Add "executing" property to threads.
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
CommitLineData
3993f6b1 1/* GNU/Linux native-dependent code common to multiple platforms.
dba24537 2
9b254dd1 3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
e26af52f 4 Free Software Foundation, Inc.
3993f6b1
DJ
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
3993f6b1
DJ
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
3993f6b1
DJ
20
21#include "defs.h"
22#include "inferior.h"
23#include "target.h"
d6b0e80f 24#include "gdb_string.h"
3993f6b1 25#include "gdb_wait.h"
d6b0e80f
AC
26#include "gdb_assert.h"
27#ifdef HAVE_TKILL_SYSCALL
28#include <unistd.h>
29#include <sys/syscall.h>
30#endif
3993f6b1 31#include <sys/ptrace.h>
0274a8ce 32#include "linux-nat.h"
ac264b3b 33#include "linux-fork.h"
d6b0e80f
AC
34#include "gdbthread.h"
35#include "gdbcmd.h"
36#include "regcache.h"
4f844a66 37#include "regset.h"
10d6c8cd
DJ
38#include "inf-ptrace.h"
39#include "auxv.h"
dba24537
AC
40#include <sys/param.h> /* for MAXPATHLEN */
41#include <sys/procfs.h> /* for elf_gregset etc. */
42#include "elf-bfd.h" /* for elfcore_write_* */
43#include "gregset.h" /* for gregset */
44#include "gdbcore.h" /* for get_exec_file */
45#include <ctype.h> /* for isdigit */
46#include "gdbthread.h" /* for struct thread_info etc. */
47#include "gdb_stat.h" /* for struct stat */
48#include <fcntl.h> /* for O_RDONLY */
b84876c2
PA
49#include "inf-loop.h"
50#include "event-loop.h"
51#include "event-top.h"
dba24537 52
8a77dff3
VP
53/* This comment documents high-level logic of this file.
54
55Waiting for events in sync mode
56===============================
57
58When waiting for an event in a specific thread, we just use waitpid, passing
59the specific pid, and not passing WNOHANG.
60
61When waiting for an event in all threads, waitpid is not quite good. Prior to
62version 2.4, Linux can either wait for event in main thread, or in secondary
63threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
64miss an event. The solution is to use non-blocking waitpid, together with
65sigsuspend. First, we use non-blocking waitpid to get an event in the main
66process, if any. Second, we use non-blocking waitpid with the __WCLONED
67flag to check for events in cloned processes. If nothing is found, we use
68sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
69happened to a child process -- and SIGCHLD will be delivered both for events
70in main debugged process and in cloned processes. As soon as we know there's
71an event, we get back to calling nonblocking waitpid with and without __WCLONED.
72
73Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
74so that we don't miss a signal. If SIGCHLD arrives in between, when it's
75blocked, the signal becomes pending and sigsuspend immediately
76notices it and returns.
77
78Waiting for events in async mode
79================================
80
81In async mode, GDB should always be ready to handle both user input and target
82events, so neither blocking waitpid nor sigsuspend are viable
83options. Instead, we should notify the GDB main event loop whenever there's
84unprocessed event from the target. The only way to notify this event loop is
85to make it wait on input from a pipe, and write something to the pipe whenever
86there's event. Obviously, if we fail to notify the event loop if there's
87target event, it's bad. If we notify the event loop when there's no event
88from target, linux-nat.c will detect that there's no event, actually, and
89report event of type TARGET_WAITKIND_IGNORE, but it will waste time and
90better avoided.
91
92The main design point is that every time GDB is outside linux-nat.c, we have a
93SIGCHLD handler installed that is called when something happens to the target
94and notifies the GDB event loop. Also, the event is extracted from the target
95using waitpid and stored for future use. Whenever GDB core decides to handle
96the event, and calls into linux-nat.c, we disable SIGCHLD and process things
97as in sync mode, except that before waitpid call we check if there are any
98previously read events.
99
100It could happen that during event processing, we'll try to get more events
101than there are events in the local queue, which will result to waitpid call.
102Those waitpid calls, while blocking, are guarantied to always have
103something for waitpid to return. E.g., stopping a thread with SIGSTOP, and
104waiting for the lwp to stop.
105
106The event loop is notified about new events using a pipe. SIGCHLD handler does
107waitpid and writes the results in to a pipe. GDB event loop has the other end
108of the pipe among the sources. When event loop starts to process the event
109and calls a function in linux-nat.c, all events from the pipe are transferred
110into a local queue and SIGCHLD is blocked. Further processing goes as in sync
111mode. Before we return from linux_nat_wait, we transfer all unprocessed events
112from local queue back to the pipe, so that when we get back to event loop,
113event loop will notice there's something more to do.
114
115SIGCHLD is blocked when we're inside target_wait, so that should we actually
116want to wait for some more events, SIGCHLD handler does not steal them from
117us. Technically, it would be possible to add new events to the local queue but
118it's about the same amount of work as blocking SIGCHLD.
119
120This moving of events from pipe into local queue and back into pipe when we
121enter/leave linux-nat.c is somewhat ugly. Unfortunately, GDB event loop is
122home-grown and incapable to wait on any queue.
123
124Use of signals
125==============
126
127We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
128signal is not entirely significant; we just need for a signal to be delivered,
129so that we can intercept it. SIGSTOP's advantage is that it can not be
130blocked. A disadvantage is that it is not a real-time signal, so it can only
131be queued once; we do not keep track of other sources of SIGSTOP.
132
133Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
134use them, because they have special behavior when the signal is generated -
135not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
136kills the entire thread group.
137
138A delivered SIGSTOP would stop the entire thread group, not just the thread we
139tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
140cancel it (by PTRACE_CONT without passing SIGSTOP).
141
142We could use a real-time signal instead. This would solve those problems; we
143could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
144But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
145generates it, and there are races with trying to find a signal that is not
146blocked. */
a0ef4274 147
dba24537
AC
148#ifndef O_LARGEFILE
149#define O_LARGEFILE 0
150#endif
0274a8ce 151
3993f6b1
DJ
152/* If the system headers did not provide the constants, hard-code the normal
153 values. */
154#ifndef PTRACE_EVENT_FORK
155
156#define PTRACE_SETOPTIONS 0x4200
157#define PTRACE_GETEVENTMSG 0x4201
158
159/* options set using PTRACE_SETOPTIONS */
160#define PTRACE_O_TRACESYSGOOD 0x00000001
161#define PTRACE_O_TRACEFORK 0x00000002
162#define PTRACE_O_TRACEVFORK 0x00000004
163#define PTRACE_O_TRACECLONE 0x00000008
164#define PTRACE_O_TRACEEXEC 0x00000010
9016a515
DJ
165#define PTRACE_O_TRACEVFORKDONE 0x00000020
166#define PTRACE_O_TRACEEXIT 0x00000040
3993f6b1
DJ
167
168/* Wait extended result codes for the above trace options. */
169#define PTRACE_EVENT_FORK 1
170#define PTRACE_EVENT_VFORK 2
171#define PTRACE_EVENT_CLONE 3
172#define PTRACE_EVENT_EXEC 4
c874c7fc 173#define PTRACE_EVENT_VFORK_DONE 5
9016a515 174#define PTRACE_EVENT_EXIT 6
3993f6b1
DJ
175
176#endif /* PTRACE_EVENT_FORK */
177
178/* We can't always assume that this flag is available, but all systems
179 with the ptrace event handlers also have __WALL, so it's safe to use
180 here. */
181#ifndef __WALL
182#define __WALL 0x40000000 /* Wait for any child. */
183#endif
184
02d3ff8c
UW
185#ifndef PTRACE_GETSIGINFO
186#define PTRACE_GETSIGINFO 0x4202
187#endif
188
10d6c8cd
DJ
189/* The single-threaded native GNU/Linux target_ops. We save a pointer for
190 the use of the multi-threaded target. */
191static struct target_ops *linux_ops;
f973ed9c 192static struct target_ops linux_ops_saved;
10d6c8cd 193
9f0bdab8
DJ
194/* The method to call, if any, when a new thread is attached. */
195static void (*linux_nat_new_thread) (ptid_t);
196
ac264b3b
MS
197/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
198 Called by our to_xfer_partial. */
199static LONGEST (*super_xfer_partial) (struct target_ops *,
200 enum target_object,
201 const char *, gdb_byte *,
202 const gdb_byte *,
10d6c8cd
DJ
203 ULONGEST, LONGEST);
204
d6b0e80f 205static int debug_linux_nat;
920d2a44
AC
206static void
207show_debug_linux_nat (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209{
210 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
211 value);
212}
d6b0e80f 213
b84876c2
PA
214static int debug_linux_nat_async = 0;
215static void
216show_debug_linux_nat_async (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218{
219 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
220 value);
221}
222
9016a515
DJ
223static int linux_parent_pid;
224
ae087d01
DJ
225struct simple_pid_list
226{
227 int pid;
3d799a95 228 int status;
ae087d01
DJ
229 struct simple_pid_list *next;
230};
231struct simple_pid_list *stopped_pids;
232
3993f6b1
DJ
233/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
234 can not be used, 1 if it can. */
235
236static int linux_supports_tracefork_flag = -1;
237
9016a515
DJ
238/* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
239 PTRACE_O_TRACEVFORKDONE. */
240
241static int linux_supports_tracevforkdone_flag = -1;
242
b84876c2
PA
