Convert infcalls to thread_fsm mechanism
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
c906108c
SS
66
67/* Prototypes for local functions */
68
96baa820 69static void signals_info (char *, int);
c906108c 70
96baa820 71static void handle_command (char *, int);
c906108c 72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
74b7792f 77static void resume_cleanups (void *);
c906108c 78
96baa820 79static int hook_stop_stub (void *);
c906108c 80
96baa820
JM
81static int restore_selected_frame (void *);
82
4ef3f3be 83static int follow_fork (void);
96baa820 84
d83ad864
DB
85static int follow_fork_inferior (int follow_child, int detach_fork);
86
87static void follow_inferior_reset_breakpoints (void);
88
96baa820 89static void set_schedlock_func (char *args, int from_tty,
488f131b 90 struct cmd_list_element *c);
96baa820 91
a289b8f6
JK
92static int currently_stepping (struct thread_info *tp);
93
96baa820 94void _initialize_infrun (void);
43ff13b4 95
e58b0e63
PA
96void nullify_last_target_wait_ptid (void);
97
2c03e5be 98static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
99
100static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
101
2484c66b
UW
102static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
103
8550d3b3
YQ
104static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
105
372316f1
PA
106/* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108static struct async_event_handler *infrun_async_inferior_event_token;
109
110/* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112static int infrun_is_async = -1;
113
114/* See infrun.h. */
115
116void
117infrun_async (int enable)
118{
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 if (debug_infrun)
124 fprintf_unfiltered (gdb_stdlog,
125 "infrun: infrun_async(%d)\n",
126 enable);
127
128 if (enable)
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 else
131 clear_async_event_handler (infrun_async_inferior_event_token);
132 }
133}
134
0b333c5e
PA
135/* See infrun.h. */
136
137void
138mark_infrun_async_event_handler (void)
139{
140 mark_async_event_handler (infrun_async_inferior_event_token);
141}
142
5fbbeb29
CF
143/* When set, stop the 'step' command if we enter a function which has
144 no line number information. The normal behavior is that we step
145 over such function. */
146int step_stop_if_no_debug = 0;
920d2a44
AC
147static void
148show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150{
151 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
152}
5fbbeb29 153
1777feb0 154/* In asynchronous mode, but simulating synchronous execution. */
96baa820 155
43ff13b4
JM
156int sync_execution = 0;
157
b9f437de
PA
158/* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
96baa820 161
39f77062 162static ptid_t previous_inferior_ptid;
7a292a7a 163
07107ca6
LM
164/* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169static int detach_fork = 1;
6c95b8df 170
237fc4c9
PA
171int debug_displaced = 0;
172static void
173show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177}
178
ccce17b0 179unsigned int debug_infrun = 0;
920d2a44
AC
180static void
181show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185}
527159b7 186
03583c20
UW
187
188/* Support for disabling address space randomization. */
189
190int disable_randomization = 1;
191
192static void
193show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205}
206
207static void
208set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210{
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215}
216
d32dc48e
PA
217/* User interface for non-stop mode. */
218
219int non_stop = 0;
220static int non_stop_1 = 0;
221
222static void
223set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233}
234
235static void
236show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242}
243
d914c394
SS
244/* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
d914c394
SS
248int observer_mode = 0;
249static int observer_mode_1 = 0;
250
251static void
252set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254{
d914c394
SS
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
d914c394
SS
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285}
286
287static void
288show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290{
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292}
293
294/* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300void
301update_observer_mode (void)
302{
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
c2c6d25f 318
c906108c
SS
319/* Tables of how to react to signals; the user sets them. */
320
321static unsigned char *signal_stop;
322static unsigned char *signal_print;
323static unsigned char *signal_program;
324
ab04a2af
TT
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329static unsigned char *signal_catch;
330
2455069d
UW
331/* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334static unsigned char *signal_pass;
335
c906108c
SS
336#define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344#define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
9b224c5e
PA
352/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355void
356update_signals_program_target (void)
357{
a493e3e2 358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
359}
360
1777feb0 361/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 362
edb3359d 363#define RESUME_ALL minus_one_ptid
c906108c
SS
364
365/* Command list pointer for the "stop" placeholder. */
366
367static struct cmd_list_element *stop_command;
368
c906108c
SS
369/* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
628fe4e4 371int stop_on_solib_events;
f9e14852
GB
372
373/* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376static void
377set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378{
379 update_solib_breakpoints ();
380}
381
920d2a44
AC
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
c906108c 389
c906108c
SS
390/* Nonzero means expecting a trace trap
391 and should stop the inferior and return silently when it happens. */
392
393int stop_after_trap;
394
c906108c
SS
395/* Nonzero after stop if current stack frame should be printed. */
396
397static int stop_print_frame;
398
e02bc4cc 399/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
400 returned by target_wait()/deprecated_target_wait_hook(). This
401 information is returned by get_last_target_status(). */
39f77062 402static ptid_t target_last_wait_ptid;
e02bc4cc
DS
403static struct target_waitstatus target_last_waitstatus;
404
0d1e5fa7
PA
405static void context_switch (ptid_t ptid);
406
4e1c45ea 407void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 408
53904c9e
AC
409static const char follow_fork_mode_child[] = "child";
410static const char follow_fork_mode_parent[] = "parent";
411
40478521 412static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
413 follow_fork_mode_child,
414 follow_fork_mode_parent,
415 NULL
ef346e04 416};
c906108c 417
53904c9e 418static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
419static void
420show_follow_fork_mode_string (struct ui_file *file, int from_tty,
421 struct cmd_list_element *c, const char *value)
422{
3e43a32a
MS
423 fprintf_filtered (file,
424 _("Debugger response to a program "
425 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
426 value);
427}
c906108c
SS
428\f
429
d83ad864
DB
430/* Handle changes to the inferior list based on the type of fork,
431 which process is being followed, and whether the other process
432 should be detached. On entry inferior_ptid must be the ptid of
433 the fork parent. At return inferior_ptid is the ptid of the
434 followed inferior. */
435
436static int
437follow_fork_inferior (int follow_child, int detach_fork)
438{
439 int has_vforked;
79639e11 440 ptid_t parent_ptid, child_ptid;
d83ad864
DB
441
442 has_vforked = (inferior_thread ()->pending_follow.kind
443 == TARGET_WAITKIND_VFORKED);
79639e11
PA
444 parent_ptid = inferior_ptid;
445 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
446
447 if (has_vforked
448 && !non_stop /* Non-stop always resumes both branches. */
449 && (!target_is_async_p () || sync_execution)
450 && !(follow_child || detach_fork || sched_multi))
451 {
452 /* The parent stays blocked inside the vfork syscall until the
453 child execs or exits. If we don't let the child run, then
454 the parent stays blocked. If we're telling the parent to run
455 in the foreground, the user will not be able to ctrl-c to get
456 back the terminal, effectively hanging the debug session. */
457 fprintf_filtered (gdb_stderr, _("\
458Can not resume the parent process over vfork in the foreground while\n\
459holding the child stopped. Try \"set detach-on-fork\" or \
460\"set schedule-multiple\".\n"));
461 /* FIXME output string > 80 columns. */
462 return 1;
463 }
464
465 if (!follow_child)
466 {
467 /* Detach new forked process? */
468 if (detach_fork)
469 {
470 struct cleanup *old_chain;
471
472 /* Before detaching from the child, remove all breakpoints
473 from it. If we forked, then this has already been taken
474 care of by infrun.c. If we vforked however, any
475 breakpoint inserted in the parent is visible in the
476 child, even those added while stopped in a vfork
477 catchpoint. This will remove the breakpoints from the
478 parent also, but they'll be reinserted below. */
479 if (has_vforked)
480 {
481 /* Keep breakpoints list in sync. */
482 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
483 }
484
485 if (info_verbose || debug_infrun)
486 {
8dd06f7a
DB
487 /* Ensure that we have a process ptid. */
488 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
489
6f259a23 490 target_terminal_ours_for_output ();
d83ad864 491 fprintf_filtered (gdb_stdlog,
79639e11 492 _("Detaching after %s from child %s.\n"),
6f259a23 493 has_vforked ? "vfork" : "fork",
8dd06f7a 494 target_pid_to_str (process_ptid));
d83ad864
DB
495 }
496 }
497 else
498 {
499 struct inferior *parent_inf, *child_inf;
500 struct cleanup *old_chain;
501
502 /* Add process to GDB's tables. */
79639e11 503 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
504
505 parent_inf = current_inferior ();
506 child_inf->attach_flag = parent_inf->attach_flag;
507 copy_terminal_info (child_inf, parent_inf);
508 child_inf->gdbarch = parent_inf->gdbarch;
509 copy_inferior_target_desc_info (child_inf, parent_inf);
510
511 old_chain = save_inferior_ptid ();
512 save_current_program_space ();
513
79639e11 514 inferior_ptid = child_ptid;
d83ad864
DB
515 add_thread (inferior_ptid);
516 child_inf->symfile_flags = SYMFILE_NO_READ;
517
518 /* If this is a vfork child, then the address-space is
519 shared with the parent. */
520 if (has_vforked)
521 {
522 child_inf->pspace = parent_inf->pspace;
523 child_inf->aspace = parent_inf->aspace;
524
525 /* The parent will be frozen until the child is done
526 with the shared region. Keep track of the
527 parent. */
528 child_inf->vfork_parent = parent_inf;
529 child_inf->pending_detach = 0;
530 parent_inf->vfork_child = child_inf;
531 parent_inf->pending_detach = 0;
532 }
533 else
534 {
535 child_inf->aspace = new_address_space ();
536 child_inf->pspace = add_program_space (child_inf->aspace);
537 child_inf->removable = 1;
538 set_current_program_space (child_inf->pspace);
539 clone_program_space (child_inf->pspace, parent_inf->pspace);
540
541 /* Let the shared library layer (e.g., solib-svr4) learn
542 about this new process, relocate the cloned exec, pull
543 in shared libraries, and install the solib event
544 breakpoint. If a "cloned-VM" event was propagated
545 better throughout the core, this wouldn't be
546 required. */
547 solib_create_inferior_hook (0);
548 }
549
550 do_cleanups (old_chain);
551 }
552
553 if (has_vforked)
554 {
555 struct inferior *parent_inf;
556
557 parent_inf = current_inferior ();
558
559 /* If we detached from the child, then we have to be careful
560 to not insert breakpoints in the parent until the child
561 is done with the shared memory region. However, if we're
562 staying attached to the child, then we can and should
563 insert breakpoints, so that we can debug it. A
564 subsequent child exec or exit is enough to know when does
565 the child stops using the parent's address space. */
566 parent_inf->waiting_for_vfork_done = detach_fork;
567 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
568 }
569 }
570 else
571 {
572 /* Follow the child. */
573 struct inferior *parent_inf, *child_inf;
574 struct program_space *parent_pspace;
575
576 if (info_verbose || debug_infrun)
577 {
6f259a23
DB
578 target_terminal_ours_for_output ();
579 fprintf_filtered (gdb_stdlog,
79639e11
PA
580 _("Attaching after %s %s to child %s.\n"),
581 target_pid_to_str (parent_ptid),
6f259a23 582 has_vforked ? "vfork" : "fork",
79639e11 583 target_pid_to_str (child_ptid));
d83ad864
DB
584 }
585
586 /* Add the new inferior first, so that the target_detach below
587 doesn't unpush the target. */
588
79639e11 589 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
590
591 parent_inf = current_inferior ();
592 child_inf->attach_flag = parent_inf->attach_flag;
593 copy_terminal_info (child_inf, parent_inf);
594 child_inf->gdbarch = parent_inf->gdbarch;
595 copy_inferior_target_desc_info (child_inf, parent_inf);
596
597 parent_pspace = parent_inf->pspace;
598
599 /* If we're vforking, we want to hold on to the parent until the
600 child exits or execs. At child exec or exit time we can
601 remove the old breakpoints from the parent and detach or
602 resume debugging it. Otherwise, detach the parent now; we'll
603 want to reuse it's program/address spaces, but we can't set
604 them to the child before removing breakpoints from the
605 parent, otherwise, the breakpoints module could decide to
606 remove breakpoints from the wrong process (since they'd be
607 assigned to the same address space). */
608
609 if (has_vforked)
610 {
611 gdb_assert (child_inf->vfork_parent == NULL);
612 gdb_assert (parent_inf->vfork_child == NULL);
613 child_inf->vfork_parent = parent_inf;
614 child_inf->pending_detach = 0;
615 parent_inf->vfork_child = child_inf;
616 parent_inf->pending_detach = detach_fork;
617 parent_inf->waiting_for_vfork_done = 0;
618 }
619 else if (detach_fork)
6f259a23
DB
620 {
621 if (info_verbose || debug_infrun)
622 {
8dd06f7a
DB
623 /* Ensure that we have a process ptid. */
624 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
625
6f259a23
DB
626 target_terminal_ours_for_output ();
627 fprintf_filtered (gdb_stdlog,
628 _("Detaching after fork from "
79639e11 629 "child %s.\n"),
8dd06f7a 630 target_pid_to_str (process_ptid));
6f259a23
DB
631 }
632
633 target_detach (NULL, 0);
634 }
d83ad864
DB
635
636 /* Note that the detach above makes PARENT_INF dangling. */
637
638 /* Add the child thread to the appropriate lists, and switch to
639 this new thread, before cloning the program space, and
640 informing the solib layer about this new process. */
641
79639e11 642 inferior_ptid = child_ptid;
d83ad864
DB
643 add_thread (inferior_ptid);
644
645 /* If this is a vfork child, then the address-space is shared
646 with the parent. If we detached from the parent, then we can
647 reuse the parent's program/address spaces. */
648 if (has_vforked || detach_fork)
649 {
650 child_inf->pspace = parent_pspace;
651 child_inf->aspace = child_inf->pspace->aspace;
652 }
653 else
654 {
655 child_inf->aspace = new_address_space ();
656 child_inf->pspace = add_program_space (child_inf->aspace);
657 child_inf->removable = 1;
658 child_inf->symfile_flags = SYMFILE_NO_READ;
659 set_current_program_space (child_inf->pspace);
660 clone_program_space (child_inf->pspace, parent_pspace);
661
662 /* Let the shared library layer (e.g., solib-svr4) learn
663 about this new process, relocate the cloned exec, pull in
664 shared libraries, and install the solib event breakpoint.
665 If a "cloned-VM" event was propagated better throughout
666 the core, this wouldn't be required. */
667 solib_create_inferior_hook (0);
668 }
669 }
670
671 return target_follow_fork (follow_child, detach_fork);
672}
673
e58b0e63
PA
674/* Tell the target to follow the fork we're stopped at. Returns true
675 if the inferior should be resumed; false, if the target for some
676 reason decided it's best not to resume. */
677
6604731b 678static int
4ef3f3be 679follow_fork (void)
c906108c 680{
ea1dd7bc 681 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
682 int should_resume = 1;
683 struct thread_info *tp;
684
685 /* Copy user stepping state to the new inferior thread. FIXME: the
686 followed fork child thread should have a copy of most of the
4e3990f4
DE
687 parent thread structure's run control related fields, not just these.
688 Initialized to avoid "may be used uninitialized" warnings from gcc. */
689 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 690 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
691 CORE_ADDR step_range_start = 0;
692 CORE_ADDR step_range_end = 0;
693 struct frame_id step_frame_id = { 0 };
17b2616c 694 struct interp *command_interp = NULL;
e58b0e63
PA
695
696 if (!non_stop)
697 {
698 ptid_t wait_ptid;
699 struct target_waitstatus wait_status;
700
701 /* Get the last target status returned by target_wait(). */
702 get_last_target_status (&wait_ptid, &wait_status);
703
704 /* If not stopped at a fork event, then there's nothing else to
705 do. */
706 if (wait_status.kind != TARGET_WAITKIND_FORKED
707 && wait_status.kind != TARGET_WAITKIND_VFORKED)
708 return 1;
709
710 /* Check if we switched over from WAIT_PTID, since the event was
711 reported. */
712 if (!ptid_equal (wait_ptid, minus_one_ptid)
713 && !ptid_equal (inferior_ptid, wait_ptid))
714 {
715 /* We did. Switch back to WAIT_PTID thread, to tell the
716 target to follow it (in either direction). We'll
717 afterwards refuse to resume, and inform the user what
718 happened. */
719 switch_to_thread (wait_ptid);
720 should_resume = 0;
721 }
722 }
723
724 tp = inferior_thread ();
725
726 /* If there were any forks/vforks that were caught and are now to be
727 followed, then do so now. */
728 switch (tp->pending_follow.kind)
729 {
730 case TARGET_WAITKIND_FORKED:
731 case TARGET_WAITKIND_VFORKED:
732 {
733 ptid_t parent, child;
734
735 /* If the user did a next/step, etc, over a fork call,
736 preserve the stepping state in the fork child. */
737 if (follow_child && should_resume)
738 {
8358c15c
JK
739 step_resume_breakpoint = clone_momentary_breakpoint
740 (tp->control.step_resume_breakpoint);
16c381f0
JK
741 step_range_start = tp->control.step_range_start;
742 step_range_end = tp->control.step_range_end;
743 step_frame_id = tp->control.step_frame_id;
186c406b
TT
744 exception_resume_breakpoint
745 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 746 command_interp = tp->control.command_interp;
e58b0e63
PA
747
748 /* For now, delete the parent's sr breakpoint, otherwise,
749 parent/child sr breakpoints are considered duplicates,
750 and the child version will not be installed. Remove
751 this when the breakpoints module becomes aware of
752 inferiors and address spaces. */
753 delete_step_resume_breakpoint (tp);
16c381f0
JK
754 tp->control.step_range_start = 0;
755 tp->control.step_range_end = 0;
756 tp->control.step_frame_id = null_frame_id;
186c406b 757 delete_exception_resume_breakpoint (tp);
17b2616c 758 tp->control.command_interp = NULL;
e58b0e63
PA
759 }
760
761 parent = inferior_ptid;
762 child = tp->pending_follow.value.related_pid;
763
d83ad864
DB
764 /* Set up inferior(s) as specified by the caller, and tell the
765 target to do whatever is necessary to follow either parent
766 or child. */
767 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
768 {
769 /* Target refused to follow, or there's some other reason
770 we shouldn't resume. */
771 should_resume = 0;
772 }
773 else
774 {
775 /* This pending follow fork event is now handled, one way
776 or another. The previous selected thread may be gone
777 from the lists by now, but if it is still around, need
778 to clear the pending follow request. */
e09875d4 779 tp = find_thread_ptid (parent);
e58b0e63
PA
780 if (tp)
781 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
782
783 /* This makes sure we don't try to apply the "Switched
784 over from WAIT_PID" logic above. */
785 nullify_last_target_wait_ptid ();
786
1777feb0 787 /* If we followed the child, switch to it... */
e58b0e63
PA
788 if (follow_child)
789 {
790 switch_to_thread (child);
791
792 /* ... and preserve the stepping state, in case the
793 user was stepping over the fork call. */
794 if (should_resume)
795 {
796 tp = inferior_thread ();
8358c15c
JK
797 tp->control.step_resume_breakpoint
798 = step_resume_breakpoint;
16c381f0
JK
799 tp->control.step_range_start = step_range_start;
800 tp->control.step_range_end = step_range_end;
801 tp->control.step_frame_id = step_frame_id;
186c406b
TT
802 tp->control.exception_resume_breakpoint
803 = exception_resume_breakpoint;
17b2616c 804 tp->control.command_interp = command_interp;
e58b0e63
PA
805 }
806 else
807 {
808 /* If we get here, it was because we're trying to
809 resume from a fork catchpoint, but, the user
810 has switched threads away from the thread that
811 forked. In that case, the resume command
812 issued is most likely not applicable to the
813 child, so just warn, and refuse to resume. */
3e43a32a 814 warning (_("Not resuming: switched threads "
fd7dcb94 815 "before following fork child."));
e58b0e63
PA
816 }
817
818 /* Reset breakpoints in the child as appropriate. */
819 follow_inferior_reset_breakpoints ();
820 }
821 else
822 switch_to_thread (parent);
823 }
824 }
825 break;
826 case TARGET_WAITKIND_SPURIOUS:
827 /* Nothing to follow. */
828 break;
829 default:
830 internal_error (__FILE__, __LINE__,
831 "Unexpected pending_follow.kind %d\n",
832 tp->pending_follow.kind);
833 break;
834 }
c906108c 835
e58b0e63 836 return should_resume;
c906108c
SS
837}
838
d83ad864 839static void
6604731b 840follow_inferior_reset_breakpoints (void)
c906108c 841{
4e1c45ea
PA
842 struct thread_info *tp = inferior_thread ();
843
6604731b
DJ
844 /* Was there a step_resume breakpoint? (There was if the user
845 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
846 thread number. Cloned step_resume breakpoints are disabled on
847 creation, so enable it here now that it is associated with the
848 correct thread.
6604731b
DJ
849
850 step_resumes are a form of bp that are made to be per-thread.
851 Since we created the step_resume bp when the parent process
852 was being debugged, and now are switching to the child process,
853 from the breakpoint package's viewpoint, that's a switch of
854 "threads". We must update the bp's notion of which thread
855 it is for, or it'll be ignored when it triggers. */
856
8358c15c 857 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
858 {
859 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
860 tp->control.step_resume_breakpoint->loc->enabled = 1;
861 }
6604731b 862
a1aa2221 863 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 864 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
865 {
866 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
867 tp->control.exception_resume_breakpoint->loc->enabled = 1;
868 }
186c406b 869
6604731b
DJ
870 /* Reinsert all breakpoints in the child. The user may have set
871 breakpoints after catching the fork, in which case those
872 were never set in the child, but only in the parent. This makes
873 sure the inserted breakpoints match the breakpoint list. */
874
875 breakpoint_re_set ();
876 insert_breakpoints ();
c906108c 877}
c906108c 878
6c95b8df
PA
879/* The child has exited or execed: resume threads of the parent the
880 user wanted to be executing. */
881
882static int
883proceed_after_vfork_done (struct thread_info *thread,
884 void *arg)
885{
886 int pid = * (int *) arg;
887
888 if (ptid_get_pid (thread->ptid) == pid
889 && is_running (thread->ptid)
890 && !is_executing (thread->ptid)
891 && !thread->stop_requested
a493e3e2 892 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
893 {
894 if (debug_infrun)
895 fprintf_unfiltered (gdb_stdlog,
896 "infrun: resuming vfork parent thread %s\n",
897 target_pid_to_str (thread->ptid));
898
899 switch_to_thread (thread->ptid);
70509625 900 clear_proceed_status (0);
64ce06e4 901 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
902 }
903
904 return 0;
905}
906
907/* Called whenever we notice an exec or exit event, to handle
908 detaching or resuming a vfork parent. */
909
910static void
911handle_vfork_child_exec_or_exit (int exec)
912{
913 struct inferior *inf = current_inferior ();
914
915 if (inf->vfork_parent)
916 {
917 int resume_parent = -1;
918
919 /* This exec or exit marks the end of the shared memory region
920 between the parent and the child. If the user wanted to
921 detach from the parent, now is the time. */
922
923 if (inf->vfork_parent->pending_detach)
924 {
925 struct thread_info *tp;
926 struct cleanup *old_chain;
927 struct program_space *pspace;
928 struct address_space *aspace;
929
1777feb0 930 /* follow-fork child, detach-on-fork on. */
6c95b8df 931
68c9da30
PA
932 inf->vfork_parent->pending_detach = 0;
933
f50f4e56
PA
934 if (!exec)
935 {
936 /* If we're handling a child exit, then inferior_ptid
937 points at the inferior's pid, not to a thread. */
938 old_chain = save_inferior_ptid ();
939 save_current_program_space ();
940 save_current_inferior ();
941 }
942 else
943 old_chain = save_current_space_and_thread ();
6c95b8df
PA
944
945 /* We're letting loose of the parent. */
946 tp = any_live_thread_of_process (inf->vfork_parent->pid);
947 switch_to_thread (tp->ptid);
948
949 /* We're about to detach from the parent, which implicitly
950 removes breakpoints from its address space. There's a
951 catch here: we want to reuse the spaces for the child,
952 but, parent/child are still sharing the pspace at this
953 point, although the exec in reality makes the kernel give
954 the child a fresh set of new pages. The problem here is
955 that the breakpoints module being unaware of this, would
956 likely chose the child process to write to the parent
957 address space. Swapping the child temporarily away from
958 the spaces has the desired effect. Yes, this is "sort
959 of" a hack. */
960
961 pspace = inf->pspace;
962 aspace = inf->aspace;
963 inf->aspace = NULL;
964 inf->pspace = NULL;
965
966 if (debug_infrun || info_verbose)
967 {
6f259a23 968 target_terminal_ours_for_output ();
6c95b8df
PA
969
970 if (exec)
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("Detaching vfork parent process "
974 "%d after child exec.\n"),
975 inf->vfork_parent->pid);
976 }
6c95b8df 977 else
6f259a23
DB
978 {
979 fprintf_filtered (gdb_stdlog,
980 _("Detaching vfork parent process "
981 "%d after child exit.\n"),
982 inf->vfork_parent->pid);
983 }
6c95b8df
PA
984 }
985
986 target_detach (NULL, 0);
987
988 /* Put it back. */
989 inf->pspace = pspace;
990 inf->aspace = aspace;
991
992 do_cleanups (old_chain);
993 }
994 else if (exec)
995 {
996 /* We're staying attached to the parent, so, really give the
997 child a new address space. */
998 inf->pspace = add_program_space (maybe_new_address_space ());
999 inf->aspace = inf->pspace->aspace;
1000 inf->removable = 1;
1001 set_current_program_space (inf->pspace);
1002
1003 resume_parent = inf->vfork_parent->pid;
1004
1005 /* Break the bonds. */
1006 inf->vfork_parent->vfork_child = NULL;
1007 }
1008 else
1009 {
1010 struct cleanup *old_chain;
1011 struct program_space *pspace;
1012
1013 /* If this is a vfork child exiting, then the pspace and
1014 aspaces were shared with the parent. Since we're
1015 reporting the process exit, we'll be mourning all that is
1016 found in the address space, and switching to null_ptid,
1017 preparing to start a new inferior. But, since we don't
1018 want to clobber the parent's address/program spaces, we
1019 go ahead and create a new one for this exiting
1020 inferior. */
1021
1022 /* Switch to null_ptid, so that clone_program_space doesn't want
1023 to read the selected frame of a dead process. */
1024 old_chain = save_inferior_ptid ();
1025 inferior_ptid = null_ptid;
1026
1027 /* This inferior is dead, so avoid giving the breakpoints
1028 module the option to write through to it (cloning a
1029 program space resets breakpoints). */
1030 inf->aspace = NULL;
1031 inf->pspace = NULL;
1032 pspace = add_program_space (maybe_new_address_space ());
1033 set_current_program_space (pspace);
1034 inf->removable = 1;
7dcd53a0 1035 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1036 clone_program_space (pspace, inf->vfork_parent->pspace);
1037 inf->pspace = pspace;
1038 inf->aspace = pspace->aspace;
1039
1040 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1041 inferior. */
6c95b8df
PA
1042 do_cleanups (old_chain);
1043
1044 resume_parent = inf->vfork_parent->pid;
1045 /* Break the bonds. */
1046 inf->vfork_parent->vfork_child = NULL;
1047 }
1048
1049 inf->vfork_parent = NULL;
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
1057 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1058
1059 if (debug_infrun)
3e43a32a
MS
1060 fprintf_unfiltered (gdb_stdlog,
1061 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1062 resume_parent);
1063
1064 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1065
1066 do_cleanups (old_chain);
1067 }
1068 }
1069}
1070
eb6c553b 1071/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1072
1073static const char follow_exec_mode_new[] = "new";
1074static const char follow_exec_mode_same[] = "same";
40478521 1075static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1076{
1077 follow_exec_mode_new,
1078 follow_exec_mode_same,
1079 NULL,
1080};
1081
1082static const char *follow_exec_mode_string = follow_exec_mode_same;
1083static void
1084show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1085 struct cmd_list_element *c, const char *value)
1086{
1087 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1088}
1089
1777feb0 1090/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1091
c906108c 1092static void
95e50b27 1093follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1094{
95e50b27 1095 struct thread_info *th, *tmp;
6c95b8df 1096 struct inferior *inf = current_inferior ();
95e50b27 1097 int pid = ptid_get_pid (ptid);
7a292a7a 1098
c906108c
SS
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
1117 value that was overwritten witha TRAP instruction). Since
1777feb0 1118 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1119
1120 mark_breakpoints_out ();
1121
95e50b27
PA
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
8a06aea7 1141 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1142 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1143 delete_thread (th->ptid);
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
1149 th = inferior_thread ();
8358c15c 1150 th->control.step_resume_breakpoint = NULL;
186c406b 1151 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1152 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
c906108c 1155
95e50b27
PA
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
a75724bc
PA
1159 th->stop_requested = 0;
1160
95e50b27
PA
1161 update_breakpoints_after_exec ();
1162
1777feb0 1163 /* What is this a.out's name? */
6c95b8df
PA
1164 printf_unfiltered (_("%s is executing new program: %s\n"),
1165 target_pid_to_str (inferior_ptid),
1166 execd_pathname);
c906108c
SS
1167
1168 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1169 inferior has essentially been killed & reborn. */
7a292a7a 1170
c906108c 1171 gdb_flush (gdb_stdout);
6ca15a4b
PA
1172
1173 breakpoint_init_inferior (inf_execd);
e85a822c 1174
a3be80c3 1175 if (*gdb_sysroot != '\0')
e85a822c 1176 {
998d2a3e 1177 char *name = exec_file_find (execd_pathname, NULL);
ff862be4
GB
1178
1179 execd_pathname = alloca (strlen (name) + 1);
1180 strcpy (execd_pathname, name);
1181 xfree (name);
e85a822c 1182 }
c906108c 1183
cce9b6bf
PA
1184 /* Reset the shared library package. This ensures that we get a
1185 shlib event when the child reaches "_start", at which point the
1186 dld will have had a chance to initialize the child. */
1187 /* Also, loading a symbol file below may trigger symbol lookups, and
1188 we don't want those to be satisfied by the libraries of the
1189 previous incarnation of this process. */
1190 no_shared_libraries (NULL, 0);
1191
6c95b8df
PA
1192 if (follow_exec_mode_string == follow_exec_mode_new)
1193 {
1194 struct program_space *pspace;
6c95b8df
PA
1195
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
17d8546e
DB
1199 /* Do exit processing for the original inferior before adding
1200 the new inferior so we don't have two active inferiors with
1201 the same ptid, which can confuse find_inferior_ptid. */
1202 exit_inferior_num_silent (current_inferior ()->num);
1203
1204 inf = add_inferior (pid);
6c95b8df
PA
1205 pspace = add_program_space (maybe_new_address_space ());
1206 inf->pspace = pspace;
1207 inf->aspace = pspace->aspace;
17d8546e 1208 add_thread (ptid);
6c95b8df
PA
1209
1210 set_current_inferior (inf);
1211 set_current_program_space (pspace);
1212 }
9107fc8d
PA
1213 else
1214 {
1215 /* The old description may no longer be fit for the new image.
1216 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1217 old description; we'll read a new one below. No need to do
1218 this on "follow-exec-mode new", as the old inferior stays
1219 around (its description is later cleared/refetched on
1220 restart). */
1221 target_clear_description ();
1222 }
6c95b8df
PA
1223
1224 gdb_assert (current_program_space == inf->pspace);
1225
1777feb0 1226 /* That a.out is now the one to use. */
6c95b8df
PA
1227 exec_file_attach (execd_pathname, 0);
1228
c1e56572
JK
1229 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1230 (Position Independent Executable) main symbol file will get applied by
1231 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1232 the breakpoints with the zero displacement. */
1233
7dcd53a0
TT
1234 symbol_file_add (execd_pathname,
1235 (inf->symfile_flags
1236 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1237 NULL, 0);
1238
7dcd53a0
TT
1239 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1240 set_initial_language ();
c906108c 1241
9107fc8d
PA
1242 /* If the target can specify a description, read it. Must do this
1243 after flipping to the new executable (because the target supplied
1244 description must be compatible with the executable's
1245 architecture, and the old executable may e.g., be 32-bit, while
1246 the new one 64-bit), and before anything involving memory or
1247 registers. */
1248 target_find_description ();
1249
268a4a75 1250 solib_create_inferior_hook (0);
c906108c 1251
4efc6507
DE
1252 jit_inferior_created_hook ();
1253
c1e56572
JK
1254 breakpoint_re_set ();
1255
c906108c
SS
1256 /* Reinsert all breakpoints. (Those which were symbolic have
1257 been reset to the proper address in the new a.out, thanks
1777feb0 1258 to symbol_file_command...). */
c906108c
SS
1259 insert_breakpoints ();
1260
1261 /* The next resume of this inferior should bring it to the shlib
1262 startup breakpoints. (If the user had also set bp's on
1263 "main" from the old (parent) process, then they'll auto-
1777feb0 1264 matically get reset there in the new process.). */
c906108c
SS
1265}
1266
c2829269
PA
1267/* The queue of threads that need to do a step-over operation to get
1268 past e.g., a breakpoint. What technique is used to step over the
1269 breakpoint/watchpoint does not matter -- all threads end up in the
1270 same queue, to maintain rough temporal order of execution, in order
1271 to avoid starvation, otherwise, we could e.g., find ourselves
1272 constantly stepping the same couple threads past their breakpoints
1273 over and over, if the single-step finish fast enough. */
1274struct thread_info *step_over_queue_head;
1275
6c4cfb24
PA
1276/* Bit flags indicating what the thread needs to step over. */
1277
1278enum step_over_what
1279 {
1280 /* Step over a breakpoint. */
1281 STEP_OVER_BREAKPOINT = 1,
1282
1283 /* Step past a non-continuable watchpoint, in order to let the
1284 instruction execute so we can evaluate the watchpoint
1285 expression. */
1286 STEP_OVER_WATCHPOINT = 2
1287 };
1288
963f9c80 1289/* Info about an instruction that is being stepped over. */
31e77af2
PA
1290
1291struct step_over_info
1292{
963f9c80
PA
1293 /* If we're stepping past a breakpoint, this is the address space
1294 and address of the instruction the breakpoint is set at. We'll
1295 skip inserting all breakpoints here. Valid iff ASPACE is
1296 non-NULL. */
31e77af2 1297 struct address_space *aspace;
31e77af2 1298 CORE_ADDR address;
963f9c80
PA
1299
1300 /* The instruction being stepped over triggers a nonsteppable
1301 watchpoint. If true, we'll skip inserting watchpoints. */
1302 int nonsteppable_watchpoint_p;
31e77af2
PA
1303};
1304
1305/* The step-over info of the location that is being stepped over.
1306
1307 Note that with async/breakpoint always-inserted mode, a user might
1308 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1309 being stepped over. As setting a new breakpoint inserts all
1310 breakpoints, we need to make sure the breakpoint being stepped over
1311 isn't inserted then. We do that by only clearing the step-over
1312 info when the step-over is actually finished (or aborted).
1313
1314 Presently GDB can only step over one breakpoint at any given time.
1315 Given threads that can't run code in the same address space as the
1316 breakpoint's can't really miss the breakpoint, GDB could be taught
1317 to step-over at most one breakpoint per address space (so this info
1318 could move to the address space object if/when GDB is extended).
1319 The set of breakpoints being stepped over will normally be much
1320 smaller than the set of all breakpoints, so a flag in the
1321 breakpoint location structure would be wasteful. A separate list
1322 also saves complexity and run-time, as otherwise we'd have to go
1323 through all breakpoint locations clearing their flag whenever we
1324 start a new sequence. Similar considerations weigh against storing
1325 this info in the thread object. Plus, not all step overs actually
1326 have breakpoint locations -- e.g., stepping past a single-step
1327 breakpoint, or stepping to complete a non-continuable
1328 watchpoint. */
1329static struct step_over_info step_over_info;
1330
1331/* Record the address of the breakpoint/instruction we're currently
1332 stepping over. */
1333
1334static void
963f9c80
PA
1335set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1336 int nonsteppable_watchpoint_p)
31e77af2
PA
1337{
1338 step_over_info.aspace = aspace;
1339 step_over_info.address = address;
963f9c80 1340 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1341}
1342
1343/* Called when we're not longer stepping over a breakpoint / an
1344 instruction, so all breakpoints are free to be (re)inserted. */
1345
1346static void
1347clear_step_over_info (void)
1348{
372316f1
PA
1349 if (debug_infrun)
1350 fprintf_unfiltered (gdb_stdlog,
1351 "infrun: clear_step_over_info\n");
31e77af2
PA
1352 step_over_info.aspace = NULL;
1353 step_over_info.address = 0;
963f9c80 1354 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1355}
1356
7f89fd65 1357/* See infrun.h. */
31e77af2
PA
1358
1359int
1360stepping_past_instruction_at (struct address_space *aspace,
1361 CORE_ADDR address)
1362{
1363 return (step_over_info.aspace != NULL
1364 && breakpoint_address_match (aspace, address,
1365 step_over_info.aspace,
1366 step_over_info.address));
1367}
1368
963f9c80
PA
1369/* See infrun.h. */
1370
1371int
1372stepping_past_nonsteppable_watchpoint (void)
1373{
1374 return step_over_info.nonsteppable_watchpoint_p;
1375}
1376
6cc83d2a
PA
1377/* Returns true if step-over info is valid. */
1378
1379static int
1380step_over_info_valid_p (void)
1381{
963f9c80
PA
1382 return (step_over_info.aspace != NULL
1383 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1384}
1385
c906108c 1386\f
237fc4c9
PA
1387/* Displaced stepping. */
1388
1389/* In non-stop debugging mode, we must take special care to manage
1390 breakpoints properly; in particular, the traditional strategy for
1391 stepping a thread past a breakpoint it has hit is unsuitable.
1392 'Displaced stepping' is a tactic for stepping one thread past a
1393 breakpoint it has hit while ensuring that other threads running
1394 concurrently will hit the breakpoint as they should.
1395
1396 The traditional way to step a thread T off a breakpoint in a
1397 multi-threaded program in all-stop mode is as follows:
1398
1399 a0) Initially, all threads are stopped, and breakpoints are not
1400 inserted.
1401 a1) We single-step T, leaving breakpoints uninserted.
1402 a2) We insert breakpoints, and resume all threads.
1403
1404 In non-stop debugging, however, this strategy is unsuitable: we
1405 don't want to have to stop all threads in the system in order to
1406 continue or step T past a breakpoint. Instead, we use displaced
1407 stepping:
1408
1409 n0) Initially, T is stopped, other threads are running, and
1410 breakpoints are inserted.
