Modify get_reloc_section for targets that map .got.plt to .got
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820 81
d83ad864
DB
82static int follow_fork_inferior (int follow_child, int detach_fork);
83
84static void follow_inferior_reset_breakpoints (void);
85
96baa820 86static void set_schedlock_func (char *args, int from_tty,
488f131b 87 struct cmd_list_element *c);
96baa820 88
a289b8f6
JK
89static int currently_stepping (struct thread_info *tp);
90
96baa820
JM
91static void xdb_handle_command (char *args, int from_tty);
92
93void _initialize_infrun (void);
43ff13b4 94
e58b0e63
PA
95void nullify_last_target_wait_ptid (void);
96
2c03e5be 97static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
98
99static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
2484c66b
UW
101static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
5fbbeb29
CF
103/* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106int step_stop_if_no_debug = 0;
920d2a44
AC
107static void
108show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112}
5fbbeb29 113
1777feb0 114/* In asynchronous mode, but simulating synchronous execution. */
96baa820 115
43ff13b4
JM
116int sync_execution = 0;
117
b9f437de
PA
118/* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
96baa820 121
39f77062 122static ptid_t previous_inferior_ptid;
7a292a7a 123
07107ca6
LM
124/* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129static int detach_fork = 1;
6c95b8df 130
237fc4c9
PA
131int debug_displaced = 0;
132static void
133show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135{
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137}
138
ccce17b0 139unsigned int debug_infrun = 0;
920d2a44
AC
140static void
141show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145}
527159b7 146
03583c20
UW
147
148/* Support for disabling address space randomization. */
149
150int disable_randomization = 1;
151
152static void
153show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165}
166
167static void
168set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170{
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175}
176
d32dc48e
PA
177/* User interface for non-stop mode. */
178
179int non_stop = 0;
180static int non_stop_1 = 0;
181
182static void
183set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185{
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193}
194
195static void
196show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198{
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202}
203
d914c394
SS
204/* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
d914c394
SS
208int observer_mode = 0;
209static int observer_mode_1 = 0;
210
211static void
212set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214{
d914c394
SS
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
d914c394
SS
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245}
246
247static void
248show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250{
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252}
253
254/* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260void
261update_observer_mode (void)
262{
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277}
c2c6d25f 278
c906108c
SS
279/* Tables of how to react to signals; the user sets them. */
280
281static unsigned char *signal_stop;
282static unsigned char *signal_print;
283static unsigned char *signal_program;
284
ab04a2af
TT
285/* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289static unsigned char *signal_catch;
290
2455069d
UW
291/* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294static unsigned char *signal_pass;
295
c906108c
SS
296#define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304#define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
9b224c5e
PA
312/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315void
316update_signals_program_target (void)
317{
a493e3e2 318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
319}
320
1777feb0 321/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 322
edb3359d 323#define RESUME_ALL minus_one_ptid
c906108c
SS
324
325/* Command list pointer for the "stop" placeholder. */
326
327static struct cmd_list_element *stop_command;
328
c906108c
SS
329/* Nonzero if we want to give control to the user when we're notified
330 of shared library events by the dynamic linker. */
628fe4e4 331int stop_on_solib_events;
f9e14852
GB
332
333/* Enable or disable optional shared library event breakpoints
334 as appropriate when the above flag is changed. */
335
336static void
337set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
338{
339 update_solib_breakpoints ();
340}
341
920d2a44
AC
342static void
343show_stop_on_solib_events (struct ui_file *file, int from_tty,
344 struct cmd_list_element *c, const char *value)
345{
346 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
347 value);
348}
c906108c 349
c906108c
SS
350/* Nonzero means expecting a trace trap
351 and should stop the inferior and return silently when it happens. */
352
353int stop_after_trap;
354
642fd101
DE
355/* Save register contents here when executing a "finish" command or are
356 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
357 Thus this contains the return value from the called function (assuming
358 values are returned in a register). */
359
72cec141 360struct regcache *stop_registers;
c906108c 361
c906108c
SS
362/* Nonzero after stop if current stack frame should be printed. */
363
364static int stop_print_frame;
365
e02bc4cc 366/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
367 returned by target_wait()/deprecated_target_wait_hook(). This
368 information is returned by get_last_target_status(). */
39f77062 369static ptid_t target_last_wait_ptid;
e02bc4cc
DS
370static struct target_waitstatus target_last_waitstatus;
371
0d1e5fa7
PA
372static void context_switch (ptid_t ptid);
373
4e1c45ea 374void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 375
53904c9e
AC
376static const char follow_fork_mode_child[] = "child";
377static const char follow_fork_mode_parent[] = "parent";
378
40478521 379static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
380 follow_fork_mode_child,
381 follow_fork_mode_parent,
382 NULL
ef346e04 383};
c906108c 384
53904c9e 385static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
386static void
387show_follow_fork_mode_string (struct ui_file *file, int from_tty,
388 struct cmd_list_element *c, const char *value)
389{
3e43a32a
MS
390 fprintf_filtered (file,
391 _("Debugger response to a program "
392 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
393 value);
394}
c906108c
SS
395\f
396
d83ad864
DB
397/* Handle changes to the inferior list based on the type of fork,
398 which process is being followed, and whether the other process
399 should be detached. On entry inferior_ptid must be the ptid of
400 the fork parent. At return inferior_ptid is the ptid of the
401 followed inferior. */
402
403static int
404follow_fork_inferior (int follow_child, int detach_fork)
405{
406 int has_vforked;
79639e11 407 ptid_t parent_ptid, child_ptid;
d83ad864
DB
408
409 has_vforked = (inferior_thread ()->pending_follow.kind
410 == TARGET_WAITKIND_VFORKED);
79639e11
PA
411 parent_ptid = inferior_ptid;
412 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
413
414 if (has_vforked
415 && !non_stop /* Non-stop always resumes both branches. */
416 && (!target_is_async_p () || sync_execution)
417 && !(follow_child || detach_fork || sched_multi))
418 {
419 /* The parent stays blocked inside the vfork syscall until the
420 child execs or exits. If we don't let the child run, then
421 the parent stays blocked. If we're telling the parent to run
422 in the foreground, the user will not be able to ctrl-c to get
423 back the terminal, effectively hanging the debug session. */
424 fprintf_filtered (gdb_stderr, _("\
425Can not resume the parent process over vfork in the foreground while\n\
426holding the child stopped. Try \"set detach-on-fork\" or \
427\"set schedule-multiple\".\n"));
428 /* FIXME output string > 80 columns. */
429 return 1;
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
437 struct cleanup *old_chain;
438
439 /* Before detaching from the child, remove all breakpoints
440 from it. If we forked, then this has already been taken
441 care of by infrun.c. If we vforked however, any
442 breakpoint inserted in the parent is visible in the
443 child, even those added while stopped in a vfork
444 catchpoint. This will remove the breakpoints from the
445 parent also, but they'll be reinserted below. */
446 if (has_vforked)
447 {
448 /* Keep breakpoints list in sync. */
449 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
450 }
451
452 if (info_verbose || debug_infrun)
453 {
6f259a23 454 target_terminal_ours_for_output ();
d83ad864 455 fprintf_filtered (gdb_stdlog,
79639e11 456 _("Detaching after %s from child %s.\n"),
6f259a23 457 has_vforked ? "vfork" : "fork",
79639e11 458 target_pid_to_str (child_ptid));
d83ad864
DB
459 }
460 }
461 else
462 {
463 struct inferior *parent_inf, *child_inf;
464 struct cleanup *old_chain;
465
466 /* Add process to GDB's tables. */
79639e11 467 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
475 old_chain = save_inferior_ptid ();
476 save_current_program_space ();
477
79639e11 478 inferior_ptid = child_ptid;
d83ad864
DB
479 add_thread (inferior_ptid);
480 child_inf->symfile_flags = SYMFILE_NO_READ;
481
482 /* If this is a vfork child, then the address-space is
483 shared with the parent. */
484 if (has_vforked)
485 {
486 child_inf->pspace = parent_inf->pspace;
487 child_inf->aspace = parent_inf->aspace;
488
489 /* The parent will be frozen until the child is done
490 with the shared region. Keep track of the
491 parent. */
492 child_inf->vfork_parent = parent_inf;
493 child_inf->pending_detach = 0;
494 parent_inf->vfork_child = child_inf;
495 parent_inf->pending_detach = 0;
496 }
497 else
498 {
499 child_inf->aspace = new_address_space ();
500 child_inf->pspace = add_program_space (child_inf->aspace);
501 child_inf->removable = 1;
502 set_current_program_space (child_inf->pspace);
503 clone_program_space (child_inf->pspace, parent_inf->pspace);
504
505 /* Let the shared library layer (e.g., solib-svr4) learn
506 about this new process, relocate the cloned exec, pull
507 in shared libraries, and install the solib event
508 breakpoint. If a "cloned-VM" event was propagated
509 better throughout the core, this wouldn't be
510 required. */
511 solib_create_inferior_hook (0);
512 }
513
514 do_cleanups (old_chain);
515 }
516
517 if (has_vforked)
518 {
519 struct inferior *parent_inf;
520
521 parent_inf = current_inferior ();
522
523 /* If we detached from the child, then we have to be careful
524 to not insert breakpoints in the parent until the child
525 is done with the shared memory region. However, if we're
526 staying attached to the child, then we can and should
527 insert breakpoints, so that we can debug it. A
528 subsequent child exec or exit is enough to know when does
529 the child stops using the parent's address space. */
530 parent_inf->waiting_for_vfork_done = detach_fork;
531 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
532 }
533 }
534 else
535 {
536 /* Follow the child. */
537 struct inferior *parent_inf, *child_inf;
538 struct program_space *parent_pspace;
539
540 if (info_verbose || debug_infrun)
541 {
6f259a23
DB
542 target_terminal_ours_for_output ();
543 fprintf_filtered (gdb_stdlog,
79639e11
PA
544 _("Attaching after %s %s to child %s.\n"),
545 target_pid_to_str (parent_ptid),
6f259a23 546 has_vforked ? "vfork" : "fork",
79639e11 547 target_pid_to_str (child_ptid));
d83ad864
DB
548 }
549
550 /* Add the new inferior first, so that the target_detach below
551 doesn't unpush the target. */
552
79639e11 553 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
554
555 parent_inf = current_inferior ();
556 child_inf->attach_flag = parent_inf->attach_flag;
557 copy_terminal_info (child_inf, parent_inf);
558 child_inf->gdbarch = parent_inf->gdbarch;
559 copy_inferior_target_desc_info (child_inf, parent_inf);
560
561 parent_pspace = parent_inf->pspace;
562
563 /* If we're vforking, we want to hold on to the parent until the
564 child exits or execs. At child exec or exit time we can
565 remove the old breakpoints from the parent and detach or
566 resume debugging it. Otherwise, detach the parent now; we'll
567 want to reuse it's program/address spaces, but we can't set
568 them to the child before removing breakpoints from the
569 parent, otherwise, the breakpoints module could decide to
570 remove breakpoints from the wrong process (since they'd be
571 assigned to the same address space). */
572
573 if (has_vforked)
574 {
575 gdb_assert (child_inf->vfork_parent == NULL);
576 gdb_assert (parent_inf->vfork_child == NULL);
577 child_inf->vfork_parent = parent_inf;
578 child_inf->pending_detach = 0;
579 parent_inf->vfork_child = child_inf;
580 parent_inf->pending_detach = detach_fork;
581 parent_inf->waiting_for_vfork_done = 0;
582 }
583 else if (detach_fork)
6f259a23
DB
584 {
585 if (info_verbose || debug_infrun)
586 {
587 target_terminal_ours_for_output ();
588 fprintf_filtered (gdb_stdlog,
589 _("Detaching after fork from "
79639e11
PA
590 "child %s.\n"),
591 target_pid_to_str (child_ptid));
6f259a23
DB
592 }
593
594 target_detach (NULL, 0);
595 }
d83ad864
DB
596
597 /* Note that the detach above makes PARENT_INF dangling. */
598
599 /* Add the child thread to the appropriate lists, and switch to
600 this new thread, before cloning the program space, and
601 informing the solib layer about this new process. */
602
79639e11 603 inferior_ptid = child_ptid;
d83ad864
DB
604 add_thread (inferior_ptid);
605
606 /* If this is a vfork child, then the address-space is shared
607 with the parent. If we detached from the parent, then we can
608 reuse the parent's program/address spaces. */
609 if (has_vforked || detach_fork)
610 {
611 child_inf->pspace = parent_pspace;
612 child_inf->aspace = child_inf->pspace->aspace;
613 }
614 else
615 {
616 child_inf->aspace = new_address_space ();
617 child_inf->pspace = add_program_space (child_inf->aspace);
618 child_inf->removable = 1;
619 child_inf->symfile_flags = SYMFILE_NO_READ;
620 set_current_program_space (child_inf->pspace);
621 clone_program_space (child_inf->pspace, parent_pspace);
622
623 /* Let the shared library layer (e.g., solib-svr4) learn
624 about this new process, relocate the cloned exec, pull in
625 shared libraries, and install the solib event breakpoint.
626 If a "cloned-VM" event was propagated better throughout
627 the core, this wouldn't be required. */
628 solib_create_inferior_hook (0);
629 }
630 }
631
632 return target_follow_fork (follow_child, detach_fork);
633}
634
e58b0e63
PA
635/* Tell the target to follow the fork we're stopped at. Returns true
636 if the inferior should be resumed; false, if the target for some
637 reason decided it's best not to resume. */
638
6604731b 639static int
4ef3f3be 640follow_fork (void)
c906108c 641{
ea1dd7bc 642 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
643 int should_resume = 1;
644 struct thread_info *tp;
645
646 /* Copy user stepping state to the new inferior thread. FIXME: the
647 followed fork child thread should have a copy of most of the
4e3990f4
DE
648 parent thread structure's run control related fields, not just these.
649 Initialized to avoid "may be used uninitialized" warnings from gcc. */
650 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 651 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
652 CORE_ADDR step_range_start = 0;
653 CORE_ADDR step_range_end = 0;
654 struct frame_id step_frame_id = { 0 };
17b2616c 655 struct interp *command_interp = NULL;
e58b0e63
PA
656
657 if (!non_stop)
658 {
659 ptid_t wait_ptid;
660 struct target_waitstatus wait_status;
661
662 /* Get the last target status returned by target_wait(). */
663 get_last_target_status (&wait_ptid, &wait_status);
664
665 /* If not stopped at a fork event, then there's nothing else to
666 do. */
667 if (wait_status.kind != TARGET_WAITKIND_FORKED
668 && wait_status.kind != TARGET_WAITKIND_VFORKED)
669 return 1;
670
671 /* Check if we switched over from WAIT_PTID, since the event was
672 reported. */
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* We did. Switch back to WAIT_PTID thread, to tell the
677 target to follow it (in either direction). We'll
678 afterwards refuse to resume, and inform the user what
679 happened. */
680 switch_to_thread (wait_ptid);
681 should_resume = 0;
682 }
683 }
684
685 tp = inferior_thread ();
686
687 /* If there were any forks/vforks that were caught and are now to be
688 followed, then do so now. */
689 switch (tp->pending_follow.kind)
690 {
691 case TARGET_WAITKIND_FORKED:
692 case TARGET_WAITKIND_VFORKED:
693 {
694 ptid_t parent, child;
695
696 /* If the user did a next/step, etc, over a fork call,
697 preserve the stepping state in the fork child. */
698 if (follow_child && should_resume)
699 {
8358c15c
JK
700 step_resume_breakpoint = clone_momentary_breakpoint
701 (tp->control.step_resume_breakpoint);
16c381f0
JK
702 step_range_start = tp->control.step_range_start;
703 step_range_end = tp->control.step_range_end;
704 step_frame_id = tp->control.step_frame_id;
186c406b
TT
705 exception_resume_breakpoint
706 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 707 command_interp = tp->control.command_interp;
e58b0e63
PA
708
709 /* For now, delete the parent's sr breakpoint, otherwise,
710 parent/child sr breakpoints are considered duplicates,
711 and the child version will not be installed. Remove
712 this when the breakpoints module becomes aware of
713 inferiors and address spaces. */
714 delete_step_resume_breakpoint (tp);
16c381f0
JK
715 tp->control.step_range_start = 0;
716 tp->control.step_range_end = 0;
717 tp->control.step_frame_id = null_frame_id;
186c406b 718 delete_exception_resume_breakpoint (tp);
17b2616c 719 tp->control.command_interp = NULL;
e58b0e63
PA
720 }
721
722 parent = inferior_ptid;
723 child = tp->pending_follow.value.related_pid;
724
d83ad864
DB
725 /* Set up inferior(s) as specified by the caller, and tell the
726 target to do whatever is necessary to follow either parent
727 or child. */
728 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
729 {
730 /* Target refused to follow, or there's some other reason
731 we shouldn't resume. */
732 should_resume = 0;
733 }
734 else
735 {
736 /* This pending follow fork event is now handled, one way
737 or another. The previous selected thread may be gone
738 from the lists by now, but if it is still around, need
739 to clear the pending follow request. */
e09875d4 740 tp = find_thread_ptid (parent);
e58b0e63
PA
741 if (tp)
742 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
743
744 /* This makes sure we don't try to apply the "Switched
745 over from WAIT_PID" logic above. */
746 nullify_last_target_wait_ptid ();
747
1777feb0 748 /* If we followed the child, switch to it... */
e58b0e63
PA
749 if (follow_child)
750 {
751 switch_to_thread (child);
752
753 /* ... and preserve the stepping state, in case the
754 user was stepping over the fork call. */
755 if (should_resume)
756 {
757 tp = inferior_thread ();
8358c15c
JK
758 tp->control.step_resume_breakpoint
759 = step_resume_breakpoint;
16c381f0
JK
760 tp->control.step_range_start = step_range_start;
761 tp->control.step_range_end = step_range_end;
762 tp->control.step_frame_id = step_frame_id;
186c406b
TT
763 tp->control.exception_resume_breakpoint
764 = exception_resume_breakpoint;
17b2616c 765 tp->control.command_interp = command_interp;
e58b0e63
PA
766 }
767 else
768 {
769 /* If we get here, it was because we're trying to
770 resume from a fork catchpoint, but, the user
771 has switched threads away from the thread that
772 forked. In that case, the resume command
773 issued is most likely not applicable to the
774 child, so just warn, and refuse to resume. */
3e43a32a
MS
775 warning (_("Not resuming: switched threads "
776 "before following fork child.\n"));
e58b0e63
PA
777 }
778
779 /* Reset breakpoints in the child as appropriate. */
780 follow_inferior_reset_breakpoints ();
781 }
782 else
783 switch_to_thread (parent);
784 }
785 }
786 break;
787 case TARGET_WAITKIND_SPURIOUS:
788 /* Nothing to follow. */
789 break;
790 default:
791 internal_error (__FILE__, __LINE__,
792 "Unexpected pending_follow.kind %d\n",
793 tp->pending_follow.kind);
794 break;
795 }
c906108c 796
e58b0e63 797 return should_resume;
c906108c
SS
798}
799
d83ad864 800static void
6604731b 801follow_inferior_reset_breakpoints (void)
c906108c 802{
4e1c45ea
PA
803 struct thread_info *tp = inferior_thread ();
804
6604731b
DJ
805 /* Was there a step_resume breakpoint? (There was if the user
806 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
807 thread number. Cloned step_resume breakpoints are disabled on
808 creation, so enable it here now that it is associated with the
809 correct thread.
6604731b
DJ
810
811 step_resumes are a form of bp that are made to be per-thread.
812 Since we created the step_resume bp when the parent process
813 was being debugged, and now are switching to the child process,
814 from the breakpoint package's viewpoint, that's a switch of
815 "threads". We must update the bp's notion of which thread
816 it is for, or it'll be ignored when it triggers. */
817
8358c15c 818 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
819 {
820 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
821 tp->control.step_resume_breakpoint->loc->enabled = 1;
822 }
6604731b 823
a1aa2221 824 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 825 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
826 {
827 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
828 tp->control.exception_resume_breakpoint->loc->enabled = 1;
829 }
186c406b 830
6604731b
DJ
831 /* Reinsert all breakpoints in the child. The user may have set
832 breakpoints after catching the fork, in which case those
833 were never set in the child, but only in the parent. This makes
834 sure the inserted breakpoints match the breakpoint list. */
835
836 breakpoint_re_set ();
837 insert_breakpoints ();
c906108c 838}
c906108c 839
6c95b8df
PA
840/* The child has exited or execed: resume threads of the parent the
841 user wanted to be executing. */
842
843static int
844proceed_after_vfork_done (struct thread_info *thread,
845 void *arg)
846{
847 int pid = * (int *) arg;
848
849 if (ptid_get_pid (thread->ptid) == pid
850 && is_running (thread->ptid)
851 && !is_executing (thread->ptid)
852 && !thread->stop_requested
a493e3e2 853 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
854 {
855 if (debug_infrun)
856 fprintf_unfiltered (gdb_stdlog,
857 "infrun: resuming vfork parent thread %s\n",
858 target_pid_to_str (thread->ptid));
859
860 switch_to_thread (thread->ptid);
70509625 861 clear_proceed_status (0);
64ce06e4 862 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
863 }
864
865 return 0;
866}
867
868/* Called whenever we notice an exec or exit event, to handle
869 detaching or resuming a vfork parent. */
870
871static void
872handle_vfork_child_exec_or_exit (int exec)
873{
874 struct inferior *inf = current_inferior ();
875
876 if (inf->vfork_parent)
877 {
878 int resume_parent = -1;
879
880 /* This exec or exit marks the end of the shared memory region
881 between the parent and the child. If the user wanted to
882 detach from the parent, now is the time. */
883
884 if (inf->vfork_parent->pending_detach)
885 {
886 struct thread_info *tp;
887 struct cleanup *old_chain;
888 struct program_space *pspace;
889 struct address_space *aspace;
890
1777feb0 891 /* follow-fork child, detach-on-fork on. */
6c95b8df 892
68c9da30
PA
893 inf->vfork_parent->pending_detach = 0;
894
f50f4e56
PA
895 if (!exec)
896 {
897 /* If we're handling a child exit, then inferior_ptid
898 points at the inferior's pid, not to a thread. */
899 old_chain = save_inferior_ptid ();
900 save_current_program_space ();
901 save_current_inferior ();
902 }
903 else
904 old_chain = save_current_space_and_thread ();
6c95b8df
PA
905
906 /* We're letting loose of the parent. */
907 tp = any_live_thread_of_process (inf->vfork_parent->pid);
908 switch_to_thread (tp->ptid);
909
910 /* We're about to detach from the parent, which implicitly
911 removes breakpoints from its address space. There's a
912 catch here: we want to reuse the spaces for the child,
913 but, parent/child are still sharing the pspace at this
914 point, although the exec in reality makes the kernel give
915 the child a fresh set of new pages. The problem here is
916 that the breakpoints module being unaware of this, would
917 likely chose the child process to write to the parent
918 address space. Swapping the child temporarily away from
919 the spaces has the desired effect. Yes, this is "sort
920 of" a hack. */
921
922 pspace = inf->pspace;
923 aspace = inf->aspace;
924 inf->aspace = NULL;
925 inf->pspace = NULL;
926
927 if (debug_infrun || info_verbose)
928 {
6f259a23 929 target_terminal_ours_for_output ();
6c95b8df
PA
930
931 if (exec)
6f259a23
DB
932 {
933 fprintf_filtered (gdb_stdlog,
934 _("Detaching vfork parent process "
935 "%d after child exec.\n"),
936 inf->vfork_parent->pid);
937 }
6c95b8df 938 else
6f259a23
DB
939 {
940 fprintf_filtered (gdb_stdlog,
941 _("Detaching vfork parent process "
942 "%d after child exit.\n"),
943 inf->vfork_parent->pid);
944 }
6c95b8df
PA
945 }
946
947 target_detach (NULL, 0);
948
949 /* Put it back. */
950 inf->pspace = pspace;
951 inf->aspace = aspace;
952
953 do_cleanups (old_chain);
954 }
955 else if (exec)
956 {
957 /* We're staying attached to the parent, so, really give the
958 child a new address space. */
959 inf->pspace = add_program_space (maybe_new_address_space ());
960 inf->aspace = inf->pspace->aspace;
961 inf->removable = 1;
962 set_current_program_space (inf->pspace);
963
964 resume_parent = inf->vfork_parent->pid;
965
966 /* Break the bonds. */
967 inf->vfork_parent->vfork_child = NULL;
968 }
969 else
970 {
971 struct cleanup *old_chain;
972 struct program_space *pspace;
973
974 /* If this is a vfork child exiting, then the pspace and
975 aspaces were shared with the parent. Since we're
976 reporting the process exit, we'll be mourning all that is
977 found in the address space, and switching to null_ptid,
978 preparing to start a new inferior. But, since we don't
979 want to clobber the parent's address/program spaces, we
980 go ahead and create a new one for this exiting
981 inferior. */
982
983 /* Switch to null_ptid, so that clone_program_space doesn't want
984 to read the selected frame of a dead process. */
985 old_chain = save_inferior_ptid ();
986 inferior_ptid = null_ptid;
987
988 /* This inferior is dead, so avoid giving the breakpoints
989 module the option to write through to it (cloning a
990 program space resets breakpoints). */
991 inf->aspace = NULL;
992 inf->pspace = NULL;
993 pspace = add_program_space (maybe_new_address_space ());
994 set_current_program_space (pspace);
995 inf->removable = 1;
7dcd53a0 996 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
997 clone_program_space (pspace, inf->vfork_parent->pspace);
998 inf->pspace = pspace;
999 inf->aspace = pspace->aspace;
1000
1001 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1002 inferior. */
6c95b8df
PA
1003 do_cleanups (old_chain);
1004
1005 resume_parent = inf->vfork_parent->pid;
1006 /* Break the bonds. */
1007 inf->vfork_parent->vfork_child = NULL;
1008 }
1009
1010 inf->vfork_parent = NULL;
1011
1012 gdb_assert (current_program_space == inf->pspace);
1013
1014 if (non_stop && resume_parent != -1)
1015 {
1016 /* If the user wanted the parent to be running, let it go
1017 free now. */
1018 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1019
1020 if (debug_infrun)
3e43a32a
MS
1021 fprintf_unfiltered (gdb_stdlog,
1022 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1023 resume_parent);
1024
1025 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1026
1027 do_cleanups (old_chain);
1028 }
1029 }
1030}
1031
eb6c553b 1032/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1033
1034static const char follow_exec_mode_new[] = "new";
1035static const char follow_exec_mode_same[] = "same";
40478521 1036static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1037{
1038 follow_exec_mode_new,
1039 follow_exec_mode_same,
1040 NULL,
1041};
1042
1043static const char *follow_exec_mode_string = follow_exec_mode_same;
1044static void
1045show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1046 struct cmd_list_element *c, const char *value)
1047{
1048 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1049}
1050
1777feb0 1051/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1052
c906108c 1053static void
95e50b27 1054follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1055{
95e50b27 1056 struct thread_info *th, *tmp;
6c95b8df 1057 struct inferior *inf = current_inferior ();
95e50b27 1058 int pid = ptid_get_pid (ptid);
7a292a7a 1059
c906108c
SS
1060 /* This is an exec event that we actually wish to pay attention to.
1061 Refresh our symbol table to the newly exec'd program, remove any
1062 momentary bp's, etc.
1063
1064 If there are breakpoints, they aren't really inserted now,
1065 since the exec() transformed our inferior into a fresh set
1066 of instructions.
1067
1068 We want to preserve symbolic breakpoints on the list, since
1069 we have hopes that they can be reset after the new a.out's
1070 symbol table is read.
1071
1072 However, any "raw" breakpoints must be removed from the list
1073 (e.g., the solib bp's), since their address is probably invalid
1074 now.
1075
1076 And, we DON'T want to call delete_breakpoints() here, since
1077 that may write the bp's "shadow contents" (the instruction
1078 value that was overwritten witha TRAP instruction). Since
1777feb0 1079 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1080
1081 mark_breakpoints_out ();
1082
95e50b27
PA
1083 /* The target reports the exec event to the main thread, even if
1084 some other thread does the exec, and even if the main thread was
1085 stopped or already gone. We may still have non-leader threads of
1086 the process on our list. E.g., on targets that don't have thread
1087 exit events (like remote); or on native Linux in non-stop mode if
1088 there were only two threads in the inferior and the non-leader
1089 one is the one that execs (and nothing forces an update of the
1090 thread list up to here). When debugging remotely, it's best to
1091 avoid extra traffic, when possible, so avoid syncing the thread
1092 list with the target, and instead go ahead and delete all threads
1093 of the process but one that reported the event. Note this must
1094 be done before calling update_breakpoints_after_exec, as
1095 otherwise clearing the threads' resources would reference stale
1096 thread breakpoints -- it may have been one of these threads that
1097 stepped across the exec. We could just clear their stepping
1098 states, but as long as we're iterating, might as well delete
1099 them. Deleting them now rather than at the next user-visible
1100 stop provides a nicer sequence of events for user and MI
1101 notifications. */
1102 ALL_NON_EXITED_THREADS_SAFE (th, tmp)
1103 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1104 delete_thread (th->ptid);
1105
1106 /* We also need to clear any left over stale state for the
1107 leader/event thread. E.g., if there was any step-resume
1108 breakpoint or similar, it's gone now. We cannot truly
1109 step-to-next statement through an exec(). */
1110 th = inferior_thread ();
8358c15c 1111 th->control.step_resume_breakpoint = NULL;
186c406b 1112 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1113 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1114 th->control.step_range_start = 0;
1115 th->control.step_range_end = 0;
c906108c 1116
95e50b27
PA
1117 /* The user may have had the main thread held stopped in the
1118 previous image (e.g., schedlock on, or non-stop). Release
1119 it now. */
a75724bc
PA
1120 th->stop_requested = 0;
1121
95e50b27
PA
1122 update_breakpoints_after_exec ();
1123
1777feb0 1124 /* What is this a.out's name? */
6c95b8df
PA
1125 printf_unfiltered (_("%s is executing new program: %s\n"),
1126 target_pid_to_str (inferior_ptid),
1127 execd_pathname);
c906108c
SS
1128
1129 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1130 inferior has essentially been killed & reborn. */
7a292a7a 1131
c906108c 1132 gdb_flush (gdb_stdout);
6ca15a4b
PA
1133
1134 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
1135
1136 if (gdb_sysroot && *gdb_sysroot)
1137 {
1138 char *name = alloca (strlen (gdb_sysroot)
1139 + strlen (execd_pathname)
1140 + 1);
abbb1732 1141
e85a822c
DJ
1142 strcpy (name, gdb_sysroot);
1143 strcat (name, execd_pathname);
1144 execd_pathname = name;
1145 }
c906108c 1146
cce9b6bf
PA
1147 /* Reset the shared library package. This ensures that we get a
1148 shlib event when the child reaches "_start", at which point the
1149 dld will have had a chance to initialize the child. */
1150 /* Also, loading a symbol file below may trigger symbol lookups, and
1151 we don't want those to be satisfied by the libraries of the
1152 previous incarnation of this process. */
1153 no_shared_libraries (NULL, 0);
1154
6c95b8df
PA
1155 if (follow_exec_mode_string == follow_exec_mode_new)
1156 {
1157 struct program_space *pspace;
6c95b8df
PA
1158
1159 /* The user wants to keep the old inferior and program spaces
1160 around. Create a new fresh one, and switch to it. */
1161
1162 inf = add_inferior (current_inferior ()->pid);
1163 pspace = add_program_space (maybe_new_address_space ());
1164 inf->pspace = pspace;
1165 inf->aspace = pspace->aspace;
1166
1167 exit_inferior_num_silent (current_inferior ()->num);
1168
1169 set_current_inferior (inf);
1170 set_current_program_space (pspace);
1171 }
9107fc8d
PA
1172 else
1173 {
1174 /* The old description may no longer be fit for the new image.
1175 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1176 old description; we'll read a new one below. No need to do
1177 this on "follow-exec-mode new", as the old inferior stays
1178 around (its description is later cleared/refetched on
1179 restart). */
1180 target_clear_description ();
1181 }
6c95b8df
PA
1182
1183 gdb_assert (current_program_space == inf->pspace);
1184
1777feb0 1185 /* That a.out is now the one to use. */
6c95b8df
PA
1186 exec_file_attach (execd_pathname, 0);
1187
c1e56572
JK
1188 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1189 (Position Independent Executable) main symbol file will get applied by
1190 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1191 the breakpoints with the zero displacement. */
1192
7dcd53a0
TT
1193 symbol_file_add (execd_pathname,
1194 (inf->symfile_flags
1195 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1196 NULL, 0);
1197
7dcd53a0
TT
1198 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1199 set_initial_language ();
c906108c 1200
9107fc8d
PA
1201 /* If the target can specify a description, read it. Must do this
1202 after flipping to the new executable (because the target supplied
1203 description must be compatible with the executable's
1204 architecture, and the old executable may e.g., be 32-bit, while
1205 the new one 64-bit), and before anything involving memory or
1206 registers. */
1207 target_find_description ();
1208
268a4a75 1209 solib_create_inferior_hook (0);
c906108c 1210
4efc6507
DE
1211 jit_inferior_created_hook ();
1212
c1e56572
JK
1213 breakpoint_re_set ();
1214
c906108c
SS
1215 /* Reinsert all breakpoints. (Those which were symbolic have
1216 been reset to the proper address in the new a.out, thanks
1777feb0 1217 to symbol_file_command...). */
c906108c
SS
1218 insert_breakpoints ();
1219
1220 /* The next resume of this inferior should bring it to the shlib
1221 startup breakpoints. (If the user had also set bp's on
1222 "main" from the old (parent) process, then they'll auto-
1777feb0 1223 matically get reset there in the new process.). */
c906108c
SS
1224}
1225
963f9c80 1226/* Info about an instruction that is being stepped over. */
31e77af2
PA
1227
1228struct step_over_info
1229{
963f9c80
PA
1230 /* If we're stepping past a breakpoint, this is the address space
1231 and address of the instruction the breakpoint is set at. We'll
1232 skip inserting all breakpoints here. Valid iff ASPACE is
1233 non-NULL. */
31e77af2 1234 struct address_space *aspace;
31e77af2 1235 CORE_ADDR address;
963f9c80
PA
1236
1237 /* The instruction being stepped over triggers a nonsteppable
1238 watchpoint. If true, we'll skip inserting watchpoints. */
1239 int nonsteppable_watchpoint_p;
31e77af2
PA
1240};
1241
1242/* The step-over info of the location that is being stepped over.
