comment fixes
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
ecd75fc8 4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
0e9f083f 22#include <string.h>
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
d02ed0bb 52#include "record-full.h"
edb3359d 53#include "inline-frame.h"
4efc6507 54#include "jit.h"
06cd862c 55#include "tracepoint.h"
be34f849 56#include "continuations.h"
b4a14fd0 57#include "interps.h"
1bfeeb0f 58#include "skip.h"
28106bc2
SDJ
59#include "probe.h"
60#include "objfiles.h"
de0bea00 61#include "completer.h"
9107fc8d 62#include "target-descriptions.h"
f15cb84a 63#include "target-dcache.h"
c906108c
SS
64
65/* Prototypes for local functions */
66
96baa820 67static void signals_info (char *, int);
c906108c 68
96baa820 69static void handle_command (char *, int);
c906108c 70
2ea28649 71static void sig_print_info (enum gdb_signal);
c906108c 72
96baa820 73static void sig_print_header (void);
c906108c 74
74b7792f 75static void resume_cleanups (void *);
c906108c 76
96baa820 77static int hook_stop_stub (void *);
c906108c 78
96baa820
JM
79static int restore_selected_frame (void *);
80
4ef3f3be 81static int follow_fork (void);
96baa820
JM
82
83static void set_schedlock_func (char *args, int from_tty,
488f131b 84 struct cmd_list_element *c);
96baa820 85
a289b8f6
JK
86static int currently_stepping (struct thread_info *tp);
87
b3444185
PA
88static int currently_stepping_or_nexting_callback (struct thread_info *tp,
89 void *data);
a7212384 90
96baa820
JM
91static void xdb_handle_command (char *args, int from_tty);
92
6a6b96b9 93static int prepare_to_proceed (int);
ea67f13b 94
33d62d64
JK
95static void print_exited_reason (int exitstatus);
96
2ea28649 97static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
98
99static void print_no_history_reason (void);
100
2ea28649 101static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
102
103static void print_end_stepping_range_reason (void);
104
96baa820 105void _initialize_infrun (void);
43ff13b4 106
e58b0e63
PA
107void nullify_last_target_wait_ptid (void);
108
2c03e5be 109static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
110
111static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
112
2484c66b
UW
113static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
114
5fbbeb29
CF
115/* When set, stop the 'step' command if we enter a function which has
116 no line number information. The normal behavior is that we step
117 over such function. */
118int step_stop_if_no_debug = 0;
920d2a44
AC
119static void
120show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122{
123 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
124}
5fbbeb29 125
1777feb0 126/* In asynchronous mode, but simulating synchronous execution. */
96baa820 127
43ff13b4
JM
128int sync_execution = 0;
129
c906108c
SS
130/* wait_for_inferior and normal_stop use this to notify the user
131 when the inferior stopped in a different thread than it had been
96baa820
JM
132 running in. */
133
39f77062 134static ptid_t previous_inferior_ptid;
7a292a7a 135
07107ca6
LM
136/* If set (default for legacy reasons), when following a fork, GDB
137 will detach from one of the fork branches, child or parent.
138 Exactly which branch is detached depends on 'set follow-fork-mode'
139 setting. */
140
141static int detach_fork = 1;
6c95b8df 142
237fc4c9
PA
143int debug_displaced = 0;
144static void
145show_debug_displaced (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
148 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
149}
150
ccce17b0 151unsigned int debug_infrun = 0;
920d2a44
AC
152static void
153show_debug_infrun (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
157}
527159b7 158
03583c20
UW
159
160/* Support for disabling address space randomization. */
161
162int disable_randomization = 1;
163
164static void
165show_disable_randomization (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167{
168 if (target_supports_disable_randomization ())
169 fprintf_filtered (file,
170 _("Disabling randomization of debuggee's "
171 "virtual address space is %s.\n"),
172 value);
173 else
174 fputs_filtered (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform.\n"), file);
177}
178
179static void
180set_disable_randomization (char *args, int from_tty,
181 struct cmd_list_element *c)
182{
183 if (!target_supports_disable_randomization ())
184 error (_("Disabling randomization of debuggee's "
185 "virtual address space is unsupported on\n"
186 "this platform."));
187}
188
d32dc48e
PA
189/* User interface for non-stop mode. */
190
191int non_stop = 0;
192static int non_stop_1 = 0;
193
194static void
195set_non_stop (char *args, int from_tty,
196 struct cmd_list_element *c)
197{
198 if (target_has_execution)
199 {
200 non_stop_1 = non_stop;
201 error (_("Cannot change this setting while the inferior is running."));
202 }
203
204 non_stop = non_stop_1;
205}
206
207static void
208show_non_stop (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210{
211 fprintf_filtered (file,
212 _("Controlling the inferior in non-stop mode is %s.\n"),
213 value);
214}
215
d914c394
SS
216/* "Observer mode" is somewhat like a more extreme version of
217 non-stop, in which all GDB operations that might affect the
218 target's execution have been disabled. */
219
d914c394
SS
220int observer_mode = 0;
221static int observer_mode_1 = 0;
222
223static void
224set_observer_mode (char *args, int from_tty,
225 struct cmd_list_element *c)
226{
d914c394
SS
227 if (target_has_execution)
228 {
229 observer_mode_1 = observer_mode;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 observer_mode = observer_mode_1;
234
235 may_write_registers = !observer_mode;
236 may_write_memory = !observer_mode;
237 may_insert_breakpoints = !observer_mode;
238 may_insert_tracepoints = !observer_mode;
239 /* We can insert fast tracepoints in or out of observer mode,
240 but enable them if we're going into this mode. */
241 if (observer_mode)
242 may_insert_fast_tracepoints = 1;
243 may_stop = !observer_mode;
244 update_target_permissions ();
245
246 /* Going *into* observer mode we must force non-stop, then
247 going out we leave it that way. */
248 if (observer_mode)
249 {
250 target_async_permitted = 1;
251 pagination_enabled = 0;
252 non_stop = non_stop_1 = 1;
253 }
254
255 if (from_tty)
256 printf_filtered (_("Observer mode is now %s.\n"),
257 (observer_mode ? "on" : "off"));
258}
259
260static void
261show_observer_mode (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263{
264 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
265}
266
267/* This updates the value of observer mode based on changes in
268 permissions. Note that we are deliberately ignoring the values of
269 may-write-registers and may-write-memory, since the user may have
270 reason to enable these during a session, for instance to turn on a
271 debugging-related global. */
272
273void
274update_observer_mode (void)
275{
276 int newval;
277
278 newval = (!may_insert_breakpoints
279 && !may_insert_tracepoints
280 && may_insert_fast_tracepoints
281 && !may_stop
282 && non_stop);
283
284 /* Let the user know if things change. */
285 if (newval != observer_mode)
286 printf_filtered (_("Observer mode is now %s.\n"),
287 (newval ? "on" : "off"));
288
289 observer_mode = observer_mode_1 = newval;
290}
c2c6d25f 291
c906108c
SS
292/* Tables of how to react to signals; the user sets them. */
293
294static unsigned char *signal_stop;
295static unsigned char *signal_print;
296static unsigned char *signal_program;
297
ab04a2af
TT
298/* Table of signals that are registered with "catch signal". A
299 non-zero entry indicates that the signal is caught by some "catch
300 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
301 signals. */
302static unsigned char *signal_catch;
303
2455069d
UW
304/* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
307static unsigned char *signal_pass;
308
c906108c
SS
309#define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317#define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
9b224c5e
PA
325/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328void
329update_signals_program_target (void)
330{
a493e3e2 331 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
332}
333
1777feb0 334/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 335
edb3359d 336#define RESUME_ALL minus_one_ptid
c906108c
SS
337
338/* Command list pointer for the "stop" placeholder. */
339
340static struct cmd_list_element *stop_command;
341
c906108c
SS
342/* Function inferior was in as of last step command. */
343
344static struct symbol *step_start_function;
345
c906108c
SS
346/* Nonzero if we want to give control to the user when we're notified
347 of shared library events by the dynamic linker. */
628fe4e4 348int stop_on_solib_events;
f9e14852
GB
349
350/* Enable or disable optional shared library event breakpoints
351 as appropriate when the above flag is changed. */
352
353static void
354set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
355{
356 update_solib_breakpoints ();
357}
358
920d2a44
AC
359static void
360show_stop_on_solib_events (struct ui_file *file, int from_tty,
361 struct cmd_list_element *c, const char *value)
362{
363 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
364 value);
365}
c906108c 366
c906108c
SS
367/* Nonzero means expecting a trace trap
368 and should stop the inferior and return silently when it happens. */
369
370int stop_after_trap;
371
642fd101
DE
372/* Save register contents here when executing a "finish" command or are
373 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
374 Thus this contains the return value from the called function (assuming
375 values are returned in a register). */
376
72cec141 377struct regcache *stop_registers;
c906108c 378
c906108c
SS
379/* Nonzero after stop if current stack frame should be printed. */
380
381static int stop_print_frame;
382
e02bc4cc 383/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
39f77062 386static ptid_t target_last_wait_ptid;
e02bc4cc
DS
387static struct target_waitstatus target_last_waitstatus;
388
0d1e5fa7
PA
389static void context_switch (ptid_t ptid);
390
4e1c45ea 391void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 392
7a76f5b8 393static void init_infwait_state (void);
a474d7c2 394
53904c9e
AC
395static const char follow_fork_mode_child[] = "child";
396static const char follow_fork_mode_parent[] = "parent";
397
40478521 398static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
399 follow_fork_mode_child,
400 follow_fork_mode_parent,
401 NULL
ef346e04 402};
c906108c 403
53904c9e 404static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
405static void
406show_follow_fork_mode_string (struct ui_file *file, int from_tty,
407 struct cmd_list_element *c, const char *value)
408{
3e43a32a
MS
409 fprintf_filtered (file,
410 _("Debugger response to a program "
411 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
412 value);
413}
c906108c
SS
414\f
415
e58b0e63
PA
416/* Tell the target to follow the fork we're stopped at. Returns true
417 if the inferior should be resumed; false, if the target for some
418 reason decided it's best not to resume. */
419
6604731b 420static int
4ef3f3be 421follow_fork (void)
c906108c 422{
ea1dd7bc 423 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
424 int should_resume = 1;
425 struct thread_info *tp;
426
427 /* Copy user stepping state to the new inferior thread. FIXME: the
428 followed fork child thread should have a copy of most of the
4e3990f4
DE
429 parent thread structure's run control related fields, not just these.
430 Initialized to avoid "may be used uninitialized" warnings from gcc. */
431 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 432 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
433 CORE_ADDR step_range_start = 0;
434 CORE_ADDR step_range_end = 0;
435 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
436
437 if (!non_stop)
438 {
439 ptid_t wait_ptid;
440 struct target_waitstatus wait_status;
441
442 /* Get the last target status returned by target_wait(). */
443 get_last_target_status (&wait_ptid, &wait_status);
444
445 /* If not stopped at a fork event, then there's nothing else to
446 do. */
447 if (wait_status.kind != TARGET_WAITKIND_FORKED
448 && wait_status.kind != TARGET_WAITKIND_VFORKED)
449 return 1;
450
451 /* Check if we switched over from WAIT_PTID, since the event was
452 reported. */
453 if (!ptid_equal (wait_ptid, minus_one_ptid)
454 && !ptid_equal (inferior_ptid, wait_ptid))
455 {
456 /* We did. Switch back to WAIT_PTID thread, to tell the
457 target to follow it (in either direction). We'll
458 afterwards refuse to resume, and inform the user what
459 happened. */
460 switch_to_thread (wait_ptid);
461 should_resume = 0;
462 }
463 }
464
465 tp = inferior_thread ();
466
467 /* If there were any forks/vforks that were caught and are now to be
468 followed, then do so now. */
469 switch (tp->pending_follow.kind)
470 {
471 case TARGET_WAITKIND_FORKED:
472 case TARGET_WAITKIND_VFORKED:
473 {
474 ptid_t parent, child;
475
476 /* If the user did a next/step, etc, over a fork call,
477 preserve the stepping state in the fork child. */
478 if (follow_child && should_resume)
479 {
8358c15c
JK
480 step_resume_breakpoint = clone_momentary_breakpoint
481 (tp->control.step_resume_breakpoint);
16c381f0
JK
482 step_range_start = tp->control.step_range_start;
483 step_range_end = tp->control.step_range_end;
484 step_frame_id = tp->control.step_frame_id;
186c406b
TT
485 exception_resume_breakpoint
486 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
487
488 /* For now, delete the parent's sr breakpoint, otherwise,
489 parent/child sr breakpoints are considered duplicates,
490 and the child version will not be installed. Remove
491 this when the breakpoints module becomes aware of
492 inferiors and address spaces. */
493 delete_step_resume_breakpoint (tp);
16c381f0
JK
494 tp->control.step_range_start = 0;
495 tp->control.step_range_end = 0;
496 tp->control.step_frame_id = null_frame_id;
186c406b 497 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
498 }
499
500 parent = inferior_ptid;
501 child = tp->pending_follow.value.related_pid;
502
503 /* Tell the target to do whatever is necessary to follow
504 either parent or child. */
07107ca6 505 if (target_follow_fork (follow_child, detach_fork))
e58b0e63
PA
506 {
507 /* Target refused to follow, or there's some other reason
508 we shouldn't resume. */
509 should_resume = 0;
510 }
511 else
512 {
513 /* This pending follow fork event is now handled, one way
514 or another. The previous selected thread may be gone
515 from the lists by now, but if it is still around, need
516 to clear the pending follow request. */
e09875d4 517 tp = find_thread_ptid (parent);
e58b0e63
PA
518 if (tp)
519 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
520
521 /* This makes sure we don't try to apply the "Switched
522 over from WAIT_PID" logic above. */
523 nullify_last_target_wait_ptid ();
524
1777feb0 525 /* If we followed the child, switch to it... */
e58b0e63
PA
526 if (follow_child)
527 {
528 switch_to_thread (child);
529
530 /* ... and preserve the stepping state, in case the
531 user was stepping over the fork call. */
532 if (should_resume)
533 {
534 tp = inferior_thread ();
8358c15c
JK
535 tp->control.step_resume_breakpoint
536 = step_resume_breakpoint;
16c381f0
JK
537 tp->control.step_range_start = step_range_start;
538 tp->control.step_range_end = step_range_end;
539 tp->control.step_frame_id = step_frame_id;
186c406b
TT
540 tp->control.exception_resume_breakpoint
541 = exception_resume_breakpoint;
e58b0e63
PA
542 }
543 else
544 {
545 /* If we get here, it was because we're trying to
546 resume from a fork catchpoint, but, the user
547 has switched threads away from the thread that
548 forked. In that case, the resume command
549 issued is most likely not applicable to the
550 child, so just warn, and refuse to resume. */
3e43a32a
MS
551 warning (_("Not resuming: switched threads "
552 "before following fork child.\n"));
e58b0e63
PA
553 }
554
555 /* Reset breakpoints in the child as appropriate. */
556 follow_inferior_reset_breakpoints ();
557 }
558 else
559 switch_to_thread (parent);
560 }
561 }
562 break;
563 case TARGET_WAITKIND_SPURIOUS:
564 /* Nothing to follow. */
565 break;
566 default:
567 internal_error (__FILE__, __LINE__,
568 "Unexpected pending_follow.kind %d\n",
569 tp->pending_follow.kind);
570 break;
571 }
c906108c 572
e58b0e63 573 return should_resume;
c906108c
SS
574}
575
6604731b
DJ
576void
577follow_inferior_reset_breakpoints (void)
c906108c 578{
4e1c45ea
PA
579 struct thread_info *tp = inferior_thread ();
580
6604731b
DJ
581 /* Was there a step_resume breakpoint? (There was if the user
582 did a "next" at the fork() call.) If so, explicitly reset its
583 thread number.
584
585 step_resumes are a form of bp that are made to be per-thread.
586 Since we created the step_resume bp when the parent process
587 was being debugged, and now are switching to the child process,
588 from the breakpoint package's viewpoint, that's a switch of
589 "threads". We must update the bp's notion of which thread
590 it is for, or it'll be ignored when it triggers. */
591
8358c15c
JK
592 if (tp->control.step_resume_breakpoint)
593 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 594
186c406b
TT
595 if (tp->control.exception_resume_breakpoint)
596 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
597
6604731b
DJ
598 /* Reinsert all breakpoints in the child. The user may have set
599 breakpoints after catching the fork, in which case those
600 were never set in the child, but only in the parent. This makes
601 sure the inserted breakpoints match the breakpoint list. */
602
603 breakpoint_re_set ();
604 insert_breakpoints ();
c906108c 605}
c906108c 606
6c95b8df
PA
607/* The child has exited or execed: resume threads of the parent the
608 user wanted to be executing. */
609
610static int
611proceed_after_vfork_done (struct thread_info *thread,
612 void *arg)
613{
614 int pid = * (int *) arg;
615
616 if (ptid_get_pid (thread->ptid) == pid
617 && is_running (thread->ptid)
618 && !is_executing (thread->ptid)
619 && !thread->stop_requested
a493e3e2 620 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
621 {
622 if (debug_infrun)
623 fprintf_unfiltered (gdb_stdlog,
624 "infrun: resuming vfork parent thread %s\n",
625 target_pid_to_str (thread->ptid));
626
627 switch_to_thread (thread->ptid);
628 clear_proceed_status ();
a493e3e2 629 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
630 }
631
632 return 0;
633}
634
635/* Called whenever we notice an exec or exit event, to handle
636 detaching or resuming a vfork parent. */
637
638static void
639handle_vfork_child_exec_or_exit (int exec)
640{
641 struct inferior *inf = current_inferior ();
642
643 if (inf->vfork_parent)
644 {
645 int resume_parent = -1;
646
647 /* This exec or exit marks the end of the shared memory region
648 between the parent and the child. If the user wanted to
649 detach from the parent, now is the time. */
650
651 if (inf->vfork_parent->pending_detach)
652 {
653 struct thread_info *tp;
654 struct cleanup *old_chain;
655 struct program_space *pspace;
656 struct address_space *aspace;
657
1777feb0 658 /* follow-fork child, detach-on-fork on. */
6c95b8df 659
68c9da30
PA
660 inf->vfork_parent->pending_detach = 0;
661
f50f4e56
PA
662 if (!exec)
663 {
664 /* If we're handling a child exit, then inferior_ptid
665 points at the inferior's pid, not to a thread. */
666 old_chain = save_inferior_ptid ();
667 save_current_program_space ();
668 save_current_inferior ();
669 }
670 else
671 old_chain = save_current_space_and_thread ();
6c95b8df
PA
672
673 /* We're letting loose of the parent. */
674 tp = any_live_thread_of_process (inf->vfork_parent->pid);
675 switch_to_thread (tp->ptid);
676
677 /* We're about to detach from the parent, which implicitly
678 removes breakpoints from its address space. There's a
679 catch here: we want to reuse the spaces for the child,
680 but, parent/child are still sharing the pspace at this
681 point, although the exec in reality makes the kernel give
682 the child a fresh set of new pages. The problem here is
683 that the breakpoints module being unaware of this, would
684 likely chose the child process to write to the parent
685 address space. Swapping the child temporarily away from
686 the spaces has the desired effect. Yes, this is "sort
687 of" a hack. */
688
689 pspace = inf->pspace;
690 aspace = inf->aspace;
691 inf->aspace = NULL;
692 inf->pspace = NULL;
693
694 if (debug_infrun || info_verbose)
695 {
696 target_terminal_ours ();
697
698 if (exec)
699 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
700 "Detaching vfork parent process "
701 "%d after child exec.\n",
6c95b8df
PA
702 inf->vfork_parent->pid);
703 else
704 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
705 "Detaching vfork parent process "
706 "%d after child exit.\n",
6c95b8df
PA
707 inf->vfork_parent->pid);
708 }
709
710 target_detach (NULL, 0);
711
712 /* Put it back. */
713 inf->pspace = pspace;
714 inf->aspace = aspace;
715
716 do_cleanups (old_chain);
717 }
718 else if (exec)
719 {
720 /* We're staying attached to the parent, so, really give the
721 child a new address space. */
722 inf->pspace = add_program_space (maybe_new_address_space ());
723 inf->aspace = inf->pspace->aspace;
724 inf->removable = 1;
725 set_current_program_space (inf->pspace);
726
727 resume_parent = inf->vfork_parent->pid;
728
729 /* Break the bonds. */
730 inf->vfork_parent->vfork_child = NULL;
731 }
732 else
733 {
734 struct cleanup *old_chain;
735 struct program_space *pspace;
736
737 /* If this is a vfork child exiting, then the pspace and
738 aspaces were shared with the parent. Since we're
739 reporting the process exit, we'll be mourning all that is
740 found in the address space, and switching to null_ptid,
741 preparing to start a new inferior. But, since we don't
742 want to clobber the parent's address/program spaces, we
743 go ahead and create a new one for this exiting
744 inferior. */
745
746 /* Switch to null_ptid, so that clone_program_space doesn't want
747 to read the selected frame of a dead process. */
748 old_chain = save_inferior_ptid ();
749 inferior_ptid = null_ptid;
750
751 /* This inferior is dead, so avoid giving the breakpoints
752 module the option to write through to it (cloning a
753 program space resets breakpoints). */
754 inf->aspace = NULL;
755 inf->pspace = NULL;
756 pspace = add_program_space (maybe_new_address_space ());
757 set_current_program_space (pspace);
758 inf->removable = 1;
7dcd53a0 759 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
760 clone_program_space (pspace, inf->vfork_parent->pspace);
761 inf->pspace = pspace;
762 inf->aspace = pspace->aspace;
763
764 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 765 inferior. */
6c95b8df
PA
766 do_cleanups (old_chain);
767
768 resume_parent = inf->vfork_parent->pid;
769 /* Break the bonds. */
770 inf->vfork_parent->vfork_child = NULL;
771 }
772
773 inf->vfork_parent = NULL;
774
775 gdb_assert (current_program_space == inf->pspace);
776
777 if (non_stop && resume_parent != -1)
778 {
779 /* If the user wanted the parent to be running, let it go
780 free now. */
781 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
782
783 if (debug_infrun)
3e43a32a
MS
784 fprintf_unfiltered (gdb_stdlog,
785 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
786 resume_parent);
787
788 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
789
790 do_cleanups (old_chain);
791 }
792 }
793}
794
eb6c553b 795/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
796
797static const char follow_exec_mode_new[] = "new";
798static const char follow_exec_mode_same[] = "same";
40478521 799static const char *const follow_exec_mode_names[] =
6c95b8df
PA
800{
801 follow_exec_mode_new,
802 follow_exec_mode_same,
803 NULL,
804};
805
806static const char *follow_exec_mode_string = follow_exec_mode_same;
807static void
808show_follow_exec_mode_string (struct ui_file *file, int from_tty,
809 struct cmd_list_element *c, const char *value)
810{
811 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
812}
813
1777feb0 814/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 815
c906108c 816static void
3a3e9ee3 817follow_exec (ptid_t pid, char *execd_pathname)
c906108c 818{
4e1c45ea 819 struct thread_info *th = inferior_thread ();
6c95b8df 820 struct inferior *inf = current_inferior ();
7a292a7a 821
c906108c
SS
822 /* This is an exec event that we actually wish to pay attention to.
823 Refresh our symbol table to the newly exec'd program, remove any
824 momentary bp's, etc.
825
826 If there are breakpoints, they aren't really inserted now,
827 since the exec() transformed our inferior into a fresh set
828 of instructions.
829
830 We want to preserve symbolic breakpoints on the list, since
831 we have hopes that they can be reset after the new a.out's
832 symbol table is read.
833
834 However, any "raw" breakpoints must be removed from the list
835 (e.g., the solib bp's), since their address is probably invalid
836 now.
837
838 And, we DON'T want to call delete_breakpoints() here, since
839 that may write the bp's "shadow contents" (the instruction
840 value that was overwritten witha TRAP instruction). Since
1777feb0 841 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
842
843 mark_breakpoints_out ();
844
c906108c
SS
845 update_breakpoints_after_exec ();
846
847 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 848 statement through an exec(). */
8358c15c 849 th->control.step_resume_breakpoint = NULL;
186c406b 850 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
851 th->control.step_range_start = 0;
852 th->control.step_range_end = 0;
c906108c 853
a75724bc
PA
854 /* The target reports the exec event to the main thread, even if
855 some other thread does the exec, and even if the main thread was
856 already stopped --- if debugging in non-stop mode, it's possible
857 the user had the main thread held stopped in the previous image
858 --- release it now. This is the same behavior as step-over-exec
859 with scheduler-locking on in all-stop mode. */
860 th->stop_requested = 0;
861
1777feb0 862 /* What is this a.out's name? */
6c95b8df
PA
863 printf_unfiltered (_("%s is executing new program: %s\n"),
864 target_pid_to_str (inferior_ptid),
865 execd_pathname);
c906108c
SS
866
867 /* We've followed the inferior through an exec. Therefore, the
1777feb0 868 inferior has essentially been killed & reborn. */
7a292a7a 869
c906108c 870 gdb_flush (gdb_stdout);
6ca15a4b
PA
871
872 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
873
874 if (gdb_sysroot && *gdb_sysroot)
875 {
876 char *name = alloca (strlen (gdb_sysroot)
877 + strlen (execd_pathname)
878 + 1);
abbb1732 879
e85a822c
DJ
880 strcpy (name, gdb_sysroot);
881 strcat (name, execd_pathname);
882 execd_pathname = name;
883 }
c906108c 884
cce9b6bf
PA
885 /* Reset the shared library package. This ensures that we get a
886 shlib event when the child reaches "_start", at which point the
887 dld will have had a chance to initialize the child. */
888 /* Also, loading a symbol file below may trigger symbol lookups, and
889 we don't want those to be satisfied by the libraries of the
890 previous incarnation of this process. */
891 no_shared_libraries (NULL, 0);
892
6c95b8df
PA
893 if (follow_exec_mode_string == follow_exec_mode_new)
894 {
895 struct program_space *pspace;
6c95b8df
PA
896
897 /* The user wants to keep the old inferior and program spaces
898 around. Create a new fresh one, and switch to it. */
899
900 inf = add_inferior (current_inferior ()->pid);
901 pspace = add_program_space (maybe_new_address_space ());
902 inf->pspace = pspace;
903 inf->aspace = pspace->aspace;
904
905 exit_inferior_num_silent (current_inferior ()->num);
906
907 set_current_inferior (inf);
908 set_current_program_space (pspace);
909 }
9107fc8d
PA
910 else
911 {
912 /* The old description may no longer be fit for the new image.
913 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
914 old description; we'll read a new one below. No need to do
915 this on "follow-exec-mode new", as the old inferior stays
916 around (its description is later cleared/refetched on
917 restart). */
918 target_clear_description ();
919 }
6c95b8df
PA
920
921 gdb_assert (current_program_space == inf->pspace);
922
1777feb0 923 /* That a.out is now the one to use. */
6c95b8df
PA
924 exec_file_attach (execd_pathname, 0);
925
c1e56572
JK
926 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
927 (Position Independent Executable) main symbol file will get applied by
928 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
929 the breakpoints with the zero displacement. */
930
7dcd53a0
TT
931 symbol_file_add (execd_pathname,
932 (inf->symfile_flags
933 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
934 NULL, 0);
935
7dcd53a0
TT
936 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
937 set_initial_language ();
c906108c 938
9107fc8d
PA
939 /* If the target can specify a description, read it. Must do this
940 after flipping to the new executable (because the target supplied
941 description must be compatible with the executable's
942 architecture, and the old executable may e.g., be 32-bit, while
943 the new one 64-bit), and before anything involving memory or
944 registers. */
945 target_find_description ();
946
268a4a75 947 solib_create_inferior_hook (0);
c906108c 948
4efc6507
DE
949 jit_inferior_created_hook ();
950
c1e56572
JK
951 breakpoint_re_set ();
952
c906108c
SS
953 /* Reinsert all breakpoints. (Those which were symbolic have
954 been reset to the proper address in the new a.out, thanks
1777feb0 955 to symbol_file_command...). */
c906108c
SS
956 insert_breakpoints ();
957
958 /* The next resume of this inferior should bring it to the shlib
959 startup breakpoints. (If the user had also set bp's on
960 "main" from the old (parent) process, then they'll auto-
1777feb0 961 matically get reset there in the new process.). */
c906108c
SS
962}
963
964/* Non-zero if we just simulating a single-step. This is needed
965 because we cannot remove the breakpoints in the inferior process
966 until after the `wait' in `wait_for_inferior'. */
967static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
968
969/* The thread we inserted single-step breakpoints for. */
970static ptid_t singlestep_ptid;
971
fd48f117
DJ
972/* PC when we started this single-step. */
973static CORE_ADDR singlestep_pc;
974
9f976b41
DJ
975/* If another thread hit the singlestep breakpoint, we save the original
976 thread here so that we can resume single-stepping it later. */
977static ptid_t saved_singlestep_ptid;
978static int stepping_past_singlestep_breakpoint;
6a6b96b9 979
ca67fcb8
VP
980/* If not equal to null_ptid, this means that after stepping over breakpoint
981 is finished, we need to switch to deferred_step_ptid, and step it.
982
983 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 984 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
985 breakpoint in the thread which hit the breakpoint, but then continue
986 stepping the thread user has selected. */
987static ptid_t deferred_step_ptid;
c906108c 988\f
237fc4c9
PA
989/* Displaced stepping. */
990
991/* In non-stop debugging mode, we must take special care to manage
992 breakpoints properly; in particular, the traditional strategy for
993 stepping a thread past a breakpoint it has hit is unsuitable.
994 'Displaced stepping' is a tactic for stepping one thread past a
995 breakpoint it has hit while ensuring that other threads running
996 concurrently will hit the breakpoint as they should.
997
998 The traditional way to step a thread T off a breakpoint in a
999 multi-threaded program in all-stop mode is as follows:
1000
1001 a0) Initially, all threads are stopped, and breakpoints are not
1002 inserted.
1003 a1) We single-step T, leaving breakpoints uninserted.
1004 a2) We insert breakpoints, and resume all threads.
1005
1006 In non-stop debugging, however, this strategy is unsuitable: we
1007 don't want to have to stop all threads in the system in order to
1008 continue or step T past a breakpoint. Instead, we use displaced
1009 stepping:
1010
1011 n0) Initially, T is stopped, other threads are running, and
1012 breakpoints are inserted.
1013 n1) We copy the instruction "under" the breakpoint to a separate
1014 location, outside the main code stream, making any adjustments
1015 to the instruction, register, and memory state as directed by
1016 T's architecture.
1017 n2) We single-step T over the instruction at its new location.
1018 n3) We adjust the resulting register and memory state as directed
1019 by T's architecture. This includes resetting T's PC to point
1020 back into the main instruction stream.
1021 n4) We resume T.
1022
1023 This approach depends on the following gdbarch methods:
1024
1025 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1026 indicate where to copy the instruction, and how much space must
1027 be reserved there. We use these in step n1.
1028
1029 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1030 address, and makes any necessary adjustments to the instruction,
1031 register contents, and memory. We use this in step n1.
1032
1033 - gdbarch_displaced_step_fixup adjusts registers and memory after
1034 we have successfuly single-stepped the instruction, to yield the
1035 same effect the instruction would have had if we had executed it
1036 at its original address. We use this in step n3.
1037
1038 - gdbarch_displaced_step_free_closure provides cleanup.
1039
1040 The gdbarch_displaced_step_copy_insn and
1041 gdbarch_displaced_step_fixup functions must be written so that
1042 copying an instruction with gdbarch_displaced_step_copy_insn,
1043 single-stepping across the copied instruction, and then applying
1044 gdbarch_displaced_insn_fixup should have the same effects on the
1045 thread's memory and registers as stepping the instruction in place
1046 would have. Exactly which responsibilities fall to the copy and
1047 which fall to the fixup is up to the author of those functions.
1048
1049 See the comments in gdbarch.sh for details.
1050
1051 Note that displaced stepping and software single-step cannot
1052 currently be used in combination, although with some care I think
1053 they could be made to. Software single-step works by placing
1054 breakpoints on all possible subsequent instructions; if the
1055 displaced instruction is a PC-relative jump, those breakpoints
1056 could fall in very strange places --- on pages that aren't
1057 executable, or at addresses that are not proper instruction
1058 boundaries. (We do generally let other threads run while we wait
1059 to hit the software single-step breakpoint, and they might
1060 encounter such a corrupted instruction.) One way to work around
1061 this would be to have gdbarch_displaced_step_copy_insn fully
1062 simulate the effect of PC-relative instructions (and return NULL)
1063 on architectures that use software single-stepping.
