gdb/
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6 2008, 2009 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
c906108c
SS
51
52/* Prototypes for local functions */
53
96baa820 54static void signals_info (char *, int);
c906108c 55
96baa820 56static void handle_command (char *, int);
c906108c 57
96baa820 58static void sig_print_info (enum target_signal);
c906108c 59
96baa820 60static void sig_print_header (void);
c906108c 61
74b7792f 62static void resume_cleanups (void *);
c906108c 63
96baa820 64static int hook_stop_stub (void *);
c906108c 65
96baa820
JM
66static int restore_selected_frame (void *);
67
68static void build_infrun (void);
69
4ef3f3be 70static int follow_fork (void);
96baa820
JM
71
72static void set_schedlock_func (char *args, int from_tty,
488f131b 73 struct cmd_list_element *c);
96baa820 74
4e1c45ea 75static int currently_stepping (struct thread_info *tp);
96baa820 76
a7212384
UW
77static int currently_stepping_callback (struct thread_info *tp, void *data);
78
96baa820
JM
79static void xdb_handle_command (char *args, int from_tty);
80
6a6b96b9 81static int prepare_to_proceed (int);
ea67f13b 82
96baa820 83void _initialize_infrun (void);
43ff13b4 84
5fbbeb29
CF
85/* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88int step_stop_if_no_debug = 0;
920d2a44
AC
89static void
90show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92{
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94}
5fbbeb29 95
43ff13b4 96/* In asynchronous mode, but simulating synchronous execution. */
96baa820 97
43ff13b4
JM
98int sync_execution = 0;
99
c906108c
SS
100/* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
96baa820
JM
102 running in. */
103
39f77062 104static ptid_t previous_inferior_ptid;
7a292a7a 105
237fc4c9
PA
106int debug_displaced = 0;
107static void
108show_debug_displaced (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
112}
113
527159b7 114static int debug_infrun = 0;
920d2a44
AC
115static void
116show_debug_infrun (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118{
119 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
120}
527159b7 121
d4f3574e
SS
122/* If the program uses ELF-style shared libraries, then calls to
123 functions in shared libraries go through stubs, which live in a
124 table called the PLT (Procedure Linkage Table). The first time the
125 function is called, the stub sends control to the dynamic linker,
126 which looks up the function's real address, patches the stub so
127 that future calls will go directly to the function, and then passes
128 control to the function.
129
130 If we are stepping at the source level, we don't want to see any of
131 this --- we just want to skip over the stub and the dynamic linker.
132 The simple approach is to single-step until control leaves the
133 dynamic linker.
134
ca557f44
AC
135 However, on some systems (e.g., Red Hat's 5.2 distribution) the
136 dynamic linker calls functions in the shared C library, so you
137 can't tell from the PC alone whether the dynamic linker is still
138 running. In this case, we use a step-resume breakpoint to get us
139 past the dynamic linker, as if we were using "next" to step over a
140 function call.
d4f3574e 141
cfd8ab24 142 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
143 linker code or not. Normally, this means we single-step. However,
144 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
145 address where we can place a step-resume breakpoint to get past the
146 linker's symbol resolution function.
147
cfd8ab24 148 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
149 pretty portable way, by comparing the PC against the address ranges
150 of the dynamic linker's sections.
151
152 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
153 it depends on internal details of the dynamic linker. It's usually
154 not too hard to figure out where to put a breakpoint, but it
155 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
156 sanity checking. If it can't figure things out, returning zero and
157 getting the (possibly confusing) stepping behavior is better than
158 signalling an error, which will obscure the change in the
159 inferior's state. */
c906108c 160
c906108c
SS
161/* This function returns TRUE if pc is the address of an instruction
162 that lies within the dynamic linker (such as the event hook, or the
163 dld itself).
164
165 This function must be used only when a dynamic linker event has
166 been caught, and the inferior is being stepped out of the hook, or
167 undefined results are guaranteed. */
168
169#ifndef SOLIB_IN_DYNAMIC_LINKER
170#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
171#endif
172
c2c6d25f 173
7a292a7a
SS
174/* Convert the #defines into values. This is temporary until wfi control
175 flow is completely sorted out. */
176
692590c1
MS
177#ifndef CANNOT_STEP_HW_WATCHPOINTS
178#define CANNOT_STEP_HW_WATCHPOINTS 0
179#else
180#undef CANNOT_STEP_HW_WATCHPOINTS
181#define CANNOT_STEP_HW_WATCHPOINTS 1
182#endif
183
c906108c
SS
184/* Tables of how to react to signals; the user sets them. */
185
186static unsigned char *signal_stop;
187static unsigned char *signal_print;
188static unsigned char *signal_program;
189
190#define SET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 1; \
196 } while (0)
197
198#define UNSET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 0; \
204 } while (0)
205
39f77062
KB
206/* Value to pass to target_resume() to cause all threads to resume */
207
208#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
209
210/* Command list pointer for the "stop" placeholder. */
211
212static struct cmd_list_element *stop_command;
213
c906108c
SS
214/* Function inferior was in as of last step command. */
215
216static struct symbol *step_start_function;
217
c906108c
SS
218/* Nonzero if we want to give control to the user when we're notified
219 of shared library events by the dynamic linker. */
220static int stop_on_solib_events;
920d2a44
AC
221static void
222show_stop_on_solib_events (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224{
225 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
226 value);
227}
c906108c 228
c906108c
SS
229/* Nonzero means expecting a trace trap
230 and should stop the inferior and return silently when it happens. */
231
232int stop_after_trap;
233
642fd101
DE
234/* Save register contents here when executing a "finish" command or are
235 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
236 Thus this contains the return value from the called function (assuming
237 values are returned in a register). */
238
72cec141 239struct regcache *stop_registers;
c906108c 240
c906108c
SS
241/* Nonzero after stop if current stack frame should be printed. */
242
243static int stop_print_frame;
244
e02bc4cc 245/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
246 returned by target_wait()/deprecated_target_wait_hook(). This
247 information is returned by get_last_target_status(). */
39f77062 248static ptid_t target_last_wait_ptid;
e02bc4cc
DS
249static struct target_waitstatus target_last_waitstatus;
250
0d1e5fa7
PA
251static void context_switch (ptid_t ptid);
252
4e1c45ea 253void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
254
255void init_infwait_state (void);
a474d7c2 256
c906108c
SS
257/* This is used to remember when a fork, vfork or exec event
258 was caught by a catchpoint, and thus the event is to be
259 followed at the next resume of the inferior, and not
260 immediately. */
261static struct
488f131b
JB
262{
263 enum target_waitkind kind;
264 struct
c906108c 265 {
3a3e9ee3
PA
266 ptid_t parent_pid;
267 ptid_t child_pid;
c906108c 268 }
488f131b
JB
269 fork_event;
270 char *execd_pathname;
271}
c906108c
SS
272pending_follow;
273
53904c9e
AC
274static const char follow_fork_mode_child[] = "child";
275static const char follow_fork_mode_parent[] = "parent";
276
488f131b 277static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
278 follow_fork_mode_child,
279 follow_fork_mode_parent,
280 NULL
ef346e04 281};
c906108c 282
53904c9e 283static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
284static void
285show_follow_fork_mode_string (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287{
288 fprintf_filtered (file, _("\
289Debugger response to a program call of fork or vfork is \"%s\".\n"),
290 value);
291}
c906108c
SS
292\f
293
6604731b 294static int
4ef3f3be 295follow_fork (void)
c906108c 296{
ea1dd7bc 297 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 298
6604731b 299 return target_follow_fork (follow_child);
c906108c
SS
300}
301
6604731b
DJ
302void
303follow_inferior_reset_breakpoints (void)
c906108c 304{
4e1c45ea
PA
305 struct thread_info *tp = inferior_thread ();
306
6604731b
DJ
307 /* Was there a step_resume breakpoint? (There was if the user
308 did a "next" at the fork() call.) If so, explicitly reset its
309 thread number.
310
311 step_resumes are a form of bp that are made to be per-thread.
312 Since we created the step_resume bp when the parent process
313 was being debugged, and now are switching to the child process,
314 from the breakpoint package's viewpoint, that's a switch of
315 "threads". We must update the bp's notion of which thread
316 it is for, or it'll be ignored when it triggers. */
317
4e1c45ea
PA
318 if (tp->step_resume_breakpoint)
319 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
320
321 /* Reinsert all breakpoints in the child. The user may have set
322 breakpoints after catching the fork, in which case those
323 were never set in the child, but only in the parent. This makes
324 sure the inserted breakpoints match the breakpoint list. */
325
326 breakpoint_re_set ();
327 insert_breakpoints ();
c906108c 328}
c906108c 329
1adeb98a
FN
330/* EXECD_PATHNAME is assumed to be non-NULL. */
331
c906108c 332static void
3a3e9ee3 333follow_exec (ptid_t pid, char *execd_pathname)
c906108c 334{
7a292a7a 335 struct target_ops *tgt;
4e1c45ea 336 struct thread_info *th = inferior_thread ();
7a292a7a 337
c906108c
SS
338 /* This is an exec event that we actually wish to pay attention to.
339 Refresh our symbol table to the newly exec'd program, remove any
340 momentary bp's, etc.
341
342 If there are breakpoints, they aren't really inserted now,
343 since the exec() transformed our inferior into a fresh set
344 of instructions.
345
346 We want to preserve symbolic breakpoints on the list, since
347 we have hopes that they can be reset after the new a.out's
348 symbol table is read.
349
350 However, any "raw" breakpoints must be removed from the list
351 (e.g., the solib bp's), since their address is probably invalid
352 now.
353
354 And, we DON'T want to call delete_breakpoints() here, since
355 that may write the bp's "shadow contents" (the instruction
356 value that was overwritten witha TRAP instruction). Since
357 we now have a new a.out, those shadow contents aren't valid. */
358 update_breakpoints_after_exec ();
359
360 /* If there was one, it's gone now. We cannot truly step-to-next
361 statement through an exec(). */
4e1c45ea
PA
362 th->step_resume_breakpoint = NULL;
363 th->step_range_start = 0;
364 th->step_range_end = 0;
c906108c 365
c906108c 366 /* What is this a.out's name? */
a3f17187 367 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
368
369 /* We've followed the inferior through an exec. Therefore, the
370 inferior has essentially been killed & reborn. */
7a292a7a 371
c906108c 372 gdb_flush (gdb_stdout);
6ca15a4b
PA
373
374 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
375
376 if (gdb_sysroot && *gdb_sysroot)
377 {
378 char *name = alloca (strlen (gdb_sysroot)
379 + strlen (execd_pathname)
380 + 1);
381 strcpy (name, gdb_sysroot);
382 strcat (name, execd_pathname);
383 execd_pathname = name;
384 }
c906108c
SS
385
386 /* That a.out is now the one to use. */
387 exec_file_attach (execd_pathname, 0);
388
cce9b6bf
PA
389 /* Reset the shared library package. This ensures that we get a
390 shlib event when the child reaches "_start", at which point the
391 dld will have had a chance to initialize the child. */
392 /* Also, loading a symbol file below may trigger symbol lookups, and
393 we don't want those to be satisfied by the libraries of the
394 previous incarnation of this process. */
395 no_shared_libraries (NULL, 0);
396
397 /* Load the main file's symbols. */
1adeb98a 398 symbol_file_add_main (execd_pathname, 0);
c906108c 399
7a292a7a 400#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 401 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
402#else
403 solib_create_inferior_hook ();
7a292a7a 404#endif
c906108c
SS
405
406 /* Reinsert all breakpoints. (Those which were symbolic have
407 been reset to the proper address in the new a.out, thanks
408 to symbol_file_command...) */
409 insert_breakpoints ();
410
411 /* The next resume of this inferior should bring it to the shlib
412 startup breakpoints. (If the user had also set bp's on
413 "main" from the old (parent) process, then they'll auto-
414 matically get reset there in the new process.) */
c906108c
SS
415}
416
417/* Non-zero if we just simulating a single-step. This is needed
418 because we cannot remove the breakpoints in the inferior process
419 until after the `wait' in `wait_for_inferior'. */
420static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
421
422/* The thread we inserted single-step breakpoints for. */
423static ptid_t singlestep_ptid;
424
fd48f117
DJ
425/* PC when we started this single-step. */
426static CORE_ADDR singlestep_pc;
427
9f976b41
DJ
428/* If another thread hit the singlestep breakpoint, we save the original
429 thread here so that we can resume single-stepping it later. */
430static ptid_t saved_singlestep_ptid;
431static int stepping_past_singlestep_breakpoint;
6a6b96b9 432
ca67fcb8
VP
433/* If not equal to null_ptid, this means that after stepping over breakpoint
434 is finished, we need to switch to deferred_step_ptid, and step it.
435
436 The use case is when one thread has hit a breakpoint, and then the user
437 has switched to another thread and issued 'step'. We need to step over
438 breakpoint in the thread which hit the breakpoint, but then continue
439 stepping the thread user has selected. */
440static ptid_t deferred_step_ptid;
c906108c 441\f
237fc4c9
PA
442/* Displaced stepping. */
443
444/* In non-stop debugging mode, we must take special care to manage
445 breakpoints properly; in particular, the traditional strategy for
446 stepping a thread past a breakpoint it has hit is unsuitable.
447 'Displaced stepping' is a tactic for stepping one thread past a
448 breakpoint it has hit while ensuring that other threads running
449 concurrently will hit the breakpoint as they should.
450
451 The traditional way to step a thread T off a breakpoint in a
452 multi-threaded program in all-stop mode is as follows:
453
454 a0) Initially, all threads are stopped, and breakpoints are not
455 inserted.
456 a1) We single-step T, leaving breakpoints uninserted.
457 a2) We insert breakpoints, and resume all threads.
458
459 In non-stop debugging, however, this strategy is unsuitable: we
460 don't want to have to stop all threads in the system in order to
461 continue or step T past a breakpoint. Instead, we use displaced
462 stepping:
463
464 n0) Initially, T is stopped, other threads are running, and
465 breakpoints are inserted.
466 n1) We copy the instruction "under" the breakpoint to a separate
467 location, outside the main code stream, making any adjustments
468 to the instruction, register, and memory state as directed by
469 T's architecture.
470 n2) We single-step T over the instruction at its new location.
471 n3) We adjust the resulting register and memory state as directed
472 by T's architecture. This includes resetting T's PC to point
473 back into the main instruction stream.
474 n4) We resume T.
475
476 This approach depends on the following gdbarch methods:
477
478 - gdbarch_max_insn_length and gdbarch_displaced_step_location
479 indicate where to copy the instruction, and how much space must
480 be reserved there. We use these in step n1.
481
482 - gdbarch_displaced_step_copy_insn copies a instruction to a new
483 address, and makes any necessary adjustments to the instruction,
484 register contents, and memory. We use this in step n1.
485
486 - gdbarch_displaced_step_fixup adjusts registers and memory after
487 we have successfuly single-stepped the instruction, to yield the
488 same effect the instruction would have had if we had executed it
489 at its original address. We use this in step n3.
490
491 - gdbarch_displaced_step_free_closure provides cleanup.
492
493 The gdbarch_displaced_step_copy_insn and
494 gdbarch_displaced_step_fixup functions must be written so that
495 copying an instruction with gdbarch_displaced_step_copy_insn,
496 single-stepping across the copied instruction, and then applying
497 gdbarch_displaced_insn_fixup should have the same effects on the
498 thread's memory and registers as stepping the instruction in place
499 would have. Exactly which responsibilities fall to the copy and
500 which fall to the fixup is up to the author of those functions.
501
502 See the comments in gdbarch.sh for details.
503
504 Note that displaced stepping and software single-step cannot
505 currently be used in combination, although with some care I think
506 they could be made to. Software single-step works by placing
507 breakpoints on all possible subsequent instructions; if the
508 displaced instruction is a PC-relative jump, those breakpoints
509 could fall in very strange places --- on pages that aren't
510 executable, or at addresses that are not proper instruction
511 boundaries. (We do generally let other threads run while we wait
512 to hit the software single-step breakpoint, and they might
513 encounter such a corrupted instruction.) One way to work around
514 this would be to have gdbarch_displaced_step_copy_insn fully
515 simulate the effect of PC-relative instructions (and return NULL)
516 on architectures that use software single-stepping.
517
518 In non-stop mode, we can have independent and simultaneous step
519 requests, so more than one thread may need to simultaneously step
520 over a breakpoint. The current implementation assumes there is
521 only one scratch space per process. In this case, we have to
522 serialize access to the scratch space. If thread A wants to step
523 over a breakpoint, but we are currently waiting for some other
524 thread to complete a displaced step, we leave thread A stopped and
525 place it in the displaced_step_request_queue. Whenever a displaced
526 step finishes, we pick the next thread in the queue and start a new
527 displaced step operation on it. See displaced_step_prepare and
528 displaced_step_fixup for details. */
529
530/* If this is not null_ptid, this is the thread carrying out a
531 displaced single-step. This thread's state will require fixing up
532 once it has completed its step. */
533static ptid_t displaced_step_ptid;
534
535struct displaced_step_request
536{
537 ptid_t ptid;
538 struct displaced_step_request *next;
539};
540
541/* A queue of pending displaced stepping requests. */
542struct displaced_step_request *displaced_step_request_queue;
543
544/* The architecture the thread had when we stepped it. */
545static struct gdbarch *displaced_step_gdbarch;
546
547/* The closure provided gdbarch_displaced_step_copy_insn, to be used
548 for post-step cleanup. */
549static struct displaced_step_closure *displaced_step_closure;
550
551/* The address of the original instruction, and the copy we made. */
552static CORE_ADDR displaced_step_original, displaced_step_copy;
553
554/* Saved contents of copy area. */
555static gdb_byte *displaced_step_saved_copy;
556
fff08868
HZ
557/* Enum strings for "set|show displaced-stepping". */
558
559static const char can_use_displaced_stepping_auto[] = "auto";
560static const char can_use_displaced_stepping_on[] = "on";
561static const char can_use_displaced_stepping_off[] = "off";
562static const char *can_use_displaced_stepping_enum[] =
563{
564 can_use_displaced_stepping_auto,
565 can_use_displaced_stepping_on,
566 can_use_displaced_stepping_off,
567 NULL,
568};
569
570/* If ON, and the architecture supports it, GDB will use displaced
571 stepping to step over breakpoints. If OFF, or if the architecture
572 doesn't support it, GDB will instead use the traditional
573 hold-and-step approach. If AUTO (which is the default), GDB will
574 decide which technique to use to step over breakpoints depending on
575 which of all-stop or non-stop mode is active --- displaced stepping
576 in non-stop mode; hold-and-step in all-stop mode. */
577
578static const char *can_use_displaced_stepping =
579 can_use_displaced_stepping_auto;
580
237fc4c9
PA
581static void
582show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
583 struct cmd_list_element *c,
584 const char *value)
585{
fff08868
HZ
586 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
587 fprintf_filtered (file, _("\
588Debugger's willingness to use displaced stepping to step over \
589breakpoints is %s (currently %s).\n"),
590 value, non_stop ? "on" : "off");
591 else
592 fprintf_filtered (file, _("\
593Debugger's willingness to use displaced stepping to step over \
594breakpoints is %s.\n"), value);
237fc4c9
PA
595}
596
fff08868
HZ
597/* Return non-zero if displaced stepping can/should be used to step
598 over breakpoints. */
599
237fc4c9
PA
600static int
601use_displaced_stepping (struct gdbarch *gdbarch)
602{
fff08868
HZ
603 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
604 && non_stop)
605 || can_use_displaced_stepping == can_use_displaced_stepping_on)
237fc4c9
PA
606 && gdbarch_displaced_step_copy_insn_p (gdbarch));
607}
608
609/* Clean out any stray displaced stepping state. */
610static void
611displaced_step_clear (void)
612{
613 /* Indicate that there is no cleanup pending. */
614 displaced_step_ptid = null_ptid;
615
616 if (displaced_step_closure)
617 {
618 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
619 displaced_step_closure);
620 displaced_step_closure = NULL;
621 }
622}
623
624static void
625cleanup_displaced_step_closure (void *ptr)
626{
627 struct displaced_step_closure *closure = ptr;
628
629 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
630}
631
632/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
633void
634displaced_step_dump_bytes (struct ui_file *file,
635 const gdb_byte *buf,
636 size_t len)
637{
638 int i;
639
640 for (i = 0; i < len; i++)
641 fprintf_unfiltered (file, "%02x ", buf[i]);
642 fputs_unfiltered ("\n", file);
643}
644
645/* Prepare to single-step, using displaced stepping.
646
647 Note that we cannot use displaced stepping when we have a signal to
648 deliver. If we have a signal to deliver and an instruction to step
649 over, then after the step, there will be no indication from the
650 target whether the thread entered a signal handler or ignored the
651 signal and stepped over the instruction successfully --- both cases
652 result in a simple SIGTRAP. In the first case we mustn't do a
653 fixup, and in the second case we must --- but we can't tell which.
654 Comments in the code for 'random signals' in handle_inferior_event
655 explain how we handle this case instead.