243/* Async mode support */
244
b84876c2
PA
245/* True if async mode is currently on. */
246static int linux_nat_async_enabled;
247
248/* Zero if the async mode, although enabled, is masked, which means
249 linux_nat_wait should behave as if async mode was off. */
250static int linux_nat_async_mask_value = 1;
251
252/* The read/write ends of the pipe registered as waitable file in the
253 event loop. */
254static int linux_nat_event_pipe[2] = { -1, -1 };
255
256/* Number of queued events in the pipe. */
257static volatile int linux_nat_num_queued_events;
258
84e46146 259/* The possible SIGCHLD handling states. */
b84876c2 260
84e46146
PA
261enum sigchld_state
262{
263 /* SIGCHLD disabled, with action set to sigchld_handler, for the
264 sigsuspend in linux_nat_wait. */
265 sigchld_sync,
266 /* SIGCHLD enabled, with action set to async_sigchld_handler. */
267 sigchld_async,
268 /* Set SIGCHLD to default action. Used while creating an
269 inferior. */
270 sigchld_default
271};
272
273/* The current SIGCHLD handling state. */
274static enum sigchld_state linux_nat_async_events_state;
275
276static enum sigchld_state linux_nat_async_events (enum sigchld_state enable);
b84876c2
PA
277static void pipe_to_local_event_queue (void);
278static void local_event_queue_to_pipe (void);
279static void linux_nat_event_pipe_push (int pid, int status, int options);
280static int linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options);
281static void linux_nat_set_async_mode (int on);
282static void linux_nat_async (void (*callback)
283 (enum inferior_event_type event_type, void *context),
284 void *context);
285static int linux_nat_async_mask (int mask);
a0ef4274 286static int kill_lwp (int lwpid, int signo);
b84876c2
PA
287
288/* Captures the result of a successful waitpid call, along with the
289 options used in that call. */
290struct waitpid_result
291{
292 int pid;
293 int status;
294 int options;
295 struct waitpid_result *next;
296};
297
298/* A singly-linked list of the results of the waitpid calls performed
299 in the async SIGCHLD handler. */
300static struct waitpid_result *waitpid_queue = NULL;
301
302static int
303queued_waitpid (int pid, int *status, int flags)
304{
305 struct waitpid_result *msg = waitpid_queue, *prev = NULL;
306
307 if (debug_linux_nat_async)
308 fprintf_unfiltered (gdb_stdlog,
309 "\
84e46146
PA
310QWPID: linux_nat_async_events_state(%d), linux_nat_num_queued_events(%d)\n",
311 linux_nat_async_events_state,
b84876c2
PA
312 linux_nat_num_queued_events);
313
314 if (flags & __WALL)
315 {
316 for (; msg; prev = msg, msg = msg->next)
317 if (pid == -1 || pid == msg->pid)
318 break;
319 }
320 else if (flags & __WCLONE)
321 {
322 for (; msg; prev = msg, msg = msg->next)
323 if (msg->options & __WCLONE
324 && (pid == -1 || pid == msg->pid))
325 break;
326 }
327 else
328 {
329 for (; msg; prev = msg, msg = msg->next)
330 if ((msg->options & __WCLONE) == 0
331 && (pid == -1 || pid == msg->pid))
332 break;
333 }
334
335 if (msg)
336 {
337 int pid;
338
339 if (prev)
340 prev->next = msg->next;
341 else
342 waitpid_queue = msg->next;
343
344 msg->next = NULL;
345 if (status)
346 *status = msg->status;
347 pid = msg->pid;
348
349 if (debug_linux_nat_async)
350 fprintf_unfiltered (gdb_stdlog, "QWPID: pid(%d), status(%x)\n",
351 pid, msg->status);
352 xfree (msg);
353
354 return pid;
355 }
356
357 if (debug_linux_nat_async)
358 fprintf_unfiltered (gdb_stdlog, "QWPID: miss\n");
359
360 if (status)
361 *status = 0;
362 return -1;
363}
364
365static void
366push_waitpid (int pid, int status, int options)
367{
368 struct waitpid_result *event, *new_event;
369
370 new_event = xmalloc (sizeof (*new_event));
371 new_event->pid = pid;
372 new_event->status = status;
373 new_event->options = options;
374 new_event->next = NULL;
375
376 if (waitpid_queue)
377 {
378 for (event = waitpid_queue;
379 event && event->next;
380 event = event->next)
381 ;
382
383 event->next = new_event;
384 }
385 else
386 waitpid_queue = new_event;
387}
388
710151dd 389/* Drain all queued events of PID. If PID is -1, the effect is of
b84876c2
PA
390 draining all events. */
391static void
392drain_queued_events (int pid)
393{
394 while (queued_waitpid (pid, NULL, __WALL) != -1)
395 ;
396}
397
ae087d01
DJ
398\f
399/* Trivial list manipulation functions to keep track of a list of
400 new stopped processes. */
401static void
3d799a95 402add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
ae087d01
DJ
403{
404 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
405 new_pid->pid = pid;
3d799a95 406 new_pid->status = status;
ae087d01
DJ
407 new_pid->next = *listp;
408 *listp = new_pid;
409}
410
411static int
3d799a95 412pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
ae087d01
DJ
413{
414 struct simple_pid_list **p;
415
416 for (p = listp; *p != NULL; p = &(*p)->next)
417 if ((*p)->pid == pid)
418 {
419 struct simple_pid_list *next = (*p)->next;
3d799a95 420 *status = (*p)->status;
ae087d01
DJ
421 xfree (*p);
422 *p = next;
423 return 1;
424 }
425 return 0;
426}
427
3d799a95
DJ
428static void
429linux_record_stopped_pid (int pid, int status)
ae087d01 430{
3d799a95 431 add_to_pid_list (&stopped_pids, pid, status);
ae087d01
DJ
432}
433
3993f6b1
DJ
434\f
435/* A helper function for linux_test_for_tracefork, called after fork (). */
436
437static void
438linux_tracefork_child (void)
439{
440 int ret;
441
442 ptrace (PTRACE_TRACEME, 0, 0, 0);
443 kill (getpid (), SIGSTOP);
444 fork ();
48bb3cce 445 _exit (0);
3993f6b1
DJ
446}
447
b84876c2
PA
448/* Wrapper function for waitpid which handles EINTR, and checks for
449 locally queued events. */
b957e937
DJ
450
451static int
452my_waitpid (int pid, int *status, int flags)
453{
454 int ret;
b84876c2
PA
455
456 /* There should be no concurrent calls to waitpid. */
84e46146 457 gdb_assert (linux_nat_async_events_state == sigchld_sync);
b84876c2
PA
458
459 ret = queued_waitpid (pid, status, flags);
460 if (ret != -1)
461 return ret;
462
b957e937
DJ
463 do
464 {
465 ret = waitpid (pid, status, flags);
466 }
467 while (ret == -1 && errno == EINTR);
468
469 return ret;
470}
471
472/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
473
474 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
475 we know that the feature is not available. This may change the tracing
476 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
477
478 However, if it succeeds, we don't know for sure that the feature is
479 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
3993f6b1 480 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
b957e937
DJ
481 fork tracing, and let it fork. If the process exits, we assume that we
482 can't use TRACEFORK; if we get the fork notification, and we can extract
483 the new child's PID, then we assume that we can. */
3993f6b1
DJ
484
485static void
b957e937 486linux_test_for_tracefork (int original_pid)
3993f6b1
DJ
487{
488 int child_pid, ret, status;
489 long second_pid;
490
b957e937
DJ
491 linux_supports_tracefork_flag = 0;
492 linux_supports_tracevforkdone_flag = 0;
493
494 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
495 if (ret != 0)
496 return;
497
3993f6b1
DJ
498 child_pid = fork ();
499 if (child_pid == -1)
e2e0b3e5 500 perror_with_name (("fork"));
3993f6b1
DJ
501
502 if (child_pid == 0)
503 linux_tracefork_child ();
504
b957e937 505 ret = my_waitpid (child_pid, &status, 0);
3993f6b1 506 if (ret == -1)
e2e0b3e5 507 perror_with_name (("waitpid"));
3993f6b1 508 else if (ret != child_pid)
8a3fe4f8 509 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
3993f6b1 510 if (! WIFSTOPPED (status))
8a3fe4f8 511 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
3993f6b1 512
3993f6b1
DJ
513 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
514 if (ret != 0)
515 {
b957e937
DJ
516 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
517 if (ret != 0)
518 {
8a3fe4f8 519 warning (_("linux_test_for_tracefork: failed to kill child"));
b957e937
DJ
520 return;
521 }
522
523 ret = my_waitpid (child_pid, &status, 0);
524 if (ret != child_pid)
8a3fe4f8 525 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
b957e937 526 else if (!WIFSIGNALED (status))
8a3fe4f8
AC
527 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
528 "killed child"), status);
b957e937 529
3993f6b1
DJ
530 return;
531 }
532
9016a515
DJ
533 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
534 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
535 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
536 linux_supports_tracevforkdone_flag = (ret == 0);
537
b957e937
DJ
538 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
539 if (ret != 0)
8a3fe4f8 540 warning (_("linux_test_for_tracefork: failed to resume child"));
b957e937
DJ
541
542 ret = my_waitpid (child_pid, &status, 0);
543
3993f6b1
DJ
544 if (ret == child_pid && WIFSTOPPED (status)
545 && status >> 16 == PTRACE_EVENT_FORK)
546 {
547 second_pid = 0;
548 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
549 if (ret == 0 && second_pid != 0)
550 {
551 int second_status;
552
553 linux_supports_tracefork_flag = 1;
b957e937
DJ
554 my_waitpid (second_pid, &second_status, 0);
555 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
556 if (ret != 0)
8a3fe4f8 557 warning (_("linux_test_for_tracefork: failed to kill second child"));
97725dc4 558 my_waitpid (second_pid, &status, 0);
3993f6b1
DJ
559 }
560 }
b957e937 561 else
8a3fe4f8
AC
562 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
563 "(%d, status 0x%x)"), ret, status);
3993f6b1 564
b957e937
DJ
565 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
566 if (ret != 0)
8a3fe4f8 567 warning (_("linux_test_for_tracefork: failed to kill child"));
b957e937 568 my_waitpid (child_pid, &status, 0);
3993f6b1
DJ
569}
570
571/* Return non-zero iff we have tracefork functionality available.
