Merge branch 'master' into merge-job
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4e5106e6 5 Copyright (C) 2019-2020 Advanced Micro Devices, Inc. All rights reserved.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include <ctype.h>
25#include "symtab.h"
26#include "frame.h"
27#include "inferior.h"
28#include "breakpoint.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
372316f1 59#include "event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
4ef3f3be 74static int follow_fork (void);
96baa820 75
d83ad864
DB
76static int follow_fork_inferior (int follow_child, int detach_fork);
77
78static void follow_inferior_reset_breakpoints (void);
79
a289b8f6
JK
80static int currently_stepping (struct thread_info *tp);
81
e58b0e63
PA
82void nullify_last_target_wait_ptid (void);
83
2c03e5be 84static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
85
86static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
2484c66b
UW
88static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
8550d3b3
YQ
90static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
aff4e175
AB
92static void resume (gdb_signal sig);
93
372316f1
PA
94/* Asynchronous signal handler registered as event loop source for
95 when we have pending events ready to be passed to the core. */
96static struct async_event_handler *infrun_async_inferior_event_token;
97
98/* Stores whether infrun_async was previously enabled or disabled.
99 Starts off as -1, indicating "never enabled/disabled". */
100static int infrun_is_async = -1;
101
102/* See infrun.h. */
103
104void
105infrun_async (int enable)
106{
107 if (infrun_is_async != enable)
108 {
109 infrun_is_async = enable;
110
111 if (debug_infrun)
112 fprintf_unfiltered (gdb_stdlog,
113 "infrun: infrun_async(%d)\n",
114 enable);
115
116 if (enable)
117 mark_async_event_handler (infrun_async_inferior_event_token);
118 else
119 clear_async_event_handler (infrun_async_inferior_event_token);
120 }
121}
122
0b333c5e
PA
123/* See infrun.h. */
124
125void
126mark_infrun_async_event_handler (void)
127{
128 mark_async_event_handler (infrun_async_inferior_event_token);
129}
130
5fbbeb29
CF
131/* When set, stop the 'step' command if we enter a function which has
132 no line number information. The normal behavior is that we step
133 over such function. */
491144b5 134bool step_stop_if_no_debug = false;
920d2a44
AC
135static void
136show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138{
139 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
140}
5fbbeb29 141
b9f437de
PA
142/* proceed and normal_stop use this to notify the user when the
143 inferior stopped in a different thread than it had been running
144 in. */
96baa820 145
39f77062 146static ptid_t previous_inferior_ptid;
7a292a7a 147
07107ca6
LM
148/* If set (default for legacy reasons), when following a fork, GDB
149 will detach from one of the fork branches, child or parent.
150 Exactly which branch is detached depends on 'set follow-fork-mode'
151 setting. */
152
491144b5 153static bool detach_fork = true;
6c95b8df 154
491144b5 155bool debug_displaced = false;
237fc4c9
PA
156static void
157show_debug_displaced (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159{
160 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
161}
162
ccce17b0 163unsigned int debug_infrun = 0;
920d2a44
AC
164static void
165show_debug_infrun (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167{
168 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
169}
527159b7 170
03583c20
UW
171
172/* Support for disabling address space randomization. */
173
491144b5 174bool disable_randomization = true;
03583c20
UW
175
176static void
177show_disable_randomization (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179{
180 if (target_supports_disable_randomization ())
181 fprintf_filtered (file,
182 _("Disabling randomization of debuggee's "
183 "virtual address space is %s.\n"),
184 value);
185 else
186 fputs_filtered (_("Disabling randomization of debuggee's "
187 "virtual address space is unsupported on\n"
188 "this platform.\n"), file);
189}
190
191static void
eb4c3f4a 192set_disable_randomization (const char *args, int from_tty,
03583c20
UW
193 struct cmd_list_element *c)
194{
195 if (!target_supports_disable_randomization ())
196 error (_("Disabling randomization of debuggee's "
197 "virtual address space is unsupported on\n"
198 "this platform."));
199}
200
d32dc48e
PA
201/* User interface for non-stop mode. */
202
491144b5
CB
203bool non_stop = false;
204static bool non_stop_1 = false;
d32dc48e
PA
205
206static void
eb4c3f4a 207set_non_stop (const char *args, int from_tty,
d32dc48e
PA
208 struct cmd_list_element *c)
209{
210 if (target_has_execution)
211 {
212 non_stop_1 = non_stop;
213 error (_("Cannot change this setting while the inferior is running."));
214 }
215
216 non_stop = non_stop_1;
217}
218
219static void
220show_non_stop (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222{
223 fprintf_filtered (file,
224 _("Controlling the inferior in non-stop mode is %s.\n"),
225 value);
226}
227
d914c394
SS
228/* "Observer mode" is somewhat like a more extreme version of
229 non-stop, in which all GDB operations that might affect the
230 target's execution have been disabled. */
231
491144b5
CB
232bool observer_mode = false;
233static bool observer_mode_1 = false;
d914c394
SS
234
235static void
eb4c3f4a 236set_observer_mode (const char *args, int from_tty,
d914c394
SS
237 struct cmd_list_element *c)
238{
d914c394
SS
239 if (target_has_execution)
240 {
241 observer_mode_1 = observer_mode;
242 error (_("Cannot change this setting while the inferior is running."));
243 }
244
245 observer_mode = observer_mode_1;
246
247 may_write_registers = !observer_mode;
248 may_write_memory = !observer_mode;
249 may_insert_breakpoints = !observer_mode;
250 may_insert_tracepoints = !observer_mode;
251 /* We can insert fast tracepoints in or out of observer mode,
252 but enable them if we're going into this mode. */
253 if (observer_mode)
491144b5 254 may_insert_fast_tracepoints = true;
d914c394
SS
255 may_stop = !observer_mode;
256 update_target_permissions ();
257
258 /* Going *into* observer mode we must force non-stop, then
259 going out we leave it that way. */
260 if (observer_mode)
261 {
d914c394 262 pagination_enabled = 0;
491144b5 263 non_stop = non_stop_1 = true;
d914c394
SS
264 }
265
266 if (from_tty)
267 printf_filtered (_("Observer mode is now %s.\n"),
268 (observer_mode ? "on" : "off"));
269}
270
271static void
272show_observer_mode (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c, const char *value)
274{
275 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
276}
277
278/* This updates the value of observer mode based on changes in
279 permissions. Note that we are deliberately ignoring the values of
280 may-write-registers and may-write-memory, since the user may have
281 reason to enable these during a session, for instance to turn on a
282 debugging-related global. */
283
284void
285update_observer_mode (void)
286{
491144b5
CB
287 bool newval = (!may_insert_breakpoints
288 && !may_insert_tracepoints
289 && may_insert_fast_tracepoints
290 && !may_stop
291 && non_stop);
d914c394
SS
292
293 /* Let the user know if things change. */
294 if (newval != observer_mode)
295 printf_filtered (_("Observer mode is now %s.\n"),
296 (newval ? "on" : "off"));
297
298 observer_mode = observer_mode_1 = newval;
299}
c2c6d25f 300
c906108c
SS
301/* Tables of how to react to signals; the user sets them. */
302
adc6a863
PA
303static unsigned char signal_stop[GDB_SIGNAL_LAST];
304static unsigned char signal_print[GDB_SIGNAL_LAST];
305static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 306
ab04a2af
TT
307/* Table of signals that are registered with "catch signal". A
308 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
309 signal" command. */
310static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 311
2455069d
UW
312/* Table of signals that the target may silently handle.
313 This is automatically determined from the flags above,
314 and simply cached here. */
adc6a863 315static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 316
c906108c
SS
317#define SET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 1; \
323 } while (0)
324
325#define UNSET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 0; \
331 } while (0)
332
9b224c5e
PA
333/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
334 this function is to avoid exporting `signal_program'. */
335
336void
337update_signals_program_target (void)
338{
adc6a863 339 target_program_signals (signal_program);
9b224c5e
PA
340}
341
1777feb0 342/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 343
edb3359d 344#define RESUME_ALL minus_one_ptid
c906108c
SS
345
346/* Command list pointer for the "stop" placeholder. */
347
348static struct cmd_list_element *stop_command;
349
c906108c
SS
350/* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
628fe4e4 352int stop_on_solib_events;
f9e14852
GB
353
354/* Enable or disable optional shared library event breakpoints
355 as appropriate when the above flag is changed. */
356
357static void
eb4c3f4a
TT
358set_stop_on_solib_events (const char *args,
359 int from_tty, struct cmd_list_element *c)
f9e14852
GB
360{
361 update_solib_breakpoints ();
362}
363
920d2a44
AC
364static void
365show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367{
368 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
369 value);
370}
c906108c 371
c906108c
SS
372/* Nonzero after stop if current stack frame should be printed. */
373
374static int stop_print_frame;
375
e02bc4cc 376/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
377 returned by target_wait()/deprecated_target_wait_hook(). This
378 information is returned by get_last_target_status(). */
39f77062 379static ptid_t target_last_wait_ptid;
e02bc4cc
DS
380static struct target_waitstatus target_last_waitstatus;
381
4e1c45ea 382void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 383
53904c9e
AC
384static const char follow_fork_mode_child[] = "child";
385static const char follow_fork_mode_parent[] = "parent";
386
40478521 387static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
ef346e04 391};
c906108c 392
53904c9e 393static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
394static void
395show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397{
3e43a32a
MS
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
401 value);
402}
c906108c
SS
403\f
404
d83ad864
DB
405/* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411static int
412follow_fork_inferior (int follow_child, int detach_fork)
413{
414 int has_vforked;
79639e11 415 ptid_t parent_ptid, child_ptid;
d83ad864
DB
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
79639e11
PA
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 424 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433Can not resume the parent process over vfork in the foreground while\n\
434holding the child stopped. Try \"set detach-on-fork\" or \
435\"set schedule-multiple\".\n"));
d83ad864
DB
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
d83ad864
DB
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
00431a78 454 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
455 }
456
f67c0c91 457 if (print_inferior_events)
d83ad864 458 {
8dd06f7a 459 /* Ensure that we have a process ptid. */
e99b03dc 460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 461
223ffa71 462 target_terminal::ours_for_output ();
d83ad864 463 fprintf_filtered (gdb_stdlog,
f67c0c91 464 _("[Detaching after %s from child %s]\n"),
6f259a23 465 has_vforked ? "vfork" : "fork",
a068643d 466 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
d83ad864
DB
472
473 /* Add process to GDB's tables. */
e99b03dc 474 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
5ed8105e 482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 483
79639e11 484 inferior_ptid = child_ptid;
f67c0c91 485 add_thread_silent (inferior_ptid);
2a00d7ce 486 set_current_inferior (child_inf);
d83ad864
DB
487 child_inf->symfile_flags = SYMFILE_NO_READ;
488
489 /* If this is a vfork child, then the address-space is
490 shared with the parent. */
491 if (has_vforked)
492 {
493 child_inf->pspace = parent_inf->pspace;
494 child_inf->aspace = parent_inf->aspace;
495
496 /* The parent will be frozen until the child is done
497 with the shared region. Keep track of the
498 parent. */
499 child_inf->vfork_parent = parent_inf;
500 child_inf->pending_detach = 0;
501 parent_inf->vfork_child = child_inf;
502 parent_inf->pending_detach = 0;
503 }
504 else
505 {
506 child_inf->aspace = new_address_space ();
564b1e3f 507 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
508 child_inf->removable = 1;
509 set_current_program_space (child_inf->pspace);
510 clone_program_space (child_inf->pspace, parent_inf->pspace);
511
512 /* Let the shared library layer (e.g., solib-svr4) learn
513 about this new process, relocate the cloned exec, pull
514 in shared libraries, and install the solib event
515 breakpoint. If a "cloned-VM" event was propagated
516 better throughout the core, this wouldn't be
517 required. */
518 solib_create_inferior_hook (0);
519 }
d83ad864
DB
520 }
521
522 if (has_vforked)
523 {
524 struct inferior *parent_inf;
525
526 parent_inf = current_inferior ();
527
528 /* If we detached from the child, then we have to be careful
529 to not insert breakpoints in the parent until the child
530 is done with the shared memory region. However, if we're
531 staying attached to the child, then we can and should
532 insert breakpoints, so that we can debug it. A
533 subsequent child exec or exit is enough to know when does
534 the child stops using the parent's address space. */
535 parent_inf->waiting_for_vfork_done = detach_fork;
536 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
537 }
538 }
539 else
540 {
541 /* Follow the child. */
542 struct inferior *parent_inf, *child_inf;
543 struct program_space *parent_pspace;
544
f67c0c91 545 if (print_inferior_events)
d83ad864 546 {
f67c0c91
SDJ
547 std::string parent_pid = target_pid_to_str (parent_ptid);
548 std::string child_pid = target_pid_to_str (child_ptid);
549
223ffa71 550 target_terminal::ours_for_output ();
6f259a23 551 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
552 _("[Attaching after %s %s to child %s]\n"),
553 parent_pid.c_str (),
6f259a23 554 has_vforked ? "vfork" : "fork",
f67c0c91 555 child_pid.c_str ());
d83ad864
DB
556 }
557
558 /* Add the new inferior first, so that the target_detach below
559 doesn't unpush the target. */
560
e99b03dc 561 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
562
563 parent_inf = current_inferior ();
564 child_inf->attach_flag = parent_inf->attach_flag;
565 copy_terminal_info (child_inf, parent_inf);
566 child_inf->gdbarch = parent_inf->gdbarch;
567 copy_inferior_target_desc_info (child_inf, parent_inf);
568
569 parent_pspace = parent_inf->pspace;
570
571 /* If we're vforking, we want to hold on to the parent until the
572 child exits or execs. At child exec or exit time we can
573 remove the old breakpoints from the parent and detach or
574 resume debugging it. Otherwise, detach the parent now; we'll
575 want to reuse it's program/address spaces, but we can't set
576 them to the child before removing breakpoints from the
577 parent, otherwise, the breakpoints module could decide to
578 remove breakpoints from the wrong process (since they'd be
579 assigned to the same address space). */
580
581 if (has_vforked)
582 {
583 gdb_assert (child_inf->vfork_parent == NULL);
584 gdb_assert (parent_inf->vfork_child == NULL);
585 child_inf->vfork_parent = parent_inf;
586 child_inf->pending_detach = 0;
587 parent_inf->vfork_child = child_inf;
588 parent_inf->pending_detach = detach_fork;
589 parent_inf->waiting_for_vfork_done = 0;
590 }
591 else if (detach_fork)
6f259a23 592 {
f67c0c91 593 if (print_inferior_events)
6f259a23 594 {
8dd06f7a 595 /* Ensure that we have a process ptid. */
e99b03dc 596 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 597
223ffa71 598 target_terminal::ours_for_output ();
6f259a23 599 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
600 _("[Detaching after fork from "
601 "parent %s]\n"),
a068643d 602 target_pid_to_str (process_ptid).c_str ());
6f259a23
DB
603 }
604
6e1e1966 605 target_detach (parent_inf, 0);
6f259a23 606 }
d83ad864
DB
607
608 /* Note that the detach above makes PARENT_INF dangling. */
609
610 /* Add the child thread to the appropriate lists, and switch to
611 this new thread, before cloning the program space, and
612 informing the solib layer about this new process. */
613
79639e11 614 inferior_ptid = child_ptid;
f67c0c91 615 add_thread_silent (inferior_ptid);
2a00d7ce 616 set_current_inferior (child_inf);
d83ad864
DB
617
618 /* If this is a vfork child, then the address-space is shared
619 with the parent. If we detached from the parent, then we can
620 reuse the parent's program/address spaces. */
621 if (has_vforked || detach_fork)
622 {
623 child_inf->pspace = parent_pspace;
624 child_inf->aspace = child_inf->pspace->aspace;
625 }
626 else
627 {
628 child_inf->aspace = new_address_space ();
564b1e3f 629 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
630 child_inf->removable = 1;
631 child_inf->symfile_flags = SYMFILE_NO_READ;
632 set_current_program_space (child_inf->pspace);
633 clone_program_space (child_inf->pspace, parent_pspace);
634
635 /* Let the shared library layer (e.g., solib-svr4) learn
636 about this new process, relocate the cloned exec, pull in
637 shared libraries, and install the solib event breakpoint.
638 If a "cloned-VM" event was propagated better throughout
639 the core, this wouldn't be required. */
640 solib_create_inferior_hook (0);
641 }
642 }
643
644 return target_follow_fork (follow_child, detach_fork);
645}
646
e58b0e63
PA
647/* Tell the target to follow the fork we're stopped at. Returns true
648 if the inferior should be resumed; false, if the target for some
649 reason decided it's best not to resume. */
650
6604731b 651static int
4ef3f3be 652follow_fork (void)
c906108c 653{
ea1dd7bc 654 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
655 int should_resume = 1;
656 struct thread_info *tp;
657
658 /* Copy user stepping state to the new inferior thread. FIXME: the
659 followed fork child thread should have a copy of most of the
4e3990f4
DE
660 parent thread structure's run control related fields, not just these.
661 Initialized to avoid "may be used uninitialized" warnings from gcc. */
662 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 663 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
664 CORE_ADDR step_range_start = 0;
665 CORE_ADDR step_range_end = 0;
666 struct frame_id step_frame_id = { 0 };
8980e177 667 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
668
669 if (!non_stop)
670 {
671 ptid_t wait_ptid;
672 struct target_waitstatus wait_status;
673
674 /* Get the last target status returned by target_wait(). */
675 get_last_target_status (&wait_ptid, &wait_status);
676
677 /* If not stopped at a fork event, then there's nothing else to
678 do. */
679 if (wait_status.kind != TARGET_WAITKIND_FORKED
680 && wait_status.kind != TARGET_WAITKIND_VFORKED)
681 return 1;
682
683 /* Check if we switched over from WAIT_PTID, since the event was
684 reported. */
00431a78
PA
685 if (wait_ptid != minus_one_ptid
686 && inferior_ptid != wait_ptid)
e58b0e63
PA
687 {
688 /* We did. Switch back to WAIT_PTID thread, to tell the
689 target to follow it (in either direction). We'll
690 afterwards refuse to resume, and inform the user what
691 happened. */
00431a78
PA
692 thread_info *wait_thread
693 = find_thread_ptid (wait_ptid);
694 switch_to_thread (wait_thread);
e58b0e63
PA
695 should_resume = 0;
696 }
697 }
698
699 tp = inferior_thread ();
700
701 /* If there were any forks/vforks that were caught and are now to be
702 followed, then do so now. */
703 switch (tp->pending_follow.kind)
704 {
705 case TARGET_WAITKIND_FORKED:
706 case TARGET_WAITKIND_VFORKED:
707 {
708 ptid_t parent, child;
709
710 /* If the user did a next/step, etc, over a fork call,
711 preserve the stepping state in the fork child. */
712 if (follow_child && should_resume)
713 {
8358c15c
JK
714 step_resume_breakpoint = clone_momentary_breakpoint
715 (tp->control.step_resume_breakpoint);
16c381f0
JK
716 step_range_start = tp->control.step_range_start;
717 step_range_end = tp->control.step_range_end;
718 step_frame_id = tp->control.step_frame_id;
186c406b
TT
719 exception_resume_breakpoint
720 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 721 thread_fsm = tp->thread_fsm;
e58b0e63
PA
722
723 /* For now, delete the parent's sr breakpoint, otherwise,
724 parent/child sr breakpoints are considered duplicates,
725 and the child version will not be installed. Remove
726 this when the breakpoints module becomes aware of
727 inferiors and address spaces. */
728 delete_step_resume_breakpoint (tp);
16c381f0
JK
729 tp->control.step_range_start = 0;
730 tp->control.step_range_end = 0;
731 tp->control.step_frame_id = null_frame_id;
186c406b 732 delete_exception_resume_breakpoint (tp);
8980e177 733 tp->thread_fsm = NULL;
e58b0e63
PA
734 }
735
736 parent = inferior_ptid;
737 child = tp->pending_follow.value.related_pid;
738
d83ad864
DB
739 /* Set up inferior(s) as specified by the caller, and tell the
740 target to do whatever is necessary to follow either parent
741 or child. */
742 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
743 {
744 /* Target refused to follow, or there's some other reason
745 we shouldn't resume. */
746 should_resume = 0;
747 }
748 else
749 {
750 /* This pending follow fork event is now handled, one way
751 or another. The previous selected thread may be gone
752 from the lists by now, but if it is still around, need
753 to clear the pending follow request. */
e09875d4 754 tp = find_thread_ptid (parent);
e58b0e63
PA
755 if (tp)
756 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
757
758 /* This makes sure we don't try to apply the "Switched
759 over from WAIT_PID" logic above. */
760 nullify_last_target_wait_ptid ();
761
1777feb0 762 /* If we followed the child, switch to it... */
e58b0e63
PA
763 if (follow_child)
764 {
00431a78
PA
765 thread_info *child_thr = find_thread_ptid (child);
766 switch_to_thread (child_thr);
e58b0e63
PA
767
768 /* ... and preserve the stepping state, in case the
769 user was stepping over the fork call. */
770 if (should_resume)
771 {
772 tp = inferior_thread ();
8358c15c
JK
773 tp->control.step_resume_breakpoint
774 = step_resume_breakpoint;
16c381f0
JK
775 tp->control.step_range_start = step_range_start;
776 tp->control.step_range_end = step_range_end;
777 tp->control.step_frame_id = step_frame_id;
186c406b
TT
778 tp->control.exception_resume_breakpoint
779 = exception_resume_breakpoint;
8980e177 780 tp->thread_fsm = thread_fsm;
e58b0e63
PA
781 }
782 else
783 {
784 /* If we get here, it was because we're trying to
785 resume from a fork catchpoint, but, the user
786 has switched threads away from the thread that
787 forked. In that case, the resume command
788 issued is most likely not applicable to the
789 child, so just warn, and refuse to resume. */
3e43a32a 790 warning (_("Not resuming: switched threads "
fd7dcb94 791 "before following fork child."));
e58b0e63
PA
792 }
793
794 /* Reset breakpoints in the child as appropriate. */
795 follow_inferior_reset_breakpoints ();
796 }
e58b0e63
PA
797 }
798 }
799 break;
800 case TARGET_WAITKIND_SPURIOUS:
801 /* Nothing to follow. */
802 break;
803 default:
804 internal_error (__FILE__, __LINE__,
805 "Unexpected pending_follow.kind %d\n",
806 tp->pending_follow.kind);
807 break;
808 }
c906108c 809
e58b0e63 810 return should_resume;
c906108c
SS
811}
812
d83ad864 813static void
6604731b 814follow_inferior_reset_breakpoints (void)
c906108c 815{
4e1c45ea
PA
816 struct thread_info *tp = inferior_thread ();
817
6604731b
DJ
818 /* Was there a step_resume breakpoint? (There was if the user
819 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
820 thread number. Cloned step_resume breakpoints are disabled on
821 creation, so enable it here now that it is associated with the
822 correct thread.
6604731b
DJ
823
824 step_resumes are a form of bp that are made to be per-thread.
825 Since we created the step_resume bp when the parent process
826 was being debugged, and now are switching to the child process,
827 from the breakpoint package's viewpoint, that's a switch of
828 "threads". We must update the bp's notion of which thread
829 it is for, or it'll be ignored when it triggers. */
830
8358c15c 831 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
832 {
833 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
834 tp->control.step_resume_breakpoint->loc->enabled = 1;
835 }
6604731b 836
a1aa2221 837 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 838 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
839 {
840 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
841 tp->control.exception_resume_breakpoint->loc->enabled = 1;
842 }
186c406b 843
6604731b
DJ
844 /* Reinsert all breakpoints in the child. The user may have set
845 breakpoints after catching the fork, in which case those
846 were never set in the child, but only in the parent. This makes
847 sure the inserted breakpoints match the breakpoint list. */
848
849 breakpoint_re_set ();
850 insert_breakpoints ();
c906108c 851}
c906108c 852
6c95b8df
PA
853/* The child has exited or execed: resume threads of the parent the
854 user wanted to be executing. */
855
856static int
857proceed_after_vfork_done (struct thread_info *thread,
858 void *arg)
859{
860 int pid = * (int *) arg;
861
00431a78
PA
862 if (thread->ptid.pid () == pid
863 && thread->state == THREAD_RUNNING
864 && !thread->executing
6c95b8df 865 && !thread->stop_requested
a493e3e2 866 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
867 {
868 if (debug_infrun)
869 fprintf_unfiltered (gdb_stdlog,
870 "infrun: resuming vfork parent thread %s\n",
a068643d 871 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 872
00431a78 873 switch_to_thread (thread);
70509625 874 clear_proceed_status (0);
64ce06e4 875 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
876 }
877
878 return 0;
879}
880
5ed8105e
PA
881/* Save/restore inferior_ptid, current program space and current
882 inferior. Only use this if the current context points at an exited
883 inferior (and therefore there's no current thread to save). */
884class scoped_restore_exited_inferior
885{
886public:
887 scoped_restore_exited_inferior ()
888 : m_saved_ptid (&inferior_ptid)
889 {}
890
891private:
892 scoped_restore_tmpl<ptid_t> m_saved_ptid;
893 scoped_restore_current_program_space m_pspace;
894 scoped_restore_current_inferior m_inferior;
895};
896
6c95b8df
PA
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
b73715df
TV
910 between the parent and the child. Break the bonds. */
911 inferior *vfork_parent = inf->vfork_parent;
912 inf->vfork_parent->vfork_child = NULL;
913 inf->vfork_parent = NULL;
6c95b8df 914
b73715df
TV
915 /* If the user wanted to detach from the parent, now is the
916 time. */
917 if (vfork_parent->pending_detach)
6c95b8df
PA
918 {
919 struct thread_info *tp;
6c95b8df
PA
920 struct program_space *pspace;
921 struct address_space *aspace;
922
1777feb0 923 /* follow-fork child, detach-on-fork on. */
6c95b8df 924
b73715df 925 vfork_parent->pending_detach = 0;
68c9da30 926
5ed8105e
PA
927 gdb::optional<scoped_restore_exited_inferior>
928 maybe_restore_inferior;
929 gdb::optional<scoped_restore_current_pspace_and_thread>
930 maybe_restore_thread;
931
932 /* If we're handling a child exit, then inferior_ptid points
933 at the inferior's pid, not to a thread. */
f50f4e56 934 if (!exec)
5ed8105e 935 maybe_restore_inferior.emplace ();
f50f4e56 936 else
5ed8105e 937 maybe_restore_thread.emplace ();
6c95b8df
PA
938
939 /* We're letting loose of the parent. */
b73715df 940 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 941 switch_to_thread (tp);
6c95b8df
PA
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
f67c0c91 960 if (print_inferior_events)
6c95b8df 961 {
a068643d 962 std::string pidstr
b73715df 963 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 964
223ffa71 965 target_terminal::ours_for_output ();
6c95b8df
PA
966
967 if (exec)
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
f67c0c91 970 _("[Detaching vfork parent %s "
a068643d 971 "after child exec]\n"), pidstr.c_str ());
6f259a23 972 }
6c95b8df 973 else
6f259a23
DB
974 {
975 fprintf_filtered (gdb_stdlog,
f67c0c91 976 _("[Detaching vfork parent %s "
a068643d 977 "after child exit]\n"), pidstr.c_str ());
6f259a23 978 }
6c95b8df
PA
979 }
980
b73715df 981 target_detach (vfork_parent, 0);
6c95b8df
PA
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
6c95b8df
PA
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
564b1e3f 991 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
b73715df 996 resume_parent = vfork_parent->pid;
6c95b8df
PA
997 }
998 else
999 {
6c95b8df
PA
1000 struct program_space *pspace;
1001
1002 /* If this is a vfork child exiting, then the pspace and
1003 aspaces were shared with the parent. Since we're
1004 reporting the process exit, we'll be mourning all that is
1005 found in the address space, and switching to null_ptid,
1006 preparing to start a new inferior. But, since we don't
1007 want to clobber the parent's address/program spaces, we
1008 go ahead and create a new one for this exiting
1009 inferior. */
1010
5ed8105e
PA
1011 /* Switch to null_ptid while running clone_program_space, so
1012 that clone_program_space doesn't want to read the
1013 selected frame of a dead process. */
1014 scoped_restore restore_ptid
1015 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
564b1e3f 1022 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
7dcd53a0 1025 inf->symfile_flags = SYMFILE_NO_READ;
b73715df 1026 clone_program_space (pspace, vfork_parent->pspace);
6c95b8df
PA
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
b73715df 1030 resume_parent = vfork_parent->pid;
6c95b8df
PA
1031 }
1032
6c95b8df
PA
1033 gdb_assert (current_program_space == inf->pspace);
1034
1035 if (non_stop && resume_parent != -1)
1036 {
1037 /* If the user wanted the parent to be running, let it go
1038 free now. */
5ed8105e 1039 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1040
1041 if (debug_infrun)
3e43a32a
MS
1042 fprintf_unfiltered (gdb_stdlog,
1043 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1044 resume_parent);
1045
1046 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1047 }
1048 }
1049}
1050
eb6c553b 1051/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1052
1053static const char follow_exec_mode_new[] = "new";
1054static const char follow_exec_mode_same[] = "same";
40478521 1055static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1056{
1057 follow_exec_mode_new,
1058 follow_exec_mode_same,
1059 NULL,
1060};
1061
1062static const char *follow_exec_mode_string = follow_exec_mode_same;
1063static void
1064show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1065 struct cmd_list_element *c, const char *value)
1066{
1067 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1068}
1069
ecf45d2c 1070/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1071
c906108c 1072static void
4ca51187 1073follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1074{
6c95b8df 1075 struct inferior *inf = current_inferior ();
e99b03dc 1076 int pid = ptid.pid ();
94585166 1077 ptid_t process_ptid;
7a292a7a 1078
65d2b333
PW
1079 /* Switch terminal for any messages produced e.g. by
1080 breakpoint_re_set. */
1081 target_terminal::ours_for_output ();
1082
c906108c
SS
1083 /* This is an exec event that we actually wish to pay attention to.
1084 Refresh our symbol table to the newly exec'd program, remove any
1085 momentary bp's, etc.
1086
1087 If there are breakpoints, they aren't really inserted now,
1088 since the exec() transformed our inferior into a fresh set
1089 of instructions.
1090
1091 We want to preserve symbolic breakpoints on the list, since
1092 we have hopes that they can be reset after the new a.out's
1093 symbol table is read.
1094
1095 However, any "raw" breakpoints must be removed from the list
1096 (e.g., the solib bp's), since their address is probably invalid
1097 now.
1098
1099 And, we DON'T want to call delete_breakpoints() here, since
1100 that may write the bp's "shadow contents" (the instruction
85102364 1101 value that was overwritten with a TRAP instruction). Since
1777feb0 1102 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1103
1104 mark_breakpoints_out ();
1105
95e50b27
PA
1106 /* The target reports the exec event to the main thread, even if
1107 some other thread does the exec, and even if the main thread was
1108 stopped or already gone. We may still have non-leader threads of
1109 the process on our list. E.g., on targets that don't have thread
1110 exit events (like remote); or on native Linux in non-stop mode if
1111 there were only two threads in the inferior and the non-leader
1112 one is the one that execs (and nothing forces an update of the
1113 thread list up to here). When debugging remotely, it's best to
1114 avoid extra traffic, when possible, so avoid syncing the thread
1115 list with the target, and instead go ahead and delete all threads
1116 of the process but one that reported the event. Note this must
1117 be done before calling update_breakpoints_after_exec, as
1118 otherwise clearing the threads' resources would reference stale
1119 thread breakpoints -- it may have been one of these threads that
1120 stepped across the exec. We could just clear their stepping
1121 states, but as long as we're iterating, might as well delete
1122 them. Deleting them now rather than at the next user-visible
1123 stop provides a nicer sequence of events for user and MI
1124 notifications. */
08036331 1125 for (thread_info *th : all_threads_safe ())
d7e15655 1126 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1127 delete_thread (th);
95e50b27
PA
1128
1129 /* We also need to clear any left over stale state for the
1130 leader/event thread. E.g., if there was any step-resume
1131 breakpoint or similar, it's gone now. We cannot truly
1132 step-to-next statement through an exec(). */
08036331 1133 thread_info *th = inferior_thread ();
8358c15c 1134 th->control.step_resume_breakpoint = NULL;
186c406b 1135 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1136 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1137 th->control.step_range_start = 0;
1138 th->control.step_range_end = 0;
c906108c 1139
95e50b27
PA
1140 /* The user may have had the main thread held stopped in the
1141 previous image (e.g., schedlock on, or non-stop). Release
1142 it now. */
a75724bc
PA
1143 th->stop_requested = 0;
1144
95e50b27
PA
1145 update_breakpoints_after_exec ();
1146
1777feb0 1147 /* What is this a.out's name? */
f2907e49 1148 process_ptid = ptid_t (pid);
6c95b8df 1149 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1150 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1151 exec_file_target);
c906108c
SS
1152
1153 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1154 inferior has essentially been killed & reborn. */
7a292a7a 1155
6ca15a4b 1156 breakpoint_init_inferior (inf_execd);
e85a822c 1157
797bc1cb
TT
1158 gdb::unique_xmalloc_ptr<char> exec_file_host
1159 = exec_file_find (exec_file_target, NULL);
ff862be4 1160
ecf45d2c
SL
1161 /* If we were unable to map the executable target pathname onto a host
1162 pathname, tell the user that. Otherwise GDB's subsequent behavior
1163 is confusing. Maybe it would even be better to stop at this point
1164 so that the user can specify a file manually before continuing. */
1165 if (exec_file_host == NULL)
1166 warning (_("Could not load symbols for executable %s.\n"
1167 "Do you need \"set sysroot\"?"),
1168 exec_file_target);
c906108c 1169
cce9b6bf
PA
1170 /* Reset the shared library package. This ensures that we get a
1171 shlib event when the child reaches "_start", at which point the
1172 dld will have had a chance to initialize the child. */
1173 /* Also, loading a symbol file below may trigger symbol lookups, and
1174 we don't want those to be satisfied by the libraries of the
1175 previous incarnation of this process. */
1176 no_shared_libraries (NULL, 0);
1177
6c95b8df
PA
1178 if (follow_exec_mode_string == follow_exec_mode_new)
1179 {
6c95b8df
PA
1180 /* The user wants to keep the old inferior and program spaces
1181 around. Create a new fresh one, and switch to it. */
1182
35ed81d4
SM
1183 /* Do exit processing for the original inferior before setting the new
1184 inferior's pid. Having two inferiors with the same pid would confuse
1185 find_inferior_p(t)id. Transfer the terminal state and info from the
1186 old to the new inferior. */
1187 inf = add_inferior_with_spaces ();
1188 swap_terminal_info (inf, current_inferior ());
057302ce 1189 exit_inferior_silent (current_inferior ());
17d8546e 1190
94585166 1191 inf->pid = pid;
ecf45d2c 1192 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1193
1194 set_current_inferior (inf);
94585166 1195 set_current_program_space (inf->pspace);
c4c17fb0 1196 add_thread (ptid);
6c95b8df 1197 }
9107fc8d
PA
1198 else
1199 {
1200 /* The old description may no longer be fit for the new image.
1201 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1202 old description; we'll read a new one below. No need to do
1203 this on "follow-exec-mode new", as the old inferior stays
1204 around (its description is later cleared/refetched on
1205 restart). */
1206 target_clear_description ();
1207 }
6c95b8df
PA
1208
1209 gdb_assert (current_program_space == inf->pspace);
1210
ecf45d2c
SL
1211 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1212 because the proper displacement for a PIE (Position Independent
1213 Executable) main symbol file will only be computed by
1214 solib_create_inferior_hook below. breakpoint_re_set would fail
1215 to insert the breakpoints with the zero displacement. */
797bc1cb 1216 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1217
9107fc8d
PA
1218 /* If the target can specify a description, read it. Must do this
1219 after flipping to the new executable (because the target supplied
1220 description must be compatible with the executable's
1221 architecture, and the old executable may e.g., be 32-bit, while
1222 the new one 64-bit), and before anything involving memory or
1223 registers. */
1224 target_find_description ();
1225
268a4a75 1226 solib_create_inferior_hook (0);
c906108c 1227
4efc6507
DE
1228 jit_inferior_created_hook ();
1229
c1e56572
JK
1230 breakpoint_re_set ();
1231
c906108c
SS
1232 /* Reinsert all breakpoints. (Those which were symbolic have
1233 been reset to the proper address in the new a.out, thanks
1777feb0 1234 to symbol_file_command...). */
c906108c
SS
1235 insert_breakpoints ();
1236
1237 /* The next resume of this inferior should bring it to the shlib
1238 startup breakpoints. (If the user had also set bp's on
1239 "main" from the old (parent) process, then they'll auto-
1777feb0 1240 matically get reset there in the new process.). */
c906108c
SS
1241}
1242
c2829269
PA
1243/* The queue of threads that need to do a step-over operation to get
1244 past e.g., a breakpoint. What technique is used to step over the
1245 breakpoint/watchpoint does not matter -- all threads end up in the
1246 same queue, to maintain rough temporal order of execution, in order
1247 to avoid starvation, otherwise, we could e.g., find ourselves
1248 constantly stepping the same couple threads past their breakpoints
1249 over and over, if the single-step finish fast enough. */
1250struct thread_info *step_over_queue_head;
1251
6c4cfb24
PA
1252/* Bit flags indicating what the thread needs to step over. */
1253
8d297bbf 1254enum step_over_what_flag
6c4cfb24
PA
1255 {
1256 /* Step over a breakpoint. */
1257 STEP_OVER_BREAKPOINT = 1,
1258
1259 /* Step past a non-continuable watchpoint, in order to let the
1260 instruction execute so we can evaluate the watchpoint
1261 expression. */
1262 STEP_OVER_WATCHPOINT = 2
1263 };
8d297bbf 1264DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1265
963f9c80 1266/* Info about an instruction that is being stepped over. */
31e77af2
PA
1267
1268struct step_over_info
1269{
963f9c80
PA
1270 /* If we're stepping past a breakpoint, this is the address space
1271 and address of the instruction the breakpoint is set at. We'll
1272 skip inserting all breakpoints here. Valid iff ASPACE is
1273 non-NULL. */
8b86c959 1274 const address_space *aspace;
31e77af2 1275 CORE_ADDR address;
963f9c80
PA
1276
1277 /* The instruction being stepped over triggers a nonsteppable
1278 watchpoint. If true, we'll skip inserting watchpoints. */
1279 int nonsteppable_watchpoint_p;
21edc42f
YQ
1280
1281 /* The thread's global number. */
1282 int thread;
31e77af2
PA
1283};
1284
1285/* The step-over info of the location that is being stepped over.
1286
1287 Note that with async/breakpoint always-inserted mode, a user might
1288 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1289 being stepped over. As setting a new breakpoint inserts all
1290 breakpoints, we need to make sure the breakpoint being stepped over
1291 isn't inserted then. We do that by only clearing the step-over
1292 info when the step-over is actually finished (or aborted).
1293
1294 Presently GDB can only step over one breakpoint at any given time.
1295 Given threads that can't run code in the same address space as the
1296 breakpoint's can't really miss the breakpoint, GDB could be taught
1297 to step-over at most one breakpoint per address space (so this info
1298 could move to the address space object if/when GDB is extended).