1064
1065 In non-stop mode, we can have independent and simultaneous step
1066 requests, so more than one thread may need to simultaneously step
1067 over a breakpoint. The current implementation assumes there is
1068 only one scratch space per process. In this case, we have to
1069 serialize access to the scratch space. If thread A wants to step
1070 over a breakpoint, but we are currently waiting for some other
1071 thread to complete a displaced step, we leave thread A stopped and
1072 place it in the displaced_step_request_queue. Whenever a displaced
1073 step finishes, we pick the next thread in the queue and start a new
1074 displaced step operation on it. See displaced_step_prepare and
1075 displaced_step_fixup for details. */
1076
237fc4c9
PA
1077struct displaced_step_request
1078{
1079 ptid_t ptid;
1080 struct displaced_step_request *next;
1081};
1082
fc1cf338
PA
1083/* Per-inferior displaced stepping state. */
1084struct displaced_step_inferior_state
1085{
1086 /* Pointer to next in linked list. */
1087 struct displaced_step_inferior_state *next;
1088
1089 /* The process this displaced step state refers to. */
1090 int pid;
1091
1092 /* A queue of pending displaced stepping requests. One entry per
1093 thread that needs to do a displaced step. */
1094 struct displaced_step_request *step_request_queue;
1095
1096 /* If this is not null_ptid, this is the thread carrying out a
1097 displaced single-step in process PID. This thread's state will
1098 require fixing up once it has completed its step. */
1099 ptid_t step_ptid;
1100
1101 /* The architecture the thread had when we stepped it. */
1102 struct gdbarch *step_gdbarch;
1103
1104 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1105 for post-step cleanup. */
1106 struct displaced_step_closure *step_closure;
1107
1108 /* The address of the original instruction, and the copy we
1109 made. */
1110 CORE_ADDR step_original, step_copy;
1111
1112 /* Saved contents of copy area. */
1113 gdb_byte *step_saved_copy;
1114};
1115
1116/* The list of states of processes involved in displaced stepping
1117 presently. */
1118static struct displaced_step_inferior_state *displaced_step_inferior_states;
1119
1120/* Get the displaced stepping state of process PID. */
1121
1122static struct displaced_step_inferior_state *
1123get_displaced_stepping_state (int pid)
1124{
1125 struct displaced_step_inferior_state *state;
1126
1127 for (state = displaced_step_inferior_states;
1128 state != NULL;
1129 state = state->next)
1130 if (state->pid == pid)
1131 return state;
1132
1133 return NULL;
1134}
1135
1136/* Add a new displaced stepping state for process PID to the displaced
1137 stepping state list, or return a pointer to an already existing
1138 entry, if it already exists. Never returns NULL. */
1139
1140static struct displaced_step_inferior_state *
1141add_displaced_stepping_state (int pid)
1142{
1143 struct displaced_step_inferior_state *state;
1144
1145 for (state = displaced_step_inferior_states;
1146 state != NULL;
1147 state = state->next)
1148 if (state->pid == pid)
1149 return state;
237fc4c9 1150
fc1cf338
PA
1151 state = xcalloc (1, sizeof (*state));
1152 state->pid = pid;
1153 state->next = displaced_step_inferior_states;
1154 displaced_step_inferior_states = state;
237fc4c9 1155
fc1cf338
PA
1156 return state;
1157}
1158
a42244db
YQ
1159/* If inferior is in displaced stepping, and ADDR equals to starting address
1160 of copy area, return corresponding displaced_step_closure. Otherwise,
1161 return NULL. */
1162
1163struct displaced_step_closure*
1164get_displaced_step_closure_by_addr (CORE_ADDR addr)
1165{
1166 struct displaced_step_inferior_state *displaced
1167 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1168
1169 /* If checking the mode of displaced instruction in copy area. */
1170 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1171 && (displaced->step_copy == addr))
1172 return displaced->step_closure;
1173
1174 return NULL;
1175}
1176
fc1cf338 1177/* Remove the displaced stepping state of process PID. */
237fc4c9 1178
fc1cf338
PA
1179static void
1180remove_displaced_stepping_state (int pid)
1181{
1182 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1183
fc1cf338
PA
1184 gdb_assert (pid != 0);
1185
1186 it = displaced_step_inferior_states;
1187 prev_next_p = &displaced_step_inferior_states;
1188 while (it)
1189 {
1190 if (it->pid == pid)
1191 {
1192 *prev_next_p = it->next;
1193 xfree (it);
1194 return;
1195 }
1196
1197 prev_next_p = &it->next;
1198 it = *prev_next_p;
1199 }
1200}
1201
1202static void
1203infrun_inferior_exit (struct inferior *inf)
1204{
1205 remove_displaced_stepping_state (inf->pid);
1206}
237fc4c9 1207
fff08868
HZ
1208/* If ON, and the architecture supports it, GDB will use displaced
1209 stepping to step over breakpoints. If OFF, or if the architecture
1210 doesn't support it, GDB will instead use the traditional
1211 hold-and-step approach. If AUTO (which is the default), GDB will
1212 decide which technique to use to step over breakpoints depending on
1213 which of all-stop or non-stop mode is active --- displaced stepping
1214 in non-stop mode; hold-and-step in all-stop mode. */
1215
72d0e2c5 1216static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1217
237fc4c9
PA
1218static void
1219show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1220 struct cmd_list_element *c,
1221 const char *value)
1222{
72d0e2c5 1223 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1224 fprintf_filtered (file,
1225 _("Debugger's willingness to use displaced stepping "
1226 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1227 value, non_stop ? "on" : "off");
1228 else
3e43a32a
MS
1229 fprintf_filtered (file,
1230 _("Debugger's willingness to use displaced stepping "
1231 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1232}
1233
fff08868
HZ
1234/* Return non-zero if displaced stepping can/should be used to step
1235 over breakpoints. */
1236
237fc4c9
PA
1237static int
1238use_displaced_stepping (struct gdbarch *gdbarch)
1239{
72d0e2c5
YQ
1240 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1241 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1242 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1243 && find_record_target () == NULL);
237fc4c9
PA
1244}
1245
1246/* Clean out any stray displaced stepping state. */
1247static void
fc1cf338 1248displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1249{
1250 /* Indicate that there is no cleanup pending. */
fc1cf338 1251 displaced->step_ptid = null_ptid;
237fc4c9 1252
fc1cf338 1253 if (displaced->step_closure)
237fc4c9 1254 {
fc1cf338
PA
1255 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1256 displaced->step_closure);
1257 displaced->step_closure = NULL;
237fc4c9
PA
1258 }
1259}
1260
1261static void
fc1cf338 1262displaced_step_clear_cleanup (void *arg)
237fc4c9 1263{
fc1cf338
PA
1264 struct displaced_step_inferior_state *state = arg;
1265
1266 displaced_step_clear (state);
237fc4c9
PA
1267}
1268
1269/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1270void
1271displaced_step_dump_bytes (struct ui_file *file,
1272 const gdb_byte *buf,
1273 size_t len)
1274{
1275 int i;
1276
1277 for (i = 0; i < len; i++)
1278 fprintf_unfiltered (file, "%02x ", buf[i]);
1279 fputs_unfiltered ("\n", file);
1280}
1281
1282/* Prepare to single-step, using displaced stepping.
1283
1284 Note that we cannot use displaced stepping when we have a signal to
1285 deliver. If we have a signal to deliver and an instruction to step
1286 over, then after the step, there will be no indication from the
1287 target whether the thread entered a signal handler or ignored the
1288 signal and stepped over the instruction successfully --- both cases
1289 result in a simple SIGTRAP. In the first case we mustn't do a
1290 fixup, and in the second case we must --- but we can't tell which.
1291 Comments in the code for 'random signals' in handle_inferior_event
1292 explain how we handle this case instead.
1293
1294 Returns 1 if preparing was successful -- this thread is going to be
1295 stepped now; or 0 if displaced stepping this thread got queued. */
1296static int
1297displaced_step_prepare (ptid_t ptid)
1298{
ad53cd71 1299 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1300 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1301 struct regcache *regcache = get_thread_regcache (ptid);
1302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1303 CORE_ADDR original, copy;
1304 ULONGEST len;
1305 struct displaced_step_closure *closure;
fc1cf338 1306 struct displaced_step_inferior_state *displaced;
9e529e1d 1307 int status;
237fc4c9
PA
1308
1309 /* We should never reach this function if the architecture does not
1310 support displaced stepping. */
1311 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1312
c1e36e3e
PA
1313 /* Disable range stepping while executing in the scratch pad. We
1314 want a single-step even if executing the displaced instruction in
1315 the scratch buffer lands within the stepping range (e.g., a
1316 jump/branch). */
1317 tp->control.may_range_step = 0;
1318
fc1cf338
PA
1319 /* We have to displaced step one thread at a time, as we only have
1320 access to a single scratch space per inferior. */
237fc4c9 1321
fc1cf338
PA
1322 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1323
1324 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1325 {
1326 /* Already waiting for a displaced step to finish. Defer this
1327 request and place in queue. */
1328 struct displaced_step_request *req, *new_req;
1329
1330 if (debug_displaced)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "displaced: defering step of %s\n",
1333 target_pid_to_str (ptid));
1334
1335 new_req = xmalloc (sizeof (*new_req));
1336 new_req->ptid = ptid;
1337 new_req->next = NULL;
1338
fc1cf338 1339 if (displaced->step_request_queue)
237fc4c9 1340 {
fc1cf338 1341 for (req = displaced->step_request_queue;
237fc4c9
PA
1342 req && req->next;
1343 req = req->next)
1344 ;
1345 req->next = new_req;
1346 }
1347 else
fc1cf338 1348 displaced->step_request_queue = new_req;
237fc4c9
PA
1349
1350 return 0;
1351 }
1352 else
1353 {
1354 if (debug_displaced)
1355 fprintf_unfiltered (gdb_stdlog,
1356 "displaced: stepping %s now\n",
1357 target_pid_to_str (ptid));
1358 }
1359
fc1cf338 1360 displaced_step_clear (displaced);
237fc4c9 1361
ad53cd71
PA
1362 old_cleanups = save_inferior_ptid ();
1363 inferior_ptid = ptid;
1364
515630c5 1365 original = regcache_read_pc (regcache);
237fc4c9
PA
1366
1367 copy = gdbarch_displaced_step_location (gdbarch);
1368 len = gdbarch_max_insn_length (gdbarch);
1369
1370 /* Save the original contents of the copy area. */
fc1cf338 1371 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1372 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1373 &displaced->step_saved_copy);
9e529e1d
JK
1374 status = target_read_memory (copy, displaced->step_saved_copy, len);
1375 if (status != 0)
1376 throw_error (MEMORY_ERROR,
1377 _("Error accessing memory address %s (%s) for "
1378 "displaced-stepping scratch space."),
1379 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1380 if (debug_displaced)
1381 {
5af949e3
UW
1382 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1383 paddress (gdbarch, copy));
fc1cf338
PA
1384 displaced_step_dump_bytes (gdb_stdlog,
1385 displaced->step_saved_copy,
1386 len);
237fc4c9
PA
1387 };
1388
1389 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1390 original, copy, regcache);
237fc4c9
PA
1391
1392 /* We don't support the fully-simulated case at present. */
1393 gdb_assert (closure);
1394
9f5a595d
UW
1395 /* Save the information we need to fix things up if the step
1396 succeeds. */
fc1cf338
PA
1397 displaced->step_ptid = ptid;
1398 displaced->step_gdbarch = gdbarch;
1399 displaced->step_closure = closure;
1400 displaced->step_original = original;
1401 displaced->step_copy = copy;
9f5a595d 1402
fc1cf338 1403 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1404
1405 /* Resume execution at the copy. */
515630c5 1406 regcache_write_pc (regcache, copy);
237fc4c9 1407
ad53cd71
PA
1408 discard_cleanups (ignore_cleanups);
1409
1410 do_cleanups (old_cleanups);
237fc4c9
PA
1411
1412 if (debug_displaced)
5af949e3
UW
1413 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1414 paddress (gdbarch, copy));
237fc4c9 1415
237fc4c9
PA
1416 return 1;
1417}
1418
237fc4c9 1419static void
3e43a32a
MS
1420write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1421 const gdb_byte *myaddr, int len)
237fc4c9
PA
1422{
1423 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1424
237fc4c9
PA
1425 inferior_ptid = ptid;
1426 write_memory (memaddr, myaddr, len);
1427 do_cleanups (ptid_cleanup);
1428}
1429
e2d96639
YQ
1430/* Restore the contents of the copy area for thread PTID. */
1431
1432static void
1433displaced_step_restore (struct displaced_step_inferior_state *displaced,
1434 ptid_t ptid)
1435{
1436 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1437
1438 write_memory_ptid (ptid, displaced->step_copy,
1439 displaced->step_saved_copy, len);
1440 if (debug_displaced)
1441 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1442 target_pid_to_str (ptid),
1443 paddress (displaced->step_gdbarch,
1444 displaced->step_copy));
1445}
1446
237fc4c9 1447static void
2ea28649 1448displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1449{
1450 struct cleanup *old_cleanups;
fc1cf338
PA
1451 struct displaced_step_inferior_state *displaced
1452 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1453
1454 /* Was any thread of this process doing a displaced step? */
1455 if (displaced == NULL)
1456 return;
237fc4c9
PA
1457
1458 /* Was this event for the pid we displaced? */
fc1cf338
PA
1459 if (ptid_equal (displaced->step_ptid, null_ptid)
1460 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1461 return;
1462
fc1cf338 1463 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1464
e2d96639 1465 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1466
1467 /* Did the instruction complete successfully? */
a493e3e2 1468 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1469 {
1470 /* Fix up the resulting state. */
fc1cf338
PA
1471 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1472 displaced->step_closure,
1473 displaced->step_original,
1474 displaced->step_copy,
1475 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1476 }
1477 else
1478 {
1479 /* Since the instruction didn't complete, all we can do is
1480 relocate the PC. */
515630c5
UW
1481 struct regcache *regcache = get_thread_regcache (event_ptid);
1482 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1483
fc1cf338 1484 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1485 regcache_write_pc (regcache, pc);
237fc4c9
PA
1486 }
1487
1488 do_cleanups (old_cleanups);
1489
fc1cf338 1490 displaced->step_ptid = null_ptid;
1c5cfe86 1491
237fc4c9 1492 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1493 one now. Leave the state object around, since we're likely to
1494 need it again soon. */
1495 while (displaced->step_request_queue)
237fc4c9
PA
1496 {
1497 struct displaced_step_request *head;
1498 ptid_t ptid;
5af949e3 1499 struct regcache *regcache;
929dfd4f 1500 struct gdbarch *gdbarch;
1c5cfe86 1501 CORE_ADDR actual_pc;
6c95b8df 1502 struct address_space *aspace;
237fc4c9 1503
fc1cf338 1504 head = displaced->step_request_queue;
237fc4c9 1505 ptid = head->ptid;
fc1cf338 1506 displaced->step_request_queue = head->next;
237fc4c9
PA
1507 xfree (head);
1508
ad53cd71
PA
1509 context_switch (ptid);
1510
5af949e3
UW
1511 regcache = get_thread_regcache (ptid);
1512 actual_pc = regcache_read_pc (regcache);
6c95b8df 1513 aspace = get_regcache_aspace (regcache);
1c5cfe86 1514
6c95b8df 1515 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1516 {
1c5cfe86
PA
1517 if (debug_displaced)
1518 fprintf_unfiltered (gdb_stdlog,
1519 "displaced: stepping queued %s now\n",
1520 target_pid_to_str (ptid));
1521
1522 displaced_step_prepare (ptid);
1523
929dfd4f
JB
1524 gdbarch = get_regcache_arch (regcache);
1525
1c5cfe86
PA
1526 if (debug_displaced)
1527 {
929dfd4f 1528 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1529 gdb_byte buf[4];
1530
5af949e3
UW
1531 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1532 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1533 read_memory (actual_pc, buf, sizeof (buf));
1534 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1535 }
1536
fc1cf338
PA
1537 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1538 displaced->step_closure))
a493e3e2 1539 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1540 else
a493e3e2 1541 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1542
1543 /* Done, we're stepping a thread. */
1544 break;
ad53cd71 1545 }
1c5cfe86
PA
1546 else
1547 {
1548 int step;
1549 struct thread_info *tp = inferior_thread ();
1550
1551 /* The breakpoint we were sitting under has since been
1552 removed. */
16c381f0 1553 tp->control.trap_expected = 0;
1c5cfe86
PA
1554
1555 /* Go back to what we were trying to do. */
1556 step = currently_stepping (tp);
ad53cd71 1557
1c5cfe86 1558 if (debug_displaced)
3e43a32a 1559 fprintf_unfiltered (gdb_stdlog,
27d2932e 1560 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1561 target_pid_to_str (tp->ptid), step);
1562
a493e3e2
PA
1563 target_resume (ptid, step, GDB_SIGNAL_0);
1564 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1565
1566 /* This request was discarded. See if there's any other
1567 thread waiting for its turn. */
1568 }
237fc4c9
PA
1569 }
1570}
1571
5231c1fd
PA
1572/* Update global variables holding ptids to hold NEW_PTID if they were
1573 holding OLD_PTID. */
1574static void
1575infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1576{
1577 struct displaced_step_request *it;
fc1cf338 1578 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1579
1580 if (ptid_equal (inferior_ptid, old_ptid))
1581 inferior_ptid = new_ptid;
1582
1583 if (ptid_equal (singlestep_ptid, old_ptid))
1584 singlestep_ptid = new_ptid;
1585
5231c1fd
PA
1586 if (ptid_equal (deferred_step_ptid, old_ptid))
1587 deferred_step_ptid = new_ptid;
1588
fc1cf338
PA
1589 for (displaced = displaced_step_inferior_states;
1590 displaced;
1591 displaced = displaced->next)
1592 {
1593 if (ptid_equal (displaced->step_ptid, old_ptid))
1594 displaced->step_ptid = new_ptid;
1595
1596 for (it = displaced->step_request_queue; it; it = it->next)
1597 if (ptid_equal (it->ptid, old_ptid))
1598 it->ptid = new_ptid;
1599 }
5231c1fd
PA
1600}
1601
237fc4c9
PA
1602\f
1603/* Resuming. */
c906108c
SS
1604
1605/* Things to clean up if we QUIT out of resume (). */
c906108c 1606static void
74b7792f 1607resume_cleanups (void *ignore)
c906108c
SS
1608{
1609 normal_stop ();
1610}
1611
53904c9e
AC
1612static const char schedlock_off[] = "off";
1613static const char schedlock_on[] = "on";
1614static const char schedlock_step[] = "step";
40478521 1615static const char *const scheduler_enums[] = {
ef346e04
AC
1616 schedlock_off,
1617 schedlock_on,
1618 schedlock_step,
1619 NULL
1620};
920d2a44
AC
1621static const char *scheduler_mode = schedlock_off;
1622static void
1623show_scheduler_mode (struct ui_file *file, int from_tty,
1624 struct cmd_list_element *c, const char *value)
1625{
3e43a32a
MS
1626 fprintf_filtered (file,
1627 _("Mode for locking scheduler "
1628 "during execution is \"%s\".\n"),
920d2a44
AC
1629 value);
1630}
c906108c
SS
1631
1632static void
96baa820 1633set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1634{
eefe576e
AC
1635 if (!target_can_lock_scheduler)
1636 {
1637 scheduler_mode = schedlock_off;
1638 error (_("Target '%s' cannot support this command."), target_shortname);
1639 }
c906108c
SS
1640}
1641
d4db2f36
PA
1642/* True if execution commands resume all threads of all processes by
1643 default; otherwise, resume only threads of the current inferior
1644 process. */
1645int sched_multi = 0;
1646
2facfe5c
DD
1647/* Try to setup for software single stepping over the specified location.
1648 Return 1 if target_resume() should use hardware single step.
1649
1650 GDBARCH the current gdbarch.
1651 PC the location to step over. */
1652
1653static int
1654maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1655{
1656 int hw_step = 1;
1657
f02253f1
HZ
1658 if (execution_direction == EXEC_FORWARD
1659 && gdbarch_software_single_step_p (gdbarch)
99e40580 1660 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1661 {
99e40580
UW
1662 hw_step = 0;
1663 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1664 `wait_for_inferior'. */
99e40580
UW
1665 singlestep_breakpoints_inserted_p = 1;
1666 singlestep_ptid = inferior_ptid;
1667 singlestep_pc = pc;
2facfe5c
DD
1668 }
1669 return hw_step;
1670}
c906108c 1671
09cee04b
PA
1672/* Return a ptid representing the set of threads that we will proceed,
1673 in the perspective of the user/frontend. We may actually resume
1674 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1675 breakpoint that needs stepping-off, but that should not be visible
1676 to the user/frontend, and neither should the frontend/user be
1677 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1678 internal run control handling, if a previous command wanted them
1679 resumed. */
1680
1681ptid_t
1682user_visible_resume_ptid (int step)
1683{
1684 /* By default, resume all threads of all processes. */
1685 ptid_t resume_ptid = RESUME_ALL;
1686
1687 /* Maybe resume only all threads of the current process. */
1688 if (!sched_multi && target_supports_multi_process ())
1689 {
1690 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1691 }
1692
1693 /* Maybe resume a single thread after all. */
1694 if (non_stop)
1695 {
1696 /* With non-stop mode on, threads are always handled
1697 individually. */
1698 resume_ptid = inferior_ptid;
1699 }
1700 else if ((scheduler_mode == schedlock_on)
1701 || (scheduler_mode == schedlock_step
1702 && (step || singlestep_breakpoints_inserted_p)))
1703 {
1704 /* User-settable 'scheduler' mode requires solo thread resume. */
1705 resume_ptid = inferior_ptid;
1706 }
1707
1708 return resume_ptid;
1709}
1710
c906108c
SS
1711/* Resume the inferior, but allow a QUIT. This is useful if the user
1712 wants to interrupt some lengthy single-stepping operation
1713 (for child processes, the SIGINT goes to the inferior, and so
1714 we get a SIGINT random_signal, but for remote debugging and perhaps
1715 other targets, that's not true).
1716
1717 STEP nonzero if we should step (zero to continue instead).
1718 SIG is the signal to give the inferior (zero for none). */
1719void
2ea28649 1720resume (int step, enum gdb_signal sig)
c906108c
SS
1721{
1722 int should_resume = 1;
74b7792f 1723 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1724 struct regcache *regcache = get_current_regcache ();
1725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1726 struct thread_info *tp = inferior_thread ();
515630c5 1727 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1728 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1729
c906108c
SS
1730 QUIT;
1731
74609e71
YQ
1732 if (current_inferior ()->waiting_for_vfork_done)
1733 {
48f9886d
PA
1734 /* Don't try to single-step a vfork parent that is waiting for
1735 the child to get out of the shared memory region (by exec'ing
1736 or exiting). This is particularly important on software
1737 single-step archs, as the child process would trip on the
1738 software single step breakpoint inserted for the parent
1739 process. Since the parent will not actually execute any
1740 instruction until the child is out of the shared region (such
1741 are vfork's semantics), it is safe to simply continue it.
1742 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1743 the parent, and tell it to `keep_going', which automatically
1744 re-sets it stepping. */
74609e71
YQ
1745 if (debug_infrun)
1746 fprintf_unfiltered (gdb_stdlog,
1747 "infrun: resume : clear step\n");
1748 step = 0;
1749 }
1750
527159b7 1751 if (debug_infrun)
237fc4c9 1752 fprintf_unfiltered (gdb_stdlog,
c9737c08 1753 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 1754 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
1755 step, gdb_signal_to_symbol_string (sig),
1756 tp->control.trap_expected,
0d9a9a5f
PA
1757 target_pid_to_str (inferior_ptid),
1758 paddress (gdbarch, pc));
c906108c 1759
c2c6d25f
JM
1760 /* Normally, by the time we reach `resume', the breakpoints are either
1761 removed or inserted, as appropriate. The exception is if we're sitting
1762 at a permanent breakpoint; we need to step over it, but permanent
1763 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1764 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1765 {
515630c5
UW
1766 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1767 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1768 else
ac74f770
MS
1769 error (_("\
1770The program is stopped at a permanent breakpoint, but GDB does not know\n\
1771how to step past a permanent breakpoint on this architecture. Try using\n\
1772a command like `return' or `jump' to continue execution."));
6d350bb5 1773 }
c2c6d25f 1774
c1e36e3e
PA
1775 /* If we have a breakpoint to step over, make sure to do a single
1776 step only. Same if we have software watchpoints. */
1777 if (tp->control.trap_expected || bpstat_should_step ())
1778 tp->control.may_range_step = 0;
1779
237fc4c9
PA
1780 /* If enabled, step over breakpoints by executing a copy of the
1781 instruction at a different address.
1782
1783 We can't use displaced stepping when we have a signal to deliver;
1784 the comments for displaced_step_prepare explain why. The
1785 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1786 signals' explain what we do instead.
1787
1788 We can't use displaced stepping when we are waiting for vfork_done
1789 event, displaced stepping breaks the vfork child similarly as single
1790 step software breakpoint. */
515630c5 1791 if (use_displaced_stepping (gdbarch)
16c381f0 1792 && (tp->control.trap_expected
929dfd4f 1793 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1794 && sig == GDB_SIGNAL_0
74609e71 1795 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1796 {
fc1cf338
PA
1797 struct displaced_step_inferior_state *displaced;
1798
237fc4c9 1799 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1800 {
1801 /* Got placed in displaced stepping queue. Will be resumed
1802 later when all the currently queued displaced stepping
7f7efbd9
VP
1803 requests finish. The thread is not executing at this point,
1804 and the call to set_executing will be made later. But we
1805 need to call set_running here, since from frontend point of view,
1806 the thread is running. */
1807 set_running (inferior_ptid, 1);
d56b7306
VP
1808 discard_cleanups (old_cleanups);
1809 return;
1810 }
99e40580 1811
ca7781d2
LM
1812 /* Update pc to reflect the new address from which we will execute
1813 instructions due to displaced stepping. */
1814 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1815
fc1cf338
PA
1816 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1817 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1818 displaced->step_closure);
237fc4c9
PA
1819 }
1820
2facfe5c 1821 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1822 else if (step)
2facfe5c 1823 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1824
30852783
UW
1825 /* Currently, our software single-step implementation leads to different
1826 results than hardware single-stepping in one situation: when stepping
1827 into delivering a signal which has an associated signal handler,
1828 hardware single-step will stop at the first instruction of the handler,
1829 while software single-step will simply skip execution of the handler.
1830
1831 For now, this difference in behavior is accepted since there is no
1832 easy way to actually implement single-stepping into a signal handler
1833 without kernel support.
1834
1835 However, there is one scenario where this difference leads to follow-on
1836 problems: if we're stepping off a breakpoint by removing all breakpoints
1837 and then single-stepping. In this case, the software single-step
1838 behavior means that even if there is a *breakpoint* in the signal
1839 handler, GDB still would not stop.
1840
1841 Fortunately, we can at least fix this particular issue. We detect
1842 here the case where we are about to deliver a signal while software
1843 single-stepping with breakpoints removed. In this situation, we
1844 revert the decisions to remove all breakpoints and insert single-
1845 step breakpoints, and instead we install a step-resume breakpoint
1846 at the current address, deliver the signal without stepping, and
1847 once we arrive back at the step-resume breakpoint, actually step
1848 over the breakpoint we originally wanted to step over. */
1849 if (singlestep_breakpoints_inserted_p
a493e3e2 1850 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1851 {
1852 /* If we have nested signals or a pending signal is delivered
1853 immediately after a handler returns, might might already have
1854 a step-resume breakpoint set on the earlier handler. We cannot
1855 set another step-resume breakpoint; just continue on until the
1856 original breakpoint is hit. */
1857 if (tp->control.step_resume_breakpoint == NULL)
1858 {
2c03e5be 1859 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1860 tp->step_after_step_resume_breakpoint = 1;
1861 }
1862
1863 remove_single_step_breakpoints ();
1864 singlestep_breakpoints_inserted_p = 0;
1865
1866 insert_breakpoints ();
1867 tp->control.trap_expected = 0;
1868 }
1869
c906108c
SS
1870 if (should_resume)
1871 {
39f77062 1872 ptid_t resume_ptid;
dfcd3bfb 1873
cd76b0b7
VP
1874 /* If STEP is set, it's a request to use hardware stepping
1875 facilities. But in that case, we should never
1876 use singlestep breakpoint. */
1877 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1878
d4db2f36
PA
1879 /* Decide the set of threads to ask the target to resume. Start
1880 by assuming everything will be resumed, than narrow the set
1881 by applying increasingly restricting conditions. */
09cee04b 1882 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1883
1884 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1885 if (singlestep_breakpoints_inserted_p
1886 && stepping_past_singlestep_breakpoint)
c906108c 1887 {
cd76b0b7
VP
1888 /* The situation here is as follows. In thread T1 we wanted to
1889 single-step. Lacking hardware single-stepping we've
1890 set breakpoint at the PC of the next instruction -- call it
1891 P. After resuming, we've hit that breakpoint in thread T2.
1892 Now we've removed original breakpoint, inserted breakpoint
1893 at P+1, and try to step to advance T2 past breakpoint.
1894 We need to step only T2, as if T1 is allowed to freely run,
1895 it can run past P, and if other threads are allowed to run,
1896 they can hit breakpoint at P+1, and nested hits of single-step
1897 breakpoints is not something we'd want -- that's complicated
1898 to support, and has no value. */
1899 resume_ptid = inferior_ptid;
1900 }
d4db2f36 1901 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1902 && tp->control.trap_expected)
cd76b0b7 1903 {
74960c60
VP
1904 /* We're allowing a thread to run past a breakpoint it has
1905 hit, by single-stepping the thread with the breakpoint
1906 removed. In which case, we need to single-step only this
1907 thread, and keep others stopped, as they can miss this
1908 breakpoint if allowed to run.
1909
1910 The current code actually removes all breakpoints when
1911 doing this, not just the one being stepped over, so if we
1912 let other threads run, we can actually miss any
1913 breakpoint, not just the one at PC. */
ef5cf84e 1914 resume_ptid = inferior_ptid;
c906108c 1915 }
ef5cf84e 1916
515630c5 1917 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1918 {
1919 /* Most targets can step a breakpoint instruction, thus
1920 executing it normally. But if this one cannot, just
1921 continue and we will hit it anyway. */
6c95b8df 1922 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1923 step = 0;
1924 }
237fc4c9
PA
1925
1926 if (debug_displaced
515630c5 1927 && use_displaced_stepping (gdbarch)
16c381f0 1928 && tp->control.trap_expected)
237fc4c9 1929 {
515630c5 1930 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1931 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1932 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1933 gdb_byte buf[4];
1934
5af949e3
UW
1935 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1936 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1937 read_memory (actual_pc, buf, sizeof (buf));
1938 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1939 }
1940
c1e36e3e
PA
1941 if (tp->control.may_range_step)
1942 {
1943 /* If we're resuming a thread with the PC out of the step
1944 range, then we're doing some nested/finer run control
1945 operation, like stepping the thread out of the dynamic
1946 linker or the displaced stepping scratch pad. We
1947 shouldn't have allowed a range step then. */
1948 gdb_assert (pc_in_thread_step_range (pc, tp));
1949 }
1950
e58b0e63
PA
1951 /* Install inferior's terminal modes. */
1952 target_terminal_inferior ();
1953
2020b7ab
PA
1954 /* Avoid confusing the next resume, if the next stop/resume
1955 happens to apply to another thread. */
a493e3e2 1956 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1957
2455069d
UW
1958 /* Advise target which signals may be handled silently. If we have
1959 removed breakpoints because we are stepping over one (which can
1960 happen only if we are not using displaced stepping), we need to
1961 receive all signals to avoid accidentally skipping a breakpoint
1962 during execution of a signal handler. */
1963 if ((step || singlestep_breakpoints_inserted_p)
1964 && tp->control.trap_expected
1965 && !use_displaced_stepping (gdbarch))
1966 target_pass_signals (0, NULL);
1967 else
a493e3e2 1968 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1969
607cecd2 1970 target_resume (resume_ptid, step, sig);
c906108c
SS
1971 }
1972
1973 discard_cleanups (old_cleanups);
1974}
1975\f
237fc4c9 1976/* Proceeding. */
c906108c
SS
1977
1978/* Clear out all variables saying what to do when inferior is continued.