572 This function also sets linux_supports_tracefork_flag. */
573
574static int
b957e937 575linux_supports_tracefork (int pid)
3993f6b1
DJ
576{
577 if (linux_supports_tracefork_flag == -1)
b957e937 578 linux_test_for_tracefork (pid);
3993f6b1
DJ
579 return linux_supports_tracefork_flag;
580}
581
9016a515 582static int
b957e937 583linux_supports_tracevforkdone (int pid)
9016a515
DJ
584{
585 if (linux_supports_tracefork_flag == -1)
b957e937 586 linux_test_for_tracefork (pid);
9016a515
DJ
587 return linux_supports_tracevforkdone_flag;
588}
589
3993f6b1 590\f
4de4c07c
DJ
591void
592linux_enable_event_reporting (ptid_t ptid)
593{
d3587048 594 int pid = ptid_get_lwp (ptid);
4de4c07c
DJ
595 int options;
596
d3587048
DJ
597 if (pid == 0)
598 pid = ptid_get_pid (ptid);
599
b957e937 600 if (! linux_supports_tracefork (pid))
4de4c07c
DJ
601 return;
602
a2f23071
DJ
603 options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
604 | PTRACE_O_TRACECLONE;
b957e937 605 if (linux_supports_tracevforkdone (pid))
9016a515
DJ
606 options |= PTRACE_O_TRACEVFORKDONE;
607
608 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
609 read-only process state. */
4de4c07c
DJ
610
611 ptrace (PTRACE_SETOPTIONS, pid, 0, options);
612}
613
6d8fd2b7
UW
614static void
615linux_child_post_attach (int pid)
4de4c07c
DJ
616{
617 linux_enable_event_reporting (pid_to_ptid (pid));
0ec9a092 618 check_for_thread_db ();
4de4c07c
DJ
619}
620
10d6c8cd 621static void
4de4c07c
DJ
622linux_child_post_startup_inferior (ptid_t ptid)
623{
624 linux_enable_event_reporting (ptid);
0ec9a092 625 check_for_thread_db ();
4de4c07c
DJ
626}
627
6d8fd2b7
UW
628static int
629linux_child_follow_fork (struct target_ops *ops, int follow_child)
3993f6b1 630{
4de4c07c
DJ
631 ptid_t last_ptid;
632 struct target_waitstatus last_status;
9016a515 633 int has_vforked;
4de4c07c
DJ
634 int parent_pid, child_pid;
635
b84876c2
PA
636 if (target_can_async_p ())
637 target_async (NULL, 0);
638
4de4c07c 639 get_last_target_status (&last_ptid, &last_status);
9016a515 640 has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
d3587048
DJ
641 parent_pid = ptid_get_lwp (last_ptid);
642 if (parent_pid == 0)
643 parent_pid = ptid_get_pid (last_ptid);
4de4c07c
DJ
644 child_pid = last_status.value.related_pid;
645
646 if (! follow_child)
647 {
648 /* We're already attached to the parent, by default. */
649
650 /* Before detaching from the child, remove all breakpoints from
651 it. (This won't actually modify the breakpoint list, but will
652 physically remove the breakpoints from the child.) */
9016a515
DJ
653 /* If we vforked this will remove the breakpoints from the parent
654 also, but they'll be reinserted below. */
4de4c07c
DJ
655 detach_breakpoints (child_pid);
656
ac264b3b
MS
657 /* Detach new forked process? */
658 if (detach_fork)
f75c00e4 659 {
e85a822c 660 if (info_verbose || debug_linux_nat)
ac264b3b
MS
661 {
662 target_terminal_ours ();
663 fprintf_filtered (gdb_stdlog,
664 "Detaching after fork from child process %d.\n",
665 child_pid);
666 }
4de4c07c 667
ac264b3b
MS
668 ptrace (PTRACE_DETACH, child_pid, 0, 0);
669 }
670 else
671 {
672 struct fork_info *fp;
673 /* Retain child fork in ptrace (stopped) state. */
674 fp = find_fork_pid (child_pid);
675 if (!fp)
676 fp = add_fork (child_pid);
677 fork_save_infrun_state (fp, 0);
678 }
9016a515
DJ
679
680 if (has_vforked)
681 {
b957e937
DJ
682 gdb_assert (linux_supports_tracefork_flag >= 0);
683 if (linux_supports_tracevforkdone (0))
9016a515
DJ
684 {
685 int status;
686
687 ptrace (PTRACE_CONT, parent_pid, 0, 0);
58aecb61 688 my_waitpid (parent_pid, &status, __WALL);
c874c7fc 689 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
8a3fe4f8
AC
690 warning (_("Unexpected waitpid result %06x when waiting for "
691 "vfork-done"), status);
9016a515
DJ
692 }
693 else
694 {
695 /* We can't insert breakpoints until the child has
696 finished with the shared memory region. We need to
697 wait until that happens. Ideal would be to just
698 call:
699 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
700 - waitpid (parent_pid, &status, __WALL);
701 However, most architectures can't handle a syscall
702 being traced on the way out if it wasn't traced on
703 the way in.
704
705 We might also think to loop, continuing the child
706 until it exits or gets a SIGTRAP. One problem is
707 that the child might call ptrace with PTRACE_TRACEME.
708
709 There's no simple and reliable way to figure out when
710 the vforked child will be done with its copy of the
711 shared memory. We could step it out of the syscall,
712 two instructions, let it go, and then single-step the
713 parent once. When we have hardware single-step, this
714 would work; with software single-step it could still
715 be made to work but we'd have to be able to insert
716 single-step breakpoints in the child, and we'd have
717 to insert -just- the single-step breakpoint in the
718 parent. Very awkward.
719
720 In the end, the best we can do is to make sure it
721 runs for a little while. Hopefully it will be out of
722 range of any breakpoints we reinsert. Usually this
723 is only the single-step breakpoint at vfork's return
724 point. */
725
726 usleep (10000);
727 }
728
729 /* Since we vforked, breakpoints were removed in the parent
730 too. Put them back. */
731 reattach_breakpoints (parent_pid);
732 }
4de4c07c 733 }
3993f6b1 734 else
4de4c07c
DJ
735 {
736 char child_pid_spelling[40];
737
738 /* Needed to keep the breakpoint lists in sync. */
9016a515
DJ
739 if (! has_vforked)
740 detach_breakpoints (child_pid);
4de4c07c
DJ
741
742 /* Before detaching from the parent, remove all breakpoints from it. */
743 remove_breakpoints ();
744
e85a822c 745 if (info_verbose || debug_linux_nat)
f75c00e4
DJ
746 {
747 target_terminal_ours ();
ac264b3b
MS
748 fprintf_filtered (gdb_stdlog,
749 "Attaching after fork to child process %d.\n",
750 child_pid);
f75c00e4 751 }
4de4c07c 752
9016a515
DJ
753 /* If we're vforking, we may want to hold on to the parent until
754 the child exits or execs. At exec time we can remove the old
755 breakpoints from the parent and detach it; at exit time we
756 could do the same (or even, sneakily, resume debugging it - the
757 child's exec has failed, or something similar).
758
759 This doesn't clean up "properly", because we can't call
760 target_detach, but that's OK; if the current target is "child",
761 then it doesn't need any further cleanups, and lin_lwp will
762 generally not encounter vfork (vfork is defined to fork
763 in libpthread.so).
764
765 The holding part is very easy if we have VFORKDONE events;
766 but keeping track of both processes is beyond GDB at the
767 moment. So we don't expose the parent to the rest of GDB.
768 Instead we quietly hold onto it until such time as we can
769 safely resume it. */
770
771 if (has_vforked)
772 linux_parent_pid = parent_pid;
ac264b3b
MS
773 else if (!detach_fork)
774 {
775 struct fork_info *fp;
776 /* Retain parent fork in ptrace (stopped) state. */
777 fp = find_fork_pid (parent_pid);
778 if (!fp)
779 fp = add_fork (parent_pid);
780 fork_save_infrun_state (fp, 0);
781 }
9016a515 782 else
b84876c2 783 target_detach (NULL, 0);
4de4c07c 784
9f0bdab8 785 inferior_ptid = ptid_build (child_pid, child_pid, 0);
ee057212
DJ
786
787 /* Reinstall ourselves, since we might have been removed in
788 target_detach (which does other necessary cleanup). */
ac264b3b 789
ee057212 790 push_target (ops);
9f0bdab8 791 linux_nat_switch_fork (inferior_ptid);
ef29ce1a 792 check_for_thread_db ();
4de4c07c
DJ
793
794 /* Reset breakpoints in the child as appropriate. */
795 follow_inferior_reset_breakpoints ();
796 }
797
b84876c2
PA
798 if (target_can_async_p ())
799 target_async (inferior_event_handler, 0);
800
4de4c07c
DJ
801 return 0;
802}
803
4de4c07c 804\f
6d8fd2b7
UW
805static void
806linux_child_insert_fork_catchpoint (int pid)
4de4c07c 807{
b957e937 808 if (! linux_supports_tracefork (pid))
8a3fe4f8 809 error (_("Your system does not support fork catchpoints."));
3993f6b1
DJ
810}
811
6d8fd2b7
UW
812static void
813linux_child_insert_vfork_catchpoint (int pid)
3993f6b1 814{
b957e937 815 if (!linux_supports_tracefork (pid))
8a3fe4f8 816 error (_("Your system does not support vfork catchpoints."));
3993f6b1
DJ
817}
818
6d8fd2b7
UW
819static void
820linux_child_insert_exec_catchpoint (int pid)
3993f6b1 821{
b957e937 822 if (!linux_supports_tracefork (pid))
8a3fe4f8 823 error (_("Your system does not support exec catchpoints."));
3993f6b1
DJ
824}
825
d6b0e80f
AC
826/* On GNU/Linux there are no real LWP's. The closest thing to LWP's
827 are processes sharing the same VM space. A multi-threaded process
828 is basically a group of such processes. However, such a grouping
829 is almost entirely a user-space issue; the kernel doesn't enforce
830 such a grouping at all (this might change in the future). In
831 general, we'll rely on the threads library (i.e. the GNU/Linux
832 Threads library) to provide such a grouping.
833
834 It is perfectly well possible to write a multi-threaded application
835 without the assistance of a threads library, by using the clone
836 system call directly. This module should be able to give some
837 rudimentary support for debugging such applications if developers
838 specify the CLONE_PTRACE flag in the clone system call, and are
839 using the Linux kernel 2.4 or above.
840
841 Note that there are some peculiarities in GNU/Linux that affect
842 this code:
843
844 - In general one should specify the __WCLONE flag to waitpid in
845 order to make it report events for any of the cloned processes
846 (and leave it out for the initial process). However, if a cloned
847 process has exited the exit status is only reported if the
848 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
849 we cannot use it since GDB must work on older systems too.
850
851 - When a traced, cloned process exits and is waited for by the
852 debugger, the kernel reassigns it to the original parent and
853 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
854 library doesn't notice this, which leads to the "zombie problem":
855 When debugged a multi-threaded process that spawns a lot of
856 threads will run out of processes, even if the threads exit,
857 because the "zombies" stay around. */
858
859/* List of known LWPs. */
9f0bdab8 860struct lwp_info *lwp_list;
d6b0e80f
AC
861
862/* Number of LWPs in the list. */
863static int num_lwps;
d6b0e80f
AC
864\f
865
d6b0e80f
AC
866/* Original signal mask. */
867static sigset_t normal_mask;
868
869/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
870 _initialize_linux_nat. */
871static sigset_t suspend_mask;
872
b84876c2
PA
873/* SIGCHLD action for synchronous mode. */
874struct sigaction sync_sigchld_action;
875
876/* SIGCHLD action for asynchronous mode. */
877static struct sigaction async_sigchld_action;
84e46146
PA
878
879/* SIGCHLD default action, to pass to new inferiors. */
880static struct sigaction sigchld_default_action;
d6b0e80f
AC
881\f
882
883/* Prototypes for local functions. */
884static int stop_wait_callback (struct lwp_info *lp, void *data);
885static int linux_nat_thread_alive (ptid_t ptid);
6d8fd2b7 886static char *linux_child_pid_to_exec_file (int pid);
710151dd
PA
887static int cancel_breakpoint (struct lwp_info *lp);
888
d6b0e80f
AC
889\f
890/* Convert wait status STATUS to a string. Used for printing debug
891 messages only. */
892
893static char *
894status_to_str (int status)
895{
896 static char buf[64];
897
898 if (WIFSTOPPED (status))
899 snprintf (buf, sizeof (buf), "%s (stopped)",
900 strsignal (WSTOPSIG (status)));
901 else if (WIFSIGNALED (status))
902 snprintf (buf, sizeof (buf), "%s (terminated)",
903 strsignal (WSTOPSIG (status)));
904 else
905 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
906
907 return buf;
908}
909
910/* Initialize the list of LWPs. Note that this module, contrary to
911 what GDB's generic threads layer does for its thread list,
912 re-initializes the LWP lists whenever we mourn or detach (which
913 doesn't involve mourning) the inferior. */
914
915static void
916init_lwp_list (void)
917{
918 struct lwp_info *lp, *lpnext;
919
920 for (lp = lwp_list; lp; lp = lpnext)
921 {
922 lpnext = lp->next;
923 xfree (lp);
924 }
925
926 lwp_list = NULL;
927 num_lwps = 0;
d6b0e80f
AC
928}
929
f973ed9c 930/* Add the LWP specified by PID to the list. Return a pointer to the
9f0bdab8
DJ
931 structure describing the new LWP. The LWP should already be stopped
932 (with an exception for the very first LWP). */
d6b0e80f
AC
933
934static struct lwp_info *
935add_lwp (ptid_t ptid)
936{
937 struct lwp_info *lp;
938
939 gdb_assert (is_lwp (ptid));
940
941 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
942
943 memset (lp, 0, sizeof (struct lwp_info));
944
945 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
946
947 lp->ptid = ptid;
948
949 lp->next = lwp_list;
950 lwp_list = lp;
f973ed9c 951 ++num_lwps;
d6b0e80f 952
9f0bdab8
DJ
953 if (num_lwps > 1 && linux_nat_new_thread != NULL)
954 linux_nat_new_thread (ptid);
955
d6b0e80f
AC
956 return lp;
957}
958
959/* Remove the LWP specified by PID from the list. */
960
961static void
962delete_lwp (ptid_t ptid)
963{
964 struct lwp_info *lp, *lpprev;
965
966 lpprev = NULL;
967
968 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
969 if (ptid_equal (lp->ptid, ptid))
970 break;
971
972 if (!lp)
973 return;
974
d6b0e80f
AC
975 num_lwps--;
976
977 if (lpprev)
978 lpprev->next = lp->next;
979 else
980 lwp_list = lp->next;
981
982 xfree (lp);
983}
984
985/* Return a pointer to the structure describing the LWP corresponding
986 to PID. If no corresponding LWP could be found, return NULL. */
987
988static struct lwp_info *
989find_lwp_pid (ptid_t ptid)
990{
991 struct lwp_info *lp;
992 int lwp;
993
994 if (is_lwp (ptid))
995 lwp = GET_LWP (ptid);
996 else
997 lwp = GET_PID (ptid);
998
999 for (lp = lwp_list; lp; lp = lp->next)
1000 if (lwp == GET_LWP (lp->ptid))
1001 return lp;
1002
1003 return NULL;
1004}
1005
1006/* Call CALLBACK with its second argument set to DATA for every LWP in
1007 the list. If CALLBACK returns 1 for a particular LWP, return a
1008 pointer to the structure describing that LWP immediately.
