* mi/mi-main.c (enum captured_mi_execute_command_actions)
[deliverable/binutils-gdb.git] / gdb / iq2000-tdep.c
CommitLineData
20be272b
CV
1/* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2 Debugger.
3
9b254dd1 4 Copyright (C) 2000, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
20be272b
CV
5
6 Contributed by Red Hat.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
20be272b
CV
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20be272b
CV
22
23#include "defs.h"
24#include "frame.h"
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
28#include "gdbtypes.h"
29#include "value.h"
30#include "dis-asm.h"
31#include "gdb_string.h"
32#include "arch-utils.h"
33#include "regcache.h"
34#include "osabi.h"
35#include "gdbcore.h"
36
37enum gdb_regnum
38{
39 E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM,
40 E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM,
41 E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM,
42 E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
43 E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
44 E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
45 E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
46 E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
47 E_PC_REGNUM,
48 E_LR_REGNUM = E_R31_REGNUM, /* Link register. */
49 E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */
50 E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */
51 E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */
52 E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */
53 E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */
54 E_NUM_REGS = E_PC_REGNUM + 1
55};
56
57/* Use an invalid address value as 'not available' marker. */
58enum { REG_UNAVAIL = (CORE_ADDR) -1 };
59
60struct iq2000_frame_cache
61{
62 /* Base address. */
63 CORE_ADDR base;
64 CORE_ADDR pc;
65 LONGEST framesize;
66 int using_fp;
67 CORE_ADDR saved_sp;
68 CORE_ADDR saved_regs [E_NUM_REGS];
69};
70
71/* Harvard methods: */
72
73static CORE_ADDR
74insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */
75{
76 return addr & 0x7fffffffL;
77}
78
79static CORE_ADDR
80insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */
81{
82 return (ptr & 0x7fffffffL) | 0x80000000L;
83}
84
85/* Function: pointer_to_address
86 Convert a target pointer to an address in host (CORE_ADDR) format. */
87
88static CORE_ADDR
ec20a626 89iq2000_pointer_to_address (struct type * type, const gdb_byte * buf)
20be272b
CV
90{
91 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
92 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
93
94 if (target == TYPE_CODE_FUNC
95 || target == TYPE_CODE_METHOD
96 || (TYPE_FLAGS (TYPE_TARGET_TYPE (type)) & TYPE_FLAG_CODE_SPACE) != 0)
97 addr = insn_addr_from_ptr (addr);
98
99 return addr;
100}
101
102/* Function: address_to_pointer
103 Convert a host-format address (CORE_ADDR) into a target pointer. */
104
105static void
ec20a626 106iq2000_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
20be272b
CV
107{
108 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
109
110 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
111 addr = insn_ptr_from_addr (addr);
112 store_unsigned_integer (buf, TYPE_LENGTH (type), addr);
113}
114
115/* Real register methods: */
116
117/* Function: register_name
118 Returns the name of the iq2000 register number N. */
119
120static const char *
d93859e2 121iq2000_register_name (struct gdbarch *gdbarch, int regnum)
20be272b
CV
122{
123 static const char * names[E_NUM_REGS] =
124 {
125 "r0", "r1", "r2", "r3", "r4",
126 "r5", "r6", "r7", "r8", "r9",
127 "r10", "r11", "r12", "r13", "r14",
128 "r15", "r16", "r17", "r18", "r19",
129 "r20", "r21", "r22", "r23", "r24",
130 "r25", "r26", "r27", "r28", "r29",
131 "r30", "r31",
132 "pc"
133 };
134 if (regnum < 0 || regnum >= E_NUM_REGS)
135 return NULL;
136 return names[regnum];
137}
138
139/* Prologue analysis methods: */
140
141/* ADDIU insn (001001 rs(5) rt(5) imm(16)). */
142#define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000)
143#define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21)
144#define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16)
145#define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff))
146
147/* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */
148#define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025)
149#define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16)
150#define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11)
151
152/* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */
153#define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000)
154#define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21)
155#define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16)
156#define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff))
157
158/* Function: find_last_line_symbol
159
160 Given an address range, first find a line symbol corresponding to
161 the starting address. Then find the last line symbol within the
162 range that has a line number less than or equal to the first line.