656
657 Returns 1 if preparing was successful -- this thread is going to be
658 stepped now; or 0 if displaced stepping this thread got queued. */
659static int
660displaced_step_prepare (ptid_t ptid)
661{
ad53cd71 662 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
663 struct regcache *regcache = get_thread_regcache (ptid);
664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
665 CORE_ADDR original, copy;
666 ULONGEST len;
667 struct displaced_step_closure *closure;
668
669 /* We should never reach this function if the architecture does not
670 support displaced stepping. */
671 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
672
673 /* For the first cut, we're displaced stepping one thread at a
674 time. */
675
676 if (!ptid_equal (displaced_step_ptid, null_ptid))
677 {
678 /* Already waiting for a displaced step to finish. Defer this
679 request and place in queue. */
680 struct displaced_step_request *req, *new_req;
681
682 if (debug_displaced)
683 fprintf_unfiltered (gdb_stdlog,
684 "displaced: defering step of %s\n",
685 target_pid_to_str (ptid));
686
687 new_req = xmalloc (sizeof (*new_req));
688 new_req->ptid = ptid;
689 new_req->next = NULL;
690
691 if (displaced_step_request_queue)
692 {
693 for (req = displaced_step_request_queue;
694 req && req->next;
695 req = req->next)
696 ;
697 req->next = new_req;
698 }
699 else
700 displaced_step_request_queue = new_req;
701
702 return 0;
703 }
704 else
705 {
706 if (debug_displaced)
707 fprintf_unfiltered (gdb_stdlog,
708 "displaced: stepping %s now\n",
709 target_pid_to_str (ptid));
710 }
711
712 displaced_step_clear ();
713
ad53cd71
PA
714 old_cleanups = save_inferior_ptid ();
715 inferior_ptid = ptid;
716
515630c5 717 original = regcache_read_pc (regcache);
237fc4c9
PA
718
719 copy = gdbarch_displaced_step_location (gdbarch);
720 len = gdbarch_max_insn_length (gdbarch);
721
722 /* Save the original contents of the copy area. */
723 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
724 ignore_cleanups = make_cleanup (free_current_contents,
725 &displaced_step_saved_copy);
237fc4c9
PA
726 read_memory (copy, displaced_step_saved_copy, len);
727 if (debug_displaced)
728 {
729 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
730 paddr_nz (copy));
731 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
732 };
733
734 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 735 original, copy, regcache);
237fc4c9
PA
736
737 /* We don't support the fully-simulated case at present. */
738 gdb_assert (closure);
739
740 make_cleanup (cleanup_displaced_step_closure, closure);
741
742 /* Resume execution at the copy. */
515630c5 743 regcache_write_pc (regcache, copy);
237fc4c9 744
ad53cd71
PA
745 discard_cleanups (ignore_cleanups);
746
747 do_cleanups (old_cleanups);
237fc4c9
PA
748
749 if (debug_displaced)
750 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
ad53cd71 751 paddr_nz (copy));
237fc4c9
PA
752
753 /* Save the information we need to fix things up if the step
754 succeeds. */
755 displaced_step_ptid = ptid;
756 displaced_step_gdbarch = gdbarch;
757 displaced_step_closure = closure;
758 displaced_step_original = original;
759 displaced_step_copy = copy;
760 return 1;
761}
762
763static void
764displaced_step_clear_cleanup (void *ignore)
765{
766 displaced_step_clear ();
767}
768
769static void
770write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
771{
772 struct cleanup *ptid_cleanup = save_inferior_ptid ();
773 inferior_ptid = ptid;
774 write_memory (memaddr, myaddr, len);
775 do_cleanups (ptid_cleanup);
776}
777
778static void
779displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
780{
781 struct cleanup *old_cleanups;
782
783 /* Was this event for the pid we displaced? */
784 if (ptid_equal (displaced_step_ptid, null_ptid)
785 || ! ptid_equal (displaced_step_ptid, event_ptid))
786 return;
787
788 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
789
790 /* Restore the contents of the copy area. */
791 {
792 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
793 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
794 displaced_step_saved_copy, len);
795 if (debug_displaced)
796 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
797 paddr_nz (displaced_step_copy));
798 }
799
800 /* Did the instruction complete successfully? */
801 if (signal == TARGET_SIGNAL_TRAP)
802 {
803 /* Fix up the resulting state. */
804 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
805 displaced_step_closure,
806 displaced_step_original,
807 displaced_step_copy,
808 get_thread_regcache (displaced_step_ptid));
809 }
810 else
811 {
812 /* Since the instruction didn't complete, all we can do is
813 relocate the PC. */
515630c5
UW
814 struct regcache *regcache = get_thread_regcache (event_ptid);
815 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 816 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 817 regcache_write_pc (regcache, pc);
237fc4c9
PA
818 }
819
820 do_cleanups (old_cleanups);
821
1c5cfe86
PA
822 displaced_step_ptid = null_ptid;
823
237fc4c9
PA
824 /* Are there any pending displaced stepping requests? If so, run
825 one now. */
1c5cfe86 826 while (displaced_step_request_queue)
237fc4c9
PA
827 {
828 struct displaced_step_request *head;
829 ptid_t ptid;
1c5cfe86 830 CORE_ADDR actual_pc;
237fc4c9
PA
831
832 head = displaced_step_request_queue;
833 ptid = head->ptid;
834 displaced_step_request_queue = head->next;
835 xfree (head);
836
ad53cd71
PA
837 context_switch (ptid);
838
1c5cfe86
PA
839 actual_pc = read_pc ();
840
841 if (breakpoint_here_p (actual_pc))
ad53cd71 842 {
1c5cfe86
PA
843 if (debug_displaced)
844 fprintf_unfiltered (gdb_stdlog,
845 "displaced: stepping queued %s now\n",
846 target_pid_to_str (ptid));
847
848 displaced_step_prepare (ptid);
849
850 if (debug_displaced)
851 {
852 gdb_byte buf[4];
853
854 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
855 paddr_nz (actual_pc));
856 read_memory (actual_pc, buf, sizeof (buf));
857 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
858 }
859
860 target_resume (ptid, 1, TARGET_SIGNAL_0);
861
862 /* Done, we're stepping a thread. */
863 break;
ad53cd71 864 }
1c5cfe86
PA
865 else
866 {
867 int step;
868 struct thread_info *tp = inferior_thread ();
869
870 /* The breakpoint we were sitting under has since been
871 removed. */
872 tp->trap_expected = 0;
873
874 /* Go back to what we were trying to do. */
875 step = currently_stepping (tp);
ad53cd71 876
1c5cfe86
PA
877 if (debug_displaced)
878 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
879 target_pid_to_str (tp->ptid), step);
880
881 target_resume (ptid, step, TARGET_SIGNAL_0);
882 tp->stop_signal = TARGET_SIGNAL_0;
883
884 /* This request was discarded. See if there's any other
885 thread waiting for its turn. */
886 }
237fc4c9
PA
887 }
888}
889
5231c1fd
PA
890/* Update global variables holding ptids to hold NEW_PTID if they were
891 holding OLD_PTID. */
892static void
893infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
894{
895 struct displaced_step_request *it;
896
897 if (ptid_equal (inferior_ptid, old_ptid))
898 inferior_ptid = new_ptid;
899
900 if (ptid_equal (singlestep_ptid, old_ptid))
901 singlestep_ptid = new_ptid;
902
903 if (ptid_equal (displaced_step_ptid, old_ptid))
904 displaced_step_ptid = new_ptid;
905
906 if (ptid_equal (deferred_step_ptid, old_ptid))
907 deferred_step_ptid = new_ptid;
908
909 for (it = displaced_step_request_queue; it; it = it->next)
910 if (ptid_equal (it->ptid, old_ptid))
911 it->ptid = new_ptid;
912}
913
237fc4c9
PA
914\f
915/* Resuming. */
c906108c
SS
916
917/* Things to clean up if we QUIT out of resume (). */
c906108c 918static void
74b7792f 919resume_cleanups (void *ignore)
c906108c
SS
920{
921 normal_stop ();
922}
923
53904c9e
AC
924static const char schedlock_off[] = "off";
925static const char schedlock_on[] = "on";
926static const char schedlock_step[] = "step";
488f131b 927static const char *scheduler_enums[] = {
ef346e04
AC
928 schedlock_off,
929 schedlock_on,
930 schedlock_step,
931 NULL
932};
920d2a44
AC
933static const char *scheduler_mode = schedlock_off;
934static void
935show_scheduler_mode (struct ui_file *file, int from_tty,
936 struct cmd_list_element *c, const char *value)
937{
938 fprintf_filtered (file, _("\
939Mode for locking scheduler during execution is \"%s\".\n"),
940 value);
941}
c906108c
SS
942
943static void
96baa820 944set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 945{
eefe576e
AC
946 if (!target_can_lock_scheduler)
947 {
948 scheduler_mode = schedlock_off;
949 error (_("Target '%s' cannot support this command."), target_shortname);
950 }
c906108c
SS
951}
952
953
954/* Resume the inferior, but allow a QUIT. This is useful if the user
955 wants to interrupt some lengthy single-stepping operation
956 (for child processes, the SIGINT goes to the inferior, and so
957 we get a SIGINT random_signal, but for remote debugging and perhaps
958 other targets, that's not true).
959
960 STEP nonzero if we should step (zero to continue instead).
961 SIG is the signal to give the inferior (zero for none). */
962void
96baa820 963resume (int step, enum target_signal sig)
c906108c
SS
964{
965 int should_resume = 1;
74b7792f 966 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c7e8a53c
PA
967
968 /* Note that these must be reset if we follow a fork below. */
515630c5
UW
969 struct regcache *regcache = get_current_regcache ();
970 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 971 struct thread_info *tp = inferior_thread ();
515630c5 972 CORE_ADDR pc = regcache_read_pc (regcache);
c7e8a53c 973
c906108c
SS
974 QUIT;
975
527159b7 976 if (debug_infrun)
237fc4c9
PA
977 fprintf_unfiltered (gdb_stdlog,
978 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
979 "trap_expected=%d\n",
980 step, sig, tp->trap_expected);
c906108c 981
692590c1
MS
982 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
983 over an instruction that causes a page fault without triggering
984 a hardware watchpoint. The kernel properly notices that it shouldn't
985 stop, because the hardware watchpoint is not triggered, but it forgets
986 the step request and continues the program normally.
987 Work around the problem by removing hardware watchpoints if a step is
988 requested, GDB will check for a hardware watchpoint trigger after the
989 step anyway. */
c36b740a 990 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 991 remove_hw_watchpoints ();
488f131b 992
692590c1 993
c2c6d25f
JM
994 /* Normally, by the time we reach `resume', the breakpoints are either
995 removed or inserted, as appropriate. The exception is if we're sitting
996 at a permanent breakpoint; we need to step over it, but permanent
997 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 998 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 999 {
515630c5
UW
1000 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1001 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1002 else
1003 error (_("\
1004The program is stopped at a permanent breakpoint, but GDB does not know\n\
1005how to step past a permanent breakpoint on this architecture. Try using\n\
1006a command like `return' or `jump' to continue execution."));
1007 }
c2c6d25f 1008
237fc4c9
PA
1009 /* If enabled, step over breakpoints by executing a copy of the
1010 instruction at a different address.
1011
1012 We can't use displaced stepping when we have a signal to deliver;
1013 the comments for displaced_step_prepare explain why. The
1014 comments in the handle_inferior event for dealing with 'random
1015 signals' explain what we do instead. */
515630c5 1016 if (use_displaced_stepping (gdbarch)
4e1c45ea 1017 && tp->trap_expected
237fc4c9
PA
1018 && sig == TARGET_SIGNAL_0)
1019 {
1020 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1021 {
1022 /* Got placed in displaced stepping queue. Will be resumed
1023 later when all the currently queued displaced stepping
7f7efbd9
VP
1024 requests finish. The thread is not executing at this point,
1025 and the call to set_executing will be made later. But we
1026 need to call set_running here, since from frontend point of view,
1027 the thread is running. */
1028 set_running (inferior_ptid, 1);
d56b7306
VP
1029 discard_cleanups (old_cleanups);
1030 return;
1031 }
237fc4c9
PA
1032 }
1033
515630c5 1034 if (step && gdbarch_software_single_step_p (gdbarch))
c906108c
SS
1035 {
1036 /* Do it the hard way, w/temp breakpoints */
515630c5 1037 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
e6590a1b
UW
1038 {
1039 /* ...and don't ask hardware to do it. */
1040 step = 0;
1041 /* and do not pull these breakpoints until after a `wait' in
1042 `wait_for_inferior' */
1043 singlestep_breakpoints_inserted_p = 1;
1044 singlestep_ptid = inferior_ptid;
237fc4c9 1045 singlestep_pc = pc;
e6590a1b 1046 }
c906108c
SS
1047 }
1048
c906108c 1049 /* If there were any forks/vforks/execs that were caught and are
6604731b 1050 now to be followed, then do so. */
c906108c
SS
1051 switch (pending_follow.kind)
1052 {
6604731b
DJ
1053 case TARGET_WAITKIND_FORKED:
1054 case TARGET_WAITKIND_VFORKED:
c906108c 1055 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
1056 if (follow_fork ())
1057 should_resume = 0;
607cecd2
PA
1058
1059 /* Following a child fork will change our notion of current
1060 thread. */
1061 tp = inferior_thread ();
c7e8a53c
PA
1062 regcache = get_current_regcache ();
1063 gdbarch = get_regcache_arch (regcache);
1064 pc = regcache_read_pc (regcache);
c906108c
SS
1065 break;
1066
6604731b 1067 case TARGET_WAITKIND_EXECD:
c906108c 1068 /* follow_exec is called as soon as the exec event is seen. */
6604731b 1069 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
1070 break;
1071
1072 default:
1073 break;
1074 }
c906108c
SS
1075
1076 /* Install inferior's terminal modes. */
1077 target_terminal_inferior ();
1078
1079 if (should_resume)
1080 {
39f77062 1081 ptid_t resume_ptid;
dfcd3bfb 1082
488f131b 1083 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 1084
cd76b0b7
VP
1085 /* If STEP is set, it's a request to use hardware stepping
1086 facilities. But in that case, we should never
1087 use singlestep breakpoint. */
1088 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1089
1090 if (singlestep_breakpoints_inserted_p
1091 && stepping_past_singlestep_breakpoint)
c906108c 1092 {
cd76b0b7
VP
1093 /* The situation here is as follows. In thread T1 we wanted to
1094 single-step. Lacking hardware single-stepping we've
1095 set breakpoint at the PC of the next instruction -- call it
1096 P. After resuming, we've hit that breakpoint in thread T2.
1097 Now we've removed original breakpoint, inserted breakpoint
1098 at P+1, and try to step to advance T2 past breakpoint.
1099 We need to step only T2, as if T1 is allowed to freely run,
1100 it can run past P, and if other threads are allowed to run,
1101 they can hit breakpoint at P+1, and nested hits of single-step
1102 breakpoints is not something we'd want -- that's complicated
1103 to support, and has no value. */
1104 resume_ptid = inferior_ptid;
1105 }
c906108c 1106
e842223a 1107 if ((step || singlestep_breakpoints_inserted_p)
4e1c45ea 1108 && tp->trap_expected)
cd76b0b7 1109 {
74960c60
VP
1110 /* We're allowing a thread to run past a breakpoint it has
1111 hit, by single-stepping the thread with the breakpoint
1112 removed. In which case, we need to single-step only this
1113 thread, and keep others stopped, as they can miss this
1114 breakpoint if allowed to run.
1115
1116 The current code actually removes all breakpoints when
1117 doing this, not just the one being stepped over, so if we
1118 let other threads run, we can actually miss any
1119 breakpoint, not just the one at PC. */
ef5cf84e 1120 resume_ptid = inferior_ptid;
c906108c 1121 }
ef5cf84e 1122
94cc34af
PA
1123 if (non_stop)
1124 {
1125 /* With non-stop mode on, threads are always handled
1126 individually. */
1127 resume_ptid = inferior_ptid;
1128 }
1129 else if ((scheduler_mode == schedlock_on)
1130 || (scheduler_mode == schedlock_step
1131 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1132 {
ef5cf84e 1133 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1134 resume_ptid = inferior_ptid;
c906108c 1135 }
ef5cf84e 1136
515630c5 1137 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1138 {
1139 /* Most targets can step a breakpoint instruction, thus
1140 executing it normally. But if this one cannot, just
1141 continue and we will hit it anyway. */
237fc4c9 1142 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1143 step = 0;
1144 }
237fc4c9
PA
1145
1146 if (debug_displaced
515630c5 1147 && use_displaced_stepping (gdbarch)
4e1c45ea 1148 && tp->trap_expected)
237fc4c9 1149 {
515630c5
UW
1150 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1151 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1152 gdb_byte buf[4];
1153
1154 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1155 paddr_nz (actual_pc));
1156 read_memory (actual_pc, buf, sizeof (buf));
1157 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1158 }
1159
2020b7ab
PA
1160 /* Avoid confusing the next resume, if the next stop/resume
1161 happens to apply to another thread. */
1162 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1163
1164 target_resume (resume_ptid, step, sig);
c906108c
SS
1165 }
1166
1167 discard_cleanups (old_cleanups);
1168}
1169\f
237fc4c9 1170/* Proceeding. */
c906108c
SS
1171
1172/* Clear out all variables saying what to do when inferior is continued.
1173 First do this, then set the ones you want, then call `proceed'. */
1174
a7212384
UW
1175static void
1176clear_proceed_status_thread (struct thread_info *tp)
c906108c 1177{
a7212384
UW
1178 if (debug_infrun)
1179 fprintf_unfiltered (gdb_stdlog,
1180 "infrun: clear_proceed_status_thread (%s)\n",
1181 target_pid_to_str (tp->ptid));
d6b48e9c 1182
a7212384
UW
1183 tp->trap_expected = 0;
1184 tp->step_range_start = 0;
1185 tp->step_range_end = 0;
1186 tp->step_frame_id = null_frame_id;
1187 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1188 tp->stop_requested = 0;
4e1c45ea 1189
a7212384 1190 tp->stop_step = 0;
32400beb 1191
a7212384 1192 tp->proceed_to_finish = 0;
414c69f7 1193
a7212384
UW
1194 /* Discard any remaining commands or status from previous stop. */
1195 bpstat_clear (&tp->stop_bpstat);
1196}
32400beb 1197
a7212384
UW
1198static int
1199clear_proceed_status_callback (struct thread_info *tp, void *data)
1200{
1201 if (is_exited (tp->ptid))
1202 return 0;
d6b48e9c 1203
a7212384
UW
1204 clear_proceed_status_thread (tp);
1205 return 0;
1206}
1207
1208void
1209clear_proceed_status (void)
1210{
1211 if (!ptid_equal (inferior_ptid, null_ptid))
1212 {
1213 struct inferior *inferior;
1214
1215 if (non_stop)
1216 {
1217 /* If in non-stop mode, only delete the per-thread status
1218 of the current thread. */
1219 clear_proceed_status_thread (inferior_thread ());
1220 }
1221 else
1222 {
1223 /* In all-stop mode, delete the per-thread status of
1224 *all* threads. */
1225 iterate_over_threads (clear_proceed_status_callback, NULL);
1226 }
1227
d6b48e9c
PA
1228 inferior = current_inferior ();
1229 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1230 }
1231
c906108c 1232 stop_after_trap = 0;
f3b1572e
PA
1233
1234 observer_notify_about_to_proceed ();
c906108c 1235
d5c31457
UW
1236 if (stop_registers)
1237 {
1238 regcache_xfree (stop_registers);
1239 stop_registers = NULL;
1240 }
c906108c
SS
1241}
1242
ea67f13b
DJ
1243/* This should be suitable for any targets that support threads. */
1244
1245static int
6a6b96b9 1246prepare_to_proceed (int step)
ea67f13b
DJ
1247{
1248 ptid_t wait_ptid;
1249 struct target_waitstatus wait_status;
1250
1251 /* Get the last target status returned by target_wait(). */
1252 get_last_target_status (&wait_ptid, &wait_status);
1253
6a6b96b9 1254 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1255 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1256 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1257 {
1258 return 0;
1259 }
1260
6a6b96b9 1261 /* Switched over from WAIT_PID. */
ea67f13b 1262 if (!ptid_equal (wait_ptid, minus_one_ptid)
515630c5 1263 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1264 {
515630c5
UW
1265 struct regcache *regcache = get_thread_regcache (wait_ptid);
1266
1267 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1268 {
515630c5
UW
1269 /* If stepping, remember current thread to switch back to. */
1270 if (step)
1271 deferred_step_ptid = inferior_ptid;
ea67f13b 1272
515630c5
UW
1273 /* Switch back to WAIT_PID thread. */
1274 switch_to_thread (wait_ptid);
6a6b96b9 1275
515630c5
UW
1276 /* We return 1 to indicate that there is a breakpoint here,
1277 so we need to step over it before continuing to avoid
1278 hitting it straight away. */
1279 return 1;
1280 }
ea67f13b
DJ
1281 }
1282
1283 return 0;
ea67f13b 1284}
e4846b08 1285
c906108c
SS
1286/* Basic routine for continuing the program in various fashions.
1287
1288 ADDR is the address to resume at, or -1 for resume where stopped.
1289 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1290 or -1 for act according to how it stopped.
c906108c 1291 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1292 -1 means return after that and print nothing.
1293 You should probably set various step_... variables
1294 before calling here, if you are stepping.
c906108c
SS
1295
1296 You should call clear_proceed_status before calling proceed. */
1297
1298void
96baa820 1299proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1300{
515630c5
UW
1301 struct regcache *regcache = get_current_regcache ();
1302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1303 struct thread_info *tp;
515630c5 1304 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c
SS
1305 int oneproc = 0;
1306
1307 if (step > 0)
515630c5 1308 step_start_function = find_pc_function (pc);
c906108c
SS
1309 if (step < 0)
1310 stop_after_trap = 1;
1311
2acceee2 1312 if (addr == (CORE_ADDR) -1)
c906108c 1313 {
b2175913
MS
1314 if (pc == stop_pc && breakpoint_here_p (pc)
1315 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1316 /* There is a breakpoint at the address we will resume at,
1317 step one instruction before inserting breakpoints so that
1318 we do not stop right away (and report a second hit at this
b2175913
MS
1319 breakpoint).
1320
1321 Note, we don't do this in reverse, because we won't
1322 actually be executing the breakpoint insn anyway.
1323 We'll be (un-)executing the previous instruction. */
1324
c906108c 1325 oneproc = 1;
515630c5
UW
1326 else if (gdbarch_single_step_through_delay_p (gdbarch)
1327 && gdbarch_single_step_through_delay (gdbarch,
1328 get_current_frame ()))
3352ef37
AC
1329 /* We stepped onto an instruction that needs to be stepped
1330 again before re-inserting the breakpoint, do so. */
c906108c
SS
1331 oneproc = 1;
1332 }
1333 else
1334 {
515630c5 1335 regcache_write_pc (regcache, addr);
c906108c
SS
1336 }
1337
527159b7 1338 if (debug_infrun)
8a9de0e4
AC
1339 fprintf_unfiltered (gdb_stdlog,
1340 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1341 paddr_nz (addr), siggnal, step);
527159b7 1342
94cc34af
PA
1343 if (non_stop)
1344 /* In non-stop, each thread is handled individually. The context
1345 must already be set to the right thread here. */
1346 ;
1347 else
1348 {
1349 /* In a multi-threaded task we may select another thread and
1350 then continue or step.
c906108c 1351
94cc34af
PA
1352 But if the old thread was stopped at a breakpoint, it will
1353 immediately cause another breakpoint stop without any
1354 execution (i.e. it will report a breakpoint hit incorrectly).
1355 So we must step over it first.
c906108c 1356
94cc34af
PA
1357 prepare_to_proceed checks the current thread against the
1358 thread that reported the most recent event. If a step-over
1359 is required it returns TRUE and sets the current thread to
1360 the old thread. */
1361 if (prepare_to_proceed (step))
1362 oneproc = 1;
1363 }
c906108c 1364
4e1c45ea
PA
1365 /* prepare_to_proceed may change the current thread. */
1366 tp = inferior_thread ();
1367
c906108c 1368 if (oneproc)
74960c60 1369 {
4e1c45ea 1370 tp->trap_expected = 1;
237fc4c9
PA
1371 /* If displaced stepping is enabled, we can step over the
1372 breakpoint without hitting it, so leave all breakpoints
1373 inserted. Otherwise we need to disable all breakpoints, step
1374 one instruction, and then re-add them when that step is
1375 finished. */
515630c5 1376 if (!use_displaced_stepping (gdbarch))
237fc4c9 1377 remove_breakpoints ();
74960c60 1378 }
237fc4c9
PA
1379
1380 /* We can insert breakpoints if we're not trying to step over one,
1381 or if we are stepping over one but we're using displaced stepping
1382 to do so. */
4e1c45ea 1383 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1384 insert_breakpoints ();
c906108c 1385
2020b7ab
PA
1386 if (!non_stop)
1387 {
1388 /* Pass the last stop signal to the thread we're resuming,
1389 irrespective of whether the current thread is the thread that
1390 got the last event or not. This was historically GDB's
1391 behaviour before keeping a stop_signal per thread. */
1392
1393 struct thread_info *last_thread;
1394 ptid_t last_ptid;
1395 struct target_waitstatus last_status;
1396
1397 get_last_target_status (&last_ptid, &last_status);
1398 if (!ptid_equal (inferior_ptid, last_ptid)
1399 && !ptid_equal (last_ptid, null_ptid)
1400 && !ptid_equal (last_ptid, minus_one_ptid))
1401 {
1402 last_thread = find_thread_pid (last_ptid);
1403 if (last_thread)
1404 {
1405 tp->stop_signal = last_thread->stop_signal;
1406 last_thread->stop_signal = TARGET_SIGNAL_0;
1407 }
1408 }
1409 }
1410
c906108c 1411 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1412 tp->stop_signal = siggnal;
c906108c
SS
1413 /* If this signal should not be seen by program,
1414 give it zero. Used for debugging signals. */
2020b7ab
PA
1415 else if (!signal_program[tp->stop_signal])
1416 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1417
1418 annotate_starting ();
1419
1420 /* Make sure that output from GDB appears before output from the
1421 inferior. */
1422 gdb_flush (gdb_stdout);
1423
e4846b08
JJ
1424 /* Refresh prev_pc value just prior to resuming. This used to be
1425 done in stop_stepping, however, setting prev_pc there did not handle
1426 scenarios such as inferior function calls or returning from
1427 a function via the return command. In those cases, the prev_pc
1428 value was not set properly for subsequent commands. The prev_pc value
1429 is used to initialize the starting line number in the ecs. With an
1430 invalid value, the gdb next command ends up stopping at the position
1431 represented by the next line table entry past our start position.
1432 On platforms that generate one line table entry per line, this
1433 is not a problem. However, on the ia64, the compiler generates
1434 extraneous line table entries that do not increase the line number.
1435 When we issue the gdb next command on the ia64 after an inferior call
1436 or a return command, we often end up a few instructions forward, still
1437 within the original line we started.
