Phase 1 of the ptid_t changes.
[deliverable/binutils-gdb.git] / gdb / irix5-nat.c
CommitLineData
c906108c 1/* Native support for the SGI Iris running IRIX version 5, for GDB.
b6ba6518
KB
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6 Implemented for Irix 4.x by Garrett A. Wollman.
7 Modified for Irix 5.x by Ian Lance Taylor.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "inferior.h"
28#include "gdbcore.h"
29#include "target.h"
4e052eda 30#include "regcache.h"
c906108c
SS
31
32#include "gdb_string.h"
33#include <sys/time.h>
34#include <sys/procfs.h>
35#include <setjmp.h> /* For JB_XXX. */
36
c60c0f5f
MS
37/* Prototypes for supply_gregset etc. */
38#include "gregset.h"
39
a14ed312 40static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
c906108c
SS
41
42/* Size of elements in jmpbuf */
43
44#define JB_ELEMENT_SIZE 4
45
46/*
47 * See the comment in m68k-tdep.c regarding the utility of these functions.
48 *
49 * These definitions are from the MIPS SVR4 ABI, so they may work for
50 * any MIPS SVR4 target.
51 */
52
c5aa993b 53void
fba45db2 54supply_gregset (gregset_t *gregsetp)
c906108c
SS
55{
56 register int regi;
57 register greg_t *regp = &(*gregsetp)[0];
58 int gregoff = sizeof (greg_t) - MIPS_REGSIZE;
c5aa993b
JM
59 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
60 {0};
c906108c 61
c5aa993b
JM
62 for (regi = 0; regi <= CTX_RA; regi++)
63 supply_register (regi, (char *) (regp + regi) + gregoff);
c906108c 64
c5aa993b
JM
65 supply_register (PC_REGNUM, (char *) (regp + CTX_EPC) + gregoff);
66 supply_register (HI_REGNUM, (char *) (regp + CTX_MDHI) + gregoff);
67 supply_register (LO_REGNUM, (char *) (regp + CTX_MDLO) + gregoff);
68 supply_register (CAUSE_REGNUM, (char *) (regp + CTX_CAUSE) + gregoff);
c906108c
SS
69
70 /* Fill inaccessible registers with zero. */
71 supply_register (BADVADDR_REGNUM, zerobuf);
72}
73
74void
fba45db2 75fill_gregset (gregset_t *gregsetp, int regno)
c906108c
SS
76{
77 int regi;
78 register greg_t *regp = &(*gregsetp)[0];
79
80 /* Under Irix6, if GDB is built with N32 ABI and is debugging an O32
81 executable, we have to sign extend the registers to 64 bits before
82 filling in the gregset structure. */
83
84 for (regi = 0; regi <= CTX_RA; regi++)
85 if ((regno == -1) || (regno == regi))
86 *(regp + regi) =
87 extract_signed_integer (&registers[REGISTER_BYTE (regi)],
88 REGISTER_RAW_SIZE (regi));
89
90 if ((regno == -1) || (regno == PC_REGNUM))
91 *(regp + CTX_EPC) =
92 extract_signed_integer (&registers[REGISTER_BYTE (PC_REGNUM)],
93 REGISTER_RAW_SIZE (PC_REGNUM));
94
95 if ((regno == -1) || (regno == CAUSE_REGNUM))
96 *(regp + CTX_CAUSE) =
97 extract_signed_integer (&registers[REGISTER_BYTE (CAUSE_REGNUM)],
98 REGISTER_RAW_SIZE (CAUSE_REGNUM));
99
100 if ((regno == -1) || (regno == HI_REGNUM))
101 *(regp + CTX_MDHI) =
102 extract_signed_integer (&registers[REGISTER_BYTE (HI_REGNUM)],
103 REGISTER_RAW_SIZE (HI_REGNUM));
104
105 if ((regno == -1) || (regno == LO_REGNUM))
106 *(regp + CTX_MDLO) =
107 extract_signed_integer (&registers[REGISTER_BYTE (LO_REGNUM)],
108 REGISTER_RAW_SIZE (LO_REGNUM));
109}
110
111/*
112 * Now we do the same thing for floating-point registers.
113 * We don't bother to condition on FP0_REGNUM since any
114 * reasonable MIPS configuration has an R3010 in it.
115 *
116 * Again, see the comments in m68k-tdep.c.
117 */
118
119void
fba45db2 120supply_fpregset (fpregset_t *fpregsetp)
c906108c
SS
121{
122 register int regi;
c5aa993b
JM
123 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
124 {0};
c906108c
SS
125
126 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
127
128 for (regi = 0; regi < 32; regi++)
129 supply_register (FP0_REGNUM + regi,
c5aa993b 130 (char *) &fpregsetp->fp_r.fp_regs[regi]);
c906108c 131
c5aa993b 132 supply_register (FCRCS_REGNUM, (char *) &fpregsetp->fp_csr);
c906108c
SS
133
134 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
135 supply_register (FCRIR_REGNUM, zerobuf);
136}
137
138void
fba45db2 139fill_fpregset (fpregset_t *fpregsetp, int regno)
c906108c
SS
140{
141 int regi;
142 char *from, *to;
143
144 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
145
146 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
147 {
148 if ((regno == -1) || (regno == regi))
149 {
150 from = (char *) &registers[REGISTER_BYTE (regi)];
151 to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
c5aa993b 152 memcpy (to, from, REGISTER_RAW_SIZE (regi));
c906108c
SS
153 }
154 }
155
156 if ((regno == -1) || (regno == FCRCS_REGNUM))
c5aa993b 157 fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE (FCRCS_REGNUM)];
c906108c
SS
158}
159
160
161/* Figure out where the longjmp will land.
