2005-01-24 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
60250e8b 31#include "exceptions.h"
c906108c 32#include "breakpoint.h"
03f2053f 33#include "gdb_wait.h"
c906108c
SS
34#include "gdbcore.h"
35#include "gdbcmd.h"
210661e7 36#include "cli/cli-script.h"
c906108c
SS
37#include "target.h"
38#include "gdbthread.h"
39#include "annotate.h"
1adeb98a 40#include "symfile.h"
7a292a7a 41#include "top.h"
c906108c 42#include <signal.h>
2acceee2 43#include "inf-loop.h"
4e052eda 44#include "regcache.h"
fd0407d6 45#include "value.h"
06600e06 46#include "observer.h"
f636b87d 47#include "language.h"
9f976b41 48#include "gdb_assert.h"
c906108c
SS
49
50/* Prototypes for local functions */
51
96baa820 52static void signals_info (char *, int);
c906108c 53
96baa820 54static void handle_command (char *, int);
c906108c 55
96baa820 56static void sig_print_info (enum target_signal);
c906108c 57
96baa820 58static void sig_print_header (void);
c906108c 59
74b7792f 60static void resume_cleanups (void *);
c906108c 61
96baa820 62static int hook_stop_stub (void *);
c906108c 63
96baa820
JM
64static int restore_selected_frame (void *);
65
66static void build_infrun (void);
67
4ef3f3be 68static int follow_fork (void);
96baa820
JM
69
70static void set_schedlock_func (char *args, int from_tty,
488f131b 71 struct cmd_list_element *c);
96baa820 72
96baa820
JM
73struct execution_control_state;
74
75static int currently_stepping (struct execution_control_state *ecs);
76
77static void xdb_handle_command (char *args, int from_tty);
78
ea67f13b
DJ
79static int prepare_to_proceed (void);
80
96baa820 81void _initialize_infrun (void);
43ff13b4 82
c906108c
SS
83int inferior_ignoring_startup_exec_events = 0;
84int inferior_ignoring_leading_exec_events = 0;
85
5fbbeb29
CF
86/* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89int step_stop_if_no_debug = 0;
90
43ff13b4 91/* In asynchronous mode, but simulating synchronous execution. */
96baa820 92
43ff13b4
JM
93int sync_execution = 0;
94
c906108c
SS
95/* wait_for_inferior and normal_stop use this to notify the user
96 when the inferior stopped in a different thread than it had been
96baa820
JM
97 running in. */
98
39f77062 99static ptid_t previous_inferior_ptid;
7a292a7a
SS
100
101/* This is true for configurations that may follow through execl() and
102 similar functions. At present this is only true for HP-UX native. */
103
104#ifndef MAY_FOLLOW_EXEC
105#define MAY_FOLLOW_EXEC (0)
c906108c
SS
106#endif
107
7a292a7a
SS
108static int may_follow_exec = MAY_FOLLOW_EXEC;
109
527159b7
RC
110static int debug_infrun = 0;
111
d4f3574e
SS
112/* If the program uses ELF-style shared libraries, then calls to
113 functions in shared libraries go through stubs, which live in a
114 table called the PLT (Procedure Linkage Table). The first time the
115 function is called, the stub sends control to the dynamic linker,
116 which looks up the function's real address, patches the stub so
117 that future calls will go directly to the function, and then passes
118 control to the function.
119
120 If we are stepping at the source level, we don't want to see any of
121 this --- we just want to skip over the stub and the dynamic linker.
122 The simple approach is to single-step until control leaves the
123 dynamic linker.
124
ca557f44
AC
125 However, on some systems (e.g., Red Hat's 5.2 distribution) the
126 dynamic linker calls functions in the shared C library, so you
127 can't tell from the PC alone whether the dynamic linker is still
128 running. In this case, we use a step-resume breakpoint to get us
129 past the dynamic linker, as if we were using "next" to step over a
130 function call.
d4f3574e
SS
131
132 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
133 linker code or not. Normally, this means we single-step. However,
134 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
135 address where we can place a step-resume breakpoint to get past the
136 linker's symbol resolution function.
137
138 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
139 pretty portable way, by comparing the PC against the address ranges
140 of the dynamic linker's sections.
141
142 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
143 it depends on internal details of the dynamic linker. It's usually
144 not too hard to figure out where to put a breakpoint, but it
145 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
146 sanity checking. If it can't figure things out, returning zero and
147 getting the (possibly confusing) stepping behavior is better than
148 signalling an error, which will obscure the change in the
149 inferior's state. */
c906108c
SS
150
151#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
152#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
153#endif
154
c906108c
SS
155/* This function returns TRUE if pc is the address of an instruction
156 that lies within the dynamic linker (such as the event hook, or the
157 dld itself).
158
159 This function must be used only when a dynamic linker event has
160 been caught, and the inferior is being stepped out of the hook, or
161 undefined results are guaranteed. */
162
163#ifndef SOLIB_IN_DYNAMIC_LINKER
164#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
165#endif
166
c2c6d25f
JM
167/* We can't step off a permanent breakpoint in the ordinary way, because we
168 can't remove it. Instead, we have to advance the PC to the next
169 instruction. This macro should expand to a pointer to a function that
170 does that, or zero if we have no such function. If we don't have a
171 definition for it, we have to report an error. */
488f131b 172#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
173#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
174static void
c2d11a7d 175default_skip_permanent_breakpoint (void)
c2c6d25f 176{
255e7dbf 177 error ("\
c2c6d25f
JM
178The program is stopped at a permanent breakpoint, but GDB does not know\n\
179how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 180a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
181}
182#endif
488f131b 183
c2c6d25f 184
7a292a7a
SS
185/* Convert the #defines into values. This is temporary until wfi control
186 flow is completely sorted out. */
187
188#ifndef HAVE_STEPPABLE_WATCHPOINT
189#define HAVE_STEPPABLE_WATCHPOINT 0
190#else
191#undef HAVE_STEPPABLE_WATCHPOINT
192#define HAVE_STEPPABLE_WATCHPOINT 1
193#endif
194
692590c1
MS
195#ifndef CANNOT_STEP_HW_WATCHPOINTS
196#define CANNOT_STEP_HW_WATCHPOINTS 0
197#else
198#undef CANNOT_STEP_HW_WATCHPOINTS
199#define CANNOT_STEP_HW_WATCHPOINTS 1
200#endif
201
c906108c
SS
202/* Tables of how to react to signals; the user sets them. */
203
204static unsigned char *signal_stop;
205static unsigned char *signal_print;
206static unsigned char *signal_program;
207
208#define SET_SIGS(nsigs,sigs,flags) \
209 do { \
210 int signum = (nsigs); \
211 while (signum-- > 0) \
212 if ((sigs)[signum]) \
213 (flags)[signum] = 1; \
214 } while (0)
215
216#define UNSET_SIGS(nsigs,sigs,flags) \
217 do { \
218 int signum = (nsigs); \
219 while (signum-- > 0) \
220 if ((sigs)[signum]) \
221 (flags)[signum] = 0; \
222 } while (0)
223
39f77062
KB
224/* Value to pass to target_resume() to cause all threads to resume */
225
226#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
227
228/* Command list pointer for the "stop" placeholder. */
229
230static struct cmd_list_element *stop_command;
231
232/* Nonzero if breakpoints are now inserted in the inferior. */
233
234static int breakpoints_inserted;
235
236/* Function inferior was in as of last step command. */
237
238static struct symbol *step_start_function;
239
240/* Nonzero if we are expecting a trace trap and should proceed from it. */
241
242static int trap_expected;
243
244#ifdef SOLIB_ADD
245/* Nonzero if we want to give control to the user when we're notified
246 of shared library events by the dynamic linker. */
247static int stop_on_solib_events;
248#endif
249
c906108c
SS
250/* Nonzero means expecting a trace trap
251 and should stop the inferior and return silently when it happens. */
252
253int stop_after_trap;
254
255/* Nonzero means expecting a trap and caller will handle it themselves.
256 It is used after attach, due to attaching to a process;
257 when running in the shell before the child program has been exec'd;
258 and when running some kinds of remote stuff (FIXME?). */
259
c0236d92 260enum stop_kind stop_soon;
c906108c
SS
261
262/* Nonzero if proceed is being used for a "finish" command or a similar
263 situation when stop_registers should be saved. */
264
265int proceed_to_finish;
266
267/* Save register contents here when about to pop a stack dummy frame,
268 if-and-only-if proceed_to_finish is set.
269 Thus this contains the return value from the called function (assuming
270 values are returned in a register). */
271
72cec141 272struct regcache *stop_registers;
c906108c
SS
273
274/* Nonzero if program stopped due to error trying to insert breakpoints. */
275
276static int breakpoints_failed;
277
278/* Nonzero after stop if current stack frame should be printed. */
279
280static int stop_print_frame;
281
282static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 283
e02bc4cc 284/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
285 returned by target_wait()/deprecated_target_wait_hook(). This
286 information is returned by get_last_target_status(). */
39f77062 287static ptid_t target_last_wait_ptid;
e02bc4cc
DS
288static struct target_waitstatus target_last_waitstatus;
289
c906108c
SS
290/* This is used to remember when a fork, vfork or exec event
291 was caught by a catchpoint, and thus the event is to be
292 followed at the next resume of the inferior, and not
293 immediately. */
294static struct
488f131b
JB
295{
296 enum target_waitkind kind;
297 struct
c906108c 298 {
488f131b 299 int parent_pid;
488f131b 300 int child_pid;
c906108c 301 }
488f131b
JB
302 fork_event;
303 char *execd_pathname;
304}
c906108c
SS
305pending_follow;
306
53904c9e
AC
307static const char follow_fork_mode_child[] = "child";
308static const char follow_fork_mode_parent[] = "parent";
309
488f131b 310static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
311 follow_fork_mode_child,
312 follow_fork_mode_parent,
313 NULL
ef346e04 314};
c906108c 315
53904c9e 316static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
317\f
318
6604731b 319static int
4ef3f3be 320follow_fork (void)
c906108c 321{
ea1dd7bc 322 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 323
6604731b 324 return target_follow_fork (follow_child);
c906108c
SS
325}
326
6604731b
DJ
327void
328follow_inferior_reset_breakpoints (void)
c906108c 329{
6604731b
DJ
330 /* Was there a step_resume breakpoint? (There was if the user
331 did a "next" at the fork() call.) If so, explicitly reset its
332 thread number.
333
334 step_resumes are a form of bp that are made to be per-thread.
335 Since we created the step_resume bp when the parent process
336 was being debugged, and now are switching to the child process,
337 from the breakpoint package's viewpoint, that's a switch of
338 "threads". We must update the bp's notion of which thread
339 it is for, or it'll be ignored when it triggers. */
340
341 if (step_resume_breakpoint)
342 breakpoint_re_set_thread (step_resume_breakpoint);
343
344 /* Reinsert all breakpoints in the child. The user may have set
345 breakpoints after catching the fork, in which case those
346 were never set in the child, but only in the parent. This makes
347 sure the inserted breakpoints match the breakpoint list. */
348
349 breakpoint_re_set ();
350 insert_breakpoints ();
c906108c 351}
c906108c 352
1adeb98a
FN
353/* EXECD_PATHNAME is assumed to be non-NULL. */
354
c906108c 355static void
96baa820 356follow_exec (int pid, char *execd_pathname)
c906108c 357{
c906108c 358 int saved_pid = pid;
7a292a7a
SS
359 struct target_ops *tgt;
360
361 if (!may_follow_exec)
362 return;
c906108c 363
c906108c
SS
364 /* This is an exec event that we actually wish to pay attention to.
365 Refresh our symbol table to the newly exec'd program, remove any
366 momentary bp's, etc.
367
368 If there are breakpoints, they aren't really inserted now,
369 since the exec() transformed our inferior into a fresh set
370 of instructions.
371
372 We want to preserve symbolic breakpoints on the list, since
373 we have hopes that they can be reset after the new a.out's
374 symbol table is read.
375
376 However, any "raw" breakpoints must be removed from the list
377 (e.g., the solib bp's), since their address is probably invalid
378 now.
379
380 And, we DON'T want to call delete_breakpoints() here, since
381 that may write the bp's "shadow contents" (the instruction
382 value that was overwritten witha TRAP instruction). Since
383 we now have a new a.out, those shadow contents aren't valid. */
384 update_breakpoints_after_exec ();
385
386 /* If there was one, it's gone now. We cannot truly step-to-next
387 statement through an exec(). */
388 step_resume_breakpoint = NULL;
389 step_range_start = 0;
390 step_range_end = 0;
391
c906108c
SS
392 /* What is this a.out's name? */
393 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
394
395 /* We've followed the inferior through an exec. Therefore, the
396 inferior has essentially been killed & reborn. */
7a292a7a
SS
397
398 /* First collect the run target in effect. */
399 tgt = find_run_target ();
400 /* If we can't find one, things are in a very strange state... */
401 if (tgt == NULL)
402 error ("Could find run target to save before following exec");
403
c906108c
SS
404 gdb_flush (gdb_stdout);
405 target_mourn_inferior ();
39f77062 406 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 407 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 408 push_target (tgt);
c906108c
SS
409
410 /* That a.out is now the one to use. */
411 exec_file_attach (execd_pathname, 0);
412
413 /* And also is where symbols can be found. */
1adeb98a 414 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
415
416 /* Reset the shared library package. This ensures that we get
417 a shlib event when the child reaches "_start", at which point
418 the dld will have had a chance to initialize the child. */
7a292a7a 419#if defined(SOLIB_RESTART)
c906108c 420 SOLIB_RESTART ();
7a292a7a
SS
421#endif
422#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 423 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 424#endif
c906108c
SS
425
426 /* Reinsert all breakpoints. (Those which were symbolic have
427 been reset to the proper address in the new a.out, thanks
428 to symbol_file_command...) */
429 insert_breakpoints ();
430
431 /* The next resume of this inferior should bring it to the shlib
432 startup breakpoints. (If the user had also set bp's on
433 "main" from the old (parent) process, then they'll auto-
434 matically get reset there in the new process.) */
c906108c
SS
435}
436
437/* Non-zero if we just simulating a single-step. This is needed
438 because we cannot remove the breakpoints in the inferior process
439 until after the `wait' in `wait_for_inferior'. */
440static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
441
442/* The thread we inserted single-step breakpoints for. */
443static ptid_t singlestep_ptid;
444
445/* If another thread hit the singlestep breakpoint, we save the original
446 thread here so that we can resume single-stepping it later. */
447static ptid_t saved_singlestep_ptid;
448static int stepping_past_singlestep_breakpoint;
c906108c
SS
449\f
450
451/* Things to clean up if we QUIT out of resume (). */
c906108c 452static void
74b7792f 453resume_cleanups (void *ignore)
c906108c
SS
454{
455 normal_stop ();
456}
457
53904c9e
AC
458static const char schedlock_off[] = "off";
459static const char schedlock_on[] = "on";
460static const char schedlock_step[] = "step";
461static const char *scheduler_mode = schedlock_off;
488f131b 462static const char *scheduler_enums[] = {
ef346e04
AC
463 schedlock_off,
464 schedlock_on,
465 schedlock_step,
466 NULL
467};
c906108c
SS
468
469static void
96baa820 470set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 471{
cb1a6d5f
AC
472 /* NOTE: cagney/2002-03-17: The deprecated_add_show_from_set()
473 function clones the set command passed as a parameter. The clone
474 operation will include (BUG?) any ``set'' command callback, if
475 present. Commands like ``info set'' call all the ``show''
476 command callbacks. Unfortunately, for ``show'' commands cloned
477 from ``set'', this includes callbacks belonging to ``set''
478 commands. Making this worse, this only occures if
479 deprecated_add_show_from_set() is called after add_cmd_sfunc()
480 (BUG?). */
1868c04e 481 if (cmd_type (c) == set_cmd)
c906108c
SS
482 if (!target_can_lock_scheduler)
483 {
484 scheduler_mode = schedlock_off;
488f131b 485 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
486 }
487}
488
489
490/* Resume the inferior, but allow a QUIT. This is useful if the user
491 wants to interrupt some lengthy single-stepping operation
492 (for child processes, the SIGINT goes to the inferior, and so
493 we get a SIGINT random_signal, but for remote debugging and perhaps
494 other targets, that's not true).
495
496 STEP nonzero if we should step (zero to continue instead).
497 SIG is the signal to give the inferior (zero for none). */
498void
96baa820 499resume (int step, enum target_signal sig)
c906108c
SS
500{
501 int should_resume = 1;
74b7792f 502 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
503 QUIT;
504
527159b7 505 if (debug_infrun)
8a9de0e4
AC
506 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
507 step, sig);
527159b7 508
ef5cf84e
MS
509 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
510
c906108c 511
692590c1
MS
512 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
513 over an instruction that causes a page fault without triggering
514 a hardware watchpoint. The kernel properly notices that it shouldn't
515 stop, because the hardware watchpoint is not triggered, but it forgets
516 the step request and continues the program normally.