1299 The set of breakpoints being stepped over will normally be much
1300 smaller than the set of all breakpoints, so a flag in the
1301 breakpoint location structure would be wasteful. A separate list
1302 also saves complexity and run-time, as otherwise we'd have to go
1303 through all breakpoint locations clearing their flag whenever we
1304 start a new sequence. Similar considerations weigh against storing
1305 this info in the thread object. Plus, not all step overs actually
1306 have breakpoint locations -- e.g., stepping past a single-step
1307 breakpoint, or stepping to complete a non-continuable
1308 watchpoint. */
1309static struct step_over_info step_over_info;
1310
1311/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1312 stepping over.
1313 N.B. We record the aspace and address now, instead of say just the thread,
1314 because when we need the info later the thread may be running. */
31e77af2
PA
1315
1316static void
8b86c959 1317set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1318 int nonsteppable_watchpoint_p,
1319 int thread)
31e77af2
PA
1320{
1321 step_over_info.aspace = aspace;
1322 step_over_info.address = address;
963f9c80 1323 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1324 step_over_info.thread = thread;
31e77af2
PA
1325}
1326
1327/* Called when we're not longer stepping over a breakpoint / an
1328 instruction, so all breakpoints are free to be (re)inserted. */
1329
1330static void
1331clear_step_over_info (void)
1332{
372316f1
PA
1333 if (debug_infrun)
1334 fprintf_unfiltered (gdb_stdlog,
1335 "infrun: clear_step_over_info\n");
31e77af2
PA
1336 step_over_info.aspace = NULL;
1337 step_over_info.address = 0;
963f9c80 1338 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1339 step_over_info.thread = -1;
31e77af2
PA
1340}
1341
7f89fd65 1342/* See infrun.h. */
31e77af2
PA
1343
1344int
1345stepping_past_instruction_at (struct address_space *aspace,
1346 CORE_ADDR address)
1347{
1348 return (step_over_info.aspace != NULL
1349 && breakpoint_address_match (aspace, address,
1350 step_over_info.aspace,
1351 step_over_info.address));
1352}
1353
963f9c80
PA
1354/* See infrun.h. */
1355
21edc42f
YQ
1356int
1357thread_is_stepping_over_breakpoint (int thread)
1358{
1359 return (step_over_info.thread != -1
1360 && thread == step_over_info.thread);
1361}
1362
1363/* See infrun.h. */
1364
963f9c80
PA
1365int
1366stepping_past_nonsteppable_watchpoint (void)
1367{
1368 return step_over_info.nonsteppable_watchpoint_p;
1369}
1370
6cc83d2a
PA
1371/* Returns true if step-over info is valid. */
1372
1373static int
1374step_over_info_valid_p (void)
1375{
963f9c80
PA
1376 return (step_over_info.aspace != NULL
1377 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1378}
1379
c906108c 1380\f
237fc4c9
PA
1381/* Displaced stepping. */
1382
1383/* In non-stop debugging mode, we must take special care to manage
1384 breakpoints properly; in particular, the traditional strategy for
1385 stepping a thread past a breakpoint it has hit is unsuitable.
1386 'Displaced stepping' is a tactic for stepping one thread past a
1387 breakpoint it has hit while ensuring that other threads running
1388 concurrently will hit the breakpoint as they should.
1389
1390 The traditional way to step a thread T off a breakpoint in a
1391 multi-threaded program in all-stop mode is as follows:
1392
1393 a0) Initially, all threads are stopped, and breakpoints are not
1394 inserted.
1395 a1) We single-step T, leaving breakpoints uninserted.
1396 a2) We insert breakpoints, and resume all threads.
1397
1398 In non-stop debugging, however, this strategy is unsuitable: we
1399 don't want to have to stop all threads in the system in order to
1400 continue or step T past a breakpoint. Instead, we use displaced
1401 stepping:
1402
1403 n0) Initially, T is stopped, other threads are running, and
1404 breakpoints are inserted.
1405 n1) We copy the instruction "under" the breakpoint to a separate
1406 location, outside the main code stream, making any adjustments
1407 to the instruction, register, and memory state as directed by
1408 T's architecture.
1409 n2) We single-step T over the instruction at its new location.
1410 n3) We adjust the resulting register and memory state as directed
1411 by T's architecture. This includes resetting T's PC to point
1412 back into the main instruction stream.
1413 n4) We resume T.
1414
1415 This approach depends on the following gdbarch methods:
1416
1417 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1418 indicate where to copy the instruction, and how much space must
1419 be reserved there. We use these in step n1.
1420
1421 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1422 address, and makes any necessary adjustments to the instruction,
1423 register contents, and memory. We use this in step n1.
1424
1425 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1426 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1427 same effect the instruction would have had if we had executed it
1428 at its original address. We use this in step n3.
1429
237fc4c9
PA
1430 The gdbarch_displaced_step_copy_insn and
1431 gdbarch_displaced_step_fixup functions must be written so that
1432 copying an instruction with gdbarch_displaced_step_copy_insn,
1433 single-stepping across the copied instruction, and then applying
1434 gdbarch_displaced_insn_fixup should have the same effects on the
1435 thread's memory and registers as stepping the instruction in place
1436 would have. Exactly which responsibilities fall to the copy and
1437 which fall to the fixup is up to the author of those functions.
1438
1439 See the comments in gdbarch.sh for details.
1440
1441 Note that displaced stepping and software single-step cannot
1442 currently be used in combination, although with some care I think
1443 they could be made to. Software single-step works by placing
1444 breakpoints on all possible subsequent instructions; if the
1445 displaced instruction is a PC-relative jump, those breakpoints
1446 could fall in very strange places --- on pages that aren't
1447 executable, or at addresses that are not proper instruction
1448 boundaries. (We do generally let other threads run while we wait
1449 to hit the software single-step breakpoint, and they might
1450 encounter such a corrupted instruction.) One way to work around
1451 this would be to have gdbarch_displaced_step_copy_insn fully
1452 simulate the effect of PC-relative instructions (and return NULL)
1453 on architectures that use software single-stepping.
1454
1455 In non-stop mode, we can have independent and simultaneous step
1456 requests, so more than one thread may need to simultaneously step
1457 over a breakpoint. The current implementation assumes there is
1458 only one scratch space per process. In this case, we have to
1459 serialize access to the scratch space. If thread A wants to step
1460 over a breakpoint, but we are currently waiting for some other
1461 thread to complete a displaced step, we leave thread A stopped and
1462 place it in the displaced_step_request_queue. Whenever a displaced
1463 step finishes, we pick the next thread in the queue and start a new
1464 displaced step operation on it. See displaced_step_prepare and
1465 displaced_step_fixup for details. */
1466
cfba9872
SM
1467/* Default destructor for displaced_step_closure. */
1468
1469displaced_step_closure::~displaced_step_closure () = default;
1470
fc1cf338
PA
1471/* Get the displaced stepping state of process PID. */
1472
39a36629 1473static displaced_step_inferior_state *
00431a78 1474get_displaced_stepping_state (inferior *inf)
fc1cf338 1475{
d20172fc 1476 return &inf->displaced_step_state;
fc1cf338
PA
1477}
1478
372316f1
PA
1479/* Returns true if any inferior has a thread doing a displaced
1480 step. */
1481
39a36629
SM
1482static bool
1483displaced_step_in_progress_any_inferior ()
372316f1 1484{
d20172fc 1485 for (inferior *i : all_inferiors ())
39a36629 1486 {
d20172fc 1487 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1488 return true;
1489 }
372316f1 1490
39a36629 1491 return false;
372316f1
PA
1492}
1493
c0987663
YQ
1494/* Return true if thread represented by PTID is doing a displaced
1495 step. */
1496
1497static int
00431a78 1498displaced_step_in_progress_thread (thread_info *thread)
c0987663 1499{
00431a78 1500 gdb_assert (thread != NULL);
c0987663 1501
d20172fc 1502 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1503}
1504
8f572e5c
PA
1505/* Return true if process PID has a thread doing a displaced step. */
1506
1507static int
00431a78 1508displaced_step_in_progress (inferior *inf)
8f572e5c 1509{
d20172fc 1510 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1511}
1512
a42244db
YQ
1513/* If inferior is in displaced stepping, and ADDR equals to starting address
1514 of copy area, return corresponding displaced_step_closure. Otherwise,
1515 return NULL. */
1516
1517struct displaced_step_closure*
1518get_displaced_step_closure_by_addr (CORE_ADDR addr)
1519{
d20172fc 1520 displaced_step_inferior_state *displaced
00431a78 1521 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1522
1523 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1524 if (displaced->step_thread != nullptr
00431a78 1525 && displaced->step_copy == addr)
a42244db
YQ
1526 return displaced->step_closure;
1527
1528 return NULL;
1529}
1530
fc1cf338
PA
1531static void
1532infrun_inferior_exit (struct inferior *inf)
1533{
d20172fc 1534 inf->displaced_step_state.reset ();
fc1cf338 1535}
237fc4c9 1536
fff08868
HZ
1537/* If ON, and the architecture supports it, GDB will use displaced
1538 stepping to step over breakpoints. If OFF, or if the architecture
1539 doesn't support it, GDB will instead use the traditional
1540 hold-and-step approach. If AUTO (which is the default), GDB will
1541 decide which technique to use to step over breakpoints depending on
1542 which of all-stop or non-stop mode is active --- displaced stepping
1543 in non-stop mode; hold-and-step in all-stop mode. */
1544
72d0e2c5 1545static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1546
237fc4c9
PA
1547static void
1548show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1549 struct cmd_list_element *c,
1550 const char *value)
1551{
72d0e2c5 1552 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1553 fprintf_filtered (file,
1554 _("Debugger's willingness to use displaced stepping "
1555 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1556 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1557 else
3e43a32a
MS
1558 fprintf_filtered (file,
1559 _("Debugger's willingness to use displaced stepping "
1560 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1561}
1562
fff08868 1563/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1564 over breakpoints of thread TP. */
fff08868 1565
237fc4c9 1566static int
3fc8eb30 1567use_displaced_stepping (struct thread_info *tp)
237fc4c9 1568{
00431a78 1569 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1570 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1571 displaced_step_inferior_state *displaced_state
1572 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1573
fbea99ea
PA
1574 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1575 && target_is_non_stop_p ())
72d0e2c5 1576 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1577 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1578 && find_record_target () == NULL
d20172fc 1579 && !displaced_state->failed_before);
237fc4c9
PA
1580}
1581
1582/* Clean out any stray displaced stepping state. */
1583static void
fc1cf338 1584displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1585{
1586 /* Indicate that there is no cleanup pending. */
00431a78 1587 displaced->step_thread = nullptr;
237fc4c9 1588
cfba9872 1589 delete displaced->step_closure;
6d45d4b4 1590 displaced->step_closure = NULL;
237fc4c9
PA
1591}
1592
9799571e
TT
1593/* A cleanup that wraps displaced_step_clear. */
1594using displaced_step_clear_cleanup
1595 = FORWARD_SCOPE_EXIT (displaced_step_clear);
237fc4c9
PA
1596
1597/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1598void
1599displaced_step_dump_bytes (struct ui_file *file,
1600 const gdb_byte *buf,
1601 size_t len)
1602{
1603 int i;
1604
1605 for (i = 0; i < len; i++)
1606 fprintf_unfiltered (file, "%02x ", buf[i]);
1607 fputs_unfiltered ("\n", file);
1608}
1609
1610/* Prepare to single-step, using displaced stepping.
1611
1612 Note that we cannot use displaced stepping when we have a signal to
1613 deliver. If we have a signal to deliver and an instruction to step
1614 over, then after the step, there will be no indication from the
1615 target whether the thread entered a signal handler or ignored the
1616 signal and stepped over the instruction successfully --- both cases
1617 result in a simple SIGTRAP. In the first case we mustn't do a
1618 fixup, and in the second case we must --- but we can't tell which.
1619 Comments in the code for 'random signals' in handle_inferior_event
1620 explain how we handle this case instead.
1621
1622 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1623 stepped now; 0 if displaced stepping this thread got queued; or -1
1624 if this instruction can't be displaced stepped. */
1625
237fc4c9 1626static int
00431a78 1627displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1628{
00431a78 1629 regcache *regcache = get_thread_regcache (tp);
ac7936df 1630 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1631 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1632 CORE_ADDR original, copy;
1633 ULONGEST len;
1634 struct displaced_step_closure *closure;
9e529e1d 1635 int status;
237fc4c9
PA
1636
1637 /* We should never reach this function if the architecture does not
1638 support displaced stepping. */
1639 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1640
c2829269
PA
1641 /* Nor if the thread isn't meant to step over a breakpoint. */
1642 gdb_assert (tp->control.trap_expected);
1643
c1e36e3e
PA
1644 /* Disable range stepping while executing in the scratch pad. We
1645 want a single-step even if executing the displaced instruction in
1646 the scratch buffer lands within the stepping range (e.g., a
1647 jump/branch). */
1648 tp->control.may_range_step = 0;
1649
fc1cf338
PA
1650 /* We have to displaced step one thread at a time, as we only have
1651 access to a single scratch space per inferior. */
237fc4c9 1652
d20172fc
SM
1653 displaced_step_inferior_state *displaced
1654 = get_displaced_stepping_state (tp->inf);
fc1cf338 1655
00431a78 1656 if (displaced->step_thread != nullptr)
237fc4c9
PA
1657 {
1658 /* Already waiting for a displaced step to finish. Defer this
1659 request and place in queue. */
237fc4c9
PA
1660
1661 if (debug_displaced)
1662 fprintf_unfiltered (gdb_stdlog,
c2829269 1663 "displaced: deferring step of %s\n",
a068643d 1664 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1665
c2829269 1666 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1667 return 0;
1668 }
1669 else
1670 {
1671 if (debug_displaced)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "displaced: stepping %s now\n",
a068643d 1674 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1675 }
1676
fc1cf338 1677 displaced_step_clear (displaced);
237fc4c9 1678
00431a78
PA
1679 scoped_restore_current_thread restore_thread;
1680
1681 switch_to_thread (tp);
ad53cd71 1682
515630c5 1683 original = regcache_read_pc (regcache);
237fc4c9
PA
1684
1685 copy = gdbarch_displaced_step_location (gdbarch);
1686 len = gdbarch_max_insn_length (gdbarch);
1687
d35ae833
PA
1688 if (breakpoint_in_range_p (aspace, copy, len))
1689 {
1690 /* There's a breakpoint set in the scratch pad location range
1691 (which is usually around the entry point). We'd either
1692 install it before resuming, which would overwrite/corrupt the
1693 scratch pad, or if it was already inserted, this displaced
1694 step would overwrite it. The latter is OK in the sense that
1695 we already assume that no thread is going to execute the code
1696 in the scratch pad range (after initial startup) anyway, but
1697 the former is unacceptable. Simply punt and fallback to
1698 stepping over this breakpoint in-line. */
1699 if (debug_displaced)
1700 {
1701 fprintf_unfiltered (gdb_stdlog,
1702 "displaced: breakpoint set in scratch pad. "
1703 "Stepping over breakpoint in-line instead.\n");
1704 }
1705
d35ae833
PA
1706 return -1;
1707 }
1708
237fc4c9 1709 /* Save the original contents of the copy area. */
d20172fc
SM
1710 displaced->step_saved_copy.resize (len);
1711 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1712 if (status != 0)
1713 throw_error (MEMORY_ERROR,
1714 _("Error accessing memory address %s (%s) for "
1715 "displaced-stepping scratch space."),
1716 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1717 if (debug_displaced)
1718 {
5af949e3
UW
1719 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1720 paddress (gdbarch, copy));
fc1cf338 1721 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1722 displaced->step_saved_copy.data (),
fc1cf338 1723 len);
237fc4c9
PA
1724 };
1725
1726 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1727 original, copy, regcache);
7f03bd92
PA
1728 if (closure == NULL)
1729 {
1730 /* The architecture doesn't know how or want to displaced step
1731 this instruction or instruction sequence. Fallback to
1732 stepping over the breakpoint in-line. */
7f03bd92
PA
1733 return -1;
1734 }
237fc4c9 1735
9f5a595d
UW
1736 /* Save the information we need to fix things up if the step
1737 succeeds. */
00431a78 1738 displaced->step_thread = tp;
fc1cf338
PA
1739 displaced->step_gdbarch = gdbarch;
1740 displaced->step_closure = closure;
1741 displaced->step_original = original;
1742 displaced->step_copy = copy;
9f5a595d 1743
9799571e
TT
1744 {
1745 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1746
9799571e
TT
1747 /* Resume execution at the copy. */
1748 regcache_write_pc (regcache, copy);
237fc4c9 1749
9799571e
TT
1750 cleanup.release ();
1751 }
ad53cd71 1752
237fc4c9 1753 if (debug_displaced)
5af949e3
UW
1754 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1755 paddress (gdbarch, copy));
237fc4c9 1756
237fc4c9
PA
1757 return 1;
1758}
1759
3fc8eb30
PA
1760/* Wrapper for displaced_step_prepare_throw that disabled further
1761 attempts at displaced stepping if we get a memory error. */
1762
1763static int
00431a78 1764displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1765{
1766 int prepared = -1;
1767
a70b8144 1768 try
3fc8eb30 1769 {
00431a78 1770 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1771 }
230d2906 1772 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1773 {
1774 struct displaced_step_inferior_state *displaced_state;
1775
16b41842
PA
1776 if (ex.error != MEMORY_ERROR
1777 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1778 throw;
3fc8eb30
PA
1779
1780 if (debug_infrun)
1781 {
1782 fprintf_unfiltered (gdb_stdlog,
1783 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1784 ex.what ());
3fc8eb30
PA
1785 }
1786
1787 /* Be verbose if "set displaced-stepping" is "on", silent if
1788 "auto". */
1789 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1790 {
fd7dcb94 1791 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1792 ex.what ());
3fc8eb30
PA
1793 }
1794
1795 /* Disable further displaced stepping attempts. */
1796 displaced_state
00431a78 1797 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1798 displaced_state->failed_before = 1;
1799 }
3fc8eb30
PA
1800
1801 return prepared;
1802}
1803
237fc4c9 1804static void
3e43a32a
MS
1805write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1806 const gdb_byte *myaddr, int len)
237fc4c9 1807{
2989a365 1808 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1809
237fc4c9
PA
1810 inferior_ptid = ptid;
1811 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1812}
1813
e2d96639
YQ
1814/* Restore the contents of the copy area for thread PTID. */
1815
1816static void
1817displaced_step_restore (struct displaced_step_inferior_state *displaced,
1818 ptid_t ptid)
1819{
1820 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1821
1822 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1823 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1824 if (debug_displaced)
1825 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1826 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1827 paddress (displaced->step_gdbarch,
1828 displaced->step_copy));
1829}
1830
372316f1
PA
1831/* If we displaced stepped an instruction successfully, adjust
1832 registers and memory to yield the same effect the instruction would
1833 have had if we had executed it at its original address, and return
1834 1. If the instruction didn't complete, relocate the PC and return
1835 -1. If the thread wasn't displaced stepping, return 0. */
1836
1837static int
00431a78 1838displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1839{
fc1cf338 1840 struct displaced_step_inferior_state *displaced
00431a78 1841 = get_displaced_stepping_state (event_thread->inf);
372316f1 1842 int ret;
fc1cf338 1843
00431a78
PA
1844 /* Was this event for the thread we displaced? */
1845 if (displaced->step_thread != event_thread)
372316f1 1846 return 0;
237fc4c9 1847
9799571e 1848 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1849
00431a78 1850 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1851
cb71640d
PA
1852 /* Fixup may need to read memory/registers. Switch to the thread
1853 that we're fixing up. Also, target_stopped_by_watchpoint checks
1854 the current thread. */
00431a78 1855 switch_to_thread (event_thread);
cb71640d 1856
237fc4c9 1857 /* Did the instruction complete successfully? */
cb71640d
PA
1858 if (signal == GDB_SIGNAL_TRAP
1859 && !(target_stopped_by_watchpoint ()
1860 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1861 || target_have_steppable_watchpoint)))
237fc4c9
PA
1862 {
1863 /* Fix up the resulting state. */
fc1cf338
PA
1864 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1865 displaced->step_closure,
1866 displaced->step_original,
1867 displaced->step_copy,
00431a78 1868 get_thread_regcache (displaced->step_thread));
372316f1 1869 ret = 1;
237fc4c9
PA
1870 }
1871 else
1872 {
1873 /* Since the instruction didn't complete, all we can do is
1874 relocate the PC. */
00431a78 1875 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1876 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1877
fc1cf338 1878 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1879 regcache_write_pc (regcache, pc);
372316f1 1880 ret = -1;
237fc4c9
PA
1881 }
1882
372316f1 1883 return ret;
c2829269 1884}
1c5cfe86 1885
4d9d9d04
PA
1886/* Data to be passed around while handling an event. This data is
1887 discarded between events. */
1888struct execution_control_state
1889{
1890 ptid_t ptid;
1891 /* The thread that got the event, if this was a thread event; NULL
1892 otherwise. */
1893 struct thread_info *event_thread;
1894
1895 struct target_waitstatus ws;
1896 int stop_func_filled_in;
1897 CORE_ADDR stop_func_start;
1898 CORE_ADDR stop_func_end;
1899 const char *stop_func_name;
1900 int wait_some_more;
1901
1902 /* True if the event thread hit the single-step breakpoint of
1903 another thread. Thus the event doesn't cause a stop, the thread
1904 needs to be single-stepped past the single-step breakpoint before
1905 we can switch back to the original stepping thread. */
1906 int hit_singlestep_breakpoint;
1907};
1908
1909/* Clear ECS and set it to point at TP. */
c2829269
PA
1910
1911static void
4d9d9d04
PA
1912reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1913{
1914 memset (ecs, 0, sizeof (*ecs));
1915 ecs->event_thread = tp;
1916 ecs->ptid = tp->ptid;
1917}
1918
1919static void keep_going_pass_signal (struct execution_control_state *ecs);
1920static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1921static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1922static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1923
1924/* Are there any pending step-over requests? If so, run all we can
1925 now and return true. Otherwise, return false. */
1926
1927static int
c2829269
PA
1928start_step_over (void)
1929{
1930 struct thread_info *tp, *next;
1931
372316f1
PA
1932 /* Don't start a new step-over if we already have an in-line
1933 step-over operation ongoing. */
1934 if (step_over_info_valid_p ())
1935 return 0;
1936
c2829269 1937 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1938 {
4d9d9d04
PA
1939 struct execution_control_state ecss;
1940 struct execution_control_state *ecs = &ecss;
8d297bbf 1941 step_over_what step_what;
372316f1 1942 int must_be_in_line;
c2829269 1943
c65d6b55
PA
1944 gdb_assert (!tp->stop_requested);
1945
c2829269 1946 next = thread_step_over_chain_next (tp);
237fc4c9 1947
c2829269
PA
1948 /* If this inferior already has a displaced step in process,
1949 don't start a new one. */
00431a78 1950 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1951 continue;
1952
372316f1
PA
1953 step_what = thread_still_needs_step_over (tp);
1954 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1955 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1956 && !use_displaced_stepping (tp)));
372316f1
PA
1957
1958 /* We currently stop all threads of all processes to step-over
1959 in-line. If we need to start a new in-line step-over, let
1960 any pending displaced steps finish first. */
1961 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1962 return 0;
1963
c2829269
PA
1964 thread_step_over_chain_remove (tp);
1965
1966 if (step_over_queue_head == NULL)
1967 {
1968 if (debug_infrun)
1969 fprintf_unfiltered (gdb_stdlog,
1970 "infrun: step-over queue now empty\n");
1971 }
1972
372316f1
PA
1973 if (tp->control.trap_expected
1974 || tp->resumed
1975 || tp->executing)
ad53cd71 1976 {
4d9d9d04
PA
1977 internal_error (__FILE__, __LINE__,
1978 "[%s] has inconsistent state: "
372316f1 1979 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1980 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1981 tp->control.trap_expected,
372316f1 1982 tp->resumed,
4d9d9d04 1983 tp->executing);
ad53cd71 1984 }
1c5cfe86 1985
4d9d9d04
PA
1986 if (debug_infrun)
1987 fprintf_unfiltered (gdb_stdlog,
1988 "infrun: resuming [%s] for step-over\n",
a068643d 1989 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1990
1991 /* keep_going_pass_signal skips the step-over if the breakpoint
1992 is no longer inserted. In all-stop, we want to keep looking
1993 for a thread that needs a step-over instead of resuming TP,
1994 because we wouldn't be able to resume anything else until the
1995 target stops again. In non-stop, the resume always resumes
1996 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1997 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1998 continue;
8550d3b3 1999
00431a78 2000 switch_to_thread (tp);
4d9d9d04
PA
2001 reset_ecs (ecs, tp);
2002 keep_going_pass_signal (ecs);
1c5cfe86 2003
4d9d9d04
PA
2004 if (!ecs->wait_some_more)
2005 error (_("Command aborted."));
1c5cfe86 2006
372316f1
PA
2007 gdb_assert (tp->resumed);
2008
2009 /* If we started a new in-line step-over, we're done. */
2010 if (step_over_info_valid_p ())
2011 {
2012 gdb_assert (tp->control.trap_expected);
2013 return 1;
2014 }
2015
fbea99ea 2016 if (!target_is_non_stop_p ())
4d9d9d04
PA
2017 {
2018 /* On all-stop, shouldn't have resumed unless we needed a
2019 step over. */
2020 gdb_assert (tp->control.trap_expected
2021 || tp->step_after_step_resume_breakpoint);
2022
2023 /* With remote targets (at least), in all-stop, we can't
2024 issue any further remote commands until the program stops
2025 again. */
2026 return 1;
1c5cfe86 2027 }
c2829269 2028
4d9d9d04
PA
2029 /* Either the thread no longer needed a step-over, or a new
2030 displaced stepping sequence started. Even in the latter
2031 case, continue looking. Maybe we can also start another
2032 displaced step on a thread of other process. */
237fc4c9 2033 }
4d9d9d04
PA
2034
2035 return 0;
237fc4c9
PA
2036}
2037
5231c1fd
PA
2038/* Update global variables holding ptids to hold NEW_PTID if they were
2039 holding OLD_PTID. */
2040static void
2041infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2042{
d7e15655 2043 if (inferior_ptid == old_ptid)
5231c1fd 2044 inferior_ptid = new_ptid;
5231c1fd
PA
2045}
2046
237fc4c9 2047\f
c906108c 2048
53904c9e
AC
2049static const char schedlock_off[] = "off";
2050static const char schedlock_on[] = "on";
2051static const char schedlock_step[] = "step";
f2665db5 2052static const char schedlock_replay[] = "replay";
40478521 2053static const char *const scheduler_enums[] = {
ef346e04
AC
2054 schedlock_off,
2055 schedlock_on,
2056 schedlock_step,
f2665db5 2057 schedlock_replay,
ef346e04
AC
2058 NULL
2059};
f2665db5 2060static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2061static void
2062show_scheduler_mode (struct ui_file *file, int from_tty,
2063 struct cmd_list_element *c, const char *value)
2064{
3e43a32a
MS
2065 fprintf_filtered (file,
2066 _("Mode for locking scheduler "
2067 "during execution is \"%s\".\n"),
920d2a44
AC
2068 value);
2069}
c906108c
SS
2070
2071static void
eb4c3f4a 2072set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2073{
eefe576e
AC
2074 if (!target_can_lock_scheduler)
2075 {
2076 scheduler_mode = schedlock_off;
2077 error (_("Target '%s' cannot support this command."), target_shortname);
2078 }
c906108c
SS
2079}
2080
d4db2f36
PA
2081/* True if execution commands resume all threads of all processes by
2082 default; otherwise, resume only threads of the current inferior
2083 process. */
491144b5 2084bool sched_multi = false;
d4db2f36 2085
2facfe5c
DD
2086/* Try to setup for software single stepping over the specified location.
2087 Return 1 if target_resume() should use hardware single step.
2088
2089 GDBARCH the current gdbarch.
2090 PC the location to step over. */
2091
2092static int
2093maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2094{
2095 int hw_step = 1;
2096
f02253f1 2097 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2098 && gdbarch_software_single_step_p (gdbarch))
2099 hw_step = !insert_single_step_breakpoints (gdbarch);
2100
2facfe5c
DD
2101 return hw_step;
2102}
c906108c 2103
f3263aa4
PA
2104/* See infrun.h. */
2105
09cee04b
PA
2106ptid_t
2107user_visible_resume_ptid (int step)
2108{
f3263aa4 2109 ptid_t resume_ptid;
09cee04b 2110
09cee04b
PA
2111 if (non_stop)
2112 {
2113 /* With non-stop mode on, threads are always handled
2114 individually. */
2115 resume_ptid = inferior_ptid;
2116 }
2117 else if ((scheduler_mode == schedlock_on)
03d46957 2118 || (scheduler_mode == schedlock_step && step))
09cee04b 2119 {
f3263aa4
PA
2120 /* User-settable 'scheduler' mode requires solo thread
2121 resume. */
09cee04b
PA
2122 resume_ptid = inferior_ptid;
2123 }
f2665db5
MM
2124 else if ((scheduler_mode == schedlock_replay)
2125 && target_record_will_replay (minus_one_ptid, execution_direction))
2126 {
2127 /* User-settable 'scheduler' mode requires solo thread resume in replay
2128 mode. */
2129 resume_ptid = inferior_ptid;
2130 }
f3263aa4
PA
2131 else if (!sched_multi && target_supports_multi_process ())
2132 {
2133 /* Resume all threads of the current process (and none of other
2134 processes). */
e99b03dc 2135 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2136 }
2137 else
2138 {
2139 /* Resume all threads of all processes. */
2140 resume_ptid = RESUME_ALL;
2141 }
09cee04b
PA
2142
2143 return resume_ptid;
2144}
2145
fbea99ea
PA
2146/* Return a ptid representing the set of threads that we will resume,
2147 in the perspective of the target, assuming run control handling
2148 does not require leaving some threads stopped (e.g., stepping past
2149 breakpoint). USER_STEP indicates whether we're about to start the
2150 target for a stepping command. */
2151
2152static ptid_t
2153internal_resume_ptid (int user_step)
2154{
2155 /* In non-stop, we always control threads individually. Note that
2156 the target may always work in non-stop mode even with "set
2157 non-stop off", in which case user_visible_resume_ptid could
2158 return a wildcard ptid. */
2159 if (target_is_non_stop_p ())
2160 return inferior_ptid;
2161 else
2162 return user_visible_resume_ptid (user_step);
2163}
2164
64ce06e4
PA
2165/* Wrapper for target_resume, that handles infrun-specific
2166 bookkeeping. */
2167
2168static void
2169do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2170{
2171 struct thread_info *tp = inferior_thread ();
2172
c65d6b55
PA
2173 gdb_assert (!tp->stop_requested);
2174
64ce06e4 2175 /* Install inferior's terminal modes. */
223ffa71 2176 target_terminal::inferior ();
64ce06e4
PA
2177
2178 /* Avoid confusing the next resume, if the next stop/resume
2179 happens to apply to another thread. */
2180 tp->suspend.stop_signal = GDB_SIGNAL_0;
2181
8f572e5c
PA
2182 /* Advise target which signals may be handled silently.
2183
2184 If we have removed breakpoints because we are stepping over one
2185 in-line (in any thread), we need to receive all signals to avoid
2186 accidentally skipping a breakpoint during execution of a signal
2187 handler.
2188
2189 Likewise if we're displaced stepping, otherwise a trap for a
2190 breakpoint in a signal handler might be confused with the
2191 displaced step finishing. We don't make the displaced_step_fixup
2192 step distinguish the cases instead, because:
2193
2194 - a backtrace while stopped in the signal handler would show the
2195 scratch pad as frame older than the signal handler, instead of
2196 the real mainline code.
2197
2198 - when the thread is later resumed, the signal handler would
2199 return to the scratch pad area, which would no longer be
2200 valid. */
2201 if (step_over_info_valid_p ()
00431a78 2202 || displaced_step_in_progress (tp->inf))
adc6a863 2203 target_pass_signals ({});
64ce06e4 2204 else
adc6a863 2205 target_pass_signals (signal_pass);
64ce06e4
PA
2206
2207 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2208
2209 target_commit_resume ();
64ce06e4
PA
2210}
2211
d930703d 2212/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2213 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2214 call 'resume', which handles exceptions. */
c906108c 2215
71d378ae
PA
2216static void
2217resume_1 (enum gdb_signal sig)
c906108c 2218{
515630c5 2219 struct regcache *regcache = get_current_regcache ();
ac7936df 2220 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2221 struct thread_info *tp = inferior_thread ();
515630c5 2222 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2223 const address_space *aspace = regcache->aspace ();
b0f16a3e 2224 ptid_t resume_ptid;
856e7dd6
PA
2225 /* This represents the user's step vs continue request. When
2226 deciding whether "set scheduler-locking step" applies, it's the
2227 user's intention that counts. */
2228 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2229 /* This represents what we'll actually request the target to do.
2230 This can decay from a step to a continue, if e.g., we need to
2231 implement single-stepping with breakpoints (software
2232 single-step). */
6b403daa 2233 int step;
c7e8a53c 2234
c65d6b55 2235 gdb_assert (!tp->stop_requested);
c2829269
PA
2236 gdb_assert (!thread_is_in_step_over_chain (tp));
2237
372316f1
PA
2238 if (tp->suspend.waitstatus_pending_p)
2239 {
2240 if (debug_infrun)
2241 {
23fdd69e
SM
2242 std::string statstr
2243 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2244
372316f1 2245 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2246 "infrun: resume: thread %s has pending wait "
2247 "status %s (currently_stepping=%d).\n",
a068643d
TT
2248 target_pid_to_str (tp->ptid).c_str (),
2249 statstr.c_str (),
372316f1 2250 currently_stepping (tp));
372316f1
PA
2251 }
2252
2253 tp->resumed = 1;
2254
2255 /* FIXME: What should we do if we are supposed to resume this
2256 thread with a signal? Maybe we should maintain a queue of
2257 pending signals to deliver. */
2258 if (sig != GDB_SIGNAL_0)
2259 {
fd7dcb94 2260 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2261 gdb_signal_to_name (sig),
2262 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2263 }
2264
2265 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2266
2267 if (target_can_async_p ())
9516f85a
AB
2268 {
2269 target_async (1);
2270 /* Tell the event loop we have an event to process. */
2271 mark_async_event_handler (infrun_async_inferior_event_token);
2272 }
372316f1
PA
2273 return;
2274 }
2275
2276 tp->stepped_breakpoint = 0;
2277
6b403daa
PA
2278 /* Depends on stepped_breakpoint. */
2279 step = currently_stepping (tp);
2280
74609e71
YQ
2281 if (current_inferior ()->waiting_for_vfork_done)
2282 {
48f9886d
PA
2283 /* Don't try to single-step a vfork parent that is waiting for
2284 the child to get out of the shared memory region (by exec'ing
2285 or exiting). This is particularly important on software
2286 single-step archs, as the child process would trip on the
2287 software single step breakpoint inserted for the parent
2288 process. Since the parent will not actually execute any
2289 instruction until the child is out of the shared region (such
2290 are vfork's semantics), it is safe to simply continue it.
2291 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2292 the parent, and tell it to `keep_going', which automatically
2293 re-sets it stepping. */
74609e71
YQ
2294 if (debug_infrun)
2295 fprintf_unfiltered (gdb_stdlog,
2296 "infrun: resume : clear step\n");
a09dd441 2297 step = 0;
74609e71
YQ
2298 }
2299
527159b7 2300 if (debug_infrun)
237fc4c9 2301 fprintf_unfiltered (gdb_stdlog,
c9737c08 2302 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2303 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2304 step, gdb_signal_to_symbol_string (sig),
2305 tp->control.trap_expected,
a068643d 2306 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2307 paddress (gdbarch, pc));
c906108c 2308
c2c6d25f
JM
2309 /* Normally, by the time we reach `resume', the breakpoints are either
2310 removed or inserted, as appropriate. The exception is if we're sitting
2311 at a permanent breakpoint; we need to step over it, but permanent
2312 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2313 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2314 {
af48d08f
PA
2315 if (sig != GDB_SIGNAL_0)
2316 {
2317 /* We have a signal to pass to the inferior. The resume
2318 may, or may not take us to the signal handler. If this
2319 is a step, we'll need to stop in the signal handler, if
2320 there's one, (if the target supports stepping into
2321 handlers), or in the next mainline instruction, if
2322 there's no handler. If this is a continue, we need to be
2323 sure to run the handler with all breakpoints inserted.
2324 In all cases, set a breakpoint at the current address
2325 (where the handler returns to), and once that breakpoint
2326 is hit, resume skipping the permanent breakpoint. If
2327 that breakpoint isn't hit, then we've stepped into the
2328 signal handler (or hit some other event). We'll delete
2329 the step-resume breakpoint then. */
2330
2331 if (debug_infrun)
2332 fprintf_unfiltered (gdb_stdlog,
2333 "infrun: resume: skipping permanent breakpoint, "
2334 "deliver signal first\n");
2335
2336 clear_step_over_info ();
2337 tp->control.trap_expected = 0;
2338
2339 if (tp->control.step_resume_breakpoint == NULL)
2340 {
2341 /* Set a "high-priority" step-resume, as we don't want
2342 user breakpoints at PC to trigger (again) when this
2343 hits. */
2344 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2345 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2346
2347 tp->step_after_step_resume_breakpoint = step;
2348 }
2349
2350 insert_breakpoints ();
2351 }
2352 else
2353 {
2354 /* There's no signal to pass, we can go ahead and skip the
2355 permanent breakpoint manually. */
2356 if (debug_infrun)
2357 fprintf_unfiltered (gdb_stdlog,
2358 "infrun: resume: skipping permanent breakpoint\n");
2359 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2360 /* Update pc to reflect the new address from which we will
2361 execute instructions. */
2362 pc = regcache_read_pc (regcache);
2363
2364 if (step)
2365 {
2366 /* We've already advanced the PC, so the stepping part
2367 is done. Now we need to arrange for a trap to be
2368 reported to handle_inferior_event. Set a breakpoint
2369 at the current PC, and run to it. Don't update
2370 prev_pc, because if we end in
44a1ee51
PA
2371 switch_back_to_stepped_thread, we want the "expected
2372 thread advanced also" branch to be taken. IOW, we
2373 don't want this thread to step further from PC
af48d08f 2374 (overstep). */
1ac806b8 2375 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2376 insert_single_step_breakpoint (gdbarch, aspace, pc);
2377 insert_breakpoints ();
2378
fbea99ea 2379 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2380 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2381 tp->resumed = 1;
af48d08f
PA
2382 return;
2383 }
2384 }
6d350bb5 2385 }
c2c6d25f 2386
c1e36e3e
PA
2387 /* If we have a breakpoint to step over, make sure to do a single
2388 step only. Same if we have software watchpoints. */
2389 if (tp->control.trap_expected || bpstat_should_step ())
2390 tp->control.may_range_step = 0;
2391
237fc4c9
PA
2392 /* If enabled, step over breakpoints by executing a copy of the
2393 instruction at a different address.