162 We expect the first arg to be a pointer to the jmp_buf structure from which
163 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
164 This routine returns true on success. */
165
166int
fba45db2 167get_longjmp_target (CORE_ADDR *pc)
c906108c 168{
35fc8285 169 char *buf;
c906108c
SS
170 CORE_ADDR jb_addr;
171
35fc8285 172 buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
c906108c
SS
173 jb_addr = read_register (A0_REGNUM);
174
175 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
176 TARGET_PTR_BIT / TARGET_CHAR_BIT))
177 return 0;
178
179 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
180
181 return 1;
182}
183
16bce26c
KB
184/* Provide registers to GDB from a core file.
185
186 CORE_REG_SECT points to an array of bytes, which were obtained from
187 a core file which BFD thinks might contain register contents.
188 CORE_REG_SIZE is its size.
189
190 Normally, WHICH says which register set corelow suspects this is:
191 0 --- the general-purpose register set
192 2 --- the floating-point register set
193 However, for Irix 5, WHICH isn't used.
194
195 REG_ADDR is also unused. */
196
c906108c 197static void
16bce26c
KB
198fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
199 int which, CORE_ADDR reg_addr)
c906108c
SS
200{
201 if (core_reg_size == REGISTER_BYTES)
202 {
c5aa993b 203 memcpy ((char *) registers, core_reg_sect, core_reg_size);
c906108c
SS
204 }
205 else if (MIPS_REGSIZE == 4 &&
206 core_reg_size == (2 * MIPS_REGSIZE) * NUM_REGS)
207 {
208 /* This is a core file from a N32 executable, 64 bits are saved
c5aa993b 209 for all registers. */
c906108c
SS
210 char *srcp = core_reg_sect;
211 char *dstp = registers;
212 int regno;
213
214 for (regno = 0; regno < NUM_REGS; regno++)
215 {
216 if (regno >= FP0_REGNUM && regno < (FP0_REGNUM + 32))
217 {
218 /* FIXME, this is wrong, N32 has 64 bit FP regs, but GDB
c5aa993b 219 currently assumes that they are 32 bit. */
c906108c
SS
220 *dstp++ = *srcp++;
221 *dstp++ = *srcp++;
222 *dstp++ = *srcp++;
223 *dstp++ = *srcp++;
c5aa993b 224 if (REGISTER_RAW_SIZE (regno) == 4)
c906108c
SS
225 {
226 /* copying 4 bytes from eight bytes?
227 I don't see how this can be right... */
c5aa993b 228 srcp += 4;
c906108c
SS
229 }
230 else
231 {
232 /* copy all 8 bytes (sizeof(double)) */
233 *dstp++ = *srcp++;
234 *dstp++ = *srcp++;
235 *dstp++ = *srcp++;
236 *dstp++ = *srcp++;
237 }
238 }
239 else
240 {
241 srcp += 4;
242 *dstp++ = *srcp++;
243 *dstp++ = *srcp++;
244 *dstp++ = *srcp++;
245 *dstp++ = *srcp++;
246 }
247 }
248 }
249 else
250 {
251 warning ("wrong size gregset struct in core file");
252 return;
253 }
254
255 registers_fetched ();
256}
257\f
258/* Irix 5 uses what appears to be a unique form of shared library
259 support. This is a copy of solib.c modified for Irix 5. */
260/* FIXME: Most of this code could be merged with osfsolib.c and solib.c
261 by using next_link_map_member and xfer_link_map_member in solib.c. */
262
263#include <sys/types.h>
264#include <signal.h>
265#include <sys/param.h>
266#include <fcntl.h>
267
268/* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
269 with our versions of those files included by tm-mips.h. Prevent
270 <obj.h> from including them with some appropriate defines. */
271#define __SYM_H__
272#define __SYMCONST_H__
273#include <obj.h>
274#ifdef HAVE_OBJLIST_H
275#include <objlist.h>
276#endif
277
278#ifdef NEW_OBJ_INFO_MAGIC
279#define HANDLE_NEW_OBJ_LIST
280#endif
281
282#include "symtab.h"
283#include "bfd.h"
284#include "symfile.h"
285#include "objfiles.h"
286#include "command.h"
287#include "frame.h"
88987551 288#include "gdb_regex.h"
c906108c
SS
289#include "inferior.h"
290#include "language.h"
291#include "gdbcmd.h"
292
293/* The symbol which starts off the list of shared libraries. */
294#define DEBUG_BASE "__rld_obj_head"
295
296/* Irix 6.x introduces a new variant of object lists.
297 To be able to debug O32 executables under Irix 6, we have to handle both
298 variants. */
299
300typedef enum
301{
c5aa993b
JM
302 OBJ_LIST_OLD, /* Pre Irix 6.x object list. */
303 OBJ_LIST_32, /* 32 Bit Elf32_Obj_Info. */
304 OBJ_LIST_64 /* 64 Bit Elf64_Obj_Info, FIXME not yet implemented. */
305}
306obj_list_variant;
c906108c
SS
307
308/* Define our own link_map structure.
309 This will help to share code with osfsolib.c and solib.c. */
310
c5aa993b
JM
311struct link_map
312 {
313 obj_list_variant l_variant; /* which variant of object list */
314 CORE_ADDR l_lladdr; /* addr in inferior list was read from */
315 CORE_ADDR l_next; /* address of next object list entry */
316 };
c906108c
SS
317
318/* Irix 5 shared objects are pre-linked to particular addresses
319 although the dynamic linker may have to relocate them if the
320 address ranges of the libraries used by the main program clash.