1243
1244 Note that with async/breakpoint always-inserted mode, a user might
1245 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1246 being stepped over. As setting a new breakpoint inserts all
1247 breakpoints, we need to make sure the breakpoint being stepped over
1248 isn't inserted then. We do that by only clearing the step-over
1249 info when the step-over is actually finished (or aborted).
1250
1251 Presently GDB can only step over one breakpoint at any given time.
1252 Given threads that can't run code in the same address space as the
1253 breakpoint's can't really miss the breakpoint, GDB could be taught
1254 to step-over at most one breakpoint per address space (so this info
1255 could move to the address space object if/when GDB is extended).
1256 The set of breakpoints being stepped over will normally be much
1257 smaller than the set of all breakpoints, so a flag in the
1258 breakpoint location structure would be wasteful. A separate list
1259 also saves complexity and run-time, as otherwise we'd have to go
1260 through all breakpoint locations clearing their flag whenever we
1261 start a new sequence. Similar considerations weigh against storing
1262 this info in the thread object. Plus, not all step overs actually
1263 have breakpoint locations -- e.g., stepping past a single-step
1264 breakpoint, or stepping to complete a non-continuable
1265 watchpoint. */
1266static struct step_over_info step_over_info;
1267
1268/* Record the address of the breakpoint/instruction we're currently
1269 stepping over. */
1270
1271static void
963f9c80
PA
1272set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1273 int nonsteppable_watchpoint_p)
31e77af2
PA
1274{
1275 step_over_info.aspace = aspace;
1276 step_over_info.address = address;
963f9c80 1277 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1278}
1279
1280/* Called when we're not longer stepping over a breakpoint / an
1281 instruction, so all breakpoints are free to be (re)inserted. */
1282
1283static void
1284clear_step_over_info (void)
1285{
1286 step_over_info.aspace = NULL;
1287 step_over_info.address = 0;
963f9c80 1288 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1289}
1290
7f89fd65 1291/* See infrun.h. */
31e77af2
PA
1292
1293int
1294stepping_past_instruction_at (struct address_space *aspace,
1295 CORE_ADDR address)
1296{
1297 return (step_over_info.aspace != NULL
1298 && breakpoint_address_match (aspace, address,
1299 step_over_info.aspace,
1300 step_over_info.address));
1301}
1302
963f9c80
PA
1303/* See infrun.h. */
1304
1305int
1306stepping_past_nonsteppable_watchpoint (void)
1307{
1308 return step_over_info.nonsteppable_watchpoint_p;
1309}
1310
6cc83d2a
PA
1311/* Returns true if step-over info is valid. */
1312
1313static int
1314step_over_info_valid_p (void)
1315{
963f9c80
PA
1316 return (step_over_info.aspace != NULL
1317 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1318}
1319
c906108c 1320\f
237fc4c9
PA
1321/* Displaced stepping. */
1322
1323/* In non-stop debugging mode, we must take special care to manage
1324 breakpoints properly; in particular, the traditional strategy for
1325 stepping a thread past a breakpoint it has hit is unsuitable.
1326 'Displaced stepping' is a tactic for stepping one thread past a
1327 breakpoint it has hit while ensuring that other threads running
1328 concurrently will hit the breakpoint as they should.
1329
1330 The traditional way to step a thread T off a breakpoint in a
1331 multi-threaded program in all-stop mode is as follows:
1332
1333 a0) Initially, all threads are stopped, and breakpoints are not
1334 inserted.
1335 a1) We single-step T, leaving breakpoints uninserted.
1336 a2) We insert breakpoints, and resume all threads.
1337
1338 In non-stop debugging, however, this strategy is unsuitable: we
1339 don't want to have to stop all threads in the system in order to
1340 continue or step T past a breakpoint. Instead, we use displaced
1341 stepping:
1342
1343 n0) Initially, T is stopped, other threads are running, and
1344 breakpoints are inserted.
1345 n1) We copy the instruction "under" the breakpoint to a separate
1346 location, outside the main code stream, making any adjustments
1347 to the instruction, register, and memory state as directed by
1348 T's architecture.
1349 n2) We single-step T over the instruction at its new location.
1350 n3) We adjust the resulting register and memory state as directed
1351 by T's architecture. This includes resetting T's PC to point
1352 back into the main instruction stream.
1353 n4) We resume T.
1354
1355 This approach depends on the following gdbarch methods:
1356
1357 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1358 indicate where to copy the instruction, and how much space must
1359 be reserved there. We use these in step n1.
1360
1361 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1362 address, and makes any necessary adjustments to the instruction,
1363 register contents, and memory. We use this in step n1.
1364
1365 - gdbarch_displaced_step_fixup adjusts registers and memory after
1366 we have successfuly single-stepped the instruction, to yield the
1367 same effect the instruction would have had if we had executed it
1368 at its original address. We use this in step n3.
1369
1370 - gdbarch_displaced_step_free_closure provides cleanup.
1371
1372 The gdbarch_displaced_step_copy_insn and
1373 gdbarch_displaced_step_fixup functions must be written so that
1374 copying an instruction with gdbarch_displaced_step_copy_insn,
1375 single-stepping across the copied instruction, and then applying
1376 gdbarch_displaced_insn_fixup should have the same effects on the
1377 thread's memory and registers as stepping the instruction in place
1378 would have. Exactly which responsibilities fall to the copy and
1379 which fall to the fixup is up to the author of those functions.
1380
1381 See the comments in gdbarch.sh for details.
1382
1383 Note that displaced stepping and software single-step cannot
1384 currently be used in combination, although with some care I think
1385 they could be made to. Software single-step works by placing
1386 breakpoints on all possible subsequent instructions; if the
1387 displaced instruction is a PC-relative jump, those breakpoints
1388 could fall in very strange places --- on pages that aren't
1389 executable, or at addresses that are not proper instruction
1390 boundaries. (We do generally let other threads run while we wait
1391 to hit the software single-step breakpoint, and they might
1392 encounter such a corrupted instruction.) One way to work around
1393 this would be to have gdbarch_displaced_step_copy_insn fully
1394 simulate the effect of PC-relative instructions (and return NULL)
1395 on architectures that use software single-stepping.
1396
1397 In non-stop mode, we can have independent and simultaneous step
1398 requests, so more than one thread may need to simultaneously step
1399 over a breakpoint. The current implementation assumes there is
1400 only one scratch space per process. In this case, we have to
1401 serialize access to the scratch space. If thread A wants to step
1402 over a breakpoint, but we are currently waiting for some other
1403 thread to complete a displaced step, we leave thread A stopped and
1404 place it in the displaced_step_request_queue. Whenever a displaced
1405 step finishes, we pick the next thread in the queue and start a new
1406 displaced step operation on it. See displaced_step_prepare and
1407 displaced_step_fixup for details. */
1408
237fc4c9
PA
1409struct displaced_step_request
1410{
1411 ptid_t ptid;
1412 struct displaced_step_request *next;
1413};
1414
fc1cf338
PA
1415/* Per-inferior displaced stepping state. */
1416struct displaced_step_inferior_state
1417{
1418 /* Pointer to next in linked list. */
1419 struct displaced_step_inferior_state *next;
1420
1421 /* The process this displaced step state refers to. */
1422 int pid;
1423
1424 /* A queue of pending displaced stepping requests. One entry per
1425 thread that needs to do a displaced step. */
1426 struct displaced_step_request *step_request_queue;
1427
1428 /* If this is not null_ptid, this is the thread carrying out a
1429 displaced single-step in process PID. This thread's state will
1430 require fixing up once it has completed its step. */
1431 ptid_t step_ptid;
1432
1433 /* The architecture the thread had when we stepped it. */
1434 struct gdbarch *step_gdbarch;
1435
1436 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1437 for post-step cleanup. */
1438 struct displaced_step_closure *step_closure;
1439
1440 /* The address of the original instruction, and the copy we
1441 made. */
1442 CORE_ADDR step_original, step_copy;
1443
1444 /* Saved contents of copy area. */
1445 gdb_byte *step_saved_copy;
1446};
1447
1448/* The list of states of processes involved in displaced stepping
1449 presently. */
1450static struct displaced_step_inferior_state *displaced_step_inferior_states;
1451
1452/* Get the displaced stepping state of process PID. */
1453
1454static struct displaced_step_inferior_state *
1455get_displaced_stepping_state (int pid)
1456{
1457 struct displaced_step_inferior_state *state;
1458
1459 for (state = displaced_step_inferior_states;
1460 state != NULL;
1461 state = state->next)
1462 if (state->pid == pid)
1463 return state;
1464
1465 return NULL;
1466}
1467
1468/* Add a new displaced stepping state for process PID to the displaced
1469 stepping state list, or return a pointer to an already existing
1470 entry, if it already exists. Never returns NULL. */
1471
1472static struct displaced_step_inferior_state *
1473add_displaced_stepping_state (int pid)
1474{
1475 struct displaced_step_inferior_state *state;
1476
1477 for (state = displaced_step_inferior_states;
1478 state != NULL;
1479 state = state->next)
1480 if (state->pid == pid)
1481 return state;
237fc4c9 1482
fc1cf338
PA
1483 state = xcalloc (1, sizeof (*state));
1484 state->pid = pid;
1485 state->next = displaced_step_inferior_states;
1486 displaced_step_inferior_states = state;
237fc4c9 1487
fc1cf338
PA
1488 return state;
1489}
1490
a42244db
YQ
1491/* If inferior is in displaced stepping, and ADDR equals to starting address
1492 of copy area, return corresponding displaced_step_closure. Otherwise,
1493 return NULL. */
1494
1495struct displaced_step_closure*
1496get_displaced_step_closure_by_addr (CORE_ADDR addr)
1497{
1498 struct displaced_step_inferior_state *displaced
1499 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1500
1501 /* If checking the mode of displaced instruction in copy area. */
1502 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1503 && (displaced->step_copy == addr))
1504 return displaced->step_closure;
1505
1506 return NULL;
1507}
1508
fc1cf338 1509/* Remove the displaced stepping state of process PID. */
237fc4c9 1510
fc1cf338
PA
1511static void
1512remove_displaced_stepping_state (int pid)
1513{
1514 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1515
fc1cf338
PA
1516 gdb_assert (pid != 0);
1517
1518 it = displaced_step_inferior_states;
1519 prev_next_p = &displaced_step_inferior_states;
1520 while (it)
1521 {
1522 if (it->pid == pid)
1523 {
1524 *prev_next_p = it->next;
1525 xfree (it);
1526 return;
1527 }
1528
1529 prev_next_p = &it->next;
1530 it = *prev_next_p;
1531 }
1532}
1533
1534static void
1535infrun_inferior_exit (struct inferior *inf)
1536{
1537 remove_displaced_stepping_state (inf->pid);
1538}
237fc4c9 1539
fff08868
HZ
1540/* If ON, and the architecture supports it, GDB will use displaced
1541 stepping to step over breakpoints. If OFF, or if the architecture
1542 doesn't support it, GDB will instead use the traditional
1543 hold-and-step approach. If AUTO (which is the default), GDB will
1544 decide which technique to use to step over breakpoints depending on
1545 which of all-stop or non-stop mode is active --- displaced stepping
1546 in non-stop mode; hold-and-step in all-stop mode. */
1547
72d0e2c5 1548static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1549
237fc4c9
PA
1550static void
1551show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1552 struct cmd_list_element *c,
1553 const char *value)
1554{
72d0e2c5 1555 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1556 fprintf_filtered (file,
1557 _("Debugger's willingness to use displaced stepping "
1558 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1559 value, non_stop ? "on" : "off");
1560 else
3e43a32a
MS
1561 fprintf_filtered (file,
1562 _("Debugger's willingness to use displaced stepping "
1563 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1564}
1565
fff08868
HZ
1566/* Return non-zero if displaced stepping can/should be used to step
1567 over breakpoints. */
1568
237fc4c9
PA
1569static int
1570use_displaced_stepping (struct gdbarch *gdbarch)
1571{
72d0e2c5
YQ
1572 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1573 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1574 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1575 && find_record_target () == NULL);
237fc4c9
PA
1576}
1577
1578/* Clean out any stray displaced stepping state. */
1579static void
fc1cf338 1580displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1581{
1582 /* Indicate that there is no cleanup pending. */
fc1cf338 1583 displaced->step_ptid = null_ptid;
237fc4c9 1584
fc1cf338 1585 if (displaced->step_closure)
237fc4c9 1586 {
fc1cf338
PA
1587 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1588 displaced->step_closure);
1589 displaced->step_closure = NULL;
237fc4c9
PA
1590 }
1591}
1592
1593static void
fc1cf338 1594displaced_step_clear_cleanup (void *arg)
237fc4c9 1595{
fc1cf338
PA
1596 struct displaced_step_inferior_state *state = arg;
1597
1598 displaced_step_clear (state);
237fc4c9
PA
1599}
1600
1601/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1602void
1603displaced_step_dump_bytes (struct ui_file *file,
1604 const gdb_byte *buf,
1605 size_t len)
1606{
1607 int i;
1608
1609 for (i = 0; i < len; i++)
1610 fprintf_unfiltered (file, "%02x ", buf[i]);
1611 fputs_unfiltered ("\n", file);
1612}
1613
1614/* Prepare to single-step, using displaced stepping.
1615
1616 Note that we cannot use displaced stepping when we have a signal to
1617 deliver. If we have a signal to deliver and an instruction to step
1618 over, then after the step, there will be no indication from the
1619 target whether the thread entered a signal handler or ignored the
1620 signal and stepped over the instruction successfully --- both cases
1621 result in a simple SIGTRAP. In the first case we mustn't do a
1622 fixup, and in the second case we must --- but we can't tell which.
1623 Comments in the code for 'random signals' in handle_inferior_event
1624 explain how we handle this case instead.
1625
1626 Returns 1 if preparing was successful -- this thread is going to be
1627 stepped now; or 0 if displaced stepping this thread got queued. */
1628static int
1629displaced_step_prepare (ptid_t ptid)
1630{
ad53cd71 1631 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1632 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1633 struct regcache *regcache = get_thread_regcache (ptid);
1634 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1635 CORE_ADDR original, copy;
1636 ULONGEST len;
1637 struct displaced_step_closure *closure;
fc1cf338 1638 struct displaced_step_inferior_state *displaced;
9e529e1d 1639 int status;
237fc4c9
PA
1640
1641 /* We should never reach this function if the architecture does not
1642 support displaced stepping. */
1643 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1644
c1e36e3e
PA
1645 /* Disable range stepping while executing in the scratch pad. We
1646 want a single-step even if executing the displaced instruction in
1647 the scratch buffer lands within the stepping range (e.g., a
1648 jump/branch). */
1649 tp->control.may_range_step = 0;
1650
fc1cf338
PA
1651 /* We have to displaced step one thread at a time, as we only have
1652 access to a single scratch space per inferior. */
237fc4c9 1653
fc1cf338
PA
1654 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1655
1656 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1657 {
1658 /* Already waiting for a displaced step to finish. Defer this
1659 request and place in queue. */
1660 struct displaced_step_request *req, *new_req;
1661
1662 if (debug_displaced)
1663 fprintf_unfiltered (gdb_stdlog,
1664 "displaced: defering step of %s\n",
1665 target_pid_to_str (ptid));
1666
1667 new_req = xmalloc (sizeof (*new_req));
1668 new_req->ptid = ptid;
1669 new_req->next = NULL;
1670
fc1cf338 1671 if (displaced->step_request_queue)
237fc4c9 1672 {
fc1cf338 1673 for (req = displaced->step_request_queue;
237fc4c9
PA
1674 req && req->next;
1675 req = req->next)
1676 ;
1677 req->next = new_req;
1678 }
1679 else
fc1cf338 1680 displaced->step_request_queue = new_req;
237fc4c9
PA
1681
1682 return 0;
1683 }
1684 else
1685 {
1686 if (debug_displaced)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "displaced: stepping %s now\n",
1689 target_pid_to_str (ptid));
1690 }
1691
fc1cf338 1692 displaced_step_clear (displaced);
237fc4c9 1693
ad53cd71
PA
1694 old_cleanups = save_inferior_ptid ();
1695 inferior_ptid = ptid;
1696
515630c5 1697 original = regcache_read_pc (regcache);
237fc4c9
PA
1698
1699 copy = gdbarch_displaced_step_location (gdbarch);
1700 len = gdbarch_max_insn_length (gdbarch);
1701
1702 /* Save the original contents of the copy area. */
fc1cf338 1703 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1704 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1705 &displaced->step_saved_copy);
9e529e1d
JK
1706 status = target_read_memory (copy, displaced->step_saved_copy, len);
1707 if (status != 0)
1708 throw_error (MEMORY_ERROR,
1709 _("Error accessing memory address %s (%s) for "
1710 "displaced-stepping scratch space."),
1711 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1712 if (debug_displaced)
1713 {
5af949e3
UW
1714 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1715 paddress (gdbarch, copy));
fc1cf338
PA
1716 displaced_step_dump_bytes (gdb_stdlog,
1717 displaced->step_saved_copy,
1718 len);
237fc4c9
PA
1719 };
1720
1721 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1722 original, copy, regcache);
237fc4c9
PA
1723
1724 /* We don't support the fully-simulated case at present. */
1725 gdb_assert (closure);
1726
9f5a595d
UW
1727 /* Save the information we need to fix things up if the step
1728 succeeds. */
fc1cf338
PA
1729 displaced->step_ptid = ptid;
1730 displaced->step_gdbarch = gdbarch;
1731 displaced->step_closure = closure;
1732 displaced->step_original = original;
1733 displaced->step_copy = copy;
9f5a595d 1734
fc1cf338 1735 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1736
1737 /* Resume execution at the copy. */
515630c5 1738 regcache_write_pc (regcache, copy);
237fc4c9 1739
ad53cd71
PA
1740 discard_cleanups (ignore_cleanups);
1741
1742 do_cleanups (old_cleanups);
237fc4c9
PA
1743
1744 if (debug_displaced)
5af949e3
UW
1745 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1746 paddress (gdbarch, copy));
237fc4c9 1747
237fc4c9
PA
1748 return 1;
1749}
1750
237fc4c9 1751static void
3e43a32a
MS
1752write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1753 const gdb_byte *myaddr, int len)
237fc4c9
PA
1754{
1755 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1756
237fc4c9
PA
1757 inferior_ptid = ptid;
1758 write_memory (memaddr, myaddr, len);
1759 do_cleanups (ptid_cleanup);
1760}
1761
e2d96639
YQ
1762/* Restore the contents of the copy area for thread PTID. */
1763
1764static void
1765displaced_step_restore (struct displaced_step_inferior_state *displaced,
1766 ptid_t ptid)
1767{
1768 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1769
1770 write_memory_ptid (ptid, displaced->step_copy,
1771 displaced->step_saved_copy, len);
1772 if (debug_displaced)
1773 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1774 target_pid_to_str (ptid),
1775 paddress (displaced->step_gdbarch,
1776 displaced->step_copy));
1777}
1778
237fc4c9 1779static void
2ea28649 1780displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1781{
1782 struct cleanup *old_cleanups;
fc1cf338
PA
1783 struct displaced_step_inferior_state *displaced
1784 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1785
1786 /* Was any thread of this process doing a displaced step? */
1787 if (displaced == NULL)
1788 return;
237fc4c9
PA
1789
1790 /* Was this event for the pid we displaced? */
fc1cf338
PA
1791 if (ptid_equal (displaced->step_ptid, null_ptid)
1792 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1793 return;
1794
fc1cf338 1795 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1796
e2d96639 1797 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1798
1799 /* Did the instruction complete successfully? */
a493e3e2 1800 if (signal == GDB_SIGNAL_TRAP)
237fc4c9 1801 {
b052c4fb
PA
1802 /* Fixup may need to read memory/registers. Switch to the
1803 thread that we're fixing up. */
1804 switch_to_thread (event_ptid);
1805
237fc4c9 1806 /* Fix up the resulting state. */
fc1cf338
PA
1807 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1808 displaced->step_closure,
1809 displaced->step_original,
1810 displaced->step_copy,
1811 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1812 }
1813 else
1814 {
1815 /* Since the instruction didn't complete, all we can do is
1816 relocate the PC. */
515630c5
UW
1817 struct regcache *regcache = get_thread_regcache (event_ptid);
1818 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1819
fc1cf338 1820 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1821 regcache_write_pc (regcache, pc);
237fc4c9
PA
1822 }
1823
1824 do_cleanups (old_cleanups);
1825
fc1cf338 1826 displaced->step_ptid = null_ptid;
1c5cfe86 1827
237fc4c9 1828 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1829 one now. Leave the state object around, since we're likely to
1830 need it again soon. */
1831 while (displaced->step_request_queue)
237fc4c9
PA
1832 {
1833 struct displaced_step_request *head;
1834 ptid_t ptid;
5af949e3 1835 struct regcache *regcache;
929dfd4f 1836 struct gdbarch *gdbarch;
1c5cfe86 1837 CORE_ADDR actual_pc;
6c95b8df 1838 struct address_space *aspace;
237fc4c9 1839
fc1cf338 1840 head = displaced->step_request_queue;
237fc4c9 1841 ptid = head->ptid;
fc1cf338 1842 displaced->step_request_queue = head->next;
237fc4c9
PA
1843 xfree (head);
1844
ad53cd71
PA
1845 context_switch (ptid);
1846
5af949e3
UW
1847 regcache = get_thread_regcache (ptid);
1848 actual_pc = regcache_read_pc (regcache);
6c95b8df 1849 aspace = get_regcache_aspace (regcache);
1c5cfe86 1850
6c95b8df 1851 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1852 {
1c5cfe86
PA
1853 if (debug_displaced)
1854 fprintf_unfiltered (gdb_stdlog,
1855 "displaced: stepping queued %s now\n",
1856 target_pid_to_str (ptid));
1857
1858 displaced_step_prepare (ptid);
1859
929dfd4f
JB
1860 gdbarch = get_regcache_arch (regcache);
1861
1c5cfe86
PA
1862 if (debug_displaced)
1863 {
929dfd4f 1864 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1865 gdb_byte buf[4];
1866
5af949e3
UW
1867 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1868 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1869 read_memory (actual_pc, buf, sizeof (buf));
1870 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1871 }
1872
fc1cf338
PA
1873 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1874 displaced->step_closure))
a493e3e2 1875 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1876 else
a493e3e2 1877 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1878
1879 /* Done, we're stepping a thread. */
1880 break;
ad53cd71 1881 }
1c5cfe86
PA
1882 else
1883 {
1884 int step;
1885 struct thread_info *tp = inferior_thread ();
1886
1887 /* The breakpoint we were sitting under has since been
1888 removed. */
16c381f0 1889 tp->control.trap_expected = 0;
1c5cfe86
PA
1890
1891 /* Go back to what we were trying to do. */
1892 step = currently_stepping (tp);
ad53cd71 1893
1c5cfe86 1894 if (debug_displaced)
3e43a32a 1895 fprintf_unfiltered (gdb_stdlog,
27d2932e 1896 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1897 target_pid_to_str (tp->ptid), step);
1898
a493e3e2
PA
1899 target_resume (ptid, step, GDB_SIGNAL_0);
1900 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1901
1902 /* This request was discarded. See if there's any other
1903 thread waiting for its turn. */
1904 }
237fc4c9
PA
1905 }
1906}
1907
5231c1fd
PA
1908/* Update global variables holding ptids to hold NEW_PTID if they were
1909 holding OLD_PTID. */
1910static void
1911infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1912{
1913 struct displaced_step_request *it;
fc1cf338 1914 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1915
1916 if (ptid_equal (inferior_ptid, old_ptid))
1917 inferior_ptid = new_ptid;
1918
fc1cf338
PA
1919 for (displaced = displaced_step_inferior_states;
1920 displaced;
1921 displaced = displaced->next)
1922 {
1923 if (ptid_equal (displaced->step_ptid, old_ptid))
1924 displaced->step_ptid = new_ptid;
1925
1926 for (it = displaced->step_request_queue; it; it = it->next)
1927 if (ptid_equal (it->ptid, old_ptid))
1928 it->ptid = new_ptid;
1929 }
5231c1fd
PA
1930}
1931
237fc4c9
PA
1932\f
1933/* Resuming. */
c906108c
SS
1934
1935/* Things to clean up if we QUIT out of resume (). */
c906108c 1936static void
74b7792f 1937resume_cleanups (void *ignore)
c906108c 1938{
34b7e8a6
PA
1939 if (!ptid_equal (inferior_ptid, null_ptid))
1940 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 1941
c906108c
SS
1942 normal_stop ();
1943}
1944
53904c9e
AC
1945static const char schedlock_off[] = "off";
1946static const char schedlock_on[] = "on";
1947static const char schedlock_step[] = "step";
40478521 1948static const char *const scheduler_enums[] = {
ef346e04
AC
1949 schedlock_off,
1950 schedlock_on,
1951 schedlock_step,
1952 NULL
1953};
920d2a44
AC
1954static const char *scheduler_mode = schedlock_off;
1955static void
1956show_scheduler_mode (struct ui_file *file, int from_tty,
1957 struct cmd_list_element *c, const char *value)
1958{
3e43a32a
MS
1959 fprintf_filtered (file,
1960 _("Mode for locking scheduler "
1961 "during execution is \"%s\".\n"),
920d2a44
AC
1962 value);
1963}
c906108c
SS
1964
1965static void
96baa820 1966set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1967{
eefe576e
AC
1968 if (!target_can_lock_scheduler)
1969 {
1970 scheduler_mode = schedlock_off;
1971 error (_("Target '%s' cannot support this command."), target_shortname);
1972 }
c906108c
SS
1973}
1974
d4db2f36
PA
1975/* True if execution commands resume all threads of all processes by
1976 default; otherwise, resume only threads of the current inferior
1977 process. */
1978int sched_multi = 0;
1979
2facfe5c
DD
1980/* Try to setup for software single stepping over the specified location.
1981 Return 1 if target_resume() should use hardware single step.
1982
1983 GDBARCH the current gdbarch.
1984 PC the location to step over. */
1985
1986static int
1987maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1988{
1989 int hw_step = 1;
1990
f02253f1
HZ
1991 if (execution_direction == EXEC_FORWARD
1992 && gdbarch_software_single_step_p (gdbarch)
99e40580 1993 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1994 {
99e40580 1995 hw_step = 0;
2facfe5c
DD
1996 }
1997 return hw_step;
1998}
c906108c 1999
f3263aa4
PA
2000/* See infrun.h. */
2001
09cee04b
PA
2002ptid_t
2003user_visible_resume_ptid (int step)
2004{
f3263aa4 2005 ptid_t resume_ptid;
09cee04b 2006
09cee04b
PA
2007 if (non_stop)
2008 {
2009 /* With non-stop mode on, threads are always handled
2010 individually. */
2011 resume_ptid = inferior_ptid;
2012 }
2013 else if ((scheduler_mode == schedlock_on)
03d46957 2014 || (scheduler_mode == schedlock_step && step))
09cee04b 2015 {
f3263aa4
PA
2016 /* User-settable 'scheduler' mode requires solo thread
2017 resume. */
09cee04b
PA
2018 resume_ptid = inferior_ptid;
2019 }
f3263aa4
PA
2020 else if (!sched_multi && target_supports_multi_process ())
2021 {
2022 /* Resume all threads of the current process (and none of other
2023 processes). */
2024 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2025 }
2026 else
2027 {
2028 /* Resume all threads of all processes. */
2029 resume_ptid = RESUME_ALL;
2030 }
09cee04b
PA
2031
2032 return resume_ptid;
2033}
2034
64ce06e4
PA
2035/* Wrapper for target_resume, that handles infrun-specific
2036 bookkeeping. */
2037
2038static void
2039do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2040{
2041 struct thread_info *tp = inferior_thread ();
2042
2043 /* Install inferior's terminal modes. */
2044 target_terminal_inferior ();
2045
2046 /* Avoid confusing the next resume, if the next stop/resume
2047 happens to apply to another thread. */
2048 tp->suspend.stop_signal = GDB_SIGNAL_0;
2049
2050 /* Advise target which signals may be handled silently. If we have
2051 removed breakpoints because we are stepping over one (in any
2052 thread), we need to receive all signals to avoid accidentally
2053 skipping a breakpoint during execution of a signal handler. */
2054 if (step_over_info_valid_p ())
2055 target_pass_signals (0, NULL);
2056 else
2057 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2058
2059 target_resume (resume_ptid, step, sig);
2060}
2061
c906108c
SS
2062/* Resume the inferior, but allow a QUIT. This is useful if the user
2063 wants to interrupt some lengthy single-stepping operation
2064 (for child processes, the SIGINT goes to the inferior, and so
2065 we get a SIGINT random_signal, but for remote debugging and perhaps
2066 other targets, that's not true).
2067
c906108c
SS
2068 SIG is the signal to give the inferior (zero for none). */
2069void
64ce06e4 2070resume (enum gdb_signal sig)
c906108c 2071{
74b7792f 2072 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2073 struct regcache *regcache = get_current_regcache ();
2074 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2075 struct thread_info *tp = inferior_thread ();
515630c5 2076 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2077 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2078 ptid_t resume_ptid;
856e7dd6
PA
2079 /* This represents the user's step vs continue request. When
2080 deciding whether "set scheduler-locking step" applies, it's the
2081 user's intention that counts. */
2082 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2083 /* This represents what we'll actually request the target to do.
2084 This can decay from a step to a continue, if e.g., we need to
2085 implement single-stepping with breakpoints (software
2086 single-step). */
6b403daa 2087 int step;
c7e8a53c 2088
af48d08f
PA
2089 tp->stepped_breakpoint = 0;
2090
c906108c
SS
2091 QUIT;
2092
6b403daa
PA
2093 /* Depends on stepped_breakpoint. */
2094 step = currently_stepping (tp);
2095
74609e71
YQ
2096 if (current_inferior ()->waiting_for_vfork_done)
2097 {
48f9886d
PA
2098 /* Don't try to single-step a vfork parent that is waiting for
2099 the child to get out of the shared memory region (by exec'ing
2100 or exiting). This is particularly important on software
2101 single-step archs, as the child process would trip on the
2102 software single step breakpoint inserted for the parent
2103 process. Since the parent will not actually execute any
2104 instruction until the child is out of the shared region (such
2105 are vfork's semantics), it is safe to simply continue it.
2106 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2107 the parent, and tell it to `keep_going', which automatically
2108 re-sets it stepping. */
74609e71
YQ
2109 if (debug_infrun)
2110 fprintf_unfiltered (gdb_stdlog,
2111 "infrun: resume : clear step\n");
a09dd441 2112 step = 0;
74609e71
YQ
2113 }
2114
527159b7 2115 if (debug_infrun)
237fc4c9 2116 fprintf_unfiltered (gdb_stdlog,
c9737c08 2117 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2118 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2119 step, gdb_signal_to_symbol_string (sig),
2120 tp->control.trap_expected,
0d9a9a5f
PA
2121 target_pid_to_str (inferior_ptid),
2122 paddress (gdbarch, pc));
c906108c 2123
c2c6d25f
JM
2124 /* Normally, by the time we reach `resume', the breakpoints are either
2125 removed or inserted, as appropriate. The exception is if we're sitting
2126 at a permanent breakpoint; we need to step over it, but permanent
2127 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2128 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2129 {
af48d08f
PA
2130 if (sig != GDB_SIGNAL_0)
2131 {
2132 /* We have a signal to pass to the inferior. The resume
2133 may, or may not take us to the signal handler. If this
2134 is a step, we'll need to stop in the signal handler, if
2135 there's one, (if the target supports stepping into
2136 handlers), or in the next mainline instruction, if
2137 there's no handler. If this is a continue, we need to be
2138 sure to run the handler with all breakpoints inserted.
2139 In all cases, set a breakpoint at the current address
2140 (where the handler returns to), and once that breakpoint
2141 is hit, resume skipping the permanent breakpoint. If
2142 that breakpoint isn't hit, then we've stepped into the
2143 signal handler (or hit some other event). We'll delete
2144 the step-resume breakpoint then. */
2145
2146 if (debug_infrun)
2147 fprintf_unfiltered (gdb_stdlog,
2148 "infrun: resume: skipping permanent breakpoint, "
2149 "deliver signal first\n");
2150
2151 clear_step_over_info ();
2152 tp->control.trap_expected = 0;
2153
2154 if (tp->control.step_resume_breakpoint == NULL)
2155 {
2156 /* Set a "high-priority" step-resume, as we don't want
2157 user breakpoints at PC to trigger (again) when this
2158 hits. */
2159 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2160 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2161
2162 tp->step_after_step_resume_breakpoint = step;
2163 }
2164
2165 insert_breakpoints ();
2166 }
2167 else
2168 {
2169 /* There's no signal to pass, we can go ahead and skip the
2170 permanent breakpoint manually. */
2171 if (debug_infrun)
2172 fprintf_unfiltered (gdb_stdlog,
2173 "infrun: resume: skipping permanent breakpoint\n");
2174 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2175 /* Update pc to reflect the new address from which we will
2176 execute instructions. */
2177 pc = regcache_read_pc (regcache);
2178
2179 if (step)
2180 {
2181 /* We've already advanced the PC, so the stepping part
2182 is done. Now we need to arrange for a trap to be
2183 reported to handle_inferior_event. Set a breakpoint
2184 at the current PC, and run to it. Don't update
2185 prev_pc, because if we end in
44a1ee51
PA
2186 switch_back_to_stepped_thread, we want the "expected
2187 thread advanced also" branch to be taken. IOW, we
2188 don't want this thread to step further from PC
af48d08f 2189 (overstep). */
1ac806b8 2190 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2191 insert_single_step_breakpoint (gdbarch, aspace, pc);
2192 insert_breakpoints ();
2193
856e7dd6 2194 resume_ptid = user_visible_resume_ptid (user_step);
1ac806b8 2195 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f
PA
2196 discard_cleanups (old_cleanups);
2197 return;
2198 }
2199 }
6d350bb5 2200 }
c2c6d25f 2201
c1e36e3e
PA
2202 /* If we have a breakpoint to step over, make sure to do a single
2203 step only. Same if we have software watchpoints. */
2204 if (tp->control.trap_expected || bpstat_should_step ())
2205 tp->control.may_range_step = 0;
2206
237fc4c9
PA
2207 /* If enabled, step over breakpoints by executing a copy of the
2208 instruction at a different address.