2394
2395 We can't use displaced stepping when we have a signal to deliver;
2396 the comments for displaced_step_prepare explain why. The
2397 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2398 signals' explain what we do instead.
2399
2400 We can't use displaced stepping when we are waiting for vfork_done
2401 event, displaced stepping breaks the vfork child similarly as single
2402 step software breakpoint. */
3fc8eb30
PA
2403 if (tp->control.trap_expected
2404 && use_displaced_stepping (tp)
cb71640d 2405 && !step_over_info_valid_p ()
a493e3e2 2406 && sig == GDB_SIGNAL_0
74609e71 2407 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2408 {
00431a78 2409 int prepared = displaced_step_prepare (tp);
fc1cf338 2410
3fc8eb30 2411 if (prepared == 0)
d56b7306 2412 {
4d9d9d04
PA
2413 if (debug_infrun)
2414 fprintf_unfiltered (gdb_stdlog,
2415 "Got placed in step-over queue\n");
2416
2417 tp->control.trap_expected = 0;
d56b7306
VP
2418 return;
2419 }
3fc8eb30
PA
2420 else if (prepared < 0)
2421 {
2422 /* Fallback to stepping over the breakpoint in-line. */
2423
2424 if (target_is_non_stop_p ())
2425 stop_all_threads ();
2426
a01bda52 2427 set_step_over_info (regcache->aspace (),
21edc42f 2428 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2429
2430 step = maybe_software_singlestep (gdbarch, pc);
2431
2432 insert_breakpoints ();
2433 }
2434 else if (prepared > 0)
2435 {
2436 struct displaced_step_inferior_state *displaced;
99e40580 2437
3fc8eb30
PA
2438 /* Update pc to reflect the new address from which we will
2439 execute instructions due to displaced stepping. */
00431a78 2440 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2441
00431a78 2442 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2443 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2444 displaced->step_closure);
2445 }
237fc4c9
PA
2446 }
2447
2facfe5c 2448 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2449 else if (step)
2facfe5c 2450 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2451
30852783
UW
2452 /* Currently, our software single-step implementation leads to different
2453 results than hardware single-stepping in one situation: when stepping
2454 into delivering a signal which has an associated signal handler,
2455 hardware single-step will stop at the first instruction of the handler,
2456 while software single-step will simply skip execution of the handler.
2457
2458 For now, this difference in behavior is accepted since there is no
2459 easy way to actually implement single-stepping into a signal handler
2460 without kernel support.
2461
2462 However, there is one scenario where this difference leads to follow-on
2463 problems: if we're stepping off a breakpoint by removing all breakpoints
2464 and then single-stepping. In this case, the software single-step
2465 behavior means that even if there is a *breakpoint* in the signal
2466 handler, GDB still would not stop.
2467
2468 Fortunately, we can at least fix this particular issue. We detect
2469 here the case where we are about to deliver a signal while software
2470 single-stepping with breakpoints removed. In this situation, we
2471 revert the decisions to remove all breakpoints and insert single-
2472 step breakpoints, and instead we install a step-resume breakpoint
2473 at the current address, deliver the signal without stepping, and
2474 once we arrive back at the step-resume breakpoint, actually step
2475 over the breakpoint we originally wanted to step over. */
34b7e8a6 2476 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2477 && sig != GDB_SIGNAL_0
2478 && step_over_info_valid_p ())
30852783
UW
2479 {
2480 /* If we have nested signals or a pending signal is delivered
2481 immediately after a handler returns, might might already have
2482 a step-resume breakpoint set on the earlier handler. We cannot
2483 set another step-resume breakpoint; just continue on until the
2484 original breakpoint is hit. */
2485 if (tp->control.step_resume_breakpoint == NULL)
2486 {
2c03e5be 2487 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2488 tp->step_after_step_resume_breakpoint = 1;
2489 }
2490
34b7e8a6 2491 delete_single_step_breakpoints (tp);
30852783 2492
31e77af2 2493 clear_step_over_info ();
30852783 2494 tp->control.trap_expected = 0;
31e77af2
PA
2495
2496 insert_breakpoints ();
30852783
UW
2497 }
2498
b0f16a3e
SM
2499 /* If STEP is set, it's a request to use hardware stepping
2500 facilities. But in that case, we should never
2501 use singlestep breakpoint. */
34b7e8a6 2502 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2503
fbea99ea 2504 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2505 if (tp->control.trap_expected)
b0f16a3e
SM
2506 {
2507 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2508 hit, either by single-stepping the thread with the breakpoint
2509 removed, or by displaced stepping, with the breakpoint inserted.
2510 In the former case, we need to single-step only this thread,
2511 and keep others stopped, as they can miss this breakpoint if
2512 allowed to run. That's not really a problem for displaced
2513 stepping, but, we still keep other threads stopped, in case
2514 another thread is also stopped for a breakpoint waiting for
2515 its turn in the displaced stepping queue. */
b0f16a3e
SM
2516 resume_ptid = inferior_ptid;
2517 }
fbea99ea
PA
2518 else
2519 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2520
7f5ef605
PA
2521 if (execution_direction != EXEC_REVERSE
2522 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2523 {
372316f1
PA
2524 /* There are two cases where we currently need to step a
2525 breakpoint instruction when we have a signal to deliver:
2526
2527 - See handle_signal_stop where we handle random signals that
2528 could take out us out of the stepping range. Normally, in
2529 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2530 signal handler with a breakpoint at PC, but there are cases
2531 where we should _always_ single-step, even if we have a
2532 step-resume breakpoint, like when a software watchpoint is
2533 set. Assuming single-stepping and delivering a signal at the
2534 same time would takes us to the signal handler, then we could
2535 have removed the breakpoint at PC to step over it. However,
2536 some hardware step targets (like e.g., Mac OS) can't step
2537 into signal handlers, and for those, we need to leave the
2538 breakpoint at PC inserted, as otherwise if the handler
2539 recurses and executes PC again, it'll miss the breakpoint.
2540 So we leave the breakpoint inserted anyway, but we need to
2541 record that we tried to step a breakpoint instruction, so
372316f1
PA
2542 that adjust_pc_after_break doesn't end up confused.
2543
2544 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2545 in one thread after another thread that was stepping had been
2546 momentarily paused for a step-over. When we re-resume the
2547 stepping thread, it may be resumed from that address with a
2548 breakpoint that hasn't trapped yet. Seen with
2549 gdb.threads/non-stop-fair-events.exp, on targets that don't
2550 do displaced stepping. */
2551
2552 if (debug_infrun)
2553 fprintf_unfiltered (gdb_stdlog,
2554 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2555 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2556
2557 tp->stepped_breakpoint = 1;
2558
b0f16a3e
SM
2559 /* Most targets can step a breakpoint instruction, thus
2560 executing it normally. But if this one cannot, just
2561 continue and we will hit it anyway. */
7f5ef605 2562 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2563 step = 0;
2564 }
ef5cf84e 2565
b0f16a3e 2566 if (debug_displaced
cb71640d 2567 && tp->control.trap_expected
3fc8eb30 2568 && use_displaced_stepping (tp)
cb71640d 2569 && !step_over_info_valid_p ())
b0f16a3e 2570 {
00431a78 2571 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2572 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2573 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2574 gdb_byte buf[4];
2575
2576 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2577 paddress (resume_gdbarch, actual_pc));
2578 read_memory (actual_pc, buf, sizeof (buf));
2579 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2580 }
237fc4c9 2581
b0f16a3e
SM
2582 if (tp->control.may_range_step)
2583 {
2584 /* If we're resuming a thread with the PC out of the step
2585 range, then we're doing some nested/finer run control
2586 operation, like stepping the thread out of the dynamic
2587 linker or the displaced stepping scratch pad. We
2588 shouldn't have allowed a range step then. */
2589 gdb_assert (pc_in_thread_step_range (pc, tp));
2590 }
c1e36e3e 2591
64ce06e4 2592 do_target_resume (resume_ptid, step, sig);
372316f1 2593 tp->resumed = 1;
c906108c 2594}
71d378ae
PA
2595
2596/* Resume the inferior. SIG is the signal to give the inferior
2597 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2598 rolls back state on error. */
2599
aff4e175 2600static void
71d378ae
PA
2601resume (gdb_signal sig)
2602{
a70b8144 2603 try
71d378ae
PA
2604 {
2605 resume_1 (sig);
2606 }
230d2906 2607 catch (const gdb_exception &ex)
71d378ae
PA
2608 {
2609 /* If resuming is being aborted for any reason, delete any
2610 single-step breakpoint resume_1 may have created, to avoid
2611 confusing the following resumption, and to avoid leaving
2612 single-step breakpoints perturbing other threads, in case
2613 we're running in non-stop mode. */
2614 if (inferior_ptid != null_ptid)
2615 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2616 throw;
71d378ae 2617 }
71d378ae
PA
2618}
2619
c906108c 2620\f
237fc4c9 2621/* Proceeding. */
c906108c 2622
4c2f2a79
PA
2623/* See infrun.h. */
2624
2625/* Counter that tracks number of user visible stops. This can be used
2626 to tell whether a command has proceeded the inferior past the
2627 current location. This allows e.g., inferior function calls in
2628 breakpoint commands to not interrupt the command list. When the
2629 call finishes successfully, the inferior is standing at the same
2630 breakpoint as if nothing happened (and so we don't call
2631 normal_stop). */
2632static ULONGEST current_stop_id;
2633
2634/* See infrun.h. */
2635
2636ULONGEST
2637get_stop_id (void)
2638{
2639 return current_stop_id;
2640}
2641
2642/* Called when we report a user visible stop. */
2643
2644static void
2645new_stop_id (void)
2646{
2647 current_stop_id++;
2648}
2649
c906108c
SS
2650/* Clear out all variables saying what to do when inferior is continued.
2651 First do this, then set the ones you want, then call `proceed'. */
2652
a7212384
UW
2653static void
2654clear_proceed_status_thread (struct thread_info *tp)
c906108c 2655{
a7212384
UW
2656 if (debug_infrun)
2657 fprintf_unfiltered (gdb_stdlog,
2658 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2659 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2660
372316f1
PA
2661 /* If we're starting a new sequence, then the previous finished
2662 single-step is no longer relevant. */
2663 if (tp->suspend.waitstatus_pending_p)
2664 {
2665 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2666 {
2667 if (debug_infrun)
2668 fprintf_unfiltered (gdb_stdlog,
2669 "infrun: clear_proceed_status: pending "
2670 "event of %s was a finished step. "
2671 "Discarding.\n",
a068643d 2672 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2673
2674 tp->suspend.waitstatus_pending_p = 0;
2675 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2676 }
2677 else if (debug_infrun)
2678 {
23fdd69e
SM
2679 std::string statstr
2680 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2681
372316f1
PA
2682 fprintf_unfiltered (gdb_stdlog,
2683 "infrun: clear_proceed_status_thread: thread %s "
2684 "has pending wait status %s "
2685 "(currently_stepping=%d).\n",
a068643d
TT
2686 target_pid_to_str (tp->ptid).c_str (),
2687 statstr.c_str (),
372316f1 2688 currently_stepping (tp));
372316f1
PA
2689 }
2690 }
2691
70509625
PA
2692 /* If this signal should not be seen by program, give it zero.
2693 Used for debugging signals. */
2694 if (!signal_pass_state (tp->suspend.stop_signal))
2695 tp->suspend.stop_signal = GDB_SIGNAL_0;
2696
46e3ed7f 2697 delete tp->thread_fsm;
243a9253
PA
2698 tp->thread_fsm = NULL;
2699
16c381f0
JK
2700 tp->control.trap_expected = 0;
2701 tp->control.step_range_start = 0;
2702 tp->control.step_range_end = 0;
c1e36e3e 2703 tp->control.may_range_step = 0;
16c381f0
JK
2704 tp->control.step_frame_id = null_frame_id;
2705 tp->control.step_stack_frame_id = null_frame_id;
2706 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2707 tp->control.step_start_function = NULL;
a7212384 2708 tp->stop_requested = 0;
4e1c45ea 2709
16c381f0 2710 tp->control.stop_step = 0;
32400beb 2711
16c381f0 2712 tp->control.proceed_to_finish = 0;
414c69f7 2713
856e7dd6 2714 tp->control.stepping_command = 0;
17b2616c 2715
a7212384 2716 /* Discard any remaining commands or status from previous stop. */
16c381f0 2717 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2718}
32400beb 2719
a7212384 2720void
70509625 2721clear_proceed_status (int step)
a7212384 2722{
f2665db5
MM
2723 /* With scheduler-locking replay, stop replaying other threads if we're
2724 not replaying the user-visible resume ptid.
2725
2726 This is a convenience feature to not require the user to explicitly
2727 stop replaying the other threads. We're assuming that the user's
2728 intent is to resume tracing the recorded process. */
2729 if (!non_stop && scheduler_mode == schedlock_replay
2730 && target_record_is_replaying (minus_one_ptid)
2731 && !target_record_will_replay (user_visible_resume_ptid (step),
2732 execution_direction))
2733 target_record_stop_replaying ();
2734
08036331 2735 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2736 {
08036331 2737 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2738
2739 /* In all-stop mode, delete the per-thread status of all threads
2740 we're about to resume, implicitly and explicitly. */
08036331
PA
2741 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2742 clear_proceed_status_thread (tp);
6c95b8df
PA
2743 }
2744
d7e15655 2745 if (inferior_ptid != null_ptid)
a7212384
UW
2746 {
2747 struct inferior *inferior;
2748
2749 if (non_stop)
2750 {
6c95b8df
PA
2751 /* If in non-stop mode, only delete the per-thread status of
2752 the current thread. */
a7212384
UW
2753 clear_proceed_status_thread (inferior_thread ());
2754 }
6c95b8df 2755
d6b48e9c 2756 inferior = current_inferior ();
16c381f0 2757 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2758 }
2759
76727919 2760 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2761}
2762
99619bea
PA
2763/* Returns true if TP is still stopped at a breakpoint that needs
2764 stepping-over in order to make progress. If the breakpoint is gone
2765 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2766
2767static int
6c4cfb24 2768thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2769{
2770 if (tp->stepping_over_breakpoint)
2771 {
00431a78 2772 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2773
a01bda52 2774 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2775 regcache_read_pc (regcache))
2776 == ordinary_breakpoint_here)
99619bea
PA
2777 return 1;
2778
2779 tp->stepping_over_breakpoint = 0;
2780 }
2781
2782 return 0;
2783}
2784
6c4cfb24
PA
2785/* Check whether thread TP still needs to start a step-over in order
2786 to make progress when resumed. Returns an bitwise or of enum
2787 step_over_what bits, indicating what needs to be stepped over. */
2788
8d297bbf 2789static step_over_what
6c4cfb24
PA
2790thread_still_needs_step_over (struct thread_info *tp)
2791{
8d297bbf 2792 step_over_what what = 0;
6c4cfb24
PA
2793
2794 if (thread_still_needs_step_over_bp (tp))
2795 what |= STEP_OVER_BREAKPOINT;
2796
2797 if (tp->stepping_over_watchpoint
2798 && !target_have_steppable_watchpoint)
2799 what |= STEP_OVER_WATCHPOINT;
2800
2801 return what;
2802}
2803
483805cf
PA
2804/* Returns true if scheduler locking applies. STEP indicates whether
2805 we're about to do a step/next-like command to a thread. */
2806
2807static int
856e7dd6 2808schedlock_applies (struct thread_info *tp)
483805cf
PA
2809{
2810 return (scheduler_mode == schedlock_on
2811 || (scheduler_mode == schedlock_step
f2665db5
MM
2812 && tp->control.stepping_command)
2813 || (scheduler_mode == schedlock_replay
2814 && target_record_will_replay (minus_one_ptid,
2815 execution_direction)));
483805cf
PA
2816}
2817
c906108c
SS
2818/* Basic routine for continuing the program in various fashions.
2819
2820 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2821 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2822 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2823
2824 You should call clear_proceed_status before calling proceed. */
2825
2826void
64ce06e4 2827proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2828{
e58b0e63
PA
2829 struct regcache *regcache;
2830 struct gdbarch *gdbarch;
e58b0e63 2831 CORE_ADDR pc;
4d9d9d04
PA
2832 ptid_t resume_ptid;
2833 struct execution_control_state ecss;
2834 struct execution_control_state *ecs = &ecss;
4d9d9d04 2835 int started;
c906108c 2836
e58b0e63
PA
2837 /* If we're stopped at a fork/vfork, follow the branch set by the
2838 "set follow-fork-mode" command; otherwise, we'll just proceed
2839 resuming the current thread. */
2840 if (!follow_fork ())
2841 {
2842 /* The target for some reason decided not to resume. */
2843 normal_stop ();
f148b27e
PA
2844 if (target_can_async_p ())
2845 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2846 return;
2847 }
2848
842951eb
PA
2849 /* We'll update this if & when we switch to a new thread. */
2850 previous_inferior_ptid = inferior_ptid;
2851
e58b0e63 2852 regcache = get_current_regcache ();
ac7936df 2853 gdbarch = regcache->arch ();
8b86c959
YQ
2854 const address_space *aspace = regcache->aspace ();
2855
e58b0e63 2856 pc = regcache_read_pc (regcache);
08036331 2857 thread_info *cur_thr = inferior_thread ();
e58b0e63 2858
99619bea 2859 /* Fill in with reasonable starting values. */
08036331 2860 init_thread_stepping_state (cur_thr);
99619bea 2861
08036331 2862 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2863
2acceee2 2864 if (addr == (CORE_ADDR) -1)
c906108c 2865 {
08036331 2866 if (pc == cur_thr->suspend.stop_pc
af48d08f 2867 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2868 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2869 /* There is a breakpoint at the address we will resume at,
2870 step one instruction before inserting breakpoints so that
2871 we do not stop right away (and report a second hit at this
b2175913
MS
2872 breakpoint).
2873
2874 Note, we don't do this in reverse, because we won't
2875 actually be executing the breakpoint insn anyway.
2876 We'll be (un-)executing the previous instruction. */
08036331 2877 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2878 else if (gdbarch_single_step_through_delay_p (gdbarch)
2879 && gdbarch_single_step_through_delay (gdbarch,
2880 get_current_frame ()))
3352ef37
AC
2881 /* We stepped onto an instruction that needs to be stepped
2882 again before re-inserting the breakpoint, do so. */
08036331 2883 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2884 }
2885 else
2886 {
515630c5 2887 regcache_write_pc (regcache, addr);
c906108c
SS
2888 }
2889
70509625 2890 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2891 cur_thr->suspend.stop_signal = siggnal;
70509625 2892
08036331 2893 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2894
2895 /* If an exception is thrown from this point on, make sure to
2896 propagate GDB's knowledge of the executing state to the
2897 frontend/user running state. */
731f534f 2898 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2899
2900 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2901 threads (e.g., we might need to set threads stepping over
2902 breakpoints first), from the user/frontend's point of view, all
2903 threads in RESUME_PTID are now running. Unless we're calling an
2904 inferior function, as in that case we pretend the inferior
2905 doesn't run at all. */
08036331 2906 if (!cur_thr->control.in_infcall)
4d9d9d04 2907 set_running (resume_ptid, 1);
17b2616c 2908
527159b7 2909 if (debug_infrun)
8a9de0e4 2910 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2911 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2912 paddress (gdbarch, addr),
64ce06e4 2913 gdb_signal_to_symbol_string (siggnal));
527159b7 2914
4d9d9d04
PA
2915 annotate_starting ();
2916
2917 /* Make sure that output from GDB appears before output from the
2918 inferior. */
2919 gdb_flush (gdb_stdout);
2920
d930703d
PA
2921 /* Since we've marked the inferior running, give it the terminal. A
2922 QUIT/Ctrl-C from here on is forwarded to the target (which can
2923 still detect attempts to unblock a stuck connection with repeated
2924 Ctrl-C from within target_pass_ctrlc). */
2925 target_terminal::inferior ();
2926
4d9d9d04
PA
2927 /* In a multi-threaded task we may select another thread and
2928 then continue or step.
2929
2930 But if a thread that we're resuming had stopped at a breakpoint,
2931 it will immediately cause another breakpoint stop without any
2932 execution (i.e. it will report a breakpoint hit incorrectly). So
2933 we must step over it first.
2934
2935 Look for threads other than the current (TP) that reported a
2936 breakpoint hit and haven't been resumed yet since. */
2937
2938 /* If scheduler locking applies, we can avoid iterating over all
2939 threads. */
08036331 2940 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2941 {
08036331
PA
2942 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2943 {
4d9d9d04
PA
2944 /* Ignore the current thread here. It's handled
2945 afterwards. */
08036331 2946 if (tp == cur_thr)
4d9d9d04 2947 continue;
c906108c 2948
4d9d9d04
PA
2949 if (!thread_still_needs_step_over (tp))
2950 continue;
2951
2952 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2953
99619bea
PA
2954 if (debug_infrun)
2955 fprintf_unfiltered (gdb_stdlog,
2956 "infrun: need to step-over [%s] first\n",
a068643d 2957 target_pid_to_str (tp->ptid).c_str ());
99619bea 2958
4d9d9d04 2959 thread_step_over_chain_enqueue (tp);
2adfaa28 2960 }
30852783
UW
2961 }
2962
4d9d9d04
PA
2963 /* Enqueue the current thread last, so that we move all other
2964 threads over their breakpoints first. */
08036331
PA
2965 if (cur_thr->stepping_over_breakpoint)
2966 thread_step_over_chain_enqueue (cur_thr);
30852783 2967
4d9d9d04
PA
2968 /* If the thread isn't started, we'll still need to set its prev_pc,
2969 so that switch_back_to_stepped_thread knows the thread hasn't
2970 advanced. Must do this before resuming any thread, as in
2971 all-stop/remote, once we resume we can't send any other packet
2972 until the target stops again. */
08036331 2973 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2974
a9bc57b9
TT
2975 {
2976 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2977
a9bc57b9 2978 started = start_step_over ();
c906108c 2979
a9bc57b9
TT
2980 if (step_over_info_valid_p ())
2981 {
2982 /* Either this thread started a new in-line step over, or some
2983 other thread was already doing one. In either case, don't
2984 resume anything else until the step-over is finished. */
2985 }
2986 else if (started && !target_is_non_stop_p ())
2987 {
2988 /* A new displaced stepping sequence was started. In all-stop,
2989 we can't talk to the target anymore until it next stops. */
2990 }
2991 else if (!non_stop && target_is_non_stop_p ())
2992 {
2993 /* In all-stop, but the target is always in non-stop mode.
2994 Start all other threads that are implicitly resumed too. */
08036331 2995 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 2996 {
fbea99ea
PA
2997 if (tp->resumed)
2998 {
2999 if (debug_infrun)
3000 fprintf_unfiltered (gdb_stdlog,
3001 "infrun: proceed: [%s] resumed\n",
a068643d 3002 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3003 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3004 continue;
3005 }
3006
3007 if (thread_is_in_step_over_chain (tp))
3008 {
3009 if (debug_infrun)
3010 fprintf_unfiltered (gdb_stdlog,
3011 "infrun: proceed: [%s] needs step-over\n",
a068643d 3012 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3013 continue;
3014 }
3015
3016 if (debug_infrun)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "infrun: proceed: resuming %s\n",
a068643d 3019 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3020
3021 reset_ecs (ecs, tp);
00431a78 3022 switch_to_thread (tp);
fbea99ea
PA
3023 keep_going_pass_signal (ecs);
3024 if (!ecs->wait_some_more)
fd7dcb94 3025 error (_("Command aborted."));
fbea99ea 3026 }
a9bc57b9 3027 }
08036331 3028 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3029 {
3030 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3031 reset_ecs (ecs, cur_thr);
3032 switch_to_thread (cur_thr);
a9bc57b9
TT
3033 keep_going_pass_signal (ecs);
3034 if (!ecs->wait_some_more)
3035 error (_("Command aborted."));
3036 }
3037 }
c906108c 3038
85ad3aaf
PA
3039 target_commit_resume ();
3040
731f534f 3041 finish_state.release ();
c906108c 3042
0b333c5e
PA
3043 /* Tell the event loop to wait for it to stop. If the target
3044 supports asynchronous execution, it'll do this from within
3045 target_resume. */
362646f5 3046 if (!target_can_async_p ())
0b333c5e 3047 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3048}
c906108c
SS
3049\f
3050
3051/* Start remote-debugging of a machine over a serial link. */
96baa820 3052
c906108c 3053void
8621d6a9 3054start_remote (int from_tty)
c906108c 3055{
d6b48e9c 3056 struct inferior *inferior;
d6b48e9c
PA
3057
3058 inferior = current_inferior ();
16c381f0 3059 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3060
1777feb0 3061 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3062 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3063 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3064 nothing is returned (instead of just blocking). Because of this,
3065 targets expecting an immediate response need to, internally, set
3066 things up so that the target_wait() is forced to eventually
1777feb0 3067 timeout. */
6426a772
JM
3068 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3069 differentiate to its caller what the state of the target is after
3070 the initial open has been performed. Here we're assuming that
3071 the target has stopped. It should be possible to eventually have
3072 target_open() return to the caller an indication that the target
3073 is currently running and GDB state should be set to the same as
1777feb0 3074 for an async run. */
e4c8541f 3075 wait_for_inferior ();
8621d6a9
DJ
3076
3077 /* Now that the inferior has stopped, do any bookkeeping like
3078 loading shared libraries. We want to do this before normal_stop,
3079 so that the displayed frame is up to date. */
8b88a78e 3080 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3081
6426a772 3082 normal_stop ();
c906108c
SS
3083}
3084
3085/* Initialize static vars when a new inferior begins. */
3086
3087void
96baa820 3088init_wait_for_inferior (void)
c906108c
SS
3089{
3090 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3091
c906108c
SS
3092 breakpoint_init_inferior (inf_starting);
3093
70509625 3094 clear_proceed_status (0);
9f976b41 3095
ca005067 3096 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3097
842951eb 3098 previous_inferior_ptid = inferior_ptid;
c906108c 3099}
237fc4c9 3100
c906108c 3101\f
488f131b 3102
ec9499be 3103static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3104
568d6575
UW
3105static void handle_step_into_function (struct gdbarch *gdbarch,
3106 struct execution_control_state *ecs);
3107static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3108 struct execution_control_state *ecs);
4f5d7f63 3109static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3110static void check_exception_resume (struct execution_control_state *,
28106bc2 3111 struct frame_info *);
611c83ae 3112
bdc36728 3113static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3114static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3115static void keep_going (struct execution_control_state *ecs);
94c57d6a 3116static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3117static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3118
252fbfc8
PA
3119/* This function is attached as a "thread_stop_requested" observer.
3120 Cleanup local state that assumed the PTID was to be resumed, and
3121 report the stop to the frontend. */
3122
2c0b251b 3123static void
252fbfc8
PA
3124infrun_thread_stop_requested (ptid_t ptid)
3125{
c65d6b55
PA
3126 /* PTID was requested to stop. If the thread was already stopped,
3127 but the user/frontend doesn't know about that yet (e.g., the
3128 thread had been temporarily paused for some step-over), set up
3129 for reporting the stop now. */
08036331
PA
3130 for (thread_info *tp : all_threads (ptid))
3131 {
3132 if (tp->state != THREAD_RUNNING)
3133 continue;
3134 if (tp->executing)
3135 continue;
c65d6b55 3136
08036331
PA
3137 /* Remove matching threads from the step-over queue, so
3138 start_step_over doesn't try to resume them
3139 automatically. */
3140 if (thread_is_in_step_over_chain (tp))
3141 thread_step_over_chain_remove (tp);
c65d6b55 3142
08036331
PA
3143 /* If the thread is stopped, but the user/frontend doesn't
3144 know about that yet, queue a pending event, as if the
3145 thread had just stopped now. Unless the thread already had
3146 a pending event. */
3147 if (!tp->suspend.waitstatus_pending_p)
3148 {
3149 tp->suspend.waitstatus_pending_p = 1;
3150 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3151 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3152 }
c65d6b55 3153
08036331
PA
3154 /* Clear the inline-frame state, since we're re-processing the
3155 stop. */
3156 clear_inline_frame_state (tp->ptid);
c65d6b55 3157
08036331
PA
3158 /* If this thread was paused because some other thread was
3159 doing an inline-step over, let that finish first. Once
3160 that happens, we'll restart all threads and consume pending
3161 stop events then. */
3162 if (step_over_info_valid_p ())
3163 continue;
3164
3165 /* Otherwise we can process the (new) pending event now. Set
3166 it so this pending event is considered by
3167 do_target_wait. */
3168 tp->resumed = 1;
3169 }
252fbfc8
PA
3170}
3171
a07daef3
PA
3172static void
3173infrun_thread_thread_exit (struct thread_info *tp, int silent)
3174{
d7e15655 3175 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3176 nullify_last_target_wait_ptid ();
3177}
3178
0cbcdb96
PA
3179/* Delete the step resume, single-step and longjmp/exception resume
3180 breakpoints of TP. */
4e1c45ea 3181
0cbcdb96
PA
3182static void
3183delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3184{
0cbcdb96
PA
3185 delete_step_resume_breakpoint (tp);
3186 delete_exception_resume_breakpoint (tp);
34b7e8a6 3187 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3188}
3189
0cbcdb96
PA
3190/* If the target still has execution, call FUNC for each thread that
3191 just stopped. In all-stop, that's all the non-exited threads; in
3192 non-stop, that's the current thread, only. */
3193
3194typedef void (*for_each_just_stopped_thread_callback_func)
3195 (struct thread_info *tp);
4e1c45ea
PA
3196
3197static void
0cbcdb96 3198for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3199{
d7e15655 3200 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3201 return;
3202
fbea99ea 3203 if (target_is_non_stop_p ())
4e1c45ea 3204 {
0cbcdb96
PA
3205 /* If in non-stop mode, only the current thread stopped. */
3206 func (inferior_thread ());
4e1c45ea
PA
3207 }
3208 else
0cbcdb96 3209 {
0cbcdb96 3210 /* In all-stop mode, all threads have stopped. */
08036331
PA
3211 for (thread_info *tp : all_non_exited_threads ())
3212 func (tp);
0cbcdb96
PA
3213 }
3214}
3215
3216/* Delete the step resume and longjmp/exception resume breakpoints of
3217 the threads that just stopped. */
3218
3219static void
3220delete_just_stopped_threads_infrun_breakpoints (void)
3221{
3222 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3223}
3224
3225/* Delete the single-step breakpoints of the threads that just
3226 stopped. */
7c16b83e 3227
34b7e8a6
PA
3228static void
3229delete_just_stopped_threads_single_step_breakpoints (void)
3230{
3231 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3232}
3233
221e1a37 3234/* See infrun.h. */
223698f8 3235
221e1a37 3236void
223698f8
DE
3237print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3238 const struct target_waitstatus *ws)
3239{
23fdd69e 3240 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3241 string_file stb;
223698f8
DE
3242
3243 /* The text is split over several lines because it was getting too long.
3244 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3245 output as a unit; we want only one timestamp printed if debug_timestamp
3246 is set. */
3247
d7e74731 3248 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3249 waiton_ptid.pid (),
e38504b3 3250 waiton_ptid.lwp (),
cc6bcb54 3251 waiton_ptid.tid ());
e99b03dc 3252 if (waiton_ptid.pid () != -1)
a068643d 3253 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3254 stb.printf (", status) =\n");
3255 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3256 result_ptid.pid (),
e38504b3 3257 result_ptid.lwp (),
cc6bcb54 3258 result_ptid.tid (),
a068643d 3259 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3260 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3261
3262 /* This uses %s in part to handle %'s in the text, but also to avoid
3263 a gcc error: the format attribute requires a string literal. */
d7e74731 3264 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3265}
3266
372316f1
PA
3267/* Select a thread at random, out of those which are resumed and have
3268 had events. */
3269
3270static struct thread_info *
3271random_pending_event_thread (ptid_t waiton_ptid)
3272{
372316f1 3273 int num_events = 0;
08036331
PA
3274
3275 auto has_event = [] (thread_info *tp)
3276 {
3277 return (tp->resumed
3278 && tp->suspend.waitstatus_pending_p);
3279 };
372316f1
PA
3280
3281 /* First see how many events we have. Count only resumed threads
3282 that have an event pending. */
08036331
PA
3283 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3284 if (has_event (tp))
372316f1
PA
3285 num_events++;
3286
3287 if (num_events == 0)
3288 return NULL;
3289
3290 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3291 int random_selector = (int) ((num_events * (double) rand ())
3292 / (RAND_MAX + 1.0));
372316f1
PA
3293
3294 if (debug_infrun && num_events > 1)
3295 fprintf_unfiltered (gdb_stdlog,
3296 "infrun: Found %d events, selecting #%d\n",
3297 num_events, random_selector);
3298
3299 /* Select the Nth thread that has had an event. */
08036331
PA
3300 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3301 if (has_event (tp))
372316f1 3302 if (random_selector-- == 0)
08036331 3303 return tp;
372316f1 3304
08036331 3305 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3306}
3307
3308/* Wrapper for target_wait that first checks whether threads have
3309 pending statuses to report before actually asking the target for
3310 more events. */
3311
3312static ptid_t
3313do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3314{
3315 ptid_t event_ptid;
3316 struct thread_info *tp;
3317
3318 /* First check if there is a resumed thread with a wait status
3319 pending. */
d7e15655 3320 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3321 {
3322 tp = random_pending_event_thread (ptid);
3323 }
3324 else
3325 {
3326 if (debug_infrun)
3327 fprintf_unfiltered (gdb_stdlog,
3328 "infrun: Waiting for specific thread %s.\n",
a068643d 3329 target_pid_to_str (ptid).c_str ());
372316f1
PA
3330
3331 /* We have a specific thread to check. */
3332 tp = find_thread_ptid (ptid);
3333 gdb_assert (tp != NULL);
3334 if (!tp->suspend.waitstatus_pending_p)
3335 tp = NULL;
3336 }
3337
3338 if (tp != NULL
3339 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3340 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3341 {
00431a78 3342 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3343 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3344 CORE_ADDR pc;
3345 int discard = 0;
3346
3347 pc = regcache_read_pc (regcache);
3348
3349 if (pc != tp->suspend.stop_pc)
3350 {
3351 if (debug_infrun)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3354 target_pid_to_str (tp->ptid).c_str (),
defd2172 3355 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3356 paddress (gdbarch, pc));
3357 discard = 1;
3358 }
a01bda52 3359 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3360 {
3361 if (debug_infrun)
3362 fprintf_unfiltered (gdb_stdlog,
3363 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3364 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3365 paddress (gdbarch, pc));
3366
3367 discard = 1;
3368 }
3369
3370 if (discard)
3371 {
3372 if (debug_infrun)
3373 fprintf_unfiltered (gdb_stdlog,
3374 "infrun: pending event of %s cancelled.\n",
a068643d 3375 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3376
3377 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3378 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3379 }
3380 }
3381
3382 if (tp != NULL)
3383 {
3384 if (debug_infrun)
3385 {
23fdd69e
SM
3386 std::string statstr
3387 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3388
372316f1
PA
3389 fprintf_unfiltered (gdb_stdlog,
3390 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3391 statstr.c_str (),
a068643d 3392 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3393 }
3394
3395 /* Now that we've selected our final event LWP, un-adjust its PC
3396 if it was a software breakpoint (and the target doesn't
3397 always adjust the PC itself). */
3398 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3399 && !target_supports_stopped_by_sw_breakpoint ())
3400 {
3401 struct regcache *regcache;
3402 struct gdbarch *gdbarch;
3403 int decr_pc;
3404
00431a78 3405 regcache = get_thread_regcache (tp);
ac7936df 3406 gdbarch = regcache->arch ();
372316f1
PA
3407
3408 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3409 if (decr_pc != 0)
3410 {
3411 CORE_ADDR pc;
3412
3413 pc = regcache_read_pc (regcache);
3414 regcache_write_pc (regcache, pc + decr_pc);
3415 }
3416 }
3417
3418 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3419 *status = tp->suspend.waitstatus;
3420 tp->suspend.waitstatus_pending_p = 0;
3421
3422 /* Wake up the event loop again, until all pending events are
3423 processed. */
3424 if (target_is_async_p ())
3425 mark_async_event_handler (infrun_async_inferior_event_token);
3426 return tp->ptid;
3427 }
3428
3429 /* But if we don't find one, we'll have to wait. */
3430
3431 if (deprecated_target_wait_hook)
3432 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3433 else
3434 event_ptid = target_wait (ptid, status, options);
3435
3436 return event_ptid;
3437}
3438
24291992
PA
3439/* Prepare and stabilize the inferior for detaching it. E.g.,
3440 detaching while a thread is displaced stepping is a recipe for
3441 crashing it, as nothing would readjust the PC out of the scratch
3442 pad. */
3443
3444void
3445prepare_for_detach (void)
3446{
3447 struct inferior *inf = current_inferior ();
f2907e49 3448 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3449
00431a78 3450 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3451
3452 /* Is any thread of this process displaced stepping? If not,
3453 there's nothing else to do. */
d20172fc 3454 if (displaced->step_thread == nullptr)
24291992
PA
3455 return;
3456
3457 if (debug_infrun)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "displaced-stepping in-process while detaching");
3460
9bcb1f16 3461 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3462
00431a78 3463 while (displaced->step_thread != nullptr)
24291992 3464 {
24291992
PA
3465 struct execution_control_state ecss;
3466 struct execution_control_state *ecs;
3467
3468 ecs = &ecss;
3469 memset (ecs, 0, sizeof (*ecs));
3470
3471 overlay_cache_invalid = 1;
f15cb84a
YQ
3472 /* Flush target cache before starting to handle each event.
3473 Target was running and cache could be stale. This is just a
3474 heuristic. Running threads may modify target memory, but we
3475 don't get any event. */
3476 target_dcache_invalidate ();
24291992 3477
372316f1 3478 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3479
3480 if (debug_infrun)
3481 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3482
3483 /* If an error happens while handling the event, propagate GDB's
3484 knowledge of the executing state to the frontend/user running
3485 state. */
731f534f 3486 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3487
3488 /* Now figure out what to do with the result of the result. */
3489 handle_inferior_event (ecs);
3490
3491 /* No error, don't finish the state yet. */
731f534f 3492 finish_state.release ();
24291992
PA
3493
3494 /* Breakpoints and watchpoints are not installed on the target
3495 at this point, and signals are passed directly to the
3496 inferior, so this must mean the process is gone. */
3497 if (!ecs->wait_some_more)
3498 {
9bcb1f16 3499 restore_detaching.release ();
24291992
PA
3500 error (_("Program exited while detaching"));
3501 }
3502 }
3503
9bcb1f16 3504 restore_detaching.release ();
24291992
PA
3505}
3506
cd0fc7c3 3507/* Wait for control to return from inferior to debugger.
ae123ec6 3508
cd0fc7c3
SS
3509 If inferior gets a signal, we may decide to start it up again
3510 instead of returning. That is why there is a loop in this function.