517 Work around the problem by removing hardware watchpoints if a step is
518 requested, GDB will check for a hardware watchpoint trigger after the
519 step anyway. */
520 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
521 remove_hw_watchpoints ();
488f131b 522
692590c1 523
c2c6d25f
JM
524 /* Normally, by the time we reach `resume', the breakpoints are either
525 removed or inserted, as appropriate. The exception is if we're sitting
526 at a permanent breakpoint; we need to step over it, but permanent
527 breakpoints can't be removed. So we have to test for it here. */
528 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
529 SKIP_PERMANENT_BREAKPOINT ();
530
b0ed3589 531 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
532 {
533 /* Do it the hard way, w/temp breakpoints */
c5aa993b 534 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
535 /* ...and don't ask hardware to do it. */
536 step = 0;
537 /* and do not pull these breakpoints until after a `wait' in
538 `wait_for_inferior' */
539 singlestep_breakpoints_inserted_p = 1;
9f976b41 540 singlestep_ptid = inferior_ptid;
c906108c
SS
541 }
542
c906108c 543 /* If there were any forks/vforks/execs that were caught and are
6604731b 544 now to be followed, then do so. */
c906108c
SS
545 switch (pending_follow.kind)
546 {
6604731b
DJ
547 case TARGET_WAITKIND_FORKED:
548 case TARGET_WAITKIND_VFORKED:
c906108c 549 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
550 if (follow_fork ())
551 should_resume = 0;
c906108c
SS
552 break;
553
6604731b 554 case TARGET_WAITKIND_EXECD:
c906108c 555 /* follow_exec is called as soon as the exec event is seen. */
6604731b 556 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
557 break;
558
559 default:
560 break;
561 }
c906108c
SS
562
563 /* Install inferior's terminal modes. */
564 target_terminal_inferior ();
565
566 if (should_resume)
567 {
39f77062 568 ptid_t resume_ptid;
dfcd3bfb 569
488f131b 570 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 571
8fb3e588
AC
572 if ((step || singlestep_breakpoints_inserted_p)
573 && (stepping_past_singlestep_breakpoint
574 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 575 {
ef5cf84e
MS
576 /* Stepping past a breakpoint without inserting breakpoints.
577 Make sure only the current thread gets to step, so that
578 other threads don't sneak past breakpoints while they are
579 not inserted. */
c906108c 580
ef5cf84e 581 resume_ptid = inferior_ptid;
c906108c 582 }
ef5cf84e 583
8fb3e588
AC
584 if ((scheduler_mode == schedlock_on)
585 || (scheduler_mode == schedlock_step
586 && (step || singlestep_breakpoints_inserted_p)))
c906108c 587 {
ef5cf84e 588 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 589 resume_ptid = inferior_ptid;
c906108c 590 }
ef5cf84e 591
c4ed33b9
AC
592 if (CANNOT_STEP_BREAKPOINT)
593 {
594 /* Most targets can step a breakpoint instruction, thus
595 executing it normally. But if this one cannot, just
596 continue and we will hit it anyway. */
597 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
598 step = 0;
599 }
39f77062 600 target_resume (resume_ptid, step, sig);
c906108c
SS
601 }
602
603 discard_cleanups (old_cleanups);
604}
605\f
606
607/* Clear out all variables saying what to do when inferior is continued.
608 First do this, then set the ones you want, then call `proceed'. */
609
610void
96baa820 611clear_proceed_status (void)
c906108c
SS
612{
613 trap_expected = 0;
614 step_range_start = 0;
615 step_range_end = 0;
aa0cd9c1 616 step_frame_id = null_frame_id;
5fbbeb29 617 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 618 stop_after_trap = 0;
c0236d92 619 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
620 proceed_to_finish = 0;
621 breakpoint_proceeded = 1; /* We're about to proceed... */
622
623 /* Discard any remaining commands or status from previous stop. */
624 bpstat_clear (&stop_bpstat);
625}
626
ea67f13b
DJ
627/* This should be suitable for any targets that support threads. */
628
629static int
630prepare_to_proceed (void)
631{
632 ptid_t wait_ptid;
633 struct target_waitstatus wait_status;
634
635 /* Get the last target status returned by target_wait(). */
636 get_last_target_status (&wait_ptid, &wait_status);
637
638 /* Make sure we were stopped either at a breakpoint, or because
639 of a Ctrl-C. */
640 if (wait_status.kind != TARGET_WAITKIND_STOPPED
8fb3e588
AC
641 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
642 && wait_status.value.sig != TARGET_SIGNAL_INT))
ea67f13b
DJ
643 {
644 return 0;
645 }
646
647 if (!ptid_equal (wait_ptid, minus_one_ptid)
648 && !ptid_equal (inferior_ptid, wait_ptid))
649 {
650 /* Switched over from WAIT_PID. */
651 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
652
653 if (wait_pc != read_pc ())
654 {
655 /* Switch back to WAIT_PID thread. */
656 inferior_ptid = wait_ptid;
657
658 /* FIXME: This stuff came from switch_to_thread() in
659 thread.c (which should probably be a public function). */
660 flush_cached_frames ();
661 registers_changed ();
662 stop_pc = wait_pc;
663 select_frame (get_current_frame ());
664 }
665
8fb3e588
AC
666 /* We return 1 to indicate that there is a breakpoint here,
667 so we need to step over it before continuing to avoid
668 hitting it straight away. */
669 if (breakpoint_here_p (wait_pc))
670 return 1;
ea67f13b
DJ
671 }
672
673 return 0;
8fb3e588 674
ea67f13b 675}
e4846b08
JJ
676
677/* Record the pc of the program the last time it stopped. This is
678 just used internally by wait_for_inferior, but need to be preserved
679 over calls to it and cleared when the inferior is started. */
680static CORE_ADDR prev_pc;
681
c906108c
SS
682/* Basic routine for continuing the program in various fashions.
683
684 ADDR is the address to resume at, or -1 for resume where stopped.
685 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 686 or -1 for act according to how it stopped.
c906108c 687 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
688 -1 means return after that and print nothing.
689 You should probably set various step_... variables
690 before calling here, if you are stepping.
c906108c
SS
691
692 You should call clear_proceed_status before calling proceed. */
693
694void
96baa820 695proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
696{
697 int oneproc = 0;
698
699 if (step > 0)
700 step_start_function = find_pc_function (read_pc ());
701 if (step < 0)
702 stop_after_trap = 1;
703
2acceee2 704 if (addr == (CORE_ADDR) -1)
c906108c 705 {
c906108c 706 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
707 /* There is a breakpoint at the address we will resume at,
708 step one instruction before inserting breakpoints so that
709 we do not stop right away (and report a second hit at this
710 breakpoint). */
c906108c 711 oneproc = 1;
3352ef37
AC
712 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
713 && gdbarch_single_step_through_delay (current_gdbarch,
714 get_current_frame ()))
715 /* We stepped onto an instruction that needs to be stepped
716 again before re-inserting the breakpoint, do so. */
c906108c
SS
717 oneproc = 1;
718 }
719 else
720 {
721 write_pc (addr);
c906108c
SS
722 }
723
527159b7 724 if (debug_infrun)
8a9de0e4
AC
725 fprintf_unfiltered (gdb_stdlog,
726 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
727 paddr_nz (addr), siggnal, step);
527159b7 728
c906108c
SS
729 /* In a multi-threaded task we may select another thread
730 and then continue or step.
731
732 But if the old thread was stopped at a breakpoint, it
733 will immediately cause another breakpoint stop without
734 any execution (i.e. it will report a breakpoint hit
735 incorrectly). So we must step over it first.
736
ea67f13b 737 prepare_to_proceed checks the current thread against the thread
c906108c
SS
738 that reported the most recent event. If a step-over is required
739 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
740 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
741 oneproc = 1;
c906108c 742
c906108c
SS
743 if (oneproc)
744 /* We will get a trace trap after one instruction.
745 Continue it automatically and insert breakpoints then. */
746 trap_expected = 1;
747 else
748 {
81d0cc19
GS
749 insert_breakpoints ();
750 /* If we get here there was no call to error() in
8fb3e588 751 insert breakpoints -- so they were inserted. */
c906108c
SS
752 breakpoints_inserted = 1;
753 }
754
755 if (siggnal != TARGET_SIGNAL_DEFAULT)
756 stop_signal = siggnal;
757 /* If this signal should not be seen by program,
758 give it zero. Used for debugging signals. */
759 else if (!signal_program[stop_signal])
760 stop_signal = TARGET_SIGNAL_0;
761
762 annotate_starting ();
763
764 /* Make sure that output from GDB appears before output from the
765 inferior. */
766 gdb_flush (gdb_stdout);
767
e4846b08
JJ
768 /* Refresh prev_pc value just prior to resuming. This used to be
769 done in stop_stepping, however, setting prev_pc there did not handle
770 scenarios such as inferior function calls or returning from
771 a function via the return command. In those cases, the prev_pc
772 value was not set properly for subsequent commands. The prev_pc value
773 is used to initialize the starting line number in the ecs. With an
774 invalid value, the gdb next command ends up stopping at the position
775 represented by the next line table entry past our start position.
776 On platforms that generate one line table entry per line, this
777 is not a problem. However, on the ia64, the compiler generates
778 extraneous line table entries that do not increase the line number.
779 When we issue the gdb next command on the ia64 after an inferior call
780 or a return command, we often end up a few instructions forward, still
781 within the original line we started.
782
783 An attempt was made to have init_execution_control_state () refresh
784 the prev_pc value before calculating the line number. This approach
785 did not work because on platforms that use ptrace, the pc register
786 cannot be read unless the inferior is stopped. At that point, we
787 are not guaranteed the inferior is stopped and so the read_pc ()
788 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 789 updated correctly when the inferior is stopped. */
e4846b08
JJ
790 prev_pc = read_pc ();
791
c906108c
SS
792 /* Resume inferior. */
793 resume (oneproc || step || bpstat_should_step (), stop_signal);
794
795 /* Wait for it to stop (if not standalone)
796 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
797 /* Do this only if we are not using the event loop, or if the target
798 does not support asynchronous execution. */
362646f5 799 if (!target_can_async_p ())
43ff13b4
JM
800 {
801 wait_for_inferior ();
802 normal_stop ();
803 }
c906108c 804}
c906108c
SS
805\f
806
807/* Start remote-debugging of a machine over a serial link. */
96baa820 808
c906108c 809void
96baa820 810start_remote (void)
c906108c
SS
811{
812 init_thread_list ();
813 init_wait_for_inferior ();
c0236d92 814 stop_soon = STOP_QUIETLY;
c906108c 815 trap_expected = 0;
43ff13b4 816
6426a772
JM
817 /* Always go on waiting for the target, regardless of the mode. */
818 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 819 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
820 nothing is returned (instead of just blocking). Because of this,
821 targets expecting an immediate response need to, internally, set
822 things up so that the target_wait() is forced to eventually
823 timeout. */
824 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
825 differentiate to its caller what the state of the target is after
826 the initial open has been performed. Here we're assuming that
827 the target has stopped. It should be possible to eventually have
828 target_open() return to the caller an indication that the target
829 is currently running and GDB state should be set to the same as
830 for an async run. */
831 wait_for_inferior ();
832 normal_stop ();
c906108c
SS
833}
834
835/* Initialize static vars when a new inferior begins. */
836
837void
96baa820 838init_wait_for_inferior (void)
c906108c
SS
839{
840 /* These are meaningless until the first time through wait_for_inferior. */
841 prev_pc = 0;
c906108c 842
c906108c
SS
843 breakpoints_inserted = 0;
844 breakpoint_init_inferior (inf_starting);
845
846 /* Don't confuse first call to proceed(). */
847 stop_signal = TARGET_SIGNAL_0;
848
849 /* The first resume is not following a fork/vfork/exec. */
850 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 851
c906108c 852 clear_proceed_status ();
9f976b41
DJ
853
854 stepping_past_singlestep_breakpoint = 0;
c906108c 855}
c906108c 856\f
b83266a0
SS
857/* This enum encodes possible reasons for doing a target_wait, so that
858 wfi can call target_wait in one place. (Ultimately the call will be
859 moved out of the infinite loop entirely.) */
860
c5aa993b
JM
861enum infwait_states
862{
cd0fc7c3
SS
863 infwait_normal_state,
864 infwait_thread_hop_state,
cd0fc7c3 865 infwait_nonstep_watch_state
b83266a0
SS
866};
867
11cf8741
JM
868/* Why did the inferior stop? Used to print the appropriate messages
869 to the interface from within handle_inferior_event(). */
870enum inferior_stop_reason
871{
872 /* We don't know why. */
873 STOP_UNKNOWN,
874 /* Step, next, nexti, stepi finished. */
875 END_STEPPING_RANGE,
876 /* Found breakpoint. */
877 BREAKPOINT_HIT,
878 /* Inferior terminated by signal. */
879 SIGNAL_EXITED,
880 /* Inferior exited. */
881 EXITED,
882 /* Inferior received signal, and user asked to be notified. */
883 SIGNAL_RECEIVED
884};
885
cd0fc7c3
SS
886/* This structure contains what used to be local variables in
887 wait_for_inferior. Probably many of them can return to being
888 locals in handle_inferior_event. */
889
c5aa993b 890struct execution_control_state
488f131b
JB
891{
892 struct target_waitstatus ws;
893 struct target_waitstatus *wp;
894 int another_trap;
895 int random_signal;
896 CORE_ADDR stop_func_start;
897 CORE_ADDR stop_func_end;
898 char *stop_func_name;
899 struct symtab_and_line sal;
488f131b
JB
900 int current_line;
901 struct symtab *current_symtab;
902 int handling_longjmp; /* FIXME */
903 ptid_t ptid;
904 ptid_t saved_inferior_ptid;
68f53502 905 int step_after_step_resume_breakpoint;
488f131b
JB
906 int stepping_through_solib_after_catch;
907 bpstat stepping_through_solib_catchpoints;
488f131b
JB
908 int new_thread_event;
909 struct target_waitstatus tmpstatus;
910 enum infwait_states infwait_state;
911 ptid_t waiton_ptid;
912 int wait_some_more;
913};
914
915void init_execution_control_state (struct execution_control_state *ecs);
916
917void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 918
c2c6d25f 919static void step_into_function (struct execution_control_state *ecs);
44cbf7b5
AC
920static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
921static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
922 struct frame_id sr_id);
104c1213
JM
923static void stop_stepping (struct execution_control_state *ecs);
924static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 925static void keep_going (struct execution_control_state *ecs);
488f131b
JB
926static void print_stop_reason (enum inferior_stop_reason stop_reason,
927 int stop_info);
104c1213 928
cd0fc7c3
SS
929/* Wait for control to return from inferior to debugger.
930 If inferior gets a signal, we may decide to start it up again
931 instead of returning. That is why there is a loop in this function.
932 When this function actually returns it means the inferior
933 should be left stopped and GDB should read more commands. */
934
935void
96baa820 936wait_for_inferior (void)
cd0fc7c3
SS
937{
938 struct cleanup *old_cleanups;
939 struct execution_control_state ecss;
940 struct execution_control_state *ecs;
c906108c 941
527159b7 942 if (debug_infrun)
8a9de0e4 943 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 944
8601f500 945 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 946 &step_resume_breakpoint);
cd0fc7c3
SS
947
948 /* wfi still stays in a loop, so it's OK just to take the address of
949 a local to get the ecs pointer. */
950 ecs = &ecss;
951
952 /* Fill in with reasonable starting values. */
953 init_execution_control_state (ecs);
954
c906108c 955 /* We'll update this if & when we switch to a new thread. */
39f77062 956 previous_inferior_ptid = inferior_ptid;
c906108c 957
cd0fc7c3
SS
958 overlay_cache_invalid = 1;
959
960 /* We have to invalidate the registers BEFORE calling target_wait
961 because they can be loaded from the target while in target_wait.
962 This makes remote debugging a bit more efficient for those
963 targets that provide critical registers as part of their normal
964 status mechanism. */
965
966 registers_changed ();
b83266a0 967
c906108c
SS
968 while (1)
969 {
9a4105ab
AC
970 if (deprecated_target_wait_hook)
971 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 972 else
39f77062 973 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 974
cd0fc7c3
SS
975 /* Now figure out what to do with the result of the result. */
976 handle_inferior_event (ecs);
c906108c 977
cd0fc7c3
SS
978 if (!ecs->wait_some_more)
979 break;
980 }
981 do_cleanups (old_cleanups);
982}
c906108c 983
43ff13b4
JM
984/* Asynchronous version of wait_for_inferior. It is called by the
985 event loop whenever a change of state is detected on the file
986 descriptor corresponding to the target. It can be called more than
987 once to complete a single execution command. In such cases we need
988 to keep the state in a global variable ASYNC_ECSS. If it is the
989 last time that this function is called for a single execution
990 command, then report to the user that the inferior has stopped, and
991 do the necessary cleanups. */
992
993struct execution_control_state async_ecss;
994struct execution_control_state *async_ecs;
995
996void
fba45db2 997fetch_inferior_event (void *client_data)
43ff13b4
JM
998{
999 static struct cleanup *old_cleanups;
1000
c5aa993b 1001 async_ecs = &async_ecss;
43ff13b4
JM
1002
1003 if (!async_ecs->wait_some_more)
1004 {
488f131b 1005 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1006 &step_resume_breakpoint);
43ff13b4
JM
1007
1008 /* Fill in with reasonable starting values. */
1009 init_execution_control_state (async_ecs);
1010
43ff13b4 1011 /* We'll update this if & when we switch to a new thread. */
39f77062 1012 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1013
1014 overlay_cache_invalid = 1;
1015
1016 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1017 because they can be loaded from the target while in target_wait.
