDREGS;
1582 memcpy (p, raw, 16);
31aeac78 1583 }
8ee22052
AB
1584 }
1585
1586 /* Check if any upper MPX registers are changed. */
1587 if ((tdep->xcr0 & X86_XSTATE_BNDCFG))
1588 for (i = I387_BNDCFGU_REGNUM (tdep);
1589 i < I387_MPXEND_REGNUM (tdep); i++)
1590 {
34a79281 1591 regcache->raw_collect (i, raw);
8ee22052
AB
1592 p = XSAVE_MPX_ADDR (tdep, regs, i);
1593 if (memcmp (raw, p, 8))
1dbcd68c 1594 {
8ee22052
AB
1595 xstate_bv |= X86_XSTATE_BNDCFG;
1596 memcpy (p, raw, 8);
1dbcd68c 1597 }
8ee22052 1598 }
1dbcd68c 1599
8ee22052
AB
1600 /* Check if any upper YMM registers are changed. */
1601 if ((tdep->xcr0 & X86_XSTATE_AVX))
1602 for (i = I387_YMM0H_REGNUM (tdep);
1603 i < I387_YMMENDH_REGNUM (tdep); i++)
1604 {
34a79281 1605 regcache->raw_collect (i, raw);
8ee22052
AB
1606 p = XSAVE_AVXH_ADDR (tdep, regs, i);
1607 if (memcmp (raw, p, 16))
1dbcd68c 1608 {
8ee22052
AB
1609 xstate_bv |= X86_XSTATE_AVX;
1610 memcpy (p, raw, 16);
1dbcd68c 1611 }
8ee22052 1612 }
31aeac78 1613
8ee22052
AB
1614 /* Check if any SSE registers are changed. */
1615 if ((tdep->xcr0 & X86_XSTATE_SSE))
1616 for (i = I387_XMM0_REGNUM (tdep);
1617 i < I387_MXCSR_REGNUM (tdep); i++)
1618 {
34a79281 1619 regcache->raw_collect (i, raw);
8ee22052
AB
1620 p = FXSAVE_ADDR (tdep, regs, i);
1621 if (memcmp (raw, p, 16))
31aeac78 1622 {
8ee22052
AB
1623 xstate_bv |= X86_XSTATE_SSE;
1624 memcpy (p, raw, 16);
31aeac78 1625 }
8ee22052 1626 }
31aeac78 1627
8ee22052
AB
1628 if ((tdep->xcr0 & X86_XSTATE_AVX) || (tdep->xcr0 & X86_XSTATE_SSE))
1629 {
1630 i = I387_MXCSR_REGNUM (tdep);
34a79281 1631 regcache->raw_collect (i, raw);
cf4912ae 1632 p = FXSAVE_MXCSR_ADDR (regs);
8ee22052
AB
1633 if (memcmp (raw, p, 4))
1634 {
1635 /* Now, we need to mark one of either SSE of AVX as enabled.
1636 We could pick either. What we do is check to see if one
1637 of the features is already enabled, if it is then we leave
1638 it at that, otherwise we pick SSE. */
1639 if ((xstate_bv & (X86_XSTATE_SSE | X86_XSTATE_AVX)) == 0)
1640 xstate_bv |= X86_XSTATE_SSE;
1641 memcpy (p, raw, 4);
1642 }
1643 }
1644
1645 /* Check if any X87 registers are changed. Only the non-control
1646 registers are handled here, the control registers are all handled
1647 later on in this function. */
1648 if ((tdep->xcr0 & X86_XSTATE_X87))
1649 for (i = I387_ST0_REGNUM (tdep);
1650 i < I387_FCTRL_REGNUM (tdep); i++)
1651 {
34a79281 1652 regcache->raw_collect (i, raw);
8ee22052
AB
1653 p = FXSAVE_ADDR (tdep, regs, i);
1654 if (memcmp (raw, p, 10))
31aeac78 1655 {
8ee22052
AB
1656 xstate_bv |= X86_XSTATE_X87;
1657 memcpy (p, raw, 10);
31aeac78 1658 }
8ee22052
AB
1659 }
1660 }
1661 else
1662 {
1663 /* Check if REGNUM is changed. */
34a79281 1664 regcache->raw_collect (regnum, raw);
31aeac78 1665
8ee22052
AB
1666 switch (regclass)
1667 {
1668 default:
1669 internal_error (__FILE__, __LINE__,
1670 _("invalid i387 regclass"));
1671
1672 case pkeys:
1673 /* This is a PKEYS register. */