163
164 For optimized code with code motion, this finds the last address
165 for the lowest-numbered line within the address range. */
166
167static struct symtab_and_line
168find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
169{
170 struct symtab_and_line sal = find_pc_line (start, notcurrent);
171 struct symtab_and_line best_sal = sal;
172
173 if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
174 return sal;
175
176 do
177 {
178 if (sal.line && sal.line <= best_sal.line)
179 best_sal = sal;
180 sal = find_pc_line (sal.end, notcurrent);
181 }
182 while (sal.pc && sal.pc < end);
183
184 return best_sal;
185}
186
187/* Function: scan_prologue
188 Decode the instructions within the given address range.
189 Decide when we must have reached the end of the function prologue.
190 If a frame_info pointer is provided, fill in its prologue information.
191
192 Returns the address of the first instruction after the prologue. */
193
194static CORE_ADDR
195iq2000_scan_prologue (CORE_ADDR scan_start,
196 CORE_ADDR scan_end,
197 struct frame_info *fi,
198 struct iq2000_frame_cache *cache)
199{
200 struct symtab_and_line sal;
201 CORE_ADDR pc;
202 CORE_ADDR loop_end;
203 int found_store_lr = 0;
204 int found_decr_sp = 0;
205 int srcreg;
206 int tgtreg;
207 signed short offset;
208
209 if (scan_end == (CORE_ADDR) 0)
210 {
211 loop_end = scan_start + 100;
212 sal.end = sal.pc = 0;
213 }
214 else
215 {
216 loop_end = scan_end;
217 if (fi)
218 sal = find_last_line_symbol (scan_start, scan_end, 0);
219 }
220
221 /* Saved registers:
222 We first have to save the saved register's offset, and
223 only later do we compute its actual address. Since the
224 offset can be zero, we must first initialize all the
225 saved regs to minus one (so we can later distinguish
226 between one that's not saved, and one that's saved at zero). */
227 for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
228 cache->saved_regs[srcreg] = -1;
229 cache->using_fp = 0;
230 cache->framesize = 0;
231
232 for (pc = scan_start; pc < loop_end; pc += 4)
233 {
234 LONGEST insn = read_memory_unsigned_integer (pc, 4);
235 /* Skip any instructions writing to (sp) or decrementing the
236 SP. */
237 if ((insn & 0xffe00000) == 0xac200000)
238 {
239 /* sw using SP/%1 as base. */
240 /* LEGACY -- from assembly-only port. */
241 tgtreg = ((insn >> 16) & 0x1f);
242 if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
243 cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
244
245 if (tgtreg == E_LR_REGNUM)
246 found_store_lr = 1;
247 continue;
248 }
249
250 if ((insn & 0xffff8000) == 0x20218000)
251 {
252 /* addi %1, %1, -N == addi %sp, %sp, -N */
253 /* LEGACY -- from assembly-only port */
254 found_decr_sp = 1;
255 cache->framesize = -((signed short) (insn & 0xffff));
256 continue;
257 }
258
259 if (INSN_IS_ADDIU (insn))
260 {
261 srcreg = ADDIU_REG_SRC (insn);
262 tgtreg = ADDIU_REG_TGT (insn);
263 offset = ADDIU_IMMEDIATE (insn);
264 if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
265 cache->framesize = -offset;
266 continue;
267 }
268
269 if (INSN_IS_STORE_WORD (insn))
270 {
271 srcreg = SW_REG_SRC (insn);
272 tgtreg = SW_REG_INDEX (insn);
273 offset = SW_OFFSET (insn);
274
275 if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
276 {
277 /* "push" to stack (via SP or FP reg) */
278 if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */
279 cache->saved_regs[srcreg] = offset;
280 continue;
281 }
282 }
283
284 if (INSN_IS_MOVE (insn))
285 {
286 srcreg = MOVE_REG_SRC (insn);
287 tgtreg = MOVE_REG_TGT (insn);
288
289 if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
290 {
291 /* Copy sp to fp. */
292 cache->using_fp = 1;
293 continue;
294 }
295 }
296
297 /* Unknown instruction encountered in frame. Bail out?
298 1) If we have a subsequent line symbol, we can keep going.
299 2) If not, we need to bail out and quit scanning instructions. */
300
301 if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */
302 continue;
303 else /* bail */
304 break;
305 }
306
307 return pc;
308}
309
310static void
311iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
312{
313 int i;
314
315 cache->base = 0;
316 cache->framesize = 0;
317 cache->using_fp = 0;
318 cache->saved_sp = 0;
319 for (i = 0; i < E_NUM_REGS; i++)
320 cache->saved_regs[i] = -1;
321}
322
323/* Function: iq2000_skip_prologue
324 If the input address is in a function prologue,
325 returns the address of the end of the prologue;
326 else returns the input address.
