gdb: protect some 'regcache_read_pc' calls
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
2f4fcf00 31#include "target-connection.h"
c906108c
SS
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
400b5eca 59#include "gdbsupport/event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
06cc9596 67#include "gdbsupport/gdb_select.h"
5b6d1e4f 68#include <unordered_map>
93b54c8e 69#include "async-event.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
d83ad864
DB
77static void follow_inferior_reset_breakpoints (void);
78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
2c03e5be 81static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
82
83static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
84
2484c66b
UW
85static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
86
8550d3b3
YQ
87static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
88
aff4e175
AB
89static void resume (gdb_signal sig);
90
5b6d1e4f
PA
91static void wait_for_inferior (inferior *inf);
92
372316f1
PA
93/* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95static struct async_event_handler *infrun_async_inferior_event_token;
96
97/* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99static int infrun_is_async = -1;
100
101/* See infrun.h. */
102
103void
104infrun_async (int enable)
105{
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120}
121
0b333c5e
PA
122/* See infrun.h. */
123
124void
125mark_infrun_async_event_handler (void)
126{
127 mark_async_event_handler (infrun_async_inferior_event_token);
128}
129
5fbbeb29
CF
130/* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
491144b5 133bool step_stop_if_no_debug = false;
920d2a44
AC
134static void
135show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139}
5fbbeb29 140
b9f437de
PA
141/* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
96baa820 144
39f77062 145static ptid_t previous_inferior_ptid;
7a292a7a 146
07107ca6
LM
147/* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
491144b5 152static bool detach_fork = true;
6c95b8df 153
491144b5 154bool debug_displaced = false;
237fc4c9
PA
155static void
156show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160}
161
ccce17b0 162unsigned int debug_infrun = 0;
920d2a44
AC
163static void
164show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168}
527159b7 169
03583c20
UW
170
171/* Support for disabling address space randomization. */
172
491144b5 173bool disable_randomization = true;
03583c20
UW
174
175static void
176show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188}
189
190static void
eb4c3f4a 191set_disable_randomization (const char *args, int from_tty,
03583c20
UW
192 struct cmd_list_element *c)
193{
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198}
199
d32dc48e
PA
200/* User interface for non-stop mode. */
201
491144b5
CB
202bool non_stop = false;
203static bool non_stop_1 = false;
d32dc48e
PA
204
205static void
eb4c3f4a 206set_non_stop (const char *args, int from_tty,
d32dc48e
PA
207 struct cmd_list_element *c)
208{
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216}
217
218static void
219show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225}
226
d914c394
SS
227/* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
491144b5
CB
231bool observer_mode = false;
232static bool observer_mode_1 = false;
d914c394
SS
233
234static void
eb4c3f4a 235set_observer_mode (const char *args, int from_tty,
d914c394
SS
236 struct cmd_list_element *c)
237{
d914c394
SS
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
491144b5 253 may_insert_fast_tracepoints = true;
d914c394
SS
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
d914c394 261 pagination_enabled = 0;
491144b5 262 non_stop = non_stop_1 = true;
d914c394
SS
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268}
269
270static void
271show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275}
276
277/* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283void
284update_observer_mode (void)
285{
491144b5
CB
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
d914c394
SS
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298}
c2c6d25f 299
c906108c
SS
300/* Tables of how to react to signals; the user sets them. */
301
adc6a863
PA
302static unsigned char signal_stop[GDB_SIGNAL_LAST];
303static unsigned char signal_print[GDB_SIGNAL_LAST];
304static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 305
ab04a2af
TT
306/* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
308 signal" command. */
309static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 310
2455069d
UW
311/* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
adc6a863 314static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 315
c906108c
SS
316#define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324#define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
9b224c5e
PA
332/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335void
336update_signals_program_target (void)
337{
adc6a863 338 target_program_signals (signal_program);
9b224c5e
PA
339}
340
1777feb0 341/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 342
edb3359d 343#define RESUME_ALL minus_one_ptid
c906108c
SS
344
345/* Command list pointer for the "stop" placeholder. */
346
347static struct cmd_list_element *stop_command;
348
c906108c
SS
349/* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
628fe4e4 351int stop_on_solib_events;
f9e14852
GB
352
353/* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356static void
eb4c3f4a
TT
357set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
f9e14852
GB
359{
360 update_solib_breakpoints ();
361}
362
920d2a44
AC
363static void
364show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366{
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369}
c906108c 370
c906108c
SS
371/* Nonzero after stop if current stack frame should be printed. */
372
373static int stop_print_frame;
374
5b6d1e4f
PA
375/* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378static process_stratum_target *target_last_proc_target;
39f77062 379static ptid_t target_last_wait_ptid;
e02bc4cc
DS
380static struct target_waitstatus target_last_waitstatus;
381
4e1c45ea 382void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 383
53904c9e
AC
384static const char follow_fork_mode_child[] = "child";
385static const char follow_fork_mode_parent[] = "parent";
386
40478521 387static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
ef346e04 391};
c906108c 392
53904c9e 393static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
394static void
395show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397{
3e43a32a
MS
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
401 value);
402}
c906108c
SS
403\f
404
d83ad864
DB
405/* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
5ab2fbf1
SM
411static bool
412follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
413{
414 int has_vforked;
79639e11 415 ptid_t parent_ptid, child_ptid;
d83ad864
DB
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
79639e11
PA
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 424 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433Can not resume the parent process over vfork in the foreground while\n\
434holding the child stopped. Try \"set detach-on-fork\" or \
435\"set schedule-multiple\".\n"));
d83ad864
DB
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
d83ad864
DB
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
00431a78 454 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
455 }
456
f67c0c91 457 if (print_inferior_events)
d83ad864 458 {
8dd06f7a 459 /* Ensure that we have a process ptid. */
e99b03dc 460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 461
223ffa71 462 target_terminal::ours_for_output ();
d83ad864 463 fprintf_filtered (gdb_stdlog,
f67c0c91 464 _("[Detaching after %s from child %s]\n"),
6f259a23 465 has_vforked ? "vfork" : "fork",
a068643d 466 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
d83ad864
DB
472
473 /* Add process to GDB's tables. */
e99b03dc 474 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
5ed8105e 482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 483
2a00d7ce 484 set_current_inferior (child_inf);
5b6d1e4f 485 switch_to_no_thread ();
d83ad864 486 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f
PA
487 push_target (parent_inf->process_target ());
488 add_thread_silent (child_inf->process_target (), child_ptid);
489 inferior_ptid = child_ptid;
d83ad864
DB
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
5b6d1e4f
PA
498 exec_on_vfork ();
499
d83ad864
DB
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
507 }
508 else
509 {
510 child_inf->aspace = new_address_space ();
564b1e3f 511 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
512 child_inf->removable = 1;
513 set_current_program_space (child_inf->pspace);
514 clone_program_space (child_inf->pspace, parent_inf->pspace);
515
516 /* Let the shared library layer (e.g., solib-svr4) learn
517 about this new process, relocate the cloned exec, pull
518 in shared libraries, and install the solib event
519 breakpoint. If a "cloned-VM" event was propagated
520 better throughout the core, this wouldn't be
521 required. */
522 solib_create_inferior_hook (0);
523 }
d83ad864
DB
524 }
525
526 if (has_vforked)
527 {
528 struct inferior *parent_inf;
529
530 parent_inf = current_inferior ();
531
532 /* If we detached from the child, then we have to be careful
533 to not insert breakpoints in the parent until the child
534 is done with the shared memory region. However, if we're
535 staying attached to the child, then we can and should
536 insert breakpoints, so that we can debug it. A
537 subsequent child exec or exit is enough to know when does
538 the child stops using the parent's address space. */
539 parent_inf->waiting_for_vfork_done = detach_fork;
540 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
541 }
542 }
543 else
544 {
545 /* Follow the child. */
546 struct inferior *parent_inf, *child_inf;
547 struct program_space *parent_pspace;
548
f67c0c91 549 if (print_inferior_events)
d83ad864 550 {
f67c0c91
SDJ
551 std::string parent_pid = target_pid_to_str (parent_ptid);
552 std::string child_pid = target_pid_to_str (child_ptid);
553
223ffa71 554 target_terminal::ours_for_output ();
6f259a23 555 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
556 _("[Attaching after %s %s to child %s]\n"),
557 parent_pid.c_str (),
6f259a23 558 has_vforked ? "vfork" : "fork",
f67c0c91 559 child_pid.c_str ());
d83ad864
DB
560 }
561
562 /* Add the new inferior first, so that the target_detach below
563 doesn't unpush the target. */
564
e99b03dc 565 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
566
567 parent_inf = current_inferior ();
568 child_inf->attach_flag = parent_inf->attach_flag;
569 copy_terminal_info (child_inf, parent_inf);
570 child_inf->gdbarch = parent_inf->gdbarch;
571 copy_inferior_target_desc_info (child_inf, parent_inf);
572
573 parent_pspace = parent_inf->pspace;
574
5b6d1e4f 575 process_stratum_target *target = parent_inf->process_target ();
d83ad864 576
5b6d1e4f
PA
577 {
578 /* Hold a strong reference to the target while (maybe)
579 detaching the parent. Otherwise detaching could close the
580 target. */
581 auto target_ref = target_ops_ref::new_reference (target);
582
583 /* If we're vforking, we want to hold on to the parent until
584 the child exits or execs. At child exec or exit time we
585 can remove the old breakpoints from the parent and detach
586 or resume debugging it. Otherwise, detach the parent now;
587 we'll want to reuse it's program/address spaces, but we
588 can't set them to the child before removing breakpoints
589 from the parent, otherwise, the breakpoints module could
590 decide to remove breakpoints from the wrong process (since
591 they'd be assigned to the same address space). */
592
593 if (has_vforked)
594 {
595 gdb_assert (child_inf->vfork_parent == NULL);
596 gdb_assert (parent_inf->vfork_child == NULL);
597 child_inf->vfork_parent = parent_inf;
598 child_inf->pending_detach = 0;
599 parent_inf->vfork_child = child_inf;
600 parent_inf->pending_detach = detach_fork;
601 parent_inf->waiting_for_vfork_done = 0;
602 }
603 else if (detach_fork)
604 {
605 if (print_inferior_events)
606 {
607 /* Ensure that we have a process ptid. */
608 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
609
610 target_terminal::ours_for_output ();
611 fprintf_filtered (gdb_stdlog,
612 _("[Detaching after fork from "
613 "parent %s]\n"),
614 target_pid_to_str (process_ptid).c_str ());
615 }
8dd06f7a 616
5b6d1e4f
PA
617 target_detach (parent_inf, 0);
618 parent_inf = NULL;
619 }
6f259a23 620
5b6d1e4f 621 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 622
5b6d1e4f
PA
623 /* Add the child thread to the appropriate lists, and switch
624 to this new thread, before cloning the program space, and
625 informing the solib layer about this new process. */
d83ad864 626
5b6d1e4f
PA
627 set_current_inferior (child_inf);
628 push_target (target);
629 }
d83ad864 630
5b6d1e4f 631 add_thread_silent (target, child_ptid);
79639e11 632 inferior_ptid = child_ptid;
d83ad864
DB
633
634 /* If this is a vfork child, then the address-space is shared
635 with the parent. If we detached from the parent, then we can
636 reuse the parent's program/address spaces. */
637 if (has_vforked || detach_fork)
638 {
639 child_inf->pspace = parent_pspace;
640 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
641
642 exec_on_vfork ();
d83ad864
DB
643 }
644 else
645 {
646 child_inf->aspace = new_address_space ();
564b1e3f 647 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
648 child_inf->removable = 1;
649 child_inf->symfile_flags = SYMFILE_NO_READ;
650 set_current_program_space (child_inf->pspace);
651 clone_program_space (child_inf->pspace, parent_pspace);
652
653 /* Let the shared library layer (e.g., solib-svr4) learn
654 about this new process, relocate the cloned exec, pull in
655 shared libraries, and install the solib event breakpoint.
656 If a "cloned-VM" event was propagated better throughout
657 the core, this wouldn't be required. */
658 solib_create_inferior_hook (0);
659 }
660 }
661
662 return target_follow_fork (follow_child, detach_fork);
663}
664
e58b0e63
PA
665/* Tell the target to follow the fork we're stopped at. Returns true
666 if the inferior should be resumed; false, if the target for some
667 reason decided it's best not to resume. */
668
5ab2fbf1
SM
669static bool
670follow_fork ()
c906108c 671{
5ab2fbf1
SM
672 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
673 bool should_resume = true;
e58b0e63
PA
674 struct thread_info *tp;
675
676 /* Copy user stepping state to the new inferior thread. FIXME: the
677 followed fork child thread should have a copy of most of the
4e3990f4
DE
678 parent thread structure's run control related fields, not just these.
679 Initialized to avoid "may be used uninitialized" warnings from gcc. */
680 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 681 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
682 CORE_ADDR step_range_start = 0;
683 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
684 int current_line = 0;
685 symtab *current_symtab = NULL;
4e3990f4 686 struct frame_id step_frame_id = { 0 };
8980e177 687 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
688
689 if (!non_stop)
690 {
5b6d1e4f 691 process_stratum_target *wait_target;
e58b0e63
PA
692 ptid_t wait_ptid;
693 struct target_waitstatus wait_status;
694
695 /* Get the last target status returned by target_wait(). */
5b6d1e4f 696 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
697
698 /* If not stopped at a fork event, then there's nothing else to
699 do. */
700 if (wait_status.kind != TARGET_WAITKIND_FORKED
701 && wait_status.kind != TARGET_WAITKIND_VFORKED)
702 return 1;
703
704 /* Check if we switched over from WAIT_PTID, since the event was
705 reported. */
00431a78 706 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
707 && (current_inferior ()->process_target () != wait_target
708 || inferior_ptid != wait_ptid))
e58b0e63
PA
709 {
710 /* We did. Switch back to WAIT_PTID thread, to tell the
711 target to follow it (in either direction). We'll
712 afterwards refuse to resume, and inform the user what
713 happened. */
5b6d1e4f 714 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 715 switch_to_thread (wait_thread);
5ab2fbf1 716 should_resume = false;
e58b0e63
PA
717 }
718 }
719
720 tp = inferior_thread ();
721
722 /* If there were any forks/vforks that were caught and are now to be
723 followed, then do so now. */
724 switch (tp->pending_follow.kind)
725 {
726 case TARGET_WAITKIND_FORKED:
727 case TARGET_WAITKIND_VFORKED:
728 {
729 ptid_t parent, child;
730
731 /* If the user did a next/step, etc, over a fork call,
732 preserve the stepping state in the fork child. */
733 if (follow_child && should_resume)
734 {
8358c15c
JK
735 step_resume_breakpoint = clone_momentary_breakpoint
736 (tp->control.step_resume_breakpoint);
16c381f0
JK
737 step_range_start = tp->control.step_range_start;
738 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
739 current_line = tp->current_line;
740 current_symtab = tp->current_symtab;
16c381f0 741 step_frame_id = tp->control.step_frame_id;
186c406b
TT
742 exception_resume_breakpoint
743 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 744 thread_fsm = tp->thread_fsm;
e58b0e63
PA
745
746 /* For now, delete the parent's sr breakpoint, otherwise,
747 parent/child sr breakpoints are considered duplicates,
748 and the child version will not be installed. Remove
749 this when the breakpoints module becomes aware of
750 inferiors and address spaces. */
751 delete_step_resume_breakpoint (tp);
16c381f0
JK
752 tp->control.step_range_start = 0;
753 tp->control.step_range_end = 0;
754 tp->control.step_frame_id = null_frame_id;
186c406b 755 delete_exception_resume_breakpoint (tp);
8980e177 756 tp->thread_fsm = NULL;
e58b0e63
PA
757 }
758
759 parent = inferior_ptid;
760 child = tp->pending_follow.value.related_pid;
761
5b6d1e4f 762 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
763 /* Set up inferior(s) as specified by the caller, and tell the
764 target to do whatever is necessary to follow either parent
765 or child. */
766 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
767 {
768 /* Target refused to follow, or there's some other reason
769 we shouldn't resume. */
770 should_resume = 0;
771 }
772 else
773 {
774 /* This pending follow fork event is now handled, one way
775 or another. The previous selected thread may be gone
776 from the lists by now, but if it is still around, need
777 to clear the pending follow request. */
5b6d1e4f 778 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
779 if (tp)
780 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
781
782 /* This makes sure we don't try to apply the "Switched
783 over from WAIT_PID" logic above. */
784 nullify_last_target_wait_ptid ();
785
1777feb0 786 /* If we followed the child, switch to it... */
e58b0e63
PA
787 if (follow_child)
788 {
5b6d1e4f 789 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 790 switch_to_thread (child_thr);
e58b0e63
PA
791
792 /* ... and preserve the stepping state, in case the
793 user was stepping over the fork call. */
794 if (should_resume)
795 {
796 tp = inferior_thread ();
8358c15c
JK
797 tp->control.step_resume_breakpoint
798 = step_resume_breakpoint;
16c381f0
JK
799 tp->control.step_range_start = step_range_start;
800 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
801 tp->current_line = current_line;
802 tp->current_symtab = current_symtab;
16c381f0 803 tp->control.step_frame_id = step_frame_id;
186c406b
TT
804 tp->control.exception_resume_breakpoint
805 = exception_resume_breakpoint;
8980e177 806 tp->thread_fsm = thread_fsm;
e58b0e63
PA
807 }
808 else
809 {
810 /* If we get here, it was because we're trying to
811 resume from a fork catchpoint, but, the user
812 has switched threads away from the thread that
813 forked. In that case, the resume command
814 issued is most likely not applicable to the
815 child, so just warn, and refuse to resume. */
3e43a32a 816 warning (_("Not resuming: switched threads "
fd7dcb94 817 "before following fork child."));
e58b0e63
PA
818 }
819
820 /* Reset breakpoints in the child as appropriate. */
821 follow_inferior_reset_breakpoints ();
822 }
e58b0e63
PA
823 }
824 }
825 break;
826 case TARGET_WAITKIND_SPURIOUS:
827 /* Nothing to follow. */
828 break;
829 default:
830 internal_error (__FILE__, __LINE__,
831 "Unexpected pending_follow.kind %d\n",
832 tp->pending_follow.kind);
833 break;
834 }
c906108c 835
e58b0e63 836 return should_resume;
c906108c
SS
837}
838
d83ad864 839static void
6604731b 840follow_inferior_reset_breakpoints (void)
c906108c 841{
4e1c45ea
PA
842 struct thread_info *tp = inferior_thread ();
843
6604731b
DJ
844 /* Was there a step_resume breakpoint? (There was if the user
845 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
846 thread number. Cloned step_resume breakpoints are disabled on
847 creation, so enable it here now that it is associated with the
848 correct thread.
6604731b
DJ
849
850 step_resumes are a form of bp that are made to be per-thread.
851 Since we created the step_resume bp when the parent process
852 was being debugged, and now are switching to the child process,
853 from the breakpoint package's viewpoint, that's a switch of
854 "threads". We must update the bp's notion of which thread
855 it is for, or it'll be ignored when it triggers. */
856
8358c15c 857 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
858 {
859 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
860 tp->control.step_resume_breakpoint->loc->enabled = 1;
861 }
6604731b 862
a1aa2221 863 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 864 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
865 {
866 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
867 tp->control.exception_resume_breakpoint->loc->enabled = 1;
868 }
186c406b 869
6604731b
DJ
870 /* Reinsert all breakpoints in the child. The user may have set
871 breakpoints after catching the fork, in which case those
872 were never set in the child, but only in the parent. This makes
873 sure the inserted breakpoints match the breakpoint list. */
874
875 breakpoint_re_set ();
876 insert_breakpoints ();
c906108c 877}
c906108c 878
6c95b8df
PA
879/* The child has exited or execed: resume threads of the parent the
880 user wanted to be executing. */
881
882static int
883proceed_after_vfork_done (struct thread_info *thread,
884 void *arg)
885{
886 int pid = * (int *) arg;
887
00431a78
PA
888 if (thread->ptid.pid () == pid
889 && thread->state == THREAD_RUNNING
890 && !thread->executing
6c95b8df 891 && !thread->stop_requested
a493e3e2 892 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
893 {
894 if (debug_infrun)
895 fprintf_unfiltered (gdb_stdlog,
896 "infrun: resuming vfork parent thread %s\n",
a068643d 897 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 898
00431a78 899 switch_to_thread (thread);
70509625 900 clear_proceed_status (0);
64ce06e4 901 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
902 }
903
904 return 0;
905}
906
5ed8105e
PA
907/* Save/restore inferior_ptid, current program space and current
908 inferior. Only use this if the current context points at an exited
909 inferior (and therefore there's no current thread to save). */
910class scoped_restore_exited_inferior
911{
912public:
913 scoped_restore_exited_inferior ()
914 : m_saved_ptid (&inferior_ptid)
915 {}
916
917private:
918 scoped_restore_tmpl<ptid_t> m_saved_ptid;
919 scoped_restore_current_program_space m_pspace;
920 scoped_restore_current_inferior m_inferior;
921};
922
6c95b8df
PA
923/* Called whenever we notice an exec or exit event, to handle
924 detaching or resuming a vfork parent. */
925
926static void
927handle_vfork_child_exec_or_exit (int exec)
928{
929 struct inferior *inf = current_inferior ();
930
931 if (inf->vfork_parent)
932 {
933 int resume_parent = -1;
934
935 /* This exec or exit marks the end of the shared memory region
b73715df
TV
936 between the parent and the child. Break the bonds. */
937 inferior *vfork_parent = inf->vfork_parent;
938 inf->vfork_parent->vfork_child = NULL;
939 inf->vfork_parent = NULL;
6c95b8df 940
b73715df
TV
941 /* If the user wanted to detach from the parent, now is the
942 time. */
943 if (vfork_parent->pending_detach)
6c95b8df
PA
944 {
945 struct thread_info *tp;
6c95b8df
PA
946 struct program_space *pspace;
947 struct address_space *aspace;
948
1777feb0 949 /* follow-fork child, detach-on-fork on. */
6c95b8df 950
b73715df 951 vfork_parent->pending_detach = 0;
68c9da30 952
5ed8105e
PA
953 gdb::optional<scoped_restore_exited_inferior>
954 maybe_restore_inferior;
955 gdb::optional<scoped_restore_current_pspace_and_thread>
956 maybe_restore_thread;
957
958 /* If we're handling a child exit, then inferior_ptid points
959 at the inferior's pid, not to a thread. */
f50f4e56 960 if (!exec)
5ed8105e 961 maybe_restore_inferior.emplace ();
f50f4e56 962 else
5ed8105e 963 maybe_restore_thread.emplace ();
6c95b8df
PA
964
965 /* We're letting loose of the parent. */
b73715df 966 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 967 switch_to_thread (tp);
6c95b8df
PA
968
969 /* We're about to detach from the parent, which implicitly
970 removes breakpoints from its address space. There's a
971 catch here: we want to reuse the spaces for the child,
972 but, parent/child are still sharing the pspace at this
973 point, although the exec in reality makes the kernel give
974 the child a fresh set of new pages. The problem here is
975 that the breakpoints module being unaware of this, would
976 likely chose the child process to write to the parent
977 address space. Swapping the child temporarily away from
978 the spaces has the desired effect. Yes, this is "sort
979 of" a hack. */
980
981 pspace = inf->pspace;
982 aspace = inf->aspace;
983 inf->aspace = NULL;
984 inf->pspace = NULL;
985
f67c0c91 986 if (print_inferior_events)
6c95b8df 987 {
a068643d 988 std::string pidstr
b73715df 989 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 990
223ffa71 991 target_terminal::ours_for_output ();
6c95b8df
PA
992
993 if (exec)
6f259a23
DB
994 {
995 fprintf_filtered (gdb_stdlog,
f67c0c91 996 _("[Detaching vfork parent %s "
a068643d 997 "after child exec]\n"), pidstr.c_str ());
6f259a23 998 }
6c95b8df 999 else
6f259a23
DB
1000 {
1001 fprintf_filtered (gdb_stdlog,
f67c0c91 1002 _("[Detaching vfork parent %s "
a068643d 1003 "after child exit]\n"), pidstr.c_str ());
6f259a23 1004 }
6c95b8df
PA
1005 }
1006
b73715df 1007 target_detach (vfork_parent, 0);
6c95b8df
PA
1008
1009 /* Put it back. */
1010 inf->pspace = pspace;
1011 inf->aspace = aspace;
6c95b8df
PA
1012 }
1013 else if (exec)
1014 {
1015 /* We're staying attached to the parent, so, really give the
1016 child a new address space. */
564b1e3f 1017 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1018 inf->aspace = inf->pspace->aspace;
1019 inf->removable = 1;
1020 set_current_program_space (inf->pspace);
1021
b73715df 1022 resume_parent = vfork_parent->pid;
6c95b8df
PA
1023 }
1024 else
1025 {
6c95b8df
PA
1026 /* If this is a vfork child exiting, then the pspace and
1027 aspaces were shared with the parent. Since we're
1028 reporting the process exit, we'll be mourning all that is
1029 found in the address space, and switching to null_ptid,
1030 preparing to start a new inferior. But, since we don't
1031 want to clobber the parent's address/program spaces, we
1032 go ahead and create a new one for this exiting
1033 inferior. */
1034
5ed8105e
PA
1035 /* Switch to null_ptid while running clone_program_space, so
1036 that clone_program_space doesn't want to read the
1037 selected frame of a dead process. */
1038 scoped_restore restore_ptid
1039 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df 1040
53af73bf
PA
1041 inf->pspace = new program_space (maybe_new_address_space ());
1042 inf->aspace = inf->pspace->aspace;
1043 set_current_program_space (inf->pspace);
6c95b8df 1044 inf->removable = 1;
7dcd53a0 1045 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1046 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1047
b73715df 1048 resume_parent = vfork_parent->pid;
6c95b8df
PA
1049 }
1050
6c95b8df
PA
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
5ed8105e 1057 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1058
1059 if (debug_infrun)
3e43a32a
MS
1060 fprintf_unfiltered (gdb_stdlog,
1061 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1062 resume_parent);
1063
1064 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1065 }
1066 }
1067}
1068
eb6c553b 1069/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1070
1071static const char follow_exec_mode_new[] = "new";
1072static const char follow_exec_mode_same[] = "same";
40478521 1073static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1074{
1075 follow_exec_mode_new,
1076 follow_exec_mode_same,
1077 NULL,
1078};
1079
1080static const char *follow_exec_mode_string = follow_exec_mode_same;
1081static void
1082show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1083 struct cmd_list_element *c, const char *value)
1084{
1085 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1086}
1087
ecf45d2c 1088/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1089
c906108c 1090static void
4ca51187 1091follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1092{
6c95b8df 1093 struct inferior *inf = current_inferior ();
e99b03dc 1094 int pid = ptid.pid ();
94585166 1095 ptid_t process_ptid;
7a292a7a 1096
65d2b333
PW
1097 /* Switch terminal for any messages produced e.g. by
1098 breakpoint_re_set. */
1099 target_terminal::ours_for_output ();
1100
c906108c
SS
1101 /* This is an exec event that we actually wish to pay attention to.
1102 Refresh our symbol table to the newly exec'd program, remove any
1103 momentary bp's, etc.
1104
1105 If there are breakpoints, they aren't really inserted now,
1106 since the exec() transformed our inferior into a fresh set
1107 of instructions.
1108
1109 We want to preserve symbolic breakpoints on the list, since
1110 we have hopes that they can be reset after the new a.out's
1111 symbol table is read.
1112
1113 However, any "raw" breakpoints must be removed from the list
1114 (e.g., the solib bp's), since their address is probably invalid
1115 now.
1116
1117 And, we DON'T want to call delete_breakpoints() here, since
1118 that may write the bp's "shadow contents" (the instruction
85102364 1119 value that was overwritten with a TRAP instruction). Since
1777feb0 1120 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1121
1122 mark_breakpoints_out ();
1123
95e50b27
PA
1124 /* The target reports the exec event to the main thread, even if
1125 some other thread does the exec, and even if the main thread was
1126 stopped or already gone. We may still have non-leader threads of
1127 the process on our list. E.g., on targets that don't have thread
1128 exit events (like remote); or on native Linux in non-stop mode if
1129 there were only two threads in the inferior and the non-leader
1130 one is the one that execs (and nothing forces an update of the
1131 thread list up to here). When debugging remotely, it's best to
1132 avoid extra traffic, when possible, so avoid syncing the thread
1133 list with the target, and instead go ahead and delete all threads
1134 of the process but one that reported the event. Note this must
1135 be done before calling update_breakpoints_after_exec, as
1136 otherwise clearing the threads' resources would reference stale
1137 thread breakpoints -- it may have been one of these threads that
1138 stepped across the exec. We could just clear their stepping
1139 states, but as long as we're iterating, might as well delete
1140 them. Deleting them now rather than at the next user-visible
1141 stop provides a nicer sequence of events for user and MI
1142 notifications. */
08036331 1143 for (thread_info *th : all_threads_safe ())
d7e15655 1144 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1145 delete_thread (th);
95e50b27
PA
1146
1147 /* We also need to clear any left over stale state for the
1148 leader/event thread. E.g., if there was any step-resume
1149 breakpoint or similar, it's gone now. We cannot truly
1150 step-to-next statement through an exec(). */
08036331 1151 thread_info *th = inferior_thread ();
8358c15c 1152 th->control.step_resume_breakpoint = NULL;
186c406b 1153 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1154 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1155 th->control.step_range_start = 0;
1156 th->control.step_range_end = 0;
c906108c 1157
95e50b27
PA
1158 /* The user may have had the main thread held stopped in the
1159 previous image (e.g., schedlock on, or non-stop). Release
1160 it now. */
a75724bc
PA
1161 th->stop_requested = 0;
1162
95e50b27
PA
1163 update_breakpoints_after_exec ();
1164
1777feb0 1165 /* What is this a.out's name? */
f2907e49 1166 process_ptid = ptid_t (pid);
6c95b8df 1167 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1168 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1169 exec_file_target);
c906108c
SS
1170
1171 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1172 inferior has essentially been killed & reborn. */
7a292a7a 1173
6ca15a4b 1174 breakpoint_init_inferior (inf_execd);
e85a822c 1175
797bc1cb
TT
1176 gdb::unique_xmalloc_ptr<char> exec_file_host
1177 = exec_file_find (exec_file_target, NULL);
ff862be4 1178
ecf45d2c
SL
1179 /* If we were unable to map the executable target pathname onto a host
1180 pathname, tell the user that. Otherwise GDB's subsequent behavior
1181 is confusing. Maybe it would even be better to stop at this point
1182 so that the user can specify a file manually before continuing. */
1183 if (exec_file_host == NULL)
1184 warning (_("Could not load symbols for executable %s.\n"
1185 "Do you need \"set sysroot\"?"),
1186 exec_file_target);
c906108c 1187
cce9b6bf
PA
1188 /* Reset the shared library package. This ensures that we get a
1189 shlib event when the child reaches "_start", at which point the
1190 dld will have had a chance to initialize the child. */
1191 /* Also, loading a symbol file below may trigger symbol lookups, and
1192 we don't want those to be satisfied by the libraries of the
1193 previous incarnation of this process. */
1194 no_shared_libraries (NULL, 0);
1195
6c95b8df
PA
1196 if (follow_exec_mode_string == follow_exec_mode_new)
1197 {
6c95b8df
PA
1198 /* The user wants to keep the old inferior and program spaces
1199 around. Create a new fresh one, and switch to it. */
1200
35ed81d4
SM
1201 /* Do exit processing for the original inferior before setting the new
1202 inferior's pid. Having two inferiors with the same pid would confuse
1203 find_inferior_p(t)id. Transfer the terminal state and info from the
1204 old to the new inferior. */
1205 inf = add_inferior_with_spaces ();
1206 swap_terminal_info (inf, current_inferior ());
057302ce 1207 exit_inferior_silent (current_inferior ());
17d8546e 1208
94585166 1209 inf->pid = pid;
ecf45d2c 1210 target_follow_exec (inf, exec_file_target);
6c95b8df 1211
5b6d1e4f
PA
1212 inferior *org_inferior = current_inferior ();
1213 switch_to_inferior_no_thread (inf);
1214 push_target (org_inferior->process_target ());
1215 thread_info *thr = add_thread (inf->process_target (), ptid);
1216 switch_to_thread (thr);
6c95b8df 1217 }
9107fc8d
PA
1218 else
1219 {
1220 /* The old description may no longer be fit for the new image.
1221 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1222 old description; we'll read a new one below. No need to do
1223 this on "follow-exec-mode new", as the old inferior stays
1224 around (its description is later cleared/refetched on
1225 restart). */
1226 target_clear_description ();
1227 }
6c95b8df
PA
1228
1229 gdb_assert (current_program_space == inf->pspace);
1230
ecf45d2c
SL
1231 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1232 because the proper displacement for a PIE (Position Independent
1233 Executable) main symbol file will only be computed by
1234 solib_create_inferior_hook below. breakpoint_re_set would fail
1235 to insert the breakpoints with the zero displacement. */
797bc1cb 1236 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1237
9107fc8d
PA
1238 /* If the target can specify a description, read it. Must do this
1239 after flipping to the new executable (because the target supplied
1240 description must be compatible with the executable's
1241 architecture, and the old executable may e.g., be 32-bit, while
1242 the new one 64-bit), and before anything involving memory or
1243 registers. */
1244 target_find_description ();
1245
268a4a75 1246 solib_create_inferior_hook (0);
c906108c 1247
4efc6507
DE
1248 jit_inferior_created_hook ();
1249
c1e56572
JK
1250 breakpoint_re_set ();
1251
c906108c
SS
1252 /* Reinsert all breakpoints. (Those which were symbolic have
1253 been reset to the proper address in the new a.out, thanks
1777feb0 1254 to symbol_file_command...). */
c906108c
SS
1255 insert_breakpoints ();
1256
1257 /* The next resume of this inferior should bring it to the shlib
1258 startup breakpoints. (If the user had also set bp's on
1259 "main" from the old (parent) process, then they'll auto-
1777feb0 1260 matically get reset there in the new process.). */
c906108c
SS
1261}
1262
c2829269
PA
1263/* The queue of threads that need to do a step-over operation to get
1264 past e.g., a breakpoint. What technique is used to step over the
1265 breakpoint/watchpoint does not matter -- all threads end up in the
1266 same queue, to maintain rough temporal order of execution, in order
1267 to avoid starvation, otherwise, we could e.g., find ourselves
1268 constantly stepping the same couple threads past their breakpoints
1269 over and over, if the single-step finish fast enough. */
1270struct thread_info *step_over_queue_head;
1271
6c4cfb24
PA
1272/* Bit flags indicating what the thread needs to step over. */
1273
8d297bbf 1274enum step_over_what_flag
6c4cfb24
PA
1275 {
1276 /* Step over a breakpoint. */
1277 STEP_OVER_BREAKPOINT = 1,
1278
1279 /* Step past a non-continuable watchpoint, in order to let the
1280 instruction execute so we can evaluate the watchpoint
1281 expression. */
1282 STEP_OVER_WATCHPOINT = 2
1283 };
8d297bbf 1284DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1285
963f9c80 1286/* Info about an instruction that is being stepped over. */
31e77af2
PA
1287
1288struct step_over_info
1289{
963f9c80
PA
1290 /* If we're stepping past a breakpoint, this is the address space
1291 and address of the instruction the breakpoint is set at. We'll
1292 skip inserting all breakpoints here. Valid iff ASPACE is
1293 non-NULL. */
8b86c959 1294 const address_space *aspace;
31e77af2 1295 CORE_ADDR address;
963f9c80
PA
1296
1297 /* The instruction being stepped over triggers a nonsteppable
1298 watchpoint. If true, we'll skip inserting watchpoints. */
1299 int nonsteppable_watchpoint_p;
21edc42f
YQ
1300
1301 /* The thread's global number. */
1302 int thread;
31e77af2
PA
1303};
1304
1305/* The step-over info of the location that is being stepped over.
1306
1307 Note that with async/breakpoint always-inserted mode, a user might
1308 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1309 being stepped over. As setting a new breakpoint inserts all
1310 breakpoints, we need to make sure the breakpoint being stepped over
1311 isn't inserted then. We do that by only clearing the step-over
1312 info when the step-over is actually finished (or aborted).
1313
1314 Presently GDB can only step over one breakpoint at any given time.
1315 Given threads that can't run code in the same address space as the
1316 breakpoint's can't really miss the breakpoint, GDB could be taught
1317 to step-over at most one breakpoint per address space (so this info
1318 could move to the address space object if/when GDB is extended).
1319 The set of breakpoints being stepped over will normally be much
1320 smaller than the set of all breakpoints, so a flag in the
1321 breakpoint location structure would be wasteful. A separate list
1322 also saves complexity and run-time, as otherwise we'd have to go
1323 through all breakpoint locations clearing their flag whenever we
1324 start a new sequence. Similar considerations weigh against storing
1325 this info in the thread object. Plus, not all step overs actually
1326 have breakpoint locations -- e.g., stepping past a single-step
1327 breakpoint, or stepping to complete a non-continuable
1328 watchpoint. */
1329static struct step_over_info step_over_info;
1330
1331/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1332 stepping over.
1333 N.B. We record the aspace and address now, instead of say just the thread,
1334 because when we need the info later the thread may be running. */
31e77af2
PA
1335
1336static void
8b86c959 1337set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1338 int nonsteppable_watchpoint_p,
1339 int thread)
31e77af2
PA
1340{
1341 step_over_info.aspace = aspace;
1342 step_over_info.address = address;
963f9c80 1343 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1344 step_over_info.thread = thread;
31e77af2
PA
1345}
1346
1347/* Called when we're not longer stepping over a breakpoint / an
1348 instruction, so all breakpoints are free to be (re)inserted. */
1349
1350static void
1351clear_step_over_info (void)
1352{
372316f1
PA
1353 if (debug_infrun)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "infrun: clear_step_over_info\n");
31e77af2
PA
1356 step_over_info.aspace = NULL;
1357 step_over_info.address = 0;
963f9c80 1358 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1359 step_over_info.thread = -1;
31e77af2
PA
1360}
1361
7f89fd65 1362/* See infrun.h. */
31e77af2
PA
1363
1364int
1365stepping_past_instruction_at (struct address_space *aspace,
1366 CORE_ADDR address)
1367{
1368 return (step_over_info.aspace != NULL
1369 && breakpoint_address_match (aspace, address,
1370 step_over_info.aspace,
1371 step_over_info.address));
1372}
1373
963f9c80
PA
1374/* See infrun.h. */
1375
21edc42f
YQ
1376int
1377thread_is_stepping_over_breakpoint (int thread)
1378{
1379 return (step_over_info.thread != -1
1380 && thread == step_over_info.thread);
1381}
1382
1383/* See infrun.h. */
1384
963f9c80
PA
1385int
1386stepping_past_nonsteppable_watchpoint (void)
1387{
1388 return step_over_info.nonsteppable_watchpoint_p;
1389}
1390
6cc83d2a
PA
1391/* Returns true if step-over info is valid. */
1392
1393static int
1394step_over_info_valid_p (void)
1395{
963f9c80
PA
1396 return (step_over_info.aspace != NULL
1397 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1398}
1399
c906108c 1400\f
237fc4c9
PA
1401/* Displaced stepping. */
1402
1403/* In non-stop debugging mode, we must take special care to manage
1404 breakpoints properly; in particular, the traditional strategy for
1405 stepping a thread past a breakpoint it has hit is unsuitable.
1406 'Displaced stepping' is a tactic for stepping one thread past a
1407 breakpoint it has hit while ensuring that other threads running
1408 concurrently will hit the breakpoint as they should.
1409
1410 The traditional way to step a thread T off a breakpoint in a
1411 multi-threaded program in all-stop mode is as follows:
1412
1413 a0) Initially, all threads are stopped, and breakpoints are not
1414 inserted.
1415 a1) We single-step T, leaving breakpoints uninserted.
1416 a2) We insert breakpoints, and resume all threads.
1417
1418 In non-stop debugging, however, this strategy is unsuitable: we
1419 don't want to have to stop all threads in the system in order to
1420 continue or step T past a breakpoint. Instead, we use displaced
1421 stepping:
1422
1423 n0) Initially, T is stopped, other threads are running, and
1424 breakpoints are inserted.
1425 n1) We copy the instruction "under" the breakpoint to a separate
1426 location, outside the main code stream, making any adjustments
1427 to the instruction, register, and memory state as directed by
1428 T's architecture.
1429 n2) We single-step T over the instruction at its new location.
1430 n3) We adjust the resulting register and memory state as directed
1431 by T's architecture. This includes resetting T's PC to point
1432 back into the main instruction stream.
1433 n4) We resume T.
1434
1435 This approach depends on the following gdbarch methods:
1436
1437 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1438 indicate where to copy the instruction, and how much space must
1439 be reserved there. We use these in step n1.
