* amd64-linux-nat.c (si_timerid,si_overrun): Provide definition for
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
CommitLineData
3993f6b1 1/* GNU/Linux native-dependent code common to multiple platforms.
dba24537 2
0fb0cc75 3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
e26af52f 4 Free Software Foundation, Inc.
3993f6b1
DJ
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
3993f6b1
DJ
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
3993f6b1
DJ
20
21#include "defs.h"
22#include "inferior.h"
23#include "target.h"
d6b0e80f 24#include "gdb_string.h"
3993f6b1 25#include "gdb_wait.h"
d6b0e80f
AC
26#include "gdb_assert.h"
27#ifdef HAVE_TKILL_SYSCALL
28#include <unistd.h>
29#include <sys/syscall.h>
30#endif
3993f6b1 31#include <sys/ptrace.h>
0274a8ce 32#include "linux-nat.h"
ac264b3b 33#include "linux-fork.h"
d6b0e80f
AC
34#include "gdbthread.h"
35#include "gdbcmd.h"
36#include "regcache.h"
4f844a66 37#include "regset.h"
10d6c8cd
DJ
38#include "inf-ptrace.h"
39#include "auxv.h"
dba24537
AC
40#include <sys/param.h> /* for MAXPATHLEN */
41#include <sys/procfs.h> /* for elf_gregset etc. */
42#include "elf-bfd.h" /* for elfcore_write_* */
43#include "gregset.h" /* for gregset */
44#include "gdbcore.h" /* for get_exec_file */
45#include <ctype.h> /* for isdigit */
46#include "gdbthread.h" /* for struct thread_info etc. */
47#include "gdb_stat.h" /* for struct stat */
48#include <fcntl.h> /* for O_RDONLY */
b84876c2
PA
49#include "inf-loop.h"
50#include "event-loop.h"
51#include "event-top.h"
07e059b5
VP
52#include <pwd.h>
53#include <sys/types.h>
54#include "gdb_dirent.h"
55#include "xml-support.h"
dba24537 56
10568435
JK
57#ifdef HAVE_PERSONALITY
58# include <sys/personality.h>
59# if !HAVE_DECL_ADDR_NO_RANDOMIZE
60# define ADDR_NO_RANDOMIZE 0x0040000
61# endif
62#endif /* HAVE_PERSONALITY */
63
8a77dff3
VP
64/* This comment documents high-level logic of this file.
65
66Waiting for events in sync mode
67===============================
68
69When waiting for an event in a specific thread, we just use waitpid, passing
70the specific pid, and not passing WNOHANG.
71
72When waiting for an event in all threads, waitpid is not quite good. Prior to
73version 2.4, Linux can either wait for event in main thread, or in secondary
74threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
75miss an event. The solution is to use non-blocking waitpid, together with
76sigsuspend. First, we use non-blocking waitpid to get an event in the main
77process, if any. Second, we use non-blocking waitpid with the __WCLONED
78flag to check for events in cloned processes. If nothing is found, we use
79sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
80happened to a child process -- and SIGCHLD will be delivered both for events
81in main debugged process and in cloned processes. As soon as we know there's
82an event, we get back to calling nonblocking waitpid with and without __WCLONED.
83
84Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
85so that we don't miss a signal. If SIGCHLD arrives in between, when it's
86blocked, the signal becomes pending and sigsuspend immediately
87notices it and returns.
88
89Waiting for events in async mode
90================================
91
92In async mode, GDB should always be ready to handle both user input and target
93events, so neither blocking waitpid nor sigsuspend are viable
94options. Instead, we should notify the GDB main event loop whenever there's
95unprocessed event from the target. The only way to notify this event loop is
96to make it wait on input from a pipe, and write something to the pipe whenever
97there's event. Obviously, if we fail to notify the event loop if there's
98target event, it's bad. If we notify the event loop when there's no event
99from target, linux-nat.c will detect that there's no event, actually, and
100report event of type TARGET_WAITKIND_IGNORE, but it will waste time and
101better avoided.
102
103The main design point is that every time GDB is outside linux-nat.c, we have a
104SIGCHLD handler installed that is called when something happens to the target
105and notifies the GDB event loop. Also, the event is extracted from the target
106using waitpid and stored for future use. Whenever GDB core decides to handle
107the event, and calls into linux-nat.c, we disable SIGCHLD and process things
108as in sync mode, except that before waitpid call we check if there are any
109previously read events.
110
111It could happen that during event processing, we'll try to get more events
112than there are events in the local queue, which will result to waitpid call.
113Those waitpid calls, while blocking, are guarantied to always have
114something for waitpid to return. E.g., stopping a thread with SIGSTOP, and
115waiting for the lwp to stop.
116
117The event loop is notified about new events using a pipe. SIGCHLD handler does
118waitpid and writes the results in to a pipe. GDB event loop has the other end
119of the pipe among the sources. When event loop starts to process the event
120and calls a function in linux-nat.c, all events from the pipe are transferred
121into a local queue and SIGCHLD is blocked. Further processing goes as in sync
122mode. Before we return from linux_nat_wait, we transfer all unprocessed events
123from local queue back to the pipe, so that when we get back to event loop,
124event loop will notice there's something more to do.
125
126SIGCHLD is blocked when we're inside target_wait, so that should we actually
127want to wait for some more events, SIGCHLD handler does not steal them from
128us. Technically, it would be possible to add new events to the local queue but
129it's about the same amount of work as blocking SIGCHLD.
130
131This moving of events from pipe into local queue and back into pipe when we
132enter/leave linux-nat.c is somewhat ugly. Unfortunately, GDB event loop is
133home-grown and incapable to wait on any queue.
134
135Use of signals
136==============
137
138We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
139signal is not entirely significant; we just need for a signal to be delivered,
140so that we can intercept it. SIGSTOP's advantage is that it can not be
141blocked. A disadvantage is that it is not a real-time signal, so it can only
142be queued once; we do not keep track of other sources of SIGSTOP.
143
144Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
145use them, because they have special behavior when the signal is generated -
146not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
147kills the entire thread group.
148
149A delivered SIGSTOP would stop the entire thread group, not just the thread we
150tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
151cancel it (by PTRACE_CONT without passing SIGSTOP).
152
153We could use a real-time signal instead. This would solve those problems; we
154could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
155But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
156generates it, and there are races with trying to find a signal that is not
157blocked. */
a0ef4274 158
dba24537
AC
159#ifndef O_LARGEFILE
160#define O_LARGEFILE 0
161#endif
0274a8ce 162
3993f6b1
DJ
163/* If the system headers did not provide the constants, hard-code the normal
164 values. */
165#ifndef PTRACE_EVENT_FORK
166
167#define PTRACE_SETOPTIONS 0x4200
168#define PTRACE_GETEVENTMSG 0x4201
169
170/* options set using PTRACE_SETOPTIONS */
171#define PTRACE_O_TRACESYSGOOD 0x00000001
172#define PTRACE_O_TRACEFORK 0x00000002
173#define PTRACE_O_TRACEVFORK 0x00000004
174#define PTRACE_O_TRACECLONE 0x00000008
175#define PTRACE_O_TRACEEXEC 0x00000010
9016a515
DJ
176#define PTRACE_O_TRACEVFORKDONE 0x00000020
177#define PTRACE_O_TRACEEXIT 0x00000040
3993f6b1
DJ
178
179/* Wait extended result codes for the above trace options. */
180#define PTRACE_EVENT_FORK 1
181#define PTRACE_EVENT_VFORK 2
182#define PTRACE_EVENT_CLONE 3
183#define PTRACE_EVENT_EXEC 4
c874c7fc 184#define PTRACE_EVENT_VFORK_DONE 5
9016a515 185#define PTRACE_EVENT_EXIT 6
3993f6b1
DJ
186
187#endif /* PTRACE_EVENT_FORK */
188
189/* We can't always assume that this flag is available, but all systems
190 with the ptrace event handlers also have __WALL, so it's safe to use
191 here. */
192#ifndef __WALL
193#define __WALL 0x40000000 /* Wait for any child. */
194#endif
195
02d3ff8c 196#ifndef PTRACE_GETSIGINFO
1ef18d08
PA
197# define PTRACE_GETSIGINFO 0x4202
198# define PTRACE_SETSIGINFO 0x4203
02d3ff8c
UW
199#endif
200
10d6c8cd
DJ
201/* The single-threaded native GNU/Linux target_ops. We save a pointer for
202 the use of the multi-threaded target. */
203static struct target_ops *linux_ops;
f973ed9c 204static struct target_ops linux_ops_saved;
10d6c8cd 205
9f0bdab8
DJ
206/* The method to call, if any, when a new thread is attached. */
207static void (*linux_nat_new_thread) (ptid_t);
208
5b009018
PA
209/* The method to call, if any, when the siginfo object needs to be
210 converted between the layout returned by ptrace, and the layout in
211 the architecture of the inferior. */
212static int (*linux_nat_siginfo_fixup) (struct siginfo *,
213 gdb_byte *,
214 int);
215
ac264b3b
MS
216/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
217 Called by our to_xfer_partial. */
218static LONGEST (*super_xfer_partial) (struct target_ops *,
219 enum target_object,
220 const char *, gdb_byte *,
221 const gdb_byte *,
10d6c8cd
DJ
222 ULONGEST, LONGEST);
223
d6b0e80f 224static int debug_linux_nat;
920d2a44
AC
225static void
226show_debug_linux_nat (struct ui_file *file, int from_tty,
227 struct cmd_list_element *c, const char *value)
228{
229 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
230 value);
231}
d6b0e80f 232
b84876c2
PA
233static int debug_linux_nat_async = 0;
234static void
235show_debug_linux_nat_async (struct ui_file *file, int from_tty,
236 struct cmd_list_element *c, const char *value)
237{
238 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
239 value);
240}
241
10568435
JK
242static int disable_randomization = 1;
243
244static void
245show_disable_randomization (struct ui_file *file, int from_tty,
246 struct cmd_list_element *c, const char *value)
247{
248#ifdef HAVE_PERSONALITY
249 fprintf_filtered (file, _("\
250Disabling randomization of debuggee's virtual address space is %s.\n"),
251 value);
252#else /* !HAVE_PERSONALITY */
253 fputs_filtered (_("\
254Disabling randomization of debuggee's virtual address space is unsupported on\n\
255this platform.\n"), file);
256#endif /* !HAVE_PERSONALITY */
257}
258
259static void
260set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
261{
262#ifndef HAVE_PERSONALITY
263 error (_("\
264Disabling randomization of debuggee's virtual address space is unsupported on\n\
265this platform."));
266#endif /* !HAVE_PERSONALITY */
267}
268
9016a515
DJ
269static int linux_parent_pid;
270
ae087d01
DJ
271struct simple_pid_list
272{
273 int pid;
3d799a95 274 int status;
ae087d01
DJ
275 struct simple_pid_list *next;
276};
277struct simple_pid_list *stopped_pids;
278
3993f6b1
DJ
279/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
280 can not be used, 1 if it can. */
281
282static int linux_supports_tracefork_flag = -1;
283
9016a515
DJ
284/* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
285 PTRACE_O_TRACEVFORKDONE. */
286
287static int linux_supports_tracevforkdone_flag = -1;
288
b84876c2
PA
289/* Async mode support */
290
b84876c2
PA
291/* Zero if the async mode, although enabled, is masked, which means
292 linux_nat_wait should behave as if async mode was off. */
293static int linux_nat_async_mask_value = 1;
294
295/* The read/write ends of the pipe registered as waitable file in the
296 event loop. */
297static int linux_nat_event_pipe[2] = { -1, -1 };
298
299/* Number of queued events in the pipe. */
300static volatile int linux_nat_num_queued_events;
301
84e46146 302/* The possible SIGCHLD handling states. */
b84876c2 303
84e46146
PA
304enum sigchld_state
305{
306 /* SIGCHLD disabled, with action set to sigchld_handler, for the
307 sigsuspend in linux_nat_wait. */
308 sigchld_sync,
309 /* SIGCHLD enabled, with action set to async_sigchld_handler. */
310 sigchld_async,
311 /* Set SIGCHLD to default action. Used while creating an
312 inferior. */
313 sigchld_default
314};
315
316/* The current SIGCHLD handling state. */
317static enum sigchld_state linux_nat_async_events_state;
318
319static enum sigchld_state linux_nat_async_events (enum sigchld_state enable);
b84876c2
PA
320static void pipe_to_local_event_queue (void);
321static void local_event_queue_to_pipe (void);
322static void linux_nat_event_pipe_push (int pid, int status, int options);
323static int linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options);
324static void linux_nat_set_async_mode (int on);
325static void linux_nat_async (void (*callback)
326 (enum inferior_event_type event_type, void *context),
327 void *context);
328static int linux_nat_async_mask (int mask);
a0ef4274 329static int kill_lwp (int lwpid, int signo);
b84876c2 330
4c28f408
PA
331static int stop_callback (struct lwp_info *lp, void *data);
332
b84876c2
PA
333/* Captures the result of a successful waitpid call, along with the
334 options used in that call. */
335struct waitpid_result
336{
337 int pid;
338 int status;
339 int options;
340 struct waitpid_result *next;
341};
342
343/* A singly-linked list of the results of the waitpid calls performed
344 in the async SIGCHLD handler. */
345static struct waitpid_result *waitpid_queue = NULL;
346
252fbfc8
PA
347/* Similarly to `waitpid', but check the local event queue instead of
348 querying the kernel queue. If PEEK, don't remove the event found
349 from the queue. */
350
b84876c2 351static int
252fbfc8 352queued_waitpid_1 (int pid, int *status, int flags, int peek)
b84876c2
PA
353{
354 struct waitpid_result *msg = waitpid_queue, *prev = NULL;
355
356 if (debug_linux_nat_async)
357 fprintf_unfiltered (gdb_stdlog,
358 "\
84e46146
PA
359QWPID: linux_nat_async_events_state(%d), linux_nat_num_queued_events(%d)\n",
360 linux_nat_async_events_state,
b84876c2
PA
361 linux_nat_num_queued_events);
362
363 if (flags & __WALL)
364 {
365 for (; msg; prev = msg, msg = msg->next)
366 if (pid == -1 || pid == msg->pid)
367 break;
368 }
369 else if (flags & __WCLONE)
370 {
371 for (; msg; prev = msg, msg = msg->next)
372 if (msg->options & __WCLONE
373 && (pid == -1 || pid == msg->pid))
374 break;
375 }
376 else
377 {
378 for (; msg; prev = msg, msg = msg->next)
379 if ((msg->options & __WCLONE) == 0
380 && (pid == -1 || pid == msg->pid))
381 break;
382 }
383
384 if (msg)
385 {
386 int pid;
387
b84876c2
PA
388 if (status)
389 *status = msg->status;
390 pid = msg->pid;
391
392 if (debug_linux_nat_async)
393 fprintf_unfiltered (gdb_stdlog, "QWPID: pid(%d), status(%x)\n",
394 pid, msg->status);
252fbfc8
PA
395
396 if (!peek)
397 {
398 if (prev)
399 prev->next = msg->next;
400 else
401 waitpid_queue = msg->next;
402
403 msg->next = NULL;
404 xfree (msg);
405 }
b84876c2
PA
406
407 return pid;
408 }
409
410 if (debug_linux_nat_async)
411 fprintf_unfiltered (gdb_stdlog, "QWPID: miss\n");
412
413 if (status)
414 *status = 0;
415 return -1;
416}
417
252fbfc8
PA
418/* Similarly to `waitpid', but check the local event queue. */
419
420static int
421queued_waitpid (int pid, int *status, int flags)
422{
423 return queued_waitpid_1 (pid, status, flags, 0);
424}
425
b84876c2
PA
426static void
427push_waitpid (int pid, int status, int options)
428{
429 struct waitpid_result *event, *new_event;
430
431 new_event = xmalloc (sizeof (*new_event));
432 new_event->pid = pid;
433 new_event->status = status;
434 new_event->options = options;
435 new_event->next = NULL;
436
437 if (waitpid_queue)
438 {
439 for (event = waitpid_queue;
440 event && event->next;
441 event = event->next)
442 ;
443
444 event->next = new_event;
445 }
446 else
447 waitpid_queue = new_event;
448}
449
710151dd 450/* Drain all queued events of PID. If PID is -1, the effect is of
b84876c2
PA
451 draining all events. */
452static void
453drain_queued_events (int pid)
454{
455 while (queued_waitpid (pid, NULL, __WALL) != -1)
456 ;
457}
458
ae087d01
DJ
459\f
460/* Trivial list manipulation functions to keep track of a list of
461 new stopped processes. */
462static void
3d799a95 463add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
ae087d01
DJ
464{
465 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
466 new_pid->pid = pid;
3d799a95 467 new_pid->status = status;
ae087d01
DJ
468 new_pid->next = *listp;
469 *listp = new_pid;
470}
471
472static int
3d799a95 473pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
ae087d01
DJ
474{
475 struct simple_pid_list **p;
476
477 for (p = listp; *p != NULL; p = &(*p)->next)
478 if ((*p)->pid == pid)
479 {
480 struct simple_pid_list *next = (*p)->next;
3d799a95 481 *status = (*p)->status;
ae087d01
DJ
482 xfree (*p);
483 *p = next;
484 return 1;
485 }
486 return 0;
487}
488
3d799a95
DJ
489static void
490linux_record_stopped_pid (int pid, int status)
ae087d01 491{
3d799a95 492 add_to_pid_list (&stopped_pids, pid, status);
ae087d01
DJ
493}
494
3993f6b1
DJ
495\f
496/* A helper function for linux_test_for_tracefork, called after fork (). */
497
498static void
499linux_tracefork_child (void)
500{
501 int ret;
502
503 ptrace (PTRACE_TRACEME, 0, 0, 0);
504 kill (getpid (), SIGSTOP);
505 fork ();
48bb3cce 506 _exit (0);
3993f6b1
DJ
507}
508
b84876c2
PA
509/* Wrapper function for waitpid which handles EINTR, and checks for
510 locally queued events. */
b957e937
DJ
511
512static int
513my_waitpid (int pid, int *status, int flags)
514{
515 int ret;
b84876c2
PA
516
517 /* There should be no concurrent calls to waitpid. */
84e46146 518 gdb_assert (linux_nat_async_events_state == sigchld_sync);
b84876c2
PA
519
520 ret = queued_waitpid (pid, status, flags);
521 if (ret != -1)
522 return ret;
523
b957e937
DJ
524 do
525 {
526 ret = waitpid (pid, status, flags);
527 }
528 while (ret == -1 && errno == EINTR);
529
530 return ret;
531}
532
533/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
534
535 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
536 we know that the feature is not available. This may change the tracing
537 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
538
539 However, if it succeeds, we don't know for sure that the feature is
540 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
3993f6b1 541 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
b957e937
DJ
542 fork tracing, and let it fork. If the process exits, we assume that we
543 can't use TRACEFORK; if we get the fork notification, and we can extract
544 the new child's PID, then we assume that we can. */
3993f6b1
DJ
545
546static void
b957e937 547linux_test_for_tracefork (int original_pid)
3993f6b1
DJ
548{
549 int child_pid, ret, status;
550 long second_pid;
4c28f408
PA
551 enum sigchld_state async_events_original_state;
552
553 async_events_original_state = linux_nat_async_events (sigchld_sync);
3993f6b1 554
b957e937
DJ
555 linux_supports_tracefork_flag = 0;
556 linux_supports_tracevforkdone_flag = 0;
557
558 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
559 if (ret != 0)
560 return;
561
3993f6b1
DJ
562 child_pid = fork ();
563 if (child_pid == -1)
e2e0b3e5 564 perror_with_name (("fork"));
3993f6b1
DJ
565
566 if (child_pid == 0)
567 linux_tracefork_child ();
568
b957e937 569 ret = my_waitpid (child_pid, &status, 0);
3993f6b1 570 if (ret == -1)
e2e0b3e5 571 perror_with_name (("waitpid"));
3993f6b1 572 else if (ret != child_pid)
8a3fe4f8 573 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
3993f6b1 574 if (! WIFSTOPPED (status))
8a3fe4f8 575 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
3993f6b1 576
3993f6b1
DJ
577 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
578 if (ret != 0)
579 {
b957e937
DJ
580 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
581 if (ret != 0)
582 {
8a3fe4f8 583 warning (_("linux_test_for_tracefork: failed to kill child"));
4c28f408 584 linux_nat_async_events (async_events_original_state);
b957e937
DJ
585 return;
586 }
587
588 ret = my_waitpid (child_pid, &status, 0);
589 if (ret != child_pid)
8a3fe4f8 590 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
b957e937 591 else if (!WIFSIGNALED (status))
8a3fe4f8
AC
592 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
593 "killed child"), status);
b957e937 594
4c28f408 595 linux_nat_async_events (async_events_original_state);
3993f6b1
DJ
596 return;
597 }
598
9016a515
DJ
599 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
600 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
601 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
602 linux_supports_tracevforkdone_flag = (ret == 0);
603
b957e937
DJ
604 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
605 if (ret != 0)
8a3fe4f8 606 warning (_("linux_test_for_tracefork: failed to resume child"));
b957e937
DJ
607
608 ret = my_waitpid (child_pid, &status, 0);
609
3993f6b1
DJ
610 if (ret == child_pid && WIFSTOPPED (status)
611 && status >> 16 == PTRACE_EVENT_FORK)
612 {
613 second_pid = 0;
614 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
615 if (ret == 0 && second_pid != 0)
616 {
617 int second_status;
618
619 linux_supports_tracefork_flag = 1;
b957e937
DJ
620 my_waitpid (second_pid, &second_status, 0);
621 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
622 if (ret != 0)
8a3fe4f8 623 warning (_("linux_test_for_tracefork: failed to kill second child"));
97725dc4 624 my_waitpid (second_pid, &status, 0);
3993f6b1
DJ
625 }
626 }
b957e937 627 else
8a3fe4f8
AC
628 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
629 "(%d, status 0x%x)"), ret, status);
3993f6b1 630
b957e937
DJ
631 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
632 if (ret != 0)
8a3fe4f8 633 warning (_("linux_test_for_tracefork: failed to kill child"));
b957e937 634 my_waitpid (child_pid, &status, 0);
4c28f408
PA
635
636 linux_nat_async_events (async_events_original_state);
3993f6b1
DJ
637}
638
639/* Return non-zero iff we have tracefork functionality available.