1411 n1) We copy the instruction "under" the breakpoint to a separate
1412 location, outside the main code stream, making any adjustments
1413 to the instruction, register, and memory state as directed by
1414 T's architecture.
1415 n2) We single-step T over the instruction at its new location.
1416 n3) We adjust the resulting register and memory state as directed
1417 by T's architecture. This includes resetting T's PC to point
1418 back into the main instruction stream.
1419 n4) We resume T.
1420
1421 This approach depends on the following gdbarch methods:
1422
1423 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1424 indicate where to copy the instruction, and how much space must
1425 be reserved there. We use these in step n1.
1426
1427 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1428 address, and makes any necessary adjustments to the instruction,
1429 register contents, and memory. We use this in step n1.
1430
1431 - gdbarch_displaced_step_fixup adjusts registers and memory after
1432 we have successfuly single-stepped the instruction, to yield the
1433 same effect the instruction would have had if we had executed it
1434 at its original address. We use this in step n3.
1435
1436 - gdbarch_displaced_step_free_closure provides cleanup.
1437
1438 The gdbarch_displaced_step_copy_insn and
1439 gdbarch_displaced_step_fixup functions must be written so that
1440 copying an instruction with gdbarch_displaced_step_copy_insn,
1441 single-stepping across the copied instruction, and then applying
1442 gdbarch_displaced_insn_fixup should have the same effects on the
1443 thread's memory and registers as stepping the instruction in place
1444 would have. Exactly which responsibilities fall to the copy and
1445 which fall to the fixup is up to the author of those functions.
1446
1447 See the comments in gdbarch.sh for details.
1448
1449 Note that displaced stepping and software single-step cannot
1450 currently be used in combination, although with some care I think
1451 they could be made to. Software single-step works by placing
1452 breakpoints on all possible subsequent instructions; if the
1453 displaced instruction is a PC-relative jump, those breakpoints
1454 could fall in very strange places --- on pages that aren't
1455 executable, or at addresses that are not proper instruction
1456 boundaries. (We do generally let other threads run while we wait
1457 to hit the software single-step breakpoint, and they might
1458 encounter such a corrupted instruction.) One way to work around
1459 this would be to have gdbarch_displaced_step_copy_insn fully
1460 simulate the effect of PC-relative instructions (and return NULL)
1461 on architectures that use software single-stepping.
1462
1463 In non-stop mode, we can have independent and simultaneous step
1464 requests, so more than one thread may need to simultaneously step
1465 over a breakpoint. The current implementation assumes there is
1466 only one scratch space per process. In this case, we have to
1467 serialize access to the scratch space. If thread A wants to step
1468 over a breakpoint, but we are currently waiting for some other
1469 thread to complete a displaced step, we leave thread A stopped and
1470 place it in the displaced_step_request_queue. Whenever a displaced
1471 step finishes, we pick the next thread in the queue and start a new
1472 displaced step operation on it. See displaced_step_prepare and
1473 displaced_step_fixup for details. */
1474
fc1cf338
PA
1475/* Per-inferior displaced stepping state. */
1476struct displaced_step_inferior_state
1477{
1478 /* Pointer to next in linked list. */
1479 struct displaced_step_inferior_state *next;
1480
1481 /* The process this displaced step state refers to. */
1482 int pid;
1483
3fc8eb30
PA
1484 /* True if preparing a displaced step ever failed. If so, we won't
1485 try displaced stepping for this inferior again. */
1486 int failed_before;
1487
fc1cf338
PA
1488 /* If this is not null_ptid, this is the thread carrying out a
1489 displaced single-step in process PID. This thread's state will
1490 require fixing up once it has completed its step. */
1491 ptid_t step_ptid;
1492
1493 /* The architecture the thread had when we stepped it. */
1494 struct gdbarch *step_gdbarch;
1495
1496 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1497 for post-step cleanup. */
1498 struct displaced_step_closure *step_closure;
1499
1500 /* The address of the original instruction, and the copy we
1501 made. */
1502 CORE_ADDR step_original, step_copy;
1503
1504 /* Saved contents of copy area. */
1505 gdb_byte *step_saved_copy;
1506};
1507
1508/* The list of states of processes involved in displaced stepping
1509 presently. */
1510static struct displaced_step_inferior_state *displaced_step_inferior_states;
1511
1512/* Get the displaced stepping state of process PID. */
1513
1514static struct displaced_step_inferior_state *
1515get_displaced_stepping_state (int pid)
1516{
1517 struct displaced_step_inferior_state *state;
1518
1519 for (state = displaced_step_inferior_states;
1520 state != NULL;
1521 state = state->next)
1522 if (state->pid == pid)
1523 return state;
1524
1525 return NULL;
1526}
1527
372316f1
PA
1528/* Returns true if any inferior has a thread doing a displaced
1529 step. */
1530
1531static int
1532displaced_step_in_progress_any_inferior (void)
1533{
1534 struct displaced_step_inferior_state *state;
1535
1536 for (state = displaced_step_inferior_states;
1537 state != NULL;
1538 state = state->next)
1539 if (!ptid_equal (state->step_ptid, null_ptid))
1540 return 1;
1541
1542 return 0;
1543}
1544
8f572e5c
PA
1545/* Return true if process PID has a thread doing a displaced step. */
1546
1547static int
1548displaced_step_in_progress (int pid)
1549{
1550 struct displaced_step_inferior_state *displaced;
1551
1552 displaced = get_displaced_stepping_state (pid);
1553 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1554 return 1;
1555
1556 return 0;
1557}
1558
fc1cf338
PA
1559/* Add a new displaced stepping state for process PID to the displaced
1560 stepping state list, or return a pointer to an already existing
1561 entry, if it already exists. Never returns NULL. */
1562
1563static struct displaced_step_inferior_state *
1564add_displaced_stepping_state (int pid)
1565{
1566 struct displaced_step_inferior_state *state;
1567
1568 for (state = displaced_step_inferior_states;
1569 state != NULL;
1570 state = state->next)
1571 if (state->pid == pid)
1572 return state;
237fc4c9 1573
8d749320 1574 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1575 state->pid = pid;
1576 state->next = displaced_step_inferior_states;
1577 displaced_step_inferior_states = state;
237fc4c9 1578
fc1cf338
PA
1579 return state;
1580}
1581
a42244db
YQ
1582/* If inferior is in displaced stepping, and ADDR equals to starting address
1583 of copy area, return corresponding displaced_step_closure. Otherwise,
1584 return NULL. */
1585
1586struct displaced_step_closure*
1587get_displaced_step_closure_by_addr (CORE_ADDR addr)
1588{
1589 struct displaced_step_inferior_state *displaced
1590 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1591
1592 /* If checking the mode of displaced instruction in copy area. */
1593 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1594 && (displaced->step_copy == addr))
1595 return displaced->step_closure;
1596
1597 return NULL;
1598}
1599
fc1cf338 1600/* Remove the displaced stepping state of process PID. */
237fc4c9 1601
fc1cf338
PA
1602static void
1603remove_displaced_stepping_state (int pid)
1604{
1605 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1606
fc1cf338
PA
1607 gdb_assert (pid != 0);
1608
1609 it = displaced_step_inferior_states;
1610 prev_next_p = &displaced_step_inferior_states;
1611 while (it)
1612 {
1613 if (it->pid == pid)
1614 {
1615 *prev_next_p = it->next;
1616 xfree (it);
1617 return;
1618 }
1619
1620 prev_next_p = &it->next;
1621 it = *prev_next_p;
1622 }
1623}
1624
1625static void
1626infrun_inferior_exit (struct inferior *inf)
1627{
1628 remove_displaced_stepping_state (inf->pid);
1629}
237fc4c9 1630
fff08868
HZ
1631/* If ON, and the architecture supports it, GDB will use displaced
1632 stepping to step over breakpoints. If OFF, or if the architecture
1633 doesn't support it, GDB will instead use the traditional
1634 hold-and-step approach. If AUTO (which is the default), GDB will
1635 decide which technique to use to step over breakpoints depending on
1636 which of all-stop or non-stop mode is active --- displaced stepping
1637 in non-stop mode; hold-and-step in all-stop mode. */
1638
72d0e2c5 1639static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1640
237fc4c9
PA
1641static void
1642show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1643 struct cmd_list_element *c,
1644 const char *value)
1645{
72d0e2c5 1646 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1647 fprintf_filtered (file,
1648 _("Debugger's willingness to use displaced stepping "
1649 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1650 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1651 else
3e43a32a
MS
1652 fprintf_filtered (file,
1653 _("Debugger's willingness to use displaced stepping "
1654 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1655}
1656
fff08868 1657/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1658 over breakpoints of thread TP. */
fff08868 1659
237fc4c9 1660static int
3fc8eb30 1661use_displaced_stepping (struct thread_info *tp)
237fc4c9 1662{
3fc8eb30
PA
1663 struct regcache *regcache = get_thread_regcache (tp->ptid);
1664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1665 struct displaced_step_inferior_state *displaced_state;
1666
1667 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1668
fbea99ea
PA
1669 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1670 && target_is_non_stop_p ())
72d0e2c5 1671 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1672 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1673 && find_record_target () == NULL
1674 && (displaced_state == NULL
1675 || !displaced_state->failed_before));
237fc4c9
PA
1676}
1677
1678/* Clean out any stray displaced stepping state. */
1679static void
fc1cf338 1680displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1681{
1682 /* Indicate that there is no cleanup pending. */
fc1cf338 1683 displaced->step_ptid = null_ptid;
237fc4c9 1684
fc1cf338 1685 if (displaced->step_closure)
237fc4c9 1686 {
fc1cf338
PA
1687 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1688 displaced->step_closure);
1689 displaced->step_closure = NULL;
237fc4c9
PA
1690 }
1691}
1692
1693static void
fc1cf338 1694displaced_step_clear_cleanup (void *arg)
237fc4c9 1695{
fc1cf338
PA
1696 struct displaced_step_inferior_state *state = arg;
1697
1698 displaced_step_clear (state);
237fc4c9
PA
1699}
1700
1701/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1702void
1703displaced_step_dump_bytes (struct ui_file *file,
1704 const gdb_byte *buf,
1705 size_t len)
1706{
1707 int i;
1708
1709 for (i = 0; i < len; i++)
1710 fprintf_unfiltered (file, "%02x ", buf[i]);
1711 fputs_unfiltered ("\n", file);
1712}
1713
1714/* Prepare to single-step, using displaced stepping.
1715
1716 Note that we cannot use displaced stepping when we have a signal to
1717 deliver. If we have a signal to deliver and an instruction to step
1718 over, then after the step, there will be no indication from the
1719 target whether the thread entered a signal handler or ignored the
1720 signal and stepped over the instruction successfully --- both cases
1721 result in a simple SIGTRAP. In the first case we mustn't do a
1722 fixup, and in the second case we must --- but we can't tell which.
1723 Comments in the code for 'random signals' in handle_inferior_event
1724 explain how we handle this case instead.
1725
1726 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1727 stepped now; 0 if displaced stepping this thread got queued; or -1
1728 if this instruction can't be displaced stepped. */
1729
237fc4c9 1730static int
3fc8eb30 1731displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1732{
ad53cd71 1733 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1734 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1735 struct regcache *regcache = get_thread_regcache (ptid);
1736 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1737 CORE_ADDR original, copy;
1738 ULONGEST len;
1739 struct displaced_step_closure *closure;
fc1cf338 1740 struct displaced_step_inferior_state *displaced;
9e529e1d 1741 int status;
237fc4c9
PA
1742
1743 /* We should never reach this function if the architecture does not
1744 support displaced stepping. */
1745 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1746
c2829269
PA
1747 /* Nor if the thread isn't meant to step over a breakpoint. */
1748 gdb_assert (tp->control.trap_expected);
1749
c1e36e3e
PA
1750 /* Disable range stepping while executing in the scratch pad. We
1751 want a single-step even if executing the displaced instruction in
1752 the scratch buffer lands within the stepping range (e.g., a
1753 jump/branch). */
1754 tp->control.may_range_step = 0;
1755
fc1cf338
PA
1756 /* We have to displaced step one thread at a time, as we only have
1757 access to a single scratch space per inferior. */
237fc4c9 1758
fc1cf338
PA
1759 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1760
1761 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1762 {
1763 /* Already waiting for a displaced step to finish. Defer this
1764 request and place in queue. */
237fc4c9
PA
1765
1766 if (debug_displaced)
1767 fprintf_unfiltered (gdb_stdlog,
c2829269 1768 "displaced: deferring step of %s\n",
237fc4c9
PA
1769 target_pid_to_str (ptid));
1770
c2829269 1771 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1772 return 0;
1773 }
1774 else
1775 {
1776 if (debug_displaced)
1777 fprintf_unfiltered (gdb_stdlog,
1778 "displaced: stepping %s now\n",
1779 target_pid_to_str (ptid));
1780 }
1781
fc1cf338 1782 displaced_step_clear (displaced);
237fc4c9 1783
ad53cd71
PA
1784 old_cleanups = save_inferior_ptid ();
1785 inferior_ptid = ptid;
1786
515630c5 1787 original = regcache_read_pc (regcache);
237fc4c9
PA
1788
1789 copy = gdbarch_displaced_step_location (gdbarch);
1790 len = gdbarch_max_insn_length (gdbarch);
1791
1792 /* Save the original contents of the copy area. */
fc1cf338 1793 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1794 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1795 &displaced->step_saved_copy);
9e529e1d
JK
1796 status = target_read_memory (copy, displaced->step_saved_copy, len);
1797 if (status != 0)
1798 throw_error (MEMORY_ERROR,
1799 _("Error accessing memory address %s (%s) for "
1800 "displaced-stepping scratch space."),
1801 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1802 if (debug_displaced)
1803 {
5af949e3
UW
1804 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1805 paddress (gdbarch, copy));
fc1cf338
PA
1806 displaced_step_dump_bytes (gdb_stdlog,
1807 displaced->step_saved_copy,
1808 len);
237fc4c9
PA
1809 };
1810
1811 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1812 original, copy, regcache);
7f03bd92
PA
1813 if (closure == NULL)
1814 {
1815 /* The architecture doesn't know how or want to displaced step
1816 this instruction or instruction sequence. Fallback to
1817 stepping over the breakpoint in-line. */
1818 do_cleanups (old_cleanups);
1819 return -1;
1820 }
237fc4c9 1821
9f5a595d
UW
1822 /* Save the information we need to fix things up if the step
1823 succeeds. */
fc1cf338
PA
1824 displaced->step_ptid = ptid;
1825 displaced->step_gdbarch = gdbarch;
1826 displaced->step_closure = closure;
1827 displaced->step_original = original;
1828 displaced->step_copy = copy;
9f5a595d 1829
fc1cf338 1830 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1831
1832 /* Resume execution at the copy. */
515630c5 1833 regcache_write_pc (regcache, copy);
237fc4c9 1834
ad53cd71
PA
1835 discard_cleanups (ignore_cleanups);
1836
1837 do_cleanups (old_cleanups);
237fc4c9
PA
1838
1839 if (debug_displaced)
5af949e3
UW
1840 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1841 paddress (gdbarch, copy));
237fc4c9 1842
237fc4c9
PA
1843 return 1;
1844}
1845
3fc8eb30
PA
1846/* Wrapper for displaced_step_prepare_throw that disabled further
1847 attempts at displaced stepping if we get a memory error. */
1848
1849static int
1850displaced_step_prepare (ptid_t ptid)
1851{
1852 int prepared = -1;
1853
1854 TRY
1855 {
1856 prepared = displaced_step_prepare_throw (ptid);
1857 }
1858 CATCH (ex, RETURN_MASK_ERROR)
1859 {
1860 struct displaced_step_inferior_state *displaced_state;
1861
1862 if (ex.error != MEMORY_ERROR)
1863 throw_exception (ex);
1864
1865 if (debug_infrun)
1866 {
1867 fprintf_unfiltered (gdb_stdlog,
1868 "infrun: disabling displaced stepping: %s\n",
1869 ex.message);
1870 }
1871
1872 /* Be verbose if "set displaced-stepping" is "on", silent if
1873 "auto". */
1874 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1875 {
fd7dcb94 1876 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1877 ex.message);
1878 }
1879
1880 /* Disable further displaced stepping attempts. */
1881 displaced_state
1882 = get_displaced_stepping_state (ptid_get_pid (ptid));
1883 displaced_state->failed_before = 1;
1884 }
1885 END_CATCH
1886
1887 return prepared;
1888}
1889
237fc4c9 1890static void
3e43a32a
MS
1891write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1892 const gdb_byte *myaddr, int len)
237fc4c9
PA
1893{
1894 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1895
237fc4c9
PA
1896 inferior_ptid = ptid;
1897 write_memory (memaddr, myaddr, len);
1898 do_cleanups (ptid_cleanup);
1899}
1900
e2d96639
YQ
1901/* Restore the contents of the copy area for thread PTID. */
1902
1903static void
1904displaced_step_restore (struct displaced_step_inferior_state *displaced,
1905 ptid_t ptid)
1906{
1907 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1908
1909 write_memory_ptid (ptid, displaced->step_copy,
1910 displaced->step_saved_copy, len);
1911 if (debug_displaced)
1912 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1913 target_pid_to_str (ptid),
1914 paddress (displaced->step_gdbarch,
1915 displaced->step_copy));
1916}
1917
372316f1
PA
1918/* If we displaced stepped an instruction successfully, adjust
1919 registers and memory to yield the same effect the instruction would
1920 have had if we had executed it at its original address, and return
1921 1. If the instruction didn't complete, relocate the PC and return
1922 -1. If the thread wasn't displaced stepping, return 0. */
1923
1924static int
2ea28649 1925displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1926{
1927 struct cleanup *old_cleanups;
fc1cf338
PA
1928 struct displaced_step_inferior_state *displaced
1929 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1930 int ret;
fc1cf338
PA
1931
1932 /* Was any thread of this process doing a displaced step? */
1933 if (displaced == NULL)
372316f1 1934 return 0;
237fc4c9
PA
1935
1936 /* Was this event for the pid we displaced? */
fc1cf338
PA
1937 if (ptid_equal (displaced->step_ptid, null_ptid)
1938 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1939 return 0;
237fc4c9 1940
fc1cf338 1941 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1942
e2d96639 1943 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1944
cb71640d
PA
1945 /* Fixup may need to read memory/registers. Switch to the thread
1946 that we're fixing up. Also, target_stopped_by_watchpoint checks
1947 the current thread. */
1948 switch_to_thread (event_ptid);
1949
237fc4c9 1950 /* Did the instruction complete successfully? */
cb71640d
PA
1951 if (signal == GDB_SIGNAL_TRAP
1952 && !(target_stopped_by_watchpoint ()
1953 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1954 || target_have_steppable_watchpoint)))
237fc4c9
PA
1955 {
1956 /* Fix up the resulting state. */
fc1cf338
PA
1957 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1958 displaced->step_closure,
1959 displaced->step_original,
1960 displaced->step_copy,
1961 get_thread_regcache (displaced->step_ptid));
372316f1 1962 ret = 1;
237fc4c9
PA
1963 }
1964 else
1965 {
1966 /* Since the instruction didn't complete, all we can do is
1967 relocate the PC. */
515630c5
UW
1968 struct regcache *regcache = get_thread_regcache (event_ptid);
1969 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1970
fc1cf338 1971 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1972 regcache_write_pc (regcache, pc);
372316f1 1973 ret = -1;
237fc4c9
PA
1974 }
1975
1976 do_cleanups (old_cleanups);
1977
fc1cf338 1978 displaced->step_ptid = null_ptid;
372316f1
PA
1979
1980 return ret;
c2829269 1981}
1c5cfe86 1982
4d9d9d04
PA
1983/* Data to be passed around while handling an event. This data is
1984 discarded between events. */
1985struct execution_control_state
1986{
1987 ptid_t ptid;
1988 /* The thread that got the event, if this was a thread event; NULL
1989 otherwise. */
1990 struct thread_info *event_thread;
1991
1992 struct target_waitstatus ws;
1993 int stop_func_filled_in;
1994 CORE_ADDR stop_func_start;
1995 CORE_ADDR stop_func_end;
1996 const char *stop_func_name;
1997 int wait_some_more;
1998
1999 /* True if the event thread hit the single-step breakpoint of
2000 another thread. Thus the event doesn't cause a stop, the thread
2001 needs to be single-stepped past the single-step breakpoint before
2002 we can switch back to the original stepping thread. */
2003 int hit_singlestep_breakpoint;
2004};
2005
2006/* Clear ECS and set it to point at TP. */
c2829269
PA
2007
2008static void
4d9d9d04
PA
2009reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2010{
2011 memset (ecs, 0, sizeof (*ecs));
2012 ecs->event_thread = tp;
2013 ecs->ptid = tp->ptid;
2014}
2015
2016static void keep_going_pass_signal (struct execution_control_state *ecs);
2017static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2018static int keep_going_stepped_thread (struct thread_info *tp);
4d9d9d04 2019static int thread_still_needs_step_over (struct thread_info *tp);
3fc8eb30 2020static void stop_all_threads (void);
4d9d9d04
PA
2021
2022/* Are there any pending step-over requests? If so, run all we can
2023 now and return true. Otherwise, return false. */
2024
2025static int
c2829269
PA
2026start_step_over (void)
2027{
2028 struct thread_info *tp, *next;
2029
372316f1
PA
2030 /* Don't start a new step-over if we already have an in-line
2031 step-over operation ongoing. */
2032 if (step_over_info_valid_p ())
2033 return 0;
2034
c2829269 2035 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2036 {
4d9d9d04
PA
2037 struct execution_control_state ecss;
2038 struct execution_control_state *ecs = &ecss;
372316f1
PA
2039 enum step_over_what step_what;
2040 int must_be_in_line;
c2829269
PA
2041
2042 next = thread_step_over_chain_next (tp);
237fc4c9 2043
c2829269
PA
2044 /* If this inferior already has a displaced step in process,
2045 don't start a new one. */
4d9d9d04 2046 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2047 continue;
2048
372316f1
PA
2049 step_what = thread_still_needs_step_over (tp);
2050 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2051 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2052 && !use_displaced_stepping (tp)));
372316f1
PA
2053
2054 /* We currently stop all threads of all processes to step-over
2055 in-line. If we need to start a new in-line step-over, let
2056 any pending displaced steps finish first. */
2057 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2058 return 0;
2059
c2829269
PA
2060 thread_step_over_chain_remove (tp);
2061
2062 if (step_over_queue_head == NULL)
2063 {
2064 if (debug_infrun)
2065 fprintf_unfiltered (gdb_stdlog,
2066 "infrun: step-over queue now empty\n");
2067 }
2068
372316f1
PA
2069 if (tp->control.trap_expected
2070 || tp->resumed
2071 || tp->executing)
ad53cd71 2072 {
4d9d9d04
PA
2073 internal_error (__FILE__, __LINE__,
2074 "[%s] has inconsistent state: "
372316f1 2075 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2076 target_pid_to_str (tp->ptid),
2077 tp->control.trap_expected,
372316f1 2078 tp->resumed,
4d9d9d04 2079 tp->executing);
ad53cd71 2080 }
1c5cfe86 2081
4d9d9d04
PA
2082 if (debug_infrun)
2083 fprintf_unfiltered (gdb_stdlog,
2084 "infrun: resuming [%s] for step-over\n",
2085 target_pid_to_str (tp->ptid));
2086
2087 /* keep_going_pass_signal skips the step-over if the breakpoint
2088 is no longer inserted. In all-stop, we want to keep looking
2089 for a thread that needs a step-over instead of resuming TP,
2090 because we wouldn't be able to resume anything else until the
2091 target stops again. In non-stop, the resume always resumes
2092 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2093 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2094 continue;
8550d3b3 2095
4d9d9d04
PA
2096 switch_to_thread (tp->ptid);
2097 reset_ecs (ecs, tp);
2098 keep_going_pass_signal (ecs);
1c5cfe86 2099
4d9d9d04
PA
2100 if (!ecs->wait_some_more)
2101 error (_("Command aborted."));
1c5cfe86 2102
372316f1
PA
2103 gdb_assert (tp->resumed);
2104
2105 /* If we started a new in-line step-over, we're done. */
2106 if (step_over_info_valid_p ())
2107 {
2108 gdb_assert (tp->control.trap_expected);
2109 return 1;
2110 }
2111
fbea99ea 2112 if (!target_is_non_stop_p ())
4d9d9d04
PA
2113 {
2114 /* On all-stop, shouldn't have resumed unless we needed a
2115 step over. */
2116 gdb_assert (tp->control.trap_expected
2117 || tp->step_after_step_resume_breakpoint);
2118
2119 /* With remote targets (at least), in all-stop, we can't
2120 issue any further remote commands until the program stops
2121 again. */
2122 return 1;
1c5cfe86 2123 }
c2829269 2124
4d9d9d04
PA
2125 /* Either the thread no longer needed a step-over, or a new
2126 displaced stepping sequence started. Even in the latter
2127 case, continue looking. Maybe we can also start another
2128 displaced step on a thread of other process. */
237fc4c9 2129 }
4d9d9d04
PA
2130
2131 return 0;
237fc4c9
PA
2132}
2133
5231c1fd
PA
2134/* Update global variables holding ptids to hold NEW_PTID if they were
2135 holding OLD_PTID. */
2136static void
2137infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2138{
2139 struct displaced_step_request *it;
fc1cf338 2140 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2141
2142 if (ptid_equal (inferior_ptid, old_ptid))
2143 inferior_ptid = new_ptid;
2144
fc1cf338
PA
2145 for (displaced = displaced_step_inferior_states;
2146 displaced;
2147 displaced = displaced->next)
2148 {
2149 if (ptid_equal (displaced->step_ptid, old_ptid))
2150 displaced->step_ptid = new_ptid;
fc1cf338 2151 }
5231c1fd
PA
2152}
2153
237fc4c9
PA
2154\f
2155/* Resuming. */
c906108c
SS
2156
2157/* Things to clean up if we QUIT out of resume (). */
c906108c 2158static void
74b7792f 2159resume_cleanups (void *ignore)
c906108c 2160{
34b7e8a6
PA
2161 if (!ptid_equal (inferior_ptid, null_ptid))
2162 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2163
c906108c
SS
2164 normal_stop ();
2165}
2166
53904c9e
AC
2167static const char schedlock_off[] = "off";
2168static const char schedlock_on[] = "on";
2169static const char schedlock_step[] = "step";
40478521 2170static const char *const scheduler_enums[] = {
ef346e04
AC
2171 schedlock_off,
2172 schedlock_on,
2173 schedlock_step,
2174 NULL
2175};
920d2a44
AC
2176static const char *scheduler_mode = schedlock_off;
2177static void
2178show_scheduler_mode (struct ui_file *file, int from_tty,
2179 struct cmd_list_element *c, const char *value)
2180{
3e43a32a
MS
2181 fprintf_filtered (file,
2182 _("Mode for locking scheduler "
2183 "during execution is \"%s\".\n"),
920d2a44
AC
2184 value);
2185}
c906108c
SS
2186
2187static void
96baa820 2188set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2189{
eefe576e
AC
2190 if (!target_can_lock_scheduler)
2191 {
2192 scheduler_mode = schedlock_off;
2193 error (_("Target '%s' cannot support this command."), target_shortname);
2194 }
c906108c
SS
2195}
2196
d4db2f36
PA
2197/* True if execution commands resume all threads of all processes by
2198 default; otherwise, resume only threads of the current inferior
2199 process. */
2200int sched_multi = 0;
2201
2facfe5c
DD
2202/* Try to setup for software single stepping over the specified location.
2203 Return 1 if target_resume() should use hardware single step.
2204
2205 GDBARCH the current gdbarch.
2206 PC the location to step over. */
2207
2208static int
2209maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2210{
2211 int hw_step = 1;
2212
f02253f1
HZ
2213 if (execution_direction == EXEC_FORWARD
2214 && gdbarch_software_single_step_p (gdbarch)
99e40580 2215 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2216 {
99e40580 2217 hw_step = 0;
2facfe5c
DD
2218 }
2219 return hw_step;
2220}
c906108c 2221
f3263aa4
PA
2222/* See infrun.h. */
2223
09cee04b
PA
2224ptid_t
2225user_visible_resume_ptid (int step)
2226{
f3263aa4 2227 ptid_t resume_ptid;
09cee04b 2228
09cee04b
PA
2229 if (non_stop)
2230 {
2231 /* With non-stop mode on, threads are always handled
2232 individually. */
2233 resume_ptid = inferior_ptid;
2234 }
2235 else if ((scheduler_mode == schedlock_on)
03d46957 2236 || (scheduler_mode == schedlock_step && step))
09cee04b 2237 {
f3263aa4
PA
2238 /* User-settable 'scheduler' mode requires solo thread
2239 resume. */
09cee04b
PA
2240 resume_ptid = inferior_ptid;
2241 }
f3263aa4
PA
2242 else if (!sched_multi && target_supports_multi_process ())
2243 {
2244 /* Resume all threads of the current process (and none of other
2245 processes). */
2246 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2247 }
2248 else
2249 {
2250 /* Resume all threads of all processes. */
2251 resume_ptid = RESUME_ALL;
2252 }
09cee04b
PA
2253
2254 return resume_ptid;
2255}
2256
fbea99ea
PA
2257/* Return a ptid representing the set of threads that we will resume,
2258 in the perspective of the target, assuming run control handling
2259 does not require leaving some threads stopped (e.g., stepping past
2260 breakpoint). USER_STEP indicates whether we're about to start the
2261 target for a stepping command. */
2262
2263static ptid_t
2264internal_resume_ptid (int user_step)
2265{
2266 /* In non-stop, we always control threads individually. Note that
2267 the target may always work in non-stop mode even with "set
2268 non-stop off", in which case user_visible_resume_ptid could
2269 return a wildcard ptid. */
2270 if (target_is_non_stop_p ())
2271 return inferior_ptid;
2272 else
2273 return user_visible_resume_ptid (user_step);
2274}
2275
64ce06e4
PA
2276/* Wrapper for target_resume, that handles infrun-specific
2277 bookkeeping. */
2278
2279static void
2280do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2281{
2282 struct thread_info *tp = inferior_thread ();
2283
2284 /* Install inferior's terminal modes. */
2285 target_terminal_inferior ();
2286
2287 /* Avoid confusing the next resume, if the next stop/resume
2288 happens to apply to another thread. */
2289 tp->suspend.stop_signal = GDB_SIGNAL_0;
2290
8f572e5c
PA
2291 /* Advise target which signals may be handled silently.
2292
2293 If we have removed breakpoints because we are stepping over one
2294 in-line (in any thread), we need to receive all signals to avoid
2295 accidentally skipping a breakpoint during execution of a signal
2296 handler.
2297
2298 Likewise if we're displaced stepping, otherwise a trap for a
2299 breakpoint in a signal handler might be confused with the
2300 displaced step finishing. We don't make the displaced_step_fixup
2301 step distinguish the cases instead, because:
2302
2303 - a backtrace while stopped in the signal handler would show the
2304 scratch pad as frame older than the signal handler, instead of
2305 the real mainline code.
2306
2307 - when the thread is later resumed, the signal handler would
2308 return to the scratch pad area, which would no longer be
2309 valid. */
2310 if (step_over_info_valid_p ()
2311 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2312 target_pass_signals (0, NULL);
2313 else
2314 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2315
2316 target_resume (resume_ptid, step, sig);
2317}
2318
c906108c
SS
2319/* Resume the inferior, but allow a QUIT. This is useful if the user
2320 wants to interrupt some lengthy single-stepping operation
2321 (for child processes, the SIGINT goes to the inferior, and so
2322 we get a SIGINT random_signal, but for remote debugging and perhaps
2323 other targets, that's not true).
2324
c906108c
SS
2325 SIG is the signal to give the inferior (zero for none). */
2326void
64ce06e4 2327resume (enum gdb_signal sig)
c906108c 2328{
74b7792f 2329 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2330 struct regcache *regcache = get_current_regcache ();
2331 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2332 struct thread_info *tp = inferior_thread ();
515630c5 2333 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2334 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2335 ptid_t resume_ptid;
856e7dd6
PA
2336 /* This represents the user's step vs continue request. When
2337 deciding whether "set scheduler-locking step" applies, it's the
2338 user's intention that counts. */
2339 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2340 /* This represents what we'll actually request the target to do.
2341 This can decay from a step to a continue, if e.g., we need to
2342 implement single-stepping with breakpoints (software
2343 single-step). */
6b403daa 2344 int step;
c7e8a53c 2345
c2829269
PA
2346 gdb_assert (!thread_is_in_step_over_chain (tp));
2347
c906108c
SS
2348 QUIT;
2349
372316f1
PA
2350 if (tp->suspend.waitstatus_pending_p)
2351 {
2352 if (debug_infrun)
2353 {
2354 char *statstr;
2355
2356 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2357 fprintf_unfiltered (gdb_stdlog,
2358 "infrun: resume: thread %s has pending wait status %s "
2359 "(currently_stepping=%d).\n",
2360 target_pid_to_str (tp->ptid), statstr,
2361 currently_stepping (tp));
2362 xfree (statstr);
2363 }
2364
2365 tp->resumed = 1;
2366
2367 /* FIXME: What should we do if we are supposed to resume this
2368 thread with a signal? Maybe we should maintain a queue of
2369 pending signals to deliver. */
2370 if (sig != GDB_SIGNAL_0)
2371 {
fd7dcb94 2372 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2373 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2374 }
2375
2376 tp->suspend.stop_signal = GDB_SIGNAL_0;
2377 discard_cleanups (old_cleanups);
2378
2379 if (target_can_async_p ())
2380 target_async (1);
2381 return;
2382 }
2383
2384 tp->stepped_breakpoint = 0;
2385
6b403daa
PA
2386 /* Depends on stepped_breakpoint. */
2387 step = currently_stepping (tp);
2388
74609e71
YQ
2389 if (current_inferior ()->waiting_for_vfork_done)
2390 {
48f9886d
PA
2391 /* Don't try to single-step a vfork parent that is waiting for
2392 the child to get out of the shared memory region (by exec'ing
2393 or exiting). This is particularly important on software
2394 single-step archs, as the child process would trip on the
2395 software single step breakpoint inserted for the parent
2396 process. Since the parent will not actually execute any
2397 instruction until the child is out of the shared region (such
2398 are vfork's semantics), it is safe to simply continue it.
2399 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2400 the parent, and tell it to `keep_going', which automatically
2401 re-sets it stepping. */
74609e71
YQ
2402 if (debug_infrun)
2403 fprintf_unfiltered (gdb_stdlog,
2404 "infrun: resume : clear step\n");
a09dd441 2405 step = 0;
74609e71
YQ
2406 }
2407
527159b7 2408 if (debug_infrun)
237fc4c9 2409 fprintf_unfiltered (gdb_stdlog,
c9737c08 2410 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2411 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2412 step, gdb_signal_to_symbol_string (sig),
2413 tp->control.trap_expected,
0d9a9a5f
PA
2414 target_pid_to_str (inferior_ptid),
2415 paddress (gdbarch, pc));
c906108c 2416
c2c6d25f
JM
2417 /* Normally, by the time we reach `resume', the breakpoints are either
2418 removed or inserted, as appropriate. The exception is if we're sitting
2419 at a permanent breakpoint; we need to step over it, but permanent
2420 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2421 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2422 {
af48d08f
PA
2423 if (sig != GDB_SIGNAL_0)
2424 {
2425 /* We have a signal to pass to the inferior. The resume
2426 may, or may not take us to the signal handler. If this
2427 is a step, we'll need to stop in the signal handler, if
2428 there's one, (if the target supports stepping into
2429 handlers), or in the next mainline instruction, if
2430 there's no handler. If this is a continue, we need to be
2431 sure to run the handler with all breakpoints inserted.
2432 In all cases, set a breakpoint at the current address
2433 (where the handler returns to), and once that breakpoint
2434 is hit, resume skipping the permanent breakpoint. If
2435 that breakpoint isn't hit, then we've stepped into the
2436 signal handler (or hit some other event). We'll delete
2437 the step-resume breakpoint then. */
2438
2439 if (debug_infrun)
2440 fprintf_unfiltered (gdb_stdlog,
2441 "infrun: resume: skipping permanent breakpoint, "
2442 "deliver signal first\n");
2443
2444 clear_step_over_info ();
2445 tp->control.trap_expected = 0;
2446
2447 if (tp->control.step_resume_breakpoint == NULL)
2448 {
2449 /* Set a "high-priority" step-resume, as we don't want
2450 user breakpoints at PC to trigger (again) when this
2451 hits. */
2452 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2453 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2454
2455 tp->step_after_step_resume_breakpoint = step;
2456 }
2457
2458 insert_breakpoints ();
2459 }
2460 else
2461 {
2462 /* There's no signal to pass, we can go ahead and skip the
2463 permanent breakpoint manually. */
2464 if (debug_infrun)
2465 fprintf_unfiltered (gdb_stdlog,
2466 "infrun: resume: skipping permanent breakpoint\n");
2467 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2468 /* Update pc to reflect the new address from which we will
2469 execute instructions. */
2470 pc = regcache_read_pc (regcache);
2471
2472 if (step)
2473 {
2474 /* We've already advanced the PC, so the stepping part
2475 is done. Now we need to arrange for a trap to be
2476 reported to handle_inferior_event. Set a breakpoint
2477 at the current PC, and run to it. Don't update
2478 prev_pc, because if we end in
44a1ee51
PA
2479 switch_back_to_stepped_thread, we want the "expected
2480 thread advanced also" branch to be taken. IOW, we
2481 don't want this thread to step further from PC
af48d08f 2482 (overstep). */
1ac806b8 2483 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2484 insert_single_step_breakpoint (gdbarch, aspace, pc);
2485 insert_breakpoints ();
2486
fbea99ea 2487 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2488 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2489 discard_cleanups (old_cleanups);
372316f1 2490 tp->resumed = 1;
af48d08f
PA
2491 return;
2492 }
2493 }
6d350bb5 2494 }
c2c6d25f 2495
c1e36e3e
PA
2496 /* If we have a breakpoint to step over, make sure to do a single
2497 step only. Same if we have software watchpoints. */
2498 if (tp->control.trap_expected || bpstat_should_step ())
2499 tp->control.may_range_step = 0;
2500
237fc4c9
PA
2501 /* If enabled, step over breakpoints by executing a copy of the
2502 instruction at a different address.
2503
2504 We can't use displaced stepping when we have a signal to deliver;
2505 the comments for displaced_step_prepare explain why. The
2506 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2507 signals' explain what we do instead.
