*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
0b302171 4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
be34f849 55#include "continuations.h"
b4a14fd0 56#include "interps.h"
1bfeeb0f 57#include "skip.h"
c906108c
SS
58
59/* Prototypes for local functions */
60
96baa820 61static void signals_info (char *, int);
c906108c 62
96baa820 63static void handle_command (char *, int);
c906108c 64
96baa820 65static void sig_print_info (enum target_signal);
c906108c 66
96baa820 67static void sig_print_header (void);
c906108c 68
74b7792f 69static void resume_cleanups (void *);
c906108c 70
96baa820 71static int hook_stop_stub (void *);
c906108c 72
96baa820
JM
73static int restore_selected_frame (void *);
74
4ef3f3be 75static int follow_fork (void);
96baa820
JM
76
77static void set_schedlock_func (char *args, int from_tty,
488f131b 78 struct cmd_list_element *c);
96baa820 79
a289b8f6
JK
80static int currently_stepping (struct thread_info *tp);
81
b3444185
PA
82static int currently_stepping_or_nexting_callback (struct thread_info *tp,
83 void *data);
a7212384 84
96baa820
JM
85static void xdb_handle_command (char *args, int from_tty);
86
6a6b96b9 87static int prepare_to_proceed (int);
ea67f13b 88
33d62d64
JK
89static void print_exited_reason (int exitstatus);
90
91static void print_signal_exited_reason (enum target_signal siggnal);
92
93static void print_no_history_reason (void);
94
95static void print_signal_received_reason (enum target_signal siggnal);
96
97static void print_end_stepping_range_reason (void);
98
96baa820 99void _initialize_infrun (void);
43ff13b4 100
e58b0e63
PA
101void nullify_last_target_wait_ptid (void);
102
2c03e5be 103static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
104
105static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
106
2484c66b
UW
107static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
108
5fbbeb29
CF
109/* When set, stop the 'step' command if we enter a function which has
110 no line number information. The normal behavior is that we step
111 over such function. */
112int step_stop_if_no_debug = 0;
920d2a44
AC
113static void
114show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116{
117 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
118}
5fbbeb29 119
1777feb0 120/* In asynchronous mode, but simulating synchronous execution. */
96baa820 121
43ff13b4
JM
122int sync_execution = 0;
123
c906108c
SS
124/* wait_for_inferior and normal_stop use this to notify the user
125 when the inferior stopped in a different thread than it had been
96baa820
JM
126 running in. */
127
39f77062 128static ptid_t previous_inferior_ptid;
7a292a7a 129
6c95b8df
PA
130/* Default behavior is to detach newly forked processes (legacy). */
131int detach_fork = 1;
132
237fc4c9
PA
133int debug_displaced = 0;
134static void
135show_debug_displaced (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
139}
140
628fe4e4 141int debug_infrun = 0;
920d2a44
AC
142static void
143show_debug_infrun (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
146 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
147}
527159b7 148
03583c20
UW
149
150/* Support for disabling address space randomization. */
151
152int disable_randomization = 1;
153
154static void
155show_disable_randomization (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 if (target_supports_disable_randomization ())
159 fprintf_filtered (file,
160 _("Disabling randomization of debuggee's "
161 "virtual address space is %s.\n"),
162 value);
163 else
164 fputs_filtered (_("Disabling randomization of debuggee's "
165 "virtual address space is unsupported on\n"
166 "this platform.\n"), file);
167}
168
169static void
170set_disable_randomization (char *args, int from_tty,
171 struct cmd_list_element *c)
172{
173 if (!target_supports_disable_randomization ())
174 error (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform."));
177}
178
179
d4f3574e
SS
180/* If the program uses ELF-style shared libraries, then calls to
181 functions in shared libraries go through stubs, which live in a
182 table called the PLT (Procedure Linkage Table). The first time the
183 function is called, the stub sends control to the dynamic linker,
184 which looks up the function's real address, patches the stub so
185 that future calls will go directly to the function, and then passes
186 control to the function.
187
188 If we are stepping at the source level, we don't want to see any of
189 this --- we just want to skip over the stub and the dynamic linker.
190 The simple approach is to single-step until control leaves the
191 dynamic linker.
192
ca557f44
AC
193 However, on some systems (e.g., Red Hat's 5.2 distribution) the
194 dynamic linker calls functions in the shared C library, so you
195 can't tell from the PC alone whether the dynamic linker is still
196 running. In this case, we use a step-resume breakpoint to get us
197 past the dynamic linker, as if we were using "next" to step over a
198 function call.
d4f3574e 199
cfd8ab24 200 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
201 linker code or not. Normally, this means we single-step. However,
202 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
203 address where we can place a step-resume breakpoint to get past the
204 linker's symbol resolution function.
205
cfd8ab24 206 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
207 pretty portable way, by comparing the PC against the address ranges
208 of the dynamic linker's sections.
209
210 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
211 it depends on internal details of the dynamic linker. It's usually
212 not too hard to figure out where to put a breakpoint, but it
213 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
214 sanity checking. If it can't figure things out, returning zero and
215 getting the (possibly confusing) stepping behavior is better than
216 signalling an error, which will obscure the change in the
217 inferior's state. */
c906108c 218
c906108c
SS
219/* This function returns TRUE if pc is the address of an instruction
220 that lies within the dynamic linker (such as the event hook, or the
221 dld itself).
222
223 This function must be used only when a dynamic linker event has
224 been caught, and the inferior is being stepped out of the hook, or
225 undefined results are guaranteed. */
226
227#ifndef SOLIB_IN_DYNAMIC_LINKER
228#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
229#endif
230
d914c394
SS
231/* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
235static int non_stop_1 = 0;
236
237int observer_mode = 0;
238static int observer_mode_1 = 0;
239
240static void
241set_observer_mode (char *args, int from_tty,
242 struct cmd_list_element *c)
243{
244 extern int pagination_enabled;
245
246 if (target_has_execution)
247 {
248 observer_mode_1 = observer_mode;
249 error (_("Cannot change this setting while the inferior is running."));
250 }
251
252 observer_mode = observer_mode_1;
253
254 may_write_registers = !observer_mode;
255 may_write_memory = !observer_mode;
256 may_insert_breakpoints = !observer_mode;
257 may_insert_tracepoints = !observer_mode;
258 /* We can insert fast tracepoints in or out of observer mode,
259 but enable them if we're going into this mode. */
260 if (observer_mode)
261 may_insert_fast_tracepoints = 1;
262 may_stop = !observer_mode;
263 update_target_permissions ();
264
265 /* Going *into* observer mode we must force non-stop, then
266 going out we leave it that way. */
267 if (observer_mode)
268 {
269 target_async_permitted = 1;
270 pagination_enabled = 0;
271 non_stop = non_stop_1 = 1;
272 }
273
274 if (from_tty)
275 printf_filtered (_("Observer mode is now %s.\n"),
276 (observer_mode ? "on" : "off"));
277}
278
279static void
280show_observer_mode (struct ui_file *file, int from_tty,
281 struct cmd_list_element *c, const char *value)
282{
283 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
284}
285
286/* This updates the value of observer mode based on changes in
287 permissions. Note that we are deliberately ignoring the values of
288 may-write-registers and may-write-memory, since the user may have
289 reason to enable these during a session, for instance to turn on a
290 debugging-related global. */
291
292void
293update_observer_mode (void)
294{
295 int newval;
296
297 newval = (!may_insert_breakpoints
298 && !may_insert_tracepoints
299 && may_insert_fast_tracepoints
300 && !may_stop
301 && non_stop);
302
303 /* Let the user know if things change. */
304 if (newval != observer_mode)
305 printf_filtered (_("Observer mode is now %s.\n"),
306 (newval ? "on" : "off"));
307
308 observer_mode = observer_mode_1 = newval;
309}
c2c6d25f 310
c906108c
SS
311/* Tables of how to react to signals; the user sets them. */
312
313static unsigned char *signal_stop;
314static unsigned char *signal_print;
315static unsigned char *signal_program;
316
2455069d
UW
317/* Table of signals that the target may silently handle.
318 This is automatically determined from the flags above,
319 and simply cached here. */
320static unsigned char *signal_pass;
321
c906108c
SS
322#define SET_SIGS(nsigs,sigs,flags) \
323 do { \
324 int signum = (nsigs); \
325 while (signum-- > 0) \
326 if ((sigs)[signum]) \
327 (flags)[signum] = 1; \
328 } while (0)
329
330#define UNSET_SIGS(nsigs,sigs,flags) \
331 do { \
332 int signum = (nsigs); \
333 while (signum-- > 0) \
334 if ((sigs)[signum]) \
335 (flags)[signum] = 0; \
336 } while (0)
337
1777feb0 338/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 339
edb3359d 340#define RESUME_ALL minus_one_ptid
c906108c
SS
341
342/* Command list pointer for the "stop" placeholder. */
343
344static struct cmd_list_element *stop_command;
345
c906108c
SS
346/* Function inferior was in as of last step command. */
347
348static struct symbol *step_start_function;
349
c906108c
SS
350/* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
628fe4e4 352int stop_on_solib_events;
920d2a44
AC
353static void
354show_stop_on_solib_events (struct ui_file *file, int from_tty,
355 struct cmd_list_element *c, const char *value)
356{
357 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
358 value);
359}
c906108c 360
c906108c
SS
361/* Nonzero means expecting a trace trap
362 and should stop the inferior and return silently when it happens. */
363
364int stop_after_trap;
365
642fd101
DE
366/* Save register contents here when executing a "finish" command or are
367 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
368 Thus this contains the return value from the called function (assuming
369 values are returned in a register). */
370
72cec141 371struct regcache *stop_registers;
c906108c 372
c906108c
SS
373/* Nonzero after stop if current stack frame should be printed. */
374
375static int stop_print_frame;
376
e02bc4cc 377/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
378 returned by target_wait()/deprecated_target_wait_hook(). This
379 information is returned by get_last_target_status(). */
39f77062 380static ptid_t target_last_wait_ptid;
e02bc4cc
DS
381static struct target_waitstatus target_last_waitstatus;
382
0d1e5fa7
PA
383static void context_switch (ptid_t ptid);
384
4e1c45ea 385void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
386
387void init_infwait_state (void);
a474d7c2 388
53904c9e
AC
389static const char follow_fork_mode_child[] = "child";
390static const char follow_fork_mode_parent[] = "parent";
391
488f131b 392static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
393 follow_fork_mode_child,
394 follow_fork_mode_parent,
395 NULL
ef346e04 396};
c906108c 397
53904c9e 398static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
399static void
400show_follow_fork_mode_string (struct ui_file *file, int from_tty,
401 struct cmd_list_element *c, const char *value)
402{
3e43a32a
MS
403 fprintf_filtered (file,
404 _("Debugger response to a program "
405 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
406 value);
407}
c906108c
SS
408\f
409
e58b0e63
PA
410/* Tell the target to follow the fork we're stopped at. Returns true
411 if the inferior should be resumed; false, if the target for some
412 reason decided it's best not to resume. */
413
6604731b 414static int
4ef3f3be 415follow_fork (void)
c906108c 416{
ea1dd7bc 417 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
418 int should_resume = 1;
419 struct thread_info *tp;
420
421 /* Copy user stepping state to the new inferior thread. FIXME: the
422 followed fork child thread should have a copy of most of the
4e3990f4
DE
423 parent thread structure's run control related fields, not just these.
424 Initialized to avoid "may be used uninitialized" warnings from gcc. */
425 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 426 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
427 CORE_ADDR step_range_start = 0;
428 CORE_ADDR step_range_end = 0;
429 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
430
431 if (!non_stop)
432 {
433 ptid_t wait_ptid;
434 struct target_waitstatus wait_status;
435
436 /* Get the last target status returned by target_wait(). */
437 get_last_target_status (&wait_ptid, &wait_status);
438
439 /* If not stopped at a fork event, then there's nothing else to
440 do. */
441 if (wait_status.kind != TARGET_WAITKIND_FORKED
442 && wait_status.kind != TARGET_WAITKIND_VFORKED)
443 return 1;
444
445 /* Check if we switched over from WAIT_PTID, since the event was
446 reported. */
447 if (!ptid_equal (wait_ptid, minus_one_ptid)
448 && !ptid_equal (inferior_ptid, wait_ptid))
449 {
450 /* We did. Switch back to WAIT_PTID thread, to tell the
451 target to follow it (in either direction). We'll
452 afterwards refuse to resume, and inform the user what
453 happened. */
454 switch_to_thread (wait_ptid);
455 should_resume = 0;
456 }
457 }
458
459 tp = inferior_thread ();
460
461 /* If there were any forks/vforks that were caught and are now to be
462 followed, then do so now. */
463 switch (tp->pending_follow.kind)
464 {
465 case TARGET_WAITKIND_FORKED:
466 case TARGET_WAITKIND_VFORKED:
467 {
468 ptid_t parent, child;
469
470 /* If the user did a next/step, etc, over a fork call,
471 preserve the stepping state in the fork child. */
472 if (follow_child && should_resume)
473 {
8358c15c
JK
474 step_resume_breakpoint = clone_momentary_breakpoint
475 (tp->control.step_resume_breakpoint);
16c381f0
JK
476 step_range_start = tp->control.step_range_start;
477 step_range_end = tp->control.step_range_end;
478 step_frame_id = tp->control.step_frame_id;
186c406b
TT
479 exception_resume_breakpoint
480 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
481
482 /* For now, delete the parent's sr breakpoint, otherwise,
483 parent/child sr breakpoints are considered duplicates,
484 and the child version will not be installed. Remove
485 this when the breakpoints module becomes aware of
486 inferiors and address spaces. */
487 delete_step_resume_breakpoint (tp);
16c381f0
JK
488 tp->control.step_range_start = 0;
489 tp->control.step_range_end = 0;
490 tp->control.step_frame_id = null_frame_id;
186c406b 491 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
492 }
493
494 parent = inferior_ptid;
495 child = tp->pending_follow.value.related_pid;
496
497 /* Tell the target to do whatever is necessary to follow
498 either parent or child. */
499 if (target_follow_fork (follow_child))
500 {
501 /* Target refused to follow, or there's some other reason
502 we shouldn't resume. */
503 should_resume = 0;
504 }
505 else
506 {
507 /* This pending follow fork event is now handled, one way
508 or another. The previous selected thread may be gone
509 from the lists by now, but if it is still around, need
510 to clear the pending follow request. */
e09875d4 511 tp = find_thread_ptid (parent);
e58b0e63
PA
512 if (tp)
513 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
514
515 /* This makes sure we don't try to apply the "Switched
516 over from WAIT_PID" logic above. */
517 nullify_last_target_wait_ptid ();
518
1777feb0 519 /* If we followed the child, switch to it... */
e58b0e63
PA
520 if (follow_child)
521 {
522 switch_to_thread (child);
523
524 /* ... and preserve the stepping state, in case the
525 user was stepping over the fork call. */
526 if (should_resume)
527 {
528 tp = inferior_thread ();
8358c15c
JK
529 tp->control.step_resume_breakpoint
530 = step_resume_breakpoint;
16c381f0
JK
531 tp->control.step_range_start = step_range_start;
532 tp->control.step_range_end = step_range_end;
533 tp->control.step_frame_id = step_frame_id;
186c406b
TT
534 tp->control.exception_resume_breakpoint
535 = exception_resume_breakpoint;
e58b0e63
PA
536 }
537 else
538 {
539 /* If we get here, it was because we're trying to
540 resume from a fork catchpoint, but, the user
541 has switched threads away from the thread that
542 forked. In that case, the resume command
543 issued is most likely not applicable to the
544 child, so just warn, and refuse to resume. */
3e43a32a
MS
545 warning (_("Not resuming: switched threads "
546 "before following fork child.\n"));
e58b0e63
PA
547 }
548
549 /* Reset breakpoints in the child as appropriate. */
550 follow_inferior_reset_breakpoints ();
551 }
552 else
553 switch_to_thread (parent);
554 }
555 }
556 break;
557 case TARGET_WAITKIND_SPURIOUS:
558 /* Nothing to follow. */
559 break;
560 default:
561 internal_error (__FILE__, __LINE__,
562 "Unexpected pending_follow.kind %d\n",
563 tp->pending_follow.kind);
564 break;
565 }
c906108c 566
e58b0e63 567 return should_resume;
c906108c
SS
568}
569
6604731b
DJ
570void
571follow_inferior_reset_breakpoints (void)
c906108c 572{
4e1c45ea
PA
573 struct thread_info *tp = inferior_thread ();
574
6604731b
DJ
575 /* Was there a step_resume breakpoint? (There was if the user
576 did a "next" at the fork() call.) If so, explicitly reset its
577 thread number.
578
579 step_resumes are a form of bp that are made to be per-thread.
580 Since we created the step_resume bp when the parent process
581 was being debugged, and now are switching to the child process,
582 from the breakpoint package's viewpoint, that's a switch of
583 "threads". We must update the bp's notion of which thread
584 it is for, or it'll be ignored when it triggers. */
585
8358c15c
JK
586 if (tp->control.step_resume_breakpoint)
587 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 588
186c406b
TT
589 if (tp->control.exception_resume_breakpoint)
590 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
591
6604731b
DJ
592 /* Reinsert all breakpoints in the child. The user may have set
593 breakpoints after catching the fork, in which case those
594 were never set in the child, but only in the parent. This makes
595 sure the inserted breakpoints match the breakpoint list. */
596
597 breakpoint_re_set ();
598 insert_breakpoints ();
c906108c 599}
c906108c 600
6c95b8df
PA
601/* The child has exited or execed: resume threads of the parent the
602 user wanted to be executing. */
603
604static int
605proceed_after_vfork_done (struct thread_info *thread,
606 void *arg)
607{
608 int pid = * (int *) arg;
609
610 if (ptid_get_pid (thread->ptid) == pid
611 && is_running (thread->ptid)
612 && !is_executing (thread->ptid)
613 && !thread->stop_requested
16c381f0 614 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
615 {
616 if (debug_infrun)
617 fprintf_unfiltered (gdb_stdlog,
618 "infrun: resuming vfork parent thread %s\n",
619 target_pid_to_str (thread->ptid));
620
621 switch_to_thread (thread->ptid);
622 clear_proceed_status ();
623 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
624 }
625
626 return 0;
627}
628
629/* Called whenever we notice an exec or exit event, to handle
630 detaching or resuming a vfork parent. */
631
632static void
633handle_vfork_child_exec_or_exit (int exec)
634{
635 struct inferior *inf = current_inferior ();
636
637 if (inf->vfork_parent)
638 {
639 int resume_parent = -1;
640
641 /* This exec or exit marks the end of the shared memory region
642 between the parent and the child. If the user wanted to
643 detach from the parent, now is the time. */
644
645 if (inf->vfork_parent->pending_detach)
646 {
647 struct thread_info *tp;
648 struct cleanup *old_chain;
649 struct program_space *pspace;
650 struct address_space *aspace;
651
1777feb0 652 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
653
654 old_chain = make_cleanup_restore_current_thread ();
655
656 /* We're letting loose of the parent. */
657 tp = any_live_thread_of_process (inf->vfork_parent->pid);
658 switch_to_thread (tp->ptid);
659
660 /* We're about to detach from the parent, which implicitly
661 removes breakpoints from its address space. There's a
662 catch here: we want to reuse the spaces for the child,
663 but, parent/child are still sharing the pspace at this
664 point, although the exec in reality makes the kernel give
665 the child a fresh set of new pages. The problem here is
666 that the breakpoints module being unaware of this, would
667 likely chose the child process to write to the parent
668 address space. Swapping the child temporarily away from
669 the spaces has the desired effect. Yes, this is "sort
670 of" a hack. */
671
672 pspace = inf->pspace;
673 aspace = inf->aspace;
674 inf->aspace = NULL;
675 inf->pspace = NULL;
676
677 if (debug_infrun || info_verbose)
678 {
679 target_terminal_ours ();
680
681 if (exec)
682 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
683 "Detaching vfork parent process "
684 "%d after child exec.\n",
6c95b8df
PA
685 inf->vfork_parent->pid);
686 else
687 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
688 "Detaching vfork parent process "
689 "%d after child exit.\n",
6c95b8df
PA
690 inf->vfork_parent->pid);
691 }
692
693 target_detach (NULL, 0);
694
695 /* Put it back. */
696 inf->pspace = pspace;
697 inf->aspace = aspace;
698
699 do_cleanups (old_chain);
700 }
701 else if (exec)
702 {
703 /* We're staying attached to the parent, so, really give the
704 child a new address space. */
705 inf->pspace = add_program_space (maybe_new_address_space ());
706 inf->aspace = inf->pspace->aspace;
707 inf->removable = 1;
708 set_current_program_space (inf->pspace);
709
710 resume_parent = inf->vfork_parent->pid;
711
712 /* Break the bonds. */
713 inf->vfork_parent->vfork_child = NULL;
714 }
715 else
716 {
717 struct cleanup *old_chain;
718 struct program_space *pspace;
719
720 /* If this is a vfork child exiting, then the pspace and
721 aspaces were shared with the parent. Since we're
722 reporting the process exit, we'll be mourning all that is
723 found in the address space, and switching to null_ptid,
724 preparing to start a new inferior. But, since we don't
725 want to clobber the parent's address/program spaces, we
726 go ahead and create a new one for this exiting
727 inferior. */
728
729 /* Switch to null_ptid, so that clone_program_space doesn't want
730 to read the selected frame of a dead process. */
731 old_chain = save_inferior_ptid ();
732 inferior_ptid = null_ptid;
733
734 /* This inferior is dead, so avoid giving the breakpoints
735 module the option to write through to it (cloning a
736 program space resets breakpoints). */
737 inf->aspace = NULL;
738 inf->pspace = NULL;
739 pspace = add_program_space (maybe_new_address_space ());
740 set_current_program_space (pspace);
741 inf->removable = 1;
742 clone_program_space (pspace, inf->vfork_parent->pspace);
743 inf->pspace = pspace;
744 inf->aspace = pspace->aspace;
745
746 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 747 inferior. */
6c95b8df
PA
748 do_cleanups (old_chain);
749
750 resume_parent = inf->vfork_parent->pid;
751 /* Break the bonds. */
752 inf->vfork_parent->vfork_child = NULL;
753 }
754
755 inf->vfork_parent = NULL;
756
757 gdb_assert (current_program_space == inf->pspace);
758
759 if (non_stop && resume_parent != -1)
760 {
761 /* If the user wanted the parent to be running, let it go
762 free now. */
763 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
764
765 if (debug_infrun)
3e43a32a
MS
766 fprintf_unfiltered (gdb_stdlog,
767 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
768 resume_parent);
769
770 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
771
772 do_cleanups (old_chain);
773 }
774 }
775}
776
777/* Enum strings for "set|show displaced-stepping". */
778
779static const char follow_exec_mode_new[] = "new";
780static const char follow_exec_mode_same[] = "same";
781static const char *follow_exec_mode_names[] =
782{
783 follow_exec_mode_new,
784 follow_exec_mode_same,
785 NULL,
786};
787
788static const char *follow_exec_mode_string = follow_exec_mode_same;
789static void
790show_follow_exec_mode_string (struct ui_file *file, int from_tty,
791 struct cmd_list_element *c, const char *value)
792{
793 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
794}
795
1777feb0 796/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 797
c906108c 798static void
3a3e9ee3 799follow_exec (ptid_t pid, char *execd_pathname)
c906108c 800{
4e1c45ea 801 struct thread_info *th = inferior_thread ();
6c95b8df 802 struct inferior *inf = current_inferior ();
7a292a7a 803
c906108c
SS
804 /* This is an exec event that we actually wish to pay attention to.
805 Refresh our symbol table to the newly exec'd program, remove any
806 momentary bp's, etc.
807
808 If there are breakpoints, they aren't really inserted now,
809 since the exec() transformed our inferior into a fresh set
810 of instructions.
811
812 We want to preserve symbolic breakpoints on the list, since
813 we have hopes that they can be reset after the new a.out's
814 symbol table is read.
815
816 However, any "raw" breakpoints must be removed from the list
817 (e.g., the solib bp's), since their address is probably invalid
818 now.
819
820 And, we DON'T want to call delete_breakpoints() here, since
821 that may write the bp's "shadow contents" (the instruction
822 value that was overwritten witha TRAP instruction). Since
1777feb0 823 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
824
825 mark_breakpoints_out ();
826
c906108c
SS
827 update_breakpoints_after_exec ();
828
829 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 830 statement through an exec(). */
8358c15c 831 th->control.step_resume_breakpoint = NULL;
186c406b 832 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
833 th->control.step_range_start = 0;
834 th->control.step_range_end = 0;
c906108c 835
a75724bc
PA
836 /* The target reports the exec event to the main thread, even if
837 some other thread does the exec, and even if the main thread was
838 already stopped --- if debugging in non-stop mode, it's possible
839 the user had the main thread held stopped in the previous image
840 --- release it now. This is the same behavior as step-over-exec
841 with scheduler-locking on in all-stop mode. */
842 th->stop_requested = 0;
843
1777feb0 844 /* What is this a.out's name? */
6c95b8df
PA
845 printf_unfiltered (_("%s is executing new program: %s\n"),
846 target_pid_to_str (inferior_ptid),
847 execd_pathname);
c906108c
SS
848
849 /* We've followed the inferior through an exec. Therefore, the
1777feb0 850 inferior has essentially been killed & reborn. */
7a292a7a 851
c906108c 852 gdb_flush (gdb_stdout);
6ca15a4b
PA
853
854 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
855
856 if (gdb_sysroot && *gdb_sysroot)
857 {
858 char *name = alloca (strlen (gdb_sysroot)
859 + strlen (execd_pathname)
860 + 1);
abbb1732 861
e85a822c
DJ
862 strcpy (name, gdb_sysroot);
863 strcat (name, execd_pathname);
864 execd_pathname = name;
865 }
c906108c 866
cce9b6bf
PA
867 /* Reset the shared library package. This ensures that we get a
868 shlib event when the child reaches "_start", at which point the
869 dld will have had a chance to initialize the child. */
870 /* Also, loading a symbol file below may trigger symbol lookups, and
871 we don't want those to be satisfied by the libraries of the
872 previous incarnation of this process. */
873 no_shared_libraries (NULL, 0);
874
6c95b8df
PA
875 if (follow_exec_mode_string == follow_exec_mode_new)
876 {
877 struct program_space *pspace;
6c95b8df
PA
878
879 /* The user wants to keep the old inferior and program spaces
880 around. Create a new fresh one, and switch to it. */
881
882 inf = add_inferior (current_inferior ()->pid);
883 pspace = add_program_space (maybe_new_address_space ());
884 inf->pspace = pspace;
885 inf->aspace = pspace->aspace;
886
887 exit_inferior_num_silent (current_inferior ()->num);
888
889 set_current_inferior (inf);
890 set_current_program_space (pspace);
891 }
892
893 gdb_assert (current_program_space == inf->pspace);
894
1777feb0 895 /* That a.out is now the one to use. */
6c95b8df
PA
896 exec_file_attach (execd_pathname, 0);
897
c1e56572
JK
898 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
899 (Position Independent Executable) main symbol file will get applied by
900 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
901 the breakpoints with the zero displacement. */
902
903 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
904 NULL, 0);
905
906 set_initial_language ();
c906108c 907
7a292a7a 908#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 909 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 910#else
268a4a75 911 solib_create_inferior_hook (0);
7a292a7a 912#endif
c906108c 913
4efc6507
DE
914 jit_inferior_created_hook ();
915
c1e56572
JK
916 breakpoint_re_set ();
917
c906108c
SS
918 /* Reinsert all breakpoints. (Those which were symbolic have
919 been reset to the proper address in the new a.out, thanks
1777feb0 920 to symbol_file_command...). */
c906108c
SS
921 insert_breakpoints ();
922
923 /* The next resume of this inferior should bring it to the shlib
924 startup breakpoints. (If the user had also set bp's on
925 "main" from the old (parent) process, then they'll auto-
1777feb0 926 matically get reset there in the new process.). */
c906108c
SS
927}
928
929/* Non-zero if we just simulating a single-step. This is needed
930 because we cannot remove the breakpoints in the inferior process
931 until after the `wait' in `wait_for_inferior'. */
932static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
933
934/* The thread we inserted single-step breakpoints for. */
935static ptid_t singlestep_ptid;
936
fd48f117
DJ
937/* PC when we started this single-step. */
938static CORE_ADDR singlestep_pc;
939
9f976b41
DJ
940/* If another thread hit the singlestep breakpoint, we save the original
941 thread here so that we can resume single-stepping it later. */
942static ptid_t saved_singlestep_ptid;
943static int stepping_past_singlestep_breakpoint;
6a6b96b9 944
ca67fcb8
VP
945/* If not equal to null_ptid, this means that after stepping over breakpoint
946 is finished, we need to switch to deferred_step_ptid, and step it.
947
948 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 949 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
950 breakpoint in the thread which hit the breakpoint, but then continue
951 stepping the thread user has selected. */
952static ptid_t deferred_step_ptid;
c906108c 953\f
237fc4c9
PA
954/* Displaced stepping. */
955
956/* In non-stop debugging mode, we must take special care to manage
957 breakpoints properly; in particular, the traditional strategy for
958 stepping a thread past a breakpoint it has hit is unsuitable.
959 'Displaced stepping' is a tactic for stepping one thread past a
960 breakpoint it has hit while ensuring that other threads running
961 concurrently will hit the breakpoint as they should.
962
963 The traditional way to step a thread T off a breakpoint in a
964 multi-threaded program in all-stop mode is as follows:
965
966 a0) Initially, all threads are stopped, and breakpoints are not
967 inserted.
968 a1) We single-step T, leaving breakpoints uninserted.
969 a2) We insert breakpoints, and resume all threads.
970
971 In non-stop debugging, however, this strategy is unsuitable: we
972 don't want to have to stop all threads in the system in order to
973 continue or step T past a breakpoint. Instead, we use displaced
974 stepping:
975
976 n0) Initially, T is stopped, other threads are running, and
977 breakpoints are inserted.
978 n1) We copy the instruction "under" the breakpoint to a separate
979 location, outside the main code stream, making any adjustments
980 to the instruction, register, and memory state as directed by
981 T's architecture.
982 n2) We single-step T over the instruction at its new location.
983 n3) We adjust the resulting register and memory state as directed
984 by T's architecture. This includes resetting T's PC to point
985 back into the main instruction stream.
986 n4) We resume T.
987
988 This approach depends on the following gdbarch methods:
989
990 - gdbarch_max_insn_length and gdbarch_displaced_step_location
991 indicate where to copy the instruction, and how much space must
992 be reserved there. We use these in step n1.
993
994 - gdbarch_displaced_step_copy_insn copies a instruction to a new
995 address, and makes any necessary adjustments to the instruction,
996 register contents, and memory. We use this in step n1.
997
998 - gdbarch_displaced_step_fixup adjusts registers and memory after
999 we have successfuly single-stepped the instruction, to yield the
1000 same effect the instruction would have had if we had executed it
1001 at its original address. We use this in step n3.
1002
1003 - gdbarch_displaced_step_free_closure provides cleanup.
1004
1005 The gdbarch_displaced_step_copy_insn and
1006 gdbarch_displaced_step_fixup functions must be written so that
1007 copying an instruction with gdbarch_displaced_step_copy_insn,
1008 single-stepping across the copied instruction, and then applying
1009 gdbarch_displaced_insn_fixup should have the same effects on the
1010 thread's memory and registers as stepping the instruction in place
1011 would have. Exactly which responsibilities fall to the copy and
1012 which fall to the fixup is up to the author of those functions.