1009 Otherwise return NULL. */
1010
1011struct lwp_info *
1012iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
1013{
1014 struct lwp_info *lp, *lpnext;
1015
1016 for (lp = lwp_list; lp; lp = lpnext)
1017 {
1018 lpnext = lp->next;
1019 if ((*callback) (lp, data))
1020 return lp;
1021 }
1022
1023 return NULL;
1024}
1025
f973ed9c
DJ
1026/* Update our internal state when changing from one fork (checkpoint,
1027 et cetera) to another indicated by NEW_PTID. We can only switch
1028 single-threaded applications, so we only create one new LWP, and
1029 the previous list is discarded. */
1030
1031void
1032linux_nat_switch_fork (ptid_t new_ptid)
1033{
1034 struct lwp_info *lp;
1035
728c8f58 1036 init_thread_list ();
f973ed9c
DJ
1037 init_lwp_list ();
1038 lp = add_lwp (new_ptid);
728c8f58 1039 add_thread_silent (new_ptid);
f973ed9c
DJ
1040 lp->stopped = 1;
1041}
1042
e26af52f
DJ
1043/* Record a PTID for later deletion. */
1044
1045struct saved_ptids
1046{
1047 ptid_t ptid;
1048 struct saved_ptids *next;
1049};
1050static struct saved_ptids *threads_to_delete;
1051
1052static void
1053record_dead_thread (ptid_t ptid)
1054{
1055 struct saved_ptids *p = xmalloc (sizeof (struct saved_ptids));
1056 p->ptid = ptid;
1057 p->next = threads_to_delete;
1058 threads_to_delete = p;
1059}
1060
1061/* Delete any dead threads which are not the current thread. */
1062
1063static void
1064prune_lwps (void)
1065{
1066 struct saved_ptids **p = &threads_to_delete;
1067
1068 while (*p)
1069 if (! ptid_equal ((*p)->ptid, inferior_ptid))
1070 {
1071 struct saved_ptids *tmp = *p;
1072 delete_thread (tmp->ptid);
1073 *p = tmp->next;
1074 xfree (tmp);
1075 }
1076 else
1077 p = &(*p)->next;
1078}
1079
e26af52f
DJ
1080/* Handle the exit of a single thread LP. */
1081
1082static void
1083exit_lwp (struct lwp_info *lp)
1084{
063bfe2e
VP
1085 struct thread_info *th = find_thread_pid (lp->ptid);
1086
1087 if (th)
e26af52f 1088 {
17faa917
DJ
1089 if (print_thread_events)
1090 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1091
e26af52f
DJ
1092 /* Core GDB cannot deal with us deleting the current thread. */
1093 if (!ptid_equal (lp->ptid, inferior_ptid))
1094 delete_thread (lp->ptid);
1095 else
1096 record_dead_thread (lp->ptid);
e26af52f
DJ
1097 }
1098
1099 delete_lwp (lp->ptid);
1100}
1101
a0ef4274
DJ
1102/* Detect `T (stopped)' in `/proc/PID/status'.
1103 Other states including `T (tracing stop)' are reported as false. */
1104
1105static int
1106pid_is_stopped (pid_t pid)
1107{
1108 FILE *status_file;
1109 char buf[100];
1110 int retval = 0;
1111
1112 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1113 status_file = fopen (buf, "r");
1114 if (status_file != NULL)
1115 {
1116 int have_state = 0;
1117
1118 while (fgets (buf, sizeof (buf), status_file))
1119 {
1120 if (strncmp (buf, "State:", 6) == 0)
1121 {
1122 have_state = 1;
1123 break;
1124 }
1125 }
1126 if (have_state && strstr (buf, "T (stopped)") != NULL)
1127 retval = 1;
1128 fclose (status_file);
1129 }
1130 return retval;
1131}
1132
1133/* Wait for the LWP specified by LP, which we have just attached to.
1134 Returns a wait status for that LWP, to cache. */
1135
1136static int
1137linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1138 int *signalled)
1139{
1140 pid_t new_pid, pid = GET_LWP (ptid);
1141 int status;
1142
1143 if (pid_is_stopped (pid))
1144 {
1145 if (debug_linux_nat)
1146 fprintf_unfiltered (gdb_stdlog,
1147 "LNPAW: Attaching to a stopped process\n");
1148
1149 /* The process is definitely stopped. It is in a job control
1150 stop, unless the kernel predates the TASK_STOPPED /
1151 TASK_TRACED distinction, in which case it might be in a
1152 ptrace stop. Make sure it is in a ptrace stop; from there we
1153 can kill it, signal it, et cetera.
1154
1155 First make sure there is a pending SIGSTOP. Since we are
1156 already attached, the process can not transition from stopped
1157 to running without a PTRACE_CONT; so we know this signal will
1158 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1159 probably already in the queue (unless this kernel is old
1160 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1161 is not an RT signal, it can only be queued once. */
1162 kill_lwp (pid, SIGSTOP);
1163
1164 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1165 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1166 ptrace (PTRACE_CONT, pid, 0, 0);
1167 }
1168
1169 /* Make sure the initial process is stopped. The user-level threads
1170 layer might want to poke around in the inferior, and that won't
1171 work if things haven't stabilized yet. */
1172 new_pid = my_waitpid (pid, &status, 0);
1173 if (new_pid == -1 && errno == ECHILD)
1174 {
1175 if (first)
1176 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1177
1178 /* Try again with __WCLONE to check cloned processes. */
1179 new_pid = my_waitpid (pid, &status, __WCLONE);
1180 *cloned = 1;
1181 }
1182
1183 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1184
1185 if (WSTOPSIG (status) != SIGSTOP)
1186 {
1187 *signalled = 1;
1188 if (debug_linux_nat)
1189 fprintf_unfiltered (gdb_stdlog,
1190 "LNPAW: Received %s after attaching\n",
1191 status_to_str (status));
1192 }
1193
1194 return status;
1195}
1196
1197/* Attach to the LWP specified by PID. Return 0 if successful or -1
1198 if the new LWP could not be attached. */
d6b0e80f 1199
9ee57c33 1200int
93815fbf 1201lin_lwp_attach_lwp (ptid_t ptid)
d6b0e80f 1202{
9ee57c33 1203 struct lwp_info *lp;
84e46146 1204 enum sigchld_state async_events_original_state;
d6b0e80f
AC
1205
1206 gdb_assert (is_lwp (ptid));
1207
84e46146 1208 async_events_original_state = linux_nat_async_events (sigchld_sync);
d6b0e80f 1209
9ee57c33 1210 lp = find_lwp_pid (ptid);
d6b0e80f
AC
1211
1212 /* We assume that we're already attached to any LWP that has an id
1213 equal to the overall process id, and to any LWP that is already
1214 in our list of LWPs. If we're not seeing exit events from threads
1215 and we've had PID wraparound since we last tried to stop all threads,
1216 this assumption might be wrong; fortunately, this is very unlikely
1217 to happen. */
9ee57c33 1218 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
d6b0e80f 1219 {
a0ef4274 1220 int status, cloned = 0, signalled = 0;
d6b0e80f
AC
1221
1222 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
9ee57c33
DJ
1223 {
1224 /* If we fail to attach to the thread, issue a warning,
1225 but continue. One way this can happen is if thread
e9efe249 1226 creation is interrupted; as of Linux kernel 2.6.19, a
9ee57c33
DJ
1227 bug may place threads in the thread list and then fail
1228 to create them. */
1229 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1230 safe_strerror (errno));
1231 return -1;
1232 }
1233
d6b0e80f
AC
1234 if (debug_linux_nat)
1235 fprintf_unfiltered (gdb_stdlog,
1236 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1237 target_pid_to_str (ptid));
1238
a0ef4274
DJ
1239 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1240 lp = add_lwp (ptid);
1241 lp->stopped = 1;
1242 lp->cloned = cloned;
1243 lp->signalled = signalled;
1244 if (WSTOPSIG (status) != SIGSTOP)
d6b0e80f 1245 {
a0ef4274
DJ
1246 lp->resumed = 1;
1247 lp->status = status;
d6b0e80f
AC
1248 }
1249
a0ef4274 1250 target_post_attach (GET_LWP (lp->ptid));
d6b0e80f
AC
1251
1252 if (debug_linux_nat)
1253 {
1254 fprintf_unfiltered (gdb_stdlog,
1255 "LLAL: waitpid %s received %s\n",
1256 target_pid_to_str (ptid),
1257 status_to_str (status));
1258 }
1259 }
1260 else
1261 {
1262 /* We assume that the LWP representing the original process is
1263 already stopped. Mark it as stopped in the data structure
155bd5d1
AC
1264 that the GNU/linux ptrace layer uses to keep track of
1265 threads. Note that this won't have already been done since
1266 the main thread will have, we assume, been stopped by an
1267 attach from a different layer. */
9ee57c33
DJ
1268 if (lp == NULL)
1269 lp = add_lwp (ptid);
d6b0e80f
AC
1270 lp->stopped = 1;
1271 }
9ee57c33 1272
84e46146 1273 linux_nat_async_events (async_events_original_state);
9ee57c33 1274 return 0;
d6b0e80f
AC
1275}
1276
b84876c2
PA
1277static void
1278linux_nat_create_inferior (char *exec_file, char *allargs, char **env,
1279 int from_tty)
1280{
1281 int saved_async = 0;
1282
1283 /* The fork_child mechanism is synchronous and calls target_wait, so
1284 we have to mask the async mode. */
1285
1286 if (target_can_async_p ())
84e46146
PA
1287 /* Mask async mode. Creating a child requires a loop calling
1288 wait_for_inferior currently. */
b84876c2
PA
1289 saved_async = linux_nat_async_mask (0);
1290 else
1291 {
1292 /* Restore the original signal mask. */
1293 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1294 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1295 suspend_mask = normal_mask;
1296 sigdelset (&suspend_mask, SIGCHLD);
1297 }
1298
84e46146
PA
1299 /* Set SIGCHLD to the default action, until after execing the child,
1300 since the inferior inherits the superior's signal mask. It will
1301 be blocked again in linux_nat_wait, which is only reached after
1302 the inferior execing. */
1303 linux_nat_async_events (sigchld_default);
1304
b84876c2
PA
1305 linux_ops->to_create_inferior (exec_file, allargs, env, from_tty);
1306
1307 if (saved_async)
1308 linux_nat_async_mask (saved_async);
1309}
1310
d6b0e80f
AC
1311static void
1312linux_nat_attach (char *args, int from_tty)
1313{
1314 struct lwp_info *lp;
d6b0e80f
AC
1315 int status;
1316
1317 /* FIXME: We should probably accept a list of process id's, and
1318 attach all of them. */
10d6c8cd 1319 linux_ops->to_attach (args, from_tty);
d6b0e80f 1320
b84876c2
PA
1321 if (!target_can_async_p ())
1322 {
1323 /* Restore the original signal mask. */
