* lib/gdbserver-support.exp (gdb_target_cmd): Anchor the ends
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
197e01b6 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
197e01b6
EZ
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
60250e8b 31#include "exceptions.h"
c906108c 32#include "breakpoint.h"
03f2053f 33#include "gdb_wait.h"
c906108c
SS
34#include "gdbcore.h"
35#include "gdbcmd.h"
210661e7 36#include "cli/cli-script.h"
c906108c
SS
37#include "target.h"
38#include "gdbthread.h"
39#include "annotate.h"
1adeb98a 40#include "symfile.h"
7a292a7a 41#include "top.h"
c906108c 42#include <signal.h>
2acceee2 43#include "inf-loop.h"
4e052eda 44#include "regcache.h"
fd0407d6 45#include "value.h"
06600e06 46#include "observer.h"
f636b87d 47#include "language.h"
a77053c2 48#include "solib.h"
f17517ea 49#include "main.h"
a77053c2 50
9f976b41 51#include "gdb_assert.h"
034dad6f 52#include "mi/mi-common.h"
c906108c
SS
53
54/* Prototypes for local functions */
55
96baa820 56static void signals_info (char *, int);
c906108c 57
96baa820 58static void handle_command (char *, int);
c906108c 59
96baa820 60static void sig_print_info (enum target_signal);
c906108c 61
96baa820 62static void sig_print_header (void);
c906108c 63
74b7792f 64static void resume_cleanups (void *);
c906108c 65
96baa820 66static int hook_stop_stub (void *);
c906108c 67
96baa820
JM
68static int restore_selected_frame (void *);
69
70static void build_infrun (void);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
96baa820
JM
77struct execution_control_state;
78
79static int currently_stepping (struct execution_control_state *ecs);
80
81static void xdb_handle_command (char *args, int from_tty);
82
ea67f13b
DJ
83static int prepare_to_proceed (void);
84
96baa820 85void _initialize_infrun (void);
43ff13b4 86
c906108c
SS
87int inferior_ignoring_startup_exec_events = 0;
88int inferior_ignoring_leading_exec_events = 0;
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
920d2a44
AC
94static void
95show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99}
5fbbeb29 100
43ff13b4 101/* In asynchronous mode, but simulating synchronous execution. */
96baa820 102
43ff13b4
JM
103int sync_execution = 0;
104
c906108c
SS
105/* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
96baa820
JM
107 running in. */
108
39f77062 109static ptid_t previous_inferior_ptid;
7a292a7a
SS
110
111/* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114#ifndef MAY_FOLLOW_EXEC
115#define MAY_FOLLOW_EXEC (0)
c906108c
SS
116#endif
117
7a292a7a
SS
118static int may_follow_exec = MAY_FOLLOW_EXEC;
119
527159b7 120static int debug_infrun = 0;
920d2a44
AC
121static void
122show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124{
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126}
527159b7 127
d4f3574e
SS
128/* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
ca557f44
AC
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
d4f3574e
SS
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
c906108c 166
c906108c
SS
167/* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175#ifndef SOLIB_IN_DYNAMIC_LINKER
176#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177#endif
178
c2c6d25f
JM
179/* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
488f131b 184#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
185#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186static void
c2d11a7d 187default_skip_permanent_breakpoint (void)
c2c6d25f 188{
8a3fe4f8 189 error (_("\
c2c6d25f
JM
190The program is stopped at a permanent breakpoint, but GDB does not know\n\
191how to step past a permanent breakpoint on this architecture. Try using\n\
8a3fe4f8 192a command like `return' or `jump' to continue execution."));
c2c6d25f
JM
193}
194#endif
488f131b 195
c2c6d25f 196
7a292a7a
SS
197/* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200#ifndef HAVE_STEPPABLE_WATCHPOINT
201#define HAVE_STEPPABLE_WATCHPOINT 0
202#else
203#undef HAVE_STEPPABLE_WATCHPOINT
204#define HAVE_STEPPABLE_WATCHPOINT 1
205#endif
206
692590c1
MS
207#ifndef CANNOT_STEP_HW_WATCHPOINTS
208#define CANNOT_STEP_HW_WATCHPOINTS 0
209#else
210#undef CANNOT_STEP_HW_WATCHPOINTS
211#define CANNOT_STEP_HW_WATCHPOINTS 1
212#endif
213
c906108c
SS
214/* Tables of how to react to signals; the user sets them. */
215
216static unsigned char *signal_stop;
217static unsigned char *signal_print;
218static unsigned char *signal_program;
219
220#define SET_SIGS(nsigs,sigs,flags) \
221 do { \
222 int signum = (nsigs); \
223 while (signum-- > 0) \
224 if ((sigs)[signum]) \
225 (flags)[signum] = 1; \
226 } while (0)
227
228#define UNSET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 0; \
234 } while (0)
235
39f77062
KB
236/* Value to pass to target_resume() to cause all threads to resume */
237
238#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
239
240/* Command list pointer for the "stop" placeholder. */
241
242static struct cmd_list_element *stop_command;
243
244/* Nonzero if breakpoints are now inserted in the inferior. */
245
246static int breakpoints_inserted;
247
248/* Function inferior was in as of last step command. */
249
250static struct symbol *step_start_function;
251
252/* Nonzero if we are expecting a trace trap and should proceed from it. */
253
254static int trap_expected;
255
c906108c
SS
256/* Nonzero if we want to give control to the user when we're notified
257 of shared library events by the dynamic linker. */
258static int stop_on_solib_events;
920d2a44
AC
259static void
260show_stop_on_solib_events (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
264 value);
265}
c906108c 266
c906108c
SS
267/* Nonzero means expecting a trace trap
268 and should stop the inferior and return silently when it happens. */
269
270int stop_after_trap;
271
272/* Nonzero means expecting a trap and caller will handle it themselves.
273 It is used after attach, due to attaching to a process;
274 when running in the shell before the child program has been exec'd;
275 and when running some kinds of remote stuff (FIXME?). */
276
c0236d92 277enum stop_kind stop_soon;
c906108c
SS
278
279/* Nonzero if proceed is being used for a "finish" command or a similar
280 situation when stop_registers should be saved. */
281
282int proceed_to_finish;
283
284/* Save register contents here when about to pop a stack dummy frame,
285 if-and-only-if proceed_to_finish is set.
286 Thus this contains the return value from the called function (assuming
287 values are returned in a register). */
288
72cec141 289struct regcache *stop_registers;
c906108c
SS
290
291/* Nonzero if program stopped due to error trying to insert breakpoints. */
292
293static int breakpoints_failed;
294
295/* Nonzero after stop if current stack frame should be printed. */
296
297static int stop_print_frame;
298
299static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 300
e02bc4cc 301/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
302 returned by target_wait()/deprecated_target_wait_hook(). This
303 information is returned by get_last_target_status(). */
39f77062 304static ptid_t target_last_wait_ptid;
e02bc4cc
DS
305static struct target_waitstatus target_last_waitstatus;
306
c906108c
SS
307/* This is used to remember when a fork, vfork or exec event
308 was caught by a catchpoint, and thus the event is to be
309 followed at the next resume of the inferior, and not
310 immediately. */
311static struct
488f131b
JB
312{
313 enum target_waitkind kind;
314 struct
c906108c 315 {
488f131b 316 int parent_pid;
488f131b 317 int child_pid;
c906108c 318 }
488f131b
JB
319 fork_event;
320 char *execd_pathname;
321}
c906108c
SS
322pending_follow;
323
53904c9e
AC
324static const char follow_fork_mode_child[] = "child";
325static const char follow_fork_mode_parent[] = "parent";
326
488f131b 327static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
328 follow_fork_mode_child,
329 follow_fork_mode_parent,
330 NULL
ef346e04 331};
c906108c 332
53904c9e 333static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
334static void
335show_follow_fork_mode_string (struct ui_file *file, int from_tty,
336 struct cmd_list_element *c, const char *value)
337{
338 fprintf_filtered (file, _("\
339Debugger response to a program call of fork or vfork is \"%s\".\n"),
340 value);
341}
c906108c
SS
342\f
343
6604731b 344static int
4ef3f3be 345follow_fork (void)
c906108c 346{
ea1dd7bc 347 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 348
6604731b 349 return target_follow_fork (follow_child);
c906108c
SS
350}
351
6604731b
DJ
352void
353follow_inferior_reset_breakpoints (void)
c906108c 354{
6604731b
DJ
355 /* Was there a step_resume breakpoint? (There was if the user
356 did a "next" at the fork() call.) If so, explicitly reset its
357 thread number.
358
359 step_resumes are a form of bp that are made to be per-thread.
360 Since we created the step_resume bp when the parent process
361 was being debugged, and now are switching to the child process,
362 from the breakpoint package's viewpoint, that's a switch of
363 "threads". We must update the bp's notion of which thread
364 it is for, or it'll be ignored when it triggers. */
365
366 if (step_resume_breakpoint)
367 breakpoint_re_set_thread (step_resume_breakpoint);
368
369 /* Reinsert all breakpoints in the child. The user may have set
370 breakpoints after catching the fork, in which case those
371 were never set in the child, but only in the parent. This makes
372 sure the inserted breakpoints match the breakpoint list. */
373
374 breakpoint_re_set ();
375 insert_breakpoints ();
c906108c 376}
c906108c 377
1adeb98a
FN
378/* EXECD_PATHNAME is assumed to be non-NULL. */
379
c906108c 380static void
96baa820 381follow_exec (int pid, char *execd_pathname)
c906108c 382{
c906108c 383 int saved_pid = pid;
7a292a7a
SS
384 struct target_ops *tgt;
385
386 if (!may_follow_exec)
387 return;
c906108c 388
c906108c
SS
389 /* This is an exec event that we actually wish to pay attention to.
390 Refresh our symbol table to the newly exec'd program, remove any
391 momentary bp's, etc.
392
393 If there are breakpoints, they aren't really inserted now,
394 since the exec() transformed our inferior into a fresh set
395 of instructions.
396
397 We want to preserve symbolic breakpoints on the list, since
398 we have hopes that they can be reset after the new a.out's
399 symbol table is read.
400
401 However, any "raw" breakpoints must be removed from the list
402 (e.g., the solib bp's), since their address is probably invalid
403 now.
404
405 And, we DON'T want to call delete_breakpoints() here, since
406 that may write the bp's "shadow contents" (the instruction
407 value that was overwritten witha TRAP instruction). Since
408 we now have a new a.out, those shadow contents aren't valid. */
409 update_breakpoints_after_exec ();
410
411 /* If there was one, it's gone now. We cannot truly step-to-next
412 statement through an exec(). */
413 step_resume_breakpoint = NULL;
414 step_range_start = 0;
415 step_range_end = 0;
416
c906108c 417 /* What is this a.out's name? */
a3f17187 418 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
419
420 /* We've followed the inferior through an exec. Therefore, the
421 inferior has essentially been killed & reborn. */
7a292a7a
SS
422
423 /* First collect the run target in effect. */
424 tgt = find_run_target ();
425 /* If we can't find one, things are in a very strange state... */
426 if (tgt == NULL)
8a3fe4f8 427 error (_("Could find run target to save before following exec"));
7a292a7a 428
c906108c
SS
429 gdb_flush (gdb_stdout);
430 target_mourn_inferior ();
39f77062 431 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 432 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 433 push_target (tgt);
c906108c
SS
434
435 /* That a.out is now the one to use. */
436 exec_file_attach (execd_pathname, 0);
437
438 /* And also is where symbols can be found. */
1adeb98a 439 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
440
441 /* Reset the shared library package. This ensures that we get
442 a shlib event when the child reaches "_start", at which point
443 the dld will have had a chance to initialize the child. */
7a292a7a 444#if defined(SOLIB_RESTART)
c906108c 445 SOLIB_RESTART ();
7a292a7a
SS
446#endif
447#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 448 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
449#else
450 solib_create_inferior_hook ();
7a292a7a 451#endif
c906108c
SS
452
453 /* Reinsert all breakpoints. (Those which were symbolic have
454 been reset to the proper address in the new a.out, thanks
455 to symbol_file_command...) */
456 insert_breakpoints ();
457
458 /* The next resume of this inferior should bring it to the shlib
459 startup breakpoints. (If the user had also set bp's on
460 "main" from the old (parent) process, then they'll auto-
461 matically get reset there in the new process.) */
c906108c
SS
462}
463
464/* Non-zero if we just simulating a single-step. This is needed
465 because we cannot remove the breakpoints in the inferior process
466 until after the `wait' in `wait_for_inferior'. */
467static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
468
469/* The thread we inserted single-step breakpoints for. */
470static ptid_t singlestep_ptid;
471
472/* If another thread hit the singlestep breakpoint, we save the original
473 thread here so that we can resume single-stepping it later. */
474static ptid_t saved_singlestep_ptid;
475static int stepping_past_singlestep_breakpoint;
c906108c
SS
476\f
477
478/* Things to clean up if we QUIT out of resume (). */
c906108c 479static void
74b7792f 480resume_cleanups (void *ignore)
c906108c
SS
481{
482 normal_stop ();
483}
484
53904c9e
AC
485static const char schedlock_off[] = "off";
486static const char schedlock_on[] = "on";
487static const char schedlock_step[] = "step";
488f131b 488static const char *scheduler_enums[] = {
ef346e04
AC
489 schedlock_off,
490 schedlock_on,
491 schedlock_step,
492 NULL
493};
920d2a44
AC
494static const char *scheduler_mode = schedlock_off;
495static void
496show_scheduler_mode (struct ui_file *file, int from_tty,
497 struct cmd_list_element *c, const char *value)
498{
499 fprintf_filtered (file, _("\
500Mode for locking scheduler during execution is \"%s\".\n"),
501 value);
502}
c906108c
SS
503
504static void
96baa820 505set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 506{
eefe576e
AC
507 if (!target_can_lock_scheduler)
508 {
509 scheduler_mode = schedlock_off;
510 error (_("Target '%s' cannot support this command."), target_shortname);
511 }
c906108c
SS
512}
513
514
515/* Resume the inferior, but allow a QUIT. This is useful if the user
516 wants to interrupt some lengthy single-stepping operation
517 (for child processes, the SIGINT goes to the inferior, and so
518 we get a SIGINT random_signal, but for remote debugging and perhaps
519 other targets, that's not true).
520
521 STEP nonzero if we should step (zero to continue instead).
522 SIG is the signal to give the inferior (zero for none). */
523void
96baa820 524resume (int step, enum target_signal sig)
c906108c
SS
525{
526 int should_resume = 1;
74b7792f 527 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
528 QUIT;
529
527159b7 530 if (debug_infrun)
8a9de0e4
AC
531 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
532 step, sig);
527159b7 533
ef5cf84e
MS
534 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
535
c906108c 536
692590c1
MS
537 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
538 over an instruction that causes a page fault without triggering
539 a hardware watchpoint. The kernel properly notices that it shouldn't
540 stop, because the hardware watchpoint is not triggered, but it forgets
541 the step request and continues the program normally.
542 Work around the problem by removing hardware watchpoints if a step is
543 requested, GDB will check for a hardware watchpoint trigger after the
544 step anyway. */
545 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
546 remove_hw_watchpoints ();
488f131b 547
692590c1 548
c2c6d25f
JM
549 /* Normally, by the time we reach `resume', the breakpoints are either
550 removed or inserted, as appropriate. The exception is if we're sitting
551 at a permanent breakpoint; we need to step over it, but permanent
552 breakpoints can't be removed. So we have to test for it here. */
553 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
554 SKIP_PERMANENT_BREAKPOINT ();
555
b0ed3589 556 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
557 {
558 /* Do it the hard way, w/temp breakpoints */
c5aa993b 559 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
560 /* ...and don't ask hardware to do it. */
561 step = 0;
562 /* and do not pull these breakpoints until after a `wait' in
563 `wait_for_inferior' */
564 singlestep_breakpoints_inserted_p = 1;
9f976b41 565 singlestep_ptid = inferior_ptid;
c906108c
SS
566 }
567
c906108c 568 /* If there were any forks/vforks/execs that were caught and are
6604731b 569 now to be followed, then do so. */
c906108c
SS
570 switch (pending_follow.kind)
571 {
6604731b
DJ
572 case TARGET_WAITKIND_FORKED:
573 case TARGET_WAITKIND_VFORKED:
c906108c 574 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
575 if (follow_fork ())
576 should_resume = 0;
c906108c
SS
577 break;
578
6604731b 579 case TARGET_WAITKIND_EXECD:
c906108c 580 /* follow_exec is called as soon as the exec event is seen. */
6604731b 581 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
582 break;
583
584 default:
585 break;
586 }
c906108c
SS
587
588 /* Install inferior's terminal modes. */
589 target_terminal_inferior ();
590
591 if (should_resume)
592 {
39f77062 593 ptid_t resume_ptid;
dfcd3bfb 594
488f131b 595 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 596
8fb3e588
AC
597 if ((step || singlestep_breakpoints_inserted_p)
598 && (stepping_past_singlestep_breakpoint
599 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 600 {
ef5cf84e
MS
601 /* Stepping past a breakpoint without inserting breakpoints.