1013
1014 See the comments in gdbarch.sh for details.
1015
1016 Note that displaced stepping and software single-step cannot
1017 currently be used in combination, although with some care I think
1018 they could be made to. Software single-step works by placing
1019 breakpoints on all possible subsequent instructions; if the
1020 displaced instruction is a PC-relative jump, those breakpoints
1021 could fall in very strange places --- on pages that aren't
1022 executable, or at addresses that are not proper instruction
1023 boundaries. (We do generally let other threads run while we wait
1024 to hit the software single-step breakpoint, and they might
1025 encounter such a corrupted instruction.) One way to work around
1026 this would be to have gdbarch_displaced_step_copy_insn fully
1027 simulate the effect of PC-relative instructions (and return NULL)
1028 on architectures that use software single-stepping.
1029
1030 In non-stop mode, we can have independent and simultaneous step
1031 requests, so more than one thread may need to simultaneously step
1032 over a breakpoint. The current implementation assumes there is
1033 only one scratch space per process. In this case, we have to
1034 serialize access to the scratch space. If thread A wants to step
1035 over a breakpoint, but we are currently waiting for some other
1036 thread to complete a displaced step, we leave thread A stopped and
1037 place it in the displaced_step_request_queue. Whenever a displaced
1038 step finishes, we pick the next thread in the queue and start a new
1039 displaced step operation on it. See displaced_step_prepare and
1040 displaced_step_fixup for details. */
1041
237fc4c9
PA
1042struct displaced_step_request
1043{
1044 ptid_t ptid;
1045 struct displaced_step_request *next;
1046};
1047
fc1cf338
PA
1048/* Per-inferior displaced stepping state. */
1049struct displaced_step_inferior_state
1050{
1051 /* Pointer to next in linked list. */
1052 struct displaced_step_inferior_state *next;
1053
1054 /* The process this displaced step state refers to. */
1055 int pid;
1056
1057 /* A queue of pending displaced stepping requests. One entry per
1058 thread that needs to do a displaced step. */
1059 struct displaced_step_request *step_request_queue;
1060
1061 /* If this is not null_ptid, this is the thread carrying out a
1062 displaced single-step in process PID. This thread's state will
1063 require fixing up once it has completed its step. */
1064 ptid_t step_ptid;
1065
1066 /* The architecture the thread had when we stepped it. */
1067 struct gdbarch *step_gdbarch;
1068
1069 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1070 for post-step cleanup. */
1071 struct displaced_step_closure *step_closure;
1072
1073 /* The address of the original instruction, and the copy we
1074 made. */
1075 CORE_ADDR step_original, step_copy;
1076
1077 /* Saved contents of copy area. */
1078 gdb_byte *step_saved_copy;
1079};
1080
1081/* The list of states of processes involved in displaced stepping
1082 presently. */
1083static struct displaced_step_inferior_state *displaced_step_inferior_states;
1084
1085/* Get the displaced stepping state of process PID. */
1086
1087static struct displaced_step_inferior_state *
1088get_displaced_stepping_state (int pid)
1089{
1090 struct displaced_step_inferior_state *state;
1091
1092 for (state = displaced_step_inferior_states;
1093 state != NULL;
1094 state = state->next)
1095 if (state->pid == pid)
1096 return state;
1097
1098 return NULL;
1099}
1100
1101/* Add a new displaced stepping state for process PID to the displaced
1102 stepping state list, or return a pointer to an already existing
1103 entry, if it already exists. Never returns NULL. */
1104
1105static struct displaced_step_inferior_state *
1106add_displaced_stepping_state (int pid)
1107{
1108 struct displaced_step_inferior_state *state;
1109
1110 for (state = displaced_step_inferior_states;
1111 state != NULL;
1112 state = state->next)
1113 if (state->pid == pid)
1114 return state;
237fc4c9 1115
fc1cf338
PA
1116 state = xcalloc (1, sizeof (*state));
1117 state->pid = pid;
1118 state->next = displaced_step_inferior_states;
1119 displaced_step_inferior_states = state;
237fc4c9 1120
fc1cf338
PA
1121 return state;
1122}
1123
a42244db
YQ
1124/* If inferior is in displaced stepping, and ADDR equals to starting address
1125 of copy area, return corresponding displaced_step_closure. Otherwise,
1126 return NULL. */
1127
1128struct displaced_step_closure*
1129get_displaced_step_closure_by_addr (CORE_ADDR addr)
1130{
1131 struct displaced_step_inferior_state *displaced
1132 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1133
1134 /* If checking the mode of displaced instruction in copy area. */
1135 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1136 && (displaced->step_copy == addr))
1137 return displaced->step_closure;
1138
1139 return NULL;
1140}
1141
fc1cf338 1142/* Remove the displaced stepping state of process PID. */
237fc4c9 1143
fc1cf338
PA
1144static void
1145remove_displaced_stepping_state (int pid)
1146{
1147 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1148
fc1cf338
PA
1149 gdb_assert (pid != 0);
1150
1151 it = displaced_step_inferior_states;
1152 prev_next_p = &displaced_step_inferior_states;
1153 while (it)
1154 {
1155 if (it->pid == pid)
1156 {
1157 *prev_next_p = it->next;
1158 xfree (it);
1159 return;
1160 }
1161
1162 prev_next_p = &it->next;
1163 it = *prev_next_p;
1164 }
1165}
1166
1167static void
1168infrun_inferior_exit (struct inferior *inf)
1169{
1170 remove_displaced_stepping_state (inf->pid);
1171}
237fc4c9 1172
fff08868
HZ
1173/* Enum strings for "set|show displaced-stepping". */
1174
1175static const char can_use_displaced_stepping_auto[] = "auto";
1176static const char can_use_displaced_stepping_on[] = "on";
1177static const char can_use_displaced_stepping_off[] = "off";
1178static const char *can_use_displaced_stepping_enum[] =
1179{
1180 can_use_displaced_stepping_auto,
1181 can_use_displaced_stepping_on,
1182 can_use_displaced_stepping_off,
1183 NULL,
1184};
1185
1186/* If ON, and the architecture supports it, GDB will use displaced
1187 stepping to step over breakpoints. If OFF, or if the architecture
1188 doesn't support it, GDB will instead use the traditional
1189 hold-and-step approach. If AUTO (which is the default), GDB will
1190 decide which technique to use to step over breakpoints depending on
1191 which of all-stop or non-stop mode is active --- displaced stepping
1192 in non-stop mode; hold-and-step in all-stop mode. */
1193
1194static const char *can_use_displaced_stepping =
1195 can_use_displaced_stepping_auto;
1196
237fc4c9
PA
1197static void
1198show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1199 struct cmd_list_element *c,
1200 const char *value)
1201{
fff08868 1202 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1203 fprintf_filtered (file,
1204 _("Debugger's willingness to use displaced stepping "
1205 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1206 value, non_stop ? "on" : "off");
1207 else
3e43a32a
MS
1208 fprintf_filtered (file,
1209 _("Debugger's willingness to use displaced stepping "
1210 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1211}
1212
fff08868
HZ
1213/* Return non-zero if displaced stepping can/should be used to step
1214 over breakpoints. */
1215
237fc4c9
PA
1216static int
1217use_displaced_stepping (struct gdbarch *gdbarch)
1218{
fff08868
HZ
1219 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1220 && non_stop)
1221 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1222 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1223 && !RECORD_IS_USED);
237fc4c9
PA
1224}
1225
1226/* Clean out any stray displaced stepping state. */
1227static void
fc1cf338 1228displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1229{
1230 /* Indicate that there is no cleanup pending. */
fc1cf338 1231 displaced->step_ptid = null_ptid;
237fc4c9 1232
fc1cf338 1233 if (displaced->step_closure)
237fc4c9 1234 {
fc1cf338
PA
1235 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1236 displaced->step_closure);
1237 displaced->step_closure = NULL;
237fc4c9
PA
1238 }
1239}
1240
1241static void
fc1cf338 1242displaced_step_clear_cleanup (void *arg)
237fc4c9 1243{
fc1cf338
PA
1244 struct displaced_step_inferior_state *state = arg;
1245
1246 displaced_step_clear (state);
237fc4c9
PA
1247}
1248
1249/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1250void
1251displaced_step_dump_bytes (struct ui_file *file,
1252 const gdb_byte *buf,
1253 size_t len)
1254{
1255 int i;
1256
1257 for (i = 0; i < len; i++)
1258 fprintf_unfiltered (file, "%02x ", buf[i]);
1259 fputs_unfiltered ("\n", file);
1260}
1261
1262/* Prepare to single-step, using displaced stepping.
1263
1264 Note that we cannot use displaced stepping when we have a signal to
1265 deliver. If we have a signal to deliver and an instruction to step
1266 over, then after the step, there will be no indication from the
1267 target whether the thread entered a signal handler or ignored the
1268 signal and stepped over the instruction successfully --- both cases
1269 result in a simple SIGTRAP. In the first case we mustn't do a
1270 fixup, and in the second case we must --- but we can't tell which.
1271 Comments in the code for 'random signals' in handle_inferior_event
1272 explain how we handle this case instead.
1273
1274 Returns 1 if preparing was successful -- this thread is going to be
1275 stepped now; or 0 if displaced stepping this thread got queued. */
1276static int
1277displaced_step_prepare (ptid_t ptid)
1278{
ad53cd71 1279 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1280 struct regcache *regcache = get_thread_regcache (ptid);
1281 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1282 CORE_ADDR original, copy;
1283 ULONGEST len;
1284 struct displaced_step_closure *closure;
fc1cf338 1285 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1286
1287 /* We should never reach this function if the architecture does not
1288 support displaced stepping. */
1289 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1290
fc1cf338
PA
1291 /* We have to displaced step one thread at a time, as we only have
1292 access to a single scratch space per inferior. */
237fc4c9 1293
fc1cf338
PA
1294 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1295
1296 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1297 {
1298 /* Already waiting for a displaced step to finish. Defer this
1299 request and place in queue. */
1300 struct displaced_step_request *req, *new_req;
1301
1302 if (debug_displaced)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "displaced: defering step of %s\n",
1305 target_pid_to_str (ptid));
1306
1307 new_req = xmalloc (sizeof (*new_req));
1308 new_req->ptid = ptid;
1309 new_req->next = NULL;
1310
fc1cf338 1311 if (displaced->step_request_queue)
237fc4c9 1312 {
fc1cf338 1313 for (req = displaced->step_request_queue;
237fc4c9
PA
1314 req && req->next;
1315 req = req->next)
1316 ;
1317 req->next = new_req;
1318 }
1319 else
fc1cf338 1320 displaced->step_request_queue = new_req;
237fc4c9
PA
1321
1322 return 0;
1323 }
1324 else
1325 {
1326 if (debug_displaced)
1327 fprintf_unfiltered (gdb_stdlog,
1328 "displaced: stepping %s now\n",
1329 target_pid_to_str (ptid));
1330 }
1331
fc1cf338 1332 displaced_step_clear (displaced);
237fc4c9 1333
ad53cd71
PA
1334 old_cleanups = save_inferior_ptid ();
1335 inferior_ptid = ptid;
1336
515630c5 1337 original = regcache_read_pc (regcache);
237fc4c9
PA
1338
1339 copy = gdbarch_displaced_step_location (gdbarch);
1340 len = gdbarch_max_insn_length (gdbarch);
1341
1342 /* Save the original contents of the copy area. */
fc1cf338 1343 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1344 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1345 &displaced->step_saved_copy);
1346 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1347 if (debug_displaced)
1348 {
5af949e3
UW
1349 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1350 paddress (gdbarch, copy));
fc1cf338
PA
1351 displaced_step_dump_bytes (gdb_stdlog,
1352 displaced->step_saved_copy,
1353 len);
237fc4c9
PA
1354 };
1355
1356 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1357 original, copy, regcache);
237fc4c9
PA
1358
1359 /* We don't support the fully-simulated case at present. */
1360 gdb_assert (closure);
1361
9f5a595d
UW
1362 /* Save the information we need to fix things up if the step
1363 succeeds. */
fc1cf338
PA
1364 displaced->step_ptid = ptid;
1365 displaced->step_gdbarch = gdbarch;
1366 displaced->step_closure = closure;
1367 displaced->step_original = original;
1368 displaced->step_copy = copy;
9f5a595d 1369
fc1cf338 1370 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1371
1372 /* Resume execution at the copy. */
515630c5 1373 regcache_write_pc (regcache, copy);
237fc4c9 1374
ad53cd71
PA
1375 discard_cleanups (ignore_cleanups);
1376
1377 do_cleanups (old_cleanups);
237fc4c9
PA
1378
1379 if (debug_displaced)
5af949e3
UW
1380 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1381 paddress (gdbarch, copy));
237fc4c9 1382
237fc4c9
PA
1383 return 1;
1384}
1385
237fc4c9 1386static void
3e43a32a
MS
1387write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1388 const gdb_byte *myaddr, int len)
237fc4c9
PA
1389{
1390 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1391
237fc4c9
PA
1392 inferior_ptid = ptid;
1393 write_memory (memaddr, myaddr, len);
1394 do_cleanups (ptid_cleanup);
1395}
1396
e2d96639
YQ
1397/* Restore the contents of the copy area for thread PTID. */
1398
1399static void
1400displaced_step_restore (struct displaced_step_inferior_state *displaced,
1401 ptid_t ptid)
1402{
1403 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1404
1405 write_memory_ptid (ptid, displaced->step_copy,
1406 displaced->step_saved_copy, len);
1407 if (debug_displaced)
1408 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1409 target_pid_to_str (ptid),
1410 paddress (displaced->step_gdbarch,
1411 displaced->step_copy));
1412}
1413
237fc4c9
PA
1414static void
1415displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1416{
1417 struct cleanup *old_cleanups;
fc1cf338
PA
1418 struct displaced_step_inferior_state *displaced
1419 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1420
1421 /* Was any thread of this process doing a displaced step? */
1422 if (displaced == NULL)
1423 return;
237fc4c9
PA
1424
1425 /* Was this event for the pid we displaced? */
fc1cf338
PA
1426 if (ptid_equal (displaced->step_ptid, null_ptid)
1427 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1428 return;
1429
fc1cf338 1430 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1431
e2d96639 1432 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1433
1434 /* Did the instruction complete successfully? */
1435 if (signal == TARGET_SIGNAL_TRAP)
1436 {
1437 /* Fix up the resulting state. */
fc1cf338
PA
1438 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1439 displaced->step_closure,
1440 displaced->step_original,
1441 displaced->step_copy,
1442 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1443 }
1444 else
1445 {
1446 /* Since the instruction didn't complete, all we can do is
1447 relocate the PC. */
515630c5
UW
1448 struct regcache *regcache = get_thread_regcache (event_ptid);
1449 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1450
fc1cf338 1451 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1452 regcache_write_pc (regcache, pc);
237fc4c9
PA
1453 }
1454
1455 do_cleanups (old_cleanups);
1456
fc1cf338 1457 displaced->step_ptid = null_ptid;
1c5cfe86 1458
237fc4c9 1459 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1460 one now. Leave the state object around, since we're likely to
1461 need it again soon. */
1462 while (displaced->step_request_queue)
237fc4c9
PA
1463 {
1464 struct displaced_step_request *head;
1465 ptid_t ptid;
5af949e3 1466 struct regcache *regcache;
929dfd4f 1467 struct gdbarch *gdbarch;
1c5cfe86 1468 CORE_ADDR actual_pc;
6c95b8df 1469 struct address_space *aspace;
237fc4c9 1470
fc1cf338 1471 head = displaced->step_request_queue;
237fc4c9 1472 ptid = head->ptid;
fc1cf338 1473 displaced->step_request_queue = head->next;
237fc4c9
PA
1474 xfree (head);
1475
ad53cd71
PA
1476 context_switch (ptid);
1477
5af949e3
UW
1478 regcache = get_thread_regcache (ptid);
1479 actual_pc = regcache_read_pc (regcache);
6c95b8df 1480 aspace = get_regcache_aspace (regcache);
1c5cfe86 1481
6c95b8df 1482 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1483 {
1c5cfe86
PA
1484 if (debug_displaced)
1485 fprintf_unfiltered (gdb_stdlog,
1486 "displaced: stepping queued %s now\n",
1487 target_pid_to_str (ptid));
1488
1489 displaced_step_prepare (ptid);
1490
929dfd4f
JB
1491 gdbarch = get_regcache_arch (regcache);
1492
1c5cfe86
PA
1493 if (debug_displaced)
1494 {
929dfd4f 1495 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1496 gdb_byte buf[4];
1497
5af949e3
UW
1498 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1499 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1500 read_memory (actual_pc, buf, sizeof (buf));
1501 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1502 }
1503
fc1cf338
PA
1504 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1505 displaced->step_closure))
929dfd4f 1506 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1507 else
1508 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1509
1510 /* Done, we're stepping a thread. */
1511 break;
ad53cd71 1512 }
1c5cfe86
PA
1513 else
1514 {
1515 int step;
1516 struct thread_info *tp = inferior_thread ();
1517
1518 /* The breakpoint we were sitting under has since been
1519 removed. */
16c381f0 1520 tp->control.trap_expected = 0;
1c5cfe86
PA
1521
1522 /* Go back to what we were trying to do. */
1523 step = currently_stepping (tp);
ad53cd71 1524
1c5cfe86 1525 if (debug_displaced)
3e43a32a
MS
1526 fprintf_unfiltered (gdb_stdlog,
1527 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1528 target_pid_to_str (tp->ptid), step);
1529
1530 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1531 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1532
1533 /* This request was discarded. See if there's any other
1534 thread waiting for its turn. */
1535 }
237fc4c9
PA
1536 }
1537}
1538
5231c1fd
PA
1539/* Update global variables holding ptids to hold NEW_PTID if they were
1540 holding OLD_PTID. */
1541static void
1542infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1543{
1544 struct displaced_step_request *it;
fc1cf338 1545 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1546
1547 if (ptid_equal (inferior_ptid, old_ptid))
1548 inferior_ptid = new_ptid;
1549
1550 if (ptid_equal (singlestep_ptid, old_ptid))
1551 singlestep_ptid = new_ptid;
1552
5231c1fd
PA
1553 if (ptid_equal (deferred_step_ptid, old_ptid))
1554 deferred_step_ptid = new_ptid;
1555
fc1cf338
PA
1556 for (displaced = displaced_step_inferior_states;
1557 displaced;
1558 displaced = displaced->next)
1559 {
1560 if (ptid_equal (displaced->step_ptid, old_ptid))
1561 displaced->step_ptid = new_ptid;
1562
1563 for (it = displaced->step_request_queue; it; it = it->next)
1564 if (ptid_equal (it->ptid, old_ptid))
1565 it->ptid = new_ptid;
1566 }
5231c1fd
PA
1567}
1568
237fc4c9
PA
1569\f
1570/* Resuming. */
c906108c
SS
1571
1572/* Things to clean up if we QUIT out of resume (). */
c906108c 1573static void
74b7792f 1574resume_cleanups (void *ignore)
c906108c
SS
1575{
1576 normal_stop ();
1577}
1578
53904c9e
AC
1579static const char schedlock_off[] = "off";
1580static const char schedlock_on[] = "on";
1581static const char schedlock_step[] = "step";
488f131b 1582static const char *scheduler_enums[] = {
ef346e04
AC
1583 schedlock_off,
1584 schedlock_on,
1585 schedlock_step,
1586 NULL
1587};
920d2a44
AC
1588static const char *scheduler_mode = schedlock_off;
1589static void
1590show_scheduler_mode (struct ui_file *file, int from_tty,
1591 struct cmd_list_element *c, const char *value)
1592{
3e43a32a
MS
1593 fprintf_filtered (file,
1594 _("Mode for locking scheduler "
1595 "during execution is \"%s\".\n"),
920d2a44
AC
1596 value);
1597}
c906108c
SS
1598
1599static void
96baa820 1600set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1601{
eefe576e
AC
1602 if (!target_can_lock_scheduler)
1603 {
1604 scheduler_mode = schedlock_off;
1605 error (_("Target '%s' cannot support this command."), target_shortname);
1606 }
c906108c
SS
1607}
1608
d4db2f36
PA
1609/* True if execution commands resume all threads of all processes by
1610 default; otherwise, resume only threads of the current inferior
1611 process. */
1612int sched_multi = 0;
1613
2facfe5c
DD
1614/* Try to setup for software single stepping over the specified location.
1615 Return 1 if target_resume() should use hardware single step.
1616
1617 GDBARCH the current gdbarch.
1618 PC the location to step over. */
1619
1620static int
1621maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1622{
1623 int hw_step = 1;
1624
f02253f1
HZ
1625 if (execution_direction == EXEC_FORWARD
1626 && gdbarch_software_single_step_p (gdbarch)
99e40580 1627 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1628 {
99e40580
UW
1629 hw_step = 0;
1630 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1631 `wait_for_inferior'. */
99e40580
UW
1632 singlestep_breakpoints_inserted_p = 1;
1633 singlestep_ptid = inferior_ptid;
1634 singlestep_pc = pc;
2facfe5c
DD
1635 }
1636 return hw_step;
1637}
c906108c 1638
09cee04b
PA
1639/* Return a ptid representing the set of threads that we will proceed,
1640 in the perspective of the user/frontend. We may actually resume
1641 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1642 breakpoint that needs stepping-off, but that should not be visible
1643 to the user/frontend, and neither should the frontend/user be
1644 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1645 internal run control handling, if a previous command wanted them
1646 resumed. */
1647
1648ptid_t
1649user_visible_resume_ptid (int step)
1650{
1651 /* By default, resume all threads of all processes. */
1652 ptid_t resume_ptid = RESUME_ALL;
1653
1654 /* Maybe resume only all threads of the current process. */
1655 if (!sched_multi && target_supports_multi_process ())
1656 {
1657 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1658 }
1659
1660 /* Maybe resume a single thread after all. */
1661 if (non_stop)
1662 {
1663 /* With non-stop mode on, threads are always handled
1664 individually. */
1665 resume_ptid = inferior_ptid;
1666 }
1667 else if ((scheduler_mode == schedlock_on)
1668 || (scheduler_mode == schedlock_step
1669 && (step || singlestep_breakpoints_inserted_p)))
1670 {
1671 /* User-settable 'scheduler' mode requires solo thread resume. */
1672 resume_ptid = inferior_ptid;
1673 }
1674
1675 return resume_ptid;
1676}
1677
c906108c
SS
1678/* Resume the inferior, but allow a QUIT. This is useful if the user
1679 wants to interrupt some lengthy single-stepping operation
1680 (for child processes, the SIGINT goes to the inferior, and so
1681 we get a SIGINT random_signal, but for remote debugging and perhaps
1682 other targets, that's not true).
1683
1684 STEP nonzero if we should step (zero to continue instead).
1685 SIG is the signal to give the inferior (zero for none). */
1686void
96baa820 1687resume (int step, enum target_signal sig)
c906108c
SS
1688{
1689 int should_resume = 1;
74b7792f 1690 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1691 struct regcache *regcache = get_current_regcache ();
1692 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1693 struct thread_info *tp = inferior_thread ();
515630c5 1694 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1695 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1696
c906108c
SS
1697 QUIT;
1698
74609e71
YQ
1699 if (current_inferior ()->waiting_for_vfork_done)
1700 {
48f9886d
PA
1701 /* Don't try to single-step a vfork parent that is waiting for
1702 the child to get out of the shared memory region (by exec'ing
1703 or exiting). This is particularly important on software
1704 single-step archs, as the child process would trip on the
1705 software single step breakpoint inserted for the parent
1706 process. Since the parent will not actually execute any
1707 instruction until the child is out of the shared region (such
1708 are vfork's semantics), it is safe to simply continue it.
1709 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1710 the parent, and tell it to `keep_going', which automatically
1711 re-sets it stepping. */
74609e71
YQ
1712 if (debug_infrun)
1713 fprintf_unfiltered (gdb_stdlog,
1714 "infrun: resume : clear step\n");
1715 step = 0;
1716 }
1717
527159b7 1718 if (debug_infrun)
237fc4c9
PA
1719 fprintf_unfiltered (gdb_stdlog,
1720 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1721 "trap_expected=%d, current thread [%s] at %s\n",
1722 step, sig, tp->control.trap_expected,
1723 target_pid_to_str (inferior_ptid),
1724 paddress (gdbarch, pc));
c906108c 1725
c2c6d25f
JM
1726 /* Normally, by the time we reach `resume', the breakpoints are either
1727 removed or inserted, as appropriate. The exception is if we're sitting
1728 at a permanent breakpoint; we need to step over it, but permanent
1729 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1730 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1731 {
515630c5
UW
1732 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1733 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1734 else
ac74f770
MS
1735 error (_("\
1736The program is stopped at a permanent breakpoint, but GDB does not know\n\
1737how to step past a permanent breakpoint on this architecture. Try using\n\
1738a command like `return' or `jump' to continue execution."));
6d350bb5 1739 }
c2c6d25f 1740
237fc4c9
PA
1741 /* If enabled, step over breakpoints by executing a copy of the
1742 instruction at a different address.
1743
1744 We can't use displaced stepping when we have a signal to deliver;
1745 the comments for displaced_step_prepare explain why. The
1746 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1747 signals' explain what we do instead.
1748
1749 We can't use displaced stepping when we are waiting for vfork_done
1750 event, displaced stepping breaks the vfork child similarly as single
1751 step software breakpoint. */
515630c5 1752 if (use_displaced_stepping (gdbarch)
16c381f0 1753 && (tp->control.trap_expected
929dfd4f 1754 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1755 && sig == TARGET_SIGNAL_0
1756 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1757 {
fc1cf338
PA
1758 struct displaced_step_inferior_state *displaced;
1759
237fc4c9 1760 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1761 {
1762 /* Got placed in displaced stepping queue. Will be resumed
1763 later when all the currently queued displaced stepping
7f7efbd9
VP
1764 requests finish. The thread is not executing at this point,
1765 and the call to set_executing will be made later. But we
1766 need to call set_running here, since from frontend point of view,
1767 the thread is running. */
1768 set_running (inferior_ptid, 1);
d56b7306
VP
1769 discard_cleanups (old_cleanups);
1770 return;
1771 }
99e40580 1772
fc1cf338
PA
1773 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1774 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1775 displaced->step_closure);
237fc4c9
PA
1776 }
1777
2facfe5c 1778 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1779 else if (step)
2facfe5c 1780 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1781
30852783
UW
1782 /* Currently, our software single-step implementation leads to different
1783 results than hardware single-stepping in one situation: when stepping
1784 into delivering a signal which has an associated signal handler,
1785 hardware single-step will stop at the first instruction of the handler,
1786 while software single-step will simply skip execution of the handler.
1787
1788 For now, this difference in behavior is accepted since there is no
1789 easy way to actually implement single-stepping into a signal handler
1790 without kernel support.
1791
1792 However, there is one scenario where this difference leads to follow-on
1793 problems: if we're stepping off a breakpoint by removing all breakpoints
1794 and then single-stepping. In this case, the software single-step
1795 behavior means that even if there is a *breakpoint* in the signal
1796 handler, GDB still would not stop.
1797
1798 Fortunately, we can at least fix this particular issue. We detect
1799 here the case where we are about to deliver a signal while software
1800 single-stepping with breakpoints removed. In this situation, we
1801 revert the decisions to remove all breakpoints and insert single-
1802 step breakpoints, and instead we install a step-resume breakpoint
1803 at the current address, deliver the signal without stepping, and
1804 once we arrive back at the step-resume breakpoint, actually step
1805 over the breakpoint we originally wanted to step over. */
1806 if (singlestep_breakpoints_inserted_p
1807 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1808 {
1809 /* If we have nested signals or a pending signal is delivered
1810 immediately after a handler returns, might might already have
1811 a step-resume breakpoint set on the earlier handler. We cannot
1812 set another step-resume breakpoint; just continue on until the
1813 original breakpoint is hit. */
1814 if (tp->control.step_resume_breakpoint == NULL)
1815 {
2c03e5be 1816 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1817 tp->step_after_step_resume_breakpoint = 1;
1818 }
1819
1820 remove_single_step_breakpoints ();
1821 singlestep_breakpoints_inserted_p = 0;
1822
1823 insert_breakpoints ();
1824 tp->control.trap_expected = 0;
1825 }
1826
c906108c
SS
1827 if (should_resume)
1828 {
39f77062 1829 ptid_t resume_ptid;
dfcd3bfb 1830
cd76b0b7
VP
1831 /* If STEP is set, it's a request to use hardware stepping
1832 facilities. But in that case, we should never
1833 use singlestep breakpoint. */
1834 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1835
d4db2f36
PA
1836 /* Decide the set of threads to ask the target to resume. Start
1837 by assuming everything will be resumed, than narrow the set
1838 by applying increasingly restricting conditions. */
09cee04b 1839 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1840
1841 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1842 if (singlestep_breakpoints_inserted_p
1843 && stepping_past_singlestep_breakpoint)
c906108c 1844 {
cd76b0b7
VP
1845 /* The situation here is as follows. In thread T1 we wanted to
1846 single-step. Lacking hardware single-stepping we've
1847 set breakpoint at the PC of the next instruction -- call it
1848 P. After resuming, we've hit that breakpoint in thread T2.
1849 Now we've removed original breakpoint, inserted breakpoint
1850 at P+1, and try to step to advance T2 past breakpoint.
1851 We need to step only T2, as if T1 is allowed to freely run,
1852 it can run past P, and if other threads are allowed to run,
1853 they can hit breakpoint at P+1, and nested hits of single-step
1854 breakpoints is not something we'd want -- that's complicated
1855 to support, and has no value. */
1856 resume_ptid = inferior_ptid;
1857 }
d4db2f36 1858 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1859 && tp->control.trap_expected)
cd76b0b7 1860 {
74960c60
VP
1861 /* We're allowing a thread to run past a breakpoint it has
1862 hit, by single-stepping the thread with the breakpoint
1863 removed. In which case, we need to single-step only this
1864 thread, and keep others stopped, as they can miss this
1865 breakpoint if allowed to run.
1866
1867 The current code actually removes all breakpoints when
1868 doing this, not just the one being stepped over, so if we
1869 let other threads run, we can actually miss any
1870 breakpoint, not just the one at PC. */
ef5cf84e 1871 resume_ptid = inferior_ptid;
c906108c 1872 }
ef5cf84e 1873
515630c5 1874 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1875 {
1876 /* Most targets can step a breakpoint instruction, thus
1877 executing it normally. But if this one cannot, just
1878 continue and we will hit it anyway. */
6c95b8df 1879 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1880 step = 0;
1881 }
237fc4c9
PA
1882
1883 if (debug_displaced
515630c5 1884 && use_displaced_stepping (gdbarch)
16c381f0 1885 && tp->control.trap_expected)
237fc4c9 1886 {
515630c5 1887 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1888 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1889 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1890 gdb_byte buf[4];
1891
5af949e3
UW
1892 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1893 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1894 read_memory (actual_pc, buf, sizeof (buf));
1895 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1896 }
1897
e58b0e63
PA
1898 /* Install inferior's terminal modes. */
1899 target_terminal_inferior ();
1900
2020b7ab
PA
1901 /* Avoid confusing the next resume, if the next stop/resume
1902 happens to apply to another thread. */
16c381f0 1903 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1904
2455069d
UW
1905 /* Advise target which signals may be handled silently. If we have
1906 removed breakpoints because we are stepping over one (which can
1907 happen only if we are not using displaced stepping), we need to
1908 receive all signals to avoid accidentally skipping a breakpoint
1909 during execution of a signal handler. */
1910 if ((step || singlestep_breakpoints_inserted_p)
1911 && tp->control.trap_expected
1912 && !use_displaced_stepping (gdbarch))
1913 target_pass_signals (0, NULL);
1914 else
1915 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1916
607cecd2 1917 target_resume (resume_ptid, step, sig);
c906108c
SS
1918 }
1919
1920 discard_cleanups (old_cleanups);
1921}
1922\f
237fc4c9 1923/* Proceeding. */
c906108c
SS
1924
1925/* Clear out all variables saying what to do when inferior is continued.