321 The offset is the difference between the address where the object
322 is mapped and the binding address of the shared library. */
323#define LM_OFFSET(so) ((so) -> offset)
324/* Loaded address of shared library. */
325#define LM_ADDR(so) ((so) -> lmstart)
326
327char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
328
c5aa993b
JM
329struct so_list
330 {
331 struct so_list *next; /* next structure in linked list */
332 struct link_map lm;
333 CORE_ADDR offset; /* prelink to load address offset */
334 char *so_name; /* shared object lib name */
335 CORE_ADDR lmstart; /* lower addr bound of mapped object */
336 CORE_ADDR lmend; /* upper addr bound of mapped object */
337 char symbols_loaded; /* flag: symbols read in yet? */
338 char from_tty; /* flag: print msgs? */
339 struct objfile *objfile; /* objfile for loaded lib */
340 struct section_table *sections;
341 struct section_table *sections_end;
342 struct section_table *textsection;
343 bfd *abfd;
344 };
c906108c
SS
345
346static struct so_list *so_list_head; /* List of known shared objects */
c5aa993b 347static CORE_ADDR debug_base; /* Base of dynamic linker structures */
c906108c
SS
348static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
349
350/* Local function prototypes */
351
a14ed312 352static void sharedlibrary_command (char *, int);
c906108c 353
a14ed312 354static int enable_break (void);
c906108c 355
a14ed312 356static int disable_break (void);
c906108c 357
a14ed312 358static void info_sharedlibrary_command (char *, int);
c906108c 359
ac2e2ef7 360static int symbol_add_stub (void *);
c906108c 361
a14ed312 362static struct so_list *find_solib (struct so_list *);
c906108c 363
a14ed312 364static struct link_map *first_link_map_member (void);
c906108c 365
a14ed312 366static struct link_map *next_link_map_member (struct so_list *);
c906108c 367
a14ed312 368static void xfer_link_map_member (struct so_list *, struct link_map *);
c906108c 369
a14ed312 370static CORE_ADDR locate_base (void);
c906108c 371
ac2e2ef7 372static int solib_map_sections (void *);
c906108c
SS
373
374/*
375
c5aa993b 376 LOCAL FUNCTION
c906108c 377
c5aa993b 378 solib_map_sections -- open bfd and build sections for shared lib
c906108c 379
c5aa993b 380 SYNOPSIS
c906108c 381
c5aa993b 382 static int solib_map_sections (struct so_list *so)
c906108c 383
c5aa993b 384 DESCRIPTION
c906108c 385
c5aa993b
JM
386 Given a pointer to one of the shared objects in our list
387 of mapped objects, use the recorded name to open a bfd
388 descriptor for the object, build a section table, and then
389 relocate all the section addresses by the base address at
390 which the shared object was mapped.
c906108c 391
c5aa993b 392 FIXMES
c906108c 393
c5aa993b
JM
394 In most (all?) cases the shared object file name recorded in the
395 dynamic linkage tables will be a fully qualified pathname. For
396 cases where it isn't, do we really mimic the systems search
397 mechanism correctly in the below code (particularly the tilde
398 expansion stuff?).
c906108c
SS
399 */
400
401static int
ac2e2ef7 402solib_map_sections (void *arg)
c906108c
SS
403{
404 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
405 char *filename;
406 char *scratch_pathname;
407 int scratch_chan;
408 struct section_table *p;
409 struct cleanup *old_chain;
410 bfd *abfd;
c5aa993b
JM
411
412 filename = tilde_expand (so->so_name);
b8c9b27d 413 old_chain = make_cleanup (xfree, filename);
c5aa993b 414
c906108c
SS
415 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
416 &scratch_pathname);
417 if (scratch_chan < 0)
418 {
419 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
420 O_RDONLY, 0, &scratch_pathname);
421 }
422 if (scratch_chan < 0)
423 {
424 perror_with_name (filename);
425 }
426 /* Leave scratch_pathname allocated. abfd->name will point to it. */
427
428 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
429 if (!abfd)
430 {
431 close (scratch_chan);
432 error ("Could not open `%s' as an executable file: %s",
433 scratch_pathname, bfd_errmsg (bfd_get_error ()));
434 }
435 /* Leave bfd open, core_xfer_memory and "info files" need it. */
c5aa993b
JM
436 so->abfd = abfd;
437 abfd->cacheable = true;
c906108c
SS
438
439 if (!bfd_check_format (abfd, bfd_object))
440 {
441 error ("\"%s\": not in executable format: %s.",
442 scratch_pathname, bfd_errmsg (bfd_get_error ()));
443 }
c5aa993b 444 if (build_section_table (abfd, &so->sections, &so->sections_end))
c906108c 445 {
c5aa993b 446 error ("Can't find the file sections in `%s': %s",
c906108c
SS
447 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
448 }
449
c5aa993b 450 for (p = so->sections; p < so->sections_end; p++)
c906108c
SS
451 {
452 /* Relocate the section binding addresses as recorded in the shared
c5aa993b
JM
453 object's file by the offset to get the address to which the
454 object was actually mapped. */
455 p->addr += LM_OFFSET (so);
456 p->endaddr += LM_OFFSET (so);
457 so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
458 if (STREQ (p->the_bfd_section->name, ".text"))
c906108c 459 {
c5aa993b 460 so->textsection = p;
c906108c
SS
461 }
462 }
463
464 /* Free the file names, close the file now. */
465 do_cleanups (old_chain);
466
ac2e2ef7 467 /* must be non-zero */
c906108c
SS
468 return (1);
469}
470
471/*
472
c5aa993b 473 LOCAL FUNCTION
c906108c 474
c5aa993b 475 locate_base -- locate the base address of dynamic linker structs
c906108c 476
c5aa993b 477 SYNOPSIS
c906108c 478
c5aa993b 479 CORE_ADDR locate_base (void)
c906108c 480
c5aa993b 481 DESCRIPTION
c906108c 482
c5aa993b
JM
483 For both the SunOS and SVR4 shared library implementations, if the
484 inferior executable has been linked dynamically, there is a single
485 address somewhere in the inferior's data space which is the key to
486 locating all of the dynamic linker's runtime structures. This
487 address is the value of the symbol defined by the macro DEBUG_BASE.