1018 This makes remote debugging a bit more efficient for those
1019 targets that provide critical registers as part of their normal
1020 status mechanism. */
43ff13b4
JM
1021
1022 registers_changed ();
1023 }
1024
9a4105ab 1025 if (deprecated_target_wait_hook)
488f131b 1026 async_ecs->ptid =
9a4105ab 1027 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1028 else
39f77062 1029 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1030
1031 /* Now figure out what to do with the result of the result. */
1032 handle_inferior_event (async_ecs);
1033
1034 if (!async_ecs->wait_some_more)
1035 {
adf40b2e 1036 /* Do only the cleanups that have been added by this
488f131b
JB
1037 function. Let the continuations for the commands do the rest,
1038 if there are any. */
43ff13b4
JM
1039 do_exec_cleanups (old_cleanups);
1040 normal_stop ();
c2d11a7d
JM
1041 if (step_multi && stop_step)
1042 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1043 else
1044 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1045 }
1046}
1047
cd0fc7c3
SS
1048/* Prepare an execution control state for looping through a
1049 wait_for_inferior-type loop. */
1050
1051void
96baa820 1052init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1053{
c2d11a7d 1054 /* ecs->another_trap? */
cd0fc7c3 1055 ecs->random_signal = 0;
68f53502 1056 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1057 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1058 ecs->stepping_through_solib_after_catch = 0;
1059 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1060 ecs->sal = find_pc_line (prev_pc, 0);
1061 ecs->current_line = ecs->sal.line;
1062 ecs->current_symtab = ecs->sal.symtab;
1063 ecs->infwait_state = infwait_normal_state;
39f77062 1064 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1065 ecs->wp = &(ecs->ws);
1066}
1067
e02bc4cc 1068/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1069 target_wait()/deprecated_target_wait_hook(). The data is actually
1070 cached by handle_inferior_event(), which gets called immediately
1071 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1072
1073void
488f131b 1074get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1075{
39f77062 1076 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1077 *status = target_last_waitstatus;
1078}
1079
dd80620e
MS
1080/* Switch thread contexts, maintaining "infrun state". */
1081
1082static void
1083context_switch (struct execution_control_state *ecs)
1084{
1085 /* Caution: it may happen that the new thread (or the old one!)
1086 is not in the thread list. In this case we must not attempt
1087 to "switch context", or we run the risk that our context may
1088 be lost. This may happen as a result of the target module
1089 mishandling thread creation. */
1090
1091 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1092 { /* Perform infrun state context switch: */
dd80620e 1093 /* Save infrun state for the old thread. */
0ce3d317 1094 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1095 trap_expected, step_resume_breakpoint,
15960608 1096 step_range_start,
aa0cd9c1 1097 step_range_end, &step_frame_id,
dd80620e
MS
1098 ecs->handling_longjmp, ecs->another_trap,
1099 ecs->stepping_through_solib_after_catch,
1100 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1101 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1102
1103 /* Load infrun state for the new thread. */
0ce3d317 1104 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1105 &trap_expected, &step_resume_breakpoint,
15960608 1106 &step_range_start,
aa0cd9c1 1107 &step_range_end, &step_frame_id,
dd80620e
MS
1108 &ecs->handling_longjmp, &ecs->another_trap,
1109 &ecs->stepping_through_solib_after_catch,
1110 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1111 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1112 }
1113 inferior_ptid = ecs->ptid;
1114}
1115
4fa8626c
DJ
1116static void
1117adjust_pc_after_break (struct execution_control_state *ecs)
1118{
8aad930b 1119 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1120
1121 /* If this target does not decrement the PC after breakpoints, then
1122 we have nothing to do. */
1123 if (DECR_PC_AFTER_BREAK == 0)
1124 return;
1125
1126 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1127 we aren't, just return.
9709f61c
DJ
1128
1129 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1130 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1131 by software breakpoints should be handled through the normal breakpoint
1132 layer.
8fb3e588 1133
4fa8626c
DJ
1134 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1135 different signals (SIGILL or SIGEMT for instance), but it is less
1136 clear where the PC is pointing afterwards. It may not match
1137 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1138 these signals at breakpoints (the code has been in GDB since at least
1139 1992) so I can not guess how to handle them here.
8fb3e588 1140
4fa8626c
DJ
1141 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1142 would have the PC after hitting a watchpoint affected by
1143 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1144 in GDB history, and it seems unlikely to be correct, so
1145 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1146
1147 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1148 return;
1149
1150 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1151 return;
1152
8aad930b
AC
1153 /* Find the location where (if we've hit a breakpoint) the
1154 breakpoint would be. */
1155 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1156
1157 if (SOFTWARE_SINGLE_STEP_P ())
1158 {
1159 /* When using software single-step, a SIGTRAP can only indicate
8fb3e588
AC
1160 an inserted breakpoint. This actually makes things
1161 easier. */
8aad930b
AC
1162 if (singlestep_breakpoints_inserted_p)
1163 /* When software single stepping, the instruction at [prev_pc]
1164 is never a breakpoint, but the instruction following
1165 [prev_pc] (in program execution order) always is. Assume
1166 that following instruction was reached and hence a software
1167 breakpoint was hit. */
1168 write_pc_pid (breakpoint_pc, ecs->ptid);
1169 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1170 /* The inferior was free running (i.e., no single-step
1171 breakpoints inserted) and it hit a software breakpoint. */
1172 write_pc_pid (breakpoint_pc, ecs->ptid);
1173 }
1174 else
1175 {
1176 /* When using hardware single-step, a SIGTRAP is reported for
8fb3e588
AC
1177 both a completed single-step and a software breakpoint. Need
1178 to differentiate between the two as the latter needs
1179 adjusting but the former does not. */
8aad930b
AC
1180 if (currently_stepping (ecs))
1181 {
1182 if (prev_pc == breakpoint_pc
1183 && software_breakpoint_inserted_here_p (breakpoint_pc))
1184 /* Hardware single-stepped a software breakpoint (as
1185 occures when the inferior is resumed with PC pointing
1186 at not-yet-hit software breakpoint). Since the
1187 breakpoint really is executed, the inferior needs to be
1188 backed up to the breakpoint address. */
1189 write_pc_pid (breakpoint_pc, ecs->ptid);
1190 }
1191 else
1192 {
1193 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1194 /* The inferior was free running (i.e., no hardware
1195 single-step and no possibility of a false SIGTRAP) and
1196 hit a software breakpoint. */
1197 write_pc_pid (breakpoint_pc, ecs->ptid);
1198 }
1199 }
4fa8626c
DJ
1200}
1201
cd0fc7c3
SS
1202/* Given an execution control state that has been freshly filled in
1203 by an event from the inferior, figure out what it means and take
1204 appropriate action. */
c906108c 1205
7270d8f2
OF
1206int stepped_after_stopped_by_watchpoint;
1207
cd0fc7c3 1208void
96baa820 1209handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1210{
65e82032
AC
1211 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1212 thinking that the variable stepped_after_stopped_by_watchpoint
1213 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1214 defined in the file "config/pa/nm-hppah.h", accesses the variable
1215 indirectly. Mutter something rude about the HP merge. */
c8edd8b4 1216 int sw_single_step_trap_p = 0;
8fb3e588 1217 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1218
e02bc4cc 1219 /* Cache the last pid/waitstatus. */
39f77062 1220 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1221 target_last_waitstatus = *ecs->wp;
1222
4fa8626c
DJ
1223 adjust_pc_after_break (ecs);
1224
488f131b
JB
1225 switch (ecs->infwait_state)
1226 {
1227 case infwait_thread_hop_state:
527159b7 1228 if (debug_infrun)
8a9de0e4 1229 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1230 /* Cancel the waiton_ptid. */
1231 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1232 break;
b83266a0 1233
488f131b 1234 case infwait_normal_state:
527159b7 1235 if (debug_infrun)
8a9de0e4 1236 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
488f131b
JB
1237 stepped_after_stopped_by_watchpoint = 0;
1238 break;
b83266a0 1239
488f131b 1240 case infwait_nonstep_watch_state:
527159b7 1241 if (debug_infrun)
8a9de0e4
AC
1242 fprintf_unfiltered (gdb_stdlog,
1243 "infrun: infwait_nonstep_watch_state\n");
488f131b 1244 insert_breakpoints ();
c906108c 1245
488f131b
JB
1246 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1247 handle things like signals arriving and other things happening
1248 in combination correctly? */
1249 stepped_after_stopped_by_watchpoint = 1;
1250 break;
65e82032
AC
1251
1252 default:
1253 internal_error (__FILE__, __LINE__, "bad switch");
488f131b
JB
1254 }
1255 ecs->infwait_state = infwait_normal_state;
c906108c 1256
488f131b 1257 flush_cached_frames ();
c906108c 1258
488f131b 1259 /* If it's a new process, add it to the thread database */
c906108c 1260
488f131b 1261 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1262 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1263 && !in_thread_list (ecs->ptid));
1264
1265 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1266 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1267 {
1268 add_thread (ecs->ptid);
c906108c 1269
488f131b
JB
1270 ui_out_text (uiout, "[New ");
1271 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1272 ui_out_text (uiout, "]\n");
488f131b 1273 }
c906108c 1274
488f131b
JB
1275 switch (ecs->ws.kind)
1276 {
1277 case TARGET_WAITKIND_LOADED:
527159b7 1278 if (debug_infrun)
8a9de0e4 1279 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
488f131b
JB
1280 /* Ignore gracefully during startup of the inferior, as it
1281 might be the shell which has just loaded some objects,
1282 otherwise add the symbols for the newly loaded objects. */
c906108c 1283#ifdef SOLIB_ADD
c0236d92 1284 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1285 {
1286 /* Remove breakpoints, SOLIB_ADD might adjust
1287 breakpoint addresses via breakpoint_re_set. */
1288 if (breakpoints_inserted)
1289 remove_breakpoints ();
c906108c 1290
488f131b
JB
1291 /* Check for any newly added shared libraries if we're
1292 supposed to be adding them automatically. Switch
1293 terminal for any messages produced by
1294 breakpoint_re_set. */
1295 target_terminal_ours_for_output ();
aff6338a 1296 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1297 stack's section table is kept up-to-date. Architectures,
1298 (e.g., PPC64), use the section table to perform
1299 operations such as address => section name and hence
1300 require the table to contain all sections (including
1301 those found in shared libraries). */
aff6338a 1302 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1303 exec_ops to SOLIB_ADD. This is because current GDB is
1304 only tooled to propagate section_table changes out from
1305 the "current_target" (see target_resize_to_sections), and
1306 not up from the exec stratum. This, of course, isn't
1307 right. "infrun.c" should only interact with the
1308 exec/process stratum, instead relying on the target stack
1309 to propagate relevant changes (stop, section table
1310 changed, ...) up to other layers. */
aff6338a 1311 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1312 target_terminal_inferior ();
1313
1314 /* Reinsert breakpoints and continue. */
1315 if (breakpoints_inserted)
1316 insert_breakpoints ();
1317 }
c906108c 1318#endif
488f131b
JB
1319 resume (0, TARGET_SIGNAL_0);
1320 prepare_to_wait (ecs);
1321 return;
c5aa993b 1322
488f131b 1323 case TARGET_WAITKIND_SPURIOUS:
527159b7 1324 if (debug_infrun)
8a9de0e4 1325 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1326 resume (0, TARGET_SIGNAL_0);
1327 prepare_to_wait (ecs);
1328 return;
c5aa993b 1329
488f131b 1330 case TARGET_WAITKIND_EXITED:
527159b7 1331 if (debug_infrun)
8a9de0e4 1332 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1333 target_terminal_ours (); /* Must do this before mourn anyway */
1334 print_stop_reason (EXITED, ecs->ws.value.integer);
1335
1336 /* Record the exit code in the convenience variable $_exitcode, so
1337 that the user can inspect this again later. */
1338 set_internalvar (lookup_internalvar ("_exitcode"),
1339 value_from_longest (builtin_type_int,
1340 (LONGEST) ecs->ws.value.integer));
1341 gdb_flush (gdb_stdout);
1342 target_mourn_inferior ();
1343 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1344 stop_print_frame = 0;
1345 stop_stepping (ecs);
1346 return;
c5aa993b 1347
488f131b 1348 case TARGET_WAITKIND_SIGNALLED:
527159b7 1349 if (debug_infrun)
8a9de0e4 1350 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1351 stop_print_frame = 0;
1352 stop_signal = ecs->ws.value.sig;
1353 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1354
488f131b
JB
1355 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1356 reach here unless the inferior is dead. However, for years
1357 target_kill() was called here, which hints that fatal signals aren't
1358 really fatal on some systems. If that's true, then some changes
1359 may be needed. */
1360 target_mourn_inferior ();
c906108c 1361
488f131b
JB
1362 print_stop_reason (SIGNAL_EXITED, stop_signal);
1363 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1364 stop_stepping (ecs);
1365 return;
c906108c 1366
488f131b
JB
1367 /* The following are the only cases in which we keep going;
1368 the above cases end in a continue or goto. */
1369 case TARGET_WAITKIND_FORKED:
deb3b17b 1370 case TARGET_WAITKIND_VFORKED:
527159b7 1371 if (debug_infrun)
8a9de0e4 1372 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1373 stop_signal = TARGET_SIGNAL_TRAP;
1374 pending_follow.kind = ecs->ws.kind;
1375
8e7d2c16
DJ
1376 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1377 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1378
488f131b 1379 stop_pc = read_pc ();
675bf4cb 1380
00d4360e 1381 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1382
488f131b 1383 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1384
1385 /* If no catchpoint triggered for this, then keep going. */
1386 if (ecs->random_signal)
1387 {
1388 stop_signal = TARGET_SIGNAL_0;
1389 keep_going (ecs);
1390 return;
1391 }
488f131b
JB
1392 goto process_event_stop_test;
1393
1394 case TARGET_WAITKIND_EXECD:
527159b7 1395 if (debug_infrun)
8a9de0e4 1396 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECED\n");
488f131b
JB
1397 stop_signal = TARGET_SIGNAL_TRAP;
1398
7d2830a3 1399 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1400 target_wait function. Until then following vfork on HP/UX 10.20
1401 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1402 /* Is this a target which reports multiple exec events per actual
1403 call to exec()? (HP-UX using ptrace does, for example.) If so,
1404 ignore all but the last one. Just resume the exec'r, and wait
1405 for the next exec event. */
1406 if (inferior_ignoring_leading_exec_events)
1407 {
1408 inferior_ignoring_leading_exec_events--;
1409 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1410 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1411 parent_pid);
1412 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1413 prepare_to_wait (ecs);
1414 return;
1415 }
1416 inferior_ignoring_leading_exec_events =
1417 target_reported_exec_events_per_exec_call () - 1;
1418
1419 pending_follow.execd_pathname =
1420 savestring (ecs->ws.value.execd_pathname,
1421 strlen (ecs->ws.value.execd_pathname));
1422
488f131b
JB
1423 /* This causes the eventpoints and symbol table to be reset. Must
1424 do this now, before trying to determine whether to stop. */
1425 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1426 xfree (pending_follow.execd_pathname);
c906108c 1427
488f131b
JB
1428 stop_pc = read_pc_pid (ecs->ptid);
1429 ecs->saved_inferior_ptid = inferior_ptid;
1430 inferior_ptid = ecs->ptid;
675bf4cb 1431
00d4360e 1432 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1433
488f131b
JB
1434 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1435 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1436
1437 /* If no catchpoint triggered for this, then keep going. */
1438 if (ecs->random_signal)
1439 {
1440 stop_signal = TARGET_SIGNAL_0;
1441 keep_going (ecs);
1442 return;
1443 }
488f131b
JB
1444 goto process_event_stop_test;
1445
b4dc5ffa
MK
1446 /* Be careful not to try to gather much state about a thread
1447 that's in a syscall. It's frequently a losing proposition. */
488f131b 1448 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1449 if (debug_infrun)
8a9de0e4 1450 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1451 resume (0, TARGET_SIGNAL_0);
1452 prepare_to_wait (ecs);
1453 return;
c906108c 1454
488f131b
JB
1455 /* Before examining the threads further, step this thread to
1456 get it entirely out of the syscall. (We get notice of the
1457 event when the thread is just on the verge of exiting a
1458 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1459 into user code.) */
488f131b 1460 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1461 if (debug_infrun)
8a9de0e4 1462 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1463 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1464 prepare_to_wait (ecs);
1465 return;
c906108c 1466
488f131b 1467 case TARGET_WAITKIND_STOPPED:
527159b7 1468 if (debug_infrun)
8a9de0e4 1469 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1470 stop_signal = ecs->ws.value.sig;
1471 break;
c906108c 1472
488f131b
JB
1473 /* We had an event in the inferior, but we are not interested
1474 in handling it at this level. The lower layers have already
8e7d2c16 1475 done what needs to be done, if anything.