1926 First do this, then set the ones you want, then call `proceed'. */
1927
a7212384
UW
1928static void
1929clear_proceed_status_thread (struct thread_info *tp)
c906108c 1930{
a7212384
UW
1931 if (debug_infrun)
1932 fprintf_unfiltered (gdb_stdlog,
1933 "infrun: clear_proceed_status_thread (%s)\n",
1934 target_pid_to_str (tp->ptid));
d6b48e9c 1935
16c381f0
JK
1936 tp->control.trap_expected = 0;
1937 tp->control.step_range_start = 0;
1938 tp->control.step_range_end = 0;
1939 tp->control.step_frame_id = null_frame_id;
1940 tp->control.step_stack_frame_id = null_frame_id;
1941 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1942 tp->stop_requested = 0;
4e1c45ea 1943
16c381f0 1944 tp->control.stop_step = 0;
32400beb 1945
16c381f0 1946 tp->control.proceed_to_finish = 0;
414c69f7 1947
a7212384 1948 /* Discard any remaining commands or status from previous stop. */
16c381f0 1949 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1950}
32400beb 1951
a7212384
UW
1952static int
1953clear_proceed_status_callback (struct thread_info *tp, void *data)
1954{
1955 if (is_exited (tp->ptid))
1956 return 0;
d6b48e9c 1957
a7212384
UW
1958 clear_proceed_status_thread (tp);
1959 return 0;
1960}
1961
1962void
1963clear_proceed_status (void)
1964{
6c95b8df
PA
1965 if (!non_stop)
1966 {
1967 /* In all-stop mode, delete the per-thread status of all
1968 threads, even if inferior_ptid is null_ptid, there may be
1969 threads on the list. E.g., we may be launching a new
1970 process, while selecting the executable. */
1971 iterate_over_threads (clear_proceed_status_callback, NULL);
1972 }
1973
a7212384
UW
1974 if (!ptid_equal (inferior_ptid, null_ptid))
1975 {
1976 struct inferior *inferior;
1977
1978 if (non_stop)
1979 {
6c95b8df
PA
1980 /* If in non-stop mode, only delete the per-thread status of
1981 the current thread. */
a7212384
UW
1982 clear_proceed_status_thread (inferior_thread ());
1983 }
6c95b8df 1984
d6b48e9c 1985 inferior = current_inferior ();
16c381f0 1986 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1987 }
1988
c906108c 1989 stop_after_trap = 0;
f3b1572e
PA
1990
1991 observer_notify_about_to_proceed ();
c906108c 1992
d5c31457
UW
1993 if (stop_registers)
1994 {
1995 regcache_xfree (stop_registers);
1996 stop_registers = NULL;
1997 }
c906108c
SS
1998}
1999
5a437975
DE
2000/* Check the current thread against the thread that reported the most recent
2001 event. If a step-over is required return TRUE and set the current thread
2002 to the old thread. Otherwise return FALSE.
2003
1777feb0 2004 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2005
2006static int
6a6b96b9 2007prepare_to_proceed (int step)
ea67f13b
DJ
2008{
2009 ptid_t wait_ptid;
2010 struct target_waitstatus wait_status;
5a437975
DE
2011 int schedlock_enabled;
2012
2013 /* With non-stop mode on, threads are always handled individually. */
2014 gdb_assert (! non_stop);
ea67f13b
DJ
2015
2016 /* Get the last target status returned by target_wait(). */
2017 get_last_target_status (&wait_ptid, &wait_status);
2018
6a6b96b9 2019 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2020 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
2021 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2022 && wait_status.value.sig != TARGET_SIGNAL_ILL
2023 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2024 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
2025 {
2026 return 0;
2027 }
2028
5a437975
DE
2029 schedlock_enabled = (scheduler_mode == schedlock_on
2030 || (scheduler_mode == schedlock_step
2031 && step));
2032
d4db2f36
PA
2033 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2034 if (schedlock_enabled)
2035 return 0;
2036
2037 /* Don't switch over if we're about to resume some other process
2038 other than WAIT_PTID's, and schedule-multiple is off. */
2039 if (!sched_multi
2040 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2041 return 0;
2042
6a6b96b9 2043 /* Switched over from WAIT_PID. */
ea67f13b 2044 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2045 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2046 {
515630c5
UW
2047 struct regcache *regcache = get_thread_regcache (wait_ptid);
2048
6c95b8df
PA
2049 if (breakpoint_here_p (get_regcache_aspace (regcache),
2050 regcache_read_pc (regcache)))
ea67f13b 2051 {
515630c5
UW
2052 /* If stepping, remember current thread to switch back to. */
2053 if (step)
2054 deferred_step_ptid = inferior_ptid;
ea67f13b 2055
515630c5
UW
2056 /* Switch back to WAIT_PID thread. */
2057 switch_to_thread (wait_ptid);
6a6b96b9 2058
0d9a9a5f
PA
2059 if (debug_infrun)
2060 fprintf_unfiltered (gdb_stdlog,
2061 "infrun: prepare_to_proceed (step=%d), "
2062 "switched to [%s]\n",
2063 step, target_pid_to_str (inferior_ptid));
2064
515630c5
UW
2065 /* We return 1 to indicate that there is a breakpoint here,
2066 so we need to step over it before continuing to avoid
1777feb0 2067 hitting it straight away. */
515630c5
UW
2068 return 1;
2069 }
ea67f13b
DJ
2070 }
2071
2072 return 0;
ea67f13b 2073}
e4846b08 2074
c906108c
SS
2075/* Basic routine for continuing the program in various fashions.
2076
2077 ADDR is the address to resume at, or -1 for resume where stopped.
2078 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2079 or -1 for act according to how it stopped.
c906108c 2080 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2081 -1 means return after that and print nothing.
2082 You should probably set various step_... variables
2083 before calling here, if you are stepping.
c906108c
SS
2084
2085 You should call clear_proceed_status before calling proceed. */
2086
2087void
96baa820 2088proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2089{
e58b0e63
PA
2090 struct regcache *regcache;
2091 struct gdbarch *gdbarch;
4e1c45ea 2092 struct thread_info *tp;
e58b0e63 2093 CORE_ADDR pc;
6c95b8df 2094 struct address_space *aspace;
c906108c
SS
2095 int oneproc = 0;
2096
e58b0e63
PA
2097 /* If we're stopped at a fork/vfork, follow the branch set by the
2098 "set follow-fork-mode" command; otherwise, we'll just proceed
2099 resuming the current thread. */
2100 if (!follow_fork ())
2101 {
2102 /* The target for some reason decided not to resume. */
2103 normal_stop ();
f148b27e
PA
2104 if (target_can_async_p ())
2105 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2106 return;
2107 }
2108
842951eb
PA
2109 /* We'll update this if & when we switch to a new thread. */
2110 previous_inferior_ptid = inferior_ptid;
2111
e58b0e63
PA
2112 regcache = get_current_regcache ();
2113 gdbarch = get_regcache_arch (regcache);
6c95b8df 2114 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2115 pc = regcache_read_pc (regcache);
2116
c906108c 2117 if (step > 0)
515630c5 2118 step_start_function = find_pc_function (pc);
c906108c
SS
2119 if (step < 0)
2120 stop_after_trap = 1;
2121
2acceee2 2122 if (addr == (CORE_ADDR) -1)
c906108c 2123 {
6c95b8df 2124 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2125 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2126 /* There is a breakpoint at the address we will resume at,
2127 step one instruction before inserting breakpoints so that
2128 we do not stop right away (and report a second hit at this
b2175913
MS
2129 breakpoint).
2130
2131 Note, we don't do this in reverse, because we won't
2132 actually be executing the breakpoint insn anyway.
2133 We'll be (un-)executing the previous instruction. */
2134
c906108c 2135 oneproc = 1;
515630c5
UW
2136 else if (gdbarch_single_step_through_delay_p (gdbarch)
2137 && gdbarch_single_step_through_delay (gdbarch,
2138 get_current_frame ()))
3352ef37
AC
2139 /* We stepped onto an instruction that needs to be stepped
2140 again before re-inserting the breakpoint, do so. */
c906108c
SS
2141 oneproc = 1;
2142 }
2143 else
2144 {
515630c5 2145 regcache_write_pc (regcache, addr);
c906108c
SS
2146 }
2147
527159b7 2148 if (debug_infrun)
8a9de0e4 2149 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2150 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2151 paddress (gdbarch, addr), siggnal, step);
527159b7 2152
94cc34af
PA
2153 if (non_stop)
2154 /* In non-stop, each thread is handled individually. The context
2155 must already be set to the right thread here. */
2156 ;
2157 else
2158 {
2159 /* In a multi-threaded task we may select another thread and
2160 then continue or step.
c906108c 2161
94cc34af
PA
2162 But if the old thread was stopped at a breakpoint, it will
2163 immediately cause another breakpoint stop without any
2164 execution (i.e. it will report a breakpoint hit incorrectly).
2165 So we must step over it first.
c906108c 2166
94cc34af
PA
2167 prepare_to_proceed checks the current thread against the
2168 thread that reported the most recent event. If a step-over
2169 is required it returns TRUE and sets the current thread to
1777feb0 2170 the old thread. */
94cc34af
PA
2171 if (prepare_to_proceed (step))
2172 oneproc = 1;
2173 }
c906108c 2174
4e1c45ea
PA
2175 /* prepare_to_proceed may change the current thread. */
2176 tp = inferior_thread ();
2177
30852783
UW
2178 if (oneproc)
2179 {
2180 tp->control.trap_expected = 1;
2181 /* If displaced stepping is enabled, we can step over the
2182 breakpoint without hitting it, so leave all breakpoints
2183 inserted. Otherwise we need to disable all breakpoints, step
2184 one instruction, and then re-add them when that step is
2185 finished. */
2186 if (!use_displaced_stepping (gdbarch))
2187 remove_breakpoints ();
2188 }
2189
2190 /* We can insert breakpoints if we're not trying to step over one,
2191 or if we are stepping over one but we're using displaced stepping
2192 to do so. */
2193 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2194 insert_breakpoints ();
2195
2020b7ab
PA
2196 if (!non_stop)
2197 {
2198 /* Pass the last stop signal to the thread we're resuming,
2199 irrespective of whether the current thread is the thread that
2200 got the last event or not. This was historically GDB's
2201 behaviour before keeping a stop_signal per thread. */
2202
2203 struct thread_info *last_thread;
2204 ptid_t last_ptid;
2205 struct target_waitstatus last_status;
2206
2207 get_last_target_status (&last_ptid, &last_status);
2208 if (!ptid_equal (inferior_ptid, last_ptid)
2209 && !ptid_equal (last_ptid, null_ptid)
2210 && !ptid_equal (last_ptid, minus_one_ptid))
2211 {
e09875d4 2212 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2213 if (last_thread)
2214 {
16c381f0
JK
2215 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2216 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2217 }
2218 }
2219 }
2220
c906108c 2221 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2222 tp->suspend.stop_signal = siggnal;
c906108c
SS
2223 /* If this signal should not be seen by program,
2224 give it zero. Used for debugging signals. */
16c381f0
JK
2225 else if (!signal_program[tp->suspend.stop_signal])
2226 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2227
2228 annotate_starting ();
2229
2230 /* Make sure that output from GDB appears before output from the
2231 inferior. */
2232 gdb_flush (gdb_stdout);
2233
e4846b08
JJ
2234 /* Refresh prev_pc value just prior to resuming. This used to be
2235 done in stop_stepping, however, setting prev_pc there did not handle
2236 scenarios such as inferior function calls or returning from
2237 a function via the return command. In those cases, the prev_pc
2238 value was not set properly for subsequent commands. The prev_pc value
2239 is used to initialize the starting line number in the ecs. With an
2240 invalid value, the gdb next command ends up stopping at the position
2241 represented by the next line table entry past our start position.
2242 On platforms that generate one line table entry per line, this
2243 is not a problem. However, on the ia64, the compiler generates
2244 extraneous line table entries that do not increase the line number.
2245 When we issue the gdb next command on the ia64 after an inferior call
2246 or a return command, we often end up a few instructions forward, still
2247 within the original line we started.
2248
d5cd6034
JB
2249 An attempt was made to refresh the prev_pc at the same time the
2250 execution_control_state is initialized (for instance, just before
2251 waiting for an inferior event). But this approach did not work
2252 because of platforms that use ptrace, where the pc register cannot
2253 be read unless the inferior is stopped. At that point, we are not
2254 guaranteed the inferior is stopped and so the regcache_read_pc() call
2255 can fail. Setting the prev_pc value here ensures the value is updated
2256 correctly when the inferior is stopped. */
4e1c45ea 2257 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2258
59f0d5d9 2259 /* Fill in with reasonable starting values. */
4e1c45ea 2260 init_thread_stepping_state (tp);
59f0d5d9 2261
59f0d5d9
PA
2262 /* Reset to normal state. */
2263 init_infwait_state ();
2264
c906108c 2265 /* Resume inferior. */
16c381f0 2266 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2267
2268 /* Wait for it to stop (if not standalone)
2269 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2270 /* Do this only if we are not using the event loop, or if the target
1777feb0 2271 does not support asynchronous execution. */
362646f5 2272 if (!target_can_async_p ())
43ff13b4 2273 {
e4c8541f 2274 wait_for_inferior ();
43ff13b4
JM
2275 normal_stop ();
2276 }
c906108c 2277}
c906108c
SS
2278\f
2279
2280/* Start remote-debugging of a machine over a serial link. */
96baa820 2281
c906108c 2282void
8621d6a9 2283start_remote (int from_tty)
c906108c 2284{
d6b48e9c 2285 struct inferior *inferior;
d6b48e9c
PA
2286
2287 inferior = current_inferior ();
16c381f0 2288 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2289
1777feb0 2290 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2291 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2292 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2293 nothing is returned (instead of just blocking). Because of this,
2294 targets expecting an immediate response need to, internally, set
2295 things up so that the target_wait() is forced to eventually
1777feb0 2296 timeout. */
6426a772
JM
2297 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2298 differentiate to its caller what the state of the target is after
2299 the initial open has been performed. Here we're assuming that
2300 the target has stopped. It should be possible to eventually have
2301 target_open() return to the caller an indication that the target
2302 is currently running and GDB state should be set to the same as
1777feb0 2303 for an async run. */
e4c8541f 2304 wait_for_inferior ();
8621d6a9
DJ
2305
2306 /* Now that the inferior has stopped, do any bookkeeping like
2307 loading shared libraries. We want to do this before normal_stop,
2308 so that the displayed frame is up to date. */
2309 post_create_inferior (&current_target, from_tty);
2310
6426a772 2311 normal_stop ();
c906108c
SS
2312}
2313
2314/* Initialize static vars when a new inferior begins. */
2315
2316void
96baa820 2317init_wait_for_inferior (void)
c906108c
SS
2318{
2319 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2320
c906108c
SS
2321 breakpoint_init_inferior (inf_starting);
2322
c906108c 2323 clear_proceed_status ();
9f976b41
DJ
2324
2325 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2326 deferred_step_ptid = null_ptid;
ca005067
DJ
2327
2328 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2329
842951eb 2330 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2331 init_infwait_state ();
2332
edb3359d
DJ
2333 /* Discard any skipped inlined frames. */
2334 clear_inline_frame_state (minus_one_ptid);
c906108c 2335}
237fc4c9 2336
c906108c 2337\f
b83266a0
SS
2338/* This enum encodes possible reasons for doing a target_wait, so that
2339 wfi can call target_wait in one place. (Ultimately the call will be
2340 moved out of the infinite loop entirely.) */
2341
c5aa993b
JM
2342enum infwait_states
2343{
cd0fc7c3
SS
2344 infwait_normal_state,
2345 infwait_thread_hop_state,
d983da9c 2346 infwait_step_watch_state,
cd0fc7c3 2347 infwait_nonstep_watch_state
b83266a0
SS
2348};
2349
0d1e5fa7
PA
2350/* The PTID we'll do a target_wait on.*/
2351ptid_t waiton_ptid;
2352
2353/* Current inferior wait state. */
2354enum infwait_states infwait_state;
cd0fc7c3 2355
0d1e5fa7
PA
2356/* Data to be passed around while handling an event. This data is
2357 discarded between events. */
c5aa993b 2358struct execution_control_state
488f131b 2359{
0d1e5fa7 2360 ptid_t ptid;
4e1c45ea
PA
2361 /* The thread that got the event, if this was a thread event; NULL
2362 otherwise. */
2363 struct thread_info *event_thread;
2364
488f131b 2365 struct target_waitstatus ws;
488f131b 2366 int random_signal;
7e324e48 2367 int stop_func_filled_in;
488f131b
JB
2368 CORE_ADDR stop_func_start;
2369 CORE_ADDR stop_func_end;
2370 char *stop_func_name;
488f131b 2371 int new_thread_event;
488f131b
JB
2372 int wait_some_more;
2373};
2374
ec9499be 2375static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2376
568d6575
UW
2377static void handle_step_into_function (struct gdbarch *gdbarch,
2378 struct execution_control_state *ecs);
2379static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2380 struct execution_control_state *ecs);
186c406b
TT
2381static void check_exception_resume (struct execution_control_state *,
2382 struct frame_info *, struct symbol *);
611c83ae 2383
104c1213
JM
2384static void stop_stepping (struct execution_control_state *ecs);
2385static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2386static void keep_going (struct execution_control_state *ecs);
104c1213 2387
252fbfc8
PA
2388/* Callback for iterate over threads. If the thread is stopped, but
2389 the user/frontend doesn't know about that yet, go through
2390 normal_stop, as if the thread had just stopped now. ARG points at
2391 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2392 ptid_is_pid(PTID) is true, applies to all threads of the process
2393 pointed at by PTID. Otherwise, apply only to the thread pointed by
2394 PTID. */
2395
2396static int
2397infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2398{
2399 ptid_t ptid = * (ptid_t *) arg;
2400
2401 if ((ptid_equal (info->ptid, ptid)
2402 || ptid_equal (minus_one_ptid, ptid)
2403 || (ptid_is_pid (ptid)
2404 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2405 && is_running (info->ptid)
2406 && !is_executing (info->ptid))
2407 {
2408 struct cleanup *old_chain;
2409 struct execution_control_state ecss;
2410 struct execution_control_state *ecs = &ecss;
2411
2412 memset (ecs, 0, sizeof (*ecs));
2413
2414 old_chain = make_cleanup_restore_current_thread ();
2415
2416 switch_to_thread (info->ptid);
2417
2418 /* Go through handle_inferior_event/normal_stop, so we always
2419 have consistent output as if the stop event had been
2420 reported. */
2421 ecs->ptid = info->ptid;
e09875d4 2422 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2423 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2424 ecs->ws.value.sig = TARGET_SIGNAL_0;
2425
2426 handle_inferior_event (ecs);
2427
2428 if (!ecs->wait_some_more)
2429 {
2430 struct thread_info *tp;
2431
2432 normal_stop ();
2433
fa4cd53f 2434 /* Finish off the continuations. */
252fbfc8 2435 tp = inferior_thread ();
fa4cd53f
PA
2436 do_all_intermediate_continuations_thread (tp, 1);
2437 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2438 }
2439
2440 do_cleanups (old_chain);
2441 }
2442
2443 return 0;
2444}
2445
2446/* This function is attached as a "thread_stop_requested" observer.
2447 Cleanup local state that assumed the PTID was to be resumed, and
2448 report the stop to the frontend. */
2449
2c0b251b 2450static void
252fbfc8
PA
2451infrun_thread_stop_requested (ptid_t ptid)
2452{
fc1cf338 2453 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2454
2455 /* PTID was requested to stop. Remove it from the displaced
2456 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2457
2458 for (displaced = displaced_step_inferior_states;
2459 displaced;
2460 displaced = displaced->next)
252fbfc8 2461 {
fc1cf338 2462 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2463
fc1cf338
PA
2464 it = displaced->step_request_queue;
2465 prev_next_p = &displaced->step_request_queue;
2466 while (it)
252fbfc8 2467 {
fc1cf338
PA
2468 if (ptid_match (it->ptid, ptid))
2469 {
2470 *prev_next_p = it->next;
2471 it->next = NULL;
2472 xfree (it);
2473 }
252fbfc8 2474 else
fc1cf338
PA
2475 {
2476 prev_next_p = &it->next;
2477 }
252fbfc8 2478
fc1cf338 2479 it = *prev_next_p;
252fbfc8 2480 }
252fbfc8
PA
2481 }
2482
2483 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2484}
2485
a07daef3
PA
2486static void
2487infrun_thread_thread_exit (struct thread_info *tp, int silent)
2488{
2489 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2490 nullify_last_target_wait_ptid ();
2491}
2492
4e1c45ea
PA
2493/* Callback for iterate_over_threads. */
2494
2495static int
2496delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2497{
2498 if (is_exited (info->ptid))
2499 return 0;
2500
2501 delete_step_resume_breakpoint (info);
186c406b 2502 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2503 return 0;
2504}
2505
2506/* In all-stop, delete the step resume breakpoint of any thread that
2507 had one. In non-stop, delete the step resume breakpoint of the
2508 thread that just stopped. */
2509
2510static void
2511delete_step_thread_step_resume_breakpoint (void)
2512{
2513 if (!target_has_execution
2514 || ptid_equal (inferior_ptid, null_ptid))
2515 /* If the inferior has exited, we have already deleted the step
2516 resume breakpoints out of GDB's lists. */
2517 return;
2518
2519 if (non_stop)
2520 {
2521 /* If in non-stop mode, only delete the step-resume or
2522 longjmp-resume breakpoint of the thread that just stopped
2523 stepping. */
2524 struct thread_info *tp = inferior_thread ();
abbb1732 2525
4e1c45ea 2526 delete_step_resume_breakpoint (tp);
186c406b 2527 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2528 }
2529 else
2530 /* In all-stop mode, delete all step-resume and longjmp-resume
2531 breakpoints of any thread that had them. */
2532 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2533}
2534
1777feb0 2535/* A cleanup wrapper. */
4e1c45ea
PA
2536
2537static void
2538delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2539{
2540 delete_step_thread_step_resume_breakpoint ();
2541}
2542
223698f8
DE
2543/* Pretty print the results of target_wait, for debugging purposes. */
2544
2545static void
2546print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2547 const struct target_waitstatus *ws)
2548{
2549 char *status_string = target_waitstatus_to_string (ws);
2550 struct ui_file *tmp_stream = mem_fileopen ();
2551 char *text;
223698f8
DE
2552
2553 /* The text is split over several lines because it was getting too long.
2554 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2555 output as a unit; we want only one timestamp printed if debug_timestamp
2556 is set. */
2557
2558 fprintf_unfiltered (tmp_stream,
2559 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2560 if (PIDGET (waiton_ptid) != -1)
2561 fprintf_unfiltered (tmp_stream,
2562 " [%s]", target_pid_to_str (waiton_ptid));
2563 fprintf_unfiltered (tmp_stream, ", status) =\n");
2564 fprintf_unfiltered (tmp_stream,
2565 "infrun: %d [%s],\n",
2566 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2567 fprintf_unfiltered (tmp_stream,
2568 "infrun: %s\n",
2569 status_string);
2570
759ef836 2571 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2572
2573 /* This uses %s in part to handle %'s in the text, but also to avoid
2574 a gcc error: the format attribute requires a string literal. */
2575 fprintf_unfiltered (gdb_stdlog, "%s", text);
2576
2577 xfree (status_string);
2578 xfree (text);
2579 ui_file_delete (tmp_stream);
2580}
2581
24291992
PA
2582/* Prepare and stabilize the inferior for detaching it. E.g.,
2583 detaching while a thread is displaced stepping is a recipe for
2584 crashing it, as nothing would readjust the PC out of the scratch
2585 pad. */
2586
2587void
2588prepare_for_detach (void)
2589{
2590 struct inferior *inf = current_inferior ();
2591 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2592 struct cleanup *old_chain_1;
2593 struct displaced_step_inferior_state *displaced;
2594
2595 displaced = get_displaced_stepping_state (inf->pid);
2596
2597 /* Is any thread of this process displaced stepping? If not,
2598 there's nothing else to do. */
2599 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2600 return;
2601
2602 if (debug_infrun)
2603 fprintf_unfiltered (gdb_stdlog,
2604 "displaced-stepping in-process while detaching");
2605
2606 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2607 inf->detaching = 1;
2608
2609 while (!ptid_equal (displaced->step_ptid, null_ptid))
2610 {
2611 struct cleanup *old_chain_2;
2612 struct execution_control_state ecss;
2613 struct execution_control_state *ecs;
2614
2615 ecs = &ecss;
2616 memset (ecs, 0, sizeof (*ecs));
2617
2618 overlay_cache_invalid = 1;
2619
24291992
PA
2620 if (deprecated_target_wait_hook)
2621 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2622 else
2623 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2624
2625 if (debug_infrun)
2626 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2627
2628 /* If an error happens while handling the event, propagate GDB's
2629 knowledge of the executing state to the frontend/user running
2630 state. */
3e43a32a
MS
2631 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2632 &minus_one_ptid);
24291992 2633
4d533103
PA
2634 /* In non-stop mode, each thread is handled individually.
2635 Switch early, so the global state is set correctly for this
2636 thread. */
2637 if (non_stop
2638 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2639 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2640 context_switch (ecs->ptid);
2641
24291992
PA
2642 /* Now figure out what to do with the result of the result. */
2643 handle_inferior_event (ecs);
2644
2645 /* No error, don't finish the state yet. */
2646 discard_cleanups (old_chain_2);
2647
2648 /* Breakpoints and watchpoints are not installed on the target
2649 at this point, and signals are passed directly to the
2650 inferior, so this must mean the process is gone. */
2651 if (!ecs->wait_some_more)
2652 {
2653 discard_cleanups (old_chain_1);
2654 error (_("Program exited while detaching"));
2655 }
2656 }
2657
2658 discard_cleanups (old_chain_1);
2659}
2660
cd0fc7c3 2661/* Wait for control to return from inferior to debugger.
ae123ec6 2662
cd0fc7c3
SS
2663 If inferior gets a signal, we may decide to start it up again
2664 instead of returning. That is why there is a loop in this function.
2665 When this function actually returns it means the inferior
2666 should be left stopped and GDB should read more commands. */
2667
2668void
e4c8541f 2669wait_for_inferior (void)
cd0fc7c3
SS
2670{
2671 struct cleanup *old_cleanups;
0d1e5fa7 2672 struct execution_control_state ecss;
cd0fc7c3 2673 struct execution_control_state *ecs;
c906108c 2674
527159b7 2675 if (debug_infrun)
ae123ec6 2676 fprintf_unfiltered
e4c8541f 2677 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2678
4e1c45ea
PA
2679 old_cleanups =
2680 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2681
cd0fc7c3 2682 ecs = &ecss;
0d1e5fa7
PA
2683 memset (ecs, 0, sizeof (*ecs));
2684
c906108c
SS
2685 while (1)
2686 {
29f49a6a
PA
2687 struct cleanup *old_chain;
2688
ec9499be 2689 overlay_cache_invalid = 1;
ec9499be 2690
9a4105ab 2691 if (deprecated_target_wait_hook)
47608cb1 2692 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2693 else
47608cb1 2694 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2695
f00150c9 2696 if (debug_infrun)
223698f8 2697 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2698
29f49a6a
PA
2699 /* If an error happens while handling the event, propagate GDB's
2700 knowledge of the executing state to the frontend/user running
2701 state. */
2702 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2703
a96d9b2e
SDJ
2704 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2705 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2706 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2707
cd0fc7c3
SS
2708 /* Now figure out what to do with the result of the result. */
2709 handle_inferior_event (ecs);
c906108c 2710
29f49a6a
PA
2711 /* No error, don't finish the state yet. */
2712 discard_cleanups (old_chain);
2713
cd0fc7c3
SS
2714 if (!ecs->wait_some_more)
2715 break;
2716 }
4e1c45ea 2717
cd0fc7c3
SS
2718 do_cleanups (old_cleanups);
2719}
c906108c 2720
1777feb0 2721/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2722 event loop whenever a change of state is detected on the file
1777feb0
MS
2723 descriptor corresponding to the target. It can be called more than
2724 once to complete a single execution command. In such cases we need
2725 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2726 that this function is called for a single execution command, then
2727 report to the user that the inferior has stopped, and do the
1777feb0 2728 necessary cleanups. */
43ff13b4
JM
2729
2730void
fba45db2 2731fetch_inferior_event (void *client_data)
43ff13b4 2732{
0d1e5fa7 2733 struct execution_control_state ecss;
a474d7c2 2734 struct execution_control_state *ecs = &ecss;
4f8d22e3 2735 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2736 struct cleanup *ts_old_chain;
4f8d22e3 2737 int was_sync = sync_execution;
0f641c01 2738 int cmd_done = 0;
43ff13b4 2739
0d1e5fa7
PA
2740 memset (ecs, 0, sizeof (*ecs));
2741
c5187ac6
PA
2742 /* We're handling a live event, so make sure we're doing live
2743 debugging. If we're looking at traceframes while the target is
2744 running, we're going to need to get back to that mode after
2745 handling the event. */
2746 if (non_stop)
2747 {
2748 make_cleanup_restore_current_traceframe ();
e6e4e701 2749 set_current_traceframe (-1);
c5187ac6
PA
2750 }
2751
4f8d22e3
PA
2752 if (non_stop)
2753 /* In non-stop mode, the user/frontend should not notice a thread
2754 switch due to internal events. Make sure we reverse to the
2755 user selected thread and frame after handling the event and
2756 running any breakpoint commands. */
2757 make_cleanup_restore_current_thread ();
2758
ec9499be 2759 overlay_cache_invalid = 1;
3dd5b83d 2760
32231432
PA
2761 make_cleanup_restore_integer (&execution_direction);
2762 execution_direction = target_execution_direction ();
2763
9a4105ab 2764 if (deprecated_target_wait_hook)
a474d7c2 2765 ecs->ptid =
47608cb1 2766 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2767 else
47608cb1 2768 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2769
f00150c9 2770 if (debug_infrun)
223698f8 2771 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2772
94cc34af
PA
2773 if (non_stop
2774 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
0e5bf2a8 2775 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
94cc34af
PA
2776 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2777 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2778 /* In non-stop mode, each thread is handled individually. Switch
2779 early, so the global state is set correctly for this
2780 thread. */
2781 context_switch (ecs->ptid);
2782
29f49a6a
PA
2783 /* If an error happens while handling the event, propagate GDB's
2784 knowledge of the executing state to the frontend/user running
2785 state. */
2786 if (!non_stop)
2787 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2788 else
2789 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2790
353d1d73
JK
2791 /* Get executed before make_cleanup_restore_current_thread above to apply
2792 still for the thread which has thrown the exception. */
2793 make_bpstat_clear_actions_cleanup ();
2794
43ff13b4 2795 /* Now figure out what to do with the result of the result. */
a474d7c2 2796 handle_inferior_event (ecs);
43ff13b4 2797
a474d7c2 2798 if (!ecs->wait_some_more)
43ff13b4 2799 {
d6b48e9c
PA
2800 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2801
4e1c45ea 2802 delete_step_thread_step_resume_breakpoint ();
f107f563 2803
d6b48e9c 2804 /* We may not find an inferior if this was a process exit. */
16c381f0 2805 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2806 normal_stop ();
2807
af679fd0 2808 if (target_has_execution
0e5bf2a8 2809 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2810 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2811 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2812 && ecs->event_thread->step_multi
16c381f0 2813 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2814 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2815 else
0f641c01
PA
2816 {
2817 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2818 cmd_done = 1;
2819 }
43ff13b4 2820 }
4f8d22e3 2821
29f49a6a
PA
2822 /* No error, don't finish the thread states yet. */
2823 discard_cleanups (ts_old_chain);
2824
4f8d22e3
PA
2825 /* Revert thread and frame. */
2826 do_cleanups (old_chain);
2827
2828 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2829 restore the prompt (a synchronous execution command has finished,
2830 and we're ready for input). */
b4a14fd0 2831 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2832 display_gdb_prompt (0);
0f641c01
PA
2833
2834 if (cmd_done
2835 && !was_sync
2836 && exec_done_display_p
2837 && (ptid_equal (inferior_ptid, null_ptid)
2838 || !is_running (inferior_ptid)))
2839 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2840}
2841
edb3359d
DJ
2842/* Record the frame and location we're currently stepping through. */
2843void
2844set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2845{
2846 struct thread_info *tp = inferior_thread ();
2847
16c381f0
JK
2848 tp->control.step_frame_id = get_frame_id (frame);
2849 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2850
2851 tp->current_symtab = sal.symtab;
2852 tp->current_line = sal.line;
2853}
2854
0d1e5fa7
PA
2855/* Clear context switchable stepping state. */
2856
2857void
4e1c45ea 2858init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2859{
2860 tss->stepping_over_breakpoint = 0;
2861 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2862}
2863
e02bc4cc 2864/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2865 target_wait()/deprecated_target_wait_hook(). The data is actually
2866 cached by handle_inferior_event(), which gets called immediately
2867 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2868
2869void
488f131b 2870get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2871{
39f77062 2872 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2873 *status = target_last_waitstatus;
2874}
2875
ac264b3b
MS
2876void
2877nullify_last_target_wait_ptid (void)
2878{
2879 target_last_wait_ptid = minus_one_ptid;
2880}
2881
dcf4fbde 2882/* Switch thread contexts. */
dd80620e
MS
2883
2884static void
0d1e5fa7 2885context_switch (ptid_t ptid)
dd80620e 2886{
4b51d87b 2887 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2888 {
2889 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2890 target_pid_to_str (inferior_ptid));
2891 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2892 target_pid_to_str (ptid));
fd48f117
DJ
2893 }
2894
0d1e5fa7 2895 switch_to_thread (ptid);
dd80620e
MS
2896}
2897
4fa8626c
DJ
2898static void
2899adjust_pc_after_break (struct execution_control_state *ecs)
2900{
24a73cce
UW
2901 struct regcache *regcache;
2902 struct gdbarch *gdbarch;
6c95b8df 2903 struct address_space *aspace;
8aad930b 2904 CORE_ADDR breakpoint_pc;
4fa8626c 2905
4fa8626c
DJ
2906 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2907 we aren't, just return.