1438
1439 An attempt was made to have init_execution_control_state () refresh
1440 the prev_pc value before calculating the line number. This approach
1441 did not work because on platforms that use ptrace, the pc register
1442 cannot be read unless the inferior is stopped. At that point, we
515630c5 1443 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1444 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1445 updated correctly when the inferior is stopped. */
4e1c45ea 1446 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1447
59f0d5d9 1448 /* Fill in with reasonable starting values. */
4e1c45ea 1449 init_thread_stepping_state (tp);
59f0d5d9 1450
59f0d5d9
PA
1451 /* Reset to normal state. */
1452 init_infwait_state ();
1453
c906108c 1454 /* Resume inferior. */
2020b7ab 1455 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1456
1457 /* Wait for it to stop (if not standalone)
1458 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1459 /* Do this only if we are not using the event loop, or if the target
1460 does not support asynchronous execution. */
362646f5 1461 if (!target_can_async_p ())
43ff13b4 1462 {
ae123ec6 1463 wait_for_inferior (0);
43ff13b4
JM
1464 normal_stop ();
1465 }
c906108c 1466}
c906108c
SS
1467\f
1468
1469/* Start remote-debugging of a machine over a serial link. */
96baa820 1470
c906108c 1471void
8621d6a9 1472start_remote (int from_tty)
c906108c 1473{
d6b48e9c 1474 struct inferior *inferior;
c906108c 1475 init_wait_for_inferior ();
d6b48e9c
PA
1476
1477 inferior = current_inferior ();
1478 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1479
6426a772
JM
1480 /* Always go on waiting for the target, regardless of the mode. */
1481 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1482 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1483 nothing is returned (instead of just blocking). Because of this,
1484 targets expecting an immediate response need to, internally, set
1485 things up so that the target_wait() is forced to eventually
1486 timeout. */
1487 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1488 differentiate to its caller what the state of the target is after
1489 the initial open has been performed. Here we're assuming that
1490 the target has stopped. It should be possible to eventually have
1491 target_open() return to the caller an indication that the target
1492 is currently running and GDB state should be set to the same as
1493 for an async run. */
ae123ec6 1494 wait_for_inferior (0);
8621d6a9
DJ
1495
1496 /* Now that the inferior has stopped, do any bookkeeping like
1497 loading shared libraries. We want to do this before normal_stop,
1498 so that the displayed frame is up to date. */
1499 post_create_inferior (&current_target, from_tty);
1500
6426a772 1501 normal_stop ();
c906108c
SS
1502}
1503
1504/* Initialize static vars when a new inferior begins. */
1505
1506void
96baa820 1507init_wait_for_inferior (void)
c906108c
SS
1508{
1509 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1510
c906108c
SS
1511 breakpoint_init_inferior (inf_starting);
1512
c906108c
SS
1513 /* The first resume is not following a fork/vfork/exec. */
1514 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 1515
c906108c 1516 clear_proceed_status ();
9f976b41
DJ
1517
1518 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1519 deferred_step_ptid = null_ptid;
ca005067
DJ
1520
1521 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1522
0d1e5fa7
PA
1523 previous_inferior_ptid = null_ptid;
1524 init_infwait_state ();
1525
237fc4c9 1526 displaced_step_clear ();
c906108c 1527}
237fc4c9 1528
c906108c 1529\f
b83266a0
SS
1530/* This enum encodes possible reasons for doing a target_wait, so that
1531 wfi can call target_wait in one place. (Ultimately the call will be
1532 moved out of the infinite loop entirely.) */
1533
c5aa993b
JM
1534enum infwait_states
1535{
cd0fc7c3
SS
1536 infwait_normal_state,
1537 infwait_thread_hop_state,
d983da9c 1538 infwait_step_watch_state,
cd0fc7c3 1539 infwait_nonstep_watch_state
b83266a0
SS
1540};
1541
11cf8741
JM
1542/* Why did the inferior stop? Used to print the appropriate messages
1543 to the interface from within handle_inferior_event(). */
1544enum inferior_stop_reason
1545{
11cf8741
JM
1546 /* Step, next, nexti, stepi finished. */
1547 END_STEPPING_RANGE,
11cf8741
JM
1548 /* Inferior terminated by signal. */
1549 SIGNAL_EXITED,
1550 /* Inferior exited. */
1551 EXITED,
1552 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1553 SIGNAL_RECEIVED,
1554 /* Reverse execution -- target ran out of history info. */
1555 NO_HISTORY
11cf8741
JM
1556};
1557
0d1e5fa7
PA
1558/* The PTID we'll do a target_wait on.*/
1559ptid_t waiton_ptid;
1560
1561/* Current inferior wait state. */
1562enum infwait_states infwait_state;
cd0fc7c3 1563
0d1e5fa7
PA
1564/* Data to be passed around while handling an event. This data is
1565 discarded between events. */
c5aa993b 1566struct execution_control_state
488f131b 1567{
0d1e5fa7 1568 ptid_t ptid;
4e1c45ea
PA
1569 /* The thread that got the event, if this was a thread event; NULL
1570 otherwise. */
1571 struct thread_info *event_thread;
1572
488f131b 1573 struct target_waitstatus ws;
488f131b
JB
1574 int random_signal;
1575 CORE_ADDR stop_func_start;
1576 CORE_ADDR stop_func_end;
1577 char *stop_func_name;
488f131b 1578 int new_thread_event;
488f131b
JB
1579 int wait_some_more;
1580};
1581
1582void init_execution_control_state (struct execution_control_state *ecs);
1583
1584void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1585
b2175913
MS
1586static void handle_step_into_function (struct execution_control_state *ecs);
1587static void handle_step_into_function_backward (struct execution_control_state *ecs);
44cbf7b5 1588static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1589static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
1590static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1591 struct frame_id sr_id);
611c83ae
PA
1592static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1593
104c1213
JM
1594static void stop_stepping (struct execution_control_state *ecs);
1595static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1596static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1597static void print_stop_reason (enum inferior_stop_reason stop_reason,
1598 int stop_info);
104c1213 1599
252fbfc8
PA
1600/* Callback for iterate over threads. If the thread is stopped, but
1601 the user/frontend doesn't know about that yet, go through
1602 normal_stop, as if the thread had just stopped now. ARG points at
1603 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1604 ptid_is_pid(PTID) is true, applies to all threads of the process
1605 pointed at by PTID. Otherwise, apply only to the thread pointed by
1606 PTID. */
1607
1608static int
1609infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1610{
1611 ptid_t ptid = * (ptid_t *) arg;
1612
1613 if ((ptid_equal (info->ptid, ptid)
1614 || ptid_equal (minus_one_ptid, ptid)
1615 || (ptid_is_pid (ptid)
1616 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1617 && is_running (info->ptid)
1618 && !is_executing (info->ptid))
1619 {
1620 struct cleanup *old_chain;
1621 struct execution_control_state ecss;
1622 struct execution_control_state *ecs = &ecss;
1623
1624 memset (ecs, 0, sizeof (*ecs));
1625
1626 old_chain = make_cleanup_restore_current_thread ();
1627
1628 switch_to_thread (info->ptid);
1629
1630 /* Go through handle_inferior_event/normal_stop, so we always
1631 have consistent output as if the stop event had been
1632 reported. */
1633 ecs->ptid = info->ptid;
1634 ecs->event_thread = find_thread_pid (info->ptid);
1635 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1636 ecs->ws.value.sig = TARGET_SIGNAL_0;
1637
1638 handle_inferior_event (ecs);
1639
1640 if (!ecs->wait_some_more)
1641 {
1642 struct thread_info *tp;
1643
1644 normal_stop ();
1645
1646 /* Finish off the continuations. The continations
1647 themselves are responsible for realising the thread
1648 didn't finish what it was supposed to do. */
1649 tp = inferior_thread ();
1650 do_all_intermediate_continuations_thread (tp);
1651 do_all_continuations_thread (tp);
1652 }
1653
1654 do_cleanups (old_chain);
1655 }
1656
1657 return 0;
1658}
1659
1660/* This function is attached as a "thread_stop_requested" observer.
1661 Cleanup local state that assumed the PTID was to be resumed, and
1662 report the stop to the frontend. */
1663
2c0b251b 1664static void
252fbfc8
PA
1665infrun_thread_stop_requested (ptid_t ptid)
1666{
1667 struct displaced_step_request *it, *next, *prev = NULL;
1668
1669 /* PTID was requested to stop. Remove it from the displaced
1670 stepping queue, so we don't try to resume it automatically. */
1671 for (it = displaced_step_request_queue; it; it = next)
1672 {
1673 next = it->next;
1674
1675 if (ptid_equal (it->ptid, ptid)
1676 || ptid_equal (minus_one_ptid, ptid)
1677 || (ptid_is_pid (ptid)
1678 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1679 {
1680 if (displaced_step_request_queue == it)
1681 displaced_step_request_queue = it->next;
1682 else
1683 prev->next = it->next;
1684
1685 xfree (it);
1686 }
1687 else
1688 prev = it;
1689 }
1690
1691 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1692}
1693
4e1c45ea
PA
1694/* Callback for iterate_over_threads. */
1695
1696static int
1697delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1698{
1699 if (is_exited (info->ptid))
1700 return 0;
1701
1702 delete_step_resume_breakpoint (info);
1703 return 0;
1704}
1705
1706/* In all-stop, delete the step resume breakpoint of any thread that
1707 had one. In non-stop, delete the step resume breakpoint of the
1708 thread that just stopped. */
1709
1710static void
1711delete_step_thread_step_resume_breakpoint (void)
1712{
1713 if (!target_has_execution
1714 || ptid_equal (inferior_ptid, null_ptid))
1715 /* If the inferior has exited, we have already deleted the step
1716 resume breakpoints out of GDB's lists. */
1717 return;
1718
1719 if (non_stop)
1720 {
1721 /* If in non-stop mode, only delete the step-resume or
1722 longjmp-resume breakpoint of the thread that just stopped
1723 stepping. */
1724 struct thread_info *tp = inferior_thread ();
1725 delete_step_resume_breakpoint (tp);
1726 }
1727 else
1728 /* In all-stop mode, delete all step-resume and longjmp-resume
1729 breakpoints of any thread that had them. */
1730 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1731}
1732
1733/* A cleanup wrapper. */
1734
1735static void
1736delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1737{
1738 delete_step_thread_step_resume_breakpoint ();
1739}
1740
223698f8
DE
1741/* Pretty print the results of target_wait, for debugging purposes. */
1742
1743static void
1744print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1745 const struct target_waitstatus *ws)
1746{
1747 char *status_string = target_waitstatus_to_string (ws);
1748 struct ui_file *tmp_stream = mem_fileopen ();
1749 char *text;
1750 long len;
1751
1752 /* The text is split over several lines because it was getting too long.
1753 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1754 output as a unit; we want only one timestamp printed if debug_timestamp
1755 is set. */
1756
1757 fprintf_unfiltered (tmp_stream,
1758 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1759 if (PIDGET (waiton_ptid) != -1)
1760 fprintf_unfiltered (tmp_stream,
1761 " [%s]", target_pid_to_str (waiton_ptid));
1762 fprintf_unfiltered (tmp_stream, ", status) =\n");
1763 fprintf_unfiltered (tmp_stream,
1764 "infrun: %d [%s],\n",
1765 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1766 fprintf_unfiltered (tmp_stream,
1767 "infrun: %s\n",
1768 status_string);
1769
1770 text = ui_file_xstrdup (tmp_stream, &len);
1771
1772 /* This uses %s in part to handle %'s in the text, but also to avoid
1773 a gcc error: the format attribute requires a string literal. */
1774 fprintf_unfiltered (gdb_stdlog, "%s", text);
1775
1776 xfree (status_string);
1777 xfree (text);
1778 ui_file_delete (tmp_stream);
1779}
1780
cd0fc7c3 1781/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1782
1783 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1784 as if they were SIGTRAP signals. This can be useful during
1785 the startup sequence on some targets such as HP/UX, where
1786 we receive an EXEC event instead of the expected SIGTRAP.
1787
cd0fc7c3
SS
1788 If inferior gets a signal, we may decide to start it up again
1789 instead of returning. That is why there is a loop in this function.
1790 When this function actually returns it means the inferior
1791 should be left stopped and GDB should read more commands. */
1792
1793void
ae123ec6 1794wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1795{
1796 struct cleanup *old_cleanups;
0d1e5fa7 1797 struct execution_control_state ecss;
cd0fc7c3 1798 struct execution_control_state *ecs;
c906108c 1799
527159b7 1800 if (debug_infrun)
ae123ec6
JB
1801 fprintf_unfiltered
1802 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1803 treat_exec_as_sigtrap);
527159b7 1804
4e1c45ea
PA
1805 old_cleanups =
1806 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 1807
cd0fc7c3 1808 ecs = &ecss;
0d1e5fa7
PA
1809 memset (ecs, 0, sizeof (*ecs));
1810
cd0fc7c3
SS
1811 overlay_cache_invalid = 1;
1812
e0bb1c1c
PA
1813 /* We'll update this if & when we switch to a new thread. */
1814 previous_inferior_ptid = inferior_ptid;
1815
cd0fc7c3
SS
1816 /* We have to invalidate the registers BEFORE calling target_wait
1817 because they can be loaded from the target while in target_wait.
1818 This makes remote debugging a bit more efficient for those
1819 targets that provide critical registers as part of their normal
1820 status mechanism. */
1821
1822 registers_changed ();
b83266a0 1823
c906108c
SS
1824 while (1)
1825 {
29f49a6a
PA
1826 struct cleanup *old_chain;
1827
9a4105ab 1828 if (deprecated_target_wait_hook)
0d1e5fa7 1829 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
cd0fc7c3 1830 else
0d1e5fa7 1831 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
c906108c 1832
f00150c9 1833 if (debug_infrun)
223698f8 1834 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 1835
ae123ec6
JB
1836 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1837 {
1838 xfree (ecs->ws.value.execd_pathname);
1839 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1840 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1841 }
1842
29f49a6a
PA
1843 /* If an error happens while handling the event, propagate GDB's
1844 knowledge of the executing state to the frontend/user running
1845 state. */
1846 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
1847
cd0fc7c3
SS
1848 /* Now figure out what to do with the result of the result. */
1849 handle_inferior_event (ecs);
c906108c 1850
29f49a6a
PA
1851 /* No error, don't finish the state yet. */
1852 discard_cleanups (old_chain);
1853
cd0fc7c3
SS
1854 if (!ecs->wait_some_more)
1855 break;
1856 }
4e1c45ea 1857
cd0fc7c3
SS
1858 do_cleanups (old_cleanups);
1859}
c906108c 1860
43ff13b4
JM
1861/* Asynchronous version of wait_for_inferior. It is called by the
1862 event loop whenever a change of state is detected on the file
1863 descriptor corresponding to the target. It can be called more than
1864 once to complete a single execution command. In such cases we need
a474d7c2
PA
1865 to keep the state in a global variable ECSS. If it is the last time
1866 that this function is called for a single execution command, then
1867 report to the user that the inferior has stopped, and do the
1868 necessary cleanups. */
43ff13b4
JM
1869
1870void
fba45db2 1871fetch_inferior_event (void *client_data)
43ff13b4 1872{
0d1e5fa7 1873 struct execution_control_state ecss;
a474d7c2 1874 struct execution_control_state *ecs = &ecss;
4f8d22e3 1875 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 1876 struct cleanup *ts_old_chain;
4f8d22e3 1877 int was_sync = sync_execution;
43ff13b4 1878
0d1e5fa7
PA
1879 memset (ecs, 0, sizeof (*ecs));
1880
59f0d5d9 1881 overlay_cache_invalid = 1;
43ff13b4 1882
e0bb1c1c
PA
1883 /* We can only rely on wait_for_more being correct before handling
1884 the event in all-stop, but previous_inferior_ptid isn't used in
1885 non-stop. */
1886 if (!ecs->wait_some_more)
1887 /* We'll update this if & when we switch to a new thread. */
1888 previous_inferior_ptid = inferior_ptid;
1889
4f8d22e3
PA
1890 if (non_stop)
1891 /* In non-stop mode, the user/frontend should not notice a thread
1892 switch due to internal events. Make sure we reverse to the
1893 user selected thread and frame after handling the event and
1894 running any breakpoint commands. */
1895 make_cleanup_restore_current_thread ();
1896
59f0d5d9
PA
1897 /* We have to invalidate the registers BEFORE calling target_wait
1898 because they can be loaded from the target while in target_wait.
1899 This makes remote debugging a bit more efficient for those
1900 targets that provide critical registers as part of their normal
1901 status mechanism. */
43ff13b4 1902
59f0d5d9 1903 registers_changed ();
43ff13b4 1904
9a4105ab 1905 if (deprecated_target_wait_hook)
a474d7c2 1906 ecs->ptid =
0d1e5fa7 1907 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
43ff13b4 1908 else
0d1e5fa7 1909 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
43ff13b4 1910
f00150c9 1911 if (debug_infrun)
223698f8 1912 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 1913
94cc34af
PA
1914 if (non_stop
1915 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1916 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1917 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1918 /* In non-stop mode, each thread is handled individually. Switch
1919 early, so the global state is set correctly for this
1920 thread. */
1921 context_switch (ecs->ptid);
1922
29f49a6a
PA
1923 /* If an error happens while handling the event, propagate GDB's
1924 knowledge of the executing state to the frontend/user running
1925 state. */
1926 if (!non_stop)
1927 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
1928 else
1929 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
1930
43ff13b4 1931 /* Now figure out what to do with the result of the result. */
a474d7c2 1932 handle_inferior_event (ecs);
43ff13b4 1933
a474d7c2 1934 if (!ecs->wait_some_more)
43ff13b4 1935 {
d6b48e9c
PA
1936 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1937
4e1c45ea 1938 delete_step_thread_step_resume_breakpoint ();
f107f563 1939
d6b48e9c
PA
1940 /* We may not find an inferior if this was a process exit. */
1941 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
1942 normal_stop ();
1943
af679fd0
PA
1944 if (target_has_execution
1945 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1946 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1947 && ecs->event_thread->step_multi
414c69f7 1948 && ecs->event_thread->stop_step)
c2d11a7d
JM
1949 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1950 else
1951 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 1952 }
4f8d22e3 1953
29f49a6a
PA
1954 /* No error, don't finish the thread states yet. */
1955 discard_cleanups (ts_old_chain);
1956
4f8d22e3
PA
1957 /* Revert thread and frame. */
1958 do_cleanups (old_chain);
1959
1960 /* If the inferior was in sync execution mode, and now isn't,
1961 restore the prompt. */
1962 if (was_sync && !sync_execution)
1963 display_gdb_prompt (0);
43ff13b4
JM
1964}
1965
cd0fc7c3
SS
1966/* Prepare an execution control state for looping through a
1967 wait_for_inferior-type loop. */
1968
1969void
96baa820 1970init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
1971{
1972 ecs->random_signal = 0;
0d1e5fa7
PA
1973}
1974
1975/* Clear context switchable stepping state. */
1976
1977void
4e1c45ea 1978init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 1979{
2afb61aa
PA
1980 struct symtab_and_line sal;
1981
0d1e5fa7
PA
1982 tss->stepping_over_breakpoint = 0;
1983 tss->step_after_step_resume_breakpoint = 0;
1984 tss->stepping_through_solib_after_catch = 0;
1985 tss->stepping_through_solib_catchpoints = NULL;
2afb61aa 1986
4e1c45ea 1987 sal = find_pc_line (tss->prev_pc, 0);
2afb61aa
PA
1988 tss->current_line = sal.line;
1989 tss->current_symtab = sal.symtab;
cd0fc7c3
SS
1990}
1991
e02bc4cc 1992/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1993 target_wait()/deprecated_target_wait_hook(). The data is actually
1994 cached by handle_inferior_event(), which gets called immediately
1995 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1996
1997void
488f131b 1998get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1999{
39f77062 2000 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2001 *status = target_last_waitstatus;
2002}
2003
ac264b3b
MS
2004void
2005nullify_last_target_wait_ptid (void)
2006{
2007 target_last_wait_ptid = minus_one_ptid;
2008}
2009
dcf4fbde 2010/* Switch thread contexts. */
dd80620e
MS
2011
2012static void
0d1e5fa7 2013context_switch (ptid_t ptid)
dd80620e 2014{
fd48f117
DJ
2015 if (debug_infrun)
2016 {
2017 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2018 target_pid_to_str (inferior_ptid));
2019 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2020 target_pid_to_str (ptid));
fd48f117
DJ
2021 }
2022
0d1e5fa7 2023 switch_to_thread (ptid);
dd80620e
MS
2024}
2025
4fa8626c
DJ
2026static void
2027adjust_pc_after_break (struct execution_control_state *ecs)
2028{
24a73cce
UW
2029 struct regcache *regcache;
2030 struct gdbarch *gdbarch;
8aad930b 2031 CORE_ADDR breakpoint_pc;
4fa8626c 2032
4fa8626c
DJ
2033 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2034 we aren't, just return.
9709f61c
DJ
2035
2036 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2037 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2038 implemented by software breakpoints should be handled through the normal
2039 breakpoint layer.
8fb3e588 2040
4fa8626c
DJ
2041 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2042 different signals (SIGILL or SIGEMT for instance), but it is less
2043 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2044 gdbarch_decr_pc_after_break. I don't know any specific target that
2045 generates these signals at breakpoints (the code has been in GDB since at
2046 least 1992) so I can not guess how to handle them here.
8fb3e588 2047
e6cf7916
UW
2048 In earlier versions of GDB, a target with
2049 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2050 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2051 target with both of these set in GDB history, and it seems unlikely to be
2052 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2053
2054 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2055 return;
2056
2057 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2058 return;
2059
4058b839
PA
2060 /* In reverse execution, when a breakpoint is hit, the instruction
2061 under it has already been de-executed. The reported PC always
2062 points at the breakpoint address, so adjusting it further would
2063 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2064 architecture:
2065
2066 B1 0x08000000 : INSN1
2067 B2 0x08000001 : INSN2
2068 0x08000002 : INSN3
2069 PC -> 0x08000003 : INSN4
2070
2071 Say you're stopped at 0x08000003 as above. Reverse continuing
2072 from that point should hit B2 as below. Reading the PC when the
2073 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2074 been de-executed already.
2075
2076 B1 0x08000000 : INSN1
2077 B2 PC -> 0x08000001 : INSN2
2078 0x08000002 : INSN3
2079 0x08000003 : INSN4
2080
2081 We can't apply the same logic as for forward execution, because
2082 we would wrongly adjust the PC to 0x08000000, since there's a
2083 breakpoint at PC - 1. We'd then report a hit on B1, although
2084 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2085 behaviour. */
2086 if (execution_direction == EXEC_REVERSE)
2087 return;
2088
24a73cce
UW
2089 /* If this target does not decrement the PC after breakpoints, then
2090 we have nothing to do. */
2091 regcache = get_thread_regcache (ecs->ptid);
2092 gdbarch = get_regcache_arch (regcache);
2093 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2094 return;
2095
8aad930b
AC
2096 /* Find the location where (if we've hit a breakpoint) the
2097 breakpoint would be. */
515630c5
UW
2098 breakpoint_pc = regcache_read_pc (regcache)
2099 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2100
1c5cfe86
PA
2101 /* Check whether there actually is a software breakpoint inserted at
2102 that location.
2103
2104 If in non-stop mode, a race condition is possible where we've
2105 removed a breakpoint, but stop events for that breakpoint were
2106 already queued and arrive later. To suppress those spurious
2107 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2108 and retire them after a number of stop events are reported. */
2109 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2110 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 2111 {
1c0fdd0e
UW
2112 /* When using hardware single-step, a SIGTRAP is reported for both
2113 a completed single-step and a software breakpoint. Need to
2114 differentiate between the two, as the latter needs adjusting
2115 but the former does not.
2116
2117 The SIGTRAP can be due to a completed hardware single-step only if
2118 - we didn't insert software single-step breakpoints
2119 - the thread to be examined is still the current thread
2120 - this thread is currently being stepped
2121
2122 If any of these events did not occur, we must have stopped due
2123 to hitting a software breakpoint, and have to back up to the
2124 breakpoint address.