3511 When this function actually returns it means the inferior
3512 should be left stopped and GDB should read more commands. */
3513
3514void
e4c8541f 3515wait_for_inferior (void)
cd0fc7c3 3516{
527159b7 3517 if (debug_infrun)
ae123ec6 3518 fprintf_unfiltered
e4c8541f 3519 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3520
4c41382a 3521 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3522
e6f5c25b
PA
3523 /* If an error happens while handling the event, propagate GDB's
3524 knowledge of the executing state to the frontend/user running
3525 state. */
731f534f 3526 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3527
c906108c
SS
3528 while (1)
3529 {
ae25568b
PA
3530 struct execution_control_state ecss;
3531 struct execution_control_state *ecs = &ecss;
963f9c80 3532 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3533
ae25568b
PA
3534 memset (ecs, 0, sizeof (*ecs));
3535
ec9499be 3536 overlay_cache_invalid = 1;
ec9499be 3537
f15cb84a
YQ
3538 /* Flush target cache before starting to handle each event.
3539 Target was running and cache could be stale. This is just a
3540 heuristic. Running threads may modify target memory, but we
3541 don't get any event. */
3542 target_dcache_invalidate ();
3543
372316f1 3544 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3545
f00150c9 3546 if (debug_infrun)
223698f8 3547 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3548
cd0fc7c3
SS
3549 /* Now figure out what to do with the result of the result. */
3550 handle_inferior_event (ecs);
c906108c 3551
cd0fc7c3
SS
3552 if (!ecs->wait_some_more)
3553 break;
3554 }
4e1c45ea 3555
e6f5c25b 3556 /* No error, don't finish the state yet. */
731f534f 3557 finish_state.release ();
cd0fc7c3 3558}
c906108c 3559
d3d4baed
PA
3560/* Cleanup that reinstalls the readline callback handler, if the
3561 target is running in the background. If while handling the target
3562 event something triggered a secondary prompt, like e.g., a
3563 pagination prompt, we'll have removed the callback handler (see
3564 gdb_readline_wrapper_line). Need to do this as we go back to the
3565 event loop, ready to process further input. Note this has no
3566 effect if the handler hasn't actually been removed, because calling
3567 rl_callback_handler_install resets the line buffer, thus losing
3568 input. */
3569
3570static void
d238133d 3571reinstall_readline_callback_handler_cleanup ()
d3d4baed 3572{
3b12939d
PA
3573 struct ui *ui = current_ui;
3574
3575 if (!ui->async)
6c400b59
PA
3576 {
3577 /* We're not going back to the top level event loop yet. Don't
3578 install the readline callback, as it'd prep the terminal,
3579 readline-style (raw, noecho) (e.g., --batch). We'll install
3580 it the next time the prompt is displayed, when we're ready
3581 for input. */
3582 return;
3583 }
3584
3b12939d 3585 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3586 gdb_rl_callback_handler_reinstall ();
3587}
3588
243a9253
PA
3589/* Clean up the FSMs of threads that are now stopped. In non-stop,
3590 that's just the event thread. In all-stop, that's all threads. */
3591
3592static void
3593clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3594{
08036331
PA
3595 if (ecs->event_thread != NULL
3596 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3597 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3598
3599 if (!non_stop)
3600 {
08036331 3601 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3602 {
3603 if (thr->thread_fsm == NULL)
3604 continue;
3605 if (thr == ecs->event_thread)
3606 continue;
3607
00431a78 3608 switch_to_thread (thr);
46e3ed7f 3609 thr->thread_fsm->clean_up (thr);
243a9253
PA
3610 }
3611
3612 if (ecs->event_thread != NULL)
00431a78 3613 switch_to_thread (ecs->event_thread);
243a9253
PA
3614 }
3615}
3616
3b12939d
PA
3617/* Helper for all_uis_check_sync_execution_done that works on the
3618 current UI. */
3619
3620static void
3621check_curr_ui_sync_execution_done (void)
3622{
3623 struct ui *ui = current_ui;
3624
3625 if (ui->prompt_state == PROMPT_NEEDED
3626 && ui->async
3627 && !gdb_in_secondary_prompt_p (ui))
3628 {
223ffa71 3629 target_terminal::ours ();
76727919 3630 gdb::observers::sync_execution_done.notify ();
3eb7562a 3631 ui_register_input_event_handler (ui);
3b12939d
PA
3632 }
3633}
3634
3635/* See infrun.h. */
3636
3637void
3638all_uis_check_sync_execution_done (void)
3639{
0e454242 3640 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3641 {
3642 check_curr_ui_sync_execution_done ();
3643 }
3644}
3645
a8836c93
PA
3646/* See infrun.h. */
3647
3648void
3649all_uis_on_sync_execution_starting (void)
3650{
0e454242 3651 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3652 {
3653 if (current_ui->prompt_state == PROMPT_NEEDED)
3654 async_disable_stdin ();
3655 }
3656}
3657
1777feb0 3658/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3659 event loop whenever a change of state is detected on the file
1777feb0
MS
3660 descriptor corresponding to the target. It can be called more than
3661 once to complete a single execution command. In such cases we need
3662 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3663 that this function is called for a single execution command, then
3664 report to the user that the inferior has stopped, and do the
1777feb0 3665 necessary cleanups. */
43ff13b4
JM
3666
3667void
fba45db2 3668fetch_inferior_event (void *client_data)
43ff13b4 3669{
0d1e5fa7 3670 struct execution_control_state ecss;
a474d7c2 3671 struct execution_control_state *ecs = &ecss;
0f641c01 3672 int cmd_done = 0;
963f9c80 3673 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3674
0d1e5fa7
PA
3675 memset (ecs, 0, sizeof (*ecs));
3676
c61db772
PA
3677 /* Events are always processed with the main UI as current UI. This
3678 way, warnings, debug output, etc. are always consistently sent to
3679 the main console. */
4b6749b9 3680 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3681
d3d4baed 3682 /* End up with readline processing input, if necessary. */
d238133d
TT
3683 {
3684 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3685
3686 /* We're handling a live event, so make sure we're doing live
3687 debugging. If we're looking at traceframes while the target is
3688 running, we're going to need to get back to that mode after
3689 handling the event. */
3690 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3691 if (non_stop)
3692 {
3693 maybe_restore_traceframe.emplace ();
3694 set_current_traceframe (-1);
3695 }
43ff13b4 3696
d238133d
TT
3697 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3698
3699 if (non_stop)
3700 /* In non-stop mode, the user/frontend should not notice a thread
3701 switch due to internal events. Make sure we reverse to the
3702 user selected thread and frame after handling the event and
3703 running any breakpoint commands. */
3704 maybe_restore_thread.emplace ();
3705
3706 overlay_cache_invalid = 1;
3707 /* Flush target cache before starting to handle each event. Target
3708 was running and cache could be stale. This is just a heuristic.
3709 Running threads may modify target memory, but we don't get any
3710 event. */
3711 target_dcache_invalidate ();
3712
3713 scoped_restore save_exec_dir
3714 = make_scoped_restore (&execution_direction,
3715 target_execution_direction ());
3716
3717 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3718 target_can_async_p () ? TARGET_WNOHANG : 0);
3719
3720 if (debug_infrun)
3721 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3722
3723 /* If an error happens while handling the event, propagate GDB's
3724 knowledge of the executing state to the frontend/user running
3725 state. */
3726 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3727 scoped_finish_thread_state finish_state (finish_ptid);
3728
979a0d13 3729 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3730 still for the thread which has thrown the exception. */
3731 auto defer_bpstat_clear
3732 = make_scope_exit (bpstat_clear_actions);
3733 auto defer_delete_threads
3734 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3735
3736 /* Now figure out what to do with the result of the result. */
3737 handle_inferior_event (ecs);
3738
3739 if (!ecs->wait_some_more)
3740 {
3741 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3742 int should_stop = 1;
3743 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3744
d238133d 3745 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3746
d238133d
TT
3747 if (thr != NULL)
3748 {
3749 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3750
d238133d 3751 if (thread_fsm != NULL)
46e3ed7f 3752 should_stop = thread_fsm->should_stop (thr);
d238133d 3753 }
243a9253 3754
d238133d
TT
3755 if (!should_stop)
3756 {
3757 keep_going (ecs);
3758 }
3759 else
3760 {
46e3ed7f 3761 bool should_notify_stop = true;
d238133d 3762 int proceeded = 0;
1840d81a 3763
d238133d 3764 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3765
d238133d 3766 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3767 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3768
d238133d
TT
3769 if (should_notify_stop)
3770 {
3771 /* We may not find an inferior if this was a process exit. */
3772 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3773 proceeded = normal_stop ();
3774 }
243a9253 3775
d238133d
TT
3776 if (!proceeded)
3777 {
3778 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3779 cmd_done = 1;
3780 }
3781 }
3782 }
4f8d22e3 3783
d238133d
TT
3784 defer_delete_threads.release ();
3785 defer_bpstat_clear.release ();
29f49a6a 3786
d238133d
TT
3787 /* No error, don't finish the thread states yet. */
3788 finish_state.release ();
731f534f 3789
d238133d
TT
3790 /* This scope is used to ensure that readline callbacks are
3791 reinstalled here. */
3792 }
4f8d22e3 3793
3b12939d
PA
3794 /* If a UI was in sync execution mode, and now isn't, restore its
3795 prompt (a synchronous execution command has finished, and we're
3796 ready for input). */
3797 all_uis_check_sync_execution_done ();
0f641c01
PA
3798
3799 if (cmd_done
0f641c01 3800 && exec_done_display_p
00431a78
PA
3801 && (inferior_ptid == null_ptid
3802 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3803 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3804}
3805
edb3359d
DJ
3806/* Record the frame and location we're currently stepping through. */
3807void
3808set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3809{
3810 struct thread_info *tp = inferior_thread ();
3811
16c381f0
JK
3812 tp->control.step_frame_id = get_frame_id (frame);
3813 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3814
3815 tp->current_symtab = sal.symtab;
3816 tp->current_line = sal.line;
3817}
3818
0d1e5fa7
PA
3819/* Clear context switchable stepping state. */
3820
3821void
4e1c45ea 3822init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3823{
7f5ef605 3824 tss->stepped_breakpoint = 0;
0d1e5fa7 3825 tss->stepping_over_breakpoint = 0;
963f9c80 3826 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3827 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3828}
3829
c32c64b7
DE
3830/* Set the cached copy of the last ptid/waitstatus. */
3831
6efcd9a8 3832void
c32c64b7
DE
3833set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3834{
3835 target_last_wait_ptid = ptid;
3836 target_last_waitstatus = status;
3837}
3838
e02bc4cc 3839/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3840 target_wait()/deprecated_target_wait_hook(). The data is actually
3841 cached by handle_inferior_event(), which gets called immediately
3842 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3843
3844void
488f131b 3845get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3846{
39f77062 3847 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3848 *status = target_last_waitstatus;
3849}
3850
ac264b3b
MS
3851void
3852nullify_last_target_wait_ptid (void)
3853{
3854 target_last_wait_ptid = minus_one_ptid;
3855}
3856
dcf4fbde 3857/* Switch thread contexts. */
dd80620e
MS
3858
3859static void
00431a78 3860context_switch (execution_control_state *ecs)
dd80620e 3861{
00431a78
PA
3862 if (debug_infrun
3863 && ecs->ptid != inferior_ptid
3864 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3865 {
3866 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 3867 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 3868 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 3869 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
3870 }
3871
00431a78 3872 switch_to_thread (ecs->event_thread);
dd80620e
MS
3873}
3874
d8dd4d5f
PA
3875/* If the target can't tell whether we've hit breakpoints
3876 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3877 check whether that could have been caused by a breakpoint. If so,
3878 adjust the PC, per gdbarch_decr_pc_after_break. */
3879
4fa8626c 3880static void
d8dd4d5f
PA
3881adjust_pc_after_break (struct thread_info *thread,
3882 struct target_waitstatus *ws)
4fa8626c 3883{
24a73cce
UW
3884 struct regcache *regcache;
3885 struct gdbarch *gdbarch;
118e6252 3886 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3887
4fa8626c
DJ
3888 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3889 we aren't, just return.
9709f61c
DJ
3890
3891 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3892 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3893 implemented by software breakpoints should be handled through the normal
3894 breakpoint layer.
8fb3e588 3895
4fa8626c
DJ
3896 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3897 different signals (SIGILL or SIGEMT for instance), but it is less
3898 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3899 gdbarch_decr_pc_after_break. I don't know any specific target that
3900 generates these signals at breakpoints (the code has been in GDB since at
3901 least 1992) so I can not guess how to handle them here.
8fb3e588 3902
e6cf7916
UW
3903 In earlier versions of GDB, a target with
3904 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3905 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3906 target with both of these set in GDB history, and it seems unlikely to be
3907 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3908
d8dd4d5f 3909 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3910 return;
3911
d8dd4d5f 3912 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3913 return;
3914
4058b839
PA
3915 /* In reverse execution, when a breakpoint is hit, the instruction
3916 under it has already been de-executed. The reported PC always
3917 points at the breakpoint address, so adjusting it further would
3918 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3919 architecture:
3920
3921 B1 0x08000000 : INSN1
3922 B2 0x08000001 : INSN2
3923 0x08000002 : INSN3
3924 PC -> 0x08000003 : INSN4
3925
3926 Say you're stopped at 0x08000003 as above. Reverse continuing
3927 from that point should hit B2 as below. Reading the PC when the
3928 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3929 been de-executed already.
3930
3931 B1 0x08000000 : INSN1
3932 B2 PC -> 0x08000001 : INSN2
3933 0x08000002 : INSN3
3934 0x08000003 : INSN4
3935
3936 We can't apply the same logic as for forward execution, because
3937 we would wrongly adjust the PC to 0x08000000, since there's a
3938 breakpoint at PC - 1. We'd then report a hit on B1, although
3939 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3940 behaviour. */
3941 if (execution_direction == EXEC_REVERSE)
3942 return;
3943
1cf4d951
PA
3944 /* If the target can tell whether the thread hit a SW breakpoint,
3945 trust it. Targets that can tell also adjust the PC
3946 themselves. */
3947 if (target_supports_stopped_by_sw_breakpoint ())
3948 return;
3949
3950 /* Note that relying on whether a breakpoint is planted in memory to
3951 determine this can fail. E.g,. the breakpoint could have been
3952 removed since. Or the thread could have been told to step an
3953 instruction the size of a breakpoint instruction, and only
3954 _after_ was a breakpoint inserted at its address. */
3955
24a73cce
UW
3956 /* If this target does not decrement the PC after breakpoints, then
3957 we have nothing to do. */
00431a78 3958 regcache = get_thread_regcache (thread);
ac7936df 3959 gdbarch = regcache->arch ();
118e6252 3960
527a273a 3961 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3962 if (decr_pc == 0)
24a73cce
UW
3963 return;
3964
8b86c959 3965 const address_space *aspace = regcache->aspace ();
6c95b8df 3966
8aad930b
AC
3967 /* Find the location where (if we've hit a breakpoint) the
3968 breakpoint would be. */
118e6252 3969 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3970
1cf4d951
PA
3971 /* If the target can't tell whether a software breakpoint triggered,
3972 fallback to figuring it out based on breakpoints we think were
3973 inserted in the target, and on whether the thread was stepped or
3974 continued. */
3975
1c5cfe86
PA
3976 /* Check whether there actually is a software breakpoint inserted at
3977 that location.
3978
3979 If in non-stop mode, a race condition is possible where we've
3980 removed a breakpoint, but stop events for that breakpoint were
3981 already queued and arrive later. To suppress those spurious
3982 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3983 and retire them after a number of stop events are reported. Note
3984 this is an heuristic and can thus get confused. The real fix is
3985 to get the "stopped by SW BP and needs adjustment" info out of
3986 the target/kernel (and thus never reach here; see above). */
6c95b8df 3987 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
3988 || (target_is_non_stop_p ()
3989 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3990 {
07036511 3991 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 3992
8213266a 3993 if (record_full_is_used ())
07036511
TT
3994 restore_operation_disable.emplace
3995 (record_full_gdb_operation_disable_set ());
96429cc8 3996
1c0fdd0e
UW
3997 /* When using hardware single-step, a SIGTRAP is reported for both
3998 a completed single-step and a software breakpoint. Need to
3999 differentiate between the two, as the latter needs adjusting
4000 but the former does not.
4001
4002 The SIGTRAP can be due to a completed hardware single-step only if
4003 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4004 - this thread is currently being stepped
4005
4006 If any of these events did not occur, we must have stopped due
4007 to hitting a software breakpoint, and have to back up to the
4008 breakpoint address.
4009
4010 As a special case, we could have hardware single-stepped a
4011 software breakpoint. In this case (prev_pc == breakpoint_pc),
4012 we also need to back up to the breakpoint address. */
4013
d8dd4d5f
PA
4014 if (thread_has_single_step_breakpoints_set (thread)
4015 || !currently_stepping (thread)
4016 || (thread->stepped_breakpoint
4017 && thread->prev_pc == breakpoint_pc))
515630c5 4018 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4019 }
4fa8626c
DJ
4020}
4021
edb3359d
DJ
4022static int
4023stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4024{
4025 for (frame = get_prev_frame (frame);
4026 frame != NULL;
4027 frame = get_prev_frame (frame))
4028 {
4029 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4030 return 1;
4031 if (get_frame_type (frame) != INLINE_FRAME)
4032 break;
4033 }
4034
4035 return 0;
4036}
4037
4a4c04f1
BE
4038/* Look for an inline frame that is marked for skip.
4039 If PREV_FRAME is TRUE start at the previous frame,
4040 otherwise start at the current frame. Stop at the
4041 first non-inline frame, or at the frame where the
4042 step started. */
4043
4044static bool
4045inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4046{
4047 struct frame_info *frame = get_current_frame ();
4048
4049 if (prev_frame)
4050 frame = get_prev_frame (frame);
4051
4052 for (; frame != NULL; frame = get_prev_frame (frame))
4053 {
4054 const char *fn = NULL;
4055 symtab_and_line sal;
4056 struct symbol *sym;
4057
4058 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4059 break;
4060 if (get_frame_type (frame) != INLINE_FRAME)
4061 break;
4062
4063 sal = find_frame_sal (frame);
4064 sym = get_frame_function (frame);
4065
4066 if (sym != NULL)
4067 fn = sym->print_name ();
4068
4069 if (sal.line != 0
4070 && function_name_is_marked_for_skip (fn, sal))
4071 return true;
4072 }
4073
4074 return false;
4075}
4076
c65d6b55
PA
4077/* If the event thread has the stop requested flag set, pretend it
4078 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4079 target_stop). */
4080
4081static bool
4082handle_stop_requested (struct execution_control_state *ecs)
4083{
4084 if (ecs->event_thread->stop_requested)
4085 {
4086 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4087 ecs->ws.value.sig = GDB_SIGNAL_0;
4088 handle_signal_stop (ecs);
4089 return true;
4090 }
4091 return false;
4092}
4093
a96d9b2e
SDJ
4094/* Auxiliary function that handles syscall entry/return events.
4095 It returns 1 if the inferior should keep going (and GDB
4096 should ignore the event), or 0 if the event deserves to be
4097 processed. */
ca2163eb 4098
a96d9b2e 4099static int
ca2163eb 4100handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4101{
ca2163eb 4102 struct regcache *regcache;
ca2163eb
PA
4103 int syscall_number;
4104
00431a78 4105 context_switch (ecs);
ca2163eb 4106
00431a78 4107 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4108 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4109 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4110
a96d9b2e
SDJ
4111 if (catch_syscall_enabled () > 0
4112 && catching_syscall_number (syscall_number) > 0)
4113 {
4114 if (debug_infrun)
4115 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4116 syscall_number);
a96d9b2e 4117
16c381f0 4118 ecs->event_thread->control.stop_bpstat
a01bda52 4119 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4120 ecs->event_thread->suspend.stop_pc,
4121 ecs->event_thread, &ecs->ws);
ab04a2af 4122
c65d6b55
PA
4123 if (handle_stop_requested (ecs))
4124 return 0;
4125
ce12b012 4126 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4127 {
4128 /* Catchpoint hit. */
ca2163eb
PA
4129 return 0;
4130 }
a96d9b2e 4131 }
ca2163eb 4132
c65d6b55
PA
4133 if (handle_stop_requested (ecs))
4134 return 0;
4135
ca2163eb 4136 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4137 keep_going (ecs);
4138 return 1;
a96d9b2e
SDJ
4139}
4140
7e324e48
GB
4141/* Lazily fill in the execution_control_state's stop_func_* fields. */
4142
4143static void
4144fill_in_stop_func (struct gdbarch *gdbarch,
4145 struct execution_control_state *ecs)
4146{
4147 if (!ecs->stop_func_filled_in)
4148 {
98a617f8
KB
4149 const block *block;
4150
7e324e48
GB
4151 /* Don't care about return value; stop_func_start and stop_func_name
4152 will both be 0 if it doesn't work. */
98a617f8
KB
4153 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4154 &ecs->stop_func_name,
4155 &ecs->stop_func_start,
4156 &ecs->stop_func_end,
4157 &block);
4158
4159 /* The call to find_pc_partial_function, above, will set
4160 stop_func_start and stop_func_end to the start and end
4161 of the range containing the stop pc. If this range
4162 contains the entry pc for the block (which is always the
4163 case for contiguous blocks), advance stop_func_start past
4164 the function's start offset and entrypoint. Note that
4165 stop_func_start is NOT advanced when in a range of a
4166 non-contiguous block that does not contain the entry pc. */
4167 if (block != nullptr
4168 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4169 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4170 {
4171 ecs->stop_func_start
4172 += gdbarch_deprecated_function_start_offset (gdbarch);
4173
4174 if (gdbarch_skip_entrypoint_p (gdbarch))
4175 ecs->stop_func_start
4176 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4177 }
591a12a1 4178
7e324e48
GB
4179 ecs->stop_func_filled_in = 1;
4180 }
4181}
4182
4f5d7f63 4183
00431a78 4184/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4185
4186static enum stop_kind
00431a78 4187get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4188{
00431a78 4189 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4190
4191 gdb_assert (inf != NULL);
4192 return inf->control.stop_soon;
4193}
4194
372316f1
PA
4195/* Wait for one event. Store the resulting waitstatus in WS, and
4196 return the event ptid. */
4197
4198static ptid_t
4199wait_one (struct target_waitstatus *ws)
4200{
4201 ptid_t event_ptid;
4202 ptid_t wait_ptid = minus_one_ptid;
4203
4204 overlay_cache_invalid = 1;
4205
4206 /* Flush target cache before starting to handle each event.
4207 Target was running and cache could be stale. This is just a
4208 heuristic. Running threads may modify target memory, but we
4209 don't get any event. */
4210 target_dcache_invalidate ();
4211
4212 if (deprecated_target_wait_hook)
4213 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4214 else
4215 event_ptid = target_wait (wait_ptid, ws, 0);
4216
4217 if (debug_infrun)
4218 print_target_wait_results (wait_ptid, event_ptid, ws);
4219
4220 return event_ptid;
4221}
4222
4223/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4224 instead of the current thread. */
4225#define THREAD_STOPPED_BY(REASON) \
4226static int \
4227thread_stopped_by_ ## REASON (ptid_t ptid) \
4228{ \
2989a365 4229 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4230 inferior_ptid = ptid; \
4231 \
2989a365 4232 return target_stopped_by_ ## REASON (); \
372316f1
PA
4233}
4234
4235/* Generate thread_stopped_by_watchpoint. */
4236THREAD_STOPPED_BY (watchpoint)
4237/* Generate thread_stopped_by_sw_breakpoint. */
4238THREAD_STOPPED_BY (sw_breakpoint)
4239/* Generate thread_stopped_by_hw_breakpoint. */
4240THREAD_STOPPED_BY (hw_breakpoint)
4241
372316f1
PA
4242/* Save the thread's event and stop reason to process it later. */
4243
4244static void
4245save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4246{
372316f1
PA
4247 if (debug_infrun)
4248 {
23fdd69e 4249 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4250
372316f1
PA
4251 fprintf_unfiltered (gdb_stdlog,
4252 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4253 statstr.c_str (),
e99b03dc 4254 tp->ptid.pid (),
e38504b3 4255 tp->ptid.lwp (),
cc6bcb54 4256 tp->ptid.tid ());
372316f1
PA
4257 }
4258
4259 /* Record for later. */
4260 tp->suspend.waitstatus = *ws;
4261 tp->suspend.waitstatus_pending_p = 1;
4262
00431a78 4263 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4264 const address_space *aspace = regcache->aspace ();
372316f1
PA
4265
4266 if (ws->kind == TARGET_WAITKIND_STOPPED
4267 && ws->value.sig == GDB_SIGNAL_TRAP)
4268 {
4269 CORE_ADDR pc = regcache_read_pc (regcache);
4270
4271 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4272
4273 if (thread_stopped_by_watchpoint (tp->ptid))
4274 {
4275 tp->suspend.stop_reason
4276 = TARGET_STOPPED_BY_WATCHPOINT;
4277 }
4278 else if (target_supports_stopped_by_sw_breakpoint ()
4279 && thread_stopped_by_sw_breakpoint (tp->ptid))
4280 {
4281 tp->suspend.stop_reason
4282 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4283 }
4284 else if (target_supports_stopped_by_hw_breakpoint ()
4285 && thread_stopped_by_hw_breakpoint (tp->ptid))
4286 {
4287 tp->suspend.stop_reason
4288 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4289 }
4290 else if (!target_supports_stopped_by_hw_breakpoint ()
4291 && hardware_breakpoint_inserted_here_p (aspace,
4292 pc))
4293 {
4294 tp->suspend.stop_reason
4295 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4296 }
4297 else if (!target_supports_stopped_by_sw_breakpoint ()
4298 && software_breakpoint_inserted_here_p (aspace,
4299 pc))
4300 {
4301 tp->suspend.stop_reason
4302 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4303 }
4304 else if (!thread_has_single_step_breakpoints_set (tp)
4305 && currently_stepping (tp))
4306 {
4307 tp->suspend.stop_reason
4308 = TARGET_STOPPED_BY_SINGLE_STEP;
4309 }
4310 }
4311}
4312
6efcd9a8 4313/* See infrun.h. */
372316f1 4314
6efcd9a8 4315void
372316f1
PA
4316stop_all_threads (void)
4317{
4318 /* We may need multiple passes to discover all threads. */
4319 int pass;
4320 int iterations = 0;
372316f1 4321
fbea99ea 4322 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4323
4324 if (debug_infrun)
4325 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4326
00431a78 4327 scoped_restore_current_thread restore_thread;
372316f1 4328
65706a29 4329 target_thread_events (1);
9885e6bb 4330 SCOPE_EXIT { target_thread_events (0); };
65706a29 4331
372316f1
PA
4332 /* Request threads to stop, and then wait for the stops. Because
4333 threads we already know about can spawn more threads while we're
4334 trying to stop them, and we only learn about new threads when we
4335 update the thread list, do this in a loop, and keep iterating
4336 until two passes find no threads that need to be stopped. */
4337 for (pass = 0; pass < 2; pass++, iterations++)
4338 {
4339 if (debug_infrun)
4340 fprintf_unfiltered (gdb_stdlog,
4341 "infrun: stop_all_threads, pass=%d, "
4342 "iterations=%d\n", pass, iterations);
4343 while (1)
4344 {
4345 ptid_t event_ptid;
4346 struct target_waitstatus ws;
4347 int need_wait = 0;
372316f1
PA
4348
4349 update_thread_list ();
4350
4351 /* Go through all threads looking for threads that we need
4352 to tell the target to stop. */
08036331 4353 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4354 {
4355 if (t->executing)
4356 {
4357 /* If already stopping, don't request a stop again.
4358 We just haven't seen the notification yet. */
4359 if (!t->stop_requested)
4360 {
4361 if (debug_infrun)
4362 fprintf_unfiltered (gdb_stdlog,
4363 "infrun: %s executing, "
4364 "need stop\n",
a068643d 4365 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4366 target_stop (t->ptid);
4367 t->stop_requested = 1;
4368 }
4369 else
4370 {
4371 if (debug_infrun)
4372 fprintf_unfiltered (gdb_stdlog,
4373 "infrun: %s executing, "
4374 "already stopping\n",
a068643d 4375 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4376 }
4377
4378 if (t->stop_requested)
4379 need_wait = 1;
4380 }
4381 else
4382 {
4383 if (debug_infrun)
4384 fprintf_unfiltered (gdb_stdlog,
4385 "infrun: %s not executing\n",
a068643d 4386 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4387
4388 /* The thread may be not executing, but still be
4389 resumed with a pending status to process. */
4390 t->resumed = 0;
4391 }
4392 }
4393
4394 if (!need_wait)
4395 break;
4396
4397 /* If we find new threads on the second iteration, restart
4398 over. We want to see two iterations in a row with all
4399 threads stopped. */
4400 if (pass > 0)
4401 pass = -1;
4402
4403 event_ptid = wait_one (&ws);
c29705b7 4404 if (debug_infrun)
372316f1 4405 {
c29705b7
PW
4406 fprintf_unfiltered (gdb_stdlog,
4407 "infrun: stop_all_threads %s %s\n",
4408 target_waitstatus_to_string (&ws).c_str (),
4409 target_pid_to_str (event_ptid).c_str ());
372316f1 4410 }
372316f1 4411
c29705b7
PW
4412 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4413 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4414 || ws.kind == TARGET_WAITKIND_EXITED
4415 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4416 {
4417 /* All resumed threads exited
4418 or one thread/process exited/signalled. */
372316f1
PA
4419 }
4420 else
4421 {
08036331 4422 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4423 if (t == NULL)
4424 t = add_thread (event_ptid);
4425
4426 t->stop_requested = 0;
4427 t->executing = 0;
4428 t->resumed = 0;
4429 t->control.may_range_step = 0;
4430
6efcd9a8
PA
4431 /* This may be the first time we see the inferior report
4432 a stop. */
08036331 4433 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4434 if (inf->needs_setup)
4435 {
4436 switch_to_thread_no_regs (t);
4437 setup_inferior (0);
4438 }
4439
372316f1
PA
4440 if (ws.kind == TARGET_WAITKIND_STOPPED
4441 && ws.value.sig == GDB_SIGNAL_0)
4442 {
4443 /* We caught the event that we intended to catch, so
4444 there's no event pending. */
4445 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4446 t->suspend.waitstatus_pending_p = 0;
4447
00431a78 4448 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4449 {
4450 /* Add it back to the step-over queue. */
4451 if (debug_infrun)
4452 {
4453 fprintf_unfiltered (gdb_stdlog,
4454 "infrun: displaced-step of %s "
4455 "canceled: adding back to the "
4456 "step-over queue\n",
a068643d 4457 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4458 }
4459 t->control.trap_expected = 0;
4460 thread_step_over_chain_enqueue (t);
4461 }
4462 }
4463 else
4464 {
4465 enum gdb_signal sig;
4466 struct regcache *regcache;
372316f1
PA
4467
4468 if (debug_infrun)
4469 {
23fdd69e 4470 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4471
372316f1
PA
4472 fprintf_unfiltered (gdb_stdlog,
4473 "infrun: target_wait %s, saving "
4474 "status for %d.%ld.%ld\n",
23fdd69e 4475 statstr.c_str (),
e99b03dc 4476 t->ptid.pid (),
e38504b3 4477 t->ptid.lwp (),
cc6bcb54 4478 t->ptid.tid ());
372316f1
PA
4479 }
4480
4481 /* Record for later. */
4482 save_waitstatus (t, &ws);
4483
4484 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4485 ? ws.value.sig : GDB_SIGNAL_0);
4486
00431a78 4487 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4488 {
4489 /* Add it back to the step-over queue. */
4490 t->control.trap_expected = 0;
4491 thread_step_over_chain_enqueue (t);
4492 }
4493
00431a78 4494 regcache = get_thread_regcache (t);
372316f1
PA
4495 t->suspend.stop_pc = regcache_read_pc (regcache);
4496
4497 if (debug_infrun)
4498 {
4499 fprintf_unfiltered (gdb_stdlog,
4500 "infrun: saved stop_pc=%s for %s "
4501 "(currently_stepping=%d)\n",
4502 paddress (target_gdbarch (),
4503 t->suspend.stop_pc),
a068643d 4504 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4505 currently_stepping (t));
4506 }
4507 }
4508 }
4509 }
4510 }
4511
372316f1
PA
4512 if (debug_infrun)
4513 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4514}
4515
f4836ba9
PA
4516/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4517
4518static int
4519handle_no_resumed (struct execution_control_state *ecs)
4520{
3b12939d 4521 if (target_can_async_p ())
f4836ba9 4522 {
3b12939d
PA
4523 struct ui *ui;
4524 int any_sync = 0;
f4836ba9 4525
3b12939d
PA
4526 ALL_UIS (ui)
4527 {
4528 if (ui->prompt_state == PROMPT_BLOCKED)
4529 {
4530 any_sync = 1;
4531 break;
4532 }
4533 }
4534 if (!any_sync)
4535 {
4536 /* There were no unwaited-for children left in the target, but,
4537 we're not synchronously waiting for events either. Just
4538 ignore. */
4539
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "infrun: TARGET_WAITKIND_NO_RESUMED "
4543 "(ignoring: bg)\n");
4544 prepare_to_wait (ecs);
4545 return 1;
4546 }
f4836ba9
PA
4547 }
4548
4549 /* Otherwise, if we were running a synchronous execution command, we
4550 may need to cancel it and give the user back the terminal.
4551
4552 In non-stop mode, the target can't tell whether we've already
4553 consumed previous stop events, so it can end up sending us a
4554 no-resumed event like so:
4555
4556 #0 - thread 1 is left stopped
4557
4558 #1 - thread 2 is resumed and hits breakpoint
4559 -> TARGET_WAITKIND_STOPPED
4560
4561 #2 - thread 3 is resumed and exits
4562 this is the last resumed thread, so
4563 -> TARGET_WAITKIND_NO_RESUMED
4564
4565 #3 - gdb processes stop for thread 2 and decides to re-resume
4566 it.
4567
4568 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4569 thread 2 is now resumed, so the event should be ignored.
4570
4571 IOW, if the stop for thread 2 doesn't end a foreground command,
4572 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4573 event. But it could be that the event meant that thread 2 itself
4574 (or whatever other thread was the last resumed thread) exited.
4575
4576 To address this we refresh the thread list and check whether we
4577 have resumed threads _now_. In the example above, this removes
4578 thread 3 from the thread list. If thread 2 was re-resumed, we
4579 ignore this event. If we find no thread resumed, then we cancel
4580 the synchronous command show "no unwaited-for " to the user. */
4581 update_thread_list ();
4582
08036331 4583 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4584 {
4585 if (thread->executing
4586 || thread->suspend.waitstatus_pending_p)
4587 {
4588 /* There were no unwaited-for children left in the target at
4589 some point, but there are now. Just ignore. */
4590 if (debug_infrun)
4591 fprintf_unfiltered (gdb_stdlog,
4592 "infrun: TARGET_WAITKIND_NO_RESUMED "
4593 "(ignoring: found resumed)\n");
4594 prepare_to_wait (ecs);
4595 return 1;
4596 }
4597 }
4598
4599 /* Note however that we may find no resumed thread because the whole
4600 process exited meanwhile (thus updating the thread list results
4601 in an empty thread list). In this case we know we'll be getting
4602 a process exit event shortly. */
08036331 4603 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4604 {
4605 if (inf->pid == 0)
4606 continue;
4607
08036331 4608 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4609 if (thread == NULL)
4610 {
4611 if (debug_infrun)
4612 fprintf_unfiltered (gdb_stdlog,
4613 "infrun: TARGET_WAITKIND_NO_RESUMED "
4614 "(expect process exit)\n");
4615 prepare_to_wait (ecs);
4616 return 1;
4617 }
4618 }
4619
4620 /* Go ahead and report the event. */
4621 return 0;
4622}
4623
05ba8510
PA
4624/* Given an execution control state that has been freshly filled in by
4625 an event from the inferior, figure out what it means and take
4626 appropriate action.
4627
4628 The alternatives are:
4629
22bcd14b 4630 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4631 debugger.
4632
4633 2) keep_going and return; to wait for the next event (set
4634 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4635 once). */
c906108c 4636
ec9499be 4637static void
595915c1 4638handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 4639{
595915c1
TT
4640 /* Make sure that all temporary struct value objects that were
4641 created during the handling of the event get deleted at the
4642 end. */
4643 scoped_value_mark free_values;
4644
d6b48e9c
PA
4645 enum stop_kind stop_soon;
4646
c29705b7
PW
4647 if (debug_infrun)
4648 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4649 target_waitstatus_to_string (&ecs->ws).c_str ());
4650
28736962
PA
4651 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4652 {
4653 /* We had an event in the inferior, but we are not interested in
4654 handling it at this level. The lower layers have already
4655 done what needs to be done, if anything.