488 The job of this function is to find and return that address, or to
489 return 0 if there is no such address (the executable is statically
490 linked for example).
c906108c 491
c5aa993b
JM
492 For SunOS, the job is almost trivial, since the dynamic linker and
493 all of it's structures are statically linked to the executable at
494 link time. Thus the symbol for the address we are looking for has
495 already been added to the minimal symbol table for the executable's
496 objfile at the time the symbol file's symbols were read, and all we
497 have to do is look it up there. Note that we explicitly do NOT want
498 to find the copies in the shared library.
c906108c 499
c5aa993b
JM
500 The SVR4 version is much more complicated because the dynamic linker
501 and it's structures are located in the shared C library, which gets
502 run as the executable's "interpreter" by the kernel. We have to go
503 to a lot more work to discover the address of DEBUG_BASE. Because
504 of this complexity, we cache the value we find and return that value
505 on subsequent invocations. Note there is no copy in the executable
506 symbol tables.
c906108c 507
c5aa993b 508 Irix 5 is basically like SunOS.
c906108c 509
c5aa993b
JM
510 Note that we can assume nothing about the process state at the time
511 we need to find this address. We may be stopped on the first instruc-
512 tion of the interpreter (C shared library), the first instruction of
513 the executable itself, or somewhere else entirely (if we attached
514 to the process for example).
c906108c
SS
515
516 */
517
518static CORE_ADDR
fba45db2 519locate_base (void)
c906108c
SS
520{
521 struct minimal_symbol *msymbol;
522 CORE_ADDR address = 0;
523
524 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
525 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
526 {
527 address = SYMBOL_VALUE_ADDRESS (msymbol);
528 }
529 return (address);
530}
531
532/*
533
c5aa993b 534 LOCAL FUNCTION
c906108c 535
c5aa993b 536 first_link_map_member -- locate first member in dynamic linker's map
c906108c 537
c5aa993b 538 SYNOPSIS
c906108c 539
c5aa993b 540 static struct link_map *first_link_map_member (void)
c906108c 541
c5aa993b 542 DESCRIPTION
c906108c 543
c5aa993b
JM
544 Read in a copy of the first member in the inferior's dynamic
545 link map from the inferior's dynamic linker structures, and return
546 a pointer to the link map descriptor.
547 */
c906108c
SS
548
549static struct link_map *
fba45db2 550first_link_map_member (void)
c906108c
SS
551{
552 struct obj_list *listp;
553 struct obj_list list_old;
554 struct link_map *lm;
555 static struct link_map first_lm;
556 CORE_ADDR lladdr;
557 CORE_ADDR next_lladdr;
558
559 /* We have not already read in the dynamic linking structures
560 from the inferior, lookup the address of the base structure. */
561 debug_base = locate_base ();
562 if (debug_base == 0)
563 return NULL;
564
565 /* Get address of first list entry. */
566 read_memory (debug_base, (char *) &listp, sizeof (struct obj_list *));
567
568 if (listp == NULL)
569 return NULL;
570
571 /* Get first list entry. */
ac2e2ef7
AC
572 /* The MIPS Sign extends addresses. */
573 lladdr = host_pointer_to_address (listp);
c906108c
SS
574 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
575
576 /* The first entry in the list is the object file we are debugging,
577 so skip it. */
ac2e2ef7 578 next_lladdr = host_pointer_to_address (list_old.next);
c906108c
SS
579
580#ifdef HANDLE_NEW_OBJ_LIST
581 if (list_old.data == NEW_OBJ_INFO_MAGIC)
582 {
583 Elf32_Obj_Info list_32;
584
585 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
586 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
587 return NULL;
c5aa993b 588 next_lladdr = (CORE_ADDR) list_32.oi_next;
c906108c
SS
589 }
590#endif
591
592 if (next_lladdr == 0)
593 return NULL;
594
595 first_lm.l_lladdr = next_lladdr;
596 lm = &first_lm;
597 return lm;
598}
599
600/*
601
c5aa993b 602 LOCAL FUNCTION
c906108c 603
c5aa993b 604 next_link_map_member -- locate next member in dynamic linker's map
c906108c 605
c5aa993b 606 SYNOPSIS
c906108c 607
c5aa993b 608 static struct link_map *next_link_map_member (so_list_ptr)
c906108c 609
c5aa993b 610 DESCRIPTION
c906108c 611
c5aa993b
JM
612 Read in a copy of the next member in the inferior's dynamic
613 link map from the inferior's dynamic linker structures, and return
614 a pointer to the link map descriptor.
615 */
c906108c
SS
616
617static struct link_map *
fba45db2 618next_link_map_member (struct so_list *so_list_ptr)
c906108c 619{
c5aa993b
JM
620 struct link_map *lm = &so_list_ptr->lm;
621 CORE_ADDR next_lladdr = lm->l_next;
c906108c
SS
622 static struct link_map next_lm;
623
624 if (next_lladdr == 0)
625 {
626 /* We have hit the end of the list, so check to see if any were
c5aa993b 627 added, but be quiet if we can't read from the target any more. */
c906108c
SS
628 int status = 0;
629
c5aa993b 630 if (lm->l_variant == OBJ_LIST_OLD)
c906108c
SS
631 {
632 struct obj_list list_old;
633
c5aa993b 634 status = target_read_memory (lm->l_lladdr,
c906108c
SS
635 (char *) &list_old,
636 sizeof (struct obj_list));
ac2e2ef7 637 next_lladdr = host_pointer_to_address (list_old.next);
c906108c
SS
638 }
639#ifdef HANDLE_NEW_OBJ_LIST
c5aa993b 640 else if (lm->l_variant == OBJ_LIST_32)
c906108c
SS
641 {
642 Elf32_Obj_Info list_32;
c5aa993b 643 status = target_read_memory (lm->l_lladdr,
c906108c
SS
644 (char *) &list_32,
645 sizeof (Elf32_Obj_Info));
646 next_lladdr = (CORE_ADDR) list_32.oi_next;
647 }
648#endif
649
650 if (status != 0 || next_lladdr == 0)
651 return NULL;
652 }
653
654 next_lm.l_lladdr = next_lladdr;
655 lm = &next_lm;
656 return lm;
657}
658
659/*
660
c5aa993b 661 LOCAL FUNCTION
c906108c 662
c5aa993b 663 xfer_link_map_member -- set local variables from dynamic linker's map
c906108c 664
c5aa993b 665 SYNOPSIS
c906108c 666
c5aa993b 667 static void xfer_link_map_member (so_list_ptr, lm)
c906108c 668
c5aa993b 669 DESCRIPTION
c906108c 670
c5aa993b
JM
671 Read in a copy of the requested member in the inferior's dynamic
672 link map from the inferior's dynamic linker structures, and fill
673 in the necessary so_list_ptr elements.