327
328 Note: the input address is likely to be the function start,
329 since this function is mainly used for advancing a breakpoint
330 to the first line, or stepping to the first line when we have
331 stepped into a function call. */
332
333static CORE_ADDR
6093d2eb 334iq2000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
20be272b
CV
335{
336 CORE_ADDR func_addr = 0 , func_end = 0;
337
338 if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
339 {
340 struct symtab_and_line sal;
341 struct iq2000_frame_cache cache;
342
343 /* Found a function. */
344 sal = find_pc_line (func_addr, 0);
345 if (sal.end && sal.end < func_end)
346 /* Found a line number, use it as end of prologue. */
347 return sal.end;
348
349 /* No useable line symbol. Use prologue parsing method. */
350 iq2000_init_frame_cache (&cache);
351 return iq2000_scan_prologue (func_addr, func_end, NULL, &cache);
352 }
353
354 /* No function symbol -- just return the PC. */
355 return (CORE_ADDR) pc;
356}
357
358static struct iq2000_frame_cache *
359iq2000_frame_cache (struct frame_info *next_frame, void **this_cache)
360{
361 struct iq2000_frame_cache *cache;
362 CORE_ADDR current_pc;
363 int i;
364
365 if (*this_cache)
366 return *this_cache;
367
368 cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
369 iq2000_init_frame_cache (cache);
370 *this_cache = cache;
371
372 cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM);
373 //if (cache->base == 0)
374 //return cache;
375
376 current_pc = frame_pc_unwind (next_frame);
377 find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
378 if (cache->pc != 0)
379 iq2000_scan_prologue (cache->pc, current_pc, next_frame, cache);
380 if (!cache->using_fp)
381 cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
382
383 cache->saved_sp = cache->base + cache->framesize;
384
385 for (i = 0; i < E_NUM_REGS; i++)
386 if (cache->saved_regs[i] != -1)
387 cache->saved_regs[i] += cache->base;
388
389 return cache;
390}
391
392static void
393iq2000_frame_prev_register (struct frame_info *next_frame, void **this_cache,
394 int regnum, int *optimizedp,
395 enum lval_type *lvalp, CORE_ADDR *addrp,
ec20a626 396 int *realnump, gdb_byte *valuep)
20be272b
CV
397{
398 struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache);
399 if (regnum == E_SP_REGNUM && cache->saved_sp)
400 {
401 *optimizedp = 0;
402 *lvalp = not_lval;
403 *addrp = 0;
404 *realnump = -1;
405 if (valuep)
406 store_unsigned_integer (valuep, 4, cache->saved_sp);
407 return;
408 }
409
410 if (regnum == E_PC_REGNUM)
411 regnum = E_LR_REGNUM;
412
413 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
414 {
415 *optimizedp = 0;
416 *lvalp = lval_memory;
417 *addrp = cache->saved_regs[regnum];
418 *realnump = -1;
419 if (valuep)
505bbca2
UW
420 read_memory (*addrp, valuep,
421 register_size (get_frame_arch (next_frame), regnum));
20be272b
CV
422 return;
423 }
424
425 *optimizedp = 0;
426 *lvalp = lval_register;
427 *addrp = 0;
428 *realnump = regnum;
429 if (valuep)
430 frame_unwind_register (next_frame, (*realnump), valuep);
431}
432
433static void
434iq2000_frame_this_id (struct frame_info *next_frame, void **this_cache,
435 struct frame_id *this_id)
436{
437 struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache);
438
439 /* This marks the outermost frame. */
440 if (cache->base == 0)
441 return;
442
443 *this_id = frame_id_build (cache->saved_sp, cache->pc);
444}
445
446static const struct frame_unwind iq2000_frame_unwind = {
447 NORMAL_FRAME,
448 iq2000_frame_this_id,
449 iq2000_frame_prev_register
450};
451
452static const struct frame_unwind *
453iq2000_frame_sniffer (struct frame_info *next_frame)
454{
455 return &iq2000_frame_unwind;
456}
457
458static CORE_ADDR
459iq2000_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
460{
461 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
462}
463
464static CORE_ADDR
465iq2000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
466{
467 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
468}
469
470static struct frame_id