4656
4657 One of the possible circumstances for this is when the
4658 inferior produces output for the console. The inferior has
4659 not stopped, and we are ignoring the event. Another possible
4660 circumstance is any event which the lower level knows will be
4661 reported multiple times without an intervening resume. */
28736962
PA
4662 prepare_to_wait (ecs);
4663 return;
4664 }
4665
65706a29
PA
4666 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4667 {
65706a29
PA
4668 prepare_to_wait (ecs);
4669 return;
4670 }
4671
0e5bf2a8 4672 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4673 && handle_no_resumed (ecs))
4674 return;
0e5bf2a8 4675
1777feb0 4676 /* Cache the last pid/waitstatus. */
c32c64b7 4677 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4678
ca005067 4679 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4680 stop_stack_dummy = STOP_NONE;
ca005067 4681
0e5bf2a8
PA
4682 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4683 {
4684 /* No unwaited-for children left. IOW, all resumed children
4685 have exited. */
0e5bf2a8 4686 stop_print_frame = 0;
22bcd14b 4687 stop_waiting (ecs);
0e5bf2a8
PA
4688 return;
4689 }
4690
8c90c137 4691 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4692 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4693 {
4694 ecs->event_thread = find_thread_ptid (ecs->ptid);
4695 /* If it's a new thread, add it to the thread database. */
4696 if (ecs->event_thread == NULL)
4697 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4698
4699 /* Disable range stepping. If the next step request could use a
4700 range, this will be end up re-enabled then. */
4701 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4702 }
88ed393a
JK
4703
4704 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4705 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4706
4707 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4708 reinit_frame_cache ();
4709
28736962
PA
4710 breakpoint_retire_moribund ();
4711
2b009048
DJ
4712 /* First, distinguish signals caused by the debugger from signals
4713 that have to do with the program's own actions. Note that
4714 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4715 on the operating system version. Here we detect when a SIGILL or
4716 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4717 something similar for SIGSEGV, since a SIGSEGV will be generated
4718 when we're trying to execute a breakpoint instruction on a
4719 non-executable stack. This happens for call dummy breakpoints
4720 for architectures like SPARC that place call dummies on the
4721 stack. */
2b009048 4722 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4723 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4724 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4725 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4726 {
00431a78 4727 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4728
a01bda52 4729 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4730 regcache_read_pc (regcache)))
4731 {
4732 if (debug_infrun)
4733 fprintf_unfiltered (gdb_stdlog,
4734 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4735 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4736 }
2b009048
DJ
4737 }
4738
28736962
PA
4739 /* Mark the non-executing threads accordingly. In all-stop, all
4740 threads of all processes are stopped when we get any event
e1316e60 4741 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4742 {
4743 ptid_t mark_ptid;
4744
fbea99ea 4745 if (!target_is_non_stop_p ())
372316f1
PA
4746 mark_ptid = minus_one_ptid;
4747 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4748 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4749 {
4750 /* If we're handling a process exit in non-stop mode, even
4751 though threads haven't been deleted yet, one would think
4752 that there is nothing to do, as threads of the dead process
4753 will be soon deleted, and threads of any other process were
4754 left running. However, on some targets, threads survive a
4755 process exit event. E.g., for the "checkpoint" command,
4756 when the current checkpoint/fork exits, linux-fork.c
4757 automatically switches to another fork from within
4758 target_mourn_inferior, by associating the same
4759 inferior/thread to another fork. We haven't mourned yet at
4760 this point, but we must mark any threads left in the
4761 process as not-executing so that finish_thread_state marks
4762 them stopped (in the user's perspective) if/when we present
4763 the stop to the user. */
e99b03dc 4764 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4765 }
4766 else
4767 mark_ptid = ecs->ptid;
4768
4769 set_executing (mark_ptid, 0);
4770
4771 /* Likewise the resumed flag. */
4772 set_resumed (mark_ptid, 0);
4773 }
8c90c137 4774
488f131b
JB
4775 switch (ecs->ws.kind)
4776 {
4777 case TARGET_WAITKIND_LOADED:
00431a78 4778 context_switch (ecs);
b0f4b84b
DJ
4779 /* Ignore gracefully during startup of the inferior, as it might
4780 be the shell which has just loaded some objects, otherwise
4781 add the symbols for the newly loaded objects. Also ignore at
4782 the beginning of an attach or remote session; we will query
4783 the full list of libraries once the connection is
4784 established. */
4f5d7f63 4785
00431a78 4786 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4787 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4788 {
edcc5120
TT
4789 struct regcache *regcache;
4790
00431a78 4791 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4792
4793 handle_solib_event ();
4794
4795 ecs->event_thread->control.stop_bpstat
a01bda52 4796 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4797 ecs->event_thread->suspend.stop_pc,
4798 ecs->event_thread, &ecs->ws);
ab04a2af 4799
c65d6b55
PA
4800 if (handle_stop_requested (ecs))
4801 return;
4802
ce12b012 4803 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4804 {
4805 /* A catchpoint triggered. */
94c57d6a
PA
4806 process_event_stop_test (ecs);
4807 return;
edcc5120 4808 }
488f131b 4809
b0f4b84b
DJ
4810 /* If requested, stop when the dynamic linker notifies
4811 gdb of events. This allows the user to get control
4812 and place breakpoints in initializer routines for
4813 dynamically loaded objects (among other things). */
a493e3e2 4814 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4815 if (stop_on_solib_events)
4816 {
55409f9d
DJ
4817 /* Make sure we print "Stopped due to solib-event" in
4818 normal_stop. */
4819 stop_print_frame = 1;
4820
22bcd14b 4821 stop_waiting (ecs);
b0f4b84b
DJ
4822 return;
4823 }
488f131b 4824 }
b0f4b84b
DJ
4825
4826 /* If we are skipping through a shell, or through shared library
4827 loading that we aren't interested in, resume the program. If
5c09a2c5 4828 we're running the program normally, also resume. */
b0f4b84b
DJ
4829 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4830 {
74960c60
VP
4831 /* Loading of shared libraries might have changed breakpoint
4832 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4833 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4834 insert_breakpoints ();
64ce06e4 4835 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4836 prepare_to_wait (ecs);
4837 return;
4838 }
4839
5c09a2c5
PA
4840 /* But stop if we're attaching or setting up a remote
4841 connection. */
4842 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4843 || stop_soon == STOP_QUIETLY_REMOTE)
4844 {
4845 if (debug_infrun)
4846 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4847 stop_waiting (ecs);
5c09a2c5
PA
4848 return;
4849 }
4850
4851 internal_error (__FILE__, __LINE__,
4852 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4853
488f131b 4854 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
4855 if (handle_stop_requested (ecs))
4856 return;
00431a78 4857 context_switch (ecs);
64ce06e4 4858 resume (GDB_SIGNAL_0);
488f131b
JB
4859 prepare_to_wait (ecs);
4860 return;
c5aa993b 4861
65706a29 4862 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
4863 if (handle_stop_requested (ecs))
4864 return;
00431a78 4865 context_switch (ecs);
65706a29
PA
4866 if (!switch_back_to_stepped_thread (ecs))
4867 keep_going (ecs);
4868 return;
4869
488f131b 4870 case TARGET_WAITKIND_EXITED:
940c3c06 4871 case TARGET_WAITKIND_SIGNALLED:
fb66883a 4872 inferior_ptid = ecs->ptid;
c9657e70 4873 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4874 set_current_program_space (current_inferior ()->pspace);
4875 handle_vfork_child_exec_or_exit (0);
223ffa71 4876 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4877
0c557179
SDJ
4878 /* Clearing any previous state of convenience variables. */
4879 clear_exit_convenience_vars ();
4880
940c3c06
PA
4881 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4882 {
4883 /* Record the exit code in the convenience variable $_exitcode, so
4884 that the user can inspect this again later. */
4885 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4886 (LONGEST) ecs->ws.value.integer);
4887
4888 /* Also record this in the inferior itself. */
4889 current_inferior ()->has_exit_code = 1;
4890 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4891
98eb56a4
PA
4892 /* Support the --return-child-result option. */
4893 return_child_result_value = ecs->ws.value.integer;
4894
76727919 4895 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4896 }
4897 else
0c557179 4898 {
00431a78 4899 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4900
4901 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4902 {
4903 /* Set the value of the internal variable $_exitsignal,
4904 which holds the signal uncaught by the inferior. */
4905 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4906 gdbarch_gdb_signal_to_target (gdbarch,
4907 ecs->ws.value.sig));
4908 }
4909 else
4910 {
4911 /* We don't have access to the target's method used for
4912 converting between signal numbers (GDB's internal
4913 representation <-> target's representation).
4914 Therefore, we cannot do a good job at displaying this
4915 information to the user. It's better to just warn
4916 her about it (if infrun debugging is enabled), and
4917 give up. */
4918 if (debug_infrun)
4919 fprintf_filtered (gdb_stdlog, _("\
4920Cannot fill $_exitsignal with the correct signal number.\n"));
4921 }
4922
76727919 4923 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4924 }
8cf64490 4925
488f131b 4926 gdb_flush (gdb_stdout);
bc1e6c81 4927 target_mourn_inferior (inferior_ptid);
488f131b 4928 stop_print_frame = 0;
22bcd14b 4929 stop_waiting (ecs);
488f131b 4930 return;
c5aa993b 4931
488f131b 4932 /* The following are the only cases in which we keep going;
1777feb0 4933 the above cases end in a continue or goto. */
488f131b 4934 case TARGET_WAITKIND_FORKED:
deb3b17b 4935 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
4936 /* Check whether the inferior is displaced stepping. */
4937 {
00431a78 4938 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4939 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4940
4941 /* If checking displaced stepping is supported, and thread
4942 ecs->ptid is displaced stepping. */
00431a78 4943 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4944 {
4945 struct inferior *parent_inf
c9657e70 4946 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4947 struct regcache *child_regcache;
4948 CORE_ADDR parent_pc;
4949
4950 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4951 indicating that the displaced stepping of syscall instruction
4952 has been done. Perform cleanup for parent process here. Note
4953 that this operation also cleans up the child process for vfork,
4954 because their pages are shared. */
00431a78 4955 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4956 /* Start a new step-over in another thread if there's one
4957 that needs it. */
4958 start_step_over ();
e2d96639
YQ
4959
4960 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4961 {
c0987663 4962 struct displaced_step_inferior_state *displaced
00431a78 4963 = get_displaced_stepping_state (parent_inf);
c0987663 4964
e2d96639
YQ
4965 /* Restore scratch pad for child process. */
4966 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4967 }
4968
4969 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4970 the child's PC is also within the scratchpad. Set the child's PC
4971 to the parent's PC value, which has already been fixed up.
4972 FIXME: we use the parent's aspace here, although we're touching
4973 the child, because the child hasn't been added to the inferior
4974 list yet at this point. */
4975
4976 child_regcache
4977 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4978 gdbarch,
4979 parent_inf->aspace);
4980 /* Read PC value of parent process. */
4981 parent_pc = regcache_read_pc (regcache);
4982
4983 if (debug_displaced)
4984 fprintf_unfiltered (gdb_stdlog,
4985 "displaced: write child pc from %s to %s\n",
4986 paddress (gdbarch,
4987 regcache_read_pc (child_regcache)),
4988 paddress (gdbarch, parent_pc));
4989
4990 regcache_write_pc (child_regcache, parent_pc);
4991 }
4992 }
4993
00431a78 4994 context_switch (ecs);
5a2901d9 4995
b242c3c2
PA
4996 /* Immediately detach breakpoints from the child before there's
4997 any chance of letting the user delete breakpoints from the
4998 breakpoint lists. If we don't do this early, it's easy to
4999 leave left over traps in the child, vis: "break foo; catch
5000 fork; c; <fork>; del; c; <child calls foo>". We only follow
5001 the fork on the last `continue', and by that time the
5002 breakpoint at "foo" is long gone from the breakpoint table.
5003 If we vforked, then we don't need to unpatch here, since both
5004 parent and child are sharing the same memory pages; we'll
5005 need to unpatch at follow/detach time instead to be certain
5006 that new breakpoints added between catchpoint hit time and
5007 vfork follow are detached. */
5008 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5009 {
b242c3c2
PA
5010 /* This won't actually modify the breakpoint list, but will
5011 physically remove the breakpoints from the child. */
d80ee84f 5012 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5013 }
5014
34b7e8a6 5015 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5016
e58b0e63
PA
5017 /* In case the event is caught by a catchpoint, remember that
5018 the event is to be followed at the next resume of the thread,
5019 and not immediately. */
5020 ecs->event_thread->pending_follow = ecs->ws;
5021
f2ffa92b
PA
5022 ecs->event_thread->suspend.stop_pc
5023 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5024
16c381f0 5025 ecs->event_thread->control.stop_bpstat
a01bda52 5026 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5027 ecs->event_thread->suspend.stop_pc,
5028 ecs->event_thread, &ecs->ws);
675bf4cb 5029
c65d6b55
PA
5030 if (handle_stop_requested (ecs))
5031 return;
5032
ce12b012
PA
5033 /* If no catchpoint triggered for this, then keep going. Note
5034 that we're interested in knowing the bpstat actually causes a
5035 stop, not just if it may explain the signal. Software
5036 watchpoints, for example, always appear in the bpstat. */
5037 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5038 {
e58b0e63 5039 int should_resume;
3e43a32a
MS
5040 int follow_child
5041 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5042
a493e3e2 5043 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5044
5045 should_resume = follow_fork ();
5046
00431a78
PA
5047 thread_info *parent = ecs->event_thread;
5048 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5049
a2077e25
PA
5050 /* At this point, the parent is marked running, and the
5051 child is marked stopped. */
5052
5053 /* If not resuming the parent, mark it stopped. */
5054 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5055 parent->set_running (false);
a2077e25
PA
5056
5057 /* If resuming the child, mark it running. */
5058 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5059 child->set_running (true);
a2077e25 5060
6c95b8df 5061 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5062 if (!detach_fork && (non_stop
5063 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5064 {
5065 if (follow_child)
5066 switch_to_thread (parent);
5067 else
5068 switch_to_thread (child);
5069
5070 ecs->event_thread = inferior_thread ();
5071 ecs->ptid = inferior_ptid;
5072 keep_going (ecs);
5073 }
5074
5075 if (follow_child)
5076 switch_to_thread (child);
5077 else
5078 switch_to_thread (parent);
5079
e58b0e63
PA
5080 ecs->event_thread = inferior_thread ();
5081 ecs->ptid = inferior_ptid;
5082
5083 if (should_resume)
5084 keep_going (ecs);
5085 else
22bcd14b 5086 stop_waiting (ecs);
04e68871
DJ
5087 return;
5088 }
94c57d6a
PA
5089 process_event_stop_test (ecs);
5090 return;
488f131b 5091
6c95b8df
PA
5092 case TARGET_WAITKIND_VFORK_DONE:
5093 /* Done with the shared memory region. Re-insert breakpoints in
5094 the parent, and keep going. */
5095
00431a78 5096 context_switch (ecs);
6c95b8df
PA
5097
5098 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5099 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5100
5101 if (handle_stop_requested (ecs))
5102 return;
5103
6c95b8df
PA
5104 /* This also takes care of reinserting breakpoints in the
5105 previously locked inferior. */
5106 keep_going (ecs);
5107 return;
5108
488f131b 5109 case TARGET_WAITKIND_EXECD:
488f131b 5110
cbd2b4e3
PA
5111 /* Note we can't read registers yet (the stop_pc), because we
5112 don't yet know the inferior's post-exec architecture.
5113 'stop_pc' is explicitly read below instead. */
00431a78 5114 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5115
6c95b8df
PA
5116 /* Do whatever is necessary to the parent branch of the vfork. */
5117 handle_vfork_child_exec_or_exit (1);
5118
795e548f
PA
5119 /* This causes the eventpoints and symbol table to be reset.
5120 Must do this now, before trying to determine whether to
5121 stop. */
71b43ef8 5122 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5123
17d8546e
DB
5124 /* In follow_exec we may have deleted the original thread and
5125 created a new one. Make sure that the event thread is the
5126 execd thread for that case (this is a nop otherwise). */
5127 ecs->event_thread = inferior_thread ();
5128
f2ffa92b
PA
5129 ecs->event_thread->suspend.stop_pc
5130 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5131
16c381f0 5132 ecs->event_thread->control.stop_bpstat
a01bda52 5133 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5134 ecs->event_thread->suspend.stop_pc,
5135 ecs->event_thread, &ecs->ws);
795e548f 5136
71b43ef8
PA
5137 /* Note that this may be referenced from inside
5138 bpstat_stop_status above, through inferior_has_execd. */
5139 xfree (ecs->ws.value.execd_pathname);
5140 ecs->ws.value.execd_pathname = NULL;
5141
c65d6b55
PA
5142 if (handle_stop_requested (ecs))
5143 return;
5144
04e68871 5145 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5146 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5147 {
a493e3e2 5148 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5149 keep_going (ecs);
5150 return;
5151 }
94c57d6a
PA
5152 process_event_stop_test (ecs);
5153 return;
488f131b 5154
b4dc5ffa
MK
5155 /* Be careful not to try to gather much state about a thread
5156 that's in a syscall. It's frequently a losing proposition. */
488f131b 5157 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5158 /* Getting the current syscall number. */
94c57d6a
PA
5159 if (handle_syscall_event (ecs) == 0)
5160 process_event_stop_test (ecs);
5161 return;
c906108c 5162
488f131b
JB
5163 /* Before examining the threads further, step this thread to
5164 get it entirely out of the syscall. (We get notice of the
5165 event when the thread is just on the verge of exiting a
5166 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5167 into user code.) */
488f131b 5168 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5169 if (handle_syscall_event (ecs) == 0)
5170 process_event_stop_test (ecs);
5171 return;
c906108c 5172
488f131b 5173 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5174 handle_signal_stop (ecs);
5175 return;
c906108c 5176
b2175913
MS
5177 case TARGET_WAITKIND_NO_HISTORY:
5178 /* Reverse execution: target ran out of history info. */
eab402df 5179
d1988021 5180 /* Switch to the stopped thread. */
00431a78 5181 context_switch (ecs);
d1988021
MM
5182 if (debug_infrun)
5183 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5184
34b7e8a6 5185 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5186 ecs->event_thread->suspend.stop_pc
5187 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5188
5189 if (handle_stop_requested (ecs))
5190 return;
5191
76727919 5192 gdb::observers::no_history.notify ();
22bcd14b 5193 stop_waiting (ecs);
b2175913 5194 return;
488f131b 5195 }
4f5d7f63
PA
5196}
5197
372316f1
PA
5198/* Restart threads back to what they were trying to do back when we
5199 paused them for an in-line step-over. The EVENT_THREAD thread is
5200 ignored. */
4d9d9d04
PA
5201
5202static void
372316f1
PA
5203restart_threads (struct thread_info *event_thread)
5204{
372316f1
PA
5205 /* In case the instruction just stepped spawned a new thread. */
5206 update_thread_list ();
5207
08036331 5208 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5209 {
5210 if (tp == event_thread)
5211 {
5212 if (debug_infrun)
5213 fprintf_unfiltered (gdb_stdlog,
5214 "infrun: restart threads: "
5215 "[%s] is event thread\n",
a068643d 5216 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5217 continue;
5218 }
5219
5220 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5221 {
5222 if (debug_infrun)
5223 fprintf_unfiltered (gdb_stdlog,
5224 "infrun: restart threads: "
5225 "[%s] not meant to be running\n",
a068643d 5226 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5227 continue;
5228 }
5229
5230 if (tp->resumed)
5231 {
5232 if (debug_infrun)
5233 fprintf_unfiltered (gdb_stdlog,
5234 "infrun: restart threads: [%s] resumed\n",
a068643d 5235 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5236 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5237 continue;
5238 }
5239
5240 if (thread_is_in_step_over_chain (tp))
5241 {
5242 if (debug_infrun)
5243 fprintf_unfiltered (gdb_stdlog,
5244 "infrun: restart threads: "
5245 "[%s] needs step-over\n",
a068643d 5246 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5247 gdb_assert (!tp->resumed);
5248 continue;
5249 }
5250
5251
5252 if (tp->suspend.waitstatus_pending_p)
5253 {
5254 if (debug_infrun)
5255 fprintf_unfiltered (gdb_stdlog,
5256 "infrun: restart threads: "
5257 "[%s] has pending status\n",
a068643d 5258 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5259 tp->resumed = 1;
5260 continue;
5261 }
5262
c65d6b55
PA
5263 gdb_assert (!tp->stop_requested);
5264
372316f1
PA
5265 /* If some thread needs to start a step-over at this point, it
5266 should still be in the step-over queue, and thus skipped
5267 above. */
5268 if (thread_still_needs_step_over (tp))
5269 {
5270 internal_error (__FILE__, __LINE__,
5271 "thread [%s] needs a step-over, but not in "
5272 "step-over queue\n",
a068643d 5273 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5274 }
5275
5276 if (currently_stepping (tp))
5277 {
5278 if (debug_infrun)
5279 fprintf_unfiltered (gdb_stdlog,
5280 "infrun: restart threads: [%s] was stepping\n",
a068643d 5281 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5282 keep_going_stepped_thread (tp);
5283 }
5284 else
5285 {
5286 struct execution_control_state ecss;
5287 struct execution_control_state *ecs = &ecss;
5288
5289 if (debug_infrun)
5290 fprintf_unfiltered (gdb_stdlog,
5291 "infrun: restart threads: [%s] continuing\n",
a068643d 5292 target_pid_to_str (tp->ptid).c_str ());
372316f1 5293 reset_ecs (ecs, tp);
00431a78 5294 switch_to_thread (tp);
372316f1
PA
5295 keep_going_pass_signal (ecs);
5296 }
5297 }
5298}
5299
5300/* Callback for iterate_over_threads. Find a resumed thread that has
5301 a pending waitstatus. */
5302
5303static int
5304resumed_thread_with_pending_status (struct thread_info *tp,
5305 void *arg)
5306{
5307 return (tp->resumed
5308 && tp->suspend.waitstatus_pending_p);
5309}
5310
5311/* Called when we get an event that may finish an in-line or
5312 out-of-line (displaced stepping) step-over started previously.
5313 Return true if the event is processed and we should go back to the
5314 event loop; false if the caller should continue processing the
5315 event. */
5316
5317static int
4d9d9d04
PA
5318finish_step_over (struct execution_control_state *ecs)
5319{
372316f1
PA
5320 int had_step_over_info;
5321
00431a78 5322 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5323 ecs->event_thread->suspend.stop_signal);
5324
372316f1
PA
5325 had_step_over_info = step_over_info_valid_p ();
5326
5327 if (had_step_over_info)
4d9d9d04
PA
5328 {
5329 /* If we're stepping over a breakpoint with all threads locked,
5330 then only the thread that was stepped should be reporting
5331 back an event. */
5332 gdb_assert (ecs->event_thread->control.trap_expected);
5333
c65d6b55 5334 clear_step_over_info ();
4d9d9d04
PA
5335 }
5336
fbea99ea 5337 if (!target_is_non_stop_p ())
372316f1 5338 return 0;
4d9d9d04
PA
5339
5340 /* Start a new step-over in another thread if there's one that
5341 needs it. */
5342 start_step_over ();
372316f1
PA
5343
5344 /* If we were stepping over a breakpoint before, and haven't started
5345 a new in-line step-over sequence, then restart all other threads
5346 (except the event thread). We can't do this in all-stop, as then
5347 e.g., we wouldn't be able to issue any other remote packet until
5348 these other threads stop. */
5349 if (had_step_over_info && !step_over_info_valid_p ())
5350 {
5351 struct thread_info *pending;
5352
5353 /* If we only have threads with pending statuses, the restart
5354 below won't restart any thread and so nothing re-inserts the
5355 breakpoint we just stepped over. But we need it inserted
5356 when we later process the pending events, otherwise if
5357 another thread has a pending event for this breakpoint too,
5358 we'd discard its event (because the breakpoint that
5359 originally caused the event was no longer inserted). */
00431a78 5360 context_switch (ecs);
372316f1
PA
5361 insert_breakpoints ();
5362
5922befa
LM
5363 {
5364 scoped_restore save_defer_tc
5365 = make_scoped_defer_target_commit_resume ();
5366 restart_threads (ecs->event_thread);
5367 }
5368 target_commit_resume ();
372316f1
PA
5369
5370 /* If we have events pending, go through handle_inferior_event
5371 again, picking up a pending event at random. This avoids
5372 thread starvation. */
5373
5374 /* But not if we just stepped over a watchpoint in order to let
5375 the instruction execute so we can evaluate its expression.
5376 The set of watchpoints that triggered is recorded in the
5377 breakpoint objects themselves (see bp->watchpoint_triggered).
5378 If we processed another event first, that other event could
5379 clobber this info. */
5380 if (ecs->event_thread->stepping_over_watchpoint)
5381 return 0;
5382
5383 pending = iterate_over_threads (resumed_thread_with_pending_status,
5384 NULL);
5385 if (pending != NULL)
5386 {
5387 struct thread_info *tp = ecs->event_thread;
5388 struct regcache *regcache;
5389
5390 if (debug_infrun)
5391 {
5392 fprintf_unfiltered (gdb_stdlog,
5393 "infrun: found resumed threads with "
5394 "pending events, saving status\n");
5395 }
5396
5397 gdb_assert (pending != tp);
5398
5399 /* Record the event thread's event for later. */
5400 save_waitstatus (tp, &ecs->ws);
5401 /* This was cleared early, by handle_inferior_event. Set it
5402 so this pending event is considered by
5403 do_target_wait. */
5404 tp->resumed = 1;
5405
5406 gdb_assert (!tp->executing);
5407
00431a78 5408 regcache = get_thread_regcache (tp);
372316f1
PA
5409 tp->suspend.stop_pc = regcache_read_pc (regcache);
5410
5411 if (debug_infrun)
5412 {
5413 fprintf_unfiltered (gdb_stdlog,
5414 "infrun: saved stop_pc=%s for %s "
5415 "(currently_stepping=%d)\n",
5416 paddress (target_gdbarch (),
5417 tp->suspend.stop_pc),
a068643d 5418 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5419 currently_stepping (tp));
5420 }
5421
5422 /* This in-line step-over finished; clear this so we won't
5423 start a new one. This is what handle_signal_stop would
5424 do, if we returned false. */
5425 tp->stepping_over_breakpoint = 0;
5426
5427 /* Wake up the event loop again. */
5428 mark_async_event_handler (infrun_async_inferior_event_token);
5429
5430 prepare_to_wait (ecs);
5431 return 1;
5432 }
5433 }
5434
5435 return 0;
4d9d9d04
PA
5436}
5437
4f5d7f63
PA
5438/* Come here when the program has stopped with a signal. */
5439
5440static void
5441handle_signal_stop (struct execution_control_state *ecs)
5442{
5443 struct frame_info *frame;
5444 struct gdbarch *gdbarch;
5445 int stopped_by_watchpoint;
5446 enum stop_kind stop_soon;
5447 int random_signal;
c906108c 5448
f0407826
DE
5449 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5450
c65d6b55
PA
5451 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5452
f0407826
DE
5453 /* Do we need to clean up the state of a thread that has
5454 completed a displaced single-step? (Doing so usually affects
5455 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5456 if (finish_step_over (ecs))
5457 return;
f0407826
DE
5458
5459 /* If we either finished a single-step or hit a breakpoint, but
5460 the user wanted this thread to be stopped, pretend we got a
5461 SIG0 (generic unsignaled stop). */
5462 if (ecs->event_thread->stop_requested
5463 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5464 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5465
f2ffa92b
PA
5466 ecs->event_thread->suspend.stop_pc
5467 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5468
527159b7 5469 if (debug_infrun)
237fc4c9 5470 {
00431a78 5471 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5472 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5473 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5474
5475 inferior_ptid = ecs->ptid;
5af949e3
UW
5476
5477 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5478 paddress (reg_gdbarch,
f2ffa92b 5479 ecs->event_thread->suspend.stop_pc));
d92524f1 5480 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5481 {
5482 CORE_ADDR addr;
abbb1732 5483
237fc4c9
PA
5484 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5485
8b88a78e 5486 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5487 fprintf_unfiltered (gdb_stdlog,
5af949e3 5488 "infrun: stopped data address = %s\n",
b926417a 5489 paddress (reg_gdbarch, addr));
237fc4c9
PA
5490 else
5491 fprintf_unfiltered (gdb_stdlog,
5492 "infrun: (no data address available)\n");
5493 }
5494 }
527159b7 5495
36fa8042
PA
5496 /* This is originated from start_remote(), start_inferior() and
5497 shared libraries hook functions. */
00431a78 5498 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5499 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5500 {
00431a78 5501 context_switch (ecs);
36fa8042
PA
5502 if (debug_infrun)
5503 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5504 stop_print_frame = 1;
22bcd14b 5505 stop_waiting (ecs);
36fa8042
PA
5506 return;
5507 }
5508
36fa8042
PA
5509 /* This originates from attach_command(). We need to overwrite
5510 the stop_signal here, because some kernels don't ignore a
5511 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5512 See more comments in inferior.h. On the other hand, if we
5513 get a non-SIGSTOP, report it to the user - assume the backend
5514 will handle the SIGSTOP if it should show up later.
5515
5516 Also consider that the attach is complete when we see a
5517 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5518 target extended-remote report it instead of a SIGSTOP
5519 (e.g. gdbserver). We already rely on SIGTRAP being our
5520 signal, so this is no exception.
5521
5522 Also consider that the attach is complete when we see a
5523 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5524 the target to stop all threads of the inferior, in case the
5525 low level attach operation doesn't stop them implicitly. If
5526 they weren't stopped implicitly, then the stub will report a
5527 GDB_SIGNAL_0, meaning: stopped for no particular reason
5528 other than GDB's request. */
5529 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5530 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5531 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5532 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5533 {
5534 stop_print_frame = 1;
22bcd14b 5535 stop_waiting (ecs);
36fa8042
PA
5536 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5537 return;
5538 }
5539
488f131b 5540 /* See if something interesting happened to the non-current thread. If
b40c7d58 5541 so, then switch to that thread. */
d7e15655 5542 if (ecs->ptid != inferior_ptid)
488f131b 5543 {
527159b7 5544 if (debug_infrun)
8a9de0e4 5545 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5546
00431a78 5547 context_switch (ecs);
c5aa993b 5548
9a4105ab 5549 if (deprecated_context_hook)
00431a78 5550 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5551 }
c906108c 5552
568d6575
UW
5553 /* At this point, get hold of the now-current thread's frame. */
5554 frame = get_current_frame ();
5555 gdbarch = get_frame_arch (frame);
5556
2adfaa28 5557 /* Pull the single step breakpoints out of the target. */
af48d08f 5558 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5559 {
af48d08f 5560 struct regcache *regcache;
af48d08f 5561 CORE_ADDR pc;
2adfaa28 5562
00431a78 5563 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5564 const address_space *aspace = regcache->aspace ();
5565
af48d08f 5566 pc = regcache_read_pc (regcache);
34b7e8a6 5567
af48d08f
PA
5568 /* However, before doing so, if this single-step breakpoint was
5569 actually for another thread, set this thread up for moving
5570 past it. */
5571 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5572 aspace, pc))
5573 {
5574 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5575 {
5576 if (debug_infrun)
5577 {
5578 fprintf_unfiltered (gdb_stdlog,
af48d08f 5579 "infrun: [%s] hit another thread's "
34b7e8a6 5580 "single-step breakpoint\n",
a068643d 5581 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5582 }
af48d08f
PA
5583 ecs->hit_singlestep_breakpoint = 1;
5584 }
5585 }
5586 else
5587 {
5588 if (debug_infrun)
5589 {
5590 fprintf_unfiltered (gdb_stdlog,
5591 "infrun: [%s] hit its "
5592 "single-step breakpoint\n",
a068643d 5593 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5594 }
5595 }
488f131b 5596 }
af48d08f 5597 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5598
963f9c80
PA
5599 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5600 && ecs->event_thread->control.trap_expected
5601 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5602 stopped_by_watchpoint = 0;
5603 else
5604 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5605
5606 /* If necessary, step over this watchpoint. We'll be back to display
5607 it in a moment. */
5608 if (stopped_by_watchpoint
d92524f1 5609 && (target_have_steppable_watchpoint
568d6575 5610 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5611 {
488f131b
JB
5612 /* At this point, we are stopped at an instruction which has
5613 attempted to write to a piece of memory under control of
5614 a watchpoint. The instruction hasn't actually executed
5615 yet. If we were to evaluate the watchpoint expression
5616 now, we would get the old value, and therefore no change
5617 would seem to have occurred.
5618
5619 In order to make watchpoints work `right', we really need
5620 to complete the memory write, and then evaluate the
d983da9c
DJ
5621 watchpoint expression. We do this by single-stepping the
5622 target.
5623
7f89fd65 5624 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5625 it. For example, the PA can (with some kernel cooperation)
5626 single step over a watchpoint without disabling the watchpoint.
5627
5628 It is far more common to need to disable a watchpoint to step
5629 the inferior over it. If we have non-steppable watchpoints,
5630 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5631 disable all watchpoints.
5632
5633 Any breakpoint at PC must also be stepped over -- if there's
5634 one, it will have already triggered before the watchpoint
5635 triggered, and we either already reported it to the user, or
5636 it didn't cause a stop and we called keep_going. In either
5637 case, if there was a breakpoint at PC, we must be trying to
5638 step past it. */
5639 ecs->event_thread->stepping_over_watchpoint = 1;
5640 keep_going (ecs);
488f131b
JB
5641 return;
5642 }
5643
4e1c45ea 5644 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5645 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5646 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5647 ecs->event_thread->control.stop_step = 0;
488f131b 5648 stop_print_frame = 1;
488f131b 5649 stopped_by_random_signal = 0;
ddfe970e 5650 bpstat stop_chain = NULL;
488f131b 5651
edb3359d
DJ
5652 /* Hide inlined functions starting here, unless we just performed stepi or
5653 nexti. After stepi and nexti, always show the innermost frame (not any
5654 inline function call sites). */
16c381f0 5655 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5656 {
00431a78
PA
5657 const address_space *aspace
5658 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5659
5660 /* skip_inline_frames is expensive, so we avoid it if we can
5661 determine that the address is one where functions cannot have
5662 been inlined. This improves performance with inferiors that
5663 load a lot of shared libraries, because the solib event
5664 breakpoint is defined as the address of a function (i.e. not
5665 inline). Note that we have to check the previous PC as well
5666 as the current one to catch cases when we have just
5667 single-stepped off a breakpoint prior to reinstating it.
5668 Note that we're assuming that the code we single-step to is
5669 not inline, but that's not definitive: there's nothing
5670 preventing the event breakpoint function from containing
5671 inlined code, and the single-step ending up there. If the
5672 user had set a breakpoint on that inlined code, the missing
5673 skip_inline_frames call would break things. Fortunately
5674 that's an extremely unlikely scenario. */
f2ffa92b
PA
5675 if (!pc_at_non_inline_function (aspace,
5676 ecs->event_thread->suspend.stop_pc,
5677 &ecs->ws)
a210c238
MR
5678 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5679 && ecs->event_thread->control.trap_expected
5680 && pc_at_non_inline_function (aspace,
5681 ecs->event_thread->prev_pc,
09ac7c10 5682 &ecs->ws)))
1c5a993e 5683 {
f2ffa92b
PA
5684 stop_chain = build_bpstat_chain (aspace,
5685 ecs->event_thread->suspend.stop_pc,
5686 &ecs->ws);
00431a78 5687 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5688
5689 /* Re-fetch current thread's frame in case that invalidated
5690 the frame cache. */
5691 frame = get_current_frame ();
5692 gdbarch = get_frame_arch (frame);
5693 }
0574c78f 5694 }
edb3359d 5695
a493e3e2 5696 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5697 && ecs->event_thread->control.trap_expected
568d6575 5698 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5699 && currently_stepping (ecs->event_thread))
3352ef37 5700 {
b50d7442 5701 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5702 also on an instruction that needs to be stepped multiple
1777feb0 5703 times before it's been fully executing. E.g., architectures
3352ef37
AC
5704 with a delay slot. It needs to be stepped twice, once for
5705 the instruction and once for the delay slot. */
5706 int step_through_delay
568d6575 5707 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5708
527159b7 5709 if (debug_infrun && step_through_delay)
8a9de0e4 5710 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5711 if (ecs->event_thread->control.step_range_end == 0
5712 && step_through_delay)
3352ef37
AC
5713 {
5714 /* The user issued a continue when stopped at a breakpoint.
5715 Set up for another trap and get out of here. */
4e1c45ea 5716 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5717 keep_going (ecs);
5718 return;
5719 }
5720 else if (step_through_delay)
5721 {
5722 /* The user issued a step when stopped at a breakpoint.
5723 Maybe we should stop, maybe we should not - the delay
5724 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5725 case, don't decide that here, just set
5726 ecs->stepping_over_breakpoint, making sure we
5727 single-step again before breakpoints are re-inserted. */
4e1c45ea 5728 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5729 }
5730 }
5731
ab04a2af
TT
5732 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5733 handles this event. */
5734 ecs->event_thread->control.stop_bpstat
a01bda52 5735 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5736 ecs->event_thread->suspend.stop_pc,
5737 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5738
ab04a2af
TT
5739 /* Following in case break condition called a
5740 function. */
5741 stop_print_frame = 1;
73dd234f 5742
ab04a2af
TT
5743 /* This is where we handle "moribund" watchpoints. Unlike
5744 software breakpoints traps, hardware watchpoint traps are
5745 always distinguishable from random traps. If no high-level
5746 watchpoint is associated with the reported stop data address
5747 anymore, then the bpstat does not explain the signal ---
5748 simply make sure to ignore it if `stopped_by_watchpoint' is
5749 set. */
5750
5751 if (debug_infrun
5752 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5753 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5754 GDB_SIGNAL_TRAP)
ab04a2af
TT
5755 && stopped_by_watchpoint)
5756 fprintf_unfiltered (gdb_stdlog,
5757 "infrun: no user watchpoint explains "
5758 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5759
bac7d97b 5760 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5761 at one stage in the past included checks for an inferior
5762 function call's call dummy's return breakpoint. The original
5763 comment, that went with the test, read:
03cebad2 5764
ab04a2af
TT
5765 ``End of a stack dummy. Some systems (e.g. Sony news) give
5766 another signal besides SIGTRAP, so check here as well as
5767 above.''
73dd234f 5768
ab04a2af
TT
5769 If someone ever tries to get call dummys on a
5770 non-executable stack to work (where the target would stop
5771 with something like a SIGSEGV), then those tests might need
5772 to be re-instated. Given, however, that the tests were only
5773 enabled when momentary breakpoints were not being used, I
5774 suspect that it won't be the case.