602 Make sure only the current thread gets to step, so that
603 other threads don't sneak past breakpoints while they are
604 not inserted. */
c906108c 605
ef5cf84e 606 resume_ptid = inferior_ptid;
c906108c 607 }
ef5cf84e 608
8fb3e588
AC
609 if ((scheduler_mode == schedlock_on)
610 || (scheduler_mode == schedlock_step
611 && (step || singlestep_breakpoints_inserted_p)))
c906108c 612 {
ef5cf84e 613 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 614 resume_ptid = inferior_ptid;
c906108c 615 }
ef5cf84e 616
c4ed33b9
AC
617 if (CANNOT_STEP_BREAKPOINT)
618 {
619 /* Most targets can step a breakpoint instruction, thus
620 executing it normally. But if this one cannot, just
621 continue and we will hit it anyway. */
622 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
623 step = 0;
624 }
39f77062 625 target_resume (resume_ptid, step, sig);
c906108c
SS
626 }
627
628 discard_cleanups (old_cleanups);
629}
630\f
631
632/* Clear out all variables saying what to do when inferior is continued.
633 First do this, then set the ones you want, then call `proceed'. */
634
635void
96baa820 636clear_proceed_status (void)
c906108c
SS
637{
638 trap_expected = 0;
639 step_range_start = 0;
640 step_range_end = 0;
aa0cd9c1 641 step_frame_id = null_frame_id;
5fbbeb29 642 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 643 stop_after_trap = 0;
c0236d92 644 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
645 proceed_to_finish = 0;
646 breakpoint_proceeded = 1; /* We're about to proceed... */
647
648 /* Discard any remaining commands or status from previous stop. */
649 bpstat_clear (&stop_bpstat);
650}
651
ea67f13b
DJ
652/* This should be suitable for any targets that support threads. */
653
654static int
655prepare_to_proceed (void)
656{
657 ptid_t wait_ptid;
658 struct target_waitstatus wait_status;
659
660 /* Get the last target status returned by target_wait(). */
661 get_last_target_status (&wait_ptid, &wait_status);
662
663 /* Make sure we were stopped either at a breakpoint, or because
664 of a Ctrl-C. */
665 if (wait_status.kind != TARGET_WAITKIND_STOPPED
8fb3e588
AC
666 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
667 && wait_status.value.sig != TARGET_SIGNAL_INT))
ea67f13b
DJ
668 {
669 return 0;
670 }
671
672 if (!ptid_equal (wait_ptid, minus_one_ptid)
673 && !ptid_equal (inferior_ptid, wait_ptid))
674 {
675 /* Switched over from WAIT_PID. */
676 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
677
678 if (wait_pc != read_pc ())
679 {
680 /* Switch back to WAIT_PID thread. */
681 inferior_ptid = wait_ptid;
682
683 /* FIXME: This stuff came from switch_to_thread() in
684 thread.c (which should probably be a public function). */
685 flush_cached_frames ();
686 registers_changed ();
687 stop_pc = wait_pc;
688 select_frame (get_current_frame ());
689 }
690
8fb3e588
AC
691 /* We return 1 to indicate that there is a breakpoint here,
692 so we need to step over it before continuing to avoid
693 hitting it straight away. */
694 if (breakpoint_here_p (wait_pc))
695 return 1;
ea67f13b
DJ
696 }
697
698 return 0;
8fb3e588 699
ea67f13b 700}
e4846b08
JJ
701
702/* Record the pc of the program the last time it stopped. This is
703 just used internally by wait_for_inferior, but need to be preserved
704 over calls to it and cleared when the inferior is started. */
705static CORE_ADDR prev_pc;
706
c906108c
SS
707/* Basic routine for continuing the program in various fashions.
708
709 ADDR is the address to resume at, or -1 for resume where stopped.
710 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 711 or -1 for act according to how it stopped.
c906108c 712 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
713 -1 means return after that and print nothing.
714 You should probably set various step_... variables
715 before calling here, if you are stepping.
c906108c
SS
716
717 You should call clear_proceed_status before calling proceed. */
718
719void
96baa820 720proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
721{
722 int oneproc = 0;
723
724 if (step > 0)
725 step_start_function = find_pc_function (read_pc ());
726 if (step < 0)
727 stop_after_trap = 1;
728
2acceee2 729 if (addr == (CORE_ADDR) -1)
c906108c 730 {
c906108c 731 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
732 /* There is a breakpoint at the address we will resume at,
733 step one instruction before inserting breakpoints so that
734 we do not stop right away (and report a second hit at this
735 breakpoint). */
c906108c 736 oneproc = 1;
3352ef37
AC
737 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
738 && gdbarch_single_step_through_delay (current_gdbarch,
739 get_current_frame ()))
740 /* We stepped onto an instruction that needs to be stepped
741 again before re-inserting the breakpoint, do so. */
c906108c
SS
742 oneproc = 1;
743 }
744 else
745 {
746 write_pc (addr);
c906108c
SS
747 }
748
527159b7 749 if (debug_infrun)
8a9de0e4
AC
750 fprintf_unfiltered (gdb_stdlog,
751 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
752 paddr_nz (addr), siggnal, step);
527159b7 753
c906108c
SS
754 /* In a multi-threaded task we may select another thread
755 and then continue or step.
756
757 But if the old thread was stopped at a breakpoint, it
758 will immediately cause another breakpoint stop without
759 any execution (i.e. it will report a breakpoint hit
760 incorrectly). So we must step over it first.
761
ea67f13b 762 prepare_to_proceed checks the current thread against the thread
c906108c
SS
763 that reported the most recent event. If a step-over is required
764 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
765 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
766 oneproc = 1;
c906108c 767
c906108c
SS
768 if (oneproc)
769 /* We will get a trace trap after one instruction.
770 Continue it automatically and insert breakpoints then. */
771 trap_expected = 1;
772 else
773 {
81d0cc19
GS
774 insert_breakpoints ();
775 /* If we get here there was no call to error() in
8fb3e588 776 insert breakpoints -- so they were inserted. */
c906108c
SS
777 breakpoints_inserted = 1;
778 }
779
780 if (siggnal != TARGET_SIGNAL_DEFAULT)
781 stop_signal = siggnal;
782 /* If this signal should not be seen by program,
783 give it zero. Used for debugging signals. */
784 else if (!signal_program[stop_signal])
785 stop_signal = TARGET_SIGNAL_0;
786
787 annotate_starting ();
788
789 /* Make sure that output from GDB appears before output from the
790 inferior. */
791 gdb_flush (gdb_stdout);
792
e4846b08
JJ
793 /* Refresh prev_pc value just prior to resuming. This used to be
794 done in stop_stepping, however, setting prev_pc there did not handle
795 scenarios such as inferior function calls or returning from
796 a function via the return command. In those cases, the prev_pc
797 value was not set properly for subsequent commands. The prev_pc value
798 is used to initialize the starting line number in the ecs. With an
799 invalid value, the gdb next command ends up stopping at the position
800 represented by the next line table entry past our start position.
801 On platforms that generate one line table entry per line, this
802 is not a problem. However, on the ia64, the compiler generates
803 extraneous line table entries that do not increase the line number.
804 When we issue the gdb next command on the ia64 after an inferior call
805 or a return command, we often end up a few instructions forward, still
806 within the original line we started.
807
808 An attempt was made to have init_execution_control_state () refresh
809 the prev_pc value before calculating the line number. This approach
810 did not work because on platforms that use ptrace, the pc register
811 cannot be read unless the inferior is stopped. At that point, we
812 are not guaranteed the inferior is stopped and so the read_pc ()
813 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 814 updated correctly when the inferior is stopped. */
e4846b08
JJ
815 prev_pc = read_pc ();
816
c906108c
SS
817 /* Resume inferior. */
818 resume (oneproc || step || bpstat_should_step (), stop_signal);
819
820 /* Wait for it to stop (if not standalone)
821 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
822 /* Do this only if we are not using the event loop, or if the target
823 does not support asynchronous execution. */
362646f5 824 if (!target_can_async_p ())
43ff13b4
JM
825 {
826 wait_for_inferior ();
827 normal_stop ();
828 }
c906108c 829}
c906108c
SS
830\f
831
832/* Start remote-debugging of a machine over a serial link. */
96baa820 833
c906108c 834void
96baa820 835start_remote (void)
c906108c
SS
836{
837 init_thread_list ();
838 init_wait_for_inferior ();
c0236d92 839 stop_soon = STOP_QUIETLY;
c906108c 840 trap_expected = 0;
43ff13b4 841
6426a772
JM
842 /* Always go on waiting for the target, regardless of the mode. */
843 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 844 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
845 nothing is returned (instead of just blocking). Because of this,
846 targets expecting an immediate response need to, internally, set
847 things up so that the target_wait() is forced to eventually
848 timeout. */
849 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
850 differentiate to its caller what the state of the target is after
851 the initial open has been performed. Here we're assuming that
852 the target has stopped. It should be possible to eventually have
853 target_open() return to the caller an indication that the target
854 is currently running and GDB state should be set to the same as
855 for an async run. */
856 wait_for_inferior ();
857 normal_stop ();
c906108c
SS
858}
859
860/* Initialize static vars when a new inferior begins. */
861
862void
96baa820 863init_wait_for_inferior (void)
c906108c
SS
864{
865 /* These are meaningless until the first time through wait_for_inferior. */
866 prev_pc = 0;
c906108c 867
c906108c
SS
868 breakpoints_inserted = 0;
869 breakpoint_init_inferior (inf_starting);
870
871 /* Don't confuse first call to proceed(). */
872 stop_signal = TARGET_SIGNAL_0;
873
874 /* The first resume is not following a fork/vfork/exec. */
875 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 876
c906108c 877 clear_proceed_status ();
9f976b41
DJ
878
879 stepping_past_singlestep_breakpoint = 0;
c906108c 880}
c906108c 881\f
b83266a0
SS
882/* This enum encodes possible reasons for doing a target_wait, so that
883 wfi can call target_wait in one place. (Ultimately the call will be
884 moved out of the infinite loop entirely.) */
885
c5aa993b
JM
886enum infwait_states
887{
cd0fc7c3
SS
888 infwait_normal_state,
889 infwait_thread_hop_state,
cd0fc7c3 890 infwait_nonstep_watch_state
b83266a0
SS
891};
892
11cf8741
JM
893/* Why did the inferior stop? Used to print the appropriate messages
894 to the interface from within handle_inferior_event(). */
895enum inferior_stop_reason
896{
897 /* We don't know why. */
898 STOP_UNKNOWN,
899 /* Step, next, nexti, stepi finished. */
900 END_STEPPING_RANGE,
901 /* Found breakpoint. */
902 BREAKPOINT_HIT,
903 /* Inferior terminated by signal. */
904 SIGNAL_EXITED,
905 /* Inferior exited. */
906 EXITED,
907 /* Inferior received signal, and user asked to be notified. */
908 SIGNAL_RECEIVED
909};
910
cd0fc7c3
SS
911/* This structure contains what used to be local variables in
912 wait_for_inferior. Probably many of them can return to being
913 locals in handle_inferior_event. */
914
c5aa993b 915struct execution_control_state
488f131b
JB
916{
917 struct target_waitstatus ws;
918 struct target_waitstatus *wp;
919 int another_trap;
920 int random_signal;
921 CORE_ADDR stop_func_start;
922 CORE_ADDR stop_func_end;
923 char *stop_func_name;
924 struct symtab_and_line sal;
488f131b
JB
925 int current_line;
926 struct symtab *current_symtab;
927 int handling_longjmp; /* FIXME */
928 ptid_t ptid;
929 ptid_t saved_inferior_ptid;
68f53502 930 int step_after_step_resume_breakpoint;
488f131b
JB
931 int stepping_through_solib_after_catch;
932 bpstat stepping_through_solib_catchpoints;
488f131b
JB
933 int new_thread_event;
934 struct target_waitstatus tmpstatus;
935 enum infwait_states infwait_state;
936 ptid_t waiton_ptid;
937 int wait_some_more;
938};
939
940void init_execution_control_state (struct execution_control_state *ecs);
941
942void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 943
c2c6d25f 944static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 945static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 946static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
947static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
948 struct frame_id sr_id);
104c1213
JM
949static void stop_stepping (struct execution_control_state *ecs);
950static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 951static void keep_going (struct execution_control_state *ecs);
488f131b
JB
952static void print_stop_reason (enum inferior_stop_reason stop_reason,
953 int stop_info);
104c1213 954
cd0fc7c3
SS
955/* Wait for control to return from inferior to debugger.
956 If inferior gets a signal, we may decide to start it up again
957 instead of returning. That is why there is a loop in this function.
958 When this function actually returns it means the inferior
959 should be left stopped and GDB should read more commands. */
960
961void
96baa820 962wait_for_inferior (void)
cd0fc7c3
SS
963{
964 struct cleanup *old_cleanups;
965 struct execution_control_state ecss;
966 struct execution_control_state *ecs;
c906108c 967
527159b7 968 if (debug_infrun)
8a9de0e4 969 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 970
8601f500 971 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 972 &step_resume_breakpoint);
cd0fc7c3
SS
973
974 /* wfi still stays in a loop, so it's OK just to take the address of
975 a local to get the ecs pointer. */
976 ecs = &ecss;
977
978 /* Fill in with reasonable starting values. */
979 init_execution_control_state (ecs);
980
c906108c 981 /* We'll update this if & when we switch to a new thread. */
39f77062 982 previous_inferior_ptid = inferior_ptid;
c906108c 983
cd0fc7c3
SS
984 overlay_cache_invalid = 1;
985
986 /* We have to invalidate the registers BEFORE calling target_wait
987 because they can be loaded from the target while in target_wait.
988 This makes remote debugging a bit more efficient for those
989 targets that provide critical registers as part of their normal
990 status mechanism. */
991
992 registers_changed ();
b83266a0 993
c906108c
SS
994 while (1)
995 {
9a4105ab
AC
996 if (deprecated_target_wait_hook)
997 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 998 else
39f77062 999 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1000
cd0fc7c3
SS
1001 /* Now figure out what to do with the result of the result. */
1002 handle_inferior_event (ecs);
c906108c 1003
cd0fc7c3
SS
1004 if (!ecs->wait_some_more)
1005 break;
1006 }
1007 do_cleanups (old_cleanups);
1008}
c906108c 1009
43ff13b4
JM
1010/* Asynchronous version of wait_for_inferior. It is called by the
1011 event loop whenever a change of state is detected on the file
1012 descriptor corresponding to the target. It can be called more than
1013 once to complete a single execution command. In such cases we need
1014 to keep the state in a global variable ASYNC_ECSS. If it is the
1015 last time that this function is called for a single execution
1016 command, then report to the user that the inferior has stopped, and
1017 do the necessary cleanups. */
1018
1019struct execution_control_state async_ecss;
1020struct execution_control_state *async_ecs;
1021
1022void
fba45db2 1023fetch_inferior_event (void *client_data)
43ff13b4
JM
1024{
1025 static struct cleanup *old_cleanups;
1026
c5aa993b 1027 async_ecs = &async_ecss;
43ff13b4
JM
1028
1029 if (!async_ecs->wait_some_more)
1030 {
488f131b 1031 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1032 &step_resume_breakpoint);
43ff13b4
JM
1033
1034 /* Fill in with reasonable starting values. */
1035 init_execution_control_state (async_ecs);
1036
43ff13b4 1037 /* We'll update this if & when we switch to a new thread. */
39f77062 1038 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1039
1040 overlay_cache_invalid = 1;
1041
1042 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1043 because they can be loaded from the target while in target_wait.
1044 This makes remote debugging a bit more efficient for those
1045 targets that provide critical registers as part of their normal
1046 status mechanism. */
43ff13b4
JM
1047
1048 registers_changed ();
1049 }
1050
9a4105ab 1051 if (deprecated_target_wait_hook)
488f131b 1052 async_ecs->ptid =
9a4105ab 1053 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1054 else
39f77062 1055 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1056
1057 /* Now figure out what to do with the result of the result. */
1058 handle_inferior_event (async_ecs);
1059
1060 if (!async_ecs->wait_some_more)
1061 {
adf40b2e 1062 /* Do only the cleanups that have been added by this
488f131b
JB
1063 function. Let the continuations for the commands do the rest,
1064 if there are any. */
43ff13b4
JM
1065 do_exec_cleanups (old_cleanups);
1066 normal_stop ();
c2d11a7d
JM
1067 if (step_multi && stop_step)
1068 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1069 else
1070 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1071 }
1072}
1073
cd0fc7c3
SS
1074/* Prepare an execution control state for looping through a
1075 wait_for_inferior-type loop. */
1076
1077void
96baa820 1078init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1079{
6ad80df0 1080 ecs->another_trap = 0;
cd0fc7c3 1081 ecs->random_signal = 0;
68f53502 1082 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1083 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1084 ecs->stepping_through_solib_after_catch = 0;
1085 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1086 ecs->sal = find_pc_line (prev_pc, 0);
1087 ecs->current_line = ecs->sal.line;
1088 ecs->current_symtab = ecs->sal.symtab;
1089 ecs->infwait_state = infwait_normal_state;
39f77062 1090 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1091 ecs->wp = &(ecs->ws);
1092}
1093
e02bc4cc 1094/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1095 target_wait()/deprecated_target_wait_hook(). The data is actually
1096 cached by handle_inferior_event(), which gets called immediately
1097 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1098
1099void
488f131b 1100get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1101{
39f77062 1102 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1103 *status = target_last_waitstatus;
1104}
1105
ac264b3b
MS
1106void
1107nullify_last_target_wait_ptid (void)
1108{
1109 target_last_wait_ptid = minus_one_ptid;
1110}
1111
dd80620e
MS
1112/* Switch thread contexts, maintaining "infrun state". */
1113
1114static void
1115context_switch (struct execution_control_state *ecs)
1116{
1117 /* Caution: it may happen that the new thread (or the old one!)