9709f61c
DJ
2908
2909 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2910 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2911 implemented by software breakpoints should be handled through the normal
2912 breakpoint layer.
8fb3e588 2913
4fa8626c
DJ
2914 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2915 different signals (SIGILL or SIGEMT for instance), but it is less
2916 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2917 gdbarch_decr_pc_after_break. I don't know any specific target that
2918 generates these signals at breakpoints (the code has been in GDB since at
2919 least 1992) so I can not guess how to handle them here.
8fb3e588 2920
e6cf7916
UW
2921 In earlier versions of GDB, a target with
2922 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2923 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2924 target with both of these set in GDB history, and it seems unlikely to be
2925 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2926
2927 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2928 return;
2929
2930 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2931 return;
2932
4058b839
PA
2933 /* In reverse execution, when a breakpoint is hit, the instruction
2934 under it has already been de-executed. The reported PC always
2935 points at the breakpoint address, so adjusting it further would
2936 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2937 architecture:
2938
2939 B1 0x08000000 : INSN1
2940 B2 0x08000001 : INSN2
2941 0x08000002 : INSN3
2942 PC -> 0x08000003 : INSN4
2943
2944 Say you're stopped at 0x08000003 as above. Reverse continuing
2945 from that point should hit B2 as below. Reading the PC when the
2946 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2947 been de-executed already.
2948
2949 B1 0x08000000 : INSN1
2950 B2 PC -> 0x08000001 : INSN2
2951 0x08000002 : INSN3
2952 0x08000003 : INSN4
2953
2954 We can't apply the same logic as for forward execution, because
2955 we would wrongly adjust the PC to 0x08000000, since there's a
2956 breakpoint at PC - 1. We'd then report a hit on B1, although
2957 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2958 behaviour. */
2959 if (execution_direction == EXEC_REVERSE)
2960 return;
2961
24a73cce
UW
2962 /* If this target does not decrement the PC after breakpoints, then
2963 we have nothing to do. */
2964 regcache = get_thread_regcache (ecs->ptid);
2965 gdbarch = get_regcache_arch (regcache);
2966 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2967 return;
2968
6c95b8df
PA
2969 aspace = get_regcache_aspace (regcache);
2970
8aad930b
AC
2971 /* Find the location where (if we've hit a breakpoint) the
2972 breakpoint would be. */
515630c5
UW
2973 breakpoint_pc = regcache_read_pc (regcache)
2974 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2975
1c5cfe86
PA
2976 /* Check whether there actually is a software breakpoint inserted at
2977 that location.
2978
2979 If in non-stop mode, a race condition is possible where we've
2980 removed a breakpoint, but stop events for that breakpoint were
2981 already queued and arrive later. To suppress those spurious
2982 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2983 and retire them after a number of stop events are reported. */
6c95b8df
PA
2984 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2985 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2986 {
96429cc8 2987 struct cleanup *old_cleanups = NULL;
abbb1732 2988
96429cc8
HZ
2989 if (RECORD_IS_USED)
2990 old_cleanups = record_gdb_operation_disable_set ();
2991
1c0fdd0e
UW
2992 /* When using hardware single-step, a SIGTRAP is reported for both
2993 a completed single-step and a software breakpoint. Need to
2994 differentiate between the two, as the latter needs adjusting
2995 but the former does not.
2996
2997 The SIGTRAP can be due to a completed hardware single-step only if
2998 - we didn't insert software single-step breakpoints
2999 - the thread to be examined is still the current thread
3000 - this thread is currently being stepped
3001
3002 If any of these events did not occur, we must have stopped due
3003 to hitting a software breakpoint, and have to back up to the
3004 breakpoint address.
3005
3006 As a special case, we could have hardware single-stepped a
3007 software breakpoint. In this case (prev_pc == breakpoint_pc),
3008 we also need to back up to the breakpoint address. */
3009
3010 if (singlestep_breakpoints_inserted_p
3011 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3012 || !currently_stepping (ecs->event_thread)
3013 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3014 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
3015
3016 if (RECORD_IS_USED)
3017 do_cleanups (old_cleanups);
8aad930b 3018 }
4fa8626c
DJ
3019}
3020
0d1e5fa7
PA
3021void
3022init_infwait_state (void)
3023{
3024 waiton_ptid = pid_to_ptid (-1);
3025 infwait_state = infwait_normal_state;
3026}
3027
94cc34af
PA
3028void
3029error_is_running (void)
3030{
3e43a32a
MS
3031 error (_("Cannot execute this command while "
3032 "the selected thread is running."));
94cc34af
PA
3033}
3034
3035void
3036ensure_not_running (void)
3037{
3038 if (is_running (inferior_ptid))
3039 error_is_running ();
3040}
3041
edb3359d
DJ
3042static int
3043stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3044{
3045 for (frame = get_prev_frame (frame);
3046 frame != NULL;
3047 frame = get_prev_frame (frame))
3048 {
3049 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3050 return 1;
3051 if (get_frame_type (frame) != INLINE_FRAME)
3052 break;
3053 }
3054
3055 return 0;
3056}
3057
a96d9b2e
SDJ
3058/* Auxiliary function that handles syscall entry/return events.
3059 It returns 1 if the inferior should keep going (and GDB
3060 should ignore the event), or 0 if the event deserves to be
3061 processed. */
ca2163eb 3062
a96d9b2e 3063static int
ca2163eb 3064handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3065{
ca2163eb
PA
3066 struct regcache *regcache;
3067 struct gdbarch *gdbarch;
3068 int syscall_number;
3069
3070 if (!ptid_equal (ecs->ptid, inferior_ptid))
3071 context_switch (ecs->ptid);
3072
3073 regcache = get_thread_regcache (ecs->ptid);
3074 gdbarch = get_regcache_arch (regcache);
3075 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3076 stop_pc = regcache_read_pc (regcache);
3077
a96d9b2e
SDJ
3078 target_last_waitstatus.value.syscall_number = syscall_number;
3079
3080 if (catch_syscall_enabled () > 0
3081 && catching_syscall_number (syscall_number) > 0)
3082 {
3083 if (debug_infrun)
3084 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3085 syscall_number);
a96d9b2e 3086
16c381f0 3087 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3088 = bpstat_stop_status (get_regcache_aspace (regcache),
3089 stop_pc, ecs->ptid);
16c381f0
JK
3090 ecs->random_signal
3091 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3092
ca2163eb
PA
3093 if (!ecs->random_signal)
3094 {
3095 /* Catchpoint hit. */
16c381f0 3096 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3097 return 0;
3098 }
a96d9b2e 3099 }
ca2163eb
PA
3100
3101 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3102 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3103 keep_going (ecs);
3104 return 1;
a96d9b2e
SDJ
3105}
3106
7e324e48
GB
3107/* Clear the supplied execution_control_state's stop_func_* fields. */
3108
3109static void
3110clear_stop_func (struct execution_control_state *ecs)
3111{
3112 ecs->stop_func_filled_in = 0;
3113 ecs->stop_func_start = 0;
3114 ecs->stop_func_end = 0;
3115 ecs->stop_func_name = NULL;
3116}
3117
3118/* Lazily fill in the execution_control_state's stop_func_* fields. */
3119
3120static void
3121fill_in_stop_func (struct gdbarch *gdbarch,
3122 struct execution_control_state *ecs)
3123{
3124 if (!ecs->stop_func_filled_in)
3125 {
3126 /* Don't care about return value; stop_func_start and stop_func_name
3127 will both be 0 if it doesn't work. */
3128 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3129 &ecs->stop_func_start, &ecs->stop_func_end);
3130 ecs->stop_func_start
3131 += gdbarch_deprecated_function_start_offset (gdbarch);
3132
3133 ecs->stop_func_filled_in = 1;
3134 }
3135}
3136
cd0fc7c3
SS
3137/* Given an execution control state that has been freshly filled in
3138 by an event from the inferior, figure out what it means and take
3139 appropriate action. */
c906108c 3140
ec9499be 3141static void
96baa820 3142handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3143{
568d6575
UW
3144 struct frame_info *frame;
3145 struct gdbarch *gdbarch;
d983da9c
DJ
3146 int stopped_by_watchpoint;
3147 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3148 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3149 enum stop_kind stop_soon;
3150
28736962
PA
3151 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3152 {
3153 /* We had an event in the inferior, but we are not interested in
3154 handling it at this level. The lower layers have already
3155 done what needs to be done, if anything.
3156
3157 One of the possible circumstances for this is when the
3158 inferior produces output for the console. The inferior has
3159 not stopped, and we are ignoring the event. Another possible
3160 circumstance is any event which the lower level knows will be
3161 reported multiple times without an intervening resume. */
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3164 prepare_to_wait (ecs);
3165 return;
3166 }
3167
0e5bf2a8
PA
3168 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3169 && target_can_async_p () && !sync_execution)
3170 {
3171 /* There were no unwaited-for children left in the target, but,
3172 we're not synchronously waiting for events either. Just
3173 ignore. Otherwise, if we were running a synchronous
3174 execution command, we need to cancel it and give the user
3175 back the terminal. */
3176 if (debug_infrun)
3177 fprintf_unfiltered (gdb_stdlog,
3178 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3179 prepare_to_wait (ecs);
3180 return;
3181 }
3182
d6b48e9c 3183 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3184 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3185 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3186 {
3187 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3188
d6b48e9c 3189 gdb_assert (inf);
16c381f0 3190 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3191 }
3192 else
3193 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3194
1777feb0 3195 /* Cache the last pid/waitstatus. */
39f77062 3196 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3197 target_last_waitstatus = ecs->ws;
e02bc4cc 3198
ca005067 3199 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3200 stop_stack_dummy = STOP_NONE;
ca005067 3201
0e5bf2a8
PA
3202 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3203 {
3204 /* No unwaited-for children left. IOW, all resumed children
3205 have exited. */
3206 if (debug_infrun)
3207 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3208
3209 stop_print_frame = 0;
3210 stop_stepping (ecs);
3211 return;
3212 }
3213
1777feb0 3214 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3215
3216 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3217 && !ptid_equal (ecs->ptid, minus_one_ptid)
3218 && !in_thread_list (ecs->ptid));
3219
3220 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3221 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3222 add_thread (ecs->ptid);
3223
e09875d4 3224 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3225
3226 /* Dependent on valid ECS->EVENT_THREAD. */
3227 adjust_pc_after_break (ecs);
3228
3229 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3230 reinit_frame_cache ();
3231
28736962
PA
3232 breakpoint_retire_moribund ();
3233
2b009048
DJ
3234 /* First, distinguish signals caused by the debugger from signals
3235 that have to do with the program's own actions. Note that
3236 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3237 on the operating system version. Here we detect when a SIGILL or
3238 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3239 something similar for SIGSEGV, since a SIGSEGV will be generated
3240 when we're trying to execute a breakpoint instruction on a
3241 non-executable stack. This happens for call dummy breakpoints
3242 for architectures like SPARC that place call dummies on the
3243 stack. */
2b009048
DJ
3244 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3245 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3246 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3247 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3248 {
de0a0249
UW
3249 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3250
3251 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3252 regcache_read_pc (regcache)))
3253 {
3254 if (debug_infrun)
3255 fprintf_unfiltered (gdb_stdlog,
3256 "infrun: Treating signal as SIGTRAP\n");
3257 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3258 }
2b009048
DJ
3259 }
3260
28736962
PA
3261 /* Mark the non-executing threads accordingly. In all-stop, all
3262 threads of all processes are stopped when we get any event
3263 reported. In non-stop mode, only the event thread stops. If
3264 we're handling a process exit in non-stop mode, there's nothing
3265 to do, as threads of the dead process are gone, and threads of
3266 any other process were left running. */
3267 if (!non_stop)
3268 set_executing (minus_one_ptid, 0);
3269 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3270 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3271 set_executing (ecs->ptid, 0);
8c90c137 3272
0d1e5fa7 3273 switch (infwait_state)
488f131b
JB
3274 {
3275 case infwait_thread_hop_state:
527159b7 3276 if (debug_infrun)
8a9de0e4 3277 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3278 break;
b83266a0 3279
488f131b 3280 case infwait_normal_state:
527159b7 3281 if (debug_infrun)
8a9de0e4 3282 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3283 break;
3284
3285 case infwait_step_watch_state:
3286 if (debug_infrun)
3287 fprintf_unfiltered (gdb_stdlog,
3288 "infrun: infwait_step_watch_state\n");
3289
3290 stepped_after_stopped_by_watchpoint = 1;
488f131b 3291 break;
b83266a0 3292
488f131b 3293 case infwait_nonstep_watch_state:
527159b7 3294 if (debug_infrun)
8a9de0e4
AC
3295 fprintf_unfiltered (gdb_stdlog,
3296 "infrun: infwait_nonstep_watch_state\n");
488f131b 3297 insert_breakpoints ();
c906108c 3298
488f131b
JB
3299 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3300 handle things like signals arriving and other things happening
3301 in combination correctly? */
3302 stepped_after_stopped_by_watchpoint = 1;
3303 break;
65e82032
AC
3304
3305 default:
e2e0b3e5 3306 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3307 }
ec9499be 3308
0d1e5fa7 3309 infwait_state = infwait_normal_state;
ec9499be 3310 waiton_ptid = pid_to_ptid (-1);
c906108c 3311
488f131b
JB
3312 switch (ecs->ws.kind)
3313 {
3314 case TARGET_WAITKIND_LOADED:
527159b7 3315 if (debug_infrun)
8a9de0e4 3316 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3317 /* Ignore gracefully during startup of the inferior, as it might
3318 be the shell which has just loaded some objects, otherwise
3319 add the symbols for the newly loaded objects. Also ignore at
3320 the beginning of an attach or remote session; we will query
3321 the full list of libraries once the connection is
3322 established. */
c0236d92 3323 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3324 {
488f131b
JB
3325 /* Check for any newly added shared libraries if we're
3326 supposed to be adding them automatically. Switch
3327 terminal for any messages produced by
3328 breakpoint_re_set. */
3329 target_terminal_ours_for_output ();
aff6338a 3330 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3331 stack's section table is kept up-to-date. Architectures,
3332 (e.g., PPC64), use the section table to perform
3333 operations such as address => section name and hence
3334 require the table to contain all sections (including
3335 those found in shared libraries). */
b0f4b84b 3336#ifdef SOLIB_ADD
aff6338a 3337 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3338#else
3339 solib_add (NULL, 0, &current_target, auto_solib_add);
3340#endif
488f131b
JB
3341 target_terminal_inferior ();
3342
b0f4b84b
DJ
3343 /* If requested, stop when the dynamic linker notifies
3344 gdb of events. This allows the user to get control
3345 and place breakpoints in initializer routines for
3346 dynamically loaded objects (among other things). */
3347 if (stop_on_solib_events)
3348 {
55409f9d
DJ
3349 /* Make sure we print "Stopped due to solib-event" in
3350 normal_stop. */
3351 stop_print_frame = 1;
3352
b0f4b84b
DJ
3353 stop_stepping (ecs);
3354 return;
3355 }
3356
3357 /* NOTE drow/2007-05-11: This might be a good place to check
3358 for "catch load". */
488f131b 3359 }
b0f4b84b
DJ
3360
3361 /* If we are skipping through a shell, or through shared library
3362 loading that we aren't interested in, resume the program. If
3363 we're running the program normally, also resume. But stop if
3364 we're attaching or setting up a remote connection. */
3365 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3366 {
74960c60
VP
3367 /* Loading of shared libraries might have changed breakpoint
3368 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3369 if (stop_soon == NO_STOP_QUIETLY
3370 && !breakpoints_always_inserted_mode ())
74960c60 3371 insert_breakpoints ();
b0f4b84b
DJ
3372 resume (0, TARGET_SIGNAL_0);
3373 prepare_to_wait (ecs);
3374 return;
3375 }
3376
3377 break;
c5aa993b 3378
488f131b 3379 case TARGET_WAITKIND_SPURIOUS:
527159b7 3380 if (debug_infrun)
8a9de0e4 3381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3382 resume (0, TARGET_SIGNAL_0);
3383 prepare_to_wait (ecs);
3384 return;
c5aa993b 3385
488f131b 3386 case TARGET_WAITKIND_EXITED:
527159b7 3387 if (debug_infrun)
8a9de0e4 3388 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3389 inferior_ptid = ecs->ptid;
6c95b8df
PA
3390 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3391 set_current_program_space (current_inferior ()->pspace);
3392 handle_vfork_child_exec_or_exit (0);
1777feb0 3393 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3394 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3395
3396 /* Record the exit code in the convenience variable $_exitcode, so
3397 that the user can inspect this again later. */
4fa62494
UW
3398 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3399 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3400
3401 /* Also record this in the inferior itself. */
3402 current_inferior ()->has_exit_code = 1;
3403 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3404
488f131b
JB
3405 gdb_flush (gdb_stdout);
3406 target_mourn_inferior ();
1c0fdd0e 3407 singlestep_breakpoints_inserted_p = 0;
d03285ec 3408 cancel_single_step_breakpoints ();
488f131b
JB
3409 stop_print_frame = 0;
3410 stop_stepping (ecs);
3411 return;
c5aa993b 3412
488f131b 3413 case TARGET_WAITKIND_SIGNALLED:
527159b7 3414 if (debug_infrun)
8a9de0e4 3415 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3416 inferior_ptid = ecs->ptid;
6c95b8df
PA
3417 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3418 set_current_program_space (current_inferior ()->pspace);
3419 handle_vfork_child_exec_or_exit (0);
488f131b 3420 stop_print_frame = 0;
1777feb0 3421 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3422
488f131b
JB
3423 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3424 reach here unless the inferior is dead. However, for years
3425 target_kill() was called here, which hints that fatal signals aren't
3426 really fatal on some systems. If that's true, then some changes
1777feb0 3427 may be needed. */
488f131b 3428 target_mourn_inferior ();
c906108c 3429
33d62d64 3430 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3431 singlestep_breakpoints_inserted_p = 0;
d03285ec 3432 cancel_single_step_breakpoints ();
488f131b
JB
3433 stop_stepping (ecs);
3434 return;
c906108c 3435
488f131b 3436 /* The following are the only cases in which we keep going;
1777feb0 3437 the above cases end in a continue or goto. */
488f131b 3438 case TARGET_WAITKIND_FORKED:
deb3b17b 3439 case TARGET_WAITKIND_VFORKED:
527159b7 3440 if (debug_infrun)
8a9de0e4 3441 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3442
e2d96639
YQ
3443 /* Check whether the inferior is displaced stepping. */
3444 {
3445 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3446 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3447 struct displaced_step_inferior_state *displaced
3448 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3449
3450 /* If checking displaced stepping is supported, and thread
3451 ecs->ptid is displaced stepping. */
3452 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3453 {
3454 struct inferior *parent_inf
3455 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3456 struct regcache *child_regcache;
3457 CORE_ADDR parent_pc;
3458
3459 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3460 indicating that the displaced stepping of syscall instruction
3461 has been done. Perform cleanup for parent process here. Note
3462 that this operation also cleans up the child process for vfork,
3463 because their pages are shared. */
3464 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3465
3466 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3467 {
3468 /* Restore scratch pad for child process. */
3469 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3470 }
3471
3472 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3473 the child's PC is also within the scratchpad. Set the child's PC
3474 to the parent's PC value, which has already been fixed up.
3475 FIXME: we use the parent's aspace here, although we're touching
3476 the child, because the child hasn't been added to the inferior
3477 list yet at this point. */
3478
3479 child_regcache
3480 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3481 gdbarch,
3482 parent_inf->aspace);
3483 /* Read PC value of parent process. */
3484 parent_pc = regcache_read_pc (regcache);
3485
3486 if (debug_displaced)
3487 fprintf_unfiltered (gdb_stdlog,
3488 "displaced: write child pc from %s to %s\n",
3489 paddress (gdbarch,
3490 regcache_read_pc (child_regcache)),
3491 paddress (gdbarch, parent_pc));
3492
3493 regcache_write_pc (child_regcache, parent_pc);
3494 }
3495 }
3496
5a2901d9
DJ
3497 if (!ptid_equal (ecs->ptid, inferior_ptid))
3498 {
0d1e5fa7 3499 context_switch (ecs->ptid);
35f196d9 3500 reinit_frame_cache ();
5a2901d9
DJ
3501 }
3502
b242c3c2
PA
3503 /* Immediately detach breakpoints from the child before there's
3504 any chance of letting the user delete breakpoints from the
3505 breakpoint lists. If we don't do this early, it's easy to
3506 leave left over traps in the child, vis: "break foo; catch
3507 fork; c; <fork>; del; c; <child calls foo>". We only follow
3508 the fork on the last `continue', and by that time the
3509 breakpoint at "foo" is long gone from the breakpoint table.
3510 If we vforked, then we don't need to unpatch here, since both
3511 parent and child are sharing the same memory pages; we'll
3512 need to unpatch at follow/detach time instead to be certain
3513 that new breakpoints added between catchpoint hit time and
3514 vfork follow are detached. */
3515 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3516 {
3517 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3518
3519 /* This won't actually modify the breakpoint list, but will
3520 physically remove the breakpoints from the child. */
3521 detach_breakpoints (child_pid);
3522 }
3523
d03285ec
UW
3524 if (singlestep_breakpoints_inserted_p)
3525 {
1777feb0 3526 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3527 remove_single_step_breakpoints ();
3528 singlestep_breakpoints_inserted_p = 0;
3529 }
3530
e58b0e63
PA
3531 /* In case the event is caught by a catchpoint, remember that
3532 the event is to be followed at the next resume of the thread,
3533 and not immediately. */
3534 ecs->event_thread->pending_follow = ecs->ws;
3535
fb14de7b 3536 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3537
16c381f0 3538 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3539 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3540 stop_pc, ecs->ptid);
675bf4cb 3541
67822962
PA
3542 /* Note that we're interested in knowing the bpstat actually
3543 causes a stop, not just if it may explain the signal.
3544 Software watchpoints, for example, always appear in the
3545 bpstat. */
16c381f0
JK
3546 ecs->random_signal
3547 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3548
3549 /* If no catchpoint triggered for this, then keep going. */
3550 if (ecs->random_signal)
3551 {
6c95b8df
PA
3552 ptid_t parent;
3553 ptid_t child;
e58b0e63 3554 int should_resume;
3e43a32a
MS
3555 int follow_child
3556 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3557
16c381f0 3558 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3559
3560 should_resume = follow_fork ();
3561
6c95b8df
PA
3562 parent = ecs->ptid;
3563 child = ecs->ws.value.related_pid;
3564
3565 /* In non-stop mode, also resume the other branch. */
3566 if (non_stop && !detach_fork)
3567 {
3568 if (follow_child)
3569 switch_to_thread (parent);
3570 else
3571 switch_to_thread (child);
3572
3573 ecs->event_thread = inferior_thread ();
3574 ecs->ptid = inferior_ptid;
3575 keep_going (ecs);
3576 }
3577
3578 if (follow_child)
3579 switch_to_thread (child);
3580 else
3581 switch_to_thread (parent);
3582
e58b0e63
PA
3583 ecs->event_thread = inferior_thread ();
3584 ecs->ptid = inferior_ptid;
3585
3586 if (should_resume)
3587 keep_going (ecs);
3588 else
3589 stop_stepping (ecs);
04e68871
DJ
3590 return;
3591 }
16c381f0 3592 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3593 goto process_event_stop_test;
3594
6c95b8df
PA
3595 case TARGET_WAITKIND_VFORK_DONE:
3596 /* Done with the shared memory region. Re-insert breakpoints in
3597 the parent, and keep going. */
3598
3599 if (debug_infrun)
3e43a32a
MS
3600 fprintf_unfiltered (gdb_stdlog,
3601 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3602
3603 if (!ptid_equal (ecs->ptid, inferior_ptid))
3604 context_switch (ecs->ptid);
3605
3606 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3607 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3608 /* This also takes care of reinserting breakpoints in the
3609 previously locked inferior. */
3610 keep_going (ecs);
3611 return;
3612
488f131b 3613 case TARGET_WAITKIND_EXECD:
527159b7 3614 if (debug_infrun)
fc5261f2 3615 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3616
5a2901d9
DJ
3617 if (!ptid_equal (ecs->ptid, inferior_ptid))
3618 {
0d1e5fa7 3619 context_switch (ecs->ptid);
35f196d9 3620 reinit_frame_cache ();
5a2901d9
DJ
3621 }
3622
d03285ec
UW
3623 singlestep_breakpoints_inserted_p = 0;
3624 cancel_single_step_breakpoints ();
3625
fb14de7b 3626 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3627
6c95b8df
PA
3628 /* Do whatever is necessary to the parent branch of the vfork. */
3629 handle_vfork_child_exec_or_exit (1);
3630
795e548f
PA
3631 /* This causes the eventpoints and symbol table to be reset.