640 This function also sets linux_supports_tracefork_flag. */
641
642static int
b957e937 643linux_supports_tracefork (int pid)
3993f6b1
DJ
644{
645 if (linux_supports_tracefork_flag == -1)
b957e937 646 linux_test_for_tracefork (pid);
3993f6b1
DJ
647 return linux_supports_tracefork_flag;
648}
649
9016a515 650static int
b957e937 651linux_supports_tracevforkdone (int pid)
9016a515
DJ
652{
653 if (linux_supports_tracefork_flag == -1)
b957e937 654 linux_test_for_tracefork (pid);
9016a515
DJ
655 return linux_supports_tracevforkdone_flag;
656}
657
3993f6b1 658\f
4de4c07c
DJ
659void
660linux_enable_event_reporting (ptid_t ptid)
661{
d3587048 662 int pid = ptid_get_lwp (ptid);
4de4c07c
DJ
663 int options;
664
d3587048
DJ
665 if (pid == 0)
666 pid = ptid_get_pid (ptid);
667
b957e937 668 if (! linux_supports_tracefork (pid))
4de4c07c
DJ
669 return;
670
a2f23071
DJ
671 options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
672 | PTRACE_O_TRACECLONE;
b957e937 673 if (linux_supports_tracevforkdone (pid))
9016a515
DJ
674 options |= PTRACE_O_TRACEVFORKDONE;
675
676 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
677 read-only process state. */
4de4c07c
DJ
678
679 ptrace (PTRACE_SETOPTIONS, pid, 0, options);
680}
681
6d8fd2b7
UW
682static void
683linux_child_post_attach (int pid)
4de4c07c
DJ
684{
685 linux_enable_event_reporting (pid_to_ptid (pid));
0ec9a092 686 check_for_thread_db ();
4de4c07c
DJ
687}
688
10d6c8cd 689static void
4de4c07c
DJ
690linux_child_post_startup_inferior (ptid_t ptid)
691{
692 linux_enable_event_reporting (ptid);
0ec9a092 693 check_for_thread_db ();
4de4c07c
DJ
694}
695
6d8fd2b7
UW
696static int
697linux_child_follow_fork (struct target_ops *ops, int follow_child)
3993f6b1 698{
4de4c07c
DJ
699 ptid_t last_ptid;
700 struct target_waitstatus last_status;
9016a515 701 int has_vforked;
4de4c07c
DJ
702 int parent_pid, child_pid;
703
b84876c2
PA
704 if (target_can_async_p ())
705 target_async (NULL, 0);
706
4de4c07c 707 get_last_target_status (&last_ptid, &last_status);
9016a515 708 has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
d3587048
DJ
709 parent_pid = ptid_get_lwp (last_ptid);
710 if (parent_pid == 0)
711 parent_pid = ptid_get_pid (last_ptid);
3a3e9ee3 712 child_pid = PIDGET (last_status.value.related_pid);
4de4c07c
DJ
713
714 if (! follow_child)
715 {
716 /* We're already attached to the parent, by default. */
717
718 /* Before detaching from the child, remove all breakpoints from
719 it. (This won't actually modify the breakpoint list, but will
720 physically remove the breakpoints from the child.) */
9016a515
DJ
721 /* If we vforked this will remove the breakpoints from the parent
722 also, but they'll be reinserted below. */
4de4c07c
DJ
723 detach_breakpoints (child_pid);
724
ac264b3b
MS
725 /* Detach new forked process? */
726 if (detach_fork)
f75c00e4 727 {
e85a822c 728 if (info_verbose || debug_linux_nat)
ac264b3b
MS
729 {
730 target_terminal_ours ();
731 fprintf_filtered (gdb_stdlog,
732 "Detaching after fork from child process %d.\n",
733 child_pid);
734 }
4de4c07c 735
ac264b3b
MS
736 ptrace (PTRACE_DETACH, child_pid, 0, 0);
737 }
738 else
739 {
740 struct fork_info *fp;
77435e4c 741 struct inferior *parent_inf, *child_inf;
7f9f62ba
PA
742
743 /* Add process to GDB's tables. */
77435e4c
PA
744 child_inf = add_inferior (child_pid);
745
746 parent_inf = find_inferior_pid (GET_PID (last_ptid));
747 child_inf->attach_flag = parent_inf->attach_flag;
7f9f62ba 748
ac264b3b
MS
749 /* Retain child fork in ptrace (stopped) state. */
750 fp = find_fork_pid (child_pid);
751 if (!fp)
752 fp = add_fork (child_pid);
753 fork_save_infrun_state (fp, 0);
754 }
9016a515
DJ
755
756 if (has_vforked)
757 {
b957e937
DJ
758 gdb_assert (linux_supports_tracefork_flag >= 0);
759 if (linux_supports_tracevforkdone (0))
9016a515
DJ
760 {
761 int status;
762
763 ptrace (PTRACE_CONT, parent_pid, 0, 0);
58aecb61 764 my_waitpid (parent_pid, &status, __WALL);
c874c7fc 765 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
8a3fe4f8
AC
766 warning (_("Unexpected waitpid result %06x when waiting for "
767 "vfork-done"), status);
9016a515
DJ
768 }
769 else
770 {
771 /* We can't insert breakpoints until the child has
772 finished with the shared memory region. We need to
773 wait until that happens. Ideal would be to just
774 call:
775 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
776 - waitpid (parent_pid, &status, __WALL);
777 However, most architectures can't handle a syscall
778 being traced on the way out if it wasn't traced on
779 the way in.
780
781 We might also think to loop, continuing the child
782 until it exits or gets a SIGTRAP. One problem is
783 that the child might call ptrace with PTRACE_TRACEME.
784
785 There's no simple and reliable way to figure out when
786 the vforked child will be done with its copy of the
787 shared memory. We could step it out of the syscall,
788 two instructions, let it go, and then single-step the
789 parent once. When we have hardware single-step, this
790 would work; with software single-step it could still
791 be made to work but we'd have to be able to insert
792 single-step breakpoints in the child, and we'd have
793 to insert -just- the single-step breakpoint in the
794 parent. Very awkward.
795
796 In the end, the best we can do is to make sure it
797 runs for a little while. Hopefully it will be out of
798 range of any breakpoints we reinsert. Usually this
799 is only the single-step breakpoint at vfork's return
800 point. */
801
802 usleep (10000);
803 }
804
805 /* Since we vforked, breakpoints were removed in the parent
806 too. Put them back. */
807 reattach_breakpoints (parent_pid);
808 }
4de4c07c 809 }
3993f6b1 810 else
4de4c07c 811 {
4e1c45ea
PA
812 struct thread_info *last_tp = find_thread_pid (last_ptid);
813 struct thread_info *tp;
4de4c07c 814 char child_pid_spelling[40];
77435e4c 815 struct inferior *parent_inf, *child_inf;
4de4c07c 816
4e1c45ea
PA
817 /* Copy user stepping state to the new inferior thread. */
818 struct breakpoint *step_resume_breakpoint = last_tp->step_resume_breakpoint;
819 CORE_ADDR step_range_start = last_tp->step_range_start;
820 CORE_ADDR step_range_end = last_tp->step_range_end;
821 struct frame_id step_frame_id = last_tp->step_frame_id;
822
823 /* Otherwise, deleting the parent would get rid of this
824 breakpoint. */
825 last_tp->step_resume_breakpoint = NULL;
826
4de4c07c 827 /* Needed to keep the breakpoint lists in sync. */
9016a515
DJ
828 if (! has_vforked)
829 detach_breakpoints (child_pid);
4de4c07c
DJ
830
831 /* Before detaching from the parent, remove all breakpoints from it. */
832 remove_breakpoints ();
833
e85a822c 834 if (info_verbose || debug_linux_nat)
f75c00e4
DJ
835 {
836 target_terminal_ours ();
ac264b3b
MS
837 fprintf_filtered (gdb_stdlog,
838 "Attaching after fork to child process %d.\n",
839 child_pid);
f75c00e4 840 }
4de4c07c 841
7a7d3353
PA
842 /* Add the new inferior first, so that the target_detach below
843 doesn't unpush the target. */
844
77435e4c
PA
845 child_inf = add_inferior (child_pid);
846
847 parent_inf = find_inferior_pid (GET_PID (last_ptid));
848 child_inf->attach_flag = parent_inf->attach_flag;
7a7d3353 849
9016a515
DJ
850 /* If we're vforking, we may want to hold on to the parent until
851 the child exits or execs. At exec time we can remove the old
852 breakpoints from the parent and detach it; at exit time we
853 could do the same (or even, sneakily, resume debugging it - the
854 child's exec has failed, or something similar).
855
856 This doesn't clean up "properly", because we can't call
857 target_detach, but that's OK; if the current target is "child",
858 then it doesn't need any further cleanups, and lin_lwp will
859 generally not encounter vfork (vfork is defined to fork
860 in libpthread.so).
861
862 The holding part is very easy if we have VFORKDONE events;
863 but keeping track of both processes is beyond GDB at the
864 moment. So we don't expose the parent to the rest of GDB.
865 Instead we quietly hold onto it until such time as we can
866 safely resume it. */
867
868 if (has_vforked)
7f9f62ba
PA
869 {
870 linux_parent_pid = parent_pid;
871 detach_inferior (parent_pid);
872 }
ac264b3b
MS
873 else if (!detach_fork)
874 {
875 struct fork_info *fp;
876 /* Retain parent fork in ptrace (stopped) state. */
877 fp = find_fork_pid (parent_pid);
878 if (!fp)
879 fp = add_fork (parent_pid);
880 fork_save_infrun_state (fp, 0);
0d14fc63
PA
881
882 /* Also add an entry for the child fork. */
883 fp = find_fork_pid (child_pid);
884 if (!fp)
885 fp = add_fork (child_pid);
886 fork_save_infrun_state (fp, 0);
ac264b3b 887 }
9016a515 888 else
b84876c2 889 target_detach (NULL, 0);
4de4c07c 890
9f0bdab8 891 inferior_ptid = ptid_build (child_pid, child_pid, 0);
ac264b3b 892
9f0bdab8 893 linux_nat_switch_fork (inferior_ptid);
ef29ce1a 894 check_for_thread_db ();
4de4c07c 895
4e1c45ea
PA
896 tp = inferior_thread ();
897 tp->step_resume_breakpoint = step_resume_breakpoint;
898 tp->step_range_start = step_range_start;
899 tp->step_range_end = step_range_end;
900 tp->step_frame_id = step_frame_id;
901
4de4c07c
DJ
902 /* Reset breakpoints in the child as appropriate. */
903 follow_inferior_reset_breakpoints ();
904 }
905
b84876c2
PA
906 if (target_can_async_p ())
907 target_async (inferior_event_handler, 0);
908
4de4c07c
DJ
909 return 0;
910}
911
4de4c07c 912\f
6d8fd2b7
UW
913static void
914linux_child_insert_fork_catchpoint (int pid)
4de4c07c 915{
b957e937 916 if (! linux_supports_tracefork (pid))
8a3fe4f8 917 error (_("Your system does not support fork catchpoints."));
3993f6b1
DJ
918}
919
6d8fd2b7
UW
920static void
921linux_child_insert_vfork_catchpoint (int pid)
3993f6b1 922{
b957e937 923 if (!linux_supports_tracefork (pid))
8a3fe4f8 924 error (_("Your system does not support vfork catchpoints."));
3993f6b1
DJ
925}
926
6d8fd2b7
UW
927static void
928linux_child_insert_exec_catchpoint (int pid)
3993f6b1 929{
b957e937 930 if (!linux_supports_tracefork (pid))
8a3fe4f8 931 error (_("Your system does not support exec catchpoints."));
3993f6b1
DJ
932}
933
d6b0e80f
AC
934/* On GNU/Linux there are no real LWP's. The closest thing to LWP's
935 are processes sharing the same VM space. A multi-threaded process
936 is basically a group of such processes. However, such a grouping
937 is almost entirely a user-space issue; the kernel doesn't enforce
938 such a grouping at all (this might change in the future). In
939 general, we'll rely on the threads library (i.e. the GNU/Linux
940 Threads library) to provide such a grouping.
941
942 It is perfectly well possible to write a multi-threaded application
943 without the assistance of a threads library, by using the clone
944 system call directly. This module should be able to give some
945 rudimentary support for debugging such applications if developers
946 specify the CLONE_PTRACE flag in the clone system call, and are
947 using the Linux kernel 2.4 or above.
948
949 Note that there are some peculiarities in GNU/Linux that affect
950 this code:
951
952 - In general one should specify the __WCLONE flag to waitpid in
953 order to make it report events for any of the cloned processes
954 (and leave it out for the initial process). However, if a cloned
955 process has exited the exit status is only reported if the
956 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
957 we cannot use it since GDB must work on older systems too.
958
959 - When a traced, cloned process exits and is waited for by the
960 debugger, the kernel reassigns it to the original parent and
961 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
962 library doesn't notice this, which leads to the "zombie problem":
963 When debugged a multi-threaded process that spawns a lot of
964 threads will run out of processes, even if the threads exit,
965 because the "zombies" stay around. */
966
967/* List of known LWPs. */
9f0bdab8 968struct lwp_info *lwp_list;
d6b0e80f
AC
969
970/* Number of LWPs in the list. */
971static int num_lwps;
d6b0e80f
AC
972\f
973
d6b0e80f
AC
974/* Original signal mask. */
975static sigset_t normal_mask;
976
977/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
978 _initialize_linux_nat. */
979static sigset_t suspend_mask;
980
b84876c2
PA
981/* SIGCHLD action for synchronous mode. */
982struct sigaction sync_sigchld_action;
983
984/* SIGCHLD action for asynchronous mode. */
985static struct sigaction async_sigchld_action;
84e46146
PA
986
987/* SIGCHLD default action, to pass to new inferiors. */
988static struct sigaction sigchld_default_action;
d6b0e80f
AC
989\f
990
991/* Prototypes for local functions. */
992static int stop_wait_callback (struct lwp_info *lp, void *data);
28439f5e 993static int linux_thread_alive (ptid_t ptid);
6d8fd2b7 994static char *linux_child_pid_to_exec_file (int pid);
710151dd
PA
995static int cancel_breakpoint (struct lwp_info *lp);
996
d6b0e80f
AC
997\f
998/* Convert wait status STATUS to a string. Used for printing debug
999 messages only. */
1000
1001static char *
1002status_to_str (int status)
1003{
1004 static char buf[64];
1005
1006 if (WIFSTOPPED (status))
1007 snprintf (buf, sizeof (buf), "%s (stopped)",
1008 strsignal (WSTOPSIG (status)));
1009 else if (WIFSIGNALED (status))
1010 snprintf (buf, sizeof (buf), "%s (terminated)",
1011 strsignal (WSTOPSIG (status)));
1012 else
1013 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1014
1015 return buf;
1016}
1017
1018/* Initialize the list of LWPs. Note that this module, contrary to
1019 what GDB's generic threads layer does for its thread list,
1020 re-initializes the LWP lists whenever we mourn or detach (which
1021 doesn't involve mourning) the inferior. */
1022
1023static void
1024init_lwp_list (void)
1025{
1026 struct lwp_info *lp, *lpnext;
1027
1028 for (lp = lwp_list; lp; lp = lpnext)
1029 {
1030 lpnext = lp->next;
1031 xfree (lp);
1032 }
1033
1034 lwp_list = NULL;
1035 num_lwps = 0;
d6b0e80f
AC
1036}
1037
f973ed9c 1038/* Add the LWP specified by PID to the list. Return a pointer to the
9f0bdab8
DJ
1039 structure describing the new LWP. The LWP should already be stopped
1040 (with an exception for the very first LWP). */
d6b0e80f
AC
1041
1042static struct lwp_info *
1043add_lwp (ptid_t ptid)
1044{
1045 struct lwp_info *lp;
1046
1047 gdb_assert (is_lwp (ptid));
1048
1049 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1050
1051 memset (lp, 0, sizeof (struct lwp_info));
1052
1053 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1054
1055 lp->ptid = ptid;
1056
1057 lp->next = lwp_list;
1058 lwp_list = lp;
f973ed9c 1059 ++num_lwps;
d6b0e80f 1060
9f0bdab8
DJ
1061 if (num_lwps > 1 && linux_nat_new_thread != NULL)
1062 linux_nat_new_thread (ptid);
1063
d6b0e80f
AC
1064 return lp;
1065}
1066
1067/* Remove the LWP specified by PID from the list. */
1068
1069static void
1070delete_lwp (ptid_t ptid)
1071{
1072 struct lwp_info *lp, *lpprev;
1073
1074 lpprev = NULL;
1075
1076 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1077 if (ptid_equal (lp->ptid, ptid))
1078 break;
1079
1080 if (!lp)
1081 return;
1082
d6b0e80f
AC
1083 num_lwps--;
1084
1085 if (lpprev)
1086 lpprev->next = lp->next;
1087 else
1088 lwp_list = lp->next;
1089
1090 xfree (lp);
1091}
1092
1093/* Return a pointer to the structure describing the LWP corresponding
1094 to PID. If no corresponding LWP could be found, return NULL. */
1095
1096static struct lwp_info *
1097find_lwp_pid (ptid_t ptid)
1098{
1099 struct lwp_info *lp;
1100 int lwp;
1101
1102 if (is_lwp (ptid))
1103 lwp = GET_LWP (ptid);
1104 else
1105 lwp = GET_PID (ptid);
1106
1107 for (lp = lwp_list; lp; lp = lp->next)
1108 if (lwp == GET_LWP (lp->ptid))
1109 return lp;
1110
1111 return NULL;
1112}
1113
1114/* Call CALLBACK with its second argument set to DATA for every LWP in
1115 the list. If CALLBACK returns 1 for a particular LWP, return a
1116 pointer to the structure describing that LWP immediately.
1117 Otherwise return NULL. */
1118
1119struct lwp_info *
1120iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
1121{
1122 struct lwp_info *lp, *lpnext;
1123
1124 for (lp = lwp_list; lp; lp = lpnext)
1125 {
1126 lpnext = lp->next;
1127 if ((*callback) (lp, data))
1128 return lp;
1129 }
1130
1131 return NULL;
1132}
1133
f973ed9c
DJ
1134/* Update our internal state when changing from one fork (checkpoint,
1135 et cetera) to another indicated by NEW_PTID. We can only switch
1136 single-threaded applications, so we only create one new LWP, and
1137 the previous list is discarded. */
1138
1139void
1140linux_nat_switch_fork (ptid_t new_ptid)
1141{
1142 struct lwp_info *lp;
1143
1144 init_lwp_list ();
1145 lp = add_lwp (new_ptid);
1146 lp->stopped = 1;
e26af52f 1147
4f8d22e3
PA
1148 init_thread_list ();
1149 add_thread_silent (new_ptid);
e26af52f
DJ
1150}
1151
e26af52f
DJ
1152/* Handle the exit of a single thread LP. */
1153
1154static void
1155exit_lwp (struct lwp_info *lp)
1156{
063bfe2e
VP
1157 struct thread_info *th = find_thread_pid (lp->ptid);
1158
1159 if (th)
e26af52f 1160 {
17faa917
DJ
1161 if (print_thread_events)
1162 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1163
4f8d22e3 1164 delete_thread (lp->ptid);
e26af52f
DJ
1165 }
1166
1167 delete_lwp (lp->ptid);
1168}
1169
a0ef4274
DJ
1170/* Detect `T (stopped)' in `/proc/PID/status'.
1171 Other states including `T (tracing stop)' are reported as false. */
1172
1173static int
1174pid_is_stopped (pid_t pid)
1175{
1176 FILE *status_file;
1177 char buf[100];
1178 int retval = 0;
1179
1180 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1181 status_file = fopen (buf, "r");
1182 if (status_file != NULL)
1183 {
1184 int have_state = 0;
1185
1186 while (fgets (buf, sizeof (buf), status_file))
1187 {
1188 if (strncmp (buf, "State:", 6) == 0)
1189 {
1190 have_state = 1;
1191 break;
1192 }
1193 }
1194 if (have_state && strstr (buf, "T (stopped)") != NULL)
1195 retval = 1;
1196 fclose (status_file);
1197 }
1198 return retval;
1199}
1200
1201/* Wait for the LWP specified by LP, which we have just attached to.
1202 Returns a wait status for that LWP, to cache. */
1203
1204static int
1205linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1206 int *signalled)
1207{
1208 pid_t new_pid, pid = GET_LWP (ptid);
1209 int status;
1210
1211 if (pid_is_stopped (pid))
1212 {
1213 if (debug_linux_nat)
1214 fprintf_unfiltered (gdb_stdlog,
1215 "LNPAW: Attaching to a stopped process\n");
1216
1217 /* The process is definitely stopped. It is in a job control
1218 stop, unless the kernel predates the TASK_STOPPED /
1219 TASK_TRACED distinction, in which case it might be in a
1220 ptrace stop. Make sure it is in a ptrace stop; from there we
1221 can kill it, signal it, et cetera.