1118 is not in the thread list. In this case we must not attempt
1119 to "switch context", or we run the risk that our context may
1120 be lost. This may happen as a result of the target module
1121 mishandling thread creation. */
1122
1123 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1124 { /* Perform infrun state context switch: */
dd80620e 1125 /* Save infrun state for the old thread. */
0ce3d317 1126 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1127 trap_expected, step_resume_breakpoint,
15960608 1128 step_range_start,
aa0cd9c1 1129 step_range_end, &step_frame_id,
dd80620e
MS
1130 ecs->handling_longjmp, ecs->another_trap,
1131 ecs->stepping_through_solib_after_catch,
1132 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1133 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1134
1135 /* Load infrun state for the new thread. */
0ce3d317 1136 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1137 &trap_expected, &step_resume_breakpoint,
15960608 1138 &step_range_start,
aa0cd9c1 1139 &step_range_end, &step_frame_id,
dd80620e
MS
1140 &ecs->handling_longjmp, &ecs->another_trap,
1141 &ecs->stepping_through_solib_after_catch,
1142 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1143 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1144 }
1145 inferior_ptid = ecs->ptid;
1146}
1147
4fa8626c
DJ
1148static void
1149adjust_pc_after_break (struct execution_control_state *ecs)
1150{
8aad930b 1151 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1152
1153 /* If this target does not decrement the PC after breakpoints, then
1154 we have nothing to do. */
1155 if (DECR_PC_AFTER_BREAK == 0)
1156 return;
1157
1158 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1159 we aren't, just return.
9709f61c
DJ
1160
1161 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1162 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1163 by software breakpoints should be handled through the normal breakpoint
1164 layer.
8fb3e588 1165
4fa8626c
DJ
1166 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1167 different signals (SIGILL or SIGEMT for instance), but it is less
1168 clear where the PC is pointing afterwards. It may not match
1169 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1170 these signals at breakpoints (the code has been in GDB since at least
1171 1992) so I can not guess how to handle them here.
8fb3e588 1172
4fa8626c
DJ
1173 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1174 would have the PC after hitting a watchpoint affected by
1175 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1176 in GDB history, and it seems unlikely to be correct, so
1177 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1178
1179 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1180 return;
1181
1182 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1183 return;
1184
8aad930b
AC
1185 /* Find the location where (if we've hit a breakpoint) the
1186 breakpoint would be. */
1187 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1188
1189 if (SOFTWARE_SINGLE_STEP_P ())
1190 {
1191 /* When using software single-step, a SIGTRAP can only indicate
8fb3e588
AC
1192 an inserted breakpoint. This actually makes things
1193 easier. */
8aad930b
AC
1194 if (singlestep_breakpoints_inserted_p)
1195 /* When software single stepping, the instruction at [prev_pc]
1196 is never a breakpoint, but the instruction following
1197 [prev_pc] (in program execution order) always is. Assume
1198 that following instruction was reached and hence a software
1199 breakpoint was hit. */
1200 write_pc_pid (breakpoint_pc, ecs->ptid);
1201 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1202 /* The inferior was free running (i.e., no single-step
1203 breakpoints inserted) and it hit a software breakpoint. */
1204 write_pc_pid (breakpoint_pc, ecs->ptid);
1205 }
1206 else
1207 {
1208 /* When using hardware single-step, a SIGTRAP is reported for
8fb3e588
AC
1209 both a completed single-step and a software breakpoint. Need
1210 to differentiate between the two as the latter needs
90225438
AS
1211 adjusting but the former does not.
1212
1213 When the thread to be examined does not match the current thread
1214 context we can't use currently_stepping, so assume no
1215 single-stepping in this case. */
1216 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
8aad930b
AC
1217 {
1218 if (prev_pc == breakpoint_pc
1219 && software_breakpoint_inserted_here_p (breakpoint_pc))
1220 /* Hardware single-stepped a software breakpoint (as
1221 occures when the inferior is resumed with PC pointing
1222 at not-yet-hit software breakpoint). Since the
1223 breakpoint really is executed, the inferior needs to be
1224 backed up to the breakpoint address. */
1225 write_pc_pid (breakpoint_pc, ecs->ptid);
1226 }
1227 else
1228 {
1229 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1230 /* The inferior was free running (i.e., no hardware
1231 single-step and no possibility of a false SIGTRAP) and
1232 hit a software breakpoint. */
1233 write_pc_pid (breakpoint_pc, ecs->ptid);
1234 }
1235 }
4fa8626c
DJ
1236}
1237
cd0fc7c3
SS
1238/* Given an execution control state that has been freshly filled in
1239 by an event from the inferior, figure out what it means and take
1240 appropriate action. */
c906108c 1241
7270d8f2
OF
1242int stepped_after_stopped_by_watchpoint;
1243
cd0fc7c3 1244void
96baa820 1245handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1246{
8bbde302
BE
1247 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1248 that the variable stepped_after_stopped_by_watchpoint isn't used,
1249 then you're wrong! See remote.c:remote_stopped_data_address. */
1250
c8edd8b4 1251 int sw_single_step_trap_p = 0;
8fb3e588 1252 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1253
e02bc4cc 1254 /* Cache the last pid/waitstatus. */
39f77062 1255 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1256 target_last_waitstatus = *ecs->wp;
1257
4fa8626c
DJ
1258 adjust_pc_after_break (ecs);
1259
488f131b
JB
1260 switch (ecs->infwait_state)
1261 {
1262 case infwait_thread_hop_state:
527159b7 1263 if (debug_infrun)
8a9de0e4 1264 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1265 /* Cancel the waiton_ptid. */
1266 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1267 break;
b83266a0 1268
488f131b 1269 case infwait_normal_state:
527159b7 1270 if (debug_infrun)
8a9de0e4 1271 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
488f131b
JB
1272 stepped_after_stopped_by_watchpoint = 0;
1273 break;
b83266a0 1274
488f131b 1275 case infwait_nonstep_watch_state:
527159b7 1276 if (debug_infrun)
8a9de0e4
AC
1277 fprintf_unfiltered (gdb_stdlog,
1278 "infrun: infwait_nonstep_watch_state\n");
488f131b 1279 insert_breakpoints ();
c906108c 1280
488f131b
JB
1281 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1282 handle things like signals arriving and other things happening
1283 in combination correctly? */
1284 stepped_after_stopped_by_watchpoint = 1;
1285 break;
65e82032
AC
1286
1287 default:
e2e0b3e5 1288 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1289 }
1290 ecs->infwait_state = infwait_normal_state;
c906108c 1291
488f131b 1292 flush_cached_frames ();
c906108c 1293
488f131b 1294 /* If it's a new process, add it to the thread database */
c906108c 1295
488f131b 1296 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1297 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1298 && !in_thread_list (ecs->ptid));
1299
1300 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1301 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1302 {
1303 add_thread (ecs->ptid);
c906108c 1304
488f131b
JB
1305 ui_out_text (uiout, "[New ");
1306 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1307 ui_out_text (uiout, "]\n");
488f131b 1308 }
c906108c 1309
488f131b
JB
1310 switch (ecs->ws.kind)
1311 {
1312 case TARGET_WAITKIND_LOADED:
527159b7 1313 if (debug_infrun)
8a9de0e4 1314 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
488f131b
JB
1315 /* Ignore gracefully during startup of the inferior, as it
1316 might be the shell which has just loaded some objects,
1317 otherwise add the symbols for the newly loaded objects. */
c906108c 1318#ifdef SOLIB_ADD
c0236d92 1319 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1320 {
1321 /* Remove breakpoints, SOLIB_ADD might adjust
1322 breakpoint addresses via breakpoint_re_set. */
1323 if (breakpoints_inserted)
1324 remove_breakpoints ();
c906108c 1325
488f131b
JB
1326 /* Check for any newly added shared libraries if we're
1327 supposed to be adding them automatically. Switch
1328 terminal for any messages produced by
1329 breakpoint_re_set. */
1330 target_terminal_ours_for_output ();
aff6338a 1331 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1332 stack's section table is kept up-to-date. Architectures,
1333 (e.g., PPC64), use the section table to perform
1334 operations such as address => section name and hence
1335 require the table to contain all sections (including
1336 those found in shared libraries). */
aff6338a 1337 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1338 exec_ops to SOLIB_ADD. This is because current GDB is
1339 only tooled to propagate section_table changes out from
1340 the "current_target" (see target_resize_to_sections), and
1341 not up from the exec stratum. This, of course, isn't
1342 right. "infrun.c" should only interact with the
1343 exec/process stratum, instead relying on the target stack
1344 to propagate relevant changes (stop, section table
1345 changed, ...) up to other layers. */
aff6338a 1346 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1347 target_terminal_inferior ();
1348
1349 /* Reinsert breakpoints and continue. */
1350 if (breakpoints_inserted)
1351 insert_breakpoints ();
1352 }
c906108c 1353#endif
488f131b
JB
1354 resume (0, TARGET_SIGNAL_0);
1355 prepare_to_wait (ecs);
1356 return;
c5aa993b 1357
488f131b 1358 case TARGET_WAITKIND_SPURIOUS:
527159b7 1359 if (debug_infrun)
8a9de0e4 1360 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1361 resume (0, TARGET_SIGNAL_0);
1362 prepare_to_wait (ecs);
1363 return;
c5aa993b 1364
488f131b 1365 case TARGET_WAITKIND_EXITED:
527159b7 1366 if (debug_infrun)
8a9de0e4 1367 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1368 target_terminal_ours (); /* Must do this before mourn anyway */
1369 print_stop_reason (EXITED, ecs->ws.value.integer);
1370
1371 /* Record the exit code in the convenience variable $_exitcode, so
1372 that the user can inspect this again later. */
1373 set_internalvar (lookup_internalvar ("_exitcode"),
1374 value_from_longest (builtin_type_int,
1375 (LONGEST) ecs->ws.value.integer));
1376 gdb_flush (gdb_stdout);
1377 target_mourn_inferior ();
1378 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1379 stop_print_frame = 0;
1380 stop_stepping (ecs);
1381 return;
c5aa993b 1382
488f131b 1383 case TARGET_WAITKIND_SIGNALLED:
527159b7 1384 if (debug_infrun)
8a9de0e4 1385 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1386 stop_print_frame = 0;
1387 stop_signal = ecs->ws.value.sig;
1388 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1389
488f131b
JB
1390 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1391 reach here unless the inferior is dead. However, for years
1392 target_kill() was called here, which hints that fatal signals aren't
1393 really fatal on some systems. If that's true, then some changes
1394 may be needed. */
1395 target_mourn_inferior ();
c906108c 1396
488f131b
JB
1397 print_stop_reason (SIGNAL_EXITED, stop_signal);
1398 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1399 stop_stepping (ecs);
1400 return;
c906108c 1401
488f131b
JB
1402 /* The following are the only cases in which we keep going;
1403 the above cases end in a continue or goto. */
1404 case TARGET_WAITKIND_FORKED:
deb3b17b 1405 case TARGET_WAITKIND_VFORKED:
527159b7 1406 if (debug_infrun)
8a9de0e4 1407 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1408 stop_signal = TARGET_SIGNAL_TRAP;
1409 pending_follow.kind = ecs->ws.kind;
1410
8e7d2c16
DJ
1411 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1412 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1413
5a2901d9
DJ
1414 if (!ptid_equal (ecs->ptid, inferior_ptid))
1415 {
1416 context_switch (ecs);
1417 flush_cached_frames ();
1418 }
1419
488f131b 1420 stop_pc = read_pc ();
675bf4cb 1421
00d4360e 1422 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1423
488f131b 1424 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1425
1426 /* If no catchpoint triggered for this, then keep going. */
1427 if (ecs->random_signal)
1428 {
1429 stop_signal = TARGET_SIGNAL_0;
1430 keep_going (ecs);
1431 return;
1432 }
488f131b
JB
1433 goto process_event_stop_test;
1434
1435 case TARGET_WAITKIND_EXECD:
527159b7 1436 if (debug_infrun)
fc5261f2 1437 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
1438 stop_signal = TARGET_SIGNAL_TRAP;
1439
7d2830a3 1440 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1441 target_wait function. Until then following vfork on HP/UX 10.20
1442 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1443 /* Is this a target which reports multiple exec events per actual
1444 call to exec()? (HP-UX using ptrace does, for example.) If so,
1445 ignore all but the last one. Just resume the exec'r, and wait
1446 for the next exec event. */
1447 if (inferior_ignoring_leading_exec_events)
1448 {
1449 inferior_ignoring_leading_exec_events--;
1450 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1451 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1452 parent_pid);
1453 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1454 prepare_to_wait (ecs);
1455 return;
1456 }
1457 inferior_ignoring_leading_exec_events =
1458 target_reported_exec_events_per_exec_call () - 1;
1459
1460 pending_follow.execd_pathname =
1461 savestring (ecs->ws.value.execd_pathname,
1462 strlen (ecs->ws.value.execd_pathname));
1463
488f131b
JB
1464 /* This causes the eventpoints and symbol table to be reset. Must
1465 do this now, before trying to determine whether to stop. */
1466 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1467 xfree (pending_follow.execd_pathname);
c906108c 1468
488f131b
JB
1469 stop_pc = read_pc_pid (ecs->ptid);
1470 ecs->saved_inferior_ptid = inferior_ptid;
1471 inferior_ptid = ecs->ptid;
675bf4cb 1472
00d4360e 1473 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1474
488f131b
JB
1475 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1476 inferior_ptid = ecs->saved_inferior_ptid;
04e68871 1477
5a2901d9
DJ
1478 if (!ptid_equal (ecs->ptid, inferior_ptid))
1479 {
1480 context_switch (ecs);
1481 flush_cached_frames ();
1482 }
1483
04e68871
DJ
1484 /* If no catchpoint triggered for this, then keep going. */
1485 if (ecs->random_signal)
1486 {
1487 stop_signal = TARGET_SIGNAL_0;
1488 keep_going (ecs);
1489 return;
1490 }
488f131b
JB
1491 goto process_event_stop_test;
1492
b4dc5ffa
MK
1493 /* Be careful not to try to gather much state about a thread
1494 that's in a syscall. It's frequently a losing proposition. */
488f131b 1495 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1496 if (debug_infrun)
8a9de0e4 1497 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1498 resume (0, TARGET_SIGNAL_0);
1499 prepare_to_wait (ecs);
1500 return;
c906108c 1501
488f131b
JB
1502 /* Before examining the threads further, step this thread to
1503 get it entirely out of the syscall. (We get notice of the
1504 event when the thread is just on the verge of exiting a
1505 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1506 into user code.) */
488f131b 1507 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1508 if (debug_infrun)
8a9de0e4 1509 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1510 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1511 prepare_to_wait (ecs);
1512 return;
c906108c 1513
488f131b 1514 case TARGET_WAITKIND_STOPPED:
527159b7 1515 if (debug_infrun)
8a9de0e4 1516 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1517 stop_signal = ecs->ws.value.sig;
1518 break;
c906108c 1519
488f131b
JB
1520 /* We had an event in the inferior, but we are not interested
1521 in handling it at this level. The lower layers have already
8e7d2c16 1522 done what needs to be done, if anything.