8fb3e588
AC
1476
1477 One of the possible circumstances for this is when the
1478 inferior produces output for the console. The inferior has
1479 not stopped, and we are ignoring the event. Another possible
1480 circumstance is any event which the lower level knows will be
1481 reported multiple times without an intervening resume. */
488f131b 1482 case TARGET_WAITKIND_IGNORE:
527159b7 1483 if (debug_infrun)
8a9de0e4 1484 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1485 prepare_to_wait (ecs);
488f131b
JB
1486 return;
1487 }
c906108c 1488
488f131b
JB
1489 /* We may want to consider not doing a resume here in order to give
1490 the user a chance to play with the new thread. It might be good
1491 to make that a user-settable option. */
c906108c 1492
488f131b
JB
1493 /* At this point, all threads are stopped (happens automatically in
1494 either the OS or the native code). Therefore we need to continue
1495 all threads in order to make progress. */
1496 if (ecs->new_thread_event)
1497 {
1498 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1499 prepare_to_wait (ecs);
1500 return;
1501 }
c906108c 1502
488f131b
JB
1503 stop_pc = read_pc_pid (ecs->ptid);
1504
527159b7 1505 if (debug_infrun)
8a9de0e4 1506 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1507
9f976b41
DJ
1508 if (stepping_past_singlestep_breakpoint)
1509 {
8fb3e588
AC
1510 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1511 && singlestep_breakpoints_inserted_p);
9f976b41
DJ
1512 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1513 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1514
1515 stepping_past_singlestep_breakpoint = 0;
1516
1517 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1518 breakpoint, or stopped for some other reason. It would be nice if
1519 we could tell, but we can't reliably. */
9f976b41 1520 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1521 {
527159b7 1522 if (debug_infrun)
8a9de0e4 1523 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41
DJ
1524 /* Pull the single step breakpoints out of the target. */
1525 SOFTWARE_SINGLE_STEP (0, 0);
1526 singlestep_breakpoints_inserted_p = 0;
1527
1528 ecs->random_signal = 0;
1529
1530 ecs->ptid = saved_singlestep_ptid;
1531 context_switch (ecs);
9a4105ab
AC
1532 if (deprecated_context_hook)
1533 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1534
1535 resume (1, TARGET_SIGNAL_0);
1536 prepare_to_wait (ecs);
1537 return;
1538 }
1539 }
1540
1541 stepping_past_singlestep_breakpoint = 0;
1542
488f131b
JB
1543 /* See if a thread hit a thread-specific breakpoint that was meant for
1544 another thread. If so, then step that thread past the breakpoint,
1545 and continue it. */
1546
1547 if (stop_signal == TARGET_SIGNAL_TRAP)
1548 {
9f976b41
DJ
1549 int thread_hop_needed = 0;
1550
f8d40ec8
JB
1551 /* Check if a regular breakpoint has been hit before checking
1552 for a potential single step breakpoint. Otherwise, GDB will
1553 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1554 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1555 {
c5aa993b 1556 ecs->random_signal = 0;
4fa8626c 1557 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1558 thread_hop_needed = 1;
1559 }
1560 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1561 {
1562 ecs->random_signal = 0;
1563 /* The call to in_thread_list is necessary because PTIDs sometimes
1564 change when we go from single-threaded to multi-threaded. If
1565 the singlestep_ptid is still in the list, assume that it is
1566 really different from ecs->ptid. */
1567 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1568 && in_thread_list (singlestep_ptid))
1569 {
1570 thread_hop_needed = 1;
1571 stepping_past_singlestep_breakpoint = 1;
1572 saved_singlestep_ptid = singlestep_ptid;
1573 }
1574 }
1575
1576 if (thread_hop_needed)
8fb3e588
AC
1577 {
1578 int remove_status;
1579
527159b7 1580 if (debug_infrun)
8a9de0e4 1581 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1582
8fb3e588
AC
1583 /* Saw a breakpoint, but it was hit by the wrong thread.
1584 Just continue. */
1585
1586 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
488f131b 1587 {
8fb3e588
AC
1588 /* Pull the single step breakpoints out of the target. */
1589 SOFTWARE_SINGLE_STEP (0, 0);
1590 singlestep_breakpoints_inserted_p = 0;
1591 }
1592
1593 remove_status = remove_breakpoints ();
1594 /* Did we fail to remove breakpoints? If so, try
1595 to set the PC past the bp. (There's at least
1596 one situation in which we can fail to remove
1597 the bp's: On HP-UX's that use ttrace, we can't
1598 change the address space of a vforking child
1599 process until the child exits (well, okay, not
1600 then either :-) or execs. */
1601 if (remove_status != 0)
1602 {
1603 /* FIXME! This is obviously non-portable! */
1604 write_pc_pid (stop_pc + 4, ecs->ptid);
1605 /* We need to restart all the threads now,
1606 * unles we're running in scheduler-locked mode.
1607 * Use currently_stepping to determine whether to
1608 * step or continue.
1609 */
1610 /* FIXME MVS: is there any reason not to call resume()? */
1611 if (scheduler_mode == schedlock_on)
1612 target_resume (ecs->ptid,
1613 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1614 else
8fb3e588
AC
1615 target_resume (RESUME_ALL,
1616 currently_stepping (ecs), TARGET_SIGNAL_0);
1617 prepare_to_wait (ecs);
1618 return;
1619 }
1620 else
1621 { /* Single step */
1622 breakpoints_inserted = 0;
1623 if (!ptid_equal (inferior_ptid, ecs->ptid))
1624 context_switch (ecs);
1625 ecs->waiton_ptid = ecs->ptid;
1626 ecs->wp = &(ecs->ws);
1627 ecs->another_trap = 1;
1628
1629 ecs->infwait_state = infwait_thread_hop_state;
1630 keep_going (ecs);
1631 registers_changed ();
1632 return;
1633 }
488f131b 1634 }
f8d40ec8 1635 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
8fb3e588
AC
1636 {
1637 sw_single_step_trap_p = 1;
1638 ecs->random_signal = 0;
1639 }
488f131b
JB
1640 }
1641 else
1642 ecs->random_signal = 1;
c906108c 1643
488f131b 1644 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1645 so, then switch to that thread. */
1646 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1647 {
527159b7 1648 if (debug_infrun)
8a9de0e4 1649 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1650
488f131b 1651 context_switch (ecs);
c5aa993b 1652
9a4105ab
AC
1653 if (deprecated_context_hook)
1654 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1655
488f131b
JB
1656 flush_cached_frames ();
1657 }
c906108c 1658
488f131b
JB
1659 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1660 {
1661 /* Pull the single step breakpoints out of the target. */
1662 SOFTWARE_SINGLE_STEP (0, 0);
1663 singlestep_breakpoints_inserted_p = 0;
1664 }
c906108c 1665
488f131b
JB
1666 /* It may not be necessary to disable the watchpoint to stop over
1667 it. For example, the PA can (with some kernel cooperation)
1668 single step over a watchpoint without disabling the watchpoint. */
1669 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1670 {
527159b7 1671 if (debug_infrun)
8a9de0e4 1672 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1673 resume (1, 0);
1674 prepare_to_wait (ecs);
1675 return;
1676 }
c906108c 1677
488f131b
JB
1678 /* It is far more common to need to disable a watchpoint to step
1679 the inferior over it. FIXME. What else might a debug
1680 register or page protection watchpoint scheme need here? */
1681 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1682 {
1683 /* At this point, we are stopped at an instruction which has
1684 attempted to write to a piece of memory under control of
1685 a watchpoint. The instruction hasn't actually executed
1686 yet. If we were to evaluate the watchpoint expression
1687 now, we would get the old value, and therefore no change
1688 would seem to have occurred.
1689
1690 In order to make watchpoints work `right', we really need
1691 to complete the memory write, and then evaluate the
1692 watchpoint expression. The following code does that by
1693 removing the watchpoint (actually, all watchpoints and
1694 breakpoints), single-stepping the target, re-inserting
1695 watchpoints, and then falling through to let normal
1696 single-step processing handle proceed. Since this
1697 includes evaluating watchpoints, things will come to a
1698 stop in the correct manner. */
1699
527159b7 1700 if (debug_infrun)
8a9de0e4 1701 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1702 remove_breakpoints ();
1703 registers_changed ();
1704 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1705
488f131b
JB
1706 ecs->waiton_ptid = ecs->ptid;
1707 ecs->wp = &(ecs->ws);
1708 ecs->infwait_state = infwait_nonstep_watch_state;
1709 prepare_to_wait (ecs);
1710 return;
1711 }
1712
1713 /* It may be possible to simply continue after a watchpoint. */
1714 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1715 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1716
1717 ecs->stop_func_start = 0;
1718 ecs->stop_func_end = 0;
1719 ecs->stop_func_name = 0;
1720 /* Don't care about return value; stop_func_start and stop_func_name
1721 will both be 0 if it doesn't work. */
1722 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1723 &ecs->stop_func_start, &ecs->stop_func_end);
782263ab 1724 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
488f131b
JB
1725 ecs->another_trap = 0;
1726 bpstat_clear (&stop_bpstat);
1727 stop_step = 0;
1728 stop_stack_dummy = 0;
1729 stop_print_frame = 1;
1730 ecs->random_signal = 0;
1731 stopped_by_random_signal = 0;
1732 breakpoints_failed = 0;
1733
3352ef37
AC
1734 if (stop_signal == TARGET_SIGNAL_TRAP
1735 && trap_expected
1736 && gdbarch_single_step_through_delay_p (current_gdbarch)
1737 && currently_stepping (ecs))
1738 {
1739 /* We're trying to step of a breakpoint. Turns out that we're
1740 also on an instruction that needs to be stepped multiple
1741 times before it's been fully executing. E.g., architectures
1742 with a delay slot. It needs to be stepped twice, once for
1743 the instruction and once for the delay slot. */
1744 int step_through_delay
1745 = gdbarch_single_step_through_delay (current_gdbarch,
1746 get_current_frame ());
527159b7 1747 if (debug_infrun && step_through_delay)
8a9de0e4 1748 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1749 if (step_range_end == 0 && step_through_delay)
1750 {
1751 /* The user issued a continue when stopped at a breakpoint.
1752 Set up for another trap and get out of here. */
1753 ecs->another_trap = 1;
1754 keep_going (ecs);
1755 return;
1756 }
1757 else if (step_through_delay)
1758 {
1759 /* The user issued a step when stopped at a breakpoint.
1760 Maybe we should stop, maybe we should not - the delay
1761 slot *might* correspond to a line of source. In any
1762 case, don't decide that here, just set ecs->another_trap,
1763 making sure we single-step again before breakpoints are
1764 re-inserted. */
1765 ecs->another_trap = 1;
1766 }
1767 }
1768
488f131b
JB
1769 /* Look at the cause of the stop, and decide what to do.
1770 The alternatives are:
1771 1) break; to really stop and return to the debugger,
1772 2) drop through to start up again
1773 (set ecs->another_trap to 1 to single step once)
1774 3) set ecs->random_signal to 1, and the decision between 1 and 2
1775 will be made according to the signal handling tables. */
1776
1777 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1778 that have to do with the program's own actions. Note that
1779 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1780 on the operating system version. Here we detect when a SIGILL or
1781 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1782 something similar for SIGSEGV, since a SIGSEGV will be generated
1783 when we're trying to execute a breakpoint instruction on a
1784 non-executable stack. This happens for call dummy breakpoints
1785 for architectures like SPARC that place call dummies on the
1786 stack. */
488f131b
JB
1787
1788 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1789 || (breakpoints_inserted
1790 && (stop_signal == TARGET_SIGNAL_ILL
1791 || stop_signal == TARGET_SIGNAL_SEGV
1792 || stop_signal == TARGET_SIGNAL_EMT))
1793 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1794 {
1795 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1796 {
527159b7 1797 if (debug_infrun)
8a9de0e4 1798 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1799 stop_print_frame = 0;
1800 stop_stepping (ecs);
1801 return;
1802 }
c54cfec8
EZ
1803
1804 /* This is originated from start_remote(), start_inferior() and
1805 shared libraries hook functions. */
c0236d92 1806 if (stop_soon == STOP_QUIETLY)
488f131b 1807 {
527159b7 1808 if (debug_infrun)
8a9de0e4 1809 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1810 stop_stepping (ecs);
1811 return;
1812 }
1813
c54cfec8
EZ
1814 /* This originates from attach_command(). We need to overwrite
1815 the stop_signal here, because some kernels don't ignore a
1816 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1817 See more comments in inferior.h. */
c0236d92 1818 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1819 {
1820 stop_stepping (ecs);
1821 if (stop_signal == TARGET_SIGNAL_STOP)
1822 stop_signal = TARGET_SIGNAL_0;
1823 return;
1824 }
1825
d303a6c7
AC
1826 /* Don't even think about breakpoints if just proceeded over a
1827 breakpoint. */
1828 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1829 {
1830 if (debug_infrun)
8a9de0e4 1831 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1832 bpstat_clear (&stop_bpstat);
1833 }
488f131b
JB
1834 else
1835 {
1836 /* See if there is a breakpoint at the current PC. */
8fb3e588 1837 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1838 stopped_by_watchpoint);
488f131b 1839
488f131b
JB
1840 /* Following in case break condition called a
1841 function. */
1842 stop_print_frame = 1;
1843 }
1844
73dd234f 1845 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1846 at one stage in the past included checks for an inferior
1847 function call's call dummy's return breakpoint. The original
1848 comment, that went with the test, read:
73dd234f 1849
8fb3e588
AC
1850 ``End of a stack dummy. Some systems (e.g. Sony news) give
1851 another signal besides SIGTRAP, so check here as well as
1852 above.''
73dd234f
AC
1853
1854 If someone ever tries to get get call dummys on a
1855 non-executable stack to work (where the target would stop
03cebad2
MK
1856 with something like a SIGSEGV), then those tests might need
1857 to be re-instated. Given, however, that the tests were only
73dd234f 1858 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1859 suspect that it won't be the case.
1860
8fb3e588
AC
1861 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1862 be necessary for call dummies on a non-executable stack on
1863 SPARC. */
73dd234f 1864
488f131b
JB
1865 if (stop_signal == TARGET_SIGNAL_TRAP)
1866 ecs->random_signal
1867 = !(bpstat_explains_signal (stop_bpstat)
1868 || trap_expected
488f131b 1869 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1870 else
1871 {
73dd234f 1872 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1873 if (!ecs->random_signal)
1874 stop_signal = TARGET_SIGNAL_TRAP;
1875 }
1876 }
1877
1878 /* When we reach this point, we've pretty much decided
1879 that the reason for stopping must've been a random
1880 (unexpected) signal. */
1881
1882 else
1883 ecs->random_signal = 1;
488f131b 1884
04e68871 1885process_event_stop_test:
488f131b
JB
1886 /* For the program's own signals, act according to
1887 the signal handling tables. */
1888
1889 if (ecs->random_signal)
1890 {
1891 /* Signal not for debugging purposes. */
1892 int printed = 0;
1893
527159b7 1894 if (debug_infrun)
8a9de0e4 1895 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 1896
488f131b
JB
1897 stopped_by_random_signal = 1;
1898
1899 if (signal_print[stop_signal])
1900 {
1901 printed = 1;
1902 target_terminal_ours_for_output ();
1903 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1904 }
1905 if (signal_stop[stop_signal])
1906 {
1907 stop_stepping (ecs);
1908 return;
1909 }
1910 /* If not going to stop, give terminal back
1911 if we took it away. */
1912 else if (printed)
1913 target_terminal_inferior ();
1914
1915 /* Clear the signal if it should not be passed. */
1916 if (signal_program[stop_signal] == 0)
1917 stop_signal = TARGET_SIGNAL_0;
1918
68f53502
AC
1919 if (prev_pc == read_pc ()
1920 && !breakpoints_inserted
1921 && breakpoint_here_p (read_pc ())
1922 && step_resume_breakpoint == NULL)
1923 {
1924 /* We were just starting a new sequence, attempting to
1925 single-step off of a breakpoint and expecting a SIGTRAP.
1926 Intead this signal arrives. This signal will take us out
1927 of the stepping range so GDB needs to remember to, when
1928 the signal handler returns, resume stepping off that
1929 breakpoint. */
1930 /* To simplify things, "continue" is forced to use the same
1931 code paths as single-step - set a breakpoint at the
1932 signal return address and then, once hit, step off that
1933 breakpoint. */
44cbf7b5 1934 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502
AC
1935 ecs->step_after_step_resume_breakpoint = 1;
1936 }
1937 else if (step_range_end != 0
1938 && stop_signal != TARGET_SIGNAL_0
1939 && stop_pc >= step_range_start && stop_pc < step_range_end
1940 && frame_id_eq (get_frame_id (get_current_frame ()),
1941 step_frame_id))
d303a6c7
AC
1942 {
1943 /* The inferior is about to take a signal that will take it
1944 out of the single step range. Set a breakpoint at the
1945 current PC (which is presumably where the signal handler
1946 will eventually return) and then allow the inferior to
1947 run free.