488f131b 5775
ab04a2af
TT
5776 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5777 be necessary for call dummies on a non-executable stack on
5778 SPARC. */
488f131b 5779
bac7d97b 5780 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5781 random_signal
5782 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5783 ecs->event_thread->suspend.stop_signal);
bac7d97b 5784
1cf4d951
PA
5785 /* Maybe this was a trap for a software breakpoint that has since
5786 been removed. */
5787 if (random_signal && target_stopped_by_sw_breakpoint ())
5788 {
f2ffa92b
PA
5789 if (program_breakpoint_here_p (gdbarch,
5790 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5791 {
5792 struct regcache *regcache;
5793 int decr_pc;
5794
5795 /* Re-adjust PC to what the program would see if GDB was not
5796 debugging it. */
00431a78 5797 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5798 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5799 if (decr_pc != 0)
5800 {
07036511
TT
5801 gdb::optional<scoped_restore_tmpl<int>>
5802 restore_operation_disable;
1cf4d951
PA
5803
5804 if (record_full_is_used ())
07036511
TT
5805 restore_operation_disable.emplace
5806 (record_full_gdb_operation_disable_set ());
1cf4d951 5807
f2ffa92b
PA
5808 regcache_write_pc (regcache,
5809 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5810 }
5811 }
5812 else
5813 {
5814 /* A delayed software breakpoint event. Ignore the trap. */
5815 if (debug_infrun)
5816 fprintf_unfiltered (gdb_stdlog,
5817 "infrun: delayed software breakpoint "
5818 "trap, ignoring\n");
5819 random_signal = 0;
5820 }
5821 }
5822
5823 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5824 has since been removed. */
5825 if (random_signal && target_stopped_by_hw_breakpoint ())
5826 {
5827 /* A delayed hardware breakpoint event. Ignore the trap. */
5828 if (debug_infrun)
5829 fprintf_unfiltered (gdb_stdlog,
5830 "infrun: delayed hardware breakpoint/watchpoint "
5831 "trap, ignoring\n");
5832 random_signal = 0;
5833 }
5834
bac7d97b
PA
5835 /* If not, perhaps stepping/nexting can. */
5836 if (random_signal)
5837 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5838 && currently_stepping (ecs->event_thread));
ab04a2af 5839
2adfaa28
PA
5840 /* Perhaps the thread hit a single-step breakpoint of _another_
5841 thread. Single-step breakpoints are transparent to the
5842 breakpoints module. */
5843 if (random_signal)
5844 random_signal = !ecs->hit_singlestep_breakpoint;
5845
bac7d97b
PA
5846 /* No? Perhaps we got a moribund watchpoint. */
5847 if (random_signal)
5848 random_signal = !stopped_by_watchpoint;
ab04a2af 5849
c65d6b55
PA
5850 /* Always stop if the user explicitly requested this thread to
5851 remain stopped. */
5852 if (ecs->event_thread->stop_requested)
5853 {
5854 random_signal = 1;
5855 if (debug_infrun)
5856 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5857 }
5858
488f131b
JB
5859 /* For the program's own signals, act according to
5860 the signal handling tables. */
5861
ce12b012 5862 if (random_signal)
488f131b
JB
5863 {
5864 /* Signal not for debugging purposes. */
c9657e70 5865 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5866 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5867
527159b7 5868 if (debug_infrun)
c9737c08
PA
5869 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5870 gdb_signal_to_symbol_string (stop_signal));
527159b7 5871
488f131b
JB
5872 stopped_by_random_signal = 1;
5873
252fbfc8
PA
5874 /* Always stop on signals if we're either just gaining control
5875 of the program, or the user explicitly requested this thread
5876 to remain stopped. */
d6b48e9c 5877 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5878 || ecs->event_thread->stop_requested
24291992 5879 || (!inf->detaching
16c381f0 5880 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5881 {
22bcd14b 5882 stop_waiting (ecs);
488f131b
JB
5883 return;
5884 }
b57bacec
PA
5885
5886 /* Notify observers the signal has "handle print" set. Note we
5887 returned early above if stopping; normal_stop handles the
5888 printing in that case. */
5889 if (signal_print[ecs->event_thread->suspend.stop_signal])
5890 {
5891 /* The signal table tells us to print about this signal. */
223ffa71 5892 target_terminal::ours_for_output ();
76727919 5893 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5894 target_terminal::inferior ();
b57bacec 5895 }
488f131b
JB
5896
5897 /* Clear the signal if it should not be passed. */
16c381f0 5898 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5899 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5900
f2ffa92b 5901 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5902 && ecs->event_thread->control.trap_expected
8358c15c 5903 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5904 {
5905 /* We were just starting a new sequence, attempting to
5906 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5907 Instead this signal arrives. This signal will take us out
68f53502
AC
5908 of the stepping range so GDB needs to remember to, when
5909 the signal handler returns, resume stepping off that
5910 breakpoint. */
5911 /* To simplify things, "continue" is forced to use the same
5912 code paths as single-step - set a breakpoint at the
5913 signal return address and then, once hit, step off that
5914 breakpoint. */
237fc4c9
PA
5915 if (debug_infrun)
5916 fprintf_unfiltered (gdb_stdlog,
5917 "infrun: signal arrived while stepping over "
5918 "breakpoint\n");
d3169d93 5919
2c03e5be 5920 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5921 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5922 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5923 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5924
5925 /* If we were nexting/stepping some other thread, switch to
5926 it, so that we don't continue it, losing control. */
5927 if (!switch_back_to_stepped_thread (ecs))
5928 keep_going (ecs);
9d799f85 5929 return;
68f53502 5930 }
9d799f85 5931
e5f8a7cc 5932 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5933 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5934 ecs->event_thread)
e5f8a7cc 5935 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5936 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5937 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5938 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5939 {
5940 /* The inferior is about to take a signal that will take it
5941 out of the single step range. Set a breakpoint at the
5942 current PC (which is presumably where the signal handler
5943 will eventually return) and then allow the inferior to
5944 run free.
5945
5946 Note that this is only needed for a signal delivered
5947 while in the single-step range. Nested signals aren't a
5948 problem as they eventually all return. */
237fc4c9
PA
5949 if (debug_infrun)
5950 fprintf_unfiltered (gdb_stdlog,
5951 "infrun: signal may take us out of "
5952 "single-step range\n");
5953
372316f1 5954 clear_step_over_info ();
2c03e5be 5955 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5956 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5957 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5958 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5959 keep_going (ecs);
5960 return;
d303a6c7 5961 }
9d799f85 5962
85102364 5963 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
5964 when either there's a nested signal, or when there's a
5965 pending signal enabled just as the signal handler returns
5966 (leaving the inferior at the step-resume-breakpoint without
5967 actually executing it). Either way continue until the
5968 breakpoint is really hit. */
c447ac0b
PA
5969
5970 if (!switch_back_to_stepped_thread (ecs))
5971 {
5972 if (debug_infrun)
5973 fprintf_unfiltered (gdb_stdlog,
5974 "infrun: random signal, keep going\n");
5975
5976 keep_going (ecs);
5977 }
5978 return;
488f131b 5979 }
94c57d6a
PA
5980
5981 process_event_stop_test (ecs);
5982}
5983
5984/* Come here when we've got some debug event / signal we can explain
5985 (IOW, not a random signal), and test whether it should cause a
5986 stop, or whether we should resume the inferior (transparently).
5987 E.g., could be a breakpoint whose condition evaluates false; we
5988 could be still stepping within the line; etc. */
5989
5990static void
5991process_event_stop_test (struct execution_control_state *ecs)
5992{
5993 struct symtab_and_line stop_pc_sal;
5994 struct frame_info *frame;
5995 struct gdbarch *gdbarch;
cdaa5b73
PA
5996 CORE_ADDR jmp_buf_pc;
5997 struct bpstat_what what;
94c57d6a 5998
cdaa5b73 5999 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6000
cdaa5b73
PA
6001 frame = get_current_frame ();
6002 gdbarch = get_frame_arch (frame);
fcf3daef 6003
cdaa5b73 6004 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6005
cdaa5b73
PA
6006 if (what.call_dummy)
6007 {
6008 stop_stack_dummy = what.call_dummy;
6009 }
186c406b 6010
243a9253
PA
6011 /* A few breakpoint types have callbacks associated (e.g.,
6012 bp_jit_event). Run them now. */
6013 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6014
cdaa5b73
PA
6015 /* If we hit an internal event that triggers symbol changes, the
6016 current frame will be invalidated within bpstat_what (e.g., if we
6017 hit an internal solib event). Re-fetch it. */
6018 frame = get_current_frame ();
6019 gdbarch = get_frame_arch (frame);
e2e4d78b 6020
cdaa5b73
PA
6021 switch (what.main_action)
6022 {
6023 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6024 /* If we hit the breakpoint at longjmp while stepping, we
6025 install a momentary breakpoint at the target of the
6026 jmp_buf. */
186c406b 6027
cdaa5b73
PA
6028 if (debug_infrun)
6029 fprintf_unfiltered (gdb_stdlog,
6030 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6031
cdaa5b73 6032 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6033
cdaa5b73
PA
6034 if (what.is_longjmp)
6035 {
6036 struct value *arg_value;
6037
6038 /* If we set the longjmp breakpoint via a SystemTap probe,
6039 then use it to extract the arguments. The destination PC
6040 is the third argument to the probe. */
6041 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6042 if (arg_value)
8fa0c4f8
AA
6043 {
6044 jmp_buf_pc = value_as_address (arg_value);
6045 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6046 }
cdaa5b73
PA
6047 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6048 || !gdbarch_get_longjmp_target (gdbarch,
6049 frame, &jmp_buf_pc))
e2e4d78b 6050 {
cdaa5b73
PA
6051 if (debug_infrun)
6052 fprintf_unfiltered (gdb_stdlog,
6053 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6054 "(!gdbarch_get_longjmp_target)\n");
6055 keep_going (ecs);
6056 return;
e2e4d78b 6057 }
e2e4d78b 6058
cdaa5b73
PA
6059 /* Insert a breakpoint at resume address. */
6060 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6061 }
6062 else
6063 check_exception_resume (ecs, frame);
6064 keep_going (ecs);
6065 return;
e81a37f7 6066
cdaa5b73
PA
6067 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6068 {
6069 struct frame_info *init_frame;
e81a37f7 6070
cdaa5b73 6071 /* There are several cases to consider.
c906108c 6072
cdaa5b73
PA
6073 1. The initiating frame no longer exists. In this case we
6074 must stop, because the exception or longjmp has gone too
6075 far.
2c03e5be 6076
cdaa5b73
PA
6077 2. The initiating frame exists, and is the same as the
6078 current frame. We stop, because the exception or longjmp
6079 has been caught.
2c03e5be 6080
cdaa5b73
PA
6081 3. The initiating frame exists and is different from the
6082 current frame. This means the exception or longjmp has
6083 been caught beneath the initiating frame, so keep going.
c906108c 6084
cdaa5b73
PA
6085 4. longjmp breakpoint has been placed just to protect
6086 against stale dummy frames and user is not interested in
6087 stopping around longjmps. */
c5aa993b 6088
cdaa5b73
PA
6089 if (debug_infrun)
6090 fprintf_unfiltered (gdb_stdlog,
6091 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6092
cdaa5b73
PA
6093 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6094 != NULL);
6095 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6096
cdaa5b73
PA
6097 if (what.is_longjmp)
6098 {
b67a2c6f 6099 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6100
cdaa5b73 6101 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6102 {
cdaa5b73
PA
6103 /* Case 4. */
6104 keep_going (ecs);
6105 return;
e5ef252a 6106 }
cdaa5b73 6107 }
c5aa993b 6108
cdaa5b73 6109 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6110
cdaa5b73
PA
6111 if (init_frame)
6112 {
6113 struct frame_id current_id
6114 = get_frame_id (get_current_frame ());
6115 if (frame_id_eq (current_id,
6116 ecs->event_thread->initiating_frame))
6117 {
6118 /* Case 2. Fall through. */
6119 }
6120 else
6121 {
6122 /* Case 3. */
6123 keep_going (ecs);
6124 return;
6125 }
68f53502 6126 }
488f131b 6127
cdaa5b73
PA
6128 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6129 exists. */
6130 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6131
bdc36728 6132 end_stepping_range (ecs);
cdaa5b73
PA
6133 }
6134 return;
e5ef252a 6135
cdaa5b73
PA
6136 case BPSTAT_WHAT_SINGLE:
6137 if (debug_infrun)
6138 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6139 ecs->event_thread->stepping_over_breakpoint = 1;
6140 /* Still need to check other stuff, at least the case where we
6141 are stepping and step out of the right range. */
6142 break;
e5ef252a 6143
cdaa5b73
PA
6144 case BPSTAT_WHAT_STEP_RESUME:
6145 if (debug_infrun)
6146 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6147
cdaa5b73
PA
6148 delete_step_resume_breakpoint (ecs->event_thread);
6149 if (ecs->event_thread->control.proceed_to_finish
6150 && execution_direction == EXEC_REVERSE)
6151 {
6152 struct thread_info *tp = ecs->event_thread;
6153
6154 /* We are finishing a function in reverse, and just hit the
6155 step-resume breakpoint at the start address of the
6156 function, and we're almost there -- just need to back up
6157 by one more single-step, which should take us back to the
6158 function call. */
6159 tp->control.step_range_start = tp->control.step_range_end = 1;
6160 keep_going (ecs);
e5ef252a 6161 return;
cdaa5b73
PA
6162 }
6163 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6164 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6165 && execution_direction == EXEC_REVERSE)
6166 {
6167 /* We are stepping over a function call in reverse, and just
6168 hit the step-resume breakpoint at the start address of
6169 the function. Go back to single-stepping, which should
6170 take us back to the function call. */
6171 ecs->event_thread->stepping_over_breakpoint = 1;
6172 keep_going (ecs);
6173 return;
6174 }
6175 break;
e5ef252a 6176
cdaa5b73
PA
6177 case BPSTAT_WHAT_STOP_NOISY:
6178 if (debug_infrun)
6179 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6180 stop_print_frame = 1;
e5ef252a 6181
99619bea
PA
6182 /* Assume the thread stopped for a breapoint. We'll still check
6183 whether a/the breakpoint is there when the thread is next
6184 resumed. */
6185 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6186
22bcd14b 6187 stop_waiting (ecs);
cdaa5b73 6188 return;
e5ef252a 6189
cdaa5b73
PA
6190 case BPSTAT_WHAT_STOP_SILENT:
6191 if (debug_infrun)
6192 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6193 stop_print_frame = 0;
e5ef252a 6194
99619bea
PA
6195 /* Assume the thread stopped for a breapoint. We'll still check
6196 whether a/the breakpoint is there when the thread is next
6197 resumed. */
6198 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6199 stop_waiting (ecs);
cdaa5b73
PA
6200 return;
6201
6202 case BPSTAT_WHAT_HP_STEP_RESUME:
6203 if (debug_infrun)
6204 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6205
6206 delete_step_resume_breakpoint (ecs->event_thread);
6207 if (ecs->event_thread->step_after_step_resume_breakpoint)
6208 {
6209 /* Back when the step-resume breakpoint was inserted, we
6210 were trying to single-step off a breakpoint. Go back to
6211 doing that. */
6212 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6213 ecs->event_thread->stepping_over_breakpoint = 1;
6214 keep_going (ecs);
6215 return;
e5ef252a 6216 }
cdaa5b73
PA
6217 break;
6218
6219 case BPSTAT_WHAT_KEEP_CHECKING:
6220 break;
e5ef252a 6221 }
c906108c 6222
af48d08f
PA
6223 /* If we stepped a permanent breakpoint and we had a high priority
6224 step-resume breakpoint for the address we stepped, but we didn't
6225 hit it, then we must have stepped into the signal handler. The
6226 step-resume was only necessary to catch the case of _not_
6227 stepping into the handler, so delete it, and fall through to
6228 checking whether the step finished. */
6229 if (ecs->event_thread->stepped_breakpoint)
6230 {
6231 struct breakpoint *sr_bp
6232 = ecs->event_thread->control.step_resume_breakpoint;
6233
8d707a12
PA
6234 if (sr_bp != NULL
6235 && sr_bp->loc->permanent
af48d08f
PA
6236 && sr_bp->type == bp_hp_step_resume
6237 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6238 {
6239 if (debug_infrun)
6240 fprintf_unfiltered (gdb_stdlog,
6241 "infrun: stepped permanent breakpoint, stopped in "
6242 "handler\n");
6243 delete_step_resume_breakpoint (ecs->event_thread);
6244 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6245 }
6246 }
6247
cdaa5b73
PA
6248 /* We come here if we hit a breakpoint but should not stop for it.
6249 Possibly we also were stepping and should stop for that. So fall
6250 through and test for stepping. But, if not stepping, do not
6251 stop. */
c906108c 6252
a7212384
UW
6253 /* In all-stop mode, if we're currently stepping but have stopped in
6254 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6255 if (switch_back_to_stepped_thread (ecs))
6256 return;
776f04fa 6257
8358c15c 6258 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6259 {
527159b7 6260 if (debug_infrun)
d3169d93
DJ
6261 fprintf_unfiltered (gdb_stdlog,
6262 "infrun: step-resume breakpoint is inserted\n");
527159b7 6263
488f131b
JB
6264 /* Having a step-resume breakpoint overrides anything
6265 else having to do with stepping commands until
6266 that breakpoint is reached. */
488f131b
JB
6267 keep_going (ecs);
6268 return;
6269 }
c5aa993b 6270
16c381f0 6271 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6272 {
527159b7 6273 if (debug_infrun)
8a9de0e4 6274 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6275 /* Likewise if we aren't even stepping. */
488f131b
JB
6276 keep_going (ecs);
6277 return;
6278 }
c5aa993b 6279
4b7703ad
JB
6280 /* Re-fetch current thread's frame in case the code above caused
6281 the frame cache to be re-initialized, making our FRAME variable
6282 a dangling pointer. */
6283 frame = get_current_frame ();
628fe4e4 6284 gdbarch = get_frame_arch (frame);
7e324e48 6285 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6286
488f131b 6287 /* If stepping through a line, keep going if still within it.
c906108c 6288
488f131b
JB
6289 Note that step_range_end is the address of the first instruction
6290 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6291 within it!
6292
6293 Note also that during reverse execution, we may be stepping
6294 through a function epilogue and therefore must detect when
6295 the current-frame changes in the middle of a line. */
6296
f2ffa92b
PA
6297 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6298 ecs->event_thread)
31410e84 6299 && (execution_direction != EXEC_REVERSE
388a8562 6300 || frame_id_eq (get_frame_id (frame),
16c381f0 6301 ecs->event_thread->control.step_frame_id)))
488f131b 6302 {
527159b7 6303 if (debug_infrun)
5af949e3
UW
6304 fprintf_unfiltered
6305 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6306 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6307 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6308
c1e36e3e
PA
6309 /* Tentatively re-enable range stepping; `resume' disables it if
6310 necessary (e.g., if we're stepping over a breakpoint or we
6311 have software watchpoints). */
6312 ecs->event_thread->control.may_range_step = 1;
6313
b2175913
MS
6314 /* When stepping backward, stop at beginning of line range
6315 (unless it's the function entry point, in which case
6316 keep going back to the call point). */
f2ffa92b 6317 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6318 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6319 && stop_pc != ecs->stop_func_start
6320 && execution_direction == EXEC_REVERSE)
bdc36728 6321 end_stepping_range (ecs);
b2175913
MS
6322 else
6323 keep_going (ecs);
6324
488f131b
JB
6325 return;
6326 }
c5aa993b 6327
488f131b 6328 /* We stepped out of the stepping range. */
c906108c 6329
488f131b 6330 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6331 loader dynamic symbol resolution code...
6332
6333 EXEC_FORWARD: we keep on single stepping until we exit the run
6334 time loader code and reach the callee's address.
6335
6336 EXEC_REVERSE: we've already executed the callee (backward), and
6337 the runtime loader code is handled just like any other
6338 undebuggable function call. Now we need only keep stepping
6339 backward through the trampoline code, and that's handled further
6340 down, so there is nothing for us to do here. */
6341
6342 if (execution_direction != EXEC_REVERSE
16c381f0 6343 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6344 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6345 {
4c8c40e6 6346 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6347 gdbarch_skip_solib_resolver (gdbarch,
6348 ecs->event_thread->suspend.stop_pc);
c906108c 6349
527159b7 6350 if (debug_infrun)
3e43a32a
MS
6351 fprintf_unfiltered (gdb_stdlog,
6352 "infrun: stepped into dynsym resolve code\n");
527159b7 6353
488f131b
JB
6354 if (pc_after_resolver)
6355 {
6356 /* Set up a step-resume breakpoint at the address
6357 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6358 symtab_and_line sr_sal;
488f131b 6359 sr_sal.pc = pc_after_resolver;
6c95b8df 6360 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6361
a6d9a66e
UW
6362 insert_step_resume_breakpoint_at_sal (gdbarch,
6363 sr_sal, null_frame_id);
c5aa993b 6364 }
c906108c 6365
488f131b
JB
6366 keep_going (ecs);
6367 return;
6368 }
c906108c 6369
1d509aa6
MM
6370 /* Step through an indirect branch thunk. */
6371 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6372 && gdbarch_in_indirect_branch_thunk (gdbarch,
6373 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6374 {
6375 if (debug_infrun)
6376 fprintf_unfiltered (gdb_stdlog,
6377 "infrun: stepped into indirect branch thunk\n");
6378 keep_going (ecs);
6379 return;
6380 }
6381
16c381f0
JK
6382 if (ecs->event_thread->control.step_range_end != 1
6383 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6384 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6385 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6386 {
527159b7 6387 if (debug_infrun)
3e43a32a
MS
6388 fprintf_unfiltered (gdb_stdlog,
6389 "infrun: stepped into signal trampoline\n");
42edda50 6390 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6391 a signal trampoline (either by a signal being delivered or by
6392 the signal handler returning). Just single-step until the
6393 inferior leaves the trampoline (either by calling the handler
6394 or returning). */
488f131b
JB
6395 keep_going (ecs);
6396 return;
6397 }
c906108c 6398
14132e89
MR
6399 /* If we're in the return path from a shared library trampoline,
6400 we want to proceed through the trampoline when stepping. */
6401 /* macro/2012-04-25: This needs to come before the subroutine
6402 call check below as on some targets return trampolines look
6403 like subroutine calls (MIPS16 return thunks). */
6404 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6405 ecs->event_thread->suspend.stop_pc,
6406 ecs->stop_func_name)
14132e89
MR
6407 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6408 {
6409 /* Determine where this trampoline returns. */
f2ffa92b
PA
6410 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6411 CORE_ADDR real_stop_pc
6412 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6413
6414 if (debug_infrun)
6415 fprintf_unfiltered (gdb_stdlog,
6416 "infrun: stepped into solib return tramp\n");
6417
6418 /* Only proceed through if we know where it's going. */
6419 if (real_stop_pc)
6420 {
6421 /* And put the step-breakpoint there and go until there. */
51abb421 6422 symtab_and_line sr_sal;
14132e89
MR
6423 sr_sal.pc = real_stop_pc;
6424 sr_sal.section = find_pc_overlay (sr_sal.pc);
6425 sr_sal.pspace = get_frame_program_space (frame);
6426
6427 /* Do not specify what the fp should be when we stop since
6428 on some machines the prologue is where the new fp value
6429 is established. */
6430 insert_step_resume_breakpoint_at_sal (gdbarch,
6431 sr_sal, null_frame_id);
6432
6433 /* Restart without fiddling with the step ranges or
6434 other state. */
6435 keep_going (ecs);
6436 return;
6437 }
6438 }
6439
c17eaafe
DJ
6440 /* Check for subroutine calls. The check for the current frame
6441 equalling the step ID is not necessary - the check of the
6442 previous frame's ID is sufficient - but it is a common case and
6443 cheaper than checking the previous frame's ID.
14e60db5
DJ
6444
6445 NOTE: frame_id_eq will never report two invalid frame IDs as
6446 being equal, so to get into this block, both the current and
6447 previous frame must have valid frame IDs. */
005ca36a
JB
6448 /* The outer_frame_id check is a heuristic to detect stepping
6449 through startup code. If we step over an instruction which
6450 sets the stack pointer from an invalid value to a valid value,
6451 we may detect that as a subroutine call from the mythical
6452 "outermost" function. This could be fixed by marking
6453 outermost frames as !stack_p,code_p,special_p. Then the
6454 initial outermost frame, before sp was valid, would
ce6cca6d 6455 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6456 for more. */
edb3359d 6457 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6458 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6459 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6460 ecs->event_thread->control.step_stack_frame_id)
6461 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6462 outer_frame_id)
885eeb5b 6463 || (ecs->event_thread->control.step_start_function
f2ffa92b 6464 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6465 {
f2ffa92b 6466 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6467 CORE_ADDR real_stop_pc;
8fb3e588 6468
527159b7 6469 if (debug_infrun)
8a9de0e4 6470 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6471
b7a084be 6472 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6473 {
6474 /* I presume that step_over_calls is only 0 when we're
6475 supposed to be stepping at the assembly language level
6476 ("stepi"). Just stop. */
388a8562 6477 /* And this works the same backward as frontward. MVS */
bdc36728 6478 end_stepping_range (ecs);
95918acb
AC
6479 return;
6480 }
8fb3e588 6481
388a8562
MS
6482 /* Reverse stepping through solib trampolines. */
6483
6484 if (execution_direction == EXEC_REVERSE
16c381f0 6485 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6486 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6487 || (ecs->stop_func_start == 0
6488 && in_solib_dynsym_resolve_code (stop_pc))))
6489 {
6490 /* Any solib trampoline code can be handled in reverse
6491 by simply continuing to single-step. We have already
6492 executed the solib function (backwards), and a few
6493 steps will take us back through the trampoline to the
6494 caller. */
6495 keep_going (ecs);
6496 return;
6497 }
6498
16c381f0 6499 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6500 {
b2175913
MS
6501 /* We're doing a "next".
6502
6503 Normal (forward) execution: set a breakpoint at the
6504 callee's return address (the address at which the caller
6505 will resume).
6506
6507 Reverse (backward) execution. set the step-resume
6508 breakpoint at the start of the function that we just
6509 stepped into (backwards), and continue to there. When we
6130d0b7 6510 get there, we'll need to single-step back to the caller. */
b2175913
MS
6511
6512 if (execution_direction == EXEC_REVERSE)
6513 {
acf9414f
JK
6514 /* If we're already at the start of the function, we've either
6515 just stepped backward into a single instruction function,
6516 or stepped back out of a signal handler to the first instruction
6517 of the function. Just keep going, which will single-step back
6518 to the caller. */
58c48e72 6519 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6520 {
acf9414f 6521 /* Normal function call return (static or dynamic). */
51abb421 6522 symtab_and_line sr_sal;
acf9414f
JK
6523 sr_sal.pc = ecs->stop_func_start;
6524 sr_sal.pspace = get_frame_program_space (frame);
6525 insert_step_resume_breakpoint_at_sal (gdbarch,
6526 sr_sal, null_frame_id);
6527 }
b2175913
MS
6528 }
6529 else
568d6575 6530 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6531
8567c30f
AC
6532 keep_going (ecs);
6533 return;
6534 }
a53c66de 6535
95918acb 6536 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6537 calling routine and the real function), locate the real
6538 function. That's what tells us (a) whether we want to step
6539 into it at all, and (b) what prologue we want to run to the
6540 end of, if we do step into it. */
568d6575 6541 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6542 if (real_stop_pc == 0)
568d6575 6543 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6544 if (real_stop_pc != 0)
6545 ecs->stop_func_start = real_stop_pc;
8fb3e588 6546
db5f024e 6547 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6548 {
51abb421 6549 symtab_and_line sr_sal;
1b2bfbb9 6550 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6551 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6552
a6d9a66e
UW
6553 insert_step_resume_breakpoint_at_sal (gdbarch,
6554 sr_sal, null_frame_id);
8fb3e588
AC
6555 keep_going (ecs);
6556 return;
1b2bfbb9
RC
6557 }
6558
95918acb 6559 /* If we have line number information for the function we are
1bfeeb0f
JL
6560 thinking of stepping into and the function isn't on the skip
6561 list, step into it.
95918acb 6562
8fb3e588
AC
6563 If there are several symtabs at that PC (e.g. with include
6564 files), just want to know whether *any* of them have line
6565 numbers. find_pc_line handles this. */
95918acb
AC
6566 {
6567 struct symtab_and_line tmp_sal;
8fb3e588 6568
95918acb 6569 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6570 if (tmp_sal.line != 0
85817405 6571 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6572 tmp_sal)
6573 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6574 {
b2175913 6575 if (execution_direction == EXEC_REVERSE)
568d6575 6576 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6577 else
568d6575 6578 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6579 return;
6580 }
6581 }
6582
6583 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6584 set, we stop the step so that the user has a chance to switch
6585 in assembly mode. */
16c381f0 6586 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6587 && step_stop_if_no_debug)
95918acb 6588 {
bdc36728 6589 end_stepping_range (ecs);
95918acb
AC
6590 return;
6591 }
6592
b2175913
MS
6593 if (execution_direction == EXEC_REVERSE)
6594 {
acf9414f
JK
6595 /* If we're already at the start of the function, we've either just
6596 stepped backward into a single instruction function without line
6597 number info, or stepped back out of a signal handler to the first
6598 instruction of the function without line number info. Just keep
6599 going, which will single-step back to the caller. */
6600 if (ecs->stop_func_start != stop_pc)
6601 {
6602 /* Set a breakpoint at callee's start address.
6603 From there we can step once and be back in the caller. */
51abb421 6604 symtab_and_line sr_sal;
acf9414f
JK
6605 sr_sal.pc = ecs->stop_func_start;
6606 sr_sal.pspace = get_frame_program_space (frame);
6607 insert_step_resume_breakpoint_at_sal (gdbarch,
6608 sr_sal, null_frame_id);
6609 }
b2175913
MS
6610 }
6611 else
6612 /* Set a breakpoint at callee's return address (the address
6613 at which the caller will resume). */
568d6575 6614 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6615
95918acb 6616 keep_going (ecs);
488f131b 6617 return;
488f131b 6618 }
c906108c 6619
fdd654f3
MS
6620 /* Reverse stepping through solib trampolines. */
6621
6622 if (execution_direction == EXEC_REVERSE
16c381f0 6623 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6624 {
f2ffa92b
PA
6625 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6626
fdd654f3
MS
6627 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6628 || (ecs->stop_func_start == 0
6629 && in_solib_dynsym_resolve_code (stop_pc)))
6630 {
6631 /* Any solib trampoline code can be handled in reverse
6632 by simply continuing to single-step. We have already
6633 executed the solib function (backwards), and a few
6634 steps will take us back through the trampoline to the
6635 caller. */
6636 keep_going (ecs);
6637 return;
6638 }
6639 else if (in_solib_dynsym_resolve_code (stop_pc))
6640 {
6641 /* Stepped backward into the solib dynsym resolver.
6642 Set a breakpoint at its start and continue, then
6643 one more step will take us out. */
51abb421 6644 symtab_and_line sr_sal;
fdd654f3 6645 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6646 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6647 insert_step_resume_breakpoint_at_sal (gdbarch,
6648 sr_sal, null_frame_id);
6649 keep_going (ecs);
6650 return;
6651 }
6652 }
6653
f2ffa92b 6654 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6655
1b2bfbb9
RC
6656 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6657 the trampoline processing logic, however, there are some trampolines
6658 that have no names, so we should do trampoline handling first. */
16c381f0 6659 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6660 && ecs->stop_func_name == NULL
2afb61aa 6661 && stop_pc_sal.line == 0)
1b2bfbb9 6662 {
527159b7 6663 if (debug_infrun)
3e43a32a
MS
6664 fprintf_unfiltered (gdb_stdlog,
6665 "infrun: stepped into undebuggable function\n");
527159b7 6666
1b2bfbb9 6667 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6668 undebuggable function (where there is no debugging information
6669 and no line number corresponding to the address where the
1b2bfbb9
RC
6670 inferior stopped). Since we want to skip this kind of code,
6671 we keep going until the inferior returns from this
14e60db5
DJ
6672 function - unless the user has asked us not to (via
6673 set step-mode) or we no longer know how to get back
6674 to the call site. */
6675 if (step_stop_if_no_debug
c7ce8faa 6676 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6677 {
6678 /* If we have no line number and the step-stop-if-no-debug
6679 is set, we stop the step so that the user has a chance to
6680 switch in assembly mode. */
bdc36728 6681 end_stepping_range (ecs);
1b2bfbb9
RC
6682 return;
6683 }
6684 else
6685 {
6686 /* Set a breakpoint at callee's return address (the address
6687 at which the caller will resume). */
568d6575 6688 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6689 keep_going (ecs);
6690 return;
6691 }
6692 }
6693
16c381f0 6694 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6695 {
6696 /* It is stepi or nexti. We always want to stop stepping after
6697 one instruction. */
527159b7 6698 if (debug_infrun)
8a9de0e4 6699 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6700 end_stepping_range (ecs);
1b2bfbb9
RC
6701 return;
6702 }
6703
2afb61aa 6704 if (stop_pc_sal.line == 0)
488f131b
JB
6705 {
6706 /* We have no line number information. That means to stop
6707 stepping (does this always happen right after one instruction,
6708 when we do "s" in a function with no line numbers,
6709 or can this happen as a result of a return or longjmp?). */
527159b7 6710 if (debug_infrun)
8a9de0e4 6711 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6712 end_stepping_range (ecs);
488f131b
JB
6713 return;
6714 }
c906108c 6715
edb3359d
DJ
6716 /* Look for "calls" to inlined functions, part one. If the inline
6717 frame machinery detected some skipped call sites, we have entered
6718 a new inline function. */
6719
6720 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6721 ecs->event_thread->control.step_frame_id)
00431a78 6722 && inline_skipped_frames (ecs->event_thread))
edb3359d 6723 {
edb3359d
DJ
6724 if (debug_infrun)
6725 fprintf_unfiltered (gdb_stdlog,
6726 "infrun: stepped into inlined function\n");
6727
51abb421 6728 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6729
16c381f0 6730 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6731 {
6732 /* For "step", we're going to stop. But if the call site
6733 for this inlined function is on the same source line as
6734 we were previously stepping, go down into the function
6735 first. Otherwise stop at the call site. */
6736
6737 if (call_sal.line == ecs->event_thread->current_line
6738 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
6739 {
6740 step_into_inline_frame (ecs->event_thread);
6741 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
6742 {
6743 keep_going (ecs);
6744 return;
6745 }
6746 }
edb3359d 6747
bdc36728 6748 end_stepping_range (ecs);
edb3359d
DJ
6749 return;
6750 }
6751 else
6752 {
6753 /* For "next", we should stop at the call site if it is on a
6754 different source line. Otherwise continue through the
6755 inlined function. */
6756 if (call_sal.line == ecs->event_thread->current_line
6757 && call_sal.symtab == ecs->event_thread->current_symtab)
6758 keep_going (ecs);
6759 else
bdc36728 6760 end_stepping_range (ecs);
edb3359d
DJ
6761 return;
6762 }
6763 }
6764
6765 /* Look for "calls" to inlined functions, part two. If we are still
6766 in the same real function we were stepping through, but we have
6767 to go further up to find the exact frame ID, we are stepping
6768 through a more inlined call beyond its call site. */
6769
6770 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6771 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6772 ecs->event_thread->control.step_frame_id)
edb3359d 6773 && stepped_in_from (get_current_frame (),
16c381f0 6774 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6775 {
6776 if (debug_infrun)
6777 fprintf_unfiltered (gdb_stdlog,
6778 "infrun: stepping through inlined function\n");
6779
4a4c04f1
BE
6780 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
6781 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
6782 keep_going (ecs);
6783 else
bdc36728 6784 end_stepping_range (ecs);
edb3359d
DJ
6785 return;
6786 }
6787
f2ffa92b 6788 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6789 && (ecs->event_thread->current_line != stop_pc_sal.line
6790 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6791 {
6792 /* We are at the start of a different line. So stop. Note that
6793 we don't stop if we step into the middle of a different line.
6794 That is said to make things like for (;;) statements work
6795 better. */
527159b7 6796 if (debug_infrun)
3e43a32a
MS
6797 fprintf_unfiltered (gdb_stdlog,
6798 "infrun: stepped to a different line\n");
bdc36728 6799 end_stepping_range (ecs);
488f131b
JB
6800 return;
6801 }
c906108c 6802
488f131b 6803 /* We aren't done stepping.
c906108c 6804
488f131b
JB
6805 Optimize by setting the stepping range to the line.
6806 (We might not be in the original line, but if we entered a
6807 new line in mid-statement, we continue stepping. This makes
6808 things like for(;;) statements work better.) */
c906108c 6809
16c381f0
JK
6810 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6811 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6812 ecs->event_thread->control.may_range_step = 1;
edb3359d 6813 set_step_info (frame, stop_pc_sal);
488f131b 6814
527159b7 6815 if (debug_infrun)
8a9de0e4 6816 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6817 keep_going (ecs);
104c1213
JM
6818}
6819
c447ac0b
PA
6820/* In all-stop mode, if we're currently stepping but have stopped in
6821 some other thread, we may need to switch back to the stepped
6822 thread. Returns true we set the inferior running, false if we left
6823 it stopped (and the event needs further processing). */
6824
6825static int
6826switch_back_to_stepped_thread (struct execution_control_state *ecs)
6827{
fbea99ea 6828 if (!target_is_non_stop_p ())
c447ac0b 6829 {
99619bea
PA
6830 struct thread_info *stepping_thread;
6831
6832 /* If any thread is blocked on some internal breakpoint, and we
6833 simply need to step over that breakpoint to get it going
6834 again, do that first. */
6835
6836 /* However, if we see an event for the stepping thread, then we
6837 know all other threads have been moved past their breakpoints
6838 already. Let the caller check whether the step is finished,
6839 etc., before deciding to move it past a breakpoint. */
6840 if (ecs->event_thread->control.step_range_end != 0)
6841 return 0;
6842
6843 /* Check if the current thread is blocked on an incomplete
6844 step-over, interrupted by a random signal. */
6845 if (ecs->event_thread->control.trap_expected
6846 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6847 {
99619bea
PA
6848 if (debug_infrun)
6849 {
6850 fprintf_unfiltered (gdb_stdlog,
6851 "infrun: need to finish step-over of [%s]\n",
a068643d 6852 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
6853 }
6854 keep_going (ecs);
6855 return 1;
6856 }
2adfaa28 6857
99619bea
PA
6858 /* Check if the current thread is blocked by a single-step
6859 breakpoint of another thread. */
6860 if (ecs->hit_singlestep_breakpoint)
6861 {
6862 if (debug_infrun)
6863 {
6864 fprintf_unfiltered (gdb_stdlog,
6865 "infrun: need to step [%s] over single-step "
6866 "breakpoint\n",
a068643d 6867 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
6868 }
6869 keep_going (ecs);
6870 return 1;
6871 }
6872
4d9d9d04
PA
6873 /* If this thread needs yet another step-over (e.g., stepping
6874 through a delay slot), do it first before moving on to
6875 another thread. */
6876 if (thread_still_needs_step_over (ecs->event_thread))
6877 {
6878 if (debug_infrun)
6879 {
6880 fprintf_unfiltered (gdb_stdlog,
6881 "infrun: thread [%s] still needs step-over\n",
a068643d 6882 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
6883 }
6884 keep_going (ecs);
6885 return 1;
6886 }
70509625 6887
483805cf
PA
6888 /* If scheduler locking applies even if not stepping, there's no
6889 need to walk over threads. Above we've checked whether the
6890 current thread is stepping. If some other thread not the
6891 event thread is stepping, then it must be that scheduler
6892 locking is not in effect. */
856e7dd6 6893 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6894 return 0;
6895
4d9d9d04
PA
6896 /* Otherwise, we no longer expect a trap in the current thread.
6897 Clear the trap_expected flag before switching back -- this is
6898 what keep_going does as well, if we call it. */
6899 ecs->event_thread->control.trap_expected = 0;
6900
6901 /* Likewise, clear the signal if it should not be passed. */
6902 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6903 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6904
6905 /* Do all pending step-overs before actually proceeding with
483805cf 6906 step/next/etc. */
4d9d9d04
PA
6907 if (start_step_over ())
6908 {
6909 prepare_to_wait (ecs);
6910 return 1;
6911 }
6912
6913 /* Look for the stepping/nexting thread. */
483805cf 6914 stepping_thread = NULL;
4d9d9d04 6915
08036331 6916 for (thread_info *tp : all_non_exited_threads ())
483805cf 6917 {
fbea99ea
PA
6918 /* Ignore threads of processes the caller is not
6919 resuming. */
483805cf 6920 if (!sched_multi
e99b03dc 6921 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6922 continue;
6923
6924 /* When stepping over a breakpoint, we lock all threads
6925 except the one that needs to move past the breakpoint.