1222
1223 First make sure there is a pending SIGSTOP. Since we are
1224 already attached, the process can not transition from stopped
1225 to running without a PTRACE_CONT; so we know this signal will
1226 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1227 probably already in the queue (unless this kernel is old
1228 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1229 is not an RT signal, it can only be queued once. */
1230 kill_lwp (pid, SIGSTOP);
1231
1232 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1233 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1234 ptrace (PTRACE_CONT, pid, 0, 0);
1235 }
1236
1237 /* Make sure the initial process is stopped. The user-level threads
1238 layer might want to poke around in the inferior, and that won't
1239 work if things haven't stabilized yet. */
1240 new_pid = my_waitpid (pid, &status, 0);
1241 if (new_pid == -1 && errno == ECHILD)
1242 {
1243 if (first)
1244 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1245
1246 /* Try again with __WCLONE to check cloned processes. */
1247 new_pid = my_waitpid (pid, &status, __WCLONE);
1248 *cloned = 1;
1249 }
1250
1251 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1252
1253 if (WSTOPSIG (status) != SIGSTOP)
1254 {
1255 *signalled = 1;
1256 if (debug_linux_nat)
1257 fprintf_unfiltered (gdb_stdlog,
1258 "LNPAW: Received %s after attaching\n",
1259 status_to_str (status));
1260 }
1261
1262 return status;
1263}
1264
1265/* Attach to the LWP specified by PID. Return 0 if successful or -1
1266 if the new LWP could not be attached. */
d6b0e80f 1267
9ee57c33 1268int
93815fbf 1269lin_lwp_attach_lwp (ptid_t ptid)
d6b0e80f 1270{
9ee57c33 1271 struct lwp_info *lp;
84e46146 1272 enum sigchld_state async_events_original_state;
d6b0e80f
AC
1273
1274 gdb_assert (is_lwp (ptid));
1275
84e46146 1276 async_events_original_state = linux_nat_async_events (sigchld_sync);
d6b0e80f 1277
9ee57c33 1278 lp = find_lwp_pid (ptid);
d6b0e80f
AC
1279
1280 /* We assume that we're already attached to any LWP that has an id
1281 equal to the overall process id, and to any LWP that is already
1282 in our list of LWPs. If we're not seeing exit events from threads
1283 and we've had PID wraparound since we last tried to stop all threads,
1284 this assumption might be wrong; fortunately, this is very unlikely
1285 to happen. */
9ee57c33 1286 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
d6b0e80f 1287 {
a0ef4274 1288 int status, cloned = 0, signalled = 0;
d6b0e80f
AC
1289
1290 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
9ee57c33
DJ
1291 {
1292 /* If we fail to attach to the thread, issue a warning,
1293 but continue. One way this can happen is if thread
e9efe249 1294 creation is interrupted; as of Linux kernel 2.6.19, a
9ee57c33
DJ
1295 bug may place threads in the thread list and then fail
1296 to create them. */
1297 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1298 safe_strerror (errno));
1299 return -1;
1300 }
1301
d6b0e80f
AC
1302 if (debug_linux_nat)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1305 target_pid_to_str (ptid));
1306
a0ef4274
DJ
1307 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1308 lp = add_lwp (ptid);
1309 lp->stopped = 1;
1310 lp->cloned = cloned;
1311 lp->signalled = signalled;
1312 if (WSTOPSIG (status) != SIGSTOP)
d6b0e80f 1313 {
a0ef4274
DJ
1314 lp->resumed = 1;
1315 lp->status = status;
d6b0e80f
AC
1316 }
1317
a0ef4274 1318 target_post_attach (GET_LWP (lp->ptid));
d6b0e80f
AC
1319
1320 if (debug_linux_nat)
1321 {
1322 fprintf_unfiltered (gdb_stdlog,
1323 "LLAL: waitpid %s received %s\n",
1324 target_pid_to_str (ptid),
1325 status_to_str (status));
1326 }
1327 }
1328 else
1329 {
1330 /* We assume that the LWP representing the original process is
1331 already stopped. Mark it as stopped in the data structure
155bd5d1
AC
1332 that the GNU/linux ptrace layer uses to keep track of
1333 threads. Note that this won't have already been done since
1334 the main thread will have, we assume, been stopped by an
1335 attach from a different layer. */
9ee57c33
DJ
1336 if (lp == NULL)
1337 lp = add_lwp (ptid);
d6b0e80f
AC
1338 lp->stopped = 1;
1339 }
9ee57c33 1340
84e46146 1341 linux_nat_async_events (async_events_original_state);
9ee57c33 1342 return 0;
d6b0e80f
AC
1343}
1344
b84876c2 1345static void
136d6dae
VP
1346linux_nat_create_inferior (struct target_ops *ops,
1347 char *exec_file, char *allargs, char **env,
b84876c2
PA
1348 int from_tty)
1349{
1350 int saved_async = 0;
10568435
JK
1351#ifdef HAVE_PERSONALITY
1352 int personality_orig = 0, personality_set = 0;
1353#endif /* HAVE_PERSONALITY */
b84876c2
PA
1354
1355 /* The fork_child mechanism is synchronous and calls target_wait, so
1356 we have to mask the async mode. */
1357
1358 if (target_can_async_p ())
84e46146
PA
1359 /* Mask async mode. Creating a child requires a loop calling
1360 wait_for_inferior currently. */
b84876c2
PA
1361 saved_async = linux_nat_async_mask (0);
1362 else
1363 {
1364 /* Restore the original signal mask. */
1365 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1366 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1367 suspend_mask = normal_mask;
1368 sigdelset (&suspend_mask, SIGCHLD);
1369 }
1370
84e46146
PA
1371 /* Set SIGCHLD to the default action, until after execing the child,
1372 since the inferior inherits the superior's signal mask. It will
1373 be blocked again in linux_nat_wait, which is only reached after
1374 the inferior execing. */
1375 linux_nat_async_events (sigchld_default);
1376
10568435
JK
1377#ifdef HAVE_PERSONALITY
1378 if (disable_randomization)
1379 {
1380 errno = 0;
1381 personality_orig = personality (0xffffffff);
1382 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1383 {
1384 personality_set = 1;
1385 personality (personality_orig | ADDR_NO_RANDOMIZE);
1386 }
1387 if (errno != 0 || (personality_set
1388 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1389 warning (_("Error disabling address space randomization: %s"),
1390 safe_strerror (errno));
1391 }
1392#endif /* HAVE_PERSONALITY */
1393
136d6dae 1394 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
b84876c2 1395
10568435
JK
1396#ifdef HAVE_PERSONALITY
1397 if (personality_set)
1398 {
1399 errno = 0;
1400 personality (personality_orig);
1401 if (errno != 0)
1402 warning (_("Error restoring address space randomization: %s"),
1403 safe_strerror (errno));
1404 }
1405#endif /* HAVE_PERSONALITY */
1406
b84876c2
PA
1407 if (saved_async)
1408 linux_nat_async_mask (saved_async);
1409}
1410
d6b0e80f 1411static void
136d6dae 1412linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
d6b0e80f
AC
1413{
1414 struct lwp_info *lp;
d6b0e80f 1415 int status;
af990527 1416 ptid_t ptid;
d6b0e80f
AC
1417
1418 /* FIXME: We should probably accept a list of process id's, and
1419 attach all of them. */
136d6dae 1420 linux_ops->to_attach (ops, args, from_tty);
d6b0e80f 1421
b84876c2
PA
1422 if (!target_can_async_p ())
1423 {
1424 /* Restore the original signal mask. */
1425 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1426 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1427 suspend_mask = normal_mask;
1428 sigdelset (&suspend_mask, SIGCHLD);
1429 }
1430
af990527
PA
1431 /* The ptrace base target adds the main thread with (pid,0,0)
1432 format. Decorate it with lwp info. */
1433 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1434 thread_change_ptid (inferior_ptid, ptid);
1435
9f0bdab8 1436 /* Add the initial process as the first LWP to the list. */
af990527 1437 lp = add_lwp (ptid);
a0ef4274
DJ
1438
1439 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1440 &lp->signalled);
1441 lp->stopped = 1;
9f0bdab8 1442
a0ef4274 1443 /* Save the wait status to report later. */
d6b0e80f 1444 lp->resumed = 1;
a0ef4274
DJ
1445 if (debug_linux_nat)
1446 fprintf_unfiltered (gdb_stdlog,
1447 "LNA: waitpid %ld, saving status %s\n",
1448 (long) GET_PID (lp->ptid), status_to_str (status));
710151dd
PA
1449
1450 if (!target_can_async_p ())
a0ef4274 1451 lp->status = status;
710151dd
PA
1452 else
1453 {
1454 /* We already waited for this LWP, so put the wait result on the
1455 pipe. The event loop will wake up and gets us to handling
1456 this event. */
a0ef4274
DJ
1457 linux_nat_event_pipe_push (GET_PID (lp->ptid), status,
1458 lp->cloned ? __WCLONE : 0);
b84876c2
PA
1459 /* Register in the event loop. */
1460 target_async (inferior_event_handler, 0);
d6b0e80f
AC
1461 }
1462}
1463
a0ef4274
DJ
1464/* Get pending status of LP. */
1465static int
1466get_pending_status (struct lwp_info *lp, int *status)
1467{
1468 struct target_waitstatus last;
1469 ptid_t last_ptid;
1470
1471 get_last_target_status (&last_ptid, &last);
1472
1473 /* If this lwp is the ptid that GDB is processing an event from, the
1474 signal will be in stop_signal. Otherwise, in all-stop + sync
1475 mode, we may cache pending events in lp->status while trying to
1476 stop all threads (see stop_wait_callback). In async mode, the
1477 events are always cached in waitpid_queue. */
1478
1479 *status = 0;
4c28f408
PA
1480
1481 if (non_stop)
a0ef4274 1482 {
4c28f408
PA
1483 enum target_signal signo = TARGET_SIGNAL_0;
1484
1485 if (is_executing (lp->ptid))
1486 {
1487 /* If the core thought this lwp was executing --- e.g., the
1488 executing property hasn't been updated yet, but the
1489 thread has been stopped with a stop_callback /
1490 stop_wait_callback sequence (see linux_nat_detach for
1491 example) --- we can only have pending events in the local
1492 queue. */
1493 if (queued_waitpid (GET_LWP (lp->ptid), status, __WALL) != -1)
1494 {
8b8655b3
TJB
1495 if (WIFSTOPPED (*status))
1496 signo = target_signal_from_host (WSTOPSIG (*status));
4c28f408
PA
1497
1498 /* If not stopped, then the lwp is gone, no use in
1499 resending a signal. */
1500 }
1501 }
1502 else
1503 {
1504 /* If the core knows the thread is not executing, then we
1505 have the last signal recorded in
2020b7ab 1506 thread_info->stop_signal. */
4c28f408 1507
2020b7ab
PA
1508 struct thread_info *tp = find_thread_pid (lp->ptid);
1509 signo = tp->stop_signal;
4c28f408
PA
1510 }
1511
1512 if (signo != TARGET_SIGNAL_0
1513 && !signal_pass_state (signo))
1514 {
1515 if (debug_linux_nat)
1516 fprintf_unfiltered (gdb_stdlog, "\
1517GPT: lwp %s had signal %s, but it is in no pass state\n",
1518 target_pid_to_str (lp->ptid),
1519 target_signal_to_string (signo));
1520 }
1521 else
1522 {
1523 if (signo != TARGET_SIGNAL_0)
1524 *status = W_STOPCODE (target_signal_to_host (signo));
1525
1526 if (debug_linux_nat)
1527 fprintf_unfiltered (gdb_stdlog,
1528 "GPT: lwp %s as pending signal %s\n",
1529 target_pid_to_str (lp->ptid),
1530 target_signal_to_string (signo));
1531 }
a0ef4274 1532 }
a0ef4274 1533 else
4c28f408
PA
1534 {
1535 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1536 {
2020b7ab
PA
1537 struct thread_info *tp = find_thread_pid (lp->ptid);
1538 if (tp->stop_signal != TARGET_SIGNAL_0
1539 && signal_pass_state (tp->stop_signal))
1540 *status = W_STOPCODE (target_signal_to_host (tp->stop_signal));
4c28f408
PA
1541 }
1542 else if (target_can_async_p ())
1543 queued_waitpid (GET_LWP (lp->ptid), status, __WALL);
1544 else
1545 *status = lp->status;
1546 }
a0ef4274
DJ
1547
1548 return 0;
1549}
1550
d6b0e80f
AC
1551static int
1552detach_callback (struct lwp_info *lp, void *data)
1553{
1554 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1555
1556 if (debug_linux_nat && lp->status)
1557 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1558 strsignal (WSTOPSIG (lp->status)),
1559 target_pid_to_str (lp->ptid));
1560
a0ef4274
DJ
1561 /* If there is a pending SIGSTOP, get rid of it. */
1562 if (lp->signalled)
d6b0e80f 1563 {
d6b0e80f
AC
1564 if (debug_linux_nat)
1565 fprintf_unfiltered (gdb_stdlog,
a0ef4274
DJ
1566 "DC: Sending SIGCONT to %s\n",
1567 target_pid_to_str (lp->ptid));
d6b0e80f 1568
a0ef4274 1569 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
d6b0e80f 1570 lp->signalled = 0;
d6b0e80f
AC
1571 }
1572
1573 /* We don't actually detach from the LWP that has an id equal to the
1574 overall process id just yet. */
1575 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1576 {
a0ef4274
DJ
1577 int status = 0;
1578
1579 /* Pass on any pending signal for this LWP. */
1580 get_pending_status (lp, &status);
1581
d6b0e80f
AC
1582 errno = 0;
1583 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
a0ef4274 1584 WSTOPSIG (status)) < 0)
8a3fe4f8 1585 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
d6b0e80f
AC
1586 safe_strerror (errno));
1587
1588 if (debug_linux_nat)
1589 fprintf_unfiltered (gdb_stdlog,
1590 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1591 target_pid_to_str (lp->ptid),
1592 strsignal (WSTOPSIG (lp->status)));
1593
1594 delete_lwp (lp->ptid);
1595 }
1596
1597 return 0;
1598}
1599
1600static void
136d6dae 1601linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
d6b0e80f 1602{
b84876c2 1603 int pid;
a0ef4274
DJ
1604 int status;
1605 enum target_signal sig;
1606
b84876c2
PA
1607 if (target_can_async_p ())
1608 linux_nat_async (NULL, 0);
1609
4c28f408
PA
1610 /* Stop all threads before detaching. ptrace requires that the
1611 thread is stopped to sucessfully detach. */
1612 iterate_over_lwps (stop_callback, NULL);
1613 /* ... and wait until all of them have reported back that
1614 they're no longer running. */
1615 iterate_over_lwps (stop_wait_callback, NULL);
1616
d6b0e80f
AC
1617 iterate_over_lwps (detach_callback, NULL);
1618
1619 /* Only the initial process should be left right now. */
1620 gdb_assert (num_lwps == 1);
1621
a0ef4274
DJ
1622 /* Pass on any pending signal for the last LWP. */
1623 if ((args == NULL || *args == '\0')
1624 && get_pending_status (lwp_list, &status) != -1
1625 && WIFSTOPPED (status))
1626 {
1627 /* Put the signal number in ARGS so that inf_ptrace_detach will
1628 pass it along with PTRACE_DETACH. */
1629 args = alloca (8);
1630 sprintf (args, "%d", (int) WSTOPSIG (status));
1631 fprintf_unfiltered (gdb_stdlog,
1632 "LND: Sending signal %s to %s\n",
1633 args,
1634 target_pid_to_str (lwp_list->ptid));
1635 }
1636
d6b0e80f
AC
1637 /* Destroy LWP info; it's no longer valid. */
1638 init_lwp_list ();
1639
7a7d3353 1640 pid = ptid_get_pid (inferior_ptid);
b84876c2
PA
1641
1642 if (target_can_async_p ())
1643 drain_queued_events (pid);
7a7d3353
PA
1644
1645 if (forks_exist_p ())
1646 {
1647 /* Multi-fork case. The current inferior_ptid is being detached
1648 from, but there are other viable forks to debug. Detach from
1649 the current fork, and context-switch to the first
1650 available. */
1651 linux_fork_detach (args, from_tty);
1652
1653 if (non_stop && target_can_async_p ())
1654 target_async (inferior_event_handler, 0);
1655 }
1656 else
1657 linux_ops->to_detach (ops, args, from_tty);
d6b0e80f
AC
1658}
1659
1660/* Resume LP. */
1661
1662static int
1663resume_callback (struct lwp_info *lp, void *data)
1664{
1665 if (lp->stopped && lp->status == 0)
1666 {
28439f5e
PA
1667 linux_ops->to_resume (linux_ops,
1668 pid_to_ptid (GET_LWP (lp->ptid)),
10d6c8cd 1669 0, TARGET_SIGNAL_0);
d6b0e80f
AC
1670 if (debug_linux_nat)
1671 fprintf_unfiltered (gdb_stdlog,
1672 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1673 target_pid_to_str (lp->ptid));
1674 lp->stopped = 0;
1675 lp->step = 0;
9f0bdab8 1676 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
d6b0e80f 1677 }
57380f4e
DJ
1678 else if (lp->stopped && debug_linux_nat)
1679 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1680 target_pid_to_str (lp->ptid));
1681 else if (debug_linux_nat)
1682 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1683 target_pid_to_str (lp->ptid));
d6b0e80f
AC
1684
1685 return 0;
1686}
1687
1688static int
1689resume_clear_callback (struct lwp_info *lp, void *data)
1690{
1691 lp->resumed = 0;
1692 return 0;
1693}
1694
1695static int
1696resume_set_callback (struct lwp_info *lp, void *data)
1697{
1698 lp->resumed = 1;
1699 return 0;
1700}
1701
1702static void
28439f5e
PA
1703linux_nat_resume (struct target_ops *ops,
1704 ptid_t ptid, int step, enum target_signal signo)
d6b0e80f
AC
1705{
1706 struct lwp_info *lp;
1707 int resume_all;
1708
76f50ad1
DJ
1709 if (debug_linux_nat)
1710 fprintf_unfiltered (gdb_stdlog,
1711 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1712 step ? "step" : "resume",
1713 target_pid_to_str (ptid),
1714 signo ? strsignal (signo) : "0",
1715 target_pid_to_str (inferior_ptid));
1716
b84876c2
PA
1717 if (target_can_async_p ())
1718 /* Block events while we're here. */
84e46146 1719 linux_nat_async_events (sigchld_sync);
b84876c2 1720
d6b0e80f
AC
1721 /* A specific PTID means `step only this process id'. */
1722 resume_all = (PIDGET (ptid) == -1);
1723
4c28f408
PA
1724 if (non_stop && resume_all)
1725 internal_error (__FILE__, __LINE__,
1726 "can't resume all in non-stop mode");
1727
1728 if (!non_stop)
1729 {
1730 if (resume_all)
1731 iterate_over_lwps (resume_set_callback, NULL);
1732 else
1733 iterate_over_lwps (resume_clear_callback, NULL);
1734 }
d6b0e80f
AC
1735
1736 /* If PID is -1, it's the current inferior that should be
1737 handled specially. */
1738 if (PIDGET (ptid) == -1)
1739 ptid = inferior_ptid;
1740
1741 lp = find_lwp_pid (ptid);
9f0bdab8 1742 gdb_assert (lp != NULL);
d6b0e80f 1743
4c28f408 1744 /* Convert to something the lower layer understands. */
9f0bdab8 1745 ptid = pid_to_ptid (GET_LWP (lp->ptid));
d6b0e80f 1746
9f0bdab8
DJ
1747 /* Remember if we're stepping. */
1748 lp->step = step;
d6b0e80f 1749
9f0bdab8
DJ
1750 /* Mark this LWP as resumed. */
1751 lp->resumed = 1;
76f50ad1 1752
9f0bdab8
DJ
1753 /* If we have a pending wait status for this thread, there is no
1754 point in resuming the process. But first make sure that
1755 linux_nat_wait won't preemptively handle the event - we
1756 should never take this short-circuit if we are going to
1757 leave LP running, since we have skipped resuming all the
1758 other threads. This bit of code needs to be synchronized
1759 with linux_nat_wait. */
76f50ad1 1760
710151dd
PA
1761 /* In async mode, we never have pending wait status. */
1762 if (target_can_async_p () && lp->status)
1763 internal_error (__FILE__, __LINE__, "Pending status in async mode");
1764
9f0bdab8
DJ
1765 if (lp->status && WIFSTOPPED (lp->status))
1766 {
d6b48e9c
PA
1767 int saved_signo;
1768 struct inferior *inf;
76f50ad1 1769
d6b48e9c
PA
1770 inf = find_inferior_pid (ptid_get_pid (ptid));
1771 gdb_assert (inf);
1772 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1773
1774 /* Defer to common code if we're gaining control of the
1775 inferior. */
1776 if (inf->stop_soon == NO_STOP_QUIETLY
1777 && signal_stop_state (saved_signo) == 0
9f0bdab8
DJ
1778 && signal_print_state (saved_signo) == 0
1779 && signal_pass_state (saved_signo) == 1)
d6b0e80f 1780 {
9f0bdab8
DJ
1781 if (debug_linux_nat)
1782 fprintf_unfiltered (gdb_stdlog,
1783 "LLR: Not short circuiting for ignored "
1784 "status 0x%x\n", lp->status);
1785
d6b0e80f
AC
1786 /* FIXME: What should we do if we are supposed to continue
1787 this thread with a signal? */
1788 gdb_assert (signo == TARGET_SIGNAL_0);
9f0bdab8
DJ
1789 signo = saved_signo;
1790 lp->status = 0;
1791 }
1792 }
76f50ad1 1793
9f0bdab8
DJ
1794 if (lp->status)
1795 {
1796 /* FIXME: What should we do if we are supposed to continue
1797 this thread with a signal? */
1798 gdb_assert (signo == TARGET_SIGNAL_0);
76f50ad1 1799
9f0bdab8
DJ
1800 if (debug_linux_nat)
1801 fprintf_unfiltered (gdb_stdlog,
1802 "LLR: Short circuiting for status 0x%x\n",
1803 lp->status);
d6b0e80f 1804
9f0bdab8 1805 return;
d6b0e80f
AC
1806 }
1807
9f0bdab8
DJ
1808 /* Mark LWP as not stopped to prevent it from being continued by
1809 resume_callback. */
1810 lp->stopped = 0;
1811
d6b0e80f
AC
1812 if (resume_all)
1813 iterate_over_lwps (resume_callback, NULL);
1814
28439f5e 1815 linux_ops->to_resume (linux_ops, ptid, step, signo);
9f0bdab8
DJ
1816 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1817
d6b0e80f
AC
1818 if (debug_linux_nat)
1819 fprintf_unfiltered (gdb_stdlog,
1820 "LLR: %s %s, %s (resume event thread)\n",
1821 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1822 target_pid_to_str (ptid),
1823 signo ? strsignal (signo) : "0");
b84876c2
PA
1824
1825 if (target_can_async_p ())
8ea051c5 1826 target_async (inferior_event_handler, 0);
d6b0e80f
AC
1827}
1828
1829/* Issue kill to specified lwp. */
1830
1831static int tkill_failed;
1832
1833static int
1834kill_lwp (int lwpid, int signo)
1835{
1836 errno = 0;
1837
1838/* Use tkill, if possible, in case we are using nptl threads. If tkill
1839 fails, then we are not using nptl threads and we should be using kill. */
1840
1841#ifdef HAVE_TKILL_SYSCALL
1842 if (!tkill_failed)
1843 {
1844 int ret = syscall (__NR_tkill, lwpid, signo);
1845 if (errno != ENOSYS)
1846 return ret;
1847 errno = 0;
1848 tkill_failed = 1;
1849 }
1850#endif
1851
1852 return kill (lwpid, signo);
1853}
1854
3d799a95
DJ
1855/* Handle a GNU/Linux extended wait response. If we see a clone
1856 event, we need to add the new LWP to our list (and not report the
1857 trap to higher layers). This function returns non-zero if the
1858 event should be ignored and we should wait again. If STOPPING is
1859 true, the new LWP remains stopped, otherwise it is continued. */
d6b0e80f
AC
1860
1861static int
3d799a95
DJ
1862linux_handle_extended_wait (struct lwp_info *lp, int status,
1863 int stopping)
d6b0e80f 1864{
3d799a95
DJ
1865 int pid = GET_LWP (lp->ptid);
1866 struct target_waitstatus *ourstatus = &lp->waitstatus;
1867 struct lwp_info *new_lp = NULL;
1868 int event = status >> 16;
d6b0e80f 1869
3d799a95
DJ
1870 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1871 || event == PTRACE_EVENT_CLONE)
d6b0e80f 1872 {
3d799a95
DJ
1873 unsigned long new_pid;
1874 int ret;
1875
1876 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
6fc19103 1877
3d799a95
DJ
1878 /* If we haven't already seen the new PID stop, wait for it now. */
1879 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1880 {
1881 /* The new child has a pending SIGSTOP. We can't affect it until it
1882 hits the SIGSTOP, but we're already attached. */
1883 ret = my_waitpid (new_pid, &status,
1884 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1885 if (ret == -1)
1886 perror_with_name (_("waiting for new child"));
1887 else if (ret != new_pid)
1888 internal_error (__FILE__, __LINE__,
1889 _("wait returned unexpected PID %d"), ret);
1890 else if (!WIFSTOPPED (status))
1891 internal_error (__FILE__, __LINE__,
1892 _("wait returned unexpected status 0x%x"), status);
1893 }
1894
3a3e9ee3 1895 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
3d799a95
DJ
1896
1897 if (event == PTRACE_EVENT_FORK)
1898 ourstatus->kind = TARGET_WAITKIND_FORKED;
1899 else if (event == PTRACE_EVENT_VFORK)
1900 ourstatus->kind = TARGET_WAITKIND_VFORKED;
6fc19103 1901 else
3d799a95 1902 {
4c28f408
PA
1903 struct cleanup *old_chain;
1904
3d799a95
DJ
1905 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1906 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
1907 new_lp->cloned = 1;
4c28f408 1908 new_lp->stopped = 1;
d6b0e80f 1909
3d799a95
DJ
1910 if (WSTOPSIG (status) != SIGSTOP)
1911 {
1912 /* This can happen if someone starts sending signals to
1913 the new thread before it gets a chance to run, which
1914 have a lower number than SIGSTOP (e.g. SIGUSR1).