674 */
c906108c
SS
675
676static void
fba45db2 677xfer_link_map_member (struct so_list *so_list_ptr, struct link_map *lm)
c906108c
SS
678{
679 struct obj_list list_old;
c5aa993b
JM
680 CORE_ADDR lladdr = lm->l_lladdr;
681 struct link_map *new_lm = &so_list_ptr->lm;
c906108c
SS
682 int errcode;
683
684 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
685
c5aa993b
JM
686 new_lm->l_variant = OBJ_LIST_OLD;
687 new_lm->l_lladdr = lladdr;
ac2e2ef7 688 new_lm->l_next = host_pointer_to_address (list_old.next);
c906108c
SS
689
690#ifdef HANDLE_NEW_OBJ_LIST
691 if (list_old.data == NEW_OBJ_INFO_MAGIC)
692 {
693 Elf32_Obj_Info list_32;
694
695 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
696 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
697 return;
c5aa993b
JM
698 new_lm->l_variant = OBJ_LIST_32;
699 new_lm->l_next = (CORE_ADDR) list_32.oi_next;
c906108c
SS
700
701 target_read_string ((CORE_ADDR) list_32.oi_pathname,
c5aa993b 702 &so_list_ptr->so_name,
c906108c
SS
703 list_32.oi_pathname_len + 1, &errcode);
704 if (errcode != 0)
705 memory_error (errcode, (CORE_ADDR) list_32.oi_pathname);
706
707 LM_ADDR (so_list_ptr) = (CORE_ADDR) list_32.oi_ehdr;
708 LM_OFFSET (so_list_ptr) =
709 (CORE_ADDR) list_32.oi_ehdr - (CORE_ADDR) list_32.oi_orig_ehdr;
710 }
711 else
712#endif
713 {
714#if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
715 /* If we are compiling GDB under N32 ABI, the alignments in
c5aa993b
JM
716 the obj struct are different from the O32 ABI and we will get
717 wrong values when accessing the struct.
718 As a workaround we use fixed values which are good for
719 Irix 6.2. */
c906108c
SS
720 char buf[432];
721
722 read_memory ((CORE_ADDR) list_old.data, buf, sizeof (buf));
723
724 target_read_string (extract_address (&buf[236], 4),
c5aa993b 725 &so_list_ptr->so_name,
c906108c
SS
726 INT_MAX, &errcode);
727 if (errcode != 0)
728 memory_error (errcode, extract_address (&buf[236], 4));
729
730 LM_ADDR (so_list_ptr) = extract_address (&buf[196], 4);
731 LM_OFFSET (so_list_ptr) =
732 extract_address (&buf[196], 4) - extract_address (&buf[248], 4);
733#else
734 struct obj obj_old;
735
736 read_memory ((CORE_ADDR) list_old.data, (char *) &obj_old,
737 sizeof (struct obj));
738
739 target_read_string ((CORE_ADDR) obj_old.o_path,
c5aa993b 740 &so_list_ptr->so_name,
c906108c
SS
741 INT_MAX, &errcode);
742 if (errcode != 0)
743 memory_error (errcode, (CORE_ADDR) obj_old.o_path);
744
745 LM_ADDR (so_list_ptr) = (CORE_ADDR) obj_old.o_praw;
746 LM_OFFSET (so_list_ptr) =
747 (CORE_ADDR) obj_old.o_praw - obj_old.o_base_address;
748#endif
749 }
750
751 catch_errors (solib_map_sections, (char *) so_list_ptr,
752 "Error while mapping shared library sections:\n",
753 RETURN_MASK_ALL);
754}
755
756
757/*
758
c5aa993b 759 LOCAL FUNCTION
c906108c 760
c5aa993b 761 find_solib -- step through list of shared objects
c906108c 762
c5aa993b 763 SYNOPSIS
c906108c 764
c5aa993b 765 struct so_list *find_solib (struct so_list *so_list_ptr)
c906108c 766
c5aa993b 767 DESCRIPTION
c906108c 768
c5aa993b
JM
769 This module contains the routine which finds the names of any
770 loaded "images" in the current process. The argument in must be
771 NULL on the first call, and then the returned value must be passed
772 in on subsequent calls. This provides the capability to "step" down
773 the list of loaded objects. On the last object, a NULL value is
774 returned.