1324 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1325 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1326 suspend_mask = normal_mask;
1327 sigdelset (&suspend_mask, SIGCHLD);
1328 }
1329
9f0bdab8
DJ
1330 /* Add the initial process as the first LWP to the list. */
1331 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1332 lp = add_lwp (inferior_ptid);
a0ef4274
DJ
1333
1334 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1335 &lp->signalled);
1336 lp->stopped = 1;
9f0bdab8 1337
403fe197
PA
1338 /* If this process is not using thread_db, then we still don't
1339 detect any other threads, but add at least this one. */
1340 add_thread_silent (lp->ptid);
1341
a0ef4274 1342 /* Save the wait status to report later. */
d6b0e80f 1343 lp->resumed = 1;
a0ef4274
DJ
1344 if (debug_linux_nat)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "LNA: waitpid %ld, saving status %s\n",
1347 (long) GET_PID (lp->ptid), status_to_str (status));
710151dd
PA
1348
1349 if (!target_can_async_p ())
a0ef4274 1350 lp->status = status;
710151dd
PA
1351 else
1352 {
1353 /* We already waited for this LWP, so put the wait result on the
1354 pipe. The event loop will wake up and gets us to handling
1355 this event. */
a0ef4274
DJ
1356 linux_nat_event_pipe_push (GET_PID (lp->ptid), status,
1357 lp->cloned ? __WCLONE : 0);
b84876c2
PA
1358 /* Register in the event loop. */
1359 target_async (inferior_event_handler, 0);
d6b0e80f
AC
1360 }
1361}
1362
a0ef4274
DJ
1363/* Get pending status of LP. */
1364static int
1365get_pending_status (struct lwp_info *lp, int *status)
1366{
1367 struct target_waitstatus last;
1368 ptid_t last_ptid;
1369
1370 get_last_target_status (&last_ptid, &last);
1371
1372 /* If this lwp is the ptid that GDB is processing an event from, the
1373 signal will be in stop_signal. Otherwise, in all-stop + sync
1374 mode, we may cache pending events in lp->status while trying to
1375 stop all threads (see stop_wait_callback). In async mode, the
1376 events are always cached in waitpid_queue. */
1377
1378 *status = 0;
1379 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1380 {
1381 if (stop_signal != TARGET_SIGNAL_0
1382 && signal_pass_state (stop_signal))
1383 *status = W_STOPCODE (target_signal_to_host (stop_signal));
1384 }
1385 else if (target_can_async_p ())
1386 queued_waitpid (GET_LWP (lp->ptid), status, __WALL);
1387 else
1388 *status = lp->status;
1389
1390 return 0;
1391}
1392
d6b0e80f
AC
1393static int
1394detach_callback (struct lwp_info *lp, void *data)
1395{
1396 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1397
1398 if (debug_linux_nat && lp->status)
1399 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1400 strsignal (WSTOPSIG (lp->status)),
1401 target_pid_to_str (lp->ptid));
1402
a0ef4274
DJ
1403 /* If there is a pending SIGSTOP, get rid of it. */
1404 if (lp->signalled)
d6b0e80f 1405 {
d6b0e80f
AC
1406 if (debug_linux_nat)
1407 fprintf_unfiltered (gdb_stdlog,
a0ef4274
DJ
1408 "DC: Sending SIGCONT to %s\n",
1409 target_pid_to_str (lp->ptid));
d6b0e80f 1410
a0ef4274 1411 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
d6b0e80f 1412 lp->signalled = 0;
d6b0e80f
AC
1413 }
1414
1415 /* We don't actually detach from the LWP that has an id equal to the
1416 overall process id just yet. */
1417 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1418 {
a0ef4274
DJ
1419 int status = 0;
1420
1421 /* Pass on any pending signal for this LWP. */
1422 get_pending_status (lp, &status);
1423
d6b0e80f
AC
1424 errno = 0;
1425 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
a0ef4274 1426 WSTOPSIG (status)) < 0)
8a3fe4f8 1427 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
d6b0e80f
AC
1428 safe_strerror (errno));
1429
1430 if (debug_linux_nat)
1431 fprintf_unfiltered (gdb_stdlog,
1432 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1433 target_pid_to_str (lp->ptid),
1434 strsignal (WSTOPSIG (lp->status)));
1435
1436 delete_lwp (lp->ptid);
1437 }
1438
1439 return 0;
1440}
1441
1442static void
1443linux_nat_detach (char *args, int from_tty)
1444{
b84876c2 1445 int pid;
a0ef4274
DJ
1446 int status;
1447 enum target_signal sig;
1448
b84876c2
PA
1449 if (target_can_async_p ())
1450 linux_nat_async (NULL, 0);
1451
d6b0e80f
AC
1452 iterate_over_lwps (detach_callback, NULL);
1453
1454 /* Only the initial process should be left right now. */
1455 gdb_assert (num_lwps == 1);
1456
a0ef4274
DJ
1457 /* Pass on any pending signal for the last LWP. */
1458 if ((args == NULL || *args == '\0')
1459 && get_pending_status (lwp_list, &status) != -1
1460 && WIFSTOPPED (status))
1461 {
1462 /* Put the signal number in ARGS so that inf_ptrace_detach will
1463 pass it along with PTRACE_DETACH. */
1464 args = alloca (8);
1465 sprintf (args, "%d", (int) WSTOPSIG (status));
1466 fprintf_unfiltered (gdb_stdlog,
1467 "LND: Sending signal %s to %s\n",
1468 args,
1469 target_pid_to_str (lwp_list->ptid));
1470 }
1471
d6b0e80f
AC
1472 /* Destroy LWP info; it's no longer valid. */
1473 init_lwp_list ();
1474
b84876c2
PA
1475 pid = GET_PID (inferior_ptid);
1476 inferior_ptid = pid_to_ptid (pid);
10d6c8cd 1477 linux_ops->to_detach (args, from_tty);
b84876c2
PA
1478
1479 if (target_can_async_p ())
1480 drain_queued_events (pid);
d6b0e80f
AC
1481}
1482
1483/* Resume LP. */
1484
1485static int
1486resume_callback (struct lwp_info *lp, void *data)
1487{
1488 if (lp->stopped && lp->status == 0)
1489 {
10d6c8cd
DJ
1490 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
1491 0, TARGET_SIGNAL_0);
d6b0e80f
AC
1492 if (debug_linux_nat)
1493 fprintf_unfiltered (gdb_stdlog,
1494 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1495 target_pid_to_str (lp->ptid));
1496 lp->stopped = 0;
1497 lp->step = 0;
9f0bdab8 1498 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
d6b0e80f
AC
1499 }
1500
1501 return 0;
1502}
1503
1504static int
1505resume_clear_callback (struct lwp_info *lp, void *data)
1506{
1507 lp->resumed = 0;
1508 return 0;
1509}
1510
1511static int
1512resume_set_callback (struct lwp_info *lp, void *data)
1513{
1514 lp->resumed = 1;
1515 return 0;
1516}
1517
1518static void
1519linux_nat_resume (ptid_t ptid, int step, enum target_signal signo)
1520{
1521 struct lwp_info *lp;
1522 int resume_all;
1523
76f50ad1
DJ
1524 if (debug_linux_nat)
1525 fprintf_unfiltered (gdb_stdlog,
1526 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1527 step ? "step" : "resume",
1528 target_pid_to_str (ptid),
1529 signo ? strsignal (signo) : "0",
1530 target_pid_to_str (inferior_ptid));
1531
e26af52f
DJ
1532 prune_lwps ();
1533
b84876c2
PA
1534 if (target_can_async_p ())
1535 /* Block events while we're here. */
84e46146 1536 linux_nat_async_events (sigchld_sync);
b84876c2 1537
d6b0e80f
AC
1538 /* A specific PTID means `step only this process id'. */
1539 resume_all = (PIDGET (ptid) == -1);
1540
1541 if (resume_all)
1542 iterate_over_lwps (resume_set_callback, NULL);
1543 else
1544 iterate_over_lwps (resume_clear_callback, NULL);
1545
1546 /* If PID is -1, it's the current inferior that should be
1547 handled specially. */
1548 if (PIDGET (ptid) == -1)
1549 ptid = inferior_ptid;
1550
1551 lp = find_lwp_pid (ptid);
9f0bdab8 1552 gdb_assert (lp != NULL);
d6b0e80f 1553
9f0bdab8 1554 ptid = pid_to_ptid (GET_LWP (lp->ptid));
d6b0e80f 1555
9f0bdab8
DJ
1556 /* Remember if we're stepping. */
1557 lp->step = step;
d6b0e80f 1558
9f0bdab8
DJ
1559 /* Mark this LWP as resumed. */
1560 lp->resumed = 1;
76f50ad1 1561
9f0bdab8
DJ
1562 /* If we have a pending wait status for this thread, there is no
1563 point in resuming the process. But first make sure that
1564 linux_nat_wait won't preemptively handle the event - we
1565 should never take this short-circuit if we are going to
1566 leave LP running, since we have skipped resuming all the
1567 other threads. This bit of code needs to be synchronized
1568 with linux_nat_wait. */
76f50ad1 1569
710151dd
PA
1570 /* In async mode, we never have pending wait status. */
1571 if (target_can_async_p () && lp->status)
1572 internal_error (__FILE__, __LINE__, "Pending status in async mode");
1573
9f0bdab8
DJ
1574 if (lp->status && WIFSTOPPED (lp->status))
1575 {
1576 int saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
76f50ad1 1577
9f0bdab8
DJ
1578 if (signal_stop_state (saved_signo) == 0
1579 && signal_print_state (saved_signo) == 0
1580 && signal_pass_state (saved_signo) == 1)
d6b0e80f 1581 {
9f0bdab8
DJ
1582 if (debug_linux_nat)
1583 fprintf_unfiltered (gdb_stdlog,
1584 "LLR: Not short circuiting for ignored "
1585 "status 0x%x\n", lp->status);
1586
d6b0e80f
AC
1587 /* FIXME: What should we do if we are supposed to continue
1588 this thread with a signal? */
1589 gdb_assert (signo == TARGET_SIGNAL_0);
9f0bdab8
DJ
1590 signo = saved_signo;
1591 lp->status = 0;
1592 }
1593 }
76f50ad1 1594
9f0bdab8
DJ
1595 if (lp->status)
1596 {
1597 /* FIXME: What should we do if we are supposed to continue
1598 this thread with a signal? */
1599 gdb_assert (signo == TARGET_SIGNAL_0);
76f50ad1 1600
9f0bdab8
DJ
1601 if (debug_linux_nat)
1602 fprintf_unfiltered (gdb_stdlog,
1603 "LLR: Short circuiting for status 0x%x\n",
1604 lp->status);
d6b0e80f 1605
9f0bdab8 1606 return;
d6b0e80f
AC
1607 }
1608
9f0bdab8
DJ
1609 /* Mark LWP as not stopped to prevent it from being continued by
1610 resume_callback. */
1611 lp->stopped = 0;
1612
d6b0e80f
AC
1613 if (resume_all)
1614 iterate_over_lwps (resume_callback, NULL);
1615
10d6c8cd 1616 linux_ops->to_resume (ptid, step, signo);
9f0bdab8
DJ
1617 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1618
d6b0e80f
AC
1619 if (debug_linux_nat)
1620 fprintf_unfiltered (gdb_stdlog,
1621 "LLR: %s %s, %s (resume event thread)\n",