3632 Must do this now, before trying to determine whether to
3633 stop. */
71b43ef8 3634 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3635
16c381f0 3636 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3637 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3638 stop_pc, ecs->ptid);
16c381f0
JK
3639 ecs->random_signal
3640 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3641
71b43ef8
PA
3642 /* Note that this may be referenced from inside
3643 bpstat_stop_status above, through inferior_has_execd. */
3644 xfree (ecs->ws.value.execd_pathname);
3645 ecs->ws.value.execd_pathname = NULL;
3646
04e68871
DJ
3647 /* If no catchpoint triggered for this, then keep going. */
3648 if (ecs->random_signal)
3649 {
16c381f0 3650 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3651 keep_going (ecs);
3652 return;
3653 }
16c381f0 3654 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3655 goto process_event_stop_test;
3656
b4dc5ffa
MK
3657 /* Be careful not to try to gather much state about a thread
3658 that's in a syscall. It's frequently a losing proposition. */
488f131b 3659 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3660 if (debug_infrun)
3e43a32a
MS
3661 fprintf_unfiltered (gdb_stdlog,
3662 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3663 /* Getting the current syscall number. */
ca2163eb 3664 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3665 return;
3666 goto process_event_stop_test;
c906108c 3667
488f131b
JB
3668 /* Before examining the threads further, step this thread to
3669 get it entirely out of the syscall. (We get notice of the
3670 event when the thread is just on the verge of exiting a
3671 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3672 into user code.) */
488f131b 3673 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3674 if (debug_infrun)
3e43a32a
MS
3675 fprintf_unfiltered (gdb_stdlog,
3676 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3677 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3678 return;
3679 goto process_event_stop_test;
c906108c 3680
488f131b 3681 case TARGET_WAITKIND_STOPPED:
527159b7 3682 if (debug_infrun)
8a9de0e4 3683 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3684 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3685 break;
c906108c 3686
b2175913 3687 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3688 if (debug_infrun)
3689 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3690 /* Reverse execution: target ran out of history info. */
fb14de7b 3691 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3692 print_no_history_reason ();
b2175913
MS
3693 stop_stepping (ecs);
3694 return;
488f131b 3695 }
c906108c 3696
488f131b
JB
3697 if (ecs->new_thread_event)
3698 {
94cc34af
PA
3699 if (non_stop)
3700 /* Non-stop assumes that the target handles adding new threads
3701 to the thread list. */
3e43a32a
MS
3702 internal_error (__FILE__, __LINE__,
3703 "targets should add new threads to the thread "
3704 "list themselves in non-stop mode.");
94cc34af
PA
3705
3706 /* We may want to consider not doing a resume here in order to
3707 give the user a chance to play with the new thread. It might
3708 be good to make that a user-settable option. */
3709
3710 /* At this point, all threads are stopped (happens automatically
3711 in either the OS or the native code). Therefore we need to
3712 continue all threads in order to make progress. */
3713
173853dc
PA
3714 if (!ptid_equal (ecs->ptid, inferior_ptid))
3715 context_switch (ecs->ptid);
488f131b
JB
3716 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3717 prepare_to_wait (ecs);
3718 return;
3719 }
c906108c 3720
2020b7ab 3721 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3722 {
3723 /* Do we need to clean up the state of a thread that has
3724 completed a displaced single-step? (Doing so usually affects
3725 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3726 displaced_step_fixup (ecs->ptid,
3727 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3728
3729 /* If we either finished a single-step or hit a breakpoint, but
3730 the user wanted this thread to be stopped, pretend we got a
3731 SIG0 (generic unsignaled stop). */
3732
3733 if (ecs->event_thread->stop_requested
16c381f0
JK
3734 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3735 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3736 }
237fc4c9 3737
515630c5 3738 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3739
527159b7 3740 if (debug_infrun)
237fc4c9 3741 {
5af949e3
UW
3742 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3743 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3744 struct cleanup *old_chain = save_inferior_ptid ();
3745
3746 inferior_ptid = ecs->ptid;
5af949e3
UW
3747
3748 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3749 paddress (gdbarch, stop_pc));
d92524f1 3750 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3751 {
3752 CORE_ADDR addr;
abbb1732 3753
237fc4c9
PA
3754 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3755
3756 if (target_stopped_data_address (&current_target, &addr))
3757 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3758 "infrun: stopped data address = %s\n",
3759 paddress (gdbarch, addr));
237fc4c9
PA
3760 else
3761 fprintf_unfiltered (gdb_stdlog,
3762 "infrun: (no data address available)\n");
3763 }
7f82dfc7
JK
3764
3765 do_cleanups (old_chain);
237fc4c9 3766 }
527159b7 3767
9f976b41
DJ
3768 if (stepping_past_singlestep_breakpoint)
3769 {
1c0fdd0e 3770 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3771 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3772 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3773
3774 stepping_past_singlestep_breakpoint = 0;
3775
3776 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3777 breakpoint, or stopped for some other reason. It would be nice if
3778 we could tell, but we can't reliably. */
16c381f0 3779 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3780 {
527159b7 3781 if (debug_infrun)
3e43a32a
MS
3782 fprintf_unfiltered (gdb_stdlog,
3783 "infrun: stepping_past_"
3784 "singlestep_breakpoint\n");
9f976b41 3785 /* Pull the single step breakpoints out of the target. */
e0cd558a 3786 remove_single_step_breakpoints ();
9f976b41
DJ
3787 singlestep_breakpoints_inserted_p = 0;
3788
3789 ecs->random_signal = 0;
16c381f0 3790 ecs->event_thread->control.trap_expected = 0;
9f976b41 3791
0d1e5fa7 3792 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3793 if (deprecated_context_hook)
3794 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3795
3796 resume (1, TARGET_SIGNAL_0);
3797 prepare_to_wait (ecs);
3798 return;
3799 }
3800 }
3801
ca67fcb8 3802 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3803 {
94cc34af
PA
3804 /* In non-stop mode, there's never a deferred_step_ptid set. */
3805 gdb_assert (!non_stop);
3806
6a6b96b9
UW
3807 /* If we stopped for some other reason than single-stepping, ignore
3808 the fact that we were supposed to switch back. */
16c381f0 3809 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3810 {
3811 if (debug_infrun)
3812 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3813 "infrun: handling deferred step\n");
6a6b96b9
UW
3814
3815 /* Pull the single step breakpoints out of the target. */
3816 if (singlestep_breakpoints_inserted_p)
3817 {
3818 remove_single_step_breakpoints ();
3819 singlestep_breakpoints_inserted_p = 0;
3820 }
3821
cd3da28e
PA
3822 ecs->event_thread->control.trap_expected = 0;
3823
6a6b96b9
UW
3824 /* Note: We do not call context_switch at this point, as the
3825 context is already set up for stepping the original thread. */
ca67fcb8
VP
3826 switch_to_thread (deferred_step_ptid);
3827 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3828 /* Suppress spurious "Switching to ..." message. */
3829 previous_inferior_ptid = inferior_ptid;
3830
3831 resume (1, TARGET_SIGNAL_0);
3832 prepare_to_wait (ecs);
3833 return;
3834 }
ca67fcb8
VP
3835
3836 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3837 }
3838
488f131b
JB
3839 /* See if a thread hit a thread-specific breakpoint that was meant for
3840 another thread. If so, then step that thread past the breakpoint,
3841 and continue it. */
3842
16c381f0 3843 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3844 {
9f976b41 3845 int thread_hop_needed = 0;
cf00dfa7
VP
3846 struct address_space *aspace =
3847 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3848
f8d40ec8 3849 /* Check if a regular breakpoint has been hit before checking
1777feb0 3850 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3851 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3852 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3853 {
c5aa993b 3854 ecs->random_signal = 0;
6c95b8df 3855 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3856 thread_hop_needed = 1;
3857 }
1c0fdd0e 3858 else if (singlestep_breakpoints_inserted_p)
9f976b41 3859 {
fd48f117
DJ
3860 /* We have not context switched yet, so this should be true
3861 no matter which thread hit the singlestep breakpoint. */
3862 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3863 if (debug_infrun)
3864 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3865 "trap for %s\n",
3866 target_pid_to_str (ecs->ptid));
3867
9f976b41
DJ
3868 ecs->random_signal = 0;
3869 /* The call to in_thread_list is necessary because PTIDs sometimes
3870 change when we go from single-threaded to multi-threaded. If
3871 the singlestep_ptid is still in the list, assume that it is
3872 really different from ecs->ptid. */
3873 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3874 && in_thread_list (singlestep_ptid))
3875 {
fd48f117
DJ
3876 /* If the PC of the thread we were trying to single-step
3877 has changed, discard this event (which we were going
3878 to ignore anyway), and pretend we saw that thread
3879 trap. This prevents us continuously moving the
3880 single-step breakpoint forward, one instruction at a
3881 time. If the PC has changed, then the thread we were
3882 trying to single-step has trapped or been signalled,
3883 but the event has not been reported to GDB yet.
3884
3885 There might be some cases where this loses signal
3886 information, if a signal has arrived at exactly the
3887 same time that the PC changed, but this is the best
3888 we can do with the information available. Perhaps we
3889 should arrange to report all events for all threads
3890 when they stop, or to re-poll the remote looking for
3891 this particular thread (i.e. temporarily enable
3892 schedlock). */
515630c5
UW
3893
3894 CORE_ADDR new_singlestep_pc
3895 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3896
3897 if (new_singlestep_pc != singlestep_pc)
fd48f117 3898 {
2020b7ab
PA
3899 enum target_signal stop_signal;
3900
fd48f117
DJ
3901 if (debug_infrun)
3902 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3903 " but expected thread advanced also\n");
3904
3905 /* The current context still belongs to
3906 singlestep_ptid. Don't swap here, since that's
3907 the context we want to use. Just fudge our
3908 state and continue. */
16c381f0
JK
3909 stop_signal = ecs->event_thread->suspend.stop_signal;
3910 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3911 ecs->ptid = singlestep_ptid;
e09875d4 3912 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3913 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3914 stop_pc = new_singlestep_pc;
fd48f117
DJ
3915 }
3916 else
3917 {
3918 if (debug_infrun)
3919 fprintf_unfiltered (gdb_stdlog,
3920 "infrun: unexpected thread\n");
3921
3922 thread_hop_needed = 1;
3923 stepping_past_singlestep_breakpoint = 1;
3924 saved_singlestep_ptid = singlestep_ptid;
3925 }
9f976b41
DJ
3926 }
3927 }
3928
3929 if (thread_hop_needed)
8fb3e588 3930 {
9f5a595d 3931 struct regcache *thread_regcache;
237fc4c9 3932 int remove_status = 0;
8fb3e588 3933
527159b7 3934 if (debug_infrun)
8a9de0e4 3935 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3936
b3444185
PA
3937 /* Switch context before touching inferior memory, the
3938 previous thread may have exited. */
3939 if (!ptid_equal (inferior_ptid, ecs->ptid))
3940 context_switch (ecs->ptid);
3941
8fb3e588 3942 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3943 Just continue. */
8fb3e588 3944
1c0fdd0e 3945 if (singlestep_breakpoints_inserted_p)
488f131b 3946 {
1777feb0 3947 /* Pull the single step breakpoints out of the target. */
e0cd558a 3948 remove_single_step_breakpoints ();
8fb3e588
AC
3949 singlestep_breakpoints_inserted_p = 0;
3950 }
3951
237fc4c9
PA
3952 /* If the arch can displace step, don't remove the
3953 breakpoints. */
9f5a595d
UW
3954 thread_regcache = get_thread_regcache (ecs->ptid);
3955 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3956 remove_status = remove_breakpoints ();
3957
8fb3e588
AC
3958 /* Did we fail to remove breakpoints? If so, try
3959 to set the PC past the bp. (There's at least
3960 one situation in which we can fail to remove
3961 the bp's: On HP-UX's that use ttrace, we can't
3962 change the address space of a vforking child
3963 process until the child exits (well, okay, not
1777feb0 3964 then either :-) or execs. */
8fb3e588 3965 if (remove_status != 0)
9d9cd7ac 3966 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3967 else
3968 { /* Single step */
94cc34af
PA
3969 if (!non_stop)
3970 {
3971 /* Only need to require the next event from this
3972 thread in all-stop mode. */
3973 waiton_ptid = ecs->ptid;
3974 infwait_state = infwait_thread_hop_state;
3975 }
8fb3e588 3976
4e1c45ea 3977 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3978 keep_going (ecs);
8fb3e588
AC
3979 return;
3980 }
488f131b 3981 }
1c0fdd0e 3982 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3983 {
8fb3e588
AC
3984 ecs->random_signal = 0;
3985 }
488f131b
JB
3986 }
3987 else
3988 ecs->random_signal = 1;
c906108c 3989
488f131b 3990 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3991 so, then switch to that thread. */
3992 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3993 {
527159b7 3994 if (debug_infrun)
8a9de0e4 3995 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3996
0d1e5fa7 3997 context_switch (ecs->ptid);
c5aa993b 3998
9a4105ab
AC
3999 if (deprecated_context_hook)
4000 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4001 }
c906108c 4002
568d6575
UW
4003 /* At this point, get hold of the now-current thread's frame. */
4004 frame = get_current_frame ();
4005 gdbarch = get_frame_arch (frame);
4006
1c0fdd0e 4007 if (singlestep_breakpoints_inserted_p)
488f131b 4008 {
1777feb0 4009 /* Pull the single step breakpoints out of the target. */
e0cd558a 4010 remove_single_step_breakpoints ();
488f131b
JB
4011 singlestep_breakpoints_inserted_p = 0;
4012 }
c906108c 4013
d983da9c
DJ
4014 if (stepped_after_stopped_by_watchpoint)
4015 stopped_by_watchpoint = 0;
4016 else
4017 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4018
4019 /* If necessary, step over this watchpoint. We'll be back to display
4020 it in a moment. */
4021 if (stopped_by_watchpoint
d92524f1 4022 && (target_have_steppable_watchpoint
568d6575 4023 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4024 {
488f131b
JB
4025 /* At this point, we are stopped at an instruction which has
4026 attempted to write to a piece of memory under control of
4027 a watchpoint. The instruction hasn't actually executed
4028 yet. If we were to evaluate the watchpoint expression
4029 now, we would get the old value, and therefore no change
4030 would seem to have occurred.
4031
4032 In order to make watchpoints work `right', we really need
4033 to complete the memory write, and then evaluate the
d983da9c
DJ
4034 watchpoint expression. We do this by single-stepping the
4035 target.
4036
4037 It may not be necessary to disable the watchpoint to stop over
4038 it. For example, the PA can (with some kernel cooperation)
4039 single step over a watchpoint without disabling the watchpoint.
4040
4041 It is far more common to need to disable a watchpoint to step
4042 the inferior over it. If we have non-steppable watchpoints,
4043 we must disable the current watchpoint; it's simplest to
4044 disable all watchpoints and breakpoints. */
2facfe5c
DD
4045 int hw_step = 1;
4046
d92524f1 4047 if (!target_have_steppable_watchpoint)
2455069d
UW
4048 {
4049 remove_breakpoints ();
4050 /* See comment in resume why we need to stop bypassing signals
4051 while breakpoints have been removed. */
4052 target_pass_signals (0, NULL);
4053 }
2facfe5c 4054 /* Single step */
568d6575 4055 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 4056 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 4057 waiton_ptid = ecs->ptid;
d92524f1 4058 if (target_have_steppable_watchpoint)
0d1e5fa7 4059 infwait_state = infwait_step_watch_state;
d983da9c 4060 else
0d1e5fa7 4061 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4062 prepare_to_wait (ecs);
4063 return;
4064 }
4065
7e324e48 4066 clear_stop_func (ecs);
4e1c45ea 4067 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4068 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4069 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4070 stop_print_frame = 1;
4071 ecs->random_signal = 0;
4072 stopped_by_random_signal = 0;
488f131b 4073
edb3359d
DJ
4074 /* Hide inlined functions starting here, unless we just performed stepi or
4075 nexti. After stepi and nexti, always show the innermost frame (not any
4076 inline function call sites). */
16c381f0 4077 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4078 {
4079 struct address_space *aspace =
4080 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4081
4082 /* skip_inline_frames is expensive, so we avoid it if we can
4083 determine that the address is one where functions cannot have
4084 been inlined. This improves performance with inferiors that
4085 load a lot of shared libraries, because the solib event
4086 breakpoint is defined as the address of a function (i.e. not
4087 inline). Note that we have to check the previous PC as well
4088 as the current one to catch cases when we have just
4089 single-stepped off a breakpoint prior to reinstating it.
4090 Note that we're assuming that the code we single-step to is
4091 not inline, but that's not definitive: there's nothing
4092 preventing the event breakpoint function from containing
4093 inlined code, and the single-step ending up there. If the
4094 user had set a breakpoint on that inlined code, the missing
4095 skip_inline_frames call would break things. Fortunately
4096 that's an extremely unlikely scenario. */
4097 if (!pc_at_non_inline_function (aspace, stop_pc)
4098 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4099 && ecs->event_thread->control.trap_expected
4100 && pc_at_non_inline_function (aspace,
4101 ecs->event_thread->prev_pc)))
4102 skip_inline_frames (ecs->ptid);
4103 }
edb3359d 4104
16c381f0
JK
4105 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4106 && ecs->event_thread->control.trap_expected
568d6575 4107 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4108 && currently_stepping (ecs->event_thread))
3352ef37 4109 {
b50d7442 4110 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4111 also on an instruction that needs to be stepped multiple
1777feb0 4112 times before it's been fully executing. E.g., architectures
3352ef37
AC
4113 with a delay slot. It needs to be stepped twice, once for
4114 the instruction and once for the delay slot. */
4115 int step_through_delay
568d6575 4116 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4117
527159b7 4118 if (debug_infrun && step_through_delay)
8a9de0e4 4119 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4120 if (ecs->event_thread->control.step_range_end == 0
4121 && step_through_delay)
3352ef37
AC
4122 {
4123 /* The user issued a continue when stopped at a breakpoint.
4124 Set up for another trap and get out of here. */
4e1c45ea 4125 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4126 keep_going (ecs);
4127 return;
4128 }
4129 else if (step_through_delay)
4130 {
4131 /* The user issued a step when stopped at a breakpoint.
4132 Maybe we should stop, maybe we should not - the delay
4133 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4134 case, don't decide that here, just set
4135 ecs->stepping_over_breakpoint, making sure we
4136 single-step again before breakpoints are re-inserted. */
4e1c45ea 4137 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4138 }
4139 }
4140
488f131b
JB
4141 /* Look at the cause of the stop, and decide what to do.
4142 The alternatives are:
0d1e5fa7
PA
4143 1) stop_stepping and return; to really stop and return to the debugger,
4144 2) keep_going and return to start up again
4e1c45ea 4145 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4146 3) set ecs->random_signal to 1, and the decision between 1 and 2
4147 will be made according to the signal handling tables. */
4148
16c381f0 4149 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
4150 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4151 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4152 {
16c381f0
JK
4153 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4154 && stop_after_trap)
488f131b 4155 {
527159b7 4156 if (debug_infrun)
8a9de0e4 4157 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4158 stop_print_frame = 0;
4159 stop_stepping (ecs);
4160 return;
4161 }
c54cfec8
EZ
4162
4163 /* This is originated from start_remote(), start_inferior() and
4164 shared libraries hook functions. */
b0f4b84b 4165 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4166 {
527159b7 4167 if (debug_infrun)
8a9de0e4 4168 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4169 stop_stepping (ecs);
4170 return;
4171 }
4172
c54cfec8 4173 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4174 the stop_signal here, because some kernels don't ignore a
4175 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4176 See more comments in inferior.h. On the other hand, if we
a0ef4274 4177 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4178 will handle the SIGSTOP if it should show up later.
4179
4180 Also consider that the attach is complete when we see a
4181 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4182 target extended-remote report it instead of a SIGSTOP
4183 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4184 signal, so this is no exception.
4185
4186 Also consider that the attach is complete when we see a
4187 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4188 the target to stop all threads of the inferior, in case the
4189 low level attach operation doesn't stop them implicitly. If
4190 they weren't stopped implicitly, then the stub will report a
4191 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4192 other than GDB's request. */
a0ef4274 4193 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4194 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4195 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4196 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4197 {
4198 stop_stepping (ecs);
16c381f0 4199 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4200 return;
4201 }
4202
fba57f8f 4203 /* See if there is a breakpoint at the current PC. */
16c381f0 4204 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
4205 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4206 stop_pc, ecs->ptid);
4207
fba57f8f
VP
4208 /* Following in case break condition called a
4209 function. */
4210 stop_print_frame = 1;
488f131b 4211
db82e815
PA
4212 /* This is where we handle "moribund" watchpoints. Unlike
4213 software breakpoints traps, hardware watchpoint traps are
4214 always distinguishable from random traps. If no high-level
4215 watchpoint is associated with the reported stop data address
4216 anymore, then the bpstat does not explain the signal ---
4217 simply make sure to ignore it if `stopped_by_watchpoint' is
4218 set. */
4219
4220 if (debug_infrun
16c381f0
JK
4221 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4222 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4223 && stopped_by_watchpoint)
3e43a32a
MS
4224 fprintf_unfiltered (gdb_stdlog,
4225 "infrun: no user watchpoint explains "
4226 "watchpoint SIGTRAP, ignoring\n");
db82e815 4227
73dd234f 4228 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4229 at one stage in the past included checks for an inferior
4230 function call's call dummy's return breakpoint. The original
4231 comment, that went with the test, read:
73dd234f 4232
8fb3e588
AC
4233 ``End of a stack dummy. Some systems (e.g. Sony news) give
4234 another signal besides SIGTRAP, so check here as well as
4235 above.''
73dd234f 4236
8002d778 4237 If someone ever tries to get call dummys on a
73dd234f 4238 non-executable stack to work (where the target would stop
03cebad2
MK
4239 with something like a SIGSEGV), then those tests might need
4240 to be re-instated. Given, however, that the tests were only
73dd234f 4241 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4242 suspect that it won't be the case.
4243
8fb3e588
AC
4244 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4245 be necessary for call dummies on a non-executable stack on
4246 SPARC. */
73dd234f 4247
16c381f0 4248 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4249 ecs->random_signal
16c381f0 4250 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4251 || stopped_by_watchpoint
16c381f0
JK
4252 || ecs->event_thread->control.trap_expected
4253 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4254 && (ecs->event_thread->control.step_resume_breakpoint
4255 == NULL)));
488f131b
JB
4256 else
4257 {
16c381f0
JK
4258 ecs->random_signal = !bpstat_explains_signal
4259 (ecs->event_thread->control.stop_bpstat);
488f131b 4260 if (!ecs->random_signal)
16c381f0 4261 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4262 }
4263 }
4264
4265 /* When we reach this point, we've pretty much decided
4266 that the reason for stopping must've been a random
1777feb0 4267 (unexpected) signal. */
488f131b
JB
4268
4269 else
4270 ecs->random_signal = 1;
488f131b 4271
04e68871 4272process_event_stop_test:
568d6575
UW
4273
4274 /* Re-fetch current thread's frame in case we did a
4275 "goto process_event_stop_test" above. */
4276 frame = get_current_frame ();
4277 gdbarch = get_frame_arch (frame);
4278
488f131b
JB
4279 /* For the program's own signals, act according to
4280 the signal handling tables. */
4281
4282 if (ecs->random_signal)
4283 {
4284 /* Signal not for debugging purposes. */
4285 int printed = 0;
24291992 4286 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4287
527159b7 4288 if (debug_infrun)
2020b7ab 4289 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4290 ecs->event_thread->suspend.stop_signal);
527159b7 4291
488f131b
JB
4292 stopped_by_random_signal = 1;
4293
16c381f0 4294 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4295 {
4296 printed = 1;
4297 target_terminal_ours_for_output ();
16c381f0
JK
4298 print_signal_received_reason
4299 (ecs->event_thread->suspend.stop_signal);
488f131b 4300 }
252fbfc8
PA
4301 /* Always stop on signals if we're either just gaining control
4302 of the program, or the user explicitly requested this thread
4303 to remain stopped. */
d6b48e9c 4304 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4305 || ecs->event_thread->stop_requested
24291992 4306 || (!inf->detaching
16c381f0 4307 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4308 {
4309 stop_stepping (ecs);
4310 return;
4311 }
4312 /* If not going to stop, give terminal back
4313 if we took it away. */
4314 else if (printed)
4315 target_terminal_inferior ();
4316
4317 /* Clear the signal if it should not be passed. */
16c381f0
JK
4318 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4319 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4320
fb14de7b 4321 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4322 && ecs->event_thread->control.trap_expected
8358c15c 4323 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4324 {
4325 /* We were just starting a new sequence, attempting to
4326 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4327 Instead this signal arrives. This signal will take us out
68f53502
AC
4328 of the stepping range so GDB needs to remember to, when
4329 the signal handler returns, resume stepping off that
4330 breakpoint. */
4331 /* To simplify things, "continue" is forced to use the same
4332 code paths as single-step - set a breakpoint at the
4333 signal return address and then, once hit, step off that
4334 breakpoint. */
237fc4c9
PA
4335 if (debug_infrun)
4336 fprintf_unfiltered (gdb_stdlog,
4337 "infrun: signal arrived while stepping over "
4338 "breakpoint\n");
d3169d93 4339
2c03e5be 4340 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4341 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4342 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4343 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4344 keep_going (ecs);
4345 return;
68f53502 4346 }
9d799f85 4347
16c381f0
JK
4348 if (ecs->event_thread->control.step_range_end != 0
4349 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4350 && (ecs->event_thread->control.step_range_start <= stop_pc
4351 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4352 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4353 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4354 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4355 {
4356 /* The inferior is about to take a signal that will take it
4357 out of the single step range. Set a breakpoint at the
4358 current PC (which is presumably where the signal handler
4359 will eventually return) and then allow the inferior to
4360 run free.
4361
4362 Note that this is only needed for a signal delivered
4363 while in the single-step range. Nested signals aren't a
4364 problem as they eventually all return. */
237fc4c9
PA
4365 if (debug_infrun)
4366 fprintf_unfiltered (gdb_stdlog,
4367 "infrun: signal may take us out of "
4368 "single-step range\n");
4369
2c03e5be 4370 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4371 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4372 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4373 keep_going (ecs);
4374 return;
d303a6c7 4375 }
9d799f85
AC
4376
4377 /* Note: step_resume_breakpoint may be non-NULL. This occures
4378 when either there's a nested signal, or when there's a
4379 pending signal enabled just as the signal handler returns
4380 (leaving the inferior at the step-resume-breakpoint without
4381 actually executing it). Either way continue until the
4382 breakpoint is really hit. */
488f131b
JB
4383 keep_going (ecs);
4384 return;
4385 }
4386
4387 /* Handle cases caused by hitting a breakpoint. */
4388 {
4389 CORE_ADDR jmp_buf_pc;
4390 struct bpstat_what what;
4391
16c381f0 4392 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4393
4394 if (what.call_dummy)
4395 {
aa7d318d 4396 stop_stack_dummy = what.call_dummy;
c5aa993b 4397 }
c906108c 4398
628fe4e4
JK
4399 /* If we hit an internal event that triggers symbol changes, the
4400 current frame will be invalidated within bpstat_what (e.g., if
4401 we hit an internal solib event). Re-fetch it. */
4402 frame = get_current_frame ();
4403 gdbarch = get_frame_arch (frame);
4404
488f131b 4405 switch (what.main_action)
c5aa993b 4406 {
488f131b 4407 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4408 /* If we hit the breakpoint at longjmp while stepping, we
4409 install a momentary breakpoint at the target of the
4410 jmp_buf. */
4411
4412 if (debug_infrun)
4413 fprintf_unfiltered (gdb_stdlog,
4414 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4415
4e1c45ea 4416 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4417
186c406b 4418 if (what.is_longjmp)
c5aa993b 4419 {
186c406b
TT
4420 if (!gdbarch_get_longjmp_target_p (gdbarch)
4421 || !gdbarch_get_longjmp_target (gdbarch,
4422 frame, &jmp_buf_pc))
4423 {
4424 if (debug_infrun)
3e43a32a
MS
4425 fprintf_unfiltered (gdb_stdlog,
4426 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4427 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4428 keep_going (ecs);
4429 return;
4430 }
488f131b 4431
186c406b
TT
4432 /* We're going to replace the current step-resume breakpoint
4433 with a longjmp-resume breakpoint. */
4434 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4435
186c406b
TT
4436 /* Insert a breakpoint at resume address. */
4437 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4438 }
4439 else
4440 {
4441 struct symbol *func = get_frame_function (frame);
c906108c 4442
186c406b
TT
4443 if (func)
4444 check_exception_resume (ecs, frame, func);
4445 }
488f131b
JB
4446 keep_going (ecs);
4447 return;
c906108c 4448
488f131b 4449 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4450 if (debug_infrun)
611c83ae
PA
4451 fprintf_unfiltered (gdb_stdlog,
4452 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4453
186c406b
TT
4454 if (what.is_longjmp)
4455 {
4456 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4457 != NULL);
4458 delete_step_resume_breakpoint (ecs->event_thread);
4459 }
4460 else
4461 {
4462 /* There are several cases to consider.
4463
4464 1. The initiating frame no longer exists. In this case
4465 we must stop, because the exception has gone too far.
4466
4467 2. The initiating frame exists, and is the same as the
4468 current frame. We stop, because the exception has been
4469 caught.
4470
4471 3. The initiating frame exists and is different from
4472 the current frame. This means the exception has been
4473 caught beneath the initiating frame, so keep going. */
4474 struct frame_info *init_frame
4475 = frame_find_by_id (ecs->event_thread->initiating_frame);
4476
4477 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4478 != NULL);
4479 delete_exception_resume_breakpoint (ecs->event_thread);
4480
4481 if (init_frame)
4482 {
4483 struct frame_id current_id
4484 = get_frame_id (get_current_frame ());
4485 if (frame_id_eq (current_id,
4486 ecs->event_thread->initiating_frame))
4487 {
4488 /* Case 2. Fall through. */
4489 }
4490 else
4491 {
4492 /* Case 3. */
4493 keep_going (ecs);
4494 return;
4495 }
4496 }
4497
4498 /* For Cases 1 and 2, remove the step-resume breakpoint,
4499 if it exists. */
4500 delete_step_resume_breakpoint (ecs->event_thread);
4501 }
611c83ae 4502
16c381f0 4503 ecs->event_thread->control.stop_step = 1;
33d62d64 4504 print_end_stepping_range_reason ();
611c83ae
PA
4505 stop_stepping (ecs);
4506 return;
488f131b
JB
4507
4508 case BPSTAT_WHAT_SINGLE:
527159b7 4509 if (debug_infrun)
8802d8ed 4510 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4511 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4512 /* Still need to check other stuff, at least the case
4513 where we are stepping and step out of the right range. */
4514 break;
c906108c 4515
2c03e5be
PA
4516 case BPSTAT_WHAT_STEP_RESUME:
4517 if (debug_infrun)
4518 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4519
4520 delete_step_resume_breakpoint (ecs->event_thread);
9da8c2a0
PA
4521 if (ecs->event_thread->control.proceed_to_finish
4522 && execution_direction == EXEC_REVERSE)
4523 {
4524 struct thread_info *tp = ecs->event_thread;
4525
4526 /* We are finishing a function in reverse, and just hit
4527 the step-resume breakpoint at the start address of the
4528 function, and we're almost there -- just need to back
4529 up by one more single-step, which should take us back
4530 to the function call. */
4531 tp->control.step_range_start = tp->control.step_range_end = 1;
4532 keep_going (ecs);
4533 return;
4534 }
7e324e48 4535 fill_in_stop_func (gdbarch, ecs);
2c03e5be
PA
4536 if (stop_pc == ecs->stop_func_start
4537 && execution_direction == EXEC_REVERSE)
4538 {
4539 /* We are stepping over a function call in reverse, and
4540 just hit the step-resume breakpoint at the start
4541 address of the function. Go back to single-stepping,
4542 which should take us back to the function call. */
4543 ecs->event_thread->stepping_over_breakpoint = 1;
4544 keep_going (ecs);
4545 return;
4546 }
4547 break;
4548
488f131b 4549 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4550 if (debug_infrun)
8802d8ed 4551 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4552 stop_print_frame = 1;
c906108c 4553
d303a6c7
AC
4554 /* We are about to nuke the step_resume_breakpointt via the
4555 cleanup chain, so no need to worry about it here. */
c5aa993b 4556
488f131b
JB
4557 stop_stepping (ecs);
4558 return;
c5aa993b 4559
488f131b 4560 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4561 if (debug_infrun)
8802d8ed 4562 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4563 stop_print_frame = 0;
c5aa993b 4564
d303a6c7
AC
4565 /* We are about to nuke the step_resume_breakpoin via the
4566 cleanup chain, so no need to worry about it here. */
c5aa993b 4567
488f131b 4568 stop_stepping (ecs);
e441088d 4569 return;
c5aa993b 4570
2c03e5be 4571 case BPSTAT_WHAT_HP_STEP_RESUME:
527159b7 4572 if (debug_infrun)
2c03e5be 4573 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
527159b7 4574
4e1c45ea
PA
4575 delete_step_resume_breakpoint (ecs->event_thread);
4576 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4577 {
4578 /* Back when the step-resume breakpoint was inserted, we
4579 were trying to single-step off a breakpoint. Go back
4580 to doing that. */
4e1c45ea
PA
4581 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4582 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4583 keep_going (ecs);
4584 return;
4585 }
488f131b
JB
4586 break;
4587
488f131b
JB
4588 case BPSTAT_WHAT_KEEP_CHECKING:
4589 break;
4590 }
4591 }
c906108c 4592
488f131b
JB
4593 /* We come here if we hit a breakpoint but should not
4594 stop for it. Possibly we also were stepping
4595 and should stop for that. So fall through and
4596 test for stepping. But, if not stepping,
4597 do not stop. */
c906108c 4598
a7212384
UW
4599 /* In all-stop mode, if we're currently stepping but have stopped in
4600 some other thread, we need to switch back to the stepped thread. */
4601 if (!non_stop)
4602 {
4603 struct thread_info *tp;
abbb1732 4604
b3444185 4605 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4606 ecs->event_thread);
4607 if (tp)
4608 {
4609 /* However, if the current thread is blocked on some internal
4610 breakpoint, and we simply need to step over that breakpoint
4611 to get it going again, do that first. */
16c381f0
JK
4612 if ((ecs->event_thread->control.trap_expected
4613 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4614 || ecs->event_thread->stepping_over_breakpoint)
4615 {
4616 keep_going (ecs);
4617 return;
4618 }
4619
66852e9c
PA
4620 /* If the stepping thread exited, then don't try to switch
4621 back and resume it, which could fail in several different
4622 ways depending on the target. Instead, just keep going.
4623
4624 We can find a stepping dead thread in the thread list in
4625 two cases:
4626
4627 - The target supports thread exit events, and when the
4628 target tries to delete the thread from the thread list,
4629 inferior_ptid pointed at the exiting thread. In such
4630 case, calling delete_thread does not really remove the
4631 thread from the list; instead, the thread is left listed,
4632 with 'exited' state.