471iq2000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
472{
473 return frame_id_build (iq2000_unwind_sp (gdbarch, next_frame),
474 frame_pc_unwind (next_frame));
475}
476
477static CORE_ADDR
478iq2000_frame_base_address (struct frame_info *next_frame, void **this_cache)
479{
480 struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache);
481
482 return cache->base;
483}
484
485static const struct frame_base iq2000_frame_base = {
486 &iq2000_frame_unwind,
487 iq2000_frame_base_address,
488 iq2000_frame_base_address,
489 iq2000_frame_base_address
490};
491
492static const unsigned char *
67d57894
MD
493iq2000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
494 int *lenptr)
20be272b
CV
495{
496 static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
497 static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
498
499 if ((*pcptr & 3) != 0)
500 error ("breakpoint_from_pc: invalid breakpoint address 0x%lx",
501 (long) *pcptr);
502
503 *lenptr = 4;
67d57894
MD
504 return (gdbarch_byte_order (gdbarch)
505 == BFD_ENDIAN_BIG) ? big_breakpoint : little_breakpoint;
20be272b
CV
506}
507
508/* Target function return value methods: */
509
510/* Function: store_return_value
511 Copy the function return value from VALBUF into the
512 proper location for a function return. */
513
514static void
515iq2000_store_return_value (struct type *type, struct regcache *regcache,
516 const void *valbuf)
517{
518 int len = TYPE_LENGTH (type);
519 int regno = E_FN_RETURN_REGNUM;
520
521 while (len > 0)
522 {
523 char buf[4];
524 int size = len % 4 ?: 4;
525
526 memset (buf, 0, 4);
527 memcpy (buf + 4 - size, valbuf, size);
528 regcache_raw_write (regcache, regno++, buf);
529 len -= size;
530 valbuf = ((char *) valbuf) + size;
531 }
532}
533
534/* Function: use_struct_convention
535 Returns non-zero if the given struct type will be returned using
536 a special convention, rather than the normal function return method. */
537
538static int
539iq2000_use_struct_convention (struct type *type)
540{
541 return ((TYPE_CODE (type) == TYPE_CODE_STRUCT)
542 || (TYPE_CODE (type) == TYPE_CODE_UNION))
543 && TYPE_LENGTH (type) > 8;
544}
545
546/* Function: extract_return_value
547 Copy the function's return value into VALBUF.
548 This function is called only in the context of "target function calls",
549 ie. when the debugger forces a function to be called in the child, and
550 when the debugger forces a function to return prematurely via the
551 "return" command. */
552
553static void
554iq2000_extract_return_value (struct type *type, struct regcache *regcache,
555 void *valbuf)
556{
557 /* If the function's return value is 8 bytes or less, it is
558 returned in a register, and if larger than 8 bytes, it is
559 returned in a stack location which is pointed to by the same
560 register. */
20be272b
CV
561 int len = TYPE_LENGTH (type);
562
563 if (len <= (2 * 4))
564 {
565 int regno = E_FN_RETURN_REGNUM;
566
567 /* Return values of <= 8 bytes are returned in
568 FN_RETURN_REGNUM. */
569 while (len > 0)
570 {
571 ULONGEST tmp;
572 int size = len % 4 ?: 4;
573
574 /* By using store_unsigned_integer we avoid having to
575 do anything special for small big-endian values. */
576 regcache_cooked_read_unsigned (regcache, regno++, &tmp);
577 store_unsigned_integer (valbuf, size, tmp);
578 len -= size;
579 valbuf = ((char *) valbuf) + size;
580 }
581 }
582 else
583 {
584 /* Return values > 8 bytes are returned in memory,
585 pointed to by FN_RETURN_REGNUM. */
ec20a626
UW
586 ULONGEST return_buffer;
587 regcache_cooked_read_unsigned (regcache, E_FN_RETURN_REGNUM,
588 &return_buffer);
20be272b
CV
589 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
590 }
591}
592
593static enum return_value_convention
c055b101
CV
594iq2000_return_value (struct gdbarch *gdbarch, struct type *func_type,
595 struct type *type, struct regcache *regcache,
ec20a626 596 gdb_byte *readbuf, const gdb_byte *writebuf)
20be272b
CV
597{
598 if (iq2000_use_struct_convention (type))
599 return RETURN_VALUE_STRUCT_CONVENTION;