1674 p = XSAVE_PKEYS_ADDR (tdep, regs, regnum);
1675 if (memcmp (raw, p, 4) != 0)
31aeac78 1676 {
8ee22052
AB
1677 xstate_bv |= X86_XSTATE_PKRU;
1678 memcpy (p, raw, 4);
1679 }
1680 break;
01f9f808 1681
8ee22052
AB
1682 case avx512_zmm_h:
1683 /* This is a ZMM register. */
1684 p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum);
1685 if (memcmp (raw, p, 32) != 0)
1686 {
1687 xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM);
1688 memcpy (p, raw, 32);
1689 }
1690 break;
1691 case avx512_k:
1692 /* This is a AVX512 mask register. */
1693 p = XSAVE_AVX512_K_ADDR (tdep, regs, regnum);
1694 if (memcmp (raw, p, 8) != 0)
1695 {
1696 xstate_bv |= X86_XSTATE_K;
1697 memcpy (p, raw, 8);
1698 }
1699 break;
01f9f808 1700
8ee22052
AB
1701 case avx512_ymmh_avx512:
1702 /* This is an upper YMM16-31 register. */
1703 p = XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum);
1704 if (memcmp (raw, p, 16) != 0)
1705 {
1706 xstate_bv |= X86_XSTATE_ZMM;
1707 memcpy (p, raw, 16);
1708 }
1709 break;
01f9f808 1710
8ee22052
AB
1711 case avx512_xmm_avx512:
1712 /* This is an upper XMM16-31 register. */
1713 p = XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum);
1714 if (memcmp (raw, p, 16) != 0)
1715 {
1716 xstate_bv |= X86_XSTATE_ZMM;
1717 memcpy (p, raw, 16);
1718 }
1719 break;
31aeac78 1720
8ee22052
AB
1721 case avxh:
1722 /* This is an upper YMM register. */
1723 p = XSAVE_AVXH_ADDR (tdep, regs, regnum);
1724 if (memcmp (raw, p, 16))
1725 {
1726 xstate_bv |= X86_XSTATE_AVX;
1727 memcpy (p, raw, 16);
1728 }
1729 break;
1dbcd68c 1730
8ee22052
AB
1731 case mpx:
1732 if (regnum < I387_BNDCFGU_REGNUM (tdep))
1733 {
34a79281 1734 regcache->raw_collect (regnum, raw);
8ee22052 1735 p = XSAVE_MPX_ADDR (tdep, regs, regnum);
40936b0d
L
1736 if (memcmp (raw, p, 16))
1737 {
8ee22052 1738 xstate_bv |= X86_XSTATE_BNDREGS;
40936b0d
L
1739 memcpy (p, raw, 16);
1740 }
8ee22052
AB
1741 }
1742 else
1743 {
1744 p = XSAVE_MPX_ADDR (tdep, regs, regnum);
1745 xstate_bv |= X86_XSTATE_BNDCFG;
1746 memcpy (p, raw, 8);
1747 }
1748 break;
31aeac78 1749
8ee22052
AB
1750 case sse:
1751 /* This is an SSE register. */
1752 p = FXSAVE_ADDR (tdep, regs, regnum);
1753 if (memcmp (raw, p, 16))
1754 {
1755 xstate_bv |= X86_XSTATE_SSE;
1756 memcpy (p, raw, 16);
31aeac78 1757 }
8ee22052 1758 break;
40936b0d 1759
8ee22052
AB
1760 case x87:
1761 /* This is an x87 register. */
1762 p = FXSAVE_ADDR (tdep, regs, regnum);
1763 if (memcmp (raw, p, 10))
1764 {
1765 xstate_bv |= X86_XSTATE_X87;
1766 memcpy (p, raw, 10);
1767 }
1768 break;
40936b0d 1769
8ee22052
AB
1770 case x87_ctrl_or_mxcsr:
1771 /* We only handle MXCSR here. All other x87 control registers
1772 are handled separately below. */
1773 if (regnum == I387_MXCSR_REGNUM (tdep))
31aeac78 1774 {
8ee22052
AB
1775 p = FXSAVE_MXCSR_ADDR (regs);
1776 if (memcmp (raw, p, 2))
1777 {
1778 /* We're only setting MXCSR, so check the initial state
1779 to see if either of AVX or SSE are already enabled.