6926 If a non-event thread has this set, the "incomplete
6927 step-over" check above should have caught it earlier. */
372316f1
PA
6928 if (tp->control.trap_expected)
6929 {
6930 internal_error (__FILE__, __LINE__,
6931 "[%s] has inconsistent state: "
6932 "trap_expected=%d\n",
a068643d 6933 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
6934 tp->control.trap_expected);
6935 }
483805cf
PA
6936
6937 /* Did we find the stepping thread? */
6938 if (tp->control.step_range_end)
6939 {
6940 /* Yep. There should only one though. */
6941 gdb_assert (stepping_thread == NULL);
6942
6943 /* The event thread is handled at the top, before we
6944 enter this loop. */
6945 gdb_assert (tp != ecs->event_thread);
6946
6947 /* If some thread other than the event thread is
6948 stepping, then scheduler locking can't be in effect,
6949 otherwise we wouldn't have resumed the current event
6950 thread in the first place. */
856e7dd6 6951 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6952
6953 stepping_thread = tp;
6954 }
99619bea
PA
6955 }
6956
483805cf 6957 if (stepping_thread != NULL)
99619bea 6958 {
c447ac0b
PA
6959 if (debug_infrun)
6960 fprintf_unfiltered (gdb_stdlog,
6961 "infrun: switching back to stepped thread\n");
6962
2ac7589c
PA
6963 if (keep_going_stepped_thread (stepping_thread))
6964 {
6965 prepare_to_wait (ecs);
6966 return 1;
6967 }
6968 }
6969 }
2adfaa28 6970
2ac7589c
PA
6971 return 0;
6972}
2adfaa28 6973
2ac7589c
PA
6974/* Set a previously stepped thread back to stepping. Returns true on
6975 success, false if the resume is not possible (e.g., the thread
6976 vanished). */
6977
6978static int
6979keep_going_stepped_thread (struct thread_info *tp)
6980{
6981 struct frame_info *frame;
2ac7589c
PA
6982 struct execution_control_state ecss;
6983 struct execution_control_state *ecs = &ecss;
2adfaa28 6984
2ac7589c
PA
6985 /* If the stepping thread exited, then don't try to switch back and
6986 resume it, which could fail in several different ways depending
6987 on the target. Instead, just keep going.
2adfaa28 6988
2ac7589c
PA
6989 We can find a stepping dead thread in the thread list in two
6990 cases:
2adfaa28 6991
2ac7589c
PA
6992 - The target supports thread exit events, and when the target
6993 tries to delete the thread from the thread list, inferior_ptid
6994 pointed at the exiting thread. In such case, calling
6995 delete_thread does not really remove the thread from the list;
6996 instead, the thread is left listed, with 'exited' state.
64ce06e4 6997
2ac7589c
PA
6998 - The target's debug interface does not support thread exit
6999 events, and so we have no idea whatsoever if the previously
7000 stepping thread is still alive. For that reason, we need to
7001 synchronously query the target now. */
2adfaa28 7002
00431a78 7003 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7004 {
7005 if (debug_infrun)
7006 fprintf_unfiltered (gdb_stdlog,
7007 "infrun: not resuming previously "
7008 "stepped thread, it has vanished\n");
7009
00431a78 7010 delete_thread (tp);
2ac7589c 7011 return 0;
c447ac0b 7012 }
2ac7589c
PA
7013
7014 if (debug_infrun)
7015 fprintf_unfiltered (gdb_stdlog,
7016 "infrun: resuming previously stepped thread\n");
7017
7018 reset_ecs (ecs, tp);
00431a78 7019 switch_to_thread (tp);
2ac7589c 7020
f2ffa92b 7021 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7022 frame = get_current_frame ();
2ac7589c
PA
7023
7024 /* If the PC of the thread we were trying to single-step has
7025 changed, then that thread has trapped or been signaled, but the
7026 event has not been reported to GDB yet. Re-poll the target
7027 looking for this particular thread's event (i.e. temporarily
7028 enable schedlock) by:
7029
7030 - setting a break at the current PC
7031 - resuming that particular thread, only (by setting trap
7032 expected)
7033
7034 This prevents us continuously moving the single-step breakpoint
7035 forward, one instruction at a time, overstepping. */
7036
f2ffa92b 7037 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7038 {
7039 ptid_t resume_ptid;
7040
7041 if (debug_infrun)
7042 fprintf_unfiltered (gdb_stdlog,
7043 "infrun: expected thread advanced also (%s -> %s)\n",
7044 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7045 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7046
7047 /* Clear the info of the previous step-over, as it's no longer
7048 valid (if the thread was trying to step over a breakpoint, it
7049 has already succeeded). It's what keep_going would do too,
7050 if we called it. Do this before trying to insert the sss
7051 breakpoint, otherwise if we were previously trying to step
7052 over this exact address in another thread, the breakpoint is
7053 skipped. */
7054 clear_step_over_info ();
7055 tp->control.trap_expected = 0;
7056
7057 insert_single_step_breakpoint (get_frame_arch (frame),
7058 get_frame_address_space (frame),
f2ffa92b 7059 tp->suspend.stop_pc);
2ac7589c 7060
372316f1 7061 tp->resumed = 1;
fbea99ea 7062 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7063 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7064 }
7065 else
7066 {
7067 if (debug_infrun)
7068 fprintf_unfiltered (gdb_stdlog,
7069 "infrun: expected thread still hasn't advanced\n");
7070
7071 keep_going_pass_signal (ecs);
7072 }
7073 return 1;
c447ac0b
PA
7074}
7075
8b061563
PA
7076/* Is thread TP in the middle of (software or hardware)
7077 single-stepping? (Note the result of this function must never be
7078 passed directly as target_resume's STEP parameter.) */
104c1213 7079
a289b8f6 7080static int
b3444185 7081currently_stepping (struct thread_info *tp)
a7212384 7082{
8358c15c
JK
7083 return ((tp->control.step_range_end
7084 && tp->control.step_resume_breakpoint == NULL)
7085 || tp->control.trap_expected
af48d08f 7086 || tp->stepped_breakpoint
8358c15c 7087 || bpstat_should_step ());
a7212384
UW
7088}
7089
b2175913
MS
7090/* Inferior has stepped into a subroutine call with source code that
7091 we should not step over. Do step to the first line of code in
7092 it. */
c2c6d25f
JM
7093
7094static void
568d6575
UW
7095handle_step_into_function (struct gdbarch *gdbarch,
7096 struct execution_control_state *ecs)
c2c6d25f 7097{
7e324e48
GB
7098 fill_in_stop_func (gdbarch, ecs);
7099
f2ffa92b
PA
7100 compunit_symtab *cust
7101 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7102 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7103 ecs->stop_func_start
7104 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7105
51abb421 7106 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7107 /* Use the step_resume_break to step until the end of the prologue,
7108 even if that involves jumps (as it seems to on the vax under
7109 4.2). */
7110 /* If the prologue ends in the middle of a source line, continue to
7111 the end of that source line (if it is still within the function).
7112 Otherwise, just go to end of prologue. */
2afb61aa
PA
7113 if (stop_func_sal.end
7114 && stop_func_sal.pc != ecs->stop_func_start
7115 && stop_func_sal.end < ecs->stop_func_end)
7116 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7117
2dbd5e30
KB
7118 /* Architectures which require breakpoint adjustment might not be able
7119 to place a breakpoint at the computed address. If so, the test
7120 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7121 ecs->stop_func_start to an address at which a breakpoint may be
7122 legitimately placed.
8fb3e588 7123
2dbd5e30
KB
7124 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7125 made, GDB will enter an infinite loop when stepping through
7126 optimized code consisting of VLIW instructions which contain
7127 subinstructions corresponding to different source lines. On
7128 FR-V, it's not permitted to place a breakpoint on any but the
7129 first subinstruction of a VLIW instruction. When a breakpoint is
7130 set, GDB will adjust the breakpoint address to the beginning of
7131 the VLIW instruction. Thus, we need to make the corresponding
7132 adjustment here when computing the stop address. */
8fb3e588 7133
568d6575 7134 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7135 {
7136 ecs->stop_func_start
568d6575 7137 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7138 ecs->stop_func_start);
2dbd5e30
KB
7139 }
7140
f2ffa92b 7141 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7142 {
7143 /* We are already there: stop now. */
bdc36728 7144 end_stepping_range (ecs);
c2c6d25f
JM
7145 return;
7146 }
7147 else
7148 {
7149 /* Put the step-breakpoint there and go until there. */
51abb421 7150 symtab_and_line sr_sal;
c2c6d25f
JM
7151 sr_sal.pc = ecs->stop_func_start;
7152 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7153 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7154
c2c6d25f 7155 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7156 some machines the prologue is where the new fp value is
7157 established. */
a6d9a66e 7158 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7159
7160 /* And make sure stepping stops right away then. */
16c381f0
JK
7161 ecs->event_thread->control.step_range_end
7162 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7163 }
7164 keep_going (ecs);
7165}
d4f3574e 7166
b2175913
MS
7167/* Inferior has stepped backward into a subroutine call with source
7168 code that we should not step over. Do step to the beginning of the
7169 last line of code in it. */
7170
7171static void
568d6575
UW
7172handle_step_into_function_backward (struct gdbarch *gdbarch,
7173 struct execution_control_state *ecs)
b2175913 7174{
43f3e411 7175 struct compunit_symtab *cust;
167e4384 7176 struct symtab_and_line stop_func_sal;
b2175913 7177
7e324e48
GB
7178 fill_in_stop_func (gdbarch, ecs);
7179
f2ffa92b 7180 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7181 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7182 ecs->stop_func_start
7183 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7184
f2ffa92b 7185 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7186
7187 /* OK, we're just going to keep stepping here. */
f2ffa92b 7188 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7189 {
7190 /* We're there already. Just stop stepping now. */
bdc36728 7191 end_stepping_range (ecs);
b2175913
MS
7192 }
7193 else
7194 {
7195 /* Else just reset the step range and keep going.
7196 No step-resume breakpoint, they don't work for
7197 epilogues, which can have multiple entry paths. */
16c381f0
JK
7198 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7199 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7200 keep_going (ecs);
7201 }
7202 return;
7203}
7204
d3169d93 7205/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7206 This is used to both functions and to skip over code. */
7207
7208static void
2c03e5be
PA
7209insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7210 struct symtab_and_line sr_sal,
7211 struct frame_id sr_id,
7212 enum bptype sr_type)
44cbf7b5 7213{
611c83ae
PA
7214 /* There should never be more than one step-resume or longjmp-resume
7215 breakpoint per thread, so we should never be setting a new
44cbf7b5 7216 step_resume_breakpoint when one is already active. */
8358c15c 7217 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7218 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7219
7220 if (debug_infrun)
7221 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7222 "infrun: inserting step-resume breakpoint at %s\n",
7223 paddress (gdbarch, sr_sal.pc));
d3169d93 7224
8358c15c 7225 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7226 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7227}
7228
9da8c2a0 7229void
2c03e5be
PA
7230insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7231 struct symtab_and_line sr_sal,
7232 struct frame_id sr_id)
7233{
7234 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7235 sr_sal, sr_id,
7236 bp_step_resume);
44cbf7b5 7237}
7ce450bd 7238
2c03e5be
PA
7239/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7240 This is used to skip a potential signal handler.
7ce450bd 7241
14e60db5
DJ
7242 This is called with the interrupted function's frame. The signal
7243 handler, when it returns, will resume the interrupted function at
7244 RETURN_FRAME.pc. */
d303a6c7
AC
7245
7246static void
2c03e5be 7247insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7248{
f4c1edd8 7249 gdb_assert (return_frame != NULL);
d303a6c7 7250
51abb421
PA
7251 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7252
7253 symtab_and_line sr_sal;
568d6575 7254 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7255 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7256 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7257
2c03e5be
PA
7258 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7259 get_stack_frame_id (return_frame),
7260 bp_hp_step_resume);
d303a6c7
AC
7261}
7262
2c03e5be
PA
7263/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7264 is used to skip a function after stepping into it (for "next" or if
7265 the called function has no debugging information).
14e60db5
DJ
7266
7267 The current function has almost always been reached by single
7268 stepping a call or return instruction. NEXT_FRAME belongs to the
7269 current function, and the breakpoint will be set at the caller's
7270 resume address.
7271
7272 This is a separate function rather than reusing
2c03e5be 7273 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7274 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7275 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7276
7277static void
7278insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7279{
14e60db5
DJ
7280 /* We shouldn't have gotten here if we don't know where the call site
7281 is. */
c7ce8faa 7282 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7283
51abb421 7284 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7285
51abb421 7286 symtab_and_line sr_sal;
c7ce8faa
DJ
7287 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7288 frame_unwind_caller_pc (next_frame));
14e60db5 7289 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7290 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7291
a6d9a66e 7292 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7293 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7294}
7295
611c83ae
PA
7296/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7297 new breakpoint at the target of a jmp_buf. The handling of
7298 longjmp-resume uses the same mechanisms used for handling
7299 "step-resume" breakpoints. */
7300
7301static void
a6d9a66e 7302insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7303{
e81a37f7
TT
7304 /* There should never be more than one longjmp-resume breakpoint per
7305 thread, so we should never be setting a new
611c83ae 7306 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7307 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7308
7309 if (debug_infrun)
7310 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7311 "infrun: inserting longjmp-resume breakpoint at %s\n",
7312 paddress (gdbarch, pc));
611c83ae 7313
e81a37f7 7314 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7315 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7316}
7317
186c406b
TT
7318/* Insert an exception resume breakpoint. TP is the thread throwing
7319 the exception. The block B is the block of the unwinder debug hook
7320 function. FRAME is the frame corresponding to the call to this
7321 function. SYM is the symbol of the function argument holding the
7322 target PC of the exception. */
7323
7324static void
7325insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7326 const struct block *b,
186c406b
TT
7327 struct frame_info *frame,
7328 struct symbol *sym)
7329{
a70b8144 7330 try
186c406b 7331 {
63e43d3a 7332 struct block_symbol vsym;
186c406b
TT
7333 struct value *value;
7334 CORE_ADDR handler;
7335 struct breakpoint *bp;
7336
987012b8 7337 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7338 b, VAR_DOMAIN);
63e43d3a 7339 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7340 /* If the value was optimized out, revert to the old behavior. */
7341 if (! value_optimized_out (value))
7342 {
7343 handler = value_as_address (value);
7344
7345 if (debug_infrun)
7346 fprintf_unfiltered (gdb_stdlog,
7347 "infrun: exception resume at %lx\n",
7348 (unsigned long) handler);
7349
7350 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7351 handler,
7352 bp_exception_resume).release ();
c70a6932
JK
7353
7354 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7355 frame = NULL;
7356
5d5658a1 7357 bp->thread = tp->global_num;
186c406b
TT
7358 inferior_thread ()->control.exception_resume_breakpoint = bp;
7359 }
7360 }
230d2906 7361 catch (const gdb_exception_error &e)
492d29ea
PA
7362 {
7363 /* We want to ignore errors here. */
7364 }
186c406b
TT
7365}
7366
28106bc2
SDJ
7367/* A helper for check_exception_resume that sets an
7368 exception-breakpoint based on a SystemTap probe. */
7369
7370static void
7371insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7372 const struct bound_probe *probe,
28106bc2
SDJ
7373 struct frame_info *frame)
7374{
7375 struct value *arg_value;
7376 CORE_ADDR handler;
7377 struct breakpoint *bp;
7378
7379 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7380 if (!arg_value)
7381 return;
7382
7383 handler = value_as_address (arg_value);
7384
7385 if (debug_infrun)
7386 fprintf_unfiltered (gdb_stdlog,
7387 "infrun: exception resume at %s\n",
6bac7473 7388 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7389 handler));
7390
7391 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7392 handler, bp_exception_resume).release ();
5d5658a1 7393 bp->thread = tp->global_num;
28106bc2
SDJ
7394 inferior_thread ()->control.exception_resume_breakpoint = bp;
7395}
7396
186c406b
TT
7397/* This is called when an exception has been intercepted. Check to
7398 see whether the exception's destination is of interest, and if so,
7399 set an exception resume breakpoint there. */
7400
7401static void
7402check_exception_resume (struct execution_control_state *ecs,
28106bc2 7403 struct frame_info *frame)
186c406b 7404{
729662a5 7405 struct bound_probe probe;
28106bc2
SDJ
7406 struct symbol *func;
7407
7408 /* First see if this exception unwinding breakpoint was set via a
7409 SystemTap probe point. If so, the probe has two arguments: the
7410 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7411 set a breakpoint there. */
6bac7473 7412 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7413 if (probe.prob)
28106bc2 7414 {
729662a5 7415 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7416 return;
7417 }
7418
7419 func = get_frame_function (frame);
7420 if (!func)
7421 return;
186c406b 7422
a70b8144 7423 try
186c406b 7424 {
3977b71f 7425 const struct block *b;
8157b174 7426 struct block_iterator iter;
186c406b
TT
7427 struct symbol *sym;
7428 int argno = 0;
7429
7430 /* The exception breakpoint is a thread-specific breakpoint on
7431 the unwinder's debug hook, declared as:
7432
7433 void _Unwind_DebugHook (void *cfa, void *handler);
7434
7435 The CFA argument indicates the frame to which control is
7436 about to be transferred. HANDLER is the destination PC.
7437
7438 We ignore the CFA and set a temporary breakpoint at HANDLER.
7439 This is not extremely efficient but it avoids issues in gdb
7440 with computing the DWARF CFA, and it also works even in weird
7441 cases such as throwing an exception from inside a signal
7442 handler. */
7443
7444 b = SYMBOL_BLOCK_VALUE (func);
7445 ALL_BLOCK_SYMBOLS (b, iter, sym)
7446 {
7447 if (!SYMBOL_IS_ARGUMENT (sym))
7448 continue;
7449
7450 if (argno == 0)
7451 ++argno;
7452 else
7453 {
7454 insert_exception_resume_breakpoint (ecs->event_thread,
7455 b, frame, sym);
7456 break;
7457 }
7458 }
7459 }
230d2906 7460 catch (const gdb_exception_error &e)
492d29ea
PA
7461 {
7462 }
186c406b
TT
7463}
7464
104c1213 7465static void
22bcd14b 7466stop_waiting (struct execution_control_state *ecs)
104c1213 7467{
527159b7 7468 if (debug_infrun)
22bcd14b 7469 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7470
cd0fc7c3
SS
7471 /* Let callers know we don't want to wait for the inferior anymore. */
7472 ecs->wait_some_more = 0;
fbea99ea
PA
7473
7474 /* If all-stop, but the target is always in non-stop mode, stop all
7475 threads now that we're presenting the stop to the user. */
7476 if (!non_stop && target_is_non_stop_p ())
7477 stop_all_threads ();
cd0fc7c3
SS
7478}
7479
4d9d9d04
PA
7480/* Like keep_going, but passes the signal to the inferior, even if the
7481 signal is set to nopass. */
d4f3574e
SS
7482
7483static void
4d9d9d04 7484keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7485{
d7e15655 7486 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7487 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7488
d4f3574e 7489 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7490 ecs->event_thread->prev_pc
00431a78 7491 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7492
4d9d9d04 7493 if (ecs->event_thread->control.trap_expected)
d4f3574e 7494 {
4d9d9d04
PA
7495 struct thread_info *tp = ecs->event_thread;
7496
7497 if (debug_infrun)
7498 fprintf_unfiltered (gdb_stdlog,
7499 "infrun: %s has trap_expected set, "
7500 "resuming to collect trap\n",
a068643d 7501 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7502
a9ba6bae
PA
7503 /* We haven't yet gotten our trap, and either: intercepted a
7504 non-signal event (e.g., a fork); or took a signal which we
7505 are supposed to pass through to the inferior. Simply
7506 continue. */
64ce06e4 7507 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7508 }
372316f1
PA
7509 else if (step_over_info_valid_p ())
7510 {
7511 /* Another thread is stepping over a breakpoint in-line. If
7512 this thread needs a step-over too, queue the request. In
7513 either case, this resume must be deferred for later. */
7514 struct thread_info *tp = ecs->event_thread;
7515
7516 if (ecs->hit_singlestep_breakpoint
7517 || thread_still_needs_step_over (tp))
7518 {
7519 if (debug_infrun)
7520 fprintf_unfiltered (gdb_stdlog,
7521 "infrun: step-over already in progress: "
7522 "step-over for %s deferred\n",
a068643d 7523 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7524 thread_step_over_chain_enqueue (tp);
7525 }
7526 else
7527 {
7528 if (debug_infrun)
7529 fprintf_unfiltered (gdb_stdlog,
7530 "infrun: step-over in progress: "
7531 "resume of %s deferred\n",
a068643d 7532 target_pid_to_str (tp->ptid).c_str ());
372316f1 7533 }
372316f1 7534 }
d4f3574e
SS
7535 else
7536 {
31e77af2 7537 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7538 int remove_bp;
7539 int remove_wps;
8d297bbf 7540 step_over_what step_what;
31e77af2 7541
d4f3574e 7542 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7543 anyway (if we got a signal, the user asked it be passed to
7544 the child)
7545 -- or --
7546 We got our expected trap, but decided we should resume from
7547 it.
d4f3574e 7548
a9ba6bae 7549 We're going to run this baby now!
d4f3574e 7550
c36b740a
VP
7551 Note that insert_breakpoints won't try to re-insert
7552 already inserted breakpoints. Therefore, we don't
7553 care if breakpoints were already inserted, or not. */
a9ba6bae 7554
31e77af2
PA
7555 /* If we need to step over a breakpoint, and we're not using
7556 displaced stepping to do so, insert all breakpoints
7557 (watchpoints, etc.) but the one we're stepping over, step one
7558 instruction, and then re-insert the breakpoint when that step
7559 is finished. */
963f9c80 7560
6c4cfb24
PA
7561 step_what = thread_still_needs_step_over (ecs->event_thread);
7562
963f9c80 7563 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7564 || (step_what & STEP_OVER_BREAKPOINT));
7565 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7566
cb71640d
PA
7567 /* We can't use displaced stepping if we need to step past a
7568 watchpoint. The instruction copied to the scratch pad would
7569 still trigger the watchpoint. */
7570 if (remove_bp
3fc8eb30 7571 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7572 {
a01bda52 7573 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7574 regcache_read_pc (regcache), remove_wps,
7575 ecs->event_thread->global_num);
45e8c884 7576 }
963f9c80 7577 else if (remove_wps)
21edc42f 7578 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7579
7580 /* If we now need to do an in-line step-over, we need to stop
7581 all other threads. Note this must be done before
7582 insert_breakpoints below, because that removes the breakpoint
7583 we're about to step over, otherwise other threads could miss
7584 it. */
fbea99ea 7585 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7586 stop_all_threads ();
abbb1732 7587
31e77af2 7588 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7589 try
31e77af2
PA
7590 {
7591 insert_breakpoints ();
7592 }
230d2906 7593 catch (const gdb_exception_error &e)
31e77af2
PA
7594 {
7595 exception_print (gdb_stderr, e);
22bcd14b 7596 stop_waiting (ecs);
bdf2a94a 7597 clear_step_over_info ();
31e77af2 7598 return;
d4f3574e
SS
7599 }
7600
963f9c80 7601 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7602
64ce06e4 7603 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7604 }
7605
488f131b 7606 prepare_to_wait (ecs);
d4f3574e
SS
7607}
7608
4d9d9d04
PA
7609/* Called when we should continue running the inferior, because the
7610 current event doesn't cause a user visible stop. This does the
7611 resuming part; waiting for the next event is done elsewhere. */
7612
7613static void
7614keep_going (struct execution_control_state *ecs)
7615{
7616 if (ecs->event_thread->control.trap_expected
7617 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7618 ecs->event_thread->control.trap_expected = 0;
7619
7620 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7621 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7622 keep_going_pass_signal (ecs);
7623}
7624
104c1213
JM
7625/* This function normally comes after a resume, before
7626 handle_inferior_event exits. It takes care of any last bits of
7627 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7628
104c1213
JM
7629static void
7630prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7631{
527159b7 7632 if (debug_infrun)
8a9de0e4 7633 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7634
104c1213 7635 ecs->wait_some_more = 1;
0b333c5e
PA
7636
7637 if (!target_is_async_p ())
7638 mark_infrun_async_event_handler ();
c906108c 7639}
11cf8741 7640
fd664c91 7641/* We are done with the step range of a step/next/si/ni command.
b57bacec 7642 Called once for each n of a "step n" operation. */
fd664c91
PA
7643
7644static void
bdc36728 7645end_stepping_range (struct execution_control_state *ecs)
fd664c91 7646{
bdc36728 7647 ecs->event_thread->control.stop_step = 1;
bdc36728 7648 stop_waiting (ecs);
fd664c91
PA
7649}
7650
33d62d64
JK
7651/* Several print_*_reason functions to print why the inferior has stopped.
7652 We always print something when the inferior exits, or receives a signal.
7653 The rest of the cases are dealt with later on in normal_stop and
7654 print_it_typical. Ideally there should be a call to one of these
7655 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7656 stop_waiting is called.
33d62d64 7657
fd664c91
PA
7658 Note that we don't call these directly, instead we delegate that to
7659 the interpreters, through observers. Interpreters then call these
7660 with whatever uiout is right. */
33d62d64 7661
fd664c91
PA
7662void
7663print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7664{
fd664c91 7665 /* For CLI-like interpreters, print nothing. */
33d62d64 7666
112e8700 7667 if (uiout->is_mi_like_p ())
fd664c91 7668 {
112e8700 7669 uiout->field_string ("reason",
fd664c91
PA
7670 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7671 }
7672}
33d62d64 7673
fd664c91
PA
7674void
7675print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7676{
33d62d64 7677 annotate_signalled ();
112e8700
SM
7678 if (uiout->is_mi_like_p ())
7679 uiout->field_string
7680 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7681 uiout->text ("\nProgram terminated with signal ");
33d62d64 7682 annotate_signal_name ();
112e8700 7683 uiout->field_string ("signal-name",
2ea28649 7684 gdb_signal_to_name (siggnal));
33d62d64 7685 annotate_signal_name_end ();
112e8700 7686 uiout->text (", ");
33d62d64 7687 annotate_signal_string ();
112e8700 7688 uiout->field_string ("signal-meaning",
2ea28649 7689 gdb_signal_to_string (siggnal));
33d62d64 7690 annotate_signal_string_end ();
112e8700
SM
7691 uiout->text (".\n");
7692 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7693}
7694
fd664c91
PA
7695void
7696print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7697{
fda326dd 7698 struct inferior *inf = current_inferior ();
a068643d 7699 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7700
33d62d64
JK
7701 annotate_exited (exitstatus);
7702 if (exitstatus)
7703 {
112e8700
SM
7704 if (uiout->is_mi_like_p ())
7705 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
7706 std::string exit_code_str
7707 = string_printf ("0%o", (unsigned int) exitstatus);
7708 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7709 plongest (inf->num), pidstr.c_str (),
7710 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
7711 }
7712 else
11cf8741 7713 {
112e8700
SM
7714 if (uiout->is_mi_like_p ())
7715 uiout->field_string
7716 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
7717 uiout->message ("[Inferior %s (%s) exited normally]\n",
7718 plongest (inf->num), pidstr.c_str ());
33d62d64 7719 }
33d62d64
JK
7720}
7721
012b3a21
WT
7722/* Some targets/architectures can do extra processing/display of
7723 segmentation faults. E.g., Intel MPX boundary faults.
7724 Call the architecture dependent function to handle the fault. */
7725
7726static void
7727handle_segmentation_fault (struct ui_out *uiout)
7728{
7729 struct regcache *regcache = get_current_regcache ();
ac7936df 7730 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7731
7732 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7733 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7734}
7735
fd664c91
PA
7736void
7737print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7738{
f303dbd6
PA
7739 struct thread_info *thr = inferior_thread ();
7740
33d62d64
JK
7741 annotate_signal ();
7742
112e8700 7743 if (uiout->is_mi_like_p ())
f303dbd6
PA
7744 ;
7745 else if (show_thread_that_caused_stop ())
33d62d64 7746 {
f303dbd6 7747 const char *name;
33d62d64 7748
112e8700 7749 uiout->text ("\nThread ");
33eca680 7750 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
7751
7752 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7753 if (name != NULL)
7754 {
112e8700 7755 uiout->text (" \"");
33eca680 7756 uiout->field_string ("name", name);
112e8700 7757 uiout->text ("\"");
f303dbd6 7758 }
33d62d64 7759 }
f303dbd6 7760 else
112e8700 7761 uiout->text ("\nProgram");
f303dbd6 7762
112e8700
SM
7763 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7764 uiout->text (" stopped");
33d62d64
JK
7765 else
7766 {
112e8700 7767 uiout->text (" received signal ");
8b93c638 7768 annotate_signal_name ();
112e8700
SM
7769 if (uiout->is_mi_like_p ())
7770 uiout->field_string
7771 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7772 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7773 annotate_signal_name_end ();
112e8700 7774 uiout->text (", ");
8b93c638 7775 annotate_signal_string ();
112e8700 7776 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7777
7778 if (siggnal == GDB_SIGNAL_SEGV)
7779 handle_segmentation_fault (uiout);
7780
8b93c638 7781 annotate_signal_string_end ();
33d62d64 7782 }
112e8700 7783 uiout->text (".\n");
33d62d64 7784}
252fbfc8 7785
fd664c91
PA
7786void
7787print_no_history_reason (struct ui_out *uiout)
33d62d64 7788{
112e8700 7789 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7790}
43ff13b4 7791
0c7e1a46
PA
7792/* Print current location without a level number, if we have changed
7793 functions or hit a breakpoint. Print source line if we have one.
7794 bpstat_print contains the logic deciding in detail what to print,
7795 based on the event(s) that just occurred. */
7796
243a9253
PA
7797static void
7798print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7799{
7800 int bpstat_ret;
f486487f 7801 enum print_what source_flag;
0c7e1a46
PA
7802 int do_frame_printing = 1;
7803 struct thread_info *tp = inferior_thread ();
7804
7805 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7806 switch (bpstat_ret)
7807 {
7808 case PRINT_UNKNOWN:
7809 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7810 should) carry around the function and does (or should) use
7811 that when doing a frame comparison. */
7812 if (tp->control.stop_step
7813 && frame_id_eq (tp->control.step_frame_id,
7814 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7815 && (tp->control.step_start_function
7816 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7817 {
7818 /* Finished step, just print source line. */
7819 source_flag = SRC_LINE;
7820 }
7821 else
7822 {
7823 /* Print location and source line. */
7824 source_flag = SRC_AND_LOC;
7825 }
7826 break;
7827 case PRINT_SRC_AND_LOC:
7828 /* Print location and source line. */
7829 source_flag = SRC_AND_LOC;
7830 break;
7831 case PRINT_SRC_ONLY:
7832 source_flag = SRC_LINE;
7833 break;
7834 case PRINT_NOTHING:
7835 /* Something bogus. */
7836 source_flag = SRC_LINE;
7837 do_frame_printing = 0;
7838 break;
7839 default:
7840 internal_error (__FILE__, __LINE__, _("Unknown value."));
7841 }
7842
7843 /* The behavior of this routine with respect to the source
7844 flag is:
7845 SRC_LINE: Print only source line
7846 LOCATION: Print only location
7847 SRC_AND_LOC: Print location and source line. */
7848 if (do_frame_printing)
7849 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7850}
7851
243a9253
PA
7852/* See infrun.h. */
7853
7854void
4c7d57e7 7855print_stop_event (struct ui_out *uiout, bool displays)
243a9253 7856{
243a9253
PA
7857 struct target_waitstatus last;
7858 ptid_t last_ptid;
7859 struct thread_info *tp;
7860
7861 get_last_target_status (&last_ptid, &last);
7862
67ad9399
TT
7863 {
7864 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7865
67ad9399 7866 print_stop_location (&last);
243a9253 7867
67ad9399 7868 /* Display the auto-display expressions. */
4c7d57e7
TT
7869 if (displays)
7870 do_displays ();
67ad9399 7871 }
243a9253
PA
7872
7873 tp = inferior_thread ();
7874 if (tp->thread_fsm != NULL
46e3ed7f 7875 && tp->thread_fsm->finished_p ())
243a9253
PA
7876 {
7877 struct return_value_info *rv;
7878
46e3ed7f 7879 rv = tp->thread_fsm->return_value ();
243a9253
PA
7880 if (rv != NULL)
7881 print_return_value (uiout, rv);
7882 }
0c7e1a46
PA
7883}
7884
388a7084
PA
7885/* See infrun.h. */
7886
7887void
7888maybe_remove_breakpoints (void)
7889{
7890 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7891 {
7892 if (remove_breakpoints ())
7893 {
223ffa71 7894 target_terminal::ours_for_output ();
388a7084
PA
7895 printf_filtered (_("Cannot remove breakpoints because "
7896 "program is no longer writable.\nFurther "
7897 "execution is probably impossible.\n"));
7898 }
7899 }
7900}
7901
4c2f2a79
PA
7902/* The execution context that just caused a normal stop. */
7903
7904struct stop_context
7905{
2d844eaf
TT
7906 stop_context ();
7907 ~stop_context ();
7908
7909 DISABLE_COPY_AND_ASSIGN (stop_context);
7910
7911 bool changed () const;
7912
4c2f2a79
PA
7913 /* The stop ID. */
7914 ULONGEST stop_id;
c906108c 7915
4c2f2a79 7916 /* The event PTID. */
c906108c 7917
4c2f2a79
PA
7918 ptid_t ptid;
7919
7920 /* If stopp for a thread event, this is the thread that caused the
7921 stop. */
7922 struct thread_info *thread;
7923
7924 /* The inferior that caused the stop. */
7925 int inf_num;
7926};
7927
2d844eaf 7928/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7929 takes a strong reference to the thread. */
7930
2d844eaf 7931stop_context::stop_context ()
4c2f2a79 7932{
2d844eaf
TT
7933 stop_id = get_stop_id ();
7934 ptid = inferior_ptid;
7935 inf_num = current_inferior ()->num;
4c2f2a79 7936
d7e15655 7937 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7938 {
7939 /* Take a strong reference so that the thread can't be deleted
7940 yet. */
2d844eaf
TT
7941 thread = inferior_thread ();
7942 thread->incref ();
4c2f2a79
PA
7943 }
7944 else
2d844eaf 7945 thread = NULL;
4c2f2a79
PA
7946}
7947
7948/* Release a stop context previously created with save_stop_context.
7949 Releases the strong reference to the thread as well. */
7950
2d844eaf 7951stop_context::~stop_context ()
4c2f2a79 7952{
2d844eaf
TT
7953 if (thread != NULL)
7954 thread->decref ();
4c2f2a79
PA
7955}
7956
7957/* Return true if the current context no longer matches the saved stop
7958 context. */
7959
2d844eaf
TT
7960bool
7961stop_context::changed () const
7962{
7963 if (ptid != inferior_ptid)
7964 return true;
7965 if (inf_num != current_inferior ()->num)
7966 return true;
7967 if (thread != NULL && thread->state != THREAD_STOPPED)
7968 return true;
7969 if (get_stop_id () != stop_id)
7970 return true;
7971 return false;
4c2f2a79
PA
7972}
7973
7974/* See infrun.h. */
7975
7976int
96baa820 7977normal_stop (void)
c906108c 7978{
73b65bb0
DJ
7979 struct target_waitstatus last;
7980 ptid_t last_ptid;
7981
7982 get_last_target_status (&last_ptid, &last);
7983
4c2f2a79
PA
7984 new_stop_id ();
7985
29f49a6a
PA
7986 /* If an exception is thrown from this point on, make sure to
7987 propagate GDB's knowledge of the executing state to the
7988 frontend/user running state. A QUIT is an easy exception to see
7989 here, so do this before any filtered output. */
731f534f
PA
7990
7991 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7992
c35b1492 7993 if (!non_stop)
731f534f 7994 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
7995 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7996 || last.kind == TARGET_WAITKIND_EXITED)
7997 {
7998 /* On some targets, we may still have live threads in the
7999 inferior when we get a process exit event. E.g., for
8000 "checkpoint", when the current checkpoint/fork exits,
8001 linux-fork.c automatically switches to another fork from
8002 within target_mourn_inferior. */
731f534f
PA
8003 if (inferior_ptid != null_ptid)
8004 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8005 }
8006 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8007 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8008
b57bacec
PA
8009 /* As we're presenting a stop, and potentially removing breakpoints,
8010 update the thread list so we can tell whether there are threads
8011 running on the target. With target remote, for example, we can
8012 only learn about new threads when we explicitly update the thread
8013 list. Do this before notifying the interpreters about signal
8014 stops, end of stepping ranges, etc., so that the "new thread"
8015 output is emitted before e.g., "Program received signal FOO",
8016 instead of after. */
8017 update_thread_list ();
8018
8019 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8020 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8021
c906108c
SS
8022 /* As with the notification of thread events, we want to delay
8023 notifying the user that we've switched thread context until
8024 the inferior actually stops.
8025
73b65bb0
DJ
8026 There's no point in saying anything if the inferior has exited.
8027 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8028 "received a signal".
8029
8030 Also skip saying anything in non-stop mode. In that mode, as we
8031 don't want GDB to switch threads behind the user's back, to avoid
8032 races where the user is typing a command to apply to thread x,
8033 but GDB switches to thread y before the user finishes entering
8034 the command, fetch_inferior_event installs a cleanup to restore
8035 the current thread back to the thread the user had selected right
8036 after this event is handled, so we're not really switching, only
8037 informing of a stop. */
4f8d22e3 8038 if (!non_stop
731f534f 8039 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8040 && target_has_execution
8041 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8042 && last.kind != TARGET_WAITKIND_EXITED
8043 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8044 {
0e454242 8045 SWITCH_THRU_ALL_UIS ()
3b12939d 8046 {
223ffa71 8047 target_terminal::ours_for_output ();
3b12939d 8048 printf_filtered (_("[Switching to %s]\n"),
a068643d 8049 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8050 annotate_thread_changed ();
8051 }
39f77062 8052 previous_inferior_ptid = inferior_ptid;
c906108c 8053 }
c906108c 8054
0e5bf2a8
PA
8055 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8056 {
0e454242 8057 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8058 if (current_ui->prompt_state == PROMPT_BLOCKED)
8059 {
223ffa71 8060 target_terminal::ours_for_output ();
3b12939d
PA
8061 printf_filtered (_("No unwaited-for children left.\n"));
8062 }
0e5bf2a8
PA
8063 }
8064
b57bacec 8065 /* Note: this depends on the update_thread_list call above. */
388a7084 8066 maybe_remove_breakpoints ();
c906108c 8067
c906108c
SS
8068 /* If an auto-display called a function and that got a signal,
8069 delete that auto-display to avoid an infinite recursion. */
8070
8071 if (stopped_by_random_signal)
8072 disable_current_display ();
8073
0e454242 8074 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8075 {
8076 async_enable_stdin ();
8077 }
c906108c 8078
388a7084 8079 /* Let the user/frontend see the threads as stopped. */
731f534f 8080 maybe_finish_thread_state.reset ();
388a7084
PA
8081
8082 /* Select innermost stack frame - i.e., current frame is frame 0,
8083 and current location is based on that. Handle the case where the
8084 dummy call is returning after being stopped. E.g. the dummy call
8085 previously hit a breakpoint. (If the dummy call returns
8086 normally, we won't reach here.) Do this before the stop hook is
8087 run, so that it doesn't get to see the temporary dummy frame,
8088 which is not where we'll present the stop. */
8089 if (has_stack_frames ())
8090 {
8091 if (stop_stack_dummy == STOP_STACK_DUMMY)
8092 {
8093 /* Pop the empty frame that contains the stack dummy. This
8094 also restores inferior state prior to the call (struct
8095 infcall_suspend_state). */
8096 struct frame_info *frame = get_current_frame ();
8097
8098 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8099 frame_pop (frame);
8100 /* frame_pop calls reinit_frame_cache as the last thing it
8101 does which means there's now no selected frame. */
8102 }
8103
8104 select_frame (get_current_frame ());
8105
8106 /* Set the current source location. */
8107 set_current_sal_from_frame (get_current_frame ());
8108 }
dd7e2d2b
PA
8109
8110 /* Look up the hook_stop and run it (CLI internally handles problem
8111 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8112 if (stop_command != NULL)
8113 {
2d844eaf 8114 stop_context saved_context;
4c2f2a79 8115
a70b8144 8116 try
bf469271
PA
8117 {
8118 execute_cmd_pre_hook (stop_command);
8119 }
230d2906 8120 catch (const gdb_exception &ex)
bf469271
PA
8121 {
8122 exception_fprintf (gdb_stderr, ex,
8123 "Error while running hook_stop:\n");
8124 }
4c2f2a79
PA
8125
8126 /* If the stop hook resumes the target, then there's no point in
8127 trying to notify about the previous stop; its context is
8128 gone. Likewise if the command switches thread or inferior --
8129 the observers would print a stop for the wrong
8130 thread/inferior. */
2d844eaf
TT
8131 if (saved_context.changed ())
8132 return 1;
4c2f2a79 8133 }
dd7e2d2b 8134
388a7084
PA
8135 /* Notify observers about the stop. This is where the interpreters
8136 print the stop event. */
d7e15655 8137 if (inferior_ptid != null_ptid)
76727919 8138 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8139 stop_print_frame);
8140 else
76727919 8141 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8142
243a9253
PA
8143 annotate_stopped ();
8144
48844aa6
PA
8145 if (target_has_execution)
8146 {
8147 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8148 && last.kind != TARGET_WAITKIND_EXITED
8149 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8150 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8151 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8152 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8153 }
6c95b8df
PA
8154
8155 /* Try to get rid of automatically added inferiors that are no
8156 longer needed. Keeping those around slows down things linearly.