600 if (writebuf)
601 iq2000_store_return_value (type, regcache, writebuf);
602 else if (readbuf)
603 iq2000_extract_return_value (type, regcache, readbuf);
604 return RETURN_VALUE_REGISTER_CONVENTION;
605}
606
607/* Function: register_virtual_type
608 Returns the default type for register N. */
609
610static struct type *
611iq2000_register_type (struct gdbarch *gdbarch, int regnum)
612{
613 return builtin_type_int32;
614}
615
616static CORE_ADDR
617iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
618{
619 /* This is the same frame alignment used by gcc. */
620 return ((sp + 7) & ~7);
621}
622
623/* Convenience function to check 8-byte types for being a scalar type
624 or a struct with only one long long or double member. */
625static int
626iq2000_pass_8bytetype_by_address (struct type *type)
627{
628 struct type *ftype;
629
630 /* Skip typedefs. */
631 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
632 type = TYPE_TARGET_TYPE (type);
633 /* Non-struct and non-union types are always passed by value. */
634 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
635 && TYPE_CODE (type) != TYPE_CODE_UNION)
636 return 0;
637 /* Structs with more than 1 field are always passed by address. */
638 if (TYPE_NFIELDS (type) != 1)
639 return 1;
640 /* Get field type. */
641 ftype = (TYPE_FIELDS (type))[0].type;
642 /* The field type must have size 8, otherwise pass by address. */
643 if (TYPE_LENGTH (ftype) != 8)
644 return 1;
645 /* Skip typedefs of field type. */
646 while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF)
647 ftype = TYPE_TARGET_TYPE (ftype);
648 /* If field is int or float, pass by value. */
649 if (TYPE_CODE (ftype) == TYPE_CODE_FLT
650 || TYPE_CODE (ftype) == TYPE_CODE_INT)
651 return 0;
652 /* Everything else, pass by address. */
653 return 1;
654}
655
656static CORE_ADDR
657iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
658 struct regcache *regcache, CORE_ADDR bp_addr,
659 int nargs, struct value **args, CORE_ADDR sp,
660 int struct_return, CORE_ADDR struct_addr)
661{
662 const bfd_byte *val;
663 bfd_byte buf[4];
664 struct type *type;
665 int i, argreg, typelen, slacklen;
666 int stackspace = 0;
667 /* Used to copy struct arguments into the stack. */
668 CORE_ADDR struct_ptr;
669
670 /* First determine how much stack space we will need. */
671 for (i = 0, argreg = E_1ST_ARGREG + (struct_return != 0); i < nargs; i++)
672 {
673 type = value_type (args[i]);
674 typelen = TYPE_LENGTH (type);
675 if (typelen <= 4)
676 {
677 /* Scalars of up to 4 bytes,
678 structs of up to 4 bytes, and
679 pointers. */
680 if (argreg <= E_LAST_ARGREG)
681 argreg++;
682 else
683 stackspace += 4;
684 }
685 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
686 {
687 /* long long,
688 double, and possibly
689 structs with a single field of long long or double. */
690 if (argreg <= E_LAST_ARGREG - 1)
691 {
692 /* 8-byte arg goes into a register pair
693 (must start with an even-numbered reg) */
694 if (((argreg - E_1ST_ARGREG) % 2) != 0)
695 argreg ++;
696 argreg += 2;
697 }
698 else
699 {
700 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
701 /* 8-byte arg goes on stack, must be 8-byte aligned. */
702 stackspace = ((stackspace + 7) & ~7);
703 stackspace += 8;
704 }
705 }
706 else
707 {
708 /* Structs are passed as pointer to a copy of the struct.
709 So we need room on the stack for a copy of the struct
710 plus for the argument pointer. */
711 if (argreg <= E_LAST_ARGREG)
712 argreg++;
713 else
714 stackspace += 4;
715 /* Care for 8-byte alignment of structs saved on stack. */
716 stackspace += ((typelen + 7) & ~7);
717 }
718 }
719
720 /* Now copy params, in ascending order, into their assigned location
721 (either in a register or on the stack). */
722
723 sp -= (sp % 8); /* align */
724 struct_ptr = sp;
725 sp -= stackspace;
726 sp -= (sp % 8); /* align again */
727 stackspace = 0;
728
729 argreg = E_1ST_ARGREG;
730 if (struct_return)
731 {
732 /* A function that returns a struct will consume one argreg to do so.