2209
2210 We can't use displaced stepping when we have a signal to deliver;
2211 the comments for displaced_step_prepare explain why. The
2212 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2213 signals' explain what we do instead.
2214
2215 We can't use displaced stepping when we are waiting for vfork_done
2216 event, displaced stepping breaks the vfork child similarly as single
2217 step software breakpoint. */
515630c5 2218 if (use_displaced_stepping (gdbarch)
36728e82 2219 && tp->control.trap_expected
a493e3e2 2220 && sig == GDB_SIGNAL_0
74609e71 2221 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2222 {
fc1cf338
PA
2223 struct displaced_step_inferior_state *displaced;
2224
237fc4c9 2225 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
2226 {
2227 /* Got placed in displaced stepping queue. Will be resumed
2228 later when all the currently queued displaced stepping
251bde03
PA
2229 requests finish. The thread is not executing at this
2230 point, and the call to set_executing will be made later.
2231 But we need to call set_running here, since from the
2232 user/frontend's point of view, threads were set running.
2233 Unless we're calling an inferior function, as in that
2234 case we pretend the inferior doesn't run at all. */
2235 if (!tp->control.in_infcall)
856e7dd6 2236 set_running (user_visible_resume_ptid (user_step), 1);
d56b7306
VP
2237 discard_cleanups (old_cleanups);
2238 return;
2239 }
99e40580 2240
ca7781d2
LM
2241 /* Update pc to reflect the new address from which we will execute
2242 instructions due to displaced stepping. */
2243 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2244
fc1cf338 2245 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
a09dd441
PA
2246 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2247 displaced->step_closure);
237fc4c9
PA
2248 }
2249
2facfe5c 2250 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2251 else if (step)
2facfe5c 2252 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2253
30852783
UW
2254 /* Currently, our software single-step implementation leads to different
2255 results than hardware single-stepping in one situation: when stepping
2256 into delivering a signal which has an associated signal handler,
2257 hardware single-step will stop at the first instruction of the handler,
2258 while software single-step will simply skip execution of the handler.
2259
2260 For now, this difference in behavior is accepted since there is no
2261 easy way to actually implement single-stepping into a signal handler
2262 without kernel support.
2263
2264 However, there is one scenario where this difference leads to follow-on
2265 problems: if we're stepping off a breakpoint by removing all breakpoints
2266 and then single-stepping. In this case, the software single-step
2267 behavior means that even if there is a *breakpoint* in the signal
2268 handler, GDB still would not stop.
2269
2270 Fortunately, we can at least fix this particular issue. We detect
2271 here the case where we are about to deliver a signal while software
2272 single-stepping with breakpoints removed. In this situation, we
2273 revert the decisions to remove all breakpoints and insert single-
2274 step breakpoints, and instead we install a step-resume breakpoint
2275 at the current address, deliver the signal without stepping, and
2276 once we arrive back at the step-resume breakpoint, actually step
2277 over the breakpoint we originally wanted to step over. */
34b7e8a6 2278 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2279 && sig != GDB_SIGNAL_0
2280 && step_over_info_valid_p ())
30852783
UW
2281 {
2282 /* If we have nested signals or a pending signal is delivered
2283 immediately after a handler returns, might might already have
2284 a step-resume breakpoint set on the earlier handler. We cannot
2285 set another step-resume breakpoint; just continue on until the
2286 original breakpoint is hit. */
2287 if (tp->control.step_resume_breakpoint == NULL)
2288 {
2c03e5be 2289 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2290 tp->step_after_step_resume_breakpoint = 1;
2291 }
2292
34b7e8a6 2293 delete_single_step_breakpoints (tp);
30852783 2294
31e77af2 2295 clear_step_over_info ();
30852783 2296 tp->control.trap_expected = 0;
31e77af2
PA
2297
2298 insert_breakpoints ();
30852783
UW
2299 }
2300
b0f16a3e
SM
2301 /* If STEP is set, it's a request to use hardware stepping
2302 facilities. But in that case, we should never
2303 use singlestep breakpoint. */
34b7e8a6 2304 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2305
b0f16a3e
SM
2306 /* Decide the set of threads to ask the target to resume. Start
2307 by assuming everything will be resumed, than narrow the set
2308 by applying increasingly restricting conditions. */
856e7dd6 2309 resume_ptid = user_visible_resume_ptid (user_step);
cd76b0b7 2310
251bde03
PA
2311 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2312 (e.g., we might need to step over a breakpoint), from the
2313 user/frontend's point of view, all threads in RESUME_PTID are now
2314 running. Unless we're calling an inferior function, as in that
2315 case pretend we inferior doesn't run at all. */
2316 if (!tp->control.in_infcall)
2317 set_running (resume_ptid, 1);
2318
b0f16a3e 2319 /* Maybe resume a single thread after all. */
34b7e8a6 2320 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2321 && tp->control.trap_expected)
2322 {
2323 /* We're allowing a thread to run past a breakpoint it has
2324 hit, by single-stepping the thread with the breakpoint
2325 removed. In which case, we need to single-step only this
2326 thread, and keep others stopped, as they can miss this
2327 breakpoint if allowed to run. */
2328 resume_ptid = inferior_ptid;
2329 }
d4db2f36 2330
7f5ef605
PA
2331 if (execution_direction != EXEC_REVERSE
2332 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2333 {
7f5ef605
PA
2334 /* The only case we currently need to step a breakpoint
2335 instruction is when we have a signal to deliver. See
2336 handle_signal_stop where we handle random signals that could
2337 take out us out of the stepping range. Normally, in that
2338 case we end up continuing (instead of stepping) over the
2339 signal handler with a breakpoint at PC, but there are cases
2340 where we should _always_ single-step, even if we have a
2341 step-resume breakpoint, like when a software watchpoint is
2342 set. Assuming single-stepping and delivering a signal at the
2343 same time would takes us to the signal handler, then we could
2344 have removed the breakpoint at PC to step over it. However,
2345 some hardware step targets (like e.g., Mac OS) can't step
2346 into signal handlers, and for those, we need to leave the
2347 breakpoint at PC inserted, as otherwise if the handler
2348 recurses and executes PC again, it'll miss the breakpoint.
2349 So we leave the breakpoint inserted anyway, but we need to
2350 record that we tried to step a breakpoint instruction, so
2351 that adjust_pc_after_break doesn't end up confused. */
2352 gdb_assert (sig != GDB_SIGNAL_0);
2353
2354 tp->stepped_breakpoint = 1;
2355
b0f16a3e
SM
2356 /* Most targets can step a breakpoint instruction, thus
2357 executing it normally. But if this one cannot, just
2358 continue and we will hit it anyway. */
7f5ef605 2359 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2360 step = 0;
2361 }
ef5cf84e 2362
b0f16a3e
SM
2363 if (debug_displaced
2364 && use_displaced_stepping (gdbarch)
2365 && tp->control.trap_expected)
2366 {
d9b67d9f 2367 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2368 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2369 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2370 gdb_byte buf[4];
2371
2372 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2373 paddress (resume_gdbarch, actual_pc));
2374 read_memory (actual_pc, buf, sizeof (buf));
2375 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2376 }
237fc4c9 2377
b0f16a3e
SM
2378 if (tp->control.may_range_step)
2379 {
2380 /* If we're resuming a thread with the PC out of the step
2381 range, then we're doing some nested/finer run control
2382 operation, like stepping the thread out of the dynamic
2383 linker or the displaced stepping scratch pad. We
2384 shouldn't have allowed a range step then. */
2385 gdb_assert (pc_in_thread_step_range (pc, tp));
2386 }
c1e36e3e 2387
64ce06e4 2388 do_target_resume (resume_ptid, step, sig);
c906108c
SS
2389 discard_cleanups (old_cleanups);
2390}
2391\f
237fc4c9 2392/* Proceeding. */
c906108c
SS
2393
2394/* Clear out all variables saying what to do when inferior is continued.
2395 First do this, then set the ones you want, then call `proceed'. */
2396
a7212384
UW
2397static void
2398clear_proceed_status_thread (struct thread_info *tp)
c906108c 2399{
a7212384
UW
2400 if (debug_infrun)
2401 fprintf_unfiltered (gdb_stdlog,
2402 "infrun: clear_proceed_status_thread (%s)\n",
2403 target_pid_to_str (tp->ptid));
d6b48e9c 2404
70509625
PA
2405 /* If this signal should not be seen by program, give it zero.
2406 Used for debugging signals. */
2407 if (!signal_pass_state (tp->suspend.stop_signal))
2408 tp->suspend.stop_signal = GDB_SIGNAL_0;
2409
16c381f0
JK
2410 tp->control.trap_expected = 0;
2411 tp->control.step_range_start = 0;
2412 tp->control.step_range_end = 0;
c1e36e3e 2413 tp->control.may_range_step = 0;
16c381f0
JK
2414 tp->control.step_frame_id = null_frame_id;
2415 tp->control.step_stack_frame_id = null_frame_id;
2416 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2417 tp->control.step_start_function = NULL;
a7212384 2418 tp->stop_requested = 0;
4e1c45ea 2419
16c381f0 2420 tp->control.stop_step = 0;
32400beb 2421
16c381f0 2422 tp->control.proceed_to_finish = 0;
414c69f7 2423
17b2616c 2424 tp->control.command_interp = NULL;
856e7dd6 2425 tp->control.stepping_command = 0;
17b2616c 2426
a7212384 2427 /* Discard any remaining commands or status from previous stop. */
16c381f0 2428 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2429}
32400beb 2430
a7212384 2431void
70509625 2432clear_proceed_status (int step)
a7212384 2433{
6c95b8df
PA
2434 if (!non_stop)
2435 {
70509625
PA
2436 struct thread_info *tp;
2437 ptid_t resume_ptid;
2438
2439 resume_ptid = user_visible_resume_ptid (step);
2440
2441 /* In all-stop mode, delete the per-thread status of all threads
2442 we're about to resume, implicitly and explicitly. */
2443 ALL_NON_EXITED_THREADS (tp)
2444 {
2445 if (!ptid_match (tp->ptid, resume_ptid))
2446 continue;
2447 clear_proceed_status_thread (tp);
2448 }
6c95b8df
PA
2449 }
2450
a7212384
UW
2451 if (!ptid_equal (inferior_ptid, null_ptid))
2452 {
2453 struct inferior *inferior;
2454
2455 if (non_stop)
2456 {
6c95b8df
PA
2457 /* If in non-stop mode, only delete the per-thread status of
2458 the current thread. */
a7212384
UW
2459 clear_proceed_status_thread (inferior_thread ());
2460 }
6c95b8df 2461
d6b48e9c 2462 inferior = current_inferior ();
16c381f0 2463 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2464 }
2465
c906108c 2466 stop_after_trap = 0;
f3b1572e 2467
31e77af2
PA
2468 clear_step_over_info ();
2469
f3b1572e 2470 observer_notify_about_to_proceed ();
c906108c 2471
d5c31457
UW
2472 if (stop_registers)
2473 {
2474 regcache_xfree (stop_registers);
2475 stop_registers = NULL;
2476 }
c906108c
SS
2477}
2478
99619bea
PA
2479/* Returns true if TP is still stopped at a breakpoint that needs
2480 stepping-over in order to make progress. If the breakpoint is gone
2481 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2482
2483static int
99619bea
PA
2484thread_still_needs_step_over (struct thread_info *tp)
2485{
2486 if (tp->stepping_over_breakpoint)
2487 {
2488 struct regcache *regcache = get_thread_regcache (tp->ptid);
2489
2490 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2491 regcache_read_pc (regcache))
2492 == ordinary_breakpoint_here)
99619bea
PA
2493 return 1;
2494
2495 tp->stepping_over_breakpoint = 0;
2496 }
2497
2498 return 0;
2499}
2500
483805cf
PA
2501/* Returns true if scheduler locking applies. STEP indicates whether
2502 we're about to do a step/next-like command to a thread. */
2503
2504static int
856e7dd6 2505schedlock_applies (struct thread_info *tp)
483805cf
PA
2506{
2507 return (scheduler_mode == schedlock_on
2508 || (scheduler_mode == schedlock_step
856e7dd6 2509 && tp->control.stepping_command));
483805cf
PA
2510}
2511
99619bea
PA
2512/* Look a thread other than EXCEPT that has previously reported a
2513 breakpoint event, and thus needs a step-over in order to make
856e7dd6 2514 progress. Returns NULL is none is found. */
99619bea
PA
2515
2516static struct thread_info *
856e7dd6 2517find_thread_needs_step_over (struct thread_info *except)
ea67f13b 2518{
99619bea 2519 struct thread_info *tp, *current;
5a437975
DE
2520
2521 /* With non-stop mode on, threads are always handled individually. */
2522 gdb_assert (! non_stop);
ea67f13b 2523
99619bea 2524 current = inferior_thread ();
d4db2f36 2525
99619bea
PA
2526 /* If scheduler locking applies, we can avoid iterating over all
2527 threads. */
856e7dd6 2528 if (schedlock_applies (except))
ea67f13b 2529 {
99619bea
PA
2530 if (except != current
2531 && thread_still_needs_step_over (current))
2532 return current;
515630c5 2533
99619bea
PA
2534 return NULL;
2535 }
0d9a9a5f 2536
034f788c 2537 ALL_NON_EXITED_THREADS (tp)
99619bea
PA
2538 {
2539 /* Ignore the EXCEPT thread. */
2540 if (tp == except)
2541 continue;
2542 /* Ignore threads of processes we're not resuming. */
2543 if (!sched_multi
2544 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2545 continue;
2546
2547 if (thread_still_needs_step_over (tp))
2548 return tp;
ea67f13b
DJ
2549 }
2550
99619bea 2551 return NULL;
ea67f13b 2552}
e4846b08 2553
c906108c
SS
2554/* Basic routine for continuing the program in various fashions.
2555
2556 ADDR is the address to resume at, or -1 for resume where stopped.
2557 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2558 or -1 for act according to how it stopped.
c906108c 2559 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2560 -1 means return after that and print nothing.
2561 You should probably set various step_... variables
2562 before calling here, if you are stepping.
c906108c
SS
2563
2564 You should call clear_proceed_status before calling proceed. */
2565
2566void
64ce06e4 2567proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2568{
e58b0e63
PA
2569 struct regcache *regcache;
2570 struct gdbarch *gdbarch;
4e1c45ea 2571 struct thread_info *tp;
e58b0e63 2572 CORE_ADDR pc;
6c95b8df 2573 struct address_space *aspace;
c906108c 2574
e58b0e63
PA
2575 /* If we're stopped at a fork/vfork, follow the branch set by the
2576 "set follow-fork-mode" command; otherwise, we'll just proceed
2577 resuming the current thread. */
2578 if (!follow_fork ())
2579 {
2580 /* The target for some reason decided not to resume. */
2581 normal_stop ();
f148b27e
PA
2582 if (target_can_async_p ())
2583 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2584 return;
2585 }
2586
842951eb
PA
2587 /* We'll update this if & when we switch to a new thread. */
2588 previous_inferior_ptid = inferior_ptid;
2589
e58b0e63
PA
2590 regcache = get_current_regcache ();
2591 gdbarch = get_regcache_arch (regcache);
6c95b8df 2592 aspace = get_regcache_aspace (regcache);
e58b0e63 2593 pc = regcache_read_pc (regcache);
2adfaa28 2594 tp = inferior_thread ();
e58b0e63 2595
99619bea
PA
2596 /* Fill in with reasonable starting values. */
2597 init_thread_stepping_state (tp);
2598
2acceee2 2599 if (addr == (CORE_ADDR) -1)
c906108c 2600 {
af48d08f
PA
2601 if (pc == stop_pc
2602 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2603 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2604 /* There is a breakpoint at the address we will resume at,
2605 step one instruction before inserting breakpoints so that
2606 we do not stop right away (and report a second hit at this
b2175913
MS
2607 breakpoint).
2608
2609 Note, we don't do this in reverse, because we won't
2610 actually be executing the breakpoint insn anyway.
2611 We'll be (un-)executing the previous instruction. */
99619bea 2612 tp->stepping_over_breakpoint = 1;
515630c5
UW
2613 else if (gdbarch_single_step_through_delay_p (gdbarch)
2614 && gdbarch_single_step_through_delay (gdbarch,
2615 get_current_frame ()))
3352ef37
AC
2616 /* We stepped onto an instruction that needs to be stepped
2617 again before re-inserting the breakpoint, do so. */
99619bea 2618 tp->stepping_over_breakpoint = 1;
c906108c
SS
2619 }
2620 else
2621 {
515630c5 2622 regcache_write_pc (regcache, addr);
c906108c
SS
2623 }
2624
70509625
PA
2625 if (siggnal != GDB_SIGNAL_DEFAULT)
2626 tp->suspend.stop_signal = siggnal;
2627
17b2616c
PA
2628 /* Record the interpreter that issued the execution command that
2629 caused this thread to resume. If the top level interpreter is
2630 MI/async, and the execution command was a CLI command
2631 (next/step/etc.), we'll want to print stop event output to the MI
2632 console channel (the stepped-to line, etc.), as if the user
2633 entered the execution command on a real GDB console. */
2634 inferior_thread ()->control.command_interp = command_interp ();
2635
527159b7 2636 if (debug_infrun)
8a9de0e4 2637 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2638 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2639 paddress (gdbarch, addr),
64ce06e4 2640 gdb_signal_to_symbol_string (siggnal));
527159b7 2641
94cc34af
PA
2642 if (non_stop)
2643 /* In non-stop, each thread is handled individually. The context
2644 must already be set to the right thread here. */
2645 ;
2646 else
2647 {
99619bea
PA
2648 struct thread_info *step_over;
2649
94cc34af
PA
2650 /* In a multi-threaded task we may select another thread and
2651 then continue or step.
c906108c 2652
94cc34af
PA
2653 But if the old thread was stopped at a breakpoint, it will
2654 immediately cause another breakpoint stop without any
2655 execution (i.e. it will report a breakpoint hit incorrectly).
2656 So we must step over it first.
c906108c 2657
99619bea
PA
2658 Look for a thread other than the current (TP) that reported a
2659 breakpoint hit and hasn't been resumed yet since. */
856e7dd6 2660 step_over = find_thread_needs_step_over (tp);
99619bea 2661 if (step_over != NULL)
2adfaa28 2662 {
99619bea
PA
2663 if (debug_infrun)
2664 fprintf_unfiltered (gdb_stdlog,
2665 "infrun: need to step-over [%s] first\n",
2666 target_pid_to_str (step_over->ptid));
2667
2668 /* Store the prev_pc for the stepping thread too, needed by
44a1ee51 2669 switch_back_to_stepped_thread. */
99619bea
PA
2670 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2671 switch_to_thread (step_over->ptid);
2672 tp = step_over;
2adfaa28 2673 }
94cc34af 2674 }
c906108c 2675
31e77af2
PA
2676 /* If we need to step over a breakpoint, and we're not using
2677 displaced stepping to do so, insert all breakpoints (watchpoints,
2678 etc.) but the one we're stepping over, step one instruction, and
2679 then re-insert the breakpoint when that step is finished. */
99619bea 2680 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
30852783 2681 {
31e77af2
PA
2682 struct regcache *regcache = get_current_regcache ();
2683
2684 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 2685 regcache_read_pc (regcache), 0);
30852783 2686 }
31e77af2
PA
2687 else
2688 clear_step_over_info ();
30852783 2689
31e77af2 2690 insert_breakpoints ();
30852783 2691
99619bea
PA
2692 tp->control.trap_expected = tp->stepping_over_breakpoint;
2693
c906108c
SS
2694 annotate_starting ();
2695
2696 /* Make sure that output from GDB appears before output from the
2697 inferior. */
2698 gdb_flush (gdb_stdout);
2699
e4846b08 2700 /* Refresh prev_pc value just prior to resuming. This used to be
22bcd14b 2701 done in stop_waiting, however, setting prev_pc there did not handle
e4846b08
JJ
2702 scenarios such as inferior function calls or returning from
2703 a function via the return command. In those cases, the prev_pc
2704 value was not set properly for subsequent commands. The prev_pc value
2705 is used to initialize the starting line number in the ecs. With an
2706 invalid value, the gdb next command ends up stopping at the position
2707 represented by the next line table entry past our start position.
2708 On platforms that generate one line table entry per line, this
2709 is not a problem. However, on the ia64, the compiler generates
2710 extraneous line table entries that do not increase the line number.
2711 When we issue the gdb next command on the ia64 after an inferior call
2712 or a return command, we often end up a few instructions forward, still
2713 within the original line we started.
2714
d5cd6034
JB
2715 An attempt was made to refresh the prev_pc at the same time the
2716 execution_control_state is initialized (for instance, just before
2717 waiting for an inferior event). But this approach did not work
2718 because of platforms that use ptrace, where the pc register cannot
2719 be read unless the inferior is stopped. At that point, we are not
2720 guaranteed the inferior is stopped and so the regcache_read_pc() call
2721 can fail. Setting the prev_pc value here ensures the value is updated
2722 correctly when the inferior is stopped. */
4e1c45ea 2723 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2724
c906108c 2725 /* Resume inferior. */
64ce06e4 2726 resume (tp->suspend.stop_signal);
c906108c
SS
2727
2728 /* Wait for it to stop (if not standalone)
2729 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2730 /* Do this only if we are not using the event loop, or if the target
1777feb0 2731 does not support asynchronous execution. */
362646f5 2732 if (!target_can_async_p ())
43ff13b4 2733 {
e4c8541f 2734 wait_for_inferior ();
43ff13b4
JM
2735 normal_stop ();
2736 }
c906108c 2737}
c906108c
SS
2738\f
2739
2740/* Start remote-debugging of a machine over a serial link. */
96baa820 2741
c906108c 2742void
8621d6a9 2743start_remote (int from_tty)
c906108c 2744{
d6b48e9c 2745 struct inferior *inferior;
d6b48e9c
PA
2746
2747 inferior = current_inferior ();
16c381f0 2748 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2749
1777feb0 2750 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2751 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2752 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2753 nothing is returned (instead of just blocking). Because of this,
2754 targets expecting an immediate response need to, internally, set
2755 things up so that the target_wait() is forced to eventually
1777feb0 2756 timeout. */
6426a772
JM
2757 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2758 differentiate to its caller what the state of the target is after
2759 the initial open has been performed. Here we're assuming that
2760 the target has stopped. It should be possible to eventually have
2761 target_open() return to the caller an indication that the target
2762 is currently running and GDB state should be set to the same as
1777feb0 2763 for an async run. */
e4c8541f 2764 wait_for_inferior ();
8621d6a9
DJ
2765
2766 /* Now that the inferior has stopped, do any bookkeeping like
2767 loading shared libraries. We want to do this before normal_stop,
2768 so that the displayed frame is up to date. */
2769 post_create_inferior (&current_target, from_tty);
2770
6426a772 2771 normal_stop ();
c906108c
SS
2772}
2773
2774/* Initialize static vars when a new inferior begins. */
2775
2776void
96baa820 2777init_wait_for_inferior (void)
c906108c
SS
2778{
2779 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2780
c906108c
SS
2781 breakpoint_init_inferior (inf_starting);
2782
70509625 2783 clear_proceed_status (0);
9f976b41 2784
ca005067 2785 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2786
842951eb 2787 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 2788
edb3359d
DJ
2789 /* Discard any skipped inlined frames. */
2790 clear_inline_frame_state (minus_one_ptid);
c906108c 2791}
237fc4c9 2792
c906108c 2793\f
0d1e5fa7
PA
2794/* Data to be passed around while handling an event. This data is
2795 discarded between events. */
c5aa993b 2796struct execution_control_state
488f131b 2797{
0d1e5fa7 2798 ptid_t ptid;
4e1c45ea
PA
2799 /* The thread that got the event, if this was a thread event; NULL
2800 otherwise. */
2801 struct thread_info *event_thread;
2802
488f131b 2803 struct target_waitstatus ws;
7e324e48 2804 int stop_func_filled_in;
488f131b
JB
2805 CORE_ADDR stop_func_start;
2806 CORE_ADDR stop_func_end;
2c02bd72 2807 const char *stop_func_name;
488f131b 2808 int wait_some_more;
4f5d7f63 2809
2adfaa28
PA
2810 /* True if the event thread hit the single-step breakpoint of
2811 another thread. Thus the event doesn't cause a stop, the thread
2812 needs to be single-stepped past the single-step breakpoint before
2813 we can switch back to the original stepping thread. */
2814 int hit_singlestep_breakpoint;
488f131b
JB
2815};
2816
ec9499be 2817static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2818
568d6575
UW
2819static void handle_step_into_function (struct gdbarch *gdbarch,
2820 struct execution_control_state *ecs);
2821static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2822 struct execution_control_state *ecs);
4f5d7f63 2823static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2824static void check_exception_resume (struct execution_control_state *,
28106bc2 2825 struct frame_info *);
611c83ae 2826
bdc36728 2827static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 2828static void stop_waiting (struct execution_control_state *ecs);
104c1213 2829static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2830static void keep_going (struct execution_control_state *ecs);
94c57d6a 2831static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2832static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2833
252fbfc8
PA
2834/* Callback for iterate over threads. If the thread is stopped, but
2835 the user/frontend doesn't know about that yet, go through
2836 normal_stop, as if the thread had just stopped now. ARG points at
2837 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2838 ptid_is_pid(PTID) is true, applies to all threads of the process
2839 pointed at by PTID. Otherwise, apply only to the thread pointed by
2840 PTID. */
2841
2842static int
2843infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2844{
2845 ptid_t ptid = * (ptid_t *) arg;
2846
2847 if ((ptid_equal (info->ptid, ptid)
2848 || ptid_equal (minus_one_ptid, ptid)
2849 || (ptid_is_pid (ptid)
2850 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2851 && is_running (info->ptid)
2852 && !is_executing (info->ptid))
2853 {
2854 struct cleanup *old_chain;
2855 struct execution_control_state ecss;
2856 struct execution_control_state *ecs = &ecss;
2857
2858 memset (ecs, 0, sizeof (*ecs));
2859
2860 old_chain = make_cleanup_restore_current_thread ();
2861
f15cb84a
YQ
2862 overlay_cache_invalid = 1;
2863 /* Flush target cache before starting to handle each event.
2864 Target was running and cache could be stale. This is just a
2865 heuristic. Running threads may modify target memory, but we
2866 don't get any event. */
2867 target_dcache_invalidate ();
2868
252fbfc8
PA
2869 /* Go through handle_inferior_event/normal_stop, so we always
2870 have consistent output as if the stop event had been
2871 reported. */
2872 ecs->ptid = info->ptid;
e09875d4 2873 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2874 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2875 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2876
2877 handle_inferior_event (ecs);
2878
2879 if (!ecs->wait_some_more)
2880 {
2881 struct thread_info *tp;
2882
2883 normal_stop ();
2884
fa4cd53f 2885 /* Finish off the continuations. */
252fbfc8 2886 tp = inferior_thread ();
fa4cd53f
PA
2887 do_all_intermediate_continuations_thread (tp, 1);
2888 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2889 }
2890
2891 do_cleanups (old_chain);
2892 }
2893
2894 return 0;
2895}
2896
2897/* This function is attached as a "thread_stop_requested" observer.
2898 Cleanup local state that assumed the PTID was to be resumed, and
2899 report the stop to the frontend. */
2900
2c0b251b 2901static void
252fbfc8
PA
2902infrun_thread_stop_requested (ptid_t ptid)
2903{
fc1cf338 2904 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2905
2906 /* PTID was requested to stop. Remove it from the displaced
2907 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2908
2909 for (displaced = displaced_step_inferior_states;
2910 displaced;
2911 displaced = displaced->next)
252fbfc8 2912 {
fc1cf338 2913 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2914
fc1cf338
PA
2915 it = displaced->step_request_queue;
2916 prev_next_p = &displaced->step_request_queue;
2917 while (it)
252fbfc8 2918 {
fc1cf338
PA
2919 if (ptid_match (it->ptid, ptid))
2920 {
2921 *prev_next_p = it->next;
2922 it->next = NULL;
2923 xfree (it);
2924 }
252fbfc8 2925 else
fc1cf338
PA
2926 {
2927 prev_next_p = &it->next;
2928 }
252fbfc8 2929
fc1cf338 2930 it = *prev_next_p;
252fbfc8 2931 }
252fbfc8
PA
2932 }
2933
2934 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2935}
2936
a07daef3
PA
2937static void
2938infrun_thread_thread_exit (struct thread_info *tp, int silent)
2939{
2940 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2941 nullify_last_target_wait_ptid ();
2942}
2943
0cbcdb96
PA
2944/* Delete the step resume, single-step and longjmp/exception resume
2945 breakpoints of TP. */
4e1c45ea 2946
0cbcdb96
PA
2947static void
2948delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 2949{
0cbcdb96
PA
2950 delete_step_resume_breakpoint (tp);
2951 delete_exception_resume_breakpoint (tp);
34b7e8a6 2952 delete_single_step_breakpoints (tp);
4e1c45ea
PA
2953}
2954
0cbcdb96
PA
2955/* If the target still has execution, call FUNC for each thread that
2956 just stopped. In all-stop, that's all the non-exited threads; in
2957 non-stop, that's the current thread, only. */
2958
2959typedef void (*for_each_just_stopped_thread_callback_func)
2960 (struct thread_info *tp);
4e1c45ea
PA
2961
2962static void
0cbcdb96 2963for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 2964{
0cbcdb96 2965 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
2966 return;
2967
2968 if (non_stop)
2969 {
0cbcdb96
PA
2970 /* If in non-stop mode, only the current thread stopped. */
2971 func (inferior_thread ());
4e1c45ea
PA
2972 }
2973 else
0cbcdb96
PA
2974 {
2975 struct thread_info *tp;
2976
2977 /* In all-stop mode, all threads have stopped. */
2978 ALL_NON_EXITED_THREADS (tp)
2979 {
2980 func (tp);
2981 }
2982 }
2983}
2984
2985/* Delete the step resume and longjmp/exception resume breakpoints of
2986 the threads that just stopped. */
2987
2988static void
2989delete_just_stopped_threads_infrun_breakpoints (void)
2990{
2991 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
2992}
2993
2994/* Delete the single-step breakpoints of the threads that just
2995 stopped. */
7c16b83e 2996
34b7e8a6
PA
2997static void
2998delete_just_stopped_threads_single_step_breakpoints (void)
2999{
3000 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3001}
3002
1777feb0 3003/* A cleanup wrapper. */
4e1c45ea
PA
3004
3005static void
0cbcdb96 3006delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3007{
0cbcdb96 3008 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3009}
3010
223698f8
DE
3011/* Pretty print the results of target_wait, for debugging purposes. */
3012
3013static void
3014print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3015 const struct target_waitstatus *ws)
3016{
3017 char *status_string = target_waitstatus_to_string (ws);
3018 struct ui_file *tmp_stream = mem_fileopen ();
3019 char *text;
223698f8
DE
3020
3021 /* The text is split over several lines because it was getting too long.
3022 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3023 output as a unit; we want only one timestamp printed if debug_timestamp
3024 is set. */
3025
3026 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3027 "infrun: target_wait (%d.%ld.%ld",
3028 ptid_get_pid (waiton_ptid),
3029 ptid_get_lwp (waiton_ptid),
3030 ptid_get_tid (waiton_ptid));
dfd4cc63 3031 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3032 fprintf_unfiltered (tmp_stream,
3033 " [%s]", target_pid_to_str (waiton_ptid));
3034 fprintf_unfiltered (tmp_stream, ", status) =\n");
3035 fprintf_unfiltered (tmp_stream,
1176ecec 3036 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3037 ptid_get_pid (result_ptid),
1176ecec
PA
3038 ptid_get_lwp (result_ptid),
3039 ptid_get_tid (result_ptid),
dfd4cc63 3040 target_pid_to_str (result_ptid));
223698f8
DE
3041 fprintf_unfiltered (tmp_stream,
3042 "infrun: %s\n",
3043 status_string);
3044
759ef836 3045 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3046
3047 /* This uses %s in part to handle %'s in the text, but also to avoid
3048 a gcc error: the format attribute requires a string literal. */
3049 fprintf_unfiltered (gdb_stdlog, "%s", text);
3050
3051 xfree (status_string);
3052 xfree (text);
3053 ui_file_delete (tmp_stream);
3054}
3055
24291992
PA
3056/* Prepare and stabilize the inferior for detaching it. E.g.,
3057 detaching while a thread is displaced stepping is a recipe for
3058 crashing it, as nothing would readjust the PC out of the scratch
3059 pad. */
3060
3061void
3062prepare_for_detach (void)
3063{
3064 struct inferior *inf = current_inferior ();
3065 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3066 struct cleanup *old_chain_1;
3067 struct displaced_step_inferior_state *displaced;
3068
3069 displaced = get_displaced_stepping_state (inf->pid);
3070
3071 /* Is any thread of this process displaced stepping? If not,
3072 there's nothing else to do. */
3073 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3074 return;
3075
3076 if (debug_infrun)
3077 fprintf_unfiltered (gdb_stdlog,
3078 "displaced-stepping in-process while detaching");
3079
3080 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3081 inf->detaching = 1;
3082
3083 while (!ptid_equal (displaced->step_ptid, null_ptid))
3084 {
3085 struct cleanup *old_chain_2;
3086 struct execution_control_state ecss;
3087 struct execution_control_state *ecs;
3088
3089 ecs = &ecss;
3090 memset (ecs, 0, sizeof (*ecs));
3091
3092 overlay_cache_invalid = 1;
f15cb84a
YQ
3093 /* Flush target cache before starting to handle each event.
3094 Target was running and cache could be stale. This is just a
3095 heuristic. Running threads may modify target memory, but we
3096 don't get any event. */
3097 target_dcache_invalidate ();
24291992 3098
24291992
PA
3099 if (deprecated_target_wait_hook)
3100 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3101 else
3102 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3103
3104 if (debug_infrun)
3105 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3106
3107 /* If an error happens while handling the event, propagate GDB's
3108 knowledge of the executing state to the frontend/user running
3109 state. */
3e43a32a
MS
3110 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3111 &minus_one_ptid);
24291992
PA
3112
3113 /* Now figure out what to do with the result of the result. */
3114 handle_inferior_event (ecs);
3115
3116 /* No error, don't finish the state yet. */
3117 discard_cleanups (old_chain_2);
3118
3119 /* Breakpoints and watchpoints are not installed on the target
3120 at this point, and signals are passed directly to the
3121 inferior, so this must mean the process is gone. */
3122 if (!ecs->wait_some_more)
3123 {
3124 discard_cleanups (old_chain_1);
3125 error (_("Program exited while detaching"));
3126 }
3127 }
3128
3129 discard_cleanups (old_chain_1);
3130}
3131
cd0fc7c3 3132/* Wait for control to return from inferior to debugger.
ae123ec6 3133
cd0fc7c3
SS
3134 If inferior gets a signal, we may decide to start it up again
3135 instead of returning. That is why there is a loop in this function.