8157 Note that this never removes the current inferior. */
8158 prune_inferiors ();
4c2f2a79
PA
8159
8160 return 0;
c906108c 8161}
c906108c 8162\f
c5aa993b 8163int
96baa820 8164signal_stop_state (int signo)
c906108c 8165{
d6b48e9c 8166 return signal_stop[signo];
c906108c
SS
8167}
8168
c5aa993b 8169int
96baa820 8170signal_print_state (int signo)
c906108c
SS
8171{
8172 return signal_print[signo];
8173}
8174
c5aa993b 8175int
96baa820 8176signal_pass_state (int signo)
c906108c
SS
8177{
8178 return signal_program[signo];
8179}
8180
2455069d
UW
8181static void
8182signal_cache_update (int signo)
8183{
8184 if (signo == -1)
8185 {
a493e3e2 8186 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8187 signal_cache_update (signo);
8188
8189 return;
8190 }
8191
8192 signal_pass[signo] = (signal_stop[signo] == 0
8193 && signal_print[signo] == 0
ab04a2af
TT
8194 && signal_program[signo] == 1
8195 && signal_catch[signo] == 0);
2455069d
UW
8196}
8197
488f131b 8198int
7bda5e4a 8199signal_stop_update (int signo, int state)
d4f3574e
SS
8200{
8201 int ret = signal_stop[signo];
abbb1732 8202
d4f3574e 8203 signal_stop[signo] = state;
2455069d 8204 signal_cache_update (signo);
d4f3574e
SS
8205 return ret;
8206}
8207
488f131b 8208int
7bda5e4a 8209signal_print_update (int signo, int state)
d4f3574e
SS
8210{
8211 int ret = signal_print[signo];
abbb1732 8212
d4f3574e 8213 signal_print[signo] = state;
2455069d 8214 signal_cache_update (signo);
d4f3574e
SS
8215 return ret;
8216}
8217
488f131b 8218int
7bda5e4a 8219signal_pass_update (int signo, int state)
d4f3574e
SS
8220{
8221 int ret = signal_program[signo];
abbb1732 8222
d4f3574e 8223 signal_program[signo] = state;
2455069d 8224 signal_cache_update (signo);
d4f3574e
SS
8225 return ret;
8226}
8227
ab04a2af
TT
8228/* Update the global 'signal_catch' from INFO and notify the
8229 target. */
8230
8231void
8232signal_catch_update (const unsigned int *info)
8233{
8234 int i;
8235
8236 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8237 signal_catch[i] = info[i] > 0;
8238 signal_cache_update (-1);
adc6a863 8239 target_pass_signals (signal_pass);
ab04a2af
TT
8240}
8241
c906108c 8242static void
96baa820 8243sig_print_header (void)
c906108c 8244{
3e43a32a
MS
8245 printf_filtered (_("Signal Stop\tPrint\tPass "
8246 "to program\tDescription\n"));
c906108c
SS
8247}
8248
8249static void
2ea28649 8250sig_print_info (enum gdb_signal oursig)
c906108c 8251{
2ea28649 8252 const char *name = gdb_signal_to_name (oursig);
c906108c 8253 int name_padding = 13 - strlen (name);
96baa820 8254
c906108c
SS
8255 if (name_padding <= 0)
8256 name_padding = 0;
8257
8258 printf_filtered ("%s", name);
488f131b 8259 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8260 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8261 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8262 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8263 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8264}
8265
8266/* Specify how various signals in the inferior should be handled. */
8267
8268static void
0b39b52e 8269handle_command (const char *args, int from_tty)
c906108c 8270{
c906108c 8271 int digits, wordlen;
b926417a 8272 int sigfirst, siglast;
2ea28649 8273 enum gdb_signal oursig;
c906108c 8274 int allsigs;
c906108c
SS
8275
8276 if (args == NULL)
8277 {
e2e0b3e5 8278 error_no_arg (_("signal to handle"));
c906108c
SS
8279 }
8280
1777feb0 8281 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8282
adc6a863
PA
8283 const size_t nsigs = GDB_SIGNAL_LAST;
8284 unsigned char sigs[nsigs] {};
c906108c 8285
1777feb0 8286 /* Break the command line up into args. */
c906108c 8287
773a1edc 8288 gdb_argv built_argv (args);
c906108c
SS
8289
8290 /* Walk through the args, looking for signal oursigs, signal names, and
8291 actions. Signal numbers and signal names may be interspersed with
8292 actions, with the actions being performed for all signals cumulatively
1777feb0 8293 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8294
773a1edc 8295 for (char *arg : built_argv)
c906108c 8296 {
773a1edc
TT
8297 wordlen = strlen (arg);
8298 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8299 {;
8300 }
8301 allsigs = 0;
8302 sigfirst = siglast = -1;
8303
773a1edc 8304 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8305 {
8306 /* Apply action to all signals except those used by the
1777feb0 8307 debugger. Silently skip those. */
c906108c
SS
8308 allsigs = 1;
8309 sigfirst = 0;
8310 siglast = nsigs - 1;
8311 }
773a1edc 8312 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8313 {
8314 SET_SIGS (nsigs, sigs, signal_stop);
8315 SET_SIGS (nsigs, sigs, signal_print);
8316 }
773a1edc 8317 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8318 {
8319 UNSET_SIGS (nsigs, sigs, signal_program);
8320 }
773a1edc 8321 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8322 {
8323 SET_SIGS (nsigs, sigs, signal_print);
8324 }
773a1edc 8325 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8326 {
8327 SET_SIGS (nsigs, sigs, signal_program);
8328 }
773a1edc 8329 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8330 {
8331 UNSET_SIGS (nsigs, sigs, signal_stop);
8332 }
773a1edc 8333 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8334 {
8335 SET_SIGS (nsigs, sigs, signal_program);
8336 }
773a1edc 8337 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8338 {
8339 UNSET_SIGS (nsigs, sigs, signal_print);
8340 UNSET_SIGS (nsigs, sigs, signal_stop);
8341 }
773a1edc 8342 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8343 {
8344 UNSET_SIGS (nsigs, sigs, signal_program);
8345 }
8346 else if (digits > 0)
8347 {
8348 /* It is numeric. The numeric signal refers to our own
8349 internal signal numbering from target.h, not to host/target
8350 signal number. This is a feature; users really should be
8351 using symbolic names anyway, and the common ones like
8352 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8353
8354 sigfirst = siglast = (int)
773a1edc
TT
8355 gdb_signal_from_command (atoi (arg));
8356 if (arg[digits] == '-')
c906108c
SS
8357 {
8358 siglast = (int)
773a1edc 8359 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8360 }
8361 if (sigfirst > siglast)
8362 {
1777feb0 8363 /* Bet he didn't figure we'd think of this case... */
b926417a 8364 std::swap (sigfirst, siglast);
c906108c
SS
8365 }
8366 }
8367 else
8368 {
773a1edc 8369 oursig = gdb_signal_from_name (arg);
a493e3e2 8370 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8371 {
8372 sigfirst = siglast = (int) oursig;
8373 }
8374 else
8375 {
8376 /* Not a number and not a recognized flag word => complain. */
773a1edc 8377 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8378 }
8379 }
8380
8381 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8382 which signals to apply actions to. */
c906108c 8383
b926417a 8384 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8385 {
2ea28649 8386 switch ((enum gdb_signal) signum)
c906108c 8387 {
a493e3e2
PA
8388 case GDB_SIGNAL_TRAP:
8389 case GDB_SIGNAL_INT:
c906108c
SS
8390 if (!allsigs && !sigs[signum])
8391 {
9e2f0ad4 8392 if (query (_("%s is used by the debugger.\n\
3e43a32a 8393Are you sure you want to change it? "),
2ea28649 8394 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8395 {
8396 sigs[signum] = 1;
8397 }
8398 else
c119e040 8399 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8400 }
8401 break;
a493e3e2
PA
8402 case GDB_SIGNAL_0:
8403 case GDB_SIGNAL_DEFAULT:
8404 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8405 /* Make sure that "all" doesn't print these. */
8406 break;
8407 default:
8408 sigs[signum] = 1;
8409 break;
8410 }
8411 }
c906108c
SS
8412 }
8413
b926417a 8414 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8415 if (sigs[signum])
8416 {
2455069d 8417 signal_cache_update (-1);
adc6a863
PA
8418 target_pass_signals (signal_pass);
8419 target_program_signals (signal_program);
c906108c 8420
3a031f65
PA
8421 if (from_tty)
8422 {
8423 /* Show the results. */
8424 sig_print_header ();
8425 for (; signum < nsigs; signum++)
8426 if (sigs[signum])
aead7601 8427 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8428 }
8429
8430 break;
8431 }
c906108c
SS
8432}
8433
de0bea00
MF
8434/* Complete the "handle" command. */
8435
eb3ff9a5 8436static void
de0bea00 8437handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8438 completion_tracker &tracker,
6f937416 8439 const char *text, const char *word)
de0bea00 8440{
de0bea00
MF
8441 static const char * const keywords[] =
8442 {
8443 "all",
8444 "stop",
8445 "ignore",
8446 "print",
8447 "pass",
8448 "nostop",
8449 "noignore",
8450 "noprint",
8451 "nopass",
8452 NULL,
8453 };
8454
eb3ff9a5
PA
8455 signal_completer (ignore, tracker, text, word);
8456 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8457}
8458
2ea28649
PA
8459enum gdb_signal
8460gdb_signal_from_command (int num)
ed01b82c
PA
8461{
8462 if (num >= 1 && num <= 15)
2ea28649 8463 return (enum gdb_signal) num;
ed01b82c
PA
8464 error (_("Only signals 1-15 are valid as numeric signals.\n\
8465Use \"info signals\" for a list of symbolic signals."));
8466}
8467
c906108c
SS
8468/* Print current contents of the tables set by the handle command.
8469 It is possible we should just be printing signals actually used
8470 by the current target (but for things to work right when switching
8471 targets, all signals should be in the signal tables). */
8472
8473static void
1d12d88f 8474info_signals_command (const char *signum_exp, int from_tty)
c906108c 8475{
2ea28649 8476 enum gdb_signal oursig;
abbb1732 8477
c906108c
SS
8478 sig_print_header ();
8479
8480 if (signum_exp)
8481 {
8482 /* First see if this is a symbol name. */
2ea28649 8483 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8484 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8485 {
8486 /* No, try numeric. */
8487 oursig =
2ea28649 8488 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8489 }
8490 sig_print_info (oursig);
8491 return;
8492 }
8493
8494 printf_filtered ("\n");
8495 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8496 for (oursig = GDB_SIGNAL_FIRST;
8497 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8498 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8499 {
8500 QUIT;
8501
a493e3e2
PA
8502 if (oursig != GDB_SIGNAL_UNKNOWN
8503 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8504 sig_print_info (oursig);
8505 }
8506
3e43a32a
MS
8507 printf_filtered (_("\nUse the \"handle\" command "
8508 "to change these tables.\n"));
c906108c 8509}
4aa995e1
PA
8510
8511/* The $_siginfo convenience variable is a bit special. We don't know
8512 for sure the type of the value until we actually have a chance to
7a9dd1b2 8513 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8514 also dependent on which thread you have selected.
8515
8516 1. making $_siginfo be an internalvar that creates a new value on
8517 access.
8518
8519 2. making the value of $_siginfo be an lval_computed value. */
8520
8521/* This function implements the lval_computed support for reading a
8522 $_siginfo value. */
8523
8524static void
8525siginfo_value_read (struct value *v)
8526{
8527 LONGEST transferred;
8528
a911d87a
PA
8529 /* If we can access registers, so can we access $_siginfo. Likewise
8530 vice versa. */
8531 validate_registers_access ();
c709acd1 8532
4aa995e1 8533 transferred =
8b88a78e 8534 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8535 NULL,
8536 value_contents_all_raw (v),
8537 value_offset (v),
8538 TYPE_LENGTH (value_type (v)));
8539
8540 if (transferred != TYPE_LENGTH (value_type (v)))
8541 error (_("Unable to read siginfo"));
8542}
8543
8544/* This function implements the lval_computed support for writing a
8545 $_siginfo value. */
8546
8547static void
8548siginfo_value_write (struct value *v, struct value *fromval)
8549{
8550 LONGEST transferred;
8551
a911d87a
PA
8552 /* If we can access registers, so can we access $_siginfo. Likewise
8553 vice versa. */
8554 validate_registers_access ();
c709acd1 8555
8b88a78e 8556 transferred = target_write (current_top_target (),
4aa995e1
PA
8557 TARGET_OBJECT_SIGNAL_INFO,
8558 NULL,
8559 value_contents_all_raw (fromval),
8560 value_offset (v),
8561 TYPE_LENGTH (value_type (fromval)));
8562
8563 if (transferred != TYPE_LENGTH (value_type (fromval)))
8564 error (_("Unable to write siginfo"));
8565}
8566
c8f2448a 8567static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8568 {
8569 siginfo_value_read,
8570 siginfo_value_write
8571 };
8572
8573/* Return a new value with the correct type for the siginfo object of
78267919
UW
8574 the current thread using architecture GDBARCH. Return a void value
8575 if there's no object available. */
4aa995e1 8576
2c0b251b 8577static struct value *
22d2b532
SDJ
8578siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8579 void *ignore)
4aa995e1 8580{
4aa995e1 8581 if (target_has_stack
d7e15655 8582 && inferior_ptid != null_ptid
78267919 8583 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8584 {
78267919 8585 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8586
78267919 8587 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8588 }
8589
78267919 8590 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8591}
8592
c906108c 8593\f
16c381f0
JK
8594/* infcall_suspend_state contains state about the program itself like its
8595 registers and any signal it received when it last stopped.
8596 This state must be restored regardless of how the inferior function call
8597 ends (either successfully, or after it hits a breakpoint or signal)
8598 if the program is to properly continue where it left off. */
8599
6bf78e29 8600class infcall_suspend_state
7a292a7a 8601{
6bf78e29
AB
8602public:
8603 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8604 once the inferior function call has finished. */
8605 infcall_suspend_state (struct gdbarch *gdbarch,
8606 const struct thread_info *tp,
8607 struct regcache *regcache)
8608 : m_thread_suspend (tp->suspend),
8609 m_registers (new readonly_detached_regcache (*regcache))
8610 {
8611 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8612
8613 if (gdbarch_get_siginfo_type_p (gdbarch))
8614 {
8615 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8616 size_t len = TYPE_LENGTH (type);
8617
8618 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8619
8620 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8621 siginfo_data.get (), 0, len) != len)
8622 {
8623 /* Errors ignored. */
8624 siginfo_data.reset (nullptr);
8625 }
8626 }
8627
8628 if (siginfo_data)
8629 {
8630 m_siginfo_gdbarch = gdbarch;
8631 m_siginfo_data = std::move (siginfo_data);
8632 }
8633 }
8634
8635 /* Return a pointer to the stored register state. */
16c381f0 8636
6bf78e29
AB
8637 readonly_detached_regcache *registers () const
8638 {
8639 return m_registers.get ();
8640 }
8641
8642 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8643
8644 void restore (struct gdbarch *gdbarch,
8645 struct thread_info *tp,
8646 struct regcache *regcache) const
8647 {
8648 tp->suspend = m_thread_suspend;
8649
8650 if (m_siginfo_gdbarch == gdbarch)
8651 {
8652 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8653
8654 /* Errors ignored. */
8655 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8656 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8657 }
8658
8659 /* The inferior can be gone if the user types "print exit(0)"
8660 (and perhaps other times). */
8661 if (target_has_execution)
8662 /* NB: The register write goes through to the target. */
8663 regcache->restore (registers ());
8664 }
8665
8666private:
8667 /* How the current thread stopped before the inferior function call was
8668 executed. */
8669 struct thread_suspend_state m_thread_suspend;
8670
8671 /* The registers before the inferior function call was executed. */
8672 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8673
35515841 8674 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8675 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8676
8677 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8678 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8679 content would be invalid. */
6bf78e29 8680 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8681};
8682
cb524840
TT
8683infcall_suspend_state_up
8684save_infcall_suspend_state ()
b89667eb 8685{
b89667eb 8686 struct thread_info *tp = inferior_thread ();
1736ad11 8687 struct regcache *regcache = get_current_regcache ();
ac7936df 8688 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8689
6bf78e29
AB
8690 infcall_suspend_state_up inf_state
8691 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8692
6bf78e29
AB
8693 /* Having saved the current state, adjust the thread state, discarding
8694 any stop signal information. The stop signal is not useful when
8695 starting an inferior function call, and run_inferior_call will not use
8696 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8697 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8698
b89667eb
DE
8699 return inf_state;
8700}
8701
8702/* Restore inferior session state to INF_STATE. */
8703
8704void
16c381f0 8705restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8706{
8707 struct thread_info *tp = inferior_thread ();
1736ad11 8708 struct regcache *regcache = get_current_regcache ();
ac7936df 8709 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8710
6bf78e29 8711 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8712 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8713}
8714
b89667eb 8715void
16c381f0 8716discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8717{
dd848631 8718 delete inf_state;
b89667eb
DE
8719}
8720
daf6667d 8721readonly_detached_regcache *
16c381f0 8722get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8723{
6bf78e29 8724 return inf_state->registers ();
b89667eb
DE
8725}
8726
16c381f0
JK
8727/* infcall_control_state contains state regarding gdb's control of the
8728 inferior itself like stepping control. It also contains session state like
8729 the user's currently selected frame. */
b89667eb 8730
16c381f0 8731struct infcall_control_state
b89667eb 8732{
16c381f0
JK
8733 struct thread_control_state thread_control;
8734 struct inferior_control_state inferior_control;
d82142e2
JK
8735
8736 /* Other fields: */
ee841dd8
TT
8737 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8738 int stopped_by_random_signal = 0;
7a292a7a 8739
b89667eb 8740 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8741 struct frame_id selected_frame_id {};
7a292a7a
SS
8742};
8743
c906108c 8744/* Save all of the information associated with the inferior<==>gdb
b89667eb 8745 connection. */
c906108c 8746
cb524840
TT
8747infcall_control_state_up
8748save_infcall_control_state ()
c906108c 8749{
cb524840 8750 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8751 struct thread_info *tp = inferior_thread ();
d6b48e9c 8752 struct inferior *inf = current_inferior ();
7a292a7a 8753
16c381f0
JK
8754 inf_status->thread_control = tp->control;
8755 inf_status->inferior_control = inf->control;
d82142e2 8756
8358c15c 8757 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8758 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8759
16c381f0
JK
8760 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8761 chain. If caller's caller is walking the chain, they'll be happier if we
8762 hand them back the original chain when restore_infcall_control_state is
8763 called. */
8764 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8765
8766 /* Other fields: */
8767 inf_status->stop_stack_dummy = stop_stack_dummy;
8768 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8769
206415a3 8770 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8771
7a292a7a 8772 return inf_status;
c906108c
SS
8773}
8774
bf469271
PA
8775static void
8776restore_selected_frame (const frame_id &fid)
c906108c 8777{
bf469271 8778 frame_info *frame = frame_find_by_id (fid);
c906108c 8779
aa0cd9c1
AC
8780 /* If inf_status->selected_frame_id is NULL, there was no previously
8781 selected frame. */
101dcfbe 8782 if (frame == NULL)
c906108c 8783 {
8a3fe4f8 8784 warning (_("Unable to restore previously selected frame."));
bf469271 8785 return;
c906108c
SS
8786 }
8787
0f7d239c 8788 select_frame (frame);
c906108c
SS
8789}
8790
b89667eb
DE
8791/* Restore inferior session state to INF_STATUS. */
8792
c906108c 8793void
16c381f0 8794restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8795{
4e1c45ea 8796 struct thread_info *tp = inferior_thread ();
d6b48e9c 8797 struct inferior *inf = current_inferior ();
4e1c45ea 8798
8358c15c
JK
8799 if (tp->control.step_resume_breakpoint)
8800 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8801
5b79abe7
TT
8802 if (tp->control.exception_resume_breakpoint)
8803 tp->control.exception_resume_breakpoint->disposition
8804 = disp_del_at_next_stop;
8805
d82142e2 8806 /* Handle the bpstat_copy of the chain. */
16c381f0 8807 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8808
16c381f0
JK
8809 tp->control = inf_status->thread_control;
8810 inf->control = inf_status->inferior_control;
d82142e2
JK
8811
8812 /* Other fields: */
8813 stop_stack_dummy = inf_status->stop_stack_dummy;
8814 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8815
b89667eb 8816 if (target_has_stack)
c906108c 8817 {
bf469271 8818 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8819 walking the stack might encounter a garbage pointer and
8820 error() trying to dereference it. */
a70b8144 8821 try
bf469271
PA
8822 {
8823 restore_selected_frame (inf_status->selected_frame_id);
8824 }
230d2906 8825 catch (const gdb_exception_error &ex)
bf469271
PA
8826 {
8827 exception_fprintf (gdb_stderr, ex,
8828 "Unable to restore previously selected frame:\n");
8829 /* Error in restoring the selected frame. Select the
8830 innermost frame. */
8831 select_frame (get_current_frame ());
8832 }
c906108c 8833 }
c906108c 8834
ee841dd8 8835 delete inf_status;
7a292a7a 8836}
c906108c
SS
8837
8838void
16c381f0 8839discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8840{
8358c15c
JK
8841 if (inf_status->thread_control.step_resume_breakpoint)
8842 inf_status->thread_control.step_resume_breakpoint->disposition
8843 = disp_del_at_next_stop;
8844
5b79abe7
TT
8845 if (inf_status->thread_control.exception_resume_breakpoint)
8846 inf_status->thread_control.exception_resume_breakpoint->disposition
8847 = disp_del_at_next_stop;
8848
1777feb0 8849 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8850 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8851
ee841dd8 8852 delete inf_status;
7a292a7a 8853}
b89667eb 8854\f
7f89fd65 8855/* See infrun.h. */
0c557179
SDJ
8856
8857void
8858clear_exit_convenience_vars (void)
8859{
8860 clear_internalvar (lookup_internalvar ("_exitsignal"));
8861 clear_internalvar (lookup_internalvar ("_exitcode"));
8862}
c5aa993b 8863\f
488f131b 8864
b2175913
MS
8865/* User interface for reverse debugging:
8866 Set exec-direction / show exec-direction commands
8867 (returns error unless target implements to_set_exec_direction method). */
8868
170742de 8869enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8870static const char exec_forward[] = "forward";
8871static const char exec_reverse[] = "reverse";
8872static const char *exec_direction = exec_forward;
40478521 8873static const char *const exec_direction_names[] = {
b2175913
MS
8874 exec_forward,
8875 exec_reverse,
8876 NULL
8877};
8878
8879static void
eb4c3f4a 8880set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8881 struct cmd_list_element *cmd)
8882{
8883 if (target_can_execute_reverse)
8884 {
8885 if (!strcmp (exec_direction, exec_forward))
8886 execution_direction = EXEC_FORWARD;
8887 else if (!strcmp (exec_direction, exec_reverse))
8888 execution_direction = EXEC_REVERSE;
8889 }
8bbed405
MS
8890 else
8891 {
8892 exec_direction = exec_forward;
8893 error (_("Target does not support this operation."));
8894 }
b2175913
MS
8895}
8896
8897static void
8898show_exec_direction_func (struct ui_file *out, int from_tty,
8899 struct cmd_list_element *cmd, const char *value)
8900{
8901 switch (execution_direction) {
8902 case EXEC_FORWARD:
8903 fprintf_filtered (out, _("Forward.\n"));
8904 break;
8905 case EXEC_REVERSE:
8906 fprintf_filtered (out, _("Reverse.\n"));
8907 break;
b2175913 8908 default:
d8b34453
PA
8909 internal_error (__FILE__, __LINE__,
8910 _("bogus execution_direction value: %d"),
8911 (int) execution_direction);
b2175913
MS
8912 }
8913}
8914
d4db2f36
PA
8915static void
8916show_schedule_multiple (struct ui_file *file, int from_tty,
8917 struct cmd_list_element *c, const char *value)
8918{
3e43a32a
MS
8919 fprintf_filtered (file, _("Resuming the execution of threads "
8920 "of all processes is %s.\n"), value);
d4db2f36 8921}
ad52ddc6 8922
22d2b532
SDJ
8923/* Implementation of `siginfo' variable. */
8924
8925static const struct internalvar_funcs siginfo_funcs =
8926{
8927 siginfo_make_value,
8928 NULL,
8929 NULL
8930};
8931
372316f1
PA
8932/* Callback for infrun's target events source. This is marked when a
8933 thread has a pending status to process. */
8934
8935static void
8936infrun_async_inferior_event_handler (gdb_client_data data)
8937{
372316f1
PA
8938 inferior_event_handler (INF_REG_EVENT, NULL);
8939}
8940
c906108c 8941void
96baa820 8942_initialize_infrun (void)
c906108c 8943{
de0bea00 8944 struct cmd_list_element *c;
c906108c 8945
372316f1
PA
8946 /* Register extra event sources in the event loop. */
8947 infrun_async_inferior_event_token
8948 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8949
11db9430 8950 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8951What debugger does when program gets various signals.\n\
8952Specify a signal as argument to print info on that signal only."));
c906108c
SS
8953 add_info_alias ("handle", "signals", 0);
8954
de0bea00 8955 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8956Specify how to handle signals.\n\
486c7739 8957Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8958Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8959If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8960will be displayed instead.\n\
8961\n\
c906108c
SS
8962Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8963from 1-15 are allowed for compatibility with old versions of GDB.\n\
8964Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8965The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8966used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8967\n\
1bedd215 8968Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8969\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8970Stop means reenter debugger if this signal happens (implies print).\n\
8971Print means print a message if this signal happens.\n\
8972Pass means let program see this signal; otherwise program doesn't know.\n\
8973Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8974Pass and Stop may be combined.\n\
8975\n\
8976Multiple signals may be specified. Signal numbers and signal names\n\
8977may be interspersed with actions, with the actions being performed for\n\
8978all signals cumulatively specified."));
de0bea00 8979 set_cmd_completer (c, handle_completer);
486c7739 8980
c906108c 8981 if (!dbx_commands)
1a966eab
AC
8982 stop_command = add_cmd ("stop", class_obscure,
8983 not_just_help_class_command, _("\
8984There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8985This allows you to set a list of commands to be run each time execution\n\
1a966eab 8986of the program stops."), &cmdlist);
c906108c 8987
ccce17b0 8988 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8989Set inferior debugging."), _("\
8990Show inferior debugging."), _("\
8991When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
8992 NULL,
8993 show_debug_infrun,
8994 &setdebuglist, &showdebuglist);
527159b7 8995
3e43a32a
MS
8996 add_setshow_boolean_cmd ("displaced", class_maintenance,
8997 &debug_displaced, _("\
237fc4c9
PA
8998Set displaced stepping debugging."), _("\
8999Show displaced stepping debugging."), _("\
9000When non-zero, displaced stepping specific debugging is enabled."),
9001 NULL,
9002 show_debug_displaced,
9003 &setdebuglist, &showdebuglist);
9004
ad52ddc6
PA
9005 add_setshow_boolean_cmd ("non-stop", no_class,
9006 &non_stop_1, _("\
9007Set whether gdb controls the inferior in non-stop mode."), _("\
9008Show whether gdb controls the inferior in non-stop mode."), _("\
9009When debugging a multi-threaded program and this setting is\n\
9010off (the default, also called all-stop mode), when one thread stops\n\
9011(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9012all other threads in the program while you interact with the thread of\n\
9013interest. When you continue or step a thread, you can allow the other\n\
9014threads to run, or have them remain stopped, but while you inspect any\n\
9015thread's state, all threads stop.\n\
9016\n\
9017In non-stop mode, when one thread stops, other threads can continue\n\
9018to run freely. You'll be able to step each thread independently,\n\
9019leave it stopped or free to run as needed."),
9020 set_non_stop,
9021 show_non_stop,
9022 &setlist,
9023 &showlist);
9024
adc6a863 9025 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9026 {
9027 signal_stop[i] = 1;
9028 signal_print[i] = 1;
9029 signal_program[i] = 1;
ab04a2af 9030 signal_catch[i] = 0;
c906108c
SS
9031 }
9032
4d9d9d04
PA
9033 /* Signals caused by debugger's own actions should not be given to
9034 the program afterwards.
9035
9036 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9037 explicitly specifies that it should be delivered to the target
9038 program. Typically, that would occur when a user is debugging a
9039 target monitor on a simulator: the target monitor sets a
9040 breakpoint; the simulator encounters this breakpoint and halts
9041 the simulation handing control to GDB; GDB, noting that the stop
9042 address doesn't map to any known breakpoint, returns control back
9043 to the simulator; the simulator then delivers the hardware
9044 equivalent of a GDB_SIGNAL_TRAP to the program being
9045 debugged. */
a493e3e2
PA
9046 signal_program[GDB_SIGNAL_TRAP] = 0;
9047 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9048
9049 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9050 signal_stop[GDB_SIGNAL_ALRM] = 0;
9051 signal_print[GDB_SIGNAL_ALRM] = 0;
9052 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9053 signal_print[GDB_SIGNAL_VTALRM] = 0;
9054 signal_stop[GDB_SIGNAL_PROF] = 0;
9055 signal_print[GDB_SIGNAL_PROF] = 0;
9056 signal_stop[GDB_SIGNAL_CHLD] = 0;
9057 signal_print[GDB_SIGNAL_CHLD] = 0;
9058 signal_stop[GDB_SIGNAL_IO] = 0;
9059 signal_print[GDB_SIGNAL_IO] = 0;
9060 signal_stop[GDB_SIGNAL_POLL] = 0;
9061 signal_print[GDB_SIGNAL_POLL] = 0;
9062 signal_stop[GDB_SIGNAL_URG] = 0;
9063 signal_print[GDB_SIGNAL_URG] = 0;
9064 signal_stop[GDB_SIGNAL_WINCH] = 0;
9065 signal_print[GDB_SIGNAL_WINCH] = 0;
9066 signal_stop[GDB_SIGNAL_PRIO] = 0;
9067 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9068
cd0fc7c3
SS
9069 /* These signals are used internally by user-level thread
9070 implementations. (See signal(5) on Solaris.) Like the above
9071 signals, a healthy program receives and handles them as part of
9072 its normal operation. */
a493e3e2
PA
9073 signal_stop[GDB_SIGNAL_LWP] = 0;
9074 signal_print[GDB_SIGNAL_LWP] = 0;
9075 signal_stop[GDB_SIGNAL_WAITING] = 0;
9076 signal_print[GDB_SIGNAL_WAITING] = 0;
9077 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9078 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9079 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9080 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9081
2455069d
UW
9082 /* Update cached state. */
9083 signal_cache_update (-1);
9084
85c07804
AC
9085 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9086 &stop_on_solib_events, _("\
9087Set stopping for shared library events."), _("\
9088Show stopping for shared library events."), _("\
c906108c
SS
9089If nonzero, gdb will give control to the user when the dynamic linker\n\
9090notifies gdb of shared library events. The most common event of interest\n\
85c07804 9091to the user would be loading/unloading of a new library."),
f9e14852 9092 set_stop_on_solib_events,
920d2a44 9093 show_stop_on_solib_events,
85c07804 9094 &setlist, &showlist);
c906108c 9095
7ab04401
AC
9096 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9097 follow_fork_mode_kind_names,
9098 &follow_fork_mode_string, _("\
9099Set debugger response to a program call of fork or vfork."), _("\
9100Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9101A fork or vfork creates a new process. follow-fork-mode can be:\n\
9102 parent - the original process is debugged after a fork\n\
9103 child - the new process is debugged after a fork\n\
ea1dd7bc 9104The unfollowed process will continue to run.\n\
7ab04401
AC
9105By default, the debugger will follow the parent process."),
9106 NULL,
920d2a44 9107 show_follow_fork_mode_string,
7ab04401
AC
9108 &setlist, &showlist);
9109
6c95b8df
PA
9110 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9111 follow_exec_mode_names,
9112 &follow_exec_mode_string, _("\
9113Set debugger response to a program call of exec."), _("\
9114Show debugger response to a program call of exec."), _("\
9115An exec call replaces the program image of a process.\n\
9116\n\
9117follow-exec-mode can be:\n\
9118\n\
cce7e648 9119 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9120to this new inferior. The program the process was running before\n\
9121the exec call can be restarted afterwards by restarting the original\n\
9122inferior.\n\
9123\n\
9124 same - the debugger keeps the process bound to the same inferior.\n\
9125The new executable image replaces the previous executable loaded in\n\
9126the inferior. Restarting the inferior after the exec call restarts\n\
9127the executable the process was running after the exec call.\n\
9128\n\
9129By default, the debugger will use the same inferior."),
9130 NULL,
9131 show_follow_exec_mode_string,
9132 &setlist, &showlist);
9133
7ab04401
AC
9134 add_setshow_enum_cmd ("scheduler-locking", class_run,
9135 scheduler_enums, &scheduler_mode, _("\
9136Set mode for locking scheduler during execution."), _("\
9137Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9138off == no locking (threads may preempt at any time)\n\
9139on == full locking (no thread except the current thread may run)\n\
9140 This applies to both normal execution and replay mode.\n\
9141step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9142 In this mode, other threads may run during other commands.\n\
9143 This applies to both normal execution and replay mode.\n\
9144replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9145 set_schedlock_func, /* traps on target vector */
920d2a44 9146 show_scheduler_mode,
7ab04401 9147 &setlist, &showlist);
5fbbeb29 9148
d4db2f36
PA
9149 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9150Set mode for resuming threads of all processes."), _("\
9151Show mode for resuming threads of all processes."), _("\
9152When on, execution commands (such as 'continue' or 'next') resume all\n\
9153threads of all processes. When off (which is the default), execution\n\
9154commands only resume the threads of the current process. The set of\n\
9155threads that are resumed is further refined by the scheduler-locking\n\
9156mode (see help set scheduler-locking)."),
9157 NULL,
9158 show_schedule_multiple,
9159 &setlist, &showlist);
9160
5bf193a2
AC
9161 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9162Set mode of the step operation."), _("\
9163Show mode of the step operation."), _("\
9164When set, doing a step over a function without debug line information\n\
9165will stop at the first instruction of that function. Otherwise, the\n\
9166function is skipped and the step command stops at a different source line."),
9167 NULL,
920d2a44 9168 show_step_stop_if_no_debug,
5bf193a2 9169 &setlist, &showlist);
ca6724c1 9170
72d0e2c5
YQ
9171 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9172 &can_use_displaced_stepping, _("\
237fc4c9
PA
9173Set debugger's willingness to use displaced stepping."), _("\
9174Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9175If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9176supported by the target architecture. If off, gdb will not use displaced\n\
9177stepping to step over breakpoints, even if such is supported by the target\n\
9178architecture. If auto (which is the default), gdb will use displaced stepping\n\
9179if the target architecture supports it and non-stop mode is active, but will not\n\
9180use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9181 NULL,
9182 show_can_use_displaced_stepping,
9183 &setlist, &showlist);
237fc4c9 9184
b2175913
MS
9185 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9186 &exec_direction, _("Set direction of execution.\n\
9187Options are 'forward' or 'reverse'."),
9188 _("Show direction of execution (forward/reverse)."),
9189 _("Tells gdb whether to execute forward or backward."),
9190 set_exec_direction_func, show_exec_direction_func,
9191 &setlist, &showlist);
9192
6c95b8df
PA
9193 /* Set/show detach-on-fork: user-settable mode. */
9194
9195 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9196Set whether gdb will detach the child of a fork."), _("\
9197Show whether gdb will detach the child of a fork."), _("\
9198Tells gdb whether to detach the child of a fork."),
9199 NULL, NULL, &setlist, &showlist);
9200
03583c20
UW
9201 /* Set/show disable address space randomization mode. */
9202
9203 add_setshow_boolean_cmd ("disable-randomization", class_support,
9204 &disable_randomization, _("\
9205Set disabling of debuggee's virtual address space randomization."), _("\
9206Show disabling of debuggee's virtual address space randomization."), _("\
9207When this mode is on (which is the default), randomization of the virtual\n\
9208address space is disabled. Standalone programs run with the randomization\n\
9209enabled by default on some platforms."),
9210 &set_disable_randomization,
9211 &show_disable_randomization,
9212 &setlist, &showlist);
9213
ca6724c1 9214 /* ptid initializations */
ca6724c1
KB
9215 inferior_ptid = null_ptid;
9216 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9217
76727919
TT
9218 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9219 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9220 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9221 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9222
9223 /* Explicitly create without lookup, since that tries to create a
9224 value with a void typed value, and when we get here, gdbarch
9225 isn't initialized yet. At this point, we're quite sure there
9226 isn't another convenience variable of the same name. */
22d2b532 9227 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9228
9229 add_setshow_boolean_cmd ("observer", no_class,
9230 &observer_mode_1, _("\
9231Set whether gdb controls the inferior in observer mode."), _("\
9232Show whether gdb controls the inferior in observer mode."), _("\
9233In observer mode, GDB can get data from the inferior, but not\n\
9234affect its execution. Registers and memory may not be changed,\n\
9235breakpoints may not be set, and the program cannot be interrupted\n\
9236or signalled."),
9237 set_observer_mode,
9238 show_observer_mode,
9239 &setlist,
9240 &showlist);
c906108c 9241}
This page took 3.298563 seconds and 4 git commands to generate.