1440
1441 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1442 address, and makes any necessary adjustments to the instruction,
1443 register contents, and memory. We use this in step n1.
1444
1445 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1446 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1447 same effect the instruction would have had if we had executed it
1448 at its original address. We use this in step n3.
1449
237fc4c9
PA
1450 The gdbarch_displaced_step_copy_insn and
1451 gdbarch_displaced_step_fixup functions must be written so that
1452 copying an instruction with gdbarch_displaced_step_copy_insn,
1453 single-stepping across the copied instruction, and then applying
1454 gdbarch_displaced_insn_fixup should have the same effects on the
1455 thread's memory and registers as stepping the instruction in place
1456 would have. Exactly which responsibilities fall to the copy and
1457 which fall to the fixup is up to the author of those functions.
1458
1459 See the comments in gdbarch.sh for details.
1460
1461 Note that displaced stepping and software single-step cannot
1462 currently be used in combination, although with some care I think
1463 they could be made to. Software single-step works by placing
1464 breakpoints on all possible subsequent instructions; if the
1465 displaced instruction is a PC-relative jump, those breakpoints
1466 could fall in very strange places --- on pages that aren't
1467 executable, or at addresses that are not proper instruction
1468 boundaries. (We do generally let other threads run while we wait
1469 to hit the software single-step breakpoint, and they might
1470 encounter such a corrupted instruction.) One way to work around
1471 this would be to have gdbarch_displaced_step_copy_insn fully
1472 simulate the effect of PC-relative instructions (and return NULL)
1473 on architectures that use software single-stepping.
1474
1475 In non-stop mode, we can have independent and simultaneous step
1476 requests, so more than one thread may need to simultaneously step
1477 over a breakpoint. The current implementation assumes there is
1478 only one scratch space per process. In this case, we have to
1479 serialize access to the scratch space. If thread A wants to step
1480 over a breakpoint, but we are currently waiting for some other
1481 thread to complete a displaced step, we leave thread A stopped and
1482 place it in the displaced_step_request_queue. Whenever a displaced
1483 step finishes, we pick the next thread in the queue and start a new
1484 displaced step operation on it. See displaced_step_prepare and
1485 displaced_step_fixup for details. */
1486
cfba9872
SM
1487/* Default destructor for displaced_step_closure. */
1488
1489displaced_step_closure::~displaced_step_closure () = default;
1490
fc1cf338
PA
1491/* Get the displaced stepping state of process PID. */
1492
39a36629 1493static displaced_step_inferior_state *
00431a78 1494get_displaced_stepping_state (inferior *inf)
fc1cf338 1495{
d20172fc 1496 return &inf->displaced_step_state;
fc1cf338
PA
1497}
1498
372316f1
PA
1499/* Returns true if any inferior has a thread doing a displaced
1500 step. */
1501
39a36629
SM
1502static bool
1503displaced_step_in_progress_any_inferior ()
372316f1 1504{
d20172fc 1505 for (inferior *i : all_inferiors ())
39a36629 1506 {
d20172fc 1507 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1508 return true;
1509 }
372316f1 1510
39a36629 1511 return false;
372316f1
PA
1512}
1513
c0987663
YQ
1514/* Return true if thread represented by PTID is doing a displaced
1515 step. */
1516
1517static int
00431a78 1518displaced_step_in_progress_thread (thread_info *thread)
c0987663 1519{
00431a78 1520 gdb_assert (thread != NULL);
c0987663 1521
d20172fc 1522 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1523}
1524
8f572e5c
PA
1525/* Return true if process PID has a thread doing a displaced step. */
1526
1527static int
00431a78 1528displaced_step_in_progress (inferior *inf)
8f572e5c 1529{
d20172fc 1530 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1531}
1532
a42244db
YQ
1533/* If inferior is in displaced stepping, and ADDR equals to starting address
1534 of copy area, return corresponding displaced_step_closure. Otherwise,
1535 return NULL. */
1536
1537struct displaced_step_closure*
1538get_displaced_step_closure_by_addr (CORE_ADDR addr)
1539{
d20172fc 1540 displaced_step_inferior_state *displaced
00431a78 1541 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1542
1543 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1544 if (displaced->step_thread != nullptr
00431a78 1545 && displaced->step_copy == addr)
d8d83535 1546 return displaced->step_closure.get ();
a42244db
YQ
1547
1548 return NULL;
1549}
1550
fc1cf338
PA
1551static void
1552infrun_inferior_exit (struct inferior *inf)
1553{
d20172fc 1554 inf->displaced_step_state.reset ();
fc1cf338 1555}
237fc4c9 1556
fff08868
HZ
1557/* If ON, and the architecture supports it, GDB will use displaced
1558 stepping to step over breakpoints. If OFF, or if the architecture
1559 doesn't support it, GDB will instead use the traditional
1560 hold-and-step approach. If AUTO (which is the default), GDB will
1561 decide which technique to use to step over breakpoints depending on
9822cb57 1562 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1563
72d0e2c5 1564static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1565
237fc4c9
PA
1566static void
1567show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1568 struct cmd_list_element *c,
1569 const char *value)
1570{
72d0e2c5 1571 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1572 fprintf_filtered (file,
1573 _("Debugger's willingness to use displaced stepping "
1574 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1575 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1576 else
3e43a32a
MS
1577 fprintf_filtered (file,
1578 _("Debugger's willingness to use displaced stepping "
1579 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1580}
1581
9822cb57
SM
1582/* Return true if the gdbarch implements the required methods to use
1583 displaced stepping. */
1584
1585static bool
1586gdbarch_supports_displaced_stepping (gdbarch *arch)
1587{
1588 /* Only check for the presence of step_copy_insn. Other required methods
1589 are checked by the gdbarch validation. */
1590 return gdbarch_displaced_step_copy_insn_p (arch);
1591}
1592
fff08868 1593/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1594 over breakpoints of thread TP. */
fff08868 1595
9822cb57
SM
1596static bool
1597use_displaced_stepping (thread_info *tp)
237fc4c9 1598{
9822cb57
SM
1599 /* If the user disabled it explicitly, don't use displaced stepping. */
1600 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1601 return false;
1602
1603 /* If "auto", only use displaced stepping if the target operates in a non-stop
1604 way. */
1605 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1606 && !target_is_non_stop_p ())
1607 return false;
1608
1609 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1610
1611 /* If the architecture doesn't implement displaced stepping, don't use
1612 it. */
1613 if (!gdbarch_supports_displaced_stepping (gdbarch))
1614 return false;
1615
1616 /* If recording, don't use displaced stepping. */
1617 if (find_record_target () != nullptr)
1618 return false;
1619
d20172fc
SM
1620 displaced_step_inferior_state *displaced_state
1621 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1622
9822cb57
SM
1623 /* If displaced stepping failed before for this inferior, don't bother trying
1624 again. */
1625 if (displaced_state->failed_before)
1626 return false;
1627
1628 return true;
237fc4c9
PA
1629}
1630
d8d83535
SM
1631/* Simple function wrapper around displaced_step_inferior_state::reset. */
1632
237fc4c9 1633static void
d8d83535 1634displaced_step_reset (displaced_step_inferior_state *displaced)
237fc4c9 1635{
d8d83535 1636 displaced->reset ();
237fc4c9
PA
1637}
1638
d8d83535
SM
1639/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1640 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1641
1642using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1643
1644/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1645void
1646displaced_step_dump_bytes (struct ui_file *file,
1647 const gdb_byte *buf,
1648 size_t len)
1649{
1650 int i;
1651
1652 for (i = 0; i < len; i++)
1653 fprintf_unfiltered (file, "%02x ", buf[i]);
1654 fputs_unfiltered ("\n", file);
1655}
1656
1657/* Prepare to single-step, using displaced stepping.
1658
1659 Note that we cannot use displaced stepping when we have a signal to
1660 deliver. If we have a signal to deliver and an instruction to step
1661 over, then after the step, there will be no indication from the
1662 target whether the thread entered a signal handler or ignored the
1663 signal and stepped over the instruction successfully --- both cases
1664 result in a simple SIGTRAP. In the first case we mustn't do a
1665 fixup, and in the second case we must --- but we can't tell which.
1666 Comments in the code for 'random signals' in handle_inferior_event
1667 explain how we handle this case instead.
1668
1669 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1670 stepped now; 0 if displaced stepping this thread got queued; or -1
1671 if this instruction can't be displaced stepped. */
1672
237fc4c9 1673static int
00431a78 1674displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1675{
00431a78 1676 regcache *regcache = get_thread_regcache (tp);
ac7936df 1677 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1678 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1679 CORE_ADDR original, copy;
1680 ULONGEST len;
9e529e1d 1681 int status;
237fc4c9
PA
1682
1683 /* We should never reach this function if the architecture does not
1684 support displaced stepping. */
9822cb57 1685 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1686
c2829269
PA
1687 /* Nor if the thread isn't meant to step over a breakpoint. */
1688 gdb_assert (tp->control.trap_expected);
1689
c1e36e3e
PA
1690 /* Disable range stepping while executing in the scratch pad. We
1691 want a single-step even if executing the displaced instruction in
1692 the scratch buffer lands within the stepping range (e.g., a
1693 jump/branch). */
1694 tp->control.may_range_step = 0;
1695
fc1cf338
PA
1696 /* We have to displaced step one thread at a time, as we only have
1697 access to a single scratch space per inferior. */
237fc4c9 1698
d20172fc
SM
1699 displaced_step_inferior_state *displaced
1700 = get_displaced_stepping_state (tp->inf);
fc1cf338 1701
00431a78 1702 if (displaced->step_thread != nullptr)
237fc4c9
PA
1703 {
1704 /* Already waiting for a displaced step to finish. Defer this
1705 request and place in queue. */
237fc4c9
PA
1706
1707 if (debug_displaced)
1708 fprintf_unfiltered (gdb_stdlog,
c2829269 1709 "displaced: deferring step of %s\n",
a068643d 1710 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1711
c2829269 1712 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1713 return 0;
1714 }
1715 else
1716 {
1717 if (debug_displaced)
1718 fprintf_unfiltered (gdb_stdlog,
1719 "displaced: stepping %s now\n",
a068643d 1720 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1721 }
1722
d8d83535 1723 displaced_step_reset (displaced);
237fc4c9 1724
00431a78
PA
1725 scoped_restore_current_thread restore_thread;
1726
1727 switch_to_thread (tp);
ad53cd71 1728
515630c5 1729 original = regcache_read_pc (regcache);
237fc4c9
PA
1730
1731 copy = gdbarch_displaced_step_location (gdbarch);
1732 len = gdbarch_max_insn_length (gdbarch);
1733
d35ae833
PA
1734 if (breakpoint_in_range_p (aspace, copy, len))
1735 {
1736 /* There's a breakpoint set in the scratch pad location range
1737 (which is usually around the entry point). We'd either
1738 install it before resuming, which would overwrite/corrupt the
1739 scratch pad, or if it was already inserted, this displaced
1740 step would overwrite it. The latter is OK in the sense that
1741 we already assume that no thread is going to execute the code
1742 in the scratch pad range (after initial startup) anyway, but
1743 the former is unacceptable. Simply punt and fallback to
1744 stepping over this breakpoint in-line. */
1745 if (debug_displaced)
1746 {
1747 fprintf_unfiltered (gdb_stdlog,
1748 "displaced: breakpoint set in scratch pad. "
1749 "Stepping over breakpoint in-line instead.\n");
1750 }
1751
d35ae833
PA
1752 return -1;
1753 }
1754
237fc4c9 1755 /* Save the original contents of the copy area. */
d20172fc
SM
1756 displaced->step_saved_copy.resize (len);
1757 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1758 if (status != 0)
1759 throw_error (MEMORY_ERROR,
1760 _("Error accessing memory address %s (%s) for "
1761 "displaced-stepping scratch space."),
1762 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1763 if (debug_displaced)
1764 {
5af949e3
UW
1765 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1766 paddress (gdbarch, copy));
fc1cf338 1767 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1768 displaced->step_saved_copy.data (),
fc1cf338 1769 len);
237fc4c9
PA
1770 };
1771
e8217e61
SM
1772 displaced->step_closure
1773 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1774 if (displaced->step_closure == NULL)
7f03bd92
PA
1775 {
1776 /* The architecture doesn't know how or want to displaced step
1777 this instruction or instruction sequence. Fallback to
1778 stepping over the breakpoint in-line. */
7f03bd92
PA
1779 return -1;
1780 }
237fc4c9 1781
9f5a595d
UW
1782 /* Save the information we need to fix things up if the step
1783 succeeds. */
00431a78 1784 displaced->step_thread = tp;
fc1cf338 1785 displaced->step_gdbarch = gdbarch;
fc1cf338
PA
1786 displaced->step_original = original;
1787 displaced->step_copy = copy;
9f5a595d 1788
9799571e 1789 {
d8d83535 1790 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1791
9799571e
TT
1792 /* Resume execution at the copy. */
1793 regcache_write_pc (regcache, copy);
237fc4c9 1794
9799571e
TT
1795 cleanup.release ();
1796 }
ad53cd71 1797
237fc4c9 1798 if (debug_displaced)
5af949e3
UW
1799 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1800 paddress (gdbarch, copy));
237fc4c9 1801
237fc4c9
PA
1802 return 1;
1803}
1804
3fc8eb30
PA
1805/* Wrapper for displaced_step_prepare_throw that disabled further
1806 attempts at displaced stepping if we get a memory error. */
1807
1808static int
00431a78 1809displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1810{
1811 int prepared = -1;
1812
a70b8144 1813 try
3fc8eb30 1814 {
00431a78 1815 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1816 }
230d2906 1817 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1818 {
1819 struct displaced_step_inferior_state *displaced_state;
1820
16b41842
PA
1821 if (ex.error != MEMORY_ERROR
1822 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1823 throw;
3fc8eb30
PA
1824
1825 if (debug_infrun)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1829 ex.what ());
3fc8eb30
PA
1830 }
1831
1832 /* Be verbose if "set displaced-stepping" is "on", silent if
1833 "auto". */
1834 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1835 {
fd7dcb94 1836 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1837 ex.what ());
3fc8eb30
PA
1838 }
1839
1840 /* Disable further displaced stepping attempts. */
1841 displaced_state
00431a78 1842 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1843 displaced_state->failed_before = 1;
1844 }
3fc8eb30
PA
1845
1846 return prepared;
1847}
1848
237fc4c9 1849static void
3e43a32a
MS
1850write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1851 const gdb_byte *myaddr, int len)
237fc4c9 1852{
2989a365 1853 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1854
237fc4c9
PA
1855 inferior_ptid = ptid;
1856 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1857}
1858
e2d96639
YQ
1859/* Restore the contents of the copy area for thread PTID. */
1860
1861static void
1862displaced_step_restore (struct displaced_step_inferior_state *displaced,
1863 ptid_t ptid)
1864{
1865 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1866
1867 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1868 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1869 if (debug_displaced)
1870 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1871 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1872 paddress (displaced->step_gdbarch,
1873 displaced->step_copy));
1874}
1875
372316f1
PA
1876/* If we displaced stepped an instruction successfully, adjust
1877 registers and memory to yield the same effect the instruction would
1878 have had if we had executed it at its original address, and return
1879 1. If the instruction didn't complete, relocate the PC and return
1880 -1. If the thread wasn't displaced stepping, return 0. */
1881
1882static int
00431a78 1883displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1884{
fc1cf338 1885 struct displaced_step_inferior_state *displaced
00431a78 1886 = get_displaced_stepping_state (event_thread->inf);
372316f1 1887 int ret;
fc1cf338 1888
00431a78
PA
1889 /* Was this event for the thread we displaced? */
1890 if (displaced->step_thread != event_thread)
372316f1 1891 return 0;
237fc4c9 1892
cb71640d
PA
1893 /* Fixup may need to read memory/registers. Switch to the thread
1894 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d
TBA
1895 the current thread, and displaced_step_restore performs ptid-dependent
1896 memory accesses using current_inferior() and current_top_target(). */
00431a78 1897 switch_to_thread (event_thread);
cb71640d 1898
d43b7a2d
TBA
1899 displaced_step_reset_cleanup cleanup (displaced);
1900
1901 displaced_step_restore (displaced, displaced->step_thread->ptid);
1902
237fc4c9 1903 /* Did the instruction complete successfully? */
cb71640d
PA
1904 if (signal == GDB_SIGNAL_TRAP
1905 && !(target_stopped_by_watchpoint ()
1906 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1907 || target_have_steppable_watchpoint)))
237fc4c9
PA
1908 {
1909 /* Fix up the resulting state. */
fc1cf338 1910 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
d8d83535 1911 displaced->step_closure.get (),
fc1cf338
PA
1912 displaced->step_original,
1913 displaced->step_copy,
00431a78 1914 get_thread_regcache (displaced->step_thread));
372316f1 1915 ret = 1;
237fc4c9
PA
1916 }
1917 else
1918 {
1919 /* Since the instruction didn't complete, all we can do is
1920 relocate the PC. */
00431a78 1921 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1922 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1923
fc1cf338 1924 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1925 regcache_write_pc (regcache, pc);
372316f1 1926 ret = -1;
237fc4c9
PA
1927 }
1928
372316f1 1929 return ret;
c2829269 1930}
1c5cfe86 1931
4d9d9d04
PA
1932/* Data to be passed around while handling an event. This data is
1933 discarded between events. */
1934struct execution_control_state
1935{
5b6d1e4f 1936 process_stratum_target *target;
4d9d9d04
PA
1937 ptid_t ptid;
1938 /* The thread that got the event, if this was a thread event; NULL
1939 otherwise. */
1940 struct thread_info *event_thread;
1941
1942 struct target_waitstatus ws;
1943 int stop_func_filled_in;
1944 CORE_ADDR stop_func_start;
1945 CORE_ADDR stop_func_end;
1946 const char *stop_func_name;
1947 int wait_some_more;
1948
1949 /* True if the event thread hit the single-step breakpoint of
1950 another thread. Thus the event doesn't cause a stop, the thread
1951 needs to be single-stepped past the single-step breakpoint before
1952 we can switch back to the original stepping thread. */
1953 int hit_singlestep_breakpoint;
1954};
1955
1956/* Clear ECS and set it to point at TP. */
c2829269
PA
1957
1958static void
4d9d9d04
PA
1959reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1960{
1961 memset (ecs, 0, sizeof (*ecs));
1962 ecs->event_thread = tp;
1963 ecs->ptid = tp->ptid;
1964}
1965
1966static void keep_going_pass_signal (struct execution_control_state *ecs);
1967static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1968static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1969static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1970
1971/* Are there any pending step-over requests? If so, run all we can
1972 now and return true. Otherwise, return false. */
1973
1974static int
c2829269
PA
1975start_step_over (void)
1976{
1977 struct thread_info *tp, *next;
1978
372316f1
PA
1979 /* Don't start a new step-over if we already have an in-line
1980 step-over operation ongoing. */
1981 if (step_over_info_valid_p ())
1982 return 0;
1983
c2829269 1984 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1985 {
4d9d9d04
PA
1986 struct execution_control_state ecss;
1987 struct execution_control_state *ecs = &ecss;
8d297bbf 1988 step_over_what step_what;
372316f1 1989 int must_be_in_line;
c2829269 1990
c65d6b55
PA
1991 gdb_assert (!tp->stop_requested);
1992
c2829269 1993 next = thread_step_over_chain_next (tp);
237fc4c9 1994
c2829269
PA
1995 /* If this inferior already has a displaced step in process,
1996 don't start a new one. */
00431a78 1997 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1998 continue;
1999
372316f1
PA
2000 step_what = thread_still_needs_step_over (tp);
2001 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2002 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2003 && !use_displaced_stepping (tp)));
372316f1
PA
2004
2005 /* We currently stop all threads of all processes to step-over
2006 in-line. If we need to start a new in-line step-over, let
2007 any pending displaced steps finish first. */
2008 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2009 return 0;
2010
c2829269
PA
2011 thread_step_over_chain_remove (tp);
2012
2013 if (step_over_queue_head == NULL)
2014 {
2015 if (debug_infrun)
2016 fprintf_unfiltered (gdb_stdlog,
2017 "infrun: step-over queue now empty\n");
2018 }
2019
372316f1
PA
2020 if (tp->control.trap_expected
2021 || tp->resumed
2022 || tp->executing)
ad53cd71 2023 {
4d9d9d04
PA
2024 internal_error (__FILE__, __LINE__,
2025 "[%s] has inconsistent state: "
372316f1 2026 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 2027 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 2028 tp->control.trap_expected,
372316f1 2029 tp->resumed,
4d9d9d04 2030 tp->executing);
ad53cd71 2031 }
1c5cfe86 2032
4d9d9d04
PA
2033 if (debug_infrun)
2034 fprintf_unfiltered (gdb_stdlog,
2035 "infrun: resuming [%s] for step-over\n",
a068643d 2036 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
2037
2038 /* keep_going_pass_signal skips the step-over if the breakpoint
2039 is no longer inserted. In all-stop, we want to keep looking
2040 for a thread that needs a step-over instead of resuming TP,
2041 because we wouldn't be able to resume anything else until the
2042 target stops again. In non-stop, the resume always resumes
2043 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2044 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2045 continue;
8550d3b3 2046
00431a78 2047 switch_to_thread (tp);
4d9d9d04
PA
2048 reset_ecs (ecs, tp);
2049 keep_going_pass_signal (ecs);
1c5cfe86 2050
4d9d9d04
PA
2051 if (!ecs->wait_some_more)
2052 error (_("Command aborted."));
1c5cfe86 2053
372316f1
PA
2054 gdb_assert (tp->resumed);
2055
2056 /* If we started a new in-line step-over, we're done. */
2057 if (step_over_info_valid_p ())
2058 {
2059 gdb_assert (tp->control.trap_expected);
2060 return 1;
2061 }
2062
fbea99ea 2063 if (!target_is_non_stop_p ())
4d9d9d04
PA
2064 {
2065 /* On all-stop, shouldn't have resumed unless we needed a
2066 step over. */
2067 gdb_assert (tp->control.trap_expected
2068 || tp->step_after_step_resume_breakpoint);
2069
2070 /* With remote targets (at least), in all-stop, we can't
2071 issue any further remote commands until the program stops
2072 again. */
2073 return 1;
1c5cfe86 2074 }
c2829269 2075
4d9d9d04
PA
2076 /* Either the thread no longer needed a step-over, or a new
2077 displaced stepping sequence started. Even in the latter
2078 case, continue looking. Maybe we can also start another
2079 displaced step on a thread of other process. */
237fc4c9 2080 }
4d9d9d04
PA
2081
2082 return 0;
237fc4c9
PA
2083}
2084
5231c1fd
PA
2085/* Update global variables holding ptids to hold NEW_PTID if they were
2086 holding OLD_PTID. */
2087static void
2088infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2089{
d7e15655 2090 if (inferior_ptid == old_ptid)
5231c1fd 2091 inferior_ptid = new_ptid;
5231c1fd
PA
2092}
2093
237fc4c9 2094\f
c906108c 2095
53904c9e
AC
2096static const char schedlock_off[] = "off";
2097static const char schedlock_on[] = "on";
2098static const char schedlock_step[] = "step";
f2665db5 2099static const char schedlock_replay[] = "replay";
40478521 2100static const char *const scheduler_enums[] = {
ef346e04
AC
2101 schedlock_off,
2102 schedlock_on,
2103 schedlock_step,
f2665db5 2104 schedlock_replay,
ef346e04
AC
2105 NULL
2106};
f2665db5 2107static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2108static void
2109show_scheduler_mode (struct ui_file *file, int from_tty,
2110 struct cmd_list_element *c, const char *value)
2111{
3e43a32a
MS
2112 fprintf_filtered (file,
2113 _("Mode for locking scheduler "
2114 "during execution is \"%s\".\n"),
920d2a44
AC
2115 value);
2116}
c906108c
SS
2117
2118static void
eb4c3f4a 2119set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2120{
eefe576e
AC
2121 if (!target_can_lock_scheduler)
2122 {
2123 scheduler_mode = schedlock_off;
2124 error (_("Target '%s' cannot support this command."), target_shortname);
2125 }
c906108c
SS
2126}
2127
d4db2f36
PA
2128/* True if execution commands resume all threads of all processes by
2129 default; otherwise, resume only threads of the current inferior
2130 process. */
491144b5 2131bool sched_multi = false;
d4db2f36 2132
2facfe5c
DD
2133/* Try to setup for software single stepping over the specified location.
2134 Return 1 if target_resume() should use hardware single step.
2135
2136 GDBARCH the current gdbarch.
2137 PC the location to step over. */
2138
2139static int
2140maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2141{
2142 int hw_step = 1;
2143
f02253f1 2144 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2145 && gdbarch_software_single_step_p (gdbarch))
2146 hw_step = !insert_single_step_breakpoints (gdbarch);
2147
2facfe5c
DD
2148 return hw_step;
2149}
c906108c 2150
f3263aa4
PA
2151/* See infrun.h. */
2152
09cee04b
PA
2153ptid_t
2154user_visible_resume_ptid (int step)
2155{
f3263aa4 2156 ptid_t resume_ptid;
09cee04b 2157
09cee04b
PA
2158 if (non_stop)
2159 {
2160 /* With non-stop mode on, threads are always handled
2161 individually. */
2162 resume_ptid = inferior_ptid;
2163 }
2164 else if ((scheduler_mode == schedlock_on)
03d46957 2165 || (scheduler_mode == schedlock_step && step))
09cee04b 2166 {
f3263aa4
PA
2167 /* User-settable 'scheduler' mode requires solo thread
2168 resume. */
09cee04b
PA
2169 resume_ptid = inferior_ptid;
2170 }
f2665db5
MM
2171 else if ((scheduler_mode == schedlock_replay)
2172 && target_record_will_replay (minus_one_ptid, execution_direction))
2173 {
2174 /* User-settable 'scheduler' mode requires solo thread resume in replay
2175 mode. */
2176 resume_ptid = inferior_ptid;
2177 }
f3263aa4
PA
2178 else if (!sched_multi && target_supports_multi_process ())
2179 {
2180 /* Resume all threads of the current process (and none of other
2181 processes). */
e99b03dc 2182 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2183 }
2184 else
2185 {
2186 /* Resume all threads of all processes. */
2187 resume_ptid = RESUME_ALL;
2188 }
09cee04b
PA
2189
2190 return resume_ptid;
2191}
2192
5b6d1e4f
PA
2193/* See infrun.h. */
2194
2195process_stratum_target *
2196user_visible_resume_target (ptid_t resume_ptid)
2197{
2198 return (resume_ptid == minus_one_ptid && sched_multi
2199 ? NULL
2200 : current_inferior ()->process_target ());
2201}
2202
fbea99ea
PA
2203/* Return a ptid representing the set of threads that we will resume,
2204 in the perspective of the target, assuming run control handling
2205 does not require leaving some threads stopped (e.g., stepping past
2206 breakpoint). USER_STEP indicates whether we're about to start the
2207 target for a stepping command. */
2208
2209static ptid_t
2210internal_resume_ptid (int user_step)
2211{
2212 /* In non-stop, we always control threads individually. Note that
2213 the target may always work in non-stop mode even with "set
2214 non-stop off", in which case user_visible_resume_ptid could
2215 return a wildcard ptid. */
2216 if (target_is_non_stop_p ())
2217 return inferior_ptid;
2218 else
2219 return user_visible_resume_ptid (user_step);
2220}
2221
64ce06e4
PA
2222/* Wrapper for target_resume, that handles infrun-specific
2223 bookkeeping. */
2224
2225static void
2226do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2227{
2228 struct thread_info *tp = inferior_thread ();
2229
c65d6b55
PA
2230 gdb_assert (!tp->stop_requested);
2231
64ce06e4 2232 /* Install inferior's terminal modes. */
223ffa71 2233 target_terminal::inferior ();
64ce06e4
PA
2234
2235 /* Avoid confusing the next resume, if the next stop/resume
2236 happens to apply to another thread. */
2237 tp->suspend.stop_signal = GDB_SIGNAL_0;
2238
8f572e5c
PA
2239 /* Advise target which signals may be handled silently.
2240
2241 If we have removed breakpoints because we are stepping over one
2242 in-line (in any thread), we need to receive all signals to avoid
2243 accidentally skipping a breakpoint during execution of a signal
2244 handler.
2245
2246 Likewise if we're displaced stepping, otherwise a trap for a
2247 breakpoint in a signal handler might be confused with the
2248 displaced step finishing. We don't make the displaced_step_fixup
2249 step distinguish the cases instead, because:
2250
2251 - a backtrace while stopped in the signal handler would show the
2252 scratch pad as frame older than the signal handler, instead of
2253 the real mainline code.
2254
2255 - when the thread is later resumed, the signal handler would
2256 return to the scratch pad area, which would no longer be
2257 valid. */
2258 if (step_over_info_valid_p ()
00431a78 2259 || displaced_step_in_progress (tp->inf))
adc6a863 2260 target_pass_signals ({});
64ce06e4 2261 else
adc6a863 2262 target_pass_signals (signal_pass);
64ce06e4
PA
2263
2264 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2265
2266 target_commit_resume ();
5b6d1e4f
PA
2267
2268 if (target_can_async_p ())
2269 target_async (1);
64ce06e4
PA
2270}
2271
d930703d 2272/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2273 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2274 call 'resume', which handles exceptions. */
c906108c 2275
71d378ae
PA
2276static void
2277resume_1 (enum gdb_signal sig)
c906108c 2278{
515630c5 2279 struct regcache *regcache = get_current_regcache ();
ac7936df 2280 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2281 struct thread_info *tp = inferior_thread ();
515630c5 2282 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2283 const address_space *aspace = regcache->aspace ();
b0f16a3e 2284 ptid_t resume_ptid;
856e7dd6
PA
2285 /* This represents the user's step vs continue request. When
2286 deciding whether "set scheduler-locking step" applies, it's the
2287 user's intention that counts. */
2288 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2289 /* This represents what we'll actually request the target to do.
2290 This can decay from a step to a continue, if e.g., we need to
2291 implement single-stepping with breakpoints (software
2292 single-step). */
6b403daa 2293 int step;
c7e8a53c 2294
c65d6b55 2295 gdb_assert (!tp->stop_requested);
c2829269
PA
2296 gdb_assert (!thread_is_in_step_over_chain (tp));
2297
372316f1
PA
2298 if (tp->suspend.waitstatus_pending_p)
2299 {
2300 if (debug_infrun)
2301 {
23fdd69e
SM
2302 std::string statstr
2303 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2304
372316f1 2305 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2306 "infrun: resume: thread %s has pending wait "
2307 "status %s (currently_stepping=%d).\n",
a068643d
TT
2308 target_pid_to_str (tp->ptid).c_str (),
2309 statstr.c_str (),
372316f1 2310 currently_stepping (tp));
372316f1
PA
2311 }
2312
5b6d1e4f 2313 tp->inf->process_target ()->threads_executing = true;
719546c4 2314 tp->resumed = true;
372316f1
PA
2315
2316 /* FIXME: What should we do if we are supposed to resume this
2317 thread with a signal? Maybe we should maintain a queue of
2318 pending signals to deliver. */
2319 if (sig != GDB_SIGNAL_0)
2320 {
fd7dcb94 2321 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2322 gdb_signal_to_name (sig),
2323 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2324 }
2325
2326 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2327
2328 if (target_can_async_p ())
9516f85a
AB
2329 {
2330 target_async (1);
2331 /* Tell the event loop we have an event to process. */
2332 mark_async_event_handler (infrun_async_inferior_event_token);
2333 }
372316f1
PA
2334 return;
2335 }
2336
2337 tp->stepped_breakpoint = 0;
2338
6b403daa
PA
2339 /* Depends on stepped_breakpoint. */
2340 step = currently_stepping (tp);
2341
74609e71
YQ
2342 if (current_inferior ()->waiting_for_vfork_done)
2343 {
48f9886d
PA
2344 /* Don't try to single-step a vfork parent that is waiting for
2345 the child to get out of the shared memory region (by exec'ing
2346 or exiting). This is particularly important on software
2347 single-step archs, as the child process would trip on the
2348 software single step breakpoint inserted for the parent
2349 process. Since the parent will not actually execute any
2350 instruction until the child is out of the shared region (such
2351 are vfork's semantics), it is safe to simply continue it.
2352 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2353 the parent, and tell it to `keep_going', which automatically
2354 re-sets it stepping. */
74609e71
YQ
2355 if (debug_infrun)
2356 fprintf_unfiltered (gdb_stdlog,
2357 "infrun: resume : clear step\n");
a09dd441 2358 step = 0;
74609e71
YQ
2359 }
2360
527159b7 2361 if (debug_infrun)
237fc4c9 2362 fprintf_unfiltered (gdb_stdlog,
c9737c08 2363 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2364 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2365 step, gdb_signal_to_symbol_string (sig),
2366 tp->control.trap_expected,
a068643d 2367 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2368 paddress (gdbarch, pc));
c906108c 2369
c2c6d25f
JM
2370 /* Normally, by the time we reach `resume', the breakpoints are either
2371 removed or inserted, as appropriate. The exception is if we're sitting
2372 at a permanent breakpoint; we need to step over it, but permanent
2373 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2374 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2375 {
af48d08f
PA
2376 if (sig != GDB_SIGNAL_0)
2377 {
2378 /* We have a signal to pass to the inferior. The resume
2379 may, or may not take us to the signal handler. If this
2380 is a step, we'll need to stop in the signal handler, if
2381 there's one, (if the target supports stepping into
2382 handlers), or in the next mainline instruction, if
2383 there's no handler. If this is a continue, we need to be
2384 sure to run the handler with all breakpoints inserted.
2385 In all cases, set a breakpoint at the current address
2386 (where the handler returns to), and once that breakpoint
2387 is hit, resume skipping the permanent breakpoint. If
2388 that breakpoint isn't hit, then we've stepped into the
2389 signal handler (or hit some other event). We'll delete
2390 the step-resume breakpoint then. */
2391
2392 if (debug_infrun)
2393 fprintf_unfiltered (gdb_stdlog,
2394 "infrun: resume: skipping permanent breakpoint, "
2395 "deliver signal first\n");
2396
2397 clear_step_over_info ();
2398 tp->control.trap_expected = 0;
2399
2400 if (tp->control.step_resume_breakpoint == NULL)
2401 {
2402 /* Set a "high-priority" step-resume, as we don't want
2403 user breakpoints at PC to trigger (again) when this
2404 hits. */
2405 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2406 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2407
2408 tp->step_after_step_resume_breakpoint = step;
2409 }
2410
2411 insert_breakpoints ();
2412 }
2413 else
2414 {
2415 /* There's no signal to pass, we can go ahead and skip the
2416 permanent breakpoint manually. */
2417 if (debug_infrun)
2418 fprintf_unfiltered (gdb_stdlog,
2419 "infrun: resume: skipping permanent breakpoint\n");
2420 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2421 /* Update pc to reflect the new address from which we will
2422 execute instructions. */
2423 pc = regcache_read_pc (regcache);
2424
2425 if (step)
2426 {
2427 /* We've already advanced the PC, so the stepping part
2428 is done. Now we need to arrange for a trap to be
2429 reported to handle_inferior_event. Set a breakpoint
2430 at the current PC, and run to it. Don't update
2431 prev_pc, because if we end in
44a1ee51
PA
2432 switch_back_to_stepped_thread, we want the "expected
2433 thread advanced also" branch to be taken. IOW, we
2434 don't want this thread to step further from PC
af48d08f 2435 (overstep). */
1ac806b8 2436 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2437 insert_single_step_breakpoint (gdbarch, aspace, pc);
2438 insert_breakpoints ();
2439
fbea99ea 2440 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2441 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2442 tp->resumed = true;
af48d08f
PA
2443 return;
2444 }
2445 }
6d350bb5 2446 }
c2c6d25f 2447
c1e36e3e
PA
2448 /* If we have a breakpoint to step over, make sure to do a single
2449 step only. Same if we have software watchpoints. */
2450 if (tp->control.trap_expected || bpstat_should_step ())
2451 tp->control.may_range_step = 0;
2452
7da6a5b9
LM
2453 /* If displaced stepping is enabled, step over breakpoints by executing a
2454 copy of the instruction at a different address.
237fc4c9
PA
2455
2456 We can't use displaced stepping when we have a signal to deliver;
2457 the comments for displaced_step_prepare explain why. The
2458 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2459 signals' explain what we do instead.
2460
2461 We can't use displaced stepping when we are waiting for vfork_done
2462 event, displaced stepping breaks the vfork child similarly as single
2463 step software breakpoint. */
3fc8eb30
PA
2464 if (tp->control.trap_expected
2465 && use_displaced_stepping (tp)
cb71640d 2466 && !step_over_info_valid_p ()
a493e3e2 2467 && sig == GDB_SIGNAL_0
74609e71 2468 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2469 {
00431a78 2470 int prepared = displaced_step_prepare (tp);
fc1cf338 2471
3fc8eb30 2472 if (prepared == 0)
d56b7306 2473 {
4d9d9d04
PA
2474 if (debug_infrun)
2475 fprintf_unfiltered (gdb_stdlog,
2476 "Got placed in step-over queue\n");
2477
2478 tp->control.trap_expected = 0;
d56b7306
VP
2479 return;
2480 }
3fc8eb30
PA
2481 else if (prepared < 0)
2482 {
2483 /* Fallback to stepping over the breakpoint in-line. */
2484
2485 if (target_is_non_stop_p ())
2486 stop_all_threads ();
2487
a01bda52 2488 set_step_over_info (regcache->aspace (),
21edc42f 2489 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2490
2491 step = maybe_software_singlestep (gdbarch, pc);
2492
2493 insert_breakpoints ();
2494 }
2495 else if (prepared > 0)
2496 {
2497 struct displaced_step_inferior_state *displaced;
99e40580 2498
3fc8eb30
PA
2499 /* Update pc to reflect the new address from which we will
2500 execute instructions due to displaced stepping. */
00431a78 2501 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2502
00431a78 2503 displaced = get_displaced_stepping_state (tp->inf);
d8d83535
SM
2504 step = gdbarch_displaced_step_hw_singlestep
2505 (gdbarch, displaced->step_closure.get ());
3fc8eb30 2506 }
237fc4c9
PA
2507 }
2508
2facfe5c 2509 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2510 else if (step)
2facfe5c 2511 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2512
30852783
UW
2513 /* Currently, our software single-step implementation leads to different
2514 results than hardware single-stepping in one situation: when stepping
2515 into delivering a signal which has an associated signal handler,
2516 hardware single-step will stop at the first instruction of the handler,
2517 while software single-step will simply skip execution of the handler.
2518
2519 For now, this difference in behavior is accepted since there is no
2520 easy way to actually implement single-stepping into a signal handler
2521 without kernel support.
2522
2523 However, there is one scenario where this difference leads to follow-on
2524 problems: if we're stepping off a breakpoint by removing all breakpoints
2525 and then single-stepping. In this case, the software single-step
2526 behavior means that even if there is a *breakpoint* in the signal
2527 handler, GDB still would not stop.
2528
2529 Fortunately, we can at least fix this particular issue. We detect
2530 here the case where we are about to deliver a signal while software
2531 single-stepping with breakpoints removed. In this situation, we
2532 revert the decisions to remove all breakpoints and insert single-
2533 step breakpoints, and instead we install a step-resume breakpoint
2534 at the current address, deliver the signal without stepping, and
2535 once we arrive back at the step-resume breakpoint, actually step
2536 over the breakpoint we originally wanted to step over. */
34b7e8a6 2537 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2538 && sig != GDB_SIGNAL_0
2539 && step_over_info_valid_p ())
30852783
UW
2540 {
2541 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2542 immediately after a handler returns, might already have
30852783
UW
2543 a step-resume breakpoint set on the earlier handler. We cannot
2544 set another step-resume breakpoint; just continue on until the
2545 original breakpoint is hit. */
2546 if (tp->control.step_resume_breakpoint == NULL)
2547 {
2c03e5be 2548 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2549 tp->step_after_step_resume_breakpoint = 1;
2550 }
2551
34b7e8a6 2552 delete_single_step_breakpoints (tp);
30852783 2553
31e77af2 2554 clear_step_over_info ();
30852783 2555 tp->control.trap_expected = 0;
31e77af2
PA
2556
2557 insert_breakpoints ();
30852783
UW
2558 }
2559
b0f16a3e
SM
2560 /* If STEP is set, it's a request to use hardware stepping
2561 facilities. But in that case, we should never
2562 use singlestep breakpoint. */
34b7e8a6 2563 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2564
fbea99ea 2565 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2566 if (tp->control.trap_expected)
b0f16a3e
SM
2567 {
2568 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2569 hit, either by single-stepping the thread with the breakpoint
2570 removed, or by displaced stepping, with the breakpoint inserted.