3136 When this function actually returns it means the inferior
3137 should be left stopped and GDB should read more commands. */
3138
3139void
e4c8541f 3140wait_for_inferior (void)
cd0fc7c3
SS
3141{
3142 struct cleanup *old_cleanups;
e6f5c25b 3143 struct cleanup *thread_state_chain;
c906108c 3144
527159b7 3145 if (debug_infrun)
ae123ec6 3146 fprintf_unfiltered
e4c8541f 3147 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3148
0cbcdb96
PA
3149 old_cleanups
3150 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3151 NULL);
cd0fc7c3 3152
e6f5c25b
PA
3153 /* If an error happens while handling the event, propagate GDB's
3154 knowledge of the executing state to the frontend/user running
3155 state. */
3156 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3157
c906108c
SS
3158 while (1)
3159 {
ae25568b
PA
3160 struct execution_control_state ecss;
3161 struct execution_control_state *ecs = &ecss;
963f9c80 3162 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3163
ae25568b
PA
3164 memset (ecs, 0, sizeof (*ecs));
3165
ec9499be 3166 overlay_cache_invalid = 1;
ec9499be 3167
f15cb84a
YQ
3168 /* Flush target cache before starting to handle each event.
3169 Target was running and cache could be stale. This is just a
3170 heuristic. Running threads may modify target memory, but we
3171 don't get any event. */
3172 target_dcache_invalidate ();
3173
9a4105ab 3174 if (deprecated_target_wait_hook)
47608cb1 3175 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 3176 else
47608cb1 3177 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3178
f00150c9 3179 if (debug_infrun)
223698f8 3180 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3181
cd0fc7c3
SS
3182 /* Now figure out what to do with the result of the result. */
3183 handle_inferior_event (ecs);
c906108c 3184
cd0fc7c3
SS
3185 if (!ecs->wait_some_more)
3186 break;
3187 }
4e1c45ea 3188
e6f5c25b
PA
3189 /* No error, don't finish the state yet. */
3190 discard_cleanups (thread_state_chain);
3191
cd0fc7c3
SS
3192 do_cleanups (old_cleanups);
3193}
c906108c 3194
d3d4baed
PA
3195/* Cleanup that reinstalls the readline callback handler, if the
3196 target is running in the background. If while handling the target
3197 event something triggered a secondary prompt, like e.g., a
3198 pagination prompt, we'll have removed the callback handler (see
3199 gdb_readline_wrapper_line). Need to do this as we go back to the
3200 event loop, ready to process further input. Note this has no
3201 effect if the handler hasn't actually been removed, because calling
3202 rl_callback_handler_install resets the line buffer, thus losing
3203 input. */
3204
3205static void
3206reinstall_readline_callback_handler_cleanup (void *arg)
3207{
6c400b59
PA
3208 if (!interpreter_async)
3209 {
3210 /* We're not going back to the top level event loop yet. Don't
3211 install the readline callback, as it'd prep the terminal,
3212 readline-style (raw, noecho) (e.g., --batch). We'll install
3213 it the next time the prompt is displayed, when we're ready
3214 for input. */
3215 return;
3216 }
3217
d3d4baed
PA
3218 if (async_command_editing_p && !sync_execution)
3219 gdb_rl_callback_handler_reinstall ();
3220}
3221
1777feb0 3222/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3223 event loop whenever a change of state is detected on the file
1777feb0
MS
3224 descriptor corresponding to the target. It can be called more than
3225 once to complete a single execution command. In such cases we need
3226 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3227 that this function is called for a single execution command, then
3228 report to the user that the inferior has stopped, and do the
1777feb0 3229 necessary cleanups. */
43ff13b4
JM
3230
3231void
fba45db2 3232fetch_inferior_event (void *client_data)
43ff13b4 3233{
0d1e5fa7 3234 struct execution_control_state ecss;
a474d7c2 3235 struct execution_control_state *ecs = &ecss;
4f8d22e3 3236 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3237 struct cleanup *ts_old_chain;
4f8d22e3 3238 int was_sync = sync_execution;
0f641c01 3239 int cmd_done = 0;
963f9c80 3240 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3241
0d1e5fa7
PA
3242 memset (ecs, 0, sizeof (*ecs));
3243
d3d4baed
PA
3244 /* End up with readline processing input, if necessary. */
3245 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3246
c5187ac6
PA
3247 /* We're handling a live event, so make sure we're doing live
3248 debugging. If we're looking at traceframes while the target is
3249 running, we're going to need to get back to that mode after
3250 handling the event. */
3251 if (non_stop)
3252 {
3253 make_cleanup_restore_current_traceframe ();
e6e4e701 3254 set_current_traceframe (-1);
c5187ac6
PA
3255 }
3256
4f8d22e3
PA
3257 if (non_stop)
3258 /* In non-stop mode, the user/frontend should not notice a thread
3259 switch due to internal events. Make sure we reverse to the
3260 user selected thread and frame after handling the event and
3261 running any breakpoint commands. */
3262 make_cleanup_restore_current_thread ();
3263
ec9499be 3264 overlay_cache_invalid = 1;
f15cb84a
YQ
3265 /* Flush target cache before starting to handle each event. Target
3266 was running and cache could be stale. This is just a heuristic.
3267 Running threads may modify target memory, but we don't get any
3268 event. */
3269 target_dcache_invalidate ();
3dd5b83d 3270
32231432
PA
3271 make_cleanup_restore_integer (&execution_direction);
3272 execution_direction = target_execution_direction ();
3273
9a4105ab 3274 if (deprecated_target_wait_hook)
a474d7c2 3275 ecs->ptid =
47608cb1 3276 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3277 else
47608cb1 3278 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3279
f00150c9 3280 if (debug_infrun)
223698f8 3281 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3282
29f49a6a
PA
3283 /* If an error happens while handling the event, propagate GDB's
3284 knowledge of the executing state to the frontend/user running
3285 state. */
3286 if (!non_stop)
3287 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3288 else
3289 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3290
353d1d73
JK
3291 /* Get executed before make_cleanup_restore_current_thread above to apply
3292 still for the thread which has thrown the exception. */
3293 make_bpstat_clear_actions_cleanup ();
3294
7c16b83e
PA
3295 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3296
43ff13b4 3297 /* Now figure out what to do with the result of the result. */
a474d7c2 3298 handle_inferior_event (ecs);
43ff13b4 3299
a474d7c2 3300 if (!ecs->wait_some_more)
43ff13b4 3301 {
c9657e70 3302 struct inferior *inf = find_inferior_ptid (ecs->ptid);
d6b48e9c 3303
0cbcdb96 3304 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3305
d6b48e9c 3306 /* We may not find an inferior if this was a process exit. */
16c381f0 3307 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
3308 normal_stop ();
3309
af679fd0 3310 if (target_has_execution
0e5bf2a8 3311 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
3312 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3313 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3314 && ecs->event_thread->step_multi
16c381f0 3315 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
3316 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3317 else
0f641c01
PA
3318 {
3319 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3320 cmd_done = 1;
3321 }
43ff13b4 3322 }
4f8d22e3 3323
29f49a6a
PA
3324 /* No error, don't finish the thread states yet. */
3325 discard_cleanups (ts_old_chain);
3326
4f8d22e3
PA
3327 /* Revert thread and frame. */
3328 do_cleanups (old_chain);
3329
3330 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3331 restore the prompt (a synchronous execution command has finished,
3332 and we're ready for input). */
b4a14fd0 3333 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3334 observer_notify_sync_execution_done ();
0f641c01
PA
3335
3336 if (cmd_done
3337 && !was_sync
3338 && exec_done_display_p
3339 && (ptid_equal (inferior_ptid, null_ptid)
3340 || !is_running (inferior_ptid)))
3341 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3342}
3343
edb3359d
DJ
3344/* Record the frame and location we're currently stepping through. */
3345void
3346set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3347{
3348 struct thread_info *tp = inferior_thread ();
3349
16c381f0
JK
3350 tp->control.step_frame_id = get_frame_id (frame);
3351 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3352
3353 tp->current_symtab = sal.symtab;
3354 tp->current_line = sal.line;
3355}
3356
0d1e5fa7
PA
3357/* Clear context switchable stepping state. */
3358
3359void
4e1c45ea 3360init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3361{
7f5ef605 3362 tss->stepped_breakpoint = 0;
0d1e5fa7 3363 tss->stepping_over_breakpoint = 0;
963f9c80 3364 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3365 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3366}
3367
c32c64b7
DE
3368/* Set the cached copy of the last ptid/waitstatus. */
3369
3370static void
3371set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3372{
3373 target_last_wait_ptid = ptid;
3374 target_last_waitstatus = status;
3375}
3376
e02bc4cc 3377/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3378 target_wait()/deprecated_target_wait_hook(). The data is actually
3379 cached by handle_inferior_event(), which gets called immediately
3380 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3381
3382void
488f131b 3383get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3384{
39f77062 3385 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3386 *status = target_last_waitstatus;
3387}
3388
ac264b3b
MS
3389void
3390nullify_last_target_wait_ptid (void)
3391{
3392 target_last_wait_ptid = minus_one_ptid;
3393}
3394
dcf4fbde 3395/* Switch thread contexts. */
dd80620e
MS
3396
3397static void
0d1e5fa7 3398context_switch (ptid_t ptid)
dd80620e 3399{
4b51d87b 3400 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3401 {
3402 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3403 target_pid_to_str (inferior_ptid));
3404 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3405 target_pid_to_str (ptid));
fd48f117
DJ
3406 }
3407
0d1e5fa7 3408 switch_to_thread (ptid);
dd80620e
MS
3409}
3410
4fa8626c
DJ
3411static void
3412adjust_pc_after_break (struct execution_control_state *ecs)
3413{
24a73cce
UW
3414 struct regcache *regcache;
3415 struct gdbarch *gdbarch;
6c95b8df 3416 struct address_space *aspace;
118e6252 3417 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3418
4fa8626c
DJ
3419 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3420 we aren't, just return.
9709f61c
DJ
3421
3422 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3423 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3424 implemented by software breakpoints should be handled through the normal
3425 breakpoint layer.
8fb3e588 3426
4fa8626c
DJ
3427 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3428 different signals (SIGILL or SIGEMT for instance), but it is less
3429 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3430 gdbarch_decr_pc_after_break. I don't know any specific target that
3431 generates these signals at breakpoints (the code has been in GDB since at
3432 least 1992) so I can not guess how to handle them here.
8fb3e588 3433
e6cf7916
UW
3434 In earlier versions of GDB, a target with
3435 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3436 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3437 target with both of these set in GDB history, and it seems unlikely to be
3438 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
3439
3440 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3441 return;
3442
a493e3e2 3443 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3444 return;
3445
4058b839
PA
3446 /* In reverse execution, when a breakpoint is hit, the instruction
3447 under it has already been de-executed. The reported PC always
3448 points at the breakpoint address, so adjusting it further would
3449 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3450 architecture:
3451
3452 B1 0x08000000 : INSN1
3453 B2 0x08000001 : INSN2
3454 0x08000002 : INSN3
3455 PC -> 0x08000003 : INSN4
3456
3457 Say you're stopped at 0x08000003 as above. Reverse continuing
3458 from that point should hit B2 as below. Reading the PC when the
3459 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3460 been de-executed already.
3461
3462 B1 0x08000000 : INSN1
3463 B2 PC -> 0x08000001 : INSN2
3464 0x08000002 : INSN3
3465 0x08000003 : INSN4
3466
3467 We can't apply the same logic as for forward execution, because
3468 we would wrongly adjust the PC to 0x08000000, since there's a
3469 breakpoint at PC - 1. We'd then report a hit on B1, although
3470 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3471 behaviour. */
3472 if (execution_direction == EXEC_REVERSE)
3473 return;
3474
1cf4d951
PA
3475 /* If the target can tell whether the thread hit a SW breakpoint,
3476 trust it. Targets that can tell also adjust the PC
3477 themselves. */
3478 if (target_supports_stopped_by_sw_breakpoint ())
3479 return;
3480
3481 /* Note that relying on whether a breakpoint is planted in memory to
3482 determine this can fail. E.g,. the breakpoint could have been
3483 removed since. Or the thread could have been told to step an
3484 instruction the size of a breakpoint instruction, and only
3485 _after_ was a breakpoint inserted at its address. */
3486
24a73cce
UW
3487 /* If this target does not decrement the PC after breakpoints, then
3488 we have nothing to do. */
3489 regcache = get_thread_regcache (ecs->ptid);
3490 gdbarch = get_regcache_arch (regcache);
118e6252 3491
527a273a 3492 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3493 if (decr_pc == 0)
24a73cce
UW
3494 return;
3495
6c95b8df
PA
3496 aspace = get_regcache_aspace (regcache);
3497
8aad930b
AC
3498 /* Find the location where (if we've hit a breakpoint) the
3499 breakpoint would be. */
118e6252 3500 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3501
1cf4d951
PA
3502 /* If the target can't tell whether a software breakpoint triggered,
3503 fallback to figuring it out based on breakpoints we think were
3504 inserted in the target, and on whether the thread was stepped or
3505 continued. */
3506
1c5cfe86
PA
3507 /* Check whether there actually is a software breakpoint inserted at
3508 that location.
3509
3510 If in non-stop mode, a race condition is possible where we've
3511 removed a breakpoint, but stop events for that breakpoint were
3512 already queued and arrive later. To suppress those spurious
3513 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3514 and retire them after a number of stop events are reported. Note
3515 this is an heuristic and can thus get confused. The real fix is
3516 to get the "stopped by SW BP and needs adjustment" info out of
3517 the target/kernel (and thus never reach here; see above). */
6c95b8df
PA
3518 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3519 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3520 {
77f9e713 3521 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3522
8213266a 3523 if (record_full_is_used ())
77f9e713 3524 record_full_gdb_operation_disable_set ();
96429cc8 3525
1c0fdd0e
UW
3526 /* When using hardware single-step, a SIGTRAP is reported for both
3527 a completed single-step and a software breakpoint. Need to
3528 differentiate between the two, as the latter needs adjusting
3529 but the former does not.
3530
3531 The SIGTRAP can be due to a completed hardware single-step only if
3532 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
3533 - this thread is currently being stepped
3534
3535 If any of these events did not occur, we must have stopped due
3536 to hitting a software breakpoint, and have to back up to the
3537 breakpoint address.
3538
3539 As a special case, we could have hardware single-stepped a
3540 software breakpoint. In this case (prev_pc == breakpoint_pc),
3541 we also need to back up to the breakpoint address. */
3542
34b7e8a6 3543 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
4e1c45ea 3544 || !currently_stepping (ecs->event_thread)
7f5ef605
PA
3545 || (ecs->event_thread->stepped_breakpoint
3546 && ecs->event_thread->prev_pc == breakpoint_pc))
515630c5 3547 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3548
77f9e713 3549 do_cleanups (old_cleanups);
8aad930b 3550 }
4fa8626c
DJ
3551}
3552
edb3359d
DJ
3553static int
3554stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3555{
3556 for (frame = get_prev_frame (frame);
3557 frame != NULL;
3558 frame = get_prev_frame (frame))
3559 {
3560 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3561 return 1;
3562 if (get_frame_type (frame) != INLINE_FRAME)
3563 break;
3564 }
3565
3566 return 0;
3567}
3568
a96d9b2e
SDJ
3569/* Auxiliary function that handles syscall entry/return events.
3570 It returns 1 if the inferior should keep going (and GDB
3571 should ignore the event), or 0 if the event deserves to be
3572 processed. */
ca2163eb 3573
a96d9b2e 3574static int
ca2163eb 3575handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3576{
ca2163eb 3577 struct regcache *regcache;
ca2163eb
PA
3578 int syscall_number;
3579
3580 if (!ptid_equal (ecs->ptid, inferior_ptid))
3581 context_switch (ecs->ptid);
3582
3583 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3584 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3585 stop_pc = regcache_read_pc (regcache);
3586
a96d9b2e
SDJ
3587 if (catch_syscall_enabled () > 0
3588 && catching_syscall_number (syscall_number) > 0)
3589 {
3590 if (debug_infrun)
3591 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3592 syscall_number);
a96d9b2e 3593
16c381f0 3594 ecs->event_thread->control.stop_bpstat
6c95b8df 3595 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3596 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3597
ce12b012 3598 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3599 {
3600 /* Catchpoint hit. */
ca2163eb
PA
3601 return 0;
3602 }
a96d9b2e 3603 }
ca2163eb
PA
3604
3605 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3606 keep_going (ecs);
3607 return 1;
a96d9b2e
SDJ
3608}
3609
7e324e48
GB
3610/* Lazily fill in the execution_control_state's stop_func_* fields. */
3611
3612static void
3613fill_in_stop_func (struct gdbarch *gdbarch,
3614 struct execution_control_state *ecs)
3615{
3616 if (!ecs->stop_func_filled_in)
3617 {
3618 /* Don't care about return value; stop_func_start and stop_func_name
3619 will both be 0 if it doesn't work. */
3620 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3621 &ecs->stop_func_start, &ecs->stop_func_end);
3622 ecs->stop_func_start
3623 += gdbarch_deprecated_function_start_offset (gdbarch);
3624
591a12a1
UW
3625 if (gdbarch_skip_entrypoint_p (gdbarch))
3626 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3627 ecs->stop_func_start);
3628
7e324e48
GB
3629 ecs->stop_func_filled_in = 1;
3630 }
3631}
3632
4f5d7f63
PA
3633
3634/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3635
3636static enum stop_kind
3637get_inferior_stop_soon (ptid_t ptid)
3638{
c9657e70 3639 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
3640
3641 gdb_assert (inf != NULL);
3642 return inf->control.stop_soon;
3643}
3644
05ba8510
PA
3645/* Given an execution control state that has been freshly filled in by
3646 an event from the inferior, figure out what it means and take
3647 appropriate action.
3648
3649 The alternatives are:
3650
22bcd14b 3651 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
3652 debugger.
3653
3654 2) keep_going and return; to wait for the next event (set
3655 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3656 once). */
c906108c 3657
ec9499be 3658static void
96baa820 3659handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3660{
d6b48e9c
PA
3661 enum stop_kind stop_soon;
3662
28736962
PA
3663 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3664 {
3665 /* We had an event in the inferior, but we are not interested in
3666 handling it at this level. The lower layers have already
3667 done what needs to be done, if anything.
3668
3669 One of the possible circumstances for this is when the
3670 inferior produces output for the console. The inferior has
3671 not stopped, and we are ignoring the event. Another possible
3672 circumstance is any event which the lower level knows will be
3673 reported multiple times without an intervening resume. */
3674 if (debug_infrun)
3675 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3676 prepare_to_wait (ecs);
3677 return;
3678 }
3679
0e5bf2a8
PA
3680 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3681 && target_can_async_p () && !sync_execution)
3682 {
3683 /* There were no unwaited-for children left in the target, but,
3684 we're not synchronously waiting for events either. Just
3685 ignore. Otherwise, if we were running a synchronous
3686 execution command, we need to cancel it and give the user
3687 back the terminal. */
3688 if (debug_infrun)
3689 fprintf_unfiltered (gdb_stdlog,
3690 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3691 prepare_to_wait (ecs);
3692 return;
3693 }
3694
1777feb0 3695 /* Cache the last pid/waitstatus. */
c32c64b7 3696 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 3697
ca005067 3698 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3699 stop_stack_dummy = STOP_NONE;
ca005067 3700
0e5bf2a8
PA
3701 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3702 {
3703 /* No unwaited-for children left. IOW, all resumed children
3704 have exited. */
3705 if (debug_infrun)
3706 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3707
3708 stop_print_frame = 0;
22bcd14b 3709 stop_waiting (ecs);
0e5bf2a8
PA
3710 return;
3711 }
3712
8c90c137 3713 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3714 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3715 {
3716 ecs->event_thread = find_thread_ptid (ecs->ptid);
3717 /* If it's a new thread, add it to the thread database. */
3718 if (ecs->event_thread == NULL)
3719 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3720
3721 /* Disable range stepping. If the next step request could use a
3722 range, this will be end up re-enabled then. */
3723 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3724 }
88ed393a
JK
3725
3726 /* Dependent on valid ECS->EVENT_THREAD. */
3727 adjust_pc_after_break (ecs);
3728
3729 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3730 reinit_frame_cache ();
3731
28736962
PA
3732 breakpoint_retire_moribund ();
3733
2b009048
DJ
3734 /* First, distinguish signals caused by the debugger from signals
3735 that have to do with the program's own actions. Note that
3736 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3737 on the operating system version. Here we detect when a SIGILL or
3738 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3739 something similar for SIGSEGV, since a SIGSEGV will be generated
3740 when we're trying to execute a breakpoint instruction on a
3741 non-executable stack. This happens for call dummy breakpoints
3742 for architectures like SPARC that place call dummies on the
3743 stack. */
2b009048 3744 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3745 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3746 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3747 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3748 {
de0a0249
UW
3749 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3750
3751 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3752 regcache_read_pc (regcache)))
3753 {
3754 if (debug_infrun)
3755 fprintf_unfiltered (gdb_stdlog,
3756 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3757 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3758 }
2b009048
DJ
3759 }
3760
28736962
PA
3761 /* Mark the non-executing threads accordingly. In all-stop, all
3762 threads of all processes are stopped when we get any event
3763 reported. In non-stop mode, only the event thread stops. If
3764 we're handling a process exit in non-stop mode, there's nothing
3765 to do, as threads of the dead process are gone, and threads of
3766 any other process were left running. */
3767 if (!non_stop)
3768 set_executing (minus_one_ptid, 0);
3769 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3770 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3771 set_executing (ecs->ptid, 0);
8c90c137 3772
488f131b
JB
3773 switch (ecs->ws.kind)
3774 {
3775 case TARGET_WAITKIND_LOADED:
527159b7 3776 if (debug_infrun)
8a9de0e4 3777 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3778 if (!ptid_equal (ecs->ptid, inferior_ptid))
3779 context_switch (ecs->ptid);
b0f4b84b
DJ
3780 /* Ignore gracefully during startup of the inferior, as it might
3781 be the shell which has just loaded some objects, otherwise
3782 add the symbols for the newly loaded objects. Also ignore at
3783 the beginning of an attach or remote session; we will query
3784 the full list of libraries once the connection is
3785 established. */
4f5d7f63
PA
3786
3787 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3788 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3789 {
edcc5120
TT
3790 struct regcache *regcache;
3791
edcc5120
TT
3792 regcache = get_thread_regcache (ecs->ptid);
3793
3794 handle_solib_event ();
3795
3796 ecs->event_thread->control.stop_bpstat
3797 = bpstat_stop_status (get_regcache_aspace (regcache),
3798 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3799
ce12b012 3800 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3801 {
3802 /* A catchpoint triggered. */
94c57d6a
PA
3803 process_event_stop_test (ecs);
3804 return;
edcc5120 3805 }
488f131b 3806
b0f4b84b
DJ
3807 /* If requested, stop when the dynamic linker notifies
3808 gdb of events. This allows the user to get control
3809 and place breakpoints in initializer routines for
3810 dynamically loaded objects (among other things). */
a493e3e2 3811 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3812 if (stop_on_solib_events)
3813 {
55409f9d
DJ
3814 /* Make sure we print "Stopped due to solib-event" in
3815 normal_stop. */
3816 stop_print_frame = 1;
3817
22bcd14b 3818 stop_waiting (ecs);
b0f4b84b
DJ
3819 return;
3820 }
488f131b 3821 }
b0f4b84b
DJ
3822
3823 /* If we are skipping through a shell, or through shared library
3824 loading that we aren't interested in, resume the program. If
5c09a2c5 3825 we're running the program normally, also resume. */
b0f4b84b
DJ
3826 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3827 {
74960c60
VP
3828 /* Loading of shared libraries might have changed breakpoint
3829 addresses. Make sure new breakpoints are inserted. */
a25a5a45 3830 if (stop_soon == NO_STOP_QUIETLY)
74960c60 3831 insert_breakpoints ();
64ce06e4 3832 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
3833 prepare_to_wait (ecs);
3834 return;
3835 }
3836
5c09a2c5
PA
3837 /* But stop if we're attaching or setting up a remote
3838 connection. */
3839 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3840 || stop_soon == STOP_QUIETLY_REMOTE)
3841 {
3842 if (debug_infrun)
3843 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 3844 stop_waiting (ecs);
5c09a2c5
PA
3845 return;
3846 }
3847
3848 internal_error (__FILE__, __LINE__,
3849 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3850
488f131b 3851 case TARGET_WAITKIND_SPURIOUS:
527159b7 3852 if (debug_infrun)
8a9de0e4 3853 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3854 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3855 context_switch (ecs->ptid);
64ce06e4 3856 resume (GDB_SIGNAL_0);
488f131b
JB
3857 prepare_to_wait (ecs);
3858 return;
c5aa993b 3859
488f131b 3860 case TARGET_WAITKIND_EXITED:
940c3c06 3861 case TARGET_WAITKIND_SIGNALLED:
527159b7 3862 if (debug_infrun)
940c3c06
PA
3863 {
3864 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3865 fprintf_unfiltered (gdb_stdlog,
3866 "infrun: TARGET_WAITKIND_EXITED\n");
3867 else
3868 fprintf_unfiltered (gdb_stdlog,
3869 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3870 }
3871
fb66883a 3872 inferior_ptid = ecs->ptid;
c9657e70 3873 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
3874 set_current_program_space (current_inferior ()->pspace);
3875 handle_vfork_child_exec_or_exit (0);
1777feb0 3876 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3877
0c557179
SDJ
3878 /* Clearing any previous state of convenience variables. */
3879 clear_exit_convenience_vars ();
3880
940c3c06
PA
3881 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3882 {
3883 /* Record the exit code in the convenience variable $_exitcode, so
3884 that the user can inspect this again later. */
3885 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3886 (LONGEST) ecs->ws.value.integer);
3887
3888 /* Also record this in the inferior itself. */
3889 current_inferior ()->has_exit_code = 1;
3890 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3891
98eb56a4
PA
3892 /* Support the --return-child-result option. */
3893 return_child_result_value = ecs->ws.value.integer;
3894
fd664c91 3895 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
3896 }
3897 else
0c557179
SDJ
3898 {
3899 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3900 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3901
3902 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3903 {
3904 /* Set the value of the internal variable $_exitsignal,
3905 which holds the signal uncaught by the inferior. */
3906 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3907 gdbarch_gdb_signal_to_target (gdbarch,
3908 ecs->ws.value.sig));
3909 }
3910 else
3911 {
3912 /* We don't have access to the target's method used for
3913 converting between signal numbers (GDB's internal
3914 representation <-> target's representation).
3915 Therefore, we cannot do a good job at displaying this
3916 information to the user. It's better to just warn
3917 her about it (if infrun debugging is enabled), and
3918 give up. */
3919 if (debug_infrun)
3920 fprintf_filtered (gdb_stdlog, _("\
3921Cannot fill $_exitsignal with the correct signal number.\n"));
3922 }
3923
fd664c91 3924 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 3925 }
8cf64490 3926
488f131b
JB
3927 gdb_flush (gdb_stdout);
3928 target_mourn_inferior ();
488f131b 3929 stop_print_frame = 0;
22bcd14b 3930 stop_waiting (ecs);
488f131b 3931 return;
c5aa993b 3932
488f131b 3933 /* The following are the only cases in which we keep going;
1777feb0 3934 the above cases end in a continue or goto. */
488f131b 3935 case TARGET_WAITKIND_FORKED:
deb3b17b 3936 case TARGET_WAITKIND_VFORKED:
527159b7 3937 if (debug_infrun)
fed708ed
PA
3938 {
3939 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3940 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3941 else
3942 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3943 }
c906108c 3944
e2d96639
YQ
3945 /* Check whether the inferior is displaced stepping. */
3946 {
3947 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3948 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3949 struct displaced_step_inferior_state *displaced
3950 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3951
3952 /* If checking displaced stepping is supported, and thread
3953 ecs->ptid is displaced stepping. */
3954 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3955 {
3956 struct inferior *parent_inf
c9657e70 3957 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
3958 struct regcache *child_regcache;
3959 CORE_ADDR parent_pc;
3960
3961 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3962 indicating that the displaced stepping of syscall instruction
3963 has been done. Perform cleanup for parent process here. Note
3964 that this operation also cleans up the child process for vfork,
3965 because their pages are shared. */
a493e3e2 3966 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3967
3968 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3969 {
3970 /* Restore scratch pad for child process. */
3971 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3972 }
3973
3974 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3975 the child's PC is also within the scratchpad. Set the child's PC
3976 to the parent's PC value, which has already been fixed up.
3977 FIXME: we use the parent's aspace here, although we're touching
3978 the child, because the child hasn't been added to the inferior
3979 list yet at this point. */
3980
3981 child_regcache
3982 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3983 gdbarch,
3984 parent_inf->aspace);
3985 /* Read PC value of parent process. */
3986 parent_pc = regcache_read_pc (regcache);
3987
3988 if (debug_displaced)
3989 fprintf_unfiltered (gdb_stdlog,
3990 "displaced: write child pc from %s to %s\n",
3991 paddress (gdbarch,
3992 regcache_read_pc (child_regcache)),
3993 paddress (gdbarch, parent_pc));
3994
3995 regcache_write_pc (child_regcache, parent_pc);
3996 }
3997 }
3998
5a2901d9 3999 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4000 context_switch (ecs->ptid);
5a2901d9 4001
b242c3c2
PA
4002 /* Immediately detach breakpoints from the child before there's
4003 any chance of letting the user delete breakpoints from the
4004 breakpoint lists. If we don't do this early, it's easy to
4005 leave left over traps in the child, vis: "break foo; catch
4006 fork; c; <fork>; del; c; <child calls foo>". We only follow
4007 the fork on the last `continue', and by that time the
4008 breakpoint at "foo" is long gone from the breakpoint table.
4009 If we vforked, then we don't need to unpatch here, since both
4010 parent and child are sharing the same memory pages; we'll
4011 need to unpatch at follow/detach time instead to be certain
4012 that new breakpoints added between catchpoint hit time and
4013 vfork follow are detached. */
4014 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4015 {
b242c3c2
PA
4016 /* This won't actually modify the breakpoint list, but will
4017 physically remove the breakpoints from the child. */
d80ee84f 4018 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4019 }
4020
34b7e8a6 4021 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4022
e58b0e63
PA
4023 /* In case the event is caught by a catchpoint, remember that
4024 the event is to be followed at the next resume of the thread,
4025 and not immediately. */
4026 ecs->event_thread->pending_follow = ecs->ws;
4027
fb14de7b 4028 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 4029
16c381f0 4030 ecs->event_thread->control.stop_bpstat
6c95b8df 4031 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4032 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 4033
ce12b012
PA
4034 /* If no catchpoint triggered for this, then keep going. Note
4035 that we're interested in knowing the bpstat actually causes a
4036 stop, not just if it may explain the signal. Software
4037 watchpoints, for example, always appear in the bpstat. */
4038 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4039 {
6c95b8df
PA
4040 ptid_t parent;
4041 ptid_t child;
e58b0e63 4042 int should_resume;
3e43a32a
MS
4043 int follow_child
4044 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 4045
a493e3e2 4046 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
4047
4048 should_resume = follow_fork ();
4049
6c95b8df
PA
4050 parent = ecs->ptid;
4051 child = ecs->ws.value.related_pid;
4052
4053 /* In non-stop mode, also resume the other branch. */
4054 if (non_stop && !detach_fork)
4055 {
4056 if (follow_child)
4057 switch_to_thread (parent);
4058 else
4059 switch_to_thread (child);
4060
4061 ecs->event_thread = inferior_thread ();
4062 ecs->ptid = inferior_ptid;
4063 keep_going (ecs);
4064 }
4065
4066 if (follow_child)
4067 switch_to_thread (child);
4068 else
4069 switch_to_thread (parent);
4070
e58b0e63
PA
4071 ecs->event_thread = inferior_thread ();
4072 ecs->ptid = inferior_ptid;
4073
4074 if (should_resume)
4075 keep_going (ecs);
4076 else
22bcd14b 4077 stop_waiting (ecs);
04e68871
DJ
4078 return;
4079 }
94c57d6a
PA
4080 process_event_stop_test (ecs);
4081 return;
488f131b 4082
6c95b8df
PA
4083 case TARGET_WAITKIND_VFORK_DONE:
4084 /* Done with the shared memory region. Re-insert breakpoints in
4085 the parent, and keep going. */
4086
4087 if (debug_infrun)
3e43a32a
MS
4088 fprintf_unfiltered (gdb_stdlog,
4089 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
4090
4091 if (!ptid_equal (ecs->ptid, inferior_ptid))
4092 context_switch (ecs->ptid);
4093
4094 current_inferior ()->waiting_for_vfork_done = 0;
56710373 4095 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
4096 /* This also takes care of reinserting breakpoints in the
4097 previously locked inferior. */
4098 keep_going (ecs);
4099 return;
4100
488f131b 4101 case TARGET_WAITKIND_EXECD:
527159b7 4102 if (debug_infrun)
fc5261f2 4103 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 4104
5a2901d9 4105 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4106 context_switch (ecs->ptid);
5a2901d9 4107
fb14de7b 4108 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 4109
6c95b8df
PA
4110 /* Do whatever is necessary to the parent branch of the vfork. */
4111 handle_vfork_child_exec_or_exit (1);
4112
795e548f
PA
4113 /* This causes the eventpoints and symbol table to be reset.