2508
2509 We can't use displaced stepping when we are waiting for vfork_done
2510 event, displaced stepping breaks the vfork child similarly as single
2511 step software breakpoint. */
3fc8eb30
PA
2512 if (tp->control.trap_expected
2513 && use_displaced_stepping (tp)
cb71640d 2514 && !step_over_info_valid_p ()
a493e3e2 2515 && sig == GDB_SIGNAL_0
74609e71 2516 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2517 {
3fc8eb30 2518 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2519
3fc8eb30 2520 if (prepared == 0)
d56b7306 2521 {
4d9d9d04
PA
2522 if (debug_infrun)
2523 fprintf_unfiltered (gdb_stdlog,
2524 "Got placed in step-over queue\n");
2525
2526 tp->control.trap_expected = 0;
d56b7306
VP
2527 discard_cleanups (old_cleanups);
2528 return;
2529 }
3fc8eb30
PA
2530 else if (prepared < 0)
2531 {
2532 /* Fallback to stepping over the breakpoint in-line. */
2533
2534 if (target_is_non_stop_p ())
2535 stop_all_threads ();
2536
2537 set_step_over_info (get_regcache_aspace (regcache),
2538 regcache_read_pc (regcache), 0);
2539
2540 step = maybe_software_singlestep (gdbarch, pc);
2541
2542 insert_breakpoints ();
2543 }
2544 else if (prepared > 0)
2545 {
2546 struct displaced_step_inferior_state *displaced;
99e40580 2547
3fc8eb30
PA
2548 /* Update pc to reflect the new address from which we will
2549 execute instructions due to displaced stepping. */
2550 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2551
3fc8eb30
PA
2552 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2553 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2554 displaced->step_closure);
2555 }
237fc4c9
PA
2556 }
2557
2facfe5c 2558 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2559 else if (step)
2facfe5c 2560 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2561
30852783
UW
2562 /* Currently, our software single-step implementation leads to different
2563 results than hardware single-stepping in one situation: when stepping
2564 into delivering a signal which has an associated signal handler,
2565 hardware single-step will stop at the first instruction of the handler,
2566 while software single-step will simply skip execution of the handler.
2567
2568 For now, this difference in behavior is accepted since there is no
2569 easy way to actually implement single-stepping into a signal handler
2570 without kernel support.
2571
2572 However, there is one scenario where this difference leads to follow-on
2573 problems: if we're stepping off a breakpoint by removing all breakpoints
2574 and then single-stepping. In this case, the software single-step
2575 behavior means that even if there is a *breakpoint* in the signal
2576 handler, GDB still would not stop.
2577
2578 Fortunately, we can at least fix this particular issue. We detect
2579 here the case where we are about to deliver a signal while software
2580 single-stepping with breakpoints removed. In this situation, we
2581 revert the decisions to remove all breakpoints and insert single-
2582 step breakpoints, and instead we install a step-resume breakpoint
2583 at the current address, deliver the signal without stepping, and
2584 once we arrive back at the step-resume breakpoint, actually step
2585 over the breakpoint we originally wanted to step over. */
34b7e8a6 2586 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2587 && sig != GDB_SIGNAL_0
2588 && step_over_info_valid_p ())
30852783
UW
2589 {
2590 /* If we have nested signals or a pending signal is delivered
2591 immediately after a handler returns, might might already have
2592 a step-resume breakpoint set on the earlier handler. We cannot
2593 set another step-resume breakpoint; just continue on until the
2594 original breakpoint is hit. */
2595 if (tp->control.step_resume_breakpoint == NULL)
2596 {
2c03e5be 2597 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2598 tp->step_after_step_resume_breakpoint = 1;
2599 }
2600
34b7e8a6 2601 delete_single_step_breakpoints (tp);
30852783 2602
31e77af2 2603 clear_step_over_info ();
30852783 2604 tp->control.trap_expected = 0;
31e77af2
PA
2605
2606 insert_breakpoints ();
30852783
UW
2607 }
2608
b0f16a3e
SM
2609 /* If STEP is set, it's a request to use hardware stepping
2610 facilities. But in that case, we should never
2611 use singlestep breakpoint. */
34b7e8a6 2612 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2613
fbea99ea 2614 /* Decide the set of threads to ask the target to resume. */
34b7e8a6 2615 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2616 && tp->control.trap_expected)
2617 {
2618 /* We're allowing a thread to run past a breakpoint it has
2619 hit, by single-stepping the thread with the breakpoint
2620 removed. In which case, we need to single-step only this
2621 thread, and keep others stopped, as they can miss this
2622 breakpoint if allowed to run. */
2623 resume_ptid = inferior_ptid;
2624 }
fbea99ea
PA
2625 else
2626 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2627
7f5ef605
PA
2628 if (execution_direction != EXEC_REVERSE
2629 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2630 {
372316f1
PA
2631 /* There are two cases where we currently need to step a
2632 breakpoint instruction when we have a signal to deliver:
2633
2634 - See handle_signal_stop where we handle random signals that
2635 could take out us out of the stepping range. Normally, in
2636 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2637 signal handler with a breakpoint at PC, but there are cases
2638 where we should _always_ single-step, even if we have a
2639 step-resume breakpoint, like when a software watchpoint is
2640 set. Assuming single-stepping and delivering a signal at the
2641 same time would takes us to the signal handler, then we could
2642 have removed the breakpoint at PC to step over it. However,
2643 some hardware step targets (like e.g., Mac OS) can't step
2644 into signal handlers, and for those, we need to leave the
2645 breakpoint at PC inserted, as otherwise if the handler
2646 recurses and executes PC again, it'll miss the breakpoint.
2647 So we leave the breakpoint inserted anyway, but we need to
2648 record that we tried to step a breakpoint instruction, so
372316f1
PA
2649 that adjust_pc_after_break doesn't end up confused.
2650
2651 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2652 in one thread after another thread that was stepping had been
2653 momentarily paused for a step-over. When we re-resume the
2654 stepping thread, it may be resumed from that address with a
2655 breakpoint that hasn't trapped yet. Seen with
2656 gdb.threads/non-stop-fair-events.exp, on targets that don't
2657 do displaced stepping. */
2658
2659 if (debug_infrun)
2660 fprintf_unfiltered (gdb_stdlog,
2661 "infrun: resume: [%s] stepped breakpoint\n",
2662 target_pid_to_str (tp->ptid));
7f5ef605
PA
2663
2664 tp->stepped_breakpoint = 1;
2665
b0f16a3e
SM
2666 /* Most targets can step a breakpoint instruction, thus
2667 executing it normally. But if this one cannot, just
2668 continue and we will hit it anyway. */
7f5ef605 2669 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2670 step = 0;
2671 }
ef5cf84e 2672
b0f16a3e 2673 if (debug_displaced
cb71640d 2674 && tp->control.trap_expected
3fc8eb30 2675 && use_displaced_stepping (tp)
cb71640d 2676 && !step_over_info_valid_p ())
b0f16a3e 2677 {
d9b67d9f 2678 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2679 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2680 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2681 gdb_byte buf[4];
2682
2683 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2684 paddress (resume_gdbarch, actual_pc));
2685 read_memory (actual_pc, buf, sizeof (buf));
2686 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2687 }
237fc4c9 2688
b0f16a3e
SM
2689 if (tp->control.may_range_step)
2690 {
2691 /* If we're resuming a thread with the PC out of the step
2692 range, then we're doing some nested/finer run control
2693 operation, like stepping the thread out of the dynamic
2694 linker or the displaced stepping scratch pad. We
2695 shouldn't have allowed a range step then. */
2696 gdb_assert (pc_in_thread_step_range (pc, tp));
2697 }
c1e36e3e 2698
64ce06e4 2699 do_target_resume (resume_ptid, step, sig);
372316f1 2700 tp->resumed = 1;
c906108c
SS
2701 discard_cleanups (old_cleanups);
2702}
2703\f
237fc4c9 2704/* Proceeding. */
c906108c
SS
2705
2706/* Clear out all variables saying what to do when inferior is continued.
2707 First do this, then set the ones you want, then call `proceed'. */
2708
a7212384
UW
2709static void
2710clear_proceed_status_thread (struct thread_info *tp)
c906108c 2711{
a7212384
UW
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "infrun: clear_proceed_status_thread (%s)\n",
2715 target_pid_to_str (tp->ptid));
d6b48e9c 2716
372316f1
PA
2717 /* If we're starting a new sequence, then the previous finished
2718 single-step is no longer relevant. */
2719 if (tp->suspend.waitstatus_pending_p)
2720 {
2721 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2722 {
2723 if (debug_infrun)
2724 fprintf_unfiltered (gdb_stdlog,
2725 "infrun: clear_proceed_status: pending "
2726 "event of %s was a finished step. "
2727 "Discarding.\n",
2728 target_pid_to_str (tp->ptid));
2729
2730 tp->suspend.waitstatus_pending_p = 0;
2731 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2732 }
2733 else if (debug_infrun)
2734 {
2735 char *statstr;
2736
2737 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2738 fprintf_unfiltered (gdb_stdlog,
2739 "infrun: clear_proceed_status_thread: thread %s "
2740 "has pending wait status %s "
2741 "(currently_stepping=%d).\n",
2742 target_pid_to_str (tp->ptid), statstr,
2743 currently_stepping (tp));
2744 xfree (statstr);
2745 }
2746 }
2747
70509625
PA
2748 /* If this signal should not be seen by program, give it zero.
2749 Used for debugging signals. */
2750 if (!signal_pass_state (tp->suspend.stop_signal))
2751 tp->suspend.stop_signal = GDB_SIGNAL_0;
2752
243a9253
PA
2753 thread_fsm_delete (tp->thread_fsm);
2754 tp->thread_fsm = NULL;
2755
16c381f0
JK
2756 tp->control.trap_expected = 0;
2757 tp->control.step_range_start = 0;
2758 tp->control.step_range_end = 0;
c1e36e3e 2759 tp->control.may_range_step = 0;
16c381f0
JK
2760 tp->control.step_frame_id = null_frame_id;
2761 tp->control.step_stack_frame_id = null_frame_id;
2762 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2763 tp->control.step_start_function = NULL;
a7212384 2764 tp->stop_requested = 0;
4e1c45ea 2765
16c381f0 2766 tp->control.stop_step = 0;
32400beb 2767
16c381f0 2768 tp->control.proceed_to_finish = 0;
414c69f7 2769
17b2616c 2770 tp->control.command_interp = NULL;
856e7dd6 2771 tp->control.stepping_command = 0;
17b2616c 2772
a7212384 2773 /* Discard any remaining commands or status from previous stop. */
16c381f0 2774 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2775}
32400beb 2776
a7212384 2777void
70509625 2778clear_proceed_status (int step)
a7212384 2779{
6c95b8df
PA
2780 if (!non_stop)
2781 {
70509625
PA
2782 struct thread_info *tp;
2783 ptid_t resume_ptid;
2784
2785 resume_ptid = user_visible_resume_ptid (step);
2786
2787 /* In all-stop mode, delete the per-thread status of all threads
2788 we're about to resume, implicitly and explicitly. */
2789 ALL_NON_EXITED_THREADS (tp)
2790 {
2791 if (!ptid_match (tp->ptid, resume_ptid))
2792 continue;
2793 clear_proceed_status_thread (tp);
2794 }
6c95b8df
PA
2795 }
2796
a7212384
UW
2797 if (!ptid_equal (inferior_ptid, null_ptid))
2798 {
2799 struct inferior *inferior;
2800
2801 if (non_stop)
2802 {
6c95b8df
PA
2803 /* If in non-stop mode, only delete the per-thread status of
2804 the current thread. */
a7212384
UW
2805 clear_proceed_status_thread (inferior_thread ());
2806 }
6c95b8df 2807
d6b48e9c 2808 inferior = current_inferior ();
16c381f0 2809 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2810 }
2811
c906108c 2812 stop_after_trap = 0;
f3b1572e
PA
2813
2814 observer_notify_about_to_proceed ();
c906108c
SS
2815}
2816
99619bea
PA
2817/* Returns true if TP is still stopped at a breakpoint that needs
2818 stepping-over in order to make progress. If the breakpoint is gone
2819 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2820
2821static int
6c4cfb24 2822thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2823{
2824 if (tp->stepping_over_breakpoint)
2825 {
2826 struct regcache *regcache = get_thread_regcache (tp->ptid);
2827
2828 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2829 regcache_read_pc (regcache))
2830 == ordinary_breakpoint_here)
99619bea
PA
2831 return 1;
2832
2833 tp->stepping_over_breakpoint = 0;
2834 }
2835
2836 return 0;
2837}
2838
6c4cfb24
PA
2839/* Check whether thread TP still needs to start a step-over in order
2840 to make progress when resumed. Returns an bitwise or of enum
2841 step_over_what bits, indicating what needs to be stepped over. */
2842
2843static int
2844thread_still_needs_step_over (struct thread_info *tp)
2845{
2846 struct inferior *inf = find_inferior_ptid (tp->ptid);
2847 int what = 0;
2848
2849 if (thread_still_needs_step_over_bp (tp))
2850 what |= STEP_OVER_BREAKPOINT;
2851
2852 if (tp->stepping_over_watchpoint
2853 && !target_have_steppable_watchpoint)
2854 what |= STEP_OVER_WATCHPOINT;
2855
2856 return what;
2857}
2858
483805cf
PA
2859/* Returns true if scheduler locking applies. STEP indicates whether
2860 we're about to do a step/next-like command to a thread. */
2861
2862static int
856e7dd6 2863schedlock_applies (struct thread_info *tp)
483805cf
PA
2864{
2865 return (scheduler_mode == schedlock_on
2866 || (scheduler_mode == schedlock_step
856e7dd6 2867 && tp->control.stepping_command));
483805cf
PA
2868}
2869
c906108c
SS
2870/* Basic routine for continuing the program in various fashions.
2871
2872 ADDR is the address to resume at, or -1 for resume where stopped.
2873 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2874 or -1 for act according to how it stopped.
c906108c 2875 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2876 -1 means return after that and print nothing.
2877 You should probably set various step_... variables
2878 before calling here, if you are stepping.
c906108c
SS
2879
2880 You should call clear_proceed_status before calling proceed. */
2881
2882void
64ce06e4 2883proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2884{
e58b0e63
PA
2885 struct regcache *regcache;
2886 struct gdbarch *gdbarch;
4e1c45ea 2887 struct thread_info *tp;
e58b0e63 2888 CORE_ADDR pc;
6c95b8df 2889 struct address_space *aspace;
4d9d9d04
PA
2890 ptid_t resume_ptid;
2891 struct execution_control_state ecss;
2892 struct execution_control_state *ecs = &ecss;
2893 struct cleanup *old_chain;
2894 int started;
c906108c 2895
e58b0e63
PA
2896 /* If we're stopped at a fork/vfork, follow the branch set by the
2897 "set follow-fork-mode" command; otherwise, we'll just proceed
2898 resuming the current thread. */
2899 if (!follow_fork ())
2900 {
2901 /* The target for some reason decided not to resume. */
2902 normal_stop ();
f148b27e
PA
2903 if (target_can_async_p ())
2904 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2905 return;
2906 }
2907
842951eb
PA
2908 /* We'll update this if & when we switch to a new thread. */
2909 previous_inferior_ptid = inferior_ptid;
2910
e58b0e63
PA
2911 regcache = get_current_regcache ();
2912 gdbarch = get_regcache_arch (regcache);
6c95b8df 2913 aspace = get_regcache_aspace (regcache);
e58b0e63 2914 pc = regcache_read_pc (regcache);
2adfaa28 2915 tp = inferior_thread ();
e58b0e63 2916
99619bea
PA
2917 /* Fill in with reasonable starting values. */
2918 init_thread_stepping_state (tp);
2919
c2829269
PA
2920 gdb_assert (!thread_is_in_step_over_chain (tp));
2921
2acceee2 2922 if (addr == (CORE_ADDR) -1)
c906108c 2923 {
af48d08f
PA
2924 if (pc == stop_pc
2925 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2926 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2927 /* There is a breakpoint at the address we will resume at,
2928 step one instruction before inserting breakpoints so that
2929 we do not stop right away (and report a second hit at this
b2175913
MS
2930 breakpoint).
2931
2932 Note, we don't do this in reverse, because we won't
2933 actually be executing the breakpoint insn anyway.
2934 We'll be (un-)executing the previous instruction. */
99619bea 2935 tp->stepping_over_breakpoint = 1;
515630c5
UW
2936 else if (gdbarch_single_step_through_delay_p (gdbarch)
2937 && gdbarch_single_step_through_delay (gdbarch,
2938 get_current_frame ()))
3352ef37
AC
2939 /* We stepped onto an instruction that needs to be stepped
2940 again before re-inserting the breakpoint, do so. */
99619bea 2941 tp->stepping_over_breakpoint = 1;
c906108c
SS
2942 }
2943 else
2944 {
515630c5 2945 regcache_write_pc (regcache, addr);
c906108c
SS
2946 }
2947
70509625
PA
2948 if (siggnal != GDB_SIGNAL_DEFAULT)
2949 tp->suspend.stop_signal = siggnal;
2950
17b2616c
PA
2951 /* Record the interpreter that issued the execution command that
2952 caused this thread to resume. If the top level interpreter is
2953 MI/async, and the execution command was a CLI command
2954 (next/step/etc.), we'll want to print stop event output to the MI
2955 console channel (the stepped-to line, etc.), as if the user
2956 entered the execution command on a real GDB console. */
4d9d9d04
PA
2957 tp->control.command_interp = command_interp ();
2958
2959 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
2960
2961 /* If an exception is thrown from this point on, make sure to
2962 propagate GDB's knowledge of the executing state to the
2963 frontend/user running state. */
2964 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
2965
2966 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2967 threads (e.g., we might need to set threads stepping over
2968 breakpoints first), from the user/frontend's point of view, all
2969 threads in RESUME_PTID are now running. Unless we're calling an
2970 inferior function, as in that case we pretend the inferior
2971 doesn't run at all. */
2972 if (!tp->control.in_infcall)
2973 set_running (resume_ptid, 1);
17b2616c 2974
527159b7 2975 if (debug_infrun)
8a9de0e4 2976 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2977 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2978 paddress (gdbarch, addr),
64ce06e4 2979 gdb_signal_to_symbol_string (siggnal));
527159b7 2980
4d9d9d04
PA
2981 annotate_starting ();
2982
2983 /* Make sure that output from GDB appears before output from the
2984 inferior. */
2985 gdb_flush (gdb_stdout);
2986
2987 /* In a multi-threaded task we may select another thread and
2988 then continue or step.
2989
2990 But if a thread that we're resuming had stopped at a breakpoint,
2991 it will immediately cause another breakpoint stop without any
2992 execution (i.e. it will report a breakpoint hit incorrectly). So
2993 we must step over it first.
2994
2995 Look for threads other than the current (TP) that reported a
2996 breakpoint hit and haven't been resumed yet since. */
2997
2998 /* If scheduler locking applies, we can avoid iterating over all
2999 threads. */
3000 if (!non_stop && !schedlock_applies (tp))
94cc34af 3001 {
4d9d9d04
PA
3002 struct thread_info *current = tp;
3003
3004 ALL_NON_EXITED_THREADS (tp)
3005 {
3006 /* Ignore the current thread here. It's handled
3007 afterwards. */
3008 if (tp == current)
3009 continue;
99619bea 3010
4d9d9d04
PA
3011 /* Ignore threads of processes we're not resuming. */
3012 if (!ptid_match (tp->ptid, resume_ptid))
3013 continue;
c906108c 3014
4d9d9d04
PA
3015 if (!thread_still_needs_step_over (tp))
3016 continue;
3017
3018 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3019
99619bea
PA
3020 if (debug_infrun)
3021 fprintf_unfiltered (gdb_stdlog,
3022 "infrun: need to step-over [%s] first\n",
4d9d9d04 3023 target_pid_to_str (tp->ptid));
99619bea 3024
4d9d9d04 3025 thread_step_over_chain_enqueue (tp);
2adfaa28 3026 }
31e77af2 3027
4d9d9d04 3028 tp = current;
30852783
UW
3029 }
3030
4d9d9d04
PA
3031 /* Enqueue the current thread last, so that we move all other
3032 threads over their breakpoints first. */
3033 if (tp->stepping_over_breakpoint)
3034 thread_step_over_chain_enqueue (tp);
30852783 3035
4d9d9d04
PA
3036 /* If the thread isn't started, we'll still need to set its prev_pc,
3037 so that switch_back_to_stepped_thread knows the thread hasn't
3038 advanced. Must do this before resuming any thread, as in
3039 all-stop/remote, once we resume we can't send any other packet
3040 until the target stops again. */
3041 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3042
4d9d9d04 3043 started = start_step_over ();
c906108c 3044
4d9d9d04
PA
3045 if (step_over_info_valid_p ())
3046 {
3047 /* Either this thread started a new in-line step over, or some
3048 other thread was already doing one. In either case, don't
3049 resume anything else until the step-over is finished. */
3050 }
fbea99ea 3051 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3052 {
3053 /* A new displaced stepping sequence was started. In all-stop,
3054 we can't talk to the target anymore until it next stops. */
3055 }
fbea99ea
PA
3056 else if (!non_stop && target_is_non_stop_p ())
3057 {
3058 /* In all-stop, but the target is always in non-stop mode.
3059 Start all other threads that are implicitly resumed too. */
3060 ALL_NON_EXITED_THREADS (tp)
3061 {
3062 /* Ignore threads of processes we're not resuming. */
3063 if (!ptid_match (tp->ptid, resume_ptid))
3064 continue;
3065
3066 if (tp->resumed)
3067 {
3068 if (debug_infrun)
3069 fprintf_unfiltered (gdb_stdlog,
3070 "infrun: proceed: [%s] resumed\n",
3071 target_pid_to_str (tp->ptid));
3072 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3073 continue;
3074 }
3075
3076 if (thread_is_in_step_over_chain (tp))
3077 {
3078 if (debug_infrun)
3079 fprintf_unfiltered (gdb_stdlog,
3080 "infrun: proceed: [%s] needs step-over\n",
3081 target_pid_to_str (tp->ptid));
3082 continue;
3083 }
3084
3085 if (debug_infrun)
3086 fprintf_unfiltered (gdb_stdlog,
3087 "infrun: proceed: resuming %s\n",
3088 target_pid_to_str (tp->ptid));
3089
3090 reset_ecs (ecs, tp);
3091 switch_to_thread (tp->ptid);
3092 keep_going_pass_signal (ecs);
3093 if (!ecs->wait_some_more)
fd7dcb94 3094 error (_("Command aborted."));
fbea99ea
PA
3095 }
3096 }
372316f1 3097 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3098 {
3099 /* The thread wasn't started, and isn't queued, run it now. */
3100 reset_ecs (ecs, tp);
3101 switch_to_thread (tp->ptid);
3102 keep_going_pass_signal (ecs);
3103 if (!ecs->wait_some_more)
fd7dcb94 3104 error (_("Command aborted."));
4d9d9d04 3105 }
c906108c 3106
4d9d9d04 3107 discard_cleanups (old_chain);
c906108c 3108
0b333c5e
PA
3109 /* Tell the event loop to wait for it to stop. If the target
3110 supports asynchronous execution, it'll do this from within
3111 target_resume. */
362646f5 3112 if (!target_can_async_p ())
0b333c5e 3113 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3114}
c906108c
SS
3115\f
3116
3117/* Start remote-debugging of a machine over a serial link. */
96baa820 3118
c906108c 3119void
8621d6a9 3120start_remote (int from_tty)
c906108c 3121{
d6b48e9c 3122 struct inferior *inferior;
d6b48e9c
PA
3123
3124 inferior = current_inferior ();
16c381f0 3125 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3126
1777feb0 3127 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3128 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3129 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3130 nothing is returned (instead of just blocking). Because of this,
3131 targets expecting an immediate response need to, internally, set
3132 things up so that the target_wait() is forced to eventually
1777feb0 3133 timeout. */
6426a772
JM
3134 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3135 differentiate to its caller what the state of the target is after
3136 the initial open has been performed. Here we're assuming that
3137 the target has stopped. It should be possible to eventually have
3138 target_open() return to the caller an indication that the target
3139 is currently running and GDB state should be set to the same as
1777feb0 3140 for an async run. */
e4c8541f 3141 wait_for_inferior ();
8621d6a9
DJ
3142
3143 /* Now that the inferior has stopped, do any bookkeeping like
3144 loading shared libraries. We want to do this before normal_stop,
3145 so that the displayed frame is up to date. */
3146 post_create_inferior (&current_target, from_tty);
3147
6426a772 3148 normal_stop ();
c906108c
SS
3149}
3150
3151/* Initialize static vars when a new inferior begins. */
3152
3153void
96baa820 3154init_wait_for_inferior (void)
c906108c
SS
3155{
3156 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3157
c906108c
SS
3158 breakpoint_init_inferior (inf_starting);
3159
70509625 3160 clear_proceed_status (0);
9f976b41 3161
ca005067 3162 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3163
842951eb 3164 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3165
edb3359d
DJ
3166 /* Discard any skipped inlined frames. */
3167 clear_inline_frame_state (minus_one_ptid);
c906108c 3168}
237fc4c9 3169
c906108c 3170\f
488f131b 3171
ec9499be 3172static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3173
568d6575
UW
3174static void handle_step_into_function (struct gdbarch *gdbarch,
3175 struct execution_control_state *ecs);
3176static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3177 struct execution_control_state *ecs);
4f5d7f63 3178static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3179static void check_exception_resume (struct execution_control_state *,
28106bc2 3180 struct frame_info *);
611c83ae 3181
bdc36728 3182static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3183static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3184static void keep_going (struct execution_control_state *ecs);
94c57d6a 3185static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3186static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3187
252fbfc8
PA
3188/* Callback for iterate over threads. If the thread is stopped, but
3189 the user/frontend doesn't know about that yet, go through
3190 normal_stop, as if the thread had just stopped now. ARG points at
3191 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3192 ptid_is_pid(PTID) is true, applies to all threads of the process
3193 pointed at by PTID. Otherwise, apply only to the thread pointed by
3194 PTID. */
3195
3196static int
3197infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3198{
3199 ptid_t ptid = * (ptid_t *) arg;
3200
3201 if ((ptid_equal (info->ptid, ptid)
3202 || ptid_equal (minus_one_ptid, ptid)
3203 || (ptid_is_pid (ptid)
3204 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3205 && is_running (info->ptid)
3206 && !is_executing (info->ptid))
3207 {
3208 struct cleanup *old_chain;
3209 struct execution_control_state ecss;
3210 struct execution_control_state *ecs = &ecss;
3211
3212 memset (ecs, 0, sizeof (*ecs));
3213
3214 old_chain = make_cleanup_restore_current_thread ();
3215
f15cb84a
YQ
3216 overlay_cache_invalid = 1;
3217 /* Flush target cache before starting to handle each event.
3218 Target was running and cache could be stale. This is just a
3219 heuristic. Running threads may modify target memory, but we
3220 don't get any event. */
3221 target_dcache_invalidate ();
3222
252fbfc8
PA
3223 /* Go through handle_inferior_event/normal_stop, so we always
3224 have consistent output as if the stop event had been
3225 reported. */
3226 ecs->ptid = info->ptid;
243a9253 3227 ecs->event_thread = info;
252fbfc8 3228 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3229 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3230
3231 handle_inferior_event (ecs);
3232
3233 if (!ecs->wait_some_more)
3234 {
3235 struct thread_info *tp;
3236
243a9253
PA
3237 /* Cancel any running execution command. */
3238 thread_cancel_execution_command (info);
3239
252fbfc8
PA
3240 normal_stop ();
3241
fa4cd53f 3242 /* Finish off the continuations. */
252fbfc8 3243 tp = inferior_thread ();
fa4cd53f
PA
3244 do_all_intermediate_continuations_thread (tp, 1);
3245 do_all_continuations_thread (tp, 1);
252fbfc8
PA
3246 }
3247
3248 do_cleanups (old_chain);
3249 }
3250
3251 return 0;
3252}
3253
3254/* This function is attached as a "thread_stop_requested" observer.
3255 Cleanup local state that assumed the PTID was to be resumed, and
3256 report the stop to the frontend. */
3257
2c0b251b 3258static void
252fbfc8
PA
3259infrun_thread_stop_requested (ptid_t ptid)
3260{
c2829269 3261 struct thread_info *tp;
252fbfc8 3262
c2829269
PA
3263 /* PTID was requested to stop. Remove matching threads from the
3264 step-over queue, so we don't try to resume them
3265 automatically. */
3266 ALL_NON_EXITED_THREADS (tp)
3267 if (ptid_match (tp->ptid, ptid))
3268 {
3269 if (thread_is_in_step_over_chain (tp))
3270 thread_step_over_chain_remove (tp);
3271 }
252fbfc8
PA
3272
3273 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3274}
3275
a07daef3
PA
3276static void
3277infrun_thread_thread_exit (struct thread_info *tp, int silent)
3278{
3279 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3280 nullify_last_target_wait_ptid ();
3281}
3282
0cbcdb96
PA
3283/* Delete the step resume, single-step and longjmp/exception resume
3284 breakpoints of TP. */
4e1c45ea 3285
0cbcdb96
PA
3286static void
3287delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3288{
0cbcdb96
PA
3289 delete_step_resume_breakpoint (tp);
3290 delete_exception_resume_breakpoint (tp);
34b7e8a6 3291 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3292}
3293
0cbcdb96
PA
3294/* If the target still has execution, call FUNC for each thread that
3295 just stopped. In all-stop, that's all the non-exited threads; in
3296 non-stop, that's the current thread, only. */
3297
3298typedef void (*for_each_just_stopped_thread_callback_func)
3299 (struct thread_info *tp);
4e1c45ea
PA
3300
3301static void
0cbcdb96 3302for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3303{
0cbcdb96 3304 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3305 return;
3306
fbea99ea 3307 if (target_is_non_stop_p ())
4e1c45ea 3308 {
0cbcdb96
PA
3309 /* If in non-stop mode, only the current thread stopped. */
3310 func (inferior_thread ());
4e1c45ea
PA
3311 }
3312 else
0cbcdb96
PA
3313 {
3314 struct thread_info *tp;
3315
3316 /* In all-stop mode, all threads have stopped. */
3317 ALL_NON_EXITED_THREADS (tp)
3318 {
3319 func (tp);
3320 }
3321 }
3322}
3323
3324/* Delete the step resume and longjmp/exception resume breakpoints of
3325 the threads that just stopped. */
3326
3327static void
3328delete_just_stopped_threads_infrun_breakpoints (void)
3329{
3330 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3331}
3332
3333/* Delete the single-step breakpoints of the threads that just
3334 stopped. */
7c16b83e 3335
34b7e8a6
PA
3336static void
3337delete_just_stopped_threads_single_step_breakpoints (void)
3338{
3339 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3340}
3341
1777feb0 3342/* A cleanup wrapper. */
4e1c45ea
PA
3343
3344static void
0cbcdb96 3345delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3346{
0cbcdb96 3347 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3348}
3349
221e1a37 3350/* See infrun.h. */
223698f8 3351
221e1a37 3352void
223698f8
DE
3353print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3354 const struct target_waitstatus *ws)
3355{
3356 char *status_string = target_waitstatus_to_string (ws);
3357 struct ui_file *tmp_stream = mem_fileopen ();
3358 char *text;
223698f8
DE
3359
3360 /* The text is split over several lines because it was getting too long.
3361 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3362 output as a unit; we want only one timestamp printed if debug_timestamp
3363 is set. */
3364
3365 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3366 "infrun: target_wait (%d.%ld.%ld",
3367 ptid_get_pid (waiton_ptid),
3368 ptid_get_lwp (waiton_ptid),
3369 ptid_get_tid (waiton_ptid));
dfd4cc63 3370 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3371 fprintf_unfiltered (tmp_stream,
3372 " [%s]", target_pid_to_str (waiton_ptid));
3373 fprintf_unfiltered (tmp_stream, ", status) =\n");
3374 fprintf_unfiltered (tmp_stream,
1176ecec 3375 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3376 ptid_get_pid (result_ptid),
1176ecec
PA
3377 ptid_get_lwp (result_ptid),
3378 ptid_get_tid (result_ptid),
dfd4cc63 3379 target_pid_to_str (result_ptid));
223698f8
DE
3380 fprintf_unfiltered (tmp_stream,
3381 "infrun: %s\n",
3382 status_string);
3383
759ef836 3384 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3385
3386 /* This uses %s in part to handle %'s in the text, but also to avoid
3387 a gcc error: the format attribute requires a string literal. */
3388 fprintf_unfiltered (gdb_stdlog, "%s", text);
3389
3390 xfree (status_string);
3391 xfree (text);
3392 ui_file_delete (tmp_stream);
3393}
3394
372316f1
PA
3395/* Select a thread at random, out of those which are resumed and have
3396 had events. */
3397
3398static struct thread_info *
3399random_pending_event_thread (ptid_t waiton_ptid)
3400{
3401 struct thread_info *event_tp;
3402 int num_events = 0;
3403 int random_selector;
3404
3405 /* First see how many events we have. Count only resumed threads
3406 that have an event pending. */
3407 ALL_NON_EXITED_THREADS (event_tp)
3408 if (ptid_match (event_tp->ptid, waiton_ptid)
3409 && event_tp->resumed
3410 && event_tp->suspend.waitstatus_pending_p)
3411 num_events++;
3412
3413 if (num_events == 0)
3414 return NULL;
3415
3416 /* Now randomly pick a thread out of those that have had events. */
3417 random_selector = (int)
3418 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3419
3420 if (debug_infrun && num_events > 1)
3421 fprintf_unfiltered (gdb_stdlog,
3422 "infrun: Found %d events, selecting #%d\n",
3423 num_events, random_selector);
3424
3425 /* Select the Nth thread that has had an event. */
3426 ALL_NON_EXITED_THREADS (event_tp)
3427 if (ptid_match (event_tp->ptid, waiton_ptid)
3428 && event_tp->resumed
3429 && event_tp->suspend.waitstatus_pending_p)
3430 if (random_selector-- == 0)
3431 break;
3432
3433 return event_tp;
3434}
3435
3436/* Wrapper for target_wait that first checks whether threads have
3437 pending statuses to report before actually asking the target for
3438 more events. */
3439
3440static ptid_t
3441do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3442{
3443 ptid_t event_ptid;
3444 struct thread_info *tp;
3445
3446 /* First check if there is a resumed thread with a wait status
3447 pending. */
3448 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3449 {
3450 tp = random_pending_event_thread (ptid);
3451 }
3452 else
3453 {
3454 if (debug_infrun)
3455 fprintf_unfiltered (gdb_stdlog,
3456 "infrun: Waiting for specific thread %s.\n",
3457 target_pid_to_str (ptid));
3458
3459 /* We have a specific thread to check. */
3460 tp = find_thread_ptid (ptid);
3461 gdb_assert (tp != NULL);
3462 if (!tp->suspend.waitstatus_pending_p)
3463 tp = NULL;
3464 }
3465
3466 if (tp != NULL
3467 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3468 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3469 {
3470 struct regcache *regcache = get_thread_regcache (tp->ptid);
3471 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3472 CORE_ADDR pc;
3473 int discard = 0;
3474
3475 pc = regcache_read_pc (regcache);
3476
3477 if (pc != tp->suspend.stop_pc)
3478 {
3479 if (debug_infrun)
3480 fprintf_unfiltered (gdb_stdlog,
3481 "infrun: PC of %s changed. was=%s, now=%s\n",
3482 target_pid_to_str (tp->ptid),
3483 paddress (gdbarch, tp->prev_pc),
3484 paddress (gdbarch, pc));
3485 discard = 1;
3486 }
3487 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3488 {
3489 if (debug_infrun)
3490 fprintf_unfiltered (gdb_stdlog,
3491 "infrun: previous breakpoint of %s, at %s gone\n",
3492 target_pid_to_str (tp->ptid),
3493 paddress (gdbarch, pc));
3494
3495 discard = 1;
3496 }
3497
3498 if (discard)
3499 {
3500 if (debug_infrun)
3501 fprintf_unfiltered (gdb_stdlog,
3502 "infrun: pending event of %s cancelled.\n",
3503 target_pid_to_str (tp->ptid));
3504
3505 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3506 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3507 }
3508 }
3509
3510 if (tp != NULL)
3511 {
3512 if (debug_infrun)
3513 {
3514 char *statstr;
3515
3516 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: Using pending wait status %s for %s.\n",
3519 statstr,
3520 target_pid_to_str (tp->ptid));
3521 xfree (statstr);
3522 }
3523
3524 /* Now that we've selected our final event LWP, un-adjust its PC
3525 if it was a software breakpoint (and the target doesn't
3526 always adjust the PC itself). */
3527 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3528 && !target_supports_stopped_by_sw_breakpoint ())
3529 {
3530 struct regcache *regcache;
3531 struct gdbarch *gdbarch;
3532 int decr_pc;
3533
3534 regcache = get_thread_regcache (tp->ptid);
3535 gdbarch = get_regcache_arch (regcache);
3536
3537 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3538 if (decr_pc != 0)
3539 {
3540 CORE_ADDR pc;
3541
3542 pc = regcache_read_pc (regcache);
3543 regcache_write_pc (regcache, pc + decr_pc);
3544 }
3545 }
3546
3547 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3548 *status = tp->suspend.waitstatus;
3549 tp->suspend.waitstatus_pending_p = 0;
3550
3551 /* Wake up the event loop again, until all pending events are
3552 processed. */
3553 if (target_is_async_p ())
3554 mark_async_event_handler (infrun_async_inferior_event_token);
3555 return tp->ptid;
3556 }
3557
3558 /* But if we don't find one, we'll have to wait. */
3559
3560 if (deprecated_target_wait_hook)
3561 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3562 else
3563 event_ptid = target_wait (ptid, status, options);
3564
3565 return event_ptid;
3566}
3567
24291992
PA
3568/* Prepare and stabilize the inferior for detaching it. E.g.,
3569 detaching while a thread is displaced stepping is a recipe for
3570 crashing it, as nothing would readjust the PC out of the scratch
3571 pad. */
3572
3573void
3574prepare_for_detach (void)
3575{
3576 struct inferior *inf = current_inferior ();
3577 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3578 struct cleanup *old_chain_1;
3579 struct displaced_step_inferior_state *displaced;
3580
3581 displaced = get_displaced_stepping_state (inf->pid);
3582
3583 /* Is any thread of this process displaced stepping? If not,
3584 there's nothing else to do. */
3585 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3586 return;
3587
3588 if (debug_infrun)
3589 fprintf_unfiltered (gdb_stdlog,
3590 "displaced-stepping in-process while detaching");
3591
3592 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3593 inf->detaching = 1;
3594
3595 while (!ptid_equal (displaced->step_ptid, null_ptid))
3596 {
3597 struct cleanup *old_chain_2;
3598 struct execution_control_state ecss;
3599 struct execution_control_state *ecs;
3600
3601 ecs = &ecss;
3602 memset (ecs, 0, sizeof (*ecs));
3603
3604 overlay_cache_invalid = 1;
f15cb84a
YQ
3605 /* Flush target cache before starting to handle each event.