8fb3e588
AC
1523
1524 One of the possible circumstances for this is when the
1525 inferior produces output for the console. The inferior has
1526 not stopped, and we are ignoring the event. Another possible
1527 circumstance is any event which the lower level knows will be
1528 reported multiple times without an intervening resume. */
488f131b 1529 case TARGET_WAITKIND_IGNORE:
527159b7 1530 if (debug_infrun)
8a9de0e4 1531 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1532 prepare_to_wait (ecs);
488f131b
JB
1533 return;
1534 }
c906108c 1535
488f131b
JB
1536 /* We may want to consider not doing a resume here in order to give
1537 the user a chance to play with the new thread. It might be good
1538 to make that a user-settable option. */
c906108c 1539
488f131b
JB
1540 /* At this point, all threads are stopped (happens automatically in
1541 either the OS or the native code). Therefore we need to continue
1542 all threads in order to make progress. */
1543 if (ecs->new_thread_event)
1544 {
1545 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1546 prepare_to_wait (ecs);
1547 return;
1548 }
c906108c 1549
488f131b
JB
1550 stop_pc = read_pc_pid (ecs->ptid);
1551
527159b7 1552 if (debug_infrun)
8a9de0e4 1553 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1554
9f976b41
DJ
1555 if (stepping_past_singlestep_breakpoint)
1556 {
8fb3e588
AC
1557 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1558 && singlestep_breakpoints_inserted_p);
9f976b41
DJ
1559 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1560 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1561
1562 stepping_past_singlestep_breakpoint = 0;
1563
1564 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1565 breakpoint, or stopped for some other reason. It would be nice if
1566 we could tell, but we can't reliably. */
9f976b41 1567 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1568 {
527159b7 1569 if (debug_infrun)
8a9de0e4 1570 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41
DJ
1571 /* Pull the single step breakpoints out of the target. */
1572 SOFTWARE_SINGLE_STEP (0, 0);
1573 singlestep_breakpoints_inserted_p = 0;
1574
1575 ecs->random_signal = 0;
1576
1577 ecs->ptid = saved_singlestep_ptid;
1578 context_switch (ecs);
9a4105ab
AC
1579 if (deprecated_context_hook)
1580 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1581
1582 resume (1, TARGET_SIGNAL_0);
1583 prepare_to_wait (ecs);
1584 return;
1585 }
1586 }
1587
1588 stepping_past_singlestep_breakpoint = 0;
1589
488f131b
JB
1590 /* See if a thread hit a thread-specific breakpoint that was meant for
1591 another thread. If so, then step that thread past the breakpoint,
1592 and continue it. */
1593
1594 if (stop_signal == TARGET_SIGNAL_TRAP)
1595 {
9f976b41
DJ
1596 int thread_hop_needed = 0;
1597
f8d40ec8
JB
1598 /* Check if a regular breakpoint has been hit before checking
1599 for a potential single step breakpoint. Otherwise, GDB will
1600 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1601 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1602 {
c5aa993b 1603 ecs->random_signal = 0;
4fa8626c 1604 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1605 thread_hop_needed = 1;
1606 }
1607 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1608 {
1609 ecs->random_signal = 0;
1610 /* The call to in_thread_list is necessary because PTIDs sometimes
1611 change when we go from single-threaded to multi-threaded. If
1612 the singlestep_ptid is still in the list, assume that it is
1613 really different from ecs->ptid. */
1614 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1615 && in_thread_list (singlestep_ptid))
1616 {
1617 thread_hop_needed = 1;
1618 stepping_past_singlestep_breakpoint = 1;
1619 saved_singlestep_ptid = singlestep_ptid;
1620 }
1621 }
1622
1623 if (thread_hop_needed)
8fb3e588
AC
1624 {
1625 int remove_status;
1626
527159b7 1627 if (debug_infrun)
8a9de0e4 1628 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1629
8fb3e588
AC
1630 /* Saw a breakpoint, but it was hit by the wrong thread.
1631 Just continue. */
1632
1633 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
488f131b 1634 {
8fb3e588
AC
1635 /* Pull the single step breakpoints out of the target. */
1636 SOFTWARE_SINGLE_STEP (0, 0);
1637 singlestep_breakpoints_inserted_p = 0;
1638 }
1639
1640 remove_status = remove_breakpoints ();
1641 /* Did we fail to remove breakpoints? If so, try
1642 to set the PC past the bp. (There's at least
1643 one situation in which we can fail to remove
1644 the bp's: On HP-UX's that use ttrace, we can't
1645 change the address space of a vforking child
1646 process until the child exits (well, okay, not
1647 then either :-) or execs. */
1648 if (remove_status != 0)
1649 {
1650 /* FIXME! This is obviously non-portable! */
1651 write_pc_pid (stop_pc + 4, ecs->ptid);
1652 /* We need to restart all the threads now,
1653 * unles we're running in scheduler-locked mode.
1654 * Use currently_stepping to determine whether to
1655 * step or continue.
1656 */
1657 /* FIXME MVS: is there any reason not to call resume()? */
1658 if (scheduler_mode == schedlock_on)
1659 target_resume (ecs->ptid,
1660 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1661 else
8fb3e588
AC
1662 target_resume (RESUME_ALL,
1663 currently_stepping (ecs), TARGET_SIGNAL_0);
1664 prepare_to_wait (ecs);
1665 return;
1666 }
1667 else
1668 { /* Single step */
1669 breakpoints_inserted = 0;
1670 if (!ptid_equal (inferior_ptid, ecs->ptid))
1671 context_switch (ecs);
1672 ecs->waiton_ptid = ecs->ptid;
1673 ecs->wp = &(ecs->ws);
1674 ecs->another_trap = 1;
1675
1676 ecs->infwait_state = infwait_thread_hop_state;
1677 keep_going (ecs);
1678 registers_changed ();
1679 return;
1680 }
488f131b 1681 }
f8d40ec8 1682 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
8fb3e588
AC
1683 {
1684 sw_single_step_trap_p = 1;
1685 ecs->random_signal = 0;
1686 }
488f131b
JB
1687 }
1688 else
1689 ecs->random_signal = 1;
c906108c 1690
488f131b 1691 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1692 so, then switch to that thread. */
1693 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1694 {
527159b7 1695 if (debug_infrun)
8a9de0e4 1696 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1697
488f131b 1698 context_switch (ecs);
c5aa993b 1699
9a4105ab
AC
1700 if (deprecated_context_hook)
1701 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1702
488f131b
JB
1703 flush_cached_frames ();
1704 }
c906108c 1705
488f131b
JB
1706 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1707 {
1708 /* Pull the single step breakpoints out of the target. */
1709 SOFTWARE_SINGLE_STEP (0, 0);
1710 singlestep_breakpoints_inserted_p = 0;
1711 }
c906108c 1712
488f131b
JB
1713 /* It may not be necessary to disable the watchpoint to stop over
1714 it. For example, the PA can (with some kernel cooperation)
1715 single step over a watchpoint without disabling the watchpoint. */
1716 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1717 {
527159b7 1718 if (debug_infrun)
8a9de0e4 1719 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1720 resume (1, 0);
1721 prepare_to_wait (ecs);
1722 return;
1723 }
c906108c 1724
488f131b
JB
1725 /* It is far more common to need to disable a watchpoint to step
1726 the inferior over it. FIXME. What else might a debug
1727 register or page protection watchpoint scheme need here? */
1728 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1729 {
1730 /* At this point, we are stopped at an instruction which has
1731 attempted to write to a piece of memory under control of
1732 a watchpoint. The instruction hasn't actually executed
1733 yet. If we were to evaluate the watchpoint expression
1734 now, we would get the old value, and therefore no change
1735 would seem to have occurred.
1736
1737 In order to make watchpoints work `right', we really need
1738 to complete the memory write, and then evaluate the
1739 watchpoint expression. The following code does that by
1740 removing the watchpoint (actually, all watchpoints and
1741 breakpoints), single-stepping the target, re-inserting
1742 watchpoints, and then falling through to let normal
1743 single-step processing handle proceed. Since this
1744 includes evaluating watchpoints, things will come to a
1745 stop in the correct manner. */
1746
527159b7 1747 if (debug_infrun)
8a9de0e4 1748 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1749 remove_breakpoints ();
1750 registers_changed ();
1751 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1752
488f131b
JB
1753 ecs->waiton_ptid = ecs->ptid;
1754 ecs->wp = &(ecs->ws);
1755 ecs->infwait_state = infwait_nonstep_watch_state;
1756 prepare_to_wait (ecs);
1757 return;
1758 }
1759
1760 /* It may be possible to simply continue after a watchpoint. */
1761 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1762 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1763
1764 ecs->stop_func_start = 0;
1765 ecs->stop_func_end = 0;
1766 ecs->stop_func_name = 0;
1767 /* Don't care about return value; stop_func_start and stop_func_name
1768 will both be 0 if it doesn't work. */
1769 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1770 &ecs->stop_func_start, &ecs->stop_func_end);
782263ab 1771 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
488f131b
JB
1772 ecs->another_trap = 0;
1773 bpstat_clear (&stop_bpstat);
1774 stop_step = 0;
1775 stop_stack_dummy = 0;
1776 stop_print_frame = 1;
1777 ecs->random_signal = 0;
1778 stopped_by_random_signal = 0;
1779 breakpoints_failed = 0;
1780
3352ef37
AC
1781 if (stop_signal == TARGET_SIGNAL_TRAP
1782 && trap_expected
1783 && gdbarch_single_step_through_delay_p (current_gdbarch)
1784 && currently_stepping (ecs))
1785 {
1786 /* We're trying to step of a breakpoint. Turns out that we're
1787 also on an instruction that needs to be stepped multiple
1788 times before it's been fully executing. E.g., architectures
1789 with a delay slot. It needs to be stepped twice, once for
1790 the instruction and once for the delay slot. */
1791 int step_through_delay
1792 = gdbarch_single_step_through_delay (current_gdbarch,
1793 get_current_frame ());
527159b7 1794 if (debug_infrun && step_through_delay)
8a9de0e4 1795 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1796 if (step_range_end == 0 && step_through_delay)
1797 {
1798 /* The user issued a continue when stopped at a breakpoint.
1799 Set up for another trap and get out of here. */
1800 ecs->another_trap = 1;
1801 keep_going (ecs);
1802 return;
1803 }
1804 else if (step_through_delay)
1805 {
1806 /* The user issued a step when stopped at a breakpoint.
1807 Maybe we should stop, maybe we should not - the delay
1808 slot *might* correspond to a line of source. In any
1809 case, don't decide that here, just set ecs->another_trap,
1810 making sure we single-step again before breakpoints are
1811 re-inserted. */
1812 ecs->another_trap = 1;
1813 }
1814 }
1815
488f131b
JB
1816 /* Look at the cause of the stop, and decide what to do.
1817 The alternatives are:
1818 1) break; to really stop and return to the debugger,
1819 2) drop through to start up again
1820 (set ecs->another_trap to 1 to single step once)
1821 3) set ecs->random_signal to 1, and the decision between 1 and 2
1822 will be made according to the signal handling tables. */
1823
1824 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1825 that have to do with the program's own actions. Note that
1826 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1827 on the operating system version. Here we detect when a SIGILL or
1828 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1829 something similar for SIGSEGV, since a SIGSEGV will be generated
1830 when we're trying to execute a breakpoint instruction on a
1831 non-executable stack. This happens for call dummy breakpoints
1832 for architectures like SPARC that place call dummies on the
1833 stack. */
488f131b
JB
1834
1835 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1836 || (breakpoints_inserted
1837 && (stop_signal == TARGET_SIGNAL_ILL
1838 || stop_signal == TARGET_SIGNAL_SEGV
1839 || stop_signal == TARGET_SIGNAL_EMT))
1840 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1841 {
1842 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1843 {
527159b7 1844 if (debug_infrun)
8a9de0e4 1845 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1846 stop_print_frame = 0;
1847 stop_stepping (ecs);
1848 return;
1849 }
c54cfec8
EZ
1850
1851 /* This is originated from start_remote(), start_inferior() and
1852 shared libraries hook functions. */
c0236d92 1853 if (stop_soon == STOP_QUIETLY)
488f131b 1854 {
527159b7 1855 if (debug_infrun)
8a9de0e4 1856 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1857 stop_stepping (ecs);
1858 return;
1859 }
1860
c54cfec8
EZ
1861 /* This originates from attach_command(). We need to overwrite
1862 the stop_signal here, because some kernels don't ignore a
1863 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1864 See more comments in inferior.h. */
c0236d92 1865 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1866 {
1867 stop_stepping (ecs);
1868 if (stop_signal == TARGET_SIGNAL_STOP)
1869 stop_signal = TARGET_SIGNAL_0;
1870 return;
1871 }
1872
d303a6c7
AC
1873 /* Don't even think about breakpoints if just proceeded over a
1874 breakpoint. */
1875 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1876 {
1877 if (debug_infrun)
8a9de0e4 1878 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1879 bpstat_clear (&stop_bpstat);
1880 }
488f131b
JB
1881 else
1882 {
1883 /* See if there is a breakpoint at the current PC. */
8fb3e588 1884 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1885 stopped_by_watchpoint);
488f131b 1886
488f131b
JB
1887 /* Following in case break condition called a
1888 function. */
1889 stop_print_frame = 1;
1890 }
1891
73dd234f 1892 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1893 at one stage in the past included checks for an inferior
1894 function call's call dummy's return breakpoint. The original
1895 comment, that went with the test, read:
73dd234f 1896
8fb3e588
AC
1897 ``End of a stack dummy. Some systems (e.g. Sony news) give
1898 another signal besides SIGTRAP, so check here as well as
1899 above.''
73dd234f
AC
1900
1901 If someone ever tries to get get call dummys on a
1902 non-executable stack to work (where the target would stop
03cebad2
MK
1903 with something like a SIGSEGV), then those tests might need
1904 to be re-instated. Given, however, that the tests were only
73dd234f 1905 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1906 suspect that it won't be the case.
1907
8fb3e588
AC
1908 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1909 be necessary for call dummies on a non-executable stack on
1910 SPARC. */
73dd234f 1911
488f131b
JB
1912 if (stop_signal == TARGET_SIGNAL_TRAP)
1913 ecs->random_signal
1914 = !(bpstat_explains_signal (stop_bpstat)
1915 || trap_expected
488f131b 1916 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1917 else
1918 {
73dd234f 1919 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1920 if (!ecs->random_signal)
1921 stop_signal = TARGET_SIGNAL_TRAP;
1922 }
1923 }
1924
1925 /* When we reach this point, we've pretty much decided
1926 that the reason for stopping must've been a random
1927 (unexpected) signal. */
1928
1929 else
1930 ecs->random_signal = 1;
488f131b 1931
04e68871 1932process_event_stop_test:
488f131b
JB
1933 /* For the program's own signals, act according to
1934 the signal handling tables. */
1935
1936 if (ecs->random_signal)
1937 {
1938 /* Signal not for debugging purposes. */
1939 int printed = 0;
1940
527159b7 1941 if (debug_infrun)
8a9de0e4 1942 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 1943
488f131b
JB
1944 stopped_by_random_signal = 1;
1945
1946 if (signal_print[stop_signal])
1947 {
1948 printed = 1;
1949 target_terminal_ours_for_output ();
1950 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1951 }
1952 if (signal_stop[stop_signal])
1953 {
1954 stop_stepping (ecs);
1955 return;
1956 }
1957 /* If not going to stop, give terminal back
1958 if we took it away. */
1959 else if (printed)
1960 target_terminal_inferior ();
1961
1962 /* Clear the signal if it should not be passed. */
1963 if (signal_program[stop_signal] == 0)
1964 stop_signal = TARGET_SIGNAL_0;
1965
68f53502
AC
1966 if (prev_pc == read_pc ()
1967 && !breakpoints_inserted
1968 && breakpoint_here_p (read_pc ())
1969 && step_resume_breakpoint == NULL)
1970 {
1971 /* We were just starting a new sequence, attempting to
1972 single-step off of a breakpoint and expecting a SIGTRAP.
1973 Intead this signal arrives. This signal will take us out
1974 of the stepping range so GDB needs to remember to, when
1975 the signal handler returns, resume stepping off that
1976 breakpoint. */
1977 /* To simplify things, "continue" is forced to use the same
1978 code paths as single-step - set a breakpoint at the
1979 signal return address and then, once hit, step off that
1980 breakpoint. */
44cbf7b5 1981 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 1982 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
1983 keep_going (ecs);
1984 return;
68f53502 1985 }
9d799f85
AC
1986
1987 if (step_range_end != 0
1988 && stop_signal != TARGET_SIGNAL_0
1989 && stop_pc >= step_range_start && stop_pc < step_range_end
1990 && frame_id_eq (get_frame_id (get_current_frame ()),
1991 step_frame_id)
1992 && step_resume_breakpoint == NULL)
d303a6c7
AC
1993 {
1994 /* The inferior is about to take a signal that will take it
1995 out of the single step range. Set a breakpoint at the
1996 current PC (which is presumably where the signal handler
1997 will eventually return) and then allow the inferior to
1998 run free.