4633
4634 - The target's debug interface does not support thread
4635 exit events, and so we have no idea whatsoever if the
4636 previously stepping thread is still alive. For that
4637 reason, we need to synchronously query the target
4638 now. */
b3444185
PA
4639 if (is_exited (tp->ptid)
4640 || !target_thread_alive (tp->ptid))
4641 {
4642 if (debug_infrun)
3e43a32a
MS
4643 fprintf_unfiltered (gdb_stdlog,
4644 "infrun: not switching back to "
4645 "stepped thread, it has vanished\n");
b3444185
PA
4646
4647 delete_thread (tp->ptid);
4648 keep_going (ecs);
4649 return;
4650 }
4651
a7212384
UW
4652 /* Otherwise, we no longer expect a trap in the current thread.
4653 Clear the trap_expected flag before switching back -- this is
4654 what keep_going would do as well, if we called it. */
16c381f0 4655 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4656
4657 if (debug_infrun)
4658 fprintf_unfiltered (gdb_stdlog,
4659 "infrun: switching back to stepped thread\n");
4660
4661 ecs->event_thread = tp;
4662 ecs->ptid = tp->ptid;
4663 context_switch (ecs->ptid);
4664 keep_going (ecs);
4665 return;
4666 }
4667 }
4668
8358c15c 4669 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4670 {
527159b7 4671 if (debug_infrun)
d3169d93
DJ
4672 fprintf_unfiltered (gdb_stdlog,
4673 "infrun: step-resume breakpoint is inserted\n");
527159b7 4674
488f131b
JB
4675 /* Having a step-resume breakpoint overrides anything
4676 else having to do with stepping commands until
4677 that breakpoint is reached. */
488f131b
JB
4678 keep_going (ecs);
4679 return;
4680 }
c5aa993b 4681
16c381f0 4682 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4683 {
527159b7 4684 if (debug_infrun)
8a9de0e4 4685 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4686 /* Likewise if we aren't even stepping. */
488f131b
JB
4687 keep_going (ecs);
4688 return;
4689 }
c5aa993b 4690
4b7703ad
JB
4691 /* Re-fetch current thread's frame in case the code above caused
4692 the frame cache to be re-initialized, making our FRAME variable
4693 a dangling pointer. */
4694 frame = get_current_frame ();
628fe4e4 4695 gdbarch = get_frame_arch (frame);
7e324e48 4696 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4697
488f131b 4698 /* If stepping through a line, keep going if still within it.
c906108c 4699
488f131b
JB
4700 Note that step_range_end is the address of the first instruction
4701 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4702 within it!
4703
4704 Note also that during reverse execution, we may be stepping
4705 through a function epilogue and therefore must detect when
4706 the current-frame changes in the middle of a line. */
4707
16c381f0
JK
4708 if (stop_pc >= ecs->event_thread->control.step_range_start
4709 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4710 && (execution_direction != EXEC_REVERSE
388a8562 4711 || frame_id_eq (get_frame_id (frame),
16c381f0 4712 ecs->event_thread->control.step_frame_id)))
488f131b 4713 {
527159b7 4714 if (debug_infrun)
5af949e3
UW
4715 fprintf_unfiltered
4716 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4717 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4718 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4719
4720 /* When stepping backward, stop at beginning of line range
4721 (unless it's the function entry point, in which case
4722 keep going back to the call point). */
16c381f0 4723 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4724 && stop_pc != ecs->stop_func_start
4725 && execution_direction == EXEC_REVERSE)
4726 {
16c381f0 4727 ecs->event_thread->control.stop_step = 1;
33d62d64 4728 print_end_stepping_range_reason ();
b2175913
MS
4729 stop_stepping (ecs);
4730 }
4731 else
4732 keep_going (ecs);
4733
488f131b
JB
4734 return;
4735 }
c5aa993b 4736
488f131b 4737 /* We stepped out of the stepping range. */
c906108c 4738
488f131b 4739 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4740 loader dynamic symbol resolution code...
4741
4742 EXEC_FORWARD: we keep on single stepping until we exit the run
4743 time loader code and reach the callee's address.
4744
4745 EXEC_REVERSE: we've already executed the callee (backward), and
4746 the runtime loader code is handled just like any other
4747 undebuggable function call. Now we need only keep stepping
4748 backward through the trampoline code, and that's handled further
4749 down, so there is nothing for us to do here. */
4750
4751 if (execution_direction != EXEC_REVERSE
16c381f0 4752 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4753 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4754 {
4c8c40e6 4755 CORE_ADDR pc_after_resolver =
568d6575 4756 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4757
527159b7 4758 if (debug_infrun)
3e43a32a
MS
4759 fprintf_unfiltered (gdb_stdlog,
4760 "infrun: stepped into dynsym resolve code\n");
527159b7 4761
488f131b
JB
4762 if (pc_after_resolver)
4763 {
4764 /* Set up a step-resume breakpoint at the address
4765 indicated by SKIP_SOLIB_RESOLVER. */
4766 struct symtab_and_line sr_sal;
abbb1732 4767
fe39c653 4768 init_sal (&sr_sal);
488f131b 4769 sr_sal.pc = pc_after_resolver;
6c95b8df 4770 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4771
a6d9a66e
UW
4772 insert_step_resume_breakpoint_at_sal (gdbarch,
4773 sr_sal, null_frame_id);
c5aa993b 4774 }
c906108c 4775
488f131b
JB
4776 keep_going (ecs);
4777 return;
4778 }
c906108c 4779
16c381f0
JK
4780 if (ecs->event_thread->control.step_range_end != 1
4781 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4782 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4783 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4784 {
527159b7 4785 if (debug_infrun)
3e43a32a
MS
4786 fprintf_unfiltered (gdb_stdlog,
4787 "infrun: stepped into signal trampoline\n");
42edda50 4788 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4789 a signal trampoline (either by a signal being delivered or by
4790 the signal handler returning). Just single-step until the
4791 inferior leaves the trampoline (either by calling the handler
4792 or returning). */
488f131b
JB
4793 keep_going (ecs);
4794 return;
4795 }
c906108c 4796
c17eaafe
DJ
4797 /* Check for subroutine calls. The check for the current frame
4798 equalling the step ID is not necessary - the check of the
4799 previous frame's ID is sufficient - but it is a common case and
4800 cheaper than checking the previous frame's ID.
14e60db5
DJ
4801
4802 NOTE: frame_id_eq will never report two invalid frame IDs as
4803 being equal, so to get into this block, both the current and
4804 previous frame must have valid frame IDs. */
005ca36a
JB
4805 /* The outer_frame_id check is a heuristic to detect stepping
4806 through startup code. If we step over an instruction which
4807 sets the stack pointer from an invalid value to a valid value,
4808 we may detect that as a subroutine call from the mythical
4809 "outermost" function. This could be fixed by marking
4810 outermost frames as !stack_p,code_p,special_p. Then the
4811 initial outermost frame, before sp was valid, would
ce6cca6d 4812 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4813 for more. */
edb3359d 4814 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4815 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4816 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4817 ecs->event_thread->control.step_stack_frame_id)
4818 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4819 outer_frame_id)
4820 || step_start_function != find_pc_function (stop_pc))))
488f131b 4821 {
95918acb 4822 CORE_ADDR real_stop_pc;
8fb3e588 4823
527159b7 4824 if (debug_infrun)
8a9de0e4 4825 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4826
16c381f0
JK
4827 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4828 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4829 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4830 ecs->stop_func_start)))
95918acb
AC
4831 {
4832 /* I presume that step_over_calls is only 0 when we're
4833 supposed to be stepping at the assembly language level
4834 ("stepi"). Just stop. */
4835 /* Also, maybe we just did a "nexti" inside a prolog, so we
4836 thought it was a subroutine call but it was not. Stop as
4837 well. FENN */
388a8562 4838 /* And this works the same backward as frontward. MVS */
16c381f0 4839 ecs->event_thread->control.stop_step = 1;
33d62d64 4840 print_end_stepping_range_reason ();
95918acb
AC
4841 stop_stepping (ecs);
4842 return;
4843 }
8fb3e588 4844
388a8562
MS
4845 /* Reverse stepping through solib trampolines. */
4846
4847 if (execution_direction == EXEC_REVERSE
16c381f0 4848 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4849 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4850 || (ecs->stop_func_start == 0
4851 && in_solib_dynsym_resolve_code (stop_pc))))
4852 {
4853 /* Any solib trampoline code can be handled in reverse
4854 by simply continuing to single-step. We have already
4855 executed the solib function (backwards), and a few
4856 steps will take us back through the trampoline to the
4857 caller. */
4858 keep_going (ecs);
4859 return;
4860 }
4861
16c381f0 4862 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4863 {
b2175913
MS
4864 /* We're doing a "next".
4865
4866 Normal (forward) execution: set a breakpoint at the
4867 callee's return address (the address at which the caller
4868 will resume).
4869
4870 Reverse (backward) execution. set the step-resume
4871 breakpoint at the start of the function that we just
4872 stepped into (backwards), and continue to there. When we
6130d0b7 4873 get there, we'll need to single-step back to the caller. */
b2175913
MS
4874
4875 if (execution_direction == EXEC_REVERSE)
4876 {
4877 struct symtab_and_line sr_sal;
3067f6e5 4878
388a8562
MS
4879 /* Normal function call return (static or dynamic). */
4880 init_sal (&sr_sal);
4881 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4882 sr_sal.pspace = get_frame_program_space (frame);
4883 insert_step_resume_breakpoint_at_sal (gdbarch,
4884 sr_sal, null_frame_id);
b2175913
MS
4885 }
4886 else
568d6575 4887 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4888
8567c30f
AC
4889 keep_going (ecs);
4890 return;
4891 }
a53c66de 4892
95918acb 4893 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4894 calling routine and the real function), locate the real
4895 function. That's what tells us (a) whether we want to step
4896 into it at all, and (b) what prologue we want to run to the
4897 end of, if we do step into it. */
568d6575 4898 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4899 if (real_stop_pc == 0)
568d6575 4900 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4901 if (real_stop_pc != 0)
4902 ecs->stop_func_start = real_stop_pc;
8fb3e588 4903
db5f024e 4904 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4905 {
4906 struct symtab_and_line sr_sal;
abbb1732 4907
1b2bfbb9
RC
4908 init_sal (&sr_sal);
4909 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4910 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4911
a6d9a66e
UW
4912 insert_step_resume_breakpoint_at_sal (gdbarch,
4913 sr_sal, null_frame_id);
8fb3e588
AC
4914 keep_going (ecs);
4915 return;
1b2bfbb9
RC
4916 }
4917
95918acb 4918 /* If we have line number information for the function we are
1bfeeb0f
JL
4919 thinking of stepping into and the function isn't on the skip
4920 list, step into it.
95918acb 4921
8fb3e588
AC
4922 If there are several symtabs at that PC (e.g. with include
4923 files), just want to know whether *any* of them have line
4924 numbers. find_pc_line handles this. */
95918acb
AC
4925 {
4926 struct symtab_and_line tmp_sal;
8fb3e588 4927
95918acb 4928 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52
JB
4929 if (tmp_sal.line != 0
4930 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
95918acb 4931 {
b2175913 4932 if (execution_direction == EXEC_REVERSE)
568d6575 4933 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4934 else
568d6575 4935 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4936 return;
4937 }
4938 }
4939
4940 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4941 set, we stop the step so that the user has a chance to switch
4942 in assembly mode. */
16c381f0 4943 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4944 && step_stop_if_no_debug)
95918acb 4945 {
16c381f0 4946 ecs->event_thread->control.stop_step = 1;
33d62d64 4947 print_end_stepping_range_reason ();
95918acb
AC
4948 stop_stepping (ecs);
4949 return;
4950 }
4951
b2175913
MS
4952 if (execution_direction == EXEC_REVERSE)
4953 {
4954 /* Set a breakpoint at callee's start address.
4955 From there we can step once and be back in the caller. */
4956 struct symtab_and_line sr_sal;
abbb1732 4957
b2175913
MS
4958 init_sal (&sr_sal);
4959 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4960 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4961 insert_step_resume_breakpoint_at_sal (gdbarch,
4962 sr_sal, null_frame_id);
b2175913
MS
4963 }
4964 else
4965 /* Set a breakpoint at callee's return address (the address
4966 at which the caller will resume). */
568d6575 4967 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4968
95918acb 4969 keep_going (ecs);
488f131b 4970 return;
488f131b 4971 }
c906108c 4972
fdd654f3
MS
4973 /* Reverse stepping through solib trampolines. */
4974
4975 if (execution_direction == EXEC_REVERSE
16c381f0 4976 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4977 {
4978 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4979 || (ecs->stop_func_start == 0
4980 && in_solib_dynsym_resolve_code (stop_pc)))
4981 {
4982 /* Any solib trampoline code can be handled in reverse
4983 by simply continuing to single-step. We have already
4984 executed the solib function (backwards), and a few
4985 steps will take us back through the trampoline to the
4986 caller. */
4987 keep_going (ecs);
4988 return;
4989 }
4990 else if (in_solib_dynsym_resolve_code (stop_pc))
4991 {
4992 /* Stepped backward into the solib dynsym resolver.
4993 Set a breakpoint at its start and continue, then
4994 one more step will take us out. */
4995 struct symtab_and_line sr_sal;
abbb1732 4996
fdd654f3
MS
4997 init_sal (&sr_sal);
4998 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4999 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5000 insert_step_resume_breakpoint_at_sal (gdbarch,
5001 sr_sal, null_frame_id);
5002 keep_going (ecs);
5003 return;
5004 }
5005 }
5006
488f131b
JB
5007 /* If we're in the return path from a shared library trampoline,
5008 we want to proceed through the trampoline when stepping. */
568d6575 5009 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 5010 stop_pc, ecs->stop_func_name))
488f131b 5011 {
488f131b 5012 /* Determine where this trampoline returns. */
52f729a7 5013 CORE_ADDR real_stop_pc;
abbb1732 5014
568d6575 5015 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 5016
527159b7 5017 if (debug_infrun)
3e43a32a
MS
5018 fprintf_unfiltered (gdb_stdlog,
5019 "infrun: stepped into solib return tramp\n");
527159b7 5020
488f131b 5021 /* Only proceed through if we know where it's going. */
d764a824 5022 if (real_stop_pc)
488f131b 5023 {
1777feb0 5024 /* And put the step-breakpoint there and go until there. */
488f131b
JB
5025 struct symtab_and_line sr_sal;
5026
fe39c653 5027 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 5028 sr_sal.pc = real_stop_pc;
488f131b 5029 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5030 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
5031
5032 /* Do not specify what the fp should be when we stop since
5033 on some machines the prologue is where the new fp value
5034 is established. */
a6d9a66e
UW
5035 insert_step_resume_breakpoint_at_sal (gdbarch,
5036 sr_sal, null_frame_id);
c906108c 5037
488f131b
JB
5038 /* Restart without fiddling with the step ranges or
5039 other state. */
5040 keep_going (ecs);
5041 return;
5042 }
5043 }
c906108c 5044
2afb61aa 5045 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5046
1b2bfbb9
RC
5047 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5048 the trampoline processing logic, however, there are some trampolines
5049 that have no names, so we should do trampoline handling first. */
16c381f0 5050 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5051 && ecs->stop_func_name == NULL
2afb61aa 5052 && stop_pc_sal.line == 0)
1b2bfbb9 5053 {
527159b7 5054 if (debug_infrun)
3e43a32a
MS
5055 fprintf_unfiltered (gdb_stdlog,
5056 "infrun: stepped into undebuggable function\n");
527159b7 5057
1b2bfbb9 5058 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5059 undebuggable function (where there is no debugging information
5060 and no line number corresponding to the address where the
1b2bfbb9
RC
5061 inferior stopped). Since we want to skip this kind of code,
5062 we keep going until the inferior returns from this
14e60db5
DJ
5063 function - unless the user has asked us not to (via
5064 set step-mode) or we no longer know how to get back
5065 to the call site. */
5066 if (step_stop_if_no_debug
c7ce8faa 5067 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5068 {
5069 /* If we have no line number and the step-stop-if-no-debug
5070 is set, we stop the step so that the user has a chance to
5071 switch in assembly mode. */
16c381f0 5072 ecs->event_thread->control.stop_step = 1;
33d62d64 5073 print_end_stepping_range_reason ();
1b2bfbb9
RC
5074 stop_stepping (ecs);
5075 return;
5076 }
5077 else
5078 {
5079 /* Set a breakpoint at callee's return address (the address
5080 at which the caller will resume). */
568d6575 5081 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5082 keep_going (ecs);
5083 return;
5084 }
5085 }
5086
16c381f0 5087 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5088 {
5089 /* It is stepi or nexti. We always want to stop stepping after
5090 one instruction. */
527159b7 5091 if (debug_infrun)
8a9de0e4 5092 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5093 ecs->event_thread->control.stop_step = 1;
33d62d64 5094 print_end_stepping_range_reason ();
1b2bfbb9
RC
5095 stop_stepping (ecs);
5096 return;
5097 }
5098
2afb61aa 5099 if (stop_pc_sal.line == 0)
488f131b
JB
5100 {
5101 /* We have no line number information. That means to stop
5102 stepping (does this always happen right after one instruction,
5103 when we do "s" in a function with no line numbers,
5104 or can this happen as a result of a return or longjmp?). */
527159b7 5105 if (debug_infrun)
8a9de0e4 5106 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5107 ecs->event_thread->control.stop_step = 1;
33d62d64 5108 print_end_stepping_range_reason ();
488f131b
JB
5109 stop_stepping (ecs);
5110 return;
5111 }
c906108c 5112
edb3359d
DJ
5113 /* Look for "calls" to inlined functions, part one. If the inline
5114 frame machinery detected some skipped call sites, we have entered
5115 a new inline function. */
5116
5117 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5118 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5119 && inline_skipped_frames (ecs->ptid))
5120 {
5121 struct symtab_and_line call_sal;
5122
5123 if (debug_infrun)
5124 fprintf_unfiltered (gdb_stdlog,
5125 "infrun: stepped into inlined function\n");
5126
5127 find_frame_sal (get_current_frame (), &call_sal);
5128
16c381f0 5129 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5130 {
5131 /* For "step", we're going to stop. But if the call site
5132 for this inlined function is on the same source line as
5133 we were previously stepping, go down into the function
5134 first. Otherwise stop at the call site. */
5135
5136 if (call_sal.line == ecs->event_thread->current_line
5137 && call_sal.symtab == ecs->event_thread->current_symtab)
5138 step_into_inline_frame (ecs->ptid);
5139
16c381f0 5140 ecs->event_thread->control.stop_step = 1;
33d62d64 5141 print_end_stepping_range_reason ();
edb3359d
DJ
5142 stop_stepping (ecs);
5143 return;
5144 }
5145 else
5146 {
5147 /* For "next", we should stop at the call site if it is on a
5148 different source line. Otherwise continue through the
5149 inlined function. */
5150 if (call_sal.line == ecs->event_thread->current_line
5151 && call_sal.symtab == ecs->event_thread->current_symtab)
5152 keep_going (ecs);
5153 else
5154 {
16c381f0 5155 ecs->event_thread->control.stop_step = 1;
33d62d64 5156 print_end_stepping_range_reason ();
edb3359d
DJ
5157 stop_stepping (ecs);
5158 }
5159 return;
5160 }
5161 }
5162
5163 /* Look for "calls" to inlined functions, part two. If we are still
5164 in the same real function we were stepping through, but we have
5165 to go further up to find the exact frame ID, we are stepping
5166 through a more inlined call beyond its call site. */
5167
5168 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5169 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5170 ecs->event_thread->control.step_frame_id)
edb3359d 5171 && stepped_in_from (get_current_frame (),
16c381f0 5172 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5173 {
5174 if (debug_infrun)
5175 fprintf_unfiltered (gdb_stdlog,
5176 "infrun: stepping through inlined function\n");
5177
16c381f0 5178 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5179 keep_going (ecs);
5180 else
5181 {
16c381f0 5182 ecs->event_thread->control.stop_step = 1;
33d62d64 5183 print_end_stepping_range_reason ();
edb3359d
DJ
5184 stop_stepping (ecs);
5185 }
5186 return;
5187 }
5188
2afb61aa 5189 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5190 && (ecs->event_thread->current_line != stop_pc_sal.line
5191 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5192 {
5193 /* We are at the start of a different line. So stop. Note that
5194 we don't stop if we step into the middle of a different line.
5195 That is said to make things like for (;;) statements work
5196 better. */
527159b7 5197 if (debug_infrun)
3e43a32a
MS
5198 fprintf_unfiltered (gdb_stdlog,
5199 "infrun: stepped to a different line\n");
16c381f0 5200 ecs->event_thread->control.stop_step = 1;
33d62d64 5201 print_end_stepping_range_reason ();
488f131b
JB
5202 stop_stepping (ecs);
5203 return;
5204 }
c906108c 5205
488f131b 5206 /* We aren't done stepping.
c906108c 5207
488f131b
JB
5208 Optimize by setting the stepping range to the line.
5209 (We might not be in the original line, but if we entered a
5210 new line in mid-statement, we continue stepping. This makes
5211 things like for(;;) statements work better.) */
c906108c 5212
16c381f0
JK
5213 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5214 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5215 set_step_info (frame, stop_pc_sal);
488f131b 5216
527159b7 5217 if (debug_infrun)
8a9de0e4 5218 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5219 keep_going (ecs);
104c1213
JM
5220}
5221
b3444185 5222/* Is thread TP in the middle of single-stepping? */
104c1213 5223
a289b8f6 5224static int
b3444185 5225currently_stepping (struct thread_info *tp)
a7212384 5226{
8358c15c
JK
5227 return ((tp->control.step_range_end
5228 && tp->control.step_resume_breakpoint == NULL)
5229 || tp->control.trap_expected
8358c15c 5230 || bpstat_should_step ());
a7212384
UW
5231}
5232
b3444185
PA
5233/* Returns true if any thread *but* the one passed in "data" is in the
5234 middle of stepping or of handling a "next". */
a7212384 5235
104c1213 5236static int
b3444185 5237currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5238{
b3444185
PA
5239 if (tp == data)
5240 return 0;
5241
16c381f0 5242 return (tp->control.step_range_end
ede1849f 5243 || tp->control.trap_expected);
104c1213 5244}
c906108c 5245
b2175913
MS
5246/* Inferior has stepped into a subroutine call with source code that
5247 we should not step over. Do step to the first line of code in
5248 it. */
c2c6d25f
JM
5249
5250static void
568d6575
UW
5251handle_step_into_function (struct gdbarch *gdbarch,
5252 struct execution_control_state *ecs)
c2c6d25f
JM
5253{
5254 struct symtab *s;
2afb61aa 5255 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5256
7e324e48
GB
5257 fill_in_stop_func (gdbarch, ecs);
5258
c2c6d25f
JM
5259 s = find_pc_symtab (stop_pc);
5260 if (s && s->language != language_asm)
568d6575 5261 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5262 ecs->stop_func_start);
c2c6d25f 5263
2afb61aa 5264 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5265 /* Use the step_resume_break to step until the end of the prologue,
5266 even if that involves jumps (as it seems to on the vax under
5267 4.2). */
5268 /* If the prologue ends in the middle of a source line, continue to
5269 the end of that source line (if it is still within the function).
5270 Otherwise, just go to end of prologue. */
2afb61aa
PA
5271 if (stop_func_sal.end
5272 && stop_func_sal.pc != ecs->stop_func_start
5273 && stop_func_sal.end < ecs->stop_func_end)
5274 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5275
2dbd5e30
KB
5276 /* Architectures which require breakpoint adjustment might not be able
5277 to place a breakpoint at the computed address. If so, the test
5278 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5279 ecs->stop_func_start to an address at which a breakpoint may be
5280 legitimately placed.
8fb3e588 5281
2dbd5e30
KB
5282 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5283 made, GDB will enter an infinite loop when stepping through
5284 optimized code consisting of VLIW instructions which contain
5285 subinstructions corresponding to different source lines. On
5286 FR-V, it's not permitted to place a breakpoint on any but the
5287 first subinstruction of a VLIW instruction. When a breakpoint is
5288 set, GDB will adjust the breakpoint address to the beginning of
5289 the VLIW instruction. Thus, we need to make the corresponding
5290 adjustment here when computing the stop address. */
8fb3e588 5291
568d6575 5292 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5293 {
5294 ecs->stop_func_start
568d6575 5295 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5296 ecs->stop_func_start);
2dbd5e30
KB
5297 }
5298
c2c6d25f
JM
5299 if (ecs->stop_func_start == stop_pc)
5300 {
5301 /* We are already there: stop now. */
16c381f0 5302 ecs->event_thread->control.stop_step = 1;
33d62d64 5303 print_end_stepping_range_reason ();
c2c6d25f
JM
5304 stop_stepping (ecs);
5305 return;
5306 }
5307 else
5308 {
5309 /* Put the step-breakpoint there and go until there. */
fe39c653 5310 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5311 sr_sal.pc = ecs->stop_func_start;
5312 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5313 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5314
c2c6d25f 5315 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5316 some machines the prologue is where the new fp value is
5317 established. */
a6d9a66e 5318 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5319
5320 /* And make sure stepping stops right away then. */
16c381f0
JK
5321 ecs->event_thread->control.step_range_end
5322 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5323 }
5324 keep_going (ecs);
5325}
d4f3574e 5326
b2175913
MS
5327/* Inferior has stepped backward into a subroutine call with source
5328 code that we should not step over. Do step to the beginning of the
5329 last line of code in it. */
5330
5331static void
568d6575
UW
5332handle_step_into_function_backward (struct gdbarch *gdbarch,
5333 struct execution_control_state *ecs)
b2175913
MS
5334{
5335 struct symtab *s;
167e4384 5336 struct symtab_and_line stop_func_sal;
b2175913 5337
7e324e48
GB
5338 fill_in_stop_func (gdbarch, ecs);
5339
b2175913
MS
5340 s = find_pc_symtab (stop_pc);
5341 if (s && s->language != language_asm)
568d6575 5342 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5343 ecs->stop_func_start);
5344
5345 stop_func_sal = find_pc_line (stop_pc, 0);
5346
5347 /* OK, we're just going to keep stepping here. */
5348 if (stop_func_sal.pc == stop_pc)
5349 {
5350 /* We're there already. Just stop stepping now. */
16c381f0 5351 ecs->event_thread->control.stop_step = 1;
33d62d64 5352 print_end_stepping_range_reason ();
b2175913
MS
5353 stop_stepping (ecs);
5354 }
5355 else
5356 {
5357 /* Else just reset the step range and keep going.
5358 No step-resume breakpoint, they don't work for
5359 epilogues, which can have multiple entry paths. */
16c381f0
JK
5360 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5361 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5362 keep_going (ecs);
5363 }
5364 return;
5365}
5366
d3169d93 5367/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5368 This is used to both functions and to skip over code. */
5369
5370static void
2c03e5be
PA
5371insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5372 struct symtab_and_line sr_sal,
5373 struct frame_id sr_id,
5374 enum bptype sr_type)
44cbf7b5 5375{
611c83ae
PA
5376 /* There should never be more than one step-resume or longjmp-resume
5377 breakpoint per thread, so we should never be setting a new
44cbf7b5 5378 step_resume_breakpoint when one is already active. */
8358c15c 5379 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5380 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5381
5382 if (debug_infrun)
5383 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5384 "infrun: inserting step-resume breakpoint at %s\n",
5385 paddress (gdbarch, sr_sal.pc));
d3169d93 5386
8358c15c 5387 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5388 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5389}
5390
9da8c2a0 5391void
2c03e5be
PA
5392insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5393 struct symtab_and_line sr_sal,
5394 struct frame_id sr_id)
5395{
5396 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5397 sr_sal, sr_id,
5398 bp_step_resume);
44cbf7b5 5399}
7ce450bd 5400
2c03e5be
PA
5401/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5402 This is used to skip a potential signal handler.
7ce450bd 5403
14e60db5
DJ
5404 This is called with the interrupted function's frame. The signal
5405 handler, when it returns, will resume the interrupted function at
5406 RETURN_FRAME.pc. */
d303a6c7
AC
5407
5408static void
2c03e5be 5409insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5410{
5411 struct symtab_and_line sr_sal;
a6d9a66e 5412 struct gdbarch *gdbarch;
d303a6c7 5413
f4c1edd8 5414 gdb_assert (return_frame != NULL);
d303a6c7
AC
5415 init_sal (&sr_sal); /* initialize to zeros */
5416
a6d9a66e 5417 gdbarch = get_frame_arch (return_frame);
568d6575 5418 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5419 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5420 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5421
2c03e5be
PA
5422 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5423 get_stack_frame_id (return_frame),
5424 bp_hp_step_resume);
d303a6c7
AC
5425}
5426
2c03e5be
PA
5427/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5428 is used to skip a function after stepping into it (for "next" or if
5429 the called function has no debugging information).
14e60db5
DJ
5430
5431 The current function has almost always been reached by single
5432 stepping a call or return instruction. NEXT_FRAME belongs to the
5433 current function, and the breakpoint will be set at the caller's
5434 resume address.
5435
5436 This is a separate function rather than reusing
2c03e5be 5437 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5438 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5439 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5440
5441static void
5442insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5443{
5444 struct symtab_and_line sr_sal;
a6d9a66e 5445 struct gdbarch *gdbarch;
14e60db5
DJ
5446
5447 /* We shouldn't have gotten here if we don't know where the call site
5448 is. */
c7ce8faa 5449 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5450
5451 init_sal (&sr_sal); /* initialize to zeros */
5452
a6d9a66e 5453 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5454 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5455 frame_unwind_caller_pc (next_frame));
14e60db5 5456 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5457 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5458
a6d9a66e 5459 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5460 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5461}
5462
611c83ae
PA
5463/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5464 new breakpoint at the target of a jmp_buf. The handling of
5465 longjmp-resume uses the same mechanisms used for handling
5466 "step-resume" breakpoints. */
5467
5468static void
a6d9a66e 5469insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5470{
5471 /* There should never be more than one step-resume or longjmp-resume
5472 breakpoint per thread, so we should never be setting a new
5473 longjmp_resume_breakpoint when one is already active. */
8358c15c 5474 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5475
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5478 "infrun: inserting longjmp-resume breakpoint at %s\n",
5479 paddress (gdbarch, pc));
611c83ae 5480
8358c15c 5481 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5482 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5483}
5484
186c406b
TT
5485/* Insert an exception resume breakpoint. TP is the thread throwing
5486 the exception. The block B is the block of the unwinder debug hook
5487 function. FRAME is the frame corresponding to the call to this
5488 function. SYM is the symbol of the function argument holding the
5489 target PC of the exception. */
5490
5491static void
5492insert_exception_resume_breakpoint (struct thread_info *tp,
5493 struct block *b,
5494 struct frame_info *frame,
5495 struct symbol *sym)
5496{
5497 struct gdb_exception e;
5498
5499 /* We want to ignore errors here. */
5500 TRY_CATCH (e, RETURN_MASK_ERROR)
5501 {
5502 struct symbol *vsym;
5503 struct value *value;
5504 CORE_ADDR handler;
5505 struct breakpoint *bp;
5506
5507 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5508 value = read_var_value (vsym, frame);
5509 /* If the value was optimized out, revert to the old behavior. */
5510 if (! value_optimized_out (value))
5511 {
5512 handler = value_as_address (value);
5513
5514 if (debug_infrun)
5515 fprintf_unfiltered (gdb_stdlog,
5516 "infrun: exception resume at %lx\n",
5517 (unsigned long) handler);
5518
5519 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5520 handler, bp_exception_resume);
5521 bp->thread = tp->num;
5522 inferior_thread ()->control.exception_resume_breakpoint = bp;
5523 }
5524 }
5525}
5526
5527/* This is called when an exception has been intercepted. Check to
5528 see whether the exception's destination is of interest, and if so,
5529 set an exception resume breakpoint there. */
5530
5531static void
5532check_exception_resume (struct execution_control_state *ecs,
5533 struct frame_info *frame, struct symbol *func)
5534{
5535 struct gdb_exception e;
5536
5537 TRY_CATCH (e, RETURN_MASK_ERROR)
5538 {
5539 struct block *b;
5540 struct dict_iterator iter;
5541 struct symbol *sym;
5542 int argno = 0;
5543
5544 /* The exception breakpoint is a thread-specific breakpoint on
5545 the unwinder's debug hook, declared as:
5546
5547 void _Unwind_DebugHook (void *cfa, void *handler);
5548
5549 The CFA argument indicates the frame to which control is
5550 about to be transferred. HANDLER is the destination PC.