1948
1949 Note that this is only needed for a signal delivered
1950 while in the single-step range. Nested signals aren't a
1951 problem as they eventually all return. */
44cbf7b5 1952 insert_step_resume_breakpoint_at_frame (get_current_frame ());
d303a6c7 1953 }
488f131b
JB
1954 keep_going (ecs);
1955 return;
1956 }
1957
1958 /* Handle cases caused by hitting a breakpoint. */
1959 {
1960 CORE_ADDR jmp_buf_pc;
1961 struct bpstat_what what;
1962
1963 what = bpstat_what (stop_bpstat);
1964
1965 if (what.call_dummy)
1966 {
1967 stop_stack_dummy = 1;
c5aa993b 1968 }
c906108c 1969
488f131b 1970 switch (what.main_action)
c5aa993b 1971 {
488f131b
JB
1972 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
1973 /* If we hit the breakpoint at longjmp, disable it for the
1974 duration of this command. Then, install a temporary
1975 breakpoint at the target of the jmp_buf. */
527159b7 1976 if (debug_infrun)
8a9de0e4 1977 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
1978 disable_longjmp_breakpoint ();
1979 remove_breakpoints ();
1980 breakpoints_inserted = 0;
1981 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 1982 {
488f131b 1983 keep_going (ecs);
104c1213 1984 return;
c5aa993b 1985 }
488f131b
JB
1986
1987 /* Need to blow away step-resume breakpoint, as it
1988 interferes with us */
1989 if (step_resume_breakpoint != NULL)
104c1213 1990 {
488f131b 1991 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 1992 }
c906108c 1993
8fb3e588 1994 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
1995 ecs->handling_longjmp = 1; /* FIXME */
1996 keep_going (ecs);
1997 return;
c906108c 1998
488f131b
JB
1999 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2000 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2001 if (debug_infrun)
8a9de0e4 2002 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2003 remove_breakpoints ();
2004 breakpoints_inserted = 0;
488f131b
JB
2005 disable_longjmp_breakpoint ();
2006 ecs->handling_longjmp = 0; /* FIXME */
2007 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2008 break;
2009 /* else fallthrough */
2010
2011 case BPSTAT_WHAT_SINGLE:
527159b7 2012 if (debug_infrun)
8a9de0e4 2013 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SINGLE\n");
488f131b 2014 if (breakpoints_inserted)
c5aa993b 2015 {
488f131b 2016 remove_breakpoints ();
c5aa993b 2017 }
488f131b
JB
2018 breakpoints_inserted = 0;
2019 ecs->another_trap = 1;
2020 /* Still need to check other stuff, at least the case
2021 where we are stepping and step out of the right range. */
2022 break;
c906108c 2023
488f131b 2024 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2025 if (debug_infrun)
8a9de0e4 2026 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_NOISY\n");
488f131b 2027 stop_print_frame = 1;
c906108c 2028
d303a6c7
AC
2029 /* We are about to nuke the step_resume_breakpointt via the
2030 cleanup chain, so no need to worry about it here. */
c5aa993b 2031
488f131b
JB
2032 stop_stepping (ecs);
2033 return;
c5aa993b 2034
488f131b 2035 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2036 if (debug_infrun)
8a9de0e4 2037 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_SILENT\n");
488f131b 2038 stop_print_frame = 0;
c5aa993b 2039
d303a6c7
AC
2040 /* We are about to nuke the step_resume_breakpoin via the
2041 cleanup chain, so no need to worry about it here. */
c5aa993b 2042
488f131b 2043 stop_stepping (ecs);
e441088d 2044 return;
c5aa993b 2045
488f131b
JB
2046 case BPSTAT_WHAT_STEP_RESUME:
2047 /* This proably demands a more elegant solution, but, yeah
2048 right...
c5aa993b 2049
488f131b
JB
2050 This function's use of the simple variable
2051 step_resume_breakpoint doesn't seem to accomodate
2052 simultaneously active step-resume bp's, although the
2053 breakpoint list certainly can.
c5aa993b 2054
488f131b
JB
2055 If we reach here and step_resume_breakpoint is already
2056 NULL, then apparently we have multiple active
2057 step-resume bp's. We'll just delete the breakpoint we
2058 stopped at, and carry on.
2059
2060 Correction: what the code currently does is delete a
2061 step-resume bp, but it makes no effort to ensure that
2062 the one deleted is the one currently stopped at. MVS */
c5aa993b 2063
527159b7 2064 if (debug_infrun)
8a9de0e4 2065 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STEP_RESUME\n");
527159b7 2066
488f131b
JB
2067 if (step_resume_breakpoint == NULL)
2068 {
2069 step_resume_breakpoint =
2070 bpstat_find_step_resume_breakpoint (stop_bpstat);
2071 }
2072 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2073 if (ecs->step_after_step_resume_breakpoint)
2074 {
2075 /* Back when the step-resume breakpoint was inserted, we
2076 were trying to single-step off a breakpoint. Go back
2077 to doing that. */
2078 ecs->step_after_step_resume_breakpoint = 0;
2079 remove_breakpoints ();
2080 breakpoints_inserted = 0;
2081 ecs->another_trap = 1;
2082 keep_going (ecs);
2083 return;
2084 }
488f131b
JB
2085 break;
2086
2087 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
527159b7 2088 if (debug_infrun)
8a9de0e4 2089 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
488f131b
JB
2090 /* If were waiting for a trap, hitting the step_resume_break
2091 doesn't count as getting it. */
2092 if (trap_expected)
2093 ecs->another_trap = 1;
2094 break;
2095
2096 case BPSTAT_WHAT_CHECK_SHLIBS:
2097 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2098#ifdef SOLIB_ADD
c906108c 2099 {
527159b7 2100 if (debug_infrun)
8a9de0e4 2101 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2102 /* Remove breakpoints, we eventually want to step over the
2103 shlib event breakpoint, and SOLIB_ADD might adjust
2104 breakpoint addresses via breakpoint_re_set. */
2105 if (breakpoints_inserted)
2106 remove_breakpoints ();
c5aa993b 2107 breakpoints_inserted = 0;
488f131b
JB
2108
2109 /* Check for any newly added shared libraries if we're
2110 supposed to be adding them automatically. Switch
2111 terminal for any messages produced by
2112 breakpoint_re_set. */
2113 target_terminal_ours_for_output ();
aff6338a 2114 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2115 stack's section table is kept up-to-date. Architectures,
2116 (e.g., PPC64), use the section table to perform
2117 operations such as address => section name and hence
2118 require the table to contain all sections (including
2119 those found in shared libraries). */
aff6338a 2120 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2121 exec_ops to SOLIB_ADD. This is because current GDB is
2122 only tooled to propagate section_table changes out from
2123 the "current_target" (see target_resize_to_sections), and
2124 not up from the exec stratum. This, of course, isn't
2125 right. "infrun.c" should only interact with the
2126 exec/process stratum, instead relying on the target stack
2127 to propagate relevant changes (stop, section table
2128 changed, ...) up to other layers. */
aff6338a 2129 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
2130 target_terminal_inferior ();
2131
2132 /* Try to reenable shared library breakpoints, additional
2133 code segments in shared libraries might be mapped in now. */
2134 re_enable_breakpoints_in_shlibs ();
2135
2136 /* If requested, stop when the dynamic linker notifies
2137 gdb of events. This allows the user to get control
2138 and place breakpoints in initializer routines for
2139 dynamically loaded objects (among other things). */
877522db 2140 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2141 {
488f131b 2142 stop_stepping (ecs);
d4f3574e
SS
2143 return;
2144 }
c5aa993b 2145
488f131b
JB
2146 /* If we stopped due to an explicit catchpoint, then the
2147 (see above) call to SOLIB_ADD pulled in any symbols
2148 from a newly-loaded library, if appropriate.
2149
2150 We do want the inferior to stop, but not where it is
2151 now, which is in the dynamic linker callback. Rather,
2152 we would like it stop in the user's program, just after
2153 the call that caused this catchpoint to trigger. That
2154 gives the user a more useful vantage from which to
2155 examine their program's state. */
8fb3e588
AC
2156 else if (what.main_action
2157 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2158 {
488f131b
JB
2159 /* ??rehrauer: If I could figure out how to get the
2160 right return PC from here, we could just set a temp
2161 breakpoint and resume. I'm not sure we can without
2162 cracking open the dld's shared libraries and sniffing
2163 their unwind tables and text/data ranges, and that's
2164 not a terribly portable notion.
2165
2166 Until that time, we must step the inferior out of the
2167 dld callback, and also out of the dld itself (and any
2168 code or stubs in libdld.sl, such as "shl_load" and
2169 friends) until we reach non-dld code. At that point,
2170 we can stop stepping. */
2171 bpstat_get_triggered_catchpoints (stop_bpstat,
2172 &ecs->
2173 stepping_through_solib_catchpoints);
2174 ecs->stepping_through_solib_after_catch = 1;
2175
2176 /* Be sure to lift all breakpoints, so the inferior does
2177 actually step past this point... */
2178 ecs->another_trap = 1;
2179 break;
c906108c 2180 }
c5aa993b 2181 else
c5aa993b 2182 {
488f131b 2183 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2184 ecs->another_trap = 1;
488f131b 2185 break;
c5aa993b 2186 }
488f131b
JB
2187 }
2188#endif
2189 break;
c906108c 2190
488f131b
JB
2191 case BPSTAT_WHAT_LAST:
2192 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2193
488f131b
JB
2194 case BPSTAT_WHAT_KEEP_CHECKING:
2195 break;
2196 }
2197 }
c906108c 2198
488f131b
JB
2199 /* We come here if we hit a breakpoint but should not
2200 stop for it. Possibly we also were stepping
2201 and should stop for that. So fall through and
2202 test for stepping. But, if not stepping,
2203 do not stop. */
c906108c 2204
9d1ff73f
MS
2205 /* Are we stepping to get the inferior out of the dynamic linker's
2206 hook (and possibly the dld itself) after catching a shlib
2207 event? */
488f131b
JB
2208 if (ecs->stepping_through_solib_after_catch)
2209 {
2210#if defined(SOLIB_ADD)
2211 /* Have we reached our destination? If not, keep going. */
2212 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2213 {
527159b7 2214 if (debug_infrun)
8a9de0e4 2215 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2216 ecs->another_trap = 1;
2217 keep_going (ecs);
104c1213 2218 return;
488f131b
JB
2219 }
2220#endif
527159b7 2221 if (debug_infrun)
8a9de0e4 2222 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2223 /* Else, stop and report the catchpoint(s) whose triggering
2224 caused us to begin stepping. */
2225 ecs->stepping_through_solib_after_catch = 0;
2226 bpstat_clear (&stop_bpstat);
2227 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2228 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2229 stop_print_frame = 1;
2230 stop_stepping (ecs);
2231 return;
2232 }
c906108c 2233
488f131b
JB
2234 if (step_resume_breakpoint)
2235 {
527159b7 2236 if (debug_infrun)
8a9de0e4 2237 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
527159b7 2238
488f131b
JB
2239 /* Having a step-resume breakpoint overrides anything
2240 else having to do with stepping commands until
2241 that breakpoint is reached. */
488f131b
JB
2242 keep_going (ecs);
2243 return;
2244 }
c5aa993b 2245
488f131b
JB
2246 if (step_range_end == 0)
2247 {
527159b7 2248 if (debug_infrun)
8a9de0e4 2249 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2250 /* Likewise if we aren't even stepping. */
488f131b
JB
2251 keep_going (ecs);
2252 return;
2253 }
c5aa993b 2254
488f131b 2255 /* If stepping through a line, keep going if still within it.
c906108c 2256
488f131b
JB
2257 Note that step_range_end is the address of the first instruction
2258 beyond the step range, and NOT the address of the last instruction
2259 within it! */
2260 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2261 {
527159b7 2262 if (debug_infrun)
8a9de0e4 2263 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2264 paddr_nz (step_range_start),
2265 paddr_nz (step_range_end));
488f131b
JB
2266 keep_going (ecs);
2267 return;
2268 }
c5aa993b 2269
488f131b 2270 /* We stepped out of the stepping range. */
c906108c 2271
488f131b
JB
2272 /* If we are stepping at the source level and entered the runtime
2273 loader dynamic symbol resolution code, we keep on single stepping
2274 until we exit the run time loader code and reach the callee's
2275 address. */
2276 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2277 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2278 {
4c8c40e6
MK
2279 CORE_ADDR pc_after_resolver =
2280 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2281
527159b7 2282 if (debug_infrun)
8a9de0e4 2283 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2284
488f131b
JB
2285 if (pc_after_resolver)
2286 {
2287 /* Set up a step-resume breakpoint at the address
2288 indicated by SKIP_SOLIB_RESOLVER. */
2289 struct symtab_and_line sr_sal;
fe39c653 2290 init_sal (&sr_sal);
488f131b
JB
2291 sr_sal.pc = pc_after_resolver;
2292
44cbf7b5 2293 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2294 }
c906108c 2295
488f131b
JB
2296 keep_going (ecs);
2297 return;
2298 }
c906108c 2299
42edda50
AC
2300 if (step_range_end != 1
2301 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2302 || step_over_calls == STEP_OVER_ALL)
2303 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2304 {
527159b7 2305 if (debug_infrun)
8a9de0e4 2306 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2307 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2308 a signal trampoline (either by a signal being delivered or by
2309 the signal handler returning). Just single-step until the
2310 inferior leaves the trampoline (either by calling the handler
2311 or returning). */
488f131b
JB
2312 keep_going (ecs);
2313 return;
2314 }
c906108c 2315
8fb3e588 2316 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b
JB
2317 {
2318 /* It's a subroutine call. */
95918acb 2319 CORE_ADDR real_stop_pc;
8fb3e588 2320
527159b7 2321 if (debug_infrun)
8a9de0e4 2322 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2323
95918acb
AC
2324 if ((step_over_calls == STEP_OVER_NONE)
2325 || ((step_range_end == 1)
2326 && in_prologue (prev_pc, ecs->stop_func_start)))
2327 {
2328 /* I presume that step_over_calls is only 0 when we're
2329 supposed to be stepping at the assembly language level
2330 ("stepi"). Just stop. */
2331 /* Also, maybe we just did a "nexti" inside a prolog, so we
2332 thought it was a subroutine call but it was not. Stop as
2333 well. FENN */
2334 stop_step = 1;
2335 print_stop_reason (END_STEPPING_RANGE, 0);
2336 stop_stepping (ecs);
2337 return;
2338 }
8fb3e588 2339
8567c30f
AC
2340 if (step_over_calls == STEP_OVER_ALL)
2341 {
2342 /* We're doing a "next", set a breakpoint at callee's return
2343 address (the address at which the caller will
2344 resume). */
44cbf7b5 2345 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
8567c30f
AC
2346 keep_going (ecs);
2347 return;
2348 }
a53c66de 2349
95918acb 2350 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2351 calling routine and the real function), locate the real
2352 function. That's what tells us (a) whether we want to step
2353 into it at all, and (b) what prologue we want to run to the
2354 end of, if we do step into it. */
95918acb
AC
2355 real_stop_pc = skip_language_trampoline (stop_pc);
2356 if (real_stop_pc == 0)
2357 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2358 if (real_stop_pc != 0)
2359 ecs->stop_func_start = real_stop_pc;
8fb3e588 2360
1b2bfbb9
RC
2361 if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start))
2362 {
2363 struct symtab_and_line sr_sal;
2364 init_sal (&sr_sal);
2365 sr_sal.pc = ecs->stop_func_start;
2366
44cbf7b5 2367 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2368 keep_going (ecs);
2369 return;
1b2bfbb9
RC
2370 }
2371
95918acb 2372 /* If we have line number information for the function we are
8fb3e588 2373 thinking of stepping into, step into it.