3606 Target was running and cache could be stale. This is just a
3607 heuristic. Running threads may modify target memory, but we
3608 don't get any event. */
3609 target_dcache_invalidate ();
24291992 3610
372316f1 3611 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3612
3613 if (debug_infrun)
3614 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3615
3616 /* If an error happens while handling the event, propagate GDB's
3617 knowledge of the executing state to the frontend/user running
3618 state. */
3e43a32a
MS
3619 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3620 &minus_one_ptid);
24291992
PA
3621
3622 /* Now figure out what to do with the result of the result. */
3623 handle_inferior_event (ecs);
3624
3625 /* No error, don't finish the state yet. */
3626 discard_cleanups (old_chain_2);
3627
3628 /* Breakpoints and watchpoints are not installed on the target
3629 at this point, and signals are passed directly to the
3630 inferior, so this must mean the process is gone. */
3631 if (!ecs->wait_some_more)
3632 {
3633 discard_cleanups (old_chain_1);
3634 error (_("Program exited while detaching"));
3635 }
3636 }
3637
3638 discard_cleanups (old_chain_1);
3639}
3640
cd0fc7c3 3641/* Wait for control to return from inferior to debugger.
ae123ec6 3642
cd0fc7c3
SS
3643 If inferior gets a signal, we may decide to start it up again
3644 instead of returning. That is why there is a loop in this function.
3645 When this function actually returns it means the inferior
3646 should be left stopped and GDB should read more commands. */
3647
3648void
e4c8541f 3649wait_for_inferior (void)
cd0fc7c3
SS
3650{
3651 struct cleanup *old_cleanups;
e6f5c25b 3652 struct cleanup *thread_state_chain;
c906108c 3653
527159b7 3654 if (debug_infrun)
ae123ec6 3655 fprintf_unfiltered
e4c8541f 3656 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3657
0cbcdb96
PA
3658 old_cleanups
3659 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3660 NULL);
cd0fc7c3 3661
e6f5c25b
PA
3662 /* If an error happens while handling the event, propagate GDB's
3663 knowledge of the executing state to the frontend/user running
3664 state. */
3665 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3666
c906108c
SS
3667 while (1)
3668 {
ae25568b
PA
3669 struct execution_control_state ecss;
3670 struct execution_control_state *ecs = &ecss;
963f9c80 3671 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3672
ae25568b
PA
3673 memset (ecs, 0, sizeof (*ecs));
3674
ec9499be 3675 overlay_cache_invalid = 1;
ec9499be 3676
f15cb84a
YQ
3677 /* Flush target cache before starting to handle each event.
3678 Target was running and cache could be stale. This is just a
3679 heuristic. Running threads may modify target memory, but we
3680 don't get any event. */
3681 target_dcache_invalidate ();
3682
372316f1 3683 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3684
f00150c9 3685 if (debug_infrun)
223698f8 3686 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3687
cd0fc7c3
SS
3688 /* Now figure out what to do with the result of the result. */
3689 handle_inferior_event (ecs);
c906108c 3690
cd0fc7c3
SS
3691 if (!ecs->wait_some_more)
3692 break;
3693 }
4e1c45ea 3694
e6f5c25b
PA
3695 /* No error, don't finish the state yet. */
3696 discard_cleanups (thread_state_chain);
3697
cd0fc7c3
SS
3698 do_cleanups (old_cleanups);
3699}
c906108c 3700
d3d4baed
PA
3701/* Cleanup that reinstalls the readline callback handler, if the
3702 target is running in the background. If while handling the target
3703 event something triggered a secondary prompt, like e.g., a
3704 pagination prompt, we'll have removed the callback handler (see
3705 gdb_readline_wrapper_line). Need to do this as we go back to the
3706 event loop, ready to process further input. Note this has no
3707 effect if the handler hasn't actually been removed, because calling
3708 rl_callback_handler_install resets the line buffer, thus losing
3709 input. */
3710
3711static void
3712reinstall_readline_callback_handler_cleanup (void *arg)
3713{
6c400b59
PA
3714 if (!interpreter_async)
3715 {
3716 /* We're not going back to the top level event loop yet. Don't
3717 install the readline callback, as it'd prep the terminal,
3718 readline-style (raw, noecho) (e.g., --batch). We'll install
3719 it the next time the prompt is displayed, when we're ready
3720 for input. */
3721 return;
3722 }
3723
d3d4baed
PA
3724 if (async_command_editing_p && !sync_execution)
3725 gdb_rl_callback_handler_reinstall ();
3726}
3727
243a9253
PA
3728/* Clean up the FSMs of threads that are now stopped. In non-stop,
3729 that's just the event thread. In all-stop, that's all threads. */
3730
3731static void
3732clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3733{
3734 struct thread_info *thr = ecs->event_thread;
3735
3736 if (thr != NULL && thr->thread_fsm != NULL)
3737 thread_fsm_clean_up (thr->thread_fsm);
3738
3739 if (!non_stop)
3740 {
3741 ALL_NON_EXITED_THREADS (thr)
3742 {
3743 if (thr->thread_fsm == NULL)
3744 continue;
3745 if (thr == ecs->event_thread)
3746 continue;
3747
3748 switch_to_thread (thr->ptid);
3749 thread_fsm_clean_up (thr->thread_fsm);
3750 }
3751
3752 if (ecs->event_thread != NULL)
3753 switch_to_thread (ecs->event_thread->ptid);
3754 }
3755}
3756
1777feb0 3757/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3758 event loop whenever a change of state is detected on the file
1777feb0
MS
3759 descriptor corresponding to the target. It can be called more than
3760 once to complete a single execution command. In such cases we need
3761 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3762 that this function is called for a single execution command, then
3763 report to the user that the inferior has stopped, and do the
1777feb0 3764 necessary cleanups. */
43ff13b4
JM
3765
3766void
fba45db2 3767fetch_inferior_event (void *client_data)
43ff13b4 3768{
0d1e5fa7 3769 struct execution_control_state ecss;
a474d7c2 3770 struct execution_control_state *ecs = &ecss;
4f8d22e3 3771 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3772 struct cleanup *ts_old_chain;
4f8d22e3 3773 int was_sync = sync_execution;
0f641c01 3774 int cmd_done = 0;
963f9c80 3775 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3776
0d1e5fa7
PA
3777 memset (ecs, 0, sizeof (*ecs));
3778
d3d4baed
PA
3779 /* End up with readline processing input, if necessary. */
3780 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3781
c5187ac6
PA
3782 /* We're handling a live event, so make sure we're doing live
3783 debugging. If we're looking at traceframes while the target is
3784 running, we're going to need to get back to that mode after
3785 handling the event. */
3786 if (non_stop)
3787 {
3788 make_cleanup_restore_current_traceframe ();
e6e4e701 3789 set_current_traceframe (-1);
c5187ac6
PA
3790 }
3791
4f8d22e3
PA
3792 if (non_stop)
3793 /* In non-stop mode, the user/frontend should not notice a thread
3794 switch due to internal events. Make sure we reverse to the
3795 user selected thread and frame after handling the event and
3796 running any breakpoint commands. */
3797 make_cleanup_restore_current_thread ();
3798
ec9499be 3799 overlay_cache_invalid = 1;
f15cb84a
YQ
3800 /* Flush target cache before starting to handle each event. Target
3801 was running and cache could be stale. This is just a heuristic.
3802 Running threads may modify target memory, but we don't get any
3803 event. */
3804 target_dcache_invalidate ();
3dd5b83d 3805
32231432
PA
3806 make_cleanup_restore_integer (&execution_direction);
3807 execution_direction = target_execution_direction ();
3808
0b333c5e
PA
3809 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3810 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3811
f00150c9 3812 if (debug_infrun)
223698f8 3813 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3814
29f49a6a
PA
3815 /* If an error happens while handling the event, propagate GDB's
3816 knowledge of the executing state to the frontend/user running
3817 state. */
fbea99ea 3818 if (!target_is_non_stop_p ())
29f49a6a
PA
3819 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3820 else
3821 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3822
353d1d73
JK
3823 /* Get executed before make_cleanup_restore_current_thread above to apply
3824 still for the thread which has thrown the exception. */
3825 make_bpstat_clear_actions_cleanup ();
3826
7c16b83e
PA
3827 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3828
43ff13b4 3829 /* Now figure out what to do with the result of the result. */
a474d7c2 3830 handle_inferior_event (ecs);
43ff13b4 3831
a474d7c2 3832 if (!ecs->wait_some_more)
43ff13b4 3833 {
c9657e70 3834 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3835 int should_stop = 1;
3836 struct thread_info *thr = ecs->event_thread;
388a7084 3837 int should_notify_stop = 1;
d6b48e9c 3838
0cbcdb96 3839 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3840
243a9253
PA
3841 if (thr != NULL)
3842 {
3843 struct thread_fsm *thread_fsm = thr->thread_fsm;
3844
3845 if (thread_fsm != NULL)
3846 should_stop = thread_fsm_should_stop (thread_fsm);
3847 }
3848
3849 if (!should_stop)
3850 {
3851 keep_going (ecs);
3852 }
c2d11a7d 3853 else
0f641c01 3854 {
243a9253
PA
3855 clean_up_just_stopped_threads_fsms (ecs);
3856
388a7084
PA
3857 if (thr != NULL && thr->thread_fsm != NULL)
3858 {
3859 should_notify_stop
3860 = thread_fsm_should_notify_stop (thr->thread_fsm);
3861 }
3862
3863 if (should_notify_stop)
3864 {
3865 /* We may not find an inferior if this was a process exit. */
3866 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3867 normal_stop ();
243a9253 3868
388a7084
PA
3869 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3870 cmd_done = 1;
3871 }
0f641c01 3872 }
43ff13b4 3873 }
4f8d22e3 3874
29f49a6a
PA
3875 /* No error, don't finish the thread states yet. */
3876 discard_cleanups (ts_old_chain);
3877
4f8d22e3
PA
3878 /* Revert thread and frame. */
3879 do_cleanups (old_chain);
3880
3881 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3882 restore the prompt (a synchronous execution command has finished,
3883 and we're ready for input). */
b4a14fd0 3884 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3885 observer_notify_sync_execution_done ();
0f641c01
PA
3886
3887 if (cmd_done
3888 && !was_sync
3889 && exec_done_display_p
3890 && (ptid_equal (inferior_ptid, null_ptid)
3891 || !is_running (inferior_ptid)))
3892 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3893}
3894
edb3359d
DJ
3895/* Record the frame and location we're currently stepping through. */
3896void
3897set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3898{
3899 struct thread_info *tp = inferior_thread ();
3900
16c381f0
JK
3901 tp->control.step_frame_id = get_frame_id (frame);
3902 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3903
3904 tp->current_symtab = sal.symtab;
3905 tp->current_line = sal.line;
3906}
3907
0d1e5fa7
PA
3908/* Clear context switchable stepping state. */
3909
3910void
4e1c45ea 3911init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3912{
7f5ef605 3913 tss->stepped_breakpoint = 0;
0d1e5fa7 3914 tss->stepping_over_breakpoint = 0;
963f9c80 3915 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3916 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3917}
3918
c32c64b7
DE
3919/* Set the cached copy of the last ptid/waitstatus. */
3920
3921static void
3922set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3923{
3924 target_last_wait_ptid = ptid;
3925 target_last_waitstatus = status;
3926}
3927
e02bc4cc 3928/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3929 target_wait()/deprecated_target_wait_hook(). The data is actually
3930 cached by handle_inferior_event(), which gets called immediately
3931 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3932
3933void
488f131b 3934get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3935{
39f77062 3936 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3937 *status = target_last_waitstatus;
3938}
3939
ac264b3b
MS
3940void
3941nullify_last_target_wait_ptid (void)
3942{
3943 target_last_wait_ptid = minus_one_ptid;
3944}
3945
dcf4fbde 3946/* Switch thread contexts. */
dd80620e
MS
3947
3948static void
0d1e5fa7 3949context_switch (ptid_t ptid)
dd80620e 3950{
4b51d87b 3951 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3952 {
3953 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3954 target_pid_to_str (inferior_ptid));
3955 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3956 target_pid_to_str (ptid));
fd48f117
DJ
3957 }
3958
0d1e5fa7 3959 switch_to_thread (ptid);
dd80620e
MS
3960}
3961
d8dd4d5f
PA
3962/* If the target can't tell whether we've hit breakpoints
3963 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3964 check whether that could have been caused by a breakpoint. If so,
3965 adjust the PC, per gdbarch_decr_pc_after_break. */
3966
4fa8626c 3967static void
d8dd4d5f
PA
3968adjust_pc_after_break (struct thread_info *thread,
3969 struct target_waitstatus *ws)
4fa8626c 3970{
24a73cce
UW
3971 struct regcache *regcache;
3972 struct gdbarch *gdbarch;
6c95b8df 3973 struct address_space *aspace;
118e6252 3974 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3975
4fa8626c
DJ
3976 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3977 we aren't, just return.
9709f61c
DJ
3978
3979 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3980 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3981 implemented by software breakpoints should be handled through the normal
3982 breakpoint layer.
8fb3e588 3983
4fa8626c
DJ
3984 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3985 different signals (SIGILL or SIGEMT for instance), but it is less
3986 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3987 gdbarch_decr_pc_after_break. I don't know any specific target that
3988 generates these signals at breakpoints (the code has been in GDB since at
3989 least 1992) so I can not guess how to handle them here.
8fb3e588 3990
e6cf7916
UW
3991 In earlier versions of GDB, a target with
3992 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3993 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3994 target with both of these set in GDB history, and it seems unlikely to be
3995 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3996
d8dd4d5f 3997 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3998 return;
3999
d8dd4d5f 4000 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4001 return;
4002
4058b839
PA
4003 /* In reverse execution, when a breakpoint is hit, the instruction
4004 under it has already been de-executed. The reported PC always
4005 points at the breakpoint address, so adjusting it further would
4006 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4007 architecture:
4008
4009 B1 0x08000000 : INSN1
4010 B2 0x08000001 : INSN2
4011 0x08000002 : INSN3
4012 PC -> 0x08000003 : INSN4
4013
4014 Say you're stopped at 0x08000003 as above. Reverse continuing
4015 from that point should hit B2 as below. Reading the PC when the
4016 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4017 been de-executed already.
4018
4019 B1 0x08000000 : INSN1
4020 B2 PC -> 0x08000001 : INSN2
4021 0x08000002 : INSN3
4022 0x08000003 : INSN4
4023
4024 We can't apply the same logic as for forward execution, because
4025 we would wrongly adjust the PC to 0x08000000, since there's a
4026 breakpoint at PC - 1. We'd then report a hit on B1, although
4027 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4028 behaviour. */
4029 if (execution_direction == EXEC_REVERSE)
4030 return;
4031
1cf4d951
PA
4032 /* If the target can tell whether the thread hit a SW breakpoint,
4033 trust it. Targets that can tell also adjust the PC
4034 themselves. */
4035 if (target_supports_stopped_by_sw_breakpoint ())
4036 return;
4037
4038 /* Note that relying on whether a breakpoint is planted in memory to
4039 determine this can fail. E.g,. the breakpoint could have been
4040 removed since. Or the thread could have been told to step an
4041 instruction the size of a breakpoint instruction, and only
4042 _after_ was a breakpoint inserted at its address. */
4043
24a73cce
UW
4044 /* If this target does not decrement the PC after breakpoints, then
4045 we have nothing to do. */
d8dd4d5f 4046 regcache = get_thread_regcache (thread->ptid);
24a73cce 4047 gdbarch = get_regcache_arch (regcache);
118e6252 4048
527a273a 4049 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4050 if (decr_pc == 0)
24a73cce
UW
4051 return;
4052
6c95b8df
PA
4053 aspace = get_regcache_aspace (regcache);
4054
8aad930b
AC
4055 /* Find the location where (if we've hit a breakpoint) the
4056 breakpoint would be. */
118e6252 4057 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4058
1cf4d951
PA
4059 /* If the target can't tell whether a software breakpoint triggered,
4060 fallback to figuring it out based on breakpoints we think were
4061 inserted in the target, and on whether the thread was stepped or
4062 continued. */
4063
1c5cfe86
PA
4064 /* Check whether there actually is a software breakpoint inserted at
4065 that location.
4066
4067 If in non-stop mode, a race condition is possible where we've
4068 removed a breakpoint, but stop events for that breakpoint were
4069 already queued and arrive later. To suppress those spurious
4070 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4071 and retire them after a number of stop events are reported. Note
4072 this is an heuristic and can thus get confused. The real fix is
4073 to get the "stopped by SW BP and needs adjustment" info out of
4074 the target/kernel (and thus never reach here; see above). */
6c95b8df 4075 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4076 || (target_is_non_stop_p ()
4077 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4078 {
77f9e713 4079 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4080
8213266a 4081 if (record_full_is_used ())
77f9e713 4082 record_full_gdb_operation_disable_set ();
96429cc8 4083
1c0fdd0e
UW
4084 /* When using hardware single-step, a SIGTRAP is reported for both
4085 a completed single-step and a software breakpoint. Need to
4086 differentiate between the two, as the latter needs adjusting
4087 but the former does not.
4088
4089 The SIGTRAP can be due to a completed hardware single-step only if
4090 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4091 - this thread is currently being stepped
4092
4093 If any of these events did not occur, we must have stopped due
4094 to hitting a software breakpoint, and have to back up to the
4095 breakpoint address.
4096
4097 As a special case, we could have hardware single-stepped a
4098 software breakpoint. In this case (prev_pc == breakpoint_pc),
4099 we also need to back up to the breakpoint address. */
4100
d8dd4d5f
PA
4101 if (thread_has_single_step_breakpoints_set (thread)
4102 || !currently_stepping (thread)
4103 || (thread->stepped_breakpoint
4104 && thread->prev_pc == breakpoint_pc))
515630c5 4105 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4106
77f9e713 4107 do_cleanups (old_cleanups);
8aad930b 4108 }
4fa8626c
DJ
4109}
4110
edb3359d
DJ
4111static int
4112stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4113{
4114 for (frame = get_prev_frame (frame);
4115 frame != NULL;
4116 frame = get_prev_frame (frame))
4117 {
4118 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4119 return 1;
4120 if (get_frame_type (frame) != INLINE_FRAME)
4121 break;
4122 }
4123
4124 return 0;
4125}
4126
a96d9b2e
SDJ
4127/* Auxiliary function that handles syscall entry/return events.
4128 It returns 1 if the inferior should keep going (and GDB
4129 should ignore the event), or 0 if the event deserves to be
4130 processed. */
ca2163eb 4131
a96d9b2e 4132static int
ca2163eb 4133handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4134{
ca2163eb 4135 struct regcache *regcache;
ca2163eb
PA
4136 int syscall_number;
4137
4138 if (!ptid_equal (ecs->ptid, inferior_ptid))
4139 context_switch (ecs->ptid);
4140
4141 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4142 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4143 stop_pc = regcache_read_pc (regcache);
4144
a96d9b2e
SDJ
4145 if (catch_syscall_enabled () > 0
4146 && catching_syscall_number (syscall_number) > 0)
4147 {
4148 if (debug_infrun)
4149 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4150 syscall_number);
a96d9b2e 4151
16c381f0 4152 ecs->event_thread->control.stop_bpstat
6c95b8df 4153 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4154 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4155
ce12b012 4156 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4157 {
4158 /* Catchpoint hit. */
ca2163eb
PA
4159 return 0;
4160 }
a96d9b2e 4161 }
ca2163eb
PA
4162
4163 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4164 keep_going (ecs);
4165 return 1;
a96d9b2e
SDJ
4166}
4167
7e324e48
GB
4168/* Lazily fill in the execution_control_state's stop_func_* fields. */
4169
4170static void
4171fill_in_stop_func (struct gdbarch *gdbarch,
4172 struct execution_control_state *ecs)
4173{
4174 if (!ecs->stop_func_filled_in)
4175 {
4176 /* Don't care about return value; stop_func_start and stop_func_name
4177 will both be 0 if it doesn't work. */
4178 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4179 &ecs->stop_func_start, &ecs->stop_func_end);
4180 ecs->stop_func_start
4181 += gdbarch_deprecated_function_start_offset (gdbarch);
4182
591a12a1
UW
4183 if (gdbarch_skip_entrypoint_p (gdbarch))
4184 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4185 ecs->stop_func_start);
4186
7e324e48
GB
4187 ecs->stop_func_filled_in = 1;
4188 }
4189}
4190
4f5d7f63
PA
4191
4192/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4193
4194static enum stop_kind
4195get_inferior_stop_soon (ptid_t ptid)
4196{
c9657e70 4197 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4198
4199 gdb_assert (inf != NULL);
4200 return inf->control.stop_soon;
4201}
4202
372316f1
PA
4203/* Wait for one event. Store the resulting waitstatus in WS, and
4204 return the event ptid. */
4205
4206static ptid_t
4207wait_one (struct target_waitstatus *ws)
4208{
4209 ptid_t event_ptid;
4210 ptid_t wait_ptid = minus_one_ptid;
4211
4212 overlay_cache_invalid = 1;
4213
4214 /* Flush target cache before starting to handle each event.
4215 Target was running and cache could be stale. This is just a
4216 heuristic. Running threads may modify target memory, but we
4217 don't get any event. */
4218 target_dcache_invalidate ();
4219
4220 if (deprecated_target_wait_hook)
4221 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4222 else
4223 event_ptid = target_wait (wait_ptid, ws, 0);
4224
4225 if (debug_infrun)
4226 print_target_wait_results (wait_ptid, event_ptid, ws);
4227
4228 return event_ptid;
4229}
4230
4231/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4232 instead of the current thread. */
4233#define THREAD_STOPPED_BY(REASON) \
4234static int \
4235thread_stopped_by_ ## REASON (ptid_t ptid) \
4236{ \
4237 struct cleanup *old_chain; \
4238 int res; \
4239 \
4240 old_chain = save_inferior_ptid (); \
4241 inferior_ptid = ptid; \
4242 \
4243 res = target_stopped_by_ ## REASON (); \
4244 \
4245 do_cleanups (old_chain); \
4246 \
4247 return res; \
4248}
4249
4250/* Generate thread_stopped_by_watchpoint. */
4251THREAD_STOPPED_BY (watchpoint)
4252/* Generate thread_stopped_by_sw_breakpoint. */
4253THREAD_STOPPED_BY (sw_breakpoint)
4254/* Generate thread_stopped_by_hw_breakpoint. */
4255THREAD_STOPPED_BY (hw_breakpoint)
4256
4257/* Cleanups that switches to the PTID pointed at by PTID_P. */
4258
4259static void
4260switch_to_thread_cleanup (void *ptid_p)
4261{
4262 ptid_t ptid = *(ptid_t *) ptid_p;
4263
4264 switch_to_thread (ptid);
4265}
4266
4267/* Save the thread's event and stop reason to process it later. */
4268
4269static void
4270save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4271{
4272 struct regcache *regcache;
4273 struct address_space *aspace;
4274
4275 if (debug_infrun)
4276 {
4277 char *statstr;
4278
4279 statstr = target_waitstatus_to_string (ws);
4280 fprintf_unfiltered (gdb_stdlog,
4281 "infrun: saving status %s for %d.%ld.%ld\n",
4282 statstr,
4283 ptid_get_pid (tp->ptid),
4284 ptid_get_lwp (tp->ptid),
4285 ptid_get_tid (tp->ptid));
4286 xfree (statstr);
4287 }
4288
4289 /* Record for later. */
4290 tp->suspend.waitstatus = *ws;
4291 tp->suspend.waitstatus_pending_p = 1;
4292
4293 regcache = get_thread_regcache (tp->ptid);
4294 aspace = get_regcache_aspace (regcache);
4295
4296 if (ws->kind == TARGET_WAITKIND_STOPPED
4297 && ws->value.sig == GDB_SIGNAL_TRAP)
4298 {
4299 CORE_ADDR pc = regcache_read_pc (regcache);
4300
4301 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4302
4303 if (thread_stopped_by_watchpoint (tp->ptid))
4304 {
4305 tp->suspend.stop_reason
4306 = TARGET_STOPPED_BY_WATCHPOINT;
4307 }
4308 else if (target_supports_stopped_by_sw_breakpoint ()
4309 && thread_stopped_by_sw_breakpoint (tp->ptid))
4310 {
4311 tp->suspend.stop_reason
4312 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4313 }
4314 else if (target_supports_stopped_by_hw_breakpoint ()
4315 && thread_stopped_by_hw_breakpoint (tp->ptid))
4316 {
4317 tp->suspend.stop_reason
4318 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4319 }
4320 else if (!target_supports_stopped_by_hw_breakpoint ()
4321 && hardware_breakpoint_inserted_here_p (aspace,
4322 pc))
4323 {
4324 tp->suspend.stop_reason
4325 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4326 }
4327 else if (!target_supports_stopped_by_sw_breakpoint ()
4328 && software_breakpoint_inserted_here_p (aspace,
4329 pc))
4330 {
4331 tp->suspend.stop_reason
4332 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4333 }
4334 else if (!thread_has_single_step_breakpoints_set (tp)
4335 && currently_stepping (tp))
4336 {
4337 tp->suspend.stop_reason
4338 = TARGET_STOPPED_BY_SINGLE_STEP;
4339 }
4340 }
4341}
4342
4343/* Stop all threads. */
4344
4345static void
4346stop_all_threads (void)
4347{
4348 /* We may need multiple passes to discover all threads. */
4349 int pass;
4350 int iterations = 0;
4351 ptid_t entry_ptid;
4352 struct cleanup *old_chain;
4353
fbea99ea 4354 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4355
4356 if (debug_infrun)
4357 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4358
4359 entry_ptid = inferior_ptid;
4360 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4361
4362 /* Request threads to stop, and then wait for the stops. Because
4363 threads we already know about can spawn more threads while we're
4364 trying to stop them, and we only learn about new threads when we
4365 update the thread list, do this in a loop, and keep iterating
4366 until two passes find no threads that need to be stopped. */
4367 for (pass = 0; pass < 2; pass++, iterations++)
4368 {
4369 if (debug_infrun)
4370 fprintf_unfiltered (gdb_stdlog,
4371 "infrun: stop_all_threads, pass=%d, "
4372 "iterations=%d\n", pass, iterations);
4373 while (1)
4374 {
4375 ptid_t event_ptid;
4376 struct target_waitstatus ws;
4377 int need_wait = 0;
4378 struct thread_info *t;
4379
4380 update_thread_list ();
4381
4382 /* Go through all threads looking for threads that we need
4383 to tell the target to stop. */
4384 ALL_NON_EXITED_THREADS (t)
4385 {
4386 if (t->executing)
4387 {
4388 /* If already stopping, don't request a stop again.
4389 We just haven't seen the notification yet. */
4390 if (!t->stop_requested)
4391 {
4392 if (debug_infrun)
4393 fprintf_unfiltered (gdb_stdlog,
4394 "infrun: %s executing, "
4395 "need stop\n",
4396 target_pid_to_str (t->ptid));
4397 target_stop (t->ptid);
4398 t->stop_requested = 1;
4399 }
4400 else
4401 {
4402 if (debug_infrun)
4403 fprintf_unfiltered (gdb_stdlog,
4404 "infrun: %s executing, "
4405 "already stopping\n",
4406 target_pid_to_str (t->ptid));
4407 }
4408
4409 if (t->stop_requested)
4410 need_wait = 1;
4411 }
4412 else
4413 {
4414 if (debug_infrun)
4415 fprintf_unfiltered (gdb_stdlog,
4416 "infrun: %s not executing\n",
4417 target_pid_to_str (t->ptid));
4418
4419 /* The thread may be not executing, but still be
4420 resumed with a pending status to process. */
4421 t->resumed = 0;
4422 }
4423 }
4424
4425 if (!need_wait)
4426 break;
4427
4428 /* If we find new threads on the second iteration, restart
4429 over. We want to see two iterations in a row with all
4430 threads stopped. */
4431 if (pass > 0)
4432 pass = -1;
4433
4434 event_ptid = wait_one (&ws);
4435 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4436 {
4437 /* All resumed threads exited. */
4438 }
4439 else if (ws.kind == TARGET_WAITKIND_EXITED
4440 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4441 {
4442 if (debug_infrun)
4443 {
4444 ptid_t ptid = pid_to_ptid (ws.value.integer);
4445
4446 fprintf_unfiltered (gdb_stdlog,
4447 "infrun: %s exited while "
4448 "stopping threads\n",
4449 target_pid_to_str (ptid));
4450 }
4451 }
4452 else
4453 {
4454 t = find_thread_ptid (event_ptid);
4455 if (t == NULL)
4456 t = add_thread (event_ptid);
4457
4458 t->stop_requested = 0;
4459 t->executing = 0;
4460 t->resumed = 0;
4461 t->control.may_range_step = 0;
4462
4463 if (ws.kind == TARGET_WAITKIND_STOPPED
4464 && ws.value.sig == GDB_SIGNAL_0)
4465 {
4466 /* We caught the event that we intended to catch, so
4467 there's no event pending. */
4468 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4469 t->suspend.waitstatus_pending_p = 0;
4470
4471 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4472 {
4473 /* Add it back to the step-over queue. */
4474 if (debug_infrun)
4475 {
4476 fprintf_unfiltered (gdb_stdlog,
4477 "infrun: displaced-step of %s "
4478 "canceled: adding back to the "
4479 "step-over queue\n",
4480 target_pid_to_str (t->ptid));
4481 }
4482 t->control.trap_expected = 0;
4483 thread_step_over_chain_enqueue (t);
4484 }
4485 }
4486 else
4487 {
4488 enum gdb_signal sig;
4489 struct regcache *regcache;
4490 struct address_space *aspace;
4491
4492 if (debug_infrun)
4493 {
4494 char *statstr;
4495
4496 statstr = target_waitstatus_to_string (&ws);
4497 fprintf_unfiltered (gdb_stdlog,
4498 "infrun: target_wait %s, saving "
4499 "status for %d.%ld.%ld\n",
4500 statstr,
4501 ptid_get_pid (t->ptid),
4502 ptid_get_lwp (t->ptid),
4503 ptid_get_tid (t->ptid));
4504 xfree (statstr);
4505 }
4506
4507 /* Record for later. */
4508 save_waitstatus (t, &ws);
4509
4510 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4511 ? ws.value.sig : GDB_SIGNAL_0);
4512
4513 if (displaced_step_fixup (t->ptid, sig) < 0)
4514 {
4515 /* Add it back to the step-over queue. */
4516 t->control.trap_expected = 0;
4517 thread_step_over_chain_enqueue (t);
4518 }
4519
4520 regcache = get_thread_regcache (t->ptid);
4521 t->suspend.stop_pc = regcache_read_pc (regcache);
4522
4523 if (debug_infrun)
4524 {
4525 fprintf_unfiltered (gdb_stdlog,
4526 "infrun: saved stop_pc=%s for %s "
4527 "(currently_stepping=%d)\n",
4528 paddress (target_gdbarch (),
4529 t->suspend.stop_pc),
4530 target_pid_to_str (t->ptid),
4531 currently_stepping (t));
4532 }
4533 }
4534 }
4535 }
4536 }
4537
4538 do_cleanups (old_chain);
4539
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4542}
4543
05ba8510
PA
4544/* Given an execution control state that has been freshly filled in by
4545 an event from the inferior, figure out what it means and take
4546 appropriate action.
4547
4548 The alternatives are:
4549
22bcd14b 4550 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4551 debugger.
4552
4553 2) keep_going and return; to wait for the next event (set
4554 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4555 once). */
c906108c 4556
ec9499be 4557static void
0b6e5e10 4558handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4559{
d6b48e9c
PA
4560 enum stop_kind stop_soon;
4561
28736962
PA
4562 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4563 {
4564 /* We had an event in the inferior, but we are not interested in
4565 handling it at this level. The lower layers have already
4566 done what needs to be done, if anything.
4567
4568 One of the possible circumstances for this is when the
4569 inferior produces output for the console. The inferior has
4570 not stopped, and we are ignoring the event. Another possible
4571 circumstance is any event which the lower level knows will be
4572 reported multiple times without an intervening resume. */
4573 if (debug_infrun)
4574 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4575 prepare_to_wait (ecs);
4576 return;
4577 }
4578
0e5bf2a8
PA
4579 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4580 && target_can_async_p () && !sync_execution)
4581 {
4582 /* There were no unwaited-for children left in the target, but,
4583 we're not synchronously waiting for events either. Just
4584 ignore. Otherwise, if we were running a synchronous
4585 execution command, we need to cancel it and give the user
4586 back the terminal. */
4587 if (debug_infrun)
4588 fprintf_unfiltered (gdb_stdlog,
4589 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4590 prepare_to_wait (ecs);
4591 return;
4592 }
4593
1777feb0 4594 /* Cache the last pid/waitstatus. */
c32c64b7 4595 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4596
ca005067 4597 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4598 stop_stack_dummy = STOP_NONE;
ca005067 4599
0e5bf2a8
PA
4600 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4601 {
4602 /* No unwaited-for children left. IOW, all resumed children
4603 have exited. */
4604 if (debug_infrun)
4605 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4606
4607 stop_print_frame = 0;
22bcd14b 4608 stop_waiting (ecs);
0e5bf2a8
PA
4609 return;
4610 }
4611
8c90c137 4612 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4613 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4614 {
4615 ecs->event_thread = find_thread_ptid (ecs->ptid);
4616 /* If it's a new thread, add it to the thread database. */
4617 if (ecs->event_thread == NULL)
4618 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4619
4620 /* Disable range stepping. If the next step request could use a
4621 range, this will be end up re-enabled then. */
4622 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4623 }
88ed393a
JK
4624
4625 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4626 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4627
4628 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4629 reinit_frame_cache ();
4630
28736962
PA
4631 breakpoint_retire_moribund ();
4632
2b009048
DJ
4633 /* First, distinguish signals caused by the debugger from signals
4634 that have to do with the program's own actions. Note that
4635 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4636 on the operating system version. Here we detect when a SIGILL or
4637 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4638 something similar for SIGSEGV, since a SIGSEGV will be generated
4639 when we're trying to execute a breakpoint instruction on a
4640 non-executable stack. This happens for call dummy breakpoints
4641 for architectures like SPARC that place call dummies on the
4642 stack. */
2b009048 4643 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4644 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4645 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4646 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4647 {
de0a0249
UW
4648 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4649
4650 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4651 regcache_read_pc (regcache)))
4652 {
4653 if (debug_infrun)
4654 fprintf_unfiltered (gdb_stdlog,
4655 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4656 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4657 }
2b009048
DJ
4658 }
4659
28736962
PA
4660 /* Mark the non-executing threads accordingly. In all-stop, all
4661 threads of all processes are stopped when we get any event
e1316e60 4662 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4663 {
4664 ptid_t mark_ptid;
4665
fbea99ea 4666 if (!target_is_non_stop_p ())
372316f1
PA
4667 mark_ptid = minus_one_ptid;
4668 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4669 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4670 {
4671 /* If we're handling a process exit in non-stop mode, even
4672 though threads haven't been deleted yet, one would think
4673 that there is nothing to do, as threads of the dead process
4674 will be soon deleted, and threads of any other process were
4675 left running. However, on some targets, threads survive a
4676 process exit event. E.g., for the "checkpoint" command,
4677 when the current checkpoint/fork exits, linux-fork.c
4678 automatically switches to another fork from within
4679 target_mourn_inferior, by associating the same
4680 inferior/thread to another fork. We haven't mourned yet at
4681 this point, but we must mark any threads left in the
4682 process as not-executing so that finish_thread_state marks
4683 them stopped (in the user's perspective) if/when we present
4684 the stop to the user. */
4685 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4686 }
4687 else
4688 mark_ptid = ecs->ptid;
4689
4690 set_executing (mark_ptid, 0);
4691
4692 /* Likewise the resumed flag. */
4693 set_resumed (mark_ptid, 0);
4694 }
8c90c137 4695
488f131b
JB
4696 switch (ecs->ws.kind)
4697 {
4698 case TARGET_WAITKIND_LOADED:
527159b7 4699 if (debug_infrun)
8a9de0e4 4700 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4701 if (!ptid_equal (ecs->ptid, inferior_ptid))
4702 context_switch (ecs->ptid);
b0f4b84b
DJ
4703 /* Ignore gracefully during startup of the inferior, as it might
4704 be the shell which has just loaded some objects, otherwise
4705 add the symbols for the newly loaded objects. Also ignore at
4706 the beginning of an attach or remote session; we will query
4707 the full list of libraries once the connection is
4708 established. */
4f5d7f63
PA
4709
4710 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4711 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4712 {
edcc5120
TT
4713 struct regcache *regcache;
4714
edcc5120
TT
4715 regcache = get_thread_regcache (ecs->ptid);
4716
4717 handle_solib_event ();
4718
4719 ecs->event_thread->control.stop_bpstat
4720 = bpstat_stop_status (get_regcache_aspace (regcache),
4721 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4722
ce12b012 4723 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4724 {
4725 /* A catchpoint triggered. */
94c57d6a
PA
4726 process_event_stop_test (ecs);
4727 return;
edcc5120 4728 }
488f131b 4729
b0f4b84b
DJ
4730 /* If requested, stop when the dynamic linker notifies
4731 gdb of events. This allows the user to get control
4732 and place breakpoints in initializer routines for
4733 dynamically loaded objects (among other things). */
a493e3e2 4734 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4735 if (stop_on_solib_events)
4736 {
55409f9d
DJ
4737 /* Make sure we print "Stopped due to solib-event" in
4738 normal_stop. */
4739 stop_print_frame = 1;
4740
22bcd14b 4741 stop_waiting (ecs);
b0f4b84b
DJ
4742 return;
4743 }
488f131b 4744 }
b0f4b84b
DJ
4745
4746 /* If we are skipping through a shell, or through shared library
4747 loading that we aren't interested in, resume the program. If
5c09a2c5 4748 we're running the program normally, also resume. */
b0f4b84b
DJ
4749 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4750 {
74960c60
VP
4751 /* Loading of shared libraries might have changed breakpoint
4752 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4753 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4754 insert_breakpoints ();
64ce06e4 4755 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4756 prepare_to_wait (ecs);
4757 return;
4758 }
4759
5c09a2c5
PA
4760 /* But stop if we're attaching or setting up a remote
4761 connection. */
4762 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4763 || stop_soon == STOP_QUIETLY_REMOTE)
4764 {
4765 if (debug_infrun)
4766 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4767 stop_waiting (ecs);
5c09a2c5
PA
4768 return;
4769 }
4770
4771 internal_error (__FILE__, __LINE__,
4772 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4773
488f131b 4774 case TARGET_WAITKIND_SPURIOUS:
527159b7 4775 if (debug_infrun)
8a9de0e4 4776 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 4777 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4778 context_switch (ecs->ptid);
64ce06e4 4779 resume (GDB_SIGNAL_0);
488f131b
JB
4780 prepare_to_wait (ecs);
4781 return;
c5aa993b 4782
488f131b 4783 case TARGET_WAITKIND_EXITED:
940c3c06 4784 case TARGET_WAITKIND_SIGNALLED:
527159b7 4785 if (debug_infrun)
940c3c06
PA
4786 {
4787 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4788 fprintf_unfiltered (gdb_stdlog,
4789 "infrun: TARGET_WAITKIND_EXITED\n");
4790 else
4791 fprintf_unfiltered (gdb_stdlog,
4792 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4793 }
4794
fb66883a 4795 inferior_ptid = ecs->ptid;
c9657e70 4796 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4797 set_current_program_space (current_inferior ()->pspace);
4798 handle_vfork_child_exec_or_exit (0);
1777feb0 4799 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 4800
0c557179
SDJ
4801 /* Clearing any previous state of convenience variables. */
4802 clear_exit_convenience_vars ();
4803
940c3c06
PA
4804 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4805 {
4806 /* Record the exit code in the convenience variable $_exitcode, so
4807 that the user can inspect this again later. */
4808 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4809 (LONGEST) ecs->ws.value.integer);
4810
4811 /* Also record this in the inferior itself. */
4812 current_inferior ()->has_exit_code = 1;
4813 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4814
98eb56a4
PA
4815 /* Support the --return-child-result option. */
4816 return_child_result_value = ecs->ws.value.integer;
4817
fd664c91 4818 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
4819 }
4820 else
0c557179
SDJ
4821 {
4822 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4823 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4824
4825 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4826 {
4827 /* Set the value of the internal variable $_exitsignal,
4828 which holds the signal uncaught by the inferior. */
4829 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4830 gdbarch_gdb_signal_to_target (gdbarch,
4831 ecs->ws.value.sig));
4832 }
4833 else
4834 {
4835 /* We don't have access to the target's method used for
4836 converting between signal numbers (GDB's internal
4837 representation <-> target's representation).