5551
5552 We ignore the CFA and set a temporary breakpoint at HANDLER.
5553 This is not extremely efficient but it avoids issues in gdb
5554 with computing the DWARF CFA, and it also works even in weird
5555 cases such as throwing an exception from inside a signal
5556 handler. */
5557
5558 b = SYMBOL_BLOCK_VALUE (func);
5559 ALL_BLOCK_SYMBOLS (b, iter, sym)
5560 {
5561 if (!SYMBOL_IS_ARGUMENT (sym))
5562 continue;
5563
5564 if (argno == 0)
5565 ++argno;
5566 else
5567 {
5568 insert_exception_resume_breakpoint (ecs->event_thread,
5569 b, frame, sym);
5570 break;
5571 }
5572 }
5573 }
5574}
5575
104c1213
JM
5576static void
5577stop_stepping (struct execution_control_state *ecs)
5578{
527159b7 5579 if (debug_infrun)
8a9de0e4 5580 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5581
cd0fc7c3
SS
5582 /* Let callers know we don't want to wait for the inferior anymore. */
5583 ecs->wait_some_more = 0;
5584}
5585
d4f3574e
SS
5586/* This function handles various cases where we need to continue
5587 waiting for the inferior. */
1777feb0 5588/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5589
5590static void
5591keep_going (struct execution_control_state *ecs)
5592{
c4dbc9af
PA
5593 /* Make sure normal_stop is called if we get a QUIT handled before
5594 reaching resume. */
5595 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5596
d4f3574e 5597 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5598 ecs->event_thread->prev_pc
5599 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5600
d4f3574e
SS
5601 /* If we did not do break;, it means we should keep running the
5602 inferior and not return to debugger. */
5603
16c381f0
JK
5604 if (ecs->event_thread->control.trap_expected
5605 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5606 {
5607 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5608 the inferior, else we'd not get here) and we haven't yet
5609 gotten our trap. Simply continue. */
c4dbc9af
PA
5610
5611 discard_cleanups (old_cleanups);
2020b7ab 5612 resume (currently_stepping (ecs->event_thread),
16c381f0 5613 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5614 }
5615 else
5616 {
5617 /* Either the trap was not expected, but we are continuing
488f131b
JB
5618 anyway (the user asked that this signal be passed to the
5619 child)
5620 -- or --
5621 The signal was SIGTRAP, e.g. it was our signal, but we
5622 decided we should resume from it.
d4f3574e 5623
c36b740a 5624 We're going to run this baby now!
d4f3574e 5625
c36b740a
VP
5626 Note that insert_breakpoints won't try to re-insert
5627 already inserted breakpoints. Therefore, we don't
5628 care if breakpoints were already inserted, or not. */
5629
4e1c45ea 5630 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5631 {
9f5a595d 5632 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5633
9f5a595d 5634 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5635 /* Since we can't do a displaced step, we have to remove
5636 the breakpoint while we step it. To keep things
5637 simple, we remove them all. */
5638 remove_breakpoints ();
45e8c884
VP
5639 }
5640 else
d4f3574e 5641 {
e236ba44 5642 struct gdb_exception e;
abbb1732 5643
569631c6
UW
5644 /* Stop stepping when inserting breakpoints
5645 has failed. */
e236ba44
VP
5646 TRY_CATCH (e, RETURN_MASK_ERROR)
5647 {
5648 insert_breakpoints ();
5649 }
5650 if (e.reason < 0)
d4f3574e 5651 {
97bd5475 5652 exception_print (gdb_stderr, e);
d4f3574e
SS
5653 stop_stepping (ecs);
5654 return;
5655 }
d4f3574e
SS
5656 }
5657
16c381f0
JK
5658 ecs->event_thread->control.trap_expected
5659 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5660
5661 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5662 specifies that such a signal should be delivered to the
5663 target program).
5664
5665 Typically, this would occure when a user is debugging a
5666 target monitor on a simulator: the target monitor sets a
5667 breakpoint; the simulator encounters this break-point and
5668 halts the simulation handing control to GDB; GDB, noteing
5669 that the break-point isn't valid, returns control back to the
5670 simulator; the simulator then delivers the hardware
1777feb0 5671 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5672
16c381f0
JK
5673 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5674 && !signal_program[ecs->event_thread->suspend.stop_signal])
5675 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5676
c4dbc9af 5677 discard_cleanups (old_cleanups);
2020b7ab 5678 resume (currently_stepping (ecs->event_thread),
16c381f0 5679 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5680 }
5681
488f131b 5682 prepare_to_wait (ecs);
d4f3574e
SS
5683}
5684
104c1213
JM
5685/* This function normally comes after a resume, before
5686 handle_inferior_event exits. It takes care of any last bits of
5687 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5688
104c1213
JM
5689static void
5690prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5691{
527159b7 5692 if (debug_infrun)
8a9de0e4 5693 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5694
104c1213
JM
5695 /* This is the old end of the while loop. Let everybody know we
5696 want to wait for the inferior some more and get called again
5697 soon. */
5698 ecs->wait_some_more = 1;
c906108c 5699}
11cf8741 5700
33d62d64
JK
5701/* Several print_*_reason functions to print why the inferior has stopped.
5702 We always print something when the inferior exits, or receives a signal.
5703 The rest of the cases are dealt with later on in normal_stop and
5704 print_it_typical. Ideally there should be a call to one of these
5705 print_*_reason functions functions from handle_inferior_event each time
5706 stop_stepping is called. */
5707
5708/* Print why the inferior has stopped.
5709 We are done with a step/next/si/ni command, print why the inferior has
5710 stopped. For now print nothing. Print a message only if not in the middle
5711 of doing a "step n" operation for n > 1. */
5712
5713static void
5714print_end_stepping_range_reason (void)
5715{
16c381f0
JK
5716 if ((!inferior_thread ()->step_multi
5717 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5718 && ui_out_is_mi_like_p (current_uiout))
5719 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5720 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5721}
5722
5723/* The inferior was terminated by a signal, print why it stopped. */
5724
11cf8741 5725static void
33d62d64 5726print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5727{
79a45e25
PA
5728 struct ui_out *uiout = current_uiout;
5729
33d62d64
JK
5730 annotate_signalled ();
5731 if (ui_out_is_mi_like_p (uiout))
5732 ui_out_field_string
5733 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5734 ui_out_text (uiout, "\nProgram terminated with signal ");
5735 annotate_signal_name ();
5736 ui_out_field_string (uiout, "signal-name",
5737 target_signal_to_name (siggnal));
5738 annotate_signal_name_end ();
5739 ui_out_text (uiout, ", ");
5740 annotate_signal_string ();
5741 ui_out_field_string (uiout, "signal-meaning",
5742 target_signal_to_string (siggnal));
5743 annotate_signal_string_end ();
5744 ui_out_text (uiout, ".\n");
5745 ui_out_text (uiout, "The program no longer exists.\n");
5746}
5747
5748/* The inferior program is finished, print why it stopped. */
5749
5750static void
5751print_exited_reason (int exitstatus)
5752{
fda326dd
TT
5753 struct inferior *inf = current_inferior ();
5754 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5755 struct ui_out *uiout = current_uiout;
fda326dd 5756
33d62d64
JK
5757 annotate_exited (exitstatus);
5758 if (exitstatus)
5759 {
5760 if (ui_out_is_mi_like_p (uiout))
5761 ui_out_field_string (uiout, "reason",
5762 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5763 ui_out_text (uiout, "[Inferior ");
5764 ui_out_text (uiout, plongest (inf->num));
5765 ui_out_text (uiout, " (");
5766 ui_out_text (uiout, pidstr);
5767 ui_out_text (uiout, ") exited with code ");
33d62d64 5768 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5769 ui_out_text (uiout, "]\n");
33d62d64
JK
5770 }
5771 else
11cf8741 5772 {
9dc5e2a9 5773 if (ui_out_is_mi_like_p (uiout))
034dad6f 5774 ui_out_field_string
33d62d64 5775 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5776 ui_out_text (uiout, "[Inferior ");
5777 ui_out_text (uiout, plongest (inf->num));
5778 ui_out_text (uiout, " (");
5779 ui_out_text (uiout, pidstr);
5780 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5781 }
5782 /* Support the --return-child-result option. */
5783 return_child_result_value = exitstatus;
5784}
5785
5786/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5787 tells us to print about it. */
33d62d64
JK
5788
5789static void
5790print_signal_received_reason (enum target_signal siggnal)
5791{
79a45e25
PA
5792 struct ui_out *uiout = current_uiout;
5793
33d62d64
JK
5794 annotate_signal ();
5795
5796 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5797 {
5798 struct thread_info *t = inferior_thread ();
5799
5800 ui_out_text (uiout, "\n[");
5801 ui_out_field_string (uiout, "thread-name",
5802 target_pid_to_str (t->ptid));
5803 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5804 ui_out_text (uiout, " stopped");
5805 }
5806 else
5807 {
5808 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5809 annotate_signal_name ();
33d62d64
JK
5810 if (ui_out_is_mi_like_p (uiout))
5811 ui_out_field_string
5812 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5813 ui_out_field_string (uiout, "signal-name",
33d62d64 5814 target_signal_to_name (siggnal));
8b93c638
JM
5815 annotate_signal_name_end ();
5816 ui_out_text (uiout, ", ");
5817 annotate_signal_string ();
488f131b 5818 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5819 target_signal_to_string (siggnal));
8b93c638 5820 annotate_signal_string_end ();
33d62d64
JK
5821 }
5822 ui_out_text (uiout, ".\n");
5823}
252fbfc8 5824
33d62d64
JK
5825/* Reverse execution: target ran out of history info, print why the inferior
5826 has stopped. */
252fbfc8 5827
33d62d64
JK
5828static void
5829print_no_history_reason (void)
5830{
79a45e25 5831 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5832}
43ff13b4 5833
c906108c
SS
5834/* Here to return control to GDB when the inferior stops for real.
5835 Print appropriate messages, remove breakpoints, give terminal our modes.
5836
5837 STOP_PRINT_FRAME nonzero means print the executing frame
5838 (pc, function, args, file, line number and line text).
5839 BREAKPOINTS_FAILED nonzero means stop was due to error
5840 attempting to insert breakpoints. */
5841
5842void
96baa820 5843normal_stop (void)
c906108c 5844{
73b65bb0
DJ
5845 struct target_waitstatus last;
5846 ptid_t last_ptid;
29f49a6a 5847 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5848
5849 get_last_target_status (&last_ptid, &last);
5850
29f49a6a
PA
5851 /* If an exception is thrown from this point on, make sure to
5852 propagate GDB's knowledge of the executing state to the
5853 frontend/user running state. A QUIT is an easy exception to see
5854 here, so do this before any filtered output. */
c35b1492
PA
5855 if (!non_stop)
5856 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5857 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5858 && last.kind != TARGET_WAITKIND_EXITED
5859 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5860 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5861
4f8d22e3
PA
5862 /* In non-stop mode, we don't want GDB to switch threads behind the
5863 user's back, to avoid races where the user is typing a command to
5864 apply to thread x, but GDB switches to thread y before the user
5865 finishes entering the command. */
5866
c906108c
SS
5867 /* As with the notification of thread events, we want to delay
5868 notifying the user that we've switched thread context until
5869 the inferior actually stops.
5870
73b65bb0
DJ
5871 There's no point in saying anything if the inferior has exited.
5872 Note that SIGNALLED here means "exited with a signal", not
5873 "received a signal". */
4f8d22e3
PA
5874 if (!non_stop
5875 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5876 && target_has_execution
5877 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5878 && last.kind != TARGET_WAITKIND_EXITED
5879 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5880 {
5881 target_terminal_ours_for_output ();
a3f17187 5882 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5883 target_pid_to_str (inferior_ptid));
b8fa951a 5884 annotate_thread_changed ();
39f77062 5885 previous_inferior_ptid = inferior_ptid;
c906108c 5886 }
c906108c 5887
0e5bf2a8
PA
5888 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5889 {
5890 gdb_assert (sync_execution || !target_can_async_p ());
5891
5892 target_terminal_ours_for_output ();
5893 printf_filtered (_("No unwaited-for children left.\n"));
5894 }
5895
74960c60 5896 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5897 {
5898 if (remove_breakpoints ())
5899 {
5900 target_terminal_ours_for_output ();
3e43a32a
MS
5901 printf_filtered (_("Cannot remove breakpoints because "
5902 "program is no longer writable.\nFurther "
5903 "execution is probably impossible.\n"));
c906108c
SS
5904 }
5905 }
c906108c 5906
c906108c
SS
5907 /* If an auto-display called a function and that got a signal,
5908 delete that auto-display to avoid an infinite recursion. */
5909
5910 if (stopped_by_random_signal)
5911 disable_current_display ();
5912
5913 /* Don't print a message if in the middle of doing a "step n"
5914 operation for n > 1 */
af679fd0
PA
5915 if (target_has_execution
5916 && last.kind != TARGET_WAITKIND_SIGNALLED
5917 && last.kind != TARGET_WAITKIND_EXITED
5918 && inferior_thread ()->step_multi
16c381f0 5919 && inferior_thread ()->control.stop_step)
c906108c
SS
5920 goto done;
5921
5922 target_terminal_ours ();
0f641c01 5923 async_enable_stdin ();
c906108c 5924
7abfe014
DJ
5925 /* Set the current source location. This will also happen if we
5926 display the frame below, but the current SAL will be incorrect
5927 during a user hook-stop function. */
d729566a 5928 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5929 set_current_sal_from_frame (get_current_frame (), 1);
5930
dd7e2d2b
PA
5931 /* Let the user/frontend see the threads as stopped. */
5932 do_cleanups (old_chain);
5933
5934 /* Look up the hook_stop and run it (CLI internally handles problem
5935 of stop_command's pre-hook not existing). */
5936 if (stop_command)
5937 catch_errors (hook_stop_stub, stop_command,
5938 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5939
d729566a 5940 if (!has_stack_frames ())
d51fd4c8 5941 goto done;
c906108c 5942
32400beb
PA
5943 if (last.kind == TARGET_WAITKIND_SIGNALLED
5944 || last.kind == TARGET_WAITKIND_EXITED)
5945 goto done;
5946
c906108c
SS
5947 /* Select innermost stack frame - i.e., current frame is frame 0,
5948 and current location is based on that.
5949 Don't do this on return from a stack dummy routine,
1777feb0 5950 or if the program has exited. */
c906108c
SS
5951
5952 if (!stop_stack_dummy)
5953 {
0f7d239c 5954 select_frame (get_current_frame ());
c906108c
SS
5955
5956 /* Print current location without a level number, if
c5aa993b
JM
5957 we have changed functions or hit a breakpoint.
5958 Print source line if we have one.
5959 bpstat_print() contains the logic deciding in detail
1777feb0 5960 what to print, based on the event(s) that just occurred. */
c906108c 5961
d01a8610
AS
5962 /* If --batch-silent is enabled then there's no need to print the current
5963 source location, and to try risks causing an error message about
5964 missing source files. */
5965 if (stop_print_frame && !batch_silent)
c906108c
SS
5966 {
5967 int bpstat_ret;
5968 int source_flag;
917317f4 5969 int do_frame_printing = 1;
347bddb7 5970 struct thread_info *tp = inferior_thread ();
c906108c 5971
36dfb11c 5972 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
5973 switch (bpstat_ret)
5974 {
5975 case PRINT_UNKNOWN:
aa0cd9c1 5976 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5977 (or should) carry around the function and does (or
5978 should) use that when doing a frame comparison. */
16c381f0
JK
5979 if (tp->control.stop_step
5980 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5981 get_frame_id (get_current_frame ()))
917317f4 5982 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5983 source_flag = SRC_LINE; /* Finished step, just
5984 print source line. */
917317f4 5985 else
1777feb0
MS
5986 source_flag = SRC_AND_LOC; /* Print location and
5987 source line. */
917317f4
JM
5988 break;
5989 case PRINT_SRC_AND_LOC:
1777feb0
MS
5990 source_flag = SRC_AND_LOC; /* Print location and
5991 source line. */
917317f4
JM
5992 break;
5993 case PRINT_SRC_ONLY:
c5394b80 5994 source_flag = SRC_LINE;
917317f4
JM
5995 break;
5996 case PRINT_NOTHING:
488f131b 5997 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5998 do_frame_printing = 0;
5999 break;
6000 default:
e2e0b3e5 6001 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6002 }
c906108c
SS
6003
6004 /* The behavior of this routine with respect to the source
6005 flag is:
c5394b80
JM
6006 SRC_LINE: Print only source line
6007 LOCATION: Print only location
1777feb0 6008 SRC_AND_LOC: Print location and source line. */
917317f4 6009 if (do_frame_printing)
b04f3ab4 6010 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6011
6012 /* Display the auto-display expressions. */
6013 do_displays ();
6014 }
6015 }
6016
6017 /* Save the function value return registers, if we care.
6018 We might be about to restore their previous contents. */
9da8c2a0
PA
6019 if (inferior_thread ()->control.proceed_to_finish
6020 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6021 {
6022 /* This should not be necessary. */
6023 if (stop_registers)
6024 regcache_xfree (stop_registers);
6025
6026 /* NB: The copy goes through to the target picking up the value of
6027 all the registers. */
6028 stop_registers = regcache_dup (get_current_regcache ());
6029 }
c906108c 6030
aa7d318d 6031 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6032 {
b89667eb
DE
6033 /* Pop the empty frame that contains the stack dummy.
6034 This also restores inferior state prior to the call
16c381f0 6035 (struct infcall_suspend_state). */
b89667eb 6036 struct frame_info *frame = get_current_frame ();
abbb1732 6037
b89667eb
DE
6038 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6039 frame_pop (frame);
3e43a32a
MS
6040 /* frame_pop() calls reinit_frame_cache as the last thing it
6041 does which means there's currently no selected frame. We
6042 don't need to re-establish a selected frame if the dummy call
6043 returns normally, that will be done by
6044 restore_infcall_control_state. However, we do have to handle
6045 the case where the dummy call is returning after being
6046 stopped (e.g. the dummy call previously hit a breakpoint).
6047 We can't know which case we have so just always re-establish
6048 a selected frame here. */
0f7d239c 6049 select_frame (get_current_frame ());
c906108c
SS
6050 }
6051
c906108c
SS
6052done:
6053 annotate_stopped ();
41d2bdb4
PA
6054
6055 /* Suppress the stop observer if we're in the middle of:
6056
6057 - a step n (n > 1), as there still more steps to be done.
6058
6059 - a "finish" command, as the observer will be called in
6060 finish_command_continuation, so it can include the inferior
6061 function's return value.
6062
6063 - calling an inferior function, as we pretend we inferior didn't
6064 run at all. The return value of the call is handled by the
6065 expression evaluator, through call_function_by_hand. */
6066
6067 if (!target_has_execution
6068 || last.kind == TARGET_WAITKIND_SIGNALLED
6069 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6070 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6071 || (!(inferior_thread ()->step_multi
6072 && inferior_thread ()->control.stop_step)
16c381f0
JK
6073 && !(inferior_thread ()->control.stop_bpstat
6074 && inferior_thread ()->control.proceed_to_finish)
6075 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6076 {
6077 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6078 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6079 stop_print_frame);
347bddb7 6080 else
1d33d6ba 6081 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6082 }
347bddb7 6083
48844aa6
PA
6084 if (target_has_execution)
6085 {
6086 if (last.kind != TARGET_WAITKIND_SIGNALLED
6087 && last.kind != TARGET_WAITKIND_EXITED)
6088 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6089 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6090 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6091 }
6c95b8df
PA
6092
6093 /* Try to get rid of automatically added inferiors that are no
6094 longer needed. Keeping those around slows down things linearly.
6095 Note that this never removes the current inferior. */
6096 prune_inferiors ();
c906108c
SS
6097}
6098
6099static int
96baa820 6100hook_stop_stub (void *cmd)
c906108c 6101{
5913bcb0 6102 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6103 return (0);
6104}
6105\f
c5aa993b 6106int
96baa820 6107signal_stop_state (int signo)
c906108c 6108{
d6b48e9c 6109 return signal_stop[signo];
c906108c
SS
6110}
6111
c5aa993b 6112int
96baa820 6113signal_print_state (int signo)
c906108c
SS
6114{
6115 return signal_print[signo];
6116}
6117
c5aa993b 6118int
96baa820 6119signal_pass_state (int signo)
c906108c
SS
6120{
6121 return signal_program[signo];
6122}
6123
2455069d
UW
6124static void
6125signal_cache_update (int signo)
6126{
6127 if (signo == -1)
6128 {
6129 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6130 signal_cache_update (signo);
6131
6132 return;
6133 }
6134
6135 signal_pass[signo] = (signal_stop[signo] == 0
6136 && signal_print[signo] == 0
6137 && signal_program[signo] == 1);
6138}
6139
488f131b 6140int
7bda5e4a 6141signal_stop_update (int signo, int state)
d4f3574e
SS
6142{
6143 int ret = signal_stop[signo];
abbb1732 6144
d4f3574e 6145 signal_stop[signo] = state;
2455069d 6146 signal_cache_update (signo);
d4f3574e
SS
6147 return ret;
6148}
6149
488f131b 6150int
7bda5e4a 6151signal_print_update (int signo, int state)
d4f3574e
SS
6152{
6153 int ret = signal_print[signo];
abbb1732 6154
d4f3574e 6155 signal_print[signo] = state;
2455069d 6156 signal_cache_update (signo);
d4f3574e
SS
6157 return ret;
6158}
6159
488f131b 6160int
7bda5e4a 6161signal_pass_update (int signo, int state)
d4f3574e
SS
6162{
6163 int ret = signal_program[signo];
abbb1732 6164
d4f3574e 6165 signal_program[signo] = state;
2455069d 6166 signal_cache_update (signo);
d4f3574e
SS
6167 return ret;
6168}
6169
c906108c 6170static void
96baa820 6171sig_print_header (void)
c906108c 6172{
3e43a32a
MS
6173 printf_filtered (_("Signal Stop\tPrint\tPass "
6174 "to program\tDescription\n"));
c906108c
SS
6175}
6176
6177static void
96baa820 6178sig_print_info (enum target_signal oursig)
c906108c 6179{
54363045 6180 const char *name = target_signal_to_name (oursig);
c906108c 6181 int name_padding = 13 - strlen (name);
96baa820 6182
c906108c
SS
6183 if (name_padding <= 0)
6184 name_padding = 0;
6185
6186 printf_filtered ("%s", name);
488f131b 6187 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6188 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6189 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6190 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6191 printf_filtered ("%s\n", target_signal_to_string (oursig));
6192}
6193
6194/* Specify how various signals in the inferior should be handled. */
6195
6196static void
96baa820 6197handle_command (char *args, int from_tty)
c906108c
SS
6198{
6199 char **argv;
6200 int digits, wordlen;
6201 int sigfirst, signum, siglast;
6202 enum target_signal oursig;
6203 int allsigs;
6204 int nsigs;
6205 unsigned char *sigs;
6206 struct cleanup *old_chain;
6207
6208 if (args == NULL)
6209 {
e2e0b3e5 6210 error_no_arg (_("signal to handle"));
c906108c
SS
6211 }
6212
1777feb0 6213 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6214
6215 nsigs = (int) TARGET_SIGNAL_LAST;
6216 sigs = (unsigned char *) alloca (nsigs);
6217 memset (sigs, 0, nsigs);
6218
1777feb0 6219 /* Break the command line up into args. */
c906108c 6220
d1a41061 6221 argv = gdb_buildargv (args);
7a292a7a 6222 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6223
6224 /* Walk through the args, looking for signal oursigs, signal names, and
6225 actions. Signal numbers and signal names may be interspersed with
6226 actions, with the actions being performed for all signals cumulatively
1777feb0 6227 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6228
6229 while (*argv != NULL)
6230 {
6231 wordlen = strlen (*argv);
6232 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6233 {;
6234 }
6235 allsigs = 0;
6236 sigfirst = siglast = -1;
6237
6238 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6239 {
6240 /* Apply action to all signals except those used by the
1777feb0 6241 debugger. Silently skip those. */
c906108c
SS
6242 allsigs = 1;
6243 sigfirst = 0;
6244 siglast = nsigs - 1;
6245 }
6246 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6247 {
6248 SET_SIGS (nsigs, sigs, signal_stop);
6249 SET_SIGS (nsigs, sigs, signal_print);
6250 }
6251 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6252 {
6253 UNSET_SIGS (nsigs, sigs, signal_program);
6254 }
6255 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6256 {
6257 SET_SIGS (nsigs, sigs, signal_print);
6258 }
6259 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6260 {
6261 SET_SIGS (nsigs, sigs, signal_program);
6262 }
6263 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6264 {
6265 UNSET_SIGS (nsigs, sigs, signal_stop);
6266 }
6267 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6268 {
6269 SET_SIGS (nsigs, sigs, signal_program);
6270 }
6271 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6272 {
6273 UNSET_SIGS (nsigs, sigs, signal_print);
6274 UNSET_SIGS (nsigs, sigs, signal_stop);
6275 }
6276 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6277 {
6278 UNSET_SIGS (nsigs, sigs, signal_program);
6279 }
6280 else if (digits > 0)
6281 {
6282 /* It is numeric. The numeric signal refers to our own
6283 internal signal numbering from target.h, not to host/target
6284 signal number. This is a feature; users really should be
6285 using symbolic names anyway, and the common ones like
6286 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6287
6288 sigfirst = siglast = (int)
6289 target_signal_from_command (atoi (*argv));
6290 if ((*argv)[digits] == '-')
6291 {
6292 siglast = (int)
6293 target_signal_from_command (atoi ((*argv) + digits + 1));
6294 }
6295 if (sigfirst > siglast)
6296 {
1777feb0 6297 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6298 signum = sigfirst;
6299 sigfirst = siglast;
6300 siglast = signum;
6301 }
6302 }
6303 else
6304 {
6305 oursig = target_signal_from_name (*argv);
6306 if (oursig != TARGET_SIGNAL_UNKNOWN)
6307 {
6308 sigfirst = siglast = (int) oursig;
6309 }
6310 else
6311 {
6312 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6313 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6314 }
6315 }
6316
6317 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6318 which signals to apply actions to. */
c906108c
SS
6319
6320 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6321 {
6322 switch ((enum target_signal) signum)
6323 {
6324 case TARGET_SIGNAL_TRAP:
6325 case TARGET_SIGNAL_INT:
6326 if (!allsigs && !sigs[signum])
6327 {
9e2f0ad4 6328 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6329Are you sure you want to change it? "),
6330 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6331 {
6332 sigs[signum] = 1;
6333 }
6334 else
6335 {
a3f17187 6336 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6337 gdb_flush (gdb_stdout);
6338 }
6339 }
6340 break;
6341 case TARGET_SIGNAL_0:
6342 case TARGET_SIGNAL_DEFAULT:
6343 case TARGET_SIGNAL_UNKNOWN:
6344 /* Make sure that "all" doesn't print these. */
6345 break;
6346 default:
6347 sigs[signum] = 1;
6348 break;
6349 }
6350 }
6351
6352 argv++;
6353 }
6354
3a031f65
PA
6355 for (signum = 0; signum < nsigs; signum++)
6356 if (sigs[signum])
6357 {
2455069d
UW
6358 signal_cache_update (-1);
6359 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
c906108c 6360
3a031f65
PA
6361 if (from_tty)
6362 {
6363 /* Show the results. */
6364 sig_print_header ();
6365 for (; signum < nsigs; signum++)
6366 if (sigs[signum])
6367 sig_print_info (signum);
6368 }
6369
6370 break;
6371 }
c906108c
SS
6372
6373 do_cleanups (old_chain);
6374}
6375
6376static void
96baa820 6377xdb_handle_command (char *args, int from_tty)
c906108c
SS
6378{
6379 char **argv;
6380 struct cleanup *old_chain;
6381
d1a41061
PP
6382 if (args == NULL)
6383 error_no_arg (_("xdb command"));
6384
1777feb0 6385 /* Break the command line up into args. */
c906108c 6386
d1a41061 6387 argv = gdb_buildargv (args);
7a292a7a 6388 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6389 if (argv[1] != (char *) NULL)
6390 {
6391 char *argBuf;
6392 int bufLen;
6393
6394 bufLen = strlen (argv[0]) + 20;
6395 argBuf = (char *) xmalloc (bufLen);
6396 if (argBuf)
6397 {
6398 int validFlag = 1;
6399 enum target_signal oursig;
6400
6401 oursig = target_signal_from_name (argv[0]);
6402 memset (argBuf, 0, bufLen);
6403 if (strcmp (argv[1], "Q") == 0)
6404 sprintf (argBuf, "%s %s", argv[0], "noprint");
6405 else
6406 {
6407 if (strcmp (argv[1], "s") == 0)
6408 {
6409 if (!signal_stop[oursig])
6410 sprintf (argBuf, "%s %s", argv[0], "stop");
6411 else
6412 sprintf (argBuf, "%s %s", argv[0], "nostop");
6413 }
6414 else if (strcmp (argv[1], "i") == 0)
6415 {
6416 if (!signal_program[oursig])
6417 sprintf (argBuf, "%s %s", argv[0], "pass");
6418 else
6419 sprintf (argBuf, "%s %s", argv[0], "nopass");
6420 }
6421 else if (strcmp (argv[1], "r") == 0)
6422 {
6423 if (!signal_print[oursig])
6424 sprintf (argBuf, "%s %s", argv[0], "print");
6425 else
6426 sprintf (argBuf, "%s %s", argv[0], "noprint");
6427 }
6428 else
6429 validFlag = 0;
6430 }
6431 if (validFlag)
6432 handle_command (argBuf, from_tty);
6433 else
a3f17187 6434 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6435 if (argBuf)
b8c9b27d 6436 xfree (argBuf);
c906108c
SS
6437 }
6438 }
6439 do_cleanups (old_chain);
6440}
6441
6442/* Print current contents of the tables set by the handle command.