1979 First do this, then set the ones you want, then call `proceed'. */
1980
a7212384
UW
1981static void
1982clear_proceed_status_thread (struct thread_info *tp)
c906108c 1983{
a7212384
UW
1984 if (debug_infrun)
1985 fprintf_unfiltered (gdb_stdlog,
1986 "infrun: clear_proceed_status_thread (%s)\n",
1987 target_pid_to_str (tp->ptid));
d6b48e9c 1988
16c381f0
JK
1989 tp->control.trap_expected = 0;
1990 tp->control.step_range_start = 0;
1991 tp->control.step_range_end = 0;
c1e36e3e 1992 tp->control.may_range_step = 0;
16c381f0
JK
1993 tp->control.step_frame_id = null_frame_id;
1994 tp->control.step_stack_frame_id = null_frame_id;
1995 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1996 tp->stop_requested = 0;
4e1c45ea 1997
16c381f0 1998 tp->control.stop_step = 0;
32400beb 1999
16c381f0 2000 tp->control.proceed_to_finish = 0;
414c69f7 2001
a7212384 2002 /* Discard any remaining commands or status from previous stop. */
16c381f0 2003 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2004}
32400beb 2005
a7212384
UW
2006static int
2007clear_proceed_status_callback (struct thread_info *tp, void *data)
2008{
2009 if (is_exited (tp->ptid))
2010 return 0;
d6b48e9c 2011
a7212384
UW
2012 clear_proceed_status_thread (tp);
2013 return 0;
2014}
2015
2016void
2017clear_proceed_status (void)
2018{
6c95b8df
PA
2019 if (!non_stop)
2020 {
2021 /* In all-stop mode, delete the per-thread status of all
2022 threads, even if inferior_ptid is null_ptid, there may be
2023 threads on the list. E.g., we may be launching a new
2024 process, while selecting the executable. */
2025 iterate_over_threads (clear_proceed_status_callback, NULL);
2026 }
2027
a7212384
UW
2028 if (!ptid_equal (inferior_ptid, null_ptid))
2029 {
2030 struct inferior *inferior;
2031
2032 if (non_stop)
2033 {
6c95b8df
PA
2034 /* If in non-stop mode, only delete the per-thread status of
2035 the current thread. */
a7212384
UW
2036 clear_proceed_status_thread (inferior_thread ());
2037 }
6c95b8df 2038
d6b48e9c 2039 inferior = current_inferior ();
16c381f0 2040 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2041 }
2042
c906108c 2043 stop_after_trap = 0;
f3b1572e
PA
2044
2045 observer_notify_about_to_proceed ();
c906108c 2046
d5c31457
UW
2047 if (stop_registers)
2048 {
2049 regcache_xfree (stop_registers);
2050 stop_registers = NULL;
2051 }
c906108c
SS
2052}
2053
5a437975
DE
2054/* Check the current thread against the thread that reported the most recent
2055 event. If a step-over is required return TRUE and set the current thread
2056 to the old thread. Otherwise return FALSE.
2057
1777feb0 2058 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2059
2060static int
6a6b96b9 2061prepare_to_proceed (int step)
ea67f13b
DJ
2062{
2063 ptid_t wait_ptid;
2064 struct target_waitstatus wait_status;
5a437975
DE
2065 int schedlock_enabled;
2066
2067 /* With non-stop mode on, threads are always handled individually. */
2068 gdb_assert (! non_stop);
ea67f13b
DJ
2069
2070 /* Get the last target status returned by target_wait(). */
2071 get_last_target_status (&wait_ptid, &wait_status);
2072
6a6b96b9 2073 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2074 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2075 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2076 && wait_status.value.sig != GDB_SIGNAL_ILL
2077 && wait_status.value.sig != GDB_SIGNAL_SEGV
2078 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2079 {
2080 return 0;
2081 }
2082
5a437975
DE
2083 schedlock_enabled = (scheduler_mode == schedlock_on
2084 || (scheduler_mode == schedlock_step
2085 && step));
2086
d4db2f36
PA
2087 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2088 if (schedlock_enabled)
2089 return 0;
2090
2091 /* Don't switch over if we're about to resume some other process
2092 other than WAIT_PTID's, and schedule-multiple is off. */
2093 if (!sched_multi
2094 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2095 return 0;
2096
6a6b96b9 2097 /* Switched over from WAIT_PID. */
ea67f13b 2098 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2099 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2100 {
515630c5
UW
2101 struct regcache *regcache = get_thread_regcache (wait_ptid);
2102
6c95b8df
PA
2103 if (breakpoint_here_p (get_regcache_aspace (regcache),
2104 regcache_read_pc (regcache)))
ea67f13b 2105 {
515630c5
UW
2106 /* If stepping, remember current thread to switch back to. */
2107 if (step)
2108 deferred_step_ptid = inferior_ptid;
ea67f13b 2109
515630c5
UW
2110 /* Switch back to WAIT_PID thread. */
2111 switch_to_thread (wait_ptid);
6a6b96b9 2112
0d9a9a5f
PA
2113 if (debug_infrun)
2114 fprintf_unfiltered (gdb_stdlog,
2115 "infrun: prepare_to_proceed (step=%d), "
2116 "switched to [%s]\n",
2117 step, target_pid_to_str (inferior_ptid));
2118
515630c5
UW
2119 /* We return 1 to indicate that there is a breakpoint here,
2120 so we need to step over it before continuing to avoid
1777feb0 2121 hitting it straight away. */
515630c5
UW
2122 return 1;
2123 }
ea67f13b
DJ
2124 }
2125
2126 return 0;
ea67f13b 2127}
e4846b08 2128
c906108c
SS
2129/* Basic routine for continuing the program in various fashions.
2130
2131 ADDR is the address to resume at, or -1 for resume where stopped.
2132 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2133 or -1 for act according to how it stopped.
c906108c 2134 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2135 -1 means return after that and print nothing.
2136 You should probably set various step_... variables
2137 before calling here, if you are stepping.
c906108c
SS
2138
2139 You should call clear_proceed_status before calling proceed. */
2140
2141void
2ea28649 2142proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2143{
e58b0e63
PA
2144 struct regcache *regcache;
2145 struct gdbarch *gdbarch;
4e1c45ea 2146 struct thread_info *tp;
e58b0e63 2147 CORE_ADDR pc;
6c95b8df 2148 struct address_space *aspace;
0de5618e
YQ
2149 /* GDB may force the inferior to step due to various reasons. */
2150 int force_step = 0;
c906108c 2151
e58b0e63
PA
2152 /* If we're stopped at a fork/vfork, follow the branch set by the
2153 "set follow-fork-mode" command; otherwise, we'll just proceed
2154 resuming the current thread. */
2155 if (!follow_fork ())
2156 {
2157 /* The target for some reason decided not to resume. */
2158 normal_stop ();
f148b27e
PA
2159 if (target_can_async_p ())
2160 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2161 return;
2162 }
2163
842951eb
PA
2164 /* We'll update this if & when we switch to a new thread. */
2165 previous_inferior_ptid = inferior_ptid;
2166
e58b0e63
PA
2167 regcache = get_current_regcache ();
2168 gdbarch = get_regcache_arch (regcache);
6c95b8df 2169 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2170 pc = regcache_read_pc (regcache);
2171
c906108c 2172 if (step > 0)
515630c5 2173 step_start_function = find_pc_function (pc);
c906108c
SS
2174 if (step < 0)
2175 stop_after_trap = 1;
2176
2acceee2 2177 if (addr == (CORE_ADDR) -1)
c906108c 2178 {
6c95b8df 2179 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2180 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2181 /* There is a breakpoint at the address we will resume at,
2182 step one instruction before inserting breakpoints so that
2183 we do not stop right away (and report a second hit at this
b2175913
MS
2184 breakpoint).
2185
2186 Note, we don't do this in reverse, because we won't
2187 actually be executing the breakpoint insn anyway.
2188 We'll be (un-)executing the previous instruction. */
2189
0de5618e 2190 force_step = 1;
515630c5
UW
2191 else if (gdbarch_single_step_through_delay_p (gdbarch)
2192 && gdbarch_single_step_through_delay (gdbarch,
2193 get_current_frame ()))
3352ef37
AC
2194 /* We stepped onto an instruction that needs to be stepped
2195 again before re-inserting the breakpoint, do so. */
0de5618e 2196 force_step = 1;
c906108c
SS
2197 }
2198 else
2199 {
515630c5 2200 regcache_write_pc (regcache, addr);
c906108c
SS
2201 }
2202
527159b7 2203 if (debug_infrun)
8a9de0e4 2204 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2205 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2206 paddress (gdbarch, addr),
2207 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2208
94cc34af
PA
2209 if (non_stop)
2210 /* In non-stop, each thread is handled individually. The context
2211 must already be set to the right thread here. */
2212 ;
2213 else
2214 {
2215 /* In a multi-threaded task we may select another thread and
2216 then continue or step.
c906108c 2217
94cc34af
PA
2218 But if the old thread was stopped at a breakpoint, it will
2219 immediately cause another breakpoint stop without any
2220 execution (i.e. it will report a breakpoint hit incorrectly).
2221 So we must step over it first.
c906108c 2222
94cc34af
PA
2223 prepare_to_proceed checks the current thread against the
2224 thread that reported the most recent event. If a step-over
2225 is required it returns TRUE and sets the current thread to
1777feb0 2226 the old thread. */
94cc34af 2227 if (prepare_to_proceed (step))
0de5618e 2228 force_step = 1;
94cc34af 2229 }
c906108c 2230
4e1c45ea
PA
2231 /* prepare_to_proceed may change the current thread. */
2232 tp = inferior_thread ();
2233
0de5618e 2234 if (force_step)
30852783
UW
2235 {
2236 tp->control.trap_expected = 1;
2237 /* If displaced stepping is enabled, we can step over the
2238 breakpoint without hitting it, so leave all breakpoints
2239 inserted. Otherwise we need to disable all breakpoints, step
2240 one instruction, and then re-add them when that step is
2241 finished. */
2242 if (!use_displaced_stepping (gdbarch))
2243 remove_breakpoints ();
2244 }
2245
2246 /* We can insert breakpoints if we're not trying to step over one,
2247 or if we are stepping over one but we're using displaced stepping
2248 to do so. */
2249 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2250 insert_breakpoints ();
2251
2020b7ab
PA
2252 if (!non_stop)
2253 {
2254 /* Pass the last stop signal to the thread we're resuming,
2255 irrespective of whether the current thread is the thread that
2256 got the last event or not. This was historically GDB's
2257 behaviour before keeping a stop_signal per thread. */
2258
2259 struct thread_info *last_thread;
2260 ptid_t last_ptid;
2261 struct target_waitstatus last_status;
2262
2263 get_last_target_status (&last_ptid, &last_status);
2264 if (!ptid_equal (inferior_ptid, last_ptid)
2265 && !ptid_equal (last_ptid, null_ptid)
2266 && !ptid_equal (last_ptid, minus_one_ptid))
2267 {
e09875d4 2268 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2269 if (last_thread)
2270 {
16c381f0 2271 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2272 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2273 }
2274 }
2275 }
2276
a493e3e2 2277 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2278 tp->suspend.stop_signal = siggnal;
c906108c
SS
2279 /* If this signal should not be seen by program,
2280 give it zero. Used for debugging signals. */
16c381f0 2281 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2282 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2283
2284 annotate_starting ();
2285
2286 /* Make sure that output from GDB appears before output from the
2287 inferior. */
2288 gdb_flush (gdb_stdout);
2289
e4846b08
JJ
2290 /* Refresh prev_pc value just prior to resuming. This used to be
2291 done in stop_stepping, however, setting prev_pc there did not handle
2292 scenarios such as inferior function calls or returning from
2293 a function via the return command. In those cases, the prev_pc
2294 value was not set properly for subsequent commands. The prev_pc value
2295 is used to initialize the starting line number in the ecs. With an
2296 invalid value, the gdb next command ends up stopping at the position
2297 represented by the next line table entry past our start position.
2298 On platforms that generate one line table entry per line, this
2299 is not a problem. However, on the ia64, the compiler generates
2300 extraneous line table entries that do not increase the line number.
2301 When we issue the gdb next command on the ia64 after an inferior call
2302 or a return command, we often end up a few instructions forward, still
2303 within the original line we started.
2304
d5cd6034
JB
2305 An attempt was made to refresh the prev_pc at the same time the
2306 execution_control_state is initialized (for instance, just before
2307 waiting for an inferior event). But this approach did not work
2308 because of platforms that use ptrace, where the pc register cannot
2309 be read unless the inferior is stopped. At that point, we are not
2310 guaranteed the inferior is stopped and so the regcache_read_pc() call
2311 can fail. Setting the prev_pc value here ensures the value is updated
2312 correctly when the inferior is stopped. */
4e1c45ea 2313 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2314
59f0d5d9 2315 /* Fill in with reasonable starting values. */
4e1c45ea 2316 init_thread_stepping_state (tp);
59f0d5d9 2317
59f0d5d9
PA
2318 /* Reset to normal state. */
2319 init_infwait_state ();
2320
c906108c 2321 /* Resume inferior. */
0de5618e
YQ
2322 resume (force_step || step || bpstat_should_step (),
2323 tp->suspend.stop_signal);
c906108c
SS
2324
2325 /* Wait for it to stop (if not standalone)
2326 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2327 /* Do this only if we are not using the event loop, or if the target
1777feb0 2328 does not support asynchronous execution. */
362646f5 2329 if (!target_can_async_p ())
43ff13b4 2330 {
e4c8541f 2331 wait_for_inferior ();
43ff13b4
JM
2332 normal_stop ();
2333 }
c906108c 2334}
c906108c
SS
2335\f
2336
2337/* Start remote-debugging of a machine over a serial link. */
96baa820 2338
c906108c 2339void
8621d6a9 2340start_remote (int from_tty)
c906108c 2341{
d6b48e9c 2342 struct inferior *inferior;
d6b48e9c
PA
2343
2344 inferior = current_inferior ();
16c381f0 2345 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2346
1777feb0 2347 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2348 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2349 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2350 nothing is returned (instead of just blocking). Because of this,
2351 targets expecting an immediate response need to, internally, set
2352 things up so that the target_wait() is forced to eventually
1777feb0 2353 timeout. */
6426a772
JM
2354 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2355 differentiate to its caller what the state of the target is after
2356 the initial open has been performed. Here we're assuming that
2357 the target has stopped. It should be possible to eventually have
2358 target_open() return to the caller an indication that the target
2359 is currently running and GDB state should be set to the same as
1777feb0 2360 for an async run. */
e4c8541f 2361 wait_for_inferior ();
8621d6a9
DJ
2362
2363 /* Now that the inferior has stopped, do any bookkeeping like
2364 loading shared libraries. We want to do this before normal_stop,
2365 so that the displayed frame is up to date. */
2366 post_create_inferior (&current_target, from_tty);
2367
6426a772 2368 normal_stop ();
c906108c
SS
2369}
2370
2371/* Initialize static vars when a new inferior begins. */
2372
2373void
96baa820 2374init_wait_for_inferior (void)
c906108c
SS
2375{
2376 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2377
c906108c
SS
2378 breakpoint_init_inferior (inf_starting);
2379
c906108c 2380 clear_proceed_status ();
9f976b41
DJ
2381
2382 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2383 deferred_step_ptid = null_ptid;
ca005067
DJ
2384
2385 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2386
842951eb 2387 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2388 init_infwait_state ();
2389
edb3359d
DJ
2390 /* Discard any skipped inlined frames. */
2391 clear_inline_frame_state (minus_one_ptid);
c906108c 2392}
237fc4c9 2393
c906108c 2394\f
b83266a0
SS
2395/* This enum encodes possible reasons for doing a target_wait, so that
2396 wfi can call target_wait in one place. (Ultimately the call will be
2397 moved out of the infinite loop entirely.) */
2398
c5aa993b
JM
2399enum infwait_states
2400{
cd0fc7c3
SS
2401 infwait_normal_state,
2402 infwait_thread_hop_state,
d983da9c 2403 infwait_step_watch_state,
cd0fc7c3 2404 infwait_nonstep_watch_state
b83266a0
SS
2405};
2406
0d1e5fa7
PA
2407/* The PTID we'll do a target_wait on.*/
2408ptid_t waiton_ptid;
2409
2410/* Current inferior wait state. */
8870954f 2411static enum infwait_states infwait_state;
cd0fc7c3 2412
0d1e5fa7
PA
2413/* Data to be passed around while handling an event. This data is
2414 discarded between events. */
c5aa993b 2415struct execution_control_state
488f131b 2416{
0d1e5fa7 2417 ptid_t ptid;
4e1c45ea
PA
2418 /* The thread that got the event, if this was a thread event; NULL
2419 otherwise. */
2420 struct thread_info *event_thread;
2421
488f131b 2422 struct target_waitstatus ws;
7e324e48 2423 int stop_func_filled_in;
488f131b
JB
2424 CORE_ADDR stop_func_start;
2425 CORE_ADDR stop_func_end;
2c02bd72 2426 const char *stop_func_name;
488f131b 2427 int wait_some_more;
4f5d7f63
PA
2428
2429 /* We were in infwait_step_watch_state or
2430 infwait_nonstep_watch_state state, and the thread reported an
2431 event. */
2432 int stepped_after_stopped_by_watchpoint;
488f131b
JB
2433};
2434
ec9499be 2435static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2436
568d6575
UW
2437static void handle_step_into_function (struct gdbarch *gdbarch,
2438 struct execution_control_state *ecs);
2439static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2440 struct execution_control_state *ecs);
4f5d7f63 2441static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2442static void check_exception_resume (struct execution_control_state *,
28106bc2 2443 struct frame_info *);
611c83ae 2444
104c1213
JM
2445static void stop_stepping (struct execution_control_state *ecs);
2446static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2447static void keep_going (struct execution_control_state *ecs);
94c57d6a 2448static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2449static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2450
252fbfc8
PA
2451/* Callback for iterate over threads. If the thread is stopped, but
2452 the user/frontend doesn't know about that yet, go through
2453 normal_stop, as if the thread had just stopped now. ARG points at
2454 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2455 ptid_is_pid(PTID) is true, applies to all threads of the process
2456 pointed at by PTID. Otherwise, apply only to the thread pointed by
2457 PTID. */
2458
2459static int
2460infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2461{
2462 ptid_t ptid = * (ptid_t *) arg;
2463
2464 if ((ptid_equal (info->ptid, ptid)
2465 || ptid_equal (minus_one_ptid, ptid)
2466 || (ptid_is_pid (ptid)
2467 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2468 && is_running (info->ptid)
2469 && !is_executing (info->ptid))
2470 {
2471 struct cleanup *old_chain;
2472 struct execution_control_state ecss;
2473 struct execution_control_state *ecs = &ecss;
2474
2475 memset (ecs, 0, sizeof (*ecs));
2476
2477 old_chain = make_cleanup_restore_current_thread ();
2478
f15cb84a
YQ
2479 overlay_cache_invalid = 1;
2480 /* Flush target cache before starting to handle each event.
2481 Target was running and cache could be stale. This is just a
2482 heuristic. Running threads may modify target memory, but we
2483 don't get any event. */
2484 target_dcache_invalidate ();
2485
252fbfc8
PA
2486 /* Go through handle_inferior_event/normal_stop, so we always
2487 have consistent output as if the stop event had been
2488 reported. */
2489 ecs->ptid = info->ptid;
e09875d4 2490 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2491 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2492 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2493
2494 handle_inferior_event (ecs);
2495
2496 if (!ecs->wait_some_more)
2497 {
2498 struct thread_info *tp;
2499
2500 normal_stop ();
2501
fa4cd53f 2502 /* Finish off the continuations. */
252fbfc8 2503 tp = inferior_thread ();
fa4cd53f
PA
2504 do_all_intermediate_continuations_thread (tp, 1);
2505 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2506 }
2507
2508 do_cleanups (old_chain);
2509 }
2510
2511 return 0;
2512}
2513
2514/* This function is attached as a "thread_stop_requested" observer.
2515 Cleanup local state that assumed the PTID was to be resumed, and
2516 report the stop to the frontend. */
2517
2c0b251b 2518static void
252fbfc8
PA
2519infrun_thread_stop_requested (ptid_t ptid)
2520{
fc1cf338 2521 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2522
2523 /* PTID was requested to stop. Remove it from the displaced
2524 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2525
2526 for (displaced = displaced_step_inferior_states;
2527 displaced;
2528 displaced = displaced->next)
252fbfc8 2529 {
fc1cf338 2530 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2531
fc1cf338
PA
2532 it = displaced->step_request_queue;
2533 prev_next_p = &displaced->step_request_queue;
2534 while (it)
252fbfc8 2535 {
fc1cf338
PA
2536 if (ptid_match (it->ptid, ptid))
2537 {
2538 *prev_next_p = it->next;
2539 it->next = NULL;
2540 xfree (it);
2541 }
252fbfc8 2542 else
fc1cf338
PA
2543 {
2544 prev_next_p = &it->next;
2545 }
252fbfc8 2546
fc1cf338 2547 it = *prev_next_p;
252fbfc8 2548 }
252fbfc8
PA
2549 }
2550
2551 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2552}
2553
a07daef3
PA
2554static void
2555infrun_thread_thread_exit (struct thread_info *tp, int silent)
2556{
2557 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2558 nullify_last_target_wait_ptid ();
2559}
2560
4e1c45ea
PA
2561/* Callback for iterate_over_threads. */
2562
2563static int
2564delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2565{
2566 if (is_exited (info->ptid))
2567 return 0;
2568
2569 delete_step_resume_breakpoint (info);
186c406b 2570 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2571 return 0;
2572}
2573
2574/* In all-stop, delete the step resume breakpoint of any thread that
2575 had one. In non-stop, delete the step resume breakpoint of the
2576 thread that just stopped. */
2577
2578static void
2579delete_step_thread_step_resume_breakpoint (void)
2580{
2581 if (!target_has_execution
2582 || ptid_equal (inferior_ptid, null_ptid))
2583 /* If the inferior has exited, we have already deleted the step
2584 resume breakpoints out of GDB's lists. */
2585 return;
2586
2587 if (non_stop)
2588 {
2589 /* If in non-stop mode, only delete the step-resume or
2590 longjmp-resume breakpoint of the thread that just stopped
2591 stepping. */
2592 struct thread_info *tp = inferior_thread ();
abbb1732 2593
4e1c45ea 2594 delete_step_resume_breakpoint (tp);
186c406b 2595 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2596 }
2597 else
2598 /* In all-stop mode, delete all step-resume and longjmp-resume
2599 breakpoints of any thread that had them. */
2600 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2601}
2602
1777feb0 2603/* A cleanup wrapper. */
4e1c45ea
PA
2604
2605static void
2606delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2607{
2608 delete_step_thread_step_resume_breakpoint ();
2609}
2610
223698f8
DE
2611/* Pretty print the results of target_wait, for debugging purposes. */
2612
2613static void
2614print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2615 const struct target_waitstatus *ws)
2616{
2617 char *status_string = target_waitstatus_to_string (ws);
2618 struct ui_file *tmp_stream = mem_fileopen ();
2619 char *text;
223698f8
DE
2620
2621 /* The text is split over several lines because it was getting too long.
2622 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2623 output as a unit; we want only one timestamp printed if debug_timestamp
2624 is set. */
2625
2626 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2627 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2628 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2629 fprintf_unfiltered (tmp_stream,
2630 " [%s]", target_pid_to_str (waiton_ptid));
2631 fprintf_unfiltered (tmp_stream, ", status) =\n");
2632 fprintf_unfiltered (tmp_stream,
2633 "infrun: %d [%s],\n",
dfd4cc63
LM
2634 ptid_get_pid (result_ptid),
2635 target_pid_to_str (result_ptid));
223698f8
DE
2636 fprintf_unfiltered (tmp_stream,
2637 "infrun: %s\n",
2638 status_string);
2639
759ef836 2640 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2641
2642 /* This uses %s in part to handle %'s in the text, but also to avoid
2643 a gcc error: the format attribute requires a string literal. */
2644 fprintf_unfiltered (gdb_stdlog, "%s", text);
2645
2646 xfree (status_string);
2647 xfree (text);
2648 ui_file_delete (tmp_stream);
2649}
2650
24291992
PA
2651/* Prepare and stabilize the inferior for detaching it. E.g.,
2652 detaching while a thread is displaced stepping is a recipe for
2653 crashing it, as nothing would readjust the PC out of the scratch
2654 pad. */
2655
2656void
2657prepare_for_detach (void)
2658{
2659 struct inferior *inf = current_inferior ();
2660 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2661 struct cleanup *old_chain_1;
2662 struct displaced_step_inferior_state *displaced;
2663
2664 displaced = get_displaced_stepping_state (inf->pid);
2665
2666 /* Is any thread of this process displaced stepping? If not,
2667 there's nothing else to do. */
2668 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2669 return;
2670
2671 if (debug_infrun)
2672 fprintf_unfiltered (gdb_stdlog,
2673 "displaced-stepping in-process while detaching");
2674
2675 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2676 inf->detaching = 1;
2677
2678 while (!ptid_equal (displaced->step_ptid, null_ptid))
2679 {
2680 struct cleanup *old_chain_2;
2681 struct execution_control_state ecss;
2682 struct execution_control_state *ecs;
2683
2684 ecs = &ecss;
2685 memset (ecs, 0, sizeof (*ecs));
2686
2687 overlay_cache_invalid = 1;
f15cb84a
YQ
2688 /* Flush target cache before starting to handle each event.
2689 Target was running and cache could be stale. This is just a
2690 heuristic. Running threads may modify target memory, but we
2691 don't get any event. */
2692 target_dcache_invalidate ();
24291992 2693
24291992
PA
2694 if (deprecated_target_wait_hook)
2695 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2696 else
2697 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2698
2699 if (debug_infrun)
2700 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2701
2702 /* If an error happens while handling the event, propagate GDB's
2703 knowledge of the executing state to the frontend/user running
2704 state. */
3e43a32a
MS
2705 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2706 &minus_one_ptid);
24291992
PA
2707
2708 /* Now figure out what to do with the result of the result. */
2709 handle_inferior_event (ecs);
2710
2711 /* No error, don't finish the state yet. */
2712 discard_cleanups (old_chain_2);
2713
2714 /* Breakpoints and watchpoints are not installed on the target
2715 at this point, and signals are passed directly to the
2716 inferior, so this must mean the process is gone. */
2717 if (!ecs->wait_some_more)
2718 {
2719 discard_cleanups (old_chain_1);
2720 error (_("Program exited while detaching"));
2721 }
2722 }
2723
2724 discard_cleanups (old_chain_1);
2725}
2726
cd0fc7c3 2727/* Wait for control to return from inferior to debugger.
ae123ec6 2728
cd0fc7c3
SS
2729 If inferior gets a signal, we may decide to start it up again
2730 instead of returning. That is why there is a loop in this function.
2731 When this function actually returns it means the inferior
2732 should be left stopped and GDB should read more commands. */
2733
2734void
e4c8541f 2735wait_for_inferior (void)
cd0fc7c3
SS
2736{
2737 struct cleanup *old_cleanups;
c906108c 2738
527159b7 2739 if (debug_infrun)
ae123ec6 2740 fprintf_unfiltered
e4c8541f 2741 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2742
4e1c45ea
PA
2743 old_cleanups =
2744 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2745
c906108c
SS
2746 while (1)
2747 {
ae25568b
PA
2748 struct execution_control_state ecss;
2749 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2750 struct cleanup *old_chain;
2751
ae25568b
PA
2752 memset (ecs, 0, sizeof (*ecs));
2753
ec9499be 2754 overlay_cache_invalid = 1;
ec9499be 2755
f15cb84a
YQ
2756 /* Flush target cache before starting to handle each event.
2757 Target was running and cache could be stale. This is just a
2758 heuristic. Running threads may modify target memory, but we
2759 don't get any event. */
2760 target_dcache_invalidate ();
2761
9a4105ab 2762 if (deprecated_target_wait_hook)
47608cb1 2763 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2764 else
47608cb1 2765 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2766
f00150c9 2767 if (debug_infrun)
223698f8 2768 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2769
29f49a6a
PA
2770 /* If an error happens while handling the event, propagate GDB's
2771 knowledge of the executing state to the frontend/user running
2772 state. */
2773 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2774
cd0fc7c3
SS
2775 /* Now figure out what to do with the result of the result. */
2776 handle_inferior_event (ecs);
c906108c 2777
29f49a6a
PA
2778 /* No error, don't finish the state yet. */
2779 discard_cleanups (old_chain);
2780
cd0fc7c3
SS
2781 if (!ecs->wait_some_more)
2782 break;
2783 }
4e1c45ea 2784
cd0fc7c3
SS
2785 do_cleanups (old_cleanups);
2786}
c906108c 2787
1777feb0 2788/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2789 event loop whenever a change of state is detected on the file
1777feb0
MS
2790 descriptor corresponding to the target. It can be called more than
2791 once to complete a single execution command. In such cases we need
2792 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2793 that this function is called for a single execution command, then
2794 report to the user that the inferior has stopped, and do the
1777feb0 2795 necessary cleanups. */
43ff13b4
JM
2796
2797void
fba45db2 2798fetch_inferior_event (void *client_data)
43ff13b4 2799{
0d1e5fa7 2800 struct execution_control_state ecss;
a474d7c2 2801 struct execution_control_state *ecs = &ecss;
4f8d22e3 2802 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2803 struct cleanup *ts_old_chain;
4f8d22e3 2804 int was_sync = sync_execution;
0f641c01 2805 int cmd_done = 0;
43ff13b4 2806
0d1e5fa7
PA
2807 memset (ecs, 0, sizeof (*ecs));
2808
c5187ac6
PA
2809 /* We're handling a live event, so make sure we're doing live
2810 debugging. If we're looking at traceframes while the target is
2811 running, we're going to need to get back to that mode after
2812 handling the event. */
2813 if (non_stop)
2814 {
2815 make_cleanup_restore_current_traceframe ();
e6e4e701 2816 set_current_traceframe (-1);
c5187ac6
PA
2817 }
2818
4f8d22e3
PA
2819 if (non_stop)
2820 /* In non-stop mode, the user/frontend should not notice a thread
2821 switch due to internal events. Make sure we reverse to the
2822 user selected thread and frame after handling the event and
2823 running any breakpoint commands. */
2824 make_cleanup_restore_current_thread ();
2825
ec9499be 2826 overlay_cache_invalid = 1;
f15cb84a
YQ
2827 /* Flush target cache before starting to handle each event. Target
2828 was running and cache could be stale. This is just a heuristic.