1622 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1623 target_pid_to_str (ptid),
1624 signo ? strsignal (signo) : "0");
b84876c2
PA
1625
1626 if (target_can_async_p ())
8ea051c5 1627 target_async (inferior_event_handler, 0);
d6b0e80f
AC
1628}
1629
1630/* Issue kill to specified lwp. */
1631
1632static int tkill_failed;
1633
1634static int
1635kill_lwp (int lwpid, int signo)
1636{
1637 errno = 0;
1638
1639/* Use tkill, if possible, in case we are using nptl threads. If tkill
1640 fails, then we are not using nptl threads and we should be using kill. */
1641
1642#ifdef HAVE_TKILL_SYSCALL
1643 if (!tkill_failed)
1644 {
1645 int ret = syscall (__NR_tkill, lwpid, signo);
1646 if (errno != ENOSYS)
1647 return ret;
1648 errno = 0;
1649 tkill_failed = 1;
1650 }
1651#endif
1652
1653 return kill (lwpid, signo);
1654}
1655
3d799a95
DJ
1656/* Handle a GNU/Linux extended wait response. If we see a clone
1657 event, we need to add the new LWP to our list (and not report the
1658 trap to higher layers). This function returns non-zero if the
1659 event should be ignored and we should wait again. If STOPPING is
1660 true, the new LWP remains stopped, otherwise it is continued. */
d6b0e80f
AC
1661
1662static int
3d799a95
DJ
1663linux_handle_extended_wait (struct lwp_info *lp, int status,
1664 int stopping)
d6b0e80f 1665{
3d799a95
DJ
1666 int pid = GET_LWP (lp->ptid);
1667 struct target_waitstatus *ourstatus = &lp->waitstatus;
1668 struct lwp_info *new_lp = NULL;
1669 int event = status >> 16;
d6b0e80f 1670
3d799a95
DJ
1671 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1672 || event == PTRACE_EVENT_CLONE)
d6b0e80f 1673 {
3d799a95
DJ
1674 unsigned long new_pid;
1675 int ret;
1676
1677 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
6fc19103 1678
3d799a95
DJ
1679 /* If we haven't already seen the new PID stop, wait for it now. */
1680 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1681 {
1682 /* The new child has a pending SIGSTOP. We can't affect it until it
1683 hits the SIGSTOP, but we're already attached. */
1684 ret = my_waitpid (new_pid, &status,
1685 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1686 if (ret == -1)
1687 perror_with_name (_("waiting for new child"));
1688 else if (ret != new_pid)
1689 internal_error (__FILE__, __LINE__,
1690 _("wait returned unexpected PID %d"), ret);
1691 else if (!WIFSTOPPED (status))
1692 internal_error (__FILE__, __LINE__,
1693 _("wait returned unexpected status 0x%x"), status);
1694 }
1695
1696 ourstatus->value.related_pid = new_pid;
1697
1698 if (event == PTRACE_EVENT_FORK)
1699 ourstatus->kind = TARGET_WAITKIND_FORKED;
1700 else if (event == PTRACE_EVENT_VFORK)
1701 ourstatus->kind = TARGET_WAITKIND_VFORKED;
6fc19103 1702 else
3d799a95
DJ
1703 {
1704 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1705 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
1706 new_lp->cloned = 1;
d6b0e80f 1707
3d799a95
DJ
1708 if (WSTOPSIG (status) != SIGSTOP)
1709 {
1710 /* This can happen if someone starts sending signals to
1711 the new thread before it gets a chance to run, which
1712 have a lower number than SIGSTOP (e.g. SIGUSR1).
1713 This is an unlikely case, and harder to handle for
1714 fork / vfork than for clone, so we do not try - but
1715 we handle it for clone events here. We'll send
1716 the other signal on to the thread below. */
1717
1718 new_lp->signalled = 1;
1719 }
1720 else
1721 status = 0;
d6b0e80f 1722
3d799a95
DJ
1723 if (stopping)
1724 new_lp->stopped = 1;
1725 else
1726 {
1727 new_lp->resumed = 1;
1728 ptrace (PTRACE_CONT, lp->waitstatus.value.related_pid, 0,
1729 status ? WSTOPSIG (status) : 0);
1730 }
d6b0e80f 1731
3d799a95
DJ
1732 if (debug_linux_nat)
1733 fprintf_unfiltered (gdb_stdlog,
1734 "LHEW: Got clone event from LWP %ld, resuming\n",
1735 GET_LWP (lp->ptid));
1736 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1737
1738 return 1;
1739 }
1740
1741 return 0;
d6b0e80f
AC
1742 }
1743
3d799a95
DJ
1744 if (event == PTRACE_EVENT_EXEC)
1745 {
1746 ourstatus->kind = TARGET_WAITKIND_EXECD;
1747 ourstatus->value.execd_pathname
6d8fd2b7 1748 = xstrdup (linux_child_pid_to_exec_file (pid));
3d799a95
DJ
1749
1750 if (linux_parent_pid)
1751 {
1752 detach_breakpoints (linux_parent_pid);
1753 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
1754
1755 linux_parent_pid = 0;
1756 }
1757
25b22b0a
PA
1758 /* At this point, all inserted breakpoints are gone. Doing this
1759 as soon as we detect an exec prevents the badness of deleting
1760 a breakpoint writing the current "shadow contents" to lift
1761 the bp. That shadow is NOT valid after an exec.
1762
1763 Note that we have to do this after the detach_breakpoints
1764 call above, otherwise breakpoints wouldn't be lifted from the
1765 parent on a vfork, because detach_breakpoints would think
1766 that breakpoints are not inserted. */
1767 mark_breakpoints_out ();
3d799a95
DJ
1768 return 0;
1769 }
1770
1771 internal_error (__FILE__, __LINE__,
1772 _("unknown ptrace event %d"), event);
d6b0e80f
AC
1773}
1774
1775/* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
1776 exited. */
1777
1778static int
1779wait_lwp (struct lwp_info *lp)
1780{
1781 pid_t pid;
1782 int status;
1783 int thread_dead = 0;
1784
1785 gdb_assert (!lp->stopped);
1786 gdb_assert (lp->status == 0);
1787
58aecb61 1788 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
d6b0e80f
AC
1789 if (pid == -1 && errno == ECHILD)
1790 {
58aecb61 1791 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
d6b0e80f
AC
1792 if (pid == -1 && errno == ECHILD)
1793 {
1794 /* The thread has previously exited. We need to delete it
1795 now because, for some vendor 2.4 kernels with NPTL
1796 support backported, there won't be an exit event unless
1797 it is the main thread. 2.6 kernels will report an exit
1798 event for each thread that exits, as expected. */
1799 thread_dead = 1;
1800 if (debug_linux_nat)
1801 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
1802 target_pid_to_str (lp->ptid));
1803 }
1804 }
1805
1806 if (!thread_dead)
1807 {
1808 gdb_assert (pid == GET_LWP (lp->ptid));
1809
1810 if (debug_linux_nat)
1811 {
1812 fprintf_unfiltered (gdb_stdlog,
1813 "WL: waitpid %s received %s\n",
1814 target_pid_to_str (lp->ptid),
1815 status_to_str (status));
1816 }
1817 }
1818
1819 /* Check if the thread has exited. */
1820 if (WIFEXITED (status) || WIFSIGNALED (status))
1821 {
1822 thread_dead = 1;
1823 if (debug_linux_nat)
1824 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
1825 target_pid_to_str (lp->ptid));
1826 }
1827
1828 if (thread_dead)
1829 {
e26af52f 1830 exit_lwp (lp);
d6b0e80f
AC
1831 return 0;
1832 }
1833
1834 gdb_assert (WIFSTOPPED (status));
1835
1836 /* Handle GNU/Linux's extended waitstatus for trace events. */
1837 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
1838 {
1839 if (debug_linux_nat)
1840 fprintf_unfiltered (gdb_stdlog,
1841 "WL: Handling extended status 0x%06x\n",
1842 status);
3d799a95 1843 if (linux_handle_extended_wait (lp, status, 1))
d6b0e80f
AC
1844 return wait_lwp (lp);
1845 }
1846
1847 return status;
1848}
1849
9f0bdab8
DJ
1850/* Save the most recent siginfo for LP. This is currently only called
1851 for SIGTRAP; some ports use the si_addr field for
1852 target_stopped_data_address. In the future, it may also be used to
1853 restore the siginfo of requeued signals. */
1854
1855static void
1856save_siginfo (struct lwp_info *lp)
1857{
1858 errno = 0;
1859 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
1860 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
1861
1862 if (errno != 0)
1863 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1864}
1865
d6b0e80f
AC
1866/* Send a SIGSTOP to LP. */
1867
1868static int
1869stop_callback (struct lwp_info *lp, void *data)
1870{
1871 if (!lp->stopped && !lp->signalled)
1872 {
1873 int ret;
1874
1875 if (debug_linux_nat)
1876 {
1877 fprintf_unfiltered (gdb_stdlog,
1878 "SC: kill %s **<SIGSTOP>**\n",
1879 target_pid_to_str (lp->ptid));
1880 }
1881 errno = 0;
1882 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
1883 if (debug_linux_nat)
1884 {
1885 fprintf_unfiltered (gdb_stdlog,
1886 "SC: lwp kill %d %s\n",
1887 ret,
1888 errno ? safe_strerror (errno) : "ERRNO-OK");
1889 }
1890
1891 lp->signalled = 1;
1892 gdb_assert (lp->status == 0);
1893 }
1894
1895 return 0;
1896}
1897
1898/* Wait until LP is stopped. If DATA is non-null it is interpreted as
1899 a pointer to a set of signals to be flushed immediately. */
1900
1901static int
1902stop_wait_callback (struct lwp_info *lp, void *data)
1903{
1904 sigset_t *flush_mask = data;
1905
1906 if (!lp->stopped)
1907 {
1908 int status;
1909
1910 status = wait_lwp (lp);
1911 if (status == 0)
1912 return 0;
1913
1914 /* Ignore any signals in FLUSH_MASK. */
1915 if (flush_mask && sigismember (flush_mask, WSTOPSIG (status)))
1916 {
1917 if (!lp->signalled)
1918 {
1919 lp->stopped = 1;
1920 return 0;
1921 }
1922
1923 errno = 0;
1924 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1925 if (debug_linux_nat)
1926 fprintf_unfiltered (gdb_stdlog,
1927 "PTRACE_CONT %s, 0, 0 (%s)\n",
1928 target_pid_to_str (lp->ptid),
1929 errno ? safe_strerror (errno) : "OK");
1930
1931 return stop_wait_callback (lp, flush_mask);
1932 }
1933
1934 if (WSTOPSIG (status) != SIGSTOP)
1935 {
1936 if (WSTOPSIG (status) == SIGTRAP)
1937 {
1938 /* If a LWP other than the LWP that we're reporting an
1939 event for has hit a GDB breakpoint (as opposed to
1940 some random trap signal), then just arrange for it to
1941 hit it again later. We don't keep the SIGTRAP status
1942 and don't forward the SIGTRAP signal to the LWP. We
1943 will handle the current event, eventually we will
1944 resume all LWPs, and this one will get its breakpoint
1945 trap again.