1999
2000 Note that this is only needed for a signal delivered
2001 while in the single-step range. Nested signals aren't a
2002 problem as they eventually all return. */
44cbf7b5 2003 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2004 keep_going (ecs);
2005 return;
d303a6c7 2006 }
9d799f85
AC
2007
2008 /* Note: step_resume_breakpoint may be non-NULL. This occures
2009 when either there's a nested signal, or when there's a
2010 pending signal enabled just as the signal handler returns
2011 (leaving the inferior at the step-resume-breakpoint without
2012 actually executing it). Either way continue until the
2013 breakpoint is really hit. */
488f131b
JB
2014 keep_going (ecs);
2015 return;
2016 }
2017
2018 /* Handle cases caused by hitting a breakpoint. */
2019 {
2020 CORE_ADDR jmp_buf_pc;
2021 struct bpstat_what what;
2022
2023 what = bpstat_what (stop_bpstat);
2024
2025 if (what.call_dummy)
2026 {
2027 stop_stack_dummy = 1;
c5aa993b 2028 }
c906108c 2029
488f131b 2030 switch (what.main_action)
c5aa993b 2031 {
488f131b
JB
2032 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2033 /* If we hit the breakpoint at longjmp, disable it for the
2034 duration of this command. Then, install a temporary
2035 breakpoint at the target of the jmp_buf. */
527159b7 2036 if (debug_infrun)
8802d8ed 2037 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
2038 disable_longjmp_breakpoint ();
2039 remove_breakpoints ();
2040 breakpoints_inserted = 0;
2041 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2042 {
488f131b 2043 keep_going (ecs);
104c1213 2044 return;
c5aa993b 2045 }
488f131b
JB
2046
2047 /* Need to blow away step-resume breakpoint, as it
2048 interferes with us */
2049 if (step_resume_breakpoint != NULL)
104c1213 2050 {
488f131b 2051 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2052 }
c906108c 2053
8fb3e588 2054 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2055 ecs->handling_longjmp = 1; /* FIXME */
2056 keep_going (ecs);
2057 return;
c906108c 2058
488f131b
JB
2059 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2060 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2061 if (debug_infrun)
8802d8ed 2062 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2063 remove_breakpoints ();
2064 breakpoints_inserted = 0;
488f131b
JB
2065 disable_longjmp_breakpoint ();
2066 ecs->handling_longjmp = 0; /* FIXME */
2067 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2068 break;
2069 /* else fallthrough */
2070
2071 case BPSTAT_WHAT_SINGLE:
527159b7 2072 if (debug_infrun)
8802d8ed 2073 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
488f131b 2074 if (breakpoints_inserted)
c5aa993b 2075 {
488f131b 2076 remove_breakpoints ();
c5aa993b 2077 }
488f131b
JB
2078 breakpoints_inserted = 0;
2079 ecs->another_trap = 1;
2080 /* Still need to check other stuff, at least the case
2081 where we are stepping and step out of the right range. */
2082 break;
c906108c 2083
488f131b 2084 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2085 if (debug_infrun)
8802d8ed 2086 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2087 stop_print_frame = 1;
c906108c 2088
d303a6c7
AC
2089 /* We are about to nuke the step_resume_breakpointt via the
2090 cleanup chain, so no need to worry about it here. */
c5aa993b 2091
488f131b
JB
2092 stop_stepping (ecs);
2093 return;
c5aa993b 2094
488f131b 2095 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2096 if (debug_infrun)
8802d8ed 2097 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2098 stop_print_frame = 0;
c5aa993b 2099
d303a6c7
AC
2100 /* We are about to nuke the step_resume_breakpoin via the
2101 cleanup chain, so no need to worry about it here. */
c5aa993b 2102
488f131b 2103 stop_stepping (ecs);
e441088d 2104 return;
c5aa993b 2105
488f131b
JB
2106 case BPSTAT_WHAT_STEP_RESUME:
2107 /* This proably demands a more elegant solution, but, yeah
2108 right...
c5aa993b 2109
488f131b
JB
2110 This function's use of the simple variable
2111 step_resume_breakpoint doesn't seem to accomodate
2112 simultaneously active step-resume bp's, although the
2113 breakpoint list certainly can.
c5aa993b 2114
488f131b
JB
2115 If we reach here and step_resume_breakpoint is already
2116 NULL, then apparently we have multiple active
2117 step-resume bp's. We'll just delete the breakpoint we
2118 stopped at, and carry on.
2119
2120 Correction: what the code currently does is delete a
2121 step-resume bp, but it makes no effort to ensure that
2122 the one deleted is the one currently stopped at. MVS */
c5aa993b 2123
527159b7 2124 if (debug_infrun)
8802d8ed 2125 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2126
488f131b
JB
2127 if (step_resume_breakpoint == NULL)
2128 {
2129 step_resume_breakpoint =
2130 bpstat_find_step_resume_breakpoint (stop_bpstat);
2131 }
2132 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2133 if (ecs->step_after_step_resume_breakpoint)
2134 {
2135 /* Back when the step-resume breakpoint was inserted, we
2136 were trying to single-step off a breakpoint. Go back
2137 to doing that. */
2138 ecs->step_after_step_resume_breakpoint = 0;
2139 remove_breakpoints ();
2140 breakpoints_inserted = 0;
2141 ecs->another_trap = 1;
2142 keep_going (ecs);
2143 return;
2144 }
488f131b
JB
2145 break;
2146
2147 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
527159b7 2148 if (debug_infrun)
8802d8ed 2149 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
488f131b
JB
2150 /* If were waiting for a trap, hitting the step_resume_break
2151 doesn't count as getting it. */
2152 if (trap_expected)
2153 ecs->another_trap = 1;
2154 break;
2155
2156 case BPSTAT_WHAT_CHECK_SHLIBS:
2157 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2158 {
527159b7 2159 if (debug_infrun)
8802d8ed 2160 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2161 /* Remove breakpoints, we eventually want to step over the
2162 shlib event breakpoint, and SOLIB_ADD might adjust
2163 breakpoint addresses via breakpoint_re_set. */
2164 if (breakpoints_inserted)
2165 remove_breakpoints ();
c5aa993b 2166 breakpoints_inserted = 0;
488f131b
JB
2167
2168 /* Check for any newly added shared libraries if we're
2169 supposed to be adding them automatically. Switch
2170 terminal for any messages produced by
2171 breakpoint_re_set. */
2172 target_terminal_ours_for_output ();
aff6338a 2173 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2174 stack's section table is kept up-to-date. Architectures,
2175 (e.g., PPC64), use the section table to perform
2176 operations such as address => section name and hence
2177 require the table to contain all sections (including
2178 those found in shared libraries). */
aff6338a 2179 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2180 exec_ops to SOLIB_ADD. This is because current GDB is
2181 only tooled to propagate section_table changes out from
2182 the "current_target" (see target_resize_to_sections), and
2183 not up from the exec stratum. This, of course, isn't
2184 right. "infrun.c" should only interact with the
2185 exec/process stratum, instead relying on the target stack
2186 to propagate relevant changes (stop, section table
2187 changed, ...) up to other layers. */
a77053c2 2188#ifdef SOLIB_ADD
aff6338a 2189 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2190#else
2191 solib_add (NULL, 0, &current_target, auto_solib_add);
2192#endif
488f131b
JB
2193 target_terminal_inferior ();
2194
2195 /* Try to reenable shared library breakpoints, additional
2196 code segments in shared libraries might be mapped in now. */
2197 re_enable_breakpoints_in_shlibs ();
2198
2199 /* If requested, stop when the dynamic linker notifies
2200 gdb of events. This allows the user to get control
2201 and place breakpoints in initializer routines for
2202 dynamically loaded objects (among other things). */
877522db 2203 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2204 {
488f131b 2205 stop_stepping (ecs);
d4f3574e
SS
2206 return;
2207 }
c5aa993b 2208
488f131b
JB
2209 /* If we stopped due to an explicit catchpoint, then the
2210 (see above) call to SOLIB_ADD pulled in any symbols
2211 from a newly-loaded library, if appropriate.
2212
2213 We do want the inferior to stop, but not where it is
2214 now, which is in the dynamic linker callback. Rather,
2215 we would like it stop in the user's program, just after
2216 the call that caused this catchpoint to trigger. That
2217 gives the user a more useful vantage from which to
2218 examine their program's state. */
8fb3e588
AC
2219 else if (what.main_action
2220 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2221 {
488f131b
JB
2222 /* ??rehrauer: If I could figure out how to get the
2223 right return PC from here, we could just set a temp
2224 breakpoint and resume. I'm not sure we can without
2225 cracking open the dld's shared libraries and sniffing
2226 their unwind tables and text/data ranges, and that's
2227 not a terribly portable notion.
2228
2229 Until that time, we must step the inferior out of the
2230 dld callback, and also out of the dld itself (and any
2231 code or stubs in libdld.sl, such as "shl_load" and
2232 friends) until we reach non-dld code. At that point,
2233 we can stop stepping. */
2234 bpstat_get_triggered_catchpoints (stop_bpstat,
2235 &ecs->
2236 stepping_through_solib_catchpoints);
2237 ecs->stepping_through_solib_after_catch = 1;
2238
2239 /* Be sure to lift all breakpoints, so the inferior does
2240 actually step past this point... */
2241 ecs->another_trap = 1;
2242 break;
c906108c 2243 }
c5aa993b 2244 else
c5aa993b 2245 {
488f131b 2246 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2247 ecs->another_trap = 1;
488f131b 2248 break;
c5aa993b 2249 }
488f131b 2250 }
488f131b 2251 break;
c906108c 2252
488f131b
JB
2253 case BPSTAT_WHAT_LAST:
2254 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2255
488f131b
JB
2256 case BPSTAT_WHAT_KEEP_CHECKING:
2257 break;
2258 }
2259 }
c906108c 2260
488f131b
JB
2261 /* We come here if we hit a breakpoint but should not
2262 stop for it. Possibly we also were stepping
2263 and should stop for that. So fall through and
2264 test for stepping. But, if not stepping,
2265 do not stop. */
c906108c 2266
9d1ff73f
MS
2267 /* Are we stepping to get the inferior out of the dynamic linker's
2268 hook (and possibly the dld itself) after catching a shlib
2269 event? */
488f131b
JB
2270 if (ecs->stepping_through_solib_after_catch)
2271 {
2272#if defined(SOLIB_ADD)
2273 /* Have we reached our destination? If not, keep going. */
2274 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2275 {
527159b7 2276 if (debug_infrun)
8a9de0e4 2277 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2278 ecs->another_trap = 1;
2279 keep_going (ecs);
104c1213 2280 return;
488f131b
JB
2281 }
2282#endif
527159b7 2283 if (debug_infrun)
8a9de0e4 2284 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2285 /* Else, stop and report the catchpoint(s) whose triggering
2286 caused us to begin stepping. */
2287 ecs->stepping_through_solib_after_catch = 0;
2288 bpstat_clear (&stop_bpstat);
2289 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2290 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2291 stop_print_frame = 1;
2292 stop_stepping (ecs);
2293 return;
2294 }
c906108c 2295
488f131b
JB
2296 if (step_resume_breakpoint)
2297 {
527159b7 2298 if (debug_infrun)
8a9de0e4 2299 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
527159b7 2300
488f131b
JB
2301 /* Having a step-resume breakpoint overrides anything
2302 else having to do with stepping commands until
2303 that breakpoint is reached. */
488f131b
JB
2304 keep_going (ecs);
2305 return;
2306 }
c5aa993b 2307
488f131b
JB
2308 if (step_range_end == 0)
2309 {
527159b7 2310 if (debug_infrun)
8a9de0e4 2311 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2312 /* Likewise if we aren't even stepping. */
488f131b
JB
2313 keep_going (ecs);
2314 return;
2315 }
c5aa993b 2316
488f131b 2317 /* If stepping through a line, keep going if still within it.
c906108c 2318
488f131b
JB
2319 Note that step_range_end is the address of the first instruction
2320 beyond the step range, and NOT the address of the last instruction
2321 within it! */
2322 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2323 {
527159b7 2324 if (debug_infrun)
8a9de0e4 2325 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2326 paddr_nz (step_range_start),
2327 paddr_nz (step_range_end));
488f131b
JB
2328 keep_going (ecs);
2329 return;
2330 }
c5aa993b 2331
488f131b 2332 /* We stepped out of the stepping range. */
c906108c 2333
488f131b
JB
2334 /* If we are stepping at the source level and entered the runtime
2335 loader dynamic symbol resolution code, we keep on single stepping
2336 until we exit the run time loader code and reach the callee's
2337 address. */
2338 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2339#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2340 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2341#else
2342 && in_solib_dynsym_resolve_code (stop_pc)
2343#endif
2344 )
488f131b 2345 {
4c8c40e6
MK
2346 CORE_ADDR pc_after_resolver =
2347 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2348
527159b7 2349 if (debug_infrun)
8a9de0e4 2350 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2351
488f131b
JB
2352 if (pc_after_resolver)
2353 {
2354 /* Set up a step-resume breakpoint at the address
2355 indicated by SKIP_SOLIB_RESOLVER. */
2356 struct symtab_and_line sr_sal;
fe39c653 2357 init_sal (&sr_sal);
488f131b
JB
2358 sr_sal.pc = pc_after_resolver;
2359
44cbf7b5 2360 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2361 }
c906108c 2362
488f131b
JB
2363 keep_going (ecs);
2364 return;
2365 }
c906108c 2366
42edda50
AC
2367 if (step_range_end != 1
2368 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2369 || step_over_calls == STEP_OVER_ALL)
2370 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2371 {
527159b7 2372 if (debug_infrun)
8a9de0e4 2373 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2374 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2375 a signal trampoline (either by a signal being delivered or by
2376 the signal handler returning). Just single-step until the
2377 inferior leaves the trampoline (either by calling the handler
2378 or returning). */
488f131b
JB
2379 keep_going (ecs);
2380 return;
2381 }
c906108c 2382
c17eaafe
DJ
2383 /* Check for subroutine calls. The check for the current frame
2384 equalling the step ID is not necessary - the check of the
2385 previous frame's ID is sufficient - but it is a common case and
2386 cheaper than checking the previous frame's ID.
14e60db5
DJ
2387
2388 NOTE: frame_id_eq will never report two invalid frame IDs as
2389 being equal, so to get into this block, both the current and
2390 previous frame must have valid frame IDs. */
c17eaafe
DJ
2391 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2392 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 2393 {
95918acb 2394 CORE_ADDR real_stop_pc;
8fb3e588 2395
527159b7 2396 if (debug_infrun)
8a9de0e4 2397 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2398
95918acb
AC
2399 if ((step_over_calls == STEP_OVER_NONE)
2400 || ((step_range_end == 1)
2401 && in_prologue (prev_pc, ecs->stop_func_start)))
2402 {
2403 /* I presume that step_over_calls is only 0 when we're
2404 supposed to be stepping at the assembly language level
2405 ("stepi"). Just stop. */
2406 /* Also, maybe we just did a "nexti" inside a prolog, so we
2407 thought it was a subroutine call but it was not. Stop as
2408 well. FENN */
2409 stop_step = 1;
2410 print_stop_reason (END_STEPPING_RANGE, 0);
2411 stop_stepping (ecs);
2412 return;
2413 }
8fb3e588 2414
8567c30f
AC
2415 if (step_over_calls == STEP_OVER_ALL)
2416 {
2417 /* We're doing a "next", set a breakpoint at callee's return
2418 address (the address at which the caller will
2419 resume). */
14e60db5 2420 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
2421 keep_going (ecs);
2422 return;
2423 }
a53c66de 2424
95918acb 2425 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2426 calling routine and the real function), locate the real
2427 function. That's what tells us (a) whether we want to step
2428 into it at all, and (b) what prologue we want to run to the
2429 end of, if we do step into it. */
95918acb
AC
2430 real_stop_pc = skip_language_trampoline (stop_pc);
2431 if (real_stop_pc == 0)
2432 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2433 if (real_stop_pc != 0)
2434 ecs->stop_func_start = real_stop_pc;
8fb3e588 2435
a77053c2
MK
2436 if (
2437#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2438 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2439#else
2440 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2441#endif
2442)
1b2bfbb9
RC
2443 {
2444 struct symtab_and_line sr_sal;
2445 init_sal (&sr_sal);
2446 sr_sal.pc = ecs->stop_func_start;
2447
44cbf7b5 2448 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2449 keep_going (ecs);
2450 return;
1b2bfbb9
RC
2451 }
2452
95918acb 2453 /* If we have line number information for the function we are
8fb3e588 2454 thinking of stepping into, step into it.
95918acb 2455
8fb3e588
AC
2456 If there are several symtabs at that PC (e.g. with include
2457 files), just want to know whether *any* of them have line
2458 numbers. find_pc_line handles this. */
95918acb
AC
2459 {
2460 struct symtab_and_line tmp_sal;
8fb3e588 2461
95918acb
AC
2462 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2463 if (tmp_sal.line != 0)
2464 {
2465 step_into_function (ecs);
2466 return;
2467 }
2468 }
2469
2470 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2471 set, we stop the step so that the user has a chance to switch
2472 in assembly mode. */
95918acb
AC
2473 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2474 {
2475 stop_step = 1;
2476 print_stop_reason (END_STEPPING_RANGE, 0);
2477 stop_stepping (ecs);
2478 return;
2479 }
2480
2481 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2482 which the caller will resume). */
14e60db5 2483 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 2484 keep_going (ecs);
488f131b 2485 return;
488f131b 2486 }
c906108c 2487
488f131b
JB
2488 /* If we're in the return path from a shared library trampoline,
2489 we want to proceed through the trampoline when stepping. */
2490 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2491 {
488f131b 2492 /* Determine where this trampoline returns. */
5cf4d23a 2493 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2494
527159b7 2495 if (debug_infrun)
8a9de0e4 2496 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2497
488f131b 2498 /* Only proceed through if we know where it's going. */
d764a824 2499 if (real_stop_pc)
488f131b
JB
2500 {
2501 /* And put the step-breakpoint there and go until there. */
2502 struct symtab_and_line sr_sal;
2503
fe39c653 2504 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2505 sr_sal.pc = real_stop_pc;
488f131b 2506 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2507
2508 /* Do not specify what the fp should be when we stop since
2509 on some machines the prologue is where the new fp value
2510 is established. */
2511 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2512
488f131b
JB
2513 /* Restart without fiddling with the step ranges or
2514 other state. */
2515 keep_going (ecs);
2516 return;
2517 }
2518 }
c906108c 2519
7ed0fe66
DJ
2520 ecs->sal = find_pc_line (stop_pc, 0);
2521
1b2bfbb9
RC
2522 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2523 the trampoline processing logic, however, there are some trampolines
2524 that have no names, so we should do trampoline handling first. */
2525 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
2526 && ecs->stop_func_name == NULL
2527 && ecs->sal.line == 0)
1b2bfbb9 2528 {
527159b7 2529 if (debug_infrun)
8a9de0e4 2530 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2531
1b2bfbb9 2532 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
2533 undebuggable function (where there is no debugging information
2534 and no line number corresponding to the address where the
1b2bfbb9
RC
2535 inferior stopped). Since we want to skip this kind of code,
2536 we keep going until the inferior returns from this
14e60db5
DJ
2537 function - unless the user has asked us not to (via
2538 set step-mode) or we no longer know how to get back
2539 to the call site. */
2540 if (step_stop_if_no_debug
2541 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
2542 {
2543 /* If we have no line number and the step-stop-if-no-debug
2544 is set, we stop the step so that the user has a chance to
2545 switch in assembly mode. */
2546 stop_step = 1;
2547 print_stop_reason (END_STEPPING_RANGE, 0);
2548 stop_stepping (ecs);
2549 return;
2550 }
2551 else
2552 {
2553 /* Set a breakpoint at callee's return address (the address
2554 at which the caller will resume). */
14e60db5 2555 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
2556 keep_going (ecs);
2557 return;
2558 }
2559 }
2560
2561 if (step_range_end == 1)
2562 {
2563 /* It is stepi or nexti. We always want to stop stepping after
2564 one instruction. */
527159b7 2565 if (debug_infrun)
8a9de0e4 2566 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2567 stop_step = 1;
2568 print_stop_reason (END_STEPPING_RANGE, 0);
2569 stop_stepping (ecs);
2570 return;
2571 }
2572
488f131b
JB
2573 if (ecs->sal.line == 0)
2574 {
2575 /* We have no line number information. That means to stop
2576 stepping (does this always happen right after one instruction,
2577 when we do "s" in a function with no line numbers,
2578 or can this happen as a result of a return or longjmp?). */
527159b7 2579 if (debug_infrun)
8a9de0e4 2580 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2581 stop_step = 1;
2582 print_stop_reason (END_STEPPING_RANGE, 0);
2583 stop_stepping (ecs);
2584 return;
2585 }
c906108c 2586
488f131b
JB
2587 if ((stop_pc == ecs->sal.pc)
2588 && (ecs->current_line != ecs->sal.line
2589 || ecs->current_symtab != ecs->sal.symtab))
2590 {
2591 /* We are at the start of a different line. So stop. Note that
2592 we don't stop if we step into the middle of a different line.