4114 Must do this now, before trying to determine whether to
4115 stop. */
71b43ef8 4116 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 4117
16c381f0 4118 ecs->event_thread->control.stop_bpstat
6c95b8df 4119 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4120 stop_pc, ecs->ptid, &ecs->ws);
795e548f 4121
71b43ef8
PA
4122 /* Note that this may be referenced from inside
4123 bpstat_stop_status above, through inferior_has_execd. */
4124 xfree (ecs->ws.value.execd_pathname);
4125 ecs->ws.value.execd_pathname = NULL;
4126
04e68871 4127 /* If no catchpoint triggered for this, then keep going. */
ce12b012 4128 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4129 {
a493e3e2 4130 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
4131 keep_going (ecs);
4132 return;
4133 }
94c57d6a
PA
4134 process_event_stop_test (ecs);
4135 return;
488f131b 4136
b4dc5ffa
MK
4137 /* Be careful not to try to gather much state about a thread
4138 that's in a syscall. It's frequently a losing proposition. */
488f131b 4139 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 4140 if (debug_infrun)
3e43a32a
MS
4141 fprintf_unfiltered (gdb_stdlog,
4142 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 4143 /* Getting the current syscall number. */
94c57d6a
PA
4144 if (handle_syscall_event (ecs) == 0)
4145 process_event_stop_test (ecs);
4146 return;
c906108c 4147
488f131b
JB
4148 /* Before examining the threads further, step this thread to
4149 get it entirely out of the syscall. (We get notice of the
4150 event when the thread is just on the verge of exiting a
4151 syscall. Stepping one instruction seems to get it back
b4dc5ffa 4152 into user code.) */
488f131b 4153 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 4154 if (debug_infrun)
3e43a32a
MS
4155 fprintf_unfiltered (gdb_stdlog,
4156 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
4157 if (handle_syscall_event (ecs) == 0)
4158 process_event_stop_test (ecs);
4159 return;
c906108c 4160
488f131b 4161 case TARGET_WAITKIND_STOPPED:
527159b7 4162 if (debug_infrun)
8a9de0e4 4163 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 4164 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
4165 handle_signal_stop (ecs);
4166 return;
c906108c 4167
b2175913 4168 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
4169 if (debug_infrun)
4170 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 4171 /* Reverse execution: target ran out of history info. */
eab402df 4172
34b7e8a6 4173 delete_just_stopped_threads_single_step_breakpoints ();
fb14de7b 4174 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 4175 observer_notify_no_history ();
22bcd14b 4176 stop_waiting (ecs);
b2175913 4177 return;
488f131b 4178 }
4f5d7f63
PA
4179}
4180
4181/* Come here when the program has stopped with a signal. */
4182
4183static void
4184handle_signal_stop (struct execution_control_state *ecs)
4185{
4186 struct frame_info *frame;
4187 struct gdbarch *gdbarch;
4188 int stopped_by_watchpoint;
4189 enum stop_kind stop_soon;
4190 int random_signal;
c906108c 4191
f0407826
DE
4192 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4193
4194 /* Do we need to clean up the state of a thread that has
4195 completed a displaced single-step? (Doing so usually affects
4196 the PC, so do it here, before we set stop_pc.) */
4197 displaced_step_fixup (ecs->ptid,
4198 ecs->event_thread->suspend.stop_signal);
4199
4200 /* If we either finished a single-step or hit a breakpoint, but
4201 the user wanted this thread to be stopped, pretend we got a
4202 SIG0 (generic unsignaled stop). */
4203 if (ecs->event_thread->stop_requested
4204 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4205 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 4206
515630c5 4207 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 4208
527159b7 4209 if (debug_infrun)
237fc4c9 4210 {
5af949e3
UW
4211 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4212 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
4213 struct cleanup *old_chain = save_inferior_ptid ();
4214
4215 inferior_ptid = ecs->ptid;
5af949e3
UW
4216
4217 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4218 paddress (gdbarch, stop_pc));
d92524f1 4219 if (target_stopped_by_watchpoint ())
237fc4c9
PA
4220 {
4221 CORE_ADDR addr;
abbb1732 4222
237fc4c9
PA
4223 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4224
4225 if (target_stopped_data_address (&current_target, &addr))
4226 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4227 "infrun: stopped data address = %s\n",
4228 paddress (gdbarch, addr));
237fc4c9
PA
4229 else
4230 fprintf_unfiltered (gdb_stdlog,
4231 "infrun: (no data address available)\n");
4232 }
7f82dfc7
JK
4233
4234 do_cleanups (old_chain);
237fc4c9 4235 }
527159b7 4236
36fa8042
PA
4237 /* This is originated from start_remote(), start_inferior() and
4238 shared libraries hook functions. */
4239 stop_soon = get_inferior_stop_soon (ecs->ptid);
4240 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4241 {
4242 if (!ptid_equal (ecs->ptid, inferior_ptid))
4243 context_switch (ecs->ptid);
4244 if (debug_infrun)
4245 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4246 stop_print_frame = 1;
22bcd14b 4247 stop_waiting (ecs);
36fa8042
PA
4248 return;
4249 }
4250
4251 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4252 && stop_after_trap)
4253 {
4254 if (!ptid_equal (ecs->ptid, inferior_ptid))
4255 context_switch (ecs->ptid);
4256 if (debug_infrun)
4257 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4258 stop_print_frame = 0;
22bcd14b 4259 stop_waiting (ecs);
36fa8042
PA
4260 return;
4261 }
4262
4263 /* This originates from attach_command(). We need to overwrite
4264 the stop_signal here, because some kernels don't ignore a
4265 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4266 See more comments in inferior.h. On the other hand, if we
4267 get a non-SIGSTOP, report it to the user - assume the backend
4268 will handle the SIGSTOP if it should show up later.
4269
4270 Also consider that the attach is complete when we see a
4271 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4272 target extended-remote report it instead of a SIGSTOP
4273 (e.g. gdbserver). We already rely on SIGTRAP being our
4274 signal, so this is no exception.
4275
4276 Also consider that the attach is complete when we see a
4277 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4278 the target to stop all threads of the inferior, in case the
4279 low level attach operation doesn't stop them implicitly. If
4280 they weren't stopped implicitly, then the stub will report a
4281 GDB_SIGNAL_0, meaning: stopped for no particular reason
4282 other than GDB's request. */
4283 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4284 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4285 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4286 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4287 {
4288 stop_print_frame = 1;
22bcd14b 4289 stop_waiting (ecs);
36fa8042
PA
4290 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4291 return;
4292 }
4293
488f131b 4294 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4295 so, then switch to that thread. */
4296 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4297 {
527159b7 4298 if (debug_infrun)
8a9de0e4 4299 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4300
0d1e5fa7 4301 context_switch (ecs->ptid);
c5aa993b 4302
9a4105ab
AC
4303 if (deprecated_context_hook)
4304 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4305 }
c906108c 4306
568d6575
UW
4307 /* At this point, get hold of the now-current thread's frame. */
4308 frame = get_current_frame ();
4309 gdbarch = get_frame_arch (frame);
4310
2adfaa28 4311 /* Pull the single step breakpoints out of the target. */
af48d08f 4312 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 4313 {
af48d08f
PA
4314 struct regcache *regcache;
4315 struct address_space *aspace;
4316 CORE_ADDR pc;
2adfaa28 4317
af48d08f
PA
4318 regcache = get_thread_regcache (ecs->ptid);
4319 aspace = get_regcache_aspace (regcache);
4320 pc = regcache_read_pc (regcache);
34b7e8a6 4321
af48d08f
PA
4322 /* However, before doing so, if this single-step breakpoint was
4323 actually for another thread, set this thread up for moving
4324 past it. */
4325 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4326 aspace, pc))
4327 {
4328 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
4329 {
4330 if (debug_infrun)
4331 {
4332 fprintf_unfiltered (gdb_stdlog,
af48d08f 4333 "infrun: [%s] hit another thread's "
34b7e8a6
PA
4334 "single-step breakpoint\n",
4335 target_pid_to_str (ecs->ptid));
2adfaa28 4336 }
af48d08f
PA
4337 ecs->hit_singlestep_breakpoint = 1;
4338 }
4339 }
4340 else
4341 {
4342 if (debug_infrun)
4343 {
4344 fprintf_unfiltered (gdb_stdlog,
4345 "infrun: [%s] hit its "
4346 "single-step breakpoint\n",
4347 target_pid_to_str (ecs->ptid));
2adfaa28
PA
4348 }
4349 }
488f131b 4350 }
af48d08f 4351 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 4352
963f9c80
PA
4353 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4354 && ecs->event_thread->control.trap_expected
4355 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
4356 stopped_by_watchpoint = 0;
4357 else
4358 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4359
4360 /* If necessary, step over this watchpoint. We'll be back to display
4361 it in a moment. */
4362 if (stopped_by_watchpoint
d92524f1 4363 && (target_have_steppable_watchpoint
568d6575 4364 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4365 {
488f131b
JB
4366 /* At this point, we are stopped at an instruction which has
4367 attempted to write to a piece of memory under control of
4368 a watchpoint. The instruction hasn't actually executed
4369 yet. If we were to evaluate the watchpoint expression
4370 now, we would get the old value, and therefore no change
4371 would seem to have occurred.
4372
4373 In order to make watchpoints work `right', we really need
4374 to complete the memory write, and then evaluate the
d983da9c
DJ
4375 watchpoint expression. We do this by single-stepping the
4376 target.
4377
7f89fd65 4378 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
4379 it. For example, the PA can (with some kernel cooperation)
4380 single step over a watchpoint without disabling the watchpoint.
4381
4382 It is far more common to need to disable a watchpoint to step
4383 the inferior over it. If we have non-steppable watchpoints,
4384 we must disable the current watchpoint; it's simplest to
963f9c80
PA
4385 disable all watchpoints.
4386
4387 Any breakpoint at PC must also be stepped over -- if there's
4388 one, it will have already triggered before the watchpoint
4389 triggered, and we either already reported it to the user, or
4390 it didn't cause a stop and we called keep_going. In either
4391 case, if there was a breakpoint at PC, we must be trying to
4392 step past it. */
4393 ecs->event_thread->stepping_over_watchpoint = 1;
4394 keep_going (ecs);
488f131b
JB
4395 return;
4396 }
4397
4e1c45ea 4398 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 4399 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
4400 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4401 ecs->event_thread->control.stop_step = 0;
488f131b 4402 stop_print_frame = 1;
488f131b 4403 stopped_by_random_signal = 0;
488f131b 4404
edb3359d
DJ
4405 /* Hide inlined functions starting here, unless we just performed stepi or
4406 nexti. After stepi and nexti, always show the innermost frame (not any
4407 inline function call sites). */
16c381f0 4408 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4409 {
4410 struct address_space *aspace =
4411 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4412
4413 /* skip_inline_frames is expensive, so we avoid it if we can
4414 determine that the address is one where functions cannot have
4415 been inlined. This improves performance with inferiors that
4416 load a lot of shared libraries, because the solib event
4417 breakpoint is defined as the address of a function (i.e. not
4418 inline). Note that we have to check the previous PC as well
4419 as the current one to catch cases when we have just
4420 single-stepped off a breakpoint prior to reinstating it.
4421 Note that we're assuming that the code we single-step to is
4422 not inline, but that's not definitive: there's nothing
4423 preventing the event breakpoint function from containing
4424 inlined code, and the single-step ending up there. If the
4425 user had set a breakpoint on that inlined code, the missing
4426 skip_inline_frames call would break things. Fortunately
4427 that's an extremely unlikely scenario. */
09ac7c10 4428 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4429 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4430 && ecs->event_thread->control.trap_expected
4431 && pc_at_non_inline_function (aspace,
4432 ecs->event_thread->prev_pc,
09ac7c10 4433 &ecs->ws)))
1c5a993e
MR
4434 {
4435 skip_inline_frames (ecs->ptid);
4436
4437 /* Re-fetch current thread's frame in case that invalidated
4438 the frame cache. */
4439 frame = get_current_frame ();
4440 gdbarch = get_frame_arch (frame);
4441 }
0574c78f 4442 }
edb3359d 4443
a493e3e2 4444 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4445 && ecs->event_thread->control.trap_expected
568d6575 4446 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4447 && currently_stepping (ecs->event_thread))
3352ef37 4448 {
b50d7442 4449 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4450 also on an instruction that needs to be stepped multiple
1777feb0 4451 times before it's been fully executing. E.g., architectures
3352ef37
AC
4452 with a delay slot. It needs to be stepped twice, once for
4453 the instruction and once for the delay slot. */
4454 int step_through_delay
568d6575 4455 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4456
527159b7 4457 if (debug_infrun && step_through_delay)
8a9de0e4 4458 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4459 if (ecs->event_thread->control.step_range_end == 0
4460 && step_through_delay)
3352ef37
AC
4461 {
4462 /* The user issued a continue when stopped at a breakpoint.
4463 Set up for another trap and get out of here. */
4e1c45ea 4464 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4465 keep_going (ecs);
4466 return;
4467 }
4468 else if (step_through_delay)
4469 {
4470 /* The user issued a step when stopped at a breakpoint.
4471 Maybe we should stop, maybe we should not - the delay
4472 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4473 case, don't decide that here, just set
4474 ecs->stepping_over_breakpoint, making sure we
4475 single-step again before breakpoints are re-inserted. */
4e1c45ea 4476 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4477 }
4478 }
4479
ab04a2af
TT
4480 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4481 handles this event. */
4482 ecs->event_thread->control.stop_bpstat
4483 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4484 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4485
ab04a2af
TT
4486 /* Following in case break condition called a
4487 function. */
4488 stop_print_frame = 1;
73dd234f 4489
ab04a2af
TT
4490 /* This is where we handle "moribund" watchpoints. Unlike
4491 software breakpoints traps, hardware watchpoint traps are
4492 always distinguishable from random traps. If no high-level
4493 watchpoint is associated with the reported stop data address
4494 anymore, then the bpstat does not explain the signal ---
4495 simply make sure to ignore it if `stopped_by_watchpoint' is
4496 set. */
4497
4498 if (debug_infrun
4499 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4500 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4501 GDB_SIGNAL_TRAP)
ab04a2af
TT
4502 && stopped_by_watchpoint)
4503 fprintf_unfiltered (gdb_stdlog,
4504 "infrun: no user watchpoint explains "
4505 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4506
bac7d97b 4507 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4508 at one stage in the past included checks for an inferior
4509 function call's call dummy's return breakpoint. The original
4510 comment, that went with the test, read:
03cebad2 4511
ab04a2af
TT
4512 ``End of a stack dummy. Some systems (e.g. Sony news) give
4513 another signal besides SIGTRAP, so check here as well as
4514 above.''
73dd234f 4515
ab04a2af
TT
4516 If someone ever tries to get call dummys on a
4517 non-executable stack to work (where the target would stop
4518 with something like a SIGSEGV), then those tests might need
4519 to be re-instated. Given, however, that the tests were only
4520 enabled when momentary breakpoints were not being used, I
4521 suspect that it won't be the case.
488f131b 4522
ab04a2af
TT
4523 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4524 be necessary for call dummies on a non-executable stack on
4525 SPARC. */
488f131b 4526
bac7d97b 4527 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4528 random_signal
4529 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4530 ecs->event_thread->suspend.stop_signal);
bac7d97b 4531
1cf4d951
PA
4532 /* Maybe this was a trap for a software breakpoint that has since
4533 been removed. */
4534 if (random_signal && target_stopped_by_sw_breakpoint ())
4535 {
4536 if (program_breakpoint_here_p (gdbarch, stop_pc))
4537 {
4538 struct regcache *regcache;
4539 int decr_pc;
4540
4541 /* Re-adjust PC to what the program would see if GDB was not
4542 debugging it. */
4543 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 4544 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
4545 if (decr_pc != 0)
4546 {
4547 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4548
4549 if (record_full_is_used ())
4550 record_full_gdb_operation_disable_set ();
4551
4552 regcache_write_pc (regcache, stop_pc + decr_pc);
4553
4554 do_cleanups (old_cleanups);
4555 }
4556 }
4557 else
4558 {
4559 /* A delayed software breakpoint event. Ignore the trap. */
4560 if (debug_infrun)
4561 fprintf_unfiltered (gdb_stdlog,
4562 "infrun: delayed software breakpoint "
4563 "trap, ignoring\n");
4564 random_signal = 0;
4565 }
4566 }
4567
4568 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
4569 has since been removed. */
4570 if (random_signal && target_stopped_by_hw_breakpoint ())
4571 {
4572 /* A delayed hardware breakpoint event. Ignore the trap. */
4573 if (debug_infrun)
4574 fprintf_unfiltered (gdb_stdlog,
4575 "infrun: delayed hardware breakpoint/watchpoint "
4576 "trap, ignoring\n");
4577 random_signal = 0;
4578 }
4579
bac7d97b
PA
4580 /* If not, perhaps stepping/nexting can. */
4581 if (random_signal)
4582 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4583 && currently_stepping (ecs->event_thread));
ab04a2af 4584
2adfaa28
PA
4585 /* Perhaps the thread hit a single-step breakpoint of _another_
4586 thread. Single-step breakpoints are transparent to the
4587 breakpoints module. */
4588 if (random_signal)
4589 random_signal = !ecs->hit_singlestep_breakpoint;
4590
bac7d97b
PA
4591 /* No? Perhaps we got a moribund watchpoint. */
4592 if (random_signal)
4593 random_signal = !stopped_by_watchpoint;
ab04a2af 4594
488f131b
JB
4595 /* For the program's own signals, act according to
4596 the signal handling tables. */
4597
ce12b012 4598 if (random_signal)
488f131b
JB
4599 {
4600 /* Signal not for debugging purposes. */
c9657e70 4601 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 4602 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4603
527159b7 4604 if (debug_infrun)
c9737c08
PA
4605 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4606 gdb_signal_to_symbol_string (stop_signal));
527159b7 4607
488f131b
JB
4608 stopped_by_random_signal = 1;
4609
252fbfc8
PA
4610 /* Always stop on signals if we're either just gaining control
4611 of the program, or the user explicitly requested this thread
4612 to remain stopped. */
d6b48e9c 4613 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4614 || ecs->event_thread->stop_requested
24291992 4615 || (!inf->detaching
16c381f0 4616 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 4617 {
22bcd14b 4618 stop_waiting (ecs);
488f131b
JB
4619 return;
4620 }
b57bacec
PA
4621
4622 /* Notify observers the signal has "handle print" set. Note we
4623 returned early above if stopping; normal_stop handles the
4624 printing in that case. */
4625 if (signal_print[ecs->event_thread->suspend.stop_signal])
4626 {
4627 /* The signal table tells us to print about this signal. */
4628 target_terminal_ours_for_output ();
4629 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4630 target_terminal_inferior ();
4631 }
488f131b
JB
4632
4633 /* Clear the signal if it should not be passed. */
16c381f0 4634 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4635 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4636
fb14de7b 4637 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4638 && ecs->event_thread->control.trap_expected
8358c15c 4639 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4640 {
4641 /* We were just starting a new sequence, attempting to
4642 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4643 Instead this signal arrives. This signal will take us out
68f53502
AC
4644 of the stepping range so GDB needs to remember to, when
4645 the signal handler returns, resume stepping off that
4646 breakpoint. */
4647 /* To simplify things, "continue" is forced to use the same
4648 code paths as single-step - set a breakpoint at the
4649 signal return address and then, once hit, step off that
4650 breakpoint. */
237fc4c9
PA
4651 if (debug_infrun)
4652 fprintf_unfiltered (gdb_stdlog,
4653 "infrun: signal arrived while stepping over "
4654 "breakpoint\n");
d3169d93 4655
2c03e5be 4656 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4657 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4658 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4659 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
4660
4661 /* If we were nexting/stepping some other thread, switch to
4662 it, so that we don't continue it, losing control. */
4663 if (!switch_back_to_stepped_thread (ecs))
4664 keep_going (ecs);
9d799f85 4665 return;
68f53502 4666 }
9d799f85 4667
e5f8a7cc
PA
4668 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4669 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4670 || ecs->event_thread->control.step_range_end == 1)
edb3359d 4671 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4672 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4673 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4674 {
4675 /* The inferior is about to take a signal that will take it
4676 out of the single step range. Set a breakpoint at the
4677 current PC (which is presumably where the signal handler
4678 will eventually return) and then allow the inferior to
4679 run free.
4680
4681 Note that this is only needed for a signal delivered
4682 while in the single-step range. Nested signals aren't a
4683 problem as they eventually all return. */
237fc4c9
PA
4684 if (debug_infrun)
4685 fprintf_unfiltered (gdb_stdlog,
4686 "infrun: signal may take us out of "
4687 "single-step range\n");
4688
2c03e5be 4689 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 4690 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4691 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4692 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4693 keep_going (ecs);
4694 return;
d303a6c7 4695 }
9d799f85
AC
4696
4697 /* Note: step_resume_breakpoint may be non-NULL. This occures
4698 when either there's a nested signal, or when there's a
4699 pending signal enabled just as the signal handler returns
4700 (leaving the inferior at the step-resume-breakpoint without
4701 actually executing it). Either way continue until the
4702 breakpoint is really hit. */
c447ac0b
PA
4703
4704 if (!switch_back_to_stepped_thread (ecs))
4705 {
4706 if (debug_infrun)
4707 fprintf_unfiltered (gdb_stdlog,
4708 "infrun: random signal, keep going\n");
4709
4710 keep_going (ecs);
4711 }
4712 return;
488f131b 4713 }
94c57d6a
PA
4714
4715 process_event_stop_test (ecs);
4716}
4717
4718/* Come here when we've got some debug event / signal we can explain
4719 (IOW, not a random signal), and test whether it should cause a
4720 stop, or whether we should resume the inferior (transparently).
4721 E.g., could be a breakpoint whose condition evaluates false; we
4722 could be still stepping within the line; etc. */
4723
4724static void
4725process_event_stop_test (struct execution_control_state *ecs)
4726{
4727 struct symtab_and_line stop_pc_sal;
4728 struct frame_info *frame;
4729 struct gdbarch *gdbarch;
cdaa5b73
PA
4730 CORE_ADDR jmp_buf_pc;
4731 struct bpstat_what what;
94c57d6a 4732
cdaa5b73 4733 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4734
cdaa5b73
PA
4735 frame = get_current_frame ();
4736 gdbarch = get_frame_arch (frame);
fcf3daef 4737
cdaa5b73 4738 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4739
cdaa5b73
PA
4740 if (what.call_dummy)
4741 {
4742 stop_stack_dummy = what.call_dummy;
4743 }
186c406b 4744
cdaa5b73
PA
4745 /* If we hit an internal event that triggers symbol changes, the
4746 current frame will be invalidated within bpstat_what (e.g., if we
4747 hit an internal solib event). Re-fetch it. */
4748 frame = get_current_frame ();
4749 gdbarch = get_frame_arch (frame);
e2e4d78b 4750
cdaa5b73
PA
4751 switch (what.main_action)
4752 {
4753 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4754 /* If we hit the breakpoint at longjmp while stepping, we
4755 install a momentary breakpoint at the target of the
4756 jmp_buf. */
186c406b 4757
cdaa5b73
PA
4758 if (debug_infrun)
4759 fprintf_unfiltered (gdb_stdlog,
4760 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4761
cdaa5b73 4762 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4763
cdaa5b73
PA
4764 if (what.is_longjmp)
4765 {
4766 struct value *arg_value;
4767
4768 /* If we set the longjmp breakpoint via a SystemTap probe,
4769 then use it to extract the arguments. The destination PC
4770 is the third argument to the probe. */
4771 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4772 if (arg_value)
8fa0c4f8
AA
4773 {
4774 jmp_buf_pc = value_as_address (arg_value);
4775 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4776 }
cdaa5b73
PA
4777 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4778 || !gdbarch_get_longjmp_target (gdbarch,
4779 frame, &jmp_buf_pc))
e2e4d78b 4780 {
cdaa5b73
PA
4781 if (debug_infrun)
4782 fprintf_unfiltered (gdb_stdlog,
4783 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4784 "(!gdbarch_get_longjmp_target)\n");
4785 keep_going (ecs);
4786 return;
e2e4d78b 4787 }
e2e4d78b 4788
cdaa5b73
PA
4789 /* Insert a breakpoint at resume address. */
4790 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4791 }
4792 else
4793 check_exception_resume (ecs, frame);
4794 keep_going (ecs);
4795 return;
e81a37f7 4796
cdaa5b73
PA
4797 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4798 {
4799 struct frame_info *init_frame;
e81a37f7 4800
cdaa5b73 4801 /* There are several cases to consider.
c906108c 4802
cdaa5b73
PA
4803 1. The initiating frame no longer exists. In this case we
4804 must stop, because the exception or longjmp has gone too
4805 far.
2c03e5be 4806
cdaa5b73
PA
4807 2. The initiating frame exists, and is the same as the
4808 current frame. We stop, because the exception or longjmp
4809 has been caught.
2c03e5be 4810
cdaa5b73
PA
4811 3. The initiating frame exists and is different from the
4812 current frame. This means the exception or longjmp has
4813 been caught beneath the initiating frame, so keep going.
c906108c 4814
cdaa5b73
PA
4815 4. longjmp breakpoint has been placed just to protect
4816 against stale dummy frames and user is not interested in
4817 stopping around longjmps. */
c5aa993b 4818
cdaa5b73
PA
4819 if (debug_infrun)
4820 fprintf_unfiltered (gdb_stdlog,
4821 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4822
cdaa5b73
PA
4823 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4824 != NULL);
4825 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4826
cdaa5b73
PA
4827 if (what.is_longjmp)
4828 {
b67a2c6f 4829 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 4830
cdaa5b73 4831 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4832 {
cdaa5b73
PA
4833 /* Case 4. */
4834 keep_going (ecs);
4835 return;
e5ef252a 4836 }
cdaa5b73 4837 }
c5aa993b 4838
cdaa5b73 4839 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4840
cdaa5b73
PA
4841 if (init_frame)
4842 {
4843 struct frame_id current_id
4844 = get_frame_id (get_current_frame ());
4845 if (frame_id_eq (current_id,
4846 ecs->event_thread->initiating_frame))
4847 {
4848 /* Case 2. Fall through. */
4849 }
4850 else
4851 {
4852 /* Case 3. */
4853 keep_going (ecs);
4854 return;
4855 }
68f53502 4856 }
488f131b 4857
cdaa5b73
PA
4858 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4859 exists. */
4860 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4861
bdc36728 4862 end_stepping_range (ecs);
cdaa5b73
PA
4863 }
4864 return;
e5ef252a 4865
cdaa5b73
PA
4866 case BPSTAT_WHAT_SINGLE:
4867 if (debug_infrun)
4868 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4869 ecs->event_thread->stepping_over_breakpoint = 1;
4870 /* Still need to check other stuff, at least the case where we
4871 are stepping and step out of the right range. */
4872 break;
e5ef252a 4873
cdaa5b73
PA
4874 case BPSTAT_WHAT_STEP_RESUME:
4875 if (debug_infrun)
4876 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4877
cdaa5b73
PA
4878 delete_step_resume_breakpoint (ecs->event_thread);
4879 if (ecs->event_thread->control.proceed_to_finish
4880 && execution_direction == EXEC_REVERSE)
4881 {
4882 struct thread_info *tp = ecs->event_thread;
4883
4884 /* We are finishing a function in reverse, and just hit the
4885 step-resume breakpoint at the start address of the
4886 function, and we're almost there -- just need to back up
4887 by one more single-step, which should take us back to the
4888 function call. */
4889 tp->control.step_range_start = tp->control.step_range_end = 1;
4890 keep_going (ecs);
e5ef252a 4891 return;
cdaa5b73
PA
4892 }
4893 fill_in_stop_func (gdbarch, ecs);
4894 if (stop_pc == ecs->stop_func_start
4895 && execution_direction == EXEC_REVERSE)
4896 {
4897 /* We are stepping over a function call in reverse, and just
4898 hit the step-resume breakpoint at the start address of
4899 the function. Go back to single-stepping, which should
4900 take us back to the function call. */
4901 ecs->event_thread->stepping_over_breakpoint = 1;
4902 keep_going (ecs);
4903 return;
4904 }
4905 break;
e5ef252a 4906
cdaa5b73
PA
4907 case BPSTAT_WHAT_STOP_NOISY:
4908 if (debug_infrun)
4909 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4910 stop_print_frame = 1;
e5ef252a 4911
99619bea
PA
4912 /* Assume the thread stopped for a breapoint. We'll still check
4913 whether a/the breakpoint is there when the thread is next
4914 resumed. */
4915 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 4916
22bcd14b 4917 stop_waiting (ecs);
cdaa5b73 4918 return;
e5ef252a 4919
cdaa5b73
PA
4920 case BPSTAT_WHAT_STOP_SILENT:
4921 if (debug_infrun)
4922 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4923 stop_print_frame = 0;
e5ef252a 4924
99619bea
PA
4925 /* Assume the thread stopped for a breapoint. We'll still check
4926 whether a/the breakpoint is there when the thread is next
4927 resumed. */
4928 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 4929 stop_waiting (ecs);
cdaa5b73
PA
4930 return;
4931
4932 case BPSTAT_WHAT_HP_STEP_RESUME:
4933 if (debug_infrun)
4934 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4935
4936 delete_step_resume_breakpoint (ecs->event_thread);
4937 if (ecs->event_thread->step_after_step_resume_breakpoint)
4938 {
4939 /* Back when the step-resume breakpoint was inserted, we
4940 were trying to single-step off a breakpoint. Go back to
4941 doing that. */
4942 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4943 ecs->event_thread->stepping_over_breakpoint = 1;
4944 keep_going (ecs);
4945 return;
e5ef252a 4946 }
cdaa5b73
PA
4947 break;
4948
4949 case BPSTAT_WHAT_KEEP_CHECKING:
4950 break;
e5ef252a 4951 }
c906108c 4952
af48d08f
PA
4953 /* If we stepped a permanent breakpoint and we had a high priority
4954 step-resume breakpoint for the address we stepped, but we didn't
4955 hit it, then we must have stepped into the signal handler. The
4956 step-resume was only necessary to catch the case of _not_
4957 stepping into the handler, so delete it, and fall through to
4958 checking whether the step finished. */
4959 if (ecs->event_thread->stepped_breakpoint)
4960 {
4961 struct breakpoint *sr_bp
4962 = ecs->event_thread->control.step_resume_breakpoint;
4963
4964 if (sr_bp->loc->permanent
4965 && sr_bp->type == bp_hp_step_resume
4966 && sr_bp->loc->address == ecs->event_thread->prev_pc)
4967 {
4968 if (debug_infrun)
4969 fprintf_unfiltered (gdb_stdlog,
4970 "infrun: stepped permanent breakpoint, stopped in "
4971 "handler\n");
4972 delete_step_resume_breakpoint (ecs->event_thread);
4973 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4974 }
4975 }
4976
cdaa5b73
PA
4977 /* We come here if we hit a breakpoint but should not stop for it.
4978 Possibly we also were stepping and should stop for that. So fall
4979 through and test for stepping. But, if not stepping, do not
4980 stop. */
c906108c 4981
a7212384
UW
4982 /* In all-stop mode, if we're currently stepping but have stopped in
4983 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4984 if (switch_back_to_stepped_thread (ecs))
4985 return;
776f04fa 4986
8358c15c 4987 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4988 {
527159b7 4989 if (debug_infrun)
d3169d93
DJ
4990 fprintf_unfiltered (gdb_stdlog,
4991 "infrun: step-resume breakpoint is inserted\n");
527159b7 4992
488f131b
JB
4993 /* Having a step-resume breakpoint overrides anything
4994 else having to do with stepping commands until
4995 that breakpoint is reached. */
488f131b
JB
4996 keep_going (ecs);
4997 return;
4998 }
c5aa993b 4999
16c381f0 5000 if (ecs->event_thread->control.step_range_end == 0)
488f131b 5001 {
527159b7 5002 if (debug_infrun)
8a9de0e4 5003 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 5004 /* Likewise if we aren't even stepping. */
488f131b
JB
5005 keep_going (ecs);
5006 return;
5007 }
c5aa993b 5008
4b7703ad
JB
5009 /* Re-fetch current thread's frame in case the code above caused
5010 the frame cache to be re-initialized, making our FRAME variable
5011 a dangling pointer. */
5012 frame = get_current_frame ();
628fe4e4 5013 gdbarch = get_frame_arch (frame);
7e324e48 5014 fill_in_stop_func (gdbarch, ecs);
4b7703ad 5015
488f131b 5016 /* If stepping through a line, keep going if still within it.
c906108c 5017
488f131b
JB
5018 Note that step_range_end is the address of the first instruction
5019 beyond the step range, and NOT the address of the last instruction
31410e84
MS
5020 within it!
5021
5022 Note also that during reverse execution, we may be stepping
5023 through a function epilogue and therefore must detect when
5024 the current-frame changes in the middle of a line. */
5025
ce4c476a 5026 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 5027 && (execution_direction != EXEC_REVERSE
388a8562 5028 || frame_id_eq (get_frame_id (frame),
16c381f0 5029 ecs->event_thread->control.step_frame_id)))
488f131b 5030 {
527159b7 5031 if (debug_infrun)
5af949e3
UW
5032 fprintf_unfiltered
5033 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
5034 paddress (gdbarch, ecs->event_thread->control.step_range_start),
5035 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 5036
c1e36e3e
PA
5037 /* Tentatively re-enable range stepping; `resume' disables it if
5038 necessary (e.g., if we're stepping over a breakpoint or we
5039 have software watchpoints). */
5040 ecs->event_thread->control.may_range_step = 1;
5041
b2175913
MS
5042 /* When stepping backward, stop at beginning of line range
5043 (unless it's the function entry point, in which case
5044 keep going back to the call point). */
16c381f0 5045 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
5046 && stop_pc != ecs->stop_func_start
5047 && execution_direction == EXEC_REVERSE)
bdc36728 5048 end_stepping_range (ecs);
b2175913
MS
5049 else
5050 keep_going (ecs);
5051
488f131b
JB
5052 return;
5053 }
c5aa993b 5054
488f131b 5055 /* We stepped out of the stepping range. */
c906108c 5056
488f131b 5057 /* If we are stepping at the source level and entered the runtime
388a8562
MS
5058 loader dynamic symbol resolution code...
5059
5060 EXEC_FORWARD: we keep on single stepping until we exit the run
5061 time loader code and reach the callee's address.