1946
1947 If we do not do this, then we run the risk that the
1948 user will delete or disable the breakpoint, but the
1949 thread will have already tripped on it. */
1950
9f0bdab8
DJ
1951 /* Save the trap's siginfo in case we need it later. */
1952 save_siginfo (lp);
1953
d6b0e80f
AC
1954 /* Now resume this LWP and get the SIGSTOP event. */
1955 errno = 0;
1956 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1957 if (debug_linux_nat)
1958 {
1959 fprintf_unfiltered (gdb_stdlog,
1960 "PTRACE_CONT %s, 0, 0 (%s)\n",
1961 target_pid_to_str (lp->ptid),
1962 errno ? safe_strerror (errno) : "OK");
1963
1964 fprintf_unfiltered (gdb_stdlog,
1965 "SWC: Candidate SIGTRAP event in %s\n",
1966 target_pid_to_str (lp->ptid));
1967 }
710151dd
PA
1968 /* Hold this event/waitstatus while we check to see if
1969 there are any more (we still want to get that SIGSTOP). */
d6b0e80f 1970 stop_wait_callback (lp, data);
710151dd
PA
1971
1972 if (target_can_async_p ())
d6b0e80f 1973 {
710151dd
PA
1974 /* Don't leave a pending wait status in async mode.
1975 Retrigger the breakpoint. */
1976 if (!cancel_breakpoint (lp))
d6b0e80f 1977 {
710151dd
PA
1978 /* There was no gdb breakpoint set at pc. Put
1979 the event back in the queue. */
1980 if (debug_linux_nat)
1981 fprintf_unfiltered (gdb_stdlog,
1982 "SWC: kill %s, %s\n",
1983 target_pid_to_str (lp->ptid),
1984 status_to_str ((int) status));
1985 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
1986 }
1987 }
1988 else
1989 {
1990 /* Hold the SIGTRAP for handling by
1991 linux_nat_wait. */
1992 /* If there's another event, throw it back into the
1993 queue. */
1994 if (lp->status)
1995 {
1996 if (debug_linux_nat)
1997 fprintf_unfiltered (gdb_stdlog,
1998 "SWC: kill %s, %s\n",
1999 target_pid_to_str (lp->ptid),
2000 status_to_str ((int) status));
2001 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
d6b0e80f 2002 }
710151dd
PA
2003 /* Save the sigtrap event. */
2004 lp->status = status;
d6b0e80f 2005 }
d6b0e80f
AC
2006 return 0;
2007 }
2008 else
2009 {
2010 /* The thread was stopped with a signal other than
2011 SIGSTOP, and didn't accidentally trip a breakpoint. */
2012
2013 if (debug_linux_nat)
2014 {
2015 fprintf_unfiltered (gdb_stdlog,
2016 "SWC: Pending event %s in %s\n",
2017 status_to_str ((int) status),
2018 target_pid_to_str (lp->ptid));
2019 }
2020 /* Now resume this LWP and get the SIGSTOP event. */
2021 errno = 0;
2022 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2023 if (debug_linux_nat)
2024 fprintf_unfiltered (gdb_stdlog,
2025 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2026 target_pid_to_str (lp->ptid),
2027 errno ? safe_strerror (errno) : "OK");
2028
2029 /* Hold this event/waitstatus while we check to see if
2030 there are any more (we still want to get that SIGSTOP). */
2031 stop_wait_callback (lp, data);
710151dd
PA
2032
2033 /* If the lp->status field is still empty, use it to
2034 hold this event. If not, then this event must be
2035 returned to the event queue of the LWP. */
2036 if (lp->status || target_can_async_p ())
d6b0e80f
AC
2037 {
2038 if (debug_linux_nat)
2039 {
2040 fprintf_unfiltered (gdb_stdlog,
2041 "SWC: kill %s, %s\n",
2042 target_pid_to_str (lp->ptid),
2043 status_to_str ((int) status));
2044 }
2045 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2046 }
710151dd
PA
2047 else
2048 lp->status = status;
d6b0e80f
AC
2049 return 0;
2050 }
2051 }
2052 else
2053 {
2054 /* We caught the SIGSTOP that we intended to catch, so
2055 there's no SIGSTOP pending. */
2056 lp->stopped = 1;
2057 lp->signalled = 0;
2058 }
2059 }
2060
2061 return 0;
2062}
2063
2064/* Check whether PID has any pending signals in FLUSH_MASK. If so set
2065 the appropriate bits in PENDING, and return 1 - otherwise return 0. */
2066
2067static int
2068linux_nat_has_pending (int pid, sigset_t *pending, sigset_t *flush_mask)
2069{
2070 sigset_t blocked, ignored;
2071 int i;
2072
2073 linux_proc_pending_signals (pid, pending, &blocked, &ignored);
2074
2075 if (!flush_mask)
2076 return 0;
2077
2078 for (i = 1; i < NSIG; i++)
2079 if (sigismember (pending, i))
2080 if (!sigismember (flush_mask, i)
2081 || sigismember (&blocked, i)
2082 || sigismember (&ignored, i))
2083 sigdelset (pending, i);
2084
2085 if (sigisemptyset (pending))
2086 return 0;
2087
2088 return 1;
2089}
2090
2091/* DATA is interpreted as a mask of signals to flush. If LP has
2092 signals pending, and they are all in the flush mask, then arrange
2093 to flush them. LP should be stopped, as should all other threads
2094 it might share a signal queue with. */
2095
2096static int
2097flush_callback (struct lwp_info *lp, void *data)
2098{
2099 sigset_t *flush_mask = data;
2100 sigset_t pending, intersection, blocked, ignored;
2101 int pid, status;
2102
2103 /* Normally, when an LWP exits, it is removed from the LWP list. The
2104 last LWP isn't removed till later, however. So if there is only
2105 one LWP on the list, make sure it's alive. */
2106 if (lwp_list == lp && lp->next == NULL)
2107 if (!linux_nat_thread_alive (lp->ptid))
2108 return 0;
2109
2110 /* Just because the LWP is stopped doesn't mean that new signals
2111 can't arrive from outside, so this function must be careful of
2112 race conditions. However, because all threads are stopped, we
2113 can assume that the pending mask will not shrink unless we resume
2114 the LWP, and that it will then get another signal. We can't
2115 control which one, however. */
2116
2117 if (lp->status)
2118 {
2119 if (debug_linux_nat)
a3f17187 2120 printf_unfiltered (_("FC: LP has pending status %06x\n"), lp->status);
d6b0e80f
AC
2121 if (WIFSTOPPED (lp->status) && sigismember (flush_mask, WSTOPSIG (lp->status)))
2122 lp->status = 0;
2123 }
2124
3d799a95
DJ
2125 /* While there is a pending signal we would like to flush, continue
2126 the inferior and collect another signal. But if there's already
2127 a saved status that we don't want to flush, we can't resume the
2128 inferior - if it stopped for some other reason we wouldn't have
2129 anywhere to save the new status. In that case, we must leave the
2130 signal unflushed (and possibly generate an extra SIGINT stop).
2131 That's much less bad than losing a signal. */
2132 while (lp->status == 0
2133 && linux_nat_has_pending (GET_LWP (lp->ptid), &pending, flush_mask))
d6b0e80f
AC
2134 {
2135 int ret;
2136
2137 errno = 0;
2138 ret = ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2139 if (debug_linux_nat)
2140 fprintf_unfiltered (gdb_stderr,
2141 "FC: Sent PTRACE_CONT, ret %d %d\n", ret, errno);
2142
2143 lp->stopped = 0;
2144 stop_wait_callback (lp, flush_mask);
2145 if (debug_linux_nat)
2146 fprintf_unfiltered (gdb_stderr,
2147 "FC: Wait finished; saved status is %d\n",
2148 lp->status);
2149 }
2150
2151 return 0;
2152}
2153
2154/* Return non-zero if LP has a wait status pending. */
2155
2156static int
2157status_callback (struct lwp_info *lp, void *data)
2158{
2159 /* Only report a pending wait status if we pretend that this has
2160 indeed been resumed. */
2161 return (lp->status != 0 && lp->resumed);
2162}
2163
2164/* Return non-zero if LP isn't stopped. */
2165
2166static int
2167running_callback (struct lwp_info *lp, void *data)
2168{
2169 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2170}
2171
2172/* Count the LWP's that have had events. */
2173
2174static int
2175count_events_callback (struct lwp_info *lp, void *data)
2176{
2177 int *count = data;
2178
2179 gdb_assert (count != NULL);
2180
2181 /* Count only LWPs that have a SIGTRAP event pending. */
2182 if (lp->status != 0
2183 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2184 (*count)++;
2185
2186 return 0;
2187}
2188
2189/* Select the LWP (if any) that is currently being single-stepped. */
2190
2191static int
2192select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2193{
2194 if (lp->step && lp->status != 0)
2195 return 1;
2196 else
2197 return 0;
2198}
2199
2200/* Select the Nth LWP that has had a SIGTRAP event. */
2201
2202static int
2203select_event_lwp_callback (struct lwp_info *lp, void *data)
2204{
2205 int *selector = data;
2206
2207 gdb_assert (selector != NULL);
2208
2209 /* Select only LWPs that have a SIGTRAP event pending. */
2210 if (lp->status != 0
2211 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2212 if ((*selector)-- == 0)
2213 return 1;
2214
2215 return 0;
2216}
2217
710151dd
PA
2218static int
2219cancel_breakpoint (struct lwp_info *lp)
2220{
2221 /* Arrange for a breakpoint to be hit again later. We don't keep
2222 the SIGTRAP status and don't forward the SIGTRAP signal to the
2223 LWP. We will handle the current event, eventually we will resume
2224 this LWP, and this breakpoint will trap again.