2593 That is said to make things like for (;;) statements work
2594 better. */
527159b7 2595 if (debug_infrun)
8a9de0e4 2596 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2597 stop_step = 1;
2598 print_stop_reason (END_STEPPING_RANGE, 0);
2599 stop_stepping (ecs);
2600 return;
2601 }
c906108c 2602
488f131b 2603 /* We aren't done stepping.
c906108c 2604
488f131b
JB
2605 Optimize by setting the stepping range to the line.
2606 (We might not be in the original line, but if we entered a
2607 new line in mid-statement, we continue stepping. This makes
2608 things like for(;;) statements work better.) */
c906108c 2609
488f131b 2610 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2611 {
488f131b
JB
2612 /* If this is the last line of the function, don't keep stepping
2613 (it would probably step us out of the function).
2614 This is particularly necessary for a one-line function,
2615 in which after skipping the prologue we better stop even though
2616 we will be in mid-line. */
527159b7 2617 if (debug_infrun)
8a9de0e4 2618 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2619 stop_step = 1;
2620 print_stop_reason (END_STEPPING_RANGE, 0);
2621 stop_stepping (ecs);
2622 return;
c5aa993b 2623 }
488f131b
JB
2624 step_range_start = ecs->sal.pc;
2625 step_range_end = ecs->sal.end;
aa0cd9c1 2626 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2627 ecs->current_line = ecs->sal.line;
2628 ecs->current_symtab = ecs->sal.symtab;
2629
aa0cd9c1
AC
2630 /* In the case where we just stepped out of a function into the
2631 middle of a line of the caller, continue stepping, but
2632 step_frame_id must be modified to current frame */
65815ea1
AC
2633#if 0
2634 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2635 generous. It will trigger on things like a step into a frameless
2636 stackless leaf function. I think the logic should instead look
2637 at the unwound frame ID has that should give a more robust
2638 indication of what happened. */
8fb3e588
AC
2639 if (step - ID == current - ID)
2640 still stepping in same function;
2641 else if (step - ID == unwind (current - ID))
2642 stepped into a function;
2643 else
2644 stepped out of a function;
2645 /* Of course this assumes that the frame ID unwind code is robust
2646 and we're willing to introduce frame unwind logic into this
2647 function. Fortunately, those days are nearly upon us. */
65815ea1 2648#endif
488f131b 2649 {
aa0cd9c1
AC
2650 struct frame_id current_frame = get_frame_id (get_current_frame ());
2651 if (!(frame_id_inner (current_frame, step_frame_id)))
2652 step_frame_id = current_frame;
488f131b 2653 }
c906108c 2654
527159b7 2655 if (debug_infrun)
8a9de0e4 2656 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2657 keep_going (ecs);
104c1213
JM
2658}
2659
2660/* Are we in the middle of stepping? */
2661
2662static int
2663currently_stepping (struct execution_control_state *ecs)
2664{
d303a6c7 2665 return ((!ecs->handling_longjmp
104c1213
JM
2666 && ((step_range_end && step_resume_breakpoint == NULL)
2667 || trap_expected))
2668 || ecs->stepping_through_solib_after_catch
2669 || bpstat_should_step ());
2670}
c906108c 2671
c2c6d25f
JM
2672/* Subroutine call with source code we should not step over. Do step
2673 to the first line of code in it. */
2674
2675static void
2676step_into_function (struct execution_control_state *ecs)
2677{
2678 struct symtab *s;
2679 struct symtab_and_line sr_sal;
2680
2681 s = find_pc_symtab (stop_pc);
2682 if (s && s->language != language_asm)
2683 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2684
2685 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2686 /* Use the step_resume_break to step until the end of the prologue,
2687 even if that involves jumps (as it seems to on the vax under
2688 4.2). */
2689 /* If the prologue ends in the middle of a source line, continue to
2690 the end of that source line (if it is still within the function).
2691 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2692 if (ecs->sal.end
2693 && ecs->sal.pc != ecs->stop_func_start
2694 && ecs->sal.end < ecs->stop_func_end)
2695 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2696
2dbd5e30
KB
2697 /* Architectures which require breakpoint adjustment might not be able
2698 to place a breakpoint at the computed address. If so, the test
2699 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2700 ecs->stop_func_start to an address at which a breakpoint may be
2701 legitimately placed.
8fb3e588 2702
2dbd5e30
KB
2703 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2704 made, GDB will enter an infinite loop when stepping through
2705 optimized code consisting of VLIW instructions which contain
2706 subinstructions corresponding to different source lines. On
2707 FR-V, it's not permitted to place a breakpoint on any but the
2708 first subinstruction of a VLIW instruction. When a breakpoint is
2709 set, GDB will adjust the breakpoint address to the beginning of
2710 the VLIW instruction. Thus, we need to make the corresponding
2711 adjustment here when computing the stop address. */
8fb3e588 2712
2dbd5e30
KB
2713 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2714 {
2715 ecs->stop_func_start
2716 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2717 ecs->stop_func_start);
2dbd5e30
KB
2718 }
2719
c2c6d25f
JM
2720 if (ecs->stop_func_start == stop_pc)
2721 {
2722 /* We are already there: stop now. */
2723 stop_step = 1;
488f131b 2724 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2725 stop_stepping (ecs);
2726 return;
2727 }
2728 else
2729 {
2730 /* Put the step-breakpoint there and go until there. */
fe39c653 2731 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2732 sr_sal.pc = ecs->stop_func_start;
2733 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2734
c2c6d25f 2735 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2736 some machines the prologue is where the new fp value is
2737 established. */
44cbf7b5 2738 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2739
2740 /* And make sure stepping stops right away then. */
2741 step_range_end = step_range_start;
2742 }
2743 keep_going (ecs);
2744}
d4f3574e 2745
44cbf7b5
AC
2746/* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2747 This is used to both functions and to skip over code. */
2748
2749static void
2750insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2751 struct frame_id sr_id)
2752{
2753 /* There should never be more than one step-resume breakpoint per
2754 thread, so we should never be setting a new
2755 step_resume_breakpoint when one is already active. */
2756 gdb_assert (step_resume_breakpoint == NULL);
2757 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2758 bp_step_resume);
2759 if (breakpoints_inserted)
2760 insert_breakpoints ();
2761}
7ce450bd 2762
14e60db5
DJ
2763/* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2764 to skip a potential signal handler.
7ce450bd 2765
14e60db5
DJ
2766 This is called with the interrupted function's frame. The signal
2767 handler, when it returns, will resume the interrupted function at
2768 RETURN_FRAME.pc. */
d303a6c7
AC
2769
2770static void
44cbf7b5 2771insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2772{
2773 struct symtab_and_line sr_sal;
2774
d303a6c7
AC
2775 init_sal (&sr_sal); /* initialize to zeros */
2776
7ce450bd 2777 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
d303a6c7
AC
2778 sr_sal.section = find_pc_overlay (sr_sal.pc);
2779
44cbf7b5 2780 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2781}
2782
14e60db5
DJ
2783/* Similar to insert_step_resume_breakpoint_at_frame, except
2784 but a breakpoint at the previous frame's PC. This is used to
2785 skip a function after stepping into it (for "next" or if the called
2786 function has no debugging information).
2787
2788 The current function has almost always been reached by single
2789 stepping a call or return instruction. NEXT_FRAME belongs to the
2790 current function, and the breakpoint will be set at the caller's
2791 resume address.
2792
2793 This is a separate function rather than reusing
2794 insert_step_resume_breakpoint_at_frame in order to avoid
2795 get_prev_frame, which may stop prematurely (see the implementation
2796 of frame_unwind_id for an example). */
2797
2798static void
2799insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2800{
2801 struct symtab_and_line sr_sal;
2802
2803 /* We shouldn't have gotten here if we don't know where the call site
2804 is. */
2805 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2806
2807 init_sal (&sr_sal); /* initialize to zeros */
2808
2809 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2810 sr_sal.section = find_pc_overlay (sr_sal.pc);
2811
2812 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2813}
2814
104c1213
JM
2815static void
2816stop_stepping (struct execution_control_state *ecs)
2817{
527159b7 2818 if (debug_infrun)
8a9de0e4 2819 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2820
cd0fc7c3
SS
2821 /* Let callers know we don't want to wait for the inferior anymore. */
2822 ecs->wait_some_more = 0;
2823}
2824
d4f3574e
SS
2825/* This function handles various cases where we need to continue
2826 waiting for the inferior. */
2827/* (Used to be the keep_going: label in the old wait_for_inferior) */
2828
2829static void
2830keep_going (struct execution_control_state *ecs)
2831{
d4f3574e 2832 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2833 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2834
d4f3574e
SS
2835 /* If we did not do break;, it means we should keep running the
2836 inferior and not return to debugger. */
2837
2838 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2839 {
2840 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2841 the inferior, else we'd have done a break above) and we
2842 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2843 resume (currently_stepping (ecs), stop_signal);
2844 }
2845 else
2846 {
2847 /* Either the trap was not expected, but we are continuing
488f131b
JB
2848 anyway (the user asked that this signal be passed to the
2849 child)
2850 -- or --
2851 The signal was SIGTRAP, e.g. it was our signal, but we
2852 decided we should resume from it.
d4f3574e 2853
68f53502 2854 We're going to run this baby now! */
d4f3574e 2855
68f53502 2856 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2857 {
2858 breakpoints_failed = insert_breakpoints ();
2859 if (breakpoints_failed)
2860 {
2861 stop_stepping (ecs);
2862 return;
2863 }
2864 breakpoints_inserted = 1;
2865 }
2866
2867 trap_expected = ecs->another_trap;
2868
2869 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2870 specifies that such a signal should be delivered to the
2871 target program).
2872
2873 Typically, this would occure when a user is debugging a
2874 target monitor on a simulator: the target monitor sets a
2875 breakpoint; the simulator encounters this break-point and
2876 halts the simulation handing control to GDB; GDB, noteing
2877 that the break-point isn't valid, returns control back to the
2878 simulator; the simulator then delivers the hardware
2879 equivalent of a SIGNAL_TRAP to the program being debugged. */
2880
2881 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2882 stop_signal = TARGET_SIGNAL_0;
2883
d4f3574e
SS
2884
2885 resume (currently_stepping (ecs), stop_signal);
2886 }
2887
488f131b 2888 prepare_to_wait (ecs);
d4f3574e
SS
2889}
2890
104c1213
JM
2891/* This function normally comes after a resume, before
2892 handle_inferior_event exits. It takes care of any last bits of
2893 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2894
104c1213
JM
2895static void
2896prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2897{
527159b7 2898 if (debug_infrun)
8a9de0e4 2899 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2900 if (ecs->infwait_state == infwait_normal_state)
2901 {
2902 overlay_cache_invalid = 1;
2903
2904 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2905 target_wait because they can be loaded from the target while
2906 in target_wait. This makes remote debugging a bit more
2907 efficient for those targets that provide critical registers
2908 as part of their normal status mechanism. */
104c1213
JM
2909
2910 registers_changed ();
39f77062 2911 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2912 ecs->wp = &(ecs->ws);
2913 }
2914 /* This is the old end of the while loop. Let everybody know we
2915 want to wait for the inferior some more and get called again
2916 soon. */
2917 ecs->wait_some_more = 1;
c906108c 2918}
11cf8741
JM
2919
2920/* Print why the inferior has stopped. We always print something when
2921 the inferior exits, or receives a signal. The rest of the cases are
2922 dealt with later on in normal_stop() and print_it_typical(). Ideally
2923 there should be a call to this function from handle_inferior_event()
2924 each time stop_stepping() is called.*/
2925static void
2926print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2927{
2928 switch (stop_reason)
2929 {
2930 case STOP_UNKNOWN:
2931 /* We don't deal with these cases from handle_inferior_event()
2932 yet. */
2933 break;
2934 case END_STEPPING_RANGE:
2935 /* We are done with a step/next/si/ni command. */
2936 /* For now print nothing. */
fb40c209 2937 /* Print a message only if not in the middle of doing a "step n"
488f131b 2938 operation for n > 1 */
fb40c209 2939 if (!step_multi || !stop_step)
9dc5e2a9 2940 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2941 ui_out_field_string
2942 (uiout, "reason",
2943 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741
JM
2944 break;
2945 case BREAKPOINT_HIT:
2946 /* We found a breakpoint. */
2947 /* For now print nothing. */
2948 break;
2949 case SIGNAL_EXITED:
2950 /* The inferior was terminated by a signal. */
8b93c638 2951 annotate_signalled ();
9dc5e2a9 2952 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2953 ui_out_field_string
2954 (uiout, "reason",
2955 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
2956 ui_out_text (uiout, "\nProgram terminated with signal ");
2957 annotate_signal_name ();
488f131b
JB
2958 ui_out_field_string (uiout, "signal-name",
2959 target_signal_to_name (stop_info));
8b93c638
JM
2960 annotate_signal_name_end ();
2961 ui_out_text (uiout, ", ");
2962 annotate_signal_string ();
488f131b
JB
2963 ui_out_field_string (uiout, "signal-meaning",
2964 target_signal_to_string (stop_info));
8b93c638
JM
2965 annotate_signal_string_end ();
2966 ui_out_text (uiout, ".\n");
2967 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2968 break;
2969 case EXITED:
2970 /* The inferior program is finished. */
8b93c638
JM
2971 annotate_exited (stop_info);
2972 if (stop_info)
2973 {
9dc5e2a9 2974 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2975 ui_out_field_string (uiout, "reason",
2976 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 2977 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2978 ui_out_field_fmt (uiout, "exit-code", "0%o",
2979 (unsigned int) stop_info);
8b93c638
JM
2980 ui_out_text (uiout, ".\n");
2981 }
2982 else
2983 {
9dc5e2a9 2984 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2985 ui_out_field_string
2986 (uiout, "reason",
2987 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
2988 ui_out_text (uiout, "\nProgram exited normally.\n");
2989 }
f17517ea
AS
2990 /* Support the --return-child-result option. */
2991 return_child_result_value = stop_info;
11cf8741
JM
2992 break;
2993 case SIGNAL_RECEIVED:
2994 /* Signal received. The signal table tells us to print about
2995 it. */
8b93c638
JM
2996 annotate_signal ();
2997 ui_out_text (uiout, "\nProgram received signal ");
2998 annotate_signal_name ();
84c6c83c 2999 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3000 ui_out_field_string
3001 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3002 ui_out_field_string (uiout, "signal-name",
3003 target_signal_to_name (stop_info));
8b93c638
JM
3004 annotate_signal_name_end ();
3005 ui_out_text (uiout, ", ");
3006 annotate_signal_string ();
488f131b
JB
3007 ui_out_field_string (uiout, "signal-meaning",
3008 target_signal_to_string (stop_info));
8b93c638
JM
3009 annotate_signal_string_end ();
3010 ui_out_text (uiout, ".\n");
11cf8741
JM
3011 break;
3012 default:
8e65ff28 3013 internal_error (__FILE__, __LINE__,
e2e0b3e5 3014 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3015 break;
3016 }
3017}
c906108c 3018\f
43ff13b4 3019
c906108c
SS
3020/* Here to return control to GDB when the inferior stops for real.
3021 Print appropriate messages, remove breakpoints, give terminal our modes.
3022
3023 STOP_PRINT_FRAME nonzero means print the executing frame
3024 (pc, function, args, file, line number and line text).