2125
2126 As a special case, we could have hardware single-stepped a
2127 software breakpoint. In this case (prev_pc == breakpoint_pc),
2128 we also need to back up to the breakpoint address. */
2129
2130 if (singlestep_breakpoints_inserted_p
2131 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2132 || !currently_stepping (ecs->event_thread)
2133 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2134 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 2135 }
4fa8626c
DJ
2136}
2137
0d1e5fa7
PA
2138void
2139init_infwait_state (void)
2140{
2141 waiton_ptid = pid_to_ptid (-1);
2142 infwait_state = infwait_normal_state;
2143}
2144
94cc34af
PA
2145void
2146error_is_running (void)
2147{
2148 error (_("\
2149Cannot execute this command while the selected thread is running."));
2150}
2151
2152void
2153ensure_not_running (void)
2154{
2155 if (is_running (inferior_ptid))
2156 error_is_running ();
2157}
2158
cd0fc7c3
SS
2159/* Given an execution control state that has been freshly filled in
2160 by an event from the inferior, figure out what it means and take
2161 appropriate action. */
c906108c 2162
cd0fc7c3 2163void
96baa820 2164handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2165{
c8edd8b4 2166 int sw_single_step_trap_p = 0;
d983da9c
DJ
2167 int stopped_by_watchpoint;
2168 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2169 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2170 enum stop_kind stop_soon;
2171
2172 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2173 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2174 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2175 {
2176 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2177 gdb_assert (inf);
2178 stop_soon = inf->stop_soon;
2179 }
2180 else
2181 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2182
e02bc4cc 2183 /* Cache the last pid/waitstatus. */
39f77062 2184 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2185 target_last_waitstatus = ecs->ws;
e02bc4cc 2186
ca005067
DJ
2187 /* Always clear state belonging to the previous time we stopped. */
2188 stop_stack_dummy = 0;
2189
8c90c137
LM
2190 /* If it's a new process, add it to the thread database */
2191
2192 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2193 && !ptid_equal (ecs->ptid, minus_one_ptid)
2194 && !in_thread_list (ecs->ptid));
2195
2196 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2197 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2198 add_thread (ecs->ptid);
2199
88ed393a
JK
2200 ecs->event_thread = find_thread_pid (ecs->ptid);
2201
2202 /* Dependent on valid ECS->EVENT_THREAD. */
2203 adjust_pc_after_break (ecs);
2204
2205 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2206 reinit_frame_cache ();
2207
8c90c137
LM
2208 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2209 {
1c5cfe86
PA
2210 breakpoint_retire_moribund ();
2211
48844aa6
PA
2212 /* Mark the non-executing threads accordingly. In all-stop, all
2213 threads of all processes are stopped when we get any event
2214 reported. In non-stop mode, only the event thread stops. If
2215 we're handling a process exit in non-stop mode, there's
2216 nothing to do, as threads of the dead process are gone, and
2217 threads of any other process were left running. */
2218 if (!non_stop)
2219 set_executing (minus_one_ptid, 0);
2220 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2221 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2222 set_executing (inferior_ptid, 0);
8c90c137
LM
2223 }
2224
0d1e5fa7 2225 switch (infwait_state)
488f131b
JB
2226 {
2227 case infwait_thread_hop_state:
527159b7 2228 if (debug_infrun)
8a9de0e4 2229 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b 2230 /* Cancel the waiton_ptid. */
0d1e5fa7 2231 waiton_ptid = pid_to_ptid (-1);
65e82032 2232 break;
b83266a0 2233
488f131b 2234 case infwait_normal_state:
527159b7 2235 if (debug_infrun)
8a9de0e4 2236 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2237 break;
2238
2239 case infwait_step_watch_state:
2240 if (debug_infrun)
2241 fprintf_unfiltered (gdb_stdlog,
2242 "infrun: infwait_step_watch_state\n");
2243
2244 stepped_after_stopped_by_watchpoint = 1;
488f131b 2245 break;
b83266a0 2246
488f131b 2247 case infwait_nonstep_watch_state:
527159b7 2248 if (debug_infrun)
8a9de0e4
AC
2249 fprintf_unfiltered (gdb_stdlog,
2250 "infrun: infwait_nonstep_watch_state\n");
488f131b 2251 insert_breakpoints ();
c906108c 2252
488f131b
JB
2253 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2254 handle things like signals arriving and other things happening
2255 in combination correctly? */
2256 stepped_after_stopped_by_watchpoint = 1;
2257 break;
65e82032
AC
2258
2259 default:
e2e0b3e5 2260 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2261 }
0d1e5fa7 2262 infwait_state = infwait_normal_state;
c906108c 2263
488f131b
JB
2264 switch (ecs->ws.kind)
2265 {
2266 case TARGET_WAITKIND_LOADED:
527159b7 2267 if (debug_infrun)
8a9de0e4 2268 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2269 /* Ignore gracefully during startup of the inferior, as it might
2270 be the shell which has just loaded some objects, otherwise
2271 add the symbols for the newly loaded objects. Also ignore at
2272 the beginning of an attach or remote session; we will query
2273 the full list of libraries once the connection is
2274 established. */
c0236d92 2275 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2276 {
488f131b
JB
2277 /* Check for any newly added shared libraries if we're
2278 supposed to be adding them automatically. Switch
2279 terminal for any messages produced by
2280 breakpoint_re_set. */
2281 target_terminal_ours_for_output ();
aff6338a 2282 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2283 stack's section table is kept up-to-date. Architectures,
2284 (e.g., PPC64), use the section table to perform
2285 operations such as address => section name and hence
2286 require the table to contain all sections (including
2287 those found in shared libraries). */
aff6338a 2288 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2289 exec_ops to SOLIB_ADD. This is because current GDB is
2290 only tooled to propagate section_table changes out from
2291 the "current_target" (see target_resize_to_sections), and
2292 not up from the exec stratum. This, of course, isn't
2293 right. "infrun.c" should only interact with the
2294 exec/process stratum, instead relying on the target stack
2295 to propagate relevant changes (stop, section table
2296 changed, ...) up to other layers. */
b0f4b84b 2297#ifdef SOLIB_ADD
aff6338a 2298 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2299#else
2300 solib_add (NULL, 0, &current_target, auto_solib_add);
2301#endif
488f131b
JB
2302 target_terminal_inferior ();
2303
b0f4b84b
DJ
2304 /* If requested, stop when the dynamic linker notifies
2305 gdb of events. This allows the user to get control
2306 and place breakpoints in initializer routines for
2307 dynamically loaded objects (among other things). */
2308 if (stop_on_solib_events)
2309 {
2310 stop_stepping (ecs);
2311 return;
2312 }
2313
2314 /* NOTE drow/2007-05-11: This might be a good place to check
2315 for "catch load". */
488f131b 2316 }
b0f4b84b
DJ
2317
2318 /* If we are skipping through a shell, or through shared library
2319 loading that we aren't interested in, resume the program. If
2320 we're running the program normally, also resume. But stop if
2321 we're attaching or setting up a remote connection. */
2322 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2323 {
74960c60
VP
2324 /* Loading of shared libraries might have changed breakpoint
2325 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2326 if (stop_soon == NO_STOP_QUIETLY
2327 && !breakpoints_always_inserted_mode ())
74960c60 2328 insert_breakpoints ();
b0f4b84b
DJ
2329 resume (0, TARGET_SIGNAL_0);
2330 prepare_to_wait (ecs);
2331 return;
2332 }
2333
2334 break;
c5aa993b 2335
488f131b 2336 case TARGET_WAITKIND_SPURIOUS:
527159b7 2337 if (debug_infrun)
8a9de0e4 2338 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2339 resume (0, TARGET_SIGNAL_0);
2340 prepare_to_wait (ecs);
2341 return;
c5aa993b 2342
488f131b 2343 case TARGET_WAITKIND_EXITED:
527159b7 2344 if (debug_infrun)
8a9de0e4 2345 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2346 inferior_ptid = ecs->ptid;
488f131b
JB
2347 target_terminal_ours (); /* Must do this before mourn anyway */
2348 print_stop_reason (EXITED, ecs->ws.value.integer);
2349
2350 /* Record the exit code in the convenience variable $_exitcode, so
2351 that the user can inspect this again later. */
2352 set_internalvar (lookup_internalvar ("_exitcode"),
8b9b9e1a 2353 value_from_longest (builtin_type_int32,
488f131b
JB
2354 (LONGEST) ecs->ws.value.integer));
2355 gdb_flush (gdb_stdout);
2356 target_mourn_inferior ();
1c0fdd0e 2357 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2358 stop_print_frame = 0;
2359 stop_stepping (ecs);
2360 return;
c5aa993b 2361
488f131b 2362 case TARGET_WAITKIND_SIGNALLED:
527159b7 2363 if (debug_infrun)
8a9de0e4 2364 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2365 inferior_ptid = ecs->ptid;
488f131b 2366 stop_print_frame = 0;
488f131b 2367 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2368
488f131b
JB
2369 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2370 reach here unless the inferior is dead. However, for years
2371 target_kill() was called here, which hints that fatal signals aren't
2372 really fatal on some systems. If that's true, then some changes
2373 may be needed. */
2374 target_mourn_inferior ();
c906108c 2375
2020b7ab 2376 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2377 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2378 stop_stepping (ecs);
2379 return;
c906108c 2380
488f131b
JB
2381 /* The following are the only cases in which we keep going;
2382 the above cases end in a continue or goto. */
2383 case TARGET_WAITKIND_FORKED:
deb3b17b 2384 case TARGET_WAITKIND_VFORKED:
527159b7 2385 if (debug_infrun)
8a9de0e4 2386 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
2387 pending_follow.kind = ecs->ws.kind;
2388
3a3e9ee3 2389 pending_follow.fork_event.parent_pid = ecs->ptid;
8e7d2c16 2390 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 2391
5a2901d9
DJ
2392 if (!ptid_equal (ecs->ptid, inferior_ptid))
2393 {
0d1e5fa7 2394 context_switch (ecs->ptid);
35f196d9 2395 reinit_frame_cache ();
5a2901d9
DJ
2396 }
2397
488f131b 2398 stop_pc = read_pc ();
675bf4cb 2399
347bddb7 2400 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2401
347bddb7 2402 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2403
2404 /* If no catchpoint triggered for this, then keep going. */
2405 if (ecs->random_signal)
2406 {
2020b7ab 2407 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2408 keep_going (ecs);
2409 return;
2410 }
2020b7ab 2411 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2412 goto process_event_stop_test;
2413
2414 case TARGET_WAITKIND_EXECD:
527159b7 2415 if (debug_infrun)
fc5261f2 2416 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
2417 pending_follow.execd_pathname =
2418 savestring (ecs->ws.value.execd_pathname,
2419 strlen (ecs->ws.value.execd_pathname));
2420
5a2901d9
DJ
2421 if (!ptid_equal (ecs->ptid, inferior_ptid))
2422 {
0d1e5fa7 2423 context_switch (ecs->ptid);
35f196d9 2424 reinit_frame_cache ();
5a2901d9
DJ
2425 }
2426
795e548f
PA
2427 stop_pc = read_pc ();
2428
2429 /* This causes the eventpoints and symbol table to be reset.
2430 Must do this now, before trying to determine whether to
2431 stop. */
2432 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2433 xfree (pending_follow.execd_pathname);
2434
2435 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2436 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2437
04e68871
DJ
2438 /* If no catchpoint triggered for this, then keep going. */
2439 if (ecs->random_signal)
2440 {
2020b7ab 2441 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2442 keep_going (ecs);
2443 return;
2444 }
2020b7ab 2445 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2446 goto process_event_stop_test;
2447
b4dc5ffa
MK
2448 /* Be careful not to try to gather much state about a thread
2449 that's in a syscall. It's frequently a losing proposition. */
488f131b 2450 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2451 if (debug_infrun)
8a9de0e4 2452 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2453 resume (0, TARGET_SIGNAL_0);
2454 prepare_to_wait (ecs);
2455 return;
c906108c 2456
488f131b
JB
2457 /* Before examining the threads further, step this thread to
2458 get it entirely out of the syscall. (We get notice of the
2459 event when the thread is just on the verge of exiting a
2460 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2461 into user code.) */
488f131b 2462 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2463 if (debug_infrun)
8a9de0e4 2464 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2465 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2466 prepare_to_wait (ecs);
2467 return;
c906108c 2468
488f131b 2469 case TARGET_WAITKIND_STOPPED:
527159b7 2470 if (debug_infrun)
8a9de0e4 2471 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2472 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2473 break;
c906108c 2474
b2175913
MS
2475 case TARGET_WAITKIND_NO_HISTORY:
2476 /* Reverse execution: target ran out of history info. */
40e12b06 2477 stop_pc = read_pc ();
b2175913
MS
2478 print_stop_reason (NO_HISTORY, 0);
2479 stop_stepping (ecs);
2480 return;
2481
488f131b
JB
2482 /* We had an event in the inferior, but we are not interested
2483 in handling it at this level. The lower layers have already
8e7d2c16 2484 done what needs to be done, if anything.
8fb3e588
AC
2485
2486 One of the possible circumstances for this is when the
2487 inferior produces output for the console. The inferior has
2488 not stopped, and we are ignoring the event. Another possible
2489 circumstance is any event which the lower level knows will be
2490 reported multiple times without an intervening resume. */
488f131b 2491 case TARGET_WAITKIND_IGNORE:
527159b7 2492 if (debug_infrun)
8a9de0e4 2493 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2494 prepare_to_wait (ecs);
488f131b
JB
2495 return;
2496 }
c906108c 2497
488f131b
JB
2498 if (ecs->new_thread_event)
2499 {
94cc34af
PA
2500 if (non_stop)
2501 /* Non-stop assumes that the target handles adding new threads
2502 to the thread list. */
2503 internal_error (__FILE__, __LINE__, "\
2504targets should add new threads to the thread list themselves in non-stop mode.");
2505
2506 /* We may want to consider not doing a resume here in order to
2507 give the user a chance to play with the new thread. It might
2508 be good to make that a user-settable option. */
2509
2510 /* At this point, all threads are stopped (happens automatically
2511 in either the OS or the native code). Therefore we need to
2512 continue all threads in order to make progress. */
2513
488f131b
JB
2514 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2515 prepare_to_wait (ecs);
2516 return;
2517 }
c906108c 2518
2020b7ab 2519 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
2520 {
2521 /* Do we need to clean up the state of a thread that has
2522 completed a displaced single-step? (Doing so usually affects
2523 the PC, so do it here, before we set stop_pc.) */
2524 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2525
2526 /* If we either finished a single-step or hit a breakpoint, but
2527 the user wanted this thread to be stopped, pretend we got a
2528 SIG0 (generic unsignaled stop). */
2529
2530 if (ecs->event_thread->stop_requested
2531 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2532 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2533 }
237fc4c9 2534
515630c5 2535 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2536
527159b7 2537 if (debug_infrun)
237fc4c9
PA
2538 {
2539 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2540 paddr_nz (stop_pc));
2541 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2542 {
2543 CORE_ADDR addr;
2544 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2545
2546 if (target_stopped_data_address (&current_target, &addr))
2547 fprintf_unfiltered (gdb_stdlog,
2548 "infrun: stopped data address = 0x%s\n",
2549 paddr_nz (addr));
2550 else
2551 fprintf_unfiltered (gdb_stdlog,
2552 "infrun: (no data address available)\n");
2553 }
2554 }
527159b7 2555
9f976b41
DJ
2556 if (stepping_past_singlestep_breakpoint)
2557 {
1c0fdd0e 2558 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2559 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2560 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2561
2562 stepping_past_singlestep_breakpoint = 0;
2563
2564 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2565 breakpoint, or stopped for some other reason. It would be nice if
2566 we could tell, but we can't reliably. */
2020b7ab 2567 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2568 {
527159b7 2569 if (debug_infrun)
8a9de0e4 2570 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2571 /* Pull the single step breakpoints out of the target. */
e0cd558a 2572 remove_single_step_breakpoints ();
9f976b41
DJ
2573 singlestep_breakpoints_inserted_p = 0;
2574
2575 ecs->random_signal = 0;
2576
0d1e5fa7 2577 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2578 if (deprecated_context_hook)
2579 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2580
2581 resume (1, TARGET_SIGNAL_0);
2582 prepare_to_wait (ecs);
2583 return;
2584 }
2585 }
2586
ca67fcb8 2587 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2588 {
94cc34af
PA
2589 /* In non-stop mode, there's never a deferred_step_ptid set. */
2590 gdb_assert (!non_stop);
2591
6a6b96b9
UW
2592 /* If we stopped for some other reason than single-stepping, ignore
2593 the fact that we were supposed to switch back. */
2020b7ab 2594 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
2595 {
2596 if (debug_infrun)
2597 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2598 "infrun: handling deferred step\n");
6a6b96b9
UW
2599
2600 /* Pull the single step breakpoints out of the target. */
2601 if (singlestep_breakpoints_inserted_p)
2602 {
2603 remove_single_step_breakpoints ();
2604 singlestep_breakpoints_inserted_p = 0;
2605 }
2606
2607 /* Note: We do not call context_switch at this point, as the
2608 context is already set up for stepping the original thread. */
ca67fcb8
VP
2609 switch_to_thread (deferred_step_ptid);
2610 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2611 /* Suppress spurious "Switching to ..." message. */
2612 previous_inferior_ptid = inferior_ptid;
2613
2614 resume (1, TARGET_SIGNAL_0);
2615 prepare_to_wait (ecs);
2616 return;
2617 }
ca67fcb8
VP
2618
2619 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2620 }
2621
488f131b
JB
2622 /* See if a thread hit a thread-specific breakpoint that was meant for
2623 another thread. If so, then step that thread past the breakpoint,
2624 and continue it. */
2625
2020b7ab 2626 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2627 {
9f976b41
DJ
2628 int thread_hop_needed = 0;
2629
f8d40ec8
JB
2630 /* Check if a regular breakpoint has been hit before checking
2631 for a potential single step breakpoint. Otherwise, GDB will
2632 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2633 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2634 {
c5aa993b 2635 ecs->random_signal = 0;
4fa8626c 2636 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2637 thread_hop_needed = 1;
2638 }
1c0fdd0e 2639 else if (singlestep_breakpoints_inserted_p)
9f976b41 2640 {
fd48f117
DJ
2641 /* We have not context switched yet, so this should be true
2642 no matter which thread hit the singlestep breakpoint. */
2643 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2644 if (debug_infrun)
2645 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2646 "trap for %s\n",
2647 target_pid_to_str (ecs->ptid));
2648
9f976b41
DJ
2649 ecs->random_signal = 0;
2650 /* The call to in_thread_list is necessary because PTIDs sometimes
2651 change when we go from single-threaded to multi-threaded. If
2652 the singlestep_ptid is still in the list, assume that it is
2653 really different from ecs->ptid. */
2654 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2655 && in_thread_list (singlestep_ptid))
2656 {
fd48f117
DJ
2657 /* If the PC of the thread we were trying to single-step
2658 has changed, discard this event (which we were going
2659 to ignore anyway), and pretend we saw that thread
2660 trap. This prevents us continuously moving the
2661 single-step breakpoint forward, one instruction at a
2662 time. If the PC has changed, then the thread we were
2663 trying to single-step has trapped or been signalled,
2664 but the event has not been reported to GDB yet.
2665
2666 There might be some cases where this loses signal
2667 information, if a signal has arrived at exactly the
2668 same time that the PC changed, but this is the best
2669 we can do with the information available. Perhaps we
2670 should arrange to report all events for all threads
2671 when they stop, or to re-poll the remote looking for
2672 this particular thread (i.e. temporarily enable
2673 schedlock). */
515630c5
UW
2674
2675 CORE_ADDR new_singlestep_pc
2676 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2677
2678 if (new_singlestep_pc != singlestep_pc)
fd48f117 2679 {
2020b7ab
PA
2680 enum target_signal stop_signal;
2681
fd48f117
DJ
2682 if (debug_infrun)
2683 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2684 " but expected thread advanced also\n");
2685
2686 /* The current context still belongs to
2687 singlestep_ptid. Don't swap here, since that's
2688 the context we want to use. Just fudge our
2689 state and continue. */
2020b7ab
PA
2690 stop_signal = ecs->event_thread->stop_signal;
2691 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2692 ecs->ptid = singlestep_ptid;
4e1c45ea 2693 ecs->event_thread = find_thread_pid (ecs->ptid);
2020b7ab 2694 ecs->event_thread->stop_signal = stop_signal;
515630c5 2695 stop_pc = new_singlestep_pc;
fd48f117
DJ
2696 }
2697 else
2698 {
2699 if (debug_infrun)
2700 fprintf_unfiltered (gdb_stdlog,
2701 "infrun: unexpected thread\n");
2702
2703 thread_hop_needed = 1;
2704 stepping_past_singlestep_breakpoint = 1;
2705 saved_singlestep_ptid = singlestep_ptid;
2706 }
9f976b41
DJ
2707 }
2708 }
2709
2710 if (thread_hop_needed)
8fb3e588 2711 {
237fc4c9 2712 int remove_status = 0;
8fb3e588 2713
527159b7 2714 if (debug_infrun)
8a9de0e4 2715 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2716
8fb3e588
AC
2717 /* Saw a breakpoint, but it was hit by the wrong thread.
2718 Just continue. */
2719
1c0fdd0e 2720 if (singlestep_breakpoints_inserted_p)
488f131b 2721 {
8fb3e588 2722 /* Pull the single step breakpoints out of the target. */
e0cd558a 2723 remove_single_step_breakpoints ();
8fb3e588
AC
2724 singlestep_breakpoints_inserted_p = 0;
2725 }
2726
237fc4c9
PA
2727 /* If the arch can displace step, don't remove the
2728 breakpoints. */
2729 if (!use_displaced_stepping (current_gdbarch))
2730 remove_status = remove_breakpoints ();
2731
8fb3e588
AC
2732 /* Did we fail to remove breakpoints? If so, try
2733 to set the PC past the bp. (There's at least
2734 one situation in which we can fail to remove
2735 the bp's: On HP-UX's that use ttrace, we can't
2736 change the address space of a vforking child
2737 process until the child exits (well, okay, not
2738 then either :-) or execs. */
2739 if (remove_status != 0)
9d9cd7ac 2740 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2741 else
2742 { /* Single step */
8fb3e588 2743 if (!ptid_equal (inferior_ptid, ecs->ptid))
0d1e5fa7
PA
2744 context_switch (ecs->ptid);
2745
94cc34af
PA
2746 if (!non_stop)
2747 {
2748 /* Only need to require the next event from this
2749 thread in all-stop mode. */
2750 waiton_ptid = ecs->ptid;
2751 infwait_state = infwait_thread_hop_state;
2752 }
8fb3e588 2753
4e1c45ea 2754 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588
AC
2755 keep_going (ecs);
2756 registers_changed ();
2757 return;
2758 }
488f131b 2759 }
1c0fdd0e 2760 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
2761 {
2762 sw_single_step_trap_p = 1;
2763 ecs->random_signal = 0;
2764 }
488f131b
JB
2765 }
2766 else
2767 ecs->random_signal = 1;
c906108c 2768
488f131b 2769 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
2770 so, then switch to that thread. */
2771 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 2772 {
527159b7 2773 if (debug_infrun)
8a9de0e4 2774 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 2775
0d1e5fa7 2776 context_switch (ecs->ptid);
c5aa993b 2777
9a4105ab
AC
2778 if (deprecated_context_hook)
2779 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 2780 }
c906108c 2781
1c0fdd0e 2782 if (singlestep_breakpoints_inserted_p)
488f131b
JB
2783 {
2784 /* Pull the single step breakpoints out of the target. */
e0cd558a 2785 remove_single_step_breakpoints ();
488f131b
JB
2786 singlestep_breakpoints_inserted_p = 0;
2787 }
c906108c 2788
d983da9c
DJ
2789 if (stepped_after_stopped_by_watchpoint)
2790 stopped_by_watchpoint = 0;
2791 else
2792 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2793
2794 /* If necessary, step over this watchpoint. We'll be back to display
2795 it in a moment. */
2796 if (stopped_by_watchpoint
2797 && (HAVE_STEPPABLE_WATCHPOINT
2798 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 2799 {
488f131b
JB
2800 /* At this point, we are stopped at an instruction which has
2801 attempted to write to a piece of memory under control of
2802 a watchpoint. The instruction hasn't actually executed
2803 yet. If we were to evaluate the watchpoint expression
2804 now, we would get the old value, and therefore no change
2805 would seem to have occurred.
2806
2807 In order to make watchpoints work `right', we really need
2808 to complete the memory write, and then evaluate the
d983da9c
DJ
2809 watchpoint expression. We do this by single-stepping the
2810 target.