2571 In the former case, we need to single-step only this thread,
2572 and keep others stopped, as they can miss this breakpoint if
2573 allowed to run. That's not really a problem for displaced
2574 stepping, but, we still keep other threads stopped, in case
2575 another thread is also stopped for a breakpoint waiting for
2576 its turn in the displaced stepping queue. */
b0f16a3e
SM
2577 resume_ptid = inferior_ptid;
2578 }
fbea99ea
PA
2579 else
2580 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2581
7f5ef605
PA
2582 if (execution_direction != EXEC_REVERSE
2583 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2584 {
372316f1
PA
2585 /* There are two cases where we currently need to step a
2586 breakpoint instruction when we have a signal to deliver:
2587
2588 - See handle_signal_stop where we handle random signals that
2589 could take out us out of the stepping range. Normally, in
2590 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2591 signal handler with a breakpoint at PC, but there are cases
2592 where we should _always_ single-step, even if we have a
2593 step-resume breakpoint, like when a software watchpoint is
2594 set. Assuming single-stepping and delivering a signal at the
2595 same time would takes us to the signal handler, then we could
2596 have removed the breakpoint at PC to step over it. However,
2597 some hardware step targets (like e.g., Mac OS) can't step
2598 into signal handlers, and for those, we need to leave the
2599 breakpoint at PC inserted, as otherwise if the handler
2600 recurses and executes PC again, it'll miss the breakpoint.
2601 So we leave the breakpoint inserted anyway, but we need to
2602 record that we tried to step a breakpoint instruction, so
372316f1
PA
2603 that adjust_pc_after_break doesn't end up confused.
2604
2605 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2606 in one thread after another thread that was stepping had been
2607 momentarily paused for a step-over. When we re-resume the
2608 stepping thread, it may be resumed from that address with a
2609 breakpoint that hasn't trapped yet. Seen with
2610 gdb.threads/non-stop-fair-events.exp, on targets that don't
2611 do displaced stepping. */
2612
2613 if (debug_infrun)
2614 fprintf_unfiltered (gdb_stdlog,
2615 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2616 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2617
2618 tp->stepped_breakpoint = 1;
2619
b0f16a3e
SM
2620 /* Most targets can step a breakpoint instruction, thus
2621 executing it normally. But if this one cannot, just
2622 continue and we will hit it anyway. */
7f5ef605 2623 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2624 step = 0;
2625 }
ef5cf84e 2626
b0f16a3e 2627 if (debug_displaced
cb71640d 2628 && tp->control.trap_expected
3fc8eb30 2629 && use_displaced_stepping (tp)
cb71640d 2630 && !step_over_info_valid_p ())
b0f16a3e 2631 {
00431a78 2632 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2633 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2634 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2635 gdb_byte buf[4];
2636
2637 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2638 paddress (resume_gdbarch, actual_pc));
2639 read_memory (actual_pc, buf, sizeof (buf));
2640 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2641 }
237fc4c9 2642
b0f16a3e
SM
2643 if (tp->control.may_range_step)
2644 {
2645 /* If we're resuming a thread with the PC out of the step
2646 range, then we're doing some nested/finer run control
2647 operation, like stepping the thread out of the dynamic
2648 linker or the displaced stepping scratch pad. We
2649 shouldn't have allowed a range step then. */
2650 gdb_assert (pc_in_thread_step_range (pc, tp));
2651 }
c1e36e3e 2652
64ce06e4 2653 do_target_resume (resume_ptid, step, sig);
719546c4 2654 tp->resumed = true;
c906108c 2655}
71d378ae
PA
2656
2657/* Resume the inferior. SIG is the signal to give the inferior
2658 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2659 rolls back state on error. */
2660
aff4e175 2661static void
71d378ae
PA
2662resume (gdb_signal sig)
2663{
a70b8144 2664 try
71d378ae
PA
2665 {
2666 resume_1 (sig);
2667 }
230d2906 2668 catch (const gdb_exception &ex)
71d378ae
PA
2669 {
2670 /* If resuming is being aborted for any reason, delete any
2671 single-step breakpoint resume_1 may have created, to avoid
2672 confusing the following resumption, and to avoid leaving
2673 single-step breakpoints perturbing other threads, in case
2674 we're running in non-stop mode. */
2675 if (inferior_ptid != null_ptid)
2676 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2677 throw;
71d378ae 2678 }
71d378ae
PA
2679}
2680
c906108c 2681\f
237fc4c9 2682/* Proceeding. */
c906108c 2683
4c2f2a79
PA
2684/* See infrun.h. */
2685
2686/* Counter that tracks number of user visible stops. This can be used
2687 to tell whether a command has proceeded the inferior past the
2688 current location. This allows e.g., inferior function calls in
2689 breakpoint commands to not interrupt the command list. When the
2690 call finishes successfully, the inferior is standing at the same
2691 breakpoint as if nothing happened (and so we don't call
2692 normal_stop). */
2693static ULONGEST current_stop_id;
2694
2695/* See infrun.h. */
2696
2697ULONGEST
2698get_stop_id (void)
2699{
2700 return current_stop_id;
2701}
2702
2703/* Called when we report a user visible stop. */
2704
2705static void
2706new_stop_id (void)
2707{
2708 current_stop_id++;
2709}
2710
c906108c
SS
2711/* Clear out all variables saying what to do when inferior is continued.
2712 First do this, then set the ones you want, then call `proceed'. */
2713
a7212384
UW
2714static void
2715clear_proceed_status_thread (struct thread_info *tp)
c906108c 2716{
a7212384
UW
2717 if (debug_infrun)
2718 fprintf_unfiltered (gdb_stdlog,
2719 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2720 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2721
372316f1
PA
2722 /* If we're starting a new sequence, then the previous finished
2723 single-step is no longer relevant. */
2724 if (tp->suspend.waitstatus_pending_p)
2725 {
2726 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2727 {
2728 if (debug_infrun)
2729 fprintf_unfiltered (gdb_stdlog,
2730 "infrun: clear_proceed_status: pending "
2731 "event of %s was a finished step. "
2732 "Discarding.\n",
a068643d 2733 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2734
2735 tp->suspend.waitstatus_pending_p = 0;
2736 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2737 }
2738 else if (debug_infrun)
2739 {
23fdd69e
SM
2740 std::string statstr
2741 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2742
372316f1
PA
2743 fprintf_unfiltered (gdb_stdlog,
2744 "infrun: clear_proceed_status_thread: thread %s "
2745 "has pending wait status %s "
2746 "(currently_stepping=%d).\n",
a068643d
TT
2747 target_pid_to_str (tp->ptid).c_str (),
2748 statstr.c_str (),
372316f1 2749 currently_stepping (tp));
372316f1
PA
2750 }
2751 }
2752
70509625
PA
2753 /* If this signal should not be seen by program, give it zero.
2754 Used for debugging signals. */
2755 if (!signal_pass_state (tp->suspend.stop_signal))
2756 tp->suspend.stop_signal = GDB_SIGNAL_0;
2757
46e3ed7f 2758 delete tp->thread_fsm;
243a9253
PA
2759 tp->thread_fsm = NULL;
2760
16c381f0
JK
2761 tp->control.trap_expected = 0;
2762 tp->control.step_range_start = 0;
2763 tp->control.step_range_end = 0;
c1e36e3e 2764 tp->control.may_range_step = 0;
16c381f0
JK
2765 tp->control.step_frame_id = null_frame_id;
2766 tp->control.step_stack_frame_id = null_frame_id;
2767 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2768 tp->control.step_start_function = NULL;
a7212384 2769 tp->stop_requested = 0;
4e1c45ea 2770
16c381f0 2771 tp->control.stop_step = 0;
32400beb 2772
16c381f0 2773 tp->control.proceed_to_finish = 0;
414c69f7 2774
856e7dd6 2775 tp->control.stepping_command = 0;
17b2616c 2776
a7212384 2777 /* Discard any remaining commands or status from previous stop. */
16c381f0 2778 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2779}
32400beb 2780
a7212384 2781void
70509625 2782clear_proceed_status (int step)
a7212384 2783{
f2665db5
MM
2784 /* With scheduler-locking replay, stop replaying other threads if we're
2785 not replaying the user-visible resume ptid.
2786
2787 This is a convenience feature to not require the user to explicitly
2788 stop replaying the other threads. We're assuming that the user's
2789 intent is to resume tracing the recorded process. */
2790 if (!non_stop && scheduler_mode == schedlock_replay
2791 && target_record_is_replaying (minus_one_ptid)
2792 && !target_record_will_replay (user_visible_resume_ptid (step),
2793 execution_direction))
2794 target_record_stop_replaying ();
2795
08036331 2796 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2797 {
08036331 2798 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2799 process_stratum_target *resume_target
2800 = user_visible_resume_target (resume_ptid);
70509625
PA
2801
2802 /* In all-stop mode, delete the per-thread status of all threads
2803 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2804 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2805 clear_proceed_status_thread (tp);
6c95b8df
PA
2806 }
2807
d7e15655 2808 if (inferior_ptid != null_ptid)
a7212384
UW
2809 {
2810 struct inferior *inferior;
2811
2812 if (non_stop)
2813 {
6c95b8df
PA
2814 /* If in non-stop mode, only delete the per-thread status of
2815 the current thread. */
a7212384
UW
2816 clear_proceed_status_thread (inferior_thread ());
2817 }
6c95b8df 2818
d6b48e9c 2819 inferior = current_inferior ();
16c381f0 2820 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2821 }
2822
76727919 2823 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2824}
2825
99619bea
PA
2826/* Returns true if TP is still stopped at a breakpoint that needs
2827 stepping-over in order to make progress. If the breakpoint is gone
2828 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2829
2830static int
6c4cfb24 2831thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2832{
2833 if (tp->stepping_over_breakpoint)
2834 {
00431a78 2835 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2836
a01bda52 2837 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2838 regcache_read_pc (regcache))
2839 == ordinary_breakpoint_here)
99619bea
PA
2840 return 1;
2841
2842 tp->stepping_over_breakpoint = 0;
2843 }
2844
2845 return 0;
2846}
2847
6c4cfb24
PA
2848/* Check whether thread TP still needs to start a step-over in order
2849 to make progress when resumed. Returns an bitwise or of enum
2850 step_over_what bits, indicating what needs to be stepped over. */
2851
8d297bbf 2852static step_over_what
6c4cfb24
PA
2853thread_still_needs_step_over (struct thread_info *tp)
2854{
8d297bbf 2855 step_over_what what = 0;
6c4cfb24
PA
2856
2857 if (thread_still_needs_step_over_bp (tp))
2858 what |= STEP_OVER_BREAKPOINT;
2859
2860 if (tp->stepping_over_watchpoint
2861 && !target_have_steppable_watchpoint)
2862 what |= STEP_OVER_WATCHPOINT;
2863
2864 return what;
2865}
2866
483805cf
PA
2867/* Returns true if scheduler locking applies. STEP indicates whether
2868 we're about to do a step/next-like command to a thread. */
2869
2870static int
856e7dd6 2871schedlock_applies (struct thread_info *tp)
483805cf
PA
2872{
2873 return (scheduler_mode == schedlock_on
2874 || (scheduler_mode == schedlock_step
f2665db5
MM
2875 && tp->control.stepping_command)
2876 || (scheduler_mode == schedlock_replay
2877 && target_record_will_replay (minus_one_ptid,
2878 execution_direction)));
483805cf
PA
2879}
2880
5b6d1e4f
PA
2881/* Calls target_commit_resume on all targets. */
2882
2883static void
2884commit_resume_all_targets ()
2885{
2886 scoped_restore_current_thread restore_thread;
2887
2888 /* Map between process_target and a representative inferior. This
2889 is to avoid committing a resume in the same target more than
2890 once. Resumptions must be idempotent, so this is an
2891 optimization. */
2892 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2893
2894 for (inferior *inf : all_non_exited_inferiors ())
2895 if (inf->has_execution ())
2896 conn_inf[inf->process_target ()] = inf;
2897
2898 for (const auto &ci : conn_inf)
2899 {
2900 inferior *inf = ci.second;
2901 switch_to_inferior_no_thread (inf);
2902 target_commit_resume ();
2903 }
2904}
2905
2f4fcf00
PA
2906/* Check that all the targets we're about to resume are in non-stop
2907 mode. Ideally, we'd only care whether all targets support
2908 target-async, but we're not there yet. E.g., stop_all_threads
2909 doesn't know how to handle all-stop targets. Also, the remote
2910 protocol in all-stop mode is synchronous, irrespective of
2911 target-async, which means that things like a breakpoint re-set
2912 triggered by one target would try to read memory from all targets
2913 and fail. */
2914
2915static void
2916check_multi_target_resumption (process_stratum_target *resume_target)
2917{
2918 if (!non_stop && resume_target == nullptr)
2919 {
2920 scoped_restore_current_thread restore_thread;
2921
2922 /* This is used to track whether we're resuming more than one
2923 target. */
2924 process_stratum_target *first_connection = nullptr;
2925
2926 /* The first inferior we see with a target that does not work in
2927 always-non-stop mode. */
2928 inferior *first_not_non_stop = nullptr;
2929
2930 for (inferior *inf : all_non_exited_inferiors (resume_target))
2931 {
2932 switch_to_inferior_no_thread (inf);
2933
2934 if (!target_has_execution)
2935 continue;
2936
2937 process_stratum_target *proc_target
2938 = current_inferior ()->process_target();
2939
2940 if (!target_is_non_stop_p ())
2941 first_not_non_stop = inf;
2942
2943 if (first_connection == nullptr)
2944 first_connection = proc_target;
2945 else if (first_connection != proc_target
2946 && first_not_non_stop != nullptr)
2947 {
2948 switch_to_inferior_no_thread (first_not_non_stop);
2949
2950 proc_target = current_inferior ()->process_target();
2951
2952 error (_("Connection %d (%s) does not support "
2953 "multi-target resumption."),
2954 proc_target->connection_number,
2955 make_target_connection_string (proc_target).c_str ());
2956 }
2957 }
2958 }
2959}
2960
c906108c
SS
2961/* Basic routine for continuing the program in various fashions.
2962
2963 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2964 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2965 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2966
2967 You should call clear_proceed_status before calling proceed. */
2968
2969void
64ce06e4 2970proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2971{
e58b0e63
PA
2972 struct regcache *regcache;
2973 struct gdbarch *gdbarch;
e58b0e63 2974 CORE_ADDR pc;
4d9d9d04
PA
2975 struct execution_control_state ecss;
2976 struct execution_control_state *ecs = &ecss;
4d9d9d04 2977 int started;
c906108c 2978
e58b0e63
PA
2979 /* If we're stopped at a fork/vfork, follow the branch set by the
2980 "set follow-fork-mode" command; otherwise, we'll just proceed
2981 resuming the current thread. */
2982 if (!follow_fork ())
2983 {
2984 /* The target for some reason decided not to resume. */
2985 normal_stop ();
f148b27e
PA
2986 if (target_can_async_p ())
2987 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2988 return;
2989 }
2990
842951eb
PA
2991 /* We'll update this if & when we switch to a new thread. */
2992 previous_inferior_ptid = inferior_ptid;
2993
e58b0e63 2994 regcache = get_current_regcache ();
ac7936df 2995 gdbarch = regcache->arch ();
8b86c959
YQ
2996 const address_space *aspace = regcache->aspace ();
2997
fc75c28b
TBA
2998 pc = regcache_read_pc_protected (regcache);
2999
08036331 3000 thread_info *cur_thr = inferior_thread ();
e58b0e63 3001
99619bea 3002 /* Fill in with reasonable starting values. */
08036331 3003 init_thread_stepping_state (cur_thr);
99619bea 3004
08036331 3005 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 3006
5b6d1e4f
PA
3007 ptid_t resume_ptid
3008 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3009 process_stratum_target *resume_target
3010 = user_visible_resume_target (resume_ptid);
3011
2f4fcf00
PA
3012 check_multi_target_resumption (resume_target);
3013
2acceee2 3014 if (addr == (CORE_ADDR) -1)
c906108c 3015 {
08036331 3016 if (pc == cur_thr->suspend.stop_pc
af48d08f 3017 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3018 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3019 /* There is a breakpoint at the address we will resume at,
3020 step one instruction before inserting breakpoints so that
3021 we do not stop right away (and report a second hit at this
b2175913
MS
3022 breakpoint).
3023
3024 Note, we don't do this in reverse, because we won't
3025 actually be executing the breakpoint insn anyway.
3026 We'll be (un-)executing the previous instruction. */
08036331 3027 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3028 else if (gdbarch_single_step_through_delay_p (gdbarch)
3029 && gdbarch_single_step_through_delay (gdbarch,
3030 get_current_frame ()))
3352ef37
AC
3031 /* We stepped onto an instruction that needs to be stepped
3032 again before re-inserting the breakpoint, do so. */
08036331 3033 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3034 }
3035 else
3036 {
515630c5 3037 regcache_write_pc (regcache, addr);
c906108c
SS
3038 }
3039
70509625 3040 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3041 cur_thr->suspend.stop_signal = siggnal;
70509625 3042
4d9d9d04
PA
3043 /* If an exception is thrown from this point on, make sure to
3044 propagate GDB's knowledge of the executing state to the
3045 frontend/user running state. */
5b6d1e4f 3046 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3047
3048 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3049 threads (e.g., we might need to set threads stepping over
3050 breakpoints first), from the user/frontend's point of view, all
3051 threads in RESUME_PTID are now running. Unless we're calling an
3052 inferior function, as in that case we pretend the inferior
3053 doesn't run at all. */
08036331 3054 if (!cur_thr->control.in_infcall)
719546c4 3055 set_running (resume_target, resume_ptid, true);
17b2616c 3056
527159b7 3057 if (debug_infrun)
8a9de0e4 3058 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3059 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3060 paddress (gdbarch, addr),
64ce06e4 3061 gdb_signal_to_symbol_string (siggnal));
527159b7 3062
4d9d9d04
PA
3063 annotate_starting ();
3064
3065 /* Make sure that output from GDB appears before output from the
3066 inferior. */
3067 gdb_flush (gdb_stdout);
3068
d930703d
PA
3069 /* Since we've marked the inferior running, give it the terminal. A
3070 QUIT/Ctrl-C from here on is forwarded to the target (which can
3071 still detect attempts to unblock a stuck connection with repeated
3072 Ctrl-C from within target_pass_ctrlc). */
3073 target_terminal::inferior ();
3074
4d9d9d04
PA
3075 /* In a multi-threaded task we may select another thread and
3076 then continue or step.
3077
3078 But if a thread that we're resuming had stopped at a breakpoint,
3079 it will immediately cause another breakpoint stop without any
3080 execution (i.e. it will report a breakpoint hit incorrectly). So
3081 we must step over it first.
3082
3083 Look for threads other than the current (TP) that reported a
3084 breakpoint hit and haven't been resumed yet since. */
3085
3086 /* If scheduler locking applies, we can avoid iterating over all
3087 threads. */
08036331 3088 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3089 {
5b6d1e4f
PA
3090 for (thread_info *tp : all_non_exited_threads (resume_target,
3091 resume_ptid))
08036331 3092 {
f3f8ece4
PA
3093 switch_to_thread_no_regs (tp);
3094
4d9d9d04
PA
3095 /* Ignore the current thread here. It's handled
3096 afterwards. */
08036331 3097 if (tp == cur_thr)
4d9d9d04 3098 continue;
c906108c 3099
4d9d9d04
PA
3100 if (!thread_still_needs_step_over (tp))
3101 continue;
3102
3103 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3104
99619bea
PA
3105 if (debug_infrun)
3106 fprintf_unfiltered (gdb_stdlog,
3107 "infrun: need to step-over [%s] first\n",
a068643d 3108 target_pid_to_str (tp->ptid).c_str ());
99619bea 3109
4d9d9d04 3110 thread_step_over_chain_enqueue (tp);
2adfaa28 3111 }
f3f8ece4
PA
3112
3113 switch_to_thread (cur_thr);
30852783
UW
3114 }
3115
4d9d9d04
PA
3116 /* Enqueue the current thread last, so that we move all other
3117 threads over their breakpoints first. */
08036331
PA
3118 if (cur_thr->stepping_over_breakpoint)
3119 thread_step_over_chain_enqueue (cur_thr);
30852783 3120
4d9d9d04
PA
3121 /* If the thread isn't started, we'll still need to set its prev_pc,
3122 so that switch_back_to_stepped_thread knows the thread hasn't
3123 advanced. Must do this before resuming any thread, as in
3124 all-stop/remote, once we resume we can't send any other packet
3125 until the target stops again. */
fc75c28b 3126 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3127
a9bc57b9
TT
3128 {
3129 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3130
a9bc57b9 3131 started = start_step_over ();
c906108c 3132
a9bc57b9
TT
3133 if (step_over_info_valid_p ())
3134 {
3135 /* Either this thread started a new in-line step over, or some
3136 other thread was already doing one. In either case, don't
3137 resume anything else until the step-over is finished. */
3138 }
3139 else if (started && !target_is_non_stop_p ())
3140 {
3141 /* A new displaced stepping sequence was started. In all-stop,
3142 we can't talk to the target anymore until it next stops. */
3143 }
3144 else if (!non_stop && target_is_non_stop_p ())
3145 {
3146 /* In all-stop, but the target is always in non-stop mode.
3147 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3148 for (thread_info *tp : all_non_exited_threads (resume_target,
3149 resume_ptid))
3150 {
3151 switch_to_thread_no_regs (tp);
3152
f9fac3c8
SM
3153 if (!tp->inf->has_execution ())
3154 {
3155 if (debug_infrun)
3156 fprintf_unfiltered (gdb_stdlog,
3157 "infrun: proceed: [%s] target has "
3158 "no execution\n",
3159 target_pid_to_str (tp->ptid).c_str ());
3160 continue;
3161 }
f3f8ece4 3162
f9fac3c8
SM
3163 if (tp->resumed)
3164 {
3165 if (debug_infrun)
3166 fprintf_unfiltered (gdb_stdlog,
3167 "infrun: proceed: [%s] resumed\n",
3168 target_pid_to_str (tp->ptid).c_str ());
3169 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3170 continue;
3171 }
fbea99ea 3172
f9fac3c8
SM
3173 if (thread_is_in_step_over_chain (tp))
3174 {
3175 if (debug_infrun)
3176 fprintf_unfiltered (gdb_stdlog,
3177 "infrun: proceed: [%s] needs step-over\n",
3178 target_pid_to_str (tp->ptid).c_str ());
3179 continue;
3180 }
fbea99ea 3181
f9fac3c8
SM
3182 if (debug_infrun)
3183 fprintf_unfiltered (gdb_stdlog,
3184 "infrun: proceed: resuming %s\n",
3185 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3186
f9fac3c8
SM
3187 reset_ecs (ecs, tp);
3188 switch_to_thread (tp);
3189 keep_going_pass_signal (ecs);
3190 if (!ecs->wait_some_more)
3191 error (_("Command aborted."));
3192 }
a9bc57b9 3193 }
08036331 3194 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3195 {
3196 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3197 reset_ecs (ecs, cur_thr);
3198 switch_to_thread (cur_thr);
a9bc57b9
TT
3199 keep_going_pass_signal (ecs);
3200 if (!ecs->wait_some_more)
3201 error (_("Command aborted."));
3202 }
3203 }
c906108c 3204
5b6d1e4f 3205 commit_resume_all_targets ();
85ad3aaf 3206
731f534f 3207 finish_state.release ();
c906108c 3208
873657b9
PA
3209 /* If we've switched threads above, switch back to the previously
3210 current thread. We don't want the user to see a different
3211 selected thread. */
3212 switch_to_thread (cur_thr);
3213
0b333c5e
PA
3214 /* Tell the event loop to wait for it to stop. If the target
3215 supports asynchronous execution, it'll do this from within
3216 target_resume. */
362646f5 3217 if (!target_can_async_p ())
0b333c5e 3218 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3219}
c906108c
SS
3220\f
3221
3222/* Start remote-debugging of a machine over a serial link. */
96baa820 3223
c906108c 3224void
8621d6a9 3225start_remote (int from_tty)
c906108c 3226{
5b6d1e4f
PA
3227 inferior *inf = current_inferior ();
3228 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3229
1777feb0 3230 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3231 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3232 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3233 nothing is returned (instead of just blocking). Because of this,
3234 targets expecting an immediate response need to, internally, set
3235 things up so that the target_wait() is forced to eventually
1777feb0 3236 timeout. */
6426a772
JM
3237 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3238 differentiate to its caller what the state of the target is after
3239 the initial open has been performed. Here we're assuming that
3240 the target has stopped. It should be possible to eventually have
3241 target_open() return to the caller an indication that the target
3242 is currently running and GDB state should be set to the same as
1777feb0 3243 for an async run. */
5b6d1e4f 3244 wait_for_inferior (inf);
8621d6a9
DJ
3245
3246 /* Now that the inferior has stopped, do any bookkeeping like
3247 loading shared libraries. We want to do this before normal_stop,
3248 so that the displayed frame is up to date. */
8b88a78e 3249 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3250
6426a772 3251 normal_stop ();
c906108c
SS
3252}
3253
3254/* Initialize static vars when a new inferior begins. */
3255
3256void
96baa820 3257init_wait_for_inferior (void)
c906108c
SS
3258{
3259 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3260
c906108c
SS
3261 breakpoint_init_inferior (inf_starting);
3262
70509625 3263 clear_proceed_status (0);
9f976b41 3264
ab1ddbcf 3265 nullify_last_target_wait_ptid ();
237fc4c9 3266
842951eb 3267 previous_inferior_ptid = inferior_ptid;
c906108c 3268}
237fc4c9 3269
c906108c 3270\f
488f131b 3271
ec9499be 3272static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3273
568d6575
UW
3274static void handle_step_into_function (struct gdbarch *gdbarch,
3275 struct execution_control_state *ecs);
3276static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3277 struct execution_control_state *ecs);
4f5d7f63 3278static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3279static void check_exception_resume (struct execution_control_state *,
28106bc2 3280 struct frame_info *);
611c83ae 3281
bdc36728 3282static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3283static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3284static void keep_going (struct execution_control_state *ecs);
94c57d6a 3285static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3286static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3287
252fbfc8
PA
3288/* This function is attached as a "thread_stop_requested" observer.
3289 Cleanup local state that assumed the PTID was to be resumed, and
3290 report the stop to the frontend. */
3291
2c0b251b 3292static void
252fbfc8
PA
3293infrun_thread_stop_requested (ptid_t ptid)
3294{
5b6d1e4f
PA
3295 process_stratum_target *curr_target = current_inferior ()->process_target ();
3296
c65d6b55
PA
3297 /* PTID was requested to stop. If the thread was already stopped,
3298 but the user/frontend doesn't know about that yet (e.g., the
3299 thread had been temporarily paused for some step-over), set up
3300 for reporting the stop now. */
5b6d1e4f 3301 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3302 {
3303 if (tp->state != THREAD_RUNNING)
3304 continue;
3305 if (tp->executing)
3306 continue;
c65d6b55 3307
08036331
PA
3308 /* Remove matching threads from the step-over queue, so
3309 start_step_over doesn't try to resume them
3310 automatically. */
3311 if (thread_is_in_step_over_chain (tp))
3312 thread_step_over_chain_remove (tp);
c65d6b55 3313
08036331
PA
3314 /* If the thread is stopped, but the user/frontend doesn't
3315 know about that yet, queue a pending event, as if the
3316 thread had just stopped now. Unless the thread already had
3317 a pending event. */
3318 if (!tp->suspend.waitstatus_pending_p)
3319 {
3320 tp->suspend.waitstatus_pending_p = 1;
3321 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3322 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3323 }
c65d6b55 3324
08036331
PA
3325 /* Clear the inline-frame state, since we're re-processing the
3326 stop. */
5b6d1e4f 3327 clear_inline_frame_state (tp);
c65d6b55 3328
08036331
PA
3329 /* If this thread was paused because some other thread was
3330 doing an inline-step over, let that finish first. Once
3331 that happens, we'll restart all threads and consume pending
3332 stop events then. */
3333 if (step_over_info_valid_p ())
3334 continue;
3335
3336 /* Otherwise we can process the (new) pending event now. Set
3337 it so this pending event is considered by
3338 do_target_wait. */
719546c4 3339 tp->resumed = true;
08036331 3340 }
252fbfc8
PA
3341}
3342
a07daef3
PA
3343static void
3344infrun_thread_thread_exit (struct thread_info *tp, int silent)
3345{
5b6d1e4f
PA
3346 if (target_last_proc_target == tp->inf->process_target ()
3347 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3348 nullify_last_target_wait_ptid ();
3349}
3350
0cbcdb96
PA
3351/* Delete the step resume, single-step and longjmp/exception resume
3352 breakpoints of TP. */
4e1c45ea 3353
0cbcdb96
PA
3354static void
3355delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3356{
0cbcdb96
PA
3357 delete_step_resume_breakpoint (tp);
3358 delete_exception_resume_breakpoint (tp);
34b7e8a6 3359 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3360}
3361
0cbcdb96
PA
3362/* If the target still has execution, call FUNC for each thread that
3363 just stopped. In all-stop, that's all the non-exited threads; in
3364 non-stop, that's the current thread, only. */
3365
3366typedef void (*for_each_just_stopped_thread_callback_func)
3367 (struct thread_info *tp);
4e1c45ea
PA
3368
3369static void
0cbcdb96 3370for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3371{
d7e15655 3372 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3373 return;
3374
fbea99ea 3375 if (target_is_non_stop_p ())
4e1c45ea 3376 {
0cbcdb96
PA
3377 /* If in non-stop mode, only the current thread stopped. */
3378 func (inferior_thread ());
4e1c45ea
PA
3379 }
3380 else
0cbcdb96 3381 {
0cbcdb96 3382 /* In all-stop mode, all threads have stopped. */
08036331
PA
3383 for (thread_info *tp : all_non_exited_threads ())
3384 func (tp);
0cbcdb96
PA
3385 }
3386}
3387
3388/* Delete the step resume and longjmp/exception resume breakpoints of
3389 the threads that just stopped. */
3390
3391static void
3392delete_just_stopped_threads_infrun_breakpoints (void)
3393{
3394 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3395}
3396
3397/* Delete the single-step breakpoints of the threads that just
3398 stopped. */
7c16b83e 3399
34b7e8a6
PA
3400static void
3401delete_just_stopped_threads_single_step_breakpoints (void)
3402{
3403 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3404}
3405
221e1a37 3406/* See infrun.h. */
223698f8 3407
221e1a37 3408void
223698f8
DE
3409print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3410 const struct target_waitstatus *ws)
3411{
23fdd69e 3412 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3413 string_file stb;
223698f8
DE
3414
3415 /* The text is split over several lines because it was getting too long.
3416 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3417 output as a unit; we want only one timestamp printed if debug_timestamp
3418 is set. */
3419
d7e74731 3420 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3421 waiton_ptid.pid (),
e38504b3 3422 waiton_ptid.lwp (),
cc6bcb54 3423 waiton_ptid.tid ());
e99b03dc 3424 if (waiton_ptid.pid () != -1)
a068643d 3425 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3426 stb.printf (", status) =\n");
3427 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3428 result_ptid.pid (),
e38504b3 3429 result_ptid.lwp (),
cc6bcb54 3430 result_ptid.tid (),
a068643d 3431 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3432 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3433
3434 /* This uses %s in part to handle %'s in the text, but also to avoid
3435 a gcc error: the format attribute requires a string literal. */
d7e74731 3436 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3437}
3438
372316f1
PA
3439/* Select a thread at random, out of those which are resumed and have
3440 had events. */
3441
3442static struct thread_info *
5b6d1e4f 3443random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3444{
372316f1 3445 int num_events = 0;
08036331 3446
5b6d1e4f 3447 auto has_event = [&] (thread_info *tp)
08036331 3448 {
5b6d1e4f
PA
3449 return (tp->ptid.matches (waiton_ptid)
3450 && tp->resumed
08036331
PA
3451 && tp->suspend.waitstatus_pending_p);
3452 };
372316f1
PA
3453
3454 /* First see how many events we have. Count only resumed threads
3455 that have an event pending. */
5b6d1e4f 3456 for (thread_info *tp : inf->non_exited_threads ())
08036331 3457 if (has_event (tp))
372316f1
PA
3458 num_events++;
3459
3460 if (num_events == 0)
3461 return NULL;
3462
3463 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3464 int random_selector = (int) ((num_events * (double) rand ())
3465 / (RAND_MAX + 1.0));
372316f1
PA
3466
3467 if (debug_infrun && num_events > 1)
3468 fprintf_unfiltered (gdb_stdlog,
3469 "infrun: Found %d events, selecting #%d\n",
3470 num_events, random_selector);
3471
3472 /* Select the Nth thread that has had an event. */
5b6d1e4f 3473 for (thread_info *tp : inf->non_exited_threads ())
08036331 3474 if (has_event (tp))
372316f1 3475 if (random_selector-- == 0)
08036331 3476 return tp;
372316f1 3477
08036331 3478 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3479}
3480
3481/* Wrapper for target_wait that first checks whether threads have
3482 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3483 more events. INF is the inferior we're using to call target_wait
3484 on. */
372316f1
PA
3485
3486static ptid_t
5b6d1e4f
PA
3487do_target_wait_1 (inferior *inf, ptid_t ptid,
3488 target_waitstatus *status, int options)
372316f1
PA
3489{
3490 ptid_t event_ptid;
3491 struct thread_info *tp;
3492
24ed6739
AB
3493 /* We know that we are looking for an event in the target of inferior
3494 INF, but we don't know which thread the event might come from. As
3495 such we want to make sure that INFERIOR_PTID is reset so that none of
3496 the wait code relies on it - doing so is always a mistake. */
3497 switch_to_inferior_no_thread (inf);
3498
372316f1
PA
3499 /* First check if there is a resumed thread with a wait status
3500 pending. */
d7e15655 3501 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3502 {
5b6d1e4f 3503 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3504 }
3505 else
3506 {
3507 if (debug_infrun)
3508 fprintf_unfiltered (gdb_stdlog,
3509 "infrun: Waiting for specific thread %s.\n",
a068643d 3510 target_pid_to_str (ptid).c_str ());
372316f1
PA
3511
3512 /* We have a specific thread to check. */
5b6d1e4f 3513 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3514 gdb_assert (tp != NULL);
3515 if (!tp->suspend.waitstatus_pending_p)
3516 tp = NULL;
3517 }
3518
3519 if (tp != NULL
3520 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3521 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3522 {
00431a78 3523 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3524 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3525 CORE_ADDR pc;
3526 int discard = 0;
3527
3528 pc = regcache_read_pc (regcache);
3529
3530 if (pc != tp->suspend.stop_pc)
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3535 target_pid_to_str (tp->ptid).c_str (),
defd2172 3536 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3537 paddress (gdbarch, pc));
3538 discard = 1;
3539 }
a01bda52 3540 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3541 {
3542 if (debug_infrun)
3543 fprintf_unfiltered (gdb_stdlog,
3544 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3545 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3546 paddress (gdbarch, pc));
3547
3548 discard = 1;
3549 }
3550
3551 if (discard)
3552 {
3553 if (debug_infrun)
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: pending event of %s cancelled.\n",
a068643d 3556 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3557
3558 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3559 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3560 }
3561 }
3562
3563 if (tp != NULL)
3564 {
3565 if (debug_infrun)
3566 {
23fdd69e
SM
3567 std::string statstr
3568 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3569
372316f1
PA
3570 fprintf_unfiltered (gdb_stdlog,
3571 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3572 statstr.c_str (),
a068643d 3573 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3574 }
3575
3576 /* Now that we've selected our final event LWP, un-adjust its PC
3577 if it was a software breakpoint (and the target doesn't
3578 always adjust the PC itself). */
3579 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3580 && !target_supports_stopped_by_sw_breakpoint ())
3581 {
3582 struct regcache *regcache;
3583 struct gdbarch *gdbarch;
3584 int decr_pc;
3585
00431a78 3586 regcache = get_thread_regcache (tp);
ac7936df 3587 gdbarch = regcache->arch ();
372316f1
PA
3588
3589 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3590 if (decr_pc != 0)
3591 {
3592 CORE_ADDR pc;
3593
3594 pc = regcache_read_pc (regcache);
3595 regcache_write_pc (regcache, pc + decr_pc);
3596 }
3597 }
3598
3599 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3600 *status = tp->suspend.waitstatus;
3601 tp->suspend.waitstatus_pending_p = 0;
3602
3603 /* Wake up the event loop again, until all pending events are
3604 processed. */
3605 if (target_is_async_p ())
3606 mark_async_event_handler (infrun_async_inferior_event_token);
3607 return tp->ptid;
3608 }
3609
3610 /* But if we don't find one, we'll have to wait. */
3611
3612 if (deprecated_target_wait_hook)
3613 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3614 else
3615 event_ptid = target_wait (ptid, status, options);
3616
3617 return event_ptid;
3618}
3619
5b6d1e4f
PA
3620/* Returns true if INF has any resumed thread with a status
3621 pending. */
3622
3623static bool
3624threads_are_resumed_pending_p (inferior *inf)
3625{
3626 for (thread_info *tp : inf->non_exited_threads ())
3627 if (tp->resumed
3628 && tp->suspend.waitstatus_pending_p)
3629 return true;
3630
3631 return false;
3632}
3633
3634/* Wrapper for target_wait that first checks whether threads have
3635 pending statuses to report before actually asking the target for
3636 more events. Polls for events from all inferiors/targets. */
3637
3638static bool
3639do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3640{
3641 int num_inferiors = 0;
3642 int random_selector;
3643
3644 /* For fairness, we pick the first inferior/target to poll at
3645 random, and then continue polling the rest of the inferior list
3646 starting from that one in a circular fashion until the whole list
3647 is polled once. */
3648
3649 auto inferior_matches = [&wait_ptid] (inferior *inf)
3650 {
3651 return (inf->process_target () != NULL
3652 && (threads_are_executing (inf->process_target ())
3653 || threads_are_resumed_pending_p (inf))
3654 && ptid_t (inf->pid).matches (wait_ptid));
3655 };
3656
3657 /* First see how many resumed inferiors we have. */
3658 for (inferior *inf : all_inferiors ())
3659 if (inferior_matches (inf))
3660 num_inferiors++;
3661
3662 if (num_inferiors == 0)
3663 {
3664 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3665 return false;
3666 }
3667
3668 /* Now randomly pick an inferior out of those that were resumed. */
3669 random_selector = (int)
3670 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3671
3672 if (debug_infrun && num_inferiors > 1)
3673 fprintf_unfiltered (gdb_stdlog,
3674 "infrun: Found %d inferiors, starting at #%d\n",
3675 num_inferiors, random_selector);
3676
3677 /* Select the Nth inferior that was resumed. */
3678
3679 inferior *selected = nullptr;
3680
3681 for (inferior *inf : all_inferiors ())
3682 if (inferior_matches (inf))
3683 if (random_selector-- == 0)
3684 {
3685 selected = inf;
3686 break;
3687 }
3688
3689 /* Now poll for events out of each of the resumed inferior's
3690 targets, starting from the selected one. */
3691
3692 auto do_wait = [&] (inferior *inf)
3693 {
5b6d1e4f
PA
3694 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3695 ecs->target = inf->process_target ();
3696 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3697 };
3698
3699 /* Needed in all-stop+target-non-stop mode, because we end up here
3700 spuriously after the target is all stopped and we've already
3701 reported the stop to the user, polling for events. */
3702 scoped_restore_current_thread restore_thread;
3703
3704 int inf_num = selected->num;
3705 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3706 if (inferior_matches (inf))
3707 if (do_wait (inf))
3708 return true;
3709
3710 for (inferior *inf = inferior_list;
3711 inf != NULL && inf->num < inf_num;
3712 inf = inf->next)
3713 if (inferior_matches (inf))
3714 if (do_wait (inf))
3715 return true;
3716
3717 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3718 return false;
3719}
3720
24291992
PA
3721/* Prepare and stabilize the inferior for detaching it. E.g.,
3722 detaching while a thread is displaced stepping is a recipe for
3723 crashing it, as nothing would readjust the PC out of the scratch
3724 pad. */
3725
3726void
3727prepare_for_detach (void)
3728{
3729 struct inferior *inf = current_inferior ();
f2907e49 3730 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3731
00431a78 3732 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3733
3734 /* Is any thread of this process displaced stepping? If not,
3735 there's nothing else to do. */
d20172fc 3736 if (displaced->step_thread == nullptr)
24291992
PA
3737 return;
3738
3739 if (debug_infrun)
3740 fprintf_unfiltered (gdb_stdlog,
3741 "displaced-stepping in-process while detaching");
3742
9bcb1f16 3743 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3744
00431a78 3745 while (displaced->step_thread != nullptr)
24291992 3746 {
24291992
PA
3747 struct execution_control_state ecss;
3748 struct execution_control_state *ecs;
3749
3750 ecs = &ecss;
3751 memset (ecs, 0, sizeof (*ecs));
3752
3753 overlay_cache_invalid = 1;
f15cb84a
YQ
3754 /* Flush target cache before starting to handle each event.