2829 Running threads may modify target memory, but we don't get any
2830 event. */
2831 target_dcache_invalidate ();
3dd5b83d 2832
32231432
PA
2833 make_cleanup_restore_integer (&execution_direction);
2834 execution_direction = target_execution_direction ();
2835
9a4105ab 2836 if (deprecated_target_wait_hook)
a474d7c2 2837 ecs->ptid =
47608cb1 2838 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2839 else
47608cb1 2840 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2841
f00150c9 2842 if (debug_infrun)
223698f8 2843 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2844
29f49a6a
PA
2845 /* If an error happens while handling the event, propagate GDB's
2846 knowledge of the executing state to the frontend/user running
2847 state. */
2848 if (!non_stop)
2849 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2850 else
2851 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2852
353d1d73
JK
2853 /* Get executed before make_cleanup_restore_current_thread above to apply
2854 still for the thread which has thrown the exception. */
2855 make_bpstat_clear_actions_cleanup ();
2856
43ff13b4 2857 /* Now figure out what to do with the result of the result. */
a474d7c2 2858 handle_inferior_event (ecs);
43ff13b4 2859
a474d7c2 2860 if (!ecs->wait_some_more)
43ff13b4 2861 {
d6b48e9c
PA
2862 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2863
4e1c45ea 2864 delete_step_thread_step_resume_breakpoint ();
f107f563 2865
d6b48e9c 2866 /* We may not find an inferior if this was a process exit. */
16c381f0 2867 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2868 normal_stop ();
2869
af679fd0 2870 if (target_has_execution
0e5bf2a8 2871 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2872 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2873 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2874 && ecs->event_thread->step_multi
16c381f0 2875 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2876 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2877 else
0f641c01
PA
2878 {
2879 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2880 cmd_done = 1;
2881 }
43ff13b4 2882 }
4f8d22e3 2883
29f49a6a
PA
2884 /* No error, don't finish the thread states yet. */
2885 discard_cleanups (ts_old_chain);
2886
4f8d22e3
PA
2887 /* Revert thread and frame. */
2888 do_cleanups (old_chain);
2889
2890 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2891 restore the prompt (a synchronous execution command has finished,
2892 and we're ready for input). */
b4a14fd0 2893 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2894 display_gdb_prompt (0);
0f641c01
PA
2895
2896 if (cmd_done
2897 && !was_sync
2898 && exec_done_display_p
2899 && (ptid_equal (inferior_ptid, null_ptid)
2900 || !is_running (inferior_ptid)))
2901 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2902}
2903
edb3359d
DJ
2904/* Record the frame and location we're currently stepping through. */
2905void
2906set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2907{
2908 struct thread_info *tp = inferior_thread ();
2909
16c381f0
JK
2910 tp->control.step_frame_id = get_frame_id (frame);
2911 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2912
2913 tp->current_symtab = sal.symtab;
2914 tp->current_line = sal.line;
2915}
2916
0d1e5fa7
PA
2917/* Clear context switchable stepping state. */
2918
2919void
4e1c45ea 2920init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2921{
2922 tss->stepping_over_breakpoint = 0;
2923 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2924}
2925
e02bc4cc 2926/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2927 target_wait()/deprecated_target_wait_hook(). The data is actually
2928 cached by handle_inferior_event(), which gets called immediately
2929 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2930
2931void
488f131b 2932get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2933{
39f77062 2934 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2935 *status = target_last_waitstatus;
2936}
2937
ac264b3b
MS
2938void
2939nullify_last_target_wait_ptid (void)
2940{
2941 target_last_wait_ptid = minus_one_ptid;
2942}
2943
dcf4fbde 2944/* Switch thread contexts. */
dd80620e
MS
2945
2946static void
0d1e5fa7 2947context_switch (ptid_t ptid)
dd80620e 2948{
4b51d87b 2949 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2950 {
2951 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2952 target_pid_to_str (inferior_ptid));
2953 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2954 target_pid_to_str (ptid));
fd48f117
DJ
2955 }
2956
0d1e5fa7 2957 switch_to_thread (ptid);
dd80620e
MS
2958}
2959
4fa8626c
DJ
2960static void
2961adjust_pc_after_break (struct execution_control_state *ecs)
2962{
24a73cce
UW
2963 struct regcache *regcache;
2964 struct gdbarch *gdbarch;
6c95b8df 2965 struct address_space *aspace;
118e6252 2966 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 2967
4fa8626c
DJ
2968 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2969 we aren't, just return.
9709f61c
DJ
2970
2971 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2972 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2973 implemented by software breakpoints should be handled through the normal
2974 breakpoint layer.
8fb3e588 2975
4fa8626c
DJ
2976 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2977 different signals (SIGILL or SIGEMT for instance), but it is less
2978 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2979 gdbarch_decr_pc_after_break. I don't know any specific target that
2980 generates these signals at breakpoints (the code has been in GDB since at
2981 least 1992) so I can not guess how to handle them here.
8fb3e588 2982
e6cf7916
UW
2983 In earlier versions of GDB, a target with
2984 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2985 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2986 target with both of these set in GDB history, and it seems unlikely to be
2987 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2988
2989 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2990 return;
2991
a493e3e2 2992 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2993 return;
2994
4058b839
PA
2995 /* In reverse execution, when a breakpoint is hit, the instruction
2996 under it has already been de-executed. The reported PC always
2997 points at the breakpoint address, so adjusting it further would
2998 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2999 architecture:
3000
3001 B1 0x08000000 : INSN1
3002 B2 0x08000001 : INSN2
3003 0x08000002 : INSN3
3004 PC -> 0x08000003 : INSN4
3005
3006 Say you're stopped at 0x08000003 as above. Reverse continuing
3007 from that point should hit B2 as below. Reading the PC when the
3008 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3009 been de-executed already.
3010
3011 B1 0x08000000 : INSN1
3012 B2 PC -> 0x08000001 : INSN2
3013 0x08000002 : INSN3
3014 0x08000003 : INSN4
3015
3016 We can't apply the same logic as for forward execution, because
3017 we would wrongly adjust the PC to 0x08000000, since there's a
3018 breakpoint at PC - 1. We'd then report a hit on B1, although
3019 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3020 behaviour. */
3021 if (execution_direction == EXEC_REVERSE)
3022 return;
3023
24a73cce
UW
3024 /* If this target does not decrement the PC after breakpoints, then
3025 we have nothing to do. */
3026 regcache = get_thread_regcache (ecs->ptid);
3027 gdbarch = get_regcache_arch (regcache);
118e6252
MM
3028
3029 decr_pc = target_decr_pc_after_break (gdbarch);
3030 if (decr_pc == 0)
24a73cce
UW
3031 return;
3032
6c95b8df
PA
3033 aspace = get_regcache_aspace (regcache);
3034
8aad930b
AC
3035 /* Find the location where (if we've hit a breakpoint) the
3036 breakpoint would be. */
118e6252 3037 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3038
1c5cfe86
PA
3039 /* Check whether there actually is a software breakpoint inserted at
3040 that location.
3041
3042 If in non-stop mode, a race condition is possible where we've
3043 removed a breakpoint, but stop events for that breakpoint were
3044 already queued and arrive later. To suppress those spurious
3045 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3046 and retire them after a number of stop events are reported. */
6c95b8df
PA
3047 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3048 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3049 {
77f9e713 3050 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3051
8213266a 3052 if (record_full_is_used ())
77f9e713 3053 record_full_gdb_operation_disable_set ();
96429cc8 3054
1c0fdd0e
UW
3055 /* When using hardware single-step, a SIGTRAP is reported for both
3056 a completed single-step and a software breakpoint. Need to
3057 differentiate between the two, as the latter needs adjusting
3058 but the former does not.
3059
3060 The SIGTRAP can be due to a completed hardware single-step only if
3061 - we didn't insert software single-step breakpoints
3062 - the thread to be examined is still the current thread
3063 - this thread is currently being stepped
3064
3065 If any of these events did not occur, we must have stopped due
3066 to hitting a software breakpoint, and have to back up to the
3067 breakpoint address.
3068
3069 As a special case, we could have hardware single-stepped a
3070 software breakpoint. In this case (prev_pc == breakpoint_pc),
3071 we also need to back up to the breakpoint address. */
3072
3073 if (singlestep_breakpoints_inserted_p
3074 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3075 || !currently_stepping (ecs->event_thread)
3076 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3077 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3078
77f9e713 3079 do_cleanups (old_cleanups);
8aad930b 3080 }
4fa8626c
DJ
3081}
3082
7a76f5b8 3083static void
0d1e5fa7
PA
3084init_infwait_state (void)
3085{
3086 waiton_ptid = pid_to_ptid (-1);
3087 infwait_state = infwait_normal_state;
3088}
3089
edb3359d
DJ
3090static int
3091stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3092{
3093 for (frame = get_prev_frame (frame);
3094 frame != NULL;
3095 frame = get_prev_frame (frame))
3096 {
3097 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3098 return 1;
3099 if (get_frame_type (frame) != INLINE_FRAME)
3100 break;
3101 }
3102
3103 return 0;
3104}
3105
a96d9b2e
SDJ
3106/* Auxiliary function that handles syscall entry/return events.
3107 It returns 1 if the inferior should keep going (and GDB
3108 should ignore the event), or 0 if the event deserves to be
3109 processed. */
ca2163eb 3110
a96d9b2e 3111static int
ca2163eb 3112handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3113{
ca2163eb 3114 struct regcache *regcache;
ca2163eb
PA
3115 int syscall_number;
3116
3117 if (!ptid_equal (ecs->ptid, inferior_ptid))
3118 context_switch (ecs->ptid);
3119
3120 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3121 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3122 stop_pc = regcache_read_pc (regcache);
3123
a96d9b2e
SDJ
3124 if (catch_syscall_enabled () > 0
3125 && catching_syscall_number (syscall_number) > 0)
3126 {
3127 if (debug_infrun)
3128 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3129 syscall_number);
a96d9b2e 3130
16c381f0 3131 ecs->event_thread->control.stop_bpstat
6c95b8df 3132 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3133 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3134
ce12b012 3135 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3136 {
3137 /* Catchpoint hit. */
ca2163eb
PA
3138 return 0;
3139 }
a96d9b2e 3140 }
ca2163eb
PA
3141
3142 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3143 keep_going (ecs);
3144 return 1;
a96d9b2e
SDJ
3145}
3146
7e324e48
GB
3147/* Lazily fill in the execution_control_state's stop_func_* fields. */
3148
3149static void
3150fill_in_stop_func (struct gdbarch *gdbarch,
3151 struct execution_control_state *ecs)
3152{
3153 if (!ecs->stop_func_filled_in)
3154 {
3155 /* Don't care about return value; stop_func_start and stop_func_name
3156 will both be 0 if it doesn't work. */
3157 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3158 &ecs->stop_func_start, &ecs->stop_func_end);
3159 ecs->stop_func_start
3160 += gdbarch_deprecated_function_start_offset (gdbarch);
3161
591a12a1
UW
3162 if (gdbarch_skip_entrypoint_p (gdbarch))
3163 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3164 ecs->stop_func_start);
3165
7e324e48
GB
3166 ecs->stop_func_filled_in = 1;
3167 }
3168}
3169
4f5d7f63
PA
3170
3171/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3172
3173static enum stop_kind
3174get_inferior_stop_soon (ptid_t ptid)
3175{
3176 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3177
3178 gdb_assert (inf != NULL);
3179 return inf->control.stop_soon;
3180}
3181
05ba8510
PA
3182/* Given an execution control state that has been freshly filled in by
3183 an event from the inferior, figure out what it means and take
3184 appropriate action.
3185
3186 The alternatives are:
3187
3188 1) stop_stepping and return; to really stop and return to the
3189 debugger.
3190
3191 2) keep_going and return; to wait for the next event (set
3192 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3193 once). */
c906108c 3194
ec9499be 3195static void
96baa820 3196handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3197{
d6b48e9c
PA
3198 enum stop_kind stop_soon;
3199
28736962
PA
3200 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3201 {
3202 /* We had an event in the inferior, but we are not interested in
3203 handling it at this level. The lower layers have already
3204 done what needs to be done, if anything.
3205
3206 One of the possible circumstances for this is when the
3207 inferior produces output for the console. The inferior has
3208 not stopped, and we are ignoring the event. Another possible
3209 circumstance is any event which the lower level knows will be
3210 reported multiple times without an intervening resume. */
3211 if (debug_infrun)
3212 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3213 prepare_to_wait (ecs);
3214 return;
3215 }
3216
0e5bf2a8
PA
3217 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3218 && target_can_async_p () && !sync_execution)
3219 {
3220 /* There were no unwaited-for children left in the target, but,
3221 we're not synchronously waiting for events either. Just
3222 ignore. Otherwise, if we were running a synchronous
3223 execution command, we need to cancel it and give the user
3224 back the terminal. */
3225 if (debug_infrun)
3226 fprintf_unfiltered (gdb_stdlog,
3227 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3228 prepare_to_wait (ecs);
3229 return;
3230 }
3231
1777feb0 3232 /* Cache the last pid/waitstatus. */
39f77062 3233 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3234 target_last_waitstatus = ecs->ws;
e02bc4cc 3235
ca005067 3236 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3237 stop_stack_dummy = STOP_NONE;
ca005067 3238
0e5bf2a8
PA
3239 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3240 {
3241 /* No unwaited-for children left. IOW, all resumed children
3242 have exited. */
3243 if (debug_infrun)
3244 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3245
3246 stop_print_frame = 0;
3247 stop_stepping (ecs);
3248 return;
3249 }
3250
8c90c137 3251 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3252 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3253 {
3254 ecs->event_thread = find_thread_ptid (ecs->ptid);
3255 /* If it's a new thread, add it to the thread database. */
3256 if (ecs->event_thread == NULL)
3257 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3258
3259 /* Disable range stepping. If the next step request could use a
3260 range, this will be end up re-enabled then. */
3261 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3262 }
88ed393a
JK
3263
3264 /* Dependent on valid ECS->EVENT_THREAD. */
3265 adjust_pc_after_break (ecs);
3266
3267 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3268 reinit_frame_cache ();
3269
28736962
PA
3270 breakpoint_retire_moribund ();
3271
2b009048
DJ
3272 /* First, distinguish signals caused by the debugger from signals
3273 that have to do with the program's own actions. Note that
3274 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3275 on the operating system version. Here we detect when a SIGILL or
3276 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3277 something similar for SIGSEGV, since a SIGSEGV will be generated
3278 when we're trying to execute a breakpoint instruction on a
3279 non-executable stack. This happens for call dummy breakpoints
3280 for architectures like SPARC that place call dummies on the
3281 stack. */
2b009048 3282 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3283 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3284 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3285 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3286 {
de0a0249
UW
3287 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3288
3289 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3290 regcache_read_pc (regcache)))
3291 {
3292 if (debug_infrun)
3293 fprintf_unfiltered (gdb_stdlog,
3294 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3295 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3296 }
2b009048
DJ
3297 }
3298
28736962
PA
3299 /* Mark the non-executing threads accordingly. In all-stop, all
3300 threads of all processes are stopped when we get any event
3301 reported. In non-stop mode, only the event thread stops. If
3302 we're handling a process exit in non-stop mode, there's nothing
3303 to do, as threads of the dead process are gone, and threads of
3304 any other process were left running. */
3305 if (!non_stop)
3306 set_executing (minus_one_ptid, 0);
3307 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3308 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3309 set_executing (ecs->ptid, 0);
8c90c137 3310
0d1e5fa7 3311 switch (infwait_state)
488f131b
JB
3312 {
3313 case infwait_thread_hop_state:
527159b7 3314 if (debug_infrun)
8a9de0e4 3315 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3316 break;
b83266a0 3317
488f131b 3318 case infwait_normal_state:
527159b7 3319 if (debug_infrun)
8a9de0e4 3320 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3321 break;
3322
3323 case infwait_step_watch_state:
3324 if (debug_infrun)
3325 fprintf_unfiltered (gdb_stdlog,
3326 "infrun: infwait_step_watch_state\n");
3327
4f5d7f63 3328 ecs->stepped_after_stopped_by_watchpoint = 1;
488f131b 3329 break;
b83266a0 3330
488f131b 3331 case infwait_nonstep_watch_state:
527159b7 3332 if (debug_infrun)
8a9de0e4
AC
3333 fprintf_unfiltered (gdb_stdlog,
3334 "infrun: infwait_nonstep_watch_state\n");
488f131b 3335 insert_breakpoints ();
c906108c 3336
488f131b
JB
3337 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3338 handle things like signals arriving and other things happening
3339 in combination correctly? */
4f5d7f63 3340 ecs->stepped_after_stopped_by_watchpoint = 1;
488f131b 3341 break;
65e82032
AC
3342
3343 default:
e2e0b3e5 3344 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3345 }
ec9499be 3346
0d1e5fa7 3347 infwait_state = infwait_normal_state;
ec9499be 3348 waiton_ptid = pid_to_ptid (-1);
c906108c 3349
488f131b
JB
3350 switch (ecs->ws.kind)
3351 {
3352 case TARGET_WAITKIND_LOADED:
527159b7 3353 if (debug_infrun)
8a9de0e4 3354 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3355 if (!ptid_equal (ecs->ptid, inferior_ptid))
3356 context_switch (ecs->ptid);
b0f4b84b
DJ
3357 /* Ignore gracefully during startup of the inferior, as it might
3358 be the shell which has just loaded some objects, otherwise
3359 add the symbols for the newly loaded objects. Also ignore at
3360 the beginning of an attach or remote session; we will query
3361 the full list of libraries once the connection is
3362 established. */
4f5d7f63
PA
3363
3364 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3365 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3366 {
edcc5120
TT
3367 struct regcache *regcache;
3368
edcc5120
TT
3369 regcache = get_thread_regcache (ecs->ptid);
3370
3371 handle_solib_event ();
3372
3373 ecs->event_thread->control.stop_bpstat
3374 = bpstat_stop_status (get_regcache_aspace (regcache),
3375 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3376
ce12b012 3377 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3378 {
3379 /* A catchpoint triggered. */
94c57d6a
PA
3380 process_event_stop_test (ecs);
3381 return;
edcc5120 3382 }
488f131b 3383
b0f4b84b
DJ
3384 /* If requested, stop when the dynamic linker notifies
3385 gdb of events. This allows the user to get control
3386 and place breakpoints in initializer routines for
3387 dynamically loaded objects (among other things). */
a493e3e2 3388 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3389 if (stop_on_solib_events)
3390 {
55409f9d
DJ
3391 /* Make sure we print "Stopped due to solib-event" in
3392 normal_stop. */
3393 stop_print_frame = 1;
3394
b0f4b84b
DJ
3395 stop_stepping (ecs);
3396 return;
3397 }
488f131b 3398 }
b0f4b84b
DJ
3399
3400 /* If we are skipping through a shell, or through shared library
3401 loading that we aren't interested in, resume the program. If
5c09a2c5 3402 we're running the program normally, also resume. */
b0f4b84b
DJ
3403 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3404 {
74960c60
VP
3405 /* Loading of shared libraries might have changed breakpoint
3406 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3407 if (stop_soon == NO_STOP_QUIETLY
3408 && !breakpoints_always_inserted_mode ())
74960c60 3409 insert_breakpoints ();
a493e3e2 3410 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3411 prepare_to_wait (ecs);
3412 return;
3413 }
3414
5c09a2c5
PA
3415 /* But stop if we're attaching or setting up a remote
3416 connection. */
3417 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3418 || stop_soon == STOP_QUIETLY_REMOTE)
3419 {
3420 if (debug_infrun)
3421 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3422 stop_stepping (ecs);
3423 return;
3424 }
3425
3426 internal_error (__FILE__, __LINE__,
3427 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3428
488f131b 3429 case TARGET_WAITKIND_SPURIOUS:
527159b7 3430 if (debug_infrun)
8a9de0e4 3431 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3432 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3433 context_switch (ecs->ptid);
a493e3e2 3434 resume (0, GDB_SIGNAL_0);
488f131b
JB
3435 prepare_to_wait (ecs);
3436 return;
c5aa993b 3437
488f131b 3438 case TARGET_WAITKIND_EXITED:
940c3c06 3439 case TARGET_WAITKIND_SIGNALLED:
527159b7 3440 if (debug_infrun)
940c3c06
PA
3441 {
3442 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3443 fprintf_unfiltered (gdb_stdlog,
3444 "infrun: TARGET_WAITKIND_EXITED\n");
3445 else
3446 fprintf_unfiltered (gdb_stdlog,
3447 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3448 }
3449
fb66883a 3450 inferior_ptid = ecs->ptid;
6c95b8df
PA
3451 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3452 set_current_program_space (current_inferior ()->pspace);
3453 handle_vfork_child_exec_or_exit (0);
1777feb0 3454 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3455
0c557179
SDJ
3456 /* Clearing any previous state of convenience variables. */
3457 clear_exit_convenience_vars ();
3458
940c3c06
PA
3459 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3460 {
3461 /* Record the exit code in the convenience variable $_exitcode, so
3462 that the user can inspect this again later. */
3463 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3464 (LONGEST) ecs->ws.value.integer);
3465
3466 /* Also record this in the inferior itself. */
3467 current_inferior ()->has_exit_code = 1;
3468 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3469
940c3c06
PA
3470 print_exited_reason (ecs->ws.value.integer);
3471 }
3472 else
0c557179
SDJ
3473 {
3474 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3475 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3476
3477 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3478 {
3479 /* Set the value of the internal variable $_exitsignal,
3480 which holds the signal uncaught by the inferior. */
3481 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3482 gdbarch_gdb_signal_to_target (gdbarch,
3483 ecs->ws.value.sig));
3484 }
3485 else
3486 {
3487 /* We don't have access to the target's method used for
3488 converting between signal numbers (GDB's internal
3489 representation <-> target's representation).
3490 Therefore, we cannot do a good job at displaying this
3491 information to the user. It's better to just warn
3492 her about it (if infrun debugging is enabled), and
3493 give up. */
3494 if (debug_infrun)
3495 fprintf_filtered (gdb_stdlog, _("\
3496Cannot fill $_exitsignal with the correct signal number.\n"));
3497 }
3498
3499 print_signal_exited_reason (ecs->ws.value.sig);
3500 }
8cf64490 3501
488f131b
JB
3502 gdb_flush (gdb_stdout);
3503 target_mourn_inferior ();
1c0fdd0e 3504 singlestep_breakpoints_inserted_p = 0;
d03285ec 3505 cancel_single_step_breakpoints ();
488f131b
JB
3506 stop_print_frame = 0;
3507 stop_stepping (ecs);
3508 return;
c5aa993b 3509
488f131b 3510 /* The following are the only cases in which we keep going;
1777feb0 3511 the above cases end in a continue or goto. */
488f131b 3512 case TARGET_WAITKIND_FORKED:
deb3b17b 3513 case TARGET_WAITKIND_VFORKED:
527159b7 3514 if (debug_infrun)
fed708ed
PA
3515 {
3516 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3517 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3518 else
3519 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3520 }
c906108c 3521
e2d96639
YQ
3522 /* Check whether the inferior is displaced stepping. */
3523 {
3524 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3525 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3526 struct displaced_step_inferior_state *displaced
3527 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3528
3529 /* If checking displaced stepping is supported, and thread
3530 ecs->ptid is displaced stepping. */
3531 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3532 {
3533 struct inferior *parent_inf
3534 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3535 struct regcache *child_regcache;
3536 CORE_ADDR parent_pc;
3537
3538 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3539 indicating that the displaced stepping of syscall instruction
3540 has been done. Perform cleanup for parent process here. Note
3541 that this operation also cleans up the child process for vfork,
3542 because their pages are shared. */
a493e3e2 3543 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3544
3545 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3546 {
3547 /* Restore scratch pad for child process. */
3548 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3549 }
3550
3551 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3552 the child's PC is also within the scratchpad. Set the child's PC
3553 to the parent's PC value, which has already been fixed up.
3554 FIXME: we use the parent's aspace here, although we're touching
3555 the child, because the child hasn't been added to the inferior
3556 list yet at this point. */
3557
3558 child_regcache
3559 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3560 gdbarch,
3561 parent_inf->aspace);
3562 /* Read PC value of parent process. */
3563 parent_pc = regcache_read_pc (regcache);
3564
3565 if (debug_displaced)
3566 fprintf_unfiltered (gdb_stdlog,
3567 "displaced: write child pc from %s to %s\n",
3568 paddress (gdbarch,
3569 regcache_read_pc (child_regcache)),
3570 paddress (gdbarch, parent_pc));
3571
3572 regcache_write_pc (child_regcache, parent_pc);
3573 }
3574 }
3575
5a2901d9 3576 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3577 context_switch (ecs->ptid);
5a2901d9 3578
b242c3c2
PA
3579 /* Immediately detach breakpoints from the child before there's
3580 any chance of letting the user delete breakpoints from the
3581 breakpoint lists. If we don't do this early, it's easy to
3582 leave left over traps in the child, vis: "break foo; catch
3583 fork; c; <fork>; del; c; <child calls foo>". We only follow
3584 the fork on the last `continue', and by that time the
3585 breakpoint at "foo" is long gone from the breakpoint table.
3586 If we vforked, then we don't need to unpatch here, since both
3587 parent and child are sharing the same memory pages; we'll
3588 need to unpatch at follow/detach time instead to be certain
3589 that new breakpoints added between catchpoint hit time and
3590 vfork follow are detached. */
3591 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3592 {
b242c3c2
PA
3593 /* This won't actually modify the breakpoint list, but will
3594 physically remove the breakpoints from the child. */
d80ee84f 3595 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3596 }
3597
d03285ec
UW
3598 if (singlestep_breakpoints_inserted_p)
3599 {
1777feb0 3600 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3601 remove_single_step_breakpoints ();
3602 singlestep_breakpoints_inserted_p = 0;
3603 }
3604
e58b0e63
PA
3605 /* In case the event is caught by a catchpoint, remember that
3606 the event is to be followed at the next resume of the thread,
3607 and not immediately. */
3608 ecs->event_thread->pending_follow = ecs->ws;
3609
fb14de7b 3610 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3611
16c381f0 3612 ecs->event_thread->control.stop_bpstat
6c95b8df 3613 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3614 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3615
ce12b012
PA
3616 /* If no catchpoint triggered for this, then keep going. Note
3617 that we're interested in knowing the bpstat actually causes a
3618 stop, not just if it may explain the signal. Software
3619 watchpoints, for example, always appear in the bpstat. */
3620 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3621 {
6c95b8df
PA
3622 ptid_t parent;
3623 ptid_t child;
e58b0e63 3624 int should_resume;
3e43a32a
MS
3625 int follow_child
3626 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3627
a493e3e2 3628 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3629
3630 should_resume = follow_fork ();
3631
6c95b8df
PA
3632 parent = ecs->ptid;
3633 child = ecs->ws.value.related_pid;
3634
3635 /* In non-stop mode, also resume the other branch. */
3636 if (non_stop && !detach_fork)
3637 {
3638 if (follow_child)
3639 switch_to_thread (parent);
3640 else
3641 switch_to_thread (child);
3642
3643 ecs->event_thread = inferior_thread ();
3644 ecs->ptid = inferior_ptid;
3645 keep_going (ecs);
3646 }
3647
3648 if (follow_child)
3649 switch_to_thread (child);
3650 else
3651 switch_to_thread (parent);
3652
e58b0e63
PA
3653 ecs->event_thread = inferior_thread ();
3654 ecs->ptid = inferior_ptid;
3655
3656 if (should_resume)
3657 keep_going (ecs);
3658 else
3659 stop_stepping (ecs);
04e68871
DJ
3660 return;
3661 }
94c57d6a
PA
3662 process_event_stop_test (ecs);
3663 return;
488f131b 3664
6c95b8df
PA
3665 case TARGET_WAITKIND_VFORK_DONE:
3666 /* Done with the shared memory region. Re-insert breakpoints in
3667 the parent, and keep going. */
3668
3669 if (debug_infrun)
3e43a32a
MS
3670 fprintf_unfiltered (gdb_stdlog,
3671 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3672
3673 if (!ptid_equal (ecs->ptid, inferior_ptid))
3674 context_switch (ecs->ptid);
3675
3676 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3677 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3678 /* This also takes care of reinserting breakpoints in the
3679 previously locked inferior. */
3680 keep_going (ecs);
3681 return;
3682
488f131b 3683 case TARGET_WAITKIND_EXECD:
527159b7 3684 if (debug_infrun)
fc5261f2 3685 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3686
5a2901d9 3687 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3688 context_switch (ecs->ptid);
5a2901d9 3689
d03285ec
UW
3690 singlestep_breakpoints_inserted_p = 0;
3691 cancel_single_step_breakpoints ();
3692
fb14de7b 3693 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3694
6c95b8df
PA
3695 /* Do whatever is necessary to the parent branch of the vfork. */
3696 handle_vfork_child_exec_or_exit (1);
3697
795e548f
PA
3698 /* This causes the eventpoints and symbol table to be reset.
3699 Must do this now, before trying to determine whether to
3700 stop. */
71b43ef8 3701 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3702
16c381f0 3703 ecs->event_thread->control.stop_bpstat
6c95b8df 3704 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3705 stop_pc, ecs->ptid, &ecs->ws);
795e548f 3706
71b43ef8
PA
3707 /* Note that this may be referenced from inside
3708 bpstat_stop_status above, through inferior_has_execd. */
3709 xfree (ecs->ws.value.execd_pathname);
3710 ecs->ws.value.execd_pathname = NULL;
3711
04e68871 3712 /* If no catchpoint triggered for this, then keep going. */
ce12b012 3713 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3714 {
a493e3e2 3715 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3716 keep_going (ecs);
3717 return;
3718 }
94c57d6a
PA
3719 process_event_stop_test (ecs);
3720 return;
488f131b 3721
b4dc5ffa
MK
3722 /* Be careful not to try to gather much state about a thread
3723 that's in a syscall. It's frequently a losing proposition. */
488f131b 3724 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3725 if (debug_infrun)
3e43a32a
MS
3726 fprintf_unfiltered (gdb_stdlog,
3727 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3728 /* Getting the current syscall number. */
94c57d6a
PA
3729 if (handle_syscall_event (ecs) == 0)
3730 process_event_stop_test (ecs);
3731 return;
c906108c 3732
488f131b
JB
3733 /* Before examining the threads further, step this thread to
3734 get it entirely out of the syscall. (We get notice of the
3735 event when the thread is just on the verge of exiting a
3736 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3737 into user code.) */
488f131b 3738 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3739 if (debug_infrun)
3e43a32a
MS
3740 fprintf_unfiltered (gdb_stdlog,
3741 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
3742 if (handle_syscall_event (ecs) == 0)
3743 process_event_stop_test (ecs);
3744 return;
c906108c 3745
488f131b 3746 case TARGET_WAITKIND_STOPPED:
527159b7 3747 if (debug_infrun)
8a9de0e4 3748 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3749 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
3750 handle_signal_stop (ecs);
3751 return;
c906108c 3752
b2175913 3753 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3754 if (debug_infrun)
3755 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3756 /* Reverse execution: target ran out of history info. */
eab402df
PA
3757
3758 /* Pull the single step breakpoints out of the target. */
3759 if (singlestep_breakpoints_inserted_p)
3760 {
3761 if (!ptid_equal (ecs->ptid, inferior_ptid))
3762 context_switch (ecs->ptid);
3763 remove_single_step_breakpoints ();
3764 singlestep_breakpoints_inserted_p = 0;
3765 }
fb14de7b 3766 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3767 print_no_history_reason ();
b2175913
MS
3768 stop_stepping (ecs);
3769 return;
488f131b 3770 }
4f5d7f63
PA
3771}
3772
3773/* Come here when the program has stopped with a signal. */
3774
3775static void
3776handle_signal_stop (struct execution_control_state *ecs)
3777{
3778 struct frame_info *frame;
3779 struct gdbarch *gdbarch;
3780 int stopped_by_watchpoint;
3781 enum stop_kind stop_soon;
3782 int random_signal;
c906108c 3783
f0407826
DE
3784 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
3785
3786 /* Do we need to clean up the state of a thread that has
3787 completed a displaced single-step? (Doing so usually affects
3788 the PC, so do it here, before we set stop_pc.) */
3789 displaced_step_fixup (ecs->ptid,
3790 ecs->event_thread->suspend.stop_signal);
3791
3792 /* If we either finished a single-step or hit a breakpoint, but
3793 the user wanted this thread to be stopped, pretend we got a
3794 SIG0 (generic unsignaled stop). */
3795 if (ecs->event_thread->stop_requested
3796 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3797 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 3798
515630c5 3799 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3800
527159b7 3801 if (debug_infrun)
237fc4c9 3802 {
5af949e3
UW
3803 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3805 struct cleanup *old_chain = save_inferior_ptid ();
3806
3807 inferior_ptid = ecs->ptid;
5af949e3
UW
3808
3809 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3810 paddress (gdbarch, stop_pc));
d92524f1 3811 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3812 {
3813 CORE_ADDR addr;
abbb1732 3814
237fc4c9
PA
3815 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3816
3817 if (target_stopped_data_address (&current_target, &addr))
3818 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3819 "infrun: stopped data address = %s\n",
3820 paddress (gdbarch, addr));
237fc4c9
PA
3821 else
3822 fprintf_unfiltered (gdb_stdlog,
3823 "infrun: (no data address available)\n");
3824 }
7f82dfc7
JK
3825
3826 do_cleanups (old_chain);
237fc4c9 3827 }
527159b7 3828
36fa8042
PA
3829 /* This is originated from start_remote(), start_inferior() and
3830 shared libraries hook functions. */
3831 stop_soon = get_inferior_stop_soon (ecs->ptid);
3832 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3833 {
3834 if (!ptid_equal (ecs->ptid, inferior_ptid))
3835 context_switch (ecs->ptid);
3836 if (debug_infrun)
3837 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3838 stop_print_frame = 1;
3839 stop_stepping (ecs);
3840 return;
3841 }
3842
3843 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3844 && stop_after_trap)
3845 {
3846 if (!ptid_equal (ecs->ptid, inferior_ptid))
3847 context_switch (ecs->ptid);
3848 if (debug_infrun)
3849 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3850 stop_print_frame = 0;
3851 stop_stepping (ecs);
3852 return;
3853 }
3854
3855 /* This originates from attach_command(). We need to overwrite
3856 the stop_signal here, because some kernels don't ignore a
3857 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3858 See more comments in inferior.h. On the other hand, if we
3859 get a non-SIGSTOP, report it to the user - assume the backend
3860 will handle the SIGSTOP if it should show up later.