4838 Therefore, we cannot do a good job at displaying this
4839 information to the user. It's better to just warn
4840 her about it (if infrun debugging is enabled), and
4841 give up. */
4842 if (debug_infrun)
4843 fprintf_filtered (gdb_stdlog, _("\
4844Cannot fill $_exitsignal with the correct signal number.\n"));
4845 }
4846
fd664c91 4847 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 4848 }
8cf64490 4849
488f131b
JB
4850 gdb_flush (gdb_stdout);
4851 target_mourn_inferior ();
488f131b 4852 stop_print_frame = 0;
22bcd14b 4853 stop_waiting (ecs);
488f131b 4854 return;
c5aa993b 4855
488f131b 4856 /* The following are the only cases in which we keep going;
1777feb0 4857 the above cases end in a continue or goto. */
488f131b 4858 case TARGET_WAITKIND_FORKED:
deb3b17b 4859 case TARGET_WAITKIND_VFORKED:
527159b7 4860 if (debug_infrun)
fed708ed
PA
4861 {
4862 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4863 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4864 else
4865 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4866 }
c906108c 4867
e2d96639
YQ
4868 /* Check whether the inferior is displaced stepping. */
4869 {
4870 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4871 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4872 struct displaced_step_inferior_state *displaced
4873 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4874
4875 /* If checking displaced stepping is supported, and thread
4876 ecs->ptid is displaced stepping. */
4877 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4878 {
4879 struct inferior *parent_inf
c9657e70 4880 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4881 struct regcache *child_regcache;
4882 CORE_ADDR parent_pc;
4883
4884 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4885 indicating that the displaced stepping of syscall instruction
4886 has been done. Perform cleanup for parent process here. Note
4887 that this operation also cleans up the child process for vfork,
4888 because their pages are shared. */
a493e3e2 4889 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
4890 /* Start a new step-over in another thread if there's one
4891 that needs it. */
4892 start_step_over ();
e2d96639
YQ
4893
4894 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4895 {
4896 /* Restore scratch pad for child process. */
4897 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4898 }
4899
4900 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4901 the child's PC is also within the scratchpad. Set the child's PC
4902 to the parent's PC value, which has already been fixed up.
4903 FIXME: we use the parent's aspace here, although we're touching
4904 the child, because the child hasn't been added to the inferior
4905 list yet at this point. */
4906
4907 child_regcache
4908 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4909 gdbarch,
4910 parent_inf->aspace);
4911 /* Read PC value of parent process. */
4912 parent_pc = regcache_read_pc (regcache);
4913
4914 if (debug_displaced)
4915 fprintf_unfiltered (gdb_stdlog,
4916 "displaced: write child pc from %s to %s\n",
4917 paddress (gdbarch,
4918 regcache_read_pc (child_regcache)),
4919 paddress (gdbarch, parent_pc));
4920
4921 regcache_write_pc (child_regcache, parent_pc);
4922 }
4923 }
4924
5a2901d9 4925 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4926 context_switch (ecs->ptid);
5a2901d9 4927
b242c3c2
PA
4928 /* Immediately detach breakpoints from the child before there's
4929 any chance of letting the user delete breakpoints from the
4930 breakpoint lists. If we don't do this early, it's easy to
4931 leave left over traps in the child, vis: "break foo; catch
4932 fork; c; <fork>; del; c; <child calls foo>". We only follow
4933 the fork on the last `continue', and by that time the
4934 breakpoint at "foo" is long gone from the breakpoint table.
4935 If we vforked, then we don't need to unpatch here, since both
4936 parent and child are sharing the same memory pages; we'll
4937 need to unpatch at follow/detach time instead to be certain
4938 that new breakpoints added between catchpoint hit time and
4939 vfork follow are detached. */
4940 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4941 {
b242c3c2
PA
4942 /* This won't actually modify the breakpoint list, but will
4943 physically remove the breakpoints from the child. */
d80ee84f 4944 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4945 }
4946
34b7e8a6 4947 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4948
e58b0e63
PA
4949 /* In case the event is caught by a catchpoint, remember that
4950 the event is to be followed at the next resume of the thread,
4951 and not immediately. */
4952 ecs->event_thread->pending_follow = ecs->ws;
4953
fb14de7b 4954 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 4955
16c381f0 4956 ecs->event_thread->control.stop_bpstat
6c95b8df 4957 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4958 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 4959
ce12b012
PA
4960 /* If no catchpoint triggered for this, then keep going. Note
4961 that we're interested in knowing the bpstat actually causes a
4962 stop, not just if it may explain the signal. Software
4963 watchpoints, for example, always appear in the bpstat. */
4964 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4965 {
6c95b8df
PA
4966 ptid_t parent;
4967 ptid_t child;
e58b0e63 4968 int should_resume;
3e43a32a
MS
4969 int follow_child
4970 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 4971
a493e3e2 4972 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
4973
4974 should_resume = follow_fork ();
4975
6c95b8df
PA
4976 parent = ecs->ptid;
4977 child = ecs->ws.value.related_pid;
4978
4979 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
4980 if (!detach_fork && (non_stop
4981 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
4982 {
4983 if (follow_child)
4984 switch_to_thread (parent);
4985 else
4986 switch_to_thread (child);
4987
4988 ecs->event_thread = inferior_thread ();
4989 ecs->ptid = inferior_ptid;
4990 keep_going (ecs);
4991 }
4992
4993 if (follow_child)
4994 switch_to_thread (child);
4995 else
4996 switch_to_thread (parent);
4997
e58b0e63
PA
4998 ecs->event_thread = inferior_thread ();
4999 ecs->ptid = inferior_ptid;
5000
5001 if (should_resume)
5002 keep_going (ecs);
5003 else
22bcd14b 5004 stop_waiting (ecs);
04e68871
DJ
5005 return;
5006 }
94c57d6a
PA
5007 process_event_stop_test (ecs);
5008 return;
488f131b 5009
6c95b8df
PA
5010 case TARGET_WAITKIND_VFORK_DONE:
5011 /* Done with the shared memory region. Re-insert breakpoints in
5012 the parent, and keep going. */
5013
5014 if (debug_infrun)
3e43a32a
MS
5015 fprintf_unfiltered (gdb_stdlog,
5016 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5017
5018 if (!ptid_equal (ecs->ptid, inferior_ptid))
5019 context_switch (ecs->ptid);
5020
5021 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5022 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5023 /* This also takes care of reinserting breakpoints in the
5024 previously locked inferior. */
5025 keep_going (ecs);
5026 return;
5027
488f131b 5028 case TARGET_WAITKIND_EXECD:
527159b7 5029 if (debug_infrun)
fc5261f2 5030 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5031
5a2901d9 5032 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5033 context_switch (ecs->ptid);
5a2901d9 5034
fb14de7b 5035 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5036
6c95b8df
PA
5037 /* Do whatever is necessary to the parent branch of the vfork. */
5038 handle_vfork_child_exec_or_exit (1);
5039
795e548f
PA
5040 /* This causes the eventpoints and symbol table to be reset.
5041 Must do this now, before trying to determine whether to
5042 stop. */
71b43ef8 5043 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5044
17d8546e
DB
5045 /* In follow_exec we may have deleted the original thread and
5046 created a new one. Make sure that the event thread is the
5047 execd thread for that case (this is a nop otherwise). */
5048 ecs->event_thread = inferior_thread ();
5049
16c381f0 5050 ecs->event_thread->control.stop_bpstat
6c95b8df 5051 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5052 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5053
71b43ef8
PA
5054 /* Note that this may be referenced from inside
5055 bpstat_stop_status above, through inferior_has_execd. */
5056 xfree (ecs->ws.value.execd_pathname);
5057 ecs->ws.value.execd_pathname = NULL;
5058
04e68871 5059 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5060 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5061 {
a493e3e2 5062 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5063 keep_going (ecs);
5064 return;
5065 }
94c57d6a
PA
5066 process_event_stop_test (ecs);
5067 return;
488f131b 5068
b4dc5ffa
MK
5069 /* Be careful not to try to gather much state about a thread
5070 that's in a syscall. It's frequently a losing proposition. */
488f131b 5071 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5072 if (debug_infrun)
3e43a32a
MS
5073 fprintf_unfiltered (gdb_stdlog,
5074 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5075 /* Getting the current syscall number. */
94c57d6a
PA
5076 if (handle_syscall_event (ecs) == 0)
5077 process_event_stop_test (ecs);
5078 return;
c906108c 5079
488f131b
JB
5080 /* Before examining the threads further, step this thread to
5081 get it entirely out of the syscall. (We get notice of the
5082 event when the thread is just on the verge of exiting a
5083 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5084 into user code.) */
488f131b 5085 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5086 if (debug_infrun)
3e43a32a
MS
5087 fprintf_unfiltered (gdb_stdlog,
5088 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5089 if (handle_syscall_event (ecs) == 0)
5090 process_event_stop_test (ecs);
5091 return;
c906108c 5092
488f131b 5093 case TARGET_WAITKIND_STOPPED:
527159b7 5094 if (debug_infrun)
8a9de0e4 5095 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5096 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5097 handle_signal_stop (ecs);
5098 return;
c906108c 5099
b2175913 5100 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5101 if (debug_infrun)
5102 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5103 /* Reverse execution: target ran out of history info. */
eab402df 5104
34b7e8a6 5105 delete_just_stopped_threads_single_step_breakpoints ();
fb14de7b 5106 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 5107 observer_notify_no_history ();
22bcd14b 5108 stop_waiting (ecs);
b2175913 5109 return;
488f131b 5110 }
4f5d7f63
PA
5111}
5112
0b6e5e10
JB
5113/* A wrapper around handle_inferior_event_1, which also makes sure
5114 that all temporary struct value objects that were created during
5115 the handling of the event get deleted at the end. */
5116
5117static void
5118handle_inferior_event (struct execution_control_state *ecs)
5119{
5120 struct value *mark = value_mark ();
5121
5122 handle_inferior_event_1 (ecs);
5123 /* Purge all temporary values created during the event handling,
5124 as it could be a long time before we return to the command level
5125 where such values would otherwise be purged. */
5126 value_free_to_mark (mark);
5127}
5128
372316f1
PA
5129/* Restart threads back to what they were trying to do back when we
5130 paused them for an in-line step-over. The EVENT_THREAD thread is
5131 ignored. */
4d9d9d04
PA
5132
5133static void
372316f1
PA
5134restart_threads (struct thread_info *event_thread)
5135{
5136 struct thread_info *tp;
5137 struct thread_info *step_over = NULL;
5138
5139 /* In case the instruction just stepped spawned a new thread. */
5140 update_thread_list ();
5141
5142 ALL_NON_EXITED_THREADS (tp)
5143 {
5144 if (tp == event_thread)
5145 {
5146 if (debug_infrun)
5147 fprintf_unfiltered (gdb_stdlog,
5148 "infrun: restart threads: "
5149 "[%s] is event thread\n",
5150 target_pid_to_str (tp->ptid));
5151 continue;
5152 }
5153
5154 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5155 {
5156 if (debug_infrun)
5157 fprintf_unfiltered (gdb_stdlog,
5158 "infrun: restart threads: "
5159 "[%s] not meant to be running\n",
5160 target_pid_to_str (tp->ptid));
5161 continue;
5162 }
5163
5164 if (tp->resumed)
5165 {
5166 if (debug_infrun)
5167 fprintf_unfiltered (gdb_stdlog,
5168 "infrun: restart threads: [%s] resumed\n",
5169 target_pid_to_str (tp->ptid));
5170 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5171 continue;
5172 }
5173
5174 if (thread_is_in_step_over_chain (tp))
5175 {
5176 if (debug_infrun)
5177 fprintf_unfiltered (gdb_stdlog,
5178 "infrun: restart threads: "
5179 "[%s] needs step-over\n",
5180 target_pid_to_str (tp->ptid));
5181 gdb_assert (!tp->resumed);
5182 continue;
5183 }
5184
5185
5186 if (tp->suspend.waitstatus_pending_p)
5187 {
5188 if (debug_infrun)
5189 fprintf_unfiltered (gdb_stdlog,
5190 "infrun: restart threads: "
5191 "[%s] has pending status\n",
5192 target_pid_to_str (tp->ptid));
5193 tp->resumed = 1;
5194 continue;
5195 }
5196
5197 /* If some thread needs to start a step-over at this point, it
5198 should still be in the step-over queue, and thus skipped
5199 above. */
5200 if (thread_still_needs_step_over (tp))
5201 {
5202 internal_error (__FILE__, __LINE__,
5203 "thread [%s] needs a step-over, but not in "
5204 "step-over queue\n",
5205 target_pid_to_str (tp->ptid));
5206 }
5207
5208 if (currently_stepping (tp))
5209 {
5210 if (debug_infrun)
5211 fprintf_unfiltered (gdb_stdlog,
5212 "infrun: restart threads: [%s] was stepping\n",
5213 target_pid_to_str (tp->ptid));
5214 keep_going_stepped_thread (tp);
5215 }
5216 else
5217 {
5218 struct execution_control_state ecss;
5219 struct execution_control_state *ecs = &ecss;
5220
5221 if (debug_infrun)
5222 fprintf_unfiltered (gdb_stdlog,
5223 "infrun: restart threads: [%s] continuing\n",
5224 target_pid_to_str (tp->ptid));
5225 reset_ecs (ecs, tp);
5226 switch_to_thread (tp->ptid);
5227 keep_going_pass_signal (ecs);
5228 }
5229 }
5230}
5231
5232/* Callback for iterate_over_threads. Find a resumed thread that has
5233 a pending waitstatus. */
5234
5235static int
5236resumed_thread_with_pending_status (struct thread_info *tp,
5237 void *arg)
5238{
5239 return (tp->resumed
5240 && tp->suspend.waitstatus_pending_p);
5241}
5242
5243/* Called when we get an event that may finish an in-line or
5244 out-of-line (displaced stepping) step-over started previously.
5245 Return true if the event is processed and we should go back to the
5246 event loop; false if the caller should continue processing the
5247 event. */
5248
5249static int
4d9d9d04
PA
5250finish_step_over (struct execution_control_state *ecs)
5251{
372316f1
PA
5252 int had_step_over_info;
5253
4d9d9d04
PA
5254 displaced_step_fixup (ecs->ptid,
5255 ecs->event_thread->suspend.stop_signal);
5256
372316f1
PA
5257 had_step_over_info = step_over_info_valid_p ();
5258
5259 if (had_step_over_info)
4d9d9d04
PA
5260 {
5261 /* If we're stepping over a breakpoint with all threads locked,
5262 then only the thread that was stepped should be reporting
5263 back an event. */
5264 gdb_assert (ecs->event_thread->control.trap_expected);
5265
5266 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5267 clear_step_over_info ();
5268 }
5269
fbea99ea 5270 if (!target_is_non_stop_p ())
372316f1 5271 return 0;
4d9d9d04
PA
5272
5273 /* Start a new step-over in another thread if there's one that
5274 needs it. */
5275 start_step_over ();
372316f1
PA
5276
5277 /* If we were stepping over a breakpoint before, and haven't started
5278 a new in-line step-over sequence, then restart all other threads
5279 (except the event thread). We can't do this in all-stop, as then
5280 e.g., we wouldn't be able to issue any other remote packet until
5281 these other threads stop. */
5282 if (had_step_over_info && !step_over_info_valid_p ())
5283 {
5284 struct thread_info *pending;
5285
5286 /* If we only have threads with pending statuses, the restart
5287 below won't restart any thread and so nothing re-inserts the
5288 breakpoint we just stepped over. But we need it inserted
5289 when we later process the pending events, otherwise if
5290 another thread has a pending event for this breakpoint too,
5291 we'd discard its event (because the breakpoint that
5292 originally caused the event was no longer inserted). */
5293 context_switch (ecs->ptid);
5294 insert_breakpoints ();
5295
5296 restart_threads (ecs->event_thread);
5297
5298 /* If we have events pending, go through handle_inferior_event
5299 again, picking up a pending event at random. This avoids
5300 thread starvation. */
5301
5302 /* But not if we just stepped over a watchpoint in order to let
5303 the instruction execute so we can evaluate its expression.
5304 The set of watchpoints that triggered is recorded in the
5305 breakpoint objects themselves (see bp->watchpoint_triggered).
5306 If we processed another event first, that other event could
5307 clobber this info. */
5308 if (ecs->event_thread->stepping_over_watchpoint)
5309 return 0;
5310
5311 pending = iterate_over_threads (resumed_thread_with_pending_status,
5312 NULL);
5313 if (pending != NULL)
5314 {
5315 struct thread_info *tp = ecs->event_thread;
5316 struct regcache *regcache;
5317
5318 if (debug_infrun)
5319 {
5320 fprintf_unfiltered (gdb_stdlog,
5321 "infrun: found resumed threads with "
5322 "pending events, saving status\n");
5323 }
5324
5325 gdb_assert (pending != tp);
5326
5327 /* Record the event thread's event for later. */
5328 save_waitstatus (tp, &ecs->ws);
5329 /* This was cleared early, by handle_inferior_event. Set it
5330 so this pending event is considered by
5331 do_target_wait. */
5332 tp->resumed = 1;
5333
5334 gdb_assert (!tp->executing);
5335
5336 regcache = get_thread_regcache (tp->ptid);
5337 tp->suspend.stop_pc = regcache_read_pc (regcache);
5338
5339 if (debug_infrun)
5340 {
5341 fprintf_unfiltered (gdb_stdlog,
5342 "infrun: saved stop_pc=%s for %s "
5343 "(currently_stepping=%d)\n",
5344 paddress (target_gdbarch (),
5345 tp->suspend.stop_pc),
5346 target_pid_to_str (tp->ptid),
5347 currently_stepping (tp));
5348 }
5349
5350 /* This in-line step-over finished; clear this so we won't
5351 start a new one. This is what handle_signal_stop would
5352 do, if we returned false. */
5353 tp->stepping_over_breakpoint = 0;
5354
5355 /* Wake up the event loop again. */
5356 mark_async_event_handler (infrun_async_inferior_event_token);
5357
5358 prepare_to_wait (ecs);
5359 return 1;
5360 }
5361 }
5362
5363 return 0;
4d9d9d04
PA
5364}
5365
4f5d7f63
PA
5366/* Come here when the program has stopped with a signal. */
5367
5368static void
5369handle_signal_stop (struct execution_control_state *ecs)
5370{
5371 struct frame_info *frame;
5372 struct gdbarch *gdbarch;
5373 int stopped_by_watchpoint;
5374 enum stop_kind stop_soon;
5375 int random_signal;
c906108c 5376
f0407826
DE
5377 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5378
5379 /* Do we need to clean up the state of a thread that has
5380 completed a displaced single-step? (Doing so usually affects
5381 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5382 if (finish_step_over (ecs))
5383 return;
f0407826
DE
5384
5385 /* If we either finished a single-step or hit a breakpoint, but
5386 the user wanted this thread to be stopped, pretend we got a
5387 SIG0 (generic unsignaled stop). */
5388 if (ecs->event_thread->stop_requested
5389 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5390 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5391
515630c5 5392 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5393
527159b7 5394 if (debug_infrun)
237fc4c9 5395 {
5af949e3
UW
5396 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5397 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5398 struct cleanup *old_chain = save_inferior_ptid ();
5399
5400 inferior_ptid = ecs->ptid;
5af949e3
UW
5401
5402 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5403 paddress (gdbarch, stop_pc));
d92524f1 5404 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5405 {
5406 CORE_ADDR addr;
abbb1732 5407
237fc4c9
PA
5408 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5409
5410 if (target_stopped_data_address (&current_target, &addr))
5411 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5412 "infrun: stopped data address = %s\n",
5413 paddress (gdbarch, addr));
237fc4c9
PA
5414 else
5415 fprintf_unfiltered (gdb_stdlog,
5416 "infrun: (no data address available)\n");
5417 }
7f82dfc7
JK
5418
5419 do_cleanups (old_chain);
237fc4c9 5420 }
527159b7 5421
36fa8042
PA
5422 /* This is originated from start_remote(), start_inferior() and
5423 shared libraries hook functions. */
5424 stop_soon = get_inferior_stop_soon (ecs->ptid);
5425 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5426 {
5427 if (!ptid_equal (ecs->ptid, inferior_ptid))
5428 context_switch (ecs->ptid);
5429 if (debug_infrun)
5430 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5431 stop_print_frame = 1;
22bcd14b 5432 stop_waiting (ecs);
36fa8042
PA
5433 return;
5434 }
5435
5436 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5437 && stop_after_trap)
5438 {
5439 if (!ptid_equal (ecs->ptid, inferior_ptid))
5440 context_switch (ecs->ptid);
5441 if (debug_infrun)
5442 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5443 stop_print_frame = 0;
22bcd14b 5444 stop_waiting (ecs);
36fa8042
PA
5445 return;
5446 }
5447
5448 /* This originates from attach_command(). We need to overwrite
5449 the stop_signal here, because some kernels don't ignore a
5450 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5451 See more comments in inferior.h. On the other hand, if we
5452 get a non-SIGSTOP, report it to the user - assume the backend
5453 will handle the SIGSTOP if it should show up later.
5454
5455 Also consider that the attach is complete when we see a
5456 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5457 target extended-remote report it instead of a SIGSTOP
5458 (e.g. gdbserver). We already rely on SIGTRAP being our
5459 signal, so this is no exception.
5460
5461 Also consider that the attach is complete when we see a
5462 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5463 the target to stop all threads of the inferior, in case the
5464 low level attach operation doesn't stop them implicitly. If
5465 they weren't stopped implicitly, then the stub will report a
5466 GDB_SIGNAL_0, meaning: stopped for no particular reason
5467 other than GDB's request. */
5468 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5469 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5470 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5471 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5472 {
5473 stop_print_frame = 1;
22bcd14b 5474 stop_waiting (ecs);
36fa8042
PA
5475 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5476 return;
5477 }
5478
488f131b 5479 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5480 so, then switch to that thread. */
5481 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5482 {
527159b7 5483 if (debug_infrun)
8a9de0e4 5484 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5485
0d1e5fa7 5486 context_switch (ecs->ptid);
c5aa993b 5487
9a4105ab
AC
5488 if (deprecated_context_hook)
5489 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 5490 }
c906108c 5491
568d6575
UW
5492 /* At this point, get hold of the now-current thread's frame. */
5493 frame = get_current_frame ();
5494 gdbarch = get_frame_arch (frame);
5495
2adfaa28 5496 /* Pull the single step breakpoints out of the target. */
af48d08f 5497 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5498 {
af48d08f
PA
5499 struct regcache *regcache;
5500 struct address_space *aspace;
5501 CORE_ADDR pc;
2adfaa28 5502
af48d08f
PA
5503 regcache = get_thread_regcache (ecs->ptid);
5504 aspace = get_regcache_aspace (regcache);
5505 pc = regcache_read_pc (regcache);
34b7e8a6 5506
af48d08f
PA
5507 /* However, before doing so, if this single-step breakpoint was
5508 actually for another thread, set this thread up for moving
5509 past it. */
5510 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5511 aspace, pc))
5512 {
5513 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5514 {
5515 if (debug_infrun)
5516 {
5517 fprintf_unfiltered (gdb_stdlog,
af48d08f 5518 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5519 "single-step breakpoint\n",
5520 target_pid_to_str (ecs->ptid));
2adfaa28 5521 }
af48d08f
PA
5522 ecs->hit_singlestep_breakpoint = 1;
5523 }
5524 }
5525 else
5526 {
5527 if (debug_infrun)
5528 {
5529 fprintf_unfiltered (gdb_stdlog,
5530 "infrun: [%s] hit its "
5531 "single-step breakpoint\n",
5532 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5533 }
5534 }
488f131b 5535 }
af48d08f 5536 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5537
963f9c80
PA
5538 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5539 && ecs->event_thread->control.trap_expected
5540 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5541 stopped_by_watchpoint = 0;
5542 else
5543 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5544
5545 /* If necessary, step over this watchpoint. We'll be back to display
5546 it in a moment. */
5547 if (stopped_by_watchpoint
d92524f1 5548 && (target_have_steppable_watchpoint
568d6575 5549 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5550 {
488f131b
JB
5551 /* At this point, we are stopped at an instruction which has
5552 attempted to write to a piece of memory under control of
5553 a watchpoint. The instruction hasn't actually executed
5554 yet. If we were to evaluate the watchpoint expression
5555 now, we would get the old value, and therefore no change
5556 would seem to have occurred.
5557
5558 In order to make watchpoints work `right', we really need
5559 to complete the memory write, and then evaluate the
d983da9c
DJ
5560 watchpoint expression. We do this by single-stepping the
5561 target.
5562
7f89fd65 5563 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5564 it. For example, the PA can (with some kernel cooperation)
5565 single step over a watchpoint without disabling the watchpoint.
5566
5567 It is far more common to need to disable a watchpoint to step
5568 the inferior over it. If we have non-steppable watchpoints,
5569 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5570 disable all watchpoints.
5571
5572 Any breakpoint at PC must also be stepped over -- if there's
5573 one, it will have already triggered before the watchpoint
5574 triggered, and we either already reported it to the user, or
5575 it didn't cause a stop and we called keep_going. In either
5576 case, if there was a breakpoint at PC, we must be trying to
5577 step past it. */
5578 ecs->event_thread->stepping_over_watchpoint = 1;
5579 keep_going (ecs);
488f131b
JB
5580 return;
5581 }
5582
4e1c45ea 5583 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5584 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5585 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5586 ecs->event_thread->control.stop_step = 0;
488f131b 5587 stop_print_frame = 1;
488f131b 5588 stopped_by_random_signal = 0;
488f131b 5589
edb3359d
DJ
5590 /* Hide inlined functions starting here, unless we just performed stepi or
5591 nexti. After stepi and nexti, always show the innermost frame (not any
5592 inline function call sites). */
16c381f0 5593 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5594 {
5595 struct address_space *aspace =
5596 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5597
5598 /* skip_inline_frames is expensive, so we avoid it if we can
5599 determine that the address is one where functions cannot have
5600 been inlined. This improves performance with inferiors that
5601 load a lot of shared libraries, because the solib event
5602 breakpoint is defined as the address of a function (i.e. not
5603 inline). Note that we have to check the previous PC as well
5604 as the current one to catch cases when we have just
5605 single-stepped off a breakpoint prior to reinstating it.
5606 Note that we're assuming that the code we single-step to is
5607 not inline, but that's not definitive: there's nothing
5608 preventing the event breakpoint function from containing
5609 inlined code, and the single-step ending up there. If the
5610 user had set a breakpoint on that inlined code, the missing
5611 skip_inline_frames call would break things. Fortunately
5612 that's an extremely unlikely scenario. */
09ac7c10 5613 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5614 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5615 && ecs->event_thread->control.trap_expected
5616 && pc_at_non_inline_function (aspace,
5617 ecs->event_thread->prev_pc,
09ac7c10 5618 &ecs->ws)))
1c5a993e
MR
5619 {
5620 skip_inline_frames (ecs->ptid);
5621
5622 /* Re-fetch current thread's frame in case that invalidated
5623 the frame cache. */
5624 frame = get_current_frame ();
5625 gdbarch = get_frame_arch (frame);
5626 }
0574c78f 5627 }
edb3359d 5628
a493e3e2 5629 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5630 && ecs->event_thread->control.trap_expected
568d6575 5631 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5632 && currently_stepping (ecs->event_thread))
3352ef37 5633 {
b50d7442 5634 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5635 also on an instruction that needs to be stepped multiple
1777feb0 5636 times before it's been fully executing. E.g., architectures
3352ef37
AC
5637 with a delay slot. It needs to be stepped twice, once for
5638 the instruction and once for the delay slot. */
5639 int step_through_delay
568d6575 5640 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5641
527159b7 5642 if (debug_infrun && step_through_delay)
8a9de0e4 5643 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5644 if (ecs->event_thread->control.step_range_end == 0
5645 && step_through_delay)
3352ef37
AC
5646 {
5647 /* The user issued a continue when stopped at a breakpoint.
5648 Set up for another trap and get out of here. */
4e1c45ea 5649 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5650 keep_going (ecs);
5651 return;
5652 }
5653 else if (step_through_delay)
5654 {
5655 /* The user issued a step when stopped at a breakpoint.
5656 Maybe we should stop, maybe we should not - the delay
5657 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5658 case, don't decide that here, just set
5659 ecs->stepping_over_breakpoint, making sure we
5660 single-step again before breakpoints are re-inserted. */
4e1c45ea 5661 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5662 }
5663 }
5664
ab04a2af
TT
5665 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5666 handles this event. */
5667 ecs->event_thread->control.stop_bpstat
5668 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5669 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5670
ab04a2af
TT
5671 /* Following in case break condition called a
5672 function. */
5673 stop_print_frame = 1;
73dd234f 5674
ab04a2af
TT
5675 /* This is where we handle "moribund" watchpoints. Unlike
5676 software breakpoints traps, hardware watchpoint traps are
5677 always distinguishable from random traps. If no high-level
5678 watchpoint is associated with the reported stop data address
5679 anymore, then the bpstat does not explain the signal ---
5680 simply make sure to ignore it if `stopped_by_watchpoint' is
5681 set. */
5682
5683 if (debug_infrun
5684 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5685 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5686 GDB_SIGNAL_TRAP)
ab04a2af
TT
5687 && stopped_by_watchpoint)
5688 fprintf_unfiltered (gdb_stdlog,
5689 "infrun: no user watchpoint explains "
5690 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5691
bac7d97b 5692 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5693 at one stage in the past included checks for an inferior
5694 function call's call dummy's return breakpoint. The original
5695 comment, that went with the test, read:
03cebad2 5696
ab04a2af
TT
5697 ``End of a stack dummy. Some systems (e.g. Sony news) give
5698 another signal besides SIGTRAP, so check here as well as
5699 above.''
73dd234f 5700
ab04a2af
TT
5701 If someone ever tries to get call dummys on a
5702 non-executable stack to work (where the target would stop
5703 with something like a SIGSEGV), then those tests might need
5704 to be re-instated. Given, however, that the tests were only
5705 enabled when momentary breakpoints were not being used, I
5706 suspect that it won't be the case.
488f131b 5707
ab04a2af
TT
5708 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5709 be necessary for call dummies on a non-executable stack on
5710 SPARC. */
488f131b 5711
bac7d97b 5712 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5713 random_signal
5714 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5715 ecs->event_thread->suspend.stop_signal);
bac7d97b 5716
1cf4d951
PA
5717 /* Maybe this was a trap for a software breakpoint that has since
5718 been removed. */
5719 if (random_signal && target_stopped_by_sw_breakpoint ())
5720 {
5721 if (program_breakpoint_here_p (gdbarch, stop_pc))
5722 {
5723 struct regcache *regcache;
5724 int decr_pc;
5725
5726 /* Re-adjust PC to what the program would see if GDB was not
5727 debugging it. */
5728 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5729 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5730 if (decr_pc != 0)
5731 {
5732 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5733
5734 if (record_full_is_used ())
5735 record_full_gdb_operation_disable_set ();
5736
5737 regcache_write_pc (regcache, stop_pc + decr_pc);
5738
5739 do_cleanups (old_cleanups);
5740 }
5741 }
5742 else
5743 {
5744 /* A delayed software breakpoint event. Ignore the trap. */
5745 if (debug_infrun)
5746 fprintf_unfiltered (gdb_stdlog,
5747 "infrun: delayed software breakpoint "
5748 "trap, ignoring\n");
5749 random_signal = 0;
5750 }
5751 }
5752
5753 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5754 has since been removed. */
5755 if (random_signal && target_stopped_by_hw_breakpoint ())
5756 {
5757 /* A delayed hardware breakpoint event. Ignore the trap. */
5758 if (debug_infrun)
5759 fprintf_unfiltered (gdb_stdlog,
5760 "infrun: delayed hardware breakpoint/watchpoint "
5761 "trap, ignoring\n");
5762 random_signal = 0;
5763 }
5764
bac7d97b
PA
5765 /* If not, perhaps stepping/nexting can. */
5766 if (random_signal)
5767 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5768 && currently_stepping (ecs->event_thread));
ab04a2af 5769
2adfaa28
PA
5770 /* Perhaps the thread hit a single-step breakpoint of _another_
5771 thread. Single-step breakpoints are transparent to the
5772 breakpoints module. */
5773 if (random_signal)
5774 random_signal = !ecs->hit_singlestep_breakpoint;
5775
bac7d97b
PA
5776 /* No? Perhaps we got a moribund watchpoint. */
5777 if (random_signal)
5778 random_signal = !stopped_by_watchpoint;
ab04a2af 5779
488f131b
JB
5780 /* For the program's own signals, act according to
5781 the signal handling tables. */
5782
ce12b012 5783 if (random_signal)
488f131b
JB
5784 {
5785 /* Signal not for debugging purposes. */
c9657e70 5786 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5787 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5788
527159b7 5789 if (debug_infrun)
c9737c08
PA
5790 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5791 gdb_signal_to_symbol_string (stop_signal));
527159b7 5792
488f131b
JB
5793 stopped_by_random_signal = 1;
5794
252fbfc8
PA
5795 /* Always stop on signals if we're either just gaining control
5796 of the program, or the user explicitly requested this thread
5797 to remain stopped. */
d6b48e9c 5798 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5799 || ecs->event_thread->stop_requested
24291992 5800 || (!inf->detaching
16c381f0 5801 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5802 {
22bcd14b 5803 stop_waiting (ecs);
488f131b
JB
5804 return;
5805 }
b57bacec
PA
5806
5807 /* Notify observers the signal has "handle print" set. Note we
5808 returned early above if stopping; normal_stop handles the
5809 printing in that case. */
5810 if (signal_print[ecs->event_thread->suspend.stop_signal])
5811 {
5812 /* The signal table tells us to print about this signal. */
5813 target_terminal_ours_for_output ();
5814 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5815 target_terminal_inferior ();
5816 }
488f131b
JB
5817
5818 /* Clear the signal if it should not be passed. */
16c381f0 5819 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5820 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5821
fb14de7b 5822 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 5823 && ecs->event_thread->control.trap_expected
8358c15c 5824 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 5825 {
372316f1
PA
5826 int was_in_line;
5827
68f53502
AC
5828 /* We were just starting a new sequence, attempting to
5829 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5830 Instead this signal arrives. This signal will take us out
68f53502
AC
5831 of the stepping range so GDB needs to remember to, when
5832 the signal handler returns, resume stepping off that
5833 breakpoint. */
5834 /* To simplify things, "continue" is forced to use the same
5835 code paths as single-step - set a breakpoint at the
5836 signal return address and then, once hit, step off that
5837 breakpoint. */
237fc4c9
PA
5838 if (debug_infrun)
5839 fprintf_unfiltered (gdb_stdlog,
5840 "infrun: signal arrived while stepping over "
5841 "breakpoint\n");
d3169d93 5842
372316f1
PA
5843 was_in_line = step_over_info_valid_p ();
5844 clear_step_over_info ();
2c03e5be 5845 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5846 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5847 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5848 ecs->event_thread->control.trap_expected = 0;
d137e6dc 5849
fbea99ea 5850 if (target_is_non_stop_p ())
372316f1 5851 {
fbea99ea
PA
5852 /* Either "set non-stop" is "on", or the target is
5853 always in non-stop mode. In this case, we have a bit
5854 more work to do. Resume the current thread, and if
5855 we had paused all threads, restart them while the
5856 signal handler runs. */
372316f1
PA
5857 keep_going (ecs);
5858
372316f1
PA
5859 if (was_in_line)
5860 {
372316f1
PA
5861 restart_threads (ecs->event_thread);
5862 }
5863 else if (debug_infrun)
5864 {
5865 fprintf_unfiltered (gdb_stdlog,
5866 "infrun: no need to restart threads\n");
5867 }
5868 return;
5869 }
5870
d137e6dc
PA
5871 /* If we were nexting/stepping some other thread, switch to
5872 it, so that we don't continue it, losing control. */
5873 if (!switch_back_to_stepped_thread (ecs))
5874 keep_going (ecs);
9d799f85 5875 return;
68f53502 5876 }
9d799f85 5877
e5f8a7cc
PA
5878 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5879 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5880 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5881 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5882 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5883 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5884 {
5885 /* The inferior is about to take a signal that will take it
5886 out of the single step range. Set a breakpoint at the
5887 current PC (which is presumably where the signal handler
5888 will eventually return) and then allow the inferior to
5889 run free.