5062
5063 EXEC_REVERSE: we've already executed the callee (backward), and
5064 the runtime loader code is handled just like any other
5065 undebuggable function call. Now we need only keep stepping
5066 backward through the trampoline code, and that's handled further
5067 down, so there is nothing for us to do here. */
5068
5069 if (execution_direction != EXEC_REVERSE
16c381f0 5070 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 5071 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 5072 {
4c8c40e6 5073 CORE_ADDR pc_after_resolver =
568d6575 5074 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 5075
527159b7 5076 if (debug_infrun)
3e43a32a
MS
5077 fprintf_unfiltered (gdb_stdlog,
5078 "infrun: stepped into dynsym resolve code\n");
527159b7 5079
488f131b
JB
5080 if (pc_after_resolver)
5081 {
5082 /* Set up a step-resume breakpoint at the address
5083 indicated by SKIP_SOLIB_RESOLVER. */
5084 struct symtab_and_line sr_sal;
abbb1732 5085
fe39c653 5086 init_sal (&sr_sal);
488f131b 5087 sr_sal.pc = pc_after_resolver;
6c95b8df 5088 sr_sal.pspace = get_frame_program_space (frame);
488f131b 5089
a6d9a66e
UW
5090 insert_step_resume_breakpoint_at_sal (gdbarch,
5091 sr_sal, null_frame_id);
c5aa993b 5092 }
c906108c 5093
488f131b
JB
5094 keep_going (ecs);
5095 return;
5096 }
c906108c 5097
16c381f0
JK
5098 if (ecs->event_thread->control.step_range_end != 1
5099 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5100 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 5101 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 5102 {
527159b7 5103 if (debug_infrun)
3e43a32a
MS
5104 fprintf_unfiltered (gdb_stdlog,
5105 "infrun: stepped into signal trampoline\n");
42edda50 5106 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
5107 a signal trampoline (either by a signal being delivered or by
5108 the signal handler returning). Just single-step until the
5109 inferior leaves the trampoline (either by calling the handler
5110 or returning). */
488f131b
JB
5111 keep_going (ecs);
5112 return;
5113 }
c906108c 5114
14132e89
MR
5115 /* If we're in the return path from a shared library trampoline,
5116 we want to proceed through the trampoline when stepping. */
5117 /* macro/2012-04-25: This needs to come before the subroutine
5118 call check below as on some targets return trampolines look
5119 like subroutine calls (MIPS16 return thunks). */
5120 if (gdbarch_in_solib_return_trampoline (gdbarch,
5121 stop_pc, ecs->stop_func_name)
5122 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5123 {
5124 /* Determine where this trampoline returns. */
5125 CORE_ADDR real_stop_pc;
5126
5127 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5128
5129 if (debug_infrun)
5130 fprintf_unfiltered (gdb_stdlog,
5131 "infrun: stepped into solib return tramp\n");
5132
5133 /* Only proceed through if we know where it's going. */
5134 if (real_stop_pc)
5135 {
5136 /* And put the step-breakpoint there and go until there. */
5137 struct symtab_and_line sr_sal;
5138
5139 init_sal (&sr_sal); /* initialize to zeroes */
5140 sr_sal.pc = real_stop_pc;
5141 sr_sal.section = find_pc_overlay (sr_sal.pc);
5142 sr_sal.pspace = get_frame_program_space (frame);
5143
5144 /* Do not specify what the fp should be when we stop since
5145 on some machines the prologue is where the new fp value
5146 is established. */
5147 insert_step_resume_breakpoint_at_sal (gdbarch,
5148 sr_sal, null_frame_id);
5149
5150 /* Restart without fiddling with the step ranges or
5151 other state. */
5152 keep_going (ecs);
5153 return;
5154 }
5155 }
5156
c17eaafe
DJ
5157 /* Check for subroutine calls. The check for the current frame
5158 equalling the step ID is not necessary - the check of the
5159 previous frame's ID is sufficient - but it is a common case and
5160 cheaper than checking the previous frame's ID.
14e60db5
DJ
5161
5162 NOTE: frame_id_eq will never report two invalid frame IDs as
5163 being equal, so to get into this block, both the current and
5164 previous frame must have valid frame IDs. */
005ca36a
JB
5165 /* The outer_frame_id check is a heuristic to detect stepping
5166 through startup code. If we step over an instruction which
5167 sets the stack pointer from an invalid value to a valid value,
5168 we may detect that as a subroutine call from the mythical
5169 "outermost" function. This could be fixed by marking
5170 outermost frames as !stack_p,code_p,special_p. Then the
5171 initial outermost frame, before sp was valid, would
ce6cca6d 5172 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 5173 for more. */
edb3359d 5174 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 5175 ecs->event_thread->control.step_stack_frame_id)
005ca36a 5176 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
5177 ecs->event_thread->control.step_stack_frame_id)
5178 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 5179 outer_frame_id)
885eeb5b
PA
5180 || (ecs->event_thread->control.step_start_function
5181 != find_pc_function (stop_pc)))))
488f131b 5182 {
95918acb 5183 CORE_ADDR real_stop_pc;
8fb3e588 5184
527159b7 5185 if (debug_infrun)
8a9de0e4 5186 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 5187
b7a084be 5188 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
5189 {
5190 /* I presume that step_over_calls is only 0 when we're
5191 supposed to be stepping at the assembly language level
5192 ("stepi"). Just stop. */
388a8562 5193 /* And this works the same backward as frontward. MVS */
bdc36728 5194 end_stepping_range (ecs);
95918acb
AC
5195 return;
5196 }
8fb3e588 5197
388a8562
MS
5198 /* Reverse stepping through solib trampolines. */
5199
5200 if (execution_direction == EXEC_REVERSE
16c381f0 5201 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
5202 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5203 || (ecs->stop_func_start == 0
5204 && in_solib_dynsym_resolve_code (stop_pc))))
5205 {
5206 /* Any solib trampoline code can be handled in reverse
5207 by simply continuing to single-step. We have already
5208 executed the solib function (backwards), and a few
5209 steps will take us back through the trampoline to the
5210 caller. */
5211 keep_going (ecs);
5212 return;
5213 }
5214
16c381f0 5215 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 5216 {
b2175913
MS
5217 /* We're doing a "next".
5218
5219 Normal (forward) execution: set a breakpoint at the
5220 callee's return address (the address at which the caller
5221 will resume).
5222
5223 Reverse (backward) execution. set the step-resume
5224 breakpoint at the start of the function that we just
5225 stepped into (backwards), and continue to there. When we
6130d0b7 5226 get there, we'll need to single-step back to the caller. */
b2175913
MS
5227
5228 if (execution_direction == EXEC_REVERSE)
5229 {
acf9414f
JK
5230 /* If we're already at the start of the function, we've either
5231 just stepped backward into a single instruction function,
5232 or stepped back out of a signal handler to the first instruction
5233 of the function. Just keep going, which will single-step back
5234 to the caller. */
58c48e72 5235 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
5236 {
5237 struct symtab_and_line sr_sal;
5238
5239 /* Normal function call return (static or dynamic). */
5240 init_sal (&sr_sal);
5241 sr_sal.pc = ecs->stop_func_start;
5242 sr_sal.pspace = get_frame_program_space (frame);
5243 insert_step_resume_breakpoint_at_sal (gdbarch,
5244 sr_sal, null_frame_id);
5245 }
b2175913
MS
5246 }
5247 else
568d6575 5248 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5249
8567c30f
AC
5250 keep_going (ecs);
5251 return;
5252 }
a53c66de 5253
95918acb 5254 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
5255 calling routine and the real function), locate the real
5256 function. That's what tells us (a) whether we want to step
5257 into it at all, and (b) what prologue we want to run to the
5258 end of, if we do step into it. */
568d6575 5259 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 5260 if (real_stop_pc == 0)
568d6575 5261 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
5262 if (real_stop_pc != 0)
5263 ecs->stop_func_start = real_stop_pc;
8fb3e588 5264
db5f024e 5265 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
5266 {
5267 struct symtab_and_line sr_sal;
abbb1732 5268
1b2bfbb9
RC
5269 init_sal (&sr_sal);
5270 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5271 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5272
a6d9a66e
UW
5273 insert_step_resume_breakpoint_at_sal (gdbarch,
5274 sr_sal, null_frame_id);
8fb3e588
AC
5275 keep_going (ecs);
5276 return;
1b2bfbb9
RC
5277 }
5278
95918acb 5279 /* If we have line number information for the function we are
1bfeeb0f
JL
5280 thinking of stepping into and the function isn't on the skip
5281 list, step into it.
95918acb 5282
8fb3e588
AC
5283 If there are several symtabs at that PC (e.g. with include
5284 files), just want to know whether *any* of them have line
5285 numbers. find_pc_line handles this. */
95918acb
AC
5286 {
5287 struct symtab_and_line tmp_sal;
8fb3e588 5288
95918acb 5289 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5290 if (tmp_sal.line != 0
85817405
JK
5291 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5292 &tmp_sal))
95918acb 5293 {
b2175913 5294 if (execution_direction == EXEC_REVERSE)
568d6575 5295 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5296 else
568d6575 5297 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5298 return;
5299 }
5300 }
5301
5302 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5303 set, we stop the step so that the user has a chance to switch
5304 in assembly mode. */
16c381f0 5305 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5306 && step_stop_if_no_debug)
95918acb 5307 {
bdc36728 5308 end_stepping_range (ecs);
95918acb
AC
5309 return;
5310 }
5311
b2175913
MS
5312 if (execution_direction == EXEC_REVERSE)
5313 {
acf9414f
JK
5314 /* If we're already at the start of the function, we've either just
5315 stepped backward into a single instruction function without line
5316 number info, or stepped back out of a signal handler to the first
5317 instruction of the function without line number info. Just keep
5318 going, which will single-step back to the caller. */
5319 if (ecs->stop_func_start != stop_pc)
5320 {
5321 /* Set a breakpoint at callee's start address.
5322 From there we can step once and be back in the caller. */
5323 struct symtab_and_line sr_sal;
abbb1732 5324
acf9414f
JK
5325 init_sal (&sr_sal);
5326 sr_sal.pc = ecs->stop_func_start;
5327 sr_sal.pspace = get_frame_program_space (frame);
5328 insert_step_resume_breakpoint_at_sal (gdbarch,
5329 sr_sal, null_frame_id);
5330 }
b2175913
MS
5331 }
5332 else
5333 /* Set a breakpoint at callee's return address (the address
5334 at which the caller will resume). */
568d6575 5335 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5336
95918acb 5337 keep_going (ecs);
488f131b 5338 return;
488f131b 5339 }
c906108c 5340
fdd654f3
MS
5341 /* Reverse stepping through solib trampolines. */
5342
5343 if (execution_direction == EXEC_REVERSE
16c381f0 5344 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5345 {
5346 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5347 || (ecs->stop_func_start == 0
5348 && in_solib_dynsym_resolve_code (stop_pc)))
5349 {
5350 /* Any solib trampoline code can be handled in reverse
5351 by simply continuing to single-step. We have already
5352 executed the solib function (backwards), and a few
5353 steps will take us back through the trampoline to the
5354 caller. */
5355 keep_going (ecs);
5356 return;
5357 }
5358 else if (in_solib_dynsym_resolve_code (stop_pc))
5359 {
5360 /* Stepped backward into the solib dynsym resolver.
5361 Set a breakpoint at its start and continue, then
5362 one more step will take us out. */
5363 struct symtab_and_line sr_sal;
abbb1732 5364
fdd654f3
MS
5365 init_sal (&sr_sal);
5366 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5367 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5368 insert_step_resume_breakpoint_at_sal (gdbarch,
5369 sr_sal, null_frame_id);
5370 keep_going (ecs);
5371 return;
5372 }
5373 }
5374
2afb61aa 5375 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5376
1b2bfbb9
RC
5377 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5378 the trampoline processing logic, however, there are some trampolines
5379 that have no names, so we should do trampoline handling first. */
16c381f0 5380 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5381 && ecs->stop_func_name == NULL
2afb61aa 5382 && stop_pc_sal.line == 0)
1b2bfbb9 5383 {
527159b7 5384 if (debug_infrun)
3e43a32a
MS
5385 fprintf_unfiltered (gdb_stdlog,
5386 "infrun: stepped into undebuggable function\n");
527159b7 5387
1b2bfbb9 5388 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5389 undebuggable function (where there is no debugging information
5390 and no line number corresponding to the address where the
1b2bfbb9
RC
5391 inferior stopped). Since we want to skip this kind of code,
5392 we keep going until the inferior returns from this
14e60db5
DJ
5393 function - unless the user has asked us not to (via
5394 set step-mode) or we no longer know how to get back
5395 to the call site. */
5396 if (step_stop_if_no_debug
c7ce8faa 5397 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5398 {
5399 /* If we have no line number and the step-stop-if-no-debug
5400 is set, we stop the step so that the user has a chance to
5401 switch in assembly mode. */
bdc36728 5402 end_stepping_range (ecs);
1b2bfbb9
RC
5403 return;
5404 }
5405 else
5406 {
5407 /* Set a breakpoint at callee's return address (the address
5408 at which the caller will resume). */
568d6575 5409 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5410 keep_going (ecs);
5411 return;
5412 }
5413 }
5414
16c381f0 5415 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5416 {
5417 /* It is stepi or nexti. We always want to stop stepping after
5418 one instruction. */
527159b7 5419 if (debug_infrun)
8a9de0e4 5420 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 5421 end_stepping_range (ecs);
1b2bfbb9
RC
5422 return;
5423 }
5424
2afb61aa 5425 if (stop_pc_sal.line == 0)
488f131b
JB
5426 {
5427 /* We have no line number information. That means to stop
5428 stepping (does this always happen right after one instruction,
5429 when we do "s" in a function with no line numbers,
5430 or can this happen as a result of a return or longjmp?). */
527159b7 5431 if (debug_infrun)
8a9de0e4 5432 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 5433 end_stepping_range (ecs);
488f131b
JB
5434 return;
5435 }
c906108c 5436
edb3359d
DJ
5437 /* Look for "calls" to inlined functions, part one. If the inline
5438 frame machinery detected some skipped call sites, we have entered
5439 a new inline function. */
5440
5441 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5442 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5443 && inline_skipped_frames (ecs->ptid))
5444 {
5445 struct symtab_and_line call_sal;
5446
5447 if (debug_infrun)
5448 fprintf_unfiltered (gdb_stdlog,
5449 "infrun: stepped into inlined function\n");
5450
5451 find_frame_sal (get_current_frame (), &call_sal);
5452
16c381f0 5453 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5454 {
5455 /* For "step", we're going to stop. But if the call site
5456 for this inlined function is on the same source line as
5457 we were previously stepping, go down into the function
5458 first. Otherwise stop at the call site. */
5459
5460 if (call_sal.line == ecs->event_thread->current_line
5461 && call_sal.symtab == ecs->event_thread->current_symtab)
5462 step_into_inline_frame (ecs->ptid);
5463
bdc36728 5464 end_stepping_range (ecs);
edb3359d
DJ
5465 return;
5466 }
5467 else
5468 {
5469 /* For "next", we should stop at the call site if it is on a
5470 different source line. Otherwise continue through the
5471 inlined function. */
5472 if (call_sal.line == ecs->event_thread->current_line
5473 && call_sal.symtab == ecs->event_thread->current_symtab)
5474 keep_going (ecs);
5475 else
bdc36728 5476 end_stepping_range (ecs);
edb3359d
DJ
5477 return;
5478 }
5479 }
5480
5481 /* Look for "calls" to inlined functions, part two. If we are still
5482 in the same real function we were stepping through, but we have
5483 to go further up to find the exact frame ID, we are stepping
5484 through a more inlined call beyond its call site. */
5485
5486 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5487 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5488 ecs->event_thread->control.step_frame_id)
edb3359d 5489 && stepped_in_from (get_current_frame (),
16c381f0 5490 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5491 {
5492 if (debug_infrun)
5493 fprintf_unfiltered (gdb_stdlog,
5494 "infrun: stepping through inlined function\n");
5495
16c381f0 5496 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5497 keep_going (ecs);
5498 else
bdc36728 5499 end_stepping_range (ecs);
edb3359d
DJ
5500 return;
5501 }
5502
2afb61aa 5503 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5504 && (ecs->event_thread->current_line != stop_pc_sal.line
5505 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5506 {
5507 /* We are at the start of a different line. So stop. Note that
5508 we don't stop if we step into the middle of a different line.
5509 That is said to make things like for (;;) statements work
5510 better. */
527159b7 5511 if (debug_infrun)
3e43a32a
MS
5512 fprintf_unfiltered (gdb_stdlog,
5513 "infrun: stepped to a different line\n");
bdc36728 5514 end_stepping_range (ecs);
488f131b
JB
5515 return;
5516 }
c906108c 5517
488f131b 5518 /* We aren't done stepping.
c906108c 5519
488f131b
JB
5520 Optimize by setting the stepping range to the line.
5521 (We might not be in the original line, but if we entered a
5522 new line in mid-statement, we continue stepping. This makes
5523 things like for(;;) statements work better.) */
c906108c 5524
16c381f0
JK
5525 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5526 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5527 ecs->event_thread->control.may_range_step = 1;
edb3359d 5528 set_step_info (frame, stop_pc_sal);
488f131b 5529
527159b7 5530 if (debug_infrun)
8a9de0e4 5531 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5532 keep_going (ecs);
104c1213
JM
5533}
5534
c447ac0b
PA
5535/* In all-stop mode, if we're currently stepping but have stopped in
5536 some other thread, we may need to switch back to the stepped
5537 thread. Returns true we set the inferior running, false if we left
5538 it stopped (and the event needs further processing). */
5539
5540static int
5541switch_back_to_stepped_thread (struct execution_control_state *ecs)
5542{
5543 if (!non_stop)
5544 {
5545 struct thread_info *tp;
99619bea 5546 struct thread_info *stepping_thread;
483805cf 5547 struct thread_info *step_over;
99619bea
PA
5548
5549 /* If any thread is blocked on some internal breakpoint, and we
5550 simply need to step over that breakpoint to get it going
5551 again, do that first. */
5552
5553 /* However, if we see an event for the stepping thread, then we
5554 know all other threads have been moved past their breakpoints
5555 already. Let the caller check whether the step is finished,
5556 etc., before deciding to move it past a breakpoint. */
5557 if (ecs->event_thread->control.step_range_end != 0)
5558 return 0;
5559
5560 /* Check if the current thread is blocked on an incomplete
5561 step-over, interrupted by a random signal. */
5562 if (ecs->event_thread->control.trap_expected
5563 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 5564 {
99619bea
PA
5565 if (debug_infrun)
5566 {
5567 fprintf_unfiltered (gdb_stdlog,
5568 "infrun: need to finish step-over of [%s]\n",
5569 target_pid_to_str (ecs->event_thread->ptid));
5570 }
5571 keep_going (ecs);
5572 return 1;
5573 }
2adfaa28 5574
99619bea
PA
5575 /* Check if the current thread is blocked by a single-step
5576 breakpoint of another thread. */
5577 if (ecs->hit_singlestep_breakpoint)
5578 {
5579 if (debug_infrun)
5580 {
5581 fprintf_unfiltered (gdb_stdlog,
5582 "infrun: need to step [%s] over single-step "
5583 "breakpoint\n",
5584 target_pid_to_str (ecs->ptid));
5585 }
5586 keep_going (ecs);
5587 return 1;
5588 }
5589
483805cf
PA
5590 /* Otherwise, we no longer expect a trap in the current thread.
5591 Clear the trap_expected flag before switching back -- this is
5592 what keep_going does as well, if we call it. */
5593 ecs->event_thread->control.trap_expected = 0;
5594
70509625
PA
5595 /* Likewise, clear the signal if it should not be passed. */
5596 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5597 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5598
483805cf
PA
5599 /* If scheduler locking applies even if not stepping, there's no
5600 need to walk over threads. Above we've checked whether the
5601 current thread is stepping. If some other thread not the
5602 event thread is stepping, then it must be that scheduler
5603 locking is not in effect. */
856e7dd6 5604 if (schedlock_applies (ecs->event_thread))
483805cf
PA
5605 return 0;
5606
5607 /* Look for the stepping/nexting thread, and check if any other
5608 thread other than the stepping thread needs to start a
5609 step-over. Do all step-overs before actually proceeding with
5610 step/next/etc. */
5611 stepping_thread = NULL;
5612 step_over = NULL;
034f788c 5613 ALL_NON_EXITED_THREADS (tp)
483805cf
PA
5614 {
5615 /* Ignore threads of processes we're not resuming. */
5616 if (!sched_multi
5617 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5618 continue;
5619
5620 /* When stepping over a breakpoint, we lock all threads
5621 except the one that needs to move past the breakpoint.
5622 If a non-event thread has this set, the "incomplete
5623 step-over" check above should have caught it earlier. */
5624 gdb_assert (!tp->control.trap_expected);
5625
5626 /* Did we find the stepping thread? */
5627 if (tp->control.step_range_end)
5628 {
5629 /* Yep. There should only one though. */
5630 gdb_assert (stepping_thread == NULL);
5631
5632 /* The event thread is handled at the top, before we
5633 enter this loop. */
5634 gdb_assert (tp != ecs->event_thread);
5635
5636 /* If some thread other than the event thread is
5637 stepping, then scheduler locking can't be in effect,
5638 otherwise we wouldn't have resumed the current event
5639 thread in the first place. */
856e7dd6 5640 gdb_assert (!schedlock_applies (tp));
483805cf
PA
5641
5642 stepping_thread = tp;
5643 }
5644 else if (thread_still_needs_step_over (tp))
5645 {
5646 step_over = tp;
5647
5648 /* At the top we've returned early if the event thread
5649 is stepping. If some other thread not the event
5650 thread is stepping, then scheduler locking can't be
5651 in effect, and we can resume this thread. No need to
5652 keep looking for the stepping thread then. */
5653 break;
5654 }
5655 }
99619bea 5656
483805cf 5657 if (step_over != NULL)
99619bea 5658 {
483805cf 5659 tp = step_over;
99619bea 5660 if (debug_infrun)
c447ac0b 5661 {
99619bea
PA
5662 fprintf_unfiltered (gdb_stdlog,
5663 "infrun: need to step-over [%s]\n",
5664 target_pid_to_str (tp->ptid));
c447ac0b
PA
5665 }
5666
483805cf 5667 /* Only the stepping thread should have this set. */
99619bea
PA
5668 gdb_assert (tp->control.step_range_end == 0);
5669
99619bea
PA
5670 ecs->ptid = tp->ptid;
5671 ecs->event_thread = tp;
5672 switch_to_thread (ecs->ptid);
5673 keep_going (ecs);
5674 return 1;
5675 }
5676
483805cf 5677 if (stepping_thread != NULL)
99619bea
PA
5678 {
5679 struct frame_info *frame;
5680 struct gdbarch *gdbarch;
5681
483805cf
PA
5682 tp = stepping_thread;
5683
c447ac0b
PA
5684 /* If the stepping thread exited, then don't try to switch
5685 back and resume it, which could fail in several different
5686 ways depending on the target. Instead, just keep going.
5687
5688 We can find a stepping dead thread in the thread list in
5689 two cases:
5690
5691 - The target supports thread exit events, and when the
5692 target tries to delete the thread from the thread list,
5693 inferior_ptid pointed at the exiting thread. In such
5694 case, calling delete_thread does not really remove the
5695 thread from the list; instead, the thread is left listed,
5696 with 'exited' state.
5697
5698 - The target's debug interface does not support thread
5699 exit events, and so we have no idea whatsoever if the
5700 previously stepping thread is still alive. For that
5701 reason, we need to synchronously query the target
5702 now. */
5703 if (is_exited (tp->ptid)
5704 || !target_thread_alive (tp->ptid))
5705 {
5706 if (debug_infrun)
5707 fprintf_unfiltered (gdb_stdlog,
5708 "infrun: not switching back to "
5709 "stepped thread, it has vanished\n");
5710
5711 delete_thread (tp->ptid);
5712 keep_going (ecs);
5713 return 1;
5714 }
5715
c447ac0b
PA
5716 if (debug_infrun)
5717 fprintf_unfiltered (gdb_stdlog,
5718 "infrun: switching back to stepped thread\n");
5719
5720 ecs->event_thread = tp;
5721 ecs->ptid = tp->ptid;
5722 context_switch (ecs->ptid);
2adfaa28
PA
5723
5724 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5725 frame = get_current_frame ();
5726 gdbarch = get_frame_arch (frame);
5727
5728 /* If the PC of the thread we were trying to single-step has
99619bea
PA
5729 changed, then that thread has trapped or been signaled,
5730 but the event has not been reported to GDB yet. Re-poll
5731 the target looking for this particular thread's event
5732 (i.e. temporarily enable schedlock) by:
2adfaa28
PA
5733
5734 - setting a break at the current PC
5735 - resuming that particular thread, only (by setting
5736 trap expected)
5737
5738 This prevents us continuously moving the single-step
5739 breakpoint forward, one instruction at a time,
5740 overstepping. */
5741
af48d08f 5742 if (stop_pc != tp->prev_pc)
2adfaa28 5743 {
64ce06e4
PA
5744 ptid_t resume_ptid;
5745
2adfaa28
PA
5746 if (debug_infrun)
5747 fprintf_unfiltered (gdb_stdlog,
5748 "infrun: expected thread advanced also\n");
5749
7c16b83e
PA
5750 /* Clear the info of the previous step-over, as it's no
5751 longer valid. It's what keep_going would do too, if
5752 we called it. Must do this before trying to insert
5753 the sss breakpoint, otherwise if we were previously
5754 trying to step over this exact address in another
5755 thread, the breakpoint ends up not installed. */
5756 clear_step_over_info ();
5757
2adfaa28
PA
5758 insert_single_step_breakpoint (get_frame_arch (frame),
5759 get_frame_address_space (frame),
5760 stop_pc);
2adfaa28 5761
64ce06e4
PA
5762 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
5763 do_target_resume (resume_ptid,
5764 currently_stepping (tp), GDB_SIGNAL_0);
2adfaa28
PA
5765 prepare_to_wait (ecs);
5766 }
5767 else
5768 {
5769 if (debug_infrun)
5770 fprintf_unfiltered (gdb_stdlog,
5771 "infrun: expected thread still "
5772 "hasn't advanced\n");
5773 keep_going (ecs);
5774 }
5775
c447ac0b
PA
5776 return 1;
5777 }
5778 }
5779 return 0;
5780}
5781
b3444185 5782/* Is thread TP in the middle of single-stepping? */
104c1213 5783
a289b8f6 5784static int
b3444185 5785currently_stepping (struct thread_info *tp)
a7212384 5786{
8358c15c
JK
5787 return ((tp->control.step_range_end
5788 && tp->control.step_resume_breakpoint == NULL)
5789 || tp->control.trap_expected
af48d08f 5790 || tp->stepped_breakpoint
8358c15c 5791 || bpstat_should_step ());
a7212384
UW
5792}
5793
b2175913
MS
5794/* Inferior has stepped into a subroutine call with source code that
5795 we should not step over. Do step to the first line of code in
5796 it. */
c2c6d25f
JM
5797
5798static void
568d6575
UW
5799handle_step_into_function (struct gdbarch *gdbarch,
5800 struct execution_control_state *ecs)
c2c6d25f 5801{
43f3e411 5802 struct compunit_symtab *cust;
2afb61aa 5803 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5804
7e324e48
GB
5805 fill_in_stop_func (gdbarch, ecs);
5806
43f3e411
DE
5807 cust = find_pc_compunit_symtab (stop_pc);
5808 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5809 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5810 ecs->stop_func_start);
c2c6d25f 5811
2afb61aa 5812 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5813 /* Use the step_resume_break to step until the end of the prologue,
5814 even if that involves jumps (as it seems to on the vax under
5815 4.2). */
5816 /* If the prologue ends in the middle of a source line, continue to
5817 the end of that source line (if it is still within the function).
5818 Otherwise, just go to end of prologue. */
2afb61aa
PA
5819 if (stop_func_sal.end
5820 && stop_func_sal.pc != ecs->stop_func_start
5821 && stop_func_sal.end < ecs->stop_func_end)
5822 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5823
2dbd5e30
KB
5824 /* Architectures which require breakpoint adjustment might not be able
5825 to place a breakpoint at the computed address. If so, the test
5826 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5827 ecs->stop_func_start to an address at which a breakpoint may be
5828 legitimately placed.
8fb3e588 5829
2dbd5e30
KB
5830 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5831 made, GDB will enter an infinite loop when stepping through
5832 optimized code consisting of VLIW instructions which contain
5833 subinstructions corresponding to different source lines. On
5834 FR-V, it's not permitted to place a breakpoint on any but the
5835 first subinstruction of a VLIW instruction. When a breakpoint is
5836 set, GDB will adjust the breakpoint address to the beginning of
5837 the VLIW instruction. Thus, we need to make the corresponding
5838 adjustment here when computing the stop address. */
8fb3e588 5839
568d6575 5840 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5841 {
5842 ecs->stop_func_start
568d6575 5843 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5844 ecs->stop_func_start);
2dbd5e30
KB
5845 }
5846
c2c6d25f
JM
5847 if (ecs->stop_func_start == stop_pc)
5848 {
5849 /* We are already there: stop now. */
bdc36728 5850 end_stepping_range (ecs);
c2c6d25f
JM
5851 return;
5852 }
5853 else
5854 {
5855 /* Put the step-breakpoint there and go until there. */
fe39c653 5856 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5857 sr_sal.pc = ecs->stop_func_start;
5858 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5859 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5860
c2c6d25f 5861 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5862 some machines the prologue is where the new fp value is
5863 established. */
a6d9a66e 5864 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5865
5866 /* And make sure stepping stops right away then. */
16c381f0
JK
5867 ecs->event_thread->control.step_range_end
5868 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5869 }
5870 keep_going (ecs);
5871}
d4f3574e 5872
b2175913
MS
5873/* Inferior has stepped backward into a subroutine call with source
5874 code that we should not step over. Do step to the beginning of the
5875 last line of code in it. */
5876
5877static void
568d6575
UW
5878handle_step_into_function_backward (struct gdbarch *gdbarch,
5879 struct execution_control_state *ecs)
b2175913 5880{
43f3e411 5881 struct compunit_symtab *cust;
167e4384 5882 struct symtab_and_line stop_func_sal;
b2175913 5883
7e324e48
GB
5884 fill_in_stop_func (gdbarch, ecs);
5885
43f3e411
DE
5886 cust = find_pc_compunit_symtab (stop_pc);
5887 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5888 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5889 ecs->stop_func_start);
5890
5891 stop_func_sal = find_pc_line (stop_pc, 0);
5892
5893 /* OK, we're just going to keep stepping here. */
5894 if (stop_func_sal.pc == stop_pc)
5895 {
5896 /* We're there already. Just stop stepping now. */
bdc36728 5897 end_stepping_range (ecs);
b2175913
MS
5898 }
5899 else
5900 {
5901 /* Else just reset the step range and keep going.
5902 No step-resume breakpoint, they don't work for
5903 epilogues, which can have multiple entry paths. */
16c381f0
JK
5904 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5905 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5906 keep_going (ecs);
5907 }
5908 return;
5909}
5910
d3169d93 5911/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5912 This is used to both functions and to skip over code. */
5913
5914static void
2c03e5be
PA
5915insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5916 struct symtab_and_line sr_sal,
5917 struct frame_id sr_id,
5918 enum bptype sr_type)
44cbf7b5 5919{
611c83ae
PA
5920 /* There should never be more than one step-resume or longjmp-resume
5921 breakpoint per thread, so we should never be setting a new
44cbf7b5 5922 step_resume_breakpoint when one is already active. */
8358c15c 5923 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5924 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5925
5926 if (debug_infrun)
5927 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5928 "infrun: inserting step-resume breakpoint at %s\n",
5929 paddress (gdbarch, sr_sal.pc));
d3169d93 5930
8358c15c 5931 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5932 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5933}
5934
9da8c2a0 5935void
2c03e5be
PA
5936insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5937 struct symtab_and_line sr_sal,
5938 struct frame_id sr_id)
5939{
5940 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5941 sr_sal, sr_id,
5942 bp_step_resume);
44cbf7b5 5943}
7ce450bd 5944
2c03e5be
PA
5945/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5946 This is used to skip a potential signal handler.
7ce450bd 5947
14e60db5
DJ
5948 This is called with the interrupted function's frame. The signal
5949 handler, when it returns, will resume the interrupted function at
5950 RETURN_FRAME.pc. */
d303a6c7
AC
5951
5952static void
2c03e5be 5953insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5954{
5955 struct symtab_and_line sr_sal;
a6d9a66e 5956 struct gdbarch *gdbarch;
d303a6c7 5957
f4c1edd8 5958 gdb_assert (return_frame != NULL);
d303a6c7
AC
5959 init_sal (&sr_sal); /* initialize to zeros */
5960
a6d9a66e 5961 gdbarch = get_frame_arch (return_frame);
568d6575 5962 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5963 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5964 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5965
2c03e5be
PA
5966 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5967 get_stack_frame_id (return_frame),
5968 bp_hp_step_resume);
d303a6c7
AC
5969}
5970
2c03e5be
PA
5971/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5972 is used to skip a function after stepping into it (for "next" or if
5973 the called function has no debugging information).
14e60db5
DJ
5974
5975 The current function has almost always been reached by single
5976 stepping a call or return instruction. NEXT_FRAME belongs to the
5977 current function, and the breakpoint will be set at the caller's
5978 resume address.