3755 Target was running and cache could be stale. This is just a
3756 heuristic. Running threads may modify target memory, but we
3757 don't get any event. */
3758 target_dcache_invalidate ();
24291992 3759
5b6d1e4f 3760 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3761
3762 if (debug_infrun)
3763 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3764
3765 /* If an error happens while handling the event, propagate GDB's
3766 knowledge of the executing state to the frontend/user running
3767 state. */
5b6d1e4f
PA
3768 scoped_finish_thread_state finish_state (inf->process_target (),
3769 minus_one_ptid);
24291992
PA
3770
3771 /* Now figure out what to do with the result of the result. */
3772 handle_inferior_event (ecs);
3773
3774 /* No error, don't finish the state yet. */
731f534f 3775 finish_state.release ();
24291992
PA
3776
3777 /* Breakpoints and watchpoints are not installed on the target
3778 at this point, and signals are passed directly to the
3779 inferior, so this must mean the process is gone. */
3780 if (!ecs->wait_some_more)
3781 {
9bcb1f16 3782 restore_detaching.release ();
24291992
PA
3783 error (_("Program exited while detaching"));
3784 }
3785 }
3786
9bcb1f16 3787 restore_detaching.release ();
24291992
PA
3788}
3789
cd0fc7c3 3790/* Wait for control to return from inferior to debugger.
ae123ec6 3791
cd0fc7c3
SS
3792 If inferior gets a signal, we may decide to start it up again
3793 instead of returning. That is why there is a loop in this function.
3794 When this function actually returns it means the inferior
3795 should be left stopped and GDB should read more commands. */
3796
5b6d1e4f
PA
3797static void
3798wait_for_inferior (inferior *inf)
cd0fc7c3 3799{
527159b7 3800 if (debug_infrun)
ae123ec6 3801 fprintf_unfiltered
e4c8541f 3802 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3803
4c41382a 3804 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3805
e6f5c25b
PA
3806 /* If an error happens while handling the event, propagate GDB's
3807 knowledge of the executing state to the frontend/user running
3808 state. */
5b6d1e4f
PA
3809 scoped_finish_thread_state finish_state
3810 (inf->process_target (), minus_one_ptid);
e6f5c25b 3811
c906108c
SS
3812 while (1)
3813 {
ae25568b
PA
3814 struct execution_control_state ecss;
3815 struct execution_control_state *ecs = &ecss;
29f49a6a 3816
ae25568b
PA
3817 memset (ecs, 0, sizeof (*ecs));
3818
ec9499be 3819 overlay_cache_invalid = 1;
ec9499be 3820
f15cb84a
YQ
3821 /* Flush target cache before starting to handle each event.
3822 Target was running and cache could be stale. This is just a
3823 heuristic. Running threads may modify target memory, but we
3824 don't get any event. */
3825 target_dcache_invalidate ();
3826
5b6d1e4f
PA
3827 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3828 ecs->target = inf->process_target ();
c906108c 3829
f00150c9 3830 if (debug_infrun)
5b6d1e4f 3831 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3832
cd0fc7c3
SS
3833 /* Now figure out what to do with the result of the result. */
3834 handle_inferior_event (ecs);
c906108c 3835
cd0fc7c3
SS
3836 if (!ecs->wait_some_more)
3837 break;
3838 }
4e1c45ea 3839
e6f5c25b 3840 /* No error, don't finish the state yet. */
731f534f 3841 finish_state.release ();
cd0fc7c3 3842}
c906108c 3843
d3d4baed
PA
3844/* Cleanup that reinstalls the readline callback handler, if the
3845 target is running in the background. If while handling the target
3846 event something triggered a secondary prompt, like e.g., a
3847 pagination prompt, we'll have removed the callback handler (see
3848 gdb_readline_wrapper_line). Need to do this as we go back to the
3849 event loop, ready to process further input. Note this has no
3850 effect if the handler hasn't actually been removed, because calling
3851 rl_callback_handler_install resets the line buffer, thus losing
3852 input. */
3853
3854static void
d238133d 3855reinstall_readline_callback_handler_cleanup ()
d3d4baed 3856{
3b12939d
PA
3857 struct ui *ui = current_ui;
3858
3859 if (!ui->async)
6c400b59
PA
3860 {
3861 /* We're not going back to the top level event loop yet. Don't
3862 install the readline callback, as it'd prep the terminal,
3863 readline-style (raw, noecho) (e.g., --batch). We'll install
3864 it the next time the prompt is displayed, when we're ready
3865 for input. */
3866 return;
3867 }
3868
3b12939d 3869 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3870 gdb_rl_callback_handler_reinstall ();
3871}
3872
243a9253
PA
3873/* Clean up the FSMs of threads that are now stopped. In non-stop,
3874 that's just the event thread. In all-stop, that's all threads. */
3875
3876static void
3877clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3878{
08036331
PA
3879 if (ecs->event_thread != NULL
3880 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3881 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3882
3883 if (!non_stop)
3884 {
08036331 3885 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3886 {
3887 if (thr->thread_fsm == NULL)
3888 continue;
3889 if (thr == ecs->event_thread)
3890 continue;
3891
00431a78 3892 switch_to_thread (thr);
46e3ed7f 3893 thr->thread_fsm->clean_up (thr);
243a9253
PA
3894 }
3895
3896 if (ecs->event_thread != NULL)
00431a78 3897 switch_to_thread (ecs->event_thread);
243a9253
PA
3898 }
3899}
3900
3b12939d
PA
3901/* Helper for all_uis_check_sync_execution_done that works on the
3902 current UI. */
3903
3904static void
3905check_curr_ui_sync_execution_done (void)
3906{
3907 struct ui *ui = current_ui;
3908
3909 if (ui->prompt_state == PROMPT_NEEDED
3910 && ui->async
3911 && !gdb_in_secondary_prompt_p (ui))
3912 {
223ffa71 3913 target_terminal::ours ();
76727919 3914 gdb::observers::sync_execution_done.notify ();
3eb7562a 3915 ui_register_input_event_handler (ui);
3b12939d
PA
3916 }
3917}
3918
3919/* See infrun.h. */
3920
3921void
3922all_uis_check_sync_execution_done (void)
3923{
0e454242 3924 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3925 {
3926 check_curr_ui_sync_execution_done ();
3927 }
3928}
3929
a8836c93
PA
3930/* See infrun.h. */
3931
3932void
3933all_uis_on_sync_execution_starting (void)
3934{
0e454242 3935 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3936 {
3937 if (current_ui->prompt_state == PROMPT_NEEDED)
3938 async_disable_stdin ();
3939 }
3940}
3941
1777feb0 3942/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3943 event loop whenever a change of state is detected on the file
1777feb0
MS
3944 descriptor corresponding to the target. It can be called more than
3945 once to complete a single execution command. In such cases we need
3946 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3947 that this function is called for a single execution command, then
3948 report to the user that the inferior has stopped, and do the
1777feb0 3949 necessary cleanups. */
43ff13b4
JM
3950
3951void
fba45db2 3952fetch_inferior_event (void *client_data)
43ff13b4 3953{
0d1e5fa7 3954 struct execution_control_state ecss;
a474d7c2 3955 struct execution_control_state *ecs = &ecss;
0f641c01 3956 int cmd_done = 0;
43ff13b4 3957
0d1e5fa7
PA
3958 memset (ecs, 0, sizeof (*ecs));
3959
c61db772
PA
3960 /* Events are always processed with the main UI as current UI. This
3961 way, warnings, debug output, etc. are always consistently sent to
3962 the main console. */
4b6749b9 3963 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3964
d3d4baed 3965 /* End up with readline processing input, if necessary. */
d238133d
TT
3966 {
3967 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3968
3969 /* We're handling a live event, so make sure we're doing live
3970 debugging. If we're looking at traceframes while the target is
3971 running, we're going to need to get back to that mode after
3972 handling the event. */
3973 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3974 if (non_stop)
3975 {
3976 maybe_restore_traceframe.emplace ();
3977 set_current_traceframe (-1);
3978 }
43ff13b4 3979
873657b9
PA
3980 /* The user/frontend should not notice a thread switch due to
3981 internal events. Make sure we revert to the user selected
3982 thread and frame after handling the event and running any
3983 breakpoint commands. */
3984 scoped_restore_current_thread restore_thread;
d238133d
TT
3985
3986 overlay_cache_invalid = 1;
3987 /* Flush target cache before starting to handle each event. Target
3988 was running and cache could be stale. This is just a heuristic.
3989 Running threads may modify target memory, but we don't get any
3990 event. */
3991 target_dcache_invalidate ();
3992
3993 scoped_restore save_exec_dir
3994 = make_scoped_restore (&execution_direction,
3995 target_execution_direction ());
3996
5b6d1e4f
PA
3997 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3998 return;
3999
4000 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
4001
4002 /* Switch to the target that generated the event, so we can do
4003 target calls. Any inferior bound to the target will do, so we
4004 just switch to the first we find. */
4005 for (inferior *inf : all_inferiors (ecs->target))
4006 {
4007 switch_to_inferior_no_thread (inf);
4008 break;
4009 }
d238133d
TT
4010
4011 if (debug_infrun)
5b6d1e4f 4012 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
4013
4014 /* If an error happens while handling the event, propagate GDB's
4015 knowledge of the executing state to the frontend/user running
4016 state. */
4017 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 4018 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 4019
979a0d13 4020 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
4021 still for the thread which has thrown the exception. */
4022 auto defer_bpstat_clear
4023 = make_scope_exit (bpstat_clear_actions);
4024 auto defer_delete_threads
4025 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4026
4027 /* Now figure out what to do with the result of the result. */
4028 handle_inferior_event (ecs);
4029
4030 if (!ecs->wait_some_more)
4031 {
5b6d1e4f 4032 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
4033 int should_stop = 1;
4034 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4035
d238133d 4036 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4037
d238133d
TT
4038 if (thr != NULL)
4039 {
4040 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4041
d238133d 4042 if (thread_fsm != NULL)
46e3ed7f 4043 should_stop = thread_fsm->should_stop (thr);
d238133d 4044 }
243a9253 4045
d238133d
TT
4046 if (!should_stop)
4047 {
4048 keep_going (ecs);
4049 }
4050 else
4051 {
46e3ed7f 4052 bool should_notify_stop = true;
d238133d 4053 int proceeded = 0;
1840d81a 4054
d238133d 4055 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4056
d238133d 4057 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4058 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4059
d238133d
TT
4060 if (should_notify_stop)
4061 {
4062 /* We may not find an inferior if this was a process exit. */
4063 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4064 proceeded = normal_stop ();
4065 }
243a9253 4066
d238133d
TT
4067 if (!proceeded)
4068 {
4069 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4070 cmd_done = 1;
4071 }
873657b9
PA
4072
4073 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4074 previously selected thread is gone. We have two
4075 choices - switch to no thread selected, or restore the
4076 previously selected thread (now exited). We chose the
4077 later, just because that's what GDB used to do. After
4078 this, "info threads" says "The current thread <Thread
4079 ID 2> has terminated." instead of "No thread
4080 selected.". */
4081 if (!non_stop
4082 && cmd_done
4083 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4084 restore_thread.dont_restore ();
d238133d
TT
4085 }
4086 }
4f8d22e3 4087
d238133d
TT
4088 defer_delete_threads.release ();
4089 defer_bpstat_clear.release ();
29f49a6a 4090
d238133d
TT
4091 /* No error, don't finish the thread states yet. */
4092 finish_state.release ();
731f534f 4093
d238133d
TT
4094 /* This scope is used to ensure that readline callbacks are
4095 reinstalled here. */
4096 }
4f8d22e3 4097
3b12939d
PA
4098 /* If a UI was in sync execution mode, and now isn't, restore its
4099 prompt (a synchronous execution command has finished, and we're
4100 ready for input). */
4101 all_uis_check_sync_execution_done ();
0f641c01
PA
4102
4103 if (cmd_done
0f641c01 4104 && exec_done_display_p
00431a78
PA
4105 && (inferior_ptid == null_ptid
4106 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4107 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4108}
4109
29734269
SM
4110/* See infrun.h. */
4111
edb3359d 4112void
29734269
SM
4113set_step_info (thread_info *tp, struct frame_info *frame,
4114 struct symtab_and_line sal)
edb3359d 4115{
29734269
SM
4116 /* This can be removed once this function no longer implicitly relies on the
4117 inferior_ptid value. */
4118 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4119
16c381f0
JK
4120 tp->control.step_frame_id = get_frame_id (frame);
4121 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4122
4123 tp->current_symtab = sal.symtab;
4124 tp->current_line = sal.line;
4125}
4126
0d1e5fa7
PA
4127/* Clear context switchable stepping state. */
4128
4129void
4e1c45ea 4130init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4131{
7f5ef605 4132 tss->stepped_breakpoint = 0;
0d1e5fa7 4133 tss->stepping_over_breakpoint = 0;
963f9c80 4134 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4135 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4136}
4137
ab1ddbcf 4138/* See infrun.h. */
c32c64b7 4139
6efcd9a8 4140void
5b6d1e4f
PA
4141set_last_target_status (process_stratum_target *target, ptid_t ptid,
4142 target_waitstatus status)
c32c64b7 4143{
5b6d1e4f 4144 target_last_proc_target = target;
c32c64b7
DE
4145 target_last_wait_ptid = ptid;
4146 target_last_waitstatus = status;
4147}
4148
ab1ddbcf 4149/* See infrun.h. */
e02bc4cc
DS
4150
4151void
5b6d1e4f
PA
4152get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4153 target_waitstatus *status)
e02bc4cc 4154{
5b6d1e4f
PA
4155 if (target != nullptr)
4156 *target = target_last_proc_target;
ab1ddbcf
PA
4157 if (ptid != nullptr)
4158 *ptid = target_last_wait_ptid;
4159 if (status != nullptr)
4160 *status = target_last_waitstatus;
e02bc4cc
DS
4161}
4162
ab1ddbcf
PA
4163/* See infrun.h. */
4164
ac264b3b
MS
4165void
4166nullify_last_target_wait_ptid (void)
4167{
5b6d1e4f 4168 target_last_proc_target = nullptr;
ac264b3b 4169 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4170 target_last_waitstatus = {};
ac264b3b
MS
4171}
4172
dcf4fbde 4173/* Switch thread contexts. */
dd80620e
MS
4174
4175static void
00431a78 4176context_switch (execution_control_state *ecs)
dd80620e 4177{
00431a78
PA
4178 if (debug_infrun
4179 && ecs->ptid != inferior_ptid
5b6d1e4f
PA
4180 && (inferior_ptid == null_ptid
4181 || ecs->event_thread != inferior_thread ()))
fd48f117
DJ
4182 {
4183 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 4184 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 4185 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 4186 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4187 }
4188
00431a78 4189 switch_to_thread (ecs->event_thread);
dd80620e
MS
4190}
4191
d8dd4d5f
PA
4192/* If the target can't tell whether we've hit breakpoints
4193 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4194 check whether that could have been caused by a breakpoint. If so,
4195 adjust the PC, per gdbarch_decr_pc_after_break. */
4196
4fa8626c 4197static void
d8dd4d5f
PA
4198adjust_pc_after_break (struct thread_info *thread,
4199 struct target_waitstatus *ws)
4fa8626c 4200{
24a73cce
UW
4201 struct regcache *regcache;
4202 struct gdbarch *gdbarch;
118e6252 4203 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4204
4fa8626c
DJ
4205 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4206 we aren't, just return.
9709f61c
DJ
4207
4208 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4209 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4210 implemented by software breakpoints should be handled through the normal
4211 breakpoint layer.
8fb3e588 4212
4fa8626c
DJ
4213 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4214 different signals (SIGILL or SIGEMT for instance), but it is less
4215 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4216 gdbarch_decr_pc_after_break. I don't know any specific target that
4217 generates these signals at breakpoints (the code has been in GDB since at
4218 least 1992) so I can not guess how to handle them here.
8fb3e588 4219
e6cf7916
UW
4220 In earlier versions of GDB, a target with
4221 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4222 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4223 target with both of these set in GDB history, and it seems unlikely to be
4224 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4225
d8dd4d5f 4226 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4227 return;
4228
d8dd4d5f 4229 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4230 return;
4231
4058b839
PA
4232 /* In reverse execution, when a breakpoint is hit, the instruction
4233 under it has already been de-executed. The reported PC always
4234 points at the breakpoint address, so adjusting it further would
4235 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4236 architecture:
4237
4238 B1 0x08000000 : INSN1
4239 B2 0x08000001 : INSN2
4240 0x08000002 : INSN3
4241 PC -> 0x08000003 : INSN4
4242
4243 Say you're stopped at 0x08000003 as above. Reverse continuing
4244 from that point should hit B2 as below. Reading the PC when the
4245 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4246 been de-executed already.
4247
4248 B1 0x08000000 : INSN1
4249 B2 PC -> 0x08000001 : INSN2
4250 0x08000002 : INSN3
4251 0x08000003 : INSN4
4252
4253 We can't apply the same logic as for forward execution, because
4254 we would wrongly adjust the PC to 0x08000000, since there's a
4255 breakpoint at PC - 1. We'd then report a hit on B1, although
4256 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4257 behaviour. */
4258 if (execution_direction == EXEC_REVERSE)
4259 return;
4260
1cf4d951
PA
4261 /* If the target can tell whether the thread hit a SW breakpoint,
4262 trust it. Targets that can tell also adjust the PC
4263 themselves. */
4264 if (target_supports_stopped_by_sw_breakpoint ())
4265 return;
4266
4267 /* Note that relying on whether a breakpoint is planted in memory to
4268 determine this can fail. E.g,. the breakpoint could have been
4269 removed since. Or the thread could have been told to step an
4270 instruction the size of a breakpoint instruction, and only
4271 _after_ was a breakpoint inserted at its address. */
4272
24a73cce
UW
4273 /* If this target does not decrement the PC after breakpoints, then
4274 we have nothing to do. */
00431a78 4275 regcache = get_thread_regcache (thread);
ac7936df 4276 gdbarch = regcache->arch ();
118e6252 4277
527a273a 4278 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4279 if (decr_pc == 0)
24a73cce
UW
4280 return;
4281
8b86c959 4282 const address_space *aspace = regcache->aspace ();
6c95b8df 4283
8aad930b
AC
4284 /* Find the location where (if we've hit a breakpoint) the
4285 breakpoint would be. */
118e6252 4286 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4287
1cf4d951
PA
4288 /* If the target can't tell whether a software breakpoint triggered,
4289 fallback to figuring it out based on breakpoints we think were
4290 inserted in the target, and on whether the thread was stepped or
4291 continued. */
4292
1c5cfe86
PA
4293 /* Check whether there actually is a software breakpoint inserted at
4294 that location.
4295
4296 If in non-stop mode, a race condition is possible where we've
4297 removed a breakpoint, but stop events for that breakpoint were
4298 already queued and arrive later. To suppress those spurious
4299 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4300 and retire them after a number of stop events are reported. Note
4301 this is an heuristic and can thus get confused. The real fix is
4302 to get the "stopped by SW BP and needs adjustment" info out of
4303 the target/kernel (and thus never reach here; see above). */
6c95b8df 4304 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4305 || (target_is_non_stop_p ()
4306 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4307 {
07036511 4308 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4309
8213266a 4310 if (record_full_is_used ())
07036511
TT
4311 restore_operation_disable.emplace
4312 (record_full_gdb_operation_disable_set ());
96429cc8 4313
1c0fdd0e
UW
4314 /* When using hardware single-step, a SIGTRAP is reported for both
4315 a completed single-step and a software breakpoint. Need to
4316 differentiate between the two, as the latter needs adjusting
4317 but the former does not.
4318
4319 The SIGTRAP can be due to a completed hardware single-step only if
4320 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4321 - this thread is currently being stepped
4322
4323 If any of these events did not occur, we must have stopped due
4324 to hitting a software breakpoint, and have to back up to the
4325 breakpoint address.
4326
4327 As a special case, we could have hardware single-stepped a
4328 software breakpoint. In this case (prev_pc == breakpoint_pc),
4329 we also need to back up to the breakpoint address. */
4330
d8dd4d5f
PA
4331 if (thread_has_single_step_breakpoints_set (thread)
4332 || !currently_stepping (thread)
4333 || (thread->stepped_breakpoint
4334 && thread->prev_pc == breakpoint_pc))
515630c5 4335 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4336 }
4fa8626c
DJ
4337}
4338
edb3359d
DJ
4339static int
4340stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4341{
4342 for (frame = get_prev_frame (frame);
4343 frame != NULL;
4344 frame = get_prev_frame (frame))
4345 {
4346 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4347 return 1;
4348 if (get_frame_type (frame) != INLINE_FRAME)
4349 break;
4350 }
4351
4352 return 0;
4353}
4354
4a4c04f1
BE
4355/* Look for an inline frame that is marked for skip.
4356 If PREV_FRAME is TRUE start at the previous frame,
4357 otherwise start at the current frame. Stop at the
4358 first non-inline frame, or at the frame where the
4359 step started. */
4360
4361static bool
4362inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4363{
4364 struct frame_info *frame = get_current_frame ();
4365
4366 if (prev_frame)
4367 frame = get_prev_frame (frame);
4368
4369 for (; frame != NULL; frame = get_prev_frame (frame))
4370 {
4371 const char *fn = NULL;
4372 symtab_and_line sal;
4373 struct symbol *sym;
4374
4375 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4376 break;
4377 if (get_frame_type (frame) != INLINE_FRAME)
4378 break;
4379
4380 sal = find_frame_sal (frame);
4381 sym = get_frame_function (frame);
4382
4383 if (sym != NULL)
4384 fn = sym->print_name ();
4385
4386 if (sal.line != 0
4387 && function_name_is_marked_for_skip (fn, sal))
4388 return true;
4389 }
4390
4391 return false;
4392}
4393
c65d6b55
PA
4394/* If the event thread has the stop requested flag set, pretend it
4395 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4396 target_stop). */
4397
4398static bool
4399handle_stop_requested (struct execution_control_state *ecs)
4400{
4401 if (ecs->event_thread->stop_requested)
4402 {
4403 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4404 ecs->ws.value.sig = GDB_SIGNAL_0;
4405 handle_signal_stop (ecs);
4406 return true;
4407 }
4408 return false;
4409}
4410
a96d9b2e
SDJ
4411/* Auxiliary function that handles syscall entry/return events.
4412 It returns 1 if the inferior should keep going (and GDB
4413 should ignore the event), or 0 if the event deserves to be
4414 processed. */
ca2163eb 4415
a96d9b2e 4416static int
ca2163eb 4417handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4418{
ca2163eb 4419 struct regcache *regcache;
ca2163eb
PA
4420 int syscall_number;
4421
00431a78 4422 context_switch (ecs);
ca2163eb 4423
00431a78 4424 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4425 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4426 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4427
a96d9b2e
SDJ
4428 if (catch_syscall_enabled () > 0
4429 && catching_syscall_number (syscall_number) > 0)
4430 {
4431 if (debug_infrun)
4432 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4433 syscall_number);
a96d9b2e 4434
16c381f0 4435 ecs->event_thread->control.stop_bpstat
a01bda52 4436 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4437 ecs->event_thread->suspend.stop_pc,
4438 ecs->event_thread, &ecs->ws);
ab04a2af 4439
c65d6b55
PA
4440 if (handle_stop_requested (ecs))
4441 return 0;
4442
ce12b012 4443 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4444 {
4445 /* Catchpoint hit. */
ca2163eb
PA
4446 return 0;
4447 }
a96d9b2e 4448 }
ca2163eb 4449
c65d6b55
PA
4450 if (handle_stop_requested (ecs))
4451 return 0;
4452
ca2163eb 4453 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4454 keep_going (ecs);
4455 return 1;
a96d9b2e
SDJ
4456}
4457
7e324e48
GB
4458/* Lazily fill in the execution_control_state's stop_func_* fields. */
4459
4460static void
4461fill_in_stop_func (struct gdbarch *gdbarch,
4462 struct execution_control_state *ecs)
4463{
4464 if (!ecs->stop_func_filled_in)
4465 {
98a617f8
KB
4466 const block *block;
4467
7e324e48
GB
4468 /* Don't care about return value; stop_func_start and stop_func_name
4469 will both be 0 if it doesn't work. */
98a617f8
KB
4470 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4471 &ecs->stop_func_name,
4472 &ecs->stop_func_start,
4473 &ecs->stop_func_end,
4474 &block);
4475
4476 /* The call to find_pc_partial_function, above, will set
4477 stop_func_start and stop_func_end to the start and end
4478 of the range containing the stop pc. If this range
4479 contains the entry pc for the block (which is always the
4480 case for contiguous blocks), advance stop_func_start past
4481 the function's start offset and entrypoint. Note that
4482 stop_func_start is NOT advanced when in a range of a
4483 non-contiguous block that does not contain the entry pc. */
4484 if (block != nullptr
4485 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4486 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4487 {
4488 ecs->stop_func_start
4489 += gdbarch_deprecated_function_start_offset (gdbarch);
4490
4491 if (gdbarch_skip_entrypoint_p (gdbarch))
4492 ecs->stop_func_start
4493 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4494 }
591a12a1 4495
7e324e48
GB
4496 ecs->stop_func_filled_in = 1;
4497 }
4498}
4499
4f5d7f63 4500
00431a78 4501/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4502
4503static enum stop_kind
00431a78 4504get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4505{
5b6d1e4f 4506 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4507
4508 gdb_assert (inf != NULL);
4509 return inf->control.stop_soon;
4510}
4511
5b6d1e4f
PA
4512/* Poll for one event out of the current target. Store the resulting
4513 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4514
4515static ptid_t
5b6d1e4f 4516poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4517{
4518 ptid_t event_ptid;
372316f1
PA
4519
4520 overlay_cache_invalid = 1;
4521
4522 /* Flush target cache before starting to handle each event.
4523 Target was running and cache could be stale. This is just a
4524 heuristic. Running threads may modify target memory, but we
4525 don't get any event. */
4526 target_dcache_invalidate ();
4527
4528 if (deprecated_target_wait_hook)
5b6d1e4f 4529 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4530 else
5b6d1e4f 4531 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4532
4533 if (debug_infrun)
5b6d1e4f 4534 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4535
4536 return event_ptid;
4537}
4538
5b6d1e4f
PA
4539/* An event reported by wait_one. */
4540
4541struct wait_one_event
4542{
4543 /* The target the event came out of. */
4544 process_stratum_target *target;
4545
4546 /* The PTID the event was for. */
4547 ptid_t ptid;
4548
4549 /* The waitstatus. */
4550 target_waitstatus ws;
4551};
4552
4553/* Wait for one event out of any target. */
4554
4555static wait_one_event
4556wait_one ()
4557{
4558 while (1)
4559 {
4560 for (inferior *inf : all_inferiors ())
4561 {
4562 process_stratum_target *target = inf->process_target ();
4563 if (target == NULL
4564 || !target->is_async_p ()
4565 || !target->threads_executing)
4566 continue;
4567
4568 switch_to_inferior_no_thread (inf);
4569
4570 wait_one_event event;
4571 event.target = target;
4572 event.ptid = poll_one_curr_target (&event.ws);
4573
4574 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4575 {
4576 /* If nothing is resumed, remove the target from the
4577 event loop. */
4578 target_async (0);
4579 }
4580 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4581 return event;
4582 }
4583
4584 /* Block waiting for some event. */
4585
4586 fd_set readfds;
4587 int nfds = 0;
4588
4589 FD_ZERO (&readfds);
4590
4591 for (inferior *inf : all_inferiors ())
4592 {
4593 process_stratum_target *target = inf->process_target ();
4594 if (target == NULL
4595 || !target->is_async_p ()
4596 || !target->threads_executing)
4597 continue;
4598
4599 int fd = target->async_wait_fd ();
4600 FD_SET (fd, &readfds);
4601 if (nfds <= fd)
4602 nfds = fd + 1;
4603 }
4604
4605 if (nfds == 0)
4606 {
4607 /* No waitable targets left. All must be stopped. */
4608 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4609 }
4610
4611 QUIT;
4612
4613 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4614 if (numfds < 0)
4615 {
4616 if (errno == EINTR)
4617 continue;
4618 else
4619 perror_with_name ("interruptible_select");
4620 }
4621 }
4622}
4623
372316f1
PA
4624/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4625 instead of the current thread. */
4626#define THREAD_STOPPED_BY(REASON) \
4627static int \
4628thread_stopped_by_ ## REASON (ptid_t ptid) \
4629{ \
2989a365 4630 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4631 inferior_ptid = ptid; \
4632 \
2989a365 4633 return target_stopped_by_ ## REASON (); \
372316f1
PA
4634}
4635
4636/* Generate thread_stopped_by_watchpoint. */
4637THREAD_STOPPED_BY (watchpoint)
4638/* Generate thread_stopped_by_sw_breakpoint. */
4639THREAD_STOPPED_BY (sw_breakpoint)
4640/* Generate thread_stopped_by_hw_breakpoint. */
4641THREAD_STOPPED_BY (hw_breakpoint)
4642
372316f1
PA
4643/* Save the thread's event and stop reason to process it later. */
4644
4645static void
5b6d1e4f 4646save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4647{
372316f1
PA
4648 if (debug_infrun)
4649 {
23fdd69e 4650 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4651
372316f1
PA
4652 fprintf_unfiltered (gdb_stdlog,
4653 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4654 statstr.c_str (),
e99b03dc 4655 tp->ptid.pid (),
e38504b3 4656 tp->ptid.lwp (),
cc6bcb54 4657 tp->ptid.tid ());
372316f1
PA
4658 }
4659
4660 /* Record for later. */
4661 tp->suspend.waitstatus = *ws;
4662 tp->suspend.waitstatus_pending_p = 1;
4663
00431a78 4664 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4665 const address_space *aspace = regcache->aspace ();
372316f1
PA
4666
4667 if (ws->kind == TARGET_WAITKIND_STOPPED
4668 && ws->value.sig == GDB_SIGNAL_TRAP)
4669 {
4670 CORE_ADDR pc = regcache_read_pc (regcache);
4671
4672 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4673
4674 if (thread_stopped_by_watchpoint (tp->ptid))
4675 {
4676 tp->suspend.stop_reason
4677 = TARGET_STOPPED_BY_WATCHPOINT;
4678 }
4679 else if (target_supports_stopped_by_sw_breakpoint ()
4680 && thread_stopped_by_sw_breakpoint (tp->ptid))
4681 {
4682 tp->suspend.stop_reason
4683 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4684 }
4685 else if (target_supports_stopped_by_hw_breakpoint ()
4686 && thread_stopped_by_hw_breakpoint (tp->ptid))
4687 {
4688 tp->suspend.stop_reason
4689 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4690 }
4691 else if (!target_supports_stopped_by_hw_breakpoint ()
4692 && hardware_breakpoint_inserted_here_p (aspace,
4693 pc))
4694 {
4695 tp->suspend.stop_reason
4696 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4697 }
4698 else if (!target_supports_stopped_by_sw_breakpoint ()
4699 && software_breakpoint_inserted_here_p (aspace,
4700 pc))
4701 {
4702 tp->suspend.stop_reason
4703 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4704 }
4705 else if (!thread_has_single_step_breakpoints_set (tp)
4706 && currently_stepping (tp))
4707 {
4708 tp->suspend.stop_reason
4709 = TARGET_STOPPED_BY_SINGLE_STEP;
4710 }
4711 }
4712}
4713
6efcd9a8 4714/* See infrun.h. */
372316f1 4715
6efcd9a8 4716void
372316f1
PA
4717stop_all_threads (void)
4718{
4719 /* We may need multiple passes to discover all threads. */
4720 int pass;
4721 int iterations = 0;
372316f1 4722
53cccef1 4723 gdb_assert (exists_non_stop_target ());
372316f1
PA
4724
4725 if (debug_infrun)
4726 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4727
00431a78 4728 scoped_restore_current_thread restore_thread;
372316f1 4729
65706a29 4730 target_thread_events (1);
9885e6bb 4731 SCOPE_EXIT { target_thread_events (0); };
65706a29 4732
372316f1
PA
4733 /* Request threads to stop, and then wait for the stops. Because
4734 threads we already know about can spawn more threads while we're
4735 trying to stop them, and we only learn about new threads when we
4736 update the thread list, do this in a loop, and keep iterating
4737 until two passes find no threads that need to be stopped. */
4738 for (pass = 0; pass < 2; pass++, iterations++)
4739 {
4740 if (debug_infrun)
4741 fprintf_unfiltered (gdb_stdlog,
4742 "infrun: stop_all_threads, pass=%d, "
4743 "iterations=%d\n", pass, iterations);
4744 while (1)
4745 {
372316f1 4746 int need_wait = 0;
372316f1
PA
4747
4748 update_thread_list ();
4749
4750 /* Go through all threads looking for threads that we need
4751 to tell the target to stop. */
08036331 4752 for (thread_info *t : all_non_exited_threads ())
372316f1 4753 {
53cccef1
TBA
4754 /* For a single-target setting with an all-stop target,
4755 we would not even arrive here. For a multi-target
4756 setting, until GDB is able to handle a mixture of
4757 all-stop and non-stop targets, simply skip all-stop
4758 targets' threads. This should be fine due to the
4759 protection of 'check_multi_target_resumption'. */
4760
4761 switch_to_thread_no_regs (t);
4762 if (!target_is_non_stop_p ())
4763 continue;
4764
372316f1
PA
4765 if (t->executing)
4766 {
4767 /* If already stopping, don't request a stop again.
4768 We just haven't seen the notification yet. */
4769 if (!t->stop_requested)
4770 {
4771 if (debug_infrun)
4772 fprintf_unfiltered (gdb_stdlog,
4773 "infrun: %s executing, "
4774 "need stop\n",
a068643d 4775 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4776 target_stop (t->ptid);
4777 t->stop_requested = 1;
4778 }
4779 else
4780 {
4781 if (debug_infrun)
4782 fprintf_unfiltered (gdb_stdlog,
4783 "infrun: %s executing, "
4784 "already stopping\n",
a068643d 4785 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4786 }
4787
4788 if (t->stop_requested)
4789 need_wait = 1;
4790 }
4791 else
4792 {
4793 if (debug_infrun)
4794 fprintf_unfiltered (gdb_stdlog,
4795 "infrun: %s not executing\n",
a068643d 4796 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4797
4798 /* The thread may be not executing, but still be
4799 resumed with a pending status to process. */
719546c4 4800 t->resumed = false;
372316f1
PA
4801 }
4802 }
4803
4804 if (!need_wait)
4805 break;
4806
4807 /* If we find new threads on the second iteration, restart
4808 over. We want to see two iterations in a row with all
4809 threads stopped. */
4810 if (pass > 0)
4811 pass = -1;
4812
5b6d1e4f
PA
4813 wait_one_event event = wait_one ();
4814
c29705b7 4815 if (debug_infrun)
372316f1 4816 {
c29705b7
PW
4817 fprintf_unfiltered (gdb_stdlog,
4818 "infrun: stop_all_threads %s %s\n",
5b6d1e4f
PA
4819 target_waitstatus_to_string (&event.ws).c_str (),
4820 target_pid_to_str (event.ptid).c_str ());
372316f1 4821 }
372316f1 4822
5b6d1e4f
PA
4823 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4824 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4825 || event.ws.kind == TARGET_WAITKIND_EXITED
4826 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
c29705b7
PW
4827 {
4828 /* All resumed threads exited
4829 or one thread/process exited/signalled. */
372316f1
PA
4830 }
4831 else
4832 {
5b6d1e4f 4833 thread_info *t = find_thread_ptid (event.target, event.ptid);
372316f1 4834 if (t == NULL)
5b6d1e4f 4835 t = add_thread (event.target, event.ptid);
372316f1
PA
4836
4837 t->stop_requested = 0;
4838 t->executing = 0;
719546c4 4839 t->resumed = false;
372316f1
PA
4840 t->control.may_range_step = 0;
4841
6efcd9a8
PA
4842 /* This may be the first time we see the inferior report
4843 a stop. */
5b6d1e4f 4844 inferior *inf = find_inferior_ptid (event.target, event.ptid);
6efcd9a8
PA
4845 if (inf->needs_setup)
4846 {
4847 switch_to_thread_no_regs (t);
4848 setup_inferior (0);
4849 }
4850
5b6d1e4f
PA
4851 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4852 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1
PA
4853 {
4854 /* We caught the event that we intended to catch, so
4855 there's no event pending. */
4856 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4857 t->suspend.waitstatus_pending_p = 0;
4858
00431a78 4859 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4860 {
4861 /* Add it back to the step-over queue. */
4862 if (debug_infrun)
4863 {
4864 fprintf_unfiltered (gdb_stdlog,
4865 "infrun: displaced-step of %s "
4866 "canceled: adding back to the "
4867 "step-over queue\n",
a068643d 4868 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4869 }
4870 t->control.trap_expected = 0;
4871 thread_step_over_chain_enqueue (t);
4872 }
4873 }
4874 else
4875 {
4876 enum gdb_signal sig;
4877 struct regcache *regcache;
372316f1
PA
4878
4879 if (debug_infrun)
4880 {
5b6d1e4f 4881 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4882
372316f1
PA
4883 fprintf_unfiltered (gdb_stdlog,
4884 "infrun: target_wait %s, saving "
4885 "status for %d.%ld.%ld\n",
23fdd69e 4886 statstr.c_str (),
e99b03dc 4887 t->ptid.pid (),
e38504b3 4888 t->ptid.lwp (),
cc6bcb54 4889 t->ptid.tid ());
372316f1
PA
4890 }
4891
4892 /* Record for later. */
5b6d1e4f 4893 save_waitstatus (t, &event.ws);
372316f1 4894
5b6d1e4f
PA
4895 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4896 ? event.ws.value.sig : GDB_SIGNAL_0);
372316f1 4897
00431a78 4898 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4899 {
4900 /* Add it back to the step-over queue. */
4901 t->control.trap_expected = 0;
4902 thread_step_over_chain_enqueue (t);
4903 }
4904
00431a78 4905 regcache = get_thread_regcache (t);
372316f1
PA
4906 t->suspend.stop_pc = regcache_read_pc (regcache);
4907
4908 if (debug_infrun)
4909 {
4910 fprintf_unfiltered (gdb_stdlog,
4911 "infrun: saved stop_pc=%s for %s "
4912 "(currently_stepping=%d)\n",
4913 paddress (target_gdbarch (),
4914 t->suspend.stop_pc),
a068643d 4915 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4916 currently_stepping (t));
4917 }
4918 }
4919 }
4920 }
4921 }
4922
372316f1
PA
4923 if (debug_infrun)
4924 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4925}
4926
f4836ba9
PA
4927/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4928
4929static int
4930handle_no_resumed (struct execution_control_state *ecs)
4931{
3b12939d 4932 if (target_can_async_p ())
f4836ba9 4933 {
3b12939d
PA
4934 struct ui *ui;
4935 int any_sync = 0;
f4836ba9 4936
3b12939d
PA
4937 ALL_UIS (ui)
4938 {
4939 if (ui->prompt_state == PROMPT_BLOCKED)
4940 {
4941 any_sync = 1;
4942 break;
4943 }
4944 }
4945 if (!any_sync)
4946 {
4947 /* There were no unwaited-for children left in the target, but,
4948 we're not synchronously waiting for events either. Just
4949 ignore. */
4950
4951 if (debug_infrun)
4952 fprintf_unfiltered (gdb_stdlog,
4953 "infrun: TARGET_WAITKIND_NO_RESUMED "
4954 "(ignoring: bg)\n");
4955 prepare_to_wait (ecs);
4956 return 1;
4957 }
f4836ba9
PA
4958 }
4959
4960 /* Otherwise, if we were running a synchronous execution command, we
4961 may need to cancel it and give the user back the terminal.
4962
4963 In non-stop mode, the target can't tell whether we've already
4964 consumed previous stop events, so it can end up sending us a
4965 no-resumed event like so:
4966
4967 #0 - thread 1 is left stopped
4968
4969 #1 - thread 2 is resumed and hits breakpoint
4970 -> TARGET_WAITKIND_STOPPED
4971
4972 #2 - thread 3 is resumed and exits
4973 this is the last resumed thread, so
4974 -> TARGET_WAITKIND_NO_RESUMED
4975
4976 #3 - gdb processes stop for thread 2 and decides to re-resume
4977 it.
4978
4979 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4980 thread 2 is now resumed, so the event should be ignored.
4981
4982 IOW, if the stop for thread 2 doesn't end a foreground command,
4983 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4984 event. But it could be that the event meant that thread 2 itself
4985 (or whatever other thread was the last resumed thread) exited.