3861
3862 Also consider that the attach is complete when we see a
3863 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3864 target extended-remote report it instead of a SIGSTOP
3865 (e.g. gdbserver). We already rely on SIGTRAP being our
3866 signal, so this is no exception.
3867
3868 Also consider that the attach is complete when we see a
3869 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3870 the target to stop all threads of the inferior, in case the
3871 low level attach operation doesn't stop them implicitly. If
3872 they weren't stopped implicitly, then the stub will report a
3873 GDB_SIGNAL_0, meaning: stopped for no particular reason
3874 other than GDB's request. */
3875 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3876 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
3877 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3878 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
3879 {
3880 stop_print_frame = 1;
3881 stop_stepping (ecs);
3882 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3883 return;
3884 }
3885
9f976b41
DJ
3886 if (stepping_past_singlestep_breakpoint)
3887 {
1c0fdd0e 3888 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3889 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3890 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3891
3892 stepping_past_singlestep_breakpoint = 0;
3893
3894 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3895 breakpoint, or stopped for some other reason. It would be nice if
3896 we could tell, but we can't reliably. */
a493e3e2 3897 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3898 {
527159b7 3899 if (debug_infrun)
3e43a32a
MS
3900 fprintf_unfiltered (gdb_stdlog,
3901 "infrun: stepping_past_"
3902 "singlestep_breakpoint\n");
9f976b41 3903 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3904 if (!ptid_equal (ecs->ptid, inferior_ptid))
3905 context_switch (ecs->ptid);
e0cd558a 3906 remove_single_step_breakpoints ();
9f976b41
DJ
3907 singlestep_breakpoints_inserted_p = 0;
3908
16c381f0 3909 ecs->event_thread->control.trap_expected = 0;
9f976b41 3910
0d1e5fa7 3911 context_switch (saved_singlestep_ptid);
9a4105ab 3912 if (deprecated_context_hook)
de9f1b68 3913 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
9f976b41 3914
a493e3e2 3915 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3916 prepare_to_wait (ecs);
3917 return;
3918 }
3919 }
3920
ca67fcb8 3921 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3922 {
94cc34af
PA
3923 /* In non-stop mode, there's never a deferred_step_ptid set. */
3924 gdb_assert (!non_stop);
3925
6a6b96b9
UW
3926 /* If we stopped for some other reason than single-stepping, ignore
3927 the fact that we were supposed to switch back. */
a493e3e2 3928 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3929 {
3930 if (debug_infrun)
3931 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3932 "infrun: handling deferred step\n");
6a6b96b9
UW
3933
3934 /* Pull the single step breakpoints out of the target. */
3935 if (singlestep_breakpoints_inserted_p)
3936 {
8b3ee56d
PA
3937 if (!ptid_equal (ecs->ptid, inferior_ptid))
3938 context_switch (ecs->ptid);
6a6b96b9
UW
3939 remove_single_step_breakpoints ();
3940 singlestep_breakpoints_inserted_p = 0;
3941 }
3942
cd3da28e
PA
3943 ecs->event_thread->control.trap_expected = 0;
3944
d25f45d9 3945 context_switch (deferred_step_ptid);
ca67fcb8 3946 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3947 /* Suppress spurious "Switching to ..." message. */
3948 previous_inferior_ptid = inferior_ptid;
3949
a493e3e2 3950 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3951 prepare_to_wait (ecs);
3952 return;
3953 }
ca67fcb8
VP
3954
3955 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3956 }
3957
488f131b
JB
3958 /* See if a thread hit a thread-specific breakpoint that was meant for
3959 another thread. If so, then step that thread past the breakpoint,
3960 and continue it. */
3961
a493e3e2 3962 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3963 {
9f976b41 3964 int thread_hop_needed = 0;
cf00dfa7
VP
3965 struct address_space *aspace =
3966 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3967
f8d40ec8 3968 /* Check if a regular breakpoint has been hit before checking
1777feb0 3969 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3970 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3971 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3972 {
6c95b8df 3973 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3974 thread_hop_needed = 1;
3975 }
1c0fdd0e 3976 else if (singlestep_breakpoints_inserted_p)
9f976b41 3977 {
fd48f117
DJ
3978 /* We have not context switched yet, so this should be true
3979 no matter which thread hit the singlestep breakpoint. */
3980 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3981 if (debug_infrun)
3982 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3983 "trap for %s\n",
3984 target_pid_to_str (ecs->ptid));
3985
9f976b41
DJ
3986 /* The call to in_thread_list is necessary because PTIDs sometimes
3987 change when we go from single-threaded to multi-threaded. If
3988 the singlestep_ptid is still in the list, assume that it is
3989 really different from ecs->ptid. */
3990 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3991 && in_thread_list (singlestep_ptid))
3992 {
fd48f117
DJ
3993 /* If the PC of the thread we were trying to single-step
3994 has changed, discard this event (which we were going
3995 to ignore anyway), and pretend we saw that thread
3996 trap. This prevents us continuously moving the
3997 single-step breakpoint forward, one instruction at a
3998 time. If the PC has changed, then the thread we were
3999 trying to single-step has trapped or been signalled,
4000 but the event has not been reported to GDB yet.
4001
4002 There might be some cases where this loses signal
4003 information, if a signal has arrived at exactly the
4004 same time that the PC changed, but this is the best
4005 we can do with the information available. Perhaps we
4006 should arrange to report all events for all threads
4007 when they stop, or to re-poll the remote looking for
4008 this particular thread (i.e. temporarily enable
4009 schedlock). */
515630c5
UW
4010
4011 CORE_ADDR new_singlestep_pc
4012 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
4013
4014 if (new_singlestep_pc != singlestep_pc)
fd48f117 4015 {
2ea28649 4016 enum gdb_signal stop_signal;
2020b7ab 4017
fd48f117
DJ
4018 if (debug_infrun)
4019 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
4020 " but expected thread advanced also\n");
4021
4022 /* The current context still belongs to
4023 singlestep_ptid. Don't swap here, since that's
4024 the context we want to use. Just fudge our
4025 state and continue. */
16c381f0 4026 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 4027 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 4028 ecs->ptid = singlestep_ptid;
e09875d4 4029 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 4030 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 4031 stop_pc = new_singlestep_pc;
fd48f117
DJ
4032 }
4033 else
4034 {
4035 if (debug_infrun)
4036 fprintf_unfiltered (gdb_stdlog,
4037 "infrun: unexpected thread\n");
4038
4039 thread_hop_needed = 1;
4040 stepping_past_singlestep_breakpoint = 1;
4041 saved_singlestep_ptid = singlestep_ptid;
4042 }
9f976b41
DJ
4043 }
4044 }
4045
4046 if (thread_hop_needed)
8fb3e588 4047 {
9f5a595d 4048 struct regcache *thread_regcache;
237fc4c9 4049 int remove_status = 0;
8fb3e588 4050
527159b7 4051 if (debug_infrun)
8a9de0e4 4052 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 4053
b3444185
PA
4054 /* Switch context before touching inferior memory, the
4055 previous thread may have exited. */
4056 if (!ptid_equal (inferior_ptid, ecs->ptid))
4057 context_switch (ecs->ptid);
4058
8fb3e588 4059 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 4060 Just continue. */
8fb3e588 4061
1c0fdd0e 4062 if (singlestep_breakpoints_inserted_p)
488f131b 4063 {
1777feb0 4064 /* Pull the single step breakpoints out of the target. */
e0cd558a 4065 remove_single_step_breakpoints ();
8fb3e588
AC
4066 singlestep_breakpoints_inserted_p = 0;
4067 }
4068
237fc4c9
PA
4069 /* If the arch can displace step, don't remove the
4070 breakpoints. */
9f5a595d
UW
4071 thread_regcache = get_thread_regcache (ecs->ptid);
4072 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
4073 remove_status = remove_breakpoints ();
4074
8fb3e588
AC
4075 /* Did we fail to remove breakpoints? If so, try
4076 to set the PC past the bp. (There's at least
4077 one situation in which we can fail to remove
4078 the bp's: On HP-UX's that use ttrace, we can't
4079 change the address space of a vforking child
4080 process until the child exits (well, okay, not
1777feb0 4081 then either :-) or execs. */
8fb3e588 4082 if (remove_status != 0)
9d9cd7ac 4083 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
4084 else
4085 { /* Single step */
94cc34af
PA
4086 if (!non_stop)
4087 {
4088 /* Only need to require the next event from this
4089 thread in all-stop mode. */
4090 waiton_ptid = ecs->ptid;
4091 infwait_state = infwait_thread_hop_state;
4092 }
8fb3e588 4093
4e1c45ea 4094 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 4095 keep_going (ecs);
8fb3e588
AC
4096 return;
4097 }
488f131b
JB
4098 }
4099 }
c906108c 4100
488f131b 4101 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4102 so, then switch to that thread. */
4103 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4104 {
527159b7 4105 if (debug_infrun)
8a9de0e4 4106 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4107
0d1e5fa7 4108 context_switch (ecs->ptid);
c5aa993b 4109
9a4105ab
AC
4110 if (deprecated_context_hook)
4111 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4112 }
c906108c 4113
568d6575
UW
4114 /* At this point, get hold of the now-current thread's frame. */
4115 frame = get_current_frame ();
4116 gdbarch = get_frame_arch (frame);
4117
1c0fdd0e 4118 if (singlestep_breakpoints_inserted_p)
488f131b 4119 {
1777feb0 4120 /* Pull the single step breakpoints out of the target. */
e0cd558a 4121 remove_single_step_breakpoints ();
488f131b
JB
4122 singlestep_breakpoints_inserted_p = 0;
4123 }
c906108c 4124
4f5d7f63 4125 if (ecs->stepped_after_stopped_by_watchpoint)
d983da9c
DJ
4126 stopped_by_watchpoint = 0;
4127 else
4128 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4129
4130 /* If necessary, step over this watchpoint. We'll be back to display
4131 it in a moment. */
4132 if (stopped_by_watchpoint
d92524f1 4133 && (target_have_steppable_watchpoint
568d6575 4134 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4135 {
488f131b
JB
4136 /* At this point, we are stopped at an instruction which has
4137 attempted to write to a piece of memory under control of
4138 a watchpoint. The instruction hasn't actually executed
4139 yet. If we were to evaluate the watchpoint expression
4140 now, we would get the old value, and therefore no change
4141 would seem to have occurred.
4142
4143 In order to make watchpoints work `right', we really need
4144 to complete the memory write, and then evaluate the
d983da9c
DJ
4145 watchpoint expression. We do this by single-stepping the
4146 target.
4147
4148 It may not be necessary to disable the watchpoint to stop over
4149 it. For example, the PA can (with some kernel cooperation)
4150 single step over a watchpoint without disabling the watchpoint.
4151
4152 It is far more common to need to disable a watchpoint to step
4153 the inferior over it. If we have non-steppable watchpoints,
4154 we must disable the current watchpoint; it's simplest to
4155 disable all watchpoints and breakpoints. */
2facfe5c
DD
4156 int hw_step = 1;
4157
d92524f1 4158 if (!target_have_steppable_watchpoint)
2455069d
UW
4159 {
4160 remove_breakpoints ();
4161 /* See comment in resume why we need to stop bypassing signals
4162 while breakpoints have been removed. */
4163 target_pass_signals (0, NULL);
4164 }
2facfe5c 4165 /* Single step */
568d6575 4166 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4167 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4168 waiton_ptid = ecs->ptid;
d92524f1 4169 if (target_have_steppable_watchpoint)
0d1e5fa7 4170 infwait_state = infwait_step_watch_state;
d983da9c 4171 else
0d1e5fa7 4172 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4173 prepare_to_wait (ecs);
4174 return;
4175 }
4176
4e1c45ea 4177 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4178 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4179 ecs->event_thread->control.stop_step = 0;
488f131b 4180 stop_print_frame = 1;
488f131b 4181 stopped_by_random_signal = 0;
488f131b 4182
edb3359d
DJ
4183 /* Hide inlined functions starting here, unless we just performed stepi or
4184 nexti. After stepi and nexti, always show the innermost frame (not any
4185 inline function call sites). */
16c381f0 4186 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4187 {
4188 struct address_space *aspace =
4189 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4190
4191 /* skip_inline_frames is expensive, so we avoid it if we can
4192 determine that the address is one where functions cannot have
4193 been inlined. This improves performance with inferiors that
4194 load a lot of shared libraries, because the solib event
4195 breakpoint is defined as the address of a function (i.e. not
4196 inline). Note that we have to check the previous PC as well
4197 as the current one to catch cases when we have just
4198 single-stepped off a breakpoint prior to reinstating it.
4199 Note that we're assuming that the code we single-step to is
4200 not inline, but that's not definitive: there's nothing
4201 preventing the event breakpoint function from containing
4202 inlined code, and the single-step ending up there. If the
4203 user had set a breakpoint on that inlined code, the missing
4204 skip_inline_frames call would break things. Fortunately
4205 that's an extremely unlikely scenario. */
09ac7c10 4206 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4207 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4208 && ecs->event_thread->control.trap_expected
4209 && pc_at_non_inline_function (aspace,
4210 ecs->event_thread->prev_pc,
09ac7c10 4211 &ecs->ws)))
1c5a993e
MR
4212 {
4213 skip_inline_frames (ecs->ptid);
4214
4215 /* Re-fetch current thread's frame in case that invalidated
4216 the frame cache. */
4217 frame = get_current_frame ();
4218 gdbarch = get_frame_arch (frame);
4219 }
0574c78f 4220 }
edb3359d 4221
a493e3e2 4222 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4223 && ecs->event_thread->control.trap_expected
568d6575 4224 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4225 && currently_stepping (ecs->event_thread))
3352ef37 4226 {
b50d7442 4227 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4228 also on an instruction that needs to be stepped multiple
1777feb0 4229 times before it's been fully executing. E.g., architectures
3352ef37
AC
4230 with a delay slot. It needs to be stepped twice, once for
4231 the instruction and once for the delay slot. */
4232 int step_through_delay
568d6575 4233 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4234
527159b7 4235 if (debug_infrun && step_through_delay)
8a9de0e4 4236 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4237 if (ecs->event_thread->control.step_range_end == 0
4238 && step_through_delay)
3352ef37
AC
4239 {
4240 /* The user issued a continue when stopped at a breakpoint.
4241 Set up for another trap and get out of here. */
4e1c45ea 4242 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4243 keep_going (ecs);
4244 return;
4245 }
4246 else if (step_through_delay)
4247 {
4248 /* The user issued a step when stopped at a breakpoint.
4249 Maybe we should stop, maybe we should not - the delay
4250 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4251 case, don't decide that here, just set
4252 ecs->stepping_over_breakpoint, making sure we
4253 single-step again before breakpoints are re-inserted. */
4e1c45ea 4254 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4255 }
4256 }
4257
ab04a2af
TT
4258 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4259 handles this event. */
4260 ecs->event_thread->control.stop_bpstat
4261 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4262 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4263
ab04a2af
TT
4264 /* Following in case break condition called a
4265 function. */
4266 stop_print_frame = 1;
73dd234f 4267
ab04a2af
TT
4268 /* This is where we handle "moribund" watchpoints. Unlike
4269 software breakpoints traps, hardware watchpoint traps are
4270 always distinguishable from random traps. If no high-level
4271 watchpoint is associated with the reported stop data address
4272 anymore, then the bpstat does not explain the signal ---
4273 simply make sure to ignore it if `stopped_by_watchpoint' is
4274 set. */
4275
4276 if (debug_infrun
4277 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4278 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4279 GDB_SIGNAL_TRAP)
ab04a2af
TT
4280 && stopped_by_watchpoint)
4281 fprintf_unfiltered (gdb_stdlog,
4282 "infrun: no user watchpoint explains "
4283 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4284
bac7d97b 4285 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4286 at one stage in the past included checks for an inferior
4287 function call's call dummy's return breakpoint. The original
4288 comment, that went with the test, read:
03cebad2 4289
ab04a2af
TT
4290 ``End of a stack dummy. Some systems (e.g. Sony news) give
4291 another signal besides SIGTRAP, so check here as well as
4292 above.''
73dd234f 4293
ab04a2af
TT
4294 If someone ever tries to get call dummys on a
4295 non-executable stack to work (where the target would stop
4296 with something like a SIGSEGV), then those tests might need
4297 to be re-instated. Given, however, that the tests were only
4298 enabled when momentary breakpoints were not being used, I
4299 suspect that it won't be the case.
488f131b 4300
ab04a2af
TT
4301 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4302 be necessary for call dummies on a non-executable stack on
4303 SPARC. */
488f131b 4304
bac7d97b 4305 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4306 random_signal
4307 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4308 ecs->event_thread->suspend.stop_signal);
bac7d97b
PA
4309
4310 /* If not, perhaps stepping/nexting can. */
4311 if (random_signal)
4312 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4313 && currently_stepping (ecs->event_thread));
ab04a2af 4314
bac7d97b
PA
4315 /* No? Perhaps we got a moribund watchpoint. */
4316 if (random_signal)
4317 random_signal = !stopped_by_watchpoint;
ab04a2af 4318
488f131b
JB
4319 /* For the program's own signals, act according to
4320 the signal handling tables. */
4321
ce12b012 4322 if (random_signal)
488f131b
JB
4323 {
4324 /* Signal not for debugging purposes. */
4325 int printed = 0;
24291992 4326 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4327 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4328
527159b7 4329 if (debug_infrun)
c9737c08
PA
4330 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4331 gdb_signal_to_symbol_string (stop_signal));
527159b7 4332
488f131b
JB
4333 stopped_by_random_signal = 1;
4334
16c381f0 4335 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4336 {
4337 printed = 1;
4338 target_terminal_ours_for_output ();
16c381f0
JK
4339 print_signal_received_reason
4340 (ecs->event_thread->suspend.stop_signal);
488f131b 4341 }
252fbfc8
PA
4342 /* Always stop on signals if we're either just gaining control
4343 of the program, or the user explicitly requested this thread
4344 to remain stopped. */
d6b48e9c 4345 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4346 || ecs->event_thread->stop_requested
24291992 4347 || (!inf->detaching
16c381f0 4348 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4349 {
4350 stop_stepping (ecs);
4351 return;
4352 }
4353 /* If not going to stop, give terminal back
4354 if we took it away. */
4355 else if (printed)
4356 target_terminal_inferior ();
4357
4358 /* Clear the signal if it should not be passed. */
16c381f0 4359 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4360 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4361
fb14de7b 4362 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4363 && ecs->event_thread->control.trap_expected
8358c15c 4364 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4365 {
4366 /* We were just starting a new sequence, attempting to
4367 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4368 Instead this signal arrives. This signal will take us out
68f53502
AC
4369 of the stepping range so GDB needs to remember to, when
4370 the signal handler returns, resume stepping off that
4371 breakpoint. */
4372 /* To simplify things, "continue" is forced to use the same
4373 code paths as single-step - set a breakpoint at the
4374 signal return address and then, once hit, step off that
4375 breakpoint. */
237fc4c9
PA
4376 if (debug_infrun)
4377 fprintf_unfiltered (gdb_stdlog,
4378 "infrun: signal arrived while stepping over "
4379 "breakpoint\n");
d3169d93 4380
2c03e5be 4381 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4382 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4383 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4384 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
4385
4386 /* If we were nexting/stepping some other thread, switch to
4387 it, so that we don't continue it, losing control. */
4388 if (!switch_back_to_stepped_thread (ecs))
4389 keep_going (ecs);
9d799f85 4390 return;
68f53502 4391 }
9d799f85 4392
16c381f0 4393 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4394 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4395 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4396 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4397 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4398 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4399 {
4400 /* The inferior is about to take a signal that will take it
4401 out of the single step range. Set a breakpoint at the
4402 current PC (which is presumably where the signal handler
4403 will eventually return) and then allow the inferior to
4404 run free.
4405
4406 Note that this is only needed for a signal delivered
4407 while in the single-step range. Nested signals aren't a
4408 problem as they eventually all return. */
237fc4c9
PA
4409 if (debug_infrun)
4410 fprintf_unfiltered (gdb_stdlog,
4411 "infrun: signal may take us out of "
4412 "single-step range\n");
4413
2c03e5be 4414 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4415 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4416 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4417 keep_going (ecs);
4418 return;
d303a6c7 4419 }
9d799f85
AC
4420
4421 /* Note: step_resume_breakpoint may be non-NULL. This occures
4422 when either there's a nested signal, or when there's a
4423 pending signal enabled just as the signal handler returns
4424 (leaving the inferior at the step-resume-breakpoint without
4425 actually executing it). Either way continue until the
4426 breakpoint is really hit. */
c447ac0b
PA
4427
4428 if (!switch_back_to_stepped_thread (ecs))
4429 {
4430 if (debug_infrun)
4431 fprintf_unfiltered (gdb_stdlog,
4432 "infrun: random signal, keep going\n");
4433
4434 keep_going (ecs);
4435 }
4436 return;
488f131b 4437 }
94c57d6a
PA
4438
4439 process_event_stop_test (ecs);
4440}
4441
4442/* Come here when we've got some debug event / signal we can explain
4443 (IOW, not a random signal), and test whether it should cause a
4444 stop, or whether we should resume the inferior (transparently).
4445 E.g., could be a breakpoint whose condition evaluates false; we
4446 could be still stepping within the line; etc. */
4447
4448static void
4449process_event_stop_test (struct execution_control_state *ecs)
4450{
4451 struct symtab_and_line stop_pc_sal;
4452 struct frame_info *frame;
4453 struct gdbarch *gdbarch;
cdaa5b73
PA
4454 CORE_ADDR jmp_buf_pc;
4455 struct bpstat_what what;
94c57d6a 4456
cdaa5b73 4457 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4458
cdaa5b73
PA
4459 frame = get_current_frame ();
4460 gdbarch = get_frame_arch (frame);
fcf3daef 4461
cdaa5b73 4462 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4463
cdaa5b73
PA
4464 if (what.call_dummy)
4465 {
4466 stop_stack_dummy = what.call_dummy;
4467 }
186c406b 4468
cdaa5b73
PA
4469 /* If we hit an internal event that triggers symbol changes, the
4470 current frame will be invalidated within bpstat_what (e.g., if we
4471 hit an internal solib event). Re-fetch it. */
4472 frame = get_current_frame ();
4473 gdbarch = get_frame_arch (frame);
e2e4d78b 4474
cdaa5b73
PA
4475 switch (what.main_action)
4476 {
4477 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4478 /* If we hit the breakpoint at longjmp while stepping, we
4479 install a momentary breakpoint at the target of the
4480 jmp_buf. */
186c406b 4481
cdaa5b73
PA
4482 if (debug_infrun)
4483 fprintf_unfiltered (gdb_stdlog,
4484 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4485
cdaa5b73 4486 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4487
cdaa5b73
PA
4488 if (what.is_longjmp)
4489 {
4490 struct value *arg_value;
4491
4492 /* If we set the longjmp breakpoint via a SystemTap probe,
4493 then use it to extract the arguments. The destination PC
4494 is the third argument to the probe. */
4495 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4496 if (arg_value)
4497 jmp_buf_pc = value_as_address (arg_value);
4498 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4499 || !gdbarch_get_longjmp_target (gdbarch,
4500 frame, &jmp_buf_pc))
e2e4d78b 4501 {
cdaa5b73
PA
4502 if (debug_infrun)
4503 fprintf_unfiltered (gdb_stdlog,
4504 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4505 "(!gdbarch_get_longjmp_target)\n");
4506 keep_going (ecs);
4507 return;
e2e4d78b 4508 }
e2e4d78b 4509
cdaa5b73
PA
4510 /* Insert a breakpoint at resume address. */
4511 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4512 }
4513 else
4514 check_exception_resume (ecs, frame);
4515 keep_going (ecs);
4516 return;
e81a37f7 4517
cdaa5b73
PA
4518 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4519 {
4520 struct frame_info *init_frame;
e81a37f7 4521
cdaa5b73 4522 /* There are several cases to consider.
c906108c 4523
cdaa5b73
PA
4524 1. The initiating frame no longer exists. In this case we
4525 must stop, because the exception or longjmp has gone too
4526 far.
2c03e5be 4527
cdaa5b73
PA
4528 2. The initiating frame exists, and is the same as the
4529 current frame. We stop, because the exception or longjmp
4530 has been caught.
2c03e5be 4531
cdaa5b73
PA
4532 3. The initiating frame exists and is different from the
4533 current frame. This means the exception or longjmp has
4534 been caught beneath the initiating frame, so keep going.
c906108c 4535
cdaa5b73
PA
4536 4. longjmp breakpoint has been placed just to protect
4537 against stale dummy frames and user is not interested in
4538 stopping around longjmps. */
c5aa993b 4539
cdaa5b73
PA
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4543
cdaa5b73
PA
4544 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4545 != NULL);
4546 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4547
cdaa5b73
PA
4548 if (what.is_longjmp)
4549 {
4550 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4551
cdaa5b73 4552 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4553 {
cdaa5b73
PA
4554 /* Case 4. */
4555 keep_going (ecs);
4556 return;
e5ef252a 4557 }
cdaa5b73 4558 }
c5aa993b 4559
cdaa5b73 4560 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4561
cdaa5b73
PA
4562 if (init_frame)
4563 {
4564 struct frame_id current_id
4565 = get_frame_id (get_current_frame ());
4566 if (frame_id_eq (current_id,
4567 ecs->event_thread->initiating_frame))
4568 {
4569 /* Case 2. Fall through. */
4570 }
4571 else
4572 {
4573 /* Case 3. */
4574 keep_going (ecs);
4575 return;
4576 }
68f53502 4577 }
488f131b 4578
cdaa5b73
PA
4579 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4580 exists. */
4581 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4582
cdaa5b73
PA
4583 ecs->event_thread->control.stop_step = 1;
4584 print_end_stepping_range_reason ();
4585 stop_stepping (ecs);
4586 }
4587 return;
e5ef252a 4588
cdaa5b73
PA
4589 case BPSTAT_WHAT_SINGLE:
4590 if (debug_infrun)
4591 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4592 ecs->event_thread->stepping_over_breakpoint = 1;
4593 /* Still need to check other stuff, at least the case where we
4594 are stepping and step out of the right range. */
4595 break;
e5ef252a 4596
cdaa5b73
PA
4597 case BPSTAT_WHAT_STEP_RESUME:
4598 if (debug_infrun)
4599 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4600
cdaa5b73
PA
4601 delete_step_resume_breakpoint (ecs->event_thread);
4602 if (ecs->event_thread->control.proceed_to_finish
4603 && execution_direction == EXEC_REVERSE)
4604 {
4605 struct thread_info *tp = ecs->event_thread;
4606
4607 /* We are finishing a function in reverse, and just hit the
4608 step-resume breakpoint at the start address of the
4609 function, and we're almost there -- just need to back up
4610 by one more single-step, which should take us back to the
4611 function call. */
4612 tp->control.step_range_start = tp->control.step_range_end = 1;
4613 keep_going (ecs);
e5ef252a 4614 return;
cdaa5b73
PA
4615 }
4616 fill_in_stop_func (gdbarch, ecs);
4617 if (stop_pc == ecs->stop_func_start
4618 && execution_direction == EXEC_REVERSE)
4619 {
4620 /* We are stepping over a function call in reverse, and just
4621 hit the step-resume breakpoint at the start address of
4622 the function. Go back to single-stepping, which should
4623 take us back to the function call. */
4624 ecs->event_thread->stepping_over_breakpoint = 1;
4625 keep_going (ecs);
4626 return;
4627 }
4628 break;
e5ef252a 4629
cdaa5b73
PA
4630 case BPSTAT_WHAT_STOP_NOISY:
4631 if (debug_infrun)
4632 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4633 stop_print_frame = 1;
e5ef252a 4634
cdaa5b73
PA
4635 /* We are about to nuke the step_resume_breakpointt via the
4636 cleanup chain, so no need to worry about it here. */
e5ef252a 4637
cdaa5b73
PA
4638 stop_stepping (ecs);
4639 return;
e5ef252a 4640
cdaa5b73
PA
4641 case BPSTAT_WHAT_STOP_SILENT:
4642 if (debug_infrun)
4643 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4644 stop_print_frame = 0;
e5ef252a 4645
cdaa5b73
PA
4646 /* We are about to nuke the step_resume_breakpoin via the
4647 cleanup chain, so no need to worry about it here. */
e5ef252a 4648
cdaa5b73
PA
4649 stop_stepping (ecs);
4650 return;
4651
4652 case BPSTAT_WHAT_HP_STEP_RESUME:
4653 if (debug_infrun)
4654 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4655
4656 delete_step_resume_breakpoint (ecs->event_thread);
4657 if (ecs->event_thread->step_after_step_resume_breakpoint)
4658 {
4659 /* Back when the step-resume breakpoint was inserted, we
4660 were trying to single-step off a breakpoint. Go back to
4661 doing that. */
4662 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4663 ecs->event_thread->stepping_over_breakpoint = 1;
4664 keep_going (ecs);
4665 return;
e5ef252a 4666 }
cdaa5b73
PA
4667 break;
4668
4669 case BPSTAT_WHAT_KEEP_CHECKING:
4670 break;
e5ef252a 4671 }
c906108c 4672
cdaa5b73
PA
4673 /* We come here if we hit a breakpoint but should not stop for it.
4674 Possibly we also were stepping and should stop for that. So fall
4675 through and test for stepping. But, if not stepping, do not
4676 stop. */
c906108c 4677
a7212384
UW
4678 /* In all-stop mode, if we're currently stepping but have stopped in
4679 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4680 if (switch_back_to_stepped_thread (ecs))
4681 return;
776f04fa 4682
8358c15c 4683 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4684 {
527159b7 4685 if (debug_infrun)
d3169d93
DJ
4686 fprintf_unfiltered (gdb_stdlog,
4687 "infrun: step-resume breakpoint is inserted\n");
527159b7 4688
488f131b
JB
4689 /* Having a step-resume breakpoint overrides anything
4690 else having to do with stepping commands until
4691 that breakpoint is reached. */
488f131b
JB
4692 keep_going (ecs);
4693 return;
4694 }
c5aa993b 4695
16c381f0 4696 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4697 {
527159b7 4698 if (debug_infrun)
8a9de0e4 4699 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4700 /* Likewise if we aren't even stepping. */
488f131b
JB
4701 keep_going (ecs);
4702 return;
4703 }
c5aa993b 4704
4b7703ad
JB
4705 /* Re-fetch current thread's frame in case the code above caused
4706 the frame cache to be re-initialized, making our FRAME variable
4707 a dangling pointer. */
4708 frame = get_current_frame ();
628fe4e4 4709 gdbarch = get_frame_arch (frame);
7e324e48 4710 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4711
488f131b 4712 /* If stepping through a line, keep going if still within it.
c906108c 4713
488f131b
JB
4714 Note that step_range_end is the address of the first instruction
4715 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4716 within it!