c906108c
SS
775 */
776
777static struct so_list *
16bce26c 778find_solib (struct so_list *so_list_ptr)
c906108c
SS
779{
780 struct so_list *so_list_next = NULL;
781 struct link_map *lm = NULL;
782 struct so_list *new;
c5aa993b 783
c906108c
SS
784 if (so_list_ptr == NULL)
785 {
786 /* We are setting up for a new scan through the loaded images. */
787 if ((so_list_next = so_list_head) == NULL)
788 {
789 /* Find the first link map list member. */
790 lm = first_link_map_member ();
791 }
792 }
793 else
794 {
795 /* We have been called before, and are in the process of walking
c5aa993b 796 the shared library list. Advance to the next shared object. */
c906108c 797 lm = next_link_map_member (so_list_ptr);
c5aa993b 798 so_list_next = so_list_ptr->next;
c906108c
SS
799 }
800 if ((so_list_next == NULL) && (lm != NULL))
801 {
802 new = (struct so_list *) xmalloc (sizeof (struct so_list));
803 memset ((char *) new, 0, sizeof (struct so_list));
804 /* Add the new node as the next node in the list, or as the root
c5aa993b 805 node if this is the first one. */
c906108c
SS
806 if (so_list_ptr != NULL)
807 {
c5aa993b 808 so_list_ptr->next = new;
c906108c
SS
809 }
810 else
811 {
812 so_list_head = new;
c5aa993b 813 }
c906108c
SS
814 so_list_next = new;
815 xfer_link_map_member (new, lm);
816 }
817 return (so_list_next);
818}
819
820/* A small stub to get us past the arg-passing pinhole of catch_errors. */
821
822static int
ac2e2ef7 823symbol_add_stub (void *arg)
c906108c 824{
c5aa993b 825 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
c906108c 826 CORE_ADDR text_addr = 0;
2acceee2 827 struct section_addr_info section_addrs;
c906108c 828
2acceee2 829 memset (&section_addrs, 0, sizeof (section_addrs));
c5aa993b
JM
830 if (so->textsection)
831 text_addr = so->textsection->addr;
832 else if (so->abfd != NULL)
c906108c
SS
833 {
834 asection *lowest_sect;
835
836 /* If we didn't find a mapped non zero sized .text section, set up
c5aa993b 837 text_addr so that the relocation in symbol_file_add does no harm. */
c906108c 838
c5aa993b 839 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
c906108c 840 if (lowest_sect == NULL)
c5aa993b 841 bfd_map_over_sections (so->abfd, find_lowest_section,
96baa820 842 (PTR) &lowest_sect);
c906108c 843 if (lowest_sect)
c5aa993b 844 text_addr = bfd_section_vma (so->abfd, lowest_sect) + LM_OFFSET (so);
c906108c 845 }
c5aa993b 846
a034fba4
EZ
847
848 section_addrs.other[0].name = ".text";
849 section_addrs.other[0].addr = text_addr;
c5aa993b 850 so->objfile = symbol_file_add (so->so_name, so->from_tty,
2df3850c 851 &section_addrs, 0, 0);
ac2e2ef7 852 /* must be non-zero */
c906108c
SS
853 return (1);
854}
855
856/*
857
c5aa993b 858 GLOBAL FUNCTION
c906108c 859
c5aa993b 860 solib_add -- add a shared library file to the symtab and section list
c906108c 861
c5aa993b 862 SYNOPSIS
c906108c 863
c5aa993b
JM
864 void solib_add (char *arg_string, int from_tty,
865 struct target_ops *target)
c906108c 866
c5aa993b 867 DESCRIPTION
c906108c 868
c5aa993b 869 */
c906108c
SS
870
871void
fba45db2 872solib_add (char *arg_string, int from_tty, struct target_ops *target)
c5aa993b
JM
873{
874 register struct so_list *so = NULL; /* link map state variable */
c906108c
SS
875
876 /* Last shared library that we read. */
877 struct so_list *so_last = NULL;
878
879 char *re_err;
880 int count;
881 int old;
c5aa993b 882
c906108c
SS
883 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
884 {
885 error ("Invalid regexp: %s", re_err);
886 }
c5aa993b 887
c906108c
SS
888 /* Add the shared library sections to the section table of the
889 specified target, if any. */
890 if (target)
891 {
892 /* Count how many new section_table entries there are. */
893 so = NULL;
894 count = 0;
895 while ((so = find_solib (so)) != NULL)
896 {
c5aa993b 897 if (so->so_name[0])
c906108c 898 {
c5aa993b 899 count += so->sections_end - so->sections;
c906108c
SS
900 }
901 }
c5aa993b 902
c906108c
SS
903 if (count)
904 {
6426a772
JM
905 old = target_resize_to_sections (target, count);
906
c906108c
SS
907 /* Add these section table entries to the target's table. */
908 while ((so = find_solib (so)) != NULL)
909 {
c5aa993b 910 if (so->so_name[0])
c906108c 911 {
c5aa993b
JM
912 count = so->sections_end - so->sections;
913 memcpy ((char *) (target->to_sections + old),
914 so->sections,
c906108c
SS
915 (sizeof (struct section_table)) * count);
916 old += count;
917 }
918 }
919 }
920 }
c5aa993b 921
c906108c
SS
922 /* Now add the symbol files. */
923 while ((so = find_solib (so)) != NULL)
924 {
c5aa993b 925 if (so->so_name[0] && re_exec (so->so_name))
c906108c 926 {
c5aa993b
JM
927 so->from_tty = from_tty;
928 if (so->symbols_loaded)
c906108c
SS
929 {
930 if (from_tty)
931 {
c5aa993b 932 printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
c906108c
SS
933 }
934 }
935 else if (catch_errors
936 (symbol_add_stub, (char *) so,
937 "Error while reading shared library symbols:\n",
938 RETURN_MASK_ALL))
939 {
940 so_last = so;
c5aa993b 941 so->symbols_loaded = 1;
c906108c
SS
942 }
943 }
944 }
945
946 /* Getting new symbols may change our opinion about what is
947 frameless. */
948 if (so_last)
949 reinit_frame_cache ();
950}
951
952/*
953
c5aa993b 954 LOCAL FUNCTION
c906108c 955
c5aa993b 956 info_sharedlibrary_command -- code for "info sharedlibrary"
c906108c 957
c5aa993b 958 SYNOPSIS
c906108c 959
c5aa993b 960 static void info_sharedlibrary_command ()
c906108c 961
c5aa993b 962 DESCRIPTION
c906108c 963
c5aa993b
JM
964 Walk through the shared library list and print information
965 about each attached library.