4986
4987 To address this we refresh the thread list and check whether we
4988 have resumed threads _now_. In the example above, this removes
4989 thread 3 from the thread list. If thread 2 was re-resumed, we
4990 ignore this event. If we find no thread resumed, then we cancel
4991 the synchronous command show "no unwaited-for " to the user. */
4992 update_thread_list ();
4993
5b6d1e4f 4994 for (thread_info *thread : all_non_exited_threads (ecs->target))
f4836ba9
PA
4995 {
4996 if (thread->executing
4997 || thread->suspend.waitstatus_pending_p)
4998 {
4999 /* There were no unwaited-for children left in the target at
5000 some point, but there are now. Just ignore. */
5001 if (debug_infrun)
5002 fprintf_unfiltered (gdb_stdlog,
5003 "infrun: TARGET_WAITKIND_NO_RESUMED "
5004 "(ignoring: found resumed)\n");
5005 prepare_to_wait (ecs);
5006 return 1;
5007 }
5008 }
5009
5010 /* Note however that we may find no resumed thread because the whole
5011 process exited meanwhile (thus updating the thread list results
5012 in an empty thread list). In this case we know we'll be getting
5013 a process exit event shortly. */
5b6d1e4f 5014 for (inferior *inf : all_non_exited_inferiors (ecs->target))
f4836ba9 5015 {
08036331 5016 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
5017 if (thread == NULL)
5018 {
5019 if (debug_infrun)
5020 fprintf_unfiltered (gdb_stdlog,
5021 "infrun: TARGET_WAITKIND_NO_RESUMED "
5022 "(expect process exit)\n");
5023 prepare_to_wait (ecs);
5024 return 1;
5025 }
5026 }
5027
5028 /* Go ahead and report the event. */
5029 return 0;
5030}
5031
05ba8510
PA
5032/* Given an execution control state that has been freshly filled in by
5033 an event from the inferior, figure out what it means and take
5034 appropriate action.
5035
5036 The alternatives are:
5037
22bcd14b 5038 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5039 debugger.
5040
5041 2) keep_going and return; to wait for the next event (set
5042 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5043 once). */
c906108c 5044
ec9499be 5045static void
595915c1 5046handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5047{
595915c1
TT
5048 /* Make sure that all temporary struct value objects that were
5049 created during the handling of the event get deleted at the
5050 end. */
5051 scoped_value_mark free_values;
5052
d6b48e9c
PA
5053 enum stop_kind stop_soon;
5054
c29705b7
PW
5055 if (debug_infrun)
5056 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5057 target_waitstatus_to_string (&ecs->ws).c_str ());
5058
28736962
PA
5059 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5060 {
5061 /* We had an event in the inferior, but we are not interested in
5062 handling it at this level. The lower layers have already
5063 done what needs to be done, if anything.
5064
5065 One of the possible circumstances for this is when the
5066 inferior produces output for the console. The inferior has
5067 not stopped, and we are ignoring the event. Another possible
5068 circumstance is any event which the lower level knows will be
5069 reported multiple times without an intervening resume. */
28736962
PA
5070 prepare_to_wait (ecs);
5071 return;
5072 }
5073
65706a29
PA
5074 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5075 {
65706a29
PA
5076 prepare_to_wait (ecs);
5077 return;
5078 }
5079
0e5bf2a8 5080 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5081 && handle_no_resumed (ecs))
5082 return;
0e5bf2a8 5083
5b6d1e4f
PA
5084 /* Cache the last target/ptid/waitstatus. */
5085 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5086
ca005067 5087 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5088 stop_stack_dummy = STOP_NONE;
ca005067 5089
0e5bf2a8
PA
5090 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5091 {
5092 /* No unwaited-for children left. IOW, all resumed children
5093 have exited. */
0e5bf2a8 5094 stop_print_frame = 0;
22bcd14b 5095 stop_waiting (ecs);
0e5bf2a8
PA
5096 return;
5097 }
5098
8c90c137 5099 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5100 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5101 {
5b6d1e4f 5102 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5103 /* If it's a new thread, add it to the thread database. */
5104 if (ecs->event_thread == NULL)
5b6d1e4f 5105 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5106
5107 /* Disable range stepping. If the next step request could use a
5108 range, this will be end up re-enabled then. */
5109 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5110 }
88ed393a
JK
5111
5112 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5113 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5114
5115 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5116 reinit_frame_cache ();
5117
28736962
PA
5118 breakpoint_retire_moribund ();
5119
2b009048
DJ
5120 /* First, distinguish signals caused by the debugger from signals
5121 that have to do with the program's own actions. Note that
5122 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5123 on the operating system version. Here we detect when a SIGILL or
5124 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5125 something similar for SIGSEGV, since a SIGSEGV will be generated
5126 when we're trying to execute a breakpoint instruction on a
5127 non-executable stack. This happens for call dummy breakpoints
5128 for architectures like SPARC that place call dummies on the
5129 stack. */
2b009048 5130 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5131 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5132 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5133 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5134 {
00431a78 5135 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5136
a01bda52 5137 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5138 regcache_read_pc (regcache)))
5139 {
5140 if (debug_infrun)
5141 fprintf_unfiltered (gdb_stdlog,
5142 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 5143 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5144 }
2b009048
DJ
5145 }
5146
28736962
PA
5147 /* Mark the non-executing threads accordingly. In all-stop, all
5148 threads of all processes are stopped when we get any event
e1316e60 5149 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
5150 {
5151 ptid_t mark_ptid;
5152
fbea99ea 5153 if (!target_is_non_stop_p ())
372316f1
PA
5154 mark_ptid = minus_one_ptid;
5155 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5156 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5157 {
5158 /* If we're handling a process exit in non-stop mode, even
5159 though threads haven't been deleted yet, one would think
5160 that there is nothing to do, as threads of the dead process
5161 will be soon deleted, and threads of any other process were
5162 left running. However, on some targets, threads survive a
5163 process exit event. E.g., for the "checkpoint" command,
5164 when the current checkpoint/fork exits, linux-fork.c
5165 automatically switches to another fork from within
5166 target_mourn_inferior, by associating the same
5167 inferior/thread to another fork. We haven't mourned yet at
5168 this point, but we must mark any threads left in the
5169 process as not-executing so that finish_thread_state marks
5170 them stopped (in the user's perspective) if/when we present
5171 the stop to the user. */
e99b03dc 5172 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
5173 }
5174 else
5175 mark_ptid = ecs->ptid;
5176
719546c4 5177 set_executing (ecs->target, mark_ptid, false);
372316f1
PA
5178
5179 /* Likewise the resumed flag. */
719546c4 5180 set_resumed (ecs->target, mark_ptid, false);
372316f1 5181 }
8c90c137 5182
488f131b
JB
5183 switch (ecs->ws.kind)
5184 {
5185 case TARGET_WAITKIND_LOADED:
00431a78 5186 context_switch (ecs);
b0f4b84b
DJ
5187 /* Ignore gracefully during startup of the inferior, as it might
5188 be the shell which has just loaded some objects, otherwise
5189 add the symbols for the newly loaded objects. Also ignore at
5190 the beginning of an attach or remote session; we will query
5191 the full list of libraries once the connection is
5192 established. */
4f5d7f63 5193
00431a78 5194 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5195 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5196 {
edcc5120
TT
5197 struct regcache *regcache;
5198
00431a78 5199 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5200
5201 handle_solib_event ();
5202
5203 ecs->event_thread->control.stop_bpstat
a01bda52 5204 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5205 ecs->event_thread->suspend.stop_pc,
5206 ecs->event_thread, &ecs->ws);
ab04a2af 5207
c65d6b55
PA
5208 if (handle_stop_requested (ecs))
5209 return;
5210
ce12b012 5211 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5212 {
5213 /* A catchpoint triggered. */
94c57d6a
PA
5214 process_event_stop_test (ecs);
5215 return;
edcc5120 5216 }
488f131b 5217
b0f4b84b
DJ
5218 /* If requested, stop when the dynamic linker notifies
5219 gdb of events. This allows the user to get control
5220 and place breakpoints in initializer routines for
5221 dynamically loaded objects (among other things). */
a493e3e2 5222 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5223 if (stop_on_solib_events)
5224 {
55409f9d
DJ
5225 /* Make sure we print "Stopped due to solib-event" in
5226 normal_stop. */
5227 stop_print_frame = 1;
5228
22bcd14b 5229 stop_waiting (ecs);
b0f4b84b
DJ
5230 return;
5231 }
488f131b 5232 }
b0f4b84b
DJ
5233
5234 /* If we are skipping through a shell, or through shared library
5235 loading that we aren't interested in, resume the program. If
5c09a2c5 5236 we're running the program normally, also resume. */
b0f4b84b
DJ
5237 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5238 {
74960c60
VP
5239 /* Loading of shared libraries might have changed breakpoint
5240 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5241 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5242 insert_breakpoints ();
64ce06e4 5243 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5244 prepare_to_wait (ecs);
5245 return;
5246 }
5247
5c09a2c5
PA
5248 /* But stop if we're attaching or setting up a remote
5249 connection. */
5250 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5251 || stop_soon == STOP_QUIETLY_REMOTE)
5252 {
5253 if (debug_infrun)
5254 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5255 stop_waiting (ecs);
5c09a2c5
PA
5256 return;
5257 }
5258
5259 internal_error (__FILE__, __LINE__,
5260 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5261
488f131b 5262 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5263 if (handle_stop_requested (ecs))
5264 return;
00431a78 5265 context_switch (ecs);
64ce06e4 5266 resume (GDB_SIGNAL_0);
488f131b
JB
5267 prepare_to_wait (ecs);
5268 return;
c5aa993b 5269
65706a29 5270 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5271 if (handle_stop_requested (ecs))
5272 return;
00431a78 5273 context_switch (ecs);
65706a29
PA
5274 if (!switch_back_to_stepped_thread (ecs))
5275 keep_going (ecs);
5276 return;
5277
488f131b 5278 case TARGET_WAITKIND_EXITED:
940c3c06 5279 case TARGET_WAITKIND_SIGNALLED:
fb66883a 5280 inferior_ptid = ecs->ptid;
5b6d1e4f 5281 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
6c95b8df
PA
5282 set_current_program_space (current_inferior ()->pspace);
5283 handle_vfork_child_exec_or_exit (0);
223ffa71 5284 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5285
0c557179
SDJ
5286 /* Clearing any previous state of convenience variables. */
5287 clear_exit_convenience_vars ();
5288
940c3c06
PA
5289 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5290 {
5291 /* Record the exit code in the convenience variable $_exitcode, so
5292 that the user can inspect this again later. */
5293 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5294 (LONGEST) ecs->ws.value.integer);
5295
5296 /* Also record this in the inferior itself. */
5297 current_inferior ()->has_exit_code = 1;
5298 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5299
98eb56a4
PA
5300 /* Support the --return-child-result option. */
5301 return_child_result_value = ecs->ws.value.integer;
5302
76727919 5303 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5304 }
5305 else
0c557179 5306 {
00431a78 5307 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5308
5309 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5310 {
5311 /* Set the value of the internal variable $_exitsignal,
5312 which holds the signal uncaught by the inferior. */
5313 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5314 gdbarch_gdb_signal_to_target (gdbarch,
5315 ecs->ws.value.sig));
5316 }
5317 else
5318 {
5319 /* We don't have access to the target's method used for
5320 converting between signal numbers (GDB's internal
5321 representation <-> target's representation).
5322 Therefore, we cannot do a good job at displaying this
5323 information to the user. It's better to just warn
5324 her about it (if infrun debugging is enabled), and
5325 give up. */
5326 if (debug_infrun)
5327 fprintf_filtered (gdb_stdlog, _("\
5328Cannot fill $_exitsignal with the correct signal number.\n"));
5329 }
5330
76727919 5331 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5332 }
8cf64490 5333
488f131b 5334 gdb_flush (gdb_stdout);
bc1e6c81 5335 target_mourn_inferior (inferior_ptid);
488f131b 5336 stop_print_frame = 0;
22bcd14b 5337 stop_waiting (ecs);
488f131b 5338 return;
c5aa993b 5339
488f131b 5340 case TARGET_WAITKIND_FORKED:
deb3b17b 5341 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5342 /* Check whether the inferior is displaced stepping. */
5343 {
00431a78 5344 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5345 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5346
5347 /* If checking displaced stepping is supported, and thread
5348 ecs->ptid is displaced stepping. */
00431a78 5349 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5350 {
5351 struct inferior *parent_inf
5b6d1e4f 5352 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5353 struct regcache *child_regcache;
5354 CORE_ADDR parent_pc;
5355
d8d83535
SM
5356 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5357 {
5358 struct displaced_step_inferior_state *displaced
5359 = get_displaced_stepping_state (parent_inf);
5360
5361 /* Restore scratch pad for child process. */
5362 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5363 }
5364
e2d96639
YQ
5365 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5366 indicating that the displaced stepping of syscall instruction
5367 has been done. Perform cleanup for parent process here. Note
5368 that this operation also cleans up the child process for vfork,
5369 because their pages are shared. */
00431a78 5370 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5371 /* Start a new step-over in another thread if there's one
5372 that needs it. */
5373 start_step_over ();
e2d96639 5374
e2d96639
YQ
5375 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5376 the child's PC is also within the scratchpad. Set the child's PC
5377 to the parent's PC value, which has already been fixed up.
5378 FIXME: we use the parent's aspace here, although we're touching
5379 the child, because the child hasn't been added to the inferior
5380 list yet at this point. */
5381
5382 child_regcache
5b6d1e4f
PA
5383 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5384 ecs->ws.value.related_pid,
e2d96639
YQ
5385 gdbarch,
5386 parent_inf->aspace);
5387 /* Read PC value of parent process. */
5388 parent_pc = regcache_read_pc (regcache);
5389
5390 if (debug_displaced)
5391 fprintf_unfiltered (gdb_stdlog,
5392 "displaced: write child pc from %s to %s\n",
5393 paddress (gdbarch,
5394 regcache_read_pc (child_regcache)),
5395 paddress (gdbarch, parent_pc));
5396
5397 regcache_write_pc (child_regcache, parent_pc);
5398 }
5399 }
5400
00431a78 5401 context_switch (ecs);
5a2901d9 5402
b242c3c2
PA
5403 /* Immediately detach breakpoints from the child before there's
5404 any chance of letting the user delete breakpoints from the
5405 breakpoint lists. If we don't do this early, it's easy to
5406 leave left over traps in the child, vis: "break foo; catch
5407 fork; c; <fork>; del; c; <child calls foo>". We only follow
5408 the fork on the last `continue', and by that time the
5409 breakpoint at "foo" is long gone from the breakpoint table.
5410 If we vforked, then we don't need to unpatch here, since both
5411 parent and child are sharing the same memory pages; we'll
5412 need to unpatch at follow/detach time instead to be certain
5413 that new breakpoints added between catchpoint hit time and
5414 vfork follow are detached. */
5415 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5416 {
b242c3c2
PA
5417 /* This won't actually modify the breakpoint list, but will
5418 physically remove the breakpoints from the child. */
d80ee84f 5419 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5420 }
5421
34b7e8a6 5422 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5423
e58b0e63
PA
5424 /* In case the event is caught by a catchpoint, remember that
5425 the event is to be followed at the next resume of the thread,
5426 and not immediately. */
5427 ecs->event_thread->pending_follow = ecs->ws;
5428
f2ffa92b
PA
5429 ecs->event_thread->suspend.stop_pc
5430 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5431
16c381f0 5432 ecs->event_thread->control.stop_bpstat
a01bda52 5433 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5434 ecs->event_thread->suspend.stop_pc,
5435 ecs->event_thread, &ecs->ws);
675bf4cb 5436
c65d6b55
PA
5437 if (handle_stop_requested (ecs))
5438 return;
5439
ce12b012
PA
5440 /* If no catchpoint triggered for this, then keep going. Note
5441 that we're interested in knowing the bpstat actually causes a
5442 stop, not just if it may explain the signal. Software
5443 watchpoints, for example, always appear in the bpstat. */
5444 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5445 {
5ab2fbf1 5446 bool follow_child
3e43a32a 5447 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5448
a493e3e2 5449 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5450
5b6d1e4f
PA
5451 process_stratum_target *targ
5452 = ecs->event_thread->inf->process_target ();
5453
5ab2fbf1 5454 bool should_resume = follow_fork ();
e58b0e63 5455
5b6d1e4f
PA
5456 /* Note that one of these may be an invalid pointer,
5457 depending on detach_fork. */
00431a78 5458 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5459 thread_info *child
5460 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5461
a2077e25
PA
5462 /* At this point, the parent is marked running, and the
5463 child is marked stopped. */
5464
5465 /* If not resuming the parent, mark it stopped. */
5466 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5467 parent->set_running (false);
a2077e25
PA
5468
5469 /* If resuming the child, mark it running. */
5470 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5471 child->set_running (true);
a2077e25 5472
6c95b8df 5473 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5474 if (!detach_fork && (non_stop
5475 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5476 {
5477 if (follow_child)
5478 switch_to_thread (parent);
5479 else
5480 switch_to_thread (child);
5481
5482 ecs->event_thread = inferior_thread ();
5483 ecs->ptid = inferior_ptid;
5484 keep_going (ecs);
5485 }
5486
5487 if (follow_child)
5488 switch_to_thread (child);
5489 else
5490 switch_to_thread (parent);
5491
e58b0e63
PA
5492 ecs->event_thread = inferior_thread ();
5493 ecs->ptid = inferior_ptid;
5494
5495 if (should_resume)
5496 keep_going (ecs);
5497 else
22bcd14b 5498 stop_waiting (ecs);
04e68871
DJ
5499 return;
5500 }
94c57d6a
PA
5501 process_event_stop_test (ecs);
5502 return;
488f131b 5503
6c95b8df
PA
5504 case TARGET_WAITKIND_VFORK_DONE:
5505 /* Done with the shared memory region. Re-insert breakpoints in
5506 the parent, and keep going. */
5507
00431a78 5508 context_switch (ecs);
6c95b8df
PA
5509
5510 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5511 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5512
5513 if (handle_stop_requested (ecs))
5514 return;
5515
6c95b8df
PA
5516 /* This also takes care of reinserting breakpoints in the
5517 previously locked inferior. */
5518 keep_going (ecs);
5519 return;
5520
488f131b 5521 case TARGET_WAITKIND_EXECD:
488f131b 5522
cbd2b4e3
PA
5523 /* Note we can't read registers yet (the stop_pc), because we
5524 don't yet know the inferior's post-exec architecture.
5525 'stop_pc' is explicitly read below instead. */
00431a78 5526 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5527
6c95b8df
PA
5528 /* Do whatever is necessary to the parent branch of the vfork. */
5529 handle_vfork_child_exec_or_exit (1);
5530
795e548f
PA
5531 /* This causes the eventpoints and symbol table to be reset.
5532 Must do this now, before trying to determine whether to
5533 stop. */
71b43ef8 5534 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5535
17d8546e
DB
5536 /* In follow_exec we may have deleted the original thread and
5537 created a new one. Make sure that the event thread is the
5538 execd thread for that case (this is a nop otherwise). */
5539 ecs->event_thread = inferior_thread ();
5540
f2ffa92b
PA
5541 ecs->event_thread->suspend.stop_pc
5542 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5543
16c381f0 5544 ecs->event_thread->control.stop_bpstat
a01bda52 5545 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5546 ecs->event_thread->suspend.stop_pc,
5547 ecs->event_thread, &ecs->ws);
795e548f 5548
71b43ef8
PA
5549 /* Note that this may be referenced from inside
5550 bpstat_stop_status above, through inferior_has_execd. */
5551 xfree (ecs->ws.value.execd_pathname);
5552 ecs->ws.value.execd_pathname = NULL;
5553
c65d6b55
PA
5554 if (handle_stop_requested (ecs))
5555 return;
5556
04e68871 5557 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5558 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5559 {
a493e3e2 5560 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5561 keep_going (ecs);
5562 return;
5563 }
94c57d6a
PA
5564 process_event_stop_test (ecs);
5565 return;
488f131b 5566
b4dc5ffa
MK
5567 /* Be careful not to try to gather much state about a thread
5568 that's in a syscall. It's frequently a losing proposition. */
488f131b 5569 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5570 /* Getting the current syscall number. */
94c57d6a
PA
5571 if (handle_syscall_event (ecs) == 0)
5572 process_event_stop_test (ecs);
5573 return;
c906108c 5574
488f131b
JB
5575 /* Before examining the threads further, step this thread to
5576 get it entirely out of the syscall. (We get notice of the
5577 event when the thread is just on the verge of exiting a
5578 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5579 into user code.) */
488f131b 5580 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5581 if (handle_syscall_event (ecs) == 0)
5582 process_event_stop_test (ecs);
5583 return;
c906108c 5584
488f131b 5585 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5586 handle_signal_stop (ecs);
5587 return;
c906108c 5588
b2175913
MS
5589 case TARGET_WAITKIND_NO_HISTORY:
5590 /* Reverse execution: target ran out of history info. */
eab402df 5591
d1988021 5592 /* Switch to the stopped thread. */
00431a78 5593 context_switch (ecs);
d1988021
MM
5594 if (debug_infrun)
5595 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5596
34b7e8a6 5597 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5598 ecs->event_thread->suspend.stop_pc
5599 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5600
5601 if (handle_stop_requested (ecs))
5602 return;
5603
76727919 5604 gdb::observers::no_history.notify ();
22bcd14b 5605 stop_waiting (ecs);
b2175913 5606 return;
488f131b 5607 }
4f5d7f63
PA
5608}
5609
372316f1
PA
5610/* Restart threads back to what they were trying to do back when we
5611 paused them for an in-line step-over. The EVENT_THREAD thread is
5612 ignored. */
4d9d9d04
PA
5613
5614static void
372316f1
PA
5615restart_threads (struct thread_info *event_thread)
5616{
372316f1
PA
5617 /* In case the instruction just stepped spawned a new thread. */
5618 update_thread_list ();
5619
08036331 5620 for (thread_info *tp : all_non_exited_threads ())
372316f1 5621 {
f3f8ece4
PA
5622 switch_to_thread_no_regs (tp);
5623
372316f1
PA
5624 if (tp == event_thread)
5625 {
5626 if (debug_infrun)
5627 fprintf_unfiltered (gdb_stdlog,
5628 "infrun: restart threads: "
5629 "[%s] is event thread\n",
a068643d 5630 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5631 continue;
5632 }
5633
5634 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5635 {
5636 if (debug_infrun)
5637 fprintf_unfiltered (gdb_stdlog,
5638 "infrun: restart threads: "
5639 "[%s] not meant to be running\n",
a068643d 5640 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5641 continue;
5642 }
5643
5644 if (tp->resumed)
5645 {
5646 if (debug_infrun)
5647 fprintf_unfiltered (gdb_stdlog,
5648 "infrun: restart threads: [%s] resumed\n",
a068643d 5649 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5650 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5651 continue;
5652 }
5653
5654 if (thread_is_in_step_over_chain (tp))
5655 {
5656 if (debug_infrun)
5657 fprintf_unfiltered (gdb_stdlog,
5658 "infrun: restart threads: "
5659 "[%s] needs step-over\n",
a068643d 5660 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5661 gdb_assert (!tp->resumed);
5662 continue;
5663 }
5664
5665
5666 if (tp->suspend.waitstatus_pending_p)
5667 {
5668 if (debug_infrun)
5669 fprintf_unfiltered (gdb_stdlog,
5670 "infrun: restart threads: "
5671 "[%s] has pending status\n",
a068643d 5672 target_pid_to_str (tp->ptid).c_str ());
719546c4 5673 tp->resumed = true;
372316f1
PA
5674 continue;
5675 }
5676
c65d6b55
PA
5677 gdb_assert (!tp->stop_requested);
5678
372316f1
PA
5679 /* If some thread needs to start a step-over at this point, it
5680 should still be in the step-over queue, and thus skipped
5681 above. */
5682 if (thread_still_needs_step_over (tp))
5683 {
5684 internal_error (__FILE__, __LINE__,
5685 "thread [%s] needs a step-over, but not in "
5686 "step-over queue\n",
a068643d 5687 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5688 }
5689
5690 if (currently_stepping (tp))
5691 {
5692 if (debug_infrun)
5693 fprintf_unfiltered (gdb_stdlog,
5694 "infrun: restart threads: [%s] was stepping\n",
a068643d 5695 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5696 keep_going_stepped_thread (tp);
5697 }
5698 else
5699 {
5700 struct execution_control_state ecss;
5701 struct execution_control_state *ecs = &ecss;
5702
5703 if (debug_infrun)
5704 fprintf_unfiltered (gdb_stdlog,
5705 "infrun: restart threads: [%s] continuing\n",
a068643d 5706 target_pid_to_str (tp->ptid).c_str ());
372316f1 5707 reset_ecs (ecs, tp);
00431a78 5708 switch_to_thread (tp);
372316f1
PA
5709 keep_going_pass_signal (ecs);
5710 }
5711 }
5712}
5713
5714/* Callback for iterate_over_threads. Find a resumed thread that has
5715 a pending waitstatus. */
5716
5717static int
5718resumed_thread_with_pending_status (struct thread_info *tp,
5719 void *arg)
5720{
5721 return (tp->resumed
5722 && tp->suspend.waitstatus_pending_p);
5723}
5724
5725/* Called when we get an event that may finish an in-line or
5726 out-of-line (displaced stepping) step-over started previously.
5727 Return true if the event is processed and we should go back to the
5728 event loop; false if the caller should continue processing the
5729 event. */
5730
5731static int
4d9d9d04
PA
5732finish_step_over (struct execution_control_state *ecs)
5733{
372316f1
PA
5734 int had_step_over_info;
5735
00431a78 5736 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5737 ecs->event_thread->suspend.stop_signal);
5738
372316f1
PA
5739 had_step_over_info = step_over_info_valid_p ();
5740
5741 if (had_step_over_info)
4d9d9d04
PA
5742 {
5743 /* If we're stepping over a breakpoint with all threads locked,
5744 then only the thread that was stepped should be reporting
5745 back an event. */
5746 gdb_assert (ecs->event_thread->control.trap_expected);
5747
c65d6b55 5748 clear_step_over_info ();
4d9d9d04
PA
5749 }
5750
fbea99ea 5751 if (!target_is_non_stop_p ())
372316f1 5752 return 0;
4d9d9d04
PA
5753
5754 /* Start a new step-over in another thread if there's one that
5755 needs it. */
5756 start_step_over ();
372316f1
PA
5757
5758 /* If we were stepping over a breakpoint before, and haven't started
5759 a new in-line step-over sequence, then restart all other threads
5760 (except the event thread). We can't do this in all-stop, as then
5761 e.g., we wouldn't be able to issue any other remote packet until
5762 these other threads stop. */
5763 if (had_step_over_info && !step_over_info_valid_p ())
5764 {
5765 struct thread_info *pending;
5766
5767 /* If we only have threads with pending statuses, the restart
5768 below won't restart any thread and so nothing re-inserts the
5769 breakpoint we just stepped over. But we need it inserted
5770 when we later process the pending events, otherwise if
5771 another thread has a pending event for this breakpoint too,
5772 we'd discard its event (because the breakpoint that
5773 originally caused the event was no longer inserted). */
00431a78 5774 context_switch (ecs);
372316f1
PA
5775 insert_breakpoints ();
5776
5777 restart_threads (ecs->event_thread);
5778
5779 /* If we have events pending, go through handle_inferior_event
5780 again, picking up a pending event at random. This avoids
5781 thread starvation. */
5782
5783 /* But not if we just stepped over a watchpoint in order to let
5784 the instruction execute so we can evaluate its expression.
5785 The set of watchpoints that triggered is recorded in the
5786 breakpoint objects themselves (see bp->watchpoint_triggered).
5787 If we processed another event first, that other event could
5788 clobber this info. */
5789 if (ecs->event_thread->stepping_over_watchpoint)
5790 return 0;
5791
5792 pending = iterate_over_threads (resumed_thread_with_pending_status,
5793 NULL);
5794 if (pending != NULL)
5795 {
5796 struct thread_info *tp = ecs->event_thread;
5797 struct regcache *regcache;
5798
5799 if (debug_infrun)
5800 {
5801 fprintf_unfiltered (gdb_stdlog,
5802 "infrun: found resumed threads with "
5803 "pending events, saving status\n");
5804 }
5805
5806 gdb_assert (pending != tp);
5807
5808 /* Record the event thread's event for later. */
5809 save_waitstatus (tp, &ecs->ws);
5810 /* This was cleared early, by handle_inferior_event. Set it
5811 so this pending event is considered by
5812 do_target_wait. */
719546c4 5813 tp->resumed = true;
372316f1
PA
5814
5815 gdb_assert (!tp->executing);
5816
00431a78 5817 regcache = get_thread_regcache (tp);
372316f1
PA
5818 tp->suspend.stop_pc = regcache_read_pc (regcache);
5819
5820 if (debug_infrun)
5821 {
5822 fprintf_unfiltered (gdb_stdlog,
5823 "infrun: saved stop_pc=%s for %s "
5824 "(currently_stepping=%d)\n",
5825 paddress (target_gdbarch (),
5826 tp->suspend.stop_pc),
a068643d 5827 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5828 currently_stepping (tp));
5829 }
5830
5831 /* This in-line step-over finished; clear this so we won't
5832 start a new one. This is what handle_signal_stop would
5833 do, if we returned false. */
5834 tp->stepping_over_breakpoint = 0;
5835
5836 /* Wake up the event loop again. */
5837 mark_async_event_handler (infrun_async_inferior_event_token);
5838
5839 prepare_to_wait (ecs);
5840 return 1;
5841 }
5842 }
5843
5844 return 0;
4d9d9d04
PA
5845}
5846
4f5d7f63
PA
5847/* Come here when the program has stopped with a signal. */
5848
5849static void
5850handle_signal_stop (struct execution_control_state *ecs)
5851{
5852 struct frame_info *frame;
5853 struct gdbarch *gdbarch;
5854 int stopped_by_watchpoint;
5855 enum stop_kind stop_soon;
5856 int random_signal;
c906108c 5857
f0407826
DE
5858 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5859
c65d6b55
PA
5860 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5861
f0407826
DE
5862 /* Do we need to clean up the state of a thread that has
5863 completed a displaced single-step? (Doing so usually affects
5864 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5865 if (finish_step_over (ecs))
5866 return;
f0407826
DE
5867
5868 /* If we either finished a single-step or hit a breakpoint, but
5869 the user wanted this thread to be stopped, pretend we got a
5870 SIG0 (generic unsignaled stop). */
5871 if (ecs->event_thread->stop_requested
5872 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5873 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5874
f2ffa92b
PA
5875 ecs->event_thread->suspend.stop_pc
5876 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5877
527159b7 5878 if (debug_infrun)
237fc4c9 5879 {
00431a78 5880 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5881 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5882
f3f8ece4 5883 switch_to_thread (ecs->event_thread);
5af949e3
UW
5884
5885 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5886 paddress (reg_gdbarch,
f2ffa92b 5887 ecs->event_thread->suspend.stop_pc));
d92524f1 5888 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5889 {
5890 CORE_ADDR addr;
abbb1732 5891
237fc4c9
PA
5892 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5893
8b88a78e 5894 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5895 fprintf_unfiltered (gdb_stdlog,
5af949e3 5896 "infrun: stopped data address = %s\n",
b926417a 5897 paddress (reg_gdbarch, addr));
237fc4c9
PA
5898 else
5899 fprintf_unfiltered (gdb_stdlog,
5900 "infrun: (no data address available)\n");
5901 }
5902 }
527159b7 5903
36fa8042
PA
5904 /* This is originated from start_remote(), start_inferior() and
5905 shared libraries hook functions. */
00431a78 5906 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5907 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5908 {
00431a78 5909 context_switch (ecs);
36fa8042
PA
5910 if (debug_infrun)
5911 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5912 stop_print_frame = 1;
22bcd14b 5913 stop_waiting (ecs);
36fa8042
PA
5914 return;
5915 }
5916
36fa8042
PA
5917 /* This originates from attach_command(). We need to overwrite
5918 the stop_signal here, because some kernels don't ignore a
5919 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5920 See more comments in inferior.h. On the other hand, if we
5921 get a non-SIGSTOP, report it to the user - assume the backend
5922 will handle the SIGSTOP if it should show up later.
5923
5924 Also consider that the attach is complete when we see a
5925 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5926 target extended-remote report it instead of a SIGSTOP
5927 (e.g. gdbserver). We already rely on SIGTRAP being our
5928 signal, so this is no exception.
5929
5930 Also consider that the attach is complete when we see a
5931 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5932 the target to stop all threads of the inferior, in case the
5933 low level attach operation doesn't stop them implicitly. If
5934 they weren't stopped implicitly, then the stub will report a
5935 GDB_SIGNAL_0, meaning: stopped for no particular reason
5936 other than GDB's request. */
5937 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5938 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5939 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5940 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5941 {
5942 stop_print_frame = 1;
22bcd14b 5943 stop_waiting (ecs);
36fa8042
PA
5944 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5945 return;
5946 }
5947
488f131b 5948 /* See if something interesting happened to the non-current thread. If
b40c7d58 5949 so, then switch to that thread. */
d7e15655 5950 if (ecs->ptid != inferior_ptid)
488f131b 5951 {
527159b7 5952 if (debug_infrun)
8a9de0e4 5953 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5954
00431a78 5955 context_switch (ecs);
c5aa993b 5956
9a4105ab 5957 if (deprecated_context_hook)
00431a78 5958 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5959 }
c906108c 5960
568d6575
UW
5961 /* At this point, get hold of the now-current thread's frame. */
5962 frame = get_current_frame ();
5963 gdbarch = get_frame_arch (frame);
5964
2adfaa28 5965 /* Pull the single step breakpoints out of the target. */
af48d08f 5966 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5967 {
af48d08f 5968 struct regcache *regcache;
af48d08f 5969 CORE_ADDR pc;
2adfaa28 5970
00431a78 5971 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5972 const address_space *aspace = regcache->aspace ();
5973
af48d08f 5974 pc = regcache_read_pc (regcache);
34b7e8a6 5975
af48d08f
PA
5976 /* However, before doing so, if this single-step breakpoint was
5977 actually for another thread, set this thread up for moving
5978 past it. */
5979 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5980 aspace, pc))
5981 {
5982 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5983 {
5984 if (debug_infrun)
5985 {
5986 fprintf_unfiltered (gdb_stdlog,
af48d08f 5987 "infrun: [%s] hit another thread's "
34b7e8a6 5988 "single-step breakpoint\n",
a068643d 5989 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5990 }
af48d08f
PA
5991 ecs->hit_singlestep_breakpoint = 1;
5992 }
5993 }
5994 else
5995 {
5996 if (debug_infrun)
5997 {
5998 fprintf_unfiltered (gdb_stdlog,
5999 "infrun: [%s] hit its "
6000 "single-step breakpoint\n",
a068643d 6001 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
6002 }
6003 }
488f131b 6004 }
af48d08f 6005 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 6006
963f9c80
PA
6007 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6008 && ecs->event_thread->control.trap_expected
6009 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
6010 stopped_by_watchpoint = 0;
6011 else
6012 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6013
6014 /* If necessary, step over this watchpoint. We'll be back to display
6015 it in a moment. */
6016 if (stopped_by_watchpoint
d92524f1 6017 && (target_have_steppable_watchpoint
568d6575 6018 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 6019 {
488f131b
JB
6020 /* At this point, we are stopped at an instruction which has
6021 attempted to write to a piece of memory under control of
6022 a watchpoint. The instruction hasn't actually executed
6023 yet. If we were to evaluate the watchpoint expression
6024 now, we would get the old value, and therefore no change
6025 would seem to have occurred.
6026
6027 In order to make watchpoints work `right', we really need
6028 to complete the memory write, and then evaluate the
d983da9c
DJ
6029 watchpoint expression. We do this by single-stepping the
6030 target.
6031
7f89fd65 6032 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6033 it. For example, the PA can (with some kernel cooperation)
6034 single step over a watchpoint without disabling the watchpoint.
6035
6036 It is far more common to need to disable a watchpoint to step
6037 the inferior over it. If we have non-steppable watchpoints,
6038 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6039 disable all watchpoints.
6040
6041 Any breakpoint at PC must also be stepped over -- if there's
6042 one, it will have already triggered before the watchpoint
6043 triggered, and we either already reported it to the user, or
6044 it didn't cause a stop and we called keep_going. In either
6045 case, if there was a breakpoint at PC, we must be trying to
6046 step past it. */
6047 ecs->event_thread->stepping_over_watchpoint = 1;
6048 keep_going (ecs);
488f131b
JB
6049 return;
6050 }
6051
4e1c45ea 6052 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6053 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6054 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6055 ecs->event_thread->control.stop_step = 0;
488f131b 6056 stop_print_frame = 1;
488f131b 6057 stopped_by_random_signal = 0;
ddfe970e 6058 bpstat stop_chain = NULL;
488f131b 6059
edb3359d
DJ
6060 /* Hide inlined functions starting here, unless we just performed stepi or
6061 nexti. After stepi and nexti, always show the innermost frame (not any
6062 inline function call sites). */
16c381f0 6063 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6064 {
00431a78
PA
6065 const address_space *aspace
6066 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6067
6068 /* skip_inline_frames is expensive, so we avoid it if we can
6069 determine that the address is one where functions cannot have
6070 been inlined. This improves performance with inferiors that
6071 load a lot of shared libraries, because the solib event
6072 breakpoint is defined as the address of a function (i.e. not
6073 inline). Note that we have to check the previous PC as well
6074 as the current one to catch cases when we have just
6075 single-stepped off a breakpoint prior to reinstating it.
6076 Note that we're assuming that the code we single-step to is
6077 not inline, but that's not definitive: there's nothing
6078 preventing the event breakpoint function from containing
6079 inlined code, and the single-step ending up there. If the
6080 user had set a breakpoint on that inlined code, the missing
6081 skip_inline_frames call would break things. Fortunately
6082 that's an extremely unlikely scenario. */
f2ffa92b
PA
6083 if (!pc_at_non_inline_function (aspace,
6084 ecs->event_thread->suspend.stop_pc,
6085 &ecs->ws)
a210c238
MR
6086 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6087 && ecs->event_thread->control.trap_expected
6088 && pc_at_non_inline_function (aspace,
6089 ecs->event_thread->prev_pc,
09ac7c10 6090 &ecs->ws)))
1c5a993e 6091 {
f2ffa92b
PA
6092 stop_chain = build_bpstat_chain (aspace,
6093 ecs->event_thread->suspend.stop_pc,
6094 &ecs->ws);
00431a78 6095 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6096
6097 /* Re-fetch current thread's frame in case that invalidated
6098 the frame cache. */
6099 frame = get_current_frame ();
6100 gdbarch = get_frame_arch (frame);
6101 }
0574c78f 6102 }
edb3359d 6103
a493e3e2 6104 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6105 && ecs->event_thread->control.trap_expected
568d6575 6106 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6107 && currently_stepping (ecs->event_thread))
3352ef37 6108 {
b50d7442 6109 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6110 also on an instruction that needs to be stepped multiple
1777feb0 6111 times before it's been fully executing. E.g., architectures
3352ef37
AC
6112 with a delay slot. It needs to be stepped twice, once for
6113 the instruction and once for the delay slot. */
6114 int step_through_delay
568d6575 6115 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6116
527159b7 6117 if (debug_infrun && step_through_delay)
8a9de0e4 6118 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
6119 if (ecs->event_thread->control.step_range_end == 0
6120 && step_through_delay)
3352ef37
AC
6121 {
6122 /* The user issued a continue when stopped at a breakpoint.
6123 Set up for another trap and get out of here. */
4e1c45ea 6124 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6125 keep_going (ecs);
6126 return;
6127 }
6128 else if (step_through_delay)
6129 {
6130 /* The user issued a step when stopped at a breakpoint.
6131 Maybe we should stop, maybe we should not - the delay
6132 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6133 case, don't decide that here, just set
6134 ecs->stepping_over_breakpoint, making sure we
6135 single-step again before breakpoints are re-inserted. */
4e1c45ea 6136 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6137 }
6138 }
6139
ab04a2af
TT
6140 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6141 handles this event. */
6142 ecs->event_thread->control.stop_bpstat
a01bda52 6143 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6144 ecs->event_thread->suspend.stop_pc,
6145 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6146
ab04a2af
TT
6147 /* Following in case break condition called a
6148 function. */
6149 stop_print_frame = 1;
73dd234f 6150
ab04a2af
TT
6151 /* This is where we handle "moribund" watchpoints. Unlike
6152 software breakpoints traps, hardware watchpoint traps are
6153 always distinguishable from random traps. If no high-level
6154 watchpoint is associated with the reported stop data address
6155 anymore, then the bpstat does not explain the signal ---
6156 simply make sure to ignore it if `stopped_by_watchpoint' is
6157 set. */
6158
6159 if (debug_infrun
6160 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6161 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6162 GDB_SIGNAL_TRAP)
ab04a2af
TT
6163 && stopped_by_watchpoint)
6164 fprintf_unfiltered (gdb_stdlog,
6165 "infrun: no user watchpoint explains "
6166 "watchpoint SIGTRAP, ignoring\n");
73dd234f 6167
bac7d97b 6168 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6169 at one stage in the past included checks for an inferior
6170 function call's call dummy's return breakpoint. The original
6171 comment, that went with the test, read:
03cebad2 6172
ab04a2af
TT
6173 ``End of a stack dummy. Some systems (e.g. Sony news) give
6174 another signal besides SIGTRAP, so check here as well as
6175 above.''