2811
2812 It may not be necessary to disable the watchpoint to stop over
2813 it. For example, the PA can (with some kernel cooperation)
2814 single step over a watchpoint without disabling the watchpoint.
2815
2816 It is far more common to need to disable a watchpoint to step
2817 the inferior over it. If we have non-steppable watchpoints,
2818 we must disable the current watchpoint; it's simplest to
2819 disable all watchpoints and breakpoints. */
2820
2821 if (!HAVE_STEPPABLE_WATCHPOINT)
2822 remove_breakpoints ();
488f131b
JB
2823 registers_changed ();
2824 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
0d1e5fa7 2825 waiton_ptid = ecs->ptid;
d983da9c 2826 if (HAVE_STEPPABLE_WATCHPOINT)
0d1e5fa7 2827 infwait_state = infwait_step_watch_state;
d983da9c 2828 else
0d1e5fa7 2829 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
2830 prepare_to_wait (ecs);
2831 return;
2832 }
2833
488f131b
JB
2834 ecs->stop_func_start = 0;
2835 ecs->stop_func_end = 0;
2836 ecs->stop_func_name = 0;
2837 /* Don't care about return value; stop_func_start and stop_func_name
2838 will both be 0 if it doesn't work. */
2839 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2840 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
2841 ecs->stop_func_start
2842 += gdbarch_deprecated_function_start_offset (current_gdbarch);
4e1c45ea 2843 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 2844 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 2845 ecs->event_thread->stop_step = 0;
488f131b
JB
2846 stop_print_frame = 1;
2847 ecs->random_signal = 0;
2848 stopped_by_random_signal = 0;
488f131b 2849
2020b7ab 2850 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 2851 && ecs->event_thread->trap_expected
3352ef37 2852 && gdbarch_single_step_through_delay_p (current_gdbarch)
4e1c45ea 2853 && currently_stepping (ecs->event_thread))
3352ef37 2854 {
b50d7442 2855 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
2856 also on an instruction that needs to be stepped multiple
2857 times before it's been fully executing. E.g., architectures
2858 with a delay slot. It needs to be stepped twice, once for
2859 the instruction and once for the delay slot. */
2860 int step_through_delay
2861 = gdbarch_single_step_through_delay (current_gdbarch,
2862 get_current_frame ());
527159b7 2863 if (debug_infrun && step_through_delay)
8a9de0e4 2864 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 2865 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
2866 {
2867 /* The user issued a continue when stopped at a breakpoint.
2868 Set up for another trap and get out of here. */
4e1c45ea 2869 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
2870 keep_going (ecs);
2871 return;
2872 }
2873 else if (step_through_delay)
2874 {
2875 /* The user issued a step when stopped at a breakpoint.
2876 Maybe we should stop, maybe we should not - the delay
2877 slot *might* correspond to a line of source. In any
ca67fcb8
VP
2878 case, don't decide that here, just set
2879 ecs->stepping_over_breakpoint, making sure we
2880 single-step again before breakpoints are re-inserted. */
4e1c45ea 2881 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
2882 }
2883 }
2884
488f131b
JB
2885 /* Look at the cause of the stop, and decide what to do.
2886 The alternatives are:
0d1e5fa7
PA
2887 1) stop_stepping and return; to really stop and return to the debugger,
2888 2) keep_going and return to start up again
4e1c45ea 2889 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
2890 3) set ecs->random_signal to 1, and the decision between 1 and 2
2891 will be made according to the signal handling tables. */
2892
2893 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
2894 that have to do with the program's own actions. Note that
2895 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2896 on the operating system version. Here we detect when a SIGILL or
2897 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2898 something similar for SIGSEGV, since a SIGSEGV will be generated
2899 when we're trying to execute a breakpoint instruction on a
2900 non-executable stack. This happens for call dummy breakpoints
2901 for architectures like SPARC that place call dummies on the
237fc4c9 2902 stack.
488f131b 2903
237fc4c9
PA
2904 If we're doing a displaced step past a breakpoint, then the
2905 breakpoint is always inserted at the original instruction;
2906 non-standard signals can't be explained by the breakpoint. */
2020b7ab 2907 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 2908 || (! ecs->event_thread->trap_expected
237fc4c9 2909 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
2910 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2911 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2912 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
2913 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2914 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2915 {
2020b7ab 2916 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 2917 {
527159b7 2918 if (debug_infrun)
8a9de0e4 2919 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
2920 stop_print_frame = 0;
2921 stop_stepping (ecs);
2922 return;
2923 }
c54cfec8
EZ
2924
2925 /* This is originated from start_remote(), start_inferior() and
2926 shared libraries hook functions. */
b0f4b84b 2927 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2928 {
527159b7 2929 if (debug_infrun)
8a9de0e4 2930 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
2931 stop_stepping (ecs);
2932 return;
2933 }
2934
c54cfec8 2935 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
2936 the stop_signal here, because some kernels don't ignore a
2937 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2938 See more comments in inferior.h. On the other hand, if we
a0ef4274 2939 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
2940 will handle the SIGSTOP if it should show up later.
2941
2942 Also consider that the attach is complete when we see a
2943 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2944 target extended-remote report it instead of a SIGSTOP
2945 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
2946 signal, so this is no exception.
2947
2948 Also consider that the attach is complete when we see a
2949 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
2950 the target to stop all threads of the inferior, in case the
2951 low level attach operation doesn't stop them implicitly. If
2952 they weren't stopped implicitly, then the stub will report a
2953 TARGET_SIGNAL_0, meaning: stopped for no particular reason
2954 other than GDB's request. */
a0ef4274 2955 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 2956 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
2957 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2958 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
2959 {
2960 stop_stepping (ecs);
2020b7ab 2961 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
2962 return;
2963 }
2964
fba57f8f 2965 /* See if there is a breakpoint at the current PC. */
347bddb7 2966 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
2967
2968 /* Following in case break condition called a
2969 function. */
2970 stop_print_frame = 1;
488f131b 2971
73dd234f 2972 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
2973 at one stage in the past included checks for an inferior
2974 function call's call dummy's return breakpoint. The original
2975 comment, that went with the test, read:
73dd234f 2976
8fb3e588
AC
2977 ``End of a stack dummy. Some systems (e.g. Sony news) give
2978 another signal besides SIGTRAP, so check here as well as
2979 above.''
73dd234f 2980
8002d778 2981 If someone ever tries to get call dummys on a
73dd234f 2982 non-executable stack to work (where the target would stop
03cebad2
MK
2983 with something like a SIGSEGV), then those tests might need
2984 to be re-instated. Given, however, that the tests were only
73dd234f 2985 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2986 suspect that it won't be the case.
2987
8fb3e588
AC
2988 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2989 be necessary for call dummies on a non-executable stack on
2990 SPARC. */
73dd234f 2991
2020b7ab 2992 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2993 ecs->random_signal
347bddb7 2994 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
2995 || ecs->event_thread->trap_expected
2996 || (ecs->event_thread->step_range_end
2997 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
2998 else
2999 {
347bddb7 3000 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3001 if (!ecs->random_signal)
2020b7ab 3002 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3003 }
3004 }
3005
3006 /* When we reach this point, we've pretty much decided
3007 that the reason for stopping must've been a random
3008 (unexpected) signal. */
3009
3010 else
3011 ecs->random_signal = 1;
488f131b 3012
04e68871 3013process_event_stop_test:
488f131b
JB
3014 /* For the program's own signals, act according to
3015 the signal handling tables. */
3016
3017 if (ecs->random_signal)
3018 {
3019 /* Signal not for debugging purposes. */
3020 int printed = 0;
3021
527159b7 3022 if (debug_infrun)
2020b7ab
PA
3023 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3024 ecs->event_thread->stop_signal);
527159b7 3025
488f131b
JB
3026 stopped_by_random_signal = 1;
3027
2020b7ab 3028 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3029 {
3030 printed = 1;
3031 target_terminal_ours_for_output ();
2020b7ab 3032 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3033 }
252fbfc8
PA
3034 /* Always stop on signals if we're either just gaining control
3035 of the program, or the user explicitly requested this thread
3036 to remain stopped. */
d6b48e9c 3037 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3038 || ecs->event_thread->stop_requested
d6b48e9c 3039 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
3040 {
3041 stop_stepping (ecs);
3042 return;
3043 }
3044 /* If not going to stop, give terminal back
3045 if we took it away. */
3046 else if (printed)
3047 target_terminal_inferior ();
3048
3049 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3050 if (signal_program[ecs->event_thread->stop_signal] == 0)
3051 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3052
4e1c45ea
PA
3053 if (ecs->event_thread->prev_pc == read_pc ()
3054 && ecs->event_thread->trap_expected
3055 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3056 {
3057 /* We were just starting a new sequence, attempting to
3058 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3059 Instead this signal arrives. This signal will take us out
68f53502
AC
3060 of the stepping range so GDB needs to remember to, when
3061 the signal handler returns, resume stepping off that
3062 breakpoint. */
3063 /* To simplify things, "continue" is forced to use the same
3064 code paths as single-step - set a breakpoint at the
3065 signal return address and then, once hit, step off that
3066 breakpoint. */
237fc4c9
PA
3067 if (debug_infrun)
3068 fprintf_unfiltered (gdb_stdlog,
3069 "infrun: signal arrived while stepping over "
3070 "breakpoint\n");
d3169d93 3071
44cbf7b5 3072 insert_step_resume_breakpoint_at_frame (get_current_frame ());
4e1c45ea 3073 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3074 keep_going (ecs);
3075 return;
68f53502 3076 }
9d799f85 3077
4e1c45ea 3078 if (ecs->event_thread->step_range_end != 0
2020b7ab 3079 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3080 && (ecs->event_thread->step_range_start <= stop_pc
3081 && stop_pc < ecs->event_thread->step_range_end)
9d799f85 3082 && frame_id_eq (get_frame_id (get_current_frame ()),
4e1c45ea
PA
3083 ecs->event_thread->step_frame_id)
3084 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3085 {
3086 /* The inferior is about to take a signal that will take it
3087 out of the single step range. Set a breakpoint at the
3088 current PC (which is presumably where the signal handler
3089 will eventually return) and then allow the inferior to
3090 run free.
3091
3092 Note that this is only needed for a signal delivered
3093 while in the single-step range. Nested signals aren't a
3094 problem as they eventually all return. */
237fc4c9
PA
3095 if (debug_infrun)
3096 fprintf_unfiltered (gdb_stdlog,
3097 "infrun: signal may take us out of "
3098 "single-step range\n");
3099
44cbf7b5 3100 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
3101 keep_going (ecs);
3102 return;
d303a6c7 3103 }
9d799f85
AC
3104
3105 /* Note: step_resume_breakpoint may be non-NULL. This occures
3106 when either there's a nested signal, or when there's a
3107 pending signal enabled just as the signal handler returns
3108 (leaving the inferior at the step-resume-breakpoint without
3109 actually executing it). Either way continue until the
3110 breakpoint is really hit. */
488f131b
JB
3111 keep_going (ecs);
3112 return;
3113 }
3114
3115 /* Handle cases caused by hitting a breakpoint. */
3116 {
3117 CORE_ADDR jmp_buf_pc;
3118 struct bpstat_what what;
3119
347bddb7 3120 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3121
3122 if (what.call_dummy)
3123 {
3124 stop_stack_dummy = 1;
c5aa993b 3125 }
c906108c 3126
488f131b 3127 switch (what.main_action)
c5aa993b 3128 {
488f131b 3129 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3130 /* If we hit the breakpoint at longjmp while stepping, we
3131 install a momentary breakpoint at the target of the
3132 jmp_buf. */
3133
3134 if (debug_infrun)
3135 fprintf_unfiltered (gdb_stdlog,
3136 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3137
4e1c45ea 3138 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3139
91104499 3140 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
3141 || !gdbarch_get_longjmp_target (current_gdbarch,
3142 get_current_frame (), &jmp_buf_pc))
c5aa993b 3143 {
611c83ae
PA
3144 if (debug_infrun)
3145 fprintf_unfiltered (gdb_stdlog, "\
3146infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3147 keep_going (ecs);
104c1213 3148 return;
c5aa993b 3149 }
488f131b 3150
611c83ae
PA
3151 /* We're going to replace the current step-resume breakpoint
3152 with a longjmp-resume breakpoint. */
4e1c45ea 3153 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3154
3155 /* Insert a breakpoint at resume address. */
3156 insert_longjmp_resume_breakpoint (jmp_buf_pc);
c906108c 3157
488f131b
JB
3158 keep_going (ecs);
3159 return;
c906108c 3160
488f131b 3161 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3162 if (debug_infrun)
611c83ae
PA
3163 fprintf_unfiltered (gdb_stdlog,
3164 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3165
4e1c45ea
PA
3166 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3167 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3168
414c69f7 3169 ecs->event_thread->stop_step = 1;
611c83ae
PA
3170 print_stop_reason (END_STEPPING_RANGE, 0);
3171 stop_stepping (ecs);
3172 return;
488f131b
JB
3173
3174 case BPSTAT_WHAT_SINGLE:
527159b7 3175 if (debug_infrun)
8802d8ed 3176 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3177 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3178 /* Still need to check other stuff, at least the case
3179 where we are stepping and step out of the right range. */
3180 break;
c906108c 3181
488f131b 3182 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3183 if (debug_infrun)
8802d8ed 3184 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3185 stop_print_frame = 1;
c906108c 3186
d303a6c7
AC
3187 /* We are about to nuke the step_resume_breakpointt via the
3188 cleanup chain, so no need to worry about it here. */
c5aa993b 3189
488f131b
JB
3190 stop_stepping (ecs);
3191 return;
c5aa993b 3192
488f131b 3193 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3194 if (debug_infrun)
8802d8ed 3195 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3196 stop_print_frame = 0;
c5aa993b 3197
d303a6c7
AC
3198 /* We are about to nuke the step_resume_breakpoin via the
3199 cleanup chain, so no need to worry about it here. */
c5aa993b 3200
488f131b 3201 stop_stepping (ecs);
e441088d 3202 return;
c5aa993b 3203
488f131b 3204 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3205 if (debug_infrun)
8802d8ed 3206 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3207
4e1c45ea
PA
3208 delete_step_resume_breakpoint (ecs->event_thread);
3209 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3210 {
3211 /* Back when the step-resume breakpoint was inserted, we
3212 were trying to single-step off a breakpoint. Go back
3213 to doing that. */
4e1c45ea
PA
3214 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3215 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3216 keep_going (ecs);
3217 return;
3218 }
b2175913
MS
3219 if (stop_pc == ecs->stop_func_start
3220 && execution_direction == EXEC_REVERSE)
3221 {
3222 /* We are stepping over a function call in reverse, and
3223 just hit the step-resume breakpoint at the start
3224 address of the function. Go back to single-stepping,
3225 which should take us back to the function call. */
3226 ecs->event_thread->stepping_over_breakpoint = 1;
3227 keep_going (ecs);
3228 return;
3229 }
488f131b
JB
3230 break;
3231
488f131b 3232 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3233 {
527159b7 3234 if (debug_infrun)
8802d8ed 3235 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3236
3237 /* Check for any newly added shared libraries if we're
3238 supposed to be adding them automatically. Switch
3239 terminal for any messages produced by
3240 breakpoint_re_set. */
3241 target_terminal_ours_for_output ();
aff6338a 3242 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3243 stack's section table is kept up-to-date. Architectures,
3244 (e.g., PPC64), use the section table to perform
3245 operations such as address => section name and hence
3246 require the table to contain all sections (including
3247 those found in shared libraries). */
aff6338a 3248 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
3249 exec_ops to SOLIB_ADD. This is because current GDB is
3250 only tooled to propagate section_table changes out from
3251 the "current_target" (see target_resize_to_sections), and
3252 not up from the exec stratum. This, of course, isn't
3253 right. "infrun.c" should only interact with the
3254 exec/process stratum, instead relying on the target stack
3255 to propagate relevant changes (stop, section table
3256 changed, ...) up to other layers. */
a77053c2 3257#ifdef SOLIB_ADD
aff6338a 3258 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3259#else
3260 solib_add (NULL, 0, &current_target, auto_solib_add);
3261#endif
488f131b
JB
3262 target_terminal_inferior ();
3263
488f131b
JB
3264 /* If requested, stop when the dynamic linker notifies
3265 gdb of events. This allows the user to get control
3266 and place breakpoints in initializer routines for
3267 dynamically loaded objects (among other things). */
877522db 3268 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3269 {
488f131b 3270 stop_stepping (ecs);
d4f3574e
SS
3271 return;
3272 }
c5aa993b 3273 else
c5aa993b 3274 {
488f131b 3275 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3276 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3277 break;
c5aa993b 3278 }
488f131b 3279 }
488f131b 3280 break;
c906108c 3281
488f131b
JB
3282 case BPSTAT_WHAT_LAST:
3283 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3284
488f131b
JB
3285 case BPSTAT_WHAT_KEEP_CHECKING:
3286 break;
3287 }
3288 }
c906108c 3289
488f131b
JB
3290 /* We come here if we hit a breakpoint but should not
3291 stop for it. Possibly we also were stepping
3292 and should stop for that. So fall through and
3293 test for stepping. But, if not stepping,
3294 do not stop. */
c906108c 3295
a7212384
UW
3296 /* In all-stop mode, if we're currently stepping but have stopped in
3297 some other thread, we need to switch back to the stepped thread. */
3298 if (!non_stop)
3299 {
3300 struct thread_info *tp;
3301 tp = iterate_over_threads (currently_stepping_callback,
3302 ecs->event_thread);
3303 if (tp)
3304 {
3305 /* However, if the current thread is blocked on some internal
3306 breakpoint, and we simply need to step over that breakpoint
3307 to get it going again, do that first. */
3308 if ((ecs->event_thread->trap_expected
3309 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3310 || ecs->event_thread->stepping_over_breakpoint)
3311 {
3312 keep_going (ecs);
3313 return;
3314 }
3315
3316 /* Otherwise, we no longer expect a trap in the current thread.
3317 Clear the trap_expected flag before switching back -- this is
3318 what keep_going would do as well, if we called it. */
3319 ecs->event_thread->trap_expected = 0;
3320
3321 if (debug_infrun)
3322 fprintf_unfiltered (gdb_stdlog,
3323 "infrun: switching back to stepped thread\n");
3324
3325 ecs->event_thread = tp;
3326 ecs->ptid = tp->ptid;
3327 context_switch (ecs->ptid);
3328 keep_going (ecs);
3329 return;
3330 }
3331 }
3332
9d1ff73f
MS
3333 /* Are we stepping to get the inferior out of the dynamic linker's
3334 hook (and possibly the dld itself) after catching a shlib
3335 event? */
4e1c45ea 3336 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3337 {
3338#if defined(SOLIB_ADD)
3339 /* Have we reached our destination? If not, keep going. */
3340 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3341 {
527159b7 3342 if (debug_infrun)
8a9de0e4 3343 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3344 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3345 keep_going (ecs);
104c1213 3346 return;
488f131b
JB
3347 }
3348#endif
527159b7 3349 if (debug_infrun)
8a9de0e4 3350 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3351 /* Else, stop and report the catchpoint(s) whose triggering
3352 caused us to begin stepping. */
4e1c45ea 3353 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3354 bpstat_clear (&ecs->event_thread->stop_bpstat);
3355 ecs->event_thread->stop_bpstat
3356 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3357 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3358 stop_print_frame = 1;
3359 stop_stepping (ecs);
3360 return;
3361 }
c906108c 3362
4e1c45ea 3363 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3364 {
527159b7 3365 if (debug_infrun)
d3169d93
DJ
3366 fprintf_unfiltered (gdb_stdlog,
3367 "infrun: step-resume breakpoint is inserted\n");
527159b7 3368
488f131b
JB
3369 /* Having a step-resume breakpoint overrides anything
3370 else having to do with stepping commands until
3371 that breakpoint is reached. */
488f131b
JB
3372 keep_going (ecs);
3373 return;
3374 }
c5aa993b 3375
4e1c45ea 3376 if (ecs->event_thread->step_range_end == 0)
488f131b 3377 {
527159b7 3378 if (debug_infrun)
8a9de0e4 3379 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3380 /* Likewise if we aren't even stepping. */
488f131b
JB
3381 keep_going (ecs);
3382 return;
3383 }
c5aa993b 3384
488f131b 3385 /* If stepping through a line, keep going if still within it.
c906108c 3386
488f131b
JB
3387 Note that step_range_end is the address of the first instruction
3388 beyond the step range, and NOT the address of the last instruction
3389 within it! */
4e1c45ea
PA
3390 if (stop_pc >= ecs->event_thread->step_range_start
3391 && stop_pc < ecs->event_thread->step_range_end)
488f131b 3392 {
527159b7 3393 if (debug_infrun)
b2175913 3394 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
4e1c45ea
PA
3395 paddr_nz (ecs->event_thread->step_range_start),
3396 paddr_nz (ecs->event_thread->step_range_end));
b2175913
MS
3397
3398 /* When stepping backward, stop at beginning of line range
3399 (unless it's the function entry point, in which case
3400 keep going back to the call point). */
3401 if (stop_pc == ecs->event_thread->step_range_start
3402 && stop_pc != ecs->stop_func_start
3403 && execution_direction == EXEC_REVERSE)
3404 {
3405 ecs->event_thread->stop_step = 1;
3406 print_stop_reason (END_STEPPING_RANGE, 0);
3407 stop_stepping (ecs);
3408 }
3409 else
3410 keep_going (ecs);
3411
488f131b
JB
3412 return;
3413 }
c5aa993b 3414
488f131b 3415 /* We stepped out of the stepping range. */
c906108c 3416
488f131b
JB
3417 /* If we are stepping at the source level and entered the runtime
3418 loader dynamic symbol resolution code, we keep on single stepping
3419 until we exit the run time loader code and reach the callee's
3420 address. */
078130d0 3421 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3422 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3423 {
4c8c40e6
MK
3424 CORE_ADDR pc_after_resolver =
3425 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 3426
527159b7 3427 if (debug_infrun)
8a9de0e4 3428 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3429
488f131b
JB
3430 if (pc_after_resolver)
3431 {
3432 /* Set up a step-resume breakpoint at the address
3433 indicated by SKIP_SOLIB_RESOLVER. */
3434 struct symtab_and_line sr_sal;
fe39c653 3435 init_sal (&sr_sal);
488f131b
JB
3436 sr_sal.pc = pc_after_resolver;
3437
44cbf7b5 3438 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 3439 }
c906108c 3440
488f131b
JB
3441 keep_going (ecs);
3442 return;
3443 }
c906108c 3444
4e1c45ea 3445 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3446 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3447 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
42edda50 3448 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 3449 {
527159b7 3450 if (debug_infrun)
8a9de0e4 3451 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3452 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3453 a signal trampoline (either by a signal being delivered or by
3454 the signal handler returning). Just single-step until the
3455 inferior leaves the trampoline (either by calling the handler
3456 or returning). */
488f131b
JB
3457 keep_going (ecs);
3458 return;
3459 }
c906108c 3460
c17eaafe
DJ
3461 /* Check for subroutine calls. The check for the current frame
3462 equalling the step ID is not necessary - the check of the
3463 previous frame's ID is sufficient - but it is a common case and
3464 cheaper than checking the previous frame's ID.
14e60db5
DJ
3465
3466 NOTE: frame_id_eq will never report two invalid frame IDs as
3467 being equal, so to get into this block, both the current and
3468 previous frame must have valid frame IDs. */
4e1c45ea
PA
3469 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3470 ecs->event_thread->step_frame_id)
b2175913
MS
3471 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3472 ecs->event_thread->step_frame_id)
3473 || execution_direction == EXEC_REVERSE))
488f131b 3474 {
95918acb 3475 CORE_ADDR real_stop_pc;
8fb3e588 3476
527159b7 3477 if (debug_infrun)
8a9de0e4 3478 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3479
078130d0 3480 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea
PA
3481 || ((ecs->event_thread->step_range_end == 1)
3482 && in_prologue (ecs->event_thread->prev_pc,
3483 ecs->stop_func_start)))
95918acb
AC
3484 {
3485 /* I presume that step_over_calls is only 0 when we're
3486 supposed to be stepping at the assembly language level
3487 ("stepi"). Just stop. */
3488 /* Also, maybe we just did a "nexti" inside a prolog, so we
3489 thought it was a subroutine call but it was not. Stop as
3490 well. FENN */
414c69f7 3491 ecs->event_thread->stop_step = 1;
95918acb
AC
3492 print_stop_reason (END_STEPPING_RANGE, 0);
3493 stop_stepping (ecs);
3494 return;
3495 }
8fb3e588 3496
078130d0 3497 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3498 {
b2175913
MS
3499 /* We're doing a "next".