4717
4718 Note also that during reverse execution, we may be stepping
4719 through a function epilogue and therefore must detect when
4720 the current-frame changes in the middle of a line. */
4721
ce4c476a 4722 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4723 && (execution_direction != EXEC_REVERSE
388a8562 4724 || frame_id_eq (get_frame_id (frame),
16c381f0 4725 ecs->event_thread->control.step_frame_id)))
488f131b 4726 {
527159b7 4727 if (debug_infrun)
5af949e3
UW
4728 fprintf_unfiltered
4729 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4730 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4731 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4732
c1e36e3e
PA
4733 /* Tentatively re-enable range stepping; `resume' disables it if
4734 necessary (e.g., if we're stepping over a breakpoint or we
4735 have software watchpoints). */
4736 ecs->event_thread->control.may_range_step = 1;
4737
b2175913
MS
4738 /* When stepping backward, stop at beginning of line range
4739 (unless it's the function entry point, in which case
4740 keep going back to the call point). */
16c381f0 4741 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4742 && stop_pc != ecs->stop_func_start
4743 && execution_direction == EXEC_REVERSE)
4744 {
16c381f0 4745 ecs->event_thread->control.stop_step = 1;
33d62d64 4746 print_end_stepping_range_reason ();
b2175913
MS
4747 stop_stepping (ecs);
4748 }
4749 else
4750 keep_going (ecs);
4751
488f131b
JB
4752 return;
4753 }
c5aa993b 4754
488f131b 4755 /* We stepped out of the stepping range. */
c906108c 4756
488f131b 4757 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4758 loader dynamic symbol resolution code...
4759
4760 EXEC_FORWARD: we keep on single stepping until we exit the run
4761 time loader code and reach the callee's address.
4762
4763 EXEC_REVERSE: we've already executed the callee (backward), and
4764 the runtime loader code is handled just like any other
4765 undebuggable function call. Now we need only keep stepping
4766 backward through the trampoline code, and that's handled further
4767 down, so there is nothing for us to do here. */
4768
4769 if (execution_direction != EXEC_REVERSE
16c381f0 4770 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4771 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4772 {
4c8c40e6 4773 CORE_ADDR pc_after_resolver =
568d6575 4774 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4775
527159b7 4776 if (debug_infrun)
3e43a32a
MS
4777 fprintf_unfiltered (gdb_stdlog,
4778 "infrun: stepped into dynsym resolve code\n");
527159b7 4779
488f131b
JB
4780 if (pc_after_resolver)
4781 {
4782 /* Set up a step-resume breakpoint at the address
4783 indicated by SKIP_SOLIB_RESOLVER. */
4784 struct symtab_and_line sr_sal;
abbb1732 4785
fe39c653 4786 init_sal (&sr_sal);
488f131b 4787 sr_sal.pc = pc_after_resolver;
6c95b8df 4788 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4789
a6d9a66e
UW
4790 insert_step_resume_breakpoint_at_sal (gdbarch,
4791 sr_sal, null_frame_id);
c5aa993b 4792 }
c906108c 4793
488f131b
JB
4794 keep_going (ecs);
4795 return;
4796 }
c906108c 4797
16c381f0
JK
4798 if (ecs->event_thread->control.step_range_end != 1
4799 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4800 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4801 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4802 {
527159b7 4803 if (debug_infrun)
3e43a32a
MS
4804 fprintf_unfiltered (gdb_stdlog,
4805 "infrun: stepped into signal trampoline\n");
42edda50 4806 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4807 a signal trampoline (either by a signal being delivered or by
4808 the signal handler returning). Just single-step until the
4809 inferior leaves the trampoline (either by calling the handler
4810 or returning). */
488f131b
JB
4811 keep_going (ecs);
4812 return;
4813 }
c906108c 4814
14132e89
MR
4815 /* If we're in the return path from a shared library trampoline,
4816 we want to proceed through the trampoline when stepping. */
4817 /* macro/2012-04-25: This needs to come before the subroutine
4818 call check below as on some targets return trampolines look
4819 like subroutine calls (MIPS16 return thunks). */
4820 if (gdbarch_in_solib_return_trampoline (gdbarch,
4821 stop_pc, ecs->stop_func_name)
4822 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4823 {
4824 /* Determine where this trampoline returns. */
4825 CORE_ADDR real_stop_pc;
4826
4827 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4828
4829 if (debug_infrun)
4830 fprintf_unfiltered (gdb_stdlog,
4831 "infrun: stepped into solib return tramp\n");
4832
4833 /* Only proceed through if we know where it's going. */
4834 if (real_stop_pc)
4835 {
4836 /* And put the step-breakpoint there and go until there. */
4837 struct symtab_and_line sr_sal;
4838
4839 init_sal (&sr_sal); /* initialize to zeroes */
4840 sr_sal.pc = real_stop_pc;
4841 sr_sal.section = find_pc_overlay (sr_sal.pc);
4842 sr_sal.pspace = get_frame_program_space (frame);
4843
4844 /* Do not specify what the fp should be when we stop since
4845 on some machines the prologue is where the new fp value
4846 is established. */
4847 insert_step_resume_breakpoint_at_sal (gdbarch,
4848 sr_sal, null_frame_id);
4849
4850 /* Restart without fiddling with the step ranges or
4851 other state. */
4852 keep_going (ecs);
4853 return;
4854 }
4855 }
4856
c17eaafe
DJ
4857 /* Check for subroutine calls. The check for the current frame
4858 equalling the step ID is not necessary - the check of the
4859 previous frame's ID is sufficient - but it is a common case and
4860 cheaper than checking the previous frame's ID.
14e60db5
DJ
4861
4862 NOTE: frame_id_eq will never report two invalid frame IDs as
4863 being equal, so to get into this block, both the current and
4864 previous frame must have valid frame IDs. */
005ca36a
JB
4865 /* The outer_frame_id check is a heuristic to detect stepping
4866 through startup code. If we step over an instruction which
4867 sets the stack pointer from an invalid value to a valid value,
4868 we may detect that as a subroutine call from the mythical
4869 "outermost" function. This could be fixed by marking
4870 outermost frames as !stack_p,code_p,special_p. Then the
4871 initial outermost frame, before sp was valid, would
ce6cca6d 4872 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4873 for more. */
edb3359d 4874 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4875 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4876 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4877 ecs->event_thread->control.step_stack_frame_id)
4878 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4879 outer_frame_id)
4880 || step_start_function != find_pc_function (stop_pc))))
488f131b 4881 {
95918acb 4882 CORE_ADDR real_stop_pc;
8fb3e588 4883
527159b7 4884 if (debug_infrun)
8a9de0e4 4885 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4886
16c381f0
JK
4887 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4888 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4889 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4890 ecs->stop_func_start)))
95918acb
AC
4891 {
4892 /* I presume that step_over_calls is only 0 when we're
4893 supposed to be stepping at the assembly language level
4894 ("stepi"). Just stop. */
4895 /* Also, maybe we just did a "nexti" inside a prolog, so we
4896 thought it was a subroutine call but it was not. Stop as
4897 well. FENN */
388a8562 4898 /* And this works the same backward as frontward. MVS */
16c381f0 4899 ecs->event_thread->control.stop_step = 1;
33d62d64 4900 print_end_stepping_range_reason ();
95918acb
AC
4901 stop_stepping (ecs);
4902 return;
4903 }
8fb3e588 4904
388a8562
MS
4905 /* Reverse stepping through solib trampolines. */
4906
4907 if (execution_direction == EXEC_REVERSE
16c381f0 4908 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4909 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4910 || (ecs->stop_func_start == 0
4911 && in_solib_dynsym_resolve_code (stop_pc))))
4912 {
4913 /* Any solib trampoline code can be handled in reverse
4914 by simply continuing to single-step. We have already
4915 executed the solib function (backwards), and a few
4916 steps will take us back through the trampoline to the
4917 caller. */
4918 keep_going (ecs);
4919 return;
4920 }
4921
16c381f0 4922 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4923 {
b2175913
MS
4924 /* We're doing a "next".
4925
4926 Normal (forward) execution: set a breakpoint at the
4927 callee's return address (the address at which the caller
4928 will resume).
4929
4930 Reverse (backward) execution. set the step-resume
4931 breakpoint at the start of the function that we just
4932 stepped into (backwards), and continue to there. When we
6130d0b7 4933 get there, we'll need to single-step back to the caller. */
b2175913
MS
4934
4935 if (execution_direction == EXEC_REVERSE)
4936 {
acf9414f
JK
4937 /* If we're already at the start of the function, we've either
4938 just stepped backward into a single instruction function,
4939 or stepped back out of a signal handler to the first instruction
4940 of the function. Just keep going, which will single-step back
4941 to the caller. */
58c48e72 4942 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
4943 {
4944 struct symtab_and_line sr_sal;
4945
4946 /* Normal function call return (static or dynamic). */
4947 init_sal (&sr_sal);
4948 sr_sal.pc = ecs->stop_func_start;
4949 sr_sal.pspace = get_frame_program_space (frame);
4950 insert_step_resume_breakpoint_at_sal (gdbarch,
4951 sr_sal, null_frame_id);
4952 }
b2175913
MS
4953 }
4954 else
568d6575 4955 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4956
8567c30f
AC
4957 keep_going (ecs);
4958 return;
4959 }
a53c66de 4960
95918acb 4961 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4962 calling routine and the real function), locate the real
4963 function. That's what tells us (a) whether we want to step
4964 into it at all, and (b) what prologue we want to run to the
4965 end of, if we do step into it. */
568d6575 4966 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4967 if (real_stop_pc == 0)
568d6575 4968 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4969 if (real_stop_pc != 0)
4970 ecs->stop_func_start = real_stop_pc;
8fb3e588 4971
db5f024e 4972 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4973 {
4974 struct symtab_and_line sr_sal;
abbb1732 4975
1b2bfbb9
RC
4976 init_sal (&sr_sal);
4977 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4978 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4979
a6d9a66e
UW
4980 insert_step_resume_breakpoint_at_sal (gdbarch,
4981 sr_sal, null_frame_id);
8fb3e588
AC
4982 keep_going (ecs);
4983 return;
1b2bfbb9
RC
4984 }
4985
95918acb 4986 /* If we have line number information for the function we are
1bfeeb0f
JL
4987 thinking of stepping into and the function isn't on the skip
4988 list, step into it.
95918acb 4989
8fb3e588
AC
4990 If there are several symtabs at that PC (e.g. with include
4991 files), just want to know whether *any* of them have line
4992 numbers. find_pc_line handles this. */
95918acb
AC
4993 {
4994 struct symtab_and_line tmp_sal;
8fb3e588 4995
95918acb 4996 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 4997 if (tmp_sal.line != 0
85817405
JK
4998 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4999 &tmp_sal))
95918acb 5000 {
b2175913 5001 if (execution_direction == EXEC_REVERSE)
568d6575 5002 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5003 else
568d6575 5004 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5005 return;
5006 }
5007 }
5008
5009 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5010 set, we stop the step so that the user has a chance to switch
5011 in assembly mode. */
16c381f0 5012 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5013 && step_stop_if_no_debug)
95918acb 5014 {
16c381f0 5015 ecs->event_thread->control.stop_step = 1;
33d62d64 5016 print_end_stepping_range_reason ();
95918acb
AC
5017 stop_stepping (ecs);
5018 return;
5019 }
5020
b2175913
MS
5021 if (execution_direction == EXEC_REVERSE)
5022 {
acf9414f
JK
5023 /* If we're already at the start of the function, we've either just
5024 stepped backward into a single instruction function without line
5025 number info, or stepped back out of a signal handler to the first
5026 instruction of the function without line number info. Just keep
5027 going, which will single-step back to the caller. */
5028 if (ecs->stop_func_start != stop_pc)
5029 {
5030 /* Set a breakpoint at callee's start address.
5031 From there we can step once and be back in the caller. */
5032 struct symtab_and_line sr_sal;
abbb1732 5033
acf9414f
JK
5034 init_sal (&sr_sal);
5035 sr_sal.pc = ecs->stop_func_start;
5036 sr_sal.pspace = get_frame_program_space (frame);
5037 insert_step_resume_breakpoint_at_sal (gdbarch,
5038 sr_sal, null_frame_id);
5039 }
b2175913
MS
5040 }
5041 else
5042 /* Set a breakpoint at callee's return address (the address
5043 at which the caller will resume). */
568d6575 5044 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5045
95918acb 5046 keep_going (ecs);
488f131b 5047 return;
488f131b 5048 }
c906108c 5049
fdd654f3
MS
5050 /* Reverse stepping through solib trampolines. */
5051
5052 if (execution_direction == EXEC_REVERSE
16c381f0 5053 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5054 {
5055 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5056 || (ecs->stop_func_start == 0
5057 && in_solib_dynsym_resolve_code (stop_pc)))
5058 {
5059 /* Any solib trampoline code can be handled in reverse
5060 by simply continuing to single-step. We have already
5061 executed the solib function (backwards), and a few
5062 steps will take us back through the trampoline to the
5063 caller. */
5064 keep_going (ecs);
5065 return;
5066 }
5067 else if (in_solib_dynsym_resolve_code (stop_pc))
5068 {
5069 /* Stepped backward into the solib dynsym resolver.
5070 Set a breakpoint at its start and continue, then
5071 one more step will take us out. */
5072 struct symtab_and_line sr_sal;
abbb1732 5073
fdd654f3
MS
5074 init_sal (&sr_sal);
5075 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5076 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5077 insert_step_resume_breakpoint_at_sal (gdbarch,
5078 sr_sal, null_frame_id);
5079 keep_going (ecs);
5080 return;
5081 }
5082 }
5083
2afb61aa 5084 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5085
1b2bfbb9
RC
5086 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5087 the trampoline processing logic, however, there are some trampolines
5088 that have no names, so we should do trampoline handling first. */
16c381f0 5089 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5090 && ecs->stop_func_name == NULL
2afb61aa 5091 && stop_pc_sal.line == 0)
1b2bfbb9 5092 {
527159b7 5093 if (debug_infrun)
3e43a32a
MS
5094 fprintf_unfiltered (gdb_stdlog,
5095 "infrun: stepped into undebuggable function\n");
527159b7 5096
1b2bfbb9 5097 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5098 undebuggable function (where there is no debugging information
5099 and no line number corresponding to the address where the
1b2bfbb9
RC
5100 inferior stopped). Since we want to skip this kind of code,
5101 we keep going until the inferior returns from this
14e60db5
DJ
5102 function - unless the user has asked us not to (via
5103 set step-mode) or we no longer know how to get back
5104 to the call site. */
5105 if (step_stop_if_no_debug
c7ce8faa 5106 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5107 {
5108 /* If we have no line number and the step-stop-if-no-debug
5109 is set, we stop the step so that the user has a chance to
5110 switch in assembly mode. */
16c381f0 5111 ecs->event_thread->control.stop_step = 1;
33d62d64 5112 print_end_stepping_range_reason ();
1b2bfbb9
RC
5113 stop_stepping (ecs);
5114 return;
5115 }
5116 else
5117 {
5118 /* Set a breakpoint at callee's return address (the address
5119 at which the caller will resume). */
568d6575 5120 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5121 keep_going (ecs);
5122 return;
5123 }
5124 }
5125
16c381f0 5126 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5127 {
5128 /* It is stepi or nexti. We always want to stop stepping after
5129 one instruction. */
527159b7 5130 if (debug_infrun)
8a9de0e4 5131 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5132 ecs->event_thread->control.stop_step = 1;
33d62d64 5133 print_end_stepping_range_reason ();
1b2bfbb9
RC
5134 stop_stepping (ecs);
5135 return;
5136 }
5137
2afb61aa 5138 if (stop_pc_sal.line == 0)
488f131b
JB
5139 {
5140 /* We have no line number information. That means to stop
5141 stepping (does this always happen right after one instruction,
5142 when we do "s" in a function with no line numbers,
5143 or can this happen as a result of a return or longjmp?). */
527159b7 5144 if (debug_infrun)
8a9de0e4 5145 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5146 ecs->event_thread->control.stop_step = 1;
33d62d64 5147 print_end_stepping_range_reason ();
488f131b
JB
5148 stop_stepping (ecs);
5149 return;
5150 }
c906108c 5151
edb3359d
DJ
5152 /* Look for "calls" to inlined functions, part one. If the inline
5153 frame machinery detected some skipped call sites, we have entered
5154 a new inline function. */
5155
5156 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5157 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5158 && inline_skipped_frames (ecs->ptid))
5159 {
5160 struct symtab_and_line call_sal;
5161
5162 if (debug_infrun)
5163 fprintf_unfiltered (gdb_stdlog,
5164 "infrun: stepped into inlined function\n");
5165
5166 find_frame_sal (get_current_frame (), &call_sal);
5167
16c381f0 5168 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5169 {
5170 /* For "step", we're going to stop. But if the call site
5171 for this inlined function is on the same source line as
5172 we were previously stepping, go down into the function
5173 first. Otherwise stop at the call site. */
5174
5175 if (call_sal.line == ecs->event_thread->current_line
5176 && call_sal.symtab == ecs->event_thread->current_symtab)
5177 step_into_inline_frame (ecs->ptid);
5178
16c381f0 5179 ecs->event_thread->control.stop_step = 1;
33d62d64 5180 print_end_stepping_range_reason ();
edb3359d
DJ
5181 stop_stepping (ecs);
5182 return;
5183 }
5184 else
5185 {
5186 /* For "next", we should stop at the call site if it is on a
5187 different source line. Otherwise continue through the
5188 inlined function. */
5189 if (call_sal.line == ecs->event_thread->current_line
5190 && call_sal.symtab == ecs->event_thread->current_symtab)
5191 keep_going (ecs);
5192 else
5193 {
16c381f0 5194 ecs->event_thread->control.stop_step = 1;
33d62d64 5195 print_end_stepping_range_reason ();
edb3359d
DJ
5196 stop_stepping (ecs);
5197 }
5198 return;
5199 }
5200 }
5201
5202 /* Look for "calls" to inlined functions, part two. If we are still
5203 in the same real function we were stepping through, but we have
5204 to go further up to find the exact frame ID, we are stepping
5205 through a more inlined call beyond its call site. */
5206
5207 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5208 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5209 ecs->event_thread->control.step_frame_id)
edb3359d 5210 && stepped_in_from (get_current_frame (),
16c381f0 5211 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5212 {
5213 if (debug_infrun)
5214 fprintf_unfiltered (gdb_stdlog,
5215 "infrun: stepping through inlined function\n");
5216
16c381f0 5217 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5218 keep_going (ecs);
5219 else
5220 {
16c381f0 5221 ecs->event_thread->control.stop_step = 1;
33d62d64 5222 print_end_stepping_range_reason ();
edb3359d
DJ
5223 stop_stepping (ecs);
5224 }
5225 return;
5226 }
5227
2afb61aa 5228 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5229 && (ecs->event_thread->current_line != stop_pc_sal.line
5230 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5231 {
5232 /* We are at the start of a different line. So stop. Note that
5233 we don't stop if we step into the middle of a different line.
5234 That is said to make things like for (;;) statements work
5235 better. */
527159b7 5236 if (debug_infrun)
3e43a32a
MS
5237 fprintf_unfiltered (gdb_stdlog,
5238 "infrun: stepped to a different line\n");
16c381f0 5239 ecs->event_thread->control.stop_step = 1;
33d62d64 5240 print_end_stepping_range_reason ();
488f131b
JB
5241 stop_stepping (ecs);
5242 return;
5243 }
c906108c 5244
488f131b 5245 /* We aren't done stepping.
c906108c 5246
488f131b
JB
5247 Optimize by setting the stepping range to the line.
5248 (We might not be in the original line, but if we entered a
5249 new line in mid-statement, we continue stepping. This makes
5250 things like for(;;) statements work better.) */
c906108c 5251
16c381f0
JK
5252 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5253 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5254 ecs->event_thread->control.may_range_step = 1;
edb3359d 5255 set_step_info (frame, stop_pc_sal);
488f131b 5256
527159b7 5257 if (debug_infrun)
8a9de0e4 5258 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5259 keep_going (ecs);
104c1213
JM
5260}
5261
c447ac0b
PA
5262/* In all-stop mode, if we're currently stepping but have stopped in
5263 some other thread, we may need to switch back to the stepped
5264 thread. Returns true we set the inferior running, false if we left
5265 it stopped (and the event needs further processing). */
5266
5267static int
5268switch_back_to_stepped_thread (struct execution_control_state *ecs)
5269{
5270 if (!non_stop)
5271 {
5272 struct thread_info *tp;
5273
5274 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5275 ecs->event_thread);
5276 if (tp)
5277 {
5278 /* However, if the current thread is blocked on some internal
5279 breakpoint, and we simply need to step over that breakpoint
5280 to get it going again, do that first. */
5281 if ((ecs->event_thread->control.trap_expected
5282 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5283 || ecs->event_thread->stepping_over_breakpoint)
5284 {
5285 keep_going (ecs);
5286 return 1;
5287 }
5288
5289 /* If the stepping thread exited, then don't try to switch
5290 back and resume it, which could fail in several different
5291 ways depending on the target. Instead, just keep going.
5292
5293 We can find a stepping dead thread in the thread list in
5294 two cases:
5295
5296 - The target supports thread exit events, and when the
5297 target tries to delete the thread from the thread list,
5298 inferior_ptid pointed at the exiting thread. In such
5299 case, calling delete_thread does not really remove the
5300 thread from the list; instead, the thread is left listed,
5301 with 'exited' state.
5302
5303 - The target's debug interface does not support thread
5304 exit events, and so we have no idea whatsoever if the
5305 previously stepping thread is still alive. For that
5306 reason, we need to synchronously query the target
5307 now. */
5308 if (is_exited (tp->ptid)
5309 || !target_thread_alive (tp->ptid))
5310 {
5311 if (debug_infrun)
5312 fprintf_unfiltered (gdb_stdlog,
5313 "infrun: not switching back to "
5314 "stepped thread, it has vanished\n");
5315
5316 delete_thread (tp->ptid);
5317 keep_going (ecs);
5318 return 1;
5319 }
5320
5321 /* Otherwise, we no longer expect a trap in the current thread.
5322 Clear the trap_expected flag before switching back -- this is
5323 what keep_going would do as well, if we called it. */
5324 ecs->event_thread->control.trap_expected = 0;
5325
5326 if (debug_infrun)
5327 fprintf_unfiltered (gdb_stdlog,
5328 "infrun: switching back to stepped thread\n");
5329
5330 ecs->event_thread = tp;
5331 ecs->ptid = tp->ptid;
5332 context_switch (ecs->ptid);
5333 keep_going (ecs);
5334 return 1;
5335 }
5336 }
5337 return 0;
5338}
5339
b3444185 5340/* Is thread TP in the middle of single-stepping? */
104c1213 5341
a289b8f6 5342static int
b3444185 5343currently_stepping (struct thread_info *tp)
a7212384 5344{
8358c15c
JK
5345 return ((tp->control.step_range_end
5346 && tp->control.step_resume_breakpoint == NULL)
5347 || tp->control.trap_expected
8358c15c 5348 || bpstat_should_step ());
a7212384
UW
5349}
5350
b3444185
PA
5351/* Returns true if any thread *but* the one passed in "data" is in the
5352 middle of stepping or of handling a "next". */
a7212384 5353
104c1213 5354static int
b3444185 5355currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5356{
b3444185
PA
5357 if (tp == data)
5358 return 0;
5359
16c381f0 5360 return (tp->control.step_range_end
ede1849f 5361 || tp->control.trap_expected);
104c1213 5362}
c906108c 5363
b2175913
MS
5364/* Inferior has stepped into a subroutine call with source code that
5365 we should not step over. Do step to the first line of code in
5366 it. */
c2c6d25f
JM
5367
5368static void
568d6575
UW
5369handle_step_into_function (struct gdbarch *gdbarch,
5370 struct execution_control_state *ecs)
c2c6d25f
JM
5371{
5372 struct symtab *s;
2afb61aa 5373 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5374
7e324e48
GB
5375 fill_in_stop_func (gdbarch, ecs);
5376
c2c6d25f
JM
5377 s = find_pc_symtab (stop_pc);
5378 if (s && s->language != language_asm)
568d6575 5379 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5380 ecs->stop_func_start);
c2c6d25f 5381
2afb61aa 5382 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5383 /* Use the step_resume_break to step until the end of the prologue,
5384 even if that involves jumps (as it seems to on the vax under
5385 4.2). */
5386 /* If the prologue ends in the middle of a source line, continue to
5387 the end of that source line (if it is still within the function).
5388 Otherwise, just go to end of prologue. */
2afb61aa
PA
5389 if (stop_func_sal.end
5390 && stop_func_sal.pc != ecs->stop_func_start
5391 && stop_func_sal.end < ecs->stop_func_end)
5392 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5393
2dbd5e30
KB
5394 /* Architectures which require breakpoint adjustment might not be able
5395 to place a breakpoint at the computed address. If so, the test
5396 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5397 ecs->stop_func_start to an address at which a breakpoint may be
5398 legitimately placed.
8fb3e588 5399
2dbd5e30
KB
5400 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5401 made, GDB will enter an infinite loop when stepping through
5402 optimized code consisting of VLIW instructions which contain
5403 subinstructions corresponding to different source lines. On
5404 FR-V, it's not permitted to place a breakpoint on any but the
5405 first subinstruction of a VLIW instruction. When a breakpoint is
5406 set, GDB will adjust the breakpoint address to the beginning of
5407 the VLIW instruction. Thus, we need to make the corresponding
5408 adjustment here when computing the stop address. */
8fb3e588 5409
568d6575 5410 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5411 {
5412 ecs->stop_func_start
568d6575 5413 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5414 ecs->stop_func_start);
2dbd5e30
KB
5415 }
5416
c2c6d25f
JM
5417 if (ecs->stop_func_start == stop_pc)
5418 {
5419 /* We are already there: stop now. */
16c381f0 5420 ecs->event_thread->control.stop_step = 1;
33d62d64 5421 print_end_stepping_range_reason ();
c2c6d25f
JM
5422 stop_stepping (ecs);
5423 return;
5424 }
5425 else
5426 {
5427 /* Put the step-breakpoint there and go until there. */
fe39c653 5428 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5429 sr_sal.pc = ecs->stop_func_start;
5430 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5431 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5432
c2c6d25f 5433 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5434 some machines the prologue is where the new fp value is
5435 established. */
a6d9a66e 5436 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5437
5438 /* And make sure stepping stops right away then. */
16c381f0
JK
5439 ecs->event_thread->control.step_range_end
5440 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5441 }
5442 keep_going (ecs);
5443}
d4f3574e 5444
b2175913
MS
5445/* Inferior has stepped backward into a subroutine call with source
5446 code that we should not step over. Do step to the beginning of the
5447 last line of code in it. */
5448
5449static void
568d6575
UW
5450handle_step_into_function_backward (struct gdbarch *gdbarch,
5451 struct execution_control_state *ecs)
b2175913
MS
5452{
5453 struct symtab *s;
167e4384 5454 struct symtab_and_line stop_func_sal;
b2175913 5455
7e324e48
GB
5456 fill_in_stop_func (gdbarch, ecs);
5457
b2175913
MS
5458 s = find_pc_symtab (stop_pc);
5459 if (s && s->language != language_asm)
568d6575 5460 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5461 ecs->stop_func_start);
5462
5463 stop_func_sal = find_pc_line (stop_pc, 0);
5464
5465 /* OK, we're just going to keep stepping here. */
5466 if (stop_func_sal.pc == stop_pc)
5467 {
5468 /* We're there already. Just stop stepping now. */
16c381f0 5469 ecs->event_thread->control.stop_step = 1;
33d62d64 5470 print_end_stepping_range_reason ();
b2175913
MS
5471 stop_stepping (ecs);
5472 }
5473 else
5474 {
5475 /* Else just reset the step range and keep going.
5476 No step-resume breakpoint, they don't work for
5477 epilogues, which can have multiple entry paths. */
16c381f0
JK
5478 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5479 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5480 keep_going (ecs);
5481 }
5482 return;
5483}
5484
d3169d93 5485/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5486 This is used to both functions and to skip over code. */
5487
5488static void
2c03e5be
PA
5489insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5490 struct symtab_and_line sr_sal,
5491 struct frame_id sr_id,
5492 enum bptype sr_type)
44cbf7b5 5493{
611c83ae
PA
5494 /* There should never be more than one step-resume or longjmp-resume
5495 breakpoint per thread, so we should never be setting a new
44cbf7b5 5496 step_resume_breakpoint when one is already active. */
8358c15c 5497 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5498 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5499
5500 if (debug_infrun)
5501 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5502 "infrun: inserting step-resume breakpoint at %s\n",
5503 paddress (gdbarch, sr_sal.pc));
d3169d93 5504
8358c15c 5505 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5506 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5507}
5508
9da8c2a0 5509void
2c03e5be
PA
5510insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5511 struct symtab_and_line sr_sal,
5512 struct frame_id sr_id)
5513{
5514 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5515 sr_sal, sr_id,
5516 bp_step_resume);
44cbf7b5 5517}
7ce450bd 5518
2c03e5be
PA
5519/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5520 This is used to skip a potential signal handler.
7ce450bd 5521
14e60db5
DJ
5522 This is called with the interrupted function's frame. The signal
5523 handler, when it returns, will resume the interrupted function at
5524 RETURN_FRAME.pc. */
d303a6c7
AC
5525
5526static void
2c03e5be 5527insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5528{
5529 struct symtab_and_line sr_sal;
a6d9a66e 5530 struct gdbarch *gdbarch;
d303a6c7 5531
f4c1edd8 5532 gdb_assert (return_frame != NULL);
d303a6c7
AC
5533 init_sal (&sr_sal); /* initialize to zeros */
5534
a6d9a66e 5535 gdbarch = get_frame_arch (return_frame);
568d6575 5536 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5537 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5538 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5539
2c03e5be
PA
5540 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5541 get_stack_frame_id (return_frame),
5542 bp_hp_step_resume);
d303a6c7
AC
5543}
5544
2c03e5be
PA
5545/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5546 is used to skip a function after stepping into it (for "next" or if
5547 the called function has no debugging information).
14e60db5
DJ
5548
5549 The current function has almost always been reached by single
5550 stepping a call or return instruction. NEXT_FRAME belongs to the
5551 current function, and the breakpoint will be set at the caller's
5552 resume address.