1915 This is an unlikely case, and harder to handle for
1916 fork / vfork than for clone, so we do not try - but
1917 we handle it for clone events here. We'll send
1918 the other signal on to the thread below. */
1919
1920 new_lp->signalled = 1;
1921 }
1922 else
1923 status = 0;
d6b0e80f 1924
4c28f408 1925 if (non_stop)
3d799a95 1926 {
4c28f408
PA
1927 /* Add the new thread to GDB's lists as soon as possible
1928 so that:
1929
1930 1) the frontend doesn't have to wait for a stop to
1931 display them, and,
1932
1933 2) we tag it with the correct running state. */
1934
1935 /* If the thread_db layer is active, let it know about
1936 this new thread, and add it to GDB's list. */
1937 if (!thread_db_attach_lwp (new_lp->ptid))
1938 {
1939 /* We're not using thread_db. Add it to GDB's
1940 list. */
1941 target_post_attach (GET_LWP (new_lp->ptid));
1942 add_thread (new_lp->ptid);
1943 }
1944
1945 if (!stopping)
1946 {
1947 set_running (new_lp->ptid, 1);
1948 set_executing (new_lp->ptid, 1);
1949 }
1950 }
1951
1952 if (!stopping)
1953 {
1954 new_lp->stopped = 0;
3d799a95 1955 new_lp->resumed = 1;
4c28f408 1956 ptrace (PTRACE_CONT, new_pid, 0,
3d799a95
DJ
1957 status ? WSTOPSIG (status) : 0);
1958 }
d6b0e80f 1959
3d799a95
DJ
1960 if (debug_linux_nat)
1961 fprintf_unfiltered (gdb_stdlog,
1962 "LHEW: Got clone event from LWP %ld, resuming\n",
1963 GET_LWP (lp->ptid));
1964 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1965
1966 return 1;
1967 }
1968
1969 return 0;
d6b0e80f
AC
1970 }
1971
3d799a95
DJ
1972 if (event == PTRACE_EVENT_EXEC)
1973 {
1974 ourstatus->kind = TARGET_WAITKIND_EXECD;
1975 ourstatus->value.execd_pathname
6d8fd2b7 1976 = xstrdup (linux_child_pid_to_exec_file (pid));
3d799a95
DJ
1977
1978 if (linux_parent_pid)
1979 {
1980 detach_breakpoints (linux_parent_pid);
1981 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
1982
1983 linux_parent_pid = 0;
1984 }
1985
25b22b0a
PA
1986 /* At this point, all inserted breakpoints are gone. Doing this
1987 as soon as we detect an exec prevents the badness of deleting
1988 a breakpoint writing the current "shadow contents" to lift
1989 the bp. That shadow is NOT valid after an exec.
1990
1991 Note that we have to do this after the detach_breakpoints
1992 call above, otherwise breakpoints wouldn't be lifted from the
1993 parent on a vfork, because detach_breakpoints would think
1994 that breakpoints are not inserted. */
1995 mark_breakpoints_out ();
3d799a95
DJ
1996 return 0;
1997 }
1998
1999 internal_error (__FILE__, __LINE__,
2000 _("unknown ptrace event %d"), event);
d6b0e80f
AC
2001}
2002
2003/* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2004 exited. */
2005
2006static int
2007wait_lwp (struct lwp_info *lp)
2008{
2009 pid_t pid;
2010 int status;
2011 int thread_dead = 0;
2012
2013 gdb_assert (!lp->stopped);
2014 gdb_assert (lp->status == 0);
2015
58aecb61 2016 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
d6b0e80f
AC
2017 if (pid == -1 && errno == ECHILD)
2018 {
58aecb61 2019 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
d6b0e80f
AC
2020 if (pid == -1 && errno == ECHILD)
2021 {
2022 /* The thread has previously exited. We need to delete it
2023 now because, for some vendor 2.4 kernels with NPTL
2024 support backported, there won't be an exit event unless
2025 it is the main thread. 2.6 kernels will report an exit
2026 event for each thread that exits, as expected. */
2027 thread_dead = 1;
2028 if (debug_linux_nat)
2029 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2030 target_pid_to_str (lp->ptid));
2031 }
2032 }
2033
2034 if (!thread_dead)
2035 {
2036 gdb_assert (pid == GET_LWP (lp->ptid));
2037
2038 if (debug_linux_nat)
2039 {
2040 fprintf_unfiltered (gdb_stdlog,
2041 "WL: waitpid %s received %s\n",
2042 target_pid_to_str (lp->ptid),
2043 status_to_str (status));
2044 }
2045 }
2046
2047 /* Check if the thread has exited. */
2048 if (WIFEXITED (status) || WIFSIGNALED (status))
2049 {
2050 thread_dead = 1;
2051 if (debug_linux_nat)
2052 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2053 target_pid_to_str (lp->ptid));
2054 }
2055
2056 if (thread_dead)
2057 {
e26af52f 2058 exit_lwp (lp);
d6b0e80f
AC
2059 return 0;
2060 }
2061
2062 gdb_assert (WIFSTOPPED (status));
2063
2064 /* Handle GNU/Linux's extended waitstatus for trace events. */
2065 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2066 {
2067 if (debug_linux_nat)
2068 fprintf_unfiltered (gdb_stdlog,
2069 "WL: Handling extended status 0x%06x\n",
2070 status);
3d799a95 2071 if (linux_handle_extended_wait (lp, status, 1))
d6b0e80f
AC
2072 return wait_lwp (lp);
2073 }
2074
2075 return status;
2076}
2077
9f0bdab8
DJ
2078/* Save the most recent siginfo for LP. This is currently only called
2079 for SIGTRAP; some ports use the si_addr field for
2080 target_stopped_data_address. In the future, it may also be used to
2081 restore the siginfo of requeued signals. */
2082
2083static void
2084save_siginfo (struct lwp_info *lp)
2085{
2086 errno = 0;
2087 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2088 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2089
2090 if (errno != 0)
2091 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2092}
2093
d6b0e80f
AC
2094/* Send a SIGSTOP to LP. */
2095
2096static int
2097stop_callback (struct lwp_info *lp, void *data)
2098{
2099 if (!lp->stopped && !lp->signalled)
2100 {
2101 int ret;
2102
2103 if (debug_linux_nat)
2104 {
2105 fprintf_unfiltered (gdb_stdlog,
2106 "SC: kill %s **<SIGSTOP>**\n",
2107 target_pid_to_str (lp->ptid));
2108 }
2109 errno = 0;
2110 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2111 if (debug_linux_nat)
2112 {
2113 fprintf_unfiltered (gdb_stdlog,
2114 "SC: lwp kill %d %s\n",
2115 ret,
2116 errno ? safe_strerror (errno) : "ERRNO-OK");
2117 }
2118
2119 lp->signalled = 1;
2120 gdb_assert (lp->status == 0);
2121 }
2122
2123 return 0;
2124}
2125
57380f4e 2126/* Return non-zero if LWP PID has a pending SIGINT. */
d6b0e80f
AC
2127
2128static int
57380f4e
DJ
2129linux_nat_has_pending_sigint (int pid)
2130{
2131 sigset_t pending, blocked, ignored;
2132 int i;
2133
2134 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2135
2136 if (sigismember (&pending, SIGINT)
2137 && !sigismember (&ignored, SIGINT))
2138 return 1;
2139
2140 return 0;
2141}
2142
2143/* Set a flag in LP indicating that we should ignore its next SIGINT. */
2144
2145static int
2146set_ignore_sigint (struct lwp_info *lp, void *data)
d6b0e80f 2147{
57380f4e
DJ
2148 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2149 flag to consume the next one. */
2150 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2151 && WSTOPSIG (lp->status) == SIGINT)
2152 lp->status = 0;
2153 else
2154 lp->ignore_sigint = 1;
2155
2156 return 0;
2157}
2158
2159/* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2160 This function is called after we know the LWP has stopped; if the LWP
2161 stopped before the expected SIGINT was delivered, then it will never have
2162 arrived. Also, if the signal was delivered to a shared queue and consumed
2163 by a different thread, it will never be delivered to this LWP. */
d6b0e80f 2164
57380f4e
DJ
2165static void
2166maybe_clear_ignore_sigint (struct lwp_info *lp)
2167{
2168 if (!lp->ignore_sigint)
2169 return;
2170
2171 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2172 {
2173 if (debug_linux_nat)
2174 fprintf_unfiltered (gdb_stdlog,
2175 "MCIS: Clearing bogus flag for %s\n",
2176 target_pid_to_str (lp->ptid));
2177 lp->ignore_sigint = 0;
2178 }
2179}
2180
2181/* Wait until LP is stopped. */
2182
2183static int
2184stop_wait_callback (struct lwp_info *lp, void *data)
2185{
d6b0e80f
AC
2186 if (!lp->stopped)
2187 {
2188 int status;
2189
2190 status = wait_lwp (lp);
2191 if (status == 0)
2192 return 0;
2193
57380f4e
DJ
2194 if (lp->ignore_sigint && WIFSTOPPED (status)
2195 && WSTOPSIG (status) == SIGINT)
d6b0e80f 2196 {
57380f4e 2197 lp->ignore_sigint = 0;
d6b0e80f
AC
2198
2199 errno = 0;
2200 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2201 if (debug_linux_nat)
2202 fprintf_unfiltered (gdb_stdlog,
57380f4e 2203 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
d6b0e80f
AC
2204 target_pid_to_str (lp->ptid),
2205 errno ? safe_strerror (errno) : "OK");
2206
57380f4e 2207 return stop_wait_callback (lp, NULL);
d6b0e80f
AC
2208 }
2209
57380f4e
DJ
2210 maybe_clear_ignore_sigint (lp);
2211
d6b0e80f
AC
2212 if (WSTOPSIG (status) != SIGSTOP)
2213 {
2214 if (WSTOPSIG (status) == SIGTRAP)
2215 {
2216 /* If a LWP other than the LWP that we're reporting an
2217 event for has hit a GDB breakpoint (as opposed to
2218 some random trap signal), then just arrange for it to
2219 hit it again later. We don't keep the SIGTRAP status
2220 and don't forward the SIGTRAP signal to the LWP. We
2221 will handle the current event, eventually we will
2222 resume all LWPs, and this one will get its breakpoint
2223 trap again.
2224
2225 If we do not do this, then we run the risk that the
2226 user will delete or disable the breakpoint, but the
2227 thread will have already tripped on it. */
2228
9f0bdab8
DJ
2229 /* Save the trap's siginfo in case we need it later. */
2230 save_siginfo (lp);
2231
d6b0e80f
AC
2232 /* Now resume this LWP and get the SIGSTOP event. */
2233 errno = 0;
2234 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2235 if (debug_linux_nat)
2236 {
2237 fprintf_unfiltered (gdb_stdlog,
2238 "PTRACE_CONT %s, 0, 0 (%s)\n",
2239 target_pid_to_str (lp->ptid),
2240 errno ? safe_strerror (errno) : "OK");
2241
2242 fprintf_unfiltered (gdb_stdlog,
2243 "SWC: Candidate SIGTRAP event in %s\n",
2244 target_pid_to_str (lp->ptid));
2245 }
710151dd
PA
2246 /* Hold this event/waitstatus while we check to see if
2247 there are any more (we still want to get that SIGSTOP). */
57380f4e 2248 stop_wait_callback (lp, NULL);
710151dd
PA
2249
2250 if (target_can_async_p ())
d6b0e80f 2251 {
710151dd
PA
2252 /* Don't leave a pending wait status in async mode.
2253 Retrigger the breakpoint. */
2254 if (!cancel_breakpoint (lp))
d6b0e80f 2255 {
710151dd
PA
2256 /* There was no gdb breakpoint set at pc. Put
2257 the event back in the queue. */
2258 if (debug_linux_nat)
252fbfc8
PA
2259 fprintf_unfiltered (gdb_stdlog, "\
2260SWC: leaving SIGTRAP in local queue of %s\n", target_pid_to_str (lp->ptid));
2261 push_waitpid (GET_LWP (lp->ptid),
2262 W_STOPCODE (SIGTRAP),
2263 lp->cloned ? __WCLONE : 0);
710151dd
PA
2264 }
2265 }
2266 else
2267 {
2268 /* Hold the SIGTRAP for handling by
2269 linux_nat_wait. */
2270 /* If there's another event, throw it back into the
2271 queue. */
2272 if (lp->status)
2273 {
2274 if (debug_linux_nat)
2275 fprintf_unfiltered (gdb_stdlog,
2276 "SWC: kill %s, %s\n",
2277 target_pid_to_str (lp->ptid),
2278 status_to_str ((int) status));
2279 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
d6b0e80f 2280 }
710151dd
PA
2281 /* Save the sigtrap event. */
2282 lp->status = status;
d6b0e80f 2283 }
d6b0e80f
AC
2284 return 0;
2285 }
2286 else
2287 {
2288 /* The thread was stopped with a signal other than
2289 SIGSTOP, and didn't accidentally trip a breakpoint. */
2290
2291 if (debug_linux_nat)
2292 {
2293 fprintf_unfiltered (gdb_stdlog,
2294 "SWC: Pending event %s in %s\n",
2295 status_to_str ((int) status),
2296 target_pid_to_str (lp->ptid));
2297 }
2298 /* Now resume this LWP and get the SIGSTOP event. */
2299 errno = 0;
2300 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2301 if (debug_linux_nat)
2302 fprintf_unfiltered (gdb_stdlog,
2303 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2304 target_pid_to_str (lp->ptid),
2305 errno ? safe_strerror (errno) : "OK");
2306
2307 /* Hold this event/waitstatus while we check to see if
2308 there are any more (we still want to get that SIGSTOP). */
57380f4e 2309 stop_wait_callback (lp, NULL);
710151dd
PA
2310
2311 /* If the lp->status field is still empty, use it to
2312 hold this event. If not, then this event must be
2313 returned to the event queue of the LWP. */
2314 if (lp->status || target_can_async_p ())
d6b0e80f
AC
2315 {
2316 if (debug_linux_nat)
2317 {
2318 fprintf_unfiltered (gdb_stdlog,
2319 "SWC: kill %s, %s\n",
2320 target_pid_to_str (lp->ptid),
2321 status_to_str ((int) status));
2322 }
2323 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2324 }
710151dd
PA
2325 else
2326 lp->status = status;
d6b0e80f
AC
2327 return 0;
2328 }
2329 }
2330 else
2331 {
2332 /* We caught the SIGSTOP that we intended to catch, so
2333 there's no SIGSTOP pending. */
2334 lp->stopped = 1;
2335 lp->signalled = 0;
2336 }
2337 }
2338
2339 return 0;
2340}
2341
d6b0e80f
AC
2342/* Return non-zero if LP has a wait status pending. */
2343
2344static int
2345status_callback (struct lwp_info *lp, void *data)
2346{
2347 /* Only report a pending wait status if we pretend that this has
2348 indeed been resumed. */
2349 return (lp->status != 0 && lp->resumed);
2350}
2351
2352/* Return non-zero if LP isn't stopped. */
2353
2354static int
2355running_callback (struct lwp_info *lp, void *data)
2356{
2357 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2358}
2359
2360/* Count the LWP's that have had events. */
2361
2362static int
2363count_events_callback (struct lwp_info *lp, void *data)
2364{
2365 int *count = data;
2366
2367 gdb_assert (count != NULL);
2368
e09490f1
DJ
2369 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2370 if (lp->status != 0 && lp->resumed
d6b0e80f
AC
2371 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2372 (*count)++;
2373
2374 return 0;
2375}
2376
2377/* Select the LWP (if any) that is currently being single-stepped. */
2378
2379static int
2380select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2381{
2382 if (lp->step && lp->status != 0)
2383 return 1;
2384 else
2385 return 0;
2386}
2387
2388/* Select the Nth LWP that has had a SIGTRAP event. */
2389
2390static int
2391select_event_lwp_callback (struct lwp_info *lp, void *data)
2392{
2393 int *selector = data;
2394
2395 gdb_assert (selector != NULL);
2396
e09490f1
DJ
2397 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2398 if (lp->status != 0 && lp->resumed
d6b0e80f
AC
2399 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2400 if ((*selector)-- == 0)
2401 return 1;
2402
2403 return 0;
2404}
2405
710151dd
PA
2406static int
2407cancel_breakpoint (struct lwp_info *lp)
2408{
2409 /* Arrange for a breakpoint to be hit again later. We don't keep
2410 the SIGTRAP status and don't forward the SIGTRAP signal to the
2411 LWP. We will handle the current event, eventually we will resume
2412 this LWP, and this breakpoint will trap again.