5890
5891 Note that this is only needed for a signal delivered
5892 while in the single-step range. Nested signals aren't a
5893 problem as they eventually all return. */
237fc4c9
PA
5894 if (debug_infrun)
5895 fprintf_unfiltered (gdb_stdlog,
5896 "infrun: signal may take us out of "
5897 "single-step range\n");
5898
372316f1 5899 clear_step_over_info ();
2c03e5be 5900 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5901 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5902 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5903 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5904 keep_going (ecs);
5905 return;
d303a6c7 5906 }
9d799f85
AC
5907
5908 /* Note: step_resume_breakpoint may be non-NULL. This occures
5909 when either there's a nested signal, or when there's a
5910 pending signal enabled just as the signal handler returns
5911 (leaving the inferior at the step-resume-breakpoint without
5912 actually executing it). Either way continue until the
5913 breakpoint is really hit. */
c447ac0b
PA
5914
5915 if (!switch_back_to_stepped_thread (ecs))
5916 {
5917 if (debug_infrun)
5918 fprintf_unfiltered (gdb_stdlog,
5919 "infrun: random signal, keep going\n");
5920
5921 keep_going (ecs);
5922 }
5923 return;
488f131b 5924 }
94c57d6a
PA
5925
5926 process_event_stop_test (ecs);
5927}
5928
5929/* Come here when we've got some debug event / signal we can explain
5930 (IOW, not a random signal), and test whether it should cause a
5931 stop, or whether we should resume the inferior (transparently).
5932 E.g., could be a breakpoint whose condition evaluates false; we
5933 could be still stepping within the line; etc. */
5934
5935static void
5936process_event_stop_test (struct execution_control_state *ecs)
5937{
5938 struct symtab_and_line stop_pc_sal;
5939 struct frame_info *frame;
5940 struct gdbarch *gdbarch;
cdaa5b73
PA
5941 CORE_ADDR jmp_buf_pc;
5942 struct bpstat_what what;
94c57d6a 5943
cdaa5b73 5944 /* Handle cases caused by hitting a breakpoint. */
611c83ae 5945
cdaa5b73
PA
5946 frame = get_current_frame ();
5947 gdbarch = get_frame_arch (frame);
fcf3daef 5948
cdaa5b73 5949 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 5950
cdaa5b73
PA
5951 if (what.call_dummy)
5952 {
5953 stop_stack_dummy = what.call_dummy;
5954 }
186c406b 5955
243a9253
PA
5956 /* A few breakpoint types have callbacks associated (e.g.,
5957 bp_jit_event). Run them now. */
5958 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
5959
cdaa5b73
PA
5960 /* If we hit an internal event that triggers symbol changes, the
5961 current frame will be invalidated within bpstat_what (e.g., if we
5962 hit an internal solib event). Re-fetch it. */
5963 frame = get_current_frame ();
5964 gdbarch = get_frame_arch (frame);
e2e4d78b 5965
cdaa5b73
PA
5966 switch (what.main_action)
5967 {
5968 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5969 /* If we hit the breakpoint at longjmp while stepping, we
5970 install a momentary breakpoint at the target of the
5971 jmp_buf. */
186c406b 5972
cdaa5b73
PA
5973 if (debug_infrun)
5974 fprintf_unfiltered (gdb_stdlog,
5975 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 5976
cdaa5b73 5977 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 5978
cdaa5b73
PA
5979 if (what.is_longjmp)
5980 {
5981 struct value *arg_value;
5982
5983 /* If we set the longjmp breakpoint via a SystemTap probe,
5984 then use it to extract the arguments. The destination PC
5985 is the third argument to the probe. */
5986 arg_value = probe_safe_evaluate_at_pc (frame, 2);
5987 if (arg_value)
8fa0c4f8
AA
5988 {
5989 jmp_buf_pc = value_as_address (arg_value);
5990 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
5991 }
cdaa5b73
PA
5992 else if (!gdbarch_get_longjmp_target_p (gdbarch)
5993 || !gdbarch_get_longjmp_target (gdbarch,
5994 frame, &jmp_buf_pc))
e2e4d78b 5995 {
cdaa5b73
PA
5996 if (debug_infrun)
5997 fprintf_unfiltered (gdb_stdlog,
5998 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
5999 "(!gdbarch_get_longjmp_target)\n");
6000 keep_going (ecs);
6001 return;
e2e4d78b 6002 }
e2e4d78b 6003
cdaa5b73
PA
6004 /* Insert a breakpoint at resume address. */
6005 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6006 }
6007 else
6008 check_exception_resume (ecs, frame);
6009 keep_going (ecs);
6010 return;
e81a37f7 6011
cdaa5b73
PA
6012 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6013 {
6014 struct frame_info *init_frame;
e81a37f7 6015
cdaa5b73 6016 /* There are several cases to consider.
c906108c 6017
cdaa5b73
PA
6018 1. The initiating frame no longer exists. In this case we
6019 must stop, because the exception or longjmp has gone too
6020 far.
2c03e5be 6021
cdaa5b73
PA
6022 2. The initiating frame exists, and is the same as the
6023 current frame. We stop, because the exception or longjmp
6024 has been caught.
2c03e5be 6025
cdaa5b73
PA
6026 3. The initiating frame exists and is different from the
6027 current frame. This means the exception or longjmp has
6028 been caught beneath the initiating frame, so keep going.
c906108c 6029
cdaa5b73
PA
6030 4. longjmp breakpoint has been placed just to protect
6031 against stale dummy frames and user is not interested in
6032 stopping around longjmps. */
c5aa993b 6033
cdaa5b73
PA
6034 if (debug_infrun)
6035 fprintf_unfiltered (gdb_stdlog,
6036 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6037
cdaa5b73
PA
6038 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6039 != NULL);
6040 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6041
cdaa5b73
PA
6042 if (what.is_longjmp)
6043 {
b67a2c6f 6044 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6045
cdaa5b73 6046 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6047 {
cdaa5b73
PA
6048 /* Case 4. */
6049 keep_going (ecs);
6050 return;
e5ef252a 6051 }
cdaa5b73 6052 }
c5aa993b 6053
cdaa5b73 6054 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6055
cdaa5b73
PA
6056 if (init_frame)
6057 {
6058 struct frame_id current_id
6059 = get_frame_id (get_current_frame ());
6060 if (frame_id_eq (current_id,
6061 ecs->event_thread->initiating_frame))
6062 {
6063 /* Case 2. Fall through. */
6064 }
6065 else
6066 {
6067 /* Case 3. */
6068 keep_going (ecs);
6069 return;
6070 }
68f53502 6071 }
488f131b 6072
cdaa5b73
PA
6073 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6074 exists. */
6075 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6076
bdc36728 6077 end_stepping_range (ecs);
cdaa5b73
PA
6078 }
6079 return;
e5ef252a 6080
cdaa5b73
PA
6081 case BPSTAT_WHAT_SINGLE:
6082 if (debug_infrun)
6083 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6084 ecs->event_thread->stepping_over_breakpoint = 1;
6085 /* Still need to check other stuff, at least the case where we
6086 are stepping and step out of the right range. */
6087 break;
e5ef252a 6088
cdaa5b73
PA
6089 case BPSTAT_WHAT_STEP_RESUME:
6090 if (debug_infrun)
6091 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6092
cdaa5b73
PA
6093 delete_step_resume_breakpoint (ecs->event_thread);
6094 if (ecs->event_thread->control.proceed_to_finish
6095 && execution_direction == EXEC_REVERSE)
6096 {
6097 struct thread_info *tp = ecs->event_thread;
6098
6099 /* We are finishing a function in reverse, and just hit the
6100 step-resume breakpoint at the start address of the
6101 function, and we're almost there -- just need to back up
6102 by one more single-step, which should take us back to the
6103 function call. */
6104 tp->control.step_range_start = tp->control.step_range_end = 1;
6105 keep_going (ecs);
e5ef252a 6106 return;
cdaa5b73
PA
6107 }
6108 fill_in_stop_func (gdbarch, ecs);
6109 if (stop_pc == ecs->stop_func_start
6110 && execution_direction == EXEC_REVERSE)
6111 {
6112 /* We are stepping over a function call in reverse, and just
6113 hit the step-resume breakpoint at the start address of
6114 the function. Go back to single-stepping, which should
6115 take us back to the function call. */
6116 ecs->event_thread->stepping_over_breakpoint = 1;
6117 keep_going (ecs);
6118 return;
6119 }
6120 break;
e5ef252a 6121
cdaa5b73
PA
6122 case BPSTAT_WHAT_STOP_NOISY:
6123 if (debug_infrun)
6124 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6125 stop_print_frame = 1;
e5ef252a 6126
99619bea
PA
6127 /* Assume the thread stopped for a breapoint. We'll still check
6128 whether a/the breakpoint is there when the thread is next
6129 resumed. */
6130 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6131
22bcd14b 6132 stop_waiting (ecs);
cdaa5b73 6133 return;
e5ef252a 6134
cdaa5b73
PA
6135 case BPSTAT_WHAT_STOP_SILENT:
6136 if (debug_infrun)
6137 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6138 stop_print_frame = 0;
e5ef252a 6139
99619bea
PA
6140 /* Assume the thread stopped for a breapoint. We'll still check
6141 whether a/the breakpoint is there when the thread is next
6142 resumed. */
6143 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6144 stop_waiting (ecs);
cdaa5b73
PA
6145 return;
6146
6147 case BPSTAT_WHAT_HP_STEP_RESUME:
6148 if (debug_infrun)
6149 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6150
6151 delete_step_resume_breakpoint (ecs->event_thread);
6152 if (ecs->event_thread->step_after_step_resume_breakpoint)
6153 {
6154 /* Back when the step-resume breakpoint was inserted, we
6155 were trying to single-step off a breakpoint. Go back to
6156 doing that. */
6157 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6158 ecs->event_thread->stepping_over_breakpoint = 1;
6159 keep_going (ecs);
6160 return;
e5ef252a 6161 }
cdaa5b73
PA
6162 break;
6163
6164 case BPSTAT_WHAT_KEEP_CHECKING:
6165 break;
e5ef252a 6166 }
c906108c 6167
af48d08f
PA
6168 /* If we stepped a permanent breakpoint and we had a high priority
6169 step-resume breakpoint for the address we stepped, but we didn't
6170 hit it, then we must have stepped into the signal handler. The
6171 step-resume was only necessary to catch the case of _not_
6172 stepping into the handler, so delete it, and fall through to
6173 checking whether the step finished. */
6174 if (ecs->event_thread->stepped_breakpoint)
6175 {
6176 struct breakpoint *sr_bp
6177 = ecs->event_thread->control.step_resume_breakpoint;
6178
8d707a12
PA
6179 if (sr_bp != NULL
6180 && sr_bp->loc->permanent
af48d08f
PA
6181 && sr_bp->type == bp_hp_step_resume
6182 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6183 {
6184 if (debug_infrun)
6185 fprintf_unfiltered (gdb_stdlog,
6186 "infrun: stepped permanent breakpoint, stopped in "
6187 "handler\n");
6188 delete_step_resume_breakpoint (ecs->event_thread);
6189 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6190 }
6191 }
6192
cdaa5b73
PA
6193 /* We come here if we hit a breakpoint but should not stop for it.
6194 Possibly we also were stepping and should stop for that. So fall
6195 through and test for stepping. But, if not stepping, do not
6196 stop. */
c906108c 6197
a7212384
UW
6198 /* In all-stop mode, if we're currently stepping but have stopped in
6199 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6200 if (switch_back_to_stepped_thread (ecs))
6201 return;
776f04fa 6202
8358c15c 6203 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6204 {
527159b7 6205 if (debug_infrun)
d3169d93
DJ
6206 fprintf_unfiltered (gdb_stdlog,
6207 "infrun: step-resume breakpoint is inserted\n");
527159b7 6208
488f131b
JB
6209 /* Having a step-resume breakpoint overrides anything
6210 else having to do with stepping commands until
6211 that breakpoint is reached. */
488f131b
JB
6212 keep_going (ecs);
6213 return;
6214 }
c5aa993b 6215
16c381f0 6216 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6217 {
527159b7 6218 if (debug_infrun)
8a9de0e4 6219 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6220 /* Likewise if we aren't even stepping. */
488f131b
JB
6221 keep_going (ecs);
6222 return;
6223 }
c5aa993b 6224
4b7703ad
JB
6225 /* Re-fetch current thread's frame in case the code above caused
6226 the frame cache to be re-initialized, making our FRAME variable
6227 a dangling pointer. */
6228 frame = get_current_frame ();
628fe4e4 6229 gdbarch = get_frame_arch (frame);
7e324e48 6230 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6231
488f131b 6232 /* If stepping through a line, keep going if still within it.
c906108c 6233
488f131b
JB
6234 Note that step_range_end is the address of the first instruction
6235 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6236 within it!
6237
6238 Note also that during reverse execution, we may be stepping
6239 through a function epilogue and therefore must detect when
6240 the current-frame changes in the middle of a line. */
6241
ce4c476a 6242 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6243 && (execution_direction != EXEC_REVERSE
388a8562 6244 || frame_id_eq (get_frame_id (frame),
16c381f0 6245 ecs->event_thread->control.step_frame_id)))
488f131b 6246 {
527159b7 6247 if (debug_infrun)
5af949e3
UW
6248 fprintf_unfiltered
6249 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6250 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6251 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6252
c1e36e3e
PA
6253 /* Tentatively re-enable range stepping; `resume' disables it if
6254 necessary (e.g., if we're stepping over a breakpoint or we
6255 have software watchpoints). */
6256 ecs->event_thread->control.may_range_step = 1;
6257
b2175913
MS
6258 /* When stepping backward, stop at beginning of line range
6259 (unless it's the function entry point, in which case
6260 keep going back to the call point). */
16c381f0 6261 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6262 && stop_pc != ecs->stop_func_start
6263 && execution_direction == EXEC_REVERSE)
bdc36728 6264 end_stepping_range (ecs);
b2175913
MS
6265 else
6266 keep_going (ecs);
6267
488f131b
JB
6268 return;
6269 }
c5aa993b 6270
488f131b 6271 /* We stepped out of the stepping range. */
c906108c 6272
488f131b 6273 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6274 loader dynamic symbol resolution code...
6275
6276 EXEC_FORWARD: we keep on single stepping until we exit the run
6277 time loader code and reach the callee's address.
6278
6279 EXEC_REVERSE: we've already executed the callee (backward), and
6280 the runtime loader code is handled just like any other
6281 undebuggable function call. Now we need only keep stepping
6282 backward through the trampoline code, and that's handled further
6283 down, so there is nothing for us to do here. */
6284
6285 if (execution_direction != EXEC_REVERSE
16c381f0 6286 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6287 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6288 {
4c8c40e6 6289 CORE_ADDR pc_after_resolver =
568d6575 6290 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6291
527159b7 6292 if (debug_infrun)
3e43a32a
MS
6293 fprintf_unfiltered (gdb_stdlog,
6294 "infrun: stepped into dynsym resolve code\n");
527159b7 6295
488f131b
JB
6296 if (pc_after_resolver)
6297 {
6298 /* Set up a step-resume breakpoint at the address
6299 indicated by SKIP_SOLIB_RESOLVER. */
6300 struct symtab_and_line sr_sal;
abbb1732 6301
fe39c653 6302 init_sal (&sr_sal);
488f131b 6303 sr_sal.pc = pc_after_resolver;
6c95b8df 6304 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6305
a6d9a66e
UW
6306 insert_step_resume_breakpoint_at_sal (gdbarch,
6307 sr_sal, null_frame_id);
c5aa993b 6308 }
c906108c 6309
488f131b
JB
6310 keep_going (ecs);
6311 return;
6312 }
c906108c 6313
16c381f0
JK
6314 if (ecs->event_thread->control.step_range_end != 1
6315 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6316 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6317 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6318 {
527159b7 6319 if (debug_infrun)
3e43a32a
MS
6320 fprintf_unfiltered (gdb_stdlog,
6321 "infrun: stepped into signal trampoline\n");
42edda50 6322 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6323 a signal trampoline (either by a signal being delivered or by
6324 the signal handler returning). Just single-step until the
6325 inferior leaves the trampoline (either by calling the handler
6326 or returning). */
488f131b
JB
6327 keep_going (ecs);
6328 return;
6329 }
c906108c 6330
14132e89
MR
6331 /* If we're in the return path from a shared library trampoline,
6332 we want to proceed through the trampoline when stepping. */
6333 /* macro/2012-04-25: This needs to come before the subroutine
6334 call check below as on some targets return trampolines look
6335 like subroutine calls (MIPS16 return thunks). */
6336 if (gdbarch_in_solib_return_trampoline (gdbarch,
6337 stop_pc, ecs->stop_func_name)
6338 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6339 {
6340 /* Determine where this trampoline returns. */
6341 CORE_ADDR real_stop_pc;
6342
6343 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6344
6345 if (debug_infrun)
6346 fprintf_unfiltered (gdb_stdlog,
6347 "infrun: stepped into solib return tramp\n");
6348
6349 /* Only proceed through if we know where it's going. */
6350 if (real_stop_pc)
6351 {
6352 /* And put the step-breakpoint there and go until there. */
6353 struct symtab_and_line sr_sal;
6354
6355 init_sal (&sr_sal); /* initialize to zeroes */
6356 sr_sal.pc = real_stop_pc;
6357 sr_sal.section = find_pc_overlay (sr_sal.pc);
6358 sr_sal.pspace = get_frame_program_space (frame);
6359
6360 /* Do not specify what the fp should be when we stop since
6361 on some machines the prologue is where the new fp value
6362 is established. */
6363 insert_step_resume_breakpoint_at_sal (gdbarch,
6364 sr_sal, null_frame_id);
6365
6366 /* Restart without fiddling with the step ranges or
6367 other state. */
6368 keep_going (ecs);
6369 return;
6370 }
6371 }
6372
c17eaafe
DJ
6373 /* Check for subroutine calls. The check for the current frame
6374 equalling the step ID is not necessary - the check of the
6375 previous frame's ID is sufficient - but it is a common case and
6376 cheaper than checking the previous frame's ID.
14e60db5
DJ
6377
6378 NOTE: frame_id_eq will never report two invalid frame IDs as
6379 being equal, so to get into this block, both the current and
6380 previous frame must have valid frame IDs. */
005ca36a
JB
6381 /* The outer_frame_id check is a heuristic to detect stepping
6382 through startup code. If we step over an instruction which
6383 sets the stack pointer from an invalid value to a valid value,
6384 we may detect that as a subroutine call from the mythical
6385 "outermost" function. This could be fixed by marking
6386 outermost frames as !stack_p,code_p,special_p. Then the
6387 initial outermost frame, before sp was valid, would
ce6cca6d 6388 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6389 for more. */
edb3359d 6390 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6391 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6392 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6393 ecs->event_thread->control.step_stack_frame_id)
6394 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6395 outer_frame_id)
885eeb5b
PA
6396 || (ecs->event_thread->control.step_start_function
6397 != find_pc_function (stop_pc)))))
488f131b 6398 {
95918acb 6399 CORE_ADDR real_stop_pc;
8fb3e588 6400
527159b7 6401 if (debug_infrun)
8a9de0e4 6402 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6403
b7a084be 6404 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6405 {
6406 /* I presume that step_over_calls is only 0 when we're
6407 supposed to be stepping at the assembly language level
6408 ("stepi"). Just stop. */
388a8562 6409 /* And this works the same backward as frontward. MVS */
bdc36728 6410 end_stepping_range (ecs);
95918acb
AC
6411 return;
6412 }
8fb3e588 6413
388a8562
MS
6414 /* Reverse stepping through solib trampolines. */
6415
6416 if (execution_direction == EXEC_REVERSE
16c381f0 6417 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6418 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6419 || (ecs->stop_func_start == 0
6420 && in_solib_dynsym_resolve_code (stop_pc))))
6421 {
6422 /* Any solib trampoline code can be handled in reverse
6423 by simply continuing to single-step. We have already
6424 executed the solib function (backwards), and a few
6425 steps will take us back through the trampoline to the
6426 caller. */
6427 keep_going (ecs);
6428 return;
6429 }
6430
16c381f0 6431 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6432 {
b2175913
MS
6433 /* We're doing a "next".
6434
6435 Normal (forward) execution: set a breakpoint at the
6436 callee's return address (the address at which the caller
6437 will resume).
6438
6439 Reverse (backward) execution. set the step-resume
6440 breakpoint at the start of the function that we just
6441 stepped into (backwards), and continue to there. When we
6130d0b7 6442 get there, we'll need to single-step back to the caller. */
b2175913
MS
6443
6444 if (execution_direction == EXEC_REVERSE)
6445 {
acf9414f
JK
6446 /* If we're already at the start of the function, we've either
6447 just stepped backward into a single instruction function,
6448 or stepped back out of a signal handler to the first instruction
6449 of the function. Just keep going, which will single-step back
6450 to the caller. */
58c48e72 6451 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6452 {
6453 struct symtab_and_line sr_sal;
6454
6455 /* Normal function call return (static or dynamic). */
6456 init_sal (&sr_sal);
6457 sr_sal.pc = ecs->stop_func_start;
6458 sr_sal.pspace = get_frame_program_space (frame);
6459 insert_step_resume_breakpoint_at_sal (gdbarch,
6460 sr_sal, null_frame_id);
6461 }
b2175913
MS
6462 }
6463 else
568d6575 6464 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6465
8567c30f
AC
6466 keep_going (ecs);
6467 return;
6468 }
a53c66de 6469
95918acb 6470 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6471 calling routine and the real function), locate the real
6472 function. That's what tells us (a) whether we want to step
6473 into it at all, and (b) what prologue we want to run to the
6474 end of, if we do step into it. */
568d6575 6475 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6476 if (real_stop_pc == 0)
568d6575 6477 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6478 if (real_stop_pc != 0)
6479 ecs->stop_func_start = real_stop_pc;
8fb3e588 6480
db5f024e 6481 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6482 {
6483 struct symtab_and_line sr_sal;
abbb1732 6484
1b2bfbb9
RC
6485 init_sal (&sr_sal);
6486 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6487 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6488
a6d9a66e
UW
6489 insert_step_resume_breakpoint_at_sal (gdbarch,
6490 sr_sal, null_frame_id);
8fb3e588
AC
6491 keep_going (ecs);
6492 return;
1b2bfbb9
RC
6493 }
6494
95918acb 6495 /* If we have line number information for the function we are
1bfeeb0f
JL
6496 thinking of stepping into and the function isn't on the skip
6497 list, step into it.
95918acb 6498
8fb3e588
AC
6499 If there are several symtabs at that PC (e.g. with include
6500 files), just want to know whether *any* of them have line
6501 numbers. find_pc_line handles this. */
95918acb
AC
6502 {
6503 struct symtab_and_line tmp_sal;
8fb3e588 6504
95918acb 6505 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6506 if (tmp_sal.line != 0
85817405
JK
6507 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6508 &tmp_sal))
95918acb 6509 {
b2175913 6510 if (execution_direction == EXEC_REVERSE)
568d6575 6511 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6512 else
568d6575 6513 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6514 return;
6515 }
6516 }
6517
6518 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6519 set, we stop the step so that the user has a chance to switch
6520 in assembly mode. */
16c381f0 6521 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6522 && step_stop_if_no_debug)
95918acb 6523 {
bdc36728 6524 end_stepping_range (ecs);
95918acb
AC
6525 return;
6526 }
6527
b2175913
MS
6528 if (execution_direction == EXEC_REVERSE)
6529 {
acf9414f
JK
6530 /* If we're already at the start of the function, we've either just
6531 stepped backward into a single instruction function without line
6532 number info, or stepped back out of a signal handler to the first
6533 instruction of the function without line number info. Just keep
6534 going, which will single-step back to the caller. */
6535 if (ecs->stop_func_start != stop_pc)
6536 {
6537 /* Set a breakpoint at callee's start address.
6538 From there we can step once and be back in the caller. */
6539 struct symtab_and_line sr_sal;
abbb1732 6540
acf9414f
JK
6541 init_sal (&sr_sal);
6542 sr_sal.pc = ecs->stop_func_start;
6543 sr_sal.pspace = get_frame_program_space (frame);
6544 insert_step_resume_breakpoint_at_sal (gdbarch,
6545 sr_sal, null_frame_id);
6546 }
b2175913
MS
6547 }
6548 else
6549 /* Set a breakpoint at callee's return address (the address
6550 at which the caller will resume). */
568d6575 6551 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6552
95918acb 6553 keep_going (ecs);
488f131b 6554 return;
488f131b 6555 }
c906108c 6556
fdd654f3
MS
6557 /* Reverse stepping through solib trampolines. */
6558
6559 if (execution_direction == EXEC_REVERSE
16c381f0 6560 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6561 {
6562 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6563 || (ecs->stop_func_start == 0
6564 && in_solib_dynsym_resolve_code (stop_pc)))
6565 {
6566 /* Any solib trampoline code can be handled in reverse
6567 by simply continuing to single-step. We have already
6568 executed the solib function (backwards), and a few
6569 steps will take us back through the trampoline to the
6570 caller. */
6571 keep_going (ecs);
6572 return;
6573 }
6574 else if (in_solib_dynsym_resolve_code (stop_pc))
6575 {
6576 /* Stepped backward into the solib dynsym resolver.
6577 Set a breakpoint at its start and continue, then
6578 one more step will take us out. */
6579 struct symtab_and_line sr_sal;
abbb1732 6580
fdd654f3
MS
6581 init_sal (&sr_sal);
6582 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6583 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6584 insert_step_resume_breakpoint_at_sal (gdbarch,
6585 sr_sal, null_frame_id);
6586 keep_going (ecs);
6587 return;
6588 }
6589 }
6590
2afb61aa 6591 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6592
1b2bfbb9
RC
6593 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6594 the trampoline processing logic, however, there are some trampolines
6595 that have no names, so we should do trampoline handling first. */
16c381f0 6596 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6597 && ecs->stop_func_name == NULL
2afb61aa 6598 && stop_pc_sal.line == 0)
1b2bfbb9 6599 {
527159b7 6600 if (debug_infrun)
3e43a32a
MS
6601 fprintf_unfiltered (gdb_stdlog,
6602 "infrun: stepped into undebuggable function\n");
527159b7 6603
1b2bfbb9 6604 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6605 undebuggable function (where there is no debugging information
6606 and no line number corresponding to the address where the
1b2bfbb9
RC
6607 inferior stopped). Since we want to skip this kind of code,
6608 we keep going until the inferior returns from this
14e60db5
DJ
6609 function - unless the user has asked us not to (via
6610 set step-mode) or we no longer know how to get back
6611 to the call site. */
6612 if (step_stop_if_no_debug
c7ce8faa 6613 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6614 {
6615 /* If we have no line number and the step-stop-if-no-debug
6616 is set, we stop the step so that the user has a chance to
6617 switch in assembly mode. */
bdc36728 6618 end_stepping_range (ecs);
1b2bfbb9
RC
6619 return;
6620 }
6621 else
6622 {
6623 /* Set a breakpoint at callee's return address (the address
6624 at which the caller will resume). */
568d6575 6625 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6626 keep_going (ecs);
6627 return;
6628 }
6629 }
6630
16c381f0 6631 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6632 {
6633 /* It is stepi or nexti. We always want to stop stepping after
6634 one instruction. */
527159b7 6635 if (debug_infrun)
8a9de0e4 6636 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6637 end_stepping_range (ecs);
1b2bfbb9
RC
6638 return;
6639 }
6640
2afb61aa 6641 if (stop_pc_sal.line == 0)
488f131b
JB
6642 {
6643 /* We have no line number information. That means to stop
6644 stepping (does this always happen right after one instruction,
6645 when we do "s" in a function with no line numbers,
6646 or can this happen as a result of a return or longjmp?). */
527159b7 6647 if (debug_infrun)
8a9de0e4 6648 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6649 end_stepping_range (ecs);
488f131b
JB
6650 return;
6651 }
c906108c 6652
edb3359d
DJ
6653 /* Look for "calls" to inlined functions, part one. If the inline
6654 frame machinery detected some skipped call sites, we have entered
6655 a new inline function. */
6656
6657 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6658 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6659 && inline_skipped_frames (ecs->ptid))
6660 {
6661 struct symtab_and_line call_sal;
6662
6663 if (debug_infrun)
6664 fprintf_unfiltered (gdb_stdlog,
6665 "infrun: stepped into inlined function\n");
6666
6667 find_frame_sal (get_current_frame (), &call_sal);
6668
16c381f0 6669 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6670 {
6671 /* For "step", we're going to stop. But if the call site
6672 for this inlined function is on the same source line as
6673 we were previously stepping, go down into the function
6674 first. Otherwise stop at the call site. */
6675
6676 if (call_sal.line == ecs->event_thread->current_line
6677 && call_sal.symtab == ecs->event_thread->current_symtab)
6678 step_into_inline_frame (ecs->ptid);
6679
bdc36728 6680 end_stepping_range (ecs);
edb3359d
DJ
6681 return;
6682 }
6683 else
6684 {
6685 /* For "next", we should stop at the call site if it is on a
6686 different source line. Otherwise continue through the
6687 inlined function. */
6688 if (call_sal.line == ecs->event_thread->current_line
6689 && call_sal.symtab == ecs->event_thread->current_symtab)
6690 keep_going (ecs);
6691 else
bdc36728 6692 end_stepping_range (ecs);
edb3359d
DJ
6693 return;
6694 }
6695 }
6696
6697 /* Look for "calls" to inlined functions, part two. If we are still
6698 in the same real function we were stepping through, but we have
6699 to go further up to find the exact frame ID, we are stepping
6700 through a more inlined call beyond its call site. */
6701
6702 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6703 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6704 ecs->event_thread->control.step_frame_id)
edb3359d 6705 && stepped_in_from (get_current_frame (),
16c381f0 6706 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6707 {
6708 if (debug_infrun)
6709 fprintf_unfiltered (gdb_stdlog,
6710 "infrun: stepping through inlined function\n");
6711
16c381f0 6712 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6713 keep_going (ecs);
6714 else
bdc36728 6715 end_stepping_range (ecs);
edb3359d
DJ
6716 return;
6717 }
6718
2afb61aa 6719 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6720 && (ecs->event_thread->current_line != stop_pc_sal.line
6721 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6722 {
6723 /* We are at the start of a different line. So stop. Note that
6724 we don't stop if we step into the middle of a different line.
6725 That is said to make things like for (;;) statements work
6726 better. */
527159b7 6727 if (debug_infrun)
3e43a32a
MS
6728 fprintf_unfiltered (gdb_stdlog,
6729 "infrun: stepped to a different line\n");
bdc36728 6730 end_stepping_range (ecs);
488f131b
JB
6731 return;
6732 }
c906108c 6733
488f131b 6734 /* We aren't done stepping.
c906108c 6735
488f131b
JB
6736 Optimize by setting the stepping range to the line.
6737 (We might not be in the original line, but if we entered a
6738 new line in mid-statement, we continue stepping. This makes
6739 things like for(;;) statements work better.) */
c906108c 6740
16c381f0
JK
6741 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6742 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6743 ecs->event_thread->control.may_range_step = 1;
edb3359d 6744 set_step_info (frame, stop_pc_sal);
488f131b 6745
527159b7 6746 if (debug_infrun)
8a9de0e4 6747 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6748 keep_going (ecs);
104c1213
JM
6749}
6750
c447ac0b
PA
6751/* In all-stop mode, if we're currently stepping but have stopped in
6752 some other thread, we may need to switch back to the stepped
6753 thread. Returns true we set the inferior running, false if we left
6754 it stopped (and the event needs further processing). */
6755
6756static int
6757switch_back_to_stepped_thread (struct execution_control_state *ecs)
6758{
fbea99ea 6759 if (!target_is_non_stop_p ())
c447ac0b
PA
6760 {
6761 struct thread_info *tp;
99619bea
PA
6762 struct thread_info *stepping_thread;
6763
6764 /* If any thread is blocked on some internal breakpoint, and we
6765 simply need to step over that breakpoint to get it going
6766 again, do that first. */
6767
6768 /* However, if we see an event for the stepping thread, then we
6769 know all other threads have been moved past their breakpoints
6770 already. Let the caller check whether the step is finished,
6771 etc., before deciding to move it past a breakpoint. */
6772 if (ecs->event_thread->control.step_range_end != 0)
6773 return 0;
6774
6775 /* Check if the current thread is blocked on an incomplete
6776 step-over, interrupted by a random signal. */
6777 if (ecs->event_thread->control.trap_expected
6778 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6779 {
99619bea
PA
6780 if (debug_infrun)
6781 {
6782 fprintf_unfiltered (gdb_stdlog,
6783 "infrun: need to finish step-over of [%s]\n",
6784 target_pid_to_str (ecs->event_thread->ptid));
6785 }
6786 keep_going (ecs);
6787 return 1;
6788 }
2adfaa28 6789
99619bea
PA
6790 /* Check if the current thread is blocked by a single-step
6791 breakpoint of another thread. */
6792 if (ecs->hit_singlestep_breakpoint)
6793 {
6794 if (debug_infrun)
6795 {
6796 fprintf_unfiltered (gdb_stdlog,
6797 "infrun: need to step [%s] over single-step "
6798 "breakpoint\n",
6799 target_pid_to_str (ecs->ptid));
6800 }
6801 keep_going (ecs);
6802 return 1;
6803 }
6804
4d9d9d04
PA
6805 /* If this thread needs yet another step-over (e.g., stepping
6806 through a delay slot), do it first before moving on to
6807 another thread. */
6808 if (thread_still_needs_step_over (ecs->event_thread))
6809 {
6810 if (debug_infrun)
6811 {
6812 fprintf_unfiltered (gdb_stdlog,
6813 "infrun: thread [%s] still needs step-over\n",
6814 target_pid_to_str (ecs->event_thread->ptid));
6815 }
6816 keep_going (ecs);
6817 return 1;
6818 }
70509625 6819
483805cf
PA
6820 /* If scheduler locking applies even if not stepping, there's no
6821 need to walk over threads. Above we've checked whether the
6822 current thread is stepping. If some other thread not the
6823 event thread is stepping, then it must be that scheduler
6824 locking is not in effect. */
856e7dd6 6825 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6826 return 0;
6827
4d9d9d04
PA
6828 /* Otherwise, we no longer expect a trap in the current thread.
6829 Clear the trap_expected flag before switching back -- this is
6830 what keep_going does as well, if we call it. */
6831 ecs->event_thread->control.trap_expected = 0;
6832
6833 /* Likewise, clear the signal if it should not be passed. */
6834 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6835 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6836
6837 /* Do all pending step-overs before actually proceeding with
483805cf 6838 step/next/etc. */
4d9d9d04
PA
6839 if (start_step_over ())
6840 {
6841 prepare_to_wait (ecs);
6842 return 1;
6843 }
6844
6845 /* Look for the stepping/nexting thread. */
483805cf 6846 stepping_thread = NULL;
4d9d9d04 6847
034f788c 6848 ALL_NON_EXITED_THREADS (tp)
483805cf 6849 {
fbea99ea
PA
6850 /* Ignore threads of processes the caller is not
6851 resuming. */
483805cf 6852 if (!sched_multi
1afd5965 6853 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
6854 continue;
6855
6856 /* When stepping over a breakpoint, we lock all threads
6857 except the one that needs to move past the breakpoint.
6858 If a non-event thread has this set, the "incomplete
6859 step-over" check above should have caught it earlier. */
372316f1
PA
6860 if (tp->control.trap_expected)
6861 {
6862 internal_error (__FILE__, __LINE__,
6863 "[%s] has inconsistent state: "
6864 "trap_expected=%d\n",
6865 target_pid_to_str (tp->ptid),
6866 tp->control.trap_expected);
6867 }
483805cf
PA
6868
6869 /* Did we find the stepping thread? */
6870 if (tp->control.step_range_end)
6871 {
6872 /* Yep. There should only one though. */
6873 gdb_assert (stepping_thread == NULL);
6874
6875 /* The event thread is handled at the top, before we
6876 enter this loop. */
6877 gdb_assert (tp != ecs->event_thread);
6878
6879 /* If some thread other than the event thread is
6880 stepping, then scheduler locking can't be in effect,
6881 otherwise we wouldn't have resumed the current event
6882 thread in the first place. */
856e7dd6 6883 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6884
6885 stepping_thread = tp;
6886 }
99619bea
PA
6887 }
6888
483805cf 6889 if (stepping_thread != NULL)
99619bea 6890 {
c447ac0b
PA
6891 if (debug_infrun)
6892 fprintf_unfiltered (gdb_stdlog,
6893 "infrun: switching back to stepped thread\n");
6894
2ac7589c
PA
6895 if (keep_going_stepped_thread (stepping_thread))
6896 {
6897 prepare_to_wait (ecs);
6898 return 1;
6899 }
6900 }
6901 }
2adfaa28 6902
2ac7589c
PA
6903 return 0;
6904}
2adfaa28 6905
2ac7589c
PA
6906/* Set a previously stepped thread back to stepping. Returns true on
6907 success, false if the resume is not possible (e.g., the thread
6908 vanished). */
6909
6910static int
6911keep_going_stepped_thread (struct thread_info *tp)
6912{
6913 struct frame_info *frame;
6914 struct gdbarch *gdbarch;
6915 struct execution_control_state ecss;
6916 struct execution_control_state *ecs = &ecss;
2adfaa28 6917
2ac7589c
PA
6918 /* If the stepping thread exited, then don't try to switch back and
6919 resume it, which could fail in several different ways depending
6920 on the target. Instead, just keep going.
2adfaa28 6921
2ac7589c
PA
6922 We can find a stepping dead thread in the thread list in two
6923 cases:
2adfaa28 6924
2ac7589c
PA
6925 - The target supports thread exit events, and when the target
6926 tries to delete the thread from the thread list, inferior_ptid
6927 pointed at the exiting thread. In such case, calling
6928 delete_thread does not really remove the thread from the list;
6929 instead, the thread is left listed, with 'exited' state.