3025 BREAKPOINTS_FAILED nonzero means stop was due to error
3026 attempting to insert breakpoints. */
3027
3028void
96baa820 3029normal_stop (void)
c906108c 3030{
73b65bb0
DJ
3031 struct target_waitstatus last;
3032 ptid_t last_ptid;
3033
3034 get_last_target_status (&last_ptid, &last);
3035
c906108c
SS
3036 /* As with the notification of thread events, we want to delay
3037 notifying the user that we've switched thread context until
3038 the inferior actually stops.
3039
73b65bb0
DJ
3040 There's no point in saying anything if the inferior has exited.
3041 Note that SIGNALLED here means "exited with a signal", not
3042 "received a signal". */
488f131b 3043 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3044 && target_has_execution
3045 && last.kind != TARGET_WAITKIND_SIGNALLED
3046 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3047 {
3048 target_terminal_ours_for_output ();
a3f17187 3049 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
3050 target_pid_or_tid_to_str (inferior_ptid));
3051 previous_inferior_ptid = inferior_ptid;
c906108c 3052 }
c906108c 3053
4fa8626c 3054 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3055 /* Make sure that the current_frame's pc is correct. This
3056 is a correction for setting up the frame info before doing
3057 DECR_PC_AFTER_BREAK */
b87efeee
AC
3058 if (target_has_execution)
3059 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3060 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3061 frame code to check for this and sort out any resultant mess.
3062 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 3063 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3064
c906108c
SS
3065 if (target_has_execution && breakpoints_inserted)
3066 {
3067 if (remove_breakpoints ())
3068 {
3069 target_terminal_ours_for_output ();
a3f17187
AC
3070 printf_filtered (_("\
3071Cannot remove breakpoints because program is no longer writable.\n\
3072It might be running in another process.\n\
3073Further execution is probably impossible.\n"));
c906108c
SS
3074 }
3075 }
3076 breakpoints_inserted = 0;
3077
3078 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3079 Delete any breakpoint that is to be deleted at the next stop. */
3080
3081 breakpoint_auto_delete (stop_bpstat);
3082
3083 /* If an auto-display called a function and that got a signal,
3084 delete that auto-display to avoid an infinite recursion. */
3085
3086 if (stopped_by_random_signal)
3087 disable_current_display ();
3088
3089 /* Don't print a message if in the middle of doing a "step n"
3090 operation for n > 1 */
3091 if (step_multi && stop_step)
3092 goto done;
3093
3094 target_terminal_ours ();
3095
7abfe014
DJ
3096 /* Set the current source location. This will also happen if we
3097 display the frame below, but the current SAL will be incorrect
3098 during a user hook-stop function. */
3099 if (target_has_stack && !stop_stack_dummy)
3100 set_current_sal_from_frame (get_current_frame (), 1);
3101
5913bcb0
AC
3102 /* Look up the hook_stop and run it (CLI internally handles problem
3103 of stop_command's pre-hook not existing). */
3104 if (stop_command)
3105 catch_errors (hook_stop_stub, stop_command,
3106 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3107
3108 if (!target_has_stack)
3109 {
3110
3111 goto done;
3112 }
3113
3114 /* Select innermost stack frame - i.e., current frame is frame 0,
3115 and current location is based on that.
3116 Don't do this on return from a stack dummy routine,
3117 or if the program has exited. */
3118
3119 if (!stop_stack_dummy)
3120 {
0f7d239c 3121 select_frame (get_current_frame ());
c906108c
SS
3122
3123 /* Print current location without a level number, if
c5aa993b
JM
3124 we have changed functions or hit a breakpoint.
3125 Print source line if we have one.
3126 bpstat_print() contains the logic deciding in detail
3127 what to print, based on the event(s) that just occurred. */
c906108c 3128
6e7f8b9c 3129 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3130 {
3131 int bpstat_ret;
3132 int source_flag;
917317f4 3133 int do_frame_printing = 1;
c906108c
SS
3134
3135 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3136 switch (bpstat_ret)
3137 {
3138 case PRINT_UNKNOWN:
aa0cd9c1 3139 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3140 (or should) carry around the function and does (or
3141 should) use that when doing a frame comparison. */
917317f4 3142 if (stop_step
aa0cd9c1
AC
3143 && frame_id_eq (step_frame_id,
3144 get_frame_id (get_current_frame ()))
917317f4 3145 && step_start_function == find_pc_function (stop_pc))
488f131b 3146 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3147 else
488f131b 3148 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3149 break;
3150 case PRINT_SRC_AND_LOC:
488f131b 3151 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3152 break;
3153 case PRINT_SRC_ONLY:
c5394b80 3154 source_flag = SRC_LINE;
917317f4
JM
3155 break;
3156 case PRINT_NOTHING:
488f131b 3157 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3158 do_frame_printing = 0;
3159 break;
3160 default:
e2e0b3e5 3161 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3162 }
fb40c209 3163 /* For mi, have the same behavior every time we stop:
488f131b 3164 print everything but the source line. */
9dc5e2a9 3165 if (ui_out_is_mi_like_p (uiout))
fb40c209 3166 source_flag = LOC_AND_ADDRESS;
c906108c 3167
9dc5e2a9 3168 if (ui_out_is_mi_like_p (uiout))
39f77062 3169 ui_out_field_int (uiout, "thread-id",
488f131b 3170 pid_to_thread_id (inferior_ptid));
c906108c
SS
3171 /* The behavior of this routine with respect to the source
3172 flag is:
c5394b80
JM
3173 SRC_LINE: Print only source line
3174 LOCATION: Print only location
3175 SRC_AND_LOC: Print location and source line */
917317f4 3176 if (do_frame_printing)
b04f3ab4 3177 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3178
3179 /* Display the auto-display expressions. */
3180 do_displays ();
3181 }
3182 }
3183
3184 /* Save the function value return registers, if we care.
3185 We might be about to restore their previous contents. */
3186 if (proceed_to_finish)
72cec141
AC
3187 /* NB: The copy goes through to the target picking up the value of
3188 all the registers. */
3189 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3190
3191 if (stop_stack_dummy)
3192 {
dbe9fe58
AC
3193 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3194 ends with a setting of the current frame, so we can use that
3195 next. */
3196 frame_pop (get_current_frame ());
c906108c 3197 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3198 Can't rely on restore_inferior_status because that only gets
3199 called if we don't stop in the called function. */
c906108c 3200 stop_pc = read_pc ();
0f7d239c 3201 select_frame (get_current_frame ());
c906108c
SS
3202 }
3203
c906108c
SS
3204done:
3205 annotate_stopped ();
7a464420 3206 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3207}
3208
3209static int
96baa820 3210hook_stop_stub (void *cmd)
c906108c 3211{
5913bcb0 3212 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3213 return (0);
3214}
3215\f
c5aa993b 3216int
96baa820 3217signal_stop_state (int signo)
c906108c
SS
3218{
3219 return signal_stop[signo];
3220}
3221
c5aa993b 3222int
96baa820 3223signal_print_state (int signo)
c906108c
SS
3224{
3225 return signal_print[signo];
3226}
3227
c5aa993b 3228int
96baa820 3229signal_pass_state (int signo)
c906108c
SS
3230{
3231 return signal_program[signo];
3232}
3233
488f131b 3234int
7bda5e4a 3235signal_stop_update (int signo, int state)
d4f3574e
SS
3236{
3237 int ret = signal_stop[signo];
3238 signal_stop[signo] = state;
3239 return ret;
3240}
3241
488f131b 3242int
7bda5e4a 3243signal_print_update (int signo, int state)
d4f3574e
SS
3244{
3245 int ret = signal_print[signo];
3246 signal_print[signo] = state;
3247 return ret;
3248}
3249
488f131b 3250int
7bda5e4a 3251signal_pass_update (int signo, int state)
d4f3574e
SS
3252{
3253 int ret = signal_program[signo];
3254 signal_program[signo] = state;
3255 return ret;
3256}
3257
c906108c 3258static void
96baa820 3259sig_print_header (void)
c906108c 3260{
a3f17187
AC
3261 printf_filtered (_("\
3262Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3263}
3264
3265static void
96baa820 3266sig_print_info (enum target_signal oursig)
c906108c
SS
3267{
3268 char *name = target_signal_to_name (oursig);
3269 int name_padding = 13 - strlen (name);
96baa820 3270
c906108c
SS
3271 if (name_padding <= 0)
3272 name_padding = 0;
3273
3274 printf_filtered ("%s", name);
488f131b 3275 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3276 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3277 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3278 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3279 printf_filtered ("%s\n", target_signal_to_string (oursig));
3280}
3281
3282/* Specify how various signals in the inferior should be handled. */
3283
3284static void
96baa820 3285handle_command (char *args, int from_tty)
c906108c
SS
3286{
3287 char **argv;
3288 int digits, wordlen;
3289 int sigfirst, signum, siglast;
3290 enum target_signal oursig;
3291 int allsigs;
3292 int nsigs;
3293 unsigned char *sigs;
3294 struct cleanup *old_chain;
3295
3296 if (args == NULL)
3297 {
e2e0b3e5 3298 error_no_arg (_("signal to handle"));
c906108c
SS
3299 }
3300
3301 /* Allocate and zero an array of flags for which signals to handle. */
3302
3303 nsigs = (int) TARGET_SIGNAL_LAST;
3304 sigs = (unsigned char *) alloca (nsigs);
3305 memset (sigs, 0, nsigs);
3306
3307 /* Break the command line up into args. */
3308
3309 argv = buildargv (args);
3310 if (argv == NULL)
3311 {
3312 nomem (0);
3313 }
7a292a7a 3314 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3315
3316 /* Walk through the args, looking for signal oursigs, signal names, and
3317 actions. Signal numbers and signal names may be interspersed with
3318 actions, with the actions being performed for all signals cumulatively
3319 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3320
3321 while (*argv != NULL)
3322 {
3323 wordlen = strlen (*argv);
3324 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3325 {;
3326 }
3327 allsigs = 0;
3328 sigfirst = siglast = -1;
3329
3330 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3331 {
3332 /* Apply action to all signals except those used by the
3333 debugger. Silently skip those. */
3334 allsigs = 1;
3335 sigfirst = 0;
3336 siglast = nsigs - 1;
3337 }
3338 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3339 {
3340 SET_SIGS (nsigs, sigs, signal_stop);
3341 SET_SIGS (nsigs, sigs, signal_print);
3342 }
3343 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3344 {
3345 UNSET_SIGS (nsigs, sigs, signal_program);
3346 }
3347 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3348 {
3349 SET_SIGS (nsigs, sigs, signal_print);
3350 }
3351 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3352 {
3353 SET_SIGS (nsigs, sigs, signal_program);
3354 }
3355 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3356 {
3357 UNSET_SIGS (nsigs, sigs, signal_stop);
3358 }
3359 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3360 {
3361 SET_SIGS (nsigs, sigs, signal_program);
3362 }
3363 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3364 {
3365 UNSET_SIGS (nsigs, sigs, signal_print);
3366 UNSET_SIGS (nsigs, sigs, signal_stop);
3367 }
3368 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3369 {
3370 UNSET_SIGS (nsigs, sigs, signal_program);
3371 }
3372 else if (digits > 0)
3373 {
3374 /* It is numeric. The numeric signal refers to our own
3375 internal signal numbering from target.h, not to host/target
3376 signal number. This is a feature; users really should be
3377 using symbolic names anyway, and the common ones like
3378 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3379
3380 sigfirst = siglast = (int)
3381 target_signal_from_command (atoi (*argv));
3382 if ((*argv)[digits] == '-')
3383 {
3384 siglast = (int)
3385 target_signal_from_command (atoi ((*argv) + digits + 1));
3386 }
3387 if (sigfirst > siglast)
3388 {
3389 /* Bet he didn't figure we'd think of this case... */
3390 signum = sigfirst;
3391 sigfirst = siglast;
3392 siglast = signum;
3393 }
3394 }
3395 else
3396 {
3397 oursig = target_signal_from_name (*argv);
3398 if (oursig != TARGET_SIGNAL_UNKNOWN)
3399 {
3400 sigfirst = siglast = (int) oursig;
3401 }
3402 else
3403 {
3404 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3405 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3406 }
3407 }
3408
3409 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3410 which signals to apply actions to. */
c906108c
SS
3411
3412 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3413 {
3414 switch ((enum target_signal) signum)
3415 {
3416 case TARGET_SIGNAL_TRAP:
3417 case TARGET_SIGNAL_INT:
3418 if (!allsigs && !sigs[signum])
3419 {
3420 if (query ("%s is used by the debugger.\n\
488f131b 3421Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3422 {
3423 sigs[signum] = 1;
3424 }
3425 else
3426 {
a3f17187 3427 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3428 gdb_flush (gdb_stdout);
3429 }
3430 }
3431 break;
3432 case TARGET_SIGNAL_0:
3433 case TARGET_SIGNAL_DEFAULT:
3434 case TARGET_SIGNAL_UNKNOWN:
3435 /* Make sure that "all" doesn't print these. */
3436 break;
3437 default:
3438 sigs[signum] = 1;
3439 break;
3440 }
3441 }
3442
3443 argv++;
3444 }
3445
39f77062 3446 target_notice_signals (inferior_ptid);
c906108c
SS
3447
3448 if (from_tty)
3449 {
3450 /* Show the results. */
3451 sig_print_header ();
3452 for (signum = 0; signum < nsigs; signum++)
3453 {
3454 if (sigs[signum])
3455 {
3456 sig_print_info (signum);
3457 }
3458 }
3459 }
3460
3461 do_cleanups (old_chain);
3462}
3463
3464static void
96baa820 3465xdb_handle_command (char *args, int from_tty)
c906108c
SS
3466{
3467 char **argv;
3468 struct cleanup *old_chain;
3469
3470 /* Break the command line up into args. */
3471
3472 argv = buildargv (args);
3473 if (argv == NULL)
3474 {
3475 nomem (0);
3476 }
7a292a7a 3477 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3478 if (argv[1] != (char *) NULL)
3479 {
3480 char *argBuf;
3481 int bufLen;
3482
3483 bufLen = strlen (argv[0]) + 20;
3484 argBuf = (char *) xmalloc (bufLen);
3485 if (argBuf)
3486 {
3487 int validFlag = 1;
3488 enum target_signal oursig;
3489
3490 oursig = target_signal_from_name (argv[0]);
3491 memset (argBuf, 0, bufLen);
3492 if (strcmp (argv[1], "Q") == 0)
3493 sprintf (argBuf, "%s %s", argv[0], "noprint");
3494 else
3495 {
3496 if (strcmp (argv[1], "s") == 0)
3497 {
3498 if (!signal_stop[oursig])
3499 sprintf (argBuf, "%s %s", argv[0], "stop");
3500 else
3501 sprintf (argBuf, "%s %s", argv[0], "nostop");
3502 }
3503 else if (strcmp (argv[1], "i") == 0)
3504 {
3505 if (!signal_program[oursig])
3506 sprintf (argBuf, "%s %s", argv[0], "pass");
3507 else
3508 sprintf (argBuf, "%s %s", argv[0], "nopass");
3509 }
3510 else if (strcmp (argv[1], "r") == 0)
3511 {
3512 if (!signal_print[oursig])
3513 sprintf (argBuf, "%s %s", argv[0], "print");
3514 else
3515 sprintf (argBuf, "%s %s", argv[0], "noprint");
3516 }
3517 else
3518 validFlag = 0;
3519 }
3520 if (validFlag)
3521 handle_command (argBuf, from_tty);
3522 else
a3f17187 3523 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3524 if (argBuf)
b8c9b27d 3525 xfree (argBuf);
c906108c
SS
3526 }
3527 }
3528 do_cleanups (old_chain);
3529}
3530
3531/* Print current contents of the tables set by the handle command.