966 */
c906108c
SS
967
968static void
fba45db2 969info_sharedlibrary_command (char *ignore, int from_tty)
c906108c 970{
c5aa993b 971 register struct so_list *so = NULL; /* link map state variable */
c906108c 972 int header_done = 0;
c5aa993b 973
c906108c
SS
974 if (exec_bfd == NULL)
975 {
4ce44c66 976 printf_unfiltered ("No executable file.\n");
c906108c
SS
977 return;
978 }
979 while ((so = find_solib (so)) != NULL)
980 {
c5aa993b 981 if (so->so_name[0])
c906108c
SS
982 {
983 if (!header_done)
984 {
c5aa993b
JM
985 printf_unfiltered ("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
986 "Shared Object Library");
c906108c
SS
987 header_done++;
988 }
989 printf_unfiltered ("%-12s",
c5aa993b
JM
990 local_hex_string_custom ((unsigned long) LM_ADDR (so),
991 "08l"));
c906108c 992 printf_unfiltered ("%-12s",
c5aa993b
JM
993 local_hex_string_custom ((unsigned long) so->lmend,
994 "08l"));
995 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
996 printf_unfiltered ("%s\n", so->so_name);
c906108c
SS
997 }
998 }
999 if (so_list_head == NULL)
1000 {
c5aa993b 1001 printf_unfiltered ("No shared libraries loaded at this time.\n");
c906108c
SS
1002 }
1003}
1004
1005/*
1006
c5aa993b 1007 GLOBAL FUNCTION
c906108c 1008
c5aa993b 1009 solib_address -- check to see if an address is in a shared lib
c906108c 1010
c5aa993b 1011 SYNOPSIS
c906108c 1012
c5aa993b 1013 char *solib_address (CORE_ADDR address)
c906108c 1014
c5aa993b 1015 DESCRIPTION
c906108c 1016
c5aa993b
JM
1017 Provides a hook for other gdb routines to discover whether or
1018 not a particular address is within the mapped address space of
1019 a shared library. Any address between the base mapping address
1020 and the first address beyond the end of the last mapping, is
1021 considered to be within the shared library address space, for
1022 our purposes.
c906108c 1023
c5aa993b
JM
1024 For example, this routine is called at one point to disable
1025 breakpoints which are in shared libraries that are not currently
1026 mapped in.
c906108c
SS
1027 */
1028
1029char *
fba45db2 1030solib_address (CORE_ADDR address)
c906108c 1031{
c5aa993b
JM
1032 register struct so_list *so = 0; /* link map state variable */
1033
c906108c
SS
1034 while ((so = find_solib (so)) != NULL)
1035 {
c5aa993b 1036 if (so->so_name[0])
c906108c
SS
1037 {
1038 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
c5aa993b 1039 (address < (CORE_ADDR) so->lmend))
c906108c
SS
1040 return (so->so_name);
1041 }
1042 }
1043 return (0);
1044}
1045
1046/* Called by free_all_symtabs */
1047
c5aa993b 1048void
fba45db2 1049clear_solib (void)
c906108c
SS
1050{
1051 struct so_list *next;
1052 char *bfd_filename;
c5aa993b 1053
c906108c
SS
1054 disable_breakpoints_in_shlibs (1);
1055
1056 while (so_list_head)
1057 {
c5aa993b 1058 if (so_list_head->sections)
c906108c 1059 {
b8c9b27d 1060 xfree (so_list_head->sections);
c906108c 1061 }
c5aa993b 1062 if (so_list_head->abfd)
c906108c 1063 {
c5aa993b
JM
1064 bfd_filename = bfd_get_filename (so_list_head->abfd);
1065 if (!bfd_close (so_list_head->abfd))
c906108c
SS
1066 warning ("cannot close \"%s\": %s",
1067 bfd_filename, bfd_errmsg (bfd_get_error ()));
1068 }
1069 else
1070 /* This happens for the executable on SVR4. */
1071 bfd_filename = NULL;
1072
c5aa993b 1073 next = so_list_head->next;
c906108c 1074 if (bfd_filename)
b8c9b27d
KB
1075 xfree (bfd_filename);
1076 xfree (so_list_head->so_name);
1077 xfree (so_list_head);
c906108c
SS
1078 so_list_head = next;
1079 }
1080 debug_base = 0;
1081}
1082
1083/*
1084
c5aa993b 1085 LOCAL FUNCTION
c906108c 1086
c5aa993b 1087 disable_break -- remove the "mapping changed" breakpoint
c906108c 1088
c5aa993b 1089 SYNOPSIS
c906108c 1090
c5aa993b 1091 static int disable_break ()
c906108c 1092
c5aa993b 1093 DESCRIPTION
c906108c 1094
c5aa993b
JM
1095 Removes the breakpoint that gets hit when the dynamic linker
1096 completes a mapping change.
c906108c 1097
c5aa993b 1098 */
c906108c
SS
1099
1100static int
fba45db2 1101disable_break (void)
c906108c
SS
1102{
1103 int status = 1;
1104
1105
1106 /* Note that breakpoint address and original contents are in our address
1107 space, so we just need to write the original contents back. */
1108
1109 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1110 {
1111 status = 0;
1112 }
1113
1114 /* For the SVR4 version, we always know the breakpoint address. For the
1115 SunOS version we don't know it until the above code is executed.
1116 Grumble if we are stopped anywhere besides the breakpoint address. */
1117
1118 if (stop_pc != breakpoint_addr)
1119 {
1120 warning ("stopped at unknown breakpoint while handling shared libraries");
1121 }
1122
1123 return (status);
1124}
1125
1126/*
1127
c5aa993b 1128 LOCAL FUNCTION
c906108c 1129
c5aa993b 1130 enable_break -- arrange for dynamic linker to hit breakpoint
c906108c 1131
c5aa993b 1132 SYNOPSIS
c906108c 1133
c5aa993b 1134 int enable_break (void)
c906108c 1135
c5aa993b 1136 DESCRIPTION
c906108c 1137
c5aa993b
JM
1138 This functions inserts a breakpoint at the entry point of the
1139 main executable, where all shared libraries are mapped in.
1140 */
c906108c
SS
1141
1142static int
fba45db2 1143enable_break (void)
c906108c
SS
1144{
1145 if (symfile_objfile != NULL
1146 && target_insert_breakpoint (symfile_objfile->ei.entry_point,
1147 shadow_contents) == 0)
1148 {
1149 breakpoint_addr = symfile_objfile->ei.entry_point;
1150 return 1;
1151 }
1152
1153 return 0;
1154}
c5aa993b 1155
c906108c 1156/*
c5aa993b
JM
1157
1158 GLOBAL FUNCTION
1159
1160 solib_create_inferior_hook -- shared library startup support
1161
1162 SYNOPSIS
1163
1164 void solib_create_inferior_hook()
1165
1166 DESCRIPTION
1167
1168 When gdb starts up the inferior, it nurses it along (through the
1169 shell) until it is ready to execute it's first instruction. At this
1170 point, this function gets called via expansion of the macro
1171 SOLIB_CREATE_INFERIOR_HOOK.
1172
1173 For SunOS executables, this first instruction is typically the
1174 one at "_start", or a similar text label, regardless of whether
1175 the executable is statically or dynamically linked. The runtime
1176 startup code takes care of dynamically linking in any shared
1177 libraries, once gdb allows the inferior to continue.