3500
3501 Normal (forward) execution: set a breakpoint at the
3502 callee's return address (the address at which the caller
3503 will resume).
3504
3505 Reverse (backward) execution. set the step-resume
3506 breakpoint at the start of the function that we just
3507 stepped into (backwards), and continue to there. When we
6130d0b7 3508 get there, we'll need to single-step back to the caller. */
b2175913
MS
3509
3510 if (execution_direction == EXEC_REVERSE)
3511 {
3512 struct symtab_and_line sr_sal;
3067f6e5
MS
3513
3514 if (ecs->stop_func_start == 0
3515 && in_solib_dynsym_resolve_code (stop_pc))
3516 {
3517 /* Stepped into runtime loader dynamic symbol
3518 resolution code. Since we're in reverse,
3519 we have already backed up through the runtime
3520 loader and the dynamic function. This is just
3521 the trampoline (jump table).
3522
3523 Just keep stepping, we'll soon be home.
3524 */
3525 keep_going (ecs);
3526 return;
3527 }
3528 /* Normal (staticly linked) function call return. */
b2175913
MS
3529 init_sal (&sr_sal);
3530 sr_sal.pc = ecs->stop_func_start;
3531 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3532 }
3533 else
3534 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3535
8567c30f
AC
3536 keep_going (ecs);
3537 return;
3538 }
a53c66de 3539
95918acb 3540 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3541 calling routine and the real function), locate the real
3542 function. That's what tells us (a) whether we want to step
3543 into it at all, and (b) what prologue we want to run to the
3544 end of, if we do step into it. */
52f729a7 3545 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 3546 if (real_stop_pc == 0)
52f729a7
UW
3547 real_stop_pc = gdbarch_skip_trampoline_code
3548 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
3549 if (real_stop_pc != 0)
3550 ecs->stop_func_start = real_stop_pc;
8fb3e588 3551
db5f024e 3552 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3553 {
3554 struct symtab_and_line sr_sal;
3555 init_sal (&sr_sal);
3556 sr_sal.pc = ecs->stop_func_start;
3557
44cbf7b5 3558 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
3559 keep_going (ecs);
3560 return;
1b2bfbb9
RC
3561 }
3562
95918acb 3563 /* If we have line number information for the function we are
8fb3e588 3564 thinking of stepping into, step into it.
95918acb 3565
8fb3e588
AC
3566 If there are several symtabs at that PC (e.g. with include
3567 files), just want to know whether *any* of them have line
3568 numbers. find_pc_line handles this. */
95918acb
AC
3569 {
3570 struct symtab_and_line tmp_sal;
8fb3e588 3571
95918acb
AC
3572 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3573 if (tmp_sal.line != 0)
3574 {
b2175913
MS
3575 if (execution_direction == EXEC_REVERSE)
3576 handle_step_into_function_backward (ecs);
3577 else
3578 handle_step_into_function (ecs);
95918acb
AC
3579 return;
3580 }
3581 }
3582
3583 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3584 set, we stop the step so that the user has a chance to switch
3585 in assembly mode. */
078130d0
PA
3586 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3587 && step_stop_if_no_debug)
95918acb 3588 {
414c69f7 3589 ecs->event_thread->stop_step = 1;
95918acb
AC
3590 print_stop_reason (END_STEPPING_RANGE, 0);
3591 stop_stepping (ecs);
3592 return;
3593 }
3594
b2175913
MS
3595 if (execution_direction == EXEC_REVERSE)
3596 {
3597 /* Set a breakpoint at callee's start address.
3598 From there we can step once and be back in the caller. */
3599 struct symtab_and_line sr_sal;
3600 init_sal (&sr_sal);
3601 sr_sal.pc = ecs->stop_func_start;
3602 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3603 }
3604 else
3605 /* Set a breakpoint at callee's return address (the address
3606 at which the caller will resume). */
3607 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3608
95918acb 3609 keep_going (ecs);
488f131b 3610 return;
488f131b 3611 }
c906108c 3612
488f131b
JB
3613 /* If we're in the return path from a shared library trampoline,
3614 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
3615 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3616 stop_pc, ecs->stop_func_name))
488f131b 3617 {
488f131b 3618 /* Determine where this trampoline returns. */
52f729a7
UW
3619 CORE_ADDR real_stop_pc;
3620 real_stop_pc = gdbarch_skip_trampoline_code
3621 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 3622
527159b7 3623 if (debug_infrun)
8a9de0e4 3624 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3625
488f131b 3626 /* Only proceed through if we know where it's going. */
d764a824 3627 if (real_stop_pc)
488f131b
JB
3628 {
3629 /* And put the step-breakpoint there and go until there. */
3630 struct symtab_and_line sr_sal;
3631
fe39c653 3632 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3633 sr_sal.pc = real_stop_pc;
488f131b 3634 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3635
3636 /* Do not specify what the fp should be when we stop since
3637 on some machines the prologue is where the new fp value
3638 is established. */
3639 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 3640
488f131b
JB
3641 /* Restart without fiddling with the step ranges or
3642 other state. */
3643 keep_going (ecs);
3644 return;
3645 }
3646 }
c906108c 3647
2afb61aa 3648 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3649
1b2bfbb9
RC
3650 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3651 the trampoline processing logic, however, there are some trampolines
3652 that have no names, so we should do trampoline handling first. */
078130d0 3653 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 3654 && ecs->stop_func_name == NULL
2afb61aa 3655 && stop_pc_sal.line == 0)
1b2bfbb9 3656 {
527159b7 3657 if (debug_infrun)
8a9de0e4 3658 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3659
1b2bfbb9 3660 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3661 undebuggable function (where there is no debugging information
3662 and no line number corresponding to the address where the
1b2bfbb9
RC
3663 inferior stopped). Since we want to skip this kind of code,
3664 we keep going until the inferior returns from this
14e60db5
DJ
3665 function - unless the user has asked us not to (via
3666 set step-mode) or we no longer know how to get back
3667 to the call site. */
3668 if (step_stop_if_no_debug
eb2f4a08 3669 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
3670 {
3671 /* If we have no line number and the step-stop-if-no-debug
3672 is set, we stop the step so that the user has a chance to
3673 switch in assembly mode. */
414c69f7 3674 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3675 print_stop_reason (END_STEPPING_RANGE, 0);
3676 stop_stepping (ecs);
3677 return;
3678 }
3679 else
3680 {
3681 /* Set a breakpoint at callee's return address (the address
3682 at which the caller will resume). */
14e60db5 3683 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
3684 keep_going (ecs);
3685 return;
3686 }
3687 }
3688
4e1c45ea 3689 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
3690 {
3691 /* It is stepi or nexti. We always want to stop stepping after
3692 one instruction. */
527159b7 3693 if (debug_infrun)
8a9de0e4 3694 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 3695 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3696 print_stop_reason (END_STEPPING_RANGE, 0);
3697 stop_stepping (ecs);
3698 return;
3699 }
3700
2afb61aa 3701 if (stop_pc_sal.line == 0)
488f131b
JB
3702 {
3703 /* We have no line number information. That means to stop
3704 stepping (does this always happen right after one instruction,
3705 when we do "s" in a function with no line numbers,
3706 or can this happen as a result of a return or longjmp?). */
527159b7 3707 if (debug_infrun)
8a9de0e4 3708 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 3709 ecs->event_thread->stop_step = 1;
488f131b
JB
3710 print_stop_reason (END_STEPPING_RANGE, 0);
3711 stop_stepping (ecs);
3712 return;
3713 }
c906108c 3714
2afb61aa 3715 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
3716 && (ecs->event_thread->current_line != stop_pc_sal.line
3717 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
3718 {
3719 /* We are at the start of a different line. So stop. Note that
3720 we don't stop if we step into the middle of a different line.
3721 That is said to make things like for (;;) statements work
3722 better. */
527159b7 3723 if (debug_infrun)
8a9de0e4 3724 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 3725 ecs->event_thread->stop_step = 1;
488f131b
JB
3726 print_stop_reason (END_STEPPING_RANGE, 0);
3727 stop_stepping (ecs);
3728 return;
3729 }
c906108c 3730
488f131b 3731 /* We aren't done stepping.
c906108c 3732
488f131b
JB
3733 Optimize by setting the stepping range to the line.
3734 (We might not be in the original line, but if we entered a
3735 new line in mid-statement, we continue stepping. This makes
3736 things like for(;;) statements work better.) */
c906108c 3737
4e1c45ea
PA
3738 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3739 ecs->event_thread->step_range_end = stop_pc_sal.end;
3740 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3741 ecs->event_thread->current_line = stop_pc_sal.line;
3742 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
488f131b 3743
527159b7 3744 if (debug_infrun)
8a9de0e4 3745 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 3746 keep_going (ecs);
104c1213
JM
3747}
3748
3749/* Are we in the middle of stepping? */
3750
a7212384
UW
3751static int
3752currently_stepping_thread (struct thread_info *tp)
3753{
3754 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3755 || tp->trap_expected
3756 || tp->stepping_through_solib_after_catch;
3757}
3758
3759static int
3760currently_stepping_callback (struct thread_info *tp, void *data)
3761{
3762 /* Return true if any thread *but* the one passed in "data" is
3763 in the middle of stepping. */
3764 return tp != data && currently_stepping_thread (tp);
3765}
3766
104c1213 3767static int
4e1c45ea 3768currently_stepping (struct thread_info *tp)
104c1213 3769{
a7212384 3770 return currently_stepping_thread (tp) || bpstat_should_step ();
104c1213 3771}
c906108c 3772
b2175913
MS
3773/* Inferior has stepped into a subroutine call with source code that
3774 we should not step over. Do step to the first line of code in
3775 it. */
c2c6d25f
JM
3776
3777static void
b2175913 3778handle_step_into_function (struct execution_control_state *ecs)
c2c6d25f
JM
3779{
3780 struct symtab *s;
2afb61aa 3781 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
3782
3783 s = find_pc_symtab (stop_pc);
3784 if (s && s->language != language_asm)
b2175913
MS
3785 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3786 ecs->stop_func_start);
c2c6d25f 3787
2afb61aa 3788 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
3789 /* Use the step_resume_break to step until the end of the prologue,
3790 even if that involves jumps (as it seems to on the vax under
3791 4.2). */
3792 /* If the prologue ends in the middle of a source line, continue to
3793 the end of that source line (if it is still within the function).
3794 Otherwise, just go to end of prologue. */
2afb61aa
PA
3795 if (stop_func_sal.end
3796 && stop_func_sal.pc != ecs->stop_func_start
3797 && stop_func_sal.end < ecs->stop_func_end)
3798 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 3799
2dbd5e30
KB
3800 /* Architectures which require breakpoint adjustment might not be able
3801 to place a breakpoint at the computed address. If so, the test
3802 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3803 ecs->stop_func_start to an address at which a breakpoint may be
3804 legitimately placed.
8fb3e588 3805
2dbd5e30
KB
3806 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3807 made, GDB will enter an infinite loop when stepping through
3808 optimized code consisting of VLIW instructions which contain
3809 subinstructions corresponding to different source lines. On
3810 FR-V, it's not permitted to place a breakpoint on any but the
3811 first subinstruction of a VLIW instruction. When a breakpoint is
3812 set, GDB will adjust the breakpoint address to the beginning of
3813 the VLIW instruction. Thus, we need to make the corresponding
3814 adjustment here when computing the stop address. */
8fb3e588 3815
2dbd5e30
KB
3816 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3817 {
3818 ecs->stop_func_start
3819 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 3820 ecs->stop_func_start);
2dbd5e30
KB
3821 }
3822
c2c6d25f
JM
3823 if (ecs->stop_func_start == stop_pc)
3824 {
3825 /* We are already there: stop now. */
414c69f7 3826 ecs->event_thread->stop_step = 1;
488f131b 3827 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3828 stop_stepping (ecs);
3829 return;
3830 }
3831 else
3832 {
3833 /* Put the step-breakpoint there and go until there. */
fe39c653 3834 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
3835 sr_sal.pc = ecs->stop_func_start;
3836 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 3837
c2c6d25f 3838 /* Do not specify what the fp should be when we stop since on
488f131b
JB
3839 some machines the prologue is where the new fp value is
3840 established. */
44cbf7b5 3841 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
3842
3843 /* And make sure stepping stops right away then. */
4e1c45ea 3844 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
3845 }
3846 keep_going (ecs);
3847}
d4f3574e 3848
b2175913
MS
3849/* Inferior has stepped backward into a subroutine call with source
3850 code that we should not step over. Do step to the beginning of the
3851 last line of code in it. */
3852
3853static void
3854handle_step_into_function_backward (struct execution_control_state *ecs)
3855{
3856 struct symtab *s;
3857 struct symtab_and_line stop_func_sal, sr_sal;
3858
3859 s = find_pc_symtab (stop_pc);
3860 if (s && s->language != language_asm)
3861 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3862 ecs->stop_func_start);
3863
3864 stop_func_sal = find_pc_line (stop_pc, 0);
3865
3866 /* OK, we're just going to keep stepping here. */
3867 if (stop_func_sal.pc == stop_pc)
3868 {
3869 /* We're there already. Just stop stepping now. */
3870 ecs->event_thread->stop_step = 1;
3871 print_stop_reason (END_STEPPING_RANGE, 0);
3872 stop_stepping (ecs);
3873 }
3874 else
3875 {
3876 /* Else just reset the step range and keep going.
3877 No step-resume breakpoint, they don't work for
3878 epilogues, which can have multiple entry paths. */
3879 ecs->event_thread->step_range_start = stop_func_sal.pc;
3880 ecs->event_thread->step_range_end = stop_func_sal.end;
3881 keep_going (ecs);
3882 }
3883 return;
3884}
3885
d3169d93 3886/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
3887 This is used to both functions and to skip over code. */
3888
3889static void
3890insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3891 struct frame_id sr_id)
3892{
611c83ae
PA
3893 /* There should never be more than one step-resume or longjmp-resume
3894 breakpoint per thread, so we should never be setting a new
44cbf7b5 3895 step_resume_breakpoint when one is already active. */
4e1c45ea 3896 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
3897
3898 if (debug_infrun)
3899 fprintf_unfiltered (gdb_stdlog,
3900 "infrun: inserting step-resume breakpoint at 0x%s\n",
3901 paddr_nz (sr_sal.pc));
3902
4e1c45ea
PA
3903 inferior_thread ()->step_resume_breakpoint
3904 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
44cbf7b5 3905}
7ce450bd 3906
d3169d93 3907/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 3908 to skip a potential signal handler.
7ce450bd 3909
14e60db5
DJ
3910 This is called with the interrupted function's frame. The signal
3911 handler, when it returns, will resume the interrupted function at
3912 RETURN_FRAME.pc. */
d303a6c7
AC
3913
3914static void
44cbf7b5 3915insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
3916{
3917 struct symtab_and_line sr_sal;
3918
f4c1edd8 3919 gdb_assert (return_frame != NULL);
d303a6c7
AC
3920 init_sal (&sr_sal); /* initialize to zeros */
3921
bf6ae464
UW
3922 sr_sal.pc = gdbarch_addr_bits_remove
3923 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
3924 sr_sal.section = find_pc_overlay (sr_sal.pc);
3925
44cbf7b5 3926 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
3927}
3928
14e60db5
DJ
3929/* Similar to insert_step_resume_breakpoint_at_frame, except
3930 but a breakpoint at the previous frame's PC. This is used to
3931 skip a function after stepping into it (for "next" or if the called
3932 function has no debugging information).
3933
3934 The current function has almost always been reached by single
3935 stepping a call or return instruction. NEXT_FRAME belongs to the
3936 current function, and the breakpoint will be set at the caller's
3937 resume address.
3938
3939 This is a separate function rather than reusing
3940 insert_step_resume_breakpoint_at_frame in order to avoid
3941 get_prev_frame, which may stop prematurely (see the implementation
eb2f4a08 3942 of frame_unwind_id for an example). */
14e60db5
DJ
3943
3944static void
3945insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3946{
3947 struct symtab_and_line sr_sal;
3948
3949 /* We shouldn't have gotten here if we don't know where the call site
3950 is. */
eb2f4a08 3951 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
14e60db5
DJ
3952
3953 init_sal (&sr_sal); /* initialize to zeros */
3954
bf6ae464 3955 sr_sal.pc = gdbarch_addr_bits_remove
eb2f4a08 3956 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
3957 sr_sal.section = find_pc_overlay (sr_sal.pc);
3958
eb2f4a08 3959 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
14e60db5
DJ
3960}
3961
611c83ae
PA
3962/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3963 new breakpoint at the target of a jmp_buf. The handling of
3964 longjmp-resume uses the same mechanisms used for handling
3965 "step-resume" breakpoints. */
3966
3967static void
3968insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3969{
3970 /* There should never be more than one step-resume or longjmp-resume
3971 breakpoint per thread, so we should never be setting a new
3972 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 3973 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
3974
3975 if (debug_infrun)
3976 fprintf_unfiltered (gdb_stdlog,
3977 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3978 paddr_nz (pc));
3979
4e1c45ea 3980 inferior_thread ()->step_resume_breakpoint =
611c83ae
PA
3981 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3982}
3983
104c1213
JM
3984static void
3985stop_stepping (struct execution_control_state *ecs)
3986{
527159b7 3987 if (debug_infrun)
8a9de0e4 3988 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 3989
cd0fc7c3
SS
3990 /* Let callers know we don't want to wait for the inferior anymore. */
3991 ecs->wait_some_more = 0;
3992}
3993
d4f3574e
SS
3994/* This function handles various cases where we need to continue
3995 waiting for the inferior. */
3996/* (Used to be the keep_going: label in the old wait_for_inferior) */
3997
3998static void
3999keep_going (struct execution_control_state *ecs)
4000{
d4f3574e 4001 /* Save the pc before execution, to compare with pc after stop. */
4e1c45ea 4002 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 4003
d4f3574e
SS
4004 /* If we did not do break;, it means we should keep running the
4005 inferior and not return to debugger. */
4006
2020b7ab
PA
4007 if (ecs->event_thread->trap_expected
4008 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
4009 {
4010 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
4011 the inferior, else we'd not get here) and we haven't yet
4012 gotten our trap. Simply continue. */
2020b7ab
PA
4013 resume (currently_stepping (ecs->event_thread),
4014 ecs->event_thread->stop_signal);
d4f3574e
SS
4015 }
4016 else
4017 {
4018 /* Either the trap was not expected, but we are continuing
488f131b
JB
4019 anyway (the user asked that this signal be passed to the
4020 child)
4021 -- or --
4022 The signal was SIGTRAP, e.g. it was our signal, but we
4023 decided we should resume from it.
d4f3574e 4024
c36b740a 4025 We're going to run this baby now!
d4f3574e 4026
c36b740a
VP
4027 Note that insert_breakpoints won't try to re-insert
4028 already inserted breakpoints. Therefore, we don't
4029 care if breakpoints were already inserted, or not. */
4030
4e1c45ea 4031 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 4032 {
237fc4c9
PA
4033 if (! use_displaced_stepping (current_gdbarch))
4034 /* Since we can't do a displaced step, we have to remove
4035 the breakpoint while we step it. To keep things
4036 simple, we remove them all. */
4037 remove_breakpoints ();
45e8c884
VP
4038 }
4039 else
d4f3574e 4040 {
e236ba44 4041 struct gdb_exception e;
569631c6
UW
4042 /* Stop stepping when inserting breakpoints
4043 has failed. */
e236ba44
VP
4044 TRY_CATCH (e, RETURN_MASK_ERROR)
4045 {
4046 insert_breakpoints ();
4047 }
4048 if (e.reason < 0)
d4f3574e
SS
4049 {
4050 stop_stepping (ecs);
4051 return;
4052 }
d4f3574e
SS
4053 }
4054
4e1c45ea 4055 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
4056
4057 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
4058 specifies that such a signal should be delivered to the
4059 target program).
4060
4061 Typically, this would occure when a user is debugging a
4062 target monitor on a simulator: the target monitor sets a
4063 breakpoint; the simulator encounters this break-point and
4064 halts the simulation handing control to GDB; GDB, noteing
4065 that the break-point isn't valid, returns control back to the
4066 simulator; the simulator then delivers the hardware
4067 equivalent of a SIGNAL_TRAP to the program being debugged. */
4068
2020b7ab
PA
4069 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4070 && !signal_program[ecs->event_thread->stop_signal])
4071 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4072
2020b7ab
PA
4073 resume (currently_stepping (ecs->event_thread),
4074 ecs->event_thread->stop_signal);
d4f3574e
SS
4075 }
4076
488f131b 4077 prepare_to_wait (ecs);
d4f3574e
SS
4078}
4079
104c1213
JM
4080/* This function normally comes after a resume, before
4081 handle_inferior_event exits. It takes care of any last bits of
4082 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4083
104c1213
JM
4084static void
4085prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4086{
527159b7 4087 if (debug_infrun)
8a9de0e4 4088 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
0d1e5fa7 4089 if (infwait_state == infwait_normal_state)
104c1213
JM
4090 {
4091 overlay_cache_invalid = 1;
4092
4093 /* We have to invalidate the registers BEFORE calling
488f131b
JB
4094 target_wait because they can be loaded from the target while
4095 in target_wait. This makes remote debugging a bit more
4096 efficient for those targets that provide critical registers
4097 as part of their normal status mechanism. */
104c1213
JM
4098
4099 registers_changed ();
0d1e5fa7 4100 waiton_ptid = pid_to_ptid (-1);
104c1213
JM
4101 }
4102 /* This is the old end of the while loop. Let everybody know we
4103 want to wait for the inferior some more and get called again
4104 soon. */
4105 ecs->wait_some_more = 1;
c906108c 4106}
11cf8741
JM
4107
4108/* Print why the inferior has stopped. We always print something when
4109 the inferior exits, or receives a signal. The rest of the cases are
4110 dealt with later on in normal_stop() and print_it_typical(). Ideally
4111 there should be a call to this function from handle_inferior_event()
4112 each time stop_stepping() is called.*/
4113static void
4114print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4115{
4116 switch (stop_reason)
4117 {
11cf8741
JM
4118 case END_STEPPING_RANGE:
4119 /* We are done with a step/next/si/ni command. */
4120 /* For now print nothing. */
fb40c209 4121 /* Print a message only if not in the middle of doing a "step n"
488f131b 4122 operation for n > 1 */
414c69f7
PA
4123 if (!inferior_thread ()->step_multi
4124 || !inferior_thread ()->stop_step)
9dc5e2a9 4125 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4126 ui_out_field_string
4127 (uiout, "reason",
4128 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4129 break;
11cf8741
JM
4130 case SIGNAL_EXITED:
4131 /* The inferior was terminated by a signal. */
8b93c638 4132 annotate_signalled ();
9dc5e2a9 4133 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4134 ui_out_field_string
4135 (uiout, "reason",
4136 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4137 ui_out_text (uiout, "\nProgram terminated with signal ");
4138 annotate_signal_name ();
488f131b
JB
4139 ui_out_field_string (uiout, "signal-name",
4140 target_signal_to_name (stop_info));
8b93c638
JM
4141 annotate_signal_name_end ();
4142 ui_out_text (uiout, ", ");
4143 annotate_signal_string ();
488f131b
JB
4144 ui_out_field_string (uiout, "signal-meaning",
4145 target_signal_to_string (stop_info));
8b93c638
JM
4146 annotate_signal_string_end ();
4147 ui_out_text (uiout, ".\n");
4148 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4149 break;
4150 case EXITED:
4151 /* The inferior program is finished. */
8b93c638
JM
4152 annotate_exited (stop_info);
4153 if (stop_info)
4154 {
9dc5e2a9 4155 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4156 ui_out_field_string (uiout, "reason",
4157 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4158 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4159 ui_out_field_fmt (uiout, "exit-code", "0%o",
4160 (unsigned int) stop_info);
8b93c638
JM
4161 ui_out_text (uiout, ".\n");
4162 }
4163 else
4164 {
9dc5e2a9 4165 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4166 ui_out_field_string
4167 (uiout, "reason",
4168 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4169 ui_out_text (uiout, "\nProgram exited normally.\n");
4170 }
f17517ea
AS
4171 /* Support the --return-child-result option. */
4172 return_child_result_value = stop_info;
11cf8741
JM
4173 break;
4174 case SIGNAL_RECEIVED:
252fbfc8
PA
4175 /* Signal received. The signal table tells us to print about
4176 it. */
8b93c638 4177 annotate_signal ();
252fbfc8
PA
4178
4179 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4180 {
4181 struct thread_info *t = inferior_thread ();
4182
4183 ui_out_text (uiout, "\n[");
4184 ui_out_field_string (uiout, "thread-name",
4185 target_pid_to_str (t->ptid));
4186 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4187 ui_out_text (uiout, " stopped");
4188 }
4189 else
4190 {
4191 ui_out_text (uiout, "\nProgram received signal ");
4192 annotate_signal_name ();
4193 if (ui_out_is_mi_like_p (uiout))
4194 ui_out_field_string
4195 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4196 ui_out_field_string (uiout, "signal-name",
4197 target_signal_to_name (stop_info));
4198 annotate_signal_name_end ();
4199 ui_out_text (uiout, ", ");
4200 annotate_signal_string ();
4201 ui_out_field_string (uiout, "signal-meaning",
4202 target_signal_to_string (stop_info));
4203 annotate_signal_string_end ();
4204 }
8b93c638 4205 ui_out_text (uiout, ".\n");
11cf8741 4206 break;
b2175913
MS
4207 case NO_HISTORY:
4208 /* Reverse execution: target ran out of history info. */
4209 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4210 break;
11cf8741 4211 default:
8e65ff28 4212 internal_error (__FILE__, __LINE__,
e2e0b3e5 4213 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
4214 break;
4215 }
4216}
c906108c 4217\f
43ff13b4 4218
c906108c
SS
4219/* Here to return control to GDB when the inferior stops for real.