73dd234f 6176
ab04a2af
TT
6177 If someone ever tries to get call dummys on a
6178 non-executable stack to work (where the target would stop
6179 with something like a SIGSEGV), then those tests might need
6180 to be re-instated. Given, however, that the tests were only
6181 enabled when momentary breakpoints were not being used, I
6182 suspect that it won't be the case.
488f131b 6183
ab04a2af
TT
6184 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6185 be necessary for call dummies on a non-executable stack on
6186 SPARC. */
488f131b 6187
bac7d97b 6188 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6189 random_signal
6190 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6191 ecs->event_thread->suspend.stop_signal);
bac7d97b 6192
1cf4d951
PA
6193 /* Maybe this was a trap for a software breakpoint that has since
6194 been removed. */
6195 if (random_signal && target_stopped_by_sw_breakpoint ())
6196 {
5133a315
LM
6197 if (gdbarch_program_breakpoint_here_p (gdbarch,
6198 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6199 {
6200 struct regcache *regcache;
6201 int decr_pc;
6202
6203 /* Re-adjust PC to what the program would see if GDB was not
6204 debugging it. */
00431a78 6205 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6206 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6207 if (decr_pc != 0)
6208 {
07036511
TT
6209 gdb::optional<scoped_restore_tmpl<int>>
6210 restore_operation_disable;
1cf4d951
PA
6211
6212 if (record_full_is_used ())
07036511
TT
6213 restore_operation_disable.emplace
6214 (record_full_gdb_operation_disable_set ());
1cf4d951 6215
f2ffa92b
PA
6216 regcache_write_pc (regcache,
6217 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6218 }
6219 }
6220 else
6221 {
6222 /* A delayed software breakpoint event. Ignore the trap. */
6223 if (debug_infrun)
6224 fprintf_unfiltered (gdb_stdlog,
6225 "infrun: delayed software breakpoint "
6226 "trap, ignoring\n");
6227 random_signal = 0;
6228 }
6229 }
6230
6231 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6232 has since been removed. */
6233 if (random_signal && target_stopped_by_hw_breakpoint ())
6234 {
6235 /* A delayed hardware breakpoint event. Ignore the trap. */
6236 if (debug_infrun)
6237 fprintf_unfiltered (gdb_stdlog,
6238 "infrun: delayed hardware breakpoint/watchpoint "
6239 "trap, ignoring\n");
6240 random_signal = 0;
6241 }
6242
bac7d97b
PA
6243 /* If not, perhaps stepping/nexting can. */
6244 if (random_signal)
6245 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6246 && currently_stepping (ecs->event_thread));
ab04a2af 6247
2adfaa28
PA
6248 /* Perhaps the thread hit a single-step breakpoint of _another_
6249 thread. Single-step breakpoints are transparent to the
6250 breakpoints module. */
6251 if (random_signal)
6252 random_signal = !ecs->hit_singlestep_breakpoint;
6253
bac7d97b
PA
6254 /* No? Perhaps we got a moribund watchpoint. */
6255 if (random_signal)
6256 random_signal = !stopped_by_watchpoint;
ab04a2af 6257
c65d6b55
PA
6258 /* Always stop if the user explicitly requested this thread to
6259 remain stopped. */
6260 if (ecs->event_thread->stop_requested)
6261 {
6262 random_signal = 1;
6263 if (debug_infrun)
6264 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6265 }
6266
488f131b
JB
6267 /* For the program's own signals, act according to
6268 the signal handling tables. */
6269
ce12b012 6270 if (random_signal)
488f131b
JB
6271 {
6272 /* Signal not for debugging purposes. */
5b6d1e4f 6273 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6274 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6275
527159b7 6276 if (debug_infrun)
c9737c08
PA
6277 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6278 gdb_signal_to_symbol_string (stop_signal));
527159b7 6279
488f131b
JB
6280 stopped_by_random_signal = 1;
6281
252fbfc8
PA
6282 /* Always stop on signals if we're either just gaining control
6283 of the program, or the user explicitly requested this thread
6284 to remain stopped. */
d6b48e9c 6285 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6286 || ecs->event_thread->stop_requested
24291992 6287 || (!inf->detaching
16c381f0 6288 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6289 {
22bcd14b 6290 stop_waiting (ecs);
488f131b
JB
6291 return;
6292 }
b57bacec
PA
6293
6294 /* Notify observers the signal has "handle print" set. Note we
6295 returned early above if stopping; normal_stop handles the
6296 printing in that case. */
6297 if (signal_print[ecs->event_thread->suspend.stop_signal])
6298 {
6299 /* The signal table tells us to print about this signal. */
223ffa71 6300 target_terminal::ours_for_output ();
76727919 6301 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6302 target_terminal::inferior ();
b57bacec 6303 }
488f131b
JB
6304
6305 /* Clear the signal if it should not be passed. */
16c381f0 6306 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6307 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6308
f2ffa92b 6309 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6310 && ecs->event_thread->control.trap_expected
8358c15c 6311 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6312 {
6313 /* We were just starting a new sequence, attempting to
6314 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6315 Instead this signal arrives. This signal will take us out
68f53502
AC
6316 of the stepping range so GDB needs to remember to, when
6317 the signal handler returns, resume stepping off that
6318 breakpoint. */
6319 /* To simplify things, "continue" is forced to use the same
6320 code paths as single-step - set a breakpoint at the
6321 signal return address and then, once hit, step off that
6322 breakpoint. */
237fc4c9
PA
6323 if (debug_infrun)
6324 fprintf_unfiltered (gdb_stdlog,
6325 "infrun: signal arrived while stepping over "
6326 "breakpoint\n");
d3169d93 6327
2c03e5be 6328 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6329 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6330 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6331 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6332
6333 /* If we were nexting/stepping some other thread, switch to
6334 it, so that we don't continue it, losing control. */
6335 if (!switch_back_to_stepped_thread (ecs))
6336 keep_going (ecs);
9d799f85 6337 return;
68f53502 6338 }
9d799f85 6339
e5f8a7cc 6340 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6341 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6342 ecs->event_thread)
e5f8a7cc 6343 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6344 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6345 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6346 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6347 {
6348 /* The inferior is about to take a signal that will take it
6349 out of the single step range. Set a breakpoint at the
6350 current PC (which is presumably where the signal handler
6351 will eventually return) and then allow the inferior to
6352 run free.
6353
6354 Note that this is only needed for a signal delivered
6355 while in the single-step range. Nested signals aren't a
6356 problem as they eventually all return. */
237fc4c9
PA
6357 if (debug_infrun)
6358 fprintf_unfiltered (gdb_stdlog,
6359 "infrun: signal may take us out of "
6360 "single-step range\n");
6361
372316f1 6362 clear_step_over_info ();
2c03e5be 6363 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6364 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6365 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6366 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6367 keep_going (ecs);
6368 return;
d303a6c7 6369 }
9d799f85 6370
85102364 6371 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6372 when either there's a nested signal, or when there's a
6373 pending signal enabled just as the signal handler returns
6374 (leaving the inferior at the step-resume-breakpoint without
6375 actually executing it). Either way continue until the
6376 breakpoint is really hit. */
c447ac0b
PA
6377
6378 if (!switch_back_to_stepped_thread (ecs))
6379 {
6380 if (debug_infrun)
6381 fprintf_unfiltered (gdb_stdlog,
6382 "infrun: random signal, keep going\n");
6383
6384 keep_going (ecs);
6385 }
6386 return;
488f131b 6387 }
94c57d6a
PA
6388
6389 process_event_stop_test (ecs);
6390}
6391
6392/* Come here when we've got some debug event / signal we can explain
6393 (IOW, not a random signal), and test whether it should cause a
6394 stop, or whether we should resume the inferior (transparently).
6395 E.g., could be a breakpoint whose condition evaluates false; we
6396 could be still stepping within the line; etc. */
6397
6398static void
6399process_event_stop_test (struct execution_control_state *ecs)
6400{
6401 struct symtab_and_line stop_pc_sal;
6402 struct frame_info *frame;
6403 struct gdbarch *gdbarch;
cdaa5b73
PA
6404 CORE_ADDR jmp_buf_pc;
6405 struct bpstat_what what;
94c57d6a 6406
cdaa5b73 6407 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6408
cdaa5b73
PA
6409 frame = get_current_frame ();
6410 gdbarch = get_frame_arch (frame);
fcf3daef 6411
cdaa5b73 6412 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6413
cdaa5b73
PA
6414 if (what.call_dummy)
6415 {
6416 stop_stack_dummy = what.call_dummy;
6417 }
186c406b 6418
243a9253
PA
6419 /* A few breakpoint types have callbacks associated (e.g.,
6420 bp_jit_event). Run them now. */
6421 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6422
cdaa5b73
PA
6423 /* If we hit an internal event that triggers symbol changes, the
6424 current frame will be invalidated within bpstat_what (e.g., if we
6425 hit an internal solib event). Re-fetch it. */
6426 frame = get_current_frame ();
6427 gdbarch = get_frame_arch (frame);
e2e4d78b 6428
cdaa5b73
PA
6429 switch (what.main_action)
6430 {
6431 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6432 /* If we hit the breakpoint at longjmp while stepping, we
6433 install a momentary breakpoint at the target of the
6434 jmp_buf. */
186c406b 6435
cdaa5b73
PA
6436 if (debug_infrun)
6437 fprintf_unfiltered (gdb_stdlog,
6438 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6439
cdaa5b73 6440 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6441
cdaa5b73
PA
6442 if (what.is_longjmp)
6443 {
6444 struct value *arg_value;
6445
6446 /* If we set the longjmp breakpoint via a SystemTap probe,
6447 then use it to extract the arguments. The destination PC
6448 is the third argument to the probe. */
6449 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6450 if (arg_value)
8fa0c4f8
AA
6451 {
6452 jmp_buf_pc = value_as_address (arg_value);
6453 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6454 }
cdaa5b73
PA
6455 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6456 || !gdbarch_get_longjmp_target (gdbarch,
6457 frame, &jmp_buf_pc))
e2e4d78b 6458 {
cdaa5b73
PA
6459 if (debug_infrun)
6460 fprintf_unfiltered (gdb_stdlog,
6461 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6462 "(!gdbarch_get_longjmp_target)\n");
6463 keep_going (ecs);
6464 return;
e2e4d78b 6465 }
e2e4d78b 6466
cdaa5b73
PA
6467 /* Insert a breakpoint at resume address. */
6468 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6469 }
6470 else
6471 check_exception_resume (ecs, frame);
6472 keep_going (ecs);
6473 return;
e81a37f7 6474
cdaa5b73
PA
6475 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6476 {
6477 struct frame_info *init_frame;
e81a37f7 6478
cdaa5b73 6479 /* There are several cases to consider.
c906108c 6480
cdaa5b73
PA
6481 1. The initiating frame no longer exists. In this case we
6482 must stop, because the exception or longjmp has gone too
6483 far.
2c03e5be 6484
cdaa5b73
PA
6485 2. The initiating frame exists, and is the same as the
6486 current frame. We stop, because the exception or longjmp
6487 has been caught.
2c03e5be 6488
cdaa5b73
PA
6489 3. The initiating frame exists and is different from the
6490 current frame. This means the exception or longjmp has
6491 been caught beneath the initiating frame, so keep going.
c906108c 6492
cdaa5b73
PA
6493 4. longjmp breakpoint has been placed just to protect
6494 against stale dummy frames and user is not interested in
6495 stopping around longjmps. */
c5aa993b 6496
cdaa5b73
PA
6497 if (debug_infrun)
6498 fprintf_unfiltered (gdb_stdlog,
6499 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6500
cdaa5b73
PA
6501 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6502 != NULL);
6503 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6504
cdaa5b73
PA
6505 if (what.is_longjmp)
6506 {
b67a2c6f 6507 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6508
cdaa5b73 6509 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6510 {
cdaa5b73
PA
6511 /* Case 4. */
6512 keep_going (ecs);
6513 return;
e5ef252a 6514 }
cdaa5b73 6515 }
c5aa993b 6516
cdaa5b73 6517 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6518
cdaa5b73
PA
6519 if (init_frame)
6520 {
6521 struct frame_id current_id
6522 = get_frame_id (get_current_frame ());
6523 if (frame_id_eq (current_id,
6524 ecs->event_thread->initiating_frame))
6525 {
6526 /* Case 2. Fall through. */
6527 }
6528 else
6529 {
6530 /* Case 3. */
6531 keep_going (ecs);
6532 return;
6533 }
68f53502 6534 }
488f131b 6535
cdaa5b73
PA
6536 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6537 exists. */
6538 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6539
bdc36728 6540 end_stepping_range (ecs);
cdaa5b73
PA
6541 }
6542 return;
e5ef252a 6543
cdaa5b73
PA
6544 case BPSTAT_WHAT_SINGLE:
6545 if (debug_infrun)
6546 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6547 ecs->event_thread->stepping_over_breakpoint = 1;
6548 /* Still need to check other stuff, at least the case where we
6549 are stepping and step out of the right range. */
6550 break;
e5ef252a 6551
cdaa5b73
PA
6552 case BPSTAT_WHAT_STEP_RESUME:
6553 if (debug_infrun)
6554 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6555
cdaa5b73
PA
6556 delete_step_resume_breakpoint (ecs->event_thread);
6557 if (ecs->event_thread->control.proceed_to_finish
6558 && execution_direction == EXEC_REVERSE)
6559 {
6560 struct thread_info *tp = ecs->event_thread;
6561
6562 /* We are finishing a function in reverse, and just hit the
6563 step-resume breakpoint at the start address of the
6564 function, and we're almost there -- just need to back up
6565 by one more single-step, which should take us back to the
6566 function call. */
6567 tp->control.step_range_start = tp->control.step_range_end = 1;
6568 keep_going (ecs);
e5ef252a 6569 return;
cdaa5b73
PA
6570 }
6571 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6572 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6573 && execution_direction == EXEC_REVERSE)
6574 {
6575 /* We are stepping over a function call in reverse, and just
6576 hit the step-resume breakpoint at the start address of
6577 the function. Go back to single-stepping, which should
6578 take us back to the function call. */
6579 ecs->event_thread->stepping_over_breakpoint = 1;
6580 keep_going (ecs);
6581 return;
6582 }
6583 break;
e5ef252a 6584
cdaa5b73
PA
6585 case BPSTAT_WHAT_STOP_NOISY:
6586 if (debug_infrun)
6587 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6588 stop_print_frame = 1;
e5ef252a 6589
99619bea
PA
6590 /* Assume the thread stopped for a breapoint. We'll still check
6591 whether a/the breakpoint is there when the thread is next
6592 resumed. */
6593 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6594
22bcd14b 6595 stop_waiting (ecs);
cdaa5b73 6596 return;
e5ef252a 6597
cdaa5b73
PA
6598 case BPSTAT_WHAT_STOP_SILENT:
6599 if (debug_infrun)
6600 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6601 stop_print_frame = 0;
e5ef252a 6602
99619bea
PA
6603 /* Assume the thread stopped for a breapoint. We'll still check
6604 whether a/the breakpoint is there when the thread is next
6605 resumed. */
6606 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6607 stop_waiting (ecs);
cdaa5b73
PA
6608 return;
6609
6610 case BPSTAT_WHAT_HP_STEP_RESUME:
6611 if (debug_infrun)
6612 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6613
6614 delete_step_resume_breakpoint (ecs->event_thread);
6615 if (ecs->event_thread->step_after_step_resume_breakpoint)
6616 {
6617 /* Back when the step-resume breakpoint was inserted, we
6618 were trying to single-step off a breakpoint. Go back to
6619 doing that. */
6620 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6621 ecs->event_thread->stepping_over_breakpoint = 1;
6622 keep_going (ecs);
6623 return;
e5ef252a 6624 }
cdaa5b73
PA
6625 break;
6626
6627 case BPSTAT_WHAT_KEEP_CHECKING:
6628 break;
e5ef252a 6629 }
c906108c 6630
af48d08f
PA
6631 /* If we stepped a permanent breakpoint and we had a high priority
6632 step-resume breakpoint for the address we stepped, but we didn't
6633 hit it, then we must have stepped into the signal handler. The
6634 step-resume was only necessary to catch the case of _not_
6635 stepping into the handler, so delete it, and fall through to
6636 checking whether the step finished. */
6637 if (ecs->event_thread->stepped_breakpoint)
6638 {
6639 struct breakpoint *sr_bp
6640 = ecs->event_thread->control.step_resume_breakpoint;
6641
8d707a12
PA
6642 if (sr_bp != NULL
6643 && sr_bp->loc->permanent
af48d08f
PA
6644 && sr_bp->type == bp_hp_step_resume
6645 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6646 {
6647 if (debug_infrun)
6648 fprintf_unfiltered (gdb_stdlog,
6649 "infrun: stepped permanent breakpoint, stopped in "
6650 "handler\n");
6651 delete_step_resume_breakpoint (ecs->event_thread);
6652 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6653 }
6654 }
6655
cdaa5b73
PA
6656 /* We come here if we hit a breakpoint but should not stop for it.
6657 Possibly we also were stepping and should stop for that. So fall
6658 through and test for stepping. But, if not stepping, do not
6659 stop. */
c906108c 6660
a7212384
UW
6661 /* In all-stop mode, if we're currently stepping but have stopped in
6662 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6663 if (switch_back_to_stepped_thread (ecs))
6664 return;
776f04fa 6665
8358c15c 6666 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6667 {
527159b7 6668 if (debug_infrun)
d3169d93
DJ
6669 fprintf_unfiltered (gdb_stdlog,
6670 "infrun: step-resume breakpoint is inserted\n");
527159b7 6671
488f131b
JB
6672 /* Having a step-resume breakpoint overrides anything
6673 else having to do with stepping commands until
6674 that breakpoint is reached. */
488f131b
JB
6675 keep_going (ecs);
6676 return;
6677 }
c5aa993b 6678
16c381f0 6679 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6680 {
527159b7 6681 if (debug_infrun)
8a9de0e4 6682 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6683 /* Likewise if we aren't even stepping. */
488f131b
JB
6684 keep_going (ecs);
6685 return;
6686 }
c5aa993b 6687
4b7703ad
JB
6688 /* Re-fetch current thread's frame in case the code above caused
6689 the frame cache to be re-initialized, making our FRAME variable
6690 a dangling pointer. */
6691 frame = get_current_frame ();
628fe4e4 6692 gdbarch = get_frame_arch (frame);
7e324e48 6693 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6694
488f131b 6695 /* If stepping through a line, keep going if still within it.
c906108c 6696
488f131b
JB
6697 Note that step_range_end is the address of the first instruction
6698 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6699 within it!
6700
6701 Note also that during reverse execution, we may be stepping
6702 through a function epilogue and therefore must detect when
6703 the current-frame changes in the middle of a line. */
6704
f2ffa92b
PA
6705 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6706 ecs->event_thread)
31410e84 6707 && (execution_direction != EXEC_REVERSE
388a8562 6708 || frame_id_eq (get_frame_id (frame),
16c381f0 6709 ecs->event_thread->control.step_frame_id)))
488f131b 6710 {
527159b7 6711 if (debug_infrun)
5af949e3
UW
6712 fprintf_unfiltered
6713 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6714 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6715 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6716
c1e36e3e
PA
6717 /* Tentatively re-enable range stepping; `resume' disables it if
6718 necessary (e.g., if we're stepping over a breakpoint or we
6719 have software watchpoints). */
6720 ecs->event_thread->control.may_range_step = 1;
6721
b2175913
MS
6722 /* When stepping backward, stop at beginning of line range
6723 (unless it's the function entry point, in which case
6724 keep going back to the call point). */
f2ffa92b 6725 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6726 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6727 && stop_pc != ecs->stop_func_start
6728 && execution_direction == EXEC_REVERSE)
bdc36728 6729 end_stepping_range (ecs);
b2175913
MS
6730 else
6731 keep_going (ecs);
6732
488f131b
JB
6733 return;
6734 }
c5aa993b 6735
488f131b 6736 /* We stepped out of the stepping range. */
c906108c 6737
488f131b 6738 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6739 loader dynamic symbol resolution code...
6740
6741 EXEC_FORWARD: we keep on single stepping until we exit the run
6742 time loader code and reach the callee's address.
6743
6744 EXEC_REVERSE: we've already executed the callee (backward), and
6745 the runtime loader code is handled just like any other
6746 undebuggable function call. Now we need only keep stepping
6747 backward through the trampoline code, and that's handled further
6748 down, so there is nothing for us to do here. */
6749
6750 if (execution_direction != EXEC_REVERSE
16c381f0 6751 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6752 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6753 {
4c8c40e6 6754 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6755 gdbarch_skip_solib_resolver (gdbarch,
6756 ecs->event_thread->suspend.stop_pc);
c906108c 6757
527159b7 6758 if (debug_infrun)
3e43a32a
MS
6759 fprintf_unfiltered (gdb_stdlog,
6760 "infrun: stepped into dynsym resolve code\n");
527159b7 6761
488f131b
JB
6762 if (pc_after_resolver)
6763 {
6764 /* Set up a step-resume breakpoint at the address
6765 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6766 symtab_and_line sr_sal;
488f131b 6767 sr_sal.pc = pc_after_resolver;
6c95b8df 6768 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6769
a6d9a66e
UW
6770 insert_step_resume_breakpoint_at_sal (gdbarch,
6771 sr_sal, null_frame_id);
c5aa993b 6772 }
c906108c 6773
488f131b
JB
6774 keep_going (ecs);
6775 return;
6776 }
c906108c 6777
1d509aa6
MM
6778 /* Step through an indirect branch thunk. */
6779 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6780 && gdbarch_in_indirect_branch_thunk (gdbarch,
6781 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6782 {
6783 if (debug_infrun)
6784 fprintf_unfiltered (gdb_stdlog,
6785 "infrun: stepped into indirect branch thunk\n");
6786 keep_going (ecs);
6787 return;
6788 }
6789
16c381f0
JK
6790 if (ecs->event_thread->control.step_range_end != 1
6791 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6792 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6793 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6794 {
527159b7 6795 if (debug_infrun)
3e43a32a
MS
6796 fprintf_unfiltered (gdb_stdlog,
6797 "infrun: stepped into signal trampoline\n");
42edda50 6798 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6799 a signal trampoline (either by a signal being delivered or by
6800 the signal handler returning). Just single-step until the
6801 inferior leaves the trampoline (either by calling the handler
6802 or returning). */
488f131b
JB
6803 keep_going (ecs);
6804 return;
6805 }
c906108c 6806
14132e89
MR
6807 /* If we're in the return path from a shared library trampoline,
6808 we want to proceed through the trampoline when stepping. */
6809 /* macro/2012-04-25: This needs to come before the subroutine
6810 call check below as on some targets return trampolines look
6811 like subroutine calls (MIPS16 return thunks). */
6812 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6813 ecs->event_thread->suspend.stop_pc,
6814 ecs->stop_func_name)
14132e89
MR
6815 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6816 {
6817 /* Determine where this trampoline returns. */
f2ffa92b
PA
6818 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6819 CORE_ADDR real_stop_pc
6820 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6821
6822 if (debug_infrun)
6823 fprintf_unfiltered (gdb_stdlog,
6824 "infrun: stepped into solib return tramp\n");
6825
6826 /* Only proceed through if we know where it's going. */
6827 if (real_stop_pc)
6828 {
6829 /* And put the step-breakpoint there and go until there. */
51abb421 6830 symtab_and_line sr_sal;
14132e89
MR
6831 sr_sal.pc = real_stop_pc;
6832 sr_sal.section = find_pc_overlay (sr_sal.pc);
6833 sr_sal.pspace = get_frame_program_space (frame);
6834
6835 /* Do not specify what the fp should be when we stop since
6836 on some machines the prologue is where the new fp value
6837 is established. */
6838 insert_step_resume_breakpoint_at_sal (gdbarch,
6839 sr_sal, null_frame_id);
6840
6841 /* Restart without fiddling with the step ranges or
6842 other state. */
6843 keep_going (ecs);
6844 return;
6845 }
6846 }
6847
c17eaafe
DJ
6848 /* Check for subroutine calls. The check for the current frame
6849 equalling the step ID is not necessary - the check of the
6850 previous frame's ID is sufficient - but it is a common case and
6851 cheaper than checking the previous frame's ID.
14e60db5
DJ
6852
6853 NOTE: frame_id_eq will never report two invalid frame IDs as
6854 being equal, so to get into this block, both the current and
6855 previous frame must have valid frame IDs. */
005ca36a
JB
6856 /* The outer_frame_id check is a heuristic to detect stepping
6857 through startup code. If we step over an instruction which
6858 sets the stack pointer from an invalid value to a valid value,
6859 we may detect that as a subroutine call from the mythical
6860 "outermost" function. This could be fixed by marking
6861 outermost frames as !stack_p,code_p,special_p. Then the
6862 initial outermost frame, before sp was valid, would
ce6cca6d 6863 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6864 for more. */
edb3359d 6865 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6866 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6867 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6868 ecs->event_thread->control.step_stack_frame_id)
6869 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6870 outer_frame_id)
885eeb5b 6871 || (ecs->event_thread->control.step_start_function
f2ffa92b 6872 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6873 {
f2ffa92b 6874 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6875 CORE_ADDR real_stop_pc;
8fb3e588 6876
527159b7 6877 if (debug_infrun)
8a9de0e4 6878 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6879
b7a084be 6880 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6881 {
6882 /* I presume that step_over_calls is only 0 when we're
6883 supposed to be stepping at the assembly language level
6884 ("stepi"). Just stop. */
388a8562 6885 /* And this works the same backward as frontward. MVS */
bdc36728 6886 end_stepping_range (ecs);
95918acb
AC
6887 return;
6888 }
8fb3e588 6889
388a8562
MS
6890 /* Reverse stepping through solib trampolines. */
6891
6892 if (execution_direction == EXEC_REVERSE
16c381f0 6893 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6894 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6895 || (ecs->stop_func_start == 0
6896 && in_solib_dynsym_resolve_code (stop_pc))))
6897 {
6898 /* Any solib trampoline code can be handled in reverse
6899 by simply continuing to single-step. We have already
6900 executed the solib function (backwards), and a few
6901 steps will take us back through the trampoline to the
6902 caller. */
6903 keep_going (ecs);
6904 return;
6905 }
6906
16c381f0 6907 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6908 {
b2175913
MS
6909 /* We're doing a "next".
6910
6911 Normal (forward) execution: set a breakpoint at the
6912 callee's return address (the address at which the caller
6913 will resume).
6914
6915 Reverse (backward) execution. set the step-resume
6916 breakpoint at the start of the function that we just
6917 stepped into (backwards), and continue to there. When we
6130d0b7 6918 get there, we'll need to single-step back to the caller. */
b2175913
MS
6919
6920 if (execution_direction == EXEC_REVERSE)
6921 {
acf9414f
JK
6922 /* If we're already at the start of the function, we've either
6923 just stepped backward into a single instruction function,
6924 or stepped back out of a signal handler to the first instruction
6925 of the function. Just keep going, which will single-step back
6926 to the caller. */
58c48e72 6927 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6928 {
acf9414f 6929 /* Normal function call return (static or dynamic). */
51abb421 6930 symtab_and_line sr_sal;
acf9414f
JK
6931 sr_sal.pc = ecs->stop_func_start;
6932 sr_sal.pspace = get_frame_program_space (frame);
6933 insert_step_resume_breakpoint_at_sal (gdbarch,
6934 sr_sal, null_frame_id);
6935 }
b2175913
MS
6936 }
6937 else
568d6575 6938 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6939
8567c30f
AC
6940 keep_going (ecs);
6941 return;
6942 }
a53c66de 6943
95918acb 6944 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6945 calling routine and the real function), locate the real
6946 function. That's what tells us (a) whether we want to step
6947 into it at all, and (b) what prologue we want to run to the
6948 end of, if we do step into it. */
568d6575 6949 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6950 if (real_stop_pc == 0)
568d6575 6951 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6952 if (real_stop_pc != 0)
6953 ecs->stop_func_start = real_stop_pc;
8fb3e588 6954
db5f024e 6955 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6956 {
51abb421 6957 symtab_and_line sr_sal;
1b2bfbb9 6958 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6959 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6960
a6d9a66e
UW
6961 insert_step_resume_breakpoint_at_sal (gdbarch,
6962 sr_sal, null_frame_id);
8fb3e588
AC
6963 keep_going (ecs);
6964 return;
1b2bfbb9
RC
6965 }
6966
95918acb 6967 /* If we have line number information for the function we are
1bfeeb0f
JL
6968 thinking of stepping into and the function isn't on the skip
6969 list, step into it.
95918acb 6970
8fb3e588
AC
6971 If there are several symtabs at that PC (e.g. with include
6972 files), just want to know whether *any* of them have line
6973 numbers. find_pc_line handles this. */
95918acb
AC
6974 {
6975 struct symtab_and_line tmp_sal;
8fb3e588 6976
95918acb 6977 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6978 if (tmp_sal.line != 0
85817405 6979 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6980 tmp_sal)
6981 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6982 {
b2175913 6983 if (execution_direction == EXEC_REVERSE)
568d6575 6984 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6985 else
568d6575 6986 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6987 return;
6988 }
6989 }
6990
6991 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6992 set, we stop the step so that the user has a chance to switch
6993 in assembly mode. */
16c381f0 6994 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6995 && step_stop_if_no_debug)
95918acb 6996 {
bdc36728 6997 end_stepping_range (ecs);
95918acb
AC
6998 return;
6999 }
7000
b2175913
MS
7001 if (execution_direction == EXEC_REVERSE)
7002 {
acf9414f
JK
7003 /* If we're already at the start of the function, we've either just
7004 stepped backward into a single instruction function without line
7005 number info, or stepped back out of a signal handler to the first
7006 instruction of the function without line number info. Just keep
7007 going, which will single-step back to the caller. */
7008 if (ecs->stop_func_start != stop_pc)
7009 {
7010 /* Set a breakpoint at callee's start address.
7011 From there we can step once and be back in the caller. */
51abb421 7012 symtab_and_line sr_sal;
acf9414f
JK
7013 sr_sal.pc = ecs->stop_func_start;
7014 sr_sal.pspace = get_frame_program_space (frame);
7015 insert_step_resume_breakpoint_at_sal (gdbarch,
7016 sr_sal, null_frame_id);
7017 }
b2175913
MS
7018 }
7019 else
7020 /* Set a breakpoint at callee's return address (the address
7021 at which the caller will resume). */
568d6575 7022 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7023
95918acb 7024 keep_going (ecs);
488f131b 7025 return;
488f131b 7026 }
c906108c 7027
fdd654f3
MS
7028 /* Reverse stepping through solib trampolines. */
7029
7030 if (execution_direction == EXEC_REVERSE
16c381f0 7031 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7032 {
f2ffa92b
PA
7033 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7034
fdd654f3
MS
7035 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7036 || (ecs->stop_func_start == 0
7037 && in_solib_dynsym_resolve_code (stop_pc)))
7038 {
7039 /* Any solib trampoline code can be handled in reverse
7040 by simply continuing to single-step. We have already
7041 executed the solib function (backwards), and a few
7042 steps will take us back through the trampoline to the
7043 caller. */
7044 keep_going (ecs);
7045 return;
7046 }
7047 else if (in_solib_dynsym_resolve_code (stop_pc))
7048 {
7049 /* Stepped backward into the solib dynsym resolver.
7050 Set a breakpoint at its start and continue, then
7051 one more step will take us out. */
51abb421 7052 symtab_and_line sr_sal;
fdd654f3 7053 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7054 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7055 insert_step_resume_breakpoint_at_sal (gdbarch,
7056 sr_sal, null_frame_id);
7057 keep_going (ecs);
7058 return;
7059 }
7060 }
7061
8c95582d
AB
7062 /* This always returns the sal for the inner-most frame when we are in a
7063 stack of inlined frames, even if GDB actually believes that it is in a
7064 more outer frame. This is checked for below by calls to
7065 inline_skipped_frames. */
f2ffa92b 7066 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7067
1b2bfbb9
RC
7068 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7069 the trampoline processing logic, however, there are some trampolines
7070 that have no names, so we should do trampoline handling first. */
16c381f0 7071 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7072 && ecs->stop_func_name == NULL
2afb61aa 7073 && stop_pc_sal.line == 0)
1b2bfbb9 7074 {
527159b7 7075 if (debug_infrun)
3e43a32a
MS
7076 fprintf_unfiltered (gdb_stdlog,
7077 "infrun: stepped into undebuggable function\n");
527159b7 7078
1b2bfbb9 7079 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
7080 undebuggable function (where there is no debugging information
7081 and no line number corresponding to the address where the
1b2bfbb9
RC
7082 inferior stopped). Since we want to skip this kind of code,
7083 we keep going until the inferior returns from this
14e60db5
DJ
7084 function - unless the user has asked us not to (via
7085 set step-mode) or we no longer know how to get back
7086 to the call site. */
7087 if (step_stop_if_no_debug
c7ce8faa 7088 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7089 {
7090 /* If we have no line number and the step-stop-if-no-debug
7091 is set, we stop the step so that the user has a chance to
7092 switch in assembly mode. */
bdc36728 7093 end_stepping_range (ecs);
1b2bfbb9
RC
7094 return;
7095 }
7096 else
7097 {
7098 /* Set a breakpoint at callee's return address (the address
7099 at which the caller will resume). */
568d6575 7100 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7101 keep_going (ecs);
7102 return;
7103 }
7104 }
7105
16c381f0 7106 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7107 {
7108 /* It is stepi or nexti. We always want to stop stepping after
7109 one instruction. */
527159b7 7110 if (debug_infrun)
8a9de0e4 7111 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 7112 end_stepping_range (ecs);
1b2bfbb9
RC
7113 return;
7114 }
7115
2afb61aa 7116 if (stop_pc_sal.line == 0)
488f131b
JB
7117 {
7118 /* We have no line number information. That means to stop
7119 stepping (does this always happen right after one instruction,
7120 when we do "s" in a function with no line numbers,
7121 or can this happen as a result of a return or longjmp?). */
527159b7 7122 if (debug_infrun)
8a9de0e4 7123 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 7124 end_stepping_range (ecs);
488f131b
JB
7125 return;
7126 }
c906108c 7127
edb3359d
DJ
7128 /* Look for "calls" to inlined functions, part one. If the inline
7129 frame machinery detected some skipped call sites, we have entered
7130 a new inline function. */
7131
7132 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7133 ecs->event_thread->control.step_frame_id)
00431a78 7134 && inline_skipped_frames (ecs->event_thread))
edb3359d 7135 {
edb3359d
DJ
7136 if (debug_infrun)
7137 fprintf_unfiltered (gdb_stdlog,
7138 "infrun: stepped into inlined function\n");
7139
51abb421 7140 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7141
16c381f0 7142 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7143 {
7144 /* For "step", we're going to stop. But if the call site
7145 for this inlined function is on the same source line as
7146 we were previously stepping, go down into the function
7147 first. Otherwise stop at the call site. */
7148
7149 if (call_sal.line == ecs->event_thread->current_line
7150 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7151 {
7152 step_into_inline_frame (ecs->event_thread);
7153 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7154 {
7155 keep_going (ecs);
7156 return;
7157 }
7158 }
edb3359d 7159
bdc36728 7160 end_stepping_range (ecs);
edb3359d
DJ
7161 return;
7162 }
7163 else
7164 {
7165 /* For "next", we should stop at the call site if it is on a
7166 different source line. Otherwise continue through the
7167 inlined function. */
7168 if (call_sal.line == ecs->event_thread->current_line
7169 && call_sal.symtab == ecs->event_thread->current_symtab)
7170 keep_going (ecs);
7171 else
bdc36728 7172 end_stepping_range (ecs);
edb3359d
DJ
7173 return;
7174 }
7175 }
7176
7177 /* Look for "calls" to inlined functions, part two. If we are still
7178 in the same real function we were stepping through, but we have
7179 to go further up to find the exact frame ID, we are stepping
7180 through a more inlined call beyond its call site. */
7181
7182 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7183 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7184 ecs->event_thread->control.step_frame_id)
edb3359d 7185 && stepped_in_from (get_current_frame (),
16c381f0 7186 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
7187 {
7188 if (debug_infrun)
7189 fprintf_unfiltered (gdb_stdlog,
7190 "infrun: stepping through inlined function\n");
7191
4a4c04f1
BE
7192 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7193 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7194 keep_going (ecs);
7195 else
bdc36728 7196 end_stepping_range (ecs);
edb3359d
DJ
7197 return;
7198 }
7199
8c95582d 7200 bool refresh_step_info = true;
f2ffa92b 7201 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7202 && (ecs->event_thread->current_line != stop_pc_sal.line
7203 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7204 {
8c95582d
AB
7205 if (stop_pc_sal.is_stmt)
7206 {
7207 /* We are at the start of a different line. So stop. Note that
7208 we don't stop if we step into the middle of a different line.
7209 That is said to make things like for (;;) statements work
7210 better. */
7211 if (debug_infrun)
7212 fprintf_unfiltered (gdb_stdlog,
7213 "infrun: stepped to a different line\n");
7214 end_stepping_range (ecs);
7215 return;
7216 }
7217 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7218 ecs->event_thread->control.step_frame_id))
7219 {
7220 /* We are at the start of a different line, however, this line is
7221 not marked as a statement, and we have not changed frame. We
7222 ignore this line table entry, and continue stepping forward,
7223 looking for a better place to stop. */
7224 refresh_step_info = false;
7225 if (debug_infrun)
7226 fprintf_unfiltered (gdb_stdlog,
7227 "infrun: stepped to a different line, but "
7228 "it's not the start of a statement\n");
7229 }
488f131b 7230 }
c906108c 7231
488f131b 7232 /* We aren't done stepping.
c906108c 7233
488f131b
JB
7234 Optimize by setting the stepping range to the line.
7235 (We might not be in the original line, but if we entered a
7236 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7237 things like for(;;) statements work better.)
7238
7239 If we entered a SAL that indicates a non-statement line table entry,
7240 then we update the stepping range, but we don't update the step info,
7241 which includes things like the line number we are stepping away from.
7242 This means we will stop when we find a line table entry that is marked
7243 as is-statement, even if it matches the non-statement one we just
7244 stepped into. */
c906108c 7245
16c381f0
JK
7246 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7247 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7248 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7249 if (refresh_step_info)
7250 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7251
527159b7 7252 if (debug_infrun)
8a9de0e4 7253 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7254 keep_going (ecs);
104c1213
JM
7255}
7256
c447ac0b
PA
7257/* In all-stop mode, if we're currently stepping but have stopped in
7258 some other thread, we may need to switch back to the stepped
7259 thread. Returns true we set the inferior running, false if we left
7260 it stopped (and the event needs further processing). */
7261
7262static int
7263switch_back_to_stepped_thread (struct execution_control_state *ecs)
7264{
fbea99ea 7265 if (!target_is_non_stop_p ())
c447ac0b 7266 {
99619bea
PA
7267 struct thread_info *stepping_thread;
7268
7269 /* If any thread is blocked on some internal breakpoint, and we
7270 simply need to step over that breakpoint to get it going
7271 again, do that first. */
7272
7273 /* However, if we see an event for the stepping thread, then we
7274 know all other threads have been moved past their breakpoints
7275 already. Let the caller check whether the step is finished,
7276 etc., before deciding to move it past a breakpoint. */
7277 if (ecs->event_thread->control.step_range_end != 0)
7278 return 0;
7279
7280 /* Check if the current thread is blocked on an incomplete
7281 step-over, interrupted by a random signal. */
7282 if (ecs->event_thread->control.trap_expected
7283 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7284 {
99619bea
PA
7285 if (debug_infrun)
7286 {
7287 fprintf_unfiltered (gdb_stdlog,
7288 "infrun: need to finish step-over of [%s]\n",
a068643d 7289 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7290 }
7291 keep_going (ecs);
7292 return 1;
7293 }
2adfaa28 7294
99619bea
PA
7295 /* Check if the current thread is blocked by a single-step
7296 breakpoint of another thread. */
7297 if (ecs->hit_singlestep_breakpoint)
7298 {
7299 if (debug_infrun)
7300 {
7301 fprintf_unfiltered (gdb_stdlog,
7302 "infrun: need to step [%s] over single-step "
7303 "breakpoint\n",
a068643d 7304 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7305 }
7306 keep_going (ecs);
7307 return 1;
7308 }
7309
4d9d9d04
PA
7310 /* If this thread needs yet another step-over (e.g., stepping
7311 through a delay slot), do it first before moving on to
7312 another thread. */
7313 if (thread_still_needs_step_over (ecs->event_thread))
7314 {
7315 if (debug_infrun)
7316 {
7317 fprintf_unfiltered (gdb_stdlog,
7318 "infrun: thread [%s] still needs step-over\n",
a068643d 7319 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7320 }
7321 keep_going (ecs);
7322 return 1;
7323 }
70509625 7324
483805cf
PA
7325 /* If scheduler locking applies even if not stepping, there's no
7326 need to walk over threads. Above we've checked whether the
7327 current thread is stepping. If some other thread not the
7328 event thread is stepping, then it must be that scheduler
7329 locking is not in effect. */
856e7dd6 7330 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7331 return 0;
7332
4d9d9d04
PA
7333 /* Otherwise, we no longer expect a trap in the current thread.