733 */
734 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
735 }
736
737 for (i = 0; i < nargs; i++)
738 {
739 type = value_type (args[i]);
740 typelen = TYPE_LENGTH (type);
741 val = value_contents (args[i]);
742 if (typelen <= 4)
743 {
744 /* Char, short, int, float, pointer, and structs <= four bytes. */
745 slacklen = (4 - (typelen % 4)) % 4;
746 memset (buf, 0, sizeof (buf));
747 memcpy (buf + slacklen, val, typelen);
748 if (argreg <= E_LAST_ARGREG)
749 {
750 /* Passed in a register. */
751 regcache_raw_write (regcache, argreg++, buf);
752 }
753 else
754 {
755 /* Passed on the stack. */
756 write_memory (sp + stackspace, buf, 4);
757 stackspace += 4;
758 }
759 }
760 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
761 {
762 /* (long long), (double), or struct consisting of
763 a single (long long) or (double). */
764 if (argreg <= E_LAST_ARGREG - 1)
765 {
766 /* 8-byte arg goes into a register pair
767 (must start with an even-numbered reg) */
768 if (((argreg - E_1ST_ARGREG) % 2) != 0)
769 argreg++;
770 regcache_raw_write (regcache, argreg++, val);
771 regcache_raw_write (regcache, argreg++, val + 4);
772 }
773 else
774 {
775 /* 8-byte arg goes on stack, must be 8-byte aligned. */
776 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
777 stackspace = ((stackspace + 7) & ~7);
778 write_memory (sp + stackspace, val, typelen);
779 stackspace += 8;
780 }
781 }
782 else
783 {
784 /* Store struct beginning at the upper end of the previously
785 computed stack space. Then store the address of the struct
786 using the usual rules for a 4 byte value. */
787 struct_ptr -= ((typelen + 7) & ~7);
788 write_memory (struct_ptr, val, typelen);
789 if (argreg <= E_LAST_ARGREG)
790 regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
791 else
792 {
793 store_unsigned_integer (buf, 4, struct_ptr);
794 write_memory (sp + stackspace, buf, 4);
795 stackspace += 4;
796 }
797 }
798 }
799
800 /* Store return address. */
801 regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
802
803 /* Update stack pointer. */
804 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
805
806 /* And that should do it. Return the new stack pointer. */
807 return sp;
808}
809
810/* Function: gdbarch_init
811 Initializer function for the iq2000 gdbarch vector.
812 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
813
814static struct gdbarch *
815iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
816{
817 struct gdbarch *gdbarch;
818
819 /* Look up list for candidates - only one. */
820 arches = gdbarch_list_lookup_by_info (arches, &info);
821 if (arches != NULL)
822 return arches->gdbarch;
823
824 gdbarch = gdbarch_alloc (&info, NULL);
825
826 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
827 set_gdbarch_num_pseudo_regs (gdbarch, 0);
828 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
829 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
830 set_gdbarch_register_name (gdbarch, iq2000_register_name);
831 set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer);
832 set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address);
833 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
834 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
835 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
836 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
837 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
838 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
839 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
840 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
8da61cc4
DJ
841 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
842 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
843 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
20be272b
CV
844 set_gdbarch_return_value (gdbarch, iq2000_return_value);
845 set_gdbarch_breakpoint_from_pc (gdbarch, iq2000_breakpoint_from_pc);
846 set_gdbarch_frame_args_skip (gdbarch, 0);
847 set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue);
848 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
849 set_gdbarch_print_insn (gdbarch, print_insn_iq2000);
850 set_gdbarch_register_type (gdbarch, iq2000_register_type);
851 set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
852 set_gdbarch_unwind_sp (gdbarch, iq2000_unwind_sp);
853 set_gdbarch_unwind_pc (gdbarch, iq2000_unwind_pc);
854 set_gdbarch_unwind_dummy_id (gdbarch, iq2000_unwind_dummy_id);
855 frame_base_set_default (gdbarch, &iq2000_frame_base);
856 set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
857
858 gdbarch_init_osabi (info, gdbarch);
859
860 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
861 frame_unwind_append_sniffer (gdbarch, iq2000_frame_sniffer);
862
863 return gdbarch;
864}
865
866/* Function: _initialize_iq2000_tdep
867 Initializer function for the iq2000 module.
868 Called by gdb at start-up. */
869
870void
871_initialize_iq2000_tdep (void)
872{
873 register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init);
874}
This page took 0.265645 seconds and 4 git commands to generate.