95918acb 2374
8fb3e588
AC
2375 If there are several symtabs at that PC (e.g. with include
2376 files), just want to know whether *any* of them have line
2377 numbers. find_pc_line handles this. */
95918acb
AC
2378 {
2379 struct symtab_and_line tmp_sal;
8fb3e588 2380
95918acb
AC
2381 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2382 if (tmp_sal.line != 0)
2383 {
2384 step_into_function (ecs);
2385 return;
2386 }
2387 }
2388
2389 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2390 set, we stop the step so that the user has a chance to switch
2391 in assembly mode. */
95918acb
AC
2392 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2393 {
2394 stop_step = 1;
2395 print_stop_reason (END_STEPPING_RANGE, 0);
2396 stop_stepping (ecs);
2397 return;
2398 }
2399
2400 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2401 which the caller will resume). */
44cbf7b5 2402 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
95918acb 2403 keep_going (ecs);
488f131b 2404 return;
488f131b 2405 }
c906108c 2406
488f131b
JB
2407 /* If we're in the return path from a shared library trampoline,
2408 we want to proceed through the trampoline when stepping. */
2409 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2410 {
488f131b 2411 /* Determine where this trampoline returns. */
5cf4d23a 2412 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2413
527159b7 2414 if (debug_infrun)
8a9de0e4 2415 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2416
488f131b 2417 /* Only proceed through if we know where it's going. */
d764a824 2418 if (real_stop_pc)
488f131b
JB
2419 {
2420 /* And put the step-breakpoint there and go until there. */
2421 struct symtab_and_line sr_sal;
2422
fe39c653 2423 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2424 sr_sal.pc = real_stop_pc;
488f131b 2425 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2426
2427 /* Do not specify what the fp should be when we stop since
2428 on some machines the prologue is where the new fp value
2429 is established. */
2430 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2431
488f131b
JB
2432 /* Restart without fiddling with the step ranges or
2433 other state. */
2434 keep_going (ecs);
2435 return;
2436 }
2437 }
c906108c 2438
1b2bfbb9
RC
2439 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2440 the trampoline processing logic, however, there are some trampolines
2441 that have no names, so we should do trampoline handling first. */
2442 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2443 && ecs->stop_func_name == NULL)
2444 {
527159b7 2445 if (debug_infrun)
8a9de0e4 2446 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2447
1b2bfbb9
RC
2448 /* The inferior just stepped into, or returned to, an
2449 undebuggable function (where there is no symbol, not even a
2450 minimal symbol, corresponding to the address where the
2451 inferior stopped). Since we want to skip this kind of code,
2452 we keep going until the inferior returns from this
2453 function. */
2454 if (step_stop_if_no_debug)
2455 {
2456 /* If we have no line number and the step-stop-if-no-debug
2457 is set, we stop the step so that the user has a chance to
2458 switch in assembly mode. */
2459 stop_step = 1;
2460 print_stop_reason (END_STEPPING_RANGE, 0);
2461 stop_stepping (ecs);
2462 return;
2463 }
2464 else
2465 {
2466 /* Set a breakpoint at callee's return address (the address
2467 at which the caller will resume). */
44cbf7b5 2468 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
1b2bfbb9
RC
2469 keep_going (ecs);
2470 return;
2471 }
2472 }
2473
2474 if (step_range_end == 1)
2475 {
2476 /* It is stepi or nexti. We always want to stop stepping after
2477 one instruction. */
527159b7 2478 if (debug_infrun)
8a9de0e4 2479 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2480 stop_step = 1;
2481 print_stop_reason (END_STEPPING_RANGE, 0);
2482 stop_stepping (ecs);
2483 return;
2484 }
2485
2486 ecs->sal = find_pc_line (stop_pc, 0);
2487
488f131b
JB
2488 if (ecs->sal.line == 0)
2489 {
2490 /* We have no line number information. That means to stop
2491 stepping (does this always happen right after one instruction,
2492 when we do "s" in a function with no line numbers,
2493 or can this happen as a result of a return or longjmp?). */
527159b7 2494 if (debug_infrun)
8a9de0e4 2495 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2496 stop_step = 1;
2497 print_stop_reason (END_STEPPING_RANGE, 0);
2498 stop_stepping (ecs);
2499 return;
2500 }
c906108c 2501
488f131b
JB
2502 if ((stop_pc == ecs->sal.pc)
2503 && (ecs->current_line != ecs->sal.line
2504 || ecs->current_symtab != ecs->sal.symtab))
2505 {
2506 /* We are at the start of a different line. So stop. Note that
2507 we don't stop if we step into the middle of a different line.
2508 That is said to make things like for (;;) statements work
2509 better. */
527159b7 2510 if (debug_infrun)
8a9de0e4 2511 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2512 stop_step = 1;
2513 print_stop_reason (END_STEPPING_RANGE, 0);
2514 stop_stepping (ecs);
2515 return;
2516 }
c906108c 2517
488f131b 2518 /* We aren't done stepping.
c906108c 2519
488f131b
JB
2520 Optimize by setting the stepping range to the line.
2521 (We might not be in the original line, but if we entered a
2522 new line in mid-statement, we continue stepping. This makes
2523 things like for(;;) statements work better.) */
c906108c 2524
488f131b 2525 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2526 {
488f131b
JB
2527 /* If this is the last line of the function, don't keep stepping
2528 (it would probably step us out of the function).
2529 This is particularly necessary for a one-line function,
2530 in which after skipping the prologue we better stop even though
2531 we will be in mid-line. */
527159b7 2532 if (debug_infrun)
8a9de0e4 2533 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2534 stop_step = 1;
2535 print_stop_reason (END_STEPPING_RANGE, 0);
2536 stop_stepping (ecs);
2537 return;
c5aa993b 2538 }
488f131b
JB
2539 step_range_start = ecs->sal.pc;
2540 step_range_end = ecs->sal.end;
aa0cd9c1 2541 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2542 ecs->current_line = ecs->sal.line;
2543 ecs->current_symtab = ecs->sal.symtab;
2544
aa0cd9c1
AC
2545 /* In the case where we just stepped out of a function into the
2546 middle of a line of the caller, continue stepping, but
2547 step_frame_id must be modified to current frame */
65815ea1
AC
2548#if 0
2549 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2550 generous. It will trigger on things like a step into a frameless
2551 stackless leaf function. I think the logic should instead look
2552 at the unwound frame ID has that should give a more robust
2553 indication of what happened. */
8fb3e588
AC
2554 if (step - ID == current - ID)
2555 still stepping in same function;
2556 else if (step - ID == unwind (current - ID))
2557 stepped into a function;
2558 else
2559 stepped out of a function;
2560 /* Of course this assumes that the frame ID unwind code is robust
2561 and we're willing to introduce frame unwind logic into this
2562 function. Fortunately, those days are nearly upon us. */
65815ea1 2563#endif
488f131b 2564 {
aa0cd9c1
AC
2565 struct frame_id current_frame = get_frame_id (get_current_frame ());
2566 if (!(frame_id_inner (current_frame, step_frame_id)))
2567 step_frame_id = current_frame;
488f131b 2568 }
c906108c 2569
527159b7 2570 if (debug_infrun)
8a9de0e4 2571 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2572 keep_going (ecs);
104c1213
JM
2573}
2574
2575/* Are we in the middle of stepping? */
2576
2577static int
2578currently_stepping (struct execution_control_state *ecs)
2579{
d303a6c7 2580 return ((!ecs->handling_longjmp
104c1213
JM
2581 && ((step_range_end && step_resume_breakpoint == NULL)
2582 || trap_expected))
2583 || ecs->stepping_through_solib_after_catch
2584 || bpstat_should_step ());
2585}
c906108c 2586
c2c6d25f
JM
2587/* Subroutine call with source code we should not step over. Do step
2588 to the first line of code in it. */
2589
2590static void
2591step_into_function (struct execution_control_state *ecs)
2592{
2593 struct symtab *s;
2594 struct symtab_and_line sr_sal;
2595
2596 s = find_pc_symtab (stop_pc);
2597 if (s && s->language != language_asm)
2598 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2599
2600 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2601 /* Use the step_resume_break to step until the end of the prologue,
2602 even if that involves jumps (as it seems to on the vax under
2603 4.2). */
2604 /* If the prologue ends in the middle of a source line, continue to
2605 the end of that source line (if it is still within the function).
2606 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2607 if (ecs->sal.end
2608 && ecs->sal.pc != ecs->stop_func_start
2609 && ecs->sal.end < ecs->stop_func_end)
2610 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2611
2dbd5e30
KB
2612 /* Architectures which require breakpoint adjustment might not be able
2613 to place a breakpoint at the computed address. If so, the test
2614 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2615 ecs->stop_func_start to an address at which a breakpoint may be
2616 legitimately placed.
8fb3e588 2617
2dbd5e30
KB
2618 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2619 made, GDB will enter an infinite loop when stepping through
2620 optimized code consisting of VLIW instructions which contain
2621 subinstructions corresponding to different source lines. On
2622 FR-V, it's not permitted to place a breakpoint on any but the
2623 first subinstruction of a VLIW instruction. When a breakpoint is
2624 set, GDB will adjust the breakpoint address to the beginning of
2625 the VLIW instruction. Thus, we need to make the corresponding
2626 adjustment here when computing the stop address. */
8fb3e588 2627
2dbd5e30
KB
2628 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2629 {
2630 ecs->stop_func_start
2631 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2632 ecs->stop_func_start);
2dbd5e30
KB
2633 }
2634
c2c6d25f
JM
2635 if (ecs->stop_func_start == stop_pc)
2636 {
2637 /* We are already there: stop now. */
2638 stop_step = 1;
488f131b 2639 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2640 stop_stepping (ecs);
2641 return;
2642 }
2643 else
2644 {
2645 /* Put the step-breakpoint there and go until there. */
fe39c653 2646 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2647 sr_sal.pc = ecs->stop_func_start;
2648 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2649
c2c6d25f 2650 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2651 some machines the prologue is where the new fp value is
2652 established. */
44cbf7b5 2653 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2654
2655 /* And make sure stepping stops right away then. */
2656 step_range_end = step_range_start;
2657 }
2658 keep_going (ecs);
2659}
d4f3574e 2660
44cbf7b5
AC
2661/* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2662 This is used to both functions and to skip over code. */
2663
2664static void
2665insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2666 struct frame_id sr_id)
2667{
2668 /* There should never be more than one step-resume breakpoint per
2669 thread, so we should never be setting a new
2670 step_resume_breakpoint when one is already active. */
2671 gdb_assert (step_resume_breakpoint == NULL);
2672 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2673 bp_step_resume);
2674 if (breakpoints_inserted)
2675 insert_breakpoints ();
2676}
2677
7ce450bd
AC
2678/* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2679 to skip a function (next, skip-no-debug) or signal. It's assumed
2680 that the function/signal handler being skipped eventually returns
2681 to the breakpoint inserted at RETURN_FRAME.pc.
2682
2683 For the skip-function case, the function may have been reached by
2684 either single stepping a call / return / signal-return instruction,
2685 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2686 to the skip-function's caller.
2687
2688 For the signals case, this is called with the interrupted
2689 function's frame. The signal handler, when it returns, will resume
2690 the interrupted function at RETURN_FRAME.pc. */
d303a6c7
AC
2691
2692static void
44cbf7b5 2693insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2694{
2695 struct symtab_and_line sr_sal;
2696
d303a6c7
AC
2697 init_sal (&sr_sal); /* initialize to zeros */
2698
7ce450bd 2699 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
d303a6c7
AC
2700 sr_sal.section = find_pc_overlay (sr_sal.pc);
2701
44cbf7b5 2702 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2703}
2704
104c1213
JM
2705static void
2706stop_stepping (struct execution_control_state *ecs)
2707{
527159b7 2708 if (debug_infrun)
8a9de0e4 2709 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2710
cd0fc7c3
SS
2711 /* Let callers know we don't want to wait for the inferior anymore. */
2712 ecs->wait_some_more = 0;
2713}
2714
d4f3574e
SS
2715/* This function handles various cases where we need to continue
2716 waiting for the inferior. */
2717/* (Used to be the keep_going: label in the old wait_for_inferior) */
2718
2719static void
2720keep_going (struct execution_control_state *ecs)
2721{
d4f3574e 2722 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2723 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2724
d4f3574e
SS
2725 /* If we did not do break;, it means we should keep running the
2726 inferior and not return to debugger. */
2727
2728 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2729 {
2730 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2731 the inferior, else we'd have done a break above) and we
2732 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2733 resume (currently_stepping (ecs), stop_signal);
2734 }
2735 else
2736 {
2737 /* Either the trap was not expected, but we are continuing
488f131b
JB
2738 anyway (the user asked that this signal be passed to the
2739 child)
2740 -- or --
2741 The signal was SIGTRAP, e.g. it was our signal, but we
2742 decided we should resume from it.
d4f3574e 2743
68f53502 2744 We're going to run this baby now! */
d4f3574e 2745
68f53502 2746 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2747 {
2748 breakpoints_failed = insert_breakpoints ();
2749 if (breakpoints_failed)
2750 {
2751 stop_stepping (ecs);
2752 return;
2753 }
2754 breakpoints_inserted = 1;
2755 }
2756
2757 trap_expected = ecs->another_trap;
2758
2759 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2760 specifies that such a signal should be delivered to the
2761 target program).
2762
2763 Typically, this would occure when a user is debugging a
2764 target monitor on a simulator: the target monitor sets a
2765 breakpoint; the simulator encounters this break-point and
2766 halts the simulation handing control to GDB; GDB, noteing
2767 that the break-point isn't valid, returns control back to the
2768 simulator; the simulator then delivers the hardware
2769 equivalent of a SIGNAL_TRAP to the program being debugged. */
2770
2771 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2772 stop_signal = TARGET_SIGNAL_0;
2773
d4f3574e
SS
2774
2775 resume (currently_stepping (ecs), stop_signal);
2776 }
2777
488f131b 2778 prepare_to_wait (ecs);
d4f3574e
SS
2779}
2780
104c1213
JM
2781/* This function normally comes after a resume, before
2782 handle_inferior_event exits. It takes care of any last bits of
2783 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2784
104c1213
JM
2785static void
2786prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2787{
527159b7 2788 if (debug_infrun)
8a9de0e4 2789 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2790 if (ecs->infwait_state == infwait_normal_state)
2791 {
2792 overlay_cache_invalid = 1;
2793
2794 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2795 target_wait because they can be loaded from the target while
2796 in target_wait. This makes remote debugging a bit more
2797 efficient for those targets that provide critical registers
2798 as part of their normal status mechanism. */
104c1213
JM
2799
2800 registers_changed ();
39f77062 2801 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2802 ecs->wp = &(ecs->ws);
2803 }
2804 /* This is the old end of the while loop. Let everybody know we
2805 want to wait for the inferior some more and get called again
2806 soon. */
2807 ecs->wait_some_more = 1;
c906108c 2808}
11cf8741
JM
2809
2810/* Print why the inferior has stopped. We always print something when
2811 the inferior exits, or receives a signal. The rest of the cases are
2812 dealt with later on in normal_stop() and print_it_typical(). Ideally
2813 there should be a call to this function from handle_inferior_event()
2814 each time stop_stepping() is called.*/
2815static void
2816print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2817{
2818 switch (stop_reason)
2819 {
2820 case STOP_UNKNOWN:
2821 /* We don't deal with these cases from handle_inferior_event()
2822 yet. */
2823 break;
2824 case END_STEPPING_RANGE:
2825 /* We are done with a step/next/si/ni command. */
2826 /* For now print nothing. */
fb40c209 2827 /* Print a message only if not in the middle of doing a "step n"
488f131b 2828 operation for n > 1 */
fb40c209 2829 if (!step_multi || !stop_step)
9dc5e2a9 2830 if (ui_out_is_mi_like_p (uiout))
fb40c209 2831 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
2832 break;
2833 case BREAKPOINT_HIT:
2834 /* We found a breakpoint. */
2835 /* For now print nothing. */
2836 break;
2837 case SIGNAL_EXITED:
2838 /* The inferior was terminated by a signal. */
8b93c638 2839 annotate_signalled ();
9dc5e2a9 2840 if (ui_out_is_mi_like_p (uiout))
fb40c209 2841 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
2842 ui_out_text (uiout, "\nProgram terminated with signal ");
2843 annotate_signal_name ();
488f131b
JB
2844 ui_out_field_string (uiout, "signal-name",
2845 target_signal_to_name (stop_info));
8b93c638
JM
2846 annotate_signal_name_end ();
2847 ui_out_text (uiout, ", ");
2848 annotate_signal_string ();
488f131b
JB
2849 ui_out_field_string (uiout, "signal-meaning",
2850 target_signal_to_string (stop_info));
8b93c638
JM
2851 annotate_signal_string_end ();
2852 ui_out_text (uiout, ".\n");
2853 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2854 break;
2855 case EXITED:
2856 /* The inferior program is finished. */
8b93c638
JM
2857 annotate_exited (stop_info);
2858 if (stop_info)
2859 {
9dc5e2a9 2860 if (ui_out_is_mi_like_p (uiout))
fb40c209 2861 ui_out_field_string (uiout, "reason", "exited");
8b93c638 2862 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2863 ui_out_field_fmt (uiout, "exit-code", "0%o",
2864 (unsigned int) stop_info);
8b93c638
JM
2865 ui_out_text (uiout, ".\n");
2866 }
2867 else
2868 {
9dc5e2a9 2869 if (ui_out_is_mi_like_p (uiout))
fb40c209 2870 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
2871 ui_out_text (uiout, "\nProgram exited normally.\n");
2872 }
11cf8741
JM
2873 break;
2874 case SIGNAL_RECEIVED:
2875 /* Signal received. The signal table tells us to print about
2876 it. */
8b93c638
JM
2877 annotate_signal ();
2878 ui_out_text (uiout, "\nProgram received signal ");
2879 annotate_signal_name ();
84c6c83c
KS
2880 if (ui_out_is_mi_like_p (uiout))
2881 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
2882 ui_out_field_string (uiout, "signal-name",
2883 target_signal_to_name (stop_info));
8b93c638
JM
2884 annotate_signal_name_end ();
2885 ui_out_text (uiout, ", ");
2886 annotate_signal_string ();
488f131b
JB
2887 ui_out_field_string (uiout, "signal-meaning",
2888 target_signal_to_string (stop_info));
8b93c638
JM
2889 annotate_signal_string_end ();
2890 ui_out_text (uiout, ".\n");
11cf8741
JM
2891 break;
2892 default:
8e65ff28
AC
2893 internal_error (__FILE__, __LINE__,
2894 "print_stop_reason: unrecognized enum value");
11cf8741
JM
2895 break;
2896 }
2897}
c906108c 2898\f
43ff13b4 2899
c906108c
SS
2900/* Here to return control to GDB when the inferior stops for real.
2901 Print appropriate messages, remove breakpoints, give terminal our modes.
2902
2903 STOP_PRINT_FRAME nonzero means print the executing frame
2904 (pc, function, args, file, line number and line text).