7334 Clear the trap_expected flag before switching back -- this is
7335 what keep_going does as well, if we call it. */
7336 ecs->event_thread->control.trap_expected = 0;
7337
7338 /* Likewise, clear the signal if it should not be passed. */
7339 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7340 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7341
7342 /* Do all pending step-overs before actually proceeding with
483805cf 7343 step/next/etc. */
4d9d9d04
PA
7344 if (start_step_over ())
7345 {
7346 prepare_to_wait (ecs);
7347 return 1;
7348 }
7349
7350 /* Look for the stepping/nexting thread. */
483805cf 7351 stepping_thread = NULL;
4d9d9d04 7352
08036331 7353 for (thread_info *tp : all_non_exited_threads ())
483805cf 7354 {
f3f8ece4
PA
7355 switch_to_thread_no_regs (tp);
7356
fbea99ea
PA
7357 /* Ignore threads of processes the caller is not
7358 resuming. */
483805cf 7359 if (!sched_multi
5b6d1e4f
PA
7360 && (tp->inf->process_target () != ecs->target
7361 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7362 continue;
7363
7364 /* When stepping over a breakpoint, we lock all threads
7365 except the one that needs to move past the breakpoint.
7366 If a non-event thread has this set, the "incomplete
7367 step-over" check above should have caught it earlier. */
372316f1
PA
7368 if (tp->control.trap_expected)
7369 {
7370 internal_error (__FILE__, __LINE__,
7371 "[%s] has inconsistent state: "
7372 "trap_expected=%d\n",
a068643d 7373 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7374 tp->control.trap_expected);
7375 }
483805cf
PA
7376
7377 /* Did we find the stepping thread? */
7378 if (tp->control.step_range_end)
7379 {
7380 /* Yep. There should only one though. */
7381 gdb_assert (stepping_thread == NULL);
7382
7383 /* The event thread is handled at the top, before we
7384 enter this loop. */
7385 gdb_assert (tp != ecs->event_thread);
7386
7387 /* If some thread other than the event thread is
7388 stepping, then scheduler locking can't be in effect,
7389 otherwise we wouldn't have resumed the current event
7390 thread in the first place. */
856e7dd6 7391 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7392
7393 stepping_thread = tp;
7394 }
99619bea
PA
7395 }
7396
483805cf 7397 if (stepping_thread != NULL)
99619bea 7398 {
c447ac0b
PA
7399 if (debug_infrun)
7400 fprintf_unfiltered (gdb_stdlog,
7401 "infrun: switching back to stepped thread\n");
7402
2ac7589c
PA
7403 if (keep_going_stepped_thread (stepping_thread))
7404 {
7405 prepare_to_wait (ecs);
7406 return 1;
7407 }
7408 }
f3f8ece4
PA
7409
7410 switch_to_thread (ecs->event_thread);
2ac7589c 7411 }
2adfaa28 7412
2ac7589c
PA
7413 return 0;
7414}
2adfaa28 7415
2ac7589c
PA
7416/* Set a previously stepped thread back to stepping. Returns true on
7417 success, false if the resume is not possible (e.g., the thread
7418 vanished). */
7419
7420static int
7421keep_going_stepped_thread (struct thread_info *tp)
7422{
7423 struct frame_info *frame;
2ac7589c
PA
7424 struct execution_control_state ecss;
7425 struct execution_control_state *ecs = &ecss;
2adfaa28 7426
2ac7589c
PA
7427 /* If the stepping thread exited, then don't try to switch back and
7428 resume it, which could fail in several different ways depending
7429 on the target. Instead, just keep going.
2adfaa28 7430
2ac7589c
PA
7431 We can find a stepping dead thread in the thread list in two
7432 cases:
2adfaa28 7433
2ac7589c
PA
7434 - The target supports thread exit events, and when the target
7435 tries to delete the thread from the thread list, inferior_ptid
7436 pointed at the exiting thread. In such case, calling
7437 delete_thread does not really remove the thread from the list;
7438 instead, the thread is left listed, with 'exited' state.
64ce06e4 7439
2ac7589c
PA
7440 - The target's debug interface does not support thread exit
7441 events, and so we have no idea whatsoever if the previously
7442 stepping thread is still alive. For that reason, we need to
7443 synchronously query the target now. */
2adfaa28 7444
00431a78 7445 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7446 {
7447 if (debug_infrun)
7448 fprintf_unfiltered (gdb_stdlog,
7449 "infrun: not resuming previously "
7450 "stepped thread, it has vanished\n");
7451
00431a78 7452 delete_thread (tp);
2ac7589c 7453 return 0;
c447ac0b 7454 }
2ac7589c
PA
7455
7456 if (debug_infrun)
7457 fprintf_unfiltered (gdb_stdlog,
7458 "infrun: resuming previously stepped thread\n");
7459
7460 reset_ecs (ecs, tp);
00431a78 7461 switch_to_thread (tp);
2ac7589c 7462
f2ffa92b 7463 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7464 frame = get_current_frame ();
2ac7589c
PA
7465
7466 /* If the PC of the thread we were trying to single-step has
7467 changed, then that thread has trapped or been signaled, but the
7468 event has not been reported to GDB yet. Re-poll the target
7469 looking for this particular thread's event (i.e. temporarily
7470 enable schedlock) by:
7471
7472 - setting a break at the current PC
7473 - resuming that particular thread, only (by setting trap
7474 expected)
7475
7476 This prevents us continuously moving the single-step breakpoint
7477 forward, one instruction at a time, overstepping. */
7478
f2ffa92b 7479 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7480 {
7481 ptid_t resume_ptid;
7482
7483 if (debug_infrun)
7484 fprintf_unfiltered (gdb_stdlog,
7485 "infrun: expected thread advanced also (%s -> %s)\n",
7486 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7487 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7488
7489 /* Clear the info of the previous step-over, as it's no longer
7490 valid (if the thread was trying to step over a breakpoint, it
7491 has already succeeded). It's what keep_going would do too,
7492 if we called it. Do this before trying to insert the sss
7493 breakpoint, otherwise if we were previously trying to step
7494 over this exact address in another thread, the breakpoint is
7495 skipped. */
7496 clear_step_over_info ();
7497 tp->control.trap_expected = 0;
7498
7499 insert_single_step_breakpoint (get_frame_arch (frame),
7500 get_frame_address_space (frame),
f2ffa92b 7501 tp->suspend.stop_pc);
2ac7589c 7502
719546c4 7503 tp->resumed = true;
fbea99ea 7504 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7505 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7506 }
7507 else
7508 {
7509 if (debug_infrun)
7510 fprintf_unfiltered (gdb_stdlog,
7511 "infrun: expected thread still hasn't advanced\n");
7512
7513 keep_going_pass_signal (ecs);
7514 }
7515 return 1;
c447ac0b
PA
7516}
7517
8b061563
PA
7518/* Is thread TP in the middle of (software or hardware)
7519 single-stepping? (Note the result of this function must never be
7520 passed directly as target_resume's STEP parameter.) */
104c1213 7521
a289b8f6 7522static int
b3444185 7523currently_stepping (struct thread_info *tp)
a7212384 7524{
8358c15c
JK
7525 return ((tp->control.step_range_end
7526 && tp->control.step_resume_breakpoint == NULL)
7527 || tp->control.trap_expected
af48d08f 7528 || tp->stepped_breakpoint
8358c15c 7529 || bpstat_should_step ());
a7212384
UW
7530}
7531
b2175913
MS
7532/* Inferior has stepped into a subroutine call with source code that
7533 we should not step over. Do step to the first line of code in
7534 it. */
c2c6d25f
JM
7535
7536static void
568d6575
UW
7537handle_step_into_function (struct gdbarch *gdbarch,
7538 struct execution_control_state *ecs)
c2c6d25f 7539{
7e324e48
GB
7540 fill_in_stop_func (gdbarch, ecs);
7541
f2ffa92b
PA
7542 compunit_symtab *cust
7543 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7544 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7545 ecs->stop_func_start
7546 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7547
51abb421 7548 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7549 /* Use the step_resume_break to step until the end of the prologue,
7550 even if that involves jumps (as it seems to on the vax under
7551 4.2). */
7552 /* If the prologue ends in the middle of a source line, continue to
7553 the end of that source line (if it is still within the function).
7554 Otherwise, just go to end of prologue. */
2afb61aa
PA
7555 if (stop_func_sal.end
7556 && stop_func_sal.pc != ecs->stop_func_start
7557 && stop_func_sal.end < ecs->stop_func_end)
7558 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7559
2dbd5e30
KB
7560 /* Architectures which require breakpoint adjustment might not be able
7561 to place a breakpoint at the computed address. If so, the test
7562 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7563 ecs->stop_func_start to an address at which a breakpoint may be
7564 legitimately placed.
8fb3e588 7565
2dbd5e30
KB
7566 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7567 made, GDB will enter an infinite loop when stepping through
7568 optimized code consisting of VLIW instructions which contain
7569 subinstructions corresponding to different source lines. On
7570 FR-V, it's not permitted to place a breakpoint on any but the
7571 first subinstruction of a VLIW instruction. When a breakpoint is
7572 set, GDB will adjust the breakpoint address to the beginning of
7573 the VLIW instruction. Thus, we need to make the corresponding
7574 adjustment here when computing the stop address. */
8fb3e588 7575
568d6575 7576 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7577 {
7578 ecs->stop_func_start
568d6575 7579 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7580 ecs->stop_func_start);
2dbd5e30
KB
7581 }
7582
f2ffa92b 7583 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7584 {
7585 /* We are already there: stop now. */
bdc36728 7586 end_stepping_range (ecs);
c2c6d25f
JM
7587 return;
7588 }
7589 else
7590 {
7591 /* Put the step-breakpoint there and go until there. */
51abb421 7592 symtab_and_line sr_sal;
c2c6d25f
JM
7593 sr_sal.pc = ecs->stop_func_start;
7594 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7595 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7596
c2c6d25f 7597 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7598 some machines the prologue is where the new fp value is
7599 established. */
a6d9a66e 7600 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7601
7602 /* And make sure stepping stops right away then. */
16c381f0
JK
7603 ecs->event_thread->control.step_range_end
7604 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7605 }
7606 keep_going (ecs);
7607}
d4f3574e 7608
b2175913
MS
7609/* Inferior has stepped backward into a subroutine call with source
7610 code that we should not step over. Do step to the beginning of the
7611 last line of code in it. */
7612
7613static void
568d6575
UW
7614handle_step_into_function_backward (struct gdbarch *gdbarch,
7615 struct execution_control_state *ecs)
b2175913 7616{
43f3e411 7617 struct compunit_symtab *cust;
167e4384 7618 struct symtab_and_line stop_func_sal;
b2175913 7619
7e324e48
GB
7620 fill_in_stop_func (gdbarch, ecs);
7621
f2ffa92b 7622 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7623 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7624 ecs->stop_func_start
7625 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7626
f2ffa92b 7627 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7628
7629 /* OK, we're just going to keep stepping here. */
f2ffa92b 7630 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7631 {
7632 /* We're there already. Just stop stepping now. */
bdc36728 7633 end_stepping_range (ecs);
b2175913
MS
7634 }
7635 else
7636 {
7637 /* Else just reset the step range and keep going.
7638 No step-resume breakpoint, they don't work for
7639 epilogues, which can have multiple entry paths. */
16c381f0
JK
7640 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7641 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7642 keep_going (ecs);
7643 }
7644 return;
7645}
7646
d3169d93 7647/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7648 This is used to both functions and to skip over code. */
7649
7650static void
2c03e5be
PA
7651insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7652 struct symtab_and_line sr_sal,
7653 struct frame_id sr_id,
7654 enum bptype sr_type)
44cbf7b5 7655{
611c83ae
PA
7656 /* There should never be more than one step-resume or longjmp-resume
7657 breakpoint per thread, so we should never be setting a new
44cbf7b5 7658 step_resume_breakpoint when one is already active. */
8358c15c 7659 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7660 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7661
7662 if (debug_infrun)
7663 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7664 "infrun: inserting step-resume breakpoint at %s\n",
7665 paddress (gdbarch, sr_sal.pc));
d3169d93 7666
8358c15c 7667 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7668 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7669}
7670
9da8c2a0 7671void
2c03e5be
PA
7672insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7673 struct symtab_and_line sr_sal,
7674 struct frame_id sr_id)
7675{
7676 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7677 sr_sal, sr_id,
7678 bp_step_resume);
44cbf7b5 7679}
7ce450bd 7680
2c03e5be
PA
7681/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7682 This is used to skip a potential signal handler.
7ce450bd 7683
14e60db5
DJ
7684 This is called with the interrupted function's frame. The signal
7685 handler, when it returns, will resume the interrupted function at
7686 RETURN_FRAME.pc. */
d303a6c7
AC
7687
7688static void
2c03e5be 7689insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7690{
f4c1edd8 7691 gdb_assert (return_frame != NULL);
d303a6c7 7692
51abb421
PA
7693 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7694
7695 symtab_and_line sr_sal;
568d6575 7696 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7697 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7698 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7699
2c03e5be
PA
7700 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7701 get_stack_frame_id (return_frame),
7702 bp_hp_step_resume);
d303a6c7
AC
7703}
7704
2c03e5be
PA
7705/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7706 is used to skip a function after stepping into it (for "next" or if
7707 the called function has no debugging information).
14e60db5
DJ
7708
7709 The current function has almost always been reached by single
7710 stepping a call or return instruction. NEXT_FRAME belongs to the
7711 current function, and the breakpoint will be set at the caller's
7712 resume address.
7713
7714 This is a separate function rather than reusing
2c03e5be 7715 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7716 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7717 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7718
7719static void
7720insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7721{
14e60db5
DJ
7722 /* We shouldn't have gotten here if we don't know where the call site
7723 is. */
c7ce8faa 7724 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7725
51abb421 7726 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7727
51abb421 7728 symtab_and_line sr_sal;
c7ce8faa
DJ
7729 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7730 frame_unwind_caller_pc (next_frame));
14e60db5 7731 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7732 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7733
a6d9a66e 7734 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7735 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7736}
7737
611c83ae
PA
7738/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7739 new breakpoint at the target of a jmp_buf. The handling of
7740 longjmp-resume uses the same mechanisms used for handling
7741 "step-resume" breakpoints. */
7742
7743static void
a6d9a66e 7744insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7745{
e81a37f7
TT
7746 /* There should never be more than one longjmp-resume breakpoint per
7747 thread, so we should never be setting a new
611c83ae 7748 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7749 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7750
7751 if (debug_infrun)
7752 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7753 "infrun: inserting longjmp-resume breakpoint at %s\n",
7754 paddress (gdbarch, pc));
611c83ae 7755
e81a37f7 7756 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7757 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7758}
7759
186c406b
TT
7760/* Insert an exception resume breakpoint. TP is the thread throwing
7761 the exception. The block B is the block of the unwinder debug hook
7762 function. FRAME is the frame corresponding to the call to this
7763 function. SYM is the symbol of the function argument holding the
7764 target PC of the exception. */
7765
7766static void
7767insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7768 const struct block *b,
186c406b
TT
7769 struct frame_info *frame,
7770 struct symbol *sym)
7771{
a70b8144 7772 try
186c406b 7773 {
63e43d3a 7774 struct block_symbol vsym;
186c406b
TT
7775 struct value *value;
7776 CORE_ADDR handler;
7777 struct breakpoint *bp;
7778
987012b8 7779 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7780 b, VAR_DOMAIN);
63e43d3a 7781 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7782 /* If the value was optimized out, revert to the old behavior. */
7783 if (! value_optimized_out (value))
7784 {
7785 handler = value_as_address (value);
7786
7787 if (debug_infrun)
7788 fprintf_unfiltered (gdb_stdlog,
7789 "infrun: exception resume at %lx\n",
7790 (unsigned long) handler);
7791
7792 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7793 handler,
7794 bp_exception_resume).release ();
c70a6932
JK
7795
7796 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7797 frame = NULL;
7798
5d5658a1 7799 bp->thread = tp->global_num;
186c406b
TT
7800 inferior_thread ()->control.exception_resume_breakpoint = bp;
7801 }
7802 }
230d2906 7803 catch (const gdb_exception_error &e)
492d29ea
PA
7804 {
7805 /* We want to ignore errors here. */
7806 }
186c406b
TT
7807}
7808
28106bc2
SDJ
7809/* A helper for check_exception_resume that sets an
7810 exception-breakpoint based on a SystemTap probe. */
7811
7812static void
7813insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7814 const struct bound_probe *probe,
28106bc2
SDJ
7815 struct frame_info *frame)
7816{
7817 struct value *arg_value;
7818 CORE_ADDR handler;
7819 struct breakpoint *bp;
7820
7821 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7822 if (!arg_value)
7823 return;
7824
7825 handler = value_as_address (arg_value);
7826
7827 if (debug_infrun)
7828 fprintf_unfiltered (gdb_stdlog,
7829 "infrun: exception resume at %s\n",
08feed99 7830 paddress (probe->objfile->arch (),
28106bc2
SDJ
7831 handler));
7832
7833 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7834 handler, bp_exception_resume).release ();
5d5658a1 7835 bp->thread = tp->global_num;
28106bc2
SDJ
7836 inferior_thread ()->control.exception_resume_breakpoint = bp;
7837}
7838
186c406b
TT
7839/* This is called when an exception has been intercepted. Check to
7840 see whether the exception's destination is of interest, and if so,
7841 set an exception resume breakpoint there. */
7842
7843static void
7844check_exception_resume (struct execution_control_state *ecs,
28106bc2 7845 struct frame_info *frame)
186c406b 7846{
729662a5 7847 struct bound_probe probe;
28106bc2
SDJ
7848 struct symbol *func;
7849
7850 /* First see if this exception unwinding breakpoint was set via a
7851 SystemTap probe point. If so, the probe has two arguments: the
7852 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7853 set a breakpoint there. */
6bac7473 7854 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7855 if (probe.prob)
28106bc2 7856 {
729662a5 7857 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7858 return;
7859 }
7860
7861 func = get_frame_function (frame);
7862 if (!func)
7863 return;
186c406b 7864
a70b8144 7865 try
186c406b 7866 {
3977b71f 7867 const struct block *b;
8157b174 7868 struct block_iterator iter;
186c406b
TT
7869 struct symbol *sym;
7870 int argno = 0;
7871
7872 /* The exception breakpoint is a thread-specific breakpoint on
7873 the unwinder's debug hook, declared as:
7874
7875 void _Unwind_DebugHook (void *cfa, void *handler);
7876
7877 The CFA argument indicates the frame to which control is
7878 about to be transferred. HANDLER is the destination PC.
7879
7880 We ignore the CFA and set a temporary breakpoint at HANDLER.
7881 This is not extremely efficient but it avoids issues in gdb
7882 with computing the DWARF CFA, and it also works even in weird
7883 cases such as throwing an exception from inside a signal
7884 handler. */
7885
7886 b = SYMBOL_BLOCK_VALUE (func);
7887 ALL_BLOCK_SYMBOLS (b, iter, sym)
7888 {
7889 if (!SYMBOL_IS_ARGUMENT (sym))
7890 continue;
7891
7892 if (argno == 0)
7893 ++argno;
7894 else
7895 {
7896 insert_exception_resume_breakpoint (ecs->event_thread,
7897 b, frame, sym);
7898 break;
7899 }
7900 }
7901 }
230d2906 7902 catch (const gdb_exception_error &e)
492d29ea
PA
7903 {
7904 }
186c406b
TT
7905}
7906
104c1213 7907static void
22bcd14b 7908stop_waiting (struct execution_control_state *ecs)
104c1213 7909{
527159b7 7910 if (debug_infrun)
22bcd14b 7911 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7912
cd0fc7c3
SS
7913 /* Let callers know we don't want to wait for the inferior anymore. */
7914 ecs->wait_some_more = 0;
fbea99ea 7915
53cccef1 7916 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 7917 threads now that we're presenting the stop to the user. */
53cccef1 7918 if (!non_stop && exists_non_stop_target ())
fbea99ea 7919 stop_all_threads ();
cd0fc7c3
SS
7920}
7921
4d9d9d04
PA
7922/* Like keep_going, but passes the signal to the inferior, even if the
7923 signal is set to nopass. */
d4f3574e
SS
7924
7925static void
4d9d9d04 7926keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7927{
d7e15655 7928 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7929 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7930
d4f3574e 7931 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7932 ecs->event_thread->prev_pc
fc75c28b 7933 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 7934
4d9d9d04 7935 if (ecs->event_thread->control.trap_expected)
d4f3574e 7936 {
4d9d9d04
PA
7937 struct thread_info *tp = ecs->event_thread;
7938
7939 if (debug_infrun)
7940 fprintf_unfiltered (gdb_stdlog,
7941 "infrun: %s has trap_expected set, "
7942 "resuming to collect trap\n",
a068643d 7943 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7944
a9ba6bae
PA
7945 /* We haven't yet gotten our trap, and either: intercepted a
7946 non-signal event (e.g., a fork); or took a signal which we
7947 are supposed to pass through to the inferior. Simply
7948 continue. */
64ce06e4 7949 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7950 }
372316f1
PA
7951 else if (step_over_info_valid_p ())
7952 {
7953 /* Another thread is stepping over a breakpoint in-line. If
7954 this thread needs a step-over too, queue the request. In
7955 either case, this resume must be deferred for later. */
7956 struct thread_info *tp = ecs->event_thread;
7957
7958 if (ecs->hit_singlestep_breakpoint
7959 || thread_still_needs_step_over (tp))
7960 {
7961 if (debug_infrun)
7962 fprintf_unfiltered (gdb_stdlog,
7963 "infrun: step-over already in progress: "
7964 "step-over for %s deferred\n",
a068643d 7965 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7966 thread_step_over_chain_enqueue (tp);
7967 }
7968 else
7969 {
7970 if (debug_infrun)
7971 fprintf_unfiltered (gdb_stdlog,
7972 "infrun: step-over in progress: "
7973 "resume of %s deferred\n",
a068643d 7974 target_pid_to_str (tp->ptid).c_str ());
372316f1 7975 }
372316f1 7976 }
d4f3574e
SS
7977 else
7978 {
31e77af2 7979 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7980 int remove_bp;
7981 int remove_wps;
8d297bbf 7982 step_over_what step_what;
31e77af2 7983
d4f3574e 7984 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7985 anyway (if we got a signal, the user asked it be passed to
7986 the child)
7987 -- or --
7988 We got our expected trap, but decided we should resume from
7989 it.
d4f3574e 7990
a9ba6bae 7991 We're going to run this baby now!
d4f3574e 7992
c36b740a
VP
7993 Note that insert_breakpoints won't try to re-insert
7994 already inserted breakpoints. Therefore, we don't
7995 care if breakpoints were already inserted, or not. */
a9ba6bae 7996
31e77af2
PA
7997 /* If we need to step over a breakpoint, and we're not using
7998 displaced stepping to do so, insert all breakpoints
7999 (watchpoints, etc.) but the one we're stepping over, step one
8000 instruction, and then re-insert the breakpoint when that step
8001 is finished. */
963f9c80 8002
6c4cfb24
PA
8003 step_what = thread_still_needs_step_over (ecs->event_thread);
8004
963f9c80 8005 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
8006 || (step_what & STEP_OVER_BREAKPOINT));
8007 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 8008
cb71640d
PA
8009 /* We can't use displaced stepping if we need to step past a
8010 watchpoint. The instruction copied to the scratch pad would
8011 still trigger the watchpoint. */
8012 if (remove_bp
3fc8eb30 8013 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 8014 {
a01bda52 8015 set_step_over_info (regcache->aspace (),
21edc42f
YQ
8016 regcache_read_pc (regcache), remove_wps,
8017 ecs->event_thread->global_num);
45e8c884 8018 }
963f9c80 8019 else if (remove_wps)
21edc42f 8020 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
8021
8022 /* If we now need to do an in-line step-over, we need to stop
8023 all other threads. Note this must be done before
8024 insert_breakpoints below, because that removes the breakpoint
8025 we're about to step over, otherwise other threads could miss
8026 it. */
fbea99ea 8027 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 8028 stop_all_threads ();
abbb1732 8029
31e77af2 8030 /* Stop stepping if inserting breakpoints fails. */
a70b8144 8031 try
31e77af2
PA
8032 {
8033 insert_breakpoints ();
8034 }
230d2906 8035 catch (const gdb_exception_error &e)
31e77af2
PA
8036 {
8037 exception_print (gdb_stderr, e);
22bcd14b 8038 stop_waiting (ecs);
bdf2a94a 8039 clear_step_over_info ();
31e77af2 8040 return;
d4f3574e
SS
8041 }
8042
963f9c80 8043 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 8044
64ce06e4 8045 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
8046 }
8047
488f131b 8048 prepare_to_wait (ecs);
d4f3574e
SS
8049}
8050
4d9d9d04
PA
8051/* Called when we should continue running the inferior, because the
8052 current event doesn't cause a user visible stop. This does the
8053 resuming part; waiting for the next event is done elsewhere. */
8054
8055static void
8056keep_going (struct execution_control_state *ecs)
8057{
8058 if (ecs->event_thread->control.trap_expected
8059 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8060 ecs->event_thread->control.trap_expected = 0;
8061
8062 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8063 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8064 keep_going_pass_signal (ecs);
8065}
8066
104c1213
JM
8067/* This function normally comes after a resume, before
8068 handle_inferior_event exits. It takes care of any last bits of
8069 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8070
104c1213
JM
8071static void
8072prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8073{
527159b7 8074 if (debug_infrun)
8a9de0e4 8075 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 8076
104c1213 8077 ecs->wait_some_more = 1;
0b333c5e
PA
8078
8079 if (!target_is_async_p ())
8080 mark_infrun_async_event_handler ();
c906108c 8081}
11cf8741 8082
fd664c91 8083/* We are done with the step range of a step/next/si/ni command.
b57bacec 8084 Called once for each n of a "step n" operation. */
fd664c91
PA
8085
8086static void
bdc36728 8087end_stepping_range (struct execution_control_state *ecs)
fd664c91 8088{
bdc36728 8089 ecs->event_thread->control.stop_step = 1;
bdc36728 8090 stop_waiting (ecs);
fd664c91
PA
8091}
8092
33d62d64
JK
8093/* Several print_*_reason functions to print why the inferior has stopped.
8094 We always print something when the inferior exits, or receives a signal.
8095 The rest of the cases are dealt with later on in normal_stop and
8096 print_it_typical. Ideally there should be a call to one of these
8097 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8098 stop_waiting is called.
33d62d64 8099
fd664c91
PA
8100 Note that we don't call these directly, instead we delegate that to
8101 the interpreters, through observers. Interpreters then call these
8102 with whatever uiout is right. */
33d62d64 8103
fd664c91
PA
8104void
8105print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8106{
fd664c91 8107 /* For CLI-like interpreters, print nothing. */
33d62d64 8108
112e8700 8109 if (uiout->is_mi_like_p ())
fd664c91 8110 {
112e8700 8111 uiout->field_string ("reason",
fd664c91
PA
8112 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8113 }
8114}
33d62d64 8115
fd664c91
PA
8116void
8117print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8118{
33d62d64 8119 annotate_signalled ();
112e8700
SM
8120 if (uiout->is_mi_like_p ())
8121 uiout->field_string
8122 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8123 uiout->text ("\nProgram terminated with signal ");
33d62d64 8124 annotate_signal_name ();
112e8700 8125 uiout->field_string ("signal-name",
2ea28649 8126 gdb_signal_to_name (siggnal));
33d62d64 8127 annotate_signal_name_end ();
112e8700 8128 uiout->text (", ");
33d62d64 8129 annotate_signal_string ();
112e8700 8130 uiout->field_string ("signal-meaning",
2ea28649 8131 gdb_signal_to_string (siggnal));
33d62d64 8132 annotate_signal_string_end ();
112e8700
SM
8133 uiout->text (".\n");
8134 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8135}
8136
fd664c91
PA
8137void
8138print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8139{
fda326dd 8140 struct inferior *inf = current_inferior ();
a068643d 8141 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8142
33d62d64
JK
8143 annotate_exited (exitstatus);
8144 if (exitstatus)
8145 {
112e8700
SM
8146 if (uiout->is_mi_like_p ())
8147 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8148 std::string exit_code_str
8149 = string_printf ("0%o", (unsigned int) exitstatus);
8150 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8151 plongest (inf->num), pidstr.c_str (),
8152 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8153 }
8154 else
11cf8741 8155 {
112e8700
SM
8156 if (uiout->is_mi_like_p ())
8157 uiout->field_string
8158 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8159 uiout->message ("[Inferior %s (%s) exited normally]\n",
8160 plongest (inf->num), pidstr.c_str ());
33d62d64 8161 }
33d62d64
JK
8162}
8163
012b3a21
WT
8164/* Some targets/architectures can do extra processing/display of
8165 segmentation faults. E.g., Intel MPX boundary faults.
8166 Call the architecture dependent function to handle the fault. */
8167
8168static void
8169handle_segmentation_fault (struct ui_out *uiout)
8170{
8171 struct regcache *regcache = get_current_regcache ();
ac7936df 8172 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8173
8174 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8175 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8176}
8177
fd664c91
PA
8178void
8179print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8180{
f303dbd6
PA
8181 struct thread_info *thr = inferior_thread ();
8182
33d62d64
JK
8183 annotate_signal ();
8184
112e8700 8185 if (uiout->is_mi_like_p ())
f303dbd6
PA
8186 ;
8187 else if (show_thread_that_caused_stop ())
33d62d64 8188 {
f303dbd6 8189 const char *name;
33d62d64 8190
112e8700 8191 uiout->text ("\nThread ");
33eca680 8192 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8193
8194 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8195 if (name != NULL)
8196 {
112e8700 8197 uiout->text (" \"");
33eca680 8198 uiout->field_string ("name", name);
112e8700 8199 uiout->text ("\"");
f303dbd6 8200 }
33d62d64 8201 }
f303dbd6 8202 else
112e8700 8203 uiout->text ("\nProgram");
f303dbd6 8204
112e8700
SM
8205 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8206 uiout->text (" stopped");
33d62d64
JK
8207 else
8208 {
112e8700 8209 uiout->text (" received signal ");
8b93c638 8210 annotate_signal_name ();
112e8700
SM
8211 if (uiout->is_mi_like_p ())
8212 uiout->field_string
8213 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8214 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8215 annotate_signal_name_end ();
112e8700 8216 uiout->text (", ");
8b93c638 8217 annotate_signal_string ();
112e8700 8218 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8219
8220 if (siggnal == GDB_SIGNAL_SEGV)
8221 handle_segmentation_fault (uiout);
8222
8b93c638 8223 annotate_signal_string_end ();
33d62d64 8224 }
112e8700 8225 uiout->text (".\n");
33d62d64 8226}
252fbfc8 8227
fd664c91
PA
8228void
8229print_no_history_reason (struct ui_out *uiout)
33d62d64 8230{
112e8700 8231 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8232}
43ff13b4 8233
0c7e1a46
PA
8234/* Print current location without a level number, if we have changed
8235 functions or hit a breakpoint. Print source line if we have one.
8236 bpstat_print contains the logic deciding in detail what to print,
8237 based on the event(s) that just occurred. */
8238
243a9253
PA
8239static void
8240print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8241{
8242 int bpstat_ret;
f486487f 8243 enum print_what source_flag;
0c7e1a46
PA
8244 int do_frame_printing = 1;
8245 struct thread_info *tp = inferior_thread ();
8246
8247 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8248 switch (bpstat_ret)
8249 {
8250 case PRINT_UNKNOWN:
8251 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8252 should) carry around the function and does (or should) use
8253 that when doing a frame comparison. */
8254 if (tp->control.stop_step
8255 && frame_id_eq (tp->control.step_frame_id,
8256 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8257 && (tp->control.step_start_function
8258 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8259 {
8260 /* Finished step, just print source line. */
8261 source_flag = SRC_LINE;
8262 }
8263 else
8264 {
8265 /* Print location and source line. */
8266 source_flag = SRC_AND_LOC;
8267 }
8268 break;
8269 case PRINT_SRC_AND_LOC:
8270 /* Print location and source line. */
8271 source_flag = SRC_AND_LOC;
8272 break;
8273 case PRINT_SRC_ONLY:
8274 source_flag = SRC_LINE;
8275 break;
8276 case PRINT_NOTHING:
8277 /* Something bogus. */
8278 source_flag = SRC_LINE;
8279 do_frame_printing = 0;
8280 break;
8281 default:
8282 internal_error (__FILE__, __LINE__, _("Unknown value."));
8283 }
8284
8285 /* The behavior of this routine with respect to the source
8286 flag is:
8287 SRC_LINE: Print only source line
8288 LOCATION: Print only location
8289 SRC_AND_LOC: Print location and source line. */
8290 if (do_frame_printing)
8291 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8292}
8293
243a9253
PA
8294/* See infrun.h. */
8295
8296void
4c7d57e7 8297print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8298{
243a9253 8299 struct target_waitstatus last;
243a9253
PA
8300 struct thread_info *tp;
8301
5b6d1e4f 8302 get_last_target_status (nullptr, nullptr, &last);
243a9253 8303
67ad9399
TT
8304 {
8305 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8306
67ad9399 8307 print_stop_location (&last);
243a9253 8308
67ad9399 8309 /* Display the auto-display expressions. */
4c7d57e7
TT
8310 if (displays)
8311 do_displays ();
67ad9399 8312 }
243a9253
PA
8313
8314 tp = inferior_thread ();
8315 if (tp->thread_fsm != NULL
46e3ed7f 8316 && tp->thread_fsm->finished_p ())
243a9253
PA
8317 {
8318 struct return_value_info *rv;
8319
46e3ed7f 8320 rv = tp->thread_fsm->return_value ();
243a9253
PA
8321 if (rv != NULL)
8322 print_return_value (uiout, rv);
8323 }
0c7e1a46
PA
8324}
8325
388a7084
PA
8326/* See infrun.h. */
8327
8328void
8329maybe_remove_breakpoints (void)
8330{
8331 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8332 {
8333 if (remove_breakpoints ())
8334 {
223ffa71 8335 target_terminal::ours_for_output ();
388a7084
PA
8336 printf_filtered (_("Cannot remove breakpoints because "
8337 "program is no longer writable.\nFurther "
8338 "execution is probably impossible.\n"));
8339 }
8340 }
8341}
8342
4c2f2a79
PA
8343/* The execution context that just caused a normal stop. */
8344
8345struct stop_context
8346{
2d844eaf
TT
8347 stop_context ();
8348 ~stop_context ();
8349
8350 DISABLE_COPY_AND_ASSIGN (stop_context);
8351
8352 bool changed () const;
8353
4c2f2a79
PA
8354 /* The stop ID. */
8355 ULONGEST stop_id;
c906108c 8356
4c2f2a79 8357 /* The event PTID. */
c906108c 8358
4c2f2a79
PA
8359 ptid_t ptid;
8360
8361 /* If stopp for a thread event, this is the thread that caused the
8362 stop. */
8363 struct thread_info *thread;
8364
8365 /* The inferior that caused the stop. */
8366 int inf_num;
8367};
8368
2d844eaf 8369/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8370 takes a strong reference to the thread. */
8371
2d844eaf 8372stop_context::stop_context ()
4c2f2a79 8373{
2d844eaf
TT
8374 stop_id = get_stop_id ();
8375 ptid = inferior_ptid;
8376 inf_num = current_inferior ()->num;
4c2f2a79 8377
d7e15655 8378 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8379 {
8380 /* Take a strong reference so that the thread can't be deleted
8381 yet. */
2d844eaf
TT
8382 thread = inferior_thread ();
8383 thread->incref ();
4c2f2a79
PA
8384 }
8385 else
2d844eaf 8386 thread = NULL;
4c2f2a79
PA
8387}
8388
8389/* Release a stop context previously created with save_stop_context.
8390 Releases the strong reference to the thread as well. */
8391
2d844eaf 8392stop_context::~stop_context ()
4c2f2a79 8393{
2d844eaf
TT
8394 if (thread != NULL)
8395 thread->decref ();
4c2f2a79
PA
8396}
8397
8398/* Return true if the current context no longer matches the saved stop
8399 context. */
8400
2d844eaf
TT
8401bool
8402stop_context::changed () const
8403{
8404 if (ptid != inferior_ptid)
8405 return true;
8406 if (inf_num != current_inferior ()->num)
8407 return true;
8408 if (thread != NULL && thread->state != THREAD_STOPPED)
8409 return true;
8410 if (get_stop_id () != stop_id)
8411 return true;
8412 return false;
4c2f2a79
PA
8413}
8414
8415/* See infrun.h. */
8416
8417int
96baa820 8418normal_stop (void)
c906108c 8419{
73b65bb0 8420 struct target_waitstatus last;
73b65bb0 8421
5b6d1e4f 8422 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8423
4c2f2a79
PA
8424 new_stop_id ();
8425
29f49a6a
PA
8426 /* If an exception is thrown from this point on, make sure to
8427 propagate GDB's knowledge of the executing state to the
8428 frontend/user running state. A QUIT is an easy exception to see
8429 here, so do this before any filtered output. */
731f534f 8430
5b6d1e4f 8431 ptid_t finish_ptid = null_ptid;
731f534f 8432
c35b1492 8433 if (!non_stop)
5b6d1e4f 8434 finish_ptid = minus_one_ptid;
e1316e60
PA
8435 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8436 || last.kind == TARGET_WAITKIND_EXITED)
8437 {
8438 /* On some targets, we may still have live threads in the
8439 inferior when we get a process exit event. E.g., for
8440 "checkpoint", when the current checkpoint/fork exits,
8441 linux-fork.c automatically switches to another fork from
8442 within target_mourn_inferior. */
731f534f 8443 if (inferior_ptid != null_ptid)
5b6d1e4f 8444 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8445 }
8446 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8447 finish_ptid = inferior_ptid;
8448
8449 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8450 if (finish_ptid != null_ptid)
8451 {
8452 maybe_finish_thread_state.emplace
8453 (user_visible_resume_target (finish_ptid), finish_ptid);
8454 }
29f49a6a 8455
b57bacec
PA
8456 /* As we're presenting a stop, and potentially removing breakpoints,
8457 update the thread list so we can tell whether there are threads
8458 running on the target. With target remote, for example, we can
8459 only learn about new threads when we explicitly update the thread
8460 list. Do this before notifying the interpreters about signal
8461 stops, end of stepping ranges, etc., so that the "new thread"
8462 output is emitted before e.g., "Program received signal FOO",
8463 instead of after. */
8464 update_thread_list ();
8465
8466 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8467 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8468
c906108c
SS
8469 /* As with the notification of thread events, we want to delay
8470 notifying the user that we've switched thread context until
8471 the inferior actually stops.
8472
73b65bb0
DJ
8473 There's no point in saying anything if the inferior has exited.
8474 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8475 "received a signal".