2413
2414 If we do not do this, then we run the risk that the user will
2415 delete or disable the breakpoint, but the LWP will have already
2416 tripped on it. */
2417
515630c5
UW
2418 struct regcache *regcache = get_thread_regcache (lp->ptid);
2419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2420 CORE_ADDR pc;
2421
2422 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2423 if (breakpoint_inserted_here_p (pc))
710151dd
PA
2424 {
2425 if (debug_linux_nat)
2426 fprintf_unfiltered (gdb_stdlog,
2427 "CB: Push back breakpoint for %s\n",
2428 target_pid_to_str (lp->ptid));
2429
2430 /* Back up the PC if necessary. */
515630c5
UW
2431 if (gdbarch_decr_pc_after_break (gdbarch))
2432 regcache_write_pc (regcache, pc);
2433
710151dd
PA
2434 return 1;
2435 }
2436 return 0;
2437}
2438
d6b0e80f
AC
2439static int
2440cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2441{
2442 struct lwp_info *event_lp = data;
2443
2444 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2445 if (lp == event_lp)
2446 return 0;
2447
2448 /* If a LWP other than the LWP that we're reporting an event for has
2449 hit a GDB breakpoint (as opposed to some random trap signal),
2450 then just arrange for it to hit it again later. We don't keep
2451 the SIGTRAP status and don't forward the SIGTRAP signal to the
2452 LWP. We will handle the current event, eventually we will resume
2453 all LWPs, and this one will get its breakpoint trap again.
2454
2455 If we do not do this, then we run the risk that the user will
2456 delete or disable the breakpoint, but the LWP will have already
2457 tripped on it. */
2458
2459 if (lp->status != 0
2460 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
710151dd
PA
2461 && cancel_breakpoint (lp))
2462 /* Throw away the SIGTRAP. */
2463 lp->status = 0;
d6b0e80f
AC
2464
2465 return 0;
2466}
2467
2468/* Select one LWP out of those that have events pending. */
2469
2470static void
2471select_event_lwp (struct lwp_info **orig_lp, int *status)
2472{
2473 int num_events = 0;
2474 int random_selector;
2475 struct lwp_info *event_lp;
2476
ac264b3b 2477 /* Record the wait status for the original LWP. */
d6b0e80f
AC
2478 (*orig_lp)->status = *status;
2479
2480 /* Give preference to any LWP that is being single-stepped. */
2481 event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
2482 if (event_lp != NULL)
2483 {
2484 if (debug_linux_nat)
2485 fprintf_unfiltered (gdb_stdlog,
2486 "SEL: Select single-step %s\n",
2487 target_pid_to_str (event_lp->ptid));
2488 }
2489 else
2490 {
2491 /* No single-stepping LWP. Select one at random, out of those
2492 which have had SIGTRAP events. */
2493
2494 /* First see how many SIGTRAP events we have. */
2495 iterate_over_lwps (count_events_callback, &num_events);
2496
2497 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2498 random_selector = (int)
2499 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2500
2501 if (debug_linux_nat && num_events > 1)
2502 fprintf_unfiltered (gdb_stdlog,
2503 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2504 num_events, random_selector);
2505
2506 event_lp = iterate_over_lwps (select_event_lwp_callback,
2507 &random_selector);
2508 }
2509
2510 if (event_lp != NULL)
2511 {
2512 /* Switch the event LWP. */
2513 *orig_lp = event_lp;
2514 *status = event_lp->status;
2515 }
2516
2517 /* Flush the wait status for the event LWP. */
2518 (*orig_lp)->status = 0;
2519}
2520
2521/* Return non-zero if LP has been resumed. */
2522
2523static int
2524resumed_callback (struct lwp_info *lp, void *data)
2525{
2526 return lp->resumed;
2527}
2528
d6b0e80f
AC
2529/* Stop an active thread, verify it still exists, then resume it. */
2530
2531static int
2532stop_and_resume_callback (struct lwp_info *lp, void *data)
2533{
2534 struct lwp_info *ptr;
2535
2536 if (!lp->stopped && !lp->signalled)
2537 {
2538 stop_callback (lp, NULL);
2539 stop_wait_callback (lp, NULL);
2540 /* Resume if the lwp still exists. */
2541 for (ptr = lwp_list; ptr; ptr = ptr->next)
2542 if (lp == ptr)
2543 {
2544 resume_callback (lp, NULL);
2545 resume_set_callback (lp, NULL);
2546 }
2547 }
2548 return 0;
2549}
2550
02f3fc28 2551/* Check if we should go on and pass this event to common code.
fa2c6a57 2552 Return the affected lwp if we are, or NULL otherwise. */
02f3fc28
PA
2553static struct lwp_info *
2554linux_nat_filter_event (int lwpid, int status, int options)
2555{
2556 struct lwp_info *lp;
2557
2558 lp = find_lwp_pid (pid_to_ptid (lwpid));
2559
2560 /* Check for stop events reported by a process we didn't already
2561 know about - anything not already in our LWP list.
2562
2563 If we're expecting to receive stopped processes after
2564 fork, vfork, and clone events, then we'll just add the
2565 new one to our list and go back to waiting for the event
2566 to be reported - the stopped process might be returned
2567 from waitpid before or after the event is. */
2568 if (WIFSTOPPED (status) && !lp)
2569 {
2570 linux_record_stopped_pid (lwpid, status);
2571 return NULL;
2572 }
2573
2574 /* Make sure we don't report an event for the exit of an LWP not in
2575 our list, i.e. not part of the current process. This can happen
2576 if we detach from a program we original forked and then it
2577 exits. */
2578 if (!WIFSTOPPED (status) && !lp)
2579 return NULL;
2580
2581 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2582 CLONE_PTRACE processes which do not use the thread library -
2583 otherwise we wouldn't find the new LWP this way. That doesn't
2584 currently work, and the following code is currently unreachable
2585 due to the two blocks above. If it's fixed some day, this code
2586 should be broken out into a function so that we can also pick up
2587 LWPs from the new interface. */
2588 if (!lp)
2589 {
2590 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2591 if (options & __WCLONE)
2592 lp->cloned = 1;
2593
2594 gdb_assert (WIFSTOPPED (status)
2595 && WSTOPSIG (status) == SIGSTOP);
2596 lp->signalled = 1;
2597
2598 if (!in_thread_list (inferior_ptid))
2599 {
2600 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2601 GET_PID (inferior_ptid));
2602 add_thread (inferior_ptid);
2603 }
2604
2605 add_thread (lp->ptid);
2606 }
2607
2608 /* Save the trap's siginfo in case we need it later. */
2609 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2610 save_siginfo (lp);
2611
2612 /* Handle GNU/Linux's extended waitstatus for trace events. */
2613 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2614 {
2615 if (debug_linux_nat)
2616 fprintf_unfiltered (gdb_stdlog,
2617 "LLW: Handling extended status 0x%06x\n",
2618 status);
2619 if (linux_handle_extended_wait (lp, status, 0))
2620 return NULL;
2621 }
2622
2623 /* Check if the thread has exited. */
2624 if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
2625 {
2626 /* If this is the main thread, we must stop all threads and
2627 verify if they are still alive. This is because in the nptl
2628 thread model, there is no signal issued for exiting LWPs
2629 other than the main thread. We only get the main thread exit
2630 signal once all child threads have already exited. If we
2631 stop all the threads and use the stop_wait_callback to check
2632 if they have exited we can determine whether this signal
2633 should be ignored or whether it means the end of the debugged
2634 application, regardless of which threading model is being
2635 used. */
2636 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2637 {
2638 lp->stopped = 1;
2639 iterate_over_lwps (stop_and_resume_callback, NULL);
2640 }
2641
2642 if (debug_linux_nat)
2643 fprintf_unfiltered (gdb_stdlog,
2644 "LLW: %s exited.\n",
2645 target_pid_to_str (lp->ptid));
2646
2647 exit_lwp (lp);
2648
2649 /* If there is at least one more LWP, then the exit signal was
2650 not the end of the debugged application and should be
2651 ignored. */
2652 if (num_lwps > 0)
4c28f408 2653 return NULL;
02f3fc28
PA
2654 }
2655
2656 /* Check if the current LWP has previously exited. In the nptl
2657 thread model, LWPs other than the main thread do not issue
2658 signals when they exit so we must check whenever the thread has
2659 stopped. A similar check is made in stop_wait_callback(). */
28439f5e 2660 if (num_lwps > 1 && !linux_thread_alive (lp->ptid))
02f3fc28
PA
2661 {
2662 if (debug_linux_nat)
2663 fprintf_unfiltered (gdb_stdlog,
2664 "LLW: %s exited.\n",
2665 target_pid_to_str (lp->ptid));
2666
2667 exit_lwp (lp);
2668
2669 /* Make sure there is at least one thread running. */
2670 gdb_assert (iterate_over_lwps (running_callback, NULL));
2671
2672 /* Discard the event. */
2673 return NULL;
2674 }
2675
2676 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2677 an attempt to stop an LWP. */
2678 if (lp->signalled
2679 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2680 {
2681 if (debug_linux_nat)
2682 fprintf_unfiltered (gdb_stdlog,
2683 "LLW: Delayed SIGSTOP caught for %s.\n",
2684 target_pid_to_str (lp->ptid));
2685
2686 /* This is a delayed SIGSTOP. */
2687 lp->signalled = 0;
2688
2689 registers_changed ();
2690
28439f5e 2691 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
02f3fc28
PA
2692 lp->step, TARGET_SIGNAL_0);
2693 if (debug_linux_nat)
2694 fprintf_unfiltered (gdb_stdlog,
2695 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2696 lp->step ?
2697 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2698 target_pid_to_str (lp->ptid));
2699
2700 lp->stopped = 0;
2701 gdb_assert (lp->resumed);
2702
2703 /* Discard the event. */
2704 return NULL;
2705 }
2706
57380f4e
DJ
2707 /* Make sure we don't report a SIGINT that we have already displayed
2708 for another thread. */
2709 if (lp->ignore_sigint
2710 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2711 {
2712 if (debug_linux_nat)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "LLW: Delayed SIGINT caught for %s.\n",
2715 target_pid_to_str (lp->ptid));
2716
2717 /* This is a delayed SIGINT. */
2718 lp->ignore_sigint = 0;
2719
2720 registers_changed ();
28439f5e 2721 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
57380f4e
DJ
2722 lp->step, TARGET_SIGNAL_0);
2723 if (debug_linux_nat)
2724 fprintf_unfiltered (gdb_stdlog,
2725 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
2726 lp->step ?
2727 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2728 target_pid_to_str (lp->ptid));
2729
2730 lp->stopped = 0;
2731 gdb_assert (lp->resumed);
2732
2733 /* Discard the event. */
2734 return NULL;
2735 }
2736
02f3fc28
PA
2737 /* An interesting event. */
2738 gdb_assert (lp);
2739 return lp;
2740}
2741
b84876c2
PA
2742/* Get the events stored in the pipe into the local queue, so they are
2743 accessible to queued_waitpid. We need to do this, since it is not
2744 always the case that the event at the head of the pipe is the event
2745 we want. */
2746
2747static void
2748pipe_to_local_event_queue (void)
2749{
2750 if (debug_linux_nat_async)
2751 fprintf_unfiltered (gdb_stdlog,
2752 "PTLEQ: linux_nat_num_queued_events(%d)\n",
2753 linux_nat_num_queued_events);
2754 while (linux_nat_num_queued_events)
2755 {
2756 int lwpid, status, options;
b84876c2 2757 lwpid = linux_nat_event_pipe_pop (&status, &options);
b84876c2
PA
2758 gdb_assert (lwpid > 0);
2759 push_waitpid (lwpid, status, options);
2760 }
2761}
2762
2763/* Get the unprocessed events stored in the local queue back into the
2764 pipe, so the event loop realizes there's something else to
2765 process. */
2766
2767static void
2768local_event_queue_to_pipe (void)
2769{
2770 struct waitpid_result *w = waitpid_queue;
2771 while (w)
2772 {
2773 struct waitpid_result *next = w->next;
2774 linux_nat_event_pipe_push (w->pid,
2775 w->status,
2776 w->options);
2777 xfree (w);
2778 w = next;
2779 }
2780 waitpid_queue = NULL;
2781
2782 if (debug_linux_nat_async)
2783 fprintf_unfiltered (gdb_stdlog,
2784 "LEQTP: linux_nat_num_queued_events(%d)\n",
2785 linux_nat_num_queued_events);
2786}
2787
d6b0e80f 2788static ptid_t
117de6a9
PA
2789linux_nat_wait (struct target_ops *ops,
2790 ptid_t ptid, struct target_waitstatus *ourstatus)
d6b0e80f
AC
2791{
2792 struct lwp_info *lp = NULL;
2793 int options = 0;
2794 int status = 0;
2795 pid_t pid = PIDGET (ptid);
d6b0e80f 2796
b84876c2
PA
2797 if (debug_linux_nat_async)
2798 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2799
f973ed9c
DJ
2800 /* The first time we get here after starting a new inferior, we may
2801 not have added it to the LWP list yet - this is the earliest
2802 moment at which we know its PID. */
2803 if (num_lwps == 0)
2804 {
2805 gdb_assert (!is_lwp (inferior_ptid));
2806
27c9d204
PA
2807 /* Upgrade the main thread's ptid. */
2808 thread_change_ptid (inferior_ptid,
2809 BUILD_LWP (GET_PID (inferior_ptid),
2810 GET_PID (inferior_ptid)));
2811
f973ed9c
DJ
2812 lp = add_lwp (inferior_ptid);
2813 lp->resumed = 1;
2814 }
2815
84e46146
PA
2816 /* Block events while we're here. */
2817 linux_nat_async_events (sigchld_sync);
d6b0e80f
AC
2818
2819retry:
2820
f973ed9c
DJ
2821 /* Make sure there is at least one LWP that has been resumed. */
2822 gdb_assert (iterate_over_lwps (resumed_callback, NULL));
d6b0e80f
AC
2823
2824 /* First check if there is a LWP with a wait status pending. */
2825 if (pid == -1)
2826 {
2827 /* Any LWP that's been resumed will do. */
2828 lp = iterate_over_lwps (status_callback, NULL);
2829 if (lp)
2830 {
710151dd
PA
2831 if (target_can_async_p ())
2832 internal_error (__FILE__, __LINE__,
2833 "Found an LWP with a pending status in async mode.");
2834
d6b0e80f
AC
2835 status = lp->status;
2836 lp->status = 0;
2837
2838 if (debug_linux_nat && status)
2839 fprintf_unfiltered (gdb_stdlog,
2840 "LLW: Using pending wait status %s for %s.\n",
2841 status_to_str (status),
2842 target_pid_to_str (lp->ptid));
2843 }
2844
b84876c2 2845 /* But if we don't find one, we'll have to wait, and check both
d6b0e80f
AC
2846 cloned and uncloned processes. We start with the cloned
2847 processes. */
2848 options = __WCLONE | WNOHANG;
2849 }
2850 else if (is_lwp (ptid))
2851 {
2852 if (debug_linux_nat)
2853 fprintf_unfiltered (gdb_stdlog,
2854 "LLW: Waiting for specific LWP %s.\n",
2855 target_pid_to_str (ptid));
2856
2857 /* We have a specific LWP to check. */
2858 lp = find_lwp_pid (ptid);
2859 gdb_assert (lp);
2860 status = lp->status;
2861 lp->status = 0;
2862
2863 if (debug_linux_nat && status)
2864 fprintf_unfiltered (gdb_stdlog,
2865 "LLW: Using pending wait status %s for %s.\n",
2866 status_to_str (status),
2867 target_pid_to_str (lp->ptid));
2868
2869 /* If we have to wait, take into account whether PID is a cloned
2870 process or not. And we have to convert it to something that
2871 the layer beneath us can understand. */
2872 options = lp->cloned ? __WCLONE : 0;
2873 pid = GET_LWP (ptid);
2874 }
2875
2876 if (status && lp->signalled)
2877 {
2878 /* A pending SIGSTOP may interfere with the normal stream of
2879 events. In a typical case where interference is a problem,
2880 we have a SIGSTOP signal pending for LWP A while
2881 single-stepping it, encounter an event in LWP B, and take the
2882 pending SIGSTOP while trying to stop LWP A. After processing
2883 the event in LWP B, LWP A is continued, and we'll never see
2884 the SIGTRAP associated with the last time we were
2885 single-stepping LWP A. */
2886
2887 /* Resume the thread. It should halt immediately returning the
2888 pending SIGSTOP. */
2889 registers_changed ();
28439f5e 2890 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
10d6c8cd 2891 lp->step, TARGET_SIGNAL_0);
d6b0e80f
AC
2892 if (debug_linux_nat)
2893 fprintf_unfiltered (gdb_stdlog,
2894 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2895 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2896 target_pid_to_str (lp->ptid));
2897 lp->stopped = 0;
2898 gdb_assert (lp->resumed);
2899
2900 /* This should catch the pending SIGSTOP. */
2901 stop_wait_callback (lp, NULL);
2902 }
2903
b84876c2
PA
2904 if (!target_can_async_p ())
2905 {
2906 /* Causes SIGINT to be passed on to the attached process. */
2907 set_sigint_trap ();
b84876c2 2908 }
d6b0e80f
AC
2909
2910 while (status == 0)
2911 {
2912 pid_t lwpid;
2913
b84876c2
PA
2914 if (target_can_async_p ())
2915 /* In async mode, don't ever block. Only look at the locally
2916 queued events. */
2917 lwpid = queued_waitpid (pid, &status, options);
2918 else
2919 lwpid = my_waitpid (pid, &status, options);
2920
d6b0e80f
AC
2921 if (lwpid > 0)
2922 {
2923 gdb_assert (pid == -1 || lwpid == pid);
2924
2925 if (debug_linux_nat)
2926 {
2927 fprintf_unfiltered (gdb_stdlog,
2928 "LLW: waitpid %ld received %s\n",
2929 (long) lwpid, status_to_str (status));
2930 }
2931
02f3fc28 2932 lp = linux_nat_filter_event (lwpid, status, options);
d6b0e80f
AC
2933 if (!lp)
2934 {
02f3fc28 2935 /* A discarded event. */
d6b0e80f
AC
2936 status = 0;
2937 continue;
2938 }
2939
2940 break;
2941 }
2942
2943 if (pid == -1)
2944 {
2945 /* Alternate between checking cloned and uncloned processes. */
2946 options ^= __WCLONE;
2947
b84876c2
PA
2948 /* And every time we have checked both:
2949 In async mode, return to event loop;
2950 In sync mode, suspend waiting for a SIGCHLD signal. */
d6b0e80f 2951 if (options & __WCLONE)
b84876c2
PA
2952 {
2953 if (target_can_async_p ())
2954 {
2955 /* No interesting event. */
2956 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2957
2958 /* Get ready for the next event. */
2959 target_async (inferior_event_handler, 0);
2960
2961 if (debug_linux_nat_async)
2962 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
2963
2964 return minus_one_ptid;
2965 }
2966
2967 sigsuspend (&suspend_mask);
2968 }
d6b0e80f
AC
2969 }
2970
2971 /* We shouldn't end up here unless we want to try again. */
2972 gdb_assert (status == 0);
2973 }
2974
b84876c2 2975 if (!target_can_async_p ())
d26b5354 2976 clear_sigint_trap ();
d6b0e80f
AC
2977
2978 gdb_assert (lp);
2979
2980 /* Don't report signals that GDB isn't interested in, such as
2981 signals that are neither printed nor stopped upon. Stopping all
2982 threads can be a bit time-consuming so if we want decent
2983 performance with heavily multi-threaded programs, especially when
2984 they're using a high frequency timer, we'd better avoid it if we
2985 can. */
2986
2987 if (WIFSTOPPED (status))
2988 {
2989 int signo = target_signal_from_host (WSTOPSIG (status));
d6b48e9c
PA
2990 struct inferior *inf;
2991
2992 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2993 gdb_assert (inf);
d6b0e80f 2994
d6b48e9c
PA
2995 /* Defer to common code if we get a signal while
2996 single-stepping, since that may need special care, e.g. to
2997 skip the signal handler, or, if we're gaining control of the
2998 inferior. */
d539ed7e 2999 if (!lp->step
d6b48e9c 3000 && inf->stop_soon == NO_STOP_QUIETLY
d539ed7e 3001 && signal_stop_state (signo) == 0
d6b0e80f
AC
3002 && signal_print_state (signo) == 0
3003 && signal_pass_state (signo) == 1)
3004 {
3005 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3006 here? It is not clear we should. GDB may not expect
3007 other threads to run. On the other hand, not resuming
3008 newly attached threads may cause an unwanted delay in
3009 getting them running. */
3010 registers_changed ();
28439f5e 3011 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
10d6c8cd 3012 lp->step, signo);
d6b0e80f
AC
3013 if (debug_linux_nat)
3014 fprintf_unfiltered (gdb_stdlog,
3015 "LLW: %s %s, %s (preempt 'handle')\n",
3016 lp->step ?