6443 It is possible we should just be printing signals actually used
6444 by the current target (but for things to work right when switching
6445 targets, all signals should be in the signal tables). */
6446
6447static void
96baa820 6448signals_info (char *signum_exp, int from_tty)
c906108c
SS
6449{
6450 enum target_signal oursig;
abbb1732 6451
c906108c
SS
6452 sig_print_header ();
6453
6454 if (signum_exp)
6455 {
6456 /* First see if this is a symbol name. */
6457 oursig = target_signal_from_name (signum_exp);
6458 if (oursig == TARGET_SIGNAL_UNKNOWN)
6459 {
6460 /* No, try numeric. */
6461 oursig =
bb518678 6462 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6463 }
6464 sig_print_info (oursig);
6465 return;
6466 }
6467
6468 printf_filtered ("\n");
6469 /* These ugly casts brought to you by the native VAX compiler. */
6470 for (oursig = TARGET_SIGNAL_FIRST;
6471 (int) oursig < (int) TARGET_SIGNAL_LAST;
6472 oursig = (enum target_signal) ((int) oursig + 1))
6473 {
6474 QUIT;
6475
6476 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6477 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6478 sig_print_info (oursig);
6479 }
6480
3e43a32a
MS
6481 printf_filtered (_("\nUse the \"handle\" command "
6482 "to change these tables.\n"));
c906108c 6483}
4aa995e1 6484
c709acd1
PA
6485/* Check if it makes sense to read $_siginfo from the current thread
6486 at this point. If not, throw an error. */
6487
6488static void
6489validate_siginfo_access (void)
6490{
6491 /* No current inferior, no siginfo. */
6492 if (ptid_equal (inferior_ptid, null_ptid))
6493 error (_("No thread selected."));
6494
6495 /* Don't try to read from a dead thread. */
6496 if (is_exited (inferior_ptid))
6497 error (_("The current thread has terminated"));
6498
6499 /* ... or from a spinning thread. */
6500 if (is_running (inferior_ptid))
6501 error (_("Selected thread is running."));
6502}
6503
4aa995e1
PA
6504/* The $_siginfo convenience variable is a bit special. We don't know
6505 for sure the type of the value until we actually have a chance to
7a9dd1b2 6506 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6507 also dependent on which thread you have selected.
6508
6509 1. making $_siginfo be an internalvar that creates a new value on
6510 access.
6511
6512 2. making the value of $_siginfo be an lval_computed value. */
6513
6514/* This function implements the lval_computed support for reading a
6515 $_siginfo value. */
6516
6517static void
6518siginfo_value_read (struct value *v)
6519{
6520 LONGEST transferred;
6521
c709acd1
PA
6522 validate_siginfo_access ();
6523
4aa995e1
PA
6524 transferred =
6525 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6526 NULL,
6527 value_contents_all_raw (v),
6528 value_offset (v),
6529 TYPE_LENGTH (value_type (v)));
6530
6531 if (transferred != TYPE_LENGTH (value_type (v)))
6532 error (_("Unable to read siginfo"));
6533}
6534
6535/* This function implements the lval_computed support for writing a
6536 $_siginfo value. */
6537
6538static void
6539siginfo_value_write (struct value *v, struct value *fromval)
6540{
6541 LONGEST transferred;
6542
c709acd1
PA
6543 validate_siginfo_access ();
6544
4aa995e1
PA
6545 transferred = target_write (&current_target,
6546 TARGET_OBJECT_SIGNAL_INFO,
6547 NULL,
6548 value_contents_all_raw (fromval),
6549 value_offset (v),
6550 TYPE_LENGTH (value_type (fromval)));
6551
6552 if (transferred != TYPE_LENGTH (value_type (fromval)))
6553 error (_("Unable to write siginfo"));
6554}
6555
c8f2448a 6556static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6557 {
6558 siginfo_value_read,
6559 siginfo_value_write
6560 };
6561
6562/* Return a new value with the correct type for the siginfo object of
78267919
UW
6563 the current thread using architecture GDBARCH. Return a void value
6564 if there's no object available. */
4aa995e1 6565
2c0b251b 6566static struct value *
78267919 6567siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6568{
4aa995e1 6569 if (target_has_stack
78267919
UW
6570 && !ptid_equal (inferior_ptid, null_ptid)
6571 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6572 {
78267919 6573 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6574
78267919 6575 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6576 }
6577
78267919 6578 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6579}
6580
c906108c 6581\f
16c381f0
JK
6582/* infcall_suspend_state contains state about the program itself like its
6583 registers and any signal it received when it last stopped.
6584 This state must be restored regardless of how the inferior function call
6585 ends (either successfully, or after it hits a breakpoint or signal)
6586 if the program is to properly continue where it left off. */
6587
6588struct infcall_suspend_state
7a292a7a 6589{
16c381f0
JK
6590 struct thread_suspend_state thread_suspend;
6591 struct inferior_suspend_state inferior_suspend;
6592
6593 /* Other fields: */
7a292a7a 6594 CORE_ADDR stop_pc;
b89667eb 6595 struct regcache *registers;
1736ad11 6596
35515841 6597 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6598 struct gdbarch *siginfo_gdbarch;
6599
6600 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6601 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6602 content would be invalid. */
6603 gdb_byte *siginfo_data;
b89667eb
DE
6604};
6605
16c381f0
JK
6606struct infcall_suspend_state *
6607save_infcall_suspend_state (void)
b89667eb 6608{
16c381f0 6609 struct infcall_suspend_state *inf_state;
b89667eb 6610 struct thread_info *tp = inferior_thread ();
16c381f0 6611 struct inferior *inf = current_inferior ();
1736ad11
JK
6612 struct regcache *regcache = get_current_regcache ();
6613 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6614 gdb_byte *siginfo_data = NULL;
6615
6616 if (gdbarch_get_siginfo_type_p (gdbarch))
6617 {
6618 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6619 size_t len = TYPE_LENGTH (type);
6620 struct cleanup *back_to;
6621
6622 siginfo_data = xmalloc (len);
6623 back_to = make_cleanup (xfree, siginfo_data);
6624
6625 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6626 siginfo_data, 0, len) == len)
6627 discard_cleanups (back_to);
6628 else
6629 {
6630 /* Errors ignored. */
6631 do_cleanups (back_to);
6632 siginfo_data = NULL;
6633 }
6634 }
6635
16c381f0 6636 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6637
6638 if (siginfo_data)
6639 {
6640 inf_state->siginfo_gdbarch = gdbarch;
6641 inf_state->siginfo_data = siginfo_data;
6642 }
b89667eb 6643
16c381f0
JK
6644 inf_state->thread_suspend = tp->suspend;
6645 inf_state->inferior_suspend = inf->suspend;
6646
35515841
JK
6647 /* run_inferior_call will not use the signal due to its `proceed' call with
6648 TARGET_SIGNAL_0 anyway. */
16c381f0 6649 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6650
b89667eb
DE
6651 inf_state->stop_pc = stop_pc;
6652
1736ad11 6653 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6654
6655 return inf_state;
6656}
6657
6658/* Restore inferior session state to INF_STATE. */
6659
6660void
16c381f0 6661restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6662{
6663 struct thread_info *tp = inferior_thread ();
16c381f0 6664 struct inferior *inf = current_inferior ();
1736ad11
JK
6665 struct regcache *regcache = get_current_regcache ();
6666 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6667
16c381f0
JK
6668 tp->suspend = inf_state->thread_suspend;
6669 inf->suspend = inf_state->inferior_suspend;
6670
b89667eb
DE
6671 stop_pc = inf_state->stop_pc;
6672
1736ad11
JK
6673 if (inf_state->siginfo_gdbarch == gdbarch)
6674 {
6675 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6676 size_t len = TYPE_LENGTH (type);
6677
6678 /* Errors ignored. */
6679 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6680 inf_state->siginfo_data, 0, len);
6681 }
6682
b89667eb
DE
6683 /* The inferior can be gone if the user types "print exit(0)"
6684 (and perhaps other times). */
6685 if (target_has_execution)
6686 /* NB: The register write goes through to the target. */
1736ad11 6687 regcache_cpy (regcache, inf_state->registers);
803b5f95 6688
16c381f0 6689 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6690}
6691
6692static void
16c381f0 6693do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6694{
16c381f0 6695 restore_infcall_suspend_state (state);
b89667eb
DE
6696}
6697
6698struct cleanup *
16c381f0
JK
6699make_cleanup_restore_infcall_suspend_state
6700 (struct infcall_suspend_state *inf_state)
b89667eb 6701{
16c381f0 6702 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6703}
6704
6705void
16c381f0 6706discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6707{
6708 regcache_xfree (inf_state->registers);
803b5f95 6709 xfree (inf_state->siginfo_data);
b89667eb
DE
6710 xfree (inf_state);
6711}
6712
6713struct regcache *
16c381f0 6714get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6715{
6716 return inf_state->registers;
6717}
6718
16c381f0
JK
6719/* infcall_control_state contains state regarding gdb's control of the
6720 inferior itself like stepping control. It also contains session state like
6721 the user's currently selected frame. */
b89667eb 6722
16c381f0 6723struct infcall_control_state
b89667eb 6724{
16c381f0
JK
6725 struct thread_control_state thread_control;
6726 struct inferior_control_state inferior_control;
d82142e2
JK
6727
6728 /* Other fields: */
6729 enum stop_stack_kind stop_stack_dummy;
6730 int stopped_by_random_signal;
7a292a7a 6731 int stop_after_trap;
7a292a7a 6732
b89667eb 6733 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6734 struct frame_id selected_frame_id;
7a292a7a
SS
6735};
6736
c906108c 6737/* Save all of the information associated with the inferior<==>gdb
b89667eb 6738 connection. */
c906108c 6739
16c381f0
JK
6740struct infcall_control_state *
6741save_infcall_control_state (void)
c906108c 6742{
16c381f0 6743 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6744 struct thread_info *tp = inferior_thread ();
d6b48e9c 6745 struct inferior *inf = current_inferior ();
7a292a7a 6746
16c381f0
JK
6747 inf_status->thread_control = tp->control;
6748 inf_status->inferior_control = inf->control;
d82142e2 6749
8358c15c 6750 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6751 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6752
16c381f0
JK
6753 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6754 chain. If caller's caller is walking the chain, they'll be happier if we
6755 hand them back the original chain when restore_infcall_control_state is
6756 called. */
6757 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6758
6759 /* Other fields: */
6760 inf_status->stop_stack_dummy = stop_stack_dummy;
6761 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6762 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6763
206415a3 6764 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6765
7a292a7a 6766 return inf_status;
c906108c
SS
6767}
6768
c906108c 6769static int
96baa820 6770restore_selected_frame (void *args)
c906108c 6771{
488f131b 6772 struct frame_id *fid = (struct frame_id *) args;
c906108c 6773 struct frame_info *frame;
c906108c 6774
101dcfbe 6775 frame = frame_find_by_id (*fid);
c906108c 6776
aa0cd9c1
AC
6777 /* If inf_status->selected_frame_id is NULL, there was no previously
6778 selected frame. */
101dcfbe 6779 if (frame == NULL)
c906108c 6780 {
8a3fe4f8 6781 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6782 return 0;
6783 }
6784
0f7d239c 6785 select_frame (frame);
c906108c
SS
6786
6787 return (1);
6788}
6789
b89667eb
DE
6790/* Restore inferior session state to INF_STATUS. */
6791
c906108c 6792void
16c381f0 6793restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6794{
4e1c45ea 6795 struct thread_info *tp = inferior_thread ();
d6b48e9c 6796 struct inferior *inf = current_inferior ();
4e1c45ea 6797
8358c15c
JK
6798 if (tp->control.step_resume_breakpoint)
6799 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6800
5b79abe7
TT
6801 if (tp->control.exception_resume_breakpoint)
6802 tp->control.exception_resume_breakpoint->disposition
6803 = disp_del_at_next_stop;
6804
d82142e2 6805 /* Handle the bpstat_copy of the chain. */
16c381f0 6806 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6807
16c381f0
JK
6808 tp->control = inf_status->thread_control;
6809 inf->control = inf_status->inferior_control;
d82142e2
JK
6810
6811 /* Other fields: */
6812 stop_stack_dummy = inf_status->stop_stack_dummy;
6813 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6814 stop_after_trap = inf_status->stop_after_trap;
c906108c 6815
b89667eb 6816 if (target_has_stack)
c906108c 6817 {
c906108c 6818 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6819 walking the stack might encounter a garbage pointer and
6820 error() trying to dereference it. */
488f131b
JB
6821 if (catch_errors
6822 (restore_selected_frame, &inf_status->selected_frame_id,
6823 "Unable to restore previously selected frame:\n",
6824 RETURN_MASK_ERROR) == 0)
c906108c
SS
6825 /* Error in restoring the selected frame. Select the innermost
6826 frame. */
0f7d239c 6827 select_frame (get_current_frame ());
c906108c 6828 }
c906108c 6829
72cec141 6830 xfree (inf_status);
7a292a7a 6831}
c906108c 6832
74b7792f 6833static void
16c381f0 6834do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6835{
16c381f0 6836 restore_infcall_control_state (sts);
74b7792f
AC
6837}
6838
6839struct cleanup *
16c381f0
JK
6840make_cleanup_restore_infcall_control_state
6841 (struct infcall_control_state *inf_status)
74b7792f 6842{
16c381f0 6843 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6844}
6845
c906108c 6846void
16c381f0 6847discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6848{
8358c15c
JK
6849 if (inf_status->thread_control.step_resume_breakpoint)
6850 inf_status->thread_control.step_resume_breakpoint->disposition
6851 = disp_del_at_next_stop;
6852
5b79abe7
TT
6853 if (inf_status->thread_control.exception_resume_breakpoint)
6854 inf_status->thread_control.exception_resume_breakpoint->disposition
6855 = disp_del_at_next_stop;
6856
1777feb0 6857 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6858 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6859
72cec141 6860 xfree (inf_status);
7a292a7a 6861}
b89667eb 6862\f
47932f85 6863int
3a3e9ee3 6864inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6865{
6866 struct target_waitstatus last;
6867 ptid_t last_ptid;
6868
6869 get_last_target_status (&last_ptid, &last);
6870
6871 if (last.kind != TARGET_WAITKIND_FORKED)
6872 return 0;
6873
3a3e9ee3 6874 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6875 return 0;
6876
6877 *child_pid = last.value.related_pid;
6878 return 1;
6879}
6880
6881int
3a3e9ee3 6882inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6883{
6884 struct target_waitstatus last;
6885 ptid_t last_ptid;
6886
6887 get_last_target_status (&last_ptid, &last);
6888
6889 if (last.kind != TARGET_WAITKIND_VFORKED)
6890 return 0;
6891
3a3e9ee3 6892 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6893 return 0;
6894
6895 *child_pid = last.value.related_pid;
6896 return 1;
6897}
6898
6899int
3a3e9ee3 6900inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6901{
6902 struct target_waitstatus last;
6903 ptid_t last_ptid;
6904
6905 get_last_target_status (&last_ptid, &last);
6906
6907 if (last.kind != TARGET_WAITKIND_EXECD)
6908 return 0;
6909
3a3e9ee3 6910 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6911 return 0;
6912
6913 *execd_pathname = xstrdup (last.value.execd_pathname);
6914 return 1;
6915}
6916
a96d9b2e
SDJ
6917int
6918inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6919{
6920 struct target_waitstatus last;
6921 ptid_t last_ptid;
6922
6923 get_last_target_status (&last_ptid, &last);
6924
6925 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6926 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6927 return 0;
6928
6929 if (!ptid_equal (last_ptid, pid))
6930 return 0;
6931
6932 *syscall_number = last.value.syscall_number;
6933 return 1;
6934}
6935
0723dbf5
PA
6936int
6937ptid_match (ptid_t ptid, ptid_t filter)
6938{
0723dbf5
PA
6939 if (ptid_equal (filter, minus_one_ptid))
6940 return 1;
6941 if (ptid_is_pid (filter)
6942 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6943 return 1;
6944 else if (ptid_equal (ptid, filter))
6945 return 1;
6946
6947 return 0;
6948}
6949
ca6724c1
KB
6950/* restore_inferior_ptid() will be used by the cleanup machinery
6951 to restore the inferior_ptid value saved in a call to
6952 save_inferior_ptid(). */
ce696e05
KB
6953
6954static void
6955restore_inferior_ptid (void *arg)
6956{
6957 ptid_t *saved_ptid_ptr = arg;
abbb1732 6958
ce696e05
KB
6959 inferior_ptid = *saved_ptid_ptr;
6960 xfree (arg);
6961}
6962
6963/* Save the value of inferior_ptid so that it may be restored by a
6964 later call to do_cleanups(). Returns the struct cleanup pointer
6965 needed for later doing the cleanup. */
6966
6967struct cleanup *
6968save_inferior_ptid (void)
6969{
6970 ptid_t *saved_ptid_ptr;
6971
6972 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6973 *saved_ptid_ptr = inferior_ptid;
6974 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6975}
c5aa993b 6976\f
488f131b 6977
b2175913
MS
6978/* User interface for reverse debugging:
6979 Set exec-direction / show exec-direction commands
6980 (returns error unless target implements to_set_exec_direction method). */
6981
32231432 6982int execution_direction = EXEC_FORWARD;
b2175913
MS
6983static const char exec_forward[] = "forward";
6984static const char exec_reverse[] = "reverse";
6985static const char *exec_direction = exec_forward;
6986static const char *exec_direction_names[] = {
6987 exec_forward,
6988 exec_reverse,
6989 NULL
6990};
6991
6992static void
6993set_exec_direction_func (char *args, int from_tty,
6994 struct cmd_list_element *cmd)
6995{
6996 if (target_can_execute_reverse)
6997 {
6998 if (!strcmp (exec_direction, exec_forward))
6999 execution_direction = EXEC_FORWARD;
7000 else if (!strcmp (exec_direction, exec_reverse))
7001 execution_direction = EXEC_REVERSE;
7002 }
8bbed405
MS
7003 else
7004 {
7005 exec_direction = exec_forward;
7006 error (_("Target does not support this operation."));
7007 }
b2175913
MS
7008}
7009
7010static void
7011show_exec_direction_func (struct ui_file *out, int from_tty,
7012 struct cmd_list_element *cmd, const char *value)
7013{
7014 switch (execution_direction) {
7015 case EXEC_FORWARD:
7016 fprintf_filtered (out, _("Forward.\n"));
7017 break;
7018 case EXEC_REVERSE:
7019 fprintf_filtered (out, _("Reverse.\n"));
7020 break;
b2175913 7021 default:
d8b34453
PA
7022 internal_error (__FILE__, __LINE__,
7023 _("bogus execution_direction value: %d"),
7024 (int) execution_direction);
b2175913
MS
7025 }
7026}
7027
7028/* User interface for non-stop mode. */
7029
ad52ddc6 7030int non_stop = 0;
ad52ddc6
PA
7031
7032static void
7033set_non_stop (char *args, int from_tty,
7034 struct cmd_list_element *c)
7035{
7036 if (target_has_execution)
7037 {
7038 non_stop_1 = non_stop;
7039 error (_("Cannot change this setting while the inferior is running."));
7040 }
7041
7042 non_stop = non_stop_1;
7043}
7044
7045static void
7046show_non_stop (struct ui_file *file, int from_tty,
7047 struct cmd_list_element *c, const char *value)
7048{
7049 fprintf_filtered (file,
7050 _("Controlling the inferior in non-stop mode is %s.\n"),
7051 value);
7052}
7053
d4db2f36
PA
7054static void
7055show_schedule_multiple (struct ui_file *file, int from_tty,
7056 struct cmd_list_element *c, const char *value)
7057{
3e43a32a
MS
7058 fprintf_filtered (file, _("Resuming the execution of threads "
7059 "of all processes is %s.\n"), value);
d4db2f36 7060}
ad52ddc6 7061
c906108c 7062void
96baa820 7063_initialize_infrun (void)
c906108c 7064{
52f0bd74
AC
7065 int i;
7066 int numsigs;
c906108c 7067
1bedd215
AC
7068 add_info ("signals", signals_info, _("\
7069What debugger does when program gets various signals.\n\
7070Specify a signal as argument to print info on that signal only."));
c906108c
SS
7071 add_info_alias ("handle", "signals", 0);
7072
1bedd215
AC
7073 add_com ("handle", class_run, handle_command, _("\
7074Specify how to handle a signal.\n\
c906108c
SS
7075Args are signals and actions to apply to those signals.\n\
7076Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7077from 1-15 are allowed for compatibility with old versions of GDB.\n\
7078Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7079The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
7080used by the debugger, typically SIGTRAP and SIGINT.\n\
7081Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7082\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7083Stop means reenter debugger if this signal happens (implies print).\n\
7084Print means print a message if this signal happens.\n\
7085Pass means let program see this signal; otherwise program doesn't know.\n\
7086Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7087Pass and Stop may be combined."));
c906108c
SS
7088 if (xdb_commands)
7089 {
1bedd215
AC
7090 add_com ("lz", class_info, signals_info, _("\
7091What debugger does when program gets various signals.\n\
7092Specify a signal as argument to print info on that signal only."));
7093 add_com ("z", class_run, xdb_handle_command, _("\
7094Specify how to handle a signal.\n\
c906108c
SS
7095Args are signals and actions to apply to those signals.\n\
7096Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7097from 1-15 are allowed for compatibility with old versions of GDB.\n\
7098Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7099The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7100used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7101Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7102\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7103nopass), \"Q\" (noprint)\n\
7104Stop means reenter debugger if this signal happens (implies print).\n\
7105Print means print a message if this signal happens.\n\
7106Pass means let program see this signal; otherwise program doesn't know.\n\
7107Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7108Pass and Stop may be combined."));
c906108c
SS
7109 }
7110
7111 if (!dbx_commands)
1a966eab
AC
7112 stop_command = add_cmd ("stop", class_obscure,
7113 not_just_help_class_command, _("\
7114There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7115This allows you to set a list of commands to be run each time execution\n\
1a966eab 7116of the program stops."), &cmdlist);
c906108c 7117
85c07804
AC
7118 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7119Set inferior debugging."), _("\
7120Show inferior debugging."), _("\
7121When non-zero, inferior specific debugging is enabled."),
7122 NULL,
920d2a44 7123 show_debug_infrun,
85c07804 7124 &setdebuglist, &showdebuglist);
527159b7 7125
3e43a32a
MS
7126 add_setshow_boolean_cmd ("displaced", class_maintenance,
7127 &debug_displaced, _("\
237fc4c9
PA
7128Set displaced stepping debugging."), _("\
7129Show displaced stepping debugging."), _("\
7130When non-zero, displaced stepping specific debugging is enabled."),
7131 NULL,
7132 show_debug_displaced,
7133 &setdebuglist, &showdebuglist);
7134
ad52ddc6
PA
7135 add_setshow_boolean_cmd ("non-stop", no_class,
7136 &non_stop_1, _("\
7137Set whether gdb controls the inferior in non-stop mode."), _("\
7138Show whether gdb controls the inferior in non-stop mode."), _("\
7139When debugging a multi-threaded program and this setting is\n\
7140off (the default, also called all-stop mode), when one thread stops\n\
7141(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7142all other threads in the program while you interact with the thread of\n\
7143interest. When you continue or step a thread, you can allow the other\n\
7144threads to run, or have them remain stopped, but while you inspect any\n\
7145thread's state, all threads stop.\n\
7146\n\
7147In non-stop mode, when one thread stops, other threads can continue\n\
7148to run freely. You'll be able to step each thread independently,\n\
7149leave it stopped or free to run as needed."),
7150 set_non_stop,
7151 show_non_stop,
7152 &setlist,
7153 &showlist);
7154
c906108c 7155 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7156 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7157 signal_print = (unsigned char *)
7158 xmalloc (sizeof (signal_print[0]) * numsigs);
7159 signal_program = (unsigned char *)
7160 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7161 signal_pass = (unsigned char *)
7162 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7163 for (i = 0; i < numsigs; i++)
7164 {
7165 signal_stop[i] = 1;
7166 signal_print[i] = 1;
7167 signal_program[i] = 1;
7168 }
7169
7170 /* Signals caused by debugger's own actions
7171 should not be given to the program afterwards. */
7172 signal_program[TARGET_SIGNAL_TRAP] = 0;
7173 signal_program[TARGET_SIGNAL_INT] = 0;
7174
7175 /* Signals that are not errors should not normally enter the debugger. */
7176 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7177 signal_print[TARGET_SIGNAL_ALRM] = 0;
7178 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7179 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7180 signal_stop[TARGET_SIGNAL_PROF] = 0;
7181 signal_print[TARGET_SIGNAL_PROF] = 0;
7182 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7183 signal_print[TARGET_SIGNAL_CHLD] = 0;
7184 signal_stop[TARGET_SIGNAL_IO] = 0;
7185 signal_print[TARGET_SIGNAL_IO] = 0;
7186 signal_stop[TARGET_SIGNAL_POLL] = 0;
7187 signal_print[TARGET_SIGNAL_POLL] = 0;
7188 signal_stop[TARGET_SIGNAL_URG] = 0;
7189 signal_print[TARGET_SIGNAL_URG] = 0;
7190 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7191 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7192 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7193 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7194
cd0fc7c3
SS
7195 /* These signals are used internally by user-level thread
7196 implementations. (See signal(5) on Solaris.) Like the above
7197 signals, a healthy program receives and handles them as part of
7198 its normal operation. */
7199 signal_stop[TARGET_SIGNAL_LWP] = 0;
7200 signal_print[TARGET_SIGNAL_LWP] = 0;
7201 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7202 signal_print[TARGET_SIGNAL_WAITING] = 0;
7203 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7204 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7205
2455069d
UW
7206 /* Update cached state. */
7207 signal_cache_update (-1);
7208
85c07804
AC
7209 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7210 &stop_on_solib_events, _("\
7211Set stopping for shared library events."), _("\
7212Show stopping for shared library events."), _("\
c906108c
SS
7213If nonzero, gdb will give control to the user when the dynamic linker\n\
7214notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7215to the user would be loading/unloading of a new library."),
7216 NULL,
920d2a44 7217 show_stop_on_solib_events,
85c07804 7218 &setlist, &showlist);
c906108c 7219
7ab04401
AC
7220 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7221 follow_fork_mode_kind_names,
7222 &follow_fork_mode_string, _("\
7223Set debugger response to a program call of fork or vfork."), _("\
7224Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7225A fork or vfork creates a new process. follow-fork-mode can be:\n\
7226 parent - the original process is debugged after a fork\n\
7227 child - the new process is debugged after a fork\n\
ea1dd7bc 7228The unfollowed process will continue to run.\n\
7ab04401
AC
7229By default, the debugger will follow the parent process."),
7230 NULL,
920d2a44 7231 show_follow_fork_mode_string,
7ab04401
AC
7232 &setlist, &showlist);
7233
6c95b8df
PA
7234 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7235 follow_exec_mode_names,
7236 &follow_exec_mode_string, _("\
7237Set debugger response to a program call of exec."), _("\
7238Show debugger response to a program call of exec."), _("\
7239An exec call replaces the program image of a process.\n\
7240\n\
7241follow-exec-mode can be:\n\
7242\n\
cce7e648 7243 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7244to this new inferior. The program the process was running before\n\
7245the exec call can be restarted afterwards by restarting the original\n\
7246inferior.\n\
7247\n\
7248 same - the debugger keeps the process bound to the same inferior.\n\
7249The new executable image replaces the previous executable loaded in\n\
7250the inferior. Restarting the inferior after the exec call restarts\n\
7251the executable the process was running after the exec call.\n\
7252\n\
7253By default, the debugger will use the same inferior."),
7254 NULL,
7255 show_follow_exec_mode_string,
7256 &setlist, &showlist);
7257
7ab04401
AC
7258 add_setshow_enum_cmd ("scheduler-locking", class_run,
7259 scheduler_enums, &scheduler_mode, _("\
7260Set mode for locking scheduler during execution."), _("\
7261Show mode for locking scheduler during execution."), _("\
c906108c
SS
7262off == no locking (threads may preempt at any time)\n\
7263on == full locking (no thread except the current thread may run)\n\
7264step == scheduler locked during every single-step operation.\n\
7265 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7266 Other threads may run while stepping over a function call ('next')."),
7267 set_schedlock_func, /* traps on target vector */
920d2a44 7268 show_scheduler_mode,
7ab04401 7269 &setlist, &showlist);
5fbbeb29 7270
d4db2f36
PA
7271 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7272Set mode for resuming threads of all processes."), _("\
7273Show mode for resuming threads of all processes."), _("\
7274When on, execution commands (such as 'continue' or 'next') resume all\n\
7275threads of all processes. When off (which is the default), execution\n\
7276commands only resume the threads of the current process. The set of\n\
7277threads that are resumed is further refined by the scheduler-locking\n\
7278mode (see help set scheduler-locking)."),
7279 NULL,
7280 show_schedule_multiple,
7281 &setlist, &showlist);
7282
5bf193a2
AC
7283 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7284Set mode of the step operation."), _("\
7285Show mode of the step operation."), _("\
7286When set, doing a step over a function without debug line information\n\
7287will stop at the first instruction of that function. Otherwise, the\n\
7288function is skipped and the step command stops at a different source line."),
7289 NULL,
920d2a44 7290 show_step_stop_if_no_debug,
5bf193a2 7291 &setlist, &showlist);
ca6724c1 7292
fff08868
HZ
7293 add_setshow_enum_cmd ("displaced-stepping", class_run,
7294 can_use_displaced_stepping_enum,
7295 &can_use_displaced_stepping, _("\
237fc4c9
PA
7296Set debugger's willingness to use displaced stepping."), _("\
7297Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7298If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7299supported by the target architecture. If off, gdb will not use displaced\n\
7300stepping to step over breakpoints, even if such is supported by the target\n\
7301architecture. If auto (which is the default), gdb will use displaced stepping\n\
7302if the target architecture supports it and non-stop mode is active, but will not\n\
7303use it in all-stop mode (see help set non-stop)."),
7304 NULL,
7305 show_can_use_displaced_stepping,
7306 &setlist, &showlist);
237fc4c9 7307
b2175913
MS
7308 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7309 &exec_direction, _("Set direction of execution.\n\
7310Options are 'forward' or 'reverse'."),
7311 _("Show direction of execution (forward/reverse)."),
7312 _("Tells gdb whether to execute forward or backward."),
7313 set_exec_direction_func, show_exec_direction_func,
7314 &setlist, &showlist);
7315
6c95b8df
PA
7316 /* Set/show detach-on-fork: user-settable mode. */
7317
7318 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7319Set whether gdb will detach the child of a fork."), _("\
7320Show whether gdb will detach the child of a fork."), _("\
7321Tells gdb whether to detach the child of a fork."),
7322 NULL, NULL, &setlist, &showlist);
7323
03583c20
UW
7324 /* Set/show disable address space randomization mode. */
7325
7326 add_setshow_boolean_cmd ("disable-randomization", class_support,
7327 &disable_randomization, _("\
7328Set disabling of debuggee's virtual address space randomization."), _("\
7329Show disabling of debuggee's virtual address space randomization."), _("\
7330When this mode is on (which is the default), randomization of the virtual\n\
7331address space is disabled. Standalone programs run with the randomization\n\
7332enabled by default on some platforms."),
7333 &set_disable_randomization,
7334 &show_disable_randomization,
7335 &setlist, &showlist);
7336
ca6724c1 7337 /* ptid initializations */
ca6724c1
KB
7338 inferior_ptid = null_ptid;
7339 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7340
7341 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7342 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7343 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7344 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7345
7346 /* Explicitly create without lookup, since that tries to create a
7347 value with a void typed value, and when we get here, gdbarch
7348 isn't initialized yet. At this point, we're quite sure there
7349 isn't another convenience variable of the same name. */
7350 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7351
7352 add_setshow_boolean_cmd ("observer", no_class,
7353 &observer_mode_1, _("\
7354Set whether gdb controls the inferior in observer mode."), _("\
7355Show whether gdb controls the inferior in observer mode."), _("\
7356In observer mode, GDB can get data from the inferior, but not\n\
7357affect its execution. Registers and memory may not be changed,\n\
7358breakpoints may not be set, and the program cannot be interrupted\n\
7359or signalled."),
7360 set_observer_mode,
7361 show_observer_mode,
7362 &setlist,
7363 &showlist);
c906108c 7364}
This page took 2.421862 seconds and 4 git commands to generate.