2905 BREAKPOINTS_FAILED nonzero means stop was due to error
2906 attempting to insert breakpoints. */
2907
2908void
96baa820 2909normal_stop (void)
c906108c 2910{
73b65bb0
DJ
2911 struct target_waitstatus last;
2912 ptid_t last_ptid;
2913
2914 get_last_target_status (&last_ptid, &last);
2915
c906108c
SS
2916 /* As with the notification of thread events, we want to delay
2917 notifying the user that we've switched thread context until
2918 the inferior actually stops.
2919
73b65bb0
DJ
2920 There's no point in saying anything if the inferior has exited.
2921 Note that SIGNALLED here means "exited with a signal", not
2922 "received a signal". */
488f131b 2923 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
2924 && target_has_execution
2925 && last.kind != TARGET_WAITKIND_SIGNALLED
2926 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
2927 {
2928 target_terminal_ours_for_output ();
c3f6f71d 2929 printf_filtered ("[Switching to %s]\n",
39f77062
KB
2930 target_pid_or_tid_to_str (inferior_ptid));
2931 previous_inferior_ptid = inferior_ptid;
c906108c 2932 }
c906108c 2933
4fa8626c 2934 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
2935 /* Make sure that the current_frame's pc is correct. This
2936 is a correction for setting up the frame info before doing
2937 DECR_PC_AFTER_BREAK */
b87efeee
AC
2938 if (target_has_execution)
2939 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2940 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2941 frame code to check for this and sort out any resultant mess.
2942 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 2943 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 2944
c906108c
SS
2945 if (target_has_execution && breakpoints_inserted)
2946 {
2947 if (remove_breakpoints ())
2948 {
2949 target_terminal_ours_for_output ();
2950 printf_filtered ("Cannot remove breakpoints because ");
2951 printf_filtered ("program is no longer writable.\n");
2952 printf_filtered ("It might be running in another process.\n");
2953 printf_filtered ("Further execution is probably impossible.\n");
2954 }
2955 }
2956 breakpoints_inserted = 0;
2957
2958 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2959 Delete any breakpoint that is to be deleted at the next stop. */
2960
2961 breakpoint_auto_delete (stop_bpstat);
2962
2963 /* If an auto-display called a function and that got a signal,
2964 delete that auto-display to avoid an infinite recursion. */
2965
2966 if (stopped_by_random_signal)
2967 disable_current_display ();
2968
2969 /* Don't print a message if in the middle of doing a "step n"
2970 operation for n > 1 */
2971 if (step_multi && stop_step)
2972 goto done;
2973
2974 target_terminal_ours ();
2975
5913bcb0
AC
2976 /* Look up the hook_stop and run it (CLI internally handles problem
2977 of stop_command's pre-hook not existing). */
2978 if (stop_command)
2979 catch_errors (hook_stop_stub, stop_command,
2980 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
2981
2982 if (!target_has_stack)
2983 {
2984
2985 goto done;
2986 }
2987
2988 /* Select innermost stack frame - i.e., current frame is frame 0,
2989 and current location is based on that.
2990 Don't do this on return from a stack dummy routine,
2991 or if the program has exited. */
2992
2993 if (!stop_stack_dummy)
2994 {
0f7d239c 2995 select_frame (get_current_frame ());
c906108c
SS
2996
2997 /* Print current location without a level number, if
c5aa993b
JM
2998 we have changed functions or hit a breakpoint.
2999 Print source line if we have one.
3000 bpstat_print() contains the logic deciding in detail
3001 what to print, based on the event(s) that just occurred. */
c906108c 3002
6e7f8b9c 3003 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3004 {
3005 int bpstat_ret;
3006 int source_flag;
917317f4 3007 int do_frame_printing = 1;
c906108c
SS
3008
3009 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3010 switch (bpstat_ret)
3011 {
3012 case PRINT_UNKNOWN:
aa0cd9c1 3013 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3014 (or should) carry around the function and does (or
3015 should) use that when doing a frame comparison. */
917317f4 3016 if (stop_step
aa0cd9c1
AC
3017 && frame_id_eq (step_frame_id,
3018 get_frame_id (get_current_frame ()))
917317f4 3019 && step_start_function == find_pc_function (stop_pc))
488f131b 3020 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3021 else
488f131b 3022 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3023 break;
3024 case PRINT_SRC_AND_LOC:
488f131b 3025 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3026 break;
3027 case PRINT_SRC_ONLY:
c5394b80 3028 source_flag = SRC_LINE;
917317f4
JM
3029 break;
3030 case PRINT_NOTHING:
488f131b 3031 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3032 do_frame_printing = 0;
3033 break;
3034 default:
488f131b 3035 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3036 }
fb40c209 3037 /* For mi, have the same behavior every time we stop:
488f131b 3038 print everything but the source line. */
9dc5e2a9 3039 if (ui_out_is_mi_like_p (uiout))
fb40c209 3040 source_flag = LOC_AND_ADDRESS;
c906108c 3041
9dc5e2a9 3042 if (ui_out_is_mi_like_p (uiout))
39f77062 3043 ui_out_field_int (uiout, "thread-id",
488f131b 3044 pid_to_thread_id (inferior_ptid));
c906108c
SS
3045 /* The behavior of this routine with respect to the source
3046 flag is:
c5394b80
JM
3047 SRC_LINE: Print only source line
3048 LOCATION: Print only location
3049 SRC_AND_LOC: Print location and source line */
917317f4 3050 if (do_frame_printing)
b04f3ab4 3051 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3052
3053 /* Display the auto-display expressions. */
3054 do_displays ();
3055 }
3056 }
3057
3058 /* Save the function value return registers, if we care.
3059 We might be about to restore their previous contents. */
3060 if (proceed_to_finish)
72cec141
AC
3061 /* NB: The copy goes through to the target picking up the value of
3062 all the registers. */
3063 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3064
3065 if (stop_stack_dummy)
3066 {
dbe9fe58
AC
3067 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3068 ends with a setting of the current frame, so we can use that
3069 next. */
3070 frame_pop (get_current_frame ());
c906108c 3071 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3072 Can't rely on restore_inferior_status because that only gets
3073 called if we don't stop in the called function. */
c906108c 3074 stop_pc = read_pc ();
0f7d239c 3075 select_frame (get_current_frame ());
c906108c
SS
3076 }
3077
c906108c
SS
3078done:
3079 annotate_stopped ();
7a464420 3080 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3081}
3082
3083static int
96baa820 3084hook_stop_stub (void *cmd)
c906108c 3085{
5913bcb0 3086 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3087 return (0);
3088}
3089\f
c5aa993b 3090int
96baa820 3091signal_stop_state (int signo)
c906108c
SS
3092{
3093 return signal_stop[signo];
3094}
3095
c5aa993b 3096int
96baa820 3097signal_print_state (int signo)
c906108c
SS
3098{
3099 return signal_print[signo];
3100}
3101
c5aa993b 3102int
96baa820 3103signal_pass_state (int signo)
c906108c
SS
3104{
3105 return signal_program[signo];
3106}
3107
488f131b 3108int
7bda5e4a 3109signal_stop_update (int signo, int state)
d4f3574e
SS
3110{
3111 int ret = signal_stop[signo];
3112 signal_stop[signo] = state;
3113 return ret;
3114}
3115
488f131b 3116int
7bda5e4a 3117signal_print_update (int signo, int state)
d4f3574e
SS
3118{
3119 int ret = signal_print[signo];
3120 signal_print[signo] = state;
3121 return ret;
3122}
3123
488f131b 3124int
7bda5e4a 3125signal_pass_update (int signo, int state)
d4f3574e
SS
3126{
3127 int ret = signal_program[signo];
3128 signal_program[signo] = state;
3129 return ret;
3130}
3131
c906108c 3132static void
96baa820 3133sig_print_header (void)
c906108c
SS
3134{
3135 printf_filtered ("\
3136Signal Stop\tPrint\tPass to program\tDescription\n");
3137}
3138
3139static void
96baa820 3140sig_print_info (enum target_signal oursig)
c906108c
SS
3141{
3142 char *name = target_signal_to_name (oursig);
3143 int name_padding = 13 - strlen (name);
96baa820 3144
c906108c
SS
3145 if (name_padding <= 0)
3146 name_padding = 0;
3147
3148 printf_filtered ("%s", name);
488f131b 3149 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3150 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3151 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3152 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3153 printf_filtered ("%s\n", target_signal_to_string (oursig));
3154}
3155
3156/* Specify how various signals in the inferior should be handled. */
3157
3158static void
96baa820 3159handle_command (char *args, int from_tty)
c906108c
SS
3160{
3161 char **argv;
3162 int digits, wordlen;
3163 int sigfirst, signum, siglast;
3164 enum target_signal oursig;
3165 int allsigs;
3166 int nsigs;
3167 unsigned char *sigs;
3168 struct cleanup *old_chain;
3169
3170 if (args == NULL)
3171 {
3172 error_no_arg ("signal to handle");
3173 }
3174
3175 /* Allocate and zero an array of flags for which signals to handle. */
3176
3177 nsigs = (int) TARGET_SIGNAL_LAST;
3178 sigs = (unsigned char *) alloca (nsigs);
3179 memset (sigs, 0, nsigs);
3180
3181 /* Break the command line up into args. */
3182
3183 argv = buildargv (args);
3184 if (argv == NULL)
3185 {
3186 nomem (0);
3187 }
7a292a7a 3188 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3189
3190 /* Walk through the args, looking for signal oursigs, signal names, and
3191 actions. Signal numbers and signal names may be interspersed with
3192 actions, with the actions being performed for all signals cumulatively
3193 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3194
3195 while (*argv != NULL)
3196 {
3197 wordlen = strlen (*argv);
3198 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3199 {;
3200 }
3201 allsigs = 0;
3202 sigfirst = siglast = -1;
3203
3204 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3205 {
3206 /* Apply action to all signals except those used by the
3207 debugger. Silently skip those. */
3208 allsigs = 1;
3209 sigfirst = 0;
3210 siglast = nsigs - 1;
3211 }
3212 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3213 {
3214 SET_SIGS (nsigs, sigs, signal_stop);
3215 SET_SIGS (nsigs, sigs, signal_print);
3216 }
3217 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3218 {
3219 UNSET_SIGS (nsigs, sigs, signal_program);
3220 }
3221 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3222 {
3223 SET_SIGS (nsigs, sigs, signal_print);
3224 }
3225 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3226 {
3227 SET_SIGS (nsigs, sigs, signal_program);
3228 }
3229 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3230 {
3231 UNSET_SIGS (nsigs, sigs, signal_stop);
3232 }
3233 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3234 {
3235 SET_SIGS (nsigs, sigs, signal_program);
3236 }
3237 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3238 {
3239 UNSET_SIGS (nsigs, sigs, signal_print);
3240 UNSET_SIGS (nsigs, sigs, signal_stop);
3241 }
3242 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3243 {
3244 UNSET_SIGS (nsigs, sigs, signal_program);
3245 }
3246 else if (digits > 0)
3247 {
3248 /* It is numeric. The numeric signal refers to our own
3249 internal signal numbering from target.h, not to host/target
3250 signal number. This is a feature; users really should be
3251 using symbolic names anyway, and the common ones like
3252 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3253
3254 sigfirst = siglast = (int)
3255 target_signal_from_command (atoi (*argv));
3256 if ((*argv)[digits] == '-')
3257 {
3258 siglast = (int)
3259 target_signal_from_command (atoi ((*argv) + digits + 1));
3260 }
3261 if (sigfirst > siglast)
3262 {
3263 /* Bet he didn't figure we'd think of this case... */
3264 signum = sigfirst;
3265 sigfirst = siglast;
3266 siglast = signum;
3267 }
3268 }
3269 else
3270 {
3271 oursig = target_signal_from_name (*argv);
3272 if (oursig != TARGET_SIGNAL_UNKNOWN)
3273 {
3274 sigfirst = siglast = (int) oursig;
3275 }
3276 else
3277 {
3278 /* Not a number and not a recognized flag word => complain. */
3279 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3280 }
3281 }
3282
3283 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3284 which signals to apply actions to. */
c906108c
SS
3285
3286 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3287 {
3288 switch ((enum target_signal) signum)
3289 {
3290 case TARGET_SIGNAL_TRAP:
3291 case TARGET_SIGNAL_INT:
3292 if (!allsigs && !sigs[signum])
3293 {
3294 if (query ("%s is used by the debugger.\n\
488f131b 3295Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3296 {
3297 sigs[signum] = 1;
3298 }
3299 else
3300 {
3301 printf_unfiltered ("Not confirmed, unchanged.\n");
3302 gdb_flush (gdb_stdout);
3303 }
3304 }
3305 break;
3306 case TARGET_SIGNAL_0:
3307 case TARGET_SIGNAL_DEFAULT:
3308 case TARGET_SIGNAL_UNKNOWN:
3309 /* Make sure that "all" doesn't print these. */
3310 break;
3311 default:
3312 sigs[signum] = 1;
3313 break;
3314 }
3315 }
3316
3317 argv++;
3318 }
3319
39f77062 3320 target_notice_signals (inferior_ptid);
c906108c
SS
3321
3322 if (from_tty)
3323 {
3324 /* Show the results. */
3325 sig_print_header ();
3326 for (signum = 0; signum < nsigs; signum++)
3327 {
3328 if (sigs[signum])
3329 {
3330 sig_print_info (signum);
3331 }
3332 }
3333 }
3334
3335 do_cleanups (old_chain);
3336}
3337
3338static void
96baa820 3339xdb_handle_command (char *args, int from_tty)
c906108c
SS
3340{
3341 char **argv;
3342 struct cleanup *old_chain;
3343
3344 /* Break the command line up into args. */
3345
3346 argv = buildargv (args);
3347 if (argv == NULL)
3348 {
3349 nomem (0);
3350 }
7a292a7a 3351 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3352 if (argv[1] != (char *) NULL)
3353 {
3354 char *argBuf;
3355 int bufLen;
3356
3357 bufLen = strlen (argv[0]) + 20;
3358 argBuf = (char *) xmalloc (bufLen);
3359 if (argBuf)
3360 {
3361 int validFlag = 1;
3362 enum target_signal oursig;
3363
3364 oursig = target_signal_from_name (argv[0]);
3365 memset (argBuf, 0, bufLen);
3366 if (strcmp (argv[1], "Q") == 0)
3367 sprintf (argBuf, "%s %s", argv[0], "noprint");
3368 else
3369 {
3370 if (strcmp (argv[1], "s") == 0)
3371 {
3372 if (!signal_stop[oursig])
3373 sprintf (argBuf, "%s %s", argv[0], "stop");
3374 else
3375 sprintf (argBuf, "%s %s", argv[0], "nostop");
3376 }
3377 else if (strcmp (argv[1], "i") == 0)
3378 {
3379 if (!signal_program[oursig])
3380 sprintf (argBuf, "%s %s", argv[0], "pass");
3381 else
3382 sprintf (argBuf, "%s %s", argv[0], "nopass");
3383 }
3384 else if (strcmp (argv[1], "r") == 0)
3385 {
3386 if (!signal_print[oursig])
3387 sprintf (argBuf, "%s %s", argv[0], "print");
3388 else
3389 sprintf (argBuf, "%s %s", argv[0], "noprint");
3390 }
3391 else
3392 validFlag = 0;
3393 }
3394 if (validFlag)
3395 handle_command (argBuf, from_tty);
3396 else
3397 printf_filtered ("Invalid signal handling flag.\n");
3398 if (argBuf)
b8c9b27d 3399 xfree (argBuf);
c906108c
SS
3400 }
3401 }
3402 do_cleanups (old_chain);
3403}
3404
3405/* Print current contents of the tables set by the handle command.