3532 It is possible we should just be printing signals actually used
3533 by the current target (but for things to work right when switching
3534 targets, all signals should be in the signal tables). */
3535
3536static void
96baa820 3537signals_info (char *signum_exp, int from_tty)
c906108c
SS
3538{
3539 enum target_signal oursig;
3540 sig_print_header ();
3541
3542 if (signum_exp)
3543 {
3544 /* First see if this is a symbol name. */
3545 oursig = target_signal_from_name (signum_exp);
3546 if (oursig == TARGET_SIGNAL_UNKNOWN)
3547 {
3548 /* No, try numeric. */
3549 oursig =
bb518678 3550 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3551 }
3552 sig_print_info (oursig);
3553 return;
3554 }
3555
3556 printf_filtered ("\n");
3557 /* These ugly casts brought to you by the native VAX compiler. */
3558 for (oursig = TARGET_SIGNAL_FIRST;
3559 (int) oursig < (int) TARGET_SIGNAL_LAST;
3560 oursig = (enum target_signal) ((int) oursig + 1))
3561 {
3562 QUIT;
3563
3564 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3565 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3566 sig_print_info (oursig);
3567 }
3568
a3f17187 3569 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3570}
3571\f
7a292a7a
SS
3572struct inferior_status
3573{
3574 enum target_signal stop_signal;
3575 CORE_ADDR stop_pc;
3576 bpstat stop_bpstat;
3577 int stop_step;
3578 int stop_stack_dummy;
3579 int stopped_by_random_signal;
3580 int trap_expected;
3581 CORE_ADDR step_range_start;
3582 CORE_ADDR step_range_end;
aa0cd9c1 3583 struct frame_id step_frame_id;
5fbbeb29 3584 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3585 CORE_ADDR step_resume_break_address;
3586 int stop_after_trap;
c0236d92 3587 int stop_soon;
72cec141 3588 struct regcache *stop_registers;
7a292a7a
SS
3589
3590 /* These are here because if call_function_by_hand has written some
3591 registers and then decides to call error(), we better not have changed
3592 any registers. */
72cec141 3593 struct regcache *registers;
7a292a7a 3594
101dcfbe
AC
3595 /* A frame unique identifier. */
3596 struct frame_id selected_frame_id;
3597
7a292a7a
SS
3598 int breakpoint_proceeded;
3599 int restore_stack_info;
3600 int proceed_to_finish;
3601};
3602
7a292a7a 3603void
96baa820
JM
3604write_inferior_status_register (struct inferior_status *inf_status, int regno,
3605 LONGEST val)
7a292a7a 3606{
3acba339 3607 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3608 void *buf = alloca (size);
3609 store_signed_integer (buf, size, val);
0818c12a 3610 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3611}
3612
c906108c
SS
3613/* Save all of the information associated with the inferior<==>gdb
3614 connection. INF_STATUS is a pointer to a "struct inferior_status"
3615 (defined in inferior.h). */
3616
7a292a7a 3617struct inferior_status *
96baa820 3618save_inferior_status (int restore_stack_info)
c906108c 3619{
72cec141 3620 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3621
c906108c
SS
3622 inf_status->stop_signal = stop_signal;
3623 inf_status->stop_pc = stop_pc;
3624 inf_status->stop_step = stop_step;
3625 inf_status->stop_stack_dummy = stop_stack_dummy;
3626 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3627 inf_status->trap_expected = trap_expected;
3628 inf_status->step_range_start = step_range_start;
3629 inf_status->step_range_end = step_range_end;
aa0cd9c1 3630 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3631 inf_status->step_over_calls = step_over_calls;
3632 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3633 inf_status->stop_soon = stop_soon;
c906108c
SS
3634 /* Save original bpstat chain here; replace it with copy of chain.
3635 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3636 hand them back the original chain when restore_inferior_status is
3637 called. */
c906108c
SS
3638 inf_status->stop_bpstat = stop_bpstat;
3639 stop_bpstat = bpstat_copy (stop_bpstat);
3640 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3641 inf_status->restore_stack_info = restore_stack_info;
3642 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3643
72cec141 3644 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3645
72cec141 3646 inf_status->registers = regcache_dup (current_regcache);
c906108c 3647
7a424e99 3648 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3649 return inf_status;
c906108c
SS
3650}
3651
c906108c 3652static int
96baa820 3653restore_selected_frame (void *args)
c906108c 3654{
488f131b 3655 struct frame_id *fid = (struct frame_id *) args;
c906108c 3656 struct frame_info *frame;
c906108c 3657
101dcfbe 3658 frame = frame_find_by_id (*fid);
c906108c 3659
aa0cd9c1
AC
3660 /* If inf_status->selected_frame_id is NULL, there was no previously
3661 selected frame. */
101dcfbe 3662 if (frame == NULL)
c906108c 3663 {
8a3fe4f8 3664 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3665 return 0;
3666 }
3667
0f7d239c 3668 select_frame (frame);
c906108c
SS
3669
3670 return (1);
3671}
3672
3673void
96baa820 3674restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3675{
3676 stop_signal = inf_status->stop_signal;
3677 stop_pc = inf_status->stop_pc;
3678 stop_step = inf_status->stop_step;
3679 stop_stack_dummy = inf_status->stop_stack_dummy;
3680 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3681 trap_expected = inf_status->trap_expected;
3682 step_range_start = inf_status->step_range_start;
3683 step_range_end = inf_status->step_range_end;
aa0cd9c1 3684 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3685 step_over_calls = inf_status->step_over_calls;
3686 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3687 stop_soon = inf_status->stop_soon;
c906108c
SS
3688 bpstat_clear (&stop_bpstat);
3689 stop_bpstat = inf_status->stop_bpstat;
3690 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3691 proceed_to_finish = inf_status->proceed_to_finish;
3692
72cec141
AC
3693 /* FIXME: Is the restore of stop_registers always needed. */
3694 regcache_xfree (stop_registers);
3695 stop_registers = inf_status->stop_registers;
c906108c
SS
3696
3697 /* The inferior can be gone if the user types "print exit(0)"
3698 (and perhaps other times). */
3699 if (target_has_execution)
72cec141
AC
3700 /* NB: The register write goes through to the target. */
3701 regcache_cpy (current_regcache, inf_status->registers);
3702 regcache_xfree (inf_status->registers);
c906108c 3703
c906108c
SS
3704 /* FIXME: If we are being called after stopping in a function which
3705 is called from gdb, we should not be trying to restore the
3706 selected frame; it just prints a spurious error message (The
3707 message is useful, however, in detecting bugs in gdb (like if gdb
3708 clobbers the stack)). In fact, should we be restoring the
3709 inferior status at all in that case? . */
3710
3711 if (target_has_stack && inf_status->restore_stack_info)
3712 {
c906108c 3713 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3714 walking the stack might encounter a garbage pointer and
3715 error() trying to dereference it. */
488f131b
JB
3716 if (catch_errors
3717 (restore_selected_frame, &inf_status->selected_frame_id,
3718 "Unable to restore previously selected frame:\n",
3719 RETURN_MASK_ERROR) == 0)
c906108c
SS
3720 /* Error in restoring the selected frame. Select the innermost
3721 frame. */
0f7d239c 3722 select_frame (get_current_frame ());
c906108c
SS
3723
3724 }
c906108c 3725
72cec141 3726 xfree (inf_status);
7a292a7a 3727}
c906108c 3728
74b7792f
AC
3729static void
3730do_restore_inferior_status_cleanup (void *sts)
3731{
3732 restore_inferior_status (sts);
3733}
3734
3735struct cleanup *
3736make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3737{
3738 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3739}
3740
c906108c 3741void
96baa820 3742discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3743{
3744 /* See save_inferior_status for info on stop_bpstat. */
3745 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3746 regcache_xfree (inf_status->registers);
3747 regcache_xfree (inf_status->stop_registers);
3748 xfree (inf_status);
7a292a7a
SS
3749}
3750
47932f85
DJ
3751int
3752inferior_has_forked (int pid, int *child_pid)
3753{
3754 struct target_waitstatus last;
3755 ptid_t last_ptid;
3756
3757 get_last_target_status (&last_ptid, &last);
3758
3759 if (last.kind != TARGET_WAITKIND_FORKED)
3760 return 0;
3761
3762 if (ptid_get_pid (last_ptid) != pid)
3763 return 0;
3764
3765 *child_pid = last.value.related_pid;
3766 return 1;
3767}
3768
3769int
3770inferior_has_vforked (int pid, int *child_pid)
3771{
3772 struct target_waitstatus last;
3773 ptid_t last_ptid;
3774
3775 get_last_target_status (&last_ptid, &last);
3776
3777 if (last.kind != TARGET_WAITKIND_VFORKED)
3778 return 0;
3779
3780 if (ptid_get_pid (last_ptid) != pid)
3781 return 0;
3782
3783 *child_pid = last.value.related_pid;
3784 return 1;
3785}
3786
3787int
3788inferior_has_execd (int pid, char **execd_pathname)
3789{
3790 struct target_waitstatus last;
3791 ptid_t last_ptid;
3792
3793 get_last_target_status (&last_ptid, &last);
3794
3795 if (last.kind != TARGET_WAITKIND_EXECD)
3796 return 0;
3797
3798 if (ptid_get_pid (last_ptid) != pid)
3799 return 0;
3800
3801 *execd_pathname = xstrdup (last.value.execd_pathname);
3802 return 1;
3803}
3804
ca6724c1
KB
3805/* Oft used ptids */
3806ptid_t null_ptid;
3807ptid_t minus_one_ptid;
3808
3809/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3810
ca6724c1
KB
3811ptid_t
3812ptid_build (int pid, long lwp, long tid)
3813{
3814 ptid_t ptid;
3815
3816 ptid.pid = pid;
3817 ptid.lwp = lwp;
3818 ptid.tid = tid;
3819 return ptid;
3820}
3821
3822/* Create a ptid from just a pid. */
3823
3824ptid_t
3825pid_to_ptid (int pid)
3826{
3827 return ptid_build (pid, 0, 0);
3828}
3829
3830/* Fetch the pid (process id) component from a ptid. */
3831
3832int
3833ptid_get_pid (ptid_t ptid)
3834{
3835 return ptid.pid;
3836}
3837
3838/* Fetch the lwp (lightweight process) component from a ptid. */
3839
3840long
3841ptid_get_lwp (ptid_t ptid)
3842{
3843 return ptid.lwp;
3844}
3845
3846/* Fetch the tid (thread id) component from a ptid. */
3847
3848long
3849ptid_get_tid (ptid_t ptid)
3850{
3851 return ptid.tid;
3852}
3853
3854/* ptid_equal() is used to test equality of two ptids. */
3855
3856int
3857ptid_equal (ptid_t ptid1, ptid_t ptid2)
3858{
3859 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3860 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3861}
3862
3863/* restore_inferior_ptid() will be used by the cleanup machinery
3864 to restore the inferior_ptid value saved in a call to
3865 save_inferior_ptid(). */
ce696e05
KB
3866
3867static void
3868restore_inferior_ptid (void *arg)
3869{
3870 ptid_t *saved_ptid_ptr = arg;
3871 inferior_ptid = *saved_ptid_ptr;
3872 xfree (arg);
3873}
3874
3875/* Save the value of inferior_ptid so that it may be restored by a
3876 later call to do_cleanups(). Returns the struct cleanup pointer
3877 needed for later doing the cleanup. */
3878
3879struct cleanup *
3880save_inferior_ptid (void)
3881{
3882 ptid_t *saved_ptid_ptr;
3883
3884 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3885 *saved_ptid_ptr = inferior_ptid;
3886 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3887}
c5aa993b 3888\f
488f131b 3889
7a292a7a 3890static void
96baa820 3891build_infrun (void)
7a292a7a 3892{
72cec141 3893 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3894}
c906108c 3895
c906108c 3896void
96baa820 3897_initialize_infrun (void)
c906108c 3898{
52f0bd74
AC
3899 int i;
3900 int numsigs;
c906108c
SS
3901 struct cmd_list_element *c;
3902
046a4708
AC
3903 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3904 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3905
1bedd215
AC
3906 add_info ("signals", signals_info, _("\
3907What debugger does when program gets various signals.\n\
3908Specify a signal as argument to print info on that signal only."));
c906108c
SS
3909 add_info_alias ("handle", "signals", 0);
3910
1bedd215
AC
3911 add_com ("handle", class_run, handle_command, _("\
3912Specify how to handle a signal.\n\
c906108c
SS
3913Args are signals and actions to apply to those signals.\n\
3914Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3915from 1-15 are allowed for compatibility with old versions of GDB.\n\
3916Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3917The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3918used by the debugger, typically SIGTRAP and SIGINT.\n\
3919Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3920\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3921Stop means reenter debugger if this signal happens (implies print).\n\
3922Print means print a message if this signal happens.\n\
3923Pass means let program see this signal; otherwise program doesn't know.\n\
3924Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3925Pass and Stop may be combined."));
c906108c
SS
3926 if (xdb_commands)
3927 {
1bedd215
AC
3928 add_com ("lz", class_info, signals_info, _("\
3929What debugger does when program gets various signals.\n\
3930Specify a signal as argument to print info on that signal only."));
3931 add_com ("z", class_run, xdb_handle_command, _("\
3932Specify how to handle a signal.\n\
c906108c
SS
3933Args are signals and actions to apply to those signals.\n\
3934Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3935from 1-15 are allowed for compatibility with old versions of GDB.\n\
3936Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3937The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3938used by the debugger, typically SIGTRAP and SIGINT.\n\
3939Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3940\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3941nopass), \"Q\" (noprint)\n\
3942Stop means reenter debugger if this signal happens (implies print).\n\
3943Print means print a message if this signal happens.\n\
3944Pass means let program see this signal; otherwise program doesn't know.\n\
3945Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3946Pass and Stop may be combined."));
c906108c
SS
3947 }
3948
3949 if (!dbx_commands)
1a966eab
AC
3950 stop_command = add_cmd ("stop", class_obscure,
3951 not_just_help_class_command, _("\
3952There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 3953This allows you to set a list of commands to be run each time execution\n\
1a966eab 3954of the program stops."), &cmdlist);
c906108c 3955
85c07804
AC
3956 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3957Set inferior debugging."), _("\
3958Show inferior debugging."), _("\
3959When non-zero, inferior specific debugging is enabled."),
3960 NULL,
920d2a44 3961 show_debug_infrun,
85c07804 3962 &setdebuglist, &showdebuglist);
527159b7 3963
c906108c 3964 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3965 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3966 signal_print = (unsigned char *)
3967 xmalloc (sizeof (signal_print[0]) * numsigs);
3968 signal_program = (unsigned char *)
3969 xmalloc (sizeof (signal_program[0]) * numsigs);
3970 for (i = 0; i < numsigs; i++)
3971 {
3972 signal_stop[i] = 1;
3973 signal_print[i] = 1;
3974 signal_program[i] = 1;
3975 }
3976
3977 /* Signals caused by debugger's own actions
3978 should not be given to the program afterwards. */
3979 signal_program[TARGET_SIGNAL_TRAP] = 0;
3980 signal_program[TARGET_SIGNAL_INT] = 0;
3981
3982 /* Signals that are not errors should not normally enter the debugger. */
3983 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3984 signal_print[TARGET_SIGNAL_ALRM] = 0;
3985 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3986 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3987 signal_stop[TARGET_SIGNAL_PROF] = 0;
3988 signal_print[TARGET_SIGNAL_PROF] = 0;
3989 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3990 signal_print[TARGET_SIGNAL_CHLD] = 0;
3991 signal_stop[TARGET_SIGNAL_IO] = 0;
3992 signal_print[TARGET_SIGNAL_IO] = 0;
3993 signal_stop[TARGET_SIGNAL_POLL] = 0;
3994 signal_print[TARGET_SIGNAL_POLL] = 0;
3995 signal_stop[TARGET_SIGNAL_URG] = 0;
3996 signal_print[TARGET_SIGNAL_URG] = 0;
3997 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3998 signal_print[TARGET_SIGNAL_WINCH] = 0;
3999
cd0fc7c3
SS
4000 /* These signals are used internally by user-level thread
4001 implementations. (See signal(5) on Solaris.) Like the above
4002 signals, a healthy program receives and handles them as part of
4003 its normal operation. */
4004 signal_stop[TARGET_SIGNAL_LWP] = 0;
4005 signal_print[TARGET_SIGNAL_LWP] = 0;
4006 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4007 signal_print[TARGET_SIGNAL_WAITING] = 0;
4008 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4009 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4010
85c07804
AC
4011 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4012 &stop_on_solib_events, _("\
4013Set stopping for shared library events."), _("\
4014Show stopping for shared library events."), _("\
c906108c
SS
4015If nonzero, gdb will give control to the user when the dynamic linker\n\
4016notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4017to the user would be loading/unloading of a new library."),
4018 NULL,
920d2a44 4019 show_stop_on_solib_events,
85c07804 4020 &setlist, &showlist);
c906108c 4021
7ab04401
AC
4022 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4023 follow_fork_mode_kind_names,
4024 &follow_fork_mode_string, _("\
4025Set debugger response to a program call of fork or vfork."), _("\
4026Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4027A fork or vfork creates a new process. follow-fork-mode can be:\n\
4028 parent - the original process is debugged after a fork\n\
4029 child - the new process is debugged after a fork\n\
ea1dd7bc 4030The unfollowed process will continue to run.\n\
7ab04401
AC
4031By default, the debugger will follow the parent process."),
4032 NULL,
920d2a44 4033 show_follow_fork_mode_string,
7ab04401
AC
4034 &setlist, &showlist);
4035
4036 add_setshow_enum_cmd ("scheduler-locking", class_run,
4037 scheduler_enums, &scheduler_mode, _("\
4038Set mode for locking scheduler during execution."), _("\
4039Show mode for locking scheduler during execution."), _("\
c906108c
SS
4040off == no locking (threads may preempt at any time)\n\
4041on == full locking (no thread except the current thread may run)\n\
4042step == scheduler locked during every single-step operation.\n\
4043 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4044 Other threads may run while stepping over a function call ('next')."),
4045 set_schedlock_func, /* traps on target vector */
920d2a44 4046 show_scheduler_mode,
7ab04401 4047 &setlist, &showlist);
5fbbeb29 4048
5bf193a2
AC
4049 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4050Set mode of the step operation."), _("\
4051Show mode of the step operation."), _("\
4052When set, doing a step over a function without debug line information\n\
4053will stop at the first instruction of that function. Otherwise, the\n\
4054function is skipped and the step command stops at a different source line."),
4055 NULL,
920d2a44 4056 show_step_stop_if_no_debug,
5bf193a2 4057 &setlist, &showlist);
ca6724c1
KB
4058
4059 /* ptid initializations */
4060 null_ptid = ptid_build (0, 0, 0);
4061 minus_one_ptid = ptid_build (-1, 0, 0);
4062 inferior_ptid = null_ptid;
4063 target_last_wait_ptid = minus_one_ptid;
c906108c 4064}
This page took 0.762128 seconds and 4 git commands to generate.