5553
5554 This is a separate function rather than reusing
2c03e5be 5555 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5556 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5557 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5558
5559static void
5560insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5561{
5562 struct symtab_and_line sr_sal;
a6d9a66e 5563 struct gdbarch *gdbarch;
14e60db5
DJ
5564
5565 /* We shouldn't have gotten here if we don't know where the call site
5566 is. */
c7ce8faa 5567 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5568
5569 init_sal (&sr_sal); /* initialize to zeros */
5570
a6d9a66e 5571 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5572 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5573 frame_unwind_caller_pc (next_frame));
14e60db5 5574 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5575 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5576
a6d9a66e 5577 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5578 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5579}
5580
611c83ae
PA
5581/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5582 new breakpoint at the target of a jmp_buf. The handling of
5583 longjmp-resume uses the same mechanisms used for handling
5584 "step-resume" breakpoints. */
5585
5586static void
a6d9a66e 5587insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5588{
e81a37f7
TT
5589 /* There should never be more than one longjmp-resume breakpoint per
5590 thread, so we should never be setting a new
611c83ae 5591 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5592 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5593
5594 if (debug_infrun)
5595 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5596 "infrun: inserting longjmp-resume breakpoint at %s\n",
5597 paddress (gdbarch, pc));
611c83ae 5598
e81a37f7 5599 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5600 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5601}
5602
186c406b
TT
5603/* Insert an exception resume breakpoint. TP is the thread throwing
5604 the exception. The block B is the block of the unwinder debug hook
5605 function. FRAME is the frame corresponding to the call to this
5606 function. SYM is the symbol of the function argument holding the
5607 target PC of the exception. */
5608
5609static void
5610insert_exception_resume_breakpoint (struct thread_info *tp,
5611 struct block *b,
5612 struct frame_info *frame,
5613 struct symbol *sym)
5614{
bfd189b1 5615 volatile struct gdb_exception e;
186c406b
TT
5616
5617 /* We want to ignore errors here. */
5618 TRY_CATCH (e, RETURN_MASK_ERROR)
5619 {
5620 struct symbol *vsym;
5621 struct value *value;
5622 CORE_ADDR handler;
5623 struct breakpoint *bp;
5624
5625 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5626 value = read_var_value (vsym, frame);
5627 /* If the value was optimized out, revert to the old behavior. */
5628 if (! value_optimized_out (value))
5629 {
5630 handler = value_as_address (value);
5631
5632 if (debug_infrun)
5633 fprintf_unfiltered (gdb_stdlog,
5634 "infrun: exception resume at %lx\n",
5635 (unsigned long) handler);
5636
5637 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5638 handler, bp_exception_resume);
c70a6932
JK
5639
5640 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5641 frame = NULL;
5642
186c406b
TT
5643 bp->thread = tp->num;
5644 inferior_thread ()->control.exception_resume_breakpoint = bp;
5645 }
5646 }
5647}
5648
28106bc2
SDJ
5649/* A helper for check_exception_resume that sets an
5650 exception-breakpoint based on a SystemTap probe. */
5651
5652static void
5653insert_exception_resume_from_probe (struct thread_info *tp,
5654 const struct probe *probe,
28106bc2
SDJ
5655 struct frame_info *frame)
5656{
5657 struct value *arg_value;
5658 CORE_ADDR handler;
5659 struct breakpoint *bp;
5660
5661 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5662 if (!arg_value)
5663 return;
5664
5665 handler = value_as_address (arg_value);
5666
5667 if (debug_infrun)
5668 fprintf_unfiltered (gdb_stdlog,
5669 "infrun: exception resume at %s\n",
6bac7473 5670 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5671 handler));
5672
5673 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5674 handler, bp_exception_resume);
5675 bp->thread = tp->num;
5676 inferior_thread ()->control.exception_resume_breakpoint = bp;
5677}
5678
186c406b
TT
5679/* This is called when an exception has been intercepted. Check to
5680 see whether the exception's destination is of interest, and if so,
5681 set an exception resume breakpoint there. */
5682
5683static void
5684check_exception_resume (struct execution_control_state *ecs,
28106bc2 5685 struct frame_info *frame)
186c406b 5686{
bfd189b1 5687 volatile struct gdb_exception e;
28106bc2
SDJ
5688 const struct probe *probe;
5689 struct symbol *func;
5690
5691 /* First see if this exception unwinding breakpoint was set via a
5692 SystemTap probe point. If so, the probe has two arguments: the
5693 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5694 set a breakpoint there. */
6bac7473 5695 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5696 if (probe)
5697 {
6bac7473 5698 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5699 return;
5700 }
5701
5702 func = get_frame_function (frame);
5703 if (!func)
5704 return;
186c406b
TT
5705
5706 TRY_CATCH (e, RETURN_MASK_ERROR)
5707 {
5708 struct block *b;
8157b174 5709 struct block_iterator iter;
186c406b
TT
5710 struct symbol *sym;
5711 int argno = 0;
5712
5713 /* The exception breakpoint is a thread-specific breakpoint on
5714 the unwinder's debug hook, declared as:
5715
5716 void _Unwind_DebugHook (void *cfa, void *handler);
5717
5718 The CFA argument indicates the frame to which control is
5719 about to be transferred. HANDLER is the destination PC.
5720
5721 We ignore the CFA and set a temporary breakpoint at HANDLER.
5722 This is not extremely efficient but it avoids issues in gdb
5723 with computing the DWARF CFA, and it also works even in weird
5724 cases such as throwing an exception from inside a signal
5725 handler. */
5726
5727 b = SYMBOL_BLOCK_VALUE (func);
5728 ALL_BLOCK_SYMBOLS (b, iter, sym)
5729 {
5730 if (!SYMBOL_IS_ARGUMENT (sym))
5731 continue;
5732
5733 if (argno == 0)
5734 ++argno;
5735 else
5736 {
5737 insert_exception_resume_breakpoint (ecs->event_thread,
5738 b, frame, sym);
5739 break;
5740 }
5741 }
5742 }
5743}
5744
104c1213
JM
5745static void
5746stop_stepping (struct execution_control_state *ecs)
5747{
527159b7 5748 if (debug_infrun)
8a9de0e4 5749 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5750
cd0fc7c3
SS
5751 /* Let callers know we don't want to wait for the inferior anymore. */
5752 ecs->wait_some_more = 0;
5753}
5754
a9ba6bae
PA
5755/* Called when we should continue running the inferior, because the
5756 current event doesn't cause a user visible stop. This does the
5757 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5758
5759static void
5760keep_going (struct execution_control_state *ecs)
5761{
c4dbc9af
PA
5762 /* Make sure normal_stop is called if we get a QUIT handled before
5763 reaching resume. */
5764 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5765
d4f3574e 5766 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5767 ecs->event_thread->prev_pc
5768 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5769
16c381f0 5770 if (ecs->event_thread->control.trap_expected
a493e3e2 5771 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 5772 {
a9ba6bae
PA
5773 /* We haven't yet gotten our trap, and either: intercepted a
5774 non-signal event (e.g., a fork); or took a signal which we
5775 are supposed to pass through to the inferior. Simply
5776 continue. */
c4dbc9af 5777 discard_cleanups (old_cleanups);
2020b7ab 5778 resume (currently_stepping (ecs->event_thread),
16c381f0 5779 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5780 }
5781 else
5782 {
5783 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
5784 anyway (if we got a signal, the user asked it be passed to
5785 the child)
5786 -- or --
5787 We got our expected trap, but decided we should resume from
5788 it.
d4f3574e 5789
a9ba6bae 5790 We're going to run this baby now!
d4f3574e 5791
c36b740a
VP
5792 Note that insert_breakpoints won't try to re-insert
5793 already inserted breakpoints. Therefore, we don't
5794 care if breakpoints were already inserted, or not. */
a9ba6bae 5795
4e1c45ea 5796 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5797 {
9f5a595d 5798 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5799
9f5a595d 5800 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
a9ba6bae
PA
5801 {
5802 /* Since we can't do a displaced step, we have to remove
5803 the breakpoint while we step it. To keep things
5804 simple, we remove them all. */
5805 remove_breakpoints ();
5806 }
45e8c884
VP
5807 }
5808 else
d4f3574e 5809 {
bfd189b1 5810 volatile struct gdb_exception e;
abbb1732 5811
a9ba6bae 5812 /* Stop stepping if inserting breakpoints fails. */
e236ba44
VP
5813 TRY_CATCH (e, RETURN_MASK_ERROR)
5814 {
5815 insert_breakpoints ();
5816 }
5817 if (e.reason < 0)
d4f3574e 5818 {
97bd5475 5819 exception_print (gdb_stderr, e);
d4f3574e
SS
5820 stop_stepping (ecs);
5821 return;
5822 }
d4f3574e
SS
5823 }
5824
16c381f0
JK
5825 ecs->event_thread->control.trap_expected
5826 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e 5827
a9ba6bae
PA
5828 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5829 explicitly specifies that such a signal should be delivered
5830 to the target program). Typically, that would occur when a
5831 user is debugging a target monitor on a simulator: the target
5832 monitor sets a breakpoint; the simulator encounters this
5833 breakpoint and halts the simulation handing control to GDB;
5834 GDB, noting that the stop address doesn't map to any known
5835 breakpoint, returns control back to the simulator; the
5836 simulator then delivers the hardware equivalent of a
5837 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 5838 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5839 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5840 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5841
c4dbc9af 5842 discard_cleanups (old_cleanups);
2020b7ab 5843 resume (currently_stepping (ecs->event_thread),
16c381f0 5844 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5845 }
5846
488f131b 5847 prepare_to_wait (ecs);
d4f3574e
SS
5848}
5849
104c1213
JM
5850/* This function normally comes after a resume, before
5851 handle_inferior_event exits. It takes care of any last bits of
5852 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5853
104c1213
JM
5854static void
5855prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5856{
527159b7 5857 if (debug_infrun)
8a9de0e4 5858 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5859
104c1213
JM
5860 /* This is the old end of the while loop. Let everybody know we
5861 want to wait for the inferior some more and get called again
5862 soon. */
5863 ecs->wait_some_more = 1;
c906108c 5864}
11cf8741 5865
33d62d64
JK
5866/* Several print_*_reason functions to print why the inferior has stopped.
5867 We always print something when the inferior exits, or receives a signal.
5868 The rest of the cases are dealt with later on in normal_stop and
5869 print_it_typical. Ideally there should be a call to one of these
5870 print_*_reason functions functions from handle_inferior_event each time
5871 stop_stepping is called. */
5872
5873/* Print why the inferior has stopped.
5874 We are done with a step/next/si/ni command, print why the inferior has
5875 stopped. For now print nothing. Print a message only if not in the middle
5876 of doing a "step n" operation for n > 1. */
5877
5878static void
5879print_end_stepping_range_reason (void)
5880{
16c381f0
JK
5881 if ((!inferior_thread ()->step_multi
5882 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5883 && ui_out_is_mi_like_p (current_uiout))
5884 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5885 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5886}
5887
5888/* The inferior was terminated by a signal, print why it stopped. */
5889
11cf8741 5890static void
2ea28649 5891print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5892{
79a45e25
PA
5893 struct ui_out *uiout = current_uiout;
5894
33d62d64
JK
5895 annotate_signalled ();
5896 if (ui_out_is_mi_like_p (uiout))
5897 ui_out_field_string
5898 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5899 ui_out_text (uiout, "\nProgram terminated with signal ");
5900 annotate_signal_name ();
5901 ui_out_field_string (uiout, "signal-name",
2ea28649 5902 gdb_signal_to_name (siggnal));
33d62d64
JK
5903 annotate_signal_name_end ();
5904 ui_out_text (uiout, ", ");
5905 annotate_signal_string ();
5906 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5907 gdb_signal_to_string (siggnal));
33d62d64
JK
5908 annotate_signal_string_end ();
5909 ui_out_text (uiout, ".\n");
5910 ui_out_text (uiout, "The program no longer exists.\n");
5911}
5912
5913/* The inferior program is finished, print why it stopped. */
5914
5915static void
5916print_exited_reason (int exitstatus)
5917{
fda326dd
TT
5918 struct inferior *inf = current_inferior ();
5919 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5920 struct ui_out *uiout = current_uiout;
fda326dd 5921
33d62d64
JK
5922 annotate_exited (exitstatus);
5923 if (exitstatus)
5924 {
5925 if (ui_out_is_mi_like_p (uiout))
5926 ui_out_field_string (uiout, "reason",
5927 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5928 ui_out_text (uiout, "[Inferior ");
5929 ui_out_text (uiout, plongest (inf->num));
5930 ui_out_text (uiout, " (");
5931 ui_out_text (uiout, pidstr);
5932 ui_out_text (uiout, ") exited with code ");
33d62d64 5933 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5934 ui_out_text (uiout, "]\n");
33d62d64
JK
5935 }
5936 else
11cf8741 5937 {
9dc5e2a9 5938 if (ui_out_is_mi_like_p (uiout))
034dad6f 5939 ui_out_field_string
33d62d64 5940 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5941 ui_out_text (uiout, "[Inferior ");
5942 ui_out_text (uiout, plongest (inf->num));
5943 ui_out_text (uiout, " (");
5944 ui_out_text (uiout, pidstr);
5945 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5946 }
5947 /* Support the --return-child-result option. */
5948 return_child_result_value = exitstatus;
5949}
5950
5951/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5952 tells us to print about it. */
33d62d64
JK
5953
5954static void
2ea28649 5955print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5956{
79a45e25
PA
5957 struct ui_out *uiout = current_uiout;
5958
33d62d64
JK
5959 annotate_signal ();
5960
a493e3e2 5961 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5962 {
5963 struct thread_info *t = inferior_thread ();
5964
5965 ui_out_text (uiout, "\n[");
5966 ui_out_field_string (uiout, "thread-name",
5967 target_pid_to_str (t->ptid));
5968 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5969 ui_out_text (uiout, " stopped");
5970 }
5971 else
5972 {
5973 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5974 annotate_signal_name ();
33d62d64
JK
5975 if (ui_out_is_mi_like_p (uiout))
5976 ui_out_field_string
5977 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5978 ui_out_field_string (uiout, "signal-name",
2ea28649 5979 gdb_signal_to_name (siggnal));
8b93c638
JM
5980 annotate_signal_name_end ();
5981 ui_out_text (uiout, ", ");
5982 annotate_signal_string ();
488f131b 5983 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5984 gdb_signal_to_string (siggnal));
8b93c638 5985 annotate_signal_string_end ();
33d62d64
JK
5986 }
5987 ui_out_text (uiout, ".\n");
5988}
252fbfc8 5989
33d62d64
JK
5990/* Reverse execution: target ran out of history info, print why the inferior
5991 has stopped. */
252fbfc8 5992
33d62d64
JK
5993static void
5994print_no_history_reason (void)
5995{
79a45e25 5996 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5997}
43ff13b4 5998
c906108c
SS
5999/* Here to return control to GDB when the inferior stops for real.
6000 Print appropriate messages, remove breakpoints, give terminal our modes.
6001
6002 STOP_PRINT_FRAME nonzero means print the executing frame
6003 (pc, function, args, file, line number and line text).
6004 BREAKPOINTS_FAILED nonzero means stop was due to error
6005 attempting to insert breakpoints. */
6006
6007void
96baa820 6008normal_stop (void)
c906108c 6009{
73b65bb0
DJ
6010 struct target_waitstatus last;
6011 ptid_t last_ptid;
29f49a6a 6012 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
6013
6014 get_last_target_status (&last_ptid, &last);
6015
29f49a6a
PA
6016 /* If an exception is thrown from this point on, make sure to
6017 propagate GDB's knowledge of the executing state to the
6018 frontend/user running state. A QUIT is an easy exception to see
6019 here, so do this before any filtered output. */
c35b1492
PA
6020 if (!non_stop)
6021 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6022 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6023 && last.kind != TARGET_WAITKIND_EXITED
6024 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6025 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6026
4f8d22e3
PA
6027 /* In non-stop mode, we don't want GDB to switch threads behind the
6028 user's back, to avoid races where the user is typing a command to
6029 apply to thread x, but GDB switches to thread y before the user
6030 finishes entering the command. */
6031
c906108c
SS
6032 /* As with the notification of thread events, we want to delay
6033 notifying the user that we've switched thread context until
6034 the inferior actually stops.
6035
73b65bb0
DJ
6036 There's no point in saying anything if the inferior has exited.
6037 Note that SIGNALLED here means "exited with a signal", not
6038 "received a signal". */
4f8d22e3
PA
6039 if (!non_stop
6040 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6041 && target_has_execution
6042 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6043 && last.kind != TARGET_WAITKIND_EXITED
6044 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6045 {
6046 target_terminal_ours_for_output ();
a3f17187 6047 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6048 target_pid_to_str (inferior_ptid));
b8fa951a 6049 annotate_thread_changed ();
39f77062 6050 previous_inferior_ptid = inferior_ptid;
c906108c 6051 }
c906108c 6052
0e5bf2a8
PA
6053 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6054 {
6055 gdb_assert (sync_execution || !target_can_async_p ());
6056
6057 target_terminal_ours_for_output ();
6058 printf_filtered (_("No unwaited-for children left.\n"));
6059 }
6060
74960c60 6061 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
6062 {
6063 if (remove_breakpoints ())
6064 {
6065 target_terminal_ours_for_output ();
3e43a32a
MS
6066 printf_filtered (_("Cannot remove breakpoints because "
6067 "program is no longer writable.\nFurther "
6068 "execution is probably impossible.\n"));
c906108c
SS
6069 }
6070 }
c906108c 6071
c906108c
SS
6072 /* If an auto-display called a function and that got a signal,
6073 delete that auto-display to avoid an infinite recursion. */
6074
6075 if (stopped_by_random_signal)
6076 disable_current_display ();
6077
6078 /* Don't print a message if in the middle of doing a "step n"
6079 operation for n > 1 */
af679fd0
PA
6080 if (target_has_execution
6081 && last.kind != TARGET_WAITKIND_SIGNALLED
6082 && last.kind != TARGET_WAITKIND_EXITED
6083 && inferior_thread ()->step_multi
16c381f0 6084 && inferior_thread ()->control.stop_step)
c906108c
SS
6085 goto done;
6086
6087 target_terminal_ours ();
0f641c01 6088 async_enable_stdin ();
c906108c 6089
7abfe014
DJ
6090 /* Set the current source location. This will also happen if we
6091 display the frame below, but the current SAL will be incorrect
6092 during a user hook-stop function. */
d729566a 6093 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
6094 set_current_sal_from_frame (get_current_frame (), 1);
6095
dd7e2d2b
PA
6096 /* Let the user/frontend see the threads as stopped. */
6097 do_cleanups (old_chain);
6098
6099 /* Look up the hook_stop and run it (CLI internally handles problem
6100 of stop_command's pre-hook not existing). */
6101 if (stop_command)
6102 catch_errors (hook_stop_stub, stop_command,
6103 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6104
d729566a 6105 if (!has_stack_frames ())
d51fd4c8 6106 goto done;
c906108c 6107
32400beb
PA
6108 if (last.kind == TARGET_WAITKIND_SIGNALLED
6109 || last.kind == TARGET_WAITKIND_EXITED)
6110 goto done;
6111
c906108c
SS
6112 /* Select innermost stack frame - i.e., current frame is frame 0,
6113 and current location is based on that.
6114 Don't do this on return from a stack dummy routine,
1777feb0 6115 or if the program has exited. */
c906108c
SS
6116
6117 if (!stop_stack_dummy)
6118 {
0f7d239c 6119 select_frame (get_current_frame ());
c906108c
SS
6120
6121 /* Print current location without a level number, if
c5aa993b
JM
6122 we have changed functions or hit a breakpoint.
6123 Print source line if we have one.
6124 bpstat_print() contains the logic deciding in detail
1777feb0 6125 what to print, based on the event(s) that just occurred. */
c906108c 6126
d01a8610
AS
6127 /* If --batch-silent is enabled then there's no need to print the current
6128 source location, and to try risks causing an error message about
6129 missing source files. */
6130 if (stop_print_frame && !batch_silent)
c906108c
SS
6131 {
6132 int bpstat_ret;
6133 int source_flag;
917317f4 6134 int do_frame_printing = 1;
347bddb7 6135 struct thread_info *tp = inferior_thread ();
c906108c 6136
36dfb11c 6137 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6138 switch (bpstat_ret)
6139 {
6140 case PRINT_UNKNOWN:
aa0cd9c1 6141 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6142 (or should) carry around the function and does (or
6143 should) use that when doing a frame comparison. */
16c381f0
JK
6144 if (tp->control.stop_step
6145 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6146 get_frame_id (get_current_frame ()))
917317f4 6147 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6148 source_flag = SRC_LINE; /* Finished step, just
6149 print source line. */
917317f4 6150 else
1777feb0
MS
6151 source_flag = SRC_AND_LOC; /* Print location and
6152 source line. */
917317f4
JM
6153 break;
6154 case PRINT_SRC_AND_LOC:
1777feb0
MS
6155 source_flag = SRC_AND_LOC; /* Print location and
6156 source line. */
917317f4
JM
6157 break;
6158 case PRINT_SRC_ONLY:
c5394b80 6159 source_flag = SRC_LINE;
917317f4
JM
6160 break;
6161 case PRINT_NOTHING:
488f131b 6162 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6163 do_frame_printing = 0;
6164 break;
6165 default:
e2e0b3e5 6166 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6167 }
c906108c
SS
6168
6169 /* The behavior of this routine with respect to the source
6170 flag is:
c5394b80
JM
6171 SRC_LINE: Print only source line
6172 LOCATION: Print only location
1777feb0 6173 SRC_AND_LOC: Print location and source line. */
917317f4 6174 if (do_frame_printing)
08d72866 6175 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
c906108c
SS
6176
6177 /* Display the auto-display expressions. */
6178 do_displays ();
6179 }
6180 }
6181
6182 /* Save the function value return registers, if we care.
6183 We might be about to restore their previous contents. */
9da8c2a0
PA
6184 if (inferior_thread ()->control.proceed_to_finish
6185 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6186 {
6187 /* This should not be necessary. */
6188 if (stop_registers)
6189 regcache_xfree (stop_registers);
6190
6191 /* NB: The copy goes through to the target picking up the value of
6192 all the registers. */
6193 stop_registers = regcache_dup (get_current_regcache ());
6194 }
c906108c 6195
aa7d318d 6196 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6197 {
b89667eb
DE
6198 /* Pop the empty frame that contains the stack dummy.
6199 This also restores inferior state prior to the call
16c381f0 6200 (struct infcall_suspend_state). */
b89667eb 6201 struct frame_info *frame = get_current_frame ();
abbb1732 6202
b89667eb
DE
6203 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6204 frame_pop (frame);
3e43a32a
MS
6205 /* frame_pop() calls reinit_frame_cache as the last thing it
6206 does which means there's currently no selected frame. We
6207 don't need to re-establish a selected frame if the dummy call
6208 returns normally, that will be done by
6209 restore_infcall_control_state. However, we do have to handle
6210 the case where the dummy call is returning after being
6211 stopped (e.g. the dummy call previously hit a breakpoint).
6212 We can't know which case we have so just always re-establish
6213 a selected frame here. */
0f7d239c 6214 select_frame (get_current_frame ());
c906108c
SS
6215 }
6216
c906108c
SS
6217done:
6218 annotate_stopped ();
41d2bdb4
PA
6219
6220 /* Suppress the stop observer if we're in the middle of:
6221
6222 - a step n (n > 1), as there still more steps to be done.
6223
6224 - a "finish" command, as the observer will be called in
6225 finish_command_continuation, so it can include the inferior
6226 function's return value.
6227
6228 - calling an inferior function, as we pretend we inferior didn't
6229 run at all. The return value of the call is handled by the
6230 expression evaluator, through call_function_by_hand. */
6231
6232 if (!target_has_execution
6233 || last.kind == TARGET_WAITKIND_SIGNALLED
6234 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6235 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6236 || (!(inferior_thread ()->step_multi
6237 && inferior_thread ()->control.stop_step)
16c381f0
JK
6238 && !(inferior_thread ()->control.stop_bpstat
6239 && inferior_thread ()->control.proceed_to_finish)
6240 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6241 {
6242 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6243 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6244 stop_print_frame);
347bddb7 6245 else
1d33d6ba 6246 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6247 }
347bddb7 6248
48844aa6
PA
6249 if (target_has_execution)
6250 {
6251 if (last.kind != TARGET_WAITKIND_SIGNALLED
6252 && last.kind != TARGET_WAITKIND_EXITED)
6253 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6254 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6255 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6256 }
6c95b8df
PA
6257
6258 /* Try to get rid of automatically added inferiors that are no
6259 longer needed. Keeping those around slows down things linearly.
6260 Note that this never removes the current inferior. */
6261 prune_inferiors ();
c906108c
SS
6262}
6263
6264static int
96baa820 6265hook_stop_stub (void *cmd)
c906108c 6266{
5913bcb0 6267 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6268 return (0);
6269}
6270\f
c5aa993b 6271int
96baa820 6272signal_stop_state (int signo)
c906108c 6273{
d6b48e9c 6274 return signal_stop[signo];
c906108c
SS
6275}
6276
c5aa993b 6277int
96baa820 6278signal_print_state (int signo)
c906108c
SS
6279{
6280 return signal_print[signo];
6281}
6282
c5aa993b 6283int
96baa820 6284signal_pass_state (int signo)
c906108c
SS
6285{
6286 return signal_program[signo];
6287}
6288
2455069d
UW
6289static void
6290signal_cache_update (int signo)
6291{
6292 if (signo == -1)
6293 {
a493e3e2 6294 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6295 signal_cache_update (signo);
6296
6297 return;
6298 }
6299
6300 signal_pass[signo] = (signal_stop[signo] == 0
6301 && signal_print[signo] == 0
ab04a2af
TT
6302 && signal_program[signo] == 1
6303 && signal_catch[signo] == 0);
2455069d
UW
6304}
6305
488f131b 6306int
7bda5e4a 6307signal_stop_update (int signo, int state)
d4f3574e
SS
6308{
6309 int ret = signal_stop[signo];
abbb1732 6310
d4f3574e 6311 signal_stop[signo] = state;
2455069d 6312 signal_cache_update (signo);
d4f3574e
SS
6313 return ret;
6314}
6315
488f131b 6316int
7bda5e4a 6317signal_print_update (int signo, int state)
d4f3574e
SS
6318{
6319 int ret = signal_print[signo];
abbb1732 6320
d4f3574e 6321 signal_print[signo] = state;
2455069d 6322 signal_cache_update (signo);
d4f3574e
SS
6323 return ret;
6324}
6325
488f131b 6326int
7bda5e4a 6327signal_pass_update (int signo, int state)
d4f3574e
SS
6328{
6329 int ret = signal_program[signo];
abbb1732 6330
d4f3574e 6331 signal_program[signo] = state;
2455069d 6332 signal_cache_update (signo);
d4f3574e
SS
6333 return ret;
6334}
6335
ab04a2af
TT
6336/* Update the global 'signal_catch' from INFO and notify the
6337 target. */
6338
6339void
6340signal_catch_update (const unsigned int *info)
6341{
6342 int i;
6343
6344 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6345 signal_catch[i] = info[i] > 0;
6346 signal_cache_update (-1);
6347 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6348}
6349
c906108c 6350static void
96baa820 6351sig_print_header (void)
c906108c 6352{
3e43a32a
MS
6353 printf_filtered (_("Signal Stop\tPrint\tPass "
6354 "to program\tDescription\n"));
c906108c
SS
6355}
6356
6357static void
2ea28649 6358sig_print_info (enum gdb_signal oursig)
c906108c 6359{
2ea28649 6360 const char *name = gdb_signal_to_name (oursig);
c906108c 6361 int name_padding = 13 - strlen (name);
96baa820 6362
c906108c
SS
6363 if (name_padding <= 0)
6364 name_padding = 0;
6365
6366 printf_filtered ("%s", name);
488f131b 6367 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6368 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6369 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6370 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6371 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6372}
6373
6374/* Specify how various signals in the inferior should be handled. */
6375
6376static void
96baa820 6377handle_command (char *args, int from_tty)
c906108c
SS
6378{
6379 char **argv;
6380 int digits, wordlen;
6381 int sigfirst, signum, siglast;
2ea28649 6382 enum gdb_signal oursig;
c906108c
SS
6383 int allsigs;
6384 int nsigs;
6385 unsigned char *sigs;
6386 struct cleanup *old_chain;
6387
6388 if (args == NULL)
6389 {
e2e0b3e5 6390 error_no_arg (_("signal to handle"));
c906108c
SS
6391 }
6392
1777feb0 6393 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6394
a493e3e2 6395 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6396 sigs = (unsigned char *) alloca (nsigs);
6397 memset (sigs, 0, nsigs);
6398
1777feb0 6399 /* Break the command line up into args. */
c906108c 6400
d1a41061 6401 argv = gdb_buildargv (args);
7a292a7a 6402 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6403
6404 /* Walk through the args, looking for signal oursigs, signal names, and
6405 actions. Signal numbers and signal names may be interspersed with
6406 actions, with the actions being performed for all signals cumulatively
1777feb0 6407 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6408
6409 while (*argv != NULL)
6410 {
6411 wordlen = strlen (*argv);
6412 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6413 {;
6414 }
6415 allsigs = 0;
6416 sigfirst = siglast = -1;
6417
6418 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6419 {
6420 /* Apply action to all signals except those used by the
1777feb0 6421 debugger. Silently skip those. */
c906108c
SS
6422 allsigs = 1;
6423 sigfirst = 0;
6424 siglast = nsigs - 1;
6425 }
6426 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6427 {
6428 SET_SIGS (nsigs, sigs, signal_stop);
6429 SET_SIGS (nsigs, sigs, signal_print);
6430 }
6431 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6432 {
6433 UNSET_SIGS (nsigs, sigs, signal_program);
6434 }
6435 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6436 {
6437 SET_SIGS (nsigs, sigs, signal_print);
6438 }
6439 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6440 {
6441 SET_SIGS (nsigs, sigs, signal_program);
6442 }
6443 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6444 {
6445 UNSET_SIGS (nsigs, sigs, signal_stop);
6446 }
6447 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6448 {
6449 SET_SIGS (nsigs, sigs, signal_program);
6450 }
6451 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6452 {
6453 UNSET_SIGS (nsigs, sigs, signal_print);
6454 UNSET_SIGS (nsigs, sigs, signal_stop);
6455 }
6456 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6457 {
6458 UNSET_SIGS (nsigs, sigs, signal_program);
6459 }
6460 else if (digits > 0)
6461 {
6462 /* It is numeric. The numeric signal refers to our own
6463 internal signal numbering from target.h, not to host/target
6464 signal number. This is a feature; users really should be
6465 using symbolic names anyway, and the common ones like
6466 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6467
6468 sigfirst = siglast = (int)
2ea28649 6469 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6470 if ((*argv)[digits] == '-')
6471 {
6472 siglast = (int)
2ea28649 6473 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6474 }
6475 if (sigfirst > siglast)
6476 {
1777feb0 6477 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6478 signum = sigfirst;
6479 sigfirst = siglast;
6480 siglast = signum;
6481 }
6482 }
6483 else
6484 {
2ea28649 6485 oursig = gdb_signal_from_name (*argv);
a493e3e2 6486 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6487 {
6488 sigfirst = siglast = (int) oursig;
6489 }
6490 else
6491 {
6492 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6493 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6494 }
6495 }
6496
6497 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6498 which signals to apply actions to. */
c906108c
SS
6499
6500 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6501 {
2ea28649 6502 switch ((enum gdb_signal) signum)
c906108c 6503 {
a493e3e2
PA
6504 case GDB_SIGNAL_TRAP:
6505 case GDB_SIGNAL_INT:
c906108c
SS
6506 if (!allsigs && !sigs[signum])
6507 {
9e2f0ad4 6508 if (query (_("%s is used by the debugger.\n\
3e43a32a 6509Are you sure you want to change it? "),
2ea28649 6510 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6511 {
6512 sigs[signum] = 1;
6513 }
6514 else
6515 {
a3f17187 6516 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6517 gdb_flush (gdb_stdout);
6518 }
6519 }
6520 break;
a493e3e2
PA
6521 case GDB_SIGNAL_0:
6522 case GDB_SIGNAL_DEFAULT:
6523 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6524 /* Make sure that "all" doesn't print these. */
6525 break;
6526 default:
6527 sigs[signum] = 1;
6528 break;
6529 }
6530 }
6531
6532 argv++;
6533 }
6534
3a031f65
PA
6535 for (signum = 0; signum < nsigs; signum++)
6536 if (sigs[signum])
6537 {
2455069d 6538 signal_cache_update (-1);
a493e3e2
PA
6539 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6540 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6541
3a031f65
PA
6542 if (from_tty)
6543 {
6544 /* Show the results. */
6545 sig_print_header ();
6546 for (; signum < nsigs; signum++)
6547 if (sigs[signum])
6548 sig_print_info (signum);
6549 }
6550
6551 break;
6552 }
c906108c
SS
6553
6554 do_cleanups (old_chain);
6555}
6556
de0bea00
MF
6557/* Complete the "handle" command. */
6558
6559static VEC (char_ptr) *
6560handle_completer (struct cmd_list_element *ignore,
6f937416 6561 const char *text, const char *word)
de0bea00
MF
6562{
6563 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6564 static const char * const keywords[] =
6565 {
6566 "all",
6567 "stop",
6568 "ignore",
6569 "print",
6570 "pass",
6571 "nostop",
6572 "noignore",
6573 "noprint",
6574 "nopass",
6575 NULL,
6576 };
6577
6578 vec_signals = signal_completer (ignore, text, word);
6579 vec_keywords = complete_on_enum (keywords, word, word);
6580
6581 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6582 VEC_free (char_ptr, vec_signals);
6583 VEC_free (char_ptr, vec_keywords);
6584 return return_val;
6585}
6586
c906108c 6587static void
96baa820 6588xdb_handle_command (char *args, int from_tty)
c906108c
SS
6589{
6590 char **argv;
6591 struct cleanup *old_chain;
6592
d1a41061
PP
6593 if (args == NULL)
6594 error_no_arg (_("xdb command"));
6595
1777feb0 6596 /* Break the command line up into args. */
c906108c 6597
d1a41061 6598 argv = gdb_buildargv (args);
7a292a7a 6599 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6600 if (argv[1] != (char *) NULL)
6601 {
6602 char *argBuf;
6603 int bufLen;
6604
6605 bufLen = strlen (argv[0]) + 20;
6606 argBuf = (char *) xmalloc (bufLen);
6607 if (argBuf)
6608 {
6609 int validFlag = 1;
2ea28649 6610 enum gdb_signal oursig;
c906108c 6611
2ea28649 6612 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6613 memset (argBuf, 0, bufLen);
6614 if (strcmp (argv[1], "Q") == 0)
6615 sprintf (argBuf, "%s %s", argv[0], "noprint");
6616 else
6617 {
6618 if (strcmp (argv[1], "s") == 0)
6619 {
6620 if (!signal_stop[oursig])
6621 sprintf (argBuf, "%s %s", argv[0], "stop");
6622 else
6623 sprintf (argBuf, "%s %s", argv[0], "nostop");
6624 }
6625 else if (strcmp (argv[1], "i") == 0)
6626 {
6627 if (!signal_program[oursig])
6628 sprintf (argBuf, "%s %s", argv[0], "pass");
6629 else
6630 sprintf (argBuf, "%s %s", argv[0], "nopass");
6631 }
6632 else if (strcmp (argv[1], "r") == 0)
6633 {
6634 if (!signal_print[oursig])
6635 sprintf (argBuf, "%s %s", argv[0], "print");
6636 else
6637 sprintf (argBuf, "%s %s", argv[0], "noprint");
6638 }
6639 else
6640 validFlag = 0;
6641 }
6642 if (validFlag)
6643 handle_command (argBuf, from_tty);
6644 else
a3f17187 6645 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6646 if (argBuf)
b8c9b27d 6647 xfree (argBuf);
c906108c
SS
6648 }
6649 }
6650 do_cleanups (old_chain);
6651}
6652
2ea28649
PA
6653enum gdb_signal
6654gdb_signal_from_command (int num)
ed01b82c
PA
6655{
6656 if (num >= 1 && num <= 15)
2ea28649 6657 return (enum gdb_signal) num;
ed01b82c
PA
6658 error (_("Only signals 1-15 are valid as numeric signals.\n\
6659Use \"info signals\" for a list of symbolic signals."));
6660}
6661
c906108c
SS
6662/* Print current contents of the tables set by the handle command.