3406 It is possible we should just be printing signals actually used
3407 by the current target (but for things to work right when switching
3408 targets, all signals should be in the signal tables). */
3409
3410static void
96baa820 3411signals_info (char *signum_exp, int from_tty)
c906108c
SS
3412{
3413 enum target_signal oursig;
3414 sig_print_header ();
3415
3416 if (signum_exp)
3417 {
3418 /* First see if this is a symbol name. */
3419 oursig = target_signal_from_name (signum_exp);
3420 if (oursig == TARGET_SIGNAL_UNKNOWN)
3421 {
3422 /* No, try numeric. */
3423 oursig =
bb518678 3424 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3425 }
3426 sig_print_info (oursig);
3427 return;
3428 }
3429
3430 printf_filtered ("\n");
3431 /* These ugly casts brought to you by the native VAX compiler. */
3432 for (oursig = TARGET_SIGNAL_FIRST;
3433 (int) oursig < (int) TARGET_SIGNAL_LAST;
3434 oursig = (enum target_signal) ((int) oursig + 1))
3435 {
3436 QUIT;
3437
3438 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3439 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3440 sig_print_info (oursig);
3441 }
3442
3443 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3444}
3445\f
7a292a7a
SS
3446struct inferior_status
3447{
3448 enum target_signal stop_signal;
3449 CORE_ADDR stop_pc;
3450 bpstat stop_bpstat;
3451 int stop_step;
3452 int stop_stack_dummy;
3453 int stopped_by_random_signal;
3454 int trap_expected;
3455 CORE_ADDR step_range_start;
3456 CORE_ADDR step_range_end;
aa0cd9c1 3457 struct frame_id step_frame_id;
5fbbeb29 3458 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3459 CORE_ADDR step_resume_break_address;
3460 int stop_after_trap;
c0236d92 3461 int stop_soon;
72cec141 3462 struct regcache *stop_registers;
7a292a7a
SS
3463
3464 /* These are here because if call_function_by_hand has written some
3465 registers and then decides to call error(), we better not have changed
3466 any registers. */
72cec141 3467 struct regcache *registers;
7a292a7a 3468
101dcfbe
AC
3469 /* A frame unique identifier. */
3470 struct frame_id selected_frame_id;
3471
7a292a7a
SS
3472 int breakpoint_proceeded;
3473 int restore_stack_info;
3474 int proceed_to_finish;
3475};
3476
7a292a7a 3477void
96baa820
JM
3478write_inferior_status_register (struct inferior_status *inf_status, int regno,
3479 LONGEST val)
7a292a7a 3480{
3acba339 3481 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3482 void *buf = alloca (size);
3483 store_signed_integer (buf, size, val);
0818c12a 3484 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3485}
3486
c906108c
SS
3487/* Save all of the information associated with the inferior<==>gdb
3488 connection. INF_STATUS is a pointer to a "struct inferior_status"
3489 (defined in inferior.h). */
3490
7a292a7a 3491struct inferior_status *
96baa820 3492save_inferior_status (int restore_stack_info)
c906108c 3493{
72cec141 3494 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3495
c906108c
SS
3496 inf_status->stop_signal = stop_signal;
3497 inf_status->stop_pc = stop_pc;
3498 inf_status->stop_step = stop_step;
3499 inf_status->stop_stack_dummy = stop_stack_dummy;
3500 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3501 inf_status->trap_expected = trap_expected;
3502 inf_status->step_range_start = step_range_start;
3503 inf_status->step_range_end = step_range_end;
aa0cd9c1 3504 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3505 inf_status->step_over_calls = step_over_calls;
3506 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3507 inf_status->stop_soon = stop_soon;
c906108c
SS
3508 /* Save original bpstat chain here; replace it with copy of chain.
3509 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3510 hand them back the original chain when restore_inferior_status is
3511 called. */
c906108c
SS
3512 inf_status->stop_bpstat = stop_bpstat;
3513 stop_bpstat = bpstat_copy (stop_bpstat);
3514 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3515 inf_status->restore_stack_info = restore_stack_info;
3516 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3517
72cec141 3518 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3519
72cec141 3520 inf_status->registers = regcache_dup (current_regcache);
c906108c 3521
7a424e99 3522 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3523 return inf_status;
c906108c
SS
3524}
3525
c906108c 3526static int
96baa820 3527restore_selected_frame (void *args)
c906108c 3528{
488f131b 3529 struct frame_id *fid = (struct frame_id *) args;
c906108c 3530 struct frame_info *frame;
c906108c 3531
101dcfbe 3532 frame = frame_find_by_id (*fid);
c906108c 3533
aa0cd9c1
AC
3534 /* If inf_status->selected_frame_id is NULL, there was no previously
3535 selected frame. */
101dcfbe 3536 if (frame == NULL)
c906108c
SS
3537 {
3538 warning ("Unable to restore previously selected frame.\n");
3539 return 0;
3540 }
3541
0f7d239c 3542 select_frame (frame);
c906108c
SS
3543
3544 return (1);
3545}
3546
3547void
96baa820 3548restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3549{
3550 stop_signal = inf_status->stop_signal;
3551 stop_pc = inf_status->stop_pc;
3552 stop_step = inf_status->stop_step;
3553 stop_stack_dummy = inf_status->stop_stack_dummy;
3554 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3555 trap_expected = inf_status->trap_expected;
3556 step_range_start = inf_status->step_range_start;
3557 step_range_end = inf_status->step_range_end;
aa0cd9c1 3558 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3559 step_over_calls = inf_status->step_over_calls;
3560 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3561 stop_soon = inf_status->stop_soon;
c906108c
SS
3562 bpstat_clear (&stop_bpstat);
3563 stop_bpstat = inf_status->stop_bpstat;
3564 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3565 proceed_to_finish = inf_status->proceed_to_finish;
3566
72cec141
AC
3567 /* FIXME: Is the restore of stop_registers always needed. */
3568 regcache_xfree (stop_registers);
3569 stop_registers = inf_status->stop_registers;
c906108c
SS
3570
3571 /* The inferior can be gone if the user types "print exit(0)"
3572 (and perhaps other times). */
3573 if (target_has_execution)
72cec141
AC
3574 /* NB: The register write goes through to the target. */
3575 regcache_cpy (current_regcache, inf_status->registers);
3576 regcache_xfree (inf_status->registers);
c906108c 3577
c906108c
SS
3578 /* FIXME: If we are being called after stopping in a function which
3579 is called from gdb, we should not be trying to restore the
3580 selected frame; it just prints a spurious error message (The
3581 message is useful, however, in detecting bugs in gdb (like if gdb
3582 clobbers the stack)). In fact, should we be restoring the
3583 inferior status at all in that case? . */
3584
3585 if (target_has_stack && inf_status->restore_stack_info)
3586 {
c906108c 3587 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3588 walking the stack might encounter a garbage pointer and
3589 error() trying to dereference it. */
488f131b
JB
3590 if (catch_errors
3591 (restore_selected_frame, &inf_status->selected_frame_id,
3592 "Unable to restore previously selected frame:\n",
3593 RETURN_MASK_ERROR) == 0)
c906108c
SS
3594 /* Error in restoring the selected frame. Select the innermost
3595 frame. */
0f7d239c 3596 select_frame (get_current_frame ());
c906108c
SS
3597
3598 }
c906108c 3599
72cec141 3600 xfree (inf_status);
7a292a7a 3601}
c906108c 3602
74b7792f
AC
3603static void
3604do_restore_inferior_status_cleanup (void *sts)
3605{
3606 restore_inferior_status (sts);
3607}
3608
3609struct cleanup *
3610make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3611{
3612 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3613}
3614
c906108c 3615void
96baa820 3616discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3617{
3618 /* See save_inferior_status for info on stop_bpstat. */
3619 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3620 regcache_xfree (inf_status->registers);
3621 regcache_xfree (inf_status->stop_registers);
3622 xfree (inf_status);
7a292a7a
SS
3623}
3624
47932f85
DJ
3625int
3626inferior_has_forked (int pid, int *child_pid)
3627{
3628 struct target_waitstatus last;
3629 ptid_t last_ptid;
3630
3631 get_last_target_status (&last_ptid, &last);
3632
3633 if (last.kind != TARGET_WAITKIND_FORKED)
3634 return 0;
3635
3636 if (ptid_get_pid (last_ptid) != pid)
3637 return 0;
3638
3639 *child_pid = last.value.related_pid;
3640 return 1;
3641}
3642
3643int
3644inferior_has_vforked (int pid, int *child_pid)
3645{
3646 struct target_waitstatus last;
3647 ptid_t last_ptid;
3648
3649 get_last_target_status (&last_ptid, &last);
3650
3651 if (last.kind != TARGET_WAITKIND_VFORKED)
3652 return 0;
3653
3654 if (ptid_get_pid (last_ptid) != pid)
3655 return 0;
3656
3657 *child_pid = last.value.related_pid;
3658 return 1;
3659}
3660
3661int
3662inferior_has_execd (int pid, char **execd_pathname)
3663{
3664 struct target_waitstatus last;
3665 ptid_t last_ptid;
3666
3667 get_last_target_status (&last_ptid, &last);
3668
3669 if (last.kind != TARGET_WAITKIND_EXECD)
3670 return 0;
3671
3672 if (ptid_get_pid (last_ptid) != pid)
3673 return 0;
3674
3675 *execd_pathname = xstrdup (last.value.execd_pathname);
3676 return 1;
3677}
3678
ca6724c1
KB
3679/* Oft used ptids */
3680ptid_t null_ptid;
3681ptid_t minus_one_ptid;
3682
3683/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3684
ca6724c1
KB
3685ptid_t
3686ptid_build (int pid, long lwp, long tid)
3687{
3688 ptid_t ptid;
3689
3690 ptid.pid = pid;
3691 ptid.lwp = lwp;
3692 ptid.tid = tid;
3693 return ptid;
3694}
3695
3696/* Create a ptid from just a pid. */
3697
3698ptid_t
3699pid_to_ptid (int pid)
3700{
3701 return ptid_build (pid, 0, 0);
3702}
3703
3704/* Fetch the pid (process id) component from a ptid. */
3705
3706int
3707ptid_get_pid (ptid_t ptid)
3708{
3709 return ptid.pid;
3710}
3711
3712/* Fetch the lwp (lightweight process) component from a ptid. */
3713
3714long
3715ptid_get_lwp (ptid_t ptid)
3716{
3717 return ptid.lwp;
3718}
3719
3720/* Fetch the tid (thread id) component from a ptid. */
3721
3722long
3723ptid_get_tid (ptid_t ptid)
3724{
3725 return ptid.tid;
3726}
3727
3728/* ptid_equal() is used to test equality of two ptids. */
3729
3730int
3731ptid_equal (ptid_t ptid1, ptid_t ptid2)
3732{
3733 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3734 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3735}
3736
3737/* restore_inferior_ptid() will be used by the cleanup machinery
3738 to restore the inferior_ptid value saved in a call to
3739 save_inferior_ptid(). */
ce696e05
KB
3740
3741static void
3742restore_inferior_ptid (void *arg)
3743{
3744 ptid_t *saved_ptid_ptr = arg;
3745 inferior_ptid = *saved_ptid_ptr;
3746 xfree (arg);
3747}
3748
3749/* Save the value of inferior_ptid so that it may be restored by a
3750 later call to do_cleanups(). Returns the struct cleanup pointer
3751 needed for later doing the cleanup. */
3752
3753struct cleanup *
3754save_inferior_ptid (void)
3755{
3756 ptid_t *saved_ptid_ptr;
3757
3758 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3759 *saved_ptid_ptr = inferior_ptid;
3760 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3761}
c5aa993b 3762\f
488f131b 3763
7a292a7a 3764static void
96baa820 3765build_infrun (void)
7a292a7a 3766{
72cec141 3767 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3768}
c906108c 3769
c906108c 3770void
96baa820 3771_initialize_infrun (void)
c906108c 3772{
52f0bd74
AC
3773 int i;
3774 int numsigs;
c906108c
SS
3775 struct cmd_list_element *c;
3776
046a4708
AC
3777 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3778 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3779
c906108c
SS
3780 add_info ("signals", signals_info,
3781 "What debugger does when program gets various signals.\n\
3782Specify a signal as argument to print info on that signal only.");
3783 add_info_alias ("handle", "signals", 0);
3784
3785 add_com ("handle", class_run, handle_command,
3786 concat ("Specify how to handle a signal.\n\
3787Args are signals and actions to apply to those signals.\n\
3788Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3789from 1-15 are allowed for compatibility with old versions of GDB.\n\
3790Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3791The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3792used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3793\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3794Stop means reenter debugger if this signal happens (implies print).\n\
3795Print means print a message if this signal happens.\n\
3796Pass means let program see this signal; otherwise program doesn't know.\n\
3797Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3798Pass and Stop may be combined.", NULL));
3799 if (xdb_commands)
3800 {
3801 add_com ("lz", class_info, signals_info,
3802 "What debugger does when program gets various signals.\n\
3803Specify a signal as argument to print info on that signal only.");
3804 add_com ("z", class_run, xdb_handle_command,
3805 concat ("Specify how to handle a signal.\n\
3806Args are signals and actions to apply to those signals.\n\
3807Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3808from 1-15 are allowed for compatibility with old versions of GDB.\n\
3809Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3810The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3811used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3812\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3813nopass), \"Q\" (noprint)\n\
3814Stop means reenter debugger if this signal happens (implies print).\n\
3815Print means print a message if this signal happens.\n\
3816Pass means let program see this signal; otherwise program doesn't know.\n\
3817Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3818Pass and Stop may be combined.", NULL));
3819 }
3820
3821 if (!dbx_commands)
488f131b 3822 stop_command =
9d1ff73f
MS
3823 add_cmd ("stop", class_obscure, not_just_help_class_command,
3824 "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
3825This allows you to set a list of commands to be run each time execution\n\
3826of the program stops.", &cmdlist);
3827
527159b7 3828 add_set_cmd ("infrun", class_maintenance, var_zinteger,
9d1ff73f 3829 &debug_infrun, "Set inferior debugging.\n\
527159b7
RC
3830When non-zero, inferior specific debugging is enabled.", &setdebuglist);
3831
c906108c 3832 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3833 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3834 signal_print = (unsigned char *)
3835 xmalloc (sizeof (signal_print[0]) * numsigs);
3836 signal_program = (unsigned char *)
3837 xmalloc (sizeof (signal_program[0]) * numsigs);
3838 for (i = 0; i < numsigs; i++)
3839 {
3840 signal_stop[i] = 1;
3841 signal_print[i] = 1;
3842 signal_program[i] = 1;
3843 }
3844
3845 /* Signals caused by debugger's own actions
3846 should not be given to the program afterwards. */
3847 signal_program[TARGET_SIGNAL_TRAP] = 0;
3848 signal_program[TARGET_SIGNAL_INT] = 0;
3849
3850 /* Signals that are not errors should not normally enter the debugger. */
3851 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3852 signal_print[TARGET_SIGNAL_ALRM] = 0;
3853 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3854 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3855 signal_stop[TARGET_SIGNAL_PROF] = 0;
3856 signal_print[TARGET_SIGNAL_PROF] = 0;
3857 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3858 signal_print[TARGET_SIGNAL_CHLD] = 0;
3859 signal_stop[TARGET_SIGNAL_IO] = 0;
3860 signal_print[TARGET_SIGNAL_IO] = 0;
3861 signal_stop[TARGET_SIGNAL_POLL] = 0;
3862 signal_print[TARGET_SIGNAL_POLL] = 0;
3863 signal_stop[TARGET_SIGNAL_URG] = 0;
3864 signal_print[TARGET_SIGNAL_URG] = 0;
3865 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3866 signal_print[TARGET_SIGNAL_WINCH] = 0;
3867
cd0fc7c3
SS
3868 /* These signals are used internally by user-level thread
3869 implementations. (See signal(5) on Solaris.) Like the above
3870 signals, a healthy program receives and handles them as part of
3871 its normal operation. */
3872 signal_stop[TARGET_SIGNAL_LWP] = 0;
3873 signal_print[TARGET_SIGNAL_LWP] = 0;
3874 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3875 signal_print[TARGET_SIGNAL_WAITING] = 0;
3876 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3877 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3878
c906108c 3879#ifdef SOLIB_ADD
cb1a6d5f 3880 deprecated_add_show_from_set
c906108c
SS
3881 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3882 (char *) &stop_on_solib_events,
3883 "Set stopping for shared library events.\n\
3884If nonzero, gdb will give control to the user when the dynamic linker\n\
3885notifies gdb of shared library events. The most common event of interest\n\
9d1ff73f
MS
3886to the user would be loading/unloading of a new library.\n",
3887 &setlist),
3888 &showlist);
c906108c
SS
3889#endif
3890
3891 c = add_set_enum_cmd ("follow-fork-mode",
3892 class_run,
488f131b 3893 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
3894 "Set debugger response to a program call of fork \
3895or vfork.\n\
3896A fork or vfork creates a new process. follow-fork-mode can be:\n\
3897 parent - the original process is debugged after a fork\n\
3898 child - the new process is debugged after a fork\n\
ea1dd7bc 3899The unfollowed process will continue to run.\n\
488f131b 3900By default, the debugger will follow the parent process.", &setlist);
cb1a6d5f 3901 deprecated_add_show_from_set (c, &showlist);
c906108c 3902
9d1ff73f
MS
3903 c = add_set_enum_cmd ("scheduler-locking", class_run,
3904 scheduler_enums, /* array of string names */
1ed2a135 3905 &scheduler_mode, /* current mode */
c906108c
SS
3906 "Set mode for locking scheduler during execution.\n\
3907off == no locking (threads may preempt at any time)\n\
3908on == full locking (no thread except the current thread may run)\n\
3909step == scheduler locked during every single-step operation.\n\
3910 In this mode, no other thread may run during a step command.\n\
9d1ff73f
MS
3911 Other threads may run while stepping over a function call ('next').",
3912 &setlist);
c906108c 3913
9f60d481 3914 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
cb1a6d5f 3915 deprecated_add_show_from_set (c, &showlist);
5fbbeb29
CF
3916
3917 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
3918 var_boolean, (char *) &step_stop_if_no_debug,
3919 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
3920function without debug line information will stop at the first\n\
3921instruction of that function. Otherwise, the function is skipped and\n\
488f131b 3922the step command stops at a different source line.", &setlist);
cb1a6d5f 3923 deprecated_add_show_from_set (c, &showlist);
ca6724c1
KB
3924
3925 /* ptid initializations */
3926 null_ptid = ptid_build (0, 0, 0);
3927 minus_one_ptid = ptid_build (-1, 0, 0);
3928 inferior_ptid = null_ptid;
3929 target_last_wait_ptid = minus_one_ptid;
c906108c 3930}
This page took 0.709062 seconds and 4 git commands to generate.