1178
1179 For SVR4 executables, this first instruction is either the first
1180 instruction in the dynamic linker (for dynamically linked
1181 executables) or the instruction at "start" for statically linked
1182 executables. For dynamically linked executables, the system
1183 first exec's /lib/libc.so.N, which contains the dynamic linker,
1184 and starts it running. The dynamic linker maps in any needed
1185 shared libraries, maps in the actual user executable, and then
1186 jumps to "start" in the user executable.
1187
1188 For both SunOS shared libraries, and SVR4 shared libraries, we
1189 can arrange to cooperate with the dynamic linker to discover the
1190 names of shared libraries that are dynamically linked, and the
1191 base addresses to which they are linked.
1192
1193 This function is responsible for discovering those names and
1194 addresses, and saving sufficient information about them to allow
1195 their symbols to be read at a later time.
1196
1197 FIXME
1198
1199 Between enable_break() and disable_break(), this code does not
1200 properly handle hitting breakpoints which the user might have
1201 set in the startup code or in the dynamic linker itself. Proper
1202 handling will probably have to wait until the implementation is
1203 changed to use the "breakpoint handler function" method.
1204
1205 Also, what if child has exit()ed? Must exit loop somehow.
1206 */
1207
1208void
fba45db2 1209solib_create_inferior_hook (void)
c906108c
SS
1210{
1211 if (!enable_break ())
1212 {
1213 warning ("shared library handler failed to enable breakpoint");
1214 return;
1215 }
1216
1217 /* Now run the target. It will eventually hit the breakpoint, at
1218 which point all of the libraries will have been mapped in and we
1219 can go groveling around in the dynamic linker structures to find
1220 out what we need to know about them. */
1221
1222 clear_proceed_status ();
1223 stop_soon_quietly = 1;
1224 stop_signal = TARGET_SIGNAL_0;
1225 do
1226 {
39f77062 1227 target_resume (pid_to_ptid (-1), 0, stop_signal);
c906108c
SS
1228 wait_for_inferior ();
1229 }
1230 while (stop_signal != TARGET_SIGNAL_TRAP);
c5aa993b 1231
c906108c
SS
1232 /* We are now either at the "mapping complete" breakpoint (or somewhere
1233 else, a condition we aren't prepared to deal with anyway), so adjust
1234 the PC as necessary after a breakpoint, disable the breakpoint, and
1235 add any shared libraries that were mapped in. */
1236
1237 if (DECR_PC_AFTER_BREAK)
1238 {
1239 stop_pc -= DECR_PC_AFTER_BREAK;
1240 write_register (PC_REGNUM, stop_pc);
1241 }
1242
1243 if (!disable_break ())
1244 {
1245 warning ("shared library handler failed to disable breakpoint");
1246 }
1247
1248 /* solib_add will call reinit_frame_cache.
c5aa993b
JM
1249 But we are stopped in the startup code and we might not have symbols
1250 for the startup code, so heuristic_proc_start could be called
1251 and will put out an annoying warning.
1252 Delaying the resetting of stop_soon_quietly until after symbol loading
1253 suppresses the warning. */
c906108c
SS
1254 if (auto_solib_add)
1255 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1256 stop_soon_quietly = 0;
1257}
1258
1259/*
1260
c5aa993b 1261 LOCAL FUNCTION
c906108c 1262
c5aa993b 1263 sharedlibrary_command -- handle command to explicitly add library
c906108c 1264
c5aa993b 1265 SYNOPSIS
c906108c 1266
c5aa993b 1267 static void sharedlibrary_command (char *args, int from_tty)
c906108c 1268
c5aa993b 1269 DESCRIPTION
c906108c 1270
c5aa993b 1271 */
c906108c
SS
1272
1273static void
fba45db2 1274sharedlibrary_command (char *args, int from_tty)
c906108c
SS
1275{
1276 dont_repeat ();
1277 solib_add (args, from_tty, (struct target_ops *) 0);
1278}
1279
1280void
fba45db2 1281_initialize_solib (void)
c906108c
SS
1282{
1283 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1284 "Load shared object library symbols for files matching REGEXP.");
c5aa993b 1285 add_info ("sharedlibrary", info_sharedlibrary_command,
c906108c
SS
1286 "Status of loaded shared object libraries.");
1287
1288 add_show_from_set
1289 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1290 (char *) &auto_solib_add,
1291 "Set autoloading of shared library symbols.\n\
1292If nonzero, symbols from all shared object libraries will be loaded\n\
1293automatically when the inferior begins execution or when the dynamic linker\n\
1294informs gdb that a new library has been loaded. Otherwise, symbols\n\
1295must be loaded manually, using `sharedlibrary'.",
1296 &setlist),
1297 &showlist);
1298}
c906108c 1299\f
c5aa993b 1300
c906108c
SS
1301/* Register that we are able to handle irix5 core file formats.
1302 This really is bfd_target_unknown_flavour */
1303
1304static struct core_fns irix5_core_fns =
1305{
2acceee2
JM
1306 bfd_target_unknown_flavour, /* core_flavour */
1307 default_check_format, /* check_format */
1308 default_core_sniffer, /* core_sniffer */
1309 fetch_core_registers, /* core_read_registers */
1310 NULL /* next */
c906108c
SS
1311};
1312
1313void
fba45db2 1314_initialize_core_irix5 (void)
c906108c
SS
1315{
1316 add_core_fns (&irix5_core_fns);
1317}
This page took 0.218198 seconds and 4 git commands to generate.