6663 It is possible we should just be printing signals actually used
6664 by the current target (but for things to work right when switching
6665 targets, all signals should be in the signal tables). */
6666
6667static void
96baa820 6668signals_info (char *signum_exp, int from_tty)
c906108c 6669{
2ea28649 6670 enum gdb_signal oursig;
abbb1732 6671
c906108c
SS
6672 sig_print_header ();
6673
6674 if (signum_exp)
6675 {
6676 /* First see if this is a symbol name. */
2ea28649 6677 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6678 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6679 {
6680 /* No, try numeric. */
6681 oursig =
2ea28649 6682 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6683 }
6684 sig_print_info (oursig);
6685 return;
6686 }
6687
6688 printf_filtered ("\n");
6689 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6690 for (oursig = GDB_SIGNAL_FIRST;
6691 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6692 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6693 {
6694 QUIT;
6695
a493e3e2
PA
6696 if (oursig != GDB_SIGNAL_UNKNOWN
6697 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6698 sig_print_info (oursig);
6699 }
6700
3e43a32a
MS
6701 printf_filtered (_("\nUse the \"handle\" command "
6702 "to change these tables.\n"));
c906108c 6703}
4aa995e1 6704
c709acd1
PA
6705/* Check if it makes sense to read $_siginfo from the current thread
6706 at this point. If not, throw an error. */
6707
6708static void
6709validate_siginfo_access (void)
6710{
6711 /* No current inferior, no siginfo. */
6712 if (ptid_equal (inferior_ptid, null_ptid))
6713 error (_("No thread selected."));
6714
6715 /* Don't try to read from a dead thread. */
6716 if (is_exited (inferior_ptid))
6717 error (_("The current thread has terminated"));
6718
6719 /* ... or from a spinning thread. */
6720 if (is_running (inferior_ptid))
6721 error (_("Selected thread is running."));
6722}
6723
4aa995e1
PA
6724/* The $_siginfo convenience variable is a bit special. We don't know
6725 for sure the type of the value until we actually have a chance to
7a9dd1b2 6726 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6727 also dependent on which thread you have selected.
6728
6729 1. making $_siginfo be an internalvar that creates a new value on
6730 access.
6731
6732 2. making the value of $_siginfo be an lval_computed value. */
6733
6734/* This function implements the lval_computed support for reading a
6735 $_siginfo value. */
6736
6737static void
6738siginfo_value_read (struct value *v)
6739{
6740 LONGEST transferred;
6741
c709acd1
PA
6742 validate_siginfo_access ();
6743
4aa995e1
PA
6744 transferred =
6745 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6746 NULL,
6747 value_contents_all_raw (v),
6748 value_offset (v),
6749 TYPE_LENGTH (value_type (v)));
6750
6751 if (transferred != TYPE_LENGTH (value_type (v)))
6752 error (_("Unable to read siginfo"));
6753}
6754
6755/* This function implements the lval_computed support for writing a
6756 $_siginfo value. */
6757
6758static void
6759siginfo_value_write (struct value *v, struct value *fromval)
6760{
6761 LONGEST transferred;
6762
c709acd1
PA
6763 validate_siginfo_access ();
6764
4aa995e1
PA
6765 transferred = target_write (&current_target,
6766 TARGET_OBJECT_SIGNAL_INFO,
6767 NULL,
6768 value_contents_all_raw (fromval),
6769 value_offset (v),
6770 TYPE_LENGTH (value_type (fromval)));
6771
6772 if (transferred != TYPE_LENGTH (value_type (fromval)))
6773 error (_("Unable to write siginfo"));
6774}
6775
c8f2448a 6776static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6777 {
6778 siginfo_value_read,
6779 siginfo_value_write
6780 };
6781
6782/* Return a new value with the correct type for the siginfo object of
78267919
UW
6783 the current thread using architecture GDBARCH. Return a void value
6784 if there's no object available. */
4aa995e1 6785
2c0b251b 6786static struct value *
22d2b532
SDJ
6787siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6788 void *ignore)
4aa995e1 6789{
4aa995e1 6790 if (target_has_stack
78267919
UW
6791 && !ptid_equal (inferior_ptid, null_ptid)
6792 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6793 {
78267919 6794 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6795
78267919 6796 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6797 }
6798
78267919 6799 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6800}
6801
c906108c 6802\f
16c381f0
JK
6803/* infcall_suspend_state contains state about the program itself like its
6804 registers and any signal it received when it last stopped.
6805 This state must be restored regardless of how the inferior function call
6806 ends (either successfully, or after it hits a breakpoint or signal)
6807 if the program is to properly continue where it left off. */
6808
6809struct infcall_suspend_state
7a292a7a 6810{
16c381f0 6811 struct thread_suspend_state thread_suspend;
dd80ea3c 6812#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6813 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6814#endif
16c381f0
JK
6815
6816 /* Other fields: */
7a292a7a 6817 CORE_ADDR stop_pc;
b89667eb 6818 struct regcache *registers;
1736ad11 6819
35515841 6820 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6821 struct gdbarch *siginfo_gdbarch;
6822
6823 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6824 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6825 content would be invalid. */
6826 gdb_byte *siginfo_data;
b89667eb
DE
6827};
6828
16c381f0
JK
6829struct infcall_suspend_state *
6830save_infcall_suspend_state (void)
b89667eb 6831{
16c381f0 6832 struct infcall_suspend_state *inf_state;
b89667eb 6833 struct thread_info *tp = inferior_thread ();
974a734b 6834#if 0
16c381f0 6835 struct inferior *inf = current_inferior ();
974a734b 6836#endif
1736ad11
JK
6837 struct regcache *regcache = get_current_regcache ();
6838 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6839 gdb_byte *siginfo_data = NULL;
6840
6841 if (gdbarch_get_siginfo_type_p (gdbarch))
6842 {
6843 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6844 size_t len = TYPE_LENGTH (type);
6845 struct cleanup *back_to;
6846
6847 siginfo_data = xmalloc (len);
6848 back_to = make_cleanup (xfree, siginfo_data);
6849
6850 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6851 siginfo_data, 0, len) == len)
6852 discard_cleanups (back_to);
6853 else
6854 {
6855 /* Errors ignored. */
6856 do_cleanups (back_to);
6857 siginfo_data = NULL;
6858 }
6859 }
6860
41bf6aca 6861 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
6862
6863 if (siginfo_data)
6864 {
6865 inf_state->siginfo_gdbarch = gdbarch;
6866 inf_state->siginfo_data = siginfo_data;
6867 }
b89667eb 6868
16c381f0 6869 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6870#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6871 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6872#endif
16c381f0 6873
35515841 6874 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6875 GDB_SIGNAL_0 anyway. */
6876 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6877
b89667eb
DE
6878 inf_state->stop_pc = stop_pc;
6879
1736ad11 6880 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6881
6882 return inf_state;
6883}
6884
6885/* Restore inferior session state to INF_STATE. */
6886
6887void
16c381f0 6888restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6889{
6890 struct thread_info *tp = inferior_thread ();
974a734b 6891#if 0
16c381f0 6892 struct inferior *inf = current_inferior ();
974a734b 6893#endif
1736ad11
JK
6894 struct regcache *regcache = get_current_regcache ();
6895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6896
16c381f0 6897 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6898#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6899 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6900#endif
16c381f0 6901
b89667eb
DE
6902 stop_pc = inf_state->stop_pc;
6903
1736ad11
JK
6904 if (inf_state->siginfo_gdbarch == gdbarch)
6905 {
6906 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6907
6908 /* Errors ignored. */
6909 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6910 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6911 }
6912
b89667eb
DE
6913 /* The inferior can be gone if the user types "print exit(0)"
6914 (and perhaps other times). */
6915 if (target_has_execution)
6916 /* NB: The register write goes through to the target. */
1736ad11 6917 regcache_cpy (regcache, inf_state->registers);
803b5f95 6918
16c381f0 6919 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6920}
6921
6922static void
16c381f0 6923do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6924{
16c381f0 6925 restore_infcall_suspend_state (state);
b89667eb
DE
6926}
6927
6928struct cleanup *
16c381f0
JK
6929make_cleanup_restore_infcall_suspend_state
6930 (struct infcall_suspend_state *inf_state)
b89667eb 6931{
16c381f0 6932 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6933}
6934
6935void
16c381f0 6936discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6937{
6938 regcache_xfree (inf_state->registers);
803b5f95 6939 xfree (inf_state->siginfo_data);
b89667eb
DE
6940 xfree (inf_state);
6941}
6942
6943struct regcache *
16c381f0 6944get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6945{
6946 return inf_state->registers;
6947}
6948
16c381f0
JK
6949/* infcall_control_state contains state regarding gdb's control of the
6950 inferior itself like stepping control. It also contains session state like
6951 the user's currently selected frame. */
b89667eb 6952
16c381f0 6953struct infcall_control_state
b89667eb 6954{
16c381f0
JK
6955 struct thread_control_state thread_control;
6956 struct inferior_control_state inferior_control;
d82142e2
JK
6957
6958 /* Other fields: */
6959 enum stop_stack_kind stop_stack_dummy;
6960 int stopped_by_random_signal;
7a292a7a 6961 int stop_after_trap;
7a292a7a 6962
b89667eb 6963 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6964 struct frame_id selected_frame_id;
7a292a7a
SS
6965};
6966
c906108c 6967/* Save all of the information associated with the inferior<==>gdb
b89667eb 6968 connection. */
c906108c 6969
16c381f0
JK
6970struct infcall_control_state *
6971save_infcall_control_state (void)
c906108c 6972{
16c381f0 6973 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6974 struct thread_info *tp = inferior_thread ();
d6b48e9c 6975 struct inferior *inf = current_inferior ();
7a292a7a 6976
16c381f0
JK
6977 inf_status->thread_control = tp->control;
6978 inf_status->inferior_control = inf->control;
d82142e2 6979
8358c15c 6980 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6981 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6982
16c381f0
JK
6983 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6984 chain. If caller's caller is walking the chain, they'll be happier if we
6985 hand them back the original chain when restore_infcall_control_state is
6986 called. */
6987 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6988
6989 /* Other fields: */
6990 inf_status->stop_stack_dummy = stop_stack_dummy;
6991 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6992 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6993
206415a3 6994 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6995
7a292a7a 6996 return inf_status;
c906108c
SS
6997}
6998
c906108c 6999static int
96baa820 7000restore_selected_frame (void *args)
c906108c 7001{
488f131b 7002 struct frame_id *fid = (struct frame_id *) args;
c906108c 7003 struct frame_info *frame;
c906108c 7004
101dcfbe 7005 frame = frame_find_by_id (*fid);
c906108c 7006
aa0cd9c1
AC
7007 /* If inf_status->selected_frame_id is NULL, there was no previously
7008 selected frame. */
101dcfbe 7009 if (frame == NULL)
c906108c 7010 {
8a3fe4f8 7011 warning (_("Unable to restore previously selected frame."));
c906108c
SS
7012 return 0;
7013 }
7014
0f7d239c 7015 select_frame (frame);
c906108c
SS
7016
7017 return (1);
7018}
7019
b89667eb
DE
7020/* Restore inferior session state to INF_STATUS. */
7021
c906108c 7022void
16c381f0 7023restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7024{
4e1c45ea 7025 struct thread_info *tp = inferior_thread ();
d6b48e9c 7026 struct inferior *inf = current_inferior ();
4e1c45ea 7027
8358c15c
JK
7028 if (tp->control.step_resume_breakpoint)
7029 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7030
5b79abe7
TT
7031 if (tp->control.exception_resume_breakpoint)
7032 tp->control.exception_resume_breakpoint->disposition
7033 = disp_del_at_next_stop;
7034
d82142e2 7035 /* Handle the bpstat_copy of the chain. */
16c381f0 7036 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7037
16c381f0
JK
7038 tp->control = inf_status->thread_control;
7039 inf->control = inf_status->inferior_control;
d82142e2
JK
7040
7041 /* Other fields: */
7042 stop_stack_dummy = inf_status->stop_stack_dummy;
7043 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7044 stop_after_trap = inf_status->stop_after_trap;
c906108c 7045
b89667eb 7046 if (target_has_stack)
c906108c 7047 {
c906108c 7048 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7049 walking the stack might encounter a garbage pointer and
7050 error() trying to dereference it. */
488f131b
JB
7051 if (catch_errors
7052 (restore_selected_frame, &inf_status->selected_frame_id,
7053 "Unable to restore previously selected frame:\n",
7054 RETURN_MASK_ERROR) == 0)
c906108c
SS
7055 /* Error in restoring the selected frame. Select the innermost
7056 frame. */
0f7d239c 7057 select_frame (get_current_frame ());
c906108c 7058 }
c906108c 7059
72cec141 7060 xfree (inf_status);
7a292a7a 7061}
c906108c 7062
74b7792f 7063static void
16c381f0 7064do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7065{
16c381f0 7066 restore_infcall_control_state (sts);
74b7792f
AC
7067}
7068
7069struct cleanup *
16c381f0
JK
7070make_cleanup_restore_infcall_control_state
7071 (struct infcall_control_state *inf_status)
74b7792f 7072{
16c381f0 7073 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7074}
7075
c906108c 7076void
16c381f0 7077discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7078{
8358c15c
JK
7079 if (inf_status->thread_control.step_resume_breakpoint)
7080 inf_status->thread_control.step_resume_breakpoint->disposition
7081 = disp_del_at_next_stop;
7082
5b79abe7
TT
7083 if (inf_status->thread_control.exception_resume_breakpoint)
7084 inf_status->thread_control.exception_resume_breakpoint->disposition
7085 = disp_del_at_next_stop;
7086
1777feb0 7087 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7088 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7089
72cec141 7090 xfree (inf_status);
7a292a7a 7091}
b89667eb 7092\f
ca6724c1
KB
7093/* restore_inferior_ptid() will be used by the cleanup machinery
7094 to restore the inferior_ptid value saved in a call to
7095 save_inferior_ptid(). */
ce696e05
KB
7096
7097static void
7098restore_inferior_ptid (void *arg)
7099{
7100 ptid_t *saved_ptid_ptr = arg;
abbb1732 7101
ce696e05
KB
7102 inferior_ptid = *saved_ptid_ptr;
7103 xfree (arg);
7104}
7105
7106/* Save the value of inferior_ptid so that it may be restored by a
7107 later call to do_cleanups(). Returns the struct cleanup pointer
7108 needed for later doing the cleanup. */
7109
7110struct cleanup *
7111save_inferior_ptid (void)
7112{
7113 ptid_t *saved_ptid_ptr;
7114
7115 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7116 *saved_ptid_ptr = inferior_ptid;
7117 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7118}
0c557179
SDJ
7119
7120/* See inferior.h. */
7121
7122void
7123clear_exit_convenience_vars (void)
7124{
7125 clear_internalvar (lookup_internalvar ("_exitsignal"));
7126 clear_internalvar (lookup_internalvar ("_exitcode"));
7127}
c5aa993b 7128\f
488f131b 7129
b2175913
MS
7130/* User interface for reverse debugging:
7131 Set exec-direction / show exec-direction commands
7132 (returns error unless target implements to_set_exec_direction method). */
7133
32231432 7134int execution_direction = EXEC_FORWARD;
b2175913
MS
7135static const char exec_forward[] = "forward";
7136static const char exec_reverse[] = "reverse";
7137static const char *exec_direction = exec_forward;
40478521 7138static const char *const exec_direction_names[] = {
b2175913
MS
7139 exec_forward,
7140 exec_reverse,
7141 NULL
7142};
7143
7144static void
7145set_exec_direction_func (char *args, int from_tty,
7146 struct cmd_list_element *cmd)
7147{
7148 if (target_can_execute_reverse)
7149 {
7150 if (!strcmp (exec_direction, exec_forward))
7151 execution_direction = EXEC_FORWARD;
7152 else if (!strcmp (exec_direction, exec_reverse))
7153 execution_direction = EXEC_REVERSE;
7154 }
8bbed405
MS
7155 else
7156 {
7157 exec_direction = exec_forward;
7158 error (_("Target does not support this operation."));
7159 }
b2175913
MS
7160}
7161
7162static void
7163show_exec_direction_func (struct ui_file *out, int from_tty,
7164 struct cmd_list_element *cmd, const char *value)
7165{
7166 switch (execution_direction) {
7167 case EXEC_FORWARD:
7168 fprintf_filtered (out, _("Forward.\n"));
7169 break;
7170 case EXEC_REVERSE:
7171 fprintf_filtered (out, _("Reverse.\n"));
7172 break;
b2175913 7173 default:
d8b34453
PA
7174 internal_error (__FILE__, __LINE__,
7175 _("bogus execution_direction value: %d"),
7176 (int) execution_direction);
b2175913
MS
7177 }
7178}
7179
d4db2f36
PA
7180static void
7181show_schedule_multiple (struct ui_file *file, int from_tty,
7182 struct cmd_list_element *c, const char *value)
7183{
3e43a32a
MS
7184 fprintf_filtered (file, _("Resuming the execution of threads "
7185 "of all processes is %s.\n"), value);
d4db2f36 7186}
ad52ddc6 7187
22d2b532
SDJ
7188/* Implementation of `siginfo' variable. */
7189
7190static const struct internalvar_funcs siginfo_funcs =
7191{
7192 siginfo_make_value,
7193 NULL,
7194 NULL
7195};
7196
c906108c 7197void
96baa820 7198_initialize_infrun (void)
c906108c 7199{
52f0bd74
AC
7200 int i;
7201 int numsigs;
de0bea00 7202 struct cmd_list_element *c;
c906108c 7203
1bedd215
AC
7204 add_info ("signals", signals_info, _("\
7205What debugger does when program gets various signals.\n\
7206Specify a signal as argument to print info on that signal only."));
c906108c
SS
7207 add_info_alias ("handle", "signals", 0);
7208
de0bea00 7209 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7210Specify how to handle signals.\n\
486c7739 7211Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7212Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7213If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7214will be displayed instead.\n\
7215\n\
c906108c
SS
7216Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7217from 1-15 are allowed for compatibility with old versions of GDB.\n\
7218Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7219The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7220used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7221\n\
1bedd215 7222Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7223\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7224Stop means reenter debugger if this signal happens (implies print).\n\
7225Print means print a message if this signal happens.\n\
7226Pass means let program see this signal; otherwise program doesn't know.\n\
7227Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7228Pass and Stop may be combined.\n\
7229\n\
7230Multiple signals may be specified. Signal numbers and signal names\n\
7231may be interspersed with actions, with the actions being performed for\n\
7232all signals cumulatively specified."));
de0bea00 7233 set_cmd_completer (c, handle_completer);
486c7739 7234
c906108c
SS
7235 if (xdb_commands)
7236 {
1bedd215
AC
7237 add_com ("lz", class_info, signals_info, _("\
7238What debugger does when program gets various signals.\n\
7239Specify a signal as argument to print info on that signal only."));
7240 add_com ("z", class_run, xdb_handle_command, _("\
7241Specify how to handle a signal.\n\
c906108c
SS
7242Args are signals and actions to apply to those signals.\n\
7243Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7244from 1-15 are allowed for compatibility with old versions of GDB.\n\
7245Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7246The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7247used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7248Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7249\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7250nopass), \"Q\" (noprint)\n\
7251Stop means reenter debugger if this signal happens (implies print).\n\
7252Print means print a message if this signal happens.\n\
7253Pass means let program see this signal; otherwise program doesn't know.\n\
7254Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7255Pass and Stop may be combined."));
c906108c
SS
7256 }
7257
7258 if (!dbx_commands)
1a966eab
AC
7259 stop_command = add_cmd ("stop", class_obscure,
7260 not_just_help_class_command, _("\
7261There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7262This allows you to set a list of commands to be run each time execution\n\
1a966eab 7263of the program stops."), &cmdlist);
c906108c 7264
ccce17b0 7265 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7266Set inferior debugging."), _("\
7267Show inferior debugging."), _("\
7268When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7269 NULL,
7270 show_debug_infrun,
7271 &setdebuglist, &showdebuglist);
527159b7 7272
3e43a32a
MS
7273 add_setshow_boolean_cmd ("displaced", class_maintenance,
7274 &debug_displaced, _("\
237fc4c9
PA
7275Set displaced stepping debugging."), _("\
7276Show displaced stepping debugging."), _("\
7277When non-zero, displaced stepping specific debugging is enabled."),
7278 NULL,
7279 show_debug_displaced,
7280 &setdebuglist, &showdebuglist);
7281
ad52ddc6
PA
7282 add_setshow_boolean_cmd ("non-stop", no_class,
7283 &non_stop_1, _("\
7284Set whether gdb controls the inferior in non-stop mode."), _("\
7285Show whether gdb controls the inferior in non-stop mode."), _("\
7286When debugging a multi-threaded program and this setting is\n\
7287off (the default, also called all-stop mode), when one thread stops\n\
7288(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7289all other threads in the program while you interact with the thread of\n\
7290interest. When you continue or step a thread, you can allow the other\n\
7291threads to run, or have them remain stopped, but while you inspect any\n\
7292thread's state, all threads stop.\n\
7293\n\
7294In non-stop mode, when one thread stops, other threads can continue\n\
7295to run freely. You'll be able to step each thread independently,\n\
7296leave it stopped or free to run as needed."),
7297 set_non_stop,
7298 show_non_stop,
7299 &setlist,
7300 &showlist);
7301
a493e3e2 7302 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7303 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7304 signal_print = (unsigned char *)
7305 xmalloc (sizeof (signal_print[0]) * numsigs);
7306 signal_program = (unsigned char *)
7307 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7308 signal_catch = (unsigned char *)
7309 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d
UW
7310 signal_pass = (unsigned char *)
7311 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7312 for (i = 0; i < numsigs; i++)
7313 {
7314 signal_stop[i] = 1;
7315 signal_print[i] = 1;
7316 signal_program[i] = 1;
ab04a2af 7317 signal_catch[i] = 0;
c906108c
SS
7318 }
7319
7320 /* Signals caused by debugger's own actions
7321 should not be given to the program afterwards. */
a493e3e2
PA
7322 signal_program[GDB_SIGNAL_TRAP] = 0;
7323 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7324
7325 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7326 signal_stop[GDB_SIGNAL_ALRM] = 0;
7327 signal_print[GDB_SIGNAL_ALRM] = 0;
7328 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7329 signal_print[GDB_SIGNAL_VTALRM] = 0;
7330 signal_stop[GDB_SIGNAL_PROF] = 0;
7331 signal_print[GDB_SIGNAL_PROF] = 0;
7332 signal_stop[GDB_SIGNAL_CHLD] = 0;
7333 signal_print[GDB_SIGNAL_CHLD] = 0;
7334 signal_stop[GDB_SIGNAL_IO] = 0;
7335 signal_print[GDB_SIGNAL_IO] = 0;
7336 signal_stop[GDB_SIGNAL_POLL] = 0;
7337 signal_print[GDB_SIGNAL_POLL] = 0;
7338 signal_stop[GDB_SIGNAL_URG] = 0;
7339 signal_print[GDB_SIGNAL_URG] = 0;
7340 signal_stop[GDB_SIGNAL_WINCH] = 0;
7341 signal_print[GDB_SIGNAL_WINCH] = 0;
7342 signal_stop[GDB_SIGNAL_PRIO] = 0;
7343 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7344
cd0fc7c3
SS
7345 /* These signals are used internally by user-level thread
7346 implementations. (See signal(5) on Solaris.) Like the above
7347 signals, a healthy program receives and handles them as part of
7348 its normal operation. */
a493e3e2
PA
7349 signal_stop[GDB_SIGNAL_LWP] = 0;
7350 signal_print[GDB_SIGNAL_LWP] = 0;
7351 signal_stop[GDB_SIGNAL_WAITING] = 0;
7352 signal_print[GDB_SIGNAL_WAITING] = 0;
7353 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7354 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7355
2455069d
UW
7356 /* Update cached state. */
7357 signal_cache_update (-1);
7358
85c07804
AC
7359 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7360 &stop_on_solib_events, _("\
7361Set stopping for shared library events."), _("\
7362Show stopping for shared library events."), _("\
c906108c
SS
7363If nonzero, gdb will give control to the user when the dynamic linker\n\
7364notifies gdb of shared library events. The most common event of interest\n\
85c07804 7365to the user would be loading/unloading of a new library."),
f9e14852 7366 set_stop_on_solib_events,
920d2a44 7367 show_stop_on_solib_events,
85c07804 7368 &setlist, &showlist);
c906108c 7369
7ab04401
AC
7370 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7371 follow_fork_mode_kind_names,
7372 &follow_fork_mode_string, _("\
7373Set debugger response to a program call of fork or vfork."), _("\
7374Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7375A fork or vfork creates a new process. follow-fork-mode can be:\n\
7376 parent - the original process is debugged after a fork\n\
7377 child - the new process is debugged after a fork\n\
ea1dd7bc 7378The unfollowed process will continue to run.\n\
7ab04401
AC
7379By default, the debugger will follow the parent process."),
7380 NULL,
920d2a44 7381 show_follow_fork_mode_string,
7ab04401
AC
7382 &setlist, &showlist);
7383
6c95b8df
PA
7384 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7385 follow_exec_mode_names,
7386 &follow_exec_mode_string, _("\
7387Set debugger response to a program call of exec."), _("\
7388Show debugger response to a program call of exec."), _("\
7389An exec call replaces the program image of a process.\n\
7390\n\
7391follow-exec-mode can be:\n\
7392\n\
cce7e648 7393 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7394to this new inferior. The program the process was running before\n\
7395the exec call can be restarted afterwards by restarting the original\n\
7396inferior.\n\
7397\n\
7398 same - the debugger keeps the process bound to the same inferior.\n\
7399The new executable image replaces the previous executable loaded in\n\
7400the inferior. Restarting the inferior after the exec call restarts\n\
7401the executable the process was running after the exec call.\n\
7402\n\
7403By default, the debugger will use the same inferior."),
7404 NULL,
7405 show_follow_exec_mode_string,
7406 &setlist, &showlist);
7407
7ab04401
AC
7408 add_setshow_enum_cmd ("scheduler-locking", class_run,
7409 scheduler_enums, &scheduler_mode, _("\
7410Set mode for locking scheduler during execution."), _("\
7411Show mode for locking scheduler during execution."), _("\
c906108c
SS
7412off == no locking (threads may preempt at any time)\n\
7413on == full locking (no thread except the current thread may run)\n\
7414step == scheduler locked during every single-step operation.\n\
7415 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7416 Other threads may run while stepping over a function call ('next')."),
7417 set_schedlock_func, /* traps on target vector */
920d2a44 7418 show_scheduler_mode,
7ab04401 7419 &setlist, &showlist);
5fbbeb29 7420
d4db2f36
PA
7421 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7422Set mode for resuming threads of all processes."), _("\
7423Show mode for resuming threads of all processes."), _("\
7424When on, execution commands (such as 'continue' or 'next') resume all\n\
7425threads of all processes. When off (which is the default), execution\n\
7426commands only resume the threads of the current process. The set of\n\
7427threads that are resumed is further refined by the scheduler-locking\n\
7428mode (see help set scheduler-locking)."),
7429 NULL,
7430 show_schedule_multiple,
7431 &setlist, &showlist);
7432
5bf193a2
AC
7433 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7434Set mode of the step operation."), _("\
7435Show mode of the step operation."), _("\
7436When set, doing a step over a function without debug line information\n\
7437will stop at the first instruction of that function. Otherwise, the\n\
7438function is skipped and the step command stops at a different source line."),
7439 NULL,
920d2a44 7440 show_step_stop_if_no_debug,
5bf193a2 7441 &setlist, &showlist);
ca6724c1 7442
72d0e2c5
YQ
7443 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7444 &can_use_displaced_stepping, _("\
237fc4c9
PA
7445Set debugger's willingness to use displaced stepping."), _("\
7446Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7447If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7448supported by the target architecture. If off, gdb will not use displaced\n\
7449stepping to step over breakpoints, even if such is supported by the target\n\
7450architecture. If auto (which is the default), gdb will use displaced stepping\n\
7451if the target architecture supports it and non-stop mode is active, but will not\n\
7452use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7453 NULL,
7454 show_can_use_displaced_stepping,
7455 &setlist, &showlist);
237fc4c9 7456
b2175913
MS
7457 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7458 &exec_direction, _("Set direction of execution.\n\
7459Options are 'forward' or 'reverse'."),
7460 _("Show direction of execution (forward/reverse)."),
7461 _("Tells gdb whether to execute forward or backward."),
7462 set_exec_direction_func, show_exec_direction_func,
7463 &setlist, &showlist);
7464
6c95b8df
PA
7465 /* Set/show detach-on-fork: user-settable mode. */
7466
7467 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7468Set whether gdb will detach the child of a fork."), _("\
7469Show whether gdb will detach the child of a fork."), _("\
7470Tells gdb whether to detach the child of a fork."),
7471 NULL, NULL, &setlist, &showlist);
7472
03583c20
UW
7473 /* Set/show disable address space randomization mode. */
7474
7475 add_setshow_boolean_cmd ("disable-randomization", class_support,
7476 &disable_randomization, _("\
7477Set disabling of debuggee's virtual address space randomization."), _("\
7478Show disabling of debuggee's virtual address space randomization."), _("\
7479When this mode is on (which is the default), randomization of the virtual\n\
7480address space is disabled. Standalone programs run with the randomization\n\
7481enabled by default on some platforms."),
7482 &set_disable_randomization,
7483 &show_disable_randomization,
7484 &setlist, &showlist);
7485
ca6724c1 7486 /* ptid initializations */
ca6724c1
KB
7487 inferior_ptid = null_ptid;
7488 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7489
7490 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7491 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7492 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7493 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7494
7495 /* Explicitly create without lookup, since that tries to create a
7496 value with a void typed value, and when we get here, gdbarch
7497 isn't initialized yet. At this point, we're quite sure there
7498 isn't another convenience variable of the same name. */
22d2b532 7499 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7500
7501 add_setshow_boolean_cmd ("observer", no_class,
7502 &observer_mode_1, _("\
7503Set whether gdb controls the inferior in observer mode."), _("\
7504Show whether gdb controls the inferior in observer mode."), _("\
7505In observer mode, GDB can get data from the inferior, but not\n\
7506affect its execution. Registers and memory may not be changed,\n\
7507breakpoints may not be set, and the program cannot be interrupted\n\
7508or signalled."),
7509 set_observer_mode,
7510 show_observer_mode,
7511 &setlist,
7512 &showlist);
c906108c 7513}
This page took 1.749971 seconds and 4 git commands to generate.