1780 If they are then we'll attribute this changed MXCSR to
1781 that feature. If neither feature is enabled, then
1782 we'll attribute this change to the SSE feature. */
1783 xstate_bv |= (initial_xstate_bv
1784 & (X86_XSTATE_AVX | X86_XSTATE_SSE));
1785 if ((xstate_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) == 0)
1786 xstate_bv |= X86_XSTATE_SSE;
1787 memcpy (p, raw, 2);
1788 }
31aeac78 1789 }
40936b0d 1790 }
31aeac78
L
1791 }
1792
1793 /* Only handle x87 control registers. */
1794 for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
1795 if (regnum == -1 || regnum == i)
1796 {
1797 /* Most of the FPU control registers occupy only 16 bits in
1798 the xsave extended state. Give those a special treatment. */
1799 if (i != I387_FIOFF_REGNUM (tdep)
1800 && i != I387_FOOFF_REGNUM (tdep))
1801 {
1802 gdb_byte buf[4];
1803
34a79281 1804 regcache->raw_collect (i, buf);
31aeac78 1805
20a6ec49 1806 if (i == I387_FOP_REGNUM (tdep))
e750d25e
JT
1807 {
1808 /* The opcode occupies only 11 bits. Make sure we
40936b0d 1809 don't touch the other bits. */
e750d25e 1810 buf[1] &= ((1 << 3) - 1);
20a6ec49 1811 buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
e750d25e 1812 }
20a6ec49 1813 else if (i == I387_FTAG_REGNUM (tdep))
e750d25e
JT
1814 {
1815 /* Converting back is much easier. */
1816
1817 unsigned short ftag;
1818 int fpreg;
1819
1820 ftag = (buf[1] << 8) | buf[0];
1821 buf[0] = 0;
1822 buf[1] = 0;
1823
1824 for (fpreg = 7; fpreg >= 0; fpreg--)
1825 {
1826 int tag = (ftag >> (fpreg * 2)) & 3;
1827
1828 if (tag != 3)
1829 buf[0] |= (1 << fpreg);
1830 }
1831 }
8ee22052
AB
1832 p = FXSAVE_ADDR (tdep, regs, i);
1833 if (memcmp (p, buf, 2))
1834 {
1835 xstate_bv |= X86_XSTATE_X87;
1836 memcpy (p, buf, 2);
1837 }
e750d25e
JT
1838 }
1839 else
8ee22052
AB
1840 {
1841 int regsize;
1842
34a79281 1843 regcache->raw_collect (i, raw);
8ee22052
AB
1844 regsize = regcache_register_size (regcache, i);
1845 p = FXSAVE_ADDR (tdep, regs, i);
1846 if (memcmp (raw, p, regsize))
1847 {
1848 xstate_bv |= X86_XSTATE_X87;
1849 memcpy (p, raw, regsize);
1850 }
1851 }
e750d25e 1852 }
5716833c 1853
8ee22052
AB
1854 /* Update the corresponding bits in `xstate_bv' if any
1855 registers are changed. */
1856 if (xstate_bv)
1857 {
1858 /* The supported bits in `xstat_bv' are 8 bytes. */
1859 initial_xstate_bv |= xstate_bv;
1860 store_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
1861 8, byte_order,
1862 initial_xstate_bv);
1863 }
e750d25e
JT
1864}
1865
1866/* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
1867 *RAW. */
1868
1869static int
b4ad899f 1870i387_tag (const gdb_byte *raw)
e750d25e
JT
1871{
1872 int integer;
1873 unsigned int exponent;
1874 unsigned long fraction[2];
1875
1876 integer = raw[7] & 0x80;
1877 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
1878 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
1879 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
1880 | (raw[5] << 8) | raw[4]);
1881
1882 if (exponent == 0x7fff)
1883 {
1884 /* Special. */
1885 return (2);
1886 }
1887 else if (exponent == 0x0000)
1888 {
1889 if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
1890 {
1891 /* Zero. */
1892 return (1);
1893 }
1894 else
1895 {
1896 /* Special. */
1897 return (2);
1898 }
1899 }
1900 else
1901 {
1902 if (integer)
1903 {
1904 /* Valid. */
1905 return (0);
1906 }
1907 else
1908 {
1909 /* Special. */
1910 return (2);
1911 }
1912 }
1913}
efb1c01c
MK
1914
1915/* Prepare the FPU stack in REGCACHE for a function return. */
1916
1917void
1918i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache)
1919{
1920 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1921 ULONGEST fstat;
1922
efb1c01c
MK
1923 /* Set the top of the floating-point register stack to 7. The
1924 actual value doesn't really matter, but 7 is what a normal
1925 function return would end up with if the program started out with
1926 a freshly initialized FPU. */
20a6ec49 1927 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
efb1c01c 1928 fstat |= (7 << 11);
20a6ec49 1929 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
efb1c01c
MK
1930
1931 /* Mark %st(1) through %st(7) as empty. Since we set the top of the
1932 floating-point register stack to 7, the appropriate value for the
1933 tag word is 0x3fff. */
20a6ec49 1934 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
efb1c01c 1935
efb1c01c 1936}
4a612d6f
WT
1937
1938/* See i387-tdep.h. */
1939
1940void
1941i387_reset_bnd_regs (struct gdbarch *gdbarch, struct regcache *regcache)
1942{
1943 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1944
1945 if (I387_BND0R_REGNUM (tdep) > 0)
1946 {
1947 gdb_byte bnd_buf[16];
1948
1949 memset (bnd_buf, 0, 16);
1950 for (int i = 0; i < I387_NUM_BND_REGS; i++)
10eaee5f 1951 regcache->raw_write (I387_BND0R_REGNUM (tdep) + i, bnd_buf);
4a612d6f
WT
1952 }
1953}
This page took 1.713263 seconds and 4 git commands to generate.