5979
5980 This is a separate function rather than reusing
2c03e5be 5981 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5982 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5983 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5984
5985static void
5986insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5987{
5988 struct symtab_and_line sr_sal;
a6d9a66e 5989 struct gdbarch *gdbarch;
14e60db5
DJ
5990
5991 /* We shouldn't have gotten here if we don't know where the call site
5992 is. */
c7ce8faa 5993 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5994
5995 init_sal (&sr_sal); /* initialize to zeros */
5996
a6d9a66e 5997 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5998 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5999 frame_unwind_caller_pc (next_frame));
14e60db5 6000 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 6001 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 6002
a6d9a66e 6003 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 6004 frame_unwind_caller_id (next_frame));
14e60db5
DJ
6005}
6006
611c83ae
PA
6007/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
6008 new breakpoint at the target of a jmp_buf. The handling of
6009 longjmp-resume uses the same mechanisms used for handling
6010 "step-resume" breakpoints. */
6011
6012static void
a6d9a66e 6013insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 6014{
e81a37f7
TT
6015 /* There should never be more than one longjmp-resume breakpoint per
6016 thread, so we should never be setting a new
611c83ae 6017 longjmp_resume_breakpoint when one is already active. */
e81a37f7 6018 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
6019
6020 if (debug_infrun)
6021 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
6022 "infrun: inserting longjmp-resume breakpoint at %s\n",
6023 paddress (gdbarch, pc));
611c83ae 6024
e81a37f7 6025 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 6026 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
6027}
6028
186c406b
TT
6029/* Insert an exception resume breakpoint. TP is the thread throwing
6030 the exception. The block B is the block of the unwinder debug hook
6031 function. FRAME is the frame corresponding to the call to this
6032 function. SYM is the symbol of the function argument holding the
6033 target PC of the exception. */
6034
6035static void
6036insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 6037 const struct block *b,
186c406b
TT
6038 struct frame_info *frame,
6039 struct symbol *sym)
6040{
492d29ea 6041 TRY
186c406b
TT
6042 {
6043 struct symbol *vsym;
6044 struct value *value;
6045 CORE_ADDR handler;
6046 struct breakpoint *bp;
6047
6048 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
6049 value = read_var_value (vsym, frame);
6050 /* If the value was optimized out, revert to the old behavior. */
6051 if (! value_optimized_out (value))
6052 {
6053 handler = value_as_address (value);
6054
6055 if (debug_infrun)
6056 fprintf_unfiltered (gdb_stdlog,
6057 "infrun: exception resume at %lx\n",
6058 (unsigned long) handler);
6059
6060 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6061 handler, bp_exception_resume);
c70a6932
JK
6062
6063 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
6064 frame = NULL;
6065
186c406b
TT
6066 bp->thread = tp->num;
6067 inferior_thread ()->control.exception_resume_breakpoint = bp;
6068 }
6069 }
492d29ea
PA
6070 CATCH (e, RETURN_MASK_ERROR)
6071 {
6072 /* We want to ignore errors here. */
6073 }
6074 END_CATCH
186c406b
TT
6075}
6076
28106bc2
SDJ
6077/* A helper for check_exception_resume that sets an
6078 exception-breakpoint based on a SystemTap probe. */
6079
6080static void
6081insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 6082 const struct bound_probe *probe,
28106bc2
SDJ
6083 struct frame_info *frame)
6084{
6085 struct value *arg_value;
6086 CORE_ADDR handler;
6087 struct breakpoint *bp;
6088
6089 arg_value = probe_safe_evaluate_at_pc (frame, 1);
6090 if (!arg_value)
6091 return;
6092
6093 handler = value_as_address (arg_value);
6094
6095 if (debug_infrun)
6096 fprintf_unfiltered (gdb_stdlog,
6097 "infrun: exception resume at %s\n",
6bac7473 6098 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
6099 handler));
6100
6101 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6102 handler, bp_exception_resume);
6103 bp->thread = tp->num;
6104 inferior_thread ()->control.exception_resume_breakpoint = bp;
6105}
6106
186c406b
TT
6107/* This is called when an exception has been intercepted. Check to
6108 see whether the exception's destination is of interest, and if so,
6109 set an exception resume breakpoint there. */
6110
6111static void
6112check_exception_resume (struct execution_control_state *ecs,
28106bc2 6113 struct frame_info *frame)
186c406b 6114{
729662a5 6115 struct bound_probe probe;
28106bc2
SDJ
6116 struct symbol *func;
6117
6118 /* First see if this exception unwinding breakpoint was set via a
6119 SystemTap probe point. If so, the probe has two arguments: the
6120 CFA and the HANDLER. We ignore the CFA, extract the handler, and
6121 set a breakpoint there. */
6bac7473 6122 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 6123 if (probe.probe)
28106bc2 6124 {
729662a5 6125 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
6126 return;
6127 }
6128
6129 func = get_frame_function (frame);
6130 if (!func)
6131 return;
186c406b 6132
492d29ea 6133 TRY
186c406b 6134 {
3977b71f 6135 const struct block *b;
8157b174 6136 struct block_iterator iter;
186c406b
TT
6137 struct symbol *sym;
6138 int argno = 0;
6139
6140 /* The exception breakpoint is a thread-specific breakpoint on
6141 the unwinder's debug hook, declared as:
6142
6143 void _Unwind_DebugHook (void *cfa, void *handler);
6144
6145 The CFA argument indicates the frame to which control is
6146 about to be transferred. HANDLER is the destination PC.
6147
6148 We ignore the CFA and set a temporary breakpoint at HANDLER.
6149 This is not extremely efficient but it avoids issues in gdb
6150 with computing the DWARF CFA, and it also works even in weird
6151 cases such as throwing an exception from inside a signal
6152 handler. */
6153
6154 b = SYMBOL_BLOCK_VALUE (func);
6155 ALL_BLOCK_SYMBOLS (b, iter, sym)
6156 {
6157 if (!SYMBOL_IS_ARGUMENT (sym))
6158 continue;
6159
6160 if (argno == 0)
6161 ++argno;
6162 else
6163 {
6164 insert_exception_resume_breakpoint (ecs->event_thread,
6165 b, frame, sym);
6166 break;
6167 }
6168 }
6169 }
492d29ea
PA
6170 CATCH (e, RETURN_MASK_ERROR)
6171 {
6172 }
6173 END_CATCH
186c406b
TT
6174}
6175
104c1213 6176static void
22bcd14b 6177stop_waiting (struct execution_control_state *ecs)
104c1213 6178{
527159b7 6179 if (debug_infrun)
22bcd14b 6180 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 6181
31e77af2
PA
6182 clear_step_over_info ();
6183
cd0fc7c3
SS
6184 /* Let callers know we don't want to wait for the inferior anymore. */
6185 ecs->wait_some_more = 0;
6186}
6187
a9ba6bae
PA
6188/* Called when we should continue running the inferior, because the
6189 current event doesn't cause a user visible stop. This does the
6190 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
6191
6192static void
6193keep_going (struct execution_control_state *ecs)
6194{
c4dbc9af
PA
6195 /* Make sure normal_stop is called if we get a QUIT handled before
6196 reaching resume. */
6197 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6198
d4f3574e 6199 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
6200 ecs->event_thread->prev_pc
6201 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 6202
16c381f0 6203 if (ecs->event_thread->control.trap_expected
a493e3e2 6204 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 6205 {
a9ba6bae
PA
6206 /* We haven't yet gotten our trap, and either: intercepted a
6207 non-signal event (e.g., a fork); or took a signal which we
6208 are supposed to pass through to the inferior. Simply
6209 continue. */
c4dbc9af 6210 discard_cleanups (old_cleanups);
64ce06e4 6211 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6212 }
6213 else
6214 {
31e77af2 6215 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
6216 int remove_bp;
6217 int remove_wps;
31e77af2 6218
d4f3574e 6219 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
6220 anyway (if we got a signal, the user asked it be passed to
6221 the child)
6222 -- or --
6223 We got our expected trap, but decided we should resume from
6224 it.
d4f3574e 6225
a9ba6bae 6226 We're going to run this baby now!
d4f3574e 6227
c36b740a
VP
6228 Note that insert_breakpoints won't try to re-insert
6229 already inserted breakpoints. Therefore, we don't
6230 care if breakpoints were already inserted, or not. */
a9ba6bae 6231
31e77af2
PA
6232 /* If we need to step over a breakpoint, and we're not using
6233 displaced stepping to do so, insert all breakpoints
6234 (watchpoints, etc.) but the one we're stepping over, step one
6235 instruction, and then re-insert the breakpoint when that step
6236 is finished. */
963f9c80
PA
6237
6238 remove_bp = (ecs->hit_singlestep_breakpoint
6239 || thread_still_needs_step_over (ecs->event_thread));
6240 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6241 && !target_have_steppable_watchpoint);
6242
6243 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
45e8c884 6244 {
31e77af2 6245 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 6246 regcache_read_pc (regcache), remove_wps);
45e8c884 6247 }
963f9c80
PA
6248 else if (remove_wps)
6249 set_step_over_info (NULL, 0, remove_wps);
45e8c884 6250 else
31e77af2 6251 clear_step_over_info ();
abbb1732 6252
31e77af2 6253 /* Stop stepping if inserting breakpoints fails. */
492d29ea 6254 TRY
31e77af2
PA
6255 {
6256 insert_breakpoints ();
6257 }
492d29ea 6258 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
6259 {
6260 exception_print (gdb_stderr, e);
22bcd14b 6261 stop_waiting (ecs);
de1fe8c8 6262 discard_cleanups (old_cleanups);
31e77af2 6263 return;
d4f3574e 6264 }
492d29ea 6265 END_CATCH
d4f3574e 6266
963f9c80 6267 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 6268
a9ba6bae
PA
6269 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6270 explicitly specifies that such a signal should be delivered
6271 to the target program). Typically, that would occur when a
6272 user is debugging a target monitor on a simulator: the target
6273 monitor sets a breakpoint; the simulator encounters this
6274 breakpoint and halts the simulation handing control to GDB;
6275 GDB, noting that the stop address doesn't map to any known
6276 breakpoint, returns control back to the simulator; the
6277 simulator then delivers the hardware equivalent of a
6278 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 6279 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6280 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 6281 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 6282
c4dbc9af 6283 discard_cleanups (old_cleanups);
64ce06e4 6284 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6285 }
6286
488f131b 6287 prepare_to_wait (ecs);
d4f3574e
SS
6288}
6289
104c1213
JM
6290/* This function normally comes after a resume, before
6291 handle_inferior_event exits. It takes care of any last bits of
6292 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 6293
104c1213
JM
6294static void
6295prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 6296{
527159b7 6297 if (debug_infrun)
8a9de0e4 6298 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 6299
104c1213
JM
6300 /* This is the old end of the while loop. Let everybody know we
6301 want to wait for the inferior some more and get called again
6302 soon. */
6303 ecs->wait_some_more = 1;
c906108c 6304}
11cf8741 6305
fd664c91 6306/* We are done with the step range of a step/next/si/ni command.
b57bacec 6307 Called once for each n of a "step n" operation. */
fd664c91
PA
6308
6309static void
bdc36728 6310end_stepping_range (struct execution_control_state *ecs)
fd664c91 6311{
bdc36728 6312 ecs->event_thread->control.stop_step = 1;
bdc36728 6313 stop_waiting (ecs);
fd664c91
PA
6314}
6315
33d62d64
JK
6316/* Several print_*_reason functions to print why the inferior has stopped.
6317 We always print something when the inferior exits, or receives a signal.
6318 The rest of the cases are dealt with later on in normal_stop and
6319 print_it_typical. Ideally there should be a call to one of these
6320 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 6321 stop_waiting is called.
33d62d64 6322
fd664c91
PA
6323 Note that we don't call these directly, instead we delegate that to
6324 the interpreters, through observers. Interpreters then call these
6325 with whatever uiout is right. */
33d62d64 6326
fd664c91
PA
6327void
6328print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 6329{
fd664c91 6330 /* For CLI-like interpreters, print nothing. */
33d62d64 6331
fd664c91
PA
6332 if (ui_out_is_mi_like_p (uiout))
6333 {
6334 ui_out_field_string (uiout, "reason",
6335 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6336 }
6337}
33d62d64 6338
fd664c91
PA
6339void
6340print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 6341{
33d62d64
JK
6342 annotate_signalled ();
6343 if (ui_out_is_mi_like_p (uiout))
6344 ui_out_field_string
6345 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6346 ui_out_text (uiout, "\nProgram terminated with signal ");
6347 annotate_signal_name ();
6348 ui_out_field_string (uiout, "signal-name",
2ea28649 6349 gdb_signal_to_name (siggnal));
33d62d64
JK
6350 annotate_signal_name_end ();
6351 ui_out_text (uiout, ", ");
6352 annotate_signal_string ();
6353 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6354 gdb_signal_to_string (siggnal));
33d62d64
JK
6355 annotate_signal_string_end ();
6356 ui_out_text (uiout, ".\n");
6357 ui_out_text (uiout, "The program no longer exists.\n");
6358}
6359
fd664c91
PA
6360void
6361print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 6362{
fda326dd
TT
6363 struct inferior *inf = current_inferior ();
6364 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6365
33d62d64
JK
6366 annotate_exited (exitstatus);
6367 if (exitstatus)
6368 {
6369 if (ui_out_is_mi_like_p (uiout))
6370 ui_out_field_string (uiout, "reason",
6371 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
6372 ui_out_text (uiout, "[Inferior ");
6373 ui_out_text (uiout, plongest (inf->num));
6374 ui_out_text (uiout, " (");
6375 ui_out_text (uiout, pidstr);
6376 ui_out_text (uiout, ") exited with code ");
33d62d64 6377 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 6378 ui_out_text (uiout, "]\n");
33d62d64
JK
6379 }
6380 else
11cf8741 6381 {
9dc5e2a9 6382 if (ui_out_is_mi_like_p (uiout))
034dad6f 6383 ui_out_field_string
33d62d64 6384 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
6385 ui_out_text (uiout, "[Inferior ");
6386 ui_out_text (uiout, plongest (inf->num));
6387 ui_out_text (uiout, " (");
6388 ui_out_text (uiout, pidstr);
6389 ui_out_text (uiout, ") exited normally]\n");
33d62d64 6390 }
33d62d64
JK
6391}
6392
fd664c91
PA
6393void
6394print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
6395{
6396 annotate_signal ();
6397
a493e3e2 6398 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
6399 {
6400 struct thread_info *t = inferior_thread ();
6401
6402 ui_out_text (uiout, "\n[");
6403 ui_out_field_string (uiout, "thread-name",
6404 target_pid_to_str (t->ptid));
6405 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6406 ui_out_text (uiout, " stopped");
6407 }
6408 else
6409 {
6410 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 6411 annotate_signal_name ();
33d62d64
JK
6412 if (ui_out_is_mi_like_p (uiout))
6413 ui_out_field_string
6414 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 6415 ui_out_field_string (uiout, "signal-name",
2ea28649 6416 gdb_signal_to_name (siggnal));
8b93c638
JM
6417 annotate_signal_name_end ();
6418 ui_out_text (uiout, ", ");
6419 annotate_signal_string ();
488f131b 6420 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6421 gdb_signal_to_string (siggnal));
8b93c638 6422 annotate_signal_string_end ();
33d62d64
JK
6423 }
6424 ui_out_text (uiout, ".\n");
6425}
252fbfc8 6426
fd664c91
PA
6427void
6428print_no_history_reason (struct ui_out *uiout)
33d62d64 6429{
fd664c91 6430 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 6431}
43ff13b4 6432
0c7e1a46
PA
6433/* Print current location without a level number, if we have changed
6434 functions or hit a breakpoint. Print source line if we have one.
6435 bpstat_print contains the logic deciding in detail what to print,
6436 based on the event(s) that just occurred. */
6437
6438void
6439print_stop_event (struct target_waitstatus *ws)
6440{
6441 int bpstat_ret;
6442 int source_flag;
6443 int do_frame_printing = 1;
6444 struct thread_info *tp = inferior_thread ();
6445
6446 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6447 switch (bpstat_ret)
6448 {
6449 case PRINT_UNKNOWN:
6450 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6451 should) carry around the function and does (or should) use
6452 that when doing a frame comparison. */
6453 if (tp->control.stop_step
6454 && frame_id_eq (tp->control.step_frame_id,
6455 get_frame_id (get_current_frame ()))
885eeb5b 6456 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
6457 {
6458 /* Finished step, just print source line. */
6459 source_flag = SRC_LINE;
6460 }
6461 else
6462 {
6463 /* Print location and source line. */
6464 source_flag = SRC_AND_LOC;
6465 }
6466 break;
6467 case PRINT_SRC_AND_LOC:
6468 /* Print location and source line. */
6469 source_flag = SRC_AND_LOC;
6470 break;
6471 case PRINT_SRC_ONLY:
6472 source_flag = SRC_LINE;
6473 break;
6474 case PRINT_NOTHING:
6475 /* Something bogus. */
6476 source_flag = SRC_LINE;
6477 do_frame_printing = 0;
6478 break;
6479 default:
6480 internal_error (__FILE__, __LINE__, _("Unknown value."));
6481 }
6482
6483 /* The behavior of this routine with respect to the source
6484 flag is:
6485 SRC_LINE: Print only source line
6486 LOCATION: Print only location
6487 SRC_AND_LOC: Print location and source line. */
6488 if (do_frame_printing)
6489 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6490
6491 /* Display the auto-display expressions. */
6492 do_displays ();
6493}
6494
c906108c
SS
6495/* Here to return control to GDB when the inferior stops for real.
6496 Print appropriate messages, remove breakpoints, give terminal our modes.
6497
6498 STOP_PRINT_FRAME nonzero means print the executing frame
6499 (pc, function, args, file, line number and line text).
6500 BREAKPOINTS_FAILED nonzero means stop was due to error
6501 attempting to insert breakpoints. */
6502
6503void
96baa820 6504normal_stop (void)
c906108c 6505{
73b65bb0
DJ
6506 struct target_waitstatus last;
6507 ptid_t last_ptid;
29f49a6a 6508 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
6509
6510 get_last_target_status (&last_ptid, &last);
6511
29f49a6a
PA
6512 /* If an exception is thrown from this point on, make sure to
6513 propagate GDB's knowledge of the executing state to the
6514 frontend/user running state. A QUIT is an easy exception to see
6515 here, so do this before any filtered output. */
c35b1492
PA
6516 if (!non_stop)
6517 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6518 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6519 && last.kind != TARGET_WAITKIND_EXITED
6520 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6521 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6522
b57bacec
PA
6523 /* As we're presenting a stop, and potentially removing breakpoints,
6524 update the thread list so we can tell whether there are threads
6525 running on the target. With target remote, for example, we can
6526 only learn about new threads when we explicitly update the thread
6527 list. Do this before notifying the interpreters about signal
6528 stops, end of stepping ranges, etc., so that the "new thread"
6529 output is emitted before e.g., "Program received signal FOO",
6530 instead of after. */
6531 update_thread_list ();
6532
6533 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6534 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6535
c906108c
SS
6536 /* As with the notification of thread events, we want to delay
6537 notifying the user that we've switched thread context until
6538 the inferior actually stops.
6539
73b65bb0
DJ
6540 There's no point in saying anything if the inferior has exited.
6541 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
6542 "received a signal".
6543
6544 Also skip saying anything in non-stop mode. In that mode, as we
6545 don't want GDB to switch threads behind the user's back, to avoid
6546 races where the user is typing a command to apply to thread x,
6547 but GDB switches to thread y before the user finishes entering
6548 the command, fetch_inferior_event installs a cleanup to restore
6549 the current thread back to the thread the user had selected right
6550 after this event is handled, so we're not really switching, only
6551 informing of a stop. */
4f8d22e3
PA
6552 if (!non_stop
6553 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6554 && target_has_execution
6555 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6556 && last.kind != TARGET_WAITKIND_EXITED
6557 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6558 {
6559 target_terminal_ours_for_output ();
a3f17187 6560 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6561 target_pid_to_str (inferior_ptid));
b8fa951a 6562 annotate_thread_changed ();
39f77062 6563 previous_inferior_ptid = inferior_ptid;
c906108c 6564 }
c906108c 6565
0e5bf2a8
PA
6566 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6567 {
6568 gdb_assert (sync_execution || !target_can_async_p ());
6569
6570 target_terminal_ours_for_output ();
6571 printf_filtered (_("No unwaited-for children left.\n"));
6572 }
6573
b57bacec 6574 /* Note: this depends on the update_thread_list call above. */
a25a5a45 6575 if (!breakpoints_should_be_inserted_now () && target_has_execution)
c906108c
SS
6576 {
6577 if (remove_breakpoints ())
6578 {
6579 target_terminal_ours_for_output ();
3e43a32a
MS
6580 printf_filtered (_("Cannot remove breakpoints because "
6581 "program is no longer writable.\nFurther "
6582 "execution is probably impossible.\n"));
c906108c
SS
6583 }
6584 }
c906108c 6585
c906108c
SS
6586 /* If an auto-display called a function and that got a signal,
6587 delete that auto-display to avoid an infinite recursion. */
6588
6589 if (stopped_by_random_signal)
6590 disable_current_display ();
6591
b57bacec 6592 /* Notify observers if we finished a "step"-like command, etc. */
af679fd0
PA
6593 if (target_has_execution
6594 && last.kind != TARGET_WAITKIND_SIGNALLED
6595 && last.kind != TARGET_WAITKIND_EXITED
16c381f0 6596 && inferior_thread ()->control.stop_step)
b57bacec 6597 {
31cc0b80 6598 /* But not if in the middle of doing a "step n" operation for
b57bacec
PA
6599 n > 1 */
6600 if (inferior_thread ()->step_multi)
6601 goto done;
6602
6603 observer_notify_end_stepping_range ();
6604 }
c906108c
SS
6605
6606 target_terminal_ours ();
0f641c01 6607 async_enable_stdin ();
c906108c 6608
7abfe014
DJ
6609 /* Set the current source location. This will also happen if we
6610 display the frame below, but the current SAL will be incorrect
6611 during a user hook-stop function. */
d729566a 6612 if (has_stack_frames () && !stop_stack_dummy)
5166082f 6613 set_current_sal_from_frame (get_current_frame ());
7abfe014 6614
251bde03
PA
6615 /* Let the user/frontend see the threads as stopped, but do nothing
6616 if the thread was running an infcall. We may be e.g., evaluating
6617 a breakpoint condition. In that case, the thread had state
6618 THREAD_RUNNING before the infcall, and shall remain set to
6619 running, all without informing the user/frontend about state
6620 transition changes. If this is actually a call command, then the
6621 thread was originally already stopped, so there's no state to
6622 finish either. */
6623 if (target_has_execution && inferior_thread ()->control.in_infcall)
6624 discard_cleanups (old_chain);
6625 else
6626 do_cleanups (old_chain);
dd7e2d2b
PA
6627
6628 /* Look up the hook_stop and run it (CLI internally handles problem
6629 of stop_command's pre-hook not existing). */
6630 if (stop_command)
6631 catch_errors (hook_stop_stub, stop_command,
6632 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6633
d729566a 6634 if (!has_stack_frames ())
d51fd4c8 6635 goto done;
c906108c 6636
32400beb
PA
6637 if (last.kind == TARGET_WAITKIND_SIGNALLED
6638 || last.kind == TARGET_WAITKIND_EXITED)
6639 goto done;
6640
c906108c
SS
6641 /* Select innermost stack frame - i.e., current frame is frame 0,
6642 and current location is based on that.
6643 Don't do this on return from a stack dummy routine,
1777feb0 6644 or if the program has exited. */
c906108c
SS
6645
6646 if (!stop_stack_dummy)
6647 {
0f7d239c 6648 select_frame (get_current_frame ());
c906108c 6649
d01a8610
AS
6650 /* If --batch-silent is enabled then there's no need to print the current
6651 source location, and to try risks causing an error message about
6652 missing source files. */
6653 if (stop_print_frame && !batch_silent)
0c7e1a46 6654 print_stop_event (&last);
c906108c
SS
6655 }
6656
6657 /* Save the function value return registers, if we care.
6658 We might be about to restore their previous contents. */
9da8c2a0
PA
6659 if (inferior_thread ()->control.proceed_to_finish
6660 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6661 {
6662 /* This should not be necessary. */
6663 if (stop_registers)
6664 regcache_xfree (stop_registers);
6665
6666 /* NB: The copy goes through to the target picking up the value of
6667 all the registers. */
6668 stop_registers = regcache_dup (get_current_regcache ());
6669 }
c906108c 6670
aa7d318d 6671 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6672 {
b89667eb
DE
6673 /* Pop the empty frame that contains the stack dummy.
6674 This also restores inferior state prior to the call
16c381f0 6675 (struct infcall_suspend_state). */
b89667eb 6676 struct frame_info *frame = get_current_frame ();
abbb1732 6677
b89667eb
DE
6678 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6679 frame_pop (frame);
3e43a32a
MS
6680 /* frame_pop() calls reinit_frame_cache as the last thing it
6681 does which means there's currently no selected frame. We
6682 don't need to re-establish a selected frame if the dummy call
6683 returns normally, that will be done by
6684 restore_infcall_control_state. However, we do have to handle
6685 the case where the dummy call is returning after being
6686 stopped (e.g. the dummy call previously hit a breakpoint).
6687 We can't know which case we have so just always re-establish
6688 a selected frame here. */
0f7d239c 6689 select_frame (get_current_frame ());
c906108c
SS
6690 }
6691
c906108c
SS
6692done:
6693 annotate_stopped ();
41d2bdb4
PA
6694
6695 /* Suppress the stop observer if we're in the middle of:
6696
6697 - a step n (n > 1), as there still more steps to be done.
6698
6699 - a "finish" command, as the observer will be called in
6700 finish_command_continuation, so it can include the inferior
6701 function's return value.
6702
6703 - calling an inferior function, as we pretend we inferior didn't
6704 run at all. The return value of the call is handled by the
6705 expression evaluator, through call_function_by_hand. */
6706
6707 if (!target_has_execution
6708 || last.kind == TARGET_WAITKIND_SIGNALLED
6709 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6710 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6711 || (!(inferior_thread ()->step_multi
6712 && inferior_thread ()->control.stop_step)
16c381f0
JK
6713 && !(inferior_thread ()->control.stop_bpstat
6714 && inferior_thread ()->control.proceed_to_finish)
6715 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6716 {
6717 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6718 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6719 stop_print_frame);
347bddb7 6720 else
1d33d6ba 6721 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6722 }
347bddb7 6723
48844aa6
PA
6724 if (target_has_execution)
6725 {
6726 if (last.kind != TARGET_WAITKIND_SIGNALLED
6727 && last.kind != TARGET_WAITKIND_EXITED)
6728 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6729 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6730 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6731 }
6c95b8df
PA
6732
6733 /* Try to get rid of automatically added inferiors that are no
6734 longer needed. Keeping those around slows down things linearly.
6735 Note that this never removes the current inferior. */
6736 prune_inferiors ();
c906108c
SS
6737}
6738
6739static int
96baa820 6740hook_stop_stub (void *cmd)
c906108c 6741{
5913bcb0 6742 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6743 return (0);
6744}
6745\f
c5aa993b 6746int
96baa820 6747signal_stop_state (int signo)
c906108c 6748{
d6b48e9c 6749 return signal_stop[signo];
c906108c
SS
6750}
6751
c5aa993b 6752int
96baa820 6753signal_print_state (int signo)
c906108c
SS
6754{
6755 return signal_print[signo];
6756}
6757
c5aa993b 6758int
96baa820 6759signal_pass_state (int signo)
c906108c
SS
6760{
6761 return signal_program[signo];
6762}
6763
2455069d
UW
6764static void
6765signal_cache_update (int signo)
6766{
6767 if (signo == -1)
6768 {
a493e3e2 6769 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6770 signal_cache_update (signo);
6771
6772 return;
6773 }
6774
6775 signal_pass[signo] = (signal_stop[signo] == 0
6776 && signal_print[signo] == 0
ab04a2af
TT
6777 && signal_program[signo] == 1
6778 && signal_catch[signo] == 0);
2455069d
UW
6779}
6780
488f131b 6781int
7bda5e4a 6782signal_stop_update (int signo, int state)
d4f3574e
SS
6783{
6784 int ret = signal_stop[signo];
abbb1732 6785
d4f3574e 6786 signal_stop[signo] = state;
2455069d 6787 signal_cache_update (signo);
d4f3574e
SS
6788 return ret;
6789}
6790
488f131b 6791int
7bda5e4a 6792signal_print_update (int signo, int state)
d4f3574e
SS
6793{
6794 int ret = signal_print[signo];
abbb1732 6795
d4f3574e 6796 signal_print[signo] = state;
2455069d 6797 signal_cache_update (signo);
d4f3574e
SS
6798 return ret;
6799}
6800
488f131b 6801int
7bda5e4a 6802signal_pass_update (int signo, int state)
d4f3574e
SS
6803{
6804 int ret = signal_program[signo];
abbb1732 6805
d4f3574e 6806 signal_program[signo] = state;
2455069d 6807 signal_cache_update (signo);
d4f3574e
SS
6808 return ret;
6809}
6810
ab04a2af
TT
6811/* Update the global 'signal_catch' from INFO and notify the
6812 target. */
6813
6814void
6815signal_catch_update (const unsigned int *info)
6816{
6817 int i;
6818
6819 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6820 signal_catch[i] = info[i] > 0;
6821 signal_cache_update (-1);
6822 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6823}
6824
c906108c 6825static void
96baa820 6826sig_print_header (void)
c906108c 6827{
3e43a32a
MS
6828 printf_filtered (_("Signal Stop\tPrint\tPass "
6829 "to program\tDescription\n"));
c906108c
SS
6830}
6831
6832static void
2ea28649 6833sig_print_info (enum gdb_signal oursig)
c906108c 6834{
2ea28649 6835 const char *name = gdb_signal_to_name (oursig);
c906108c 6836 int name_padding = 13 - strlen (name);
96baa820 6837
c906108c
SS
6838 if (name_padding <= 0)
6839 name_padding = 0;
6840
6841 printf_filtered ("%s", name);
488f131b 6842 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6843 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6844 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6845 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6846 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6847}
6848
6849/* Specify how various signals in the inferior should be handled. */
6850
6851static void
96baa820 6852handle_command (char *args, int from_tty)
c906108c
SS
6853{
6854 char **argv;
6855 int digits, wordlen;
6856 int sigfirst, signum, siglast;
2ea28649 6857 enum gdb_signal oursig;
c906108c
SS
6858 int allsigs;
6859 int nsigs;
6860 unsigned char *sigs;
6861 struct cleanup *old_chain;
6862
6863 if (args == NULL)
6864 {
e2e0b3e5 6865 error_no_arg (_("signal to handle"));
c906108c
SS
6866 }
6867
1777feb0 6868 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6869
a493e3e2 6870 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6871 sigs = (unsigned char *) alloca (nsigs);
6872 memset (sigs, 0, nsigs);
6873
1777feb0 6874 /* Break the command line up into args. */
c906108c 6875
d1a41061 6876 argv = gdb_buildargv (args);
7a292a7a 6877 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6878
6879 /* Walk through the args, looking for signal oursigs, signal names, and
6880 actions. Signal numbers and signal names may be interspersed with
6881 actions, with the actions being performed for all signals cumulatively
1777feb0 6882 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6883
6884 while (*argv != NULL)
6885 {
6886 wordlen = strlen (*argv);
6887 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6888 {;
6889 }
6890 allsigs = 0;
6891 sigfirst = siglast = -1;
6892
6893 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6894 {
6895 /* Apply action to all signals except those used by the
1777feb0 6896 debugger. Silently skip those. */
c906108c
SS
6897 allsigs = 1;
6898 sigfirst = 0;
6899 siglast = nsigs - 1;
6900 }
6901 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6902 {
6903 SET_SIGS (nsigs, sigs, signal_stop);
6904 SET_SIGS (nsigs, sigs, signal_print);
6905 }
6906 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6907 {
6908 UNSET_SIGS (nsigs, sigs, signal_program);
6909 }
6910 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6911 {
6912 SET_SIGS (nsigs, sigs, signal_print);
6913 }
6914 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6915 {
6916 SET_SIGS (nsigs, sigs, signal_program);
6917 }
6918 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6919 {
6920 UNSET_SIGS (nsigs, sigs, signal_stop);
6921 }
6922 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6923 {
6924 SET_SIGS (nsigs, sigs, signal_program);
6925 }
6926 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6927 {
6928 UNSET_SIGS (nsigs, sigs, signal_print);
6929 UNSET_SIGS (nsigs, sigs, signal_stop);
6930 }
6931 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6932 {
6933 UNSET_SIGS (nsigs, sigs, signal_program);
6934 }
6935 else if (digits > 0)
6936 {
6937 /* It is numeric. The numeric signal refers to our own
6938 internal signal numbering from target.h, not to host/target
6939 signal number. This is a feature; users really should be
6940 using symbolic names anyway, and the common ones like
6941 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6942
6943 sigfirst = siglast = (int)
2ea28649 6944 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6945 if ((*argv)[digits] == '-')
6946 {
6947 siglast = (int)
2ea28649 6948 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6949 }
6950 if (sigfirst > siglast)
6951 {
1777feb0 6952 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6953 signum = sigfirst;
6954 sigfirst = siglast;
6955 siglast = signum;
6956 }
6957 }
6958 else
6959 {
2ea28649 6960 oursig = gdb_signal_from_name (*argv);
a493e3e2 6961 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6962 {
6963 sigfirst = siglast = (int) oursig;
6964 }
6965 else
6966 {
6967 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6968 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6969 }
6970 }
6971
6972 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6973 which signals to apply actions to. */
c906108c
SS
6974
6975 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6976 {
2ea28649 6977 switch ((enum gdb_signal) signum)
c906108c 6978 {
a493e3e2
PA
6979 case GDB_SIGNAL_TRAP:
6980 case GDB_SIGNAL_INT:
c906108c
SS
6981 if (!allsigs && !sigs[signum])
6982 {
9e2f0ad4 6983 if (query (_("%s is used by the debugger.\n\
3e43a32a 6984Are you sure you want to change it? "),
2ea28649 6985 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6986 {
6987 sigs[signum] = 1;
6988 }
6989 else
6990 {
a3f17187 6991 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6992 gdb_flush (gdb_stdout);
6993 }
6994 }
6995 break;
a493e3e2
PA
6996 case GDB_SIGNAL_0:
6997 case GDB_SIGNAL_DEFAULT:
6998 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6999 /* Make sure that "all" doesn't print these. */
7000 break;
7001 default:
7002 sigs[signum] = 1;
7003 break;
7004 }
7005 }
7006
7007 argv++;
7008 }
7009
3a031f65
PA
7010 for (signum = 0; signum < nsigs; signum++)
7011 if (sigs[signum])
7012 {
2455069d 7013 signal_cache_update (-1);
a493e3e2
PA
7014 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
7015 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 7016
3a031f65
PA
7017 if (from_tty)
7018 {
7019 /* Show the results. */
7020 sig_print_header ();
7021 for (; signum < nsigs; signum++)
7022 if (sigs[signum])
7023 sig_print_info (signum);
7024 }
7025
7026 break;
7027 }
c906108c
SS
7028
7029 do_cleanups (old_chain);
7030}
7031
de0bea00
MF
7032/* Complete the "handle" command. */
7033
7034static VEC (char_ptr) *
7035handle_completer (struct cmd_list_element *ignore,
6f937416 7036 const char *text, const char *word)
de0bea00
MF
7037{
7038 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
7039 static const char * const keywords[] =
7040 {
7041 "all",
7042 "stop",
7043 "ignore",
7044 "print",
7045 "pass",
7046 "nostop",
7047 "noignore",
7048 "noprint",
7049 "nopass",
7050 NULL,
7051 };
7052
7053 vec_signals = signal_completer (ignore, text, word);
7054 vec_keywords = complete_on_enum (keywords, word, word);
7055
7056 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
7057 VEC_free (char_ptr, vec_signals);
7058 VEC_free (char_ptr, vec_keywords);
7059 return return_val;
7060}
7061
c906108c 7062static void
96baa820 7063xdb_handle_command (char *args, int from_tty)
c906108c
SS
7064{
7065 char **argv;
7066 struct cleanup *old_chain;
7067
d1a41061
PP
7068 if (args == NULL)
7069 error_no_arg (_("xdb command"));
7070
1777feb0 7071 /* Break the command line up into args. */
c906108c 7072
d1a41061 7073 argv = gdb_buildargv (args);
7a292a7a 7074 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
7075 if (argv[1] != (char *) NULL)
7076 {
7077 char *argBuf;
7078 int bufLen;
7079
7080 bufLen = strlen (argv[0]) + 20;
7081 argBuf = (char *) xmalloc (bufLen);
7082 if (argBuf)
7083 {
7084 int validFlag = 1;
2ea28649 7085 enum gdb_signal oursig;
c906108c 7086
2ea28649 7087 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
7088 memset (argBuf, 0, bufLen);
7089 if (strcmp (argv[1], "Q") == 0)
7090 sprintf (argBuf, "%s %s", argv[0], "noprint");
7091 else
7092 {
7093 if (strcmp (argv[1], "s") == 0)
7094 {
7095 if (!signal_stop[oursig])
7096 sprintf (argBuf, "%s %s", argv[0], "stop");
7097 else
7098 sprintf (argBuf, "%s %s", argv[0], "nostop");
7099 }
7100 else if (strcmp (argv[1], "i") == 0)
7101 {
7102 if (!signal_program[oursig])
7103 sprintf (argBuf, "%s %s", argv[0], "pass");
7104 else
7105 sprintf (argBuf, "%s %s", argv[0], "nopass");
7106 }
7107 else if (strcmp (argv[1], "r") == 0)
7108 {
7109 if (!signal_print[oursig])
7110 sprintf (argBuf, "%s %s", argv[0], "print");
7111 else
7112 sprintf (argBuf, "%s %s", argv[0], "noprint");
7113 }
7114 else
7115 validFlag = 0;
7116 }
7117 if (validFlag)
7118 handle_command (argBuf, from_tty);
7119 else
a3f17187 7120 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 7121 if (argBuf)
b8c9b27d 7122 xfree (argBuf);
c906108c
SS
7123 }
7124 }
7125 do_cleanups (old_chain);
7126}
7127
2ea28649
PA
7128enum gdb_signal
7129gdb_signal_from_command (int num)
ed01b82c
PA
7130{
7131 if (num >= 1 && num <= 15)
2ea28649 7132 return (enum gdb_signal) num;
ed01b82c
PA
7133 error (_("Only signals 1-15 are valid as numeric signals.\n\
7134Use \"info signals\" for a list of symbolic signals."));
7135}
7136
c906108c
SS
7137/* Print current contents of the tables set by the handle command.