3017 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3018 target_pid_to_str (lp->ptid),
3019 signo ? strsignal (signo) : "0");
3020 lp->stopped = 0;
3021 status = 0;
3022 goto retry;
3023 }
3024
1ad15515 3025 if (!non_stop)
d6b0e80f 3026 {
1ad15515
PA
3027 /* Only do the below in all-stop, as we currently use SIGINT
3028 to implement target_stop (see linux_nat_stop) in
3029 non-stop. */
3030 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3031 {
3032 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3033 forwarded to the entire process group, that is, all LWPs
3034 will receive it - unless they're using CLONE_THREAD to
3035 share signals. Since we only want to report it once, we
3036 mark it as ignored for all LWPs except this one. */
3037 iterate_over_lwps (set_ignore_sigint, NULL);
3038 lp->ignore_sigint = 0;
3039 }
3040 else
3041 maybe_clear_ignore_sigint (lp);
d6b0e80f
AC
3042 }
3043 }
3044
3045 /* This LWP is stopped now. */
3046 lp->stopped = 1;
3047
3048 if (debug_linux_nat)
3049 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3050 status_to_str (status), target_pid_to_str (lp->ptid));
3051
4c28f408
PA
3052 if (!non_stop)
3053 {
3054 /* Now stop all other LWP's ... */
3055 iterate_over_lwps (stop_callback, NULL);
3056
3057 /* ... and wait until all of them have reported back that
3058 they're no longer running. */
57380f4e 3059 iterate_over_lwps (stop_wait_callback, NULL);
4c28f408
PA
3060
3061 /* If we're not waiting for a specific LWP, choose an event LWP
3062 from among those that have had events. Giving equal priority
3063 to all LWPs that have had events helps prevent
3064 starvation. */
3065 if (pid == -1)
3066 select_event_lwp (&lp, &status);
3067 }
d6b0e80f
AC
3068
3069 /* Now that we've selected our final event LWP, cancel any
3070 breakpoints in other LWPs that have hit a GDB breakpoint. See
3071 the comment in cancel_breakpoints_callback to find out why. */
3072 iterate_over_lwps (cancel_breakpoints_callback, lp);
3073
d6b0e80f
AC
3074 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3075 {
d6b0e80f
AC
3076 if (debug_linux_nat)
3077 fprintf_unfiltered (gdb_stdlog,
4fdebdd0
PA
3078 "LLW: trap ptid is %s.\n",
3079 target_pid_to_str (lp->ptid));
d6b0e80f 3080 }
d6b0e80f
AC
3081
3082 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3083 {
3084 *ourstatus = lp->waitstatus;
3085 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3086 }
3087 else
3088 store_waitstatus (ourstatus, status);
3089
b84876c2
PA
3090 /* Get ready for the next event. */
3091 if (target_can_async_p ())
3092 target_async (inferior_event_handler, 0);
3093
3094 if (debug_linux_nat_async)
3095 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3096
f973ed9c 3097 return lp->ptid;
d6b0e80f
AC
3098}
3099
3100static int
3101kill_callback (struct lwp_info *lp, void *data)
3102{
3103 errno = 0;
3104 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3105 if (debug_linux_nat)
3106 fprintf_unfiltered (gdb_stdlog,
3107 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3108 target_pid_to_str (lp->ptid),
3109 errno ? safe_strerror (errno) : "OK");
3110
3111 return 0;
3112}
3113
3114static int
3115kill_wait_callback (struct lwp_info *lp, void *data)
3116{
3117 pid_t pid;
3118
3119 /* We must make sure that there are no pending events (delayed
3120 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3121 program doesn't interfere with any following debugging session. */
3122
3123 /* For cloned processes we must check both with __WCLONE and
3124 without, since the exit status of a cloned process isn't reported
3125 with __WCLONE. */
3126 if (lp->cloned)
3127 {
3128 do
3129 {
58aecb61 3130 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
e85a822c 3131 if (pid != (pid_t) -1)
d6b0e80f 3132 {
e85a822c
DJ
3133 if (debug_linux_nat)
3134 fprintf_unfiltered (gdb_stdlog,
3135 "KWC: wait %s received unknown.\n",
3136 target_pid_to_str (lp->ptid));
3137 /* The Linux kernel sometimes fails to kill a thread
3138 completely after PTRACE_KILL; that goes from the stop
3139 point in do_fork out to the one in
3140 get_signal_to_deliever and waits again. So kill it
3141 again. */
3142 kill_callback (lp, NULL);
d6b0e80f
AC
3143 }
3144 }
3145 while (pid == GET_LWP (lp->ptid));
3146
3147 gdb_assert (pid == -1 && errno == ECHILD);
3148 }
3149
3150 do
3151 {
58aecb61 3152 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
e85a822c 3153 if (pid != (pid_t) -1)
d6b0e80f 3154 {
e85a822c
DJ
3155 if (debug_linux_nat)
3156 fprintf_unfiltered (gdb_stdlog,
3157 "KWC: wait %s received unk.\n",
3158 target_pid_to_str (lp->ptid));
3159 /* See the call to kill_callback above. */
3160 kill_callback (lp, NULL);
d6b0e80f
AC
3161 }
3162 }
3163 while (pid == GET_LWP (lp->ptid));
3164
3165 gdb_assert (pid == -1 && errno == ECHILD);
3166 return 0;
3167}
3168
3169static void
3170linux_nat_kill (void)
3171{
f973ed9c
DJ
3172 struct target_waitstatus last;
3173 ptid_t last_ptid;
3174 int status;
d6b0e80f 3175
b84876c2
PA
3176 if (target_can_async_p ())
3177 target_async (NULL, 0);
3178
f973ed9c
DJ
3179 /* If we're stopped while forking and we haven't followed yet,
3180 kill the other task. We need to do this first because the
3181 parent will be sleeping if this is a vfork. */
d6b0e80f 3182
f973ed9c 3183 get_last_target_status (&last_ptid, &last);
d6b0e80f 3184
f973ed9c
DJ
3185 if (last.kind == TARGET_WAITKIND_FORKED
3186 || last.kind == TARGET_WAITKIND_VFORKED)
3187 {
3a3e9ee3 3188 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
f973ed9c
DJ
3189 wait (&status);
3190 }
3191
3192 if (forks_exist_p ())
b84876c2
PA
3193 {
3194 linux_fork_killall ();
3195 drain_queued_events (-1);
3196 }
f973ed9c
DJ
3197 else
3198 {
4c28f408
PA
3199 /* Stop all threads before killing them, since ptrace requires
3200 that the thread is stopped to sucessfully PTRACE_KILL. */
3201 iterate_over_lwps (stop_callback, NULL);
3202 /* ... and wait until all of them have reported back that
3203 they're no longer running. */
3204 iterate_over_lwps (stop_wait_callback, NULL);
3205
f973ed9c
DJ
3206 /* Kill all LWP's ... */
3207 iterate_over_lwps (kill_callback, NULL);
3208
3209 /* ... and wait until we've flushed all events. */
3210 iterate_over_lwps (kill_wait_callback, NULL);
3211 }
3212
3213 target_mourn_inferior ();
d6b0e80f
AC
3214}
3215
3216static void
136d6dae 3217linux_nat_mourn_inferior (struct target_ops *ops)
d6b0e80f 3218{
d6b0e80f
AC
3219 /* Destroy LWP info; it's no longer valid. */
3220 init_lwp_list ();
3221
f973ed9c 3222 if (! forks_exist_p ())
b84876c2
PA
3223 {
3224 /* Normal case, no other forks available. */
3225 if (target_can_async_p ())
3226 linux_nat_async (NULL, 0);
136d6dae 3227 linux_ops->to_mourn_inferior (ops);
b84876c2 3228 }
f973ed9c
DJ
3229 else
3230 /* Multi-fork case. The current inferior_ptid has exited, but
3231 there are other viable forks to debug. Delete the exiting
3232 one and context-switch to the first available. */
3233 linux_fork_mourn_inferior ();
d6b0e80f
AC
3234}
3235
5b009018
PA
3236/* Convert a native/host siginfo object, into/from the siginfo in the
3237 layout of the inferiors' architecture. */
3238
3239static void
3240siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3241{
3242 int done = 0;
3243
3244 if (linux_nat_siginfo_fixup != NULL)
3245 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3246
3247 /* If there was no callback, or the callback didn't do anything,
3248 then just do a straight memcpy. */
3249 if (!done)
3250 {
3251 if (direction == 1)
3252 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3253 else
3254 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3255 }
3256}
3257
4aa995e1
PA
3258static LONGEST
3259linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3260 const char *annex, gdb_byte *readbuf,
3261 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3262{
3263 struct lwp_info *lp;
3264 LONGEST n;
3265 int pid;
3266 struct siginfo siginfo;
5b009018 3267 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4aa995e1
PA
3268
3269 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3270 gdb_assert (readbuf || writebuf);
3271
3272 pid = GET_LWP (inferior_ptid);
3273 if (pid == 0)
3274 pid = GET_PID (inferior_ptid);
3275
3276 if (offset > sizeof (siginfo))
3277 return -1;
3278
3279 errno = 0;
3280 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3281 if (errno != 0)
3282 return -1;
3283
5b009018
PA
3284 /* When GDB is built as a 64-bit application, ptrace writes into
3285 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3286 inferior with a 64-bit GDB should look the same as debugging it
3287 with a 32-bit GDB, we need to convert it. GDB core always sees
3288 the converted layout, so any read/write will have to be done
3289 post-conversion. */
3290 siginfo_fixup (&siginfo, inf_siginfo, 0);
3291
4aa995e1
PA
3292 if (offset + len > sizeof (siginfo))
3293 len = sizeof (siginfo) - offset;
3294
3295 if (readbuf != NULL)
5b009018 3296 memcpy (readbuf, inf_siginfo + offset, len);
4aa995e1
PA
3297 else
3298 {
5b009018
PA
3299 memcpy (inf_siginfo + offset, writebuf, len);
3300
3301 /* Convert back to ptrace layout before flushing it out. */
3302 siginfo_fixup (&siginfo, inf_siginfo, 1);
3303
4aa995e1
PA
3304 errno = 0;
3305 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3306 if (errno != 0)
3307 return -1;
3308 }
3309
3310 return len;
3311}
3312
10d6c8cd
DJ
3313static LONGEST
3314linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3315 const char *annex, gdb_byte *readbuf,
3316 const gdb_byte *writebuf,
3317 ULONGEST offset, LONGEST len)
d6b0e80f 3318{
4aa995e1 3319 struct cleanup *old_chain;
10d6c8cd 3320 LONGEST xfer;
d6b0e80f 3321
4aa995e1
PA
3322 if (object == TARGET_OBJECT_SIGNAL_INFO)
3323 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3324 offset, len);
3325
3326 old_chain = save_inferior_ptid ();
3327
d6b0e80f
AC
3328 if (is_lwp (inferior_ptid))
3329 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3330
10d6c8cd
DJ
3331 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3332 offset, len);
d6b0e80f
AC
3333
3334 do_cleanups (old_chain);
3335 return xfer;
3336}
3337
3338static int
28439f5e 3339linux_thread_alive (ptid_t ptid)
d6b0e80f 3340{
4c28f408
PA
3341 int err;
3342
d6b0e80f
AC
3343 gdb_assert (is_lwp (ptid));
3344
4c28f408
PA
3345 /* Send signal 0 instead of anything ptrace, because ptracing a
3346 running thread errors out claiming that the thread doesn't
3347 exist. */
3348 err = kill_lwp (GET_LWP (ptid), 0);
3349
d6b0e80f
AC
3350 if (debug_linux_nat)
3351 fprintf_unfiltered (gdb_stdlog,
4c28f408 3352 "LLTA: KILL(SIG0) %s (%s)\n",
d6b0e80f 3353 target_pid_to_str (ptid),
4c28f408 3354 err ? safe_strerror (err) : "OK");
9c0dd46b 3355
4c28f408 3356 if (err != 0)
d6b0e80f
AC
3357 return 0;
3358
3359 return 1;
3360}
3361
28439f5e
PA
3362static int
3363linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3364{
3365 return linux_thread_alive (ptid);
3366}
3367
d6b0e80f 3368static char *
117de6a9 3369linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
d6b0e80f
AC
3370{
3371 static char buf[64];
3372
a0ef4274
DJ
3373 if (is_lwp (ptid)
3374 && ((lwp_list && lwp_list->next)
3375 || GET_PID (ptid) != GET_LWP (ptid)))
d6b0e80f
AC
3376 {
3377 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3378 return buf;
3379 }
3380
3381 return normal_pid_to_str (ptid);
3382}
3383
d6b0e80f
AC
3384static void
3385sigchld_handler (int signo)
3386{
c6ebd6cf 3387 if (target_async_permitted
84e46146 3388 && linux_nat_async_events_state != sigchld_sync
b84876c2
PA
3389 && signo == SIGCHLD)
3390 /* It is *always* a bug to hit this. */
3391 internal_error (__FILE__, __LINE__,
3392 "sigchld_handler called when async events are enabled");
3393
d6b0e80f
AC
3394 /* Do nothing. The only reason for this handler is that it allows
3395 us to use sigsuspend in linux_nat_wait above to wait for the
3396 arrival of a SIGCHLD. */
3397}
3398
dba24537
AC
3399/* Accepts an integer PID; Returns a string representing a file that
3400 can be opened to get the symbols for the child process. */
3401
6d8fd2b7
UW
3402static char *
3403linux_child_pid_to_exec_file (int pid)
dba24537
AC
3404{
3405 char *name1, *name2;
3406
3407 name1 = xmalloc (MAXPATHLEN);
3408 name2 = xmalloc (MAXPATHLEN);
3409 make_cleanup (xfree, name1);
3410 make_cleanup (xfree, name2);
3411 memset (name2, 0, MAXPATHLEN);
3412
3413 sprintf (name1, "/proc/%d/exe", pid);
3414 if (readlink (name1, name2, MAXPATHLEN) > 0)
3415 return name2;
3416 else
3417 return name1;
3418}
3419
3420/* Service function for corefiles and info proc. */
3421
3422static int
3423read_mapping (FILE *mapfile,
3424 long long *addr,
3425 long long *endaddr,
3426 char *permissions,
3427 long long *offset,
3428 char *device, long long *inode, char *filename)
3429{
3430 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3431 addr, endaddr, permissions, offset, device, inode);
3432
2e14c2ea
MS
3433 filename[0] = '\0';
3434 if (ret > 0 && ret != EOF)
dba24537
AC
3435 {
3436 /* Eat everything up to EOL for the filename. This will prevent
3437 weird filenames (such as one with embedded whitespace) from
3438 confusing this code. It also makes this code more robust in
3439 respect to annotations the kernel may add after the filename.
3440
3441 Note the filename is used for informational purposes
3442 only. */
3443 ret += fscanf (mapfile, "%[^\n]\n", filename);
3444 }
2e14c2ea 3445
dba24537
AC
3446 return (ret != 0 && ret != EOF);
3447}
3448
3449/* Fills the "to_find_memory_regions" target vector. Lists the memory
3450 regions in the inferior for a corefile. */
3451
3452static int
3453linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3454 unsigned long,
3455 int, int, int, void *), void *obfd)
3456{
3457 long long pid = PIDGET (inferior_ptid);
3458 char mapsfilename[MAXPATHLEN];
3459 FILE *mapsfile;
3460 long long addr, endaddr, size, offset, inode;
3461 char permissions[8], device[8], filename[MAXPATHLEN];
3462 int read, write, exec;
3463 int ret;
7c8a8b04 3464 struct cleanup *cleanup;
dba24537
AC
3465
3466 /* Compose the filename for the /proc memory map, and open it. */
3467 sprintf (mapsfilename, "/proc/%lld/maps", pid);
3468 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
8a3fe4f8 3469 error (_("Could not open %s."), mapsfilename);
7c8a8b04 3470 cleanup = make_cleanup_fclose (mapsfile);
dba24537
AC
3471
3472 if (info_verbose)
3473 fprintf_filtered (gdb_stdout,
3474 "Reading memory regions from %s\n", mapsfilename);
3475
3476 /* Now iterate until end-of-file. */
3477 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3478 &offset, &device[0], &inode, &filename[0]))
3479 {
3480 size = endaddr - addr;
3481
3482 /* Get the segment's permissions. */
3483 read = (strchr (permissions, 'r') != 0);
3484 write = (strchr (permissions, 'w') != 0);
3485 exec = (strchr (permissions, 'x') != 0);
3486
3487 if (info_verbose)
3488 {
3489 fprintf_filtered (gdb_stdout,
3490 "Save segment, %lld bytes at 0x%s (%c%c%c)",
3491 size, paddr_nz (addr),
3492 read ? 'r' : ' ',
3493 write ? 'w' : ' ', exec ? 'x' : ' ');
b260b6c1 3494 if (filename[0])
dba24537
AC
3495 fprintf_filtered (gdb_stdout, " for %s", filename);
3496 fprintf_filtered (gdb_stdout, "\n");
3497 }
3498
3499 /* Invoke the callback function to create the corefile
3500 segment. */
3501 func (addr, size, read, write, exec, obfd);
3502 }
7c8a8b04 3503 do_cleanups (cleanup);
dba24537
AC
3504 return 0;
3505}
3506
2020b7ab
PA
3507static int
3508find_signalled_thread (struct thread_info *info, void *data)
3509{
3510 if (info->stop_signal != TARGET_SIGNAL_0
3511 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
3512 return 1;
3513
3514 return 0;
3515}
3516
3517static enum target_signal
3518find_stop_signal (void)
3519{
3520 struct thread_info *info =
3521 iterate_over_threads (find_signalled_thread, NULL);
3522
3523 if (info)
3524 return info->stop_signal;
3525 else
3526 return TARGET_SIGNAL_0;
3527}
3528
dba24537
AC
3529/* Records the thread's register state for the corefile note
3530 section. */
3531
3532static char *
3533linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
2020b7ab
PA
3534 char *note_data, int *note_size,
3535 enum target_signal stop_signal)
dba24537
AC
3536{
3537 gdb_gregset_t gregs;
3538 gdb_fpregset_t fpregs;
dba24537 3539 unsigned long lwp = ptid_get_lwp (ptid);
594f7785
UW
3540 struct regcache *regcache = get_thread_regcache (ptid);
3541 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4f844a66 3542 const struct regset *regset;
55e969c1 3543 int core_regset_p;
594f7785 3544 struct cleanup *old_chain;
17ea7499
CES
3545 struct core_regset_section *sect_list;
3546 char *gdb_regset;
594f7785
UW
3547
3548 old_chain = save_inferior_ptid ();
3549 inferior_ptid = ptid;
3550 target_fetch_registers (regcache, -1);
3551 do_cleanups (old_chain);
4f844a66
DM
3552
3553 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
17ea7499
CES
3554 sect_list = gdbarch_core_regset_sections (gdbarch);
3555
55e969c1
DM
3556 if (core_regset_p
3557 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3558 sizeof (gregs))) != NULL
3559 && regset->collect_regset != NULL)
594f7785 3560 regset->collect_regset (regset, regcache, -1,
55e969c1 3561 &gregs, sizeof (gregs));
4f844a66 3562 else
594f7785 3563 fill_gregset (regcache, &gregs, -1);
4f844a66 3564
55e969c1
DM
3565 note_data = (char *) elfcore_write_prstatus (obfd,
3566 note_data,
3567 note_size,
3568 lwp,
3569 stop_signal, &gregs);
3570
17ea7499
CES
3571 /* The loop below uses the new struct core_regset_section, which stores
3572 the supported section names and sizes for the core file. Note that
3573 note PRSTATUS needs to be treated specially. But the other notes are
3574 structurally the same, so they can benefit from the new struct. */
3575 if (core_regset_p && sect_list != NULL)
3576 while (sect_list->sect_name != NULL)
3577 {
3578 /* .reg was already handled above. */
3579 if (strcmp (sect_list->sect_name, ".reg") == 0)
3580 {
3581 sect_list++;
3582 continue;
3583 }
3584 regset = gdbarch_regset_from_core_section (gdbarch,
3585 sect_list->sect_name,
3586 sect_list->size);
3587 gdb_assert (regset && regset->collect_regset);
3588 gdb_regset = xmalloc (sect_list->size);
3589 regset->collect_regset (regset, regcache, -1,
3590 gdb_regset, sect_list->size);
3591 note_data = (char *) elfcore_write_register_note (obfd,
3592 note_data,
3593 note_size,
3594 sect_list->sect_name,
3595 gdb_regset,
3596 sect_list->size);
3597 xfree (gdb_regset);
3598 sect_list++;
3599 }
dba24537 3600
17ea7499
CES
3601 /* For architectures that does not have the struct core_regset_section
3602 implemented, we use the old method. When all the architectures have
3603 the new support, the code below should be deleted. */
4f844a66 3604 else
17ea7499
CES
3605 {
3606 if (core_regset_p
3607 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3608 sizeof (fpregs))) != NULL
3609 && regset->collect_regset != NULL)
3610 regset->collect_regset (regset, regcache, -1,
3611 &fpregs, sizeof (fpregs));
3612 else
3613 fill_fpregset (regcache, &fpregs, -1);
3614
3615 note_data = (char *) elfcore_write_prfpreg (obfd,
3616 note_data,
3617 note_size,
3618 &fpregs, sizeof (fpregs));
3619 }
4f844a66 3620
dba24537
AC
3621 return note_data;
3622}
3623
3624struct linux_nat_corefile_thread_data
3625{
3626 bfd *obfd;
3627 char *note_data;
3628 int *note_size;
3629 int num_notes;
2020b7ab 3630 enum target_signal stop_signal;
dba24537
AC
3631};
3632
3633/* Called by gdbthread.c once per thread. Records the thread's
3634 register state for the corefile note section. */
3635
3636static int
3637linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3638{
3639 struct linux_nat_corefile_thread_data *args = data;
dba24537 3640
dba24537
AC
3641 args->note_data = linux_nat_do_thread_registers (args->obfd,
3642 ti->ptid,
3643 args->note_data,
2020b7ab
PA
3644 args->note_size,
3645 args->stop_signal);
dba24537 3646 args->num_notes++;
56be3814 3647
dba24537
AC
3648 return 0;
3649}
3650
dba24537
AC
3651/* Fills the "to_make_corefile_note" target vector. Builds the note
3652 section for a corefile, and returns it in a malloc buffer. */
3653
3654static char *
3655linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3656{
3657 struct linux_nat_corefile_thread_data thread_args;
3658 struct cleanup *old_chain;
d99148ef 3659 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
dba24537 3660 char fname[16] = { '\0' };
d99148ef 3661 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
dba24537
AC
3662 char psargs[80] = { '\0' };
3663 char *note_data = NULL;
3664 ptid_t current_ptid = inferior_ptid;
c6826062 3665 gdb_byte *auxv;
dba24537
AC
3666 int auxv_len;
3667
3668 if (get_exec_file (0))
3669 {
3670 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3671 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3672 if (get_inferior_args ())
3673 {
d99148ef
JK
3674 char *string_end;