4220 Print appropriate messages, remove breakpoints, give terminal our modes.
4221
4222 STOP_PRINT_FRAME nonzero means print the executing frame
4223 (pc, function, args, file, line number and line text).
4224 BREAKPOINTS_FAILED nonzero means stop was due to error
4225 attempting to insert breakpoints. */
4226
4227void
96baa820 4228normal_stop (void)
c906108c 4229{
73b65bb0
DJ
4230 struct target_waitstatus last;
4231 ptid_t last_ptid;
29f49a6a 4232 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
4233
4234 get_last_target_status (&last_ptid, &last);
4235
29f49a6a
PA
4236 /* If an exception is thrown from this point on, make sure to
4237 propagate GDB's knowledge of the executing state to the
4238 frontend/user running state. A QUIT is an easy exception to see
4239 here, so do this before any filtered output. */
4240 if (target_has_execution)
4241 {
4242 if (!non_stop)
fee0be5d 4243 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
29f49a6a
PA
4244 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4245 && last.kind != TARGET_WAITKIND_EXITED)
fee0be5d 4246 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a
PA
4247 }
4248
4f8d22e3
PA
4249 /* In non-stop mode, we don't want GDB to switch threads behind the
4250 user's back, to avoid races where the user is typing a command to
4251 apply to thread x, but GDB switches to thread y before the user
4252 finishes entering the command. */
4253
c906108c
SS
4254 /* As with the notification of thread events, we want to delay
4255 notifying the user that we've switched thread context until
4256 the inferior actually stops.
4257
73b65bb0
DJ
4258 There's no point in saying anything if the inferior has exited.
4259 Note that SIGNALLED here means "exited with a signal", not
4260 "received a signal". */
4f8d22e3
PA
4261 if (!non_stop
4262 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
4263 && target_has_execution
4264 && last.kind != TARGET_WAITKIND_SIGNALLED
4265 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
4266 {
4267 target_terminal_ours_for_output ();
a3f17187 4268 printf_filtered (_("[Switching to %s]\n"),
c95310c6 4269 target_pid_to_str (inferior_ptid));
b8fa951a 4270 annotate_thread_changed ();
39f77062 4271 previous_inferior_ptid = inferior_ptid;
c906108c 4272 }
c906108c 4273
74960c60 4274 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
4275 {
4276 if (remove_breakpoints ())
4277 {
4278 target_terminal_ours_for_output ();
a3f17187
AC
4279 printf_filtered (_("\
4280Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 4281Further execution is probably impossible.\n"));
c906108c
SS
4282 }
4283 }
c906108c 4284
c906108c
SS
4285 /* If an auto-display called a function and that got a signal,
4286 delete that auto-display to avoid an infinite recursion. */
4287
4288 if (stopped_by_random_signal)
4289 disable_current_display ();
4290
4291 /* Don't print a message if in the middle of doing a "step n"
4292 operation for n > 1 */
af679fd0
PA
4293 if (target_has_execution
4294 && last.kind != TARGET_WAITKIND_SIGNALLED
4295 && last.kind != TARGET_WAITKIND_EXITED
4296 && inferior_thread ()->step_multi
414c69f7 4297 && inferior_thread ()->stop_step)
c906108c
SS
4298 goto done;
4299
4300 target_terminal_ours ();
4301
7abfe014
DJ
4302 /* Set the current source location. This will also happen if we
4303 display the frame below, but the current SAL will be incorrect
4304 during a user hook-stop function. */
4305 if (target_has_stack && !stop_stack_dummy)
4306 set_current_sal_from_frame (get_current_frame (), 1);
4307
dd7e2d2b
PA
4308 /* Let the user/frontend see the threads as stopped. */
4309 do_cleanups (old_chain);
4310
4311 /* Look up the hook_stop and run it (CLI internally handles problem
4312 of stop_command's pre-hook not existing). */
4313 if (stop_command)
4314 catch_errors (hook_stop_stub, stop_command,
4315 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4316
c906108c 4317 if (!target_has_stack)
d51fd4c8 4318 goto done;
c906108c 4319
32400beb
PA
4320 if (last.kind == TARGET_WAITKIND_SIGNALLED
4321 || last.kind == TARGET_WAITKIND_EXITED)
4322 goto done;
4323
c906108c
SS
4324 /* Select innermost stack frame - i.e., current frame is frame 0,
4325 and current location is based on that.
4326 Don't do this on return from a stack dummy routine,
4327 or if the program has exited. */
4328
4329 if (!stop_stack_dummy)
4330 {
0f7d239c 4331 select_frame (get_current_frame ());
c906108c
SS
4332
4333 /* Print current location without a level number, if
c5aa993b
JM
4334 we have changed functions or hit a breakpoint.
4335 Print source line if we have one.
4336 bpstat_print() contains the logic deciding in detail
4337 what to print, based on the event(s) that just occurred. */
c906108c 4338
d01a8610
AS
4339 /* If --batch-silent is enabled then there's no need to print the current
4340 source location, and to try risks causing an error message about
4341 missing source files. */
4342 if (stop_print_frame && !batch_silent)
c906108c
SS
4343 {
4344 int bpstat_ret;
4345 int source_flag;
917317f4 4346 int do_frame_printing = 1;
347bddb7 4347 struct thread_info *tp = inferior_thread ();
c906108c 4348
347bddb7 4349 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4350 switch (bpstat_ret)
4351 {
4352 case PRINT_UNKNOWN:
b0f4b84b
DJ
4353 /* If we had hit a shared library event breakpoint,
4354 bpstat_print would print out this message. If we hit
4355 an OS-level shared library event, do the same
4356 thing. */
4357 if (last.kind == TARGET_WAITKIND_LOADED)
4358 {
4359 printf_filtered (_("Stopped due to shared library event\n"));
4360 source_flag = SRC_LINE; /* something bogus */
4361 do_frame_printing = 0;
4362 break;
4363 }
4364
aa0cd9c1 4365 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4366 (or should) carry around the function and does (or
4367 should) use that when doing a frame comparison. */
414c69f7 4368 if (tp->stop_step
347bddb7 4369 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4370 get_frame_id (get_current_frame ()))
917317f4 4371 && step_start_function == find_pc_function (stop_pc))
488f131b 4372 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4373 else
488f131b 4374 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4375 break;
4376 case PRINT_SRC_AND_LOC:
488f131b 4377 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4378 break;
4379 case PRINT_SRC_ONLY:
c5394b80 4380 source_flag = SRC_LINE;
917317f4
JM
4381 break;
4382 case PRINT_NOTHING:
488f131b 4383 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4384 do_frame_printing = 0;
4385 break;
4386 default:
e2e0b3e5 4387 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4388 }
c906108c
SS
4389
4390 /* The behavior of this routine with respect to the source
4391 flag is:
c5394b80
JM
4392 SRC_LINE: Print only source line
4393 LOCATION: Print only location
4394 SRC_AND_LOC: Print location and source line */
917317f4 4395 if (do_frame_printing)
b04f3ab4 4396 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4397
4398 /* Display the auto-display expressions. */
4399 do_displays ();
4400 }
4401 }
4402
4403 /* Save the function value return registers, if we care.
4404 We might be about to restore their previous contents. */
32400beb 4405 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4406 {
4407 /* This should not be necessary. */
4408 if (stop_registers)
4409 regcache_xfree (stop_registers);
4410
4411 /* NB: The copy goes through to the target picking up the value of
4412 all the registers. */
4413 stop_registers = regcache_dup (get_current_regcache ());
4414 }
c906108c
SS
4415
4416 if (stop_stack_dummy)
4417 {
b89667eb
DE
4418 /* Pop the empty frame that contains the stack dummy.
4419 This also restores inferior state prior to the call
4420 (struct inferior_thread_state). */
4421 struct frame_info *frame = get_current_frame ();
4422 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4423 frame_pop (frame);
4424 /* frame_pop() calls reinit_frame_cache as the last thing it does
4425 which means there's currently no selected frame. We don't need
4426 to re-establish a selected frame if the dummy call returns normally,
4427 that will be done by restore_inferior_status. However, we do have
4428 to handle the case where the dummy call is returning after being
4429 stopped (e.g. the dummy call previously hit a breakpoint). We
4430 can't know which case we have so just always re-establish a
4431 selected frame here. */
0f7d239c 4432 select_frame (get_current_frame ());
c906108c
SS
4433 }
4434
c906108c
SS
4435done:
4436 annotate_stopped ();
41d2bdb4
PA
4437
4438 /* Suppress the stop observer if we're in the middle of:
4439
4440 - a step n (n > 1), as there still more steps to be done.
4441
4442 - a "finish" command, as the observer will be called in
4443 finish_command_continuation, so it can include the inferior
4444 function's return value.
4445
4446 - calling an inferior function, as we pretend we inferior didn't
4447 run at all. The return value of the call is handled by the
4448 expression evaluator, through call_function_by_hand. */
4449
4450 if (!target_has_execution
4451 || last.kind == TARGET_WAITKIND_SIGNALLED
4452 || last.kind == TARGET_WAITKIND_EXITED
4453 || (!inferior_thread ()->step_multi
4454 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
4455 && inferior_thread ()->proceed_to_finish)
4456 && !inferior_thread ()->in_infcall))
347bddb7
PA
4457 {
4458 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
4459 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4460 stop_print_frame);
347bddb7 4461 else
1d33d6ba 4462 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 4463 }
347bddb7 4464
48844aa6
PA
4465 if (target_has_execution)
4466 {
4467 if (last.kind != TARGET_WAITKIND_SIGNALLED
4468 && last.kind != TARGET_WAITKIND_EXITED)
4469 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4470 Delete any breakpoint that is to be deleted at the next stop. */
4471 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 4472 }
c906108c
SS
4473}
4474
4475static int
96baa820 4476hook_stop_stub (void *cmd)
c906108c 4477{
5913bcb0 4478 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4479 return (0);
4480}
4481\f
c5aa993b 4482int
96baa820 4483signal_stop_state (int signo)
c906108c 4484{
d6b48e9c 4485 return signal_stop[signo];
c906108c
SS
4486}
4487
c5aa993b 4488int
96baa820 4489signal_print_state (int signo)
c906108c
SS
4490{
4491 return signal_print[signo];
4492}
4493
c5aa993b 4494int
96baa820 4495signal_pass_state (int signo)
c906108c
SS
4496{
4497 return signal_program[signo];
4498}
4499
488f131b 4500int
7bda5e4a 4501signal_stop_update (int signo, int state)
d4f3574e
SS
4502{
4503 int ret = signal_stop[signo];
4504 signal_stop[signo] = state;
4505 return ret;
4506}
4507
488f131b 4508int
7bda5e4a 4509signal_print_update (int signo, int state)
d4f3574e
SS
4510{
4511 int ret = signal_print[signo];
4512 signal_print[signo] = state;
4513 return ret;
4514}
4515
488f131b 4516int
7bda5e4a 4517signal_pass_update (int signo, int state)
d4f3574e
SS
4518{
4519 int ret = signal_program[signo];
4520 signal_program[signo] = state;
4521 return ret;
4522}
4523
c906108c 4524static void
96baa820 4525sig_print_header (void)
c906108c 4526{
a3f17187
AC
4527 printf_filtered (_("\
4528Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4529}
4530
4531static void
96baa820 4532sig_print_info (enum target_signal oursig)
c906108c 4533{
54363045 4534 const char *name = target_signal_to_name (oursig);
c906108c 4535 int name_padding = 13 - strlen (name);
96baa820 4536
c906108c
SS
4537 if (name_padding <= 0)
4538 name_padding = 0;
4539
4540 printf_filtered ("%s", name);
488f131b 4541 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4542 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4543 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4544 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4545 printf_filtered ("%s\n", target_signal_to_string (oursig));
4546}
4547
4548/* Specify how various signals in the inferior should be handled. */
4549
4550static void
96baa820 4551handle_command (char *args, int from_tty)
c906108c
SS
4552{
4553 char **argv;
4554 int digits, wordlen;
4555 int sigfirst, signum, siglast;
4556 enum target_signal oursig;
4557 int allsigs;
4558 int nsigs;
4559 unsigned char *sigs;
4560 struct cleanup *old_chain;
4561
4562 if (args == NULL)
4563 {
e2e0b3e5 4564 error_no_arg (_("signal to handle"));
c906108c
SS
4565 }
4566
4567 /* Allocate and zero an array of flags for which signals to handle. */
4568
4569 nsigs = (int) TARGET_SIGNAL_LAST;
4570 sigs = (unsigned char *) alloca (nsigs);
4571 memset (sigs, 0, nsigs);
4572
4573 /* Break the command line up into args. */
4574
d1a41061 4575 argv = gdb_buildargv (args);
7a292a7a 4576 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4577
4578 /* Walk through the args, looking for signal oursigs, signal names, and
4579 actions. Signal numbers and signal names may be interspersed with
4580 actions, with the actions being performed for all signals cumulatively
4581 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4582
4583 while (*argv != NULL)
4584 {
4585 wordlen = strlen (*argv);
4586 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4587 {;
4588 }
4589 allsigs = 0;
4590 sigfirst = siglast = -1;
4591
4592 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4593 {
4594 /* Apply action to all signals except those used by the
4595 debugger. Silently skip those. */
4596 allsigs = 1;
4597 sigfirst = 0;
4598 siglast = nsigs - 1;
4599 }
4600 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4601 {
4602 SET_SIGS (nsigs, sigs, signal_stop);
4603 SET_SIGS (nsigs, sigs, signal_print);
4604 }
4605 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4606 {
4607 UNSET_SIGS (nsigs, sigs, signal_program);
4608 }
4609 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4610 {
4611 SET_SIGS (nsigs, sigs, signal_print);
4612 }
4613 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4614 {
4615 SET_SIGS (nsigs, sigs, signal_program);
4616 }
4617 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4618 {
4619 UNSET_SIGS (nsigs, sigs, signal_stop);
4620 }
4621 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4622 {
4623 SET_SIGS (nsigs, sigs, signal_program);
4624 }
4625 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4626 {
4627 UNSET_SIGS (nsigs, sigs, signal_print);
4628 UNSET_SIGS (nsigs, sigs, signal_stop);
4629 }
4630 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4631 {
4632 UNSET_SIGS (nsigs, sigs, signal_program);
4633 }
4634 else if (digits > 0)
4635 {
4636 /* It is numeric. The numeric signal refers to our own
4637 internal signal numbering from target.h, not to host/target
4638 signal number. This is a feature; users really should be
4639 using symbolic names anyway, and the common ones like
4640 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4641
4642 sigfirst = siglast = (int)
4643 target_signal_from_command (atoi (*argv));
4644 if ((*argv)[digits] == '-')
4645 {
4646 siglast = (int)
4647 target_signal_from_command (atoi ((*argv) + digits + 1));
4648 }
4649 if (sigfirst > siglast)
4650 {
4651 /* Bet he didn't figure we'd think of this case... */
4652 signum = sigfirst;
4653 sigfirst = siglast;
4654 siglast = signum;
4655 }
4656 }
4657 else
4658 {
4659 oursig = target_signal_from_name (*argv);
4660 if (oursig != TARGET_SIGNAL_UNKNOWN)
4661 {
4662 sigfirst = siglast = (int) oursig;
4663 }
4664 else
4665 {
4666 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 4667 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
4668 }
4669 }
4670
4671 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 4672 which signals to apply actions to. */
c906108c
SS
4673
4674 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4675 {
4676 switch ((enum target_signal) signum)
4677 {
4678 case TARGET_SIGNAL_TRAP:
4679 case TARGET_SIGNAL_INT:
4680 if (!allsigs && !sigs[signum])
4681 {
9e2f0ad4
HZ
4682 if (query (_("%s is used by the debugger.\n\
4683Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
4684 {
4685 sigs[signum] = 1;
4686 }
4687 else
4688 {
a3f17187 4689 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
4690 gdb_flush (gdb_stdout);
4691 }
4692 }
4693 break;
4694 case TARGET_SIGNAL_0:
4695 case TARGET_SIGNAL_DEFAULT:
4696 case TARGET_SIGNAL_UNKNOWN:
4697 /* Make sure that "all" doesn't print these. */
4698 break;
4699 default:
4700 sigs[signum] = 1;
4701 break;
4702 }
4703 }
4704
4705 argv++;
4706 }
4707
3a031f65
PA
4708 for (signum = 0; signum < nsigs; signum++)
4709 if (sigs[signum])
4710 {
4711 target_notice_signals (inferior_ptid);
c906108c 4712
3a031f65
PA
4713 if (from_tty)
4714 {
4715 /* Show the results. */
4716 sig_print_header ();
4717 for (; signum < nsigs; signum++)
4718 if (sigs[signum])
4719 sig_print_info (signum);
4720 }
4721
4722 break;
4723 }
c906108c
SS
4724
4725 do_cleanups (old_chain);
4726}
4727
4728static void
96baa820 4729xdb_handle_command (char *args, int from_tty)
c906108c
SS
4730{
4731 char **argv;
4732 struct cleanup *old_chain;
4733
d1a41061
PP
4734 if (args == NULL)
4735 error_no_arg (_("xdb command"));
4736
c906108c
SS
4737 /* Break the command line up into args. */
4738
d1a41061 4739 argv = gdb_buildargv (args);
7a292a7a 4740 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4741 if (argv[1] != (char *) NULL)
4742 {
4743 char *argBuf;
4744 int bufLen;
4745
4746 bufLen = strlen (argv[0]) + 20;
4747 argBuf = (char *) xmalloc (bufLen);
4748 if (argBuf)
4749 {
4750 int validFlag = 1;
4751 enum target_signal oursig;
4752
4753 oursig = target_signal_from_name (argv[0]);
4754 memset (argBuf, 0, bufLen);
4755 if (strcmp (argv[1], "Q") == 0)
4756 sprintf (argBuf, "%s %s", argv[0], "noprint");
4757 else
4758 {
4759 if (strcmp (argv[1], "s") == 0)
4760 {
4761 if (!signal_stop[oursig])
4762 sprintf (argBuf, "%s %s", argv[0], "stop");
4763 else
4764 sprintf (argBuf, "%s %s", argv[0], "nostop");
4765 }
4766 else if (strcmp (argv[1], "i") == 0)
4767 {
4768 if (!signal_program[oursig])
4769 sprintf (argBuf, "%s %s", argv[0], "pass");
4770 else
4771 sprintf (argBuf, "%s %s", argv[0], "nopass");
4772 }
4773 else if (strcmp (argv[1], "r") == 0)
4774 {
4775 if (!signal_print[oursig])
4776 sprintf (argBuf, "%s %s", argv[0], "print");
4777 else
4778 sprintf (argBuf, "%s %s", argv[0], "noprint");
4779 }
4780 else
4781 validFlag = 0;
4782 }
4783 if (validFlag)
4784 handle_command (argBuf, from_tty);
4785 else
a3f17187 4786 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 4787 if (argBuf)
b8c9b27d 4788 xfree (argBuf);
c906108c
SS
4789 }
4790 }
4791 do_cleanups (old_chain);
4792}
4793
4794/* Print current contents of the tables set by the handle command.
4795 It is possible we should just be printing signals actually used
4796 by the current target (but for things to work right when switching
4797 targets, all signals should be in the signal tables). */
4798
4799static void
96baa820 4800signals_info (char *signum_exp, int from_tty)
c906108c
SS
4801{
4802 enum target_signal oursig;
4803 sig_print_header ();
4804
4805 if (signum_exp)
4806 {
4807 /* First see if this is a symbol name. */
4808 oursig = target_signal_from_name (signum_exp);
4809 if (oursig == TARGET_SIGNAL_UNKNOWN)
4810 {
4811 /* No, try numeric. */
4812 oursig =
bb518678 4813 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
4814 }
4815 sig_print_info (oursig);
4816 return;
4817 }
4818
4819 printf_filtered ("\n");
4820 /* These ugly casts brought to you by the native VAX compiler. */
4821 for (oursig = TARGET_SIGNAL_FIRST;
4822 (int) oursig < (int) TARGET_SIGNAL_LAST;
4823 oursig = (enum target_signal) ((int) oursig + 1))
4824 {
4825 QUIT;
4826
4827 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 4828 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
4829 sig_print_info (oursig);
4830 }
4831
a3f17187 4832 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 4833}
4aa995e1
PA
4834
4835/* The $_siginfo convenience variable is a bit special. We don't know
4836 for sure the type of the value until we actually have a chance to
4837 fetch the data. The type can change depending on gdbarch, so it it
4838 also dependent on which thread you have selected.
4839
4840 1. making $_siginfo be an internalvar that creates a new value on
4841 access.
4842
4843 2. making the value of $_siginfo be an lval_computed value. */
4844
4845/* This function implements the lval_computed support for reading a
4846 $_siginfo value. */
4847
4848static void
4849siginfo_value_read (struct value *v)
4850{
4851 LONGEST transferred;
4852
4853 transferred =
4854 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
4855 NULL,
4856 value_contents_all_raw (v),
4857 value_offset (v),
4858 TYPE_LENGTH (value_type (v)));
4859
4860 if (transferred != TYPE_LENGTH (value_type (v)))
4861 error (_("Unable to read siginfo"));
4862}
4863
4864/* This function implements the lval_computed support for writing a
4865 $_siginfo value. */
4866
4867static void
4868siginfo_value_write (struct value *v, struct value *fromval)
4869{
4870 LONGEST transferred;
4871
4872 transferred = target_write (&current_target,
4873 TARGET_OBJECT_SIGNAL_INFO,
4874 NULL,
4875 value_contents_all_raw (fromval),
4876 value_offset (v),
4877 TYPE_LENGTH (value_type (fromval)));
4878
4879 if (transferred != TYPE_LENGTH (value_type (fromval)))
4880 error (_("Unable to write siginfo"));
4881}
4882
4883static struct lval_funcs siginfo_value_funcs =
4884 {
4885 siginfo_value_read,
4886 siginfo_value_write
4887 };
4888
4889/* Return a new value with the correct type for the siginfo object of
4890 the current thread. Return a void value if there's no object
4891 available. */
4892
2c0b251b 4893static struct value *
4aa995e1
PA
4894siginfo_make_value (struct internalvar *var)
4895{
4896 struct type *type;
4897 struct gdbarch *gdbarch;
4898
4899 if (target_has_stack
4900 && !ptid_equal (inferior_ptid, null_ptid))
4901 {
4902 gdbarch = get_frame_arch (get_current_frame ());
4903
4904 if (gdbarch_get_siginfo_type_p (gdbarch))
4905 {
4906 type = gdbarch_get_siginfo_type (gdbarch);
4907
4908 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4909 }
4910 }
4911
4912 return allocate_value (builtin_type_void);
4913}
4914
c906108c 4915\f
b89667eb
DE
4916/* Inferior thread state.