8476
8477 Also skip saying anything in non-stop mode. In that mode, as we
8478 don't want GDB to switch threads behind the user's back, to avoid
8479 races where the user is typing a command to apply to thread x,
8480 but GDB switches to thread y before the user finishes entering
8481 the command, fetch_inferior_event installs a cleanup to restore
8482 the current thread back to the thread the user had selected right
8483 after this event is handled, so we're not really switching, only
8484 informing of a stop. */
4f8d22e3 8485 if (!non_stop
731f534f 8486 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8487 && target_has_execution
8488 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8489 && last.kind != TARGET_WAITKIND_EXITED
8490 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8491 {
0e454242 8492 SWITCH_THRU_ALL_UIS ()
3b12939d 8493 {
223ffa71 8494 target_terminal::ours_for_output ();
3b12939d 8495 printf_filtered (_("[Switching to %s]\n"),
a068643d 8496 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8497 annotate_thread_changed ();
8498 }
39f77062 8499 previous_inferior_ptid = inferior_ptid;
c906108c 8500 }
c906108c 8501
0e5bf2a8
PA
8502 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8503 {
0e454242 8504 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8505 if (current_ui->prompt_state == PROMPT_BLOCKED)
8506 {
223ffa71 8507 target_terminal::ours_for_output ();
3b12939d
PA
8508 printf_filtered (_("No unwaited-for children left.\n"));
8509 }
0e5bf2a8
PA
8510 }
8511
b57bacec 8512 /* Note: this depends on the update_thread_list call above. */
388a7084 8513 maybe_remove_breakpoints ();
c906108c 8514
c906108c
SS
8515 /* If an auto-display called a function and that got a signal,
8516 delete that auto-display to avoid an infinite recursion. */
8517
8518 if (stopped_by_random_signal)
8519 disable_current_display ();
8520
0e454242 8521 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8522 {
8523 async_enable_stdin ();
8524 }
c906108c 8525
388a7084 8526 /* Let the user/frontend see the threads as stopped. */
731f534f 8527 maybe_finish_thread_state.reset ();
388a7084
PA
8528
8529 /* Select innermost stack frame - i.e., current frame is frame 0,
8530 and current location is based on that. Handle the case where the
8531 dummy call is returning after being stopped. E.g. the dummy call
8532 previously hit a breakpoint. (If the dummy call returns
8533 normally, we won't reach here.) Do this before the stop hook is
8534 run, so that it doesn't get to see the temporary dummy frame,
8535 which is not where we'll present the stop. */
8536 if (has_stack_frames ())
8537 {
8538 if (stop_stack_dummy == STOP_STACK_DUMMY)
8539 {
8540 /* Pop the empty frame that contains the stack dummy. This
8541 also restores inferior state prior to the call (struct
8542 infcall_suspend_state). */
8543 struct frame_info *frame = get_current_frame ();
8544
8545 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8546 frame_pop (frame);
8547 /* frame_pop calls reinit_frame_cache as the last thing it
8548 does which means there's now no selected frame. */
8549 }
8550
8551 select_frame (get_current_frame ());
8552
8553 /* Set the current source location. */
8554 set_current_sal_from_frame (get_current_frame ());
8555 }
dd7e2d2b
PA
8556
8557 /* Look up the hook_stop and run it (CLI internally handles problem
8558 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8559 if (stop_command != NULL)
8560 {
2d844eaf 8561 stop_context saved_context;
4c2f2a79 8562
a70b8144 8563 try
bf469271
PA
8564 {
8565 execute_cmd_pre_hook (stop_command);
8566 }
230d2906 8567 catch (const gdb_exception &ex)
bf469271
PA
8568 {
8569 exception_fprintf (gdb_stderr, ex,
8570 "Error while running hook_stop:\n");
8571 }
4c2f2a79
PA
8572
8573 /* If the stop hook resumes the target, then there's no point in
8574 trying to notify about the previous stop; its context is
8575 gone. Likewise if the command switches thread or inferior --
8576 the observers would print a stop for the wrong
8577 thread/inferior. */
2d844eaf
TT
8578 if (saved_context.changed ())
8579 return 1;
4c2f2a79 8580 }
dd7e2d2b 8581
388a7084
PA
8582 /* Notify observers about the stop. This is where the interpreters
8583 print the stop event. */
d7e15655 8584 if (inferior_ptid != null_ptid)
76727919 8585 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8586 stop_print_frame);
8587 else
76727919 8588 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8589
243a9253
PA
8590 annotate_stopped ();
8591
48844aa6
PA
8592 if (target_has_execution)
8593 {
8594 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8595 && last.kind != TARGET_WAITKIND_EXITED
8596 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8597 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8598 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8599 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8600 }
6c95b8df
PA
8601
8602 /* Try to get rid of automatically added inferiors that are no
8603 longer needed. Keeping those around slows down things linearly.
8604 Note that this never removes the current inferior. */
8605 prune_inferiors ();
4c2f2a79
PA
8606
8607 return 0;
c906108c 8608}
c906108c 8609\f
c5aa993b 8610int
96baa820 8611signal_stop_state (int signo)
c906108c 8612{
d6b48e9c 8613 return signal_stop[signo];
c906108c
SS
8614}
8615
c5aa993b 8616int
96baa820 8617signal_print_state (int signo)
c906108c
SS
8618{
8619 return signal_print[signo];
8620}
8621
c5aa993b 8622int
96baa820 8623signal_pass_state (int signo)
c906108c
SS
8624{
8625 return signal_program[signo];
8626}
8627
2455069d
UW
8628static void
8629signal_cache_update (int signo)
8630{
8631 if (signo == -1)
8632 {
a493e3e2 8633 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8634 signal_cache_update (signo);
8635
8636 return;
8637 }
8638
8639 signal_pass[signo] = (signal_stop[signo] == 0
8640 && signal_print[signo] == 0
ab04a2af
TT
8641 && signal_program[signo] == 1
8642 && signal_catch[signo] == 0);
2455069d
UW
8643}
8644
488f131b 8645int
7bda5e4a 8646signal_stop_update (int signo, int state)
d4f3574e
SS
8647{
8648 int ret = signal_stop[signo];
abbb1732 8649
d4f3574e 8650 signal_stop[signo] = state;
2455069d 8651 signal_cache_update (signo);
d4f3574e
SS
8652 return ret;
8653}
8654
488f131b 8655int
7bda5e4a 8656signal_print_update (int signo, int state)
d4f3574e
SS
8657{
8658 int ret = signal_print[signo];
abbb1732 8659
d4f3574e 8660 signal_print[signo] = state;
2455069d 8661 signal_cache_update (signo);
d4f3574e
SS
8662 return ret;
8663}
8664
488f131b 8665int
7bda5e4a 8666signal_pass_update (int signo, int state)
d4f3574e
SS
8667{
8668 int ret = signal_program[signo];
abbb1732 8669
d4f3574e 8670 signal_program[signo] = state;
2455069d 8671 signal_cache_update (signo);
d4f3574e
SS
8672 return ret;
8673}
8674
ab04a2af
TT
8675/* Update the global 'signal_catch' from INFO and notify the
8676 target. */
8677
8678void
8679signal_catch_update (const unsigned int *info)
8680{
8681 int i;
8682
8683 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8684 signal_catch[i] = info[i] > 0;
8685 signal_cache_update (-1);
adc6a863 8686 target_pass_signals (signal_pass);
ab04a2af
TT
8687}
8688
c906108c 8689static void
96baa820 8690sig_print_header (void)
c906108c 8691{
3e43a32a
MS
8692 printf_filtered (_("Signal Stop\tPrint\tPass "
8693 "to program\tDescription\n"));
c906108c
SS
8694}
8695
8696static void
2ea28649 8697sig_print_info (enum gdb_signal oursig)
c906108c 8698{
2ea28649 8699 const char *name = gdb_signal_to_name (oursig);
c906108c 8700 int name_padding = 13 - strlen (name);
96baa820 8701
c906108c
SS
8702 if (name_padding <= 0)
8703 name_padding = 0;
8704
8705 printf_filtered ("%s", name);
488f131b 8706 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8707 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8708 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8709 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8710 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8711}
8712
8713/* Specify how various signals in the inferior should be handled. */
8714
8715static void
0b39b52e 8716handle_command (const char *args, int from_tty)
c906108c 8717{
c906108c 8718 int digits, wordlen;
b926417a 8719 int sigfirst, siglast;
2ea28649 8720 enum gdb_signal oursig;
c906108c 8721 int allsigs;
c906108c
SS
8722
8723 if (args == NULL)
8724 {
e2e0b3e5 8725 error_no_arg (_("signal to handle"));
c906108c
SS
8726 }
8727
1777feb0 8728 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8729
adc6a863
PA
8730 const size_t nsigs = GDB_SIGNAL_LAST;
8731 unsigned char sigs[nsigs] {};
c906108c 8732
1777feb0 8733 /* Break the command line up into args. */
c906108c 8734
773a1edc 8735 gdb_argv built_argv (args);
c906108c
SS
8736
8737 /* Walk through the args, looking for signal oursigs, signal names, and
8738 actions. Signal numbers and signal names may be interspersed with
8739 actions, with the actions being performed for all signals cumulatively
1777feb0 8740 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8741
773a1edc 8742 for (char *arg : built_argv)
c906108c 8743 {
773a1edc
TT
8744 wordlen = strlen (arg);
8745 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8746 {;
8747 }
8748 allsigs = 0;
8749 sigfirst = siglast = -1;
8750
773a1edc 8751 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8752 {
8753 /* Apply action to all signals except those used by the
1777feb0 8754 debugger. Silently skip those. */
c906108c
SS
8755 allsigs = 1;
8756 sigfirst = 0;
8757 siglast = nsigs - 1;
8758 }
773a1edc 8759 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8760 {
8761 SET_SIGS (nsigs, sigs, signal_stop);
8762 SET_SIGS (nsigs, sigs, signal_print);
8763 }
773a1edc 8764 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8765 {
8766 UNSET_SIGS (nsigs, sigs, signal_program);
8767 }
773a1edc 8768 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8769 {
8770 SET_SIGS (nsigs, sigs, signal_print);
8771 }
773a1edc 8772 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8773 {
8774 SET_SIGS (nsigs, sigs, signal_program);
8775 }
773a1edc 8776 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8777 {
8778 UNSET_SIGS (nsigs, sigs, signal_stop);
8779 }
773a1edc 8780 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8781 {
8782 SET_SIGS (nsigs, sigs, signal_program);
8783 }
773a1edc 8784 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8785 {
8786 UNSET_SIGS (nsigs, sigs, signal_print);
8787 UNSET_SIGS (nsigs, sigs, signal_stop);
8788 }
773a1edc 8789 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8790 {
8791 UNSET_SIGS (nsigs, sigs, signal_program);
8792 }
8793 else if (digits > 0)
8794 {
8795 /* It is numeric. The numeric signal refers to our own
8796 internal signal numbering from target.h, not to host/target
8797 signal number. This is a feature; users really should be
8798 using symbolic names anyway, and the common ones like
8799 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8800
8801 sigfirst = siglast = (int)
773a1edc
TT
8802 gdb_signal_from_command (atoi (arg));
8803 if (arg[digits] == '-')
c906108c
SS
8804 {
8805 siglast = (int)
773a1edc 8806 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8807 }
8808 if (sigfirst > siglast)
8809 {
1777feb0 8810 /* Bet he didn't figure we'd think of this case... */
b926417a 8811 std::swap (sigfirst, siglast);
c906108c
SS
8812 }
8813 }
8814 else
8815 {
773a1edc 8816 oursig = gdb_signal_from_name (arg);
a493e3e2 8817 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8818 {
8819 sigfirst = siglast = (int) oursig;
8820 }
8821 else
8822 {
8823 /* Not a number and not a recognized flag word => complain. */
773a1edc 8824 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8825 }
8826 }
8827
8828 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8829 which signals to apply actions to. */
c906108c 8830
b926417a 8831 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8832 {
2ea28649 8833 switch ((enum gdb_signal) signum)
c906108c 8834 {
a493e3e2
PA
8835 case GDB_SIGNAL_TRAP:
8836 case GDB_SIGNAL_INT:
c906108c
SS
8837 if (!allsigs && !sigs[signum])
8838 {
9e2f0ad4 8839 if (query (_("%s is used by the debugger.\n\
3e43a32a 8840Are you sure you want to change it? "),
2ea28649 8841 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8842 {
8843 sigs[signum] = 1;
8844 }
8845 else
c119e040 8846 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8847 }
8848 break;
a493e3e2
PA
8849 case GDB_SIGNAL_0:
8850 case GDB_SIGNAL_DEFAULT:
8851 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8852 /* Make sure that "all" doesn't print these. */
8853 break;
8854 default:
8855 sigs[signum] = 1;
8856 break;
8857 }
8858 }
c906108c
SS
8859 }
8860
b926417a 8861 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8862 if (sigs[signum])
8863 {
2455069d 8864 signal_cache_update (-1);
adc6a863
PA
8865 target_pass_signals (signal_pass);
8866 target_program_signals (signal_program);
c906108c 8867
3a031f65
PA
8868 if (from_tty)
8869 {
8870 /* Show the results. */
8871 sig_print_header ();
8872 for (; signum < nsigs; signum++)
8873 if (sigs[signum])
aead7601 8874 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8875 }
8876
8877 break;
8878 }
c906108c
SS
8879}
8880
de0bea00
MF
8881/* Complete the "handle" command. */
8882
eb3ff9a5 8883static void
de0bea00 8884handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8885 completion_tracker &tracker,
6f937416 8886 const char *text, const char *word)
de0bea00 8887{
de0bea00
MF
8888 static const char * const keywords[] =
8889 {
8890 "all",
8891 "stop",
8892 "ignore",
8893 "print",
8894 "pass",
8895 "nostop",
8896 "noignore",
8897 "noprint",
8898 "nopass",
8899 NULL,
8900 };
8901
eb3ff9a5
PA
8902 signal_completer (ignore, tracker, text, word);
8903 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8904}
8905
2ea28649
PA
8906enum gdb_signal
8907gdb_signal_from_command (int num)
ed01b82c
PA
8908{
8909 if (num >= 1 && num <= 15)
2ea28649 8910 return (enum gdb_signal) num;
ed01b82c
PA
8911 error (_("Only signals 1-15 are valid as numeric signals.\n\
8912Use \"info signals\" for a list of symbolic signals."));
8913}
8914
c906108c
SS
8915/* Print current contents of the tables set by the handle command.
8916 It is possible we should just be printing signals actually used
8917 by the current target (but for things to work right when switching
8918 targets, all signals should be in the signal tables). */
8919
8920static void
1d12d88f 8921info_signals_command (const char *signum_exp, int from_tty)
c906108c 8922{
2ea28649 8923 enum gdb_signal oursig;
abbb1732 8924
c906108c
SS
8925 sig_print_header ();
8926
8927 if (signum_exp)
8928 {
8929 /* First see if this is a symbol name. */
2ea28649 8930 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8931 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8932 {
8933 /* No, try numeric. */
8934 oursig =
2ea28649 8935 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8936 }
8937 sig_print_info (oursig);
8938 return;
8939 }
8940
8941 printf_filtered ("\n");
8942 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8943 for (oursig = GDB_SIGNAL_FIRST;
8944 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8945 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8946 {
8947 QUIT;
8948
a493e3e2
PA
8949 if (oursig != GDB_SIGNAL_UNKNOWN
8950 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8951 sig_print_info (oursig);
8952 }
8953
3e43a32a
MS
8954 printf_filtered (_("\nUse the \"handle\" command "
8955 "to change these tables.\n"));
c906108c 8956}
4aa995e1
PA
8957
8958/* The $_siginfo convenience variable is a bit special. We don't know
8959 for sure the type of the value until we actually have a chance to
7a9dd1b2 8960 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8961 also dependent on which thread you have selected.
8962
8963 1. making $_siginfo be an internalvar that creates a new value on
8964 access.
8965
8966 2. making the value of $_siginfo be an lval_computed value. */
8967
8968/* This function implements the lval_computed support for reading a
8969 $_siginfo value. */
8970
8971static void
8972siginfo_value_read (struct value *v)
8973{
8974 LONGEST transferred;
8975
a911d87a
PA
8976 /* If we can access registers, so can we access $_siginfo. Likewise
8977 vice versa. */
8978 validate_registers_access ();
c709acd1 8979
4aa995e1 8980 transferred =
8b88a78e 8981 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8982 NULL,
8983 value_contents_all_raw (v),
8984 value_offset (v),
8985 TYPE_LENGTH (value_type (v)));
8986
8987 if (transferred != TYPE_LENGTH (value_type (v)))
8988 error (_("Unable to read siginfo"));
8989}
8990
8991/* This function implements the lval_computed support for writing a
8992 $_siginfo value. */
8993
8994static void
8995siginfo_value_write (struct value *v, struct value *fromval)
8996{
8997 LONGEST transferred;
8998
a911d87a
PA
8999 /* If we can access registers, so can we access $_siginfo. Likewise
9000 vice versa. */
9001 validate_registers_access ();
c709acd1 9002
8b88a78e 9003 transferred = target_write (current_top_target (),
4aa995e1
PA
9004 TARGET_OBJECT_SIGNAL_INFO,
9005 NULL,
9006 value_contents_all_raw (fromval),
9007 value_offset (v),
9008 TYPE_LENGTH (value_type (fromval)));
9009
9010 if (transferred != TYPE_LENGTH (value_type (fromval)))
9011 error (_("Unable to write siginfo"));
9012}
9013
c8f2448a 9014static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
9015 {
9016 siginfo_value_read,
9017 siginfo_value_write
9018 };
9019
9020/* Return a new value with the correct type for the siginfo object of
78267919
UW
9021 the current thread using architecture GDBARCH. Return a void value
9022 if there's no object available. */
4aa995e1 9023
2c0b251b 9024static struct value *
22d2b532
SDJ
9025siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9026 void *ignore)
4aa995e1 9027{
4aa995e1 9028 if (target_has_stack
d7e15655 9029 && inferior_ptid != null_ptid
78267919 9030 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 9031 {
78267919 9032 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 9033
78267919 9034 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
9035 }
9036
78267919 9037 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
9038}
9039
c906108c 9040\f
16c381f0
JK
9041/* infcall_suspend_state contains state about the program itself like its
9042 registers and any signal it received when it last stopped.
9043 This state must be restored regardless of how the inferior function call
9044 ends (either successfully, or after it hits a breakpoint or signal)
9045 if the program is to properly continue where it left off. */
9046
6bf78e29 9047class infcall_suspend_state
7a292a7a 9048{
6bf78e29
AB
9049public:
9050 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9051 once the inferior function call has finished. */
9052 infcall_suspend_state (struct gdbarch *gdbarch,
9053 const struct thread_info *tp,
9054 struct regcache *regcache)
9055 : m_thread_suspend (tp->suspend),
9056 m_registers (new readonly_detached_regcache (*regcache))
9057 {
9058 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9059
9060 if (gdbarch_get_siginfo_type_p (gdbarch))
9061 {
9062 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9063 size_t len = TYPE_LENGTH (type);
9064
9065 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9066
9067 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9068 siginfo_data.get (), 0, len) != len)
9069 {
9070 /* Errors ignored. */
9071 siginfo_data.reset (nullptr);
9072 }
9073 }
9074
9075 if (siginfo_data)
9076 {
9077 m_siginfo_gdbarch = gdbarch;
9078 m_siginfo_data = std::move (siginfo_data);
9079 }
9080 }
9081
9082 /* Return a pointer to the stored register state. */
16c381f0 9083
6bf78e29
AB
9084 readonly_detached_regcache *registers () const
9085 {
9086 return m_registers.get ();
9087 }
9088
9089 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9090
9091 void restore (struct gdbarch *gdbarch,
9092 struct thread_info *tp,
9093 struct regcache *regcache) const
9094 {
9095 tp->suspend = m_thread_suspend;
9096
9097 if (m_siginfo_gdbarch == gdbarch)
9098 {
9099 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9100
9101 /* Errors ignored. */
9102 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9103 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9104 }
9105
9106 /* The inferior can be gone if the user types "print exit(0)"
9107 (and perhaps other times). */
9108 if (target_has_execution)
9109 /* NB: The register write goes through to the target. */
9110 regcache->restore (registers ());
9111 }
9112
9113private:
9114 /* How the current thread stopped before the inferior function call was
9115 executed. */
9116 struct thread_suspend_state m_thread_suspend;
9117
9118 /* The registers before the inferior function call was executed. */
9119 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9120
35515841 9121 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9122 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9123
9124 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9125 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9126 content would be invalid. */
6bf78e29 9127 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9128};
9129
cb524840
TT
9130infcall_suspend_state_up
9131save_infcall_suspend_state ()
b89667eb 9132{
b89667eb 9133 struct thread_info *tp = inferior_thread ();
1736ad11 9134 struct regcache *regcache = get_current_regcache ();
ac7936df 9135 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9136
6bf78e29
AB
9137 infcall_suspend_state_up inf_state
9138 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9139
6bf78e29
AB
9140 /* Having saved the current state, adjust the thread state, discarding
9141 any stop signal information. The stop signal is not useful when
9142 starting an inferior function call, and run_inferior_call will not use
9143 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9144 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9145
b89667eb
DE
9146 return inf_state;
9147}
9148
9149/* Restore inferior session state to INF_STATE. */
9150
9151void
16c381f0 9152restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9153{
9154 struct thread_info *tp = inferior_thread ();
1736ad11 9155 struct regcache *regcache = get_current_regcache ();
ac7936df 9156 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9157
6bf78e29 9158 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9159 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9160}
9161
b89667eb 9162void
16c381f0 9163discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9164{
dd848631 9165 delete inf_state;
b89667eb
DE
9166}
9167
daf6667d 9168readonly_detached_regcache *
16c381f0 9169get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9170{
6bf78e29 9171 return inf_state->registers ();
b89667eb
DE
9172}
9173
16c381f0
JK
9174/* infcall_control_state contains state regarding gdb's control of the
9175 inferior itself like stepping control. It also contains session state like
9176 the user's currently selected frame. */
b89667eb 9177
16c381f0 9178struct infcall_control_state
b89667eb 9179{
16c381f0
JK
9180 struct thread_control_state thread_control;
9181 struct inferior_control_state inferior_control;
d82142e2
JK
9182
9183 /* Other fields: */
ee841dd8
TT
9184 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9185 int stopped_by_random_signal = 0;
7a292a7a 9186
b89667eb 9187 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9188 struct frame_id selected_frame_id {};
7a292a7a
SS
9189};
9190
c906108c 9191/* Save all of the information associated with the inferior<==>gdb
b89667eb 9192 connection. */
c906108c 9193
cb524840
TT
9194infcall_control_state_up
9195save_infcall_control_state ()
c906108c 9196{
cb524840 9197 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9198 struct thread_info *tp = inferior_thread ();
d6b48e9c 9199 struct inferior *inf = current_inferior ();
7a292a7a 9200
16c381f0
JK
9201 inf_status->thread_control = tp->control;
9202 inf_status->inferior_control = inf->control;
d82142e2 9203
8358c15c 9204 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9205 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9206
16c381f0
JK
9207 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9208 chain. If caller's caller is walking the chain, they'll be happier if we
9209 hand them back the original chain when restore_infcall_control_state is
9210 called. */
9211 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9212
9213 /* Other fields: */
9214 inf_status->stop_stack_dummy = stop_stack_dummy;
9215 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9216
206415a3 9217 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9218
7a292a7a 9219 return inf_status;
c906108c
SS
9220}
9221
bf469271
PA
9222static void
9223restore_selected_frame (const frame_id &fid)
c906108c 9224{
bf469271 9225 frame_info *frame = frame_find_by_id (fid);
c906108c 9226
aa0cd9c1
AC
9227 /* If inf_status->selected_frame_id is NULL, there was no previously
9228 selected frame. */
101dcfbe 9229 if (frame == NULL)
c906108c 9230 {
8a3fe4f8 9231 warning (_("Unable to restore previously selected frame."));
bf469271 9232 return;
c906108c
SS
9233 }
9234
0f7d239c 9235 select_frame (frame);
c906108c
SS
9236}
9237
b89667eb
DE
9238/* Restore inferior session state to INF_STATUS. */
9239
c906108c 9240void
16c381f0 9241restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9242{
4e1c45ea 9243 struct thread_info *tp = inferior_thread ();
d6b48e9c 9244 struct inferior *inf = current_inferior ();
4e1c45ea 9245
8358c15c
JK
9246 if (tp->control.step_resume_breakpoint)
9247 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9248
5b79abe7
TT
9249 if (tp->control.exception_resume_breakpoint)
9250 tp->control.exception_resume_breakpoint->disposition
9251 = disp_del_at_next_stop;
9252
d82142e2 9253 /* Handle the bpstat_copy of the chain. */
16c381f0 9254 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9255
16c381f0
JK
9256 tp->control = inf_status->thread_control;
9257 inf->control = inf_status->inferior_control;
d82142e2
JK
9258
9259 /* Other fields: */
9260 stop_stack_dummy = inf_status->stop_stack_dummy;
9261 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9262
b89667eb 9263 if (target_has_stack)
c906108c 9264 {
bf469271 9265 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9266 walking the stack might encounter a garbage pointer and
9267 error() trying to dereference it. */
a70b8144 9268 try
bf469271
PA
9269 {
9270 restore_selected_frame (inf_status->selected_frame_id);
9271 }
230d2906 9272 catch (const gdb_exception_error &ex)
bf469271
PA
9273 {
9274 exception_fprintf (gdb_stderr, ex,
9275 "Unable to restore previously selected frame:\n");
9276 /* Error in restoring the selected frame. Select the
9277 innermost frame. */
9278 select_frame (get_current_frame ());
9279 }
c906108c 9280 }
c906108c 9281
ee841dd8 9282 delete inf_status;
7a292a7a 9283}
c906108c
SS
9284
9285void
16c381f0 9286discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9287{
8358c15c
JK
9288 if (inf_status->thread_control.step_resume_breakpoint)
9289 inf_status->thread_control.step_resume_breakpoint->disposition
9290 = disp_del_at_next_stop;
9291
5b79abe7
TT
9292 if (inf_status->thread_control.exception_resume_breakpoint)
9293 inf_status->thread_control.exception_resume_breakpoint->disposition
9294 = disp_del_at_next_stop;
9295
1777feb0 9296 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9297 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9298
ee841dd8 9299 delete inf_status;
7a292a7a 9300}
b89667eb 9301\f
7f89fd65 9302/* See infrun.h. */
0c557179
SDJ
9303
9304void
9305clear_exit_convenience_vars (void)
9306{
9307 clear_internalvar (lookup_internalvar ("_exitsignal"));
9308 clear_internalvar (lookup_internalvar ("_exitcode"));
9309}
c5aa993b 9310\f
488f131b 9311
b2175913
MS
9312/* User interface for reverse debugging:
9313 Set exec-direction / show exec-direction commands
9314 (returns error unless target implements to_set_exec_direction method). */
9315
170742de 9316enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9317static const char exec_forward[] = "forward";
9318static const char exec_reverse[] = "reverse";
9319static const char *exec_direction = exec_forward;
40478521 9320static const char *const exec_direction_names[] = {
b2175913
MS
9321 exec_forward,
9322 exec_reverse,
9323 NULL
9324};
9325
9326static void
eb4c3f4a 9327set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9328 struct cmd_list_element *cmd)
9329{
9330 if (target_can_execute_reverse)
9331 {
9332 if (!strcmp (exec_direction, exec_forward))
9333 execution_direction = EXEC_FORWARD;
9334 else if (!strcmp (exec_direction, exec_reverse))
9335 execution_direction = EXEC_REVERSE;
9336 }
8bbed405
MS
9337 else
9338 {
9339 exec_direction = exec_forward;
9340 error (_("Target does not support this operation."));
9341 }
b2175913
MS
9342}
9343
9344static void
9345show_exec_direction_func (struct ui_file *out, int from_tty,
9346 struct cmd_list_element *cmd, const char *value)
9347{
9348 switch (execution_direction) {
9349 case EXEC_FORWARD:
9350 fprintf_filtered (out, _("Forward.\n"));
9351 break;
9352 case EXEC_REVERSE:
9353 fprintf_filtered (out, _("Reverse.\n"));
9354 break;
b2175913 9355 default:
d8b34453
PA
9356 internal_error (__FILE__, __LINE__,
9357 _("bogus execution_direction value: %d"),
9358 (int) execution_direction);
b2175913
MS
9359 }
9360}
9361
d4db2f36
PA
9362static void
9363show_schedule_multiple (struct ui_file *file, int from_tty,
9364 struct cmd_list_element *c, const char *value)
9365{
3e43a32a
MS
9366 fprintf_filtered (file, _("Resuming the execution of threads "
9367 "of all processes is %s.\n"), value);
d4db2f36 9368}
ad52ddc6 9369
22d2b532
SDJ
9370/* Implementation of `siginfo' variable. */
9371
9372static const struct internalvar_funcs siginfo_funcs =
9373{
9374 siginfo_make_value,
9375 NULL,
9376 NULL
9377};
9378
372316f1
PA
9379/* Callback for infrun's target events source. This is marked when a
9380 thread has a pending status to process. */
9381
9382static void
9383infrun_async_inferior_event_handler (gdb_client_data data)
9384{
372316f1
PA
9385 inferior_event_handler (INF_REG_EVENT, NULL);
9386}
9387
6c265988 9388void _initialize_infrun ();
c906108c 9389void
6c265988 9390_initialize_infrun ()
c906108c 9391{
de0bea00 9392 struct cmd_list_element *c;
c906108c 9393
372316f1
PA
9394 /* Register extra event sources in the event loop. */
9395 infrun_async_inferior_event_token
9396 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9397
11db9430 9398 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9399What debugger does when program gets various signals.\n\
9400Specify a signal as argument to print info on that signal only."));
c906108c
SS
9401 add_info_alias ("handle", "signals", 0);
9402
de0bea00 9403 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9404Specify how to handle signals.\n\
486c7739 9405Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9406Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9407If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9408will be displayed instead.\n\
9409\n\
c906108c
SS
9410Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9411from 1-15 are allowed for compatibility with old versions of GDB.\n\
9412Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9413The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9414used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9415\n\
1bedd215 9416Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9417\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9418Stop means reenter debugger if this signal happens (implies print).\n\
9419Print means print a message if this signal happens.\n\
9420Pass means let program see this signal; otherwise program doesn't know.\n\
9421Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9422Pass and Stop may be combined.\n\
9423\n\
9424Multiple signals may be specified. Signal numbers and signal names\n\
9425may be interspersed with actions, with the actions being performed for\n\
9426all signals cumulatively specified."));
de0bea00 9427 set_cmd_completer (c, handle_completer);
486c7739 9428
c906108c 9429 if (!dbx_commands)
1a966eab
AC
9430 stop_command = add_cmd ("stop", class_obscure,
9431 not_just_help_class_command, _("\
9432There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9433This allows you to set a list of commands to be run each time execution\n\
1a966eab 9434of the program stops."), &cmdlist);
c906108c 9435
ccce17b0 9436 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9437Set inferior debugging."), _("\
9438Show inferior debugging."), _("\
9439When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9440 NULL,
9441 show_debug_infrun,
9442 &setdebuglist, &showdebuglist);
527159b7 9443
3e43a32a
MS
9444 add_setshow_boolean_cmd ("displaced", class_maintenance,
9445 &debug_displaced, _("\
237fc4c9
PA
9446Set displaced stepping debugging."), _("\
9447Show displaced stepping debugging."), _("\
9448When non-zero, displaced stepping specific debugging is enabled."),
9449 NULL,
9450 show_debug_displaced,
9451 &setdebuglist, &showdebuglist);
9452
ad52ddc6
PA
9453 add_setshow_boolean_cmd ("non-stop", no_class,
9454 &non_stop_1, _("\
9455Set whether gdb controls the inferior in non-stop mode."), _("\
9456Show whether gdb controls the inferior in non-stop mode."), _("\
9457When debugging a multi-threaded program and this setting is\n\
9458off (the default, also called all-stop mode), when one thread stops\n\
9459(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9460all other threads in the program while you interact with the thread of\n\
9461interest. When you continue or step a thread, you can allow the other\n\
9462threads to run, or have them remain stopped, but while you inspect any\n\
9463thread's state, all threads stop.\n\
9464\n\
9465In non-stop mode, when one thread stops, other threads can continue\n\
9466to run freely. You'll be able to step each thread independently,\n\
9467leave it stopped or free to run as needed."),
9468 set_non_stop,
9469 show_non_stop,
9470 &setlist,
9471 &showlist);
9472
adc6a863 9473 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9474 {
9475 signal_stop[i] = 1;
9476 signal_print[i] = 1;
9477 signal_program[i] = 1;
ab04a2af 9478 signal_catch[i] = 0;
c906108c
SS
9479 }
9480
4d9d9d04
PA
9481 /* Signals caused by debugger's own actions should not be given to
9482 the program afterwards.
9483
9484 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9485 explicitly specifies that it should be delivered to the target
9486 program. Typically, that would occur when a user is debugging a
9487 target monitor on a simulator: the target monitor sets a
9488 breakpoint; the simulator encounters this breakpoint and halts
9489 the simulation handing control to GDB; GDB, noting that the stop
9490 address doesn't map to any known breakpoint, returns control back
9491 to the simulator; the simulator then delivers the hardware
9492 equivalent of a GDB_SIGNAL_TRAP to the program being
9493 debugged. */
a493e3e2
PA
9494 signal_program[GDB_SIGNAL_TRAP] = 0;
9495 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9496
9497 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9498 signal_stop[GDB_SIGNAL_ALRM] = 0;
9499 signal_print[GDB_SIGNAL_ALRM] = 0;
9500 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9501 signal_print[GDB_SIGNAL_VTALRM] = 0;
9502 signal_stop[GDB_SIGNAL_PROF] = 0;
9503 signal_print[GDB_SIGNAL_PROF] = 0;
9504 signal_stop[GDB_SIGNAL_CHLD] = 0;
9505 signal_print[GDB_SIGNAL_CHLD] = 0;
9506 signal_stop[GDB_SIGNAL_IO] = 0;
9507 signal_print[GDB_SIGNAL_IO] = 0;
9508 signal_stop[GDB_SIGNAL_POLL] = 0;
9509 signal_print[GDB_SIGNAL_POLL] = 0;
9510 signal_stop[GDB_SIGNAL_URG] = 0;
9511 signal_print[GDB_SIGNAL_URG] = 0;
9512 signal_stop[GDB_SIGNAL_WINCH] = 0;
9513 signal_print[GDB_SIGNAL_WINCH] = 0;
9514 signal_stop[GDB_SIGNAL_PRIO] = 0;
9515 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9516
cd0fc7c3
SS
9517 /* These signals are used internally by user-level thread
9518 implementations. (See signal(5) on Solaris.) Like the above
9519 signals, a healthy program receives and handles them as part of
9520 its normal operation. */
a493e3e2
PA
9521 signal_stop[GDB_SIGNAL_LWP] = 0;
9522 signal_print[GDB_SIGNAL_LWP] = 0;
9523 signal_stop[GDB_SIGNAL_WAITING] = 0;
9524 signal_print[GDB_SIGNAL_WAITING] = 0;
9525 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9526 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9527 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9528 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9529
2455069d
UW
9530 /* Update cached state. */
9531 signal_cache_update (-1);
9532
85c07804
AC
9533 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9534 &stop_on_solib_events, _("\
9535Set stopping for shared library events."), _("\
9536Show stopping for shared library events."), _("\
c906108c
SS
9537If nonzero, gdb will give control to the user when the dynamic linker\n\
9538notifies gdb of shared library events. The most common event of interest\n\
85c07804 9539to the user would be loading/unloading of a new library."),
f9e14852 9540 set_stop_on_solib_events,
920d2a44 9541 show_stop_on_solib_events,
85c07804 9542 &setlist, &showlist);
c906108c 9543
7ab04401
AC
9544 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9545 follow_fork_mode_kind_names,
9546 &follow_fork_mode_string, _("\
9547Set debugger response to a program call of fork or vfork."), _("\
9548Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9549A fork or vfork creates a new process. follow-fork-mode can be:\n\
9550 parent - the original process is debugged after a fork\n\
9551 child - the new process is debugged after a fork\n\
ea1dd7bc 9552The unfollowed process will continue to run.\n\
7ab04401
AC
9553By default, the debugger will follow the parent process."),
9554 NULL,
920d2a44 9555 show_follow_fork_mode_string,
7ab04401
AC
9556 &setlist, &showlist);
9557
6c95b8df
PA
9558 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9559 follow_exec_mode_names,
9560 &follow_exec_mode_string, _("\
9561Set debugger response to a program call of exec."), _("\
9562Show debugger response to a program call of exec."), _("\
9563An exec call replaces the program image of a process.\n\
9564\n\
9565follow-exec-mode can be:\n\
9566\n\
cce7e648 9567 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9568to this new inferior. The program the process was running before\n\
9569the exec call can be restarted afterwards by restarting the original\n\
9570inferior.\n\
9571\n\
9572 same - the debugger keeps the process bound to the same inferior.\n\
9573The new executable image replaces the previous executable loaded in\n\
9574the inferior. Restarting the inferior after the exec call restarts\n\
9575the executable the process was running after the exec call.\n\
9576\n\
9577By default, the debugger will use the same inferior."),
9578 NULL,
9579 show_follow_exec_mode_string,
9580 &setlist, &showlist);
9581
7ab04401
AC
9582 add_setshow_enum_cmd ("scheduler-locking", class_run,
9583 scheduler_enums, &scheduler_mode, _("\
9584Set mode for locking scheduler during execution."), _("\
9585Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9586off == no locking (threads may preempt at any time)\n\
9587on == full locking (no thread except the current thread may run)\n\
9588 This applies to both normal execution and replay mode.\n\
9589step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9590 In this mode, other threads may run during other commands.\n\
9591 This applies to both normal execution and replay mode.\n\
9592replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9593 set_schedlock_func, /* traps on target vector */
920d2a44 9594 show_scheduler_mode,
7ab04401 9595 &setlist, &showlist);
5fbbeb29 9596
d4db2f36
PA
9597 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9598Set mode for resuming threads of all processes."), _("\
9599Show mode for resuming threads of all processes."), _("\
9600When on, execution commands (such as 'continue' or 'next') resume all\n\
9601threads of all processes. When off (which is the default), execution\n\
9602commands only resume the threads of the current process. The set of\n\
9603threads that are resumed is further refined by the scheduler-locking\n\
9604mode (see help set scheduler-locking)."),
9605 NULL,
9606 show_schedule_multiple,
9607 &setlist, &showlist);
9608
5bf193a2
AC
9609 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9610Set mode of the step operation."), _("\
9611Show mode of the step operation."), _("\
9612When set, doing a step over a function without debug line information\n\
9613will stop at the first instruction of that function. Otherwise, the\n\
9614function is skipped and the step command stops at a different source line."),
9615 NULL,
920d2a44 9616 show_step_stop_if_no_debug,
5bf193a2 9617 &setlist, &showlist);
ca6724c1 9618
72d0e2c5
YQ
9619 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9620 &can_use_displaced_stepping, _("\
237fc4c9
PA
9621Set debugger's willingness to use displaced stepping."), _("\
9622Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9623If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9624supported by the target architecture. If off, gdb will not use displaced\n\
9625stepping to step over breakpoints, even if such is supported by the target\n\
9626architecture. If auto (which is the default), gdb will use displaced stepping\n\
9627if the target architecture supports it and non-stop mode is active, but will not\n\
9628use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9629 NULL,
9630 show_can_use_displaced_stepping,
9631 &setlist, &showlist);
237fc4c9 9632
b2175913
MS
9633 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9634 &exec_direction, _("Set direction of execution.\n\
9635Options are 'forward' or 'reverse'."),
9636 _("Show direction of execution (forward/reverse)."),
9637 _("Tells gdb whether to execute forward or backward."),
9638 set_exec_direction_func, show_exec_direction_func,
9639 &setlist, &showlist);
9640
6c95b8df
PA
9641 /* Set/show detach-on-fork: user-settable mode. */
9642
9643 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9644Set whether gdb will detach the child of a fork."), _("\
9645Show whether gdb will detach the child of a fork."), _("\
9646Tells gdb whether to detach the child of a fork."),
9647 NULL, NULL, &setlist, &showlist);
9648
03583c20
UW
9649 /* Set/show disable address space randomization mode. */
9650
9651 add_setshow_boolean_cmd ("disable-randomization", class_support,
9652 &disable_randomization, _("\
9653Set disabling of debuggee's virtual address space randomization."), _("\
9654Show disabling of debuggee's virtual address space randomization."), _("\
9655When this mode is on (which is the default), randomization of the virtual\n\
9656address space is disabled. Standalone programs run with the randomization\n\
9657enabled by default on some platforms."),
9658 &set_disable_randomization,
9659 &show_disable_randomization,
9660 &setlist, &showlist);
9661
ca6724c1 9662 /* ptid initializations */
ca6724c1
KB
9663 inferior_ptid = null_ptid;
9664 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9665
76727919
TT
9666 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9667 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9668 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9669 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9670
9671 /* Explicitly create without lookup, since that tries to create a
9672 value with a void typed value, and when we get here, gdbarch
9673 isn't initialized yet. At this point, we're quite sure there
9674 isn't another convenience variable of the same name. */
22d2b532 9675 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9676
9677 add_setshow_boolean_cmd ("observer", no_class,
9678 &observer_mode_1, _("\
9679Set whether gdb controls the inferior in observer mode."), _("\
9680Show whether gdb controls the inferior in observer mode."), _("\
9681In observer mode, GDB can get data from the inferior, but not\n\
9682affect its execution. Registers and memory may not be changed,\n\
9683breakpoints may not be set, and the program cannot be interrupted\n\
9684or signalled."),
9685 set_observer_mode,
9686 show_observer_mode,
9687 &setlist,
9688 &showlist);
c906108c 9689}
This page took 3.348727 seconds and 4 git commands to generate.