3675 char *psargs_end = psargs + sizeof (psargs);
3676
3677 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3678 strings fine. */
3679 string_end = memchr (psargs, 0, sizeof (psargs));
3680 if (string_end != NULL)
3681 {
3682 *string_end++ = ' ';
3683 strncpy (string_end, get_inferior_args (),
3684 psargs_end - string_end);
3685 }
dba24537
AC
3686 }
3687 note_data = (char *) elfcore_write_prpsinfo (obfd,
3688 note_data,
3689 note_size, fname, psargs);
3690 }
3691
3692 /* Dump information for threads. */
3693 thread_args.obfd = obfd;
3694 thread_args.note_data = note_data;
3695 thread_args.note_size = note_size;
3696 thread_args.num_notes = 0;
2020b7ab 3697 thread_args.stop_signal = find_stop_signal ();
dba24537 3698 iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
2020b7ab
PA
3699 gdb_assert (thread_args.num_notes != 0);
3700 note_data = thread_args.note_data;
dba24537 3701
13547ab6
DJ
3702 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
3703 NULL, &auxv);
dba24537
AC
3704 if (auxv_len > 0)
3705 {
3706 note_data = elfcore_write_note (obfd, note_data, note_size,
3707 "CORE", NT_AUXV, auxv, auxv_len);
3708 xfree (auxv);
3709 }
3710
3711 make_cleanup (xfree, note_data);
3712 return note_data;
3713}
3714
3715/* Implement the "info proc" command. */
3716
3717static void
3718linux_nat_info_proc_cmd (char *args, int from_tty)
3719{
3720 long long pid = PIDGET (inferior_ptid);
3721 FILE *procfile;
3722 char **argv = NULL;
3723 char buffer[MAXPATHLEN];
3724 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3725 int cmdline_f = 1;
3726 int cwd_f = 1;
3727 int exe_f = 1;
3728 int mappings_f = 0;
3729 int environ_f = 0;
3730 int status_f = 0;
3731 int stat_f = 0;
3732 int all = 0;
3733 struct stat dummy;
3734
3735 if (args)
3736 {
3737 /* Break up 'args' into an argv array. */
d1a41061
PP
3738 argv = gdb_buildargv (args);
3739 make_cleanup_freeargv (argv);
dba24537
AC
3740 }
3741 while (argv != NULL && *argv != NULL)
3742 {
3743 if (isdigit (argv[0][0]))
3744 {
3745 pid = strtoul (argv[0], NULL, 10);
3746 }
3747 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
3748 {
3749 mappings_f = 1;
3750 }
3751 else if (strcmp (argv[0], "status") == 0)
3752 {
3753 status_f = 1;
3754 }
3755 else if (strcmp (argv[0], "stat") == 0)
3756 {
3757 stat_f = 1;
3758 }
3759 else if (strcmp (argv[0], "cmd") == 0)
3760 {
3761 cmdline_f = 1;
3762 }
3763 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
3764 {
3765 exe_f = 1;
3766 }
3767 else if (strcmp (argv[0], "cwd") == 0)
3768 {
3769 cwd_f = 1;
3770 }
3771 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
3772 {
3773 all = 1;
3774 }
3775 else
3776 {
3777 /* [...] (future options here) */
3778 }
3779 argv++;
3780 }
3781 if (pid == 0)
8a3fe4f8 3782 error (_("No current process: you must name one."));
dba24537
AC
3783
3784 sprintf (fname1, "/proc/%lld", pid);
3785 if (stat (fname1, &dummy) != 0)
8a3fe4f8 3786 error (_("No /proc directory: '%s'"), fname1);
dba24537 3787
a3f17187 3788 printf_filtered (_("process %lld\n"), pid);
dba24537
AC
3789 if (cmdline_f || all)
3790 {
3791 sprintf (fname1, "/proc/%lld/cmdline", pid);
d5d6fca5 3792 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537 3793 {
7c8a8b04 3794 struct cleanup *cleanup = make_cleanup_fclose (procfile);
bf1d7d9c
JB
3795 if (fgets (buffer, sizeof (buffer), procfile))
3796 printf_filtered ("cmdline = '%s'\n", buffer);
3797 else
3798 warning (_("unable to read '%s'"), fname1);
7c8a8b04 3799 do_cleanups (cleanup);
dba24537
AC
3800 }
3801 else
8a3fe4f8 3802 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3803 }
3804 if (cwd_f || all)
3805 {
3806 sprintf (fname1, "/proc/%lld/cwd", pid);
3807 memset (fname2, 0, sizeof (fname2));
3808 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3809 printf_filtered ("cwd = '%s'\n", fname2);
3810 else
8a3fe4f8 3811 warning (_("unable to read link '%s'"), fname1);
dba24537
AC
3812 }
3813 if (exe_f || all)
3814 {
3815 sprintf (fname1, "/proc/%lld/exe", pid);
3816 memset (fname2, 0, sizeof (fname2));
3817 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3818 printf_filtered ("exe = '%s'\n", fname2);
3819 else
8a3fe4f8 3820 warning (_("unable to read link '%s'"), fname1);
dba24537
AC
3821 }
3822 if (mappings_f || all)
3823 {
3824 sprintf (fname1, "/proc/%lld/maps", pid);
d5d6fca5 3825 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
3826 {
3827 long long addr, endaddr, size, offset, inode;
3828 char permissions[8], device[8], filename[MAXPATHLEN];
7c8a8b04 3829 struct cleanup *cleanup;
dba24537 3830
7c8a8b04 3831 cleanup = make_cleanup_fclose (procfile);
a3f17187 3832 printf_filtered (_("Mapped address spaces:\n\n"));
17a912b6 3833 if (gdbarch_addr_bit (current_gdbarch) == 32)
dba24537
AC
3834 {
3835 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
3836 "Start Addr",
3837 " End Addr",
3838 " Size", " Offset", "objfile");
3839 }
3840 else
3841 {
3842 printf_filtered (" %18s %18s %10s %10s %7s\n",
3843 "Start Addr",
3844 " End Addr",
3845 " Size", " Offset", "objfile");
3846 }
3847
3848 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
3849 &offset, &device[0], &inode, &filename[0]))
3850 {
3851 size = endaddr - addr;
3852
3853 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
3854 calls here (and possibly above) should be abstracted
3855 out into their own functions? Andrew suggests using
3856 a generic local_address_string instead to print out
3857 the addresses; that makes sense to me, too. */
3858
17a912b6 3859 if (gdbarch_addr_bit (current_gdbarch) == 32)
dba24537
AC
3860 {
3861 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
3862 (unsigned long) addr, /* FIXME: pr_addr */
3863 (unsigned long) endaddr,
3864 (int) size,
3865 (unsigned int) offset,
3866 filename[0] ? filename : "");
3867 }
3868 else
3869 {
3870 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
3871 (unsigned long) addr, /* FIXME: pr_addr */
3872 (unsigned long) endaddr,
3873 (int) size,
3874 (unsigned int) offset,
3875 filename[0] ? filename : "");
3876 }
3877 }
3878
7c8a8b04 3879 do_cleanups (cleanup);
dba24537
AC
3880 }
3881 else
8a3fe4f8 3882 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3883 }
3884 if (status_f || all)
3885 {
3886 sprintf (fname1, "/proc/%lld/status", pid);
d5d6fca5 3887 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537 3888 {
7c8a8b04 3889 struct cleanup *cleanup = make_cleanup_fclose (procfile);
dba24537
AC
3890 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
3891 puts_filtered (buffer);
7c8a8b04 3892 do_cleanups (cleanup);
dba24537
AC
3893 }
3894 else
8a3fe4f8 3895 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3896 }
3897 if (stat_f || all)
3898 {
3899 sprintf (fname1, "/proc/%lld/stat", pid);
d5d6fca5 3900 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
3901 {
3902 int itmp;
3903 char ctmp;
a25694b4 3904 long ltmp;
7c8a8b04 3905 struct cleanup *cleanup = make_cleanup_fclose (procfile);
dba24537
AC
3906
3907 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3908 printf_filtered (_("Process: %d\n"), itmp);
a25694b4 3909 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
a3f17187 3910 printf_filtered (_("Exec file: %s\n"), buffer);
dba24537 3911 if (fscanf (procfile, "%c ", &ctmp) > 0)
a3f17187 3912 printf_filtered (_("State: %c\n"), ctmp);
dba24537 3913 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3914 printf_filtered (_("Parent process: %d\n"), itmp);
dba24537 3915 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3916 printf_filtered (_("Process group: %d\n"), itmp);
dba24537 3917 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3918 printf_filtered (_("Session id: %d\n"), itmp);
dba24537 3919 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3920 printf_filtered (_("TTY: %d\n"), itmp);
dba24537 3921 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3922 printf_filtered (_("TTY owner process group: %d\n"), itmp);
a25694b4
AS
3923 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3924 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
3925 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3926 printf_filtered (_("Minor faults (no memory page): %lu\n"),
3927 (unsigned long) ltmp);
3928 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3929 printf_filtered (_("Minor faults, children: %lu\n"),
3930 (unsigned long) ltmp);
3931 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3932 printf_filtered (_("Major faults (memory page faults): %lu\n"),
3933 (unsigned long) ltmp);
3934 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3935 printf_filtered (_("Major faults, children: %lu\n"),
3936 (unsigned long) ltmp);
3937 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3938 printf_filtered (_("utime: %ld\n"), ltmp);
3939 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3940 printf_filtered (_("stime: %ld\n"), ltmp);
3941 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3942 printf_filtered (_("utime, children: %ld\n"), ltmp);
3943 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3944 printf_filtered (_("stime, children: %ld\n"), ltmp);
3945 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3946 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
3947 ltmp);
3948 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3949 printf_filtered (_("'nice' value: %ld\n"), ltmp);
3950 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3951 printf_filtered (_("jiffies until next timeout: %lu\n"),
3952 (unsigned long) ltmp);
3953 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3954 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
3955 (unsigned long) ltmp);
3956 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3957 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
3958 ltmp);
3959 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3960 printf_filtered (_("Virtual memory size: %lu\n"),
3961 (unsigned long) ltmp);
3962 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3963 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
3964 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3965 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
3966 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3967 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
3968 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3969 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
3970 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3971 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
dba24537
AC
3972#if 0 /* Don't know how architecture-dependent the rest is...
3973 Anyway the signal bitmap info is available from "status". */
a25694b4
AS
3974 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3975 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
3976 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3977 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
3978 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3979 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
3980 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3981 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
3982 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3983 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
3984 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3985 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
3986 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3987 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
dba24537 3988#endif
7c8a8b04 3989 do_cleanups (cleanup);
dba24537
AC
3990 }
3991 else
8a3fe4f8 3992 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3993 }
3994}
3995
10d6c8cd
DJ
3996/* Implement the to_xfer_partial interface for memory reads using the /proc
3997 filesystem. Because we can use a single read() call for /proc, this
3998 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3999 but it doesn't support writes. */
4000
4001static LONGEST
4002linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4003 const char *annex, gdb_byte *readbuf,
4004 const gdb_byte *writebuf,
4005 ULONGEST offset, LONGEST len)
dba24537 4006{
10d6c8cd
DJ
4007 LONGEST ret;
4008 int fd;
dba24537
AC
4009 char filename[64];
4010
10d6c8cd 4011 if (object != TARGET_OBJECT_MEMORY || !readbuf)
dba24537
AC
4012 return 0;
4013
4014 /* Don't bother for one word. */
4015 if (len < 3 * sizeof (long))
4016 return 0;
4017
4018 /* We could keep this file open and cache it - possibly one per
4019 thread. That requires some juggling, but is even faster. */
4020 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4021 fd = open (filename, O_RDONLY | O_LARGEFILE);
4022 if (fd == -1)
4023 return 0;
4024
4025 /* If pread64 is available, use it. It's faster if the kernel
4026 supports it (only one syscall), and it's 64-bit safe even on
4027 32-bit platforms (for instance, SPARC debugging a SPARC64
4028 application). */
4029#ifdef HAVE_PREAD64
10d6c8cd 4030 if (pread64 (fd, readbuf, len, offset) != len)
dba24537 4031#else
10d6c8cd 4032 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
dba24537
AC
4033#endif
4034 ret = 0;
4035 else
4036 ret = len;
4037
4038 close (fd);
4039 return ret;
4040}
4041
4042/* Parse LINE as a signal set and add its set bits to SIGS. */
4043
4044static void
4045add_line_to_sigset (const char *line, sigset_t *sigs)
4046{
4047 int len = strlen (line) - 1;
4048 const char *p;
4049 int signum;
4050
4051 if (line[len] != '\n')
8a3fe4f8 4052 error (_("Could not parse signal set: %s"), line);
dba24537
AC
4053
4054 p = line;
4055 signum = len * 4;
4056 while (len-- > 0)
4057 {
4058 int digit;
4059
4060 if (*p >= '0' && *p <= '9')
4061 digit = *p - '0';
4062 else if (*p >= 'a' && *p <= 'f')
4063 digit = *p - 'a' + 10;
4064 else
8a3fe4f8 4065 error (_("Could not parse signal set: %s"), line);
dba24537
AC
4066
4067 signum -= 4;
4068
4069 if (digit & 1)
4070 sigaddset (sigs, signum + 1);
4071 if (digit & 2)
4072 sigaddset (sigs, signum + 2);
4073 if (digit & 4)
4074 sigaddset (sigs, signum + 3);
4075 if (digit & 8)
4076 sigaddset (sigs, signum + 4);
4077
4078 p++;
4079 }
4080}
4081
4082/* Find process PID's pending signals from /proc/pid/status and set
4083 SIGS to match. */
4084
4085void
4086linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4087{
4088 FILE *procfile;
4089 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4090 int signum;
7c8a8b04 4091 struct cleanup *cleanup;
dba24537
AC
4092
4093 sigemptyset (pending);
4094 sigemptyset (blocked);
4095 sigemptyset (ignored);
4096 sprintf (fname, "/proc/%d/status", pid);
4097 procfile = fopen (fname, "r");
4098 if (procfile == NULL)
8a3fe4f8 4099 error (_("Could not open %s"), fname);
7c8a8b04 4100 cleanup = make_cleanup_fclose (procfile);
dba24537
AC
4101
4102 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4103 {
4104 /* Normal queued signals are on the SigPnd line in the status
4105 file. However, 2.6 kernels also have a "shared" pending
4106 queue for delivering signals to a thread group, so check for
4107 a ShdPnd line also.
4108
4109 Unfortunately some Red Hat kernels include the shared pending
4110 queue but not the ShdPnd status field. */
4111
4112 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4113 add_line_to_sigset (buffer + 8, pending);
4114 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4115 add_line_to_sigset (buffer + 8, pending);
4116 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4117 add_line_to_sigset (buffer + 8, blocked);
4118 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4119 add_line_to_sigset (buffer + 8, ignored);
4120 }
4121
7c8a8b04 4122 do_cleanups (cleanup);
dba24537
AC
4123}
4124
07e059b5
VP
4125static LONGEST
4126linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4127 const char *annex, gdb_byte *readbuf,
4128 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4129{
4130 /* We make the process list snapshot when the object starts to be
4131 read. */
4132 static const char *buf;
4133 static LONGEST len_avail = -1;
4134 static struct obstack obstack;
4135
4136 DIR *dirp;
4137
4138 gdb_assert (object == TARGET_OBJECT_OSDATA);
4139
4140 if (strcmp (annex, "processes") != 0)
4141 return 0;
4142
4143 gdb_assert (readbuf && !writebuf);
4144
4145 if (offset == 0)
4146 {
4147 if (len_avail != -1 && len_avail != 0)
4148 obstack_free (&obstack, NULL);
4149 len_avail = 0;
4150 buf = NULL;
4151 obstack_init (&obstack);
4152 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4153
4154 dirp = opendir ("/proc");
4155 if (dirp)
4156 {
4157 struct dirent *dp;
4158 while ((dp = readdir (dirp)) != NULL)
4159 {
4160 struct stat statbuf;
4161 char procentry[sizeof ("/proc/4294967295")];
4162
4163 if (!isdigit (dp->d_name[0])
4164 || strlen (dp->d_name) > sizeof ("4294967295") - 1)
4165 continue;
4166
4167 sprintf (procentry, "/proc/%s", dp->d_name);
4168 if (stat (procentry, &statbuf) == 0
4169 && S_ISDIR (statbuf.st_mode))
4170 {
4171 char *pathname;
4172 FILE *f;
4173 char cmd[MAXPATHLEN + 1];
4174 struct passwd *entry;
4175
4176 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4177 entry = getpwuid (statbuf.st_uid);
4178
4179 if ((f = fopen (pathname, "r")) != NULL)
4180 {
4181 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4182 if (len > 0)
4183 {
4184 int i;
4185 for (i = 0; i < len; i++)
4186 if (cmd[i] == '\0')
4187 cmd[i] = ' ';
4188 cmd[len] = '\0';
4189
4190 obstack_xml_printf (
4191 &obstack,
4192 "<item>"
4193 "<column name=\"pid\">%s</column>"
4194 "<column name=\"user\">%s</column>"
4195 "<column name=\"command\">%s</column>"
4196 "</item>",
4197 dp->d_name,
4198 entry ? entry->pw_name : "?",
4199 cmd);
4200 }
4201 fclose (f);
4202 }
4203
4204 xfree (pathname);
4205 }
4206 }
4207
4208 closedir (dirp);
4209 }
4210
4211 obstack_grow_str0 (&obstack, "</osdata>\n");
4212 buf = obstack_finish (&obstack);
4213 len_avail = strlen (buf);
4214 }
4215
4216 if (offset >= len_avail)
4217 {
4218 /* Done. Get rid of the obstack. */
4219 obstack_free (&obstack, NULL);
4220 buf = NULL;
4221 len_avail = 0;
4222 return 0;
4223 }
4224
4225 if (len > len_avail - offset)
4226 len = len_avail - offset;
4227 memcpy (readbuf, buf + offset, len);
4228
4229 return len;
4230}
4231
10d6c8cd
DJ
4232static LONGEST
4233linux_xfer_partial (struct target_ops *ops, enum target_object object,
4234 const char *annex, gdb_byte *readbuf,
4235 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4236{
4237 LONGEST xfer;
4238
4239 if (object == TARGET_OBJECT_AUXV)
4240 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
4241 offset, len);
4242
07e059b5
VP
4243 if (object == TARGET_OBJECT_OSDATA)
4244 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4245 offset, len);
4246
10d6c8cd
DJ
4247 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4248 offset, len);
4249 if (xfer != 0)
4250 return xfer;
4251
4252 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4253 offset, len);
4254}
4255
e9efe249 4256/* Create a prototype generic GNU/Linux target. The client can override
10d6c8cd
DJ
4257 it with local methods. */
4258
910122bf
UW
4259static void
4260linux_target_install_ops (struct target_ops *t)
10d6c8cd 4261{
6d8fd2b7
UW
4262 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4263 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4264 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4265 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
10d6c8cd 4266 t->to_post_startup_inferior = linux_child_post_startup_inferior;
6d8fd2b7
UW
4267 t->to_post_attach = linux_child_post_attach;
4268 t->to_follow_fork = linux_child_follow_fork;
10d6c8cd
DJ
4269 t->to_find_memory_regions = linux_nat_find_memory_regions;
4270 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4271
4272 super_xfer_partial = t->to_xfer_partial;
4273 t->to_xfer_partial = linux_xfer_partial;
910122bf
UW
4274}
4275
4276struct target_ops *
4277linux_target (void)
4278{
4279 struct target_ops *t;
4280
4281 t = inf_ptrace_target ();
4282 linux_target_install_ops (t);
4283
4284 return t;
4285}
4286
4287struct target_ops *
7714d83a 4288linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
910122bf
UW
4289{
4290 struct target_ops *t;
4291
4292 t = inf_ptrace_trad_target (register_u_offset);
4293 linux_target_install_ops (t);
10d6c8cd 4294
10d6c8cd
DJ
4295 return t;
4296}
4297
b84876c2
PA
4298/* target_is_async_p implementation. */
4299
4300static int
4301linux_nat_is_async_p (void)
4302{
4303 /* NOTE: palves 2008-03-21: We're only async when the user requests
c6ebd6cf 4304 it explicitly with the "maintenance set target-async" command.
b84876c2 4305 Someday, linux will always be async. */
c6ebd6cf 4306 if (!target_async_permitted)
b84876c2
PA
4307 return 0;
4308
4309 return 1;
4310}
4311
4312/* target_can_async_p implementation. */
4313
4314static int
4315linux_nat_can_async_p (void)
4316{
4317 /* NOTE: palves 2008-03-21: We're only async when the user requests
c6ebd6cf 4318 it explicitly with the "maintenance set target-async" command.