64ce06e4 6930
2ac7589c
PA
6931 - The target's debug interface does not support thread exit
6932 events, and so we have no idea whatsoever if the previously
6933 stepping thread is still alive. For that reason, we need to
6934 synchronously query the target now. */
2adfaa28 6935
2ac7589c
PA
6936 if (is_exited (tp->ptid)
6937 || !target_thread_alive (tp->ptid))
6938 {
6939 if (debug_infrun)
6940 fprintf_unfiltered (gdb_stdlog,
6941 "infrun: not resuming previously "
6942 "stepped thread, it has vanished\n");
6943
6944 delete_thread (tp->ptid);
6945 return 0;
c447ac0b 6946 }
2ac7589c
PA
6947
6948 if (debug_infrun)
6949 fprintf_unfiltered (gdb_stdlog,
6950 "infrun: resuming previously stepped thread\n");
6951
6952 reset_ecs (ecs, tp);
6953 switch_to_thread (tp->ptid);
6954
6955 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
6956 frame = get_current_frame ();
6957 gdbarch = get_frame_arch (frame);
6958
6959 /* If the PC of the thread we were trying to single-step has
6960 changed, then that thread has trapped or been signaled, but the
6961 event has not been reported to GDB yet. Re-poll the target
6962 looking for this particular thread's event (i.e. temporarily
6963 enable schedlock) by:
6964
6965 - setting a break at the current PC
6966 - resuming that particular thread, only (by setting trap
6967 expected)
6968
6969 This prevents us continuously moving the single-step breakpoint
6970 forward, one instruction at a time, overstepping. */
6971
6972 if (stop_pc != tp->prev_pc)
6973 {
6974 ptid_t resume_ptid;
6975
6976 if (debug_infrun)
6977 fprintf_unfiltered (gdb_stdlog,
6978 "infrun: expected thread advanced also (%s -> %s)\n",
6979 paddress (target_gdbarch (), tp->prev_pc),
6980 paddress (target_gdbarch (), stop_pc));
6981
6982 /* Clear the info of the previous step-over, as it's no longer
6983 valid (if the thread was trying to step over a breakpoint, it
6984 has already succeeded). It's what keep_going would do too,
6985 if we called it. Do this before trying to insert the sss
6986 breakpoint, otherwise if we were previously trying to step
6987 over this exact address in another thread, the breakpoint is
6988 skipped. */
6989 clear_step_over_info ();
6990 tp->control.trap_expected = 0;
6991
6992 insert_single_step_breakpoint (get_frame_arch (frame),
6993 get_frame_address_space (frame),
6994 stop_pc);
6995
372316f1 6996 tp->resumed = 1;
fbea99ea 6997 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
6998 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
6999 }
7000 else
7001 {
7002 if (debug_infrun)
7003 fprintf_unfiltered (gdb_stdlog,
7004 "infrun: expected thread still hasn't advanced\n");
7005
7006 keep_going_pass_signal (ecs);
7007 }
7008 return 1;
c447ac0b
PA
7009}
7010
8b061563
PA
7011/* Is thread TP in the middle of (software or hardware)
7012 single-stepping? (Note the result of this function must never be
7013 passed directly as target_resume's STEP parameter.) */
104c1213 7014
a289b8f6 7015static int
b3444185 7016currently_stepping (struct thread_info *tp)
a7212384 7017{
8358c15c
JK
7018 return ((tp->control.step_range_end
7019 && tp->control.step_resume_breakpoint == NULL)
7020 || tp->control.trap_expected
af48d08f 7021 || tp->stepped_breakpoint
8358c15c 7022 || bpstat_should_step ());
a7212384
UW
7023}
7024
b2175913
MS
7025/* Inferior has stepped into a subroutine call with source code that
7026 we should not step over. Do step to the first line of code in
7027 it. */
c2c6d25f
JM
7028
7029static void
568d6575
UW
7030handle_step_into_function (struct gdbarch *gdbarch,
7031 struct execution_control_state *ecs)
c2c6d25f 7032{
43f3e411 7033 struct compunit_symtab *cust;
2afb61aa 7034 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7035
7e324e48
GB
7036 fill_in_stop_func (gdbarch, ecs);
7037
43f3e411
DE
7038 cust = find_pc_compunit_symtab (stop_pc);
7039 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7040 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7041 ecs->stop_func_start);
c2c6d25f 7042
2afb61aa 7043 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7044 /* Use the step_resume_break to step until the end of the prologue,
7045 even if that involves jumps (as it seems to on the vax under
7046 4.2). */
7047 /* If the prologue ends in the middle of a source line, continue to
7048 the end of that source line (if it is still within the function).
7049 Otherwise, just go to end of prologue. */
2afb61aa
PA
7050 if (stop_func_sal.end
7051 && stop_func_sal.pc != ecs->stop_func_start
7052 && stop_func_sal.end < ecs->stop_func_end)
7053 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7054
2dbd5e30
KB
7055 /* Architectures which require breakpoint adjustment might not be able
7056 to place a breakpoint at the computed address. If so, the test
7057 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7058 ecs->stop_func_start to an address at which a breakpoint may be
7059 legitimately placed.
8fb3e588 7060
2dbd5e30
KB
7061 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7062 made, GDB will enter an infinite loop when stepping through
7063 optimized code consisting of VLIW instructions which contain
7064 subinstructions corresponding to different source lines. On
7065 FR-V, it's not permitted to place a breakpoint on any but the
7066 first subinstruction of a VLIW instruction. When a breakpoint is
7067 set, GDB will adjust the breakpoint address to the beginning of
7068 the VLIW instruction. Thus, we need to make the corresponding
7069 adjustment here when computing the stop address. */
8fb3e588 7070
568d6575 7071 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7072 {
7073 ecs->stop_func_start
568d6575 7074 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7075 ecs->stop_func_start);
2dbd5e30
KB
7076 }
7077
c2c6d25f
JM
7078 if (ecs->stop_func_start == stop_pc)
7079 {
7080 /* We are already there: stop now. */
bdc36728 7081 end_stepping_range (ecs);
c2c6d25f
JM
7082 return;
7083 }
7084 else
7085 {
7086 /* Put the step-breakpoint there and go until there. */
fe39c653 7087 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7088 sr_sal.pc = ecs->stop_func_start;
7089 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7090 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7091
c2c6d25f 7092 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7093 some machines the prologue is where the new fp value is
7094 established. */
a6d9a66e 7095 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7096
7097 /* And make sure stepping stops right away then. */
16c381f0
JK
7098 ecs->event_thread->control.step_range_end
7099 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7100 }
7101 keep_going (ecs);
7102}
d4f3574e 7103
b2175913
MS
7104/* Inferior has stepped backward into a subroutine call with source
7105 code that we should not step over. Do step to the beginning of the
7106 last line of code in it. */
7107
7108static void
568d6575
UW
7109handle_step_into_function_backward (struct gdbarch *gdbarch,
7110 struct execution_control_state *ecs)
b2175913 7111{
43f3e411 7112 struct compunit_symtab *cust;
167e4384 7113 struct symtab_and_line stop_func_sal;
b2175913 7114
7e324e48
GB
7115 fill_in_stop_func (gdbarch, ecs);
7116
43f3e411
DE
7117 cust = find_pc_compunit_symtab (stop_pc);
7118 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7119 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7120 ecs->stop_func_start);
7121
7122 stop_func_sal = find_pc_line (stop_pc, 0);
7123
7124 /* OK, we're just going to keep stepping here. */
7125 if (stop_func_sal.pc == stop_pc)
7126 {
7127 /* We're there already. Just stop stepping now. */
bdc36728 7128 end_stepping_range (ecs);
b2175913
MS
7129 }
7130 else
7131 {
7132 /* Else just reset the step range and keep going.
7133 No step-resume breakpoint, they don't work for
7134 epilogues, which can have multiple entry paths. */
16c381f0
JK
7135 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7136 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7137 keep_going (ecs);
7138 }
7139 return;
7140}
7141
d3169d93 7142/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7143 This is used to both functions and to skip over code. */
7144
7145static void
2c03e5be
PA
7146insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7147 struct symtab_and_line sr_sal,
7148 struct frame_id sr_id,
7149 enum bptype sr_type)
44cbf7b5 7150{
611c83ae
PA
7151 /* There should never be more than one step-resume or longjmp-resume
7152 breakpoint per thread, so we should never be setting a new
44cbf7b5 7153 step_resume_breakpoint when one is already active. */
8358c15c 7154 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7155 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7156
7157 if (debug_infrun)
7158 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7159 "infrun: inserting step-resume breakpoint at %s\n",
7160 paddress (gdbarch, sr_sal.pc));
d3169d93 7161
8358c15c 7162 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7163 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7164}
7165
9da8c2a0 7166void
2c03e5be
PA
7167insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7168 struct symtab_and_line sr_sal,
7169 struct frame_id sr_id)
7170{
7171 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7172 sr_sal, sr_id,
7173 bp_step_resume);
44cbf7b5 7174}
7ce450bd 7175
2c03e5be
PA
7176/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7177 This is used to skip a potential signal handler.
7ce450bd 7178
14e60db5
DJ
7179 This is called with the interrupted function's frame. The signal
7180 handler, when it returns, will resume the interrupted function at
7181 RETURN_FRAME.pc. */
d303a6c7
AC
7182
7183static void
2c03e5be 7184insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7185{
7186 struct symtab_and_line sr_sal;
a6d9a66e 7187 struct gdbarch *gdbarch;
d303a6c7 7188
f4c1edd8 7189 gdb_assert (return_frame != NULL);
d303a6c7
AC
7190 init_sal (&sr_sal); /* initialize to zeros */
7191
a6d9a66e 7192 gdbarch = get_frame_arch (return_frame);
568d6575 7193 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7194 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7195 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7196
2c03e5be
PA
7197 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7198 get_stack_frame_id (return_frame),
7199 bp_hp_step_resume);
d303a6c7
AC
7200}
7201
2c03e5be
PA
7202/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7203 is used to skip a function after stepping into it (for "next" or if
7204 the called function has no debugging information).
14e60db5
DJ
7205
7206 The current function has almost always been reached by single
7207 stepping a call or return instruction. NEXT_FRAME belongs to the
7208 current function, and the breakpoint will be set at the caller's
7209 resume address.
7210
7211 This is a separate function rather than reusing
2c03e5be 7212 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7213 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7214 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7215
7216static void
7217insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7218{
7219 struct symtab_and_line sr_sal;
a6d9a66e 7220 struct gdbarch *gdbarch;
14e60db5
DJ
7221
7222 /* We shouldn't have gotten here if we don't know where the call site
7223 is. */
c7ce8faa 7224 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7225
7226 init_sal (&sr_sal); /* initialize to zeros */
7227
a6d9a66e 7228 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7229 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7230 frame_unwind_caller_pc (next_frame));
14e60db5 7231 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7232 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7233
a6d9a66e 7234 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7235 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7236}
7237
611c83ae
PA
7238/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7239 new breakpoint at the target of a jmp_buf. The handling of
7240 longjmp-resume uses the same mechanisms used for handling
7241 "step-resume" breakpoints. */
7242
7243static void
a6d9a66e 7244insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7245{
e81a37f7
TT
7246 /* There should never be more than one longjmp-resume breakpoint per
7247 thread, so we should never be setting a new
611c83ae 7248 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7249 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7250
7251 if (debug_infrun)
7252 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7253 "infrun: inserting longjmp-resume breakpoint at %s\n",
7254 paddress (gdbarch, pc));
611c83ae 7255
e81a37f7 7256 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7257 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7258}
7259
186c406b
TT
7260/* Insert an exception resume breakpoint. TP is the thread throwing
7261 the exception. The block B is the block of the unwinder debug hook
7262 function. FRAME is the frame corresponding to the call to this
7263 function. SYM is the symbol of the function argument holding the
7264 target PC of the exception. */
7265
7266static void
7267insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7268 const struct block *b,
186c406b
TT
7269 struct frame_info *frame,
7270 struct symbol *sym)
7271{
492d29ea 7272 TRY
186c406b 7273 {
63e43d3a 7274 struct block_symbol vsym;
186c406b
TT
7275 struct value *value;
7276 CORE_ADDR handler;
7277 struct breakpoint *bp;
7278
63e43d3a
PMR
7279 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7280 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7281 /* If the value was optimized out, revert to the old behavior. */
7282 if (! value_optimized_out (value))
7283 {
7284 handler = value_as_address (value);
7285
7286 if (debug_infrun)
7287 fprintf_unfiltered (gdb_stdlog,
7288 "infrun: exception resume at %lx\n",
7289 (unsigned long) handler);
7290
7291 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7292 handler, bp_exception_resume);
c70a6932
JK
7293
7294 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7295 frame = NULL;
7296
186c406b
TT
7297 bp->thread = tp->num;
7298 inferior_thread ()->control.exception_resume_breakpoint = bp;
7299 }
7300 }
492d29ea
PA
7301 CATCH (e, RETURN_MASK_ERROR)
7302 {
7303 /* We want to ignore errors here. */
7304 }
7305 END_CATCH
186c406b
TT
7306}
7307
28106bc2
SDJ
7308/* A helper for check_exception_resume that sets an
7309 exception-breakpoint based on a SystemTap probe. */
7310
7311static void
7312insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7313 const struct bound_probe *probe,
28106bc2
SDJ
7314 struct frame_info *frame)
7315{
7316 struct value *arg_value;
7317 CORE_ADDR handler;
7318 struct breakpoint *bp;
7319
7320 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7321 if (!arg_value)
7322 return;
7323
7324 handler = value_as_address (arg_value);
7325
7326 if (debug_infrun)
7327 fprintf_unfiltered (gdb_stdlog,
7328 "infrun: exception resume at %s\n",
6bac7473 7329 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7330 handler));
7331
7332 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7333 handler, bp_exception_resume);
7334 bp->thread = tp->num;
7335 inferior_thread ()->control.exception_resume_breakpoint = bp;
7336}
7337
186c406b
TT
7338/* This is called when an exception has been intercepted. Check to
7339 see whether the exception's destination is of interest, and if so,
7340 set an exception resume breakpoint there. */
7341
7342static void
7343check_exception_resume (struct execution_control_state *ecs,
28106bc2 7344 struct frame_info *frame)
186c406b 7345{
729662a5 7346 struct bound_probe probe;
28106bc2
SDJ
7347 struct symbol *func;
7348
7349 /* First see if this exception unwinding breakpoint was set via a
7350 SystemTap probe point. If so, the probe has two arguments: the
7351 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7352 set a breakpoint there. */
6bac7473 7353 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7354 if (probe.probe)
28106bc2 7355 {
729662a5 7356 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7357 return;
7358 }
7359
7360 func = get_frame_function (frame);
7361 if (!func)
7362 return;
186c406b 7363
492d29ea 7364 TRY
186c406b 7365 {
3977b71f 7366 const struct block *b;
8157b174 7367 struct block_iterator iter;
186c406b
TT
7368 struct symbol *sym;
7369 int argno = 0;
7370
7371 /* The exception breakpoint is a thread-specific breakpoint on
7372 the unwinder's debug hook, declared as:
7373
7374 void _Unwind_DebugHook (void *cfa, void *handler);
7375
7376 The CFA argument indicates the frame to which control is
7377 about to be transferred. HANDLER is the destination PC.
7378
7379 We ignore the CFA and set a temporary breakpoint at HANDLER.
7380 This is not extremely efficient but it avoids issues in gdb
7381 with computing the DWARF CFA, and it also works even in weird
7382 cases such as throwing an exception from inside a signal
7383 handler. */
7384
7385 b = SYMBOL_BLOCK_VALUE (func);
7386 ALL_BLOCK_SYMBOLS (b, iter, sym)
7387 {
7388 if (!SYMBOL_IS_ARGUMENT (sym))
7389 continue;
7390
7391 if (argno == 0)
7392 ++argno;
7393 else
7394 {
7395 insert_exception_resume_breakpoint (ecs->event_thread,
7396 b, frame, sym);
7397 break;
7398 }
7399 }
7400 }
492d29ea
PA
7401 CATCH (e, RETURN_MASK_ERROR)
7402 {
7403 }
7404 END_CATCH
186c406b
TT
7405}
7406
104c1213 7407static void
22bcd14b 7408stop_waiting (struct execution_control_state *ecs)
104c1213 7409{
527159b7 7410 if (debug_infrun)
22bcd14b 7411 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7412
31e77af2
PA
7413 clear_step_over_info ();
7414
cd0fc7c3
SS
7415 /* Let callers know we don't want to wait for the inferior anymore. */
7416 ecs->wait_some_more = 0;
fbea99ea
PA
7417
7418 /* If all-stop, but the target is always in non-stop mode, stop all
7419 threads now that we're presenting the stop to the user. */
7420 if (!non_stop && target_is_non_stop_p ())
7421 stop_all_threads ();
cd0fc7c3
SS
7422}
7423
4d9d9d04
PA
7424/* Like keep_going, but passes the signal to the inferior, even if the
7425 signal is set to nopass. */
d4f3574e
SS
7426
7427static void
4d9d9d04 7428keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7429{
c4dbc9af
PA
7430 /* Make sure normal_stop is called if we get a QUIT handled before
7431 reaching resume. */
7432 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7433
4d9d9d04 7434 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7435 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7436
d4f3574e 7437 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7438 ecs->event_thread->prev_pc
7439 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7440
4d9d9d04 7441 if (ecs->event_thread->control.trap_expected)
d4f3574e 7442 {
4d9d9d04
PA
7443 struct thread_info *tp = ecs->event_thread;
7444
7445 if (debug_infrun)
7446 fprintf_unfiltered (gdb_stdlog,
7447 "infrun: %s has trap_expected set, "
7448 "resuming to collect trap\n",
7449 target_pid_to_str (tp->ptid));
7450
a9ba6bae
PA
7451 /* We haven't yet gotten our trap, and either: intercepted a
7452 non-signal event (e.g., a fork); or took a signal which we
7453 are supposed to pass through to the inferior. Simply
7454 continue. */
c4dbc9af 7455 discard_cleanups (old_cleanups);
64ce06e4 7456 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7457 }
372316f1
PA
7458 else if (step_over_info_valid_p ())
7459 {
7460 /* Another thread is stepping over a breakpoint in-line. If
7461 this thread needs a step-over too, queue the request. In
7462 either case, this resume must be deferred for later. */
7463 struct thread_info *tp = ecs->event_thread;
7464
7465 if (ecs->hit_singlestep_breakpoint
7466 || thread_still_needs_step_over (tp))
7467 {
7468 if (debug_infrun)
7469 fprintf_unfiltered (gdb_stdlog,
7470 "infrun: step-over already in progress: "
7471 "step-over for %s deferred\n",
7472 target_pid_to_str (tp->ptid));
7473 thread_step_over_chain_enqueue (tp);
7474 }
7475 else
7476 {
7477 if (debug_infrun)
7478 fprintf_unfiltered (gdb_stdlog,
7479 "infrun: step-over in progress: "
7480 "resume of %s deferred\n",
7481 target_pid_to_str (tp->ptid));
7482 }
7483
7484 discard_cleanups (old_cleanups);
7485 }
d4f3574e
SS
7486 else
7487 {
31e77af2 7488 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7489 int remove_bp;
7490 int remove_wps;
6c4cfb24 7491 enum step_over_what step_what;
31e77af2 7492
d4f3574e 7493 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7494 anyway (if we got a signal, the user asked it be passed to
7495 the child)
7496 -- or --
7497 We got our expected trap, but decided we should resume from
7498 it.
d4f3574e 7499
a9ba6bae 7500 We're going to run this baby now!
d4f3574e 7501
c36b740a
VP
7502 Note that insert_breakpoints won't try to re-insert
7503 already inserted breakpoints. Therefore, we don't
7504 care if breakpoints were already inserted, or not. */
a9ba6bae 7505
31e77af2
PA
7506 /* If we need to step over a breakpoint, and we're not using
7507 displaced stepping to do so, insert all breakpoints
7508 (watchpoints, etc.) but the one we're stepping over, step one
7509 instruction, and then re-insert the breakpoint when that step
7510 is finished. */
963f9c80 7511
6c4cfb24
PA
7512 step_what = thread_still_needs_step_over (ecs->event_thread);
7513
963f9c80 7514 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7515 || (step_what & STEP_OVER_BREAKPOINT));
7516 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7517
cb71640d
PA
7518 /* We can't use displaced stepping if we need to step past a
7519 watchpoint. The instruction copied to the scratch pad would
7520 still trigger the watchpoint. */
7521 if (remove_bp
3fc8eb30 7522 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7523 {
31e77af2 7524 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 7525 regcache_read_pc (regcache), remove_wps);
45e8c884 7526 }
963f9c80
PA
7527 else if (remove_wps)
7528 set_step_over_info (NULL, 0, remove_wps);
372316f1
PA
7529
7530 /* If we now need to do an in-line step-over, we need to stop
7531 all other threads. Note this must be done before
7532 insert_breakpoints below, because that removes the breakpoint
7533 we're about to step over, otherwise other threads could miss
7534 it. */
fbea99ea 7535 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7536 stop_all_threads ();
abbb1732 7537
31e77af2 7538 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7539 TRY
31e77af2
PA
7540 {
7541 insert_breakpoints ();
7542 }
492d29ea 7543 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7544 {
7545 exception_print (gdb_stderr, e);
22bcd14b 7546 stop_waiting (ecs);
de1fe8c8 7547 discard_cleanups (old_cleanups);
31e77af2 7548 return;
d4f3574e 7549 }
492d29ea 7550 END_CATCH
d4f3574e 7551
963f9c80 7552 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7553
c4dbc9af 7554 discard_cleanups (old_cleanups);
64ce06e4 7555 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7556 }
7557
488f131b 7558 prepare_to_wait (ecs);
d4f3574e
SS
7559}
7560
4d9d9d04
PA
7561/* Called when we should continue running the inferior, because the
7562 current event doesn't cause a user visible stop. This does the
7563 resuming part; waiting for the next event is done elsewhere. */
7564
7565static void
7566keep_going (struct execution_control_state *ecs)
7567{
7568 if (ecs->event_thread->control.trap_expected
7569 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7570 ecs->event_thread->control.trap_expected = 0;
7571
7572 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7573 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7574 keep_going_pass_signal (ecs);
7575}
7576
104c1213
JM
7577/* This function normally comes after a resume, before
7578 handle_inferior_event exits. It takes care of any last bits of
7579 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7580
104c1213
JM
7581static void
7582prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7583{
527159b7 7584 if (debug_infrun)
8a9de0e4 7585 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7586
104c1213 7587 ecs->wait_some_more = 1;
0b333c5e
PA
7588
7589 if (!target_is_async_p ())
7590 mark_infrun_async_event_handler ();
c906108c 7591}
11cf8741 7592
fd664c91 7593/* We are done with the step range of a step/next/si/ni command.
b57bacec 7594 Called once for each n of a "step n" operation. */
fd664c91
PA
7595
7596static void
bdc36728 7597end_stepping_range (struct execution_control_state *ecs)
fd664c91 7598{
bdc36728 7599 ecs->event_thread->control.stop_step = 1;
bdc36728 7600 stop_waiting (ecs);
fd664c91
PA
7601}
7602
33d62d64
JK
7603/* Several print_*_reason functions to print why the inferior has stopped.
7604 We always print something when the inferior exits, or receives a signal.
7605 The rest of the cases are dealt with later on in normal_stop and
7606 print_it_typical. Ideally there should be a call to one of these
7607 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7608 stop_waiting is called.
33d62d64 7609
fd664c91
PA
7610 Note that we don't call these directly, instead we delegate that to
7611 the interpreters, through observers. Interpreters then call these
7612 with whatever uiout is right. */
33d62d64 7613
fd664c91
PA
7614void
7615print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7616{
fd664c91 7617 /* For CLI-like interpreters, print nothing. */
33d62d64 7618
fd664c91
PA
7619 if (ui_out_is_mi_like_p (uiout))
7620 {
7621 ui_out_field_string (uiout, "reason",
7622 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7623 }
7624}
33d62d64 7625
fd664c91
PA
7626void
7627print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7628{
33d62d64
JK
7629 annotate_signalled ();
7630 if (ui_out_is_mi_like_p (uiout))
7631 ui_out_field_string
7632 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7633 ui_out_text (uiout, "\nProgram terminated with signal ");
7634 annotate_signal_name ();
7635 ui_out_field_string (uiout, "signal-name",
2ea28649 7636 gdb_signal_to_name (siggnal));
33d62d64
JK
7637 annotate_signal_name_end ();
7638 ui_out_text (uiout, ", ");
7639 annotate_signal_string ();
7640 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7641 gdb_signal_to_string (siggnal));
33d62d64
JK
7642 annotate_signal_string_end ();
7643 ui_out_text (uiout, ".\n");
7644 ui_out_text (uiout, "The program no longer exists.\n");
7645}
7646
fd664c91
PA
7647void
7648print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7649{
fda326dd
TT
7650 struct inferior *inf = current_inferior ();
7651 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7652
33d62d64
JK
7653 annotate_exited (exitstatus);
7654 if (exitstatus)
7655 {
7656 if (ui_out_is_mi_like_p (uiout))
7657 ui_out_field_string (uiout, "reason",
7658 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7659 ui_out_text (uiout, "[Inferior ");
7660 ui_out_text (uiout, plongest (inf->num));
7661 ui_out_text (uiout, " (");
7662 ui_out_text (uiout, pidstr);
7663 ui_out_text (uiout, ") exited with code ");
33d62d64 7664 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7665 ui_out_text (uiout, "]\n");
33d62d64
JK
7666 }
7667 else
11cf8741 7668 {
9dc5e2a9 7669 if (ui_out_is_mi_like_p (uiout))
034dad6f 7670 ui_out_field_string
33d62d64 7671 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7672 ui_out_text (uiout, "[Inferior ");
7673 ui_out_text (uiout, plongest (inf->num));
7674 ui_out_text (uiout, " (");
7675 ui_out_text (uiout, pidstr);
7676 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7677 }
33d62d64
JK
7678}
7679
fd664c91
PA
7680void
7681print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
7682{
7683 annotate_signal ();
7684
a493e3e2 7685 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
7686 {
7687 struct thread_info *t = inferior_thread ();
7688
7689 ui_out_text (uiout, "\n[");
7690 ui_out_field_string (uiout, "thread-name",
7691 target_pid_to_str (t->ptid));
7692 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7693 ui_out_text (uiout, " stopped");
7694 }
7695 else
7696 {
7697 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 7698 annotate_signal_name ();
33d62d64
JK
7699 if (ui_out_is_mi_like_p (uiout))
7700 ui_out_field_string
7701 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 7702 ui_out_field_string (uiout, "signal-name",
2ea28649 7703 gdb_signal_to_name (siggnal));
8b93c638
JM
7704 annotate_signal_name_end ();
7705 ui_out_text (uiout, ", ");
7706 annotate_signal_string ();
488f131b 7707 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7708 gdb_signal_to_string (siggnal));
8b93c638 7709 annotate_signal_string_end ();
33d62d64
JK
7710 }
7711 ui_out_text (uiout, ".\n");
7712}
252fbfc8 7713
fd664c91
PA
7714void
7715print_no_history_reason (struct ui_out *uiout)
33d62d64 7716{
fd664c91 7717 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 7718}
43ff13b4 7719
0c7e1a46
PA
7720/* Print current location without a level number, if we have changed
7721 functions or hit a breakpoint. Print source line if we have one.
7722 bpstat_print contains the logic deciding in detail what to print,
7723 based on the event(s) that just occurred. */
7724
243a9253
PA
7725static void
7726print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7727{
7728 int bpstat_ret;
f486487f 7729 enum print_what source_flag;
0c7e1a46
PA
7730 int do_frame_printing = 1;
7731 struct thread_info *tp = inferior_thread ();
7732
7733 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7734 switch (bpstat_ret)
7735 {
7736 case PRINT_UNKNOWN:
7737 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7738 should) carry around the function and does (or should) use
7739 that when doing a frame comparison. */
7740 if (tp->control.stop_step
7741 && frame_id_eq (tp->control.step_frame_id,
7742 get_frame_id (get_current_frame ()))
885eeb5b 7743 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7744 {
7745 /* Finished step, just print source line. */
7746 source_flag = SRC_LINE;
7747 }
7748 else
7749 {
7750 /* Print location and source line. */
7751 source_flag = SRC_AND_LOC;
7752 }
7753 break;
7754 case PRINT_SRC_AND_LOC:
7755 /* Print location and source line. */
7756 source_flag = SRC_AND_LOC;
7757 break;
7758 case PRINT_SRC_ONLY:
7759 source_flag = SRC_LINE;
7760 break;
7761 case PRINT_NOTHING:
7762 /* Something bogus. */
7763 source_flag = SRC_LINE;
7764 do_frame_printing = 0;
7765 break;
7766 default:
7767 internal_error (__FILE__, __LINE__, _("Unknown value."));
7768 }
7769
7770 /* The behavior of this routine with respect to the source
7771 flag is:
7772 SRC_LINE: Print only source line
7773 LOCATION: Print only location
7774 SRC_AND_LOC: Print location and source line. */
7775 if (do_frame_printing)
7776 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7777}
7778
7779/* Cleanup that restores a previous current uiout. */
7780
7781static void
7782restore_current_uiout_cleanup (void *arg)
7783{
7784 struct ui_out *saved_uiout = arg;
7785
7786 current_uiout = saved_uiout;
7787}
7788
7789/* See infrun.h. */
7790
7791void
7792print_stop_event (struct ui_out *uiout)
7793{
7794 struct cleanup *old_chain;
7795 struct target_waitstatus last;
7796 ptid_t last_ptid;
7797 struct thread_info *tp;
7798
7799 get_last_target_status (&last_ptid, &last);
7800
7801 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7802 current_uiout = uiout;
7803
7804 print_stop_location (&last);
0c7e1a46
PA
7805
7806 /* Display the auto-display expressions. */
7807 do_displays ();
243a9253
PA
7808
7809 do_cleanups (old_chain);
7810
7811 tp = inferior_thread ();
7812 if (tp->thread_fsm != NULL
7813 && thread_fsm_finished_p (tp->thread_fsm))
7814 {
7815 struct return_value_info *rv;
7816
7817 rv = thread_fsm_return_value (tp->thread_fsm);
7818 if (rv != NULL)
7819 print_return_value (uiout, rv);
7820 }
0c7e1a46
PA
7821}
7822
388a7084
PA
7823/* See infrun.h. */
7824
7825void
7826maybe_remove_breakpoints (void)
7827{
7828 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7829 {
7830 if (remove_breakpoints ())
7831 {
7832 target_terminal_ours_for_output ();
7833 printf_filtered (_("Cannot remove breakpoints because "
7834 "program is no longer writable.\nFurther "
7835 "execution is probably impossible.\n"));
7836 }
7837 }
7838}
7839
c906108c
SS
7840/* Here to return control to GDB when the inferior stops for real.
7841 Print appropriate messages, remove breakpoints, give terminal our modes.
7842
7843 STOP_PRINT_FRAME nonzero means print the executing frame
7844 (pc, function, args, file, line number and line text).
7845 BREAKPOINTS_FAILED nonzero means stop was due to error
7846 attempting to insert breakpoints. */
7847
7848void
96baa820 7849normal_stop (void)
c906108c 7850{
73b65bb0
DJ
7851 struct target_waitstatus last;
7852 ptid_t last_ptid;
29f49a6a 7853 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 7854 ptid_t pid_ptid;
73b65bb0
DJ
7855
7856 get_last_target_status (&last_ptid, &last);
7857
29f49a6a
PA
7858 /* If an exception is thrown from this point on, make sure to
7859 propagate GDB's knowledge of the executing state to the
7860 frontend/user running state. A QUIT is an easy exception to see
7861 here, so do this before any filtered output. */
c35b1492
PA
7862 if (!non_stop)
7863 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
7864 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7865 || last.kind == TARGET_WAITKIND_EXITED)
7866 {
7867 /* On some targets, we may still have live threads in the
7868 inferior when we get a process exit event. E.g., for
7869 "checkpoint", when the current checkpoint/fork exits,
7870 linux-fork.c automatically switches to another fork from
7871 within target_mourn_inferior. */
7872 if (!ptid_equal (inferior_ptid, null_ptid))
7873 {
7874 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
7875 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
7876 }
7877 }
7878 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 7879 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 7880
b57bacec
PA
7881 /* As we're presenting a stop, and potentially removing breakpoints,
7882 update the thread list so we can tell whether there are threads
7883 running on the target. With target remote, for example, we can
7884 only learn about new threads when we explicitly update the thread
7885 list. Do this before notifying the interpreters about signal
7886 stops, end of stepping ranges, etc., so that the "new thread"
7887 output is emitted before e.g., "Program received signal FOO",
7888 instead of after. */
7889 update_thread_list ();
7890
7891 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
7892 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
7893
c906108c
SS
7894 /* As with the notification of thread events, we want to delay
7895 notifying the user that we've switched thread context until
7896 the inferior actually stops.
7897
73b65bb0
DJ
7898 There's no point in saying anything if the inferior has exited.
7899 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
7900 "received a signal".
7901
7902 Also skip saying anything in non-stop mode. In that mode, as we
7903 don't want GDB to switch threads behind the user's back, to avoid
7904 races where the user is typing a command to apply to thread x,
7905 but GDB switches to thread y before the user finishes entering
7906 the command, fetch_inferior_event installs a cleanup to restore
7907 the current thread back to the thread the user had selected right
7908 after this event is handled, so we're not really switching, only
7909 informing of a stop. */
4f8d22e3
PA
7910 if (!non_stop
7911 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
7912 && target_has_execution
7913 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
7914 && last.kind != TARGET_WAITKIND_EXITED
7915 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
7916 {
7917 target_terminal_ours_for_output ();
a3f17187 7918 printf_filtered (_("[Switching to %s]\n"),
c95310c6 7919 target_pid_to_str (inferior_ptid));
b8fa951a 7920 annotate_thread_changed ();
39f77062 7921 previous_inferior_ptid = inferior_ptid;
c906108c 7922 }
c906108c 7923
0e5bf2a8
PA
7924 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
7925 {
7926 gdb_assert (sync_execution || !target_can_async_p ());
7927
7928 target_terminal_ours_for_output ();
7929 printf_filtered (_("No unwaited-for children left.\n"));
7930 }
7931
b57bacec 7932 /* Note: this depends on the update_thread_list call above. */
388a7084 7933 maybe_remove_breakpoints ();
c906108c 7934
c906108c
SS
7935 /* If an auto-display called a function and that got a signal,
7936 delete that auto-display to avoid an infinite recursion. */
7937
7938 if (stopped_by_random_signal)
7939 disable_current_display ();
7940
c906108c 7941 target_terminal_ours ();
0f641c01 7942 async_enable_stdin ();
c906108c 7943
388a7084
PA
7944 /* Let the user/frontend see the threads as stopped. */
7945 do_cleanups (old_chain);
7946
7947 /* Select innermost stack frame - i.e., current frame is frame 0,
7948 and current location is based on that. Handle the case where the
7949 dummy call is returning after being stopped. E.g. the dummy call
7950 previously hit a breakpoint. (If the dummy call returns
7951 normally, we won't reach here.) Do this before the stop hook is
7952 run, so that it doesn't get to see the temporary dummy frame,
7953 which is not where we'll present the stop. */
7954 if (has_stack_frames ())
7955 {
7956 if (stop_stack_dummy == STOP_STACK_DUMMY)
7957 {
7958 /* Pop the empty frame that contains the stack dummy. This
7959 also restores inferior state prior to the call (struct
7960 infcall_suspend_state). */
7961 struct frame_info *frame = get_current_frame ();
7962
7963 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
7964 frame_pop (frame);
7965 /* frame_pop calls reinit_frame_cache as the last thing it
7966 does which means there's now no selected frame. */
7967 }
7968
7969 select_frame (get_current_frame ());
7970
7971 /* Set the current source location. */
7972 set_current_sal_from_frame (get_current_frame ());
7973 }
dd7e2d2b
PA
7974
7975 /* Look up the hook_stop and run it (CLI internally handles problem
7976 of stop_command's pre-hook not existing). */
7977 if (stop_command)
7978 catch_errors (hook_stop_stub, stop_command,
7979 "Error while running hook_stop:\n", RETURN_MASK_ALL);
7980
388a7084
PA
7981 /* Notify observers about the stop. This is where the interpreters
7982 print the stop event. */
7983 if (!ptid_equal (inferior_ptid, null_ptid))
7984 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
7985 stop_print_frame);
7986 else
7987 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 7988
243a9253
PA
7989 annotate_stopped ();
7990
48844aa6
PA
7991 if (target_has_execution)
7992 {
7993 if (last.kind != TARGET_WAITKIND_SIGNALLED
7994 && last.kind != TARGET_WAITKIND_EXITED)
7995 /* Delete the breakpoint we stopped at, if it wants to be deleted.
7996 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 7997 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 7998 }
6c95b8df
PA
7999
8000 /* Try to get rid of automatically added inferiors that are no
8001 longer needed. Keeping those around slows down things linearly.