7138 It is possible we should just be printing signals actually used
7139 by the current target (but for things to work right when switching
7140 targets, all signals should be in the signal tables). */
7141
7142static void
96baa820 7143signals_info (char *signum_exp, int from_tty)
c906108c 7144{
2ea28649 7145 enum gdb_signal oursig;
abbb1732 7146
c906108c
SS
7147 sig_print_header ();
7148
7149 if (signum_exp)
7150 {
7151 /* First see if this is a symbol name. */
2ea28649 7152 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 7153 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
7154 {
7155 /* No, try numeric. */
7156 oursig =
2ea28649 7157 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
7158 }
7159 sig_print_info (oursig);
7160 return;
7161 }
7162
7163 printf_filtered ("\n");
7164 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
7165 for (oursig = GDB_SIGNAL_FIRST;
7166 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 7167 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
7168 {
7169 QUIT;
7170
a493e3e2
PA
7171 if (oursig != GDB_SIGNAL_UNKNOWN
7172 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
7173 sig_print_info (oursig);
7174 }
7175
3e43a32a
MS
7176 printf_filtered (_("\nUse the \"handle\" command "
7177 "to change these tables.\n"));
c906108c 7178}
4aa995e1 7179
c709acd1
PA
7180/* Check if it makes sense to read $_siginfo from the current thread
7181 at this point. If not, throw an error. */
7182
7183static void
7184validate_siginfo_access (void)
7185{
7186 /* No current inferior, no siginfo. */
7187 if (ptid_equal (inferior_ptid, null_ptid))
7188 error (_("No thread selected."));
7189
7190 /* Don't try to read from a dead thread. */
7191 if (is_exited (inferior_ptid))
7192 error (_("The current thread has terminated"));
7193
7194 /* ... or from a spinning thread. */
7195 if (is_running (inferior_ptid))
7196 error (_("Selected thread is running."));
7197}
7198
4aa995e1
PA
7199/* The $_siginfo convenience variable is a bit special. We don't know
7200 for sure the type of the value until we actually have a chance to
7a9dd1b2 7201 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
7202 also dependent on which thread you have selected.
7203
7204 1. making $_siginfo be an internalvar that creates a new value on
7205 access.
7206
7207 2. making the value of $_siginfo be an lval_computed value. */
7208
7209/* This function implements the lval_computed support for reading a
7210 $_siginfo value. */
7211
7212static void
7213siginfo_value_read (struct value *v)
7214{
7215 LONGEST transferred;
7216
c709acd1
PA
7217 validate_siginfo_access ();
7218
4aa995e1
PA
7219 transferred =
7220 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7221 NULL,
7222 value_contents_all_raw (v),
7223 value_offset (v),
7224 TYPE_LENGTH (value_type (v)));
7225
7226 if (transferred != TYPE_LENGTH (value_type (v)))
7227 error (_("Unable to read siginfo"));
7228}
7229
7230/* This function implements the lval_computed support for writing a
7231 $_siginfo value. */
7232
7233static void
7234siginfo_value_write (struct value *v, struct value *fromval)
7235{
7236 LONGEST transferred;
7237
c709acd1
PA
7238 validate_siginfo_access ();
7239
4aa995e1
PA
7240 transferred = target_write (&current_target,
7241 TARGET_OBJECT_SIGNAL_INFO,
7242 NULL,
7243 value_contents_all_raw (fromval),
7244 value_offset (v),
7245 TYPE_LENGTH (value_type (fromval)));
7246
7247 if (transferred != TYPE_LENGTH (value_type (fromval)))
7248 error (_("Unable to write siginfo"));
7249}
7250
c8f2448a 7251static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
7252 {
7253 siginfo_value_read,
7254 siginfo_value_write
7255 };
7256
7257/* Return a new value with the correct type for the siginfo object of
78267919
UW
7258 the current thread using architecture GDBARCH. Return a void value
7259 if there's no object available. */
4aa995e1 7260
2c0b251b 7261static struct value *
22d2b532
SDJ
7262siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7263 void *ignore)
4aa995e1 7264{
4aa995e1 7265 if (target_has_stack
78267919
UW
7266 && !ptid_equal (inferior_ptid, null_ptid)
7267 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 7268 {
78267919 7269 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 7270
78267919 7271 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
7272 }
7273
78267919 7274 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
7275}
7276
c906108c 7277\f
16c381f0
JK
7278/* infcall_suspend_state contains state about the program itself like its
7279 registers and any signal it received when it last stopped.
7280 This state must be restored regardless of how the inferior function call
7281 ends (either successfully, or after it hits a breakpoint or signal)
7282 if the program is to properly continue where it left off. */
7283
7284struct infcall_suspend_state
7a292a7a 7285{
16c381f0 7286 struct thread_suspend_state thread_suspend;
dd80ea3c 7287#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7288 struct inferior_suspend_state inferior_suspend;
dd80ea3c 7289#endif
16c381f0
JK
7290
7291 /* Other fields: */
7a292a7a 7292 CORE_ADDR stop_pc;
b89667eb 7293 struct regcache *registers;
1736ad11 7294
35515841 7295 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
7296 struct gdbarch *siginfo_gdbarch;
7297
7298 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7299 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7300 content would be invalid. */
7301 gdb_byte *siginfo_data;
b89667eb
DE
7302};
7303
16c381f0
JK
7304struct infcall_suspend_state *
7305save_infcall_suspend_state (void)
b89667eb 7306{
16c381f0 7307 struct infcall_suspend_state *inf_state;
b89667eb 7308 struct thread_info *tp = inferior_thread ();
974a734b 7309#if 0
16c381f0 7310 struct inferior *inf = current_inferior ();
974a734b 7311#endif
1736ad11
JK
7312 struct regcache *regcache = get_current_regcache ();
7313 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7314 gdb_byte *siginfo_data = NULL;
7315
7316 if (gdbarch_get_siginfo_type_p (gdbarch))
7317 {
7318 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7319 size_t len = TYPE_LENGTH (type);
7320 struct cleanup *back_to;
7321
7322 siginfo_data = xmalloc (len);
7323 back_to = make_cleanup (xfree, siginfo_data);
7324
7325 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7326 siginfo_data, 0, len) == len)
7327 discard_cleanups (back_to);
7328 else
7329 {
7330 /* Errors ignored. */
7331 do_cleanups (back_to);
7332 siginfo_data = NULL;
7333 }
7334 }
7335
41bf6aca 7336 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
7337
7338 if (siginfo_data)
7339 {
7340 inf_state->siginfo_gdbarch = gdbarch;
7341 inf_state->siginfo_data = siginfo_data;
7342 }
b89667eb 7343
16c381f0 7344 inf_state->thread_suspend = tp->suspend;
dd80ea3c 7345#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7346 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 7347#endif
16c381f0 7348
35515841 7349 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
7350 GDB_SIGNAL_0 anyway. */
7351 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 7352
b89667eb
DE
7353 inf_state->stop_pc = stop_pc;
7354
1736ad11 7355 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
7356
7357 return inf_state;
7358}
7359
7360/* Restore inferior session state to INF_STATE. */
7361
7362void
16c381f0 7363restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7364{
7365 struct thread_info *tp = inferior_thread ();
974a734b 7366#if 0
16c381f0 7367 struct inferior *inf = current_inferior ();
974a734b 7368#endif
1736ad11
JK
7369 struct regcache *regcache = get_current_regcache ();
7370 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 7371
16c381f0 7372 tp->suspend = inf_state->thread_suspend;
dd80ea3c 7373#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7374 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 7375#endif
16c381f0 7376
b89667eb
DE
7377 stop_pc = inf_state->stop_pc;
7378
1736ad11
JK
7379 if (inf_state->siginfo_gdbarch == gdbarch)
7380 {
7381 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
7382
7383 /* Errors ignored. */
7384 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 7385 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
7386 }
7387
b89667eb
DE
7388 /* The inferior can be gone if the user types "print exit(0)"
7389 (and perhaps other times). */
7390 if (target_has_execution)
7391 /* NB: The register write goes through to the target. */
1736ad11 7392 regcache_cpy (regcache, inf_state->registers);
803b5f95 7393
16c381f0 7394 discard_infcall_suspend_state (inf_state);
b89667eb
DE
7395}
7396
7397static void
16c381f0 7398do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 7399{
16c381f0 7400 restore_infcall_suspend_state (state);
b89667eb
DE
7401}
7402
7403struct cleanup *
16c381f0
JK
7404make_cleanup_restore_infcall_suspend_state
7405 (struct infcall_suspend_state *inf_state)
b89667eb 7406{
16c381f0 7407 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
7408}
7409
7410void
16c381f0 7411discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7412{
7413 regcache_xfree (inf_state->registers);
803b5f95 7414 xfree (inf_state->siginfo_data);
b89667eb
DE
7415 xfree (inf_state);
7416}
7417
7418struct regcache *
16c381f0 7419get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
7420{
7421 return inf_state->registers;
7422}
7423
16c381f0
JK
7424/* infcall_control_state contains state regarding gdb's control of the
7425 inferior itself like stepping control. It also contains session state like
7426 the user's currently selected frame. */
b89667eb 7427
16c381f0 7428struct infcall_control_state
b89667eb 7429{
16c381f0
JK
7430 struct thread_control_state thread_control;
7431 struct inferior_control_state inferior_control;
d82142e2
JK
7432
7433 /* Other fields: */
7434 enum stop_stack_kind stop_stack_dummy;
7435 int stopped_by_random_signal;
7a292a7a 7436 int stop_after_trap;
7a292a7a 7437
b89667eb 7438 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 7439 struct frame_id selected_frame_id;
7a292a7a
SS
7440};
7441
c906108c 7442/* Save all of the information associated with the inferior<==>gdb
b89667eb 7443 connection. */
c906108c 7444
16c381f0
JK
7445struct infcall_control_state *
7446save_infcall_control_state (void)
c906108c 7447{
16c381f0 7448 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 7449 struct thread_info *tp = inferior_thread ();
d6b48e9c 7450 struct inferior *inf = current_inferior ();
7a292a7a 7451
16c381f0
JK
7452 inf_status->thread_control = tp->control;
7453 inf_status->inferior_control = inf->control;
d82142e2 7454
8358c15c 7455 tp->control.step_resume_breakpoint = NULL;
5b79abe7 7456 tp->control.exception_resume_breakpoint = NULL;
8358c15c 7457
16c381f0
JK
7458 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7459 chain. If caller's caller is walking the chain, they'll be happier if we
7460 hand them back the original chain when restore_infcall_control_state is
7461 called. */
7462 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
7463
7464 /* Other fields: */
7465 inf_status->stop_stack_dummy = stop_stack_dummy;
7466 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7467 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 7468
206415a3 7469 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 7470
7a292a7a 7471 return inf_status;
c906108c
SS
7472}
7473
c906108c 7474static int
96baa820 7475restore_selected_frame (void *args)
c906108c 7476{
488f131b 7477 struct frame_id *fid = (struct frame_id *) args;
c906108c 7478 struct frame_info *frame;
c906108c 7479
101dcfbe 7480 frame = frame_find_by_id (*fid);
c906108c 7481
aa0cd9c1
AC
7482 /* If inf_status->selected_frame_id is NULL, there was no previously
7483 selected frame. */
101dcfbe 7484 if (frame == NULL)
c906108c 7485 {
8a3fe4f8 7486 warning (_("Unable to restore previously selected frame."));
c906108c
SS
7487 return 0;
7488 }
7489
0f7d239c 7490 select_frame (frame);
c906108c
SS
7491
7492 return (1);
7493}
7494
b89667eb
DE
7495/* Restore inferior session state to INF_STATUS. */
7496
c906108c 7497void
16c381f0 7498restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7499{
4e1c45ea 7500 struct thread_info *tp = inferior_thread ();
d6b48e9c 7501 struct inferior *inf = current_inferior ();
4e1c45ea 7502
8358c15c
JK
7503 if (tp->control.step_resume_breakpoint)
7504 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7505
5b79abe7
TT
7506 if (tp->control.exception_resume_breakpoint)
7507 tp->control.exception_resume_breakpoint->disposition
7508 = disp_del_at_next_stop;
7509
d82142e2 7510 /* Handle the bpstat_copy of the chain. */
16c381f0 7511 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7512
16c381f0
JK
7513 tp->control = inf_status->thread_control;
7514 inf->control = inf_status->inferior_control;
d82142e2
JK
7515
7516 /* Other fields: */
7517 stop_stack_dummy = inf_status->stop_stack_dummy;
7518 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7519 stop_after_trap = inf_status->stop_after_trap;
c906108c 7520
b89667eb 7521 if (target_has_stack)
c906108c 7522 {
c906108c 7523 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7524 walking the stack might encounter a garbage pointer and
7525 error() trying to dereference it. */
488f131b
JB
7526 if (catch_errors
7527 (restore_selected_frame, &inf_status->selected_frame_id,
7528 "Unable to restore previously selected frame:\n",
7529 RETURN_MASK_ERROR) == 0)
c906108c
SS
7530 /* Error in restoring the selected frame. Select the innermost
7531 frame. */
0f7d239c 7532 select_frame (get_current_frame ());
c906108c 7533 }
c906108c 7534
72cec141 7535 xfree (inf_status);
7a292a7a 7536}
c906108c 7537
74b7792f 7538static void
16c381f0 7539do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7540{
16c381f0 7541 restore_infcall_control_state (sts);
74b7792f
AC
7542}
7543
7544struct cleanup *
16c381f0
JK
7545make_cleanup_restore_infcall_control_state
7546 (struct infcall_control_state *inf_status)
74b7792f 7547{
16c381f0 7548 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7549}
7550
c906108c 7551void
16c381f0 7552discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7553{
8358c15c
JK
7554 if (inf_status->thread_control.step_resume_breakpoint)
7555 inf_status->thread_control.step_resume_breakpoint->disposition
7556 = disp_del_at_next_stop;
7557
5b79abe7
TT
7558 if (inf_status->thread_control.exception_resume_breakpoint)
7559 inf_status->thread_control.exception_resume_breakpoint->disposition
7560 = disp_del_at_next_stop;
7561
1777feb0 7562 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7563 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7564
72cec141 7565 xfree (inf_status);
7a292a7a 7566}
b89667eb 7567\f
ca6724c1
KB
7568/* restore_inferior_ptid() will be used by the cleanup machinery
7569 to restore the inferior_ptid value saved in a call to
7570 save_inferior_ptid(). */
ce696e05
KB
7571
7572static void
7573restore_inferior_ptid (void *arg)
7574{
7575 ptid_t *saved_ptid_ptr = arg;
abbb1732 7576
ce696e05
KB
7577 inferior_ptid = *saved_ptid_ptr;
7578 xfree (arg);
7579}
7580
7581/* Save the value of inferior_ptid so that it may be restored by a
7582 later call to do_cleanups(). Returns the struct cleanup pointer
7583 needed for later doing the cleanup. */
7584
7585struct cleanup *
7586save_inferior_ptid (void)
7587{
7588 ptid_t *saved_ptid_ptr;
7589
7590 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7591 *saved_ptid_ptr = inferior_ptid;
7592 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7593}
0c557179 7594
7f89fd65 7595/* See infrun.h. */
0c557179
SDJ
7596
7597void
7598clear_exit_convenience_vars (void)
7599{
7600 clear_internalvar (lookup_internalvar ("_exitsignal"));
7601 clear_internalvar (lookup_internalvar ("_exitcode"));
7602}
c5aa993b 7603\f
488f131b 7604
b2175913
MS
7605/* User interface for reverse debugging:
7606 Set exec-direction / show exec-direction commands
7607 (returns error unless target implements to_set_exec_direction method). */
7608
32231432 7609int execution_direction = EXEC_FORWARD;
b2175913
MS
7610static const char exec_forward[] = "forward";
7611static const char exec_reverse[] = "reverse";
7612static const char *exec_direction = exec_forward;
40478521 7613static const char *const exec_direction_names[] = {
b2175913
MS
7614 exec_forward,
7615 exec_reverse,
7616 NULL
7617};
7618
7619static void
7620set_exec_direction_func (char *args, int from_tty,
7621 struct cmd_list_element *cmd)
7622{
7623 if (target_can_execute_reverse)
7624 {
7625 if (!strcmp (exec_direction, exec_forward))
7626 execution_direction = EXEC_FORWARD;
7627 else if (!strcmp (exec_direction, exec_reverse))
7628 execution_direction = EXEC_REVERSE;
7629 }
8bbed405
MS
7630 else
7631 {
7632 exec_direction = exec_forward;
7633 error (_("Target does not support this operation."));
7634 }
b2175913
MS
7635}
7636
7637static void
7638show_exec_direction_func (struct ui_file *out, int from_tty,
7639 struct cmd_list_element *cmd, const char *value)
7640{
7641 switch (execution_direction) {
7642 case EXEC_FORWARD:
7643 fprintf_filtered (out, _("Forward.\n"));
7644 break;
7645 case EXEC_REVERSE:
7646 fprintf_filtered (out, _("Reverse.\n"));
7647 break;
b2175913 7648 default:
d8b34453
PA
7649 internal_error (__FILE__, __LINE__,
7650 _("bogus execution_direction value: %d"),
7651 (int) execution_direction);
b2175913
MS
7652 }
7653}
7654
d4db2f36
PA
7655static void
7656show_schedule_multiple (struct ui_file *file, int from_tty,
7657 struct cmd_list_element *c, const char *value)
7658{
3e43a32a
MS
7659 fprintf_filtered (file, _("Resuming the execution of threads "
7660 "of all processes is %s.\n"), value);
d4db2f36 7661}
ad52ddc6 7662
22d2b532
SDJ
7663/* Implementation of `siginfo' variable. */
7664
7665static const struct internalvar_funcs siginfo_funcs =
7666{
7667 siginfo_make_value,
7668 NULL,
7669 NULL
7670};
7671
c906108c 7672void
96baa820 7673_initialize_infrun (void)
c906108c 7674{
52f0bd74
AC
7675 int i;
7676 int numsigs;
de0bea00 7677 struct cmd_list_element *c;
c906108c 7678
1bedd215
AC
7679 add_info ("signals", signals_info, _("\
7680What debugger does when program gets various signals.\n\
7681Specify a signal as argument to print info on that signal only."));
c906108c
SS
7682 add_info_alias ("handle", "signals", 0);
7683
de0bea00 7684 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7685Specify how to handle signals.\n\
486c7739 7686Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7687Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7688If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7689will be displayed instead.\n\
7690\n\
c906108c
SS
7691Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7692from 1-15 are allowed for compatibility with old versions of GDB.\n\
7693Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7694The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7695used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7696\n\
1bedd215 7697Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7698\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7699Stop means reenter debugger if this signal happens (implies print).\n\
7700Print means print a message if this signal happens.\n\
7701Pass means let program see this signal; otherwise program doesn't know.\n\
7702Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7703Pass and Stop may be combined.\n\
7704\n\
7705Multiple signals may be specified. Signal numbers and signal names\n\
7706may be interspersed with actions, with the actions being performed for\n\
7707all signals cumulatively specified."));
de0bea00 7708 set_cmd_completer (c, handle_completer);
486c7739 7709
c906108c
SS
7710 if (xdb_commands)
7711 {
1bedd215
AC
7712 add_com ("lz", class_info, signals_info, _("\
7713What debugger does when program gets various signals.\n\
7714Specify a signal as argument to print info on that signal only."));
7715 add_com ("z", class_run, xdb_handle_command, _("\
7716Specify how to handle a signal.\n\
c906108c
SS
7717Args are signals and actions to apply to those signals.\n\
7718Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7719from 1-15 are allowed for compatibility with old versions of GDB.\n\
7720Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7721The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7722used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7723Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7724\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7725nopass), \"Q\" (noprint)\n\
7726Stop means reenter debugger if this signal happens (implies print).\n\
7727Print means print a message if this signal happens.\n\
7728Pass means let program see this signal; otherwise program doesn't know.\n\
7729Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7730Pass and Stop may be combined."));
c906108c
SS
7731 }
7732
7733 if (!dbx_commands)
1a966eab
AC
7734 stop_command = add_cmd ("stop", class_obscure,
7735 not_just_help_class_command, _("\
7736There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7737This allows you to set a list of commands to be run each time execution\n\
1a966eab 7738of the program stops."), &cmdlist);
c906108c 7739
ccce17b0 7740 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7741Set inferior debugging."), _("\
7742Show inferior debugging."), _("\
7743When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7744 NULL,
7745 show_debug_infrun,
7746 &setdebuglist, &showdebuglist);
527159b7 7747
3e43a32a
MS
7748 add_setshow_boolean_cmd ("displaced", class_maintenance,
7749 &debug_displaced, _("\
237fc4c9
PA
7750Set displaced stepping debugging."), _("\
7751Show displaced stepping debugging."), _("\
7752When non-zero, displaced stepping specific debugging is enabled."),
7753 NULL,
7754 show_debug_displaced,
7755 &setdebuglist, &showdebuglist);
7756
ad52ddc6
PA
7757 add_setshow_boolean_cmd ("non-stop", no_class,
7758 &non_stop_1, _("\
7759Set whether gdb controls the inferior in non-stop mode."), _("\
7760Show whether gdb controls the inferior in non-stop mode."), _("\
7761When debugging a multi-threaded program and this setting is\n\
7762off (the default, also called all-stop mode), when one thread stops\n\
7763(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7764all other threads in the program while you interact with the thread of\n\
7765interest. When you continue or step a thread, you can allow the other\n\
7766threads to run, or have them remain stopped, but while you inspect any\n\
7767thread's state, all threads stop.\n\
7768\n\
7769In non-stop mode, when one thread stops, other threads can continue\n\
7770to run freely. You'll be able to step each thread independently,\n\
7771leave it stopped or free to run as needed."),
7772 set_non_stop,
7773 show_non_stop,
7774 &setlist,
7775 &showlist);
7776
a493e3e2 7777 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7778 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7779 signal_print = (unsigned char *)
7780 xmalloc (sizeof (signal_print[0]) * numsigs);
7781 signal_program = (unsigned char *)
7782 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7783 signal_catch = (unsigned char *)
7784 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d 7785 signal_pass = (unsigned char *)
4395285e 7786 xmalloc (sizeof (signal_pass[0]) * numsigs);
c906108c
SS
7787 for (i = 0; i < numsigs; i++)
7788 {
7789 signal_stop[i] = 1;
7790 signal_print[i] = 1;
7791 signal_program[i] = 1;
ab04a2af 7792 signal_catch[i] = 0;
c906108c
SS
7793 }
7794
7795 /* Signals caused by debugger's own actions
7796 should not be given to the program afterwards. */
a493e3e2
PA
7797 signal_program[GDB_SIGNAL_TRAP] = 0;
7798 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7799
7800 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7801 signal_stop[GDB_SIGNAL_ALRM] = 0;
7802 signal_print[GDB_SIGNAL_ALRM] = 0;
7803 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7804 signal_print[GDB_SIGNAL_VTALRM] = 0;
7805 signal_stop[GDB_SIGNAL_PROF] = 0;
7806 signal_print[GDB_SIGNAL_PROF] = 0;
7807 signal_stop[GDB_SIGNAL_CHLD] = 0;
7808 signal_print[GDB_SIGNAL_CHLD] = 0;
7809 signal_stop[GDB_SIGNAL_IO] = 0;
7810 signal_print[GDB_SIGNAL_IO] = 0;
7811 signal_stop[GDB_SIGNAL_POLL] = 0;
7812 signal_print[GDB_SIGNAL_POLL] = 0;
7813 signal_stop[GDB_SIGNAL_URG] = 0;
7814 signal_print[GDB_SIGNAL_URG] = 0;
7815 signal_stop[GDB_SIGNAL_WINCH] = 0;
7816 signal_print[GDB_SIGNAL_WINCH] = 0;
7817 signal_stop[GDB_SIGNAL_PRIO] = 0;
7818 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7819
cd0fc7c3
SS
7820 /* These signals are used internally by user-level thread
7821 implementations. (See signal(5) on Solaris.) Like the above
7822 signals, a healthy program receives and handles them as part of
7823 its normal operation. */
a493e3e2
PA
7824 signal_stop[GDB_SIGNAL_LWP] = 0;
7825 signal_print[GDB_SIGNAL_LWP] = 0;
7826 signal_stop[GDB_SIGNAL_WAITING] = 0;
7827 signal_print[GDB_SIGNAL_WAITING] = 0;
7828 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7829 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7830
2455069d
UW
7831 /* Update cached state. */
7832 signal_cache_update (-1);
7833
85c07804
AC
7834 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7835 &stop_on_solib_events, _("\
7836Set stopping for shared library events."), _("\
7837Show stopping for shared library events."), _("\
c906108c
SS
7838If nonzero, gdb will give control to the user when the dynamic linker\n\
7839notifies gdb of shared library events. The most common event of interest\n\
85c07804 7840to the user would be loading/unloading of a new library."),
f9e14852 7841 set_stop_on_solib_events,
920d2a44 7842 show_stop_on_solib_events,
85c07804 7843 &setlist, &showlist);
c906108c 7844
7ab04401
AC
7845 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7846 follow_fork_mode_kind_names,
7847 &follow_fork_mode_string, _("\
7848Set debugger response to a program call of fork or vfork."), _("\
7849Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7850A fork or vfork creates a new process. follow-fork-mode can be:\n\
7851 parent - the original process is debugged after a fork\n\
7852 child - the new process is debugged after a fork\n\
ea1dd7bc 7853The unfollowed process will continue to run.\n\
7ab04401
AC
7854By default, the debugger will follow the parent process."),
7855 NULL,
920d2a44 7856 show_follow_fork_mode_string,
7ab04401
AC
7857 &setlist, &showlist);
7858
6c95b8df
PA
7859 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7860 follow_exec_mode_names,
7861 &follow_exec_mode_string, _("\
7862Set debugger response to a program call of exec."), _("\
7863Show debugger response to a program call of exec."), _("\
7864An exec call replaces the program image of a process.\n\
7865\n\
7866follow-exec-mode can be:\n\
7867\n\
cce7e648 7868 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7869to this new inferior. The program the process was running before\n\
7870the exec call can be restarted afterwards by restarting the original\n\
7871inferior.\n\
7872\n\
7873 same - the debugger keeps the process bound to the same inferior.\n\
7874The new executable image replaces the previous executable loaded in\n\
7875the inferior. Restarting the inferior after the exec call restarts\n\
7876the executable the process was running after the exec call.\n\
7877\n\
7878By default, the debugger will use the same inferior."),
7879 NULL,
7880 show_follow_exec_mode_string,
7881 &setlist, &showlist);
7882
7ab04401
AC
7883 add_setshow_enum_cmd ("scheduler-locking", class_run,
7884 scheduler_enums, &scheduler_mode, _("\
7885Set mode for locking scheduler during execution."), _("\
7886Show mode for locking scheduler during execution."), _("\
c906108c
SS
7887off == no locking (threads may preempt at any time)\n\
7888on == full locking (no thread except the current thread may run)\n\
856e7dd6
PA
7889step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
7890 In this mode, other threads may run during other commands."),
7ab04401 7891 set_schedlock_func, /* traps on target vector */
920d2a44 7892 show_scheduler_mode,
7ab04401 7893 &setlist, &showlist);
5fbbeb29 7894
d4db2f36
PA
7895 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7896Set mode for resuming threads of all processes."), _("\
7897Show mode for resuming threads of all processes."), _("\
7898When on, execution commands (such as 'continue' or 'next') resume all\n\
7899threads of all processes. When off (which is the default), execution\n\
7900commands only resume the threads of the current process. The set of\n\
7901threads that are resumed is further refined by the scheduler-locking\n\
7902mode (see help set scheduler-locking)."),
7903 NULL,
7904 show_schedule_multiple,
7905 &setlist, &showlist);
7906
5bf193a2
AC
7907 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7908Set mode of the step operation."), _("\
7909Show mode of the step operation."), _("\
7910When set, doing a step over a function without debug line information\n\
7911will stop at the first instruction of that function. Otherwise, the\n\
7912function is skipped and the step command stops at a different source line."),
7913 NULL,
920d2a44 7914 show_step_stop_if_no_debug,
5bf193a2 7915 &setlist, &showlist);
ca6724c1 7916
72d0e2c5
YQ
7917 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7918 &can_use_displaced_stepping, _("\
237fc4c9
PA
7919Set debugger's willingness to use displaced stepping."), _("\
7920Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7921If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7922supported by the target architecture. If off, gdb will not use displaced\n\
7923stepping to step over breakpoints, even if such is supported by the target\n\
7924architecture. If auto (which is the default), gdb will use displaced stepping\n\
7925if the target architecture supports it and non-stop mode is active, but will not\n\
7926use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7927 NULL,
7928 show_can_use_displaced_stepping,
7929 &setlist, &showlist);
237fc4c9 7930
b2175913
MS
7931 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7932 &exec_direction, _("Set direction of execution.\n\
7933Options are 'forward' or 'reverse'."),
7934 _("Show direction of execution (forward/reverse)."),
7935 _("Tells gdb whether to execute forward or backward."),
7936 set_exec_direction_func, show_exec_direction_func,
7937 &setlist, &showlist);
7938
6c95b8df
PA
7939 /* Set/show detach-on-fork: user-settable mode. */
7940
7941 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7942Set whether gdb will detach the child of a fork."), _("\
7943Show whether gdb will detach the child of a fork."), _("\
7944Tells gdb whether to detach the child of a fork."),
7945 NULL, NULL, &setlist, &showlist);
7946
03583c20
UW
7947 /* Set/show disable address space randomization mode. */
7948
7949 add_setshow_boolean_cmd ("disable-randomization", class_support,
7950 &disable_randomization, _("\
7951Set disabling of debuggee's virtual address space randomization."), _("\
7952Show disabling of debuggee's virtual address space randomization."), _("\
7953When this mode is on (which is the default), randomization of the virtual\n\
7954address space is disabled. Standalone programs run with the randomization\n\
7955enabled by default on some platforms."),
7956 &set_disable_randomization,
7957 &show_disable_randomization,
7958 &setlist, &showlist);
7959
ca6724c1 7960 /* ptid initializations */
ca6724c1
KB
7961 inferior_ptid = null_ptid;
7962 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7963
7964 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7965 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7966 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7967 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7968
7969 /* Explicitly create without lookup, since that tries to create a
7970 value with a void typed value, and when we get here, gdbarch
7971 isn't initialized yet. At this point, we're quite sure there
7972 isn't another convenience variable of the same name. */
22d2b532 7973 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7974
7975 add_setshow_boolean_cmd ("observer", no_class,
7976 &observer_mode_1, _("\
7977Set whether gdb controls the inferior in observer mode."), _("\
7978Show whether gdb controls the inferior in observer mode."), _("\
7979In observer mode, GDB can get data from the inferior, but not\n\
7980affect its execution. Registers and memory may not be changed,\n\
7981breakpoints may not be set, and the program cannot be interrupted\n\
7982or signalled."),
7983 set_observer_mode,
7984 show_observer_mode,
7985 &setlist,
7986 &showlist);
c906108c 7987}
This page took 1.919919 seconds and 4 git commands to generate.