4917 These are details related to the inferior itself, and don't include
4918 things like what frame the user had selected or what gdb was doing
4919 with the target at the time.
4920 For inferior function calls these are things we want to restore
4921 regardless of whether the function call successfully completes
4922 or the dummy frame has to be manually popped. */
4923
4924struct inferior_thread_state
7a292a7a
SS
4925{
4926 enum target_signal stop_signal;
4927 CORE_ADDR stop_pc;
b89667eb
DE
4928 struct regcache *registers;
4929};
4930
4931struct inferior_thread_state *
4932save_inferior_thread_state (void)
4933{
4934 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
4935 struct thread_info *tp = inferior_thread ();
4936
4937 inf_state->stop_signal = tp->stop_signal;
4938 inf_state->stop_pc = stop_pc;
4939
4940 inf_state->registers = regcache_dup (get_current_regcache ());
4941
4942 return inf_state;
4943}
4944
4945/* Restore inferior session state to INF_STATE. */
4946
4947void
4948restore_inferior_thread_state (struct inferior_thread_state *inf_state)
4949{
4950 struct thread_info *tp = inferior_thread ();
4951
4952 tp->stop_signal = inf_state->stop_signal;
4953 stop_pc = inf_state->stop_pc;
4954
4955 /* The inferior can be gone if the user types "print exit(0)"
4956 (and perhaps other times). */
4957 if (target_has_execution)
4958 /* NB: The register write goes through to the target. */
4959 regcache_cpy (get_current_regcache (), inf_state->registers);
4960 regcache_xfree (inf_state->registers);
4961 xfree (inf_state);
4962}
4963
4964static void
4965do_restore_inferior_thread_state_cleanup (void *state)
4966{
4967 restore_inferior_thread_state (state);
4968}
4969
4970struct cleanup *
4971make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
4972{
4973 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
4974}
4975
4976void
4977discard_inferior_thread_state (struct inferior_thread_state *inf_state)
4978{
4979 regcache_xfree (inf_state->registers);
4980 xfree (inf_state);
4981}
4982
4983struct regcache *
4984get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
4985{
4986 return inf_state->registers;
4987}
4988
4989/* Session related state for inferior function calls.
4990 These are the additional bits of state that need to be restored
4991 when an inferior function call successfully completes. */
4992
4993struct inferior_status
4994{
7a292a7a
SS
4995 bpstat stop_bpstat;
4996 int stop_step;
4997 int stop_stack_dummy;
4998 int stopped_by_random_signal;
ca67fcb8 4999 int stepping_over_breakpoint;
7a292a7a
SS
5000 CORE_ADDR step_range_start;
5001 CORE_ADDR step_range_end;
aa0cd9c1 5002 struct frame_id step_frame_id;
5fbbeb29 5003 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
5004 CORE_ADDR step_resume_break_address;
5005 int stop_after_trap;
c0236d92 5006 int stop_soon;
7a292a7a 5007
b89667eb 5008 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
5009 struct frame_id selected_frame_id;
5010
7a292a7a 5011 int proceed_to_finish;
c5a4d20b 5012 int in_infcall;
7a292a7a
SS
5013};
5014
c906108c 5015/* Save all of the information associated with the inferior<==>gdb
b89667eb 5016 connection. */
c906108c 5017
7a292a7a 5018struct inferior_status *
b89667eb 5019save_inferior_status (void)
c906108c 5020{
72cec141 5021 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 5022 struct thread_info *tp = inferior_thread ();
d6b48e9c 5023 struct inferior *inf = current_inferior ();
7a292a7a 5024
414c69f7 5025 inf_status->stop_step = tp->stop_step;
c906108c
SS
5026 inf_status->stop_stack_dummy = stop_stack_dummy;
5027 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
5028 inf_status->stepping_over_breakpoint = tp->trap_expected;
5029 inf_status->step_range_start = tp->step_range_start;
5030 inf_status->step_range_end = tp->step_range_end;
5031 inf_status->step_frame_id = tp->step_frame_id;
078130d0 5032 inf_status->step_over_calls = tp->step_over_calls;
c906108c 5033 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 5034 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
5035 /* Save original bpstat chain here; replace it with copy of chain.
5036 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
5037 hand them back the original chain when restore_inferior_status is
5038 called. */
347bddb7
PA
5039 inf_status->stop_bpstat = tp->stop_bpstat;
5040 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 5041 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 5042 inf_status->in_infcall = tp->in_infcall;
c5aa993b 5043
206415a3 5044 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 5045
7a292a7a 5046 return inf_status;
c906108c
SS
5047}
5048
c906108c 5049static int
96baa820 5050restore_selected_frame (void *args)
c906108c 5051{
488f131b 5052 struct frame_id *fid = (struct frame_id *) args;
c906108c 5053 struct frame_info *frame;
c906108c 5054
101dcfbe 5055 frame = frame_find_by_id (*fid);
c906108c 5056
aa0cd9c1
AC
5057 /* If inf_status->selected_frame_id is NULL, there was no previously
5058 selected frame. */
101dcfbe 5059 if (frame == NULL)
c906108c 5060 {
8a3fe4f8 5061 warning (_("Unable to restore previously selected frame."));
c906108c
SS
5062 return 0;
5063 }
5064
0f7d239c 5065 select_frame (frame);
c906108c
SS
5066
5067 return (1);
5068}
5069
b89667eb
DE
5070/* Restore inferior session state to INF_STATUS. */
5071
c906108c 5072void
96baa820 5073restore_inferior_status (struct inferior_status *inf_status)
c906108c 5074{
4e1c45ea 5075 struct thread_info *tp = inferior_thread ();
d6b48e9c 5076 struct inferior *inf = current_inferior ();
4e1c45ea 5077
414c69f7 5078 tp->stop_step = inf_status->stop_step;
c906108c
SS
5079 stop_stack_dummy = inf_status->stop_stack_dummy;
5080 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
5081 tp->trap_expected = inf_status->stepping_over_breakpoint;
5082 tp->step_range_start = inf_status->step_range_start;
5083 tp->step_range_end = inf_status->step_range_end;
5084 tp->step_frame_id = inf_status->step_frame_id;
078130d0 5085 tp->step_over_calls = inf_status->step_over_calls;
c906108c 5086 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 5087 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
5088 bpstat_clear (&tp->stop_bpstat);
5089 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 5090 inf_status->stop_bpstat = NULL;
32400beb 5091 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 5092 tp->in_infcall = inf_status->in_infcall;
c906108c 5093
b89667eb 5094 if (target_has_stack)
c906108c 5095 {
c906108c 5096 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
5097 walking the stack might encounter a garbage pointer and
5098 error() trying to dereference it. */
488f131b
JB
5099 if (catch_errors
5100 (restore_selected_frame, &inf_status->selected_frame_id,
5101 "Unable to restore previously selected frame:\n",
5102 RETURN_MASK_ERROR) == 0)
c906108c
SS
5103 /* Error in restoring the selected frame. Select the innermost
5104 frame. */
0f7d239c 5105 select_frame (get_current_frame ());
c906108c 5106 }
c906108c 5107
72cec141 5108 xfree (inf_status);
7a292a7a 5109}
c906108c 5110
74b7792f
AC
5111static void
5112do_restore_inferior_status_cleanup (void *sts)
5113{
5114 restore_inferior_status (sts);
5115}
5116
5117struct cleanup *
5118make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5119{
5120 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5121}
5122
c906108c 5123void
96baa820 5124discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
5125{
5126 /* See save_inferior_status for info on stop_bpstat. */
5127 bpstat_clear (&inf_status->stop_bpstat);
72cec141 5128 xfree (inf_status);
7a292a7a 5129}
b89667eb 5130\f
47932f85 5131int
3a3e9ee3 5132inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5133{
5134 struct target_waitstatus last;
5135 ptid_t last_ptid;
5136
5137 get_last_target_status (&last_ptid, &last);
5138
5139 if (last.kind != TARGET_WAITKIND_FORKED)
5140 return 0;
5141
3a3e9ee3 5142 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5143 return 0;
5144
5145 *child_pid = last.value.related_pid;
5146 return 1;
5147}
5148
5149int
3a3e9ee3 5150inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5151{
5152 struct target_waitstatus last;
5153 ptid_t last_ptid;
5154
5155 get_last_target_status (&last_ptid, &last);
5156
5157 if (last.kind != TARGET_WAITKIND_VFORKED)
5158 return 0;
5159
3a3e9ee3 5160 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5161 return 0;
5162
5163 *child_pid = last.value.related_pid;
5164 return 1;
5165}
5166
5167int
3a3e9ee3 5168inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
5169{
5170 struct target_waitstatus last;
5171 ptid_t last_ptid;
5172
5173 get_last_target_status (&last_ptid, &last);
5174
5175 if (last.kind != TARGET_WAITKIND_EXECD)
5176 return 0;
5177
3a3e9ee3 5178 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5179 return 0;
5180
5181 *execd_pathname = xstrdup (last.value.execd_pathname);
5182 return 1;
5183}
5184
ca6724c1
KB
5185/* Oft used ptids */
5186ptid_t null_ptid;
5187ptid_t minus_one_ptid;
5188
5189/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 5190
ca6724c1
KB
5191ptid_t
5192ptid_build (int pid, long lwp, long tid)
5193{
5194 ptid_t ptid;
5195
5196 ptid.pid = pid;
5197 ptid.lwp = lwp;
5198 ptid.tid = tid;
5199 return ptid;
5200}
5201
5202/* Create a ptid from just a pid. */
5203
5204ptid_t
5205pid_to_ptid (int pid)
5206{
5207 return ptid_build (pid, 0, 0);
5208}
5209
5210/* Fetch the pid (process id) component from a ptid. */
5211
5212int
5213ptid_get_pid (ptid_t ptid)
5214{
5215 return ptid.pid;
5216}
5217
5218/* Fetch the lwp (lightweight process) component from a ptid. */
5219
5220long
5221ptid_get_lwp (ptid_t ptid)
5222{
5223 return ptid.lwp;
5224}
5225
5226/* Fetch the tid (thread id) component from a ptid. */
5227
5228long
5229ptid_get_tid (ptid_t ptid)
5230{
5231 return ptid.tid;
5232}
5233
5234/* ptid_equal() is used to test equality of two ptids. */
5235
5236int
5237ptid_equal (ptid_t ptid1, ptid_t ptid2)
5238{
5239 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 5240 && ptid1.tid == ptid2.tid);
ca6724c1
KB
5241}
5242
252fbfc8
PA
5243/* Returns true if PTID represents a process. */
5244
5245int
5246ptid_is_pid (ptid_t ptid)
5247{
5248 if (ptid_equal (minus_one_ptid, ptid))
5249 return 0;
5250 if (ptid_equal (null_ptid, ptid))
5251 return 0;
5252
5253 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5254}
5255
ca6724c1
KB
5256/* restore_inferior_ptid() will be used by the cleanup machinery
5257 to restore the inferior_ptid value saved in a call to
5258 save_inferior_ptid(). */
ce696e05
KB
5259
5260static void
5261restore_inferior_ptid (void *arg)
5262{
5263 ptid_t *saved_ptid_ptr = arg;
5264 inferior_ptid = *saved_ptid_ptr;
5265 xfree (arg);
5266}
5267
5268/* Save the value of inferior_ptid so that it may be restored by a
5269 later call to do_cleanups(). Returns the struct cleanup pointer
5270 needed for later doing the cleanup. */
5271
5272struct cleanup *
5273save_inferior_ptid (void)
5274{
5275 ptid_t *saved_ptid_ptr;
5276
5277 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5278 *saved_ptid_ptr = inferior_ptid;
5279 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5280}
c5aa993b 5281\f
488f131b 5282
b2175913
MS
5283/* User interface for reverse debugging:
5284 Set exec-direction / show exec-direction commands
5285 (returns error unless target implements to_set_exec_direction method). */
5286
5287enum exec_direction_kind execution_direction = EXEC_FORWARD;
5288static const char exec_forward[] = "forward";
5289static const char exec_reverse[] = "reverse";
5290static const char *exec_direction = exec_forward;
5291static const char *exec_direction_names[] = {
5292 exec_forward,
5293 exec_reverse,
5294 NULL
5295};
5296
5297static void
5298set_exec_direction_func (char *args, int from_tty,
5299 struct cmd_list_element *cmd)
5300{
5301 if (target_can_execute_reverse)
5302 {
5303 if (!strcmp (exec_direction, exec_forward))
5304 execution_direction = EXEC_FORWARD;
5305 else if (!strcmp (exec_direction, exec_reverse))
5306 execution_direction = EXEC_REVERSE;
5307 }
5308}
5309
5310static void
5311show_exec_direction_func (struct ui_file *out, int from_tty,
5312 struct cmd_list_element *cmd, const char *value)
5313{
5314 switch (execution_direction) {
5315 case EXEC_FORWARD:
5316 fprintf_filtered (out, _("Forward.\n"));
5317 break;
5318 case EXEC_REVERSE:
5319 fprintf_filtered (out, _("Reverse.\n"));
5320 break;
5321 case EXEC_ERROR:
5322 default:
5323 fprintf_filtered (out,
5324 _("Forward (target `%s' does not support exec-direction).\n"),
5325 target_shortname);
5326 break;
5327 }
5328}
5329
5330/* User interface for non-stop mode. */
5331
ad52ddc6
PA
5332int non_stop = 0;
5333static int non_stop_1 = 0;
5334
5335static void
5336set_non_stop (char *args, int from_tty,
5337 struct cmd_list_element *c)
5338{
5339 if (target_has_execution)
5340 {
5341 non_stop_1 = non_stop;
5342 error (_("Cannot change this setting while the inferior is running."));
5343 }
5344
5345 non_stop = non_stop_1;
5346}
5347
5348static void
5349show_non_stop (struct ui_file *file, int from_tty,
5350 struct cmd_list_element *c, const char *value)
5351{
5352 fprintf_filtered (file,
5353 _("Controlling the inferior in non-stop mode is %s.\n"),
5354 value);
5355}
5356
5357
c906108c 5358void
96baa820 5359_initialize_infrun (void)
c906108c 5360{
52f0bd74
AC
5361 int i;
5362 int numsigs;
c906108c
SS
5363 struct cmd_list_element *c;
5364
1bedd215
AC
5365 add_info ("signals", signals_info, _("\
5366What debugger does when program gets various signals.\n\
5367Specify a signal as argument to print info on that signal only."));
c906108c
SS
5368 add_info_alias ("handle", "signals", 0);
5369
1bedd215
AC
5370 add_com ("handle", class_run, handle_command, _("\
5371Specify how to handle a signal.\n\
c906108c
SS
5372Args are signals and actions to apply to those signals.\n\
5373Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5374from 1-15 are allowed for compatibility with old versions of GDB.\n\
5375Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5376The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5377used by the debugger, typically SIGTRAP and SIGINT.\n\
5378Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
5379\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5380Stop means reenter debugger if this signal happens (implies print).\n\
5381Print means print a message if this signal happens.\n\
5382Pass means let program see this signal; otherwise program doesn't know.\n\
5383Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5384Pass and Stop may be combined."));
c906108c
SS
5385 if (xdb_commands)
5386 {
1bedd215
AC
5387 add_com ("lz", class_info, signals_info, _("\
5388What debugger does when program gets various signals.\n\
5389Specify a signal as argument to print info on that signal only."));
5390 add_com ("z", class_run, xdb_handle_command, _("\
5391Specify how to handle a signal.\n\
c906108c
SS
5392Args are signals and actions to apply to those signals.\n\
5393Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5394from 1-15 are allowed for compatibility with old versions of GDB.\n\
5395Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5396The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5397used by the debugger, typically SIGTRAP and SIGINT.\n\
5398Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
5399\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5400nopass), \"Q\" (noprint)\n\
5401Stop means reenter debugger if this signal happens (implies print).\n\
5402Print means print a message if this signal happens.\n\
5403Pass means let program see this signal; otherwise program doesn't know.\n\
5404Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5405Pass and Stop may be combined."));
c906108c
SS
5406 }
5407
5408 if (!dbx_commands)
1a966eab
AC
5409 stop_command = add_cmd ("stop", class_obscure,
5410 not_just_help_class_command, _("\
5411There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 5412This allows you to set a list of commands to be run each time execution\n\
1a966eab 5413of the program stops."), &cmdlist);
c906108c 5414
85c07804
AC
5415 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5416Set inferior debugging."), _("\
5417Show inferior debugging."), _("\
5418When non-zero, inferior specific debugging is enabled."),
5419 NULL,
920d2a44 5420 show_debug_infrun,
85c07804 5421 &setdebuglist, &showdebuglist);
527159b7 5422
237fc4c9
PA
5423 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5424Set displaced stepping debugging."), _("\
5425Show displaced stepping debugging."), _("\
5426When non-zero, displaced stepping specific debugging is enabled."),
5427 NULL,
5428 show_debug_displaced,
5429 &setdebuglist, &showdebuglist);
5430
ad52ddc6
PA
5431 add_setshow_boolean_cmd ("non-stop", no_class,
5432 &non_stop_1, _("\
5433Set whether gdb controls the inferior in non-stop mode."), _("\
5434Show whether gdb controls the inferior in non-stop mode."), _("\
5435When debugging a multi-threaded program and this setting is\n\
5436off (the default, also called all-stop mode), when one thread stops\n\
5437(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5438all other threads in the program while you interact with the thread of\n\
5439interest. When you continue or step a thread, you can allow the other\n\
5440threads to run, or have them remain stopped, but while you inspect any\n\
5441thread's state, all threads stop.\n\
5442\n\
5443In non-stop mode, when one thread stops, other threads can continue\n\
5444to run freely. You'll be able to step each thread independently,\n\
5445leave it stopped or free to run as needed."),
5446 set_non_stop,
5447 show_non_stop,
5448 &setlist,
5449 &showlist);
5450
c906108c 5451 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5452 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5453 signal_print = (unsigned char *)
5454 xmalloc (sizeof (signal_print[0]) * numsigs);
5455 signal_program = (unsigned char *)
5456 xmalloc (sizeof (signal_program[0]) * numsigs);
5457 for (i = 0; i < numsigs; i++)
5458 {
5459 signal_stop[i] = 1;
5460 signal_print[i] = 1;
5461 signal_program[i] = 1;
5462 }
5463
5464 /* Signals caused by debugger's own actions
5465 should not be given to the program afterwards. */
5466 signal_program[TARGET_SIGNAL_TRAP] = 0;
5467 signal_program[TARGET_SIGNAL_INT] = 0;
5468
5469 /* Signals that are not errors should not normally enter the debugger. */
5470 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5471 signal_print[TARGET_SIGNAL_ALRM] = 0;
5472 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5473 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5474 signal_stop[TARGET_SIGNAL_PROF] = 0;
5475 signal_print[TARGET_SIGNAL_PROF] = 0;
5476 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5477 signal_print[TARGET_SIGNAL_CHLD] = 0;
5478 signal_stop[TARGET_SIGNAL_IO] = 0;
5479 signal_print[TARGET_SIGNAL_IO] = 0;
5480 signal_stop[TARGET_SIGNAL_POLL] = 0;
5481 signal_print[TARGET_SIGNAL_POLL] = 0;
5482 signal_stop[TARGET_SIGNAL_URG] = 0;
5483 signal_print[TARGET_SIGNAL_URG] = 0;
5484 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5485 signal_print[TARGET_SIGNAL_WINCH] = 0;
5486
cd0fc7c3
SS
5487 /* These signals are used internally by user-level thread
5488 implementations. (See signal(5) on Solaris.) Like the above
5489 signals, a healthy program receives and handles them as part of
5490 its normal operation. */
5491 signal_stop[TARGET_SIGNAL_LWP] = 0;
5492 signal_print[TARGET_SIGNAL_LWP] = 0;
5493 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5494 signal_print[TARGET_SIGNAL_WAITING] = 0;
5495 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5496 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5497
85c07804
AC
5498 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5499 &stop_on_solib_events, _("\
5500Set stopping for shared library events."), _("\
5501Show stopping for shared library events."), _("\
c906108c
SS
5502If nonzero, gdb will give control to the user when the dynamic linker\n\
5503notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
5504to the user would be loading/unloading of a new library."),
5505 NULL,
920d2a44 5506 show_stop_on_solib_events,
85c07804 5507 &setlist, &showlist);
c906108c 5508
7ab04401
AC
5509 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5510 follow_fork_mode_kind_names,
5511 &follow_fork_mode_string, _("\
5512Set debugger response to a program call of fork or vfork."), _("\
5513Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
5514A fork or vfork creates a new process. follow-fork-mode can be:\n\
5515 parent - the original process is debugged after a fork\n\
5516 child - the new process is debugged after a fork\n\
ea1dd7bc 5517The unfollowed process will continue to run.\n\
7ab04401
AC
5518By default, the debugger will follow the parent process."),
5519 NULL,
920d2a44 5520 show_follow_fork_mode_string,
7ab04401
AC
5521 &setlist, &showlist);
5522
5523 add_setshow_enum_cmd ("scheduler-locking", class_run,
5524 scheduler_enums, &scheduler_mode, _("\
5525Set mode for locking scheduler during execution."), _("\
5526Show mode for locking scheduler during execution."), _("\
c906108c
SS
5527off == no locking (threads may preempt at any time)\n\
5528on == full locking (no thread except the current thread may run)\n\
5529step == scheduler locked during every single-step operation.\n\
5530 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
5531 Other threads may run while stepping over a function call ('next')."),
5532 set_schedlock_func, /* traps on target vector */
920d2a44 5533 show_scheduler_mode,
7ab04401 5534 &setlist, &showlist);
5fbbeb29 5535
5bf193a2
AC
5536 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5537Set mode of the step operation."), _("\
5538Show mode of the step operation."), _("\
5539When set, doing a step over a function without debug line information\n\
5540will stop at the first instruction of that function. Otherwise, the\n\
5541function is skipped and the step command stops at a different source line."),
5542 NULL,
920d2a44 5543 show_step_stop_if_no_debug,
5bf193a2 5544 &setlist, &showlist);
ca6724c1 5545
fff08868
HZ
5546 add_setshow_enum_cmd ("displaced-stepping", class_run,
5547 can_use_displaced_stepping_enum,
5548 &can_use_displaced_stepping, _("\
237fc4c9
PA
5549Set debugger's willingness to use displaced stepping."), _("\
5550Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
5551If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5552supported by the target architecture. If off, gdb will not use displaced\n\
5553stepping to step over breakpoints, even if such is supported by the target\n\
5554architecture. If auto (which is the default), gdb will use displaced stepping\n\
5555if the target architecture supports it and non-stop mode is active, but will not\n\
5556use it in all-stop mode (see help set non-stop)."),
5557 NULL,
5558 show_can_use_displaced_stepping,
5559 &setlist, &showlist);
237fc4c9 5560
b2175913
MS
5561 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5562 &exec_direction, _("Set direction of execution.\n\
5563Options are 'forward' or 'reverse'."),
5564 _("Show direction of execution (forward/reverse)."),
5565 _("Tells gdb whether to execute forward or backward."),
5566 set_exec_direction_func, show_exec_direction_func,
5567 &setlist, &showlist);
5568
ca6724c1
KB
5569 /* ptid initializations */
5570 null_ptid = ptid_build (0, 0, 0);
5571 minus_one_ptid = ptid_build (-1, 0, 0);
5572 inferior_ptid = null_ptid;
5573 target_last_wait_ptid = minus_one_ptid;
237fc4c9 5574 displaced_step_ptid = null_ptid;
5231c1fd
PA
5575
5576 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 5577 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
4aa995e1
PA
5578
5579 /* Explicitly create without lookup, since that tries to create a
5580 value with a void typed value, and when we get here, gdbarch
5581 isn't initialized yet. At this point, we're quite sure there
5582 isn't another convenience variable of the same name. */
5583 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 5584}
This page took 1.162851 seconds and 4 git commands to generate.