8002 Note that this never removes the current inferior. */
8003 prune_inferiors ();
c906108c
SS
8004}
8005
8006static int
96baa820 8007hook_stop_stub (void *cmd)
c906108c 8008{
5913bcb0 8009 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8010 return (0);
8011}
8012\f
c5aa993b 8013int
96baa820 8014signal_stop_state (int signo)
c906108c 8015{
d6b48e9c 8016 return signal_stop[signo];
c906108c
SS
8017}
8018
c5aa993b 8019int
96baa820 8020signal_print_state (int signo)
c906108c
SS
8021{
8022 return signal_print[signo];
8023}
8024
c5aa993b 8025int
96baa820 8026signal_pass_state (int signo)
c906108c
SS
8027{
8028 return signal_program[signo];
8029}
8030
2455069d
UW
8031static void
8032signal_cache_update (int signo)
8033{
8034 if (signo == -1)
8035 {
a493e3e2 8036 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8037 signal_cache_update (signo);
8038
8039 return;
8040 }
8041
8042 signal_pass[signo] = (signal_stop[signo] == 0
8043 && signal_print[signo] == 0
ab04a2af
TT
8044 && signal_program[signo] == 1
8045 && signal_catch[signo] == 0);
2455069d
UW
8046}
8047
488f131b 8048int
7bda5e4a 8049signal_stop_update (int signo, int state)
d4f3574e
SS
8050{
8051 int ret = signal_stop[signo];
abbb1732 8052
d4f3574e 8053 signal_stop[signo] = state;
2455069d 8054 signal_cache_update (signo);
d4f3574e
SS
8055 return ret;
8056}
8057
488f131b 8058int
7bda5e4a 8059signal_print_update (int signo, int state)
d4f3574e
SS
8060{
8061 int ret = signal_print[signo];
abbb1732 8062
d4f3574e 8063 signal_print[signo] = state;
2455069d 8064 signal_cache_update (signo);
d4f3574e
SS
8065 return ret;
8066}
8067
488f131b 8068int
7bda5e4a 8069signal_pass_update (int signo, int state)
d4f3574e
SS
8070{
8071 int ret = signal_program[signo];
abbb1732 8072
d4f3574e 8073 signal_program[signo] = state;
2455069d 8074 signal_cache_update (signo);
d4f3574e
SS
8075 return ret;
8076}
8077
ab04a2af
TT
8078/* Update the global 'signal_catch' from INFO and notify the
8079 target. */
8080
8081void
8082signal_catch_update (const unsigned int *info)
8083{
8084 int i;
8085
8086 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8087 signal_catch[i] = info[i] > 0;
8088 signal_cache_update (-1);
8089 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8090}
8091
c906108c 8092static void
96baa820 8093sig_print_header (void)
c906108c 8094{
3e43a32a
MS
8095 printf_filtered (_("Signal Stop\tPrint\tPass "
8096 "to program\tDescription\n"));
c906108c
SS
8097}
8098
8099static void
2ea28649 8100sig_print_info (enum gdb_signal oursig)
c906108c 8101{
2ea28649 8102 const char *name = gdb_signal_to_name (oursig);
c906108c 8103 int name_padding = 13 - strlen (name);
96baa820 8104
c906108c
SS
8105 if (name_padding <= 0)
8106 name_padding = 0;
8107
8108 printf_filtered ("%s", name);
488f131b 8109 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8110 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8111 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8112 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8113 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8114}
8115
8116/* Specify how various signals in the inferior should be handled. */
8117
8118static void
96baa820 8119handle_command (char *args, int from_tty)
c906108c
SS
8120{
8121 char **argv;
8122 int digits, wordlen;
8123 int sigfirst, signum, siglast;
2ea28649 8124 enum gdb_signal oursig;
c906108c
SS
8125 int allsigs;
8126 int nsigs;
8127 unsigned char *sigs;
8128 struct cleanup *old_chain;
8129
8130 if (args == NULL)
8131 {
e2e0b3e5 8132 error_no_arg (_("signal to handle"));
c906108c
SS
8133 }
8134
1777feb0 8135 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8136
a493e3e2 8137 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8138 sigs = (unsigned char *) alloca (nsigs);
8139 memset (sigs, 0, nsigs);
8140
1777feb0 8141 /* Break the command line up into args. */
c906108c 8142
d1a41061 8143 argv = gdb_buildargv (args);
7a292a7a 8144 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8145
8146 /* Walk through the args, looking for signal oursigs, signal names, and
8147 actions. Signal numbers and signal names may be interspersed with
8148 actions, with the actions being performed for all signals cumulatively
1777feb0 8149 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8150
8151 while (*argv != NULL)
8152 {
8153 wordlen = strlen (*argv);
8154 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8155 {;
8156 }
8157 allsigs = 0;
8158 sigfirst = siglast = -1;
8159
8160 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8161 {
8162 /* Apply action to all signals except those used by the
1777feb0 8163 debugger. Silently skip those. */
c906108c
SS
8164 allsigs = 1;
8165 sigfirst = 0;
8166 siglast = nsigs - 1;
8167 }
8168 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8169 {
8170 SET_SIGS (nsigs, sigs, signal_stop);
8171 SET_SIGS (nsigs, sigs, signal_print);
8172 }
8173 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8174 {
8175 UNSET_SIGS (nsigs, sigs, signal_program);
8176 }
8177 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8178 {
8179 SET_SIGS (nsigs, sigs, signal_print);
8180 }
8181 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8182 {
8183 SET_SIGS (nsigs, sigs, signal_program);
8184 }
8185 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8186 {
8187 UNSET_SIGS (nsigs, sigs, signal_stop);
8188 }
8189 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8190 {
8191 SET_SIGS (nsigs, sigs, signal_program);
8192 }
8193 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8194 {
8195 UNSET_SIGS (nsigs, sigs, signal_print);
8196 UNSET_SIGS (nsigs, sigs, signal_stop);
8197 }
8198 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8199 {
8200 UNSET_SIGS (nsigs, sigs, signal_program);
8201 }
8202 else if (digits > 0)
8203 {
8204 /* It is numeric. The numeric signal refers to our own
8205 internal signal numbering from target.h, not to host/target
8206 signal number. This is a feature; users really should be
8207 using symbolic names anyway, and the common ones like
8208 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8209
8210 sigfirst = siglast = (int)
2ea28649 8211 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8212 if ((*argv)[digits] == '-')
8213 {
8214 siglast = (int)
2ea28649 8215 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8216 }
8217 if (sigfirst > siglast)
8218 {
1777feb0 8219 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8220 signum = sigfirst;
8221 sigfirst = siglast;
8222 siglast = signum;
8223 }
8224 }
8225 else
8226 {
2ea28649 8227 oursig = gdb_signal_from_name (*argv);
a493e3e2 8228 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8229 {
8230 sigfirst = siglast = (int) oursig;
8231 }
8232 else
8233 {
8234 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8235 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8236 }
8237 }
8238
8239 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8240 which signals to apply actions to. */
c906108c
SS
8241
8242 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8243 {
2ea28649 8244 switch ((enum gdb_signal) signum)
c906108c 8245 {
a493e3e2
PA
8246 case GDB_SIGNAL_TRAP:
8247 case GDB_SIGNAL_INT:
c906108c
SS
8248 if (!allsigs && !sigs[signum])
8249 {
9e2f0ad4 8250 if (query (_("%s is used by the debugger.\n\
3e43a32a 8251Are you sure you want to change it? "),
2ea28649 8252 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8253 {
8254 sigs[signum] = 1;
8255 }
8256 else
8257 {
a3f17187 8258 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8259 gdb_flush (gdb_stdout);
8260 }
8261 }
8262 break;
a493e3e2
PA
8263 case GDB_SIGNAL_0:
8264 case GDB_SIGNAL_DEFAULT:
8265 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8266 /* Make sure that "all" doesn't print these. */
8267 break;
8268 default:
8269 sigs[signum] = 1;
8270 break;
8271 }
8272 }
8273
8274 argv++;
8275 }
8276
3a031f65
PA
8277 for (signum = 0; signum < nsigs; signum++)
8278 if (sigs[signum])
8279 {
2455069d 8280 signal_cache_update (-1);
a493e3e2
PA
8281 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8282 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8283
3a031f65
PA
8284 if (from_tty)
8285 {
8286 /* Show the results. */
8287 sig_print_header ();
8288 for (; signum < nsigs; signum++)
8289 if (sigs[signum])
aead7601 8290 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8291 }
8292
8293 break;
8294 }
c906108c
SS
8295
8296 do_cleanups (old_chain);
8297}
8298
de0bea00
MF
8299/* Complete the "handle" command. */
8300
8301static VEC (char_ptr) *
8302handle_completer (struct cmd_list_element *ignore,
6f937416 8303 const char *text, const char *word)
de0bea00
MF
8304{
8305 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8306 static const char * const keywords[] =
8307 {
8308 "all",
8309 "stop",
8310 "ignore",
8311 "print",
8312 "pass",
8313 "nostop",
8314 "noignore",
8315 "noprint",
8316 "nopass",
8317 NULL,
8318 };
8319
8320 vec_signals = signal_completer (ignore, text, word);
8321 vec_keywords = complete_on_enum (keywords, word, word);
8322
8323 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8324 VEC_free (char_ptr, vec_signals);
8325 VEC_free (char_ptr, vec_keywords);
8326 return return_val;
8327}
8328
2ea28649
PA
8329enum gdb_signal
8330gdb_signal_from_command (int num)
ed01b82c
PA
8331{
8332 if (num >= 1 && num <= 15)
2ea28649 8333 return (enum gdb_signal) num;
ed01b82c
PA
8334 error (_("Only signals 1-15 are valid as numeric signals.\n\
8335Use \"info signals\" for a list of symbolic signals."));
8336}
8337
c906108c
SS
8338/* Print current contents of the tables set by the handle command.
8339 It is possible we should just be printing signals actually used
8340 by the current target (but for things to work right when switching
8341 targets, all signals should be in the signal tables). */
8342
8343static void
96baa820 8344signals_info (char *signum_exp, int from_tty)
c906108c 8345{
2ea28649 8346 enum gdb_signal oursig;
abbb1732 8347
c906108c
SS
8348 sig_print_header ();
8349
8350 if (signum_exp)
8351 {
8352 /* First see if this is a symbol name. */
2ea28649 8353 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8354 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8355 {
8356 /* No, try numeric. */
8357 oursig =
2ea28649 8358 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8359 }
8360 sig_print_info (oursig);
8361 return;
8362 }
8363
8364 printf_filtered ("\n");
8365 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8366 for (oursig = GDB_SIGNAL_FIRST;
8367 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8368 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8369 {
8370 QUIT;
8371
a493e3e2
PA
8372 if (oursig != GDB_SIGNAL_UNKNOWN
8373 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8374 sig_print_info (oursig);
8375 }
8376
3e43a32a
MS
8377 printf_filtered (_("\nUse the \"handle\" command "
8378 "to change these tables.\n"));
c906108c 8379}
4aa995e1 8380
c709acd1
PA
8381/* Check if it makes sense to read $_siginfo from the current thread
8382 at this point. If not, throw an error. */
8383
8384static void
8385validate_siginfo_access (void)
8386{
8387 /* No current inferior, no siginfo. */
8388 if (ptid_equal (inferior_ptid, null_ptid))
8389 error (_("No thread selected."));
8390
8391 /* Don't try to read from a dead thread. */
8392 if (is_exited (inferior_ptid))
8393 error (_("The current thread has terminated"));
8394
8395 /* ... or from a spinning thread. */
8396 if (is_running (inferior_ptid))
8397 error (_("Selected thread is running."));
8398}
8399
4aa995e1
PA
8400/* The $_siginfo convenience variable is a bit special. We don't know
8401 for sure the type of the value until we actually have a chance to
7a9dd1b2 8402 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8403 also dependent on which thread you have selected.
8404
8405 1. making $_siginfo be an internalvar that creates a new value on
8406 access.
8407
8408 2. making the value of $_siginfo be an lval_computed value. */
8409
8410/* This function implements the lval_computed support for reading a
8411 $_siginfo value. */
8412
8413static void
8414siginfo_value_read (struct value *v)
8415{
8416 LONGEST transferred;
8417
c709acd1
PA
8418 validate_siginfo_access ();
8419
4aa995e1
PA
8420 transferred =
8421 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8422 NULL,
8423 value_contents_all_raw (v),
8424 value_offset (v),
8425 TYPE_LENGTH (value_type (v)));
8426
8427 if (transferred != TYPE_LENGTH (value_type (v)))
8428 error (_("Unable to read siginfo"));
8429}
8430
8431/* This function implements the lval_computed support for writing a
8432 $_siginfo value. */
8433
8434static void
8435siginfo_value_write (struct value *v, struct value *fromval)
8436{
8437 LONGEST transferred;
8438
c709acd1
PA
8439 validate_siginfo_access ();
8440
4aa995e1
PA
8441 transferred = target_write (&current_target,
8442 TARGET_OBJECT_SIGNAL_INFO,
8443 NULL,
8444 value_contents_all_raw (fromval),
8445 value_offset (v),
8446 TYPE_LENGTH (value_type (fromval)));
8447
8448 if (transferred != TYPE_LENGTH (value_type (fromval)))
8449 error (_("Unable to write siginfo"));
8450}
8451
c8f2448a 8452static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8453 {
8454 siginfo_value_read,
8455 siginfo_value_write
8456 };
8457
8458/* Return a new value with the correct type for the siginfo object of
78267919
UW
8459 the current thread using architecture GDBARCH. Return a void value
8460 if there's no object available. */
4aa995e1 8461
2c0b251b 8462static struct value *
22d2b532
SDJ
8463siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8464 void *ignore)
4aa995e1 8465{
4aa995e1 8466 if (target_has_stack
78267919
UW
8467 && !ptid_equal (inferior_ptid, null_ptid)
8468 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8469 {
78267919 8470 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8471
78267919 8472 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8473 }
8474
78267919 8475 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8476}
8477
c906108c 8478\f
16c381f0
JK
8479/* infcall_suspend_state contains state about the program itself like its
8480 registers and any signal it received when it last stopped.
8481 This state must be restored regardless of how the inferior function call
8482 ends (either successfully, or after it hits a breakpoint or signal)
8483 if the program is to properly continue where it left off. */
8484
8485struct infcall_suspend_state
7a292a7a 8486{
16c381f0 8487 struct thread_suspend_state thread_suspend;
16c381f0
JK
8488
8489 /* Other fields: */
7a292a7a 8490 CORE_ADDR stop_pc;
b89667eb 8491 struct regcache *registers;
1736ad11 8492
35515841 8493 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8494 struct gdbarch *siginfo_gdbarch;
8495
8496 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8497 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8498 content would be invalid. */
8499 gdb_byte *siginfo_data;
b89667eb
DE
8500};
8501
16c381f0
JK
8502struct infcall_suspend_state *
8503save_infcall_suspend_state (void)
b89667eb 8504{
16c381f0 8505 struct infcall_suspend_state *inf_state;
b89667eb 8506 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8507 struct regcache *regcache = get_current_regcache ();
8508 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8509 gdb_byte *siginfo_data = NULL;
8510
8511 if (gdbarch_get_siginfo_type_p (gdbarch))
8512 {
8513 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8514 size_t len = TYPE_LENGTH (type);
8515 struct cleanup *back_to;
8516
8517 siginfo_data = xmalloc (len);
8518 back_to = make_cleanup (xfree, siginfo_data);
8519
8520 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8521 siginfo_data, 0, len) == len)
8522 discard_cleanups (back_to);
8523 else
8524 {
8525 /* Errors ignored. */
8526 do_cleanups (back_to);
8527 siginfo_data = NULL;
8528 }
8529 }
8530
41bf6aca 8531 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8532
8533 if (siginfo_data)
8534 {
8535 inf_state->siginfo_gdbarch = gdbarch;
8536 inf_state->siginfo_data = siginfo_data;
8537 }
b89667eb 8538
16c381f0 8539 inf_state->thread_suspend = tp->suspend;
16c381f0 8540
35515841 8541 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8542 GDB_SIGNAL_0 anyway. */
8543 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8544
b89667eb
DE
8545 inf_state->stop_pc = stop_pc;
8546
1736ad11 8547 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8548
8549 return inf_state;
8550}
8551
8552/* Restore inferior session state to INF_STATE. */
8553
8554void
16c381f0 8555restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8556{
8557 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8558 struct regcache *regcache = get_current_regcache ();
8559 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8560
16c381f0 8561 tp->suspend = inf_state->thread_suspend;
16c381f0 8562
b89667eb
DE
8563 stop_pc = inf_state->stop_pc;
8564
1736ad11
JK
8565 if (inf_state->siginfo_gdbarch == gdbarch)
8566 {
8567 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8568
8569 /* Errors ignored. */
8570 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8571 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8572 }
8573
b89667eb
DE
8574 /* The inferior can be gone if the user types "print exit(0)"
8575 (and perhaps other times). */
8576 if (target_has_execution)
8577 /* NB: The register write goes through to the target. */
1736ad11 8578 regcache_cpy (regcache, inf_state->registers);
803b5f95 8579
16c381f0 8580 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8581}
8582
8583static void
16c381f0 8584do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8585{
16c381f0 8586 restore_infcall_suspend_state (state);
b89667eb
DE
8587}
8588
8589struct cleanup *
16c381f0
JK
8590make_cleanup_restore_infcall_suspend_state
8591 (struct infcall_suspend_state *inf_state)
b89667eb 8592{
16c381f0 8593 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8594}
8595
8596void
16c381f0 8597discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8598{
8599 regcache_xfree (inf_state->registers);
803b5f95 8600 xfree (inf_state->siginfo_data);
b89667eb
DE
8601 xfree (inf_state);
8602}
8603
8604struct regcache *
16c381f0 8605get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8606{
8607 return inf_state->registers;
8608}
8609
16c381f0
JK
8610/* infcall_control_state contains state regarding gdb's control of the
8611 inferior itself like stepping control. It also contains session state like
8612 the user's currently selected frame. */
b89667eb 8613
16c381f0 8614struct infcall_control_state
b89667eb 8615{
16c381f0
JK
8616 struct thread_control_state thread_control;
8617 struct inferior_control_state inferior_control;
d82142e2
JK
8618
8619 /* Other fields: */
8620 enum stop_stack_kind stop_stack_dummy;
8621 int stopped_by_random_signal;
7a292a7a 8622 int stop_after_trap;
7a292a7a 8623
b89667eb 8624 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8625 struct frame_id selected_frame_id;
7a292a7a
SS
8626};
8627
c906108c 8628/* Save all of the information associated with the inferior<==>gdb
b89667eb 8629 connection. */
c906108c 8630
16c381f0
JK
8631struct infcall_control_state *
8632save_infcall_control_state (void)
c906108c 8633{
8d749320
SM
8634 struct infcall_control_state *inf_status =
8635 XNEW (struct infcall_control_state);
4e1c45ea 8636 struct thread_info *tp = inferior_thread ();
d6b48e9c 8637 struct inferior *inf = current_inferior ();
7a292a7a 8638
16c381f0
JK
8639 inf_status->thread_control = tp->control;
8640 inf_status->inferior_control = inf->control;
d82142e2 8641
8358c15c 8642 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8643 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8644
16c381f0
JK
8645 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8646 chain. If caller's caller is walking the chain, they'll be happier if we
8647 hand them back the original chain when restore_infcall_control_state is
8648 called. */
8649 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8650
8651 /* Other fields: */
8652 inf_status->stop_stack_dummy = stop_stack_dummy;
8653 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8654 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 8655
206415a3 8656 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8657
7a292a7a 8658 return inf_status;
c906108c
SS
8659}
8660
c906108c 8661static int
96baa820 8662restore_selected_frame (void *args)
c906108c 8663{
488f131b 8664 struct frame_id *fid = (struct frame_id *) args;
c906108c 8665 struct frame_info *frame;
c906108c 8666
101dcfbe 8667 frame = frame_find_by_id (*fid);
c906108c 8668
aa0cd9c1
AC
8669 /* If inf_status->selected_frame_id is NULL, there was no previously
8670 selected frame. */
101dcfbe 8671 if (frame == NULL)
c906108c 8672 {
8a3fe4f8 8673 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8674 return 0;
8675 }
8676
0f7d239c 8677 select_frame (frame);
c906108c
SS
8678
8679 return (1);
8680}
8681
b89667eb
DE
8682/* Restore inferior session state to INF_STATUS. */
8683
c906108c 8684void
16c381f0 8685restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8686{
4e1c45ea 8687 struct thread_info *tp = inferior_thread ();
d6b48e9c 8688 struct inferior *inf = current_inferior ();
4e1c45ea 8689
8358c15c
JK
8690 if (tp->control.step_resume_breakpoint)
8691 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8692
5b79abe7
TT
8693 if (tp->control.exception_resume_breakpoint)
8694 tp->control.exception_resume_breakpoint->disposition
8695 = disp_del_at_next_stop;
8696
d82142e2 8697 /* Handle the bpstat_copy of the chain. */
16c381f0 8698 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8699
16c381f0
JK
8700 tp->control = inf_status->thread_control;
8701 inf->control = inf_status->inferior_control;
d82142e2
JK
8702
8703 /* Other fields: */
8704 stop_stack_dummy = inf_status->stop_stack_dummy;
8705 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8706 stop_after_trap = inf_status->stop_after_trap;
c906108c 8707
b89667eb 8708 if (target_has_stack)
c906108c 8709 {
c906108c 8710 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
8711 walking the stack might encounter a garbage pointer and
8712 error() trying to dereference it. */
488f131b
JB
8713 if (catch_errors
8714 (restore_selected_frame, &inf_status->selected_frame_id,
8715 "Unable to restore previously selected frame:\n",
8716 RETURN_MASK_ERROR) == 0)
c906108c
SS
8717 /* Error in restoring the selected frame. Select the innermost
8718 frame. */
0f7d239c 8719 select_frame (get_current_frame ());
c906108c 8720 }
c906108c 8721
72cec141 8722 xfree (inf_status);
7a292a7a 8723}
c906108c 8724
74b7792f 8725static void
16c381f0 8726do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 8727{
16c381f0 8728 restore_infcall_control_state (sts);
74b7792f
AC
8729}
8730
8731struct cleanup *
16c381f0
JK
8732make_cleanup_restore_infcall_control_state
8733 (struct infcall_control_state *inf_status)
74b7792f 8734{
16c381f0 8735 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
8736}
8737
c906108c 8738void
16c381f0 8739discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8740{
8358c15c
JK
8741 if (inf_status->thread_control.step_resume_breakpoint)
8742 inf_status->thread_control.step_resume_breakpoint->disposition
8743 = disp_del_at_next_stop;
8744
5b79abe7
TT
8745 if (inf_status->thread_control.exception_resume_breakpoint)
8746 inf_status->thread_control.exception_resume_breakpoint->disposition
8747 = disp_del_at_next_stop;
8748
1777feb0 8749 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8750 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8751
72cec141 8752 xfree (inf_status);
7a292a7a 8753}
b89667eb 8754\f
ca6724c1
KB
8755/* restore_inferior_ptid() will be used by the cleanup machinery
8756 to restore the inferior_ptid value saved in a call to
8757 save_inferior_ptid(). */
ce696e05
KB
8758
8759static void
8760restore_inferior_ptid (void *arg)
8761{
8762 ptid_t *saved_ptid_ptr = arg;
abbb1732 8763
ce696e05
KB
8764 inferior_ptid = *saved_ptid_ptr;
8765 xfree (arg);
8766}
8767
8768/* Save the value of inferior_ptid so that it may be restored by a
8769 later call to do_cleanups(). Returns the struct cleanup pointer
8770 needed for later doing the cleanup. */
8771
8772struct cleanup *
8773save_inferior_ptid (void)
8774{
8d749320 8775 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 8776
ce696e05
KB
8777 *saved_ptid_ptr = inferior_ptid;
8778 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8779}
0c557179 8780
7f89fd65 8781/* See infrun.h. */
0c557179
SDJ
8782
8783void
8784clear_exit_convenience_vars (void)
8785{
8786 clear_internalvar (lookup_internalvar ("_exitsignal"));
8787 clear_internalvar (lookup_internalvar ("_exitcode"));
8788}
c5aa993b 8789\f
488f131b 8790
b2175913
MS
8791/* User interface for reverse debugging:
8792 Set exec-direction / show exec-direction commands
8793 (returns error unless target implements to_set_exec_direction method). */
8794
32231432 8795int execution_direction = EXEC_FORWARD;
b2175913
MS
8796static const char exec_forward[] = "forward";
8797static const char exec_reverse[] = "reverse";
8798static const char *exec_direction = exec_forward;
40478521 8799static const char *const exec_direction_names[] = {
b2175913
MS
8800 exec_forward,
8801 exec_reverse,
8802 NULL
8803};
8804
8805static void
8806set_exec_direction_func (char *args, int from_tty,
8807 struct cmd_list_element *cmd)
8808{
8809 if (target_can_execute_reverse)
8810 {
8811 if (!strcmp (exec_direction, exec_forward))
8812 execution_direction = EXEC_FORWARD;
8813 else if (!strcmp (exec_direction, exec_reverse))
8814 execution_direction = EXEC_REVERSE;
8815 }
8bbed405
MS
8816 else
8817 {
8818 exec_direction = exec_forward;
8819 error (_("Target does not support this operation."));
8820 }
b2175913
MS
8821}
8822
8823static void
8824show_exec_direction_func (struct ui_file *out, int from_tty,
8825 struct cmd_list_element *cmd, const char *value)
8826{
8827 switch (execution_direction) {
8828 case EXEC_FORWARD:
8829 fprintf_filtered (out, _("Forward.\n"));
8830 break;
8831 case EXEC_REVERSE:
8832 fprintf_filtered (out, _("Reverse.\n"));
8833 break;
b2175913 8834 default:
d8b34453
PA
8835 internal_error (__FILE__, __LINE__,
8836 _("bogus execution_direction value: %d"),
8837 (int) execution_direction);
b2175913
MS
8838 }
8839}
8840
d4db2f36
PA
8841static void
8842show_schedule_multiple (struct ui_file *file, int from_tty,
8843 struct cmd_list_element *c, const char *value)
8844{
3e43a32a
MS
8845 fprintf_filtered (file, _("Resuming the execution of threads "
8846 "of all processes is %s.\n"), value);
d4db2f36 8847}
ad52ddc6 8848
22d2b532
SDJ
8849/* Implementation of `siginfo' variable. */
8850
8851static const struct internalvar_funcs siginfo_funcs =
8852{
8853 siginfo_make_value,
8854 NULL,
8855 NULL
8856};
8857
372316f1
PA
8858/* Callback for infrun's target events source. This is marked when a
8859 thread has a pending status to process. */
8860
8861static void
8862infrun_async_inferior_event_handler (gdb_client_data data)
8863{
372316f1
PA
8864 inferior_event_handler (INF_REG_EVENT, NULL);
8865}
8866
c906108c 8867void
96baa820 8868_initialize_infrun (void)
c906108c 8869{
52f0bd74
AC
8870 int i;
8871 int numsigs;
de0bea00 8872 struct cmd_list_element *c;
c906108c 8873
372316f1
PA
8874 /* Register extra event sources in the event loop. */
8875 infrun_async_inferior_event_token
8876 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8877
1bedd215
AC
8878 add_info ("signals", signals_info, _("\
8879What debugger does when program gets various signals.\n\
8880Specify a signal as argument to print info on that signal only."));
c906108c
SS
8881 add_info_alias ("handle", "signals", 0);
8882
de0bea00 8883 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8884Specify how to handle signals.\n\
486c7739 8885Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8886Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8887If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8888will be displayed instead.\n\
8889\n\
c906108c
SS
8890Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8891from 1-15 are allowed for compatibility with old versions of GDB.\n\
8892Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8893The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8894used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8895\n\
1bedd215 8896Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8897\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8898Stop means reenter debugger if this signal happens (implies print).\n\
8899Print means print a message if this signal happens.\n\
8900Pass means let program see this signal; otherwise program doesn't know.\n\
8901Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8902Pass and Stop may be combined.\n\
8903\n\
8904Multiple signals may be specified. Signal numbers and signal names\n\
8905may be interspersed with actions, with the actions being performed for\n\
8906all signals cumulatively specified."));
de0bea00 8907 set_cmd_completer (c, handle_completer);
486c7739 8908
c906108c 8909 if (!dbx_commands)
1a966eab
AC
8910 stop_command = add_cmd ("stop", class_obscure,
8911 not_just_help_class_command, _("\
8912There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8913This allows you to set a list of commands to be run each time execution\n\
1a966eab 8914of the program stops."), &cmdlist);
c906108c 8915
ccce17b0 8916 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8917Set inferior debugging."), _("\
8918Show inferior debugging."), _("\
8919When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
8920 NULL,
8921 show_debug_infrun,
8922 &setdebuglist, &showdebuglist);
527159b7 8923
3e43a32a
MS
8924 add_setshow_boolean_cmd ("displaced", class_maintenance,
8925 &debug_displaced, _("\
237fc4c9
PA
8926Set displaced stepping debugging."), _("\
8927Show displaced stepping debugging."), _("\
8928When non-zero, displaced stepping specific debugging is enabled."),
8929 NULL,
8930 show_debug_displaced,
8931 &setdebuglist, &showdebuglist);
8932
ad52ddc6
PA
8933 add_setshow_boolean_cmd ("non-stop", no_class,
8934 &non_stop_1, _("\
8935Set whether gdb controls the inferior in non-stop mode."), _("\
8936Show whether gdb controls the inferior in non-stop mode."), _("\
8937When debugging a multi-threaded program and this setting is\n\
8938off (the default, also called all-stop mode), when one thread stops\n\
8939(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8940all other threads in the program while you interact with the thread of\n\
8941interest. When you continue or step a thread, you can allow the other\n\
8942threads to run, or have them remain stopped, but while you inspect any\n\
8943thread's state, all threads stop.\n\
8944\n\
8945In non-stop mode, when one thread stops, other threads can continue\n\
8946to run freely. You'll be able to step each thread independently,\n\
8947leave it stopped or free to run as needed."),
8948 set_non_stop,
8949 show_non_stop,
8950 &setlist,
8951 &showlist);
8952
a493e3e2 8953 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
8954 signal_stop = XNEWVEC (unsigned char, numsigs);
8955 signal_print = XNEWVEC (unsigned char, numsigs);
8956 signal_program = XNEWVEC (unsigned char, numsigs);
8957 signal_catch = XNEWVEC (unsigned char, numsigs);
8958 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
8959 for (i = 0; i < numsigs; i++)
8960 {
8961 signal_stop[i] = 1;
8962 signal_print[i] = 1;
8963 signal_program[i] = 1;
ab04a2af 8964 signal_catch[i] = 0;
c906108c
SS
8965 }
8966
4d9d9d04
PA
8967 /* Signals caused by debugger's own actions should not be given to
8968 the program afterwards.
8969
8970 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8971 explicitly specifies that it should be delivered to the target
8972 program. Typically, that would occur when a user is debugging a
8973 target monitor on a simulator: the target monitor sets a
8974 breakpoint; the simulator encounters this breakpoint and halts
8975 the simulation handing control to GDB; GDB, noting that the stop
8976 address doesn't map to any known breakpoint, returns control back
8977 to the simulator; the simulator then delivers the hardware
8978 equivalent of a GDB_SIGNAL_TRAP to the program being
8979 debugged. */
a493e3e2
PA
8980 signal_program[GDB_SIGNAL_TRAP] = 0;
8981 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
8982
8983 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
8984 signal_stop[GDB_SIGNAL_ALRM] = 0;
8985 signal_print[GDB_SIGNAL_ALRM] = 0;
8986 signal_stop[GDB_SIGNAL_VTALRM] = 0;
8987 signal_print[GDB_SIGNAL_VTALRM] = 0;
8988 signal_stop[GDB_SIGNAL_PROF] = 0;
8989 signal_print[GDB_SIGNAL_PROF] = 0;
8990 signal_stop[GDB_SIGNAL_CHLD] = 0;
8991 signal_print[GDB_SIGNAL_CHLD] = 0;
8992 signal_stop[GDB_SIGNAL_IO] = 0;
8993 signal_print[GDB_SIGNAL_IO] = 0;
8994 signal_stop[GDB_SIGNAL_POLL] = 0;
8995 signal_print[GDB_SIGNAL_POLL] = 0;
8996 signal_stop[GDB_SIGNAL_URG] = 0;
8997 signal_print[GDB_SIGNAL_URG] = 0;
8998 signal_stop[GDB_SIGNAL_WINCH] = 0;
8999 signal_print[GDB_SIGNAL_WINCH] = 0;
9000 signal_stop[GDB_SIGNAL_PRIO] = 0;
9001 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9002
cd0fc7c3
SS
9003 /* These signals are used internally by user-level thread
9004 implementations. (See signal(5) on Solaris.) Like the above
9005 signals, a healthy program receives and handles them as part of
9006 its normal operation. */
a493e3e2
PA
9007 signal_stop[GDB_SIGNAL_LWP] = 0;
9008 signal_print[GDB_SIGNAL_LWP] = 0;
9009 signal_stop[GDB_SIGNAL_WAITING] = 0;
9010 signal_print[GDB_SIGNAL_WAITING] = 0;
9011 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9012 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 9013
2455069d
UW
9014 /* Update cached state. */
9015 signal_cache_update (-1);
9016
85c07804
AC
9017 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9018 &stop_on_solib_events, _("\
9019Set stopping for shared library events."), _("\
9020Show stopping for shared library events."), _("\
c906108c
SS
9021If nonzero, gdb will give control to the user when the dynamic linker\n\
9022notifies gdb of shared library events. The most common event of interest\n\
85c07804 9023to the user would be loading/unloading of a new library."),
f9e14852 9024 set_stop_on_solib_events,
920d2a44 9025 show_stop_on_solib_events,
85c07804 9026 &setlist, &showlist);
c906108c 9027
7ab04401
AC
9028 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9029 follow_fork_mode_kind_names,
9030 &follow_fork_mode_string, _("\
9031Set debugger response to a program call of fork or vfork."), _("\
9032Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9033A fork or vfork creates a new process. follow-fork-mode can be:\n\
9034 parent - the original process is debugged after a fork\n\
9035 child - the new process is debugged after a fork\n\
ea1dd7bc 9036The unfollowed process will continue to run.\n\
7ab04401
AC
9037By default, the debugger will follow the parent process."),
9038 NULL,
920d2a44 9039 show_follow_fork_mode_string,
7ab04401
AC
9040 &setlist, &showlist);
9041
6c95b8df
PA
9042 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9043 follow_exec_mode_names,
9044 &follow_exec_mode_string, _("\
9045Set debugger response to a program call of exec."), _("\
9046Show debugger response to a program call of exec."), _("\
9047An exec call replaces the program image of a process.\n\
9048\n\
9049follow-exec-mode can be:\n\
9050\n\
cce7e648 9051 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9052to this new inferior. The program the process was running before\n\
9053the exec call can be restarted afterwards by restarting the original\n\
9054inferior.\n\
9055\n\
9056 same - the debugger keeps the process bound to the same inferior.\n\
9057The new executable image replaces the previous executable loaded in\n\
9058the inferior. Restarting the inferior after the exec call restarts\n\
9059the executable the process was running after the exec call.\n\
9060\n\
9061By default, the debugger will use the same inferior."),
9062 NULL,
9063 show_follow_exec_mode_string,
9064 &setlist, &showlist);
9065
7ab04401
AC
9066 add_setshow_enum_cmd ("scheduler-locking", class_run,
9067 scheduler_enums, &scheduler_mode, _("\
9068Set mode for locking scheduler during execution."), _("\
9069Show mode for locking scheduler during execution."), _("\
c906108c
SS
9070off == no locking (threads may preempt at any time)\n\
9071on == full locking (no thread except the current thread may run)\n\
856e7dd6
PA
9072step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9073 In this mode, other threads may run during other commands."),
7ab04401 9074 set_schedlock_func, /* traps on target vector */
920d2a44 9075 show_scheduler_mode,
7ab04401 9076 &setlist, &showlist);
5fbbeb29 9077
d4db2f36
PA
9078 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9079Set mode for resuming threads of all processes."), _("\
9080Show mode for resuming threads of all processes."), _("\
9081When on, execution commands (such as 'continue' or 'next') resume all\n\
9082threads of all processes. When off (which is the default), execution\n\
9083commands only resume the threads of the current process. The set of\n\
9084threads that are resumed is further refined by the scheduler-locking\n\
9085mode (see help set scheduler-locking)."),
9086 NULL,
9087 show_schedule_multiple,
9088 &setlist, &showlist);
9089
5bf193a2
AC
9090 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9091Set mode of the step operation."), _("\
9092Show mode of the step operation."), _("\
9093When set, doing a step over a function without debug line information\n\
9094will stop at the first instruction of that function. Otherwise, the\n\
9095function is skipped and the step command stops at a different source line."),
9096 NULL,
920d2a44 9097 show_step_stop_if_no_debug,
5bf193a2 9098 &setlist, &showlist);
ca6724c1 9099
72d0e2c5
YQ
9100 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9101 &can_use_displaced_stepping, _("\
237fc4c9
PA
9102Set debugger's willingness to use displaced stepping."), _("\
9103Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9104If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9105supported by the target architecture. If off, gdb will not use displaced\n\
9106stepping to step over breakpoints, even if such is supported by the target\n\
9107architecture. If auto (which is the default), gdb will use displaced stepping\n\
9108if the target architecture supports it and non-stop mode is active, but will not\n\
9109use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9110 NULL,
9111 show_can_use_displaced_stepping,
9112 &setlist, &showlist);
237fc4c9 9113
b2175913
MS
9114 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9115 &exec_direction, _("Set direction of execution.\n\
9116Options are 'forward' or 'reverse'."),
9117 _("Show direction of execution (forward/reverse)."),
9118 _("Tells gdb whether to execute forward or backward."),
9119 set_exec_direction_func, show_exec_direction_func,
9120 &setlist, &showlist);
9121
6c95b8df
PA
9122 /* Set/show detach-on-fork: user-settable mode. */
9123
9124 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9125Set whether gdb will detach the child of a fork."), _("\
9126Show whether gdb will detach the child of a fork."), _("\
9127Tells gdb whether to detach the child of a fork."),
9128 NULL, NULL, &setlist, &showlist);
9129
03583c20
UW
9130 /* Set/show disable address space randomization mode. */
9131
9132 add_setshow_boolean_cmd ("disable-randomization", class_support,
9133 &disable_randomization, _("\
9134Set disabling of debuggee's virtual address space randomization."), _("\
9135Show disabling of debuggee's virtual address space randomization."), _("\
9136When this mode is on (which is the default), randomization of the virtual\n\
9137address space is disabled. Standalone programs run with the randomization\n\
9138enabled by default on some platforms."),
9139 &set_disable_randomization,
9140 &show_disable_randomization,
9141 &setlist, &showlist);
9142
ca6724c1 9143 /* ptid initializations */
ca6724c1
KB
9144 inferior_ptid = null_ptid;
9145 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9146
9147 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9148 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9149 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9150 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9151
9152 /* Explicitly create without lookup, since that tries to create a
9153 value with a void typed value, and when we get here, gdbarch
9154 isn't initialized yet. At this point, we're quite sure there
9155 isn't another convenience variable of the same name. */
22d2b532 9156 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9157
9158 add_setshow_boolean_cmd ("observer", no_class,
9159 &observer_mode_1, _("\
9160Set whether gdb controls the inferior in observer mode."), _("\
9161Show whether gdb controls the inferior in observer mode."), _("\
9162In observer mode, GDB can get data from the inferior, but not\n\
9163affect its execution. Registers and memory may not be changed,\n\
9164breakpoints may not be set, and the program cannot be interrupted\n\
9165or signalled."),
9166 set_observer_mode,
9167 show_observer_mode,
9168 &setlist,
9169 &showlist);
c906108c 9170}
This page took 2.275591 seconds and 4 git commands to generate.