b84876c2 4319 Someday, linux will always be async. */
c6ebd6cf 4320 if (!target_async_permitted)
b84876c2
PA
4321 return 0;
4322
4323 /* See target.h/target_async_mask. */
4324 return linux_nat_async_mask_value;
4325}
4326
9908b566
VP
4327static int
4328linux_nat_supports_non_stop (void)
4329{
4330 return 1;
4331}
4332
b84876c2
PA
4333/* target_async_mask implementation. */
4334
4335static int
4336linux_nat_async_mask (int mask)
4337{
4338 int current_state;
4339 current_state = linux_nat_async_mask_value;
4340
4341 if (current_state != mask)
4342 {
4343 if (mask == 0)
4344 {
4345 linux_nat_async (NULL, 0);
4346 linux_nat_async_mask_value = mask;
b84876c2
PA
4347 }
4348 else
4349 {
b84876c2
PA
4350 linux_nat_async_mask_value = mask;
4351 linux_nat_async (inferior_event_handler, 0);
4352 }
4353 }
4354
4355 return current_state;
4356}
4357
4358/* Pop an event from the event pipe. */
4359
4360static int
4361linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options)
4362{
4363 struct waitpid_result event = {0};
4364 int ret;
4365
4366 do
4367 {
4368 ret = read (linux_nat_event_pipe[0], &event, sizeof (event));
4369 }
4370 while (ret == -1 && errno == EINTR);
4371
4372 gdb_assert (ret == sizeof (event));
4373
4374 *ptr_status = event.status;
4375 *ptr_options = event.options;
4376
4377 linux_nat_num_queued_events--;
4378
4379 return event.pid;
4380}
4381
4382/* Push an event into the event pipe. */
4383
4384static void
4385linux_nat_event_pipe_push (int pid, int status, int options)
4386{
4387 int ret;
4388 struct waitpid_result event = {0};
4389 event.pid = pid;
4390 event.status = status;
4391 event.options = options;
4392
4393 do
4394 {
4395 ret = write (linux_nat_event_pipe[1], &event, sizeof (event));
4396 gdb_assert ((ret == -1 && errno == EINTR) || ret == sizeof (event));
4397 } while (ret == -1 && errno == EINTR);
4398
4399 linux_nat_num_queued_events++;
4400}
4401
4402static void
4403get_pending_events (void)
4404{
4405 int status, options, pid;
4406
c6ebd6cf 4407 if (!target_async_permitted
84e46146 4408 || linux_nat_async_events_state != sigchld_async)
b84876c2
PA
4409 internal_error (__FILE__, __LINE__,
4410 "get_pending_events called with async masked");
4411
4412 while (1)
4413 {
4414 status = 0;
4415 options = __WCLONE | WNOHANG;
4416
4417 do
4418 {
4419 pid = waitpid (-1, &status, options);
4420 }
4421 while (pid == -1 && errno == EINTR);
4422
4423 if (pid <= 0)
4424 {
4425 options = WNOHANG;
4426 do
4427 {
4428 pid = waitpid (-1, &status, options);
4429 }
4430 while (pid == -1 && errno == EINTR);
4431 }
4432
4433 if (pid <= 0)
4434 /* No more children reporting events. */
4435 break;
4436
4437 if (debug_linux_nat_async)
4438 fprintf_unfiltered (gdb_stdlog, "\
4439get_pending_events: pid(%d), status(%x), options (%x)\n",
4440 pid, status, options);
4441
4442 linux_nat_event_pipe_push (pid, status, options);
4443 }
4444
4445 if (debug_linux_nat_async)
4446 fprintf_unfiltered (gdb_stdlog, "\
4447get_pending_events: linux_nat_num_queued_events(%d)\n",
4448 linux_nat_num_queued_events);
4449}
4450
4451/* SIGCHLD handler for async mode. */
4452
4453static void
4454async_sigchld_handler (int signo)
4455{
4456 if (debug_linux_nat_async)
4457 fprintf_unfiltered (gdb_stdlog, "async_sigchld_handler\n");
4458
4459 get_pending_events ();
4460}
4461
84e46146 4462/* Set SIGCHLD handling state to STATE. Returns previous state. */
b84876c2 4463
84e46146
PA
4464static enum sigchld_state
4465linux_nat_async_events (enum sigchld_state state)
b84876c2 4466{
84e46146 4467 enum sigchld_state current_state = linux_nat_async_events_state;
b84876c2
PA
4468
4469 if (debug_linux_nat_async)
4470 fprintf_unfiltered (gdb_stdlog,
84e46146 4471 "LNAE: state(%d): linux_nat_async_events_state(%d), "
b84876c2 4472 "linux_nat_num_queued_events(%d)\n",
84e46146 4473 state, linux_nat_async_events_state,
b84876c2
PA
4474 linux_nat_num_queued_events);
4475
84e46146 4476 if (current_state != state)
b84876c2
PA
4477 {
4478 sigset_t mask;
4479 sigemptyset (&mask);
4480 sigaddset (&mask, SIGCHLD);
84e46146
PA
4481
4482 /* Always block before changing state. */
4483 sigprocmask (SIG_BLOCK, &mask, NULL);
4484
4485 /* Set new state. */
4486 linux_nat_async_events_state = state;
4487
4488 switch (state)
b84876c2 4489 {
84e46146
PA
4490 case sigchld_sync:
4491 {
4492 /* Block target events. */
4493 sigprocmask (SIG_BLOCK, &mask, NULL);
4494 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4495 /* Get events out of queue, and make them available to
4496 queued_waitpid / my_waitpid. */
4497 pipe_to_local_event_queue ();
4498 }
4499 break;
4500 case sigchld_async:
4501 {
4502 /* Unblock target events for async mode. */
4503
4504 sigprocmask (SIG_BLOCK, &mask, NULL);
4505
4506 /* Put events we already waited on, in the pipe first, so
4507 events are FIFO. */
4508 local_event_queue_to_pipe ();
4509 /* While in masked async, we may have not collected all
4510 the pending events. Get them out now. */
4511 get_pending_events ();
4512
4513 /* Let'em come. */
4514 sigaction (SIGCHLD, &async_sigchld_action, NULL);
4515 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4516 }
4517 break;
4518 case sigchld_default:
4519 {
4520 /* SIGCHLD default mode. */
4521 sigaction (SIGCHLD, &sigchld_default_action, NULL);
4522
4523 /* Get events out of queue, and make them available to
4524 queued_waitpid / my_waitpid. */
4525 pipe_to_local_event_queue ();
4526
4527 /* Unblock SIGCHLD. */
4528 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4529 }
4530 break;
b84876c2
PA
4531 }
4532 }
4533
4534 return current_state;
4535}
4536
4537static int async_terminal_is_ours = 1;
4538
4539/* target_terminal_inferior implementation. */
4540
4541static void
4542linux_nat_terminal_inferior (void)
4543{
4544 if (!target_is_async_p ())
4545 {
4546 /* Async mode is disabled. */
4547 terminal_inferior ();
4548 return;
4549 }
4550
4551 /* GDB should never give the terminal to the inferior, if the
4552 inferior is running in the background (run&, continue&, etc.).
4553 This check can be removed when the common code is fixed. */
4554 if (!sync_execution)
4555 return;
4556
4557 terminal_inferior ();
4558
4559 if (!async_terminal_is_ours)
4560 return;
4561
4562 delete_file_handler (input_fd);
4563 async_terminal_is_ours = 0;
4564 set_sigint_trap ();
4565}
4566
4567/* target_terminal_ours implementation. */
4568
2c0b251b 4569static void
b84876c2
PA
4570linux_nat_terminal_ours (void)
4571{
4572 if (!target_is_async_p ())
4573 {
4574 /* Async mode is disabled. */
4575 terminal_ours ();
4576 return;
4577 }
4578
4579 /* GDB should never give the terminal to the inferior if the
4580 inferior is running in the background (run&, continue&, etc.),
4581 but claiming it sure should. */
4582 terminal_ours ();
4583
4584 if (!sync_execution)
4585 return;
4586
4587 if (async_terminal_is_ours)
4588 return;
4589
4590 clear_sigint_trap ();
4591 add_file_handler (input_fd, stdin_event_handler, 0);
4592 async_terminal_is_ours = 1;
4593}
4594
4595static void (*async_client_callback) (enum inferior_event_type event_type,
4596 void *context);
4597static void *async_client_context;
4598
4599static void
4600linux_nat_async_file_handler (int error, gdb_client_data client_data)
4601{
4602 async_client_callback (INF_REG_EVENT, async_client_context);
4603}
4604
4605/* target_async implementation. */
4606
4607static void
4608linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4609 void *context), void *context)
4610{
c6ebd6cf 4611 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
b84876c2
PA
4612 internal_error (__FILE__, __LINE__,
4613 "Calling target_async when async is masked");
4614
4615 if (callback != NULL)
4616 {
4617 async_client_callback = callback;
4618 async_client_context = context;
4619 add_file_handler (linux_nat_event_pipe[0],
4620 linux_nat_async_file_handler, NULL);
4621
84e46146 4622 linux_nat_async_events (sigchld_async);
b84876c2
PA
4623 }
4624 else
4625 {
4626 async_client_callback = callback;
4627 async_client_context = context;
4628
84e46146 4629 linux_nat_async_events (sigchld_sync);
b84876c2
PA
4630 delete_file_handler (linux_nat_event_pipe[0]);
4631 }
4632 return;
4633}
4634
252fbfc8
PA
4635/* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
4636 event came out. */
4637
4c28f408 4638static int
252fbfc8 4639linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4c28f408 4640{
252fbfc8
PA
4641 ptid_t ptid = * (ptid_t *) data;
4642
4643 if (ptid_equal (lwp->ptid, ptid)
4644 || ptid_equal (minus_one_ptid, ptid)
4645 || (ptid_is_pid (ptid)
4646 && ptid_get_pid (ptid) == ptid_get_pid (lwp->ptid)))
4647 {
4648 if (!lwp->stopped)
4649 {
4650 int pid, status;
4651
4652 if (debug_linux_nat)
4653 fprintf_unfiltered (gdb_stdlog,
4654 "LNSL: running -> suspending %s\n",
4655 target_pid_to_str (lwp->ptid));
4656
4657 /* Peek once, to check if we've already waited for this
4658 LWP. */
4659 pid = queued_waitpid_1 (ptid_get_lwp (lwp->ptid), &status,
4660 lwp->cloned ? __WCLONE : 0, 1 /* peek */);
4661
4662 if (pid == -1)
4663 {
4664 ptid_t ptid = lwp->ptid;
4665
4666 stop_callback (lwp, NULL);
4667 stop_wait_callback (lwp, NULL);
4668
4669 /* If the lwp exits while we try to stop it, there's
4670 nothing else to do. */
4671 lwp = find_lwp_pid (ptid);
4672 if (lwp == NULL)
4673 return 0;
4674
4675 pid = queued_waitpid_1 (ptid_get_lwp (lwp->ptid), &status,
4676 lwp->cloned ? __WCLONE : 0,
4677 1 /* peek */);
4678 }
4679
4680 /* If we didn't collect any signal other than SIGSTOP while
4681 stopping the LWP, push a SIGNAL_0 event. In either case,
4682 the event-loop will end up calling target_wait which will
4683 collect these. */
4684 if (pid == -1)
4685 push_waitpid (ptid_get_lwp (lwp->ptid), W_STOPCODE (0),
4686 lwp->cloned ? __WCLONE : 0);
4687 }
4688 else
4689 {
4690 /* Already known to be stopped; do nothing. */
4691
4692 if (debug_linux_nat)
4693 {
4694 if (find_thread_pid (lwp->ptid)->stop_requested)
4695 fprintf_unfiltered (gdb_stdlog, "\
4696LNSL: already stopped/stop_requested %s\n",
4697 target_pid_to_str (lwp->ptid));
4698 else
4699 fprintf_unfiltered (gdb_stdlog, "\
4700LNSL: already stopped/no stop_requested yet %s\n",
4701 target_pid_to_str (lwp->ptid));
4702 }
4703 }
4704 }
4c28f408
PA
4705 return 0;
4706}
4707
4708static void
4709linux_nat_stop (ptid_t ptid)
4710{
4711 if (non_stop)
4712 {
252fbfc8
PA
4713 linux_nat_async_events (sigchld_sync);
4714 iterate_over_lwps (linux_nat_stop_lwp, &ptid);
4715 target_async (inferior_event_handler, 0);
4c28f408
PA
4716 }
4717 else
4718 linux_ops->to_stop (ptid);
4719}
4720
f973ed9c
DJ
4721void
4722linux_nat_add_target (struct target_ops *t)
4723{
f973ed9c
DJ
4724 /* Save the provided single-threaded target. We save this in a separate
4725 variable because another target we've inherited from (e.g. inf-ptrace)
4726 may have saved a pointer to T; we want to use it for the final
4727 process stratum target. */
4728 linux_ops_saved = *t;
4729 linux_ops = &linux_ops_saved;
4730
4731 /* Override some methods for multithreading. */
b84876c2 4732 t->to_create_inferior = linux_nat_create_inferior;
f973ed9c
DJ
4733 t->to_attach = linux_nat_attach;
4734 t->to_detach = linux_nat_detach;
4735 t->to_resume = linux_nat_resume;
4736 t->to_wait = linux_nat_wait;
4737 t->to_xfer_partial = linux_nat_xfer_partial;
4738 t->to_kill = linux_nat_kill;
4739 t->to_mourn_inferior = linux_nat_mourn_inferior;
4740 t->to_thread_alive = linux_nat_thread_alive;
4741 t->to_pid_to_str = linux_nat_pid_to_str;
4742 t->to_has_thread_control = tc_schedlock;
4743
b84876c2
PA
4744 t->to_can_async_p = linux_nat_can_async_p;
4745 t->to_is_async_p = linux_nat_is_async_p;
9908b566 4746 t->to_supports_non_stop = linux_nat_supports_non_stop;
b84876c2
PA
4747 t->to_async = linux_nat_async;
4748 t->to_async_mask = linux_nat_async_mask;
4749 t->to_terminal_inferior = linux_nat_terminal_inferior;
4750 t->to_terminal_ours = linux_nat_terminal_ours;
4751
4c28f408
PA
4752 /* Methods for non-stop support. */
4753 t->to_stop = linux_nat_stop;
4754
f973ed9c
DJ
4755 /* We don't change the stratum; this target will sit at
4756 process_stratum and thread_db will set at thread_stratum. This
4757 is a little strange, since this is a multi-threaded-capable
4758 target, but we want to be on the stack below thread_db, and we
4759 also want to be used for single-threaded processes. */
4760
4761 add_target (t);
f973ed9c
DJ
4762}
4763
9f0bdab8
DJ
4764/* Register a method to call whenever a new thread is attached. */
4765void
4766linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
4767{
4768 /* Save the pointer. We only support a single registered instance
4769 of the GNU/Linux native target, so we do not need to map this to
4770 T. */
4771 linux_nat_new_thread = new_thread;
4772}
4773
5b009018
PA
4774/* Register a method that converts a siginfo object between the layout
4775 that ptrace returns, and the layout in the architecture of the
4776 inferior. */
4777void
4778linux_nat_set_siginfo_fixup (struct target_ops *t,
4779 int (*siginfo_fixup) (struct siginfo *,
4780 gdb_byte *,
4781 int))
4782{
4783 /* Save the pointer. */
4784 linux_nat_siginfo_fixup = siginfo_fixup;
4785}
4786
9f0bdab8
DJ
4787/* Return the saved siginfo associated with PTID. */
4788struct siginfo *
4789linux_nat_get_siginfo (ptid_t ptid)
4790{
4791 struct lwp_info *lp = find_lwp_pid (ptid);
4792
4793 gdb_assert (lp != NULL);
4794
4795 return &lp->siginfo;
4796}
4797
c6ebd6cf
VP
4798/* Enable/Disable async mode. */
4799
4800static void
4801linux_nat_setup_async (void)
4802{
4803 if (pipe (linux_nat_event_pipe) == -1)
4804 internal_error (__FILE__, __LINE__,
4805 "creating event pipe failed.");
4806 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4807 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4808}
4809
2c0b251b
PA
4810/* Provide a prototype to silence -Wmissing-prototypes. */
4811extern initialize_file_ftype _initialize_linux_nat;
4812
d6b0e80f
AC
4813void
4814_initialize_linux_nat (void)
4815{
b84876c2 4816 sigset_t mask;
dba24537 4817
1bedd215
AC
4818 add_info ("proc", linux_nat_info_proc_cmd, _("\
4819Show /proc process information about any running process.\n\
dba24537
AC
4820Specify any process id, or use the program being debugged by default.\n\
4821Specify any of the following keywords for detailed info:\n\
4822 mappings -- list of mapped memory regions.\n\
4823 stat -- list a bunch of random process info.\n\
4824 status -- list a different bunch of random process info.\n\
1bedd215 4825 all -- list all available /proc info."));
d6b0e80f 4826
b84876c2
PA
4827 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
4828 &debug_linux_nat, _("\
4829Set debugging of GNU/Linux lwp module."), _("\
4830Show debugging of GNU/Linux lwp module."), _("\
4831Enables printf debugging output."),
4832 NULL,
4833 show_debug_linux_nat,
4834 &setdebuglist, &showdebuglist);
4835
4836 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
4837 &debug_linux_nat_async, _("\
4838Set debugging of GNU/Linux async lwp module."), _("\
4839Show debugging of GNU/Linux async lwp module."), _("\
4840Enables printf debugging output."),
4841 NULL,
4842 show_debug_linux_nat_async,
4843 &setdebuglist, &showdebuglist);
4844
84e46146
PA
4845 /* Get the default SIGCHLD action. Used while forking an inferior
4846 (see linux_nat_create_inferior/linux_nat_async_events). */
4847 sigaction (SIGCHLD, NULL, &sigchld_default_action);
4848
b84876c2
PA
4849 /* Block SIGCHLD by default. Doing this early prevents it getting
4850 unblocked if an exception is thrown due to an error while the
4851 inferior is starting (sigsetjmp/siglongjmp). */
4852 sigemptyset (&mask);
4853 sigaddset (&mask, SIGCHLD);
4854 sigprocmask (SIG_BLOCK, &mask, NULL);
4855
4856 /* Save this mask as the default. */
d6b0e80f
AC
4857 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4858
b84876c2
PA
4859 /* The synchronous SIGCHLD handler. */
4860 sync_sigchld_action.sa_handler = sigchld_handler;
4861 sigemptyset (&sync_sigchld_action.sa_mask);
4862 sync_sigchld_action.sa_flags = SA_RESTART;
4863
4864 /* Make it the default. */
4865 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
d6b0e80f
AC
4866
4867 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4868 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4869 sigdelset (&suspend_mask, SIGCHLD);
4870
b84876c2
PA
4871 /* SIGCHLD handler for async mode. */
4872 async_sigchld_action.sa_handler = async_sigchld_handler;
4873 sigemptyset (&async_sigchld_action.sa_mask);
4874 async_sigchld_action.sa_flags = SA_RESTART;
d6b0e80f 4875
c6ebd6cf 4876 linux_nat_setup_async ();
10568435
JK
4877
4878 add_setshow_boolean_cmd ("disable-randomization", class_support,
4879 &disable_randomization, _("\
4880Set disabling of debuggee's virtual address space randomization."), _("\
4881Show disabling of debuggee's virtual address space randomization."), _("\
4882When this mode is on (which is the default), randomization of the virtual\n\
4883address space is disabled. Standalone programs run with the randomization\n\
4884enabled by default on some platforms."),
4885 &set_disable_randomization,
4886 &show_disable_randomization,
4887 &setlist, &showlist);
d6b0e80f
AC
4888}
4889\f
4890
4891/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4892 the GNU/Linux Threads library and therefore doesn't really belong
4893 here. */
4894
4895/* Read variable NAME in the target and return its value if found.
4896 Otherwise return zero. It is assumed that the type of the variable
4897 is `int'. */
4898
4899static int
4900get_signo (const char *name)
4901{
4902 struct minimal_symbol *ms;
4903 int signo;
4904
4905 ms = lookup_minimal_symbol (name, NULL, NULL);
4906 if (ms == NULL)
4907 return 0;
4908
8e70166d 4909 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
d6b0e80f
AC
4910 sizeof (signo)) != 0)
4911 return 0;
4912
4913 return signo;
4914}
4915
4916/* Return the set of signals used by the threads library in *SET. */
4917
4918void
4919lin_thread_get_thread_signals (sigset_t *set)
4920{
4921 struct sigaction action;
4922 int restart, cancel;
b84876c2 4923 sigset_t blocked_mask;
d6b0e80f 4924
b84876c2 4925 sigemptyset (&blocked_mask);
d6b0e80f
AC
4926 sigemptyset (set);
4927
4928 restart = get_signo ("__pthread_sig_restart");
17fbb0bd
DJ
4929 cancel = get_signo ("__pthread_sig_cancel");
4930
4931 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4932 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4933 not provide any way for the debugger to query the signal numbers -
4934 fortunately they don't change! */
4935
d6b0e80f 4936 if (restart == 0)
17fbb0bd 4937 restart = __SIGRTMIN;
d6b0e80f 4938
d6b0e80f 4939 if (cancel == 0)
17fbb0bd 4940 cancel = __SIGRTMIN + 1;
d6b0e80f
AC
4941
4942 sigaddset (set, restart);
4943 sigaddset (set, cancel);
4944
4945 /* The GNU/Linux Threads library makes terminating threads send a
4946 special "cancel" signal instead of SIGCHLD. Make sure we catch
4947 those (to prevent them from terminating GDB itself, which is
4948 likely to be their default action) and treat them the same way as
4949 SIGCHLD. */
4950
4951 action.sa_handler = sigchld_handler;
4952 sigemptyset (&action.sa_mask);
58aecb61 4953 action.sa_flags = SA_RESTART;
d6b0e80f
AC
4954 sigaction (cancel, &action, NULL);
4955
4956 /* We block the "cancel" signal throughout this code ... */
4957 sigaddset (&blocked_mask, cancel);
4958 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4959
4960 /* ... except during a sigsuspend. */
4961 sigdelset (&suspend_mask, cancel);
4962}
This page took 1.005938 seconds and 4 git commands to generate.