2225
2226 If we do not do this, then we run the risk that the user will
2227 delete or disable the breakpoint, but the LWP will have already
2228 tripped on it. */
2229
515630c5
UW
2230 struct regcache *regcache = get_thread_regcache (lp->ptid);
2231 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2232 CORE_ADDR pc;
2233
2234 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2235 if (breakpoint_inserted_here_p (pc))
710151dd
PA
2236 {
2237 if (debug_linux_nat)
2238 fprintf_unfiltered (gdb_stdlog,
2239 "CB: Push back breakpoint for %s\n",
2240 target_pid_to_str (lp->ptid));
2241
2242 /* Back up the PC if necessary. */
515630c5
UW
2243 if (gdbarch_decr_pc_after_break (gdbarch))
2244 regcache_write_pc (regcache, pc);
2245
710151dd
PA
2246 return 1;
2247 }
2248 return 0;
2249}
2250
d6b0e80f
AC
2251static int
2252cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2253{
2254 struct lwp_info *event_lp = data;
2255
2256 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2257 if (lp == event_lp)
2258 return 0;
2259
2260 /* If a LWP other than the LWP that we're reporting an event for has
2261 hit a GDB breakpoint (as opposed to some random trap signal),
2262 then just arrange for it to hit it again later. We don't keep
2263 the SIGTRAP status and don't forward the SIGTRAP signal to the
2264 LWP. We will handle the current event, eventually we will resume
2265 all LWPs, and this one will get its breakpoint trap again.
2266
2267 If we do not do this, then we run the risk that the user will
2268 delete or disable the breakpoint, but the LWP will have already
2269 tripped on it. */
2270
2271 if (lp->status != 0
2272 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
710151dd
PA
2273 && cancel_breakpoint (lp))
2274 /* Throw away the SIGTRAP. */
2275 lp->status = 0;
d6b0e80f
AC
2276
2277 return 0;
2278}
2279
2280/* Select one LWP out of those that have events pending. */
2281
2282static void
2283select_event_lwp (struct lwp_info **orig_lp, int *status)
2284{
2285 int num_events = 0;
2286 int random_selector;
2287 struct lwp_info *event_lp;
2288
ac264b3b 2289 /* Record the wait status for the original LWP. */
d6b0e80f
AC
2290 (*orig_lp)->status = *status;
2291
2292 /* Give preference to any LWP that is being single-stepped. */
2293 event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
2294 if (event_lp != NULL)
2295 {
2296 if (debug_linux_nat)
2297 fprintf_unfiltered (gdb_stdlog,
2298 "SEL: Select single-step %s\n",
2299 target_pid_to_str (event_lp->ptid));
2300 }
2301 else
2302 {
2303 /* No single-stepping LWP. Select one at random, out of those
2304 which have had SIGTRAP events. */
2305
2306 /* First see how many SIGTRAP events we have. */
2307 iterate_over_lwps (count_events_callback, &num_events);
2308
2309 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2310 random_selector = (int)
2311 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2312
2313 if (debug_linux_nat && num_events > 1)
2314 fprintf_unfiltered (gdb_stdlog,
2315 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2316 num_events, random_selector);
2317
2318 event_lp = iterate_over_lwps (select_event_lwp_callback,
2319 &random_selector);
2320 }
2321
2322 if (event_lp != NULL)
2323 {
2324 /* Switch the event LWP. */
2325 *orig_lp = event_lp;
2326 *status = event_lp->status;
2327 }
2328
2329 /* Flush the wait status for the event LWP. */
2330 (*orig_lp)->status = 0;
2331}
2332
2333/* Return non-zero if LP has been resumed. */
2334
2335static int
2336resumed_callback (struct lwp_info *lp, void *data)
2337{
2338 return lp->resumed;
2339}
2340
d6b0e80f
AC
2341/* Stop an active thread, verify it still exists, then resume it. */
2342
2343static int
2344stop_and_resume_callback (struct lwp_info *lp, void *data)
2345{
2346 struct lwp_info *ptr;
2347
2348 if (!lp->stopped && !lp->signalled)
2349 {
2350 stop_callback (lp, NULL);
2351 stop_wait_callback (lp, NULL);
2352 /* Resume if the lwp still exists. */
2353 for (ptr = lwp_list; ptr; ptr = ptr->next)
2354 if (lp == ptr)
2355 {
2356 resume_callback (lp, NULL);
2357 resume_set_callback (lp, NULL);
2358 }
2359 }
2360 return 0;
2361}
2362
02f3fc28 2363/* Check if we should go on and pass this event to common code.
fa2c6a57 2364 Return the affected lwp if we are, or NULL otherwise. */
02f3fc28
PA
2365static struct lwp_info *
2366linux_nat_filter_event (int lwpid, int status, int options)
2367{
2368 struct lwp_info *lp;
2369
2370 lp = find_lwp_pid (pid_to_ptid (lwpid));
2371
2372 /* Check for stop events reported by a process we didn't already
2373 know about - anything not already in our LWP list.
2374
2375 If we're expecting to receive stopped processes after
2376 fork, vfork, and clone events, then we'll just add the
2377 new one to our list and go back to waiting for the event
2378 to be reported - the stopped process might be returned
2379 from waitpid before or after the event is. */
2380 if (WIFSTOPPED (status) && !lp)
2381 {
2382 linux_record_stopped_pid (lwpid, status);
2383 return NULL;
2384 }
2385
2386 /* Make sure we don't report an event for the exit of an LWP not in
2387 our list, i.e. not part of the current process. This can happen
2388 if we detach from a program we original forked and then it
2389 exits. */
2390 if (!WIFSTOPPED (status) && !lp)
2391 return NULL;
2392
2393 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2394 CLONE_PTRACE processes which do not use the thread library -
2395 otherwise we wouldn't find the new LWP this way. That doesn't
2396 currently work, and the following code is currently unreachable
2397 due to the two blocks above. If it's fixed some day, this code
2398 should be broken out into a function so that we can also pick up
2399 LWPs from the new interface. */
2400 if (!lp)
2401 {
2402 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2403 if (options & __WCLONE)
2404 lp->cloned = 1;
2405
2406 gdb_assert (WIFSTOPPED (status)
2407 && WSTOPSIG (status) == SIGSTOP);
2408 lp->signalled = 1;
2409
2410 if (!in_thread_list (inferior_ptid))
2411 {
2412 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2413 GET_PID (inferior_ptid));
2414 add_thread (inferior_ptid);
2415 }
2416
2417 add_thread (lp->ptid);
2418 }
2419
2420 /* Save the trap's siginfo in case we need it later. */
2421 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2422 save_siginfo (lp);
2423
2424 /* Handle GNU/Linux's extended waitstatus for trace events. */
2425 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2426 {
2427 if (debug_linux_nat)
2428 fprintf_unfiltered (gdb_stdlog,
2429 "LLW: Handling extended status 0x%06x\n",
2430 status);
2431 if (linux_handle_extended_wait (lp, status, 0))
2432 return NULL;
2433 }
2434
2435 /* Check if the thread has exited. */
2436 if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
2437 {
2438 /* If this is the main thread, we must stop all threads and
2439 verify if they are still alive. This is because in the nptl
2440 thread model, there is no signal issued for exiting LWPs
2441 other than the main thread. We only get the main thread exit
2442 signal once all child threads have already exited. If we
2443 stop all the threads and use the stop_wait_callback to check
2444 if they have exited we can determine whether this signal
2445 should be ignored or whether it means the end of the debugged
2446 application, regardless of which threading model is being
2447 used. */
2448 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2449 {
2450 lp->stopped = 1;
2451 iterate_over_lwps (stop_and_resume_callback, NULL);
2452 }
2453
2454 if (debug_linux_nat)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "LLW: %s exited.\n",
2457 target_pid_to_str (lp->ptid));
2458
2459 exit_lwp (lp);
2460
2461 /* If there is at least one more LWP, then the exit signal was
2462 not the end of the debugged application and should be
2463 ignored. */
2464 if (num_lwps > 0)
2465 {
2466 /* Make sure there is at least one thread running. */
2467 gdb_assert (iterate_over_lwps (running_callback, NULL));
2468
2469 /* Discard the event. */
2470 return NULL;
2471 }
2472 }
2473
2474 /* Check if the current LWP has previously exited. In the nptl
2475 thread model, LWPs other than the main thread do not issue
2476 signals when they exit so we must check whenever the thread has
2477 stopped. A similar check is made in stop_wait_callback(). */
2478 if (num_lwps > 1 && !linux_nat_thread_alive (lp->ptid))
2479 {
2480 if (debug_linux_nat)
2481 fprintf_unfiltered (gdb_stdlog,
2482 "LLW: %s exited.\n",
2483 target_pid_to_str (lp->ptid));
2484
2485 exit_lwp (lp);
2486
2487 /* Make sure there is at least one thread running. */
2488 gdb_assert (iterate_over_lwps (running_callback, NULL));
2489
2490 /* Discard the event. */
2491 return NULL;
2492 }
2493
2494 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2495 an attempt to stop an LWP. */
2496 if (lp->signalled
2497 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2498 {
2499 if (debug_linux_nat)
2500 fprintf_unfiltered (gdb_stdlog,
2501 "LLW: Delayed SIGSTOP caught for %s.\n",
2502 target_pid_to_str (lp->ptid));
2503
2504 /* This is a delayed SIGSTOP. */
2505 lp->signalled = 0;
2506
2507 registers_changed ();
2508
2509 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2510 lp->step, TARGET_SIGNAL_0);
2511 if (debug_linux_nat)
2512 fprintf_unfiltered (gdb_stdlog,
2513 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2514 lp->step ?
2515 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2516 target_pid_to_str (lp->ptid));
2517
2518 lp->stopped = 0;
2519 gdb_assert (lp->resumed);
2520
2521 /* Discard the event. */
2522 return NULL;
2523 }
2524
2525 /* An interesting event. */
2526 gdb_assert (lp);
2527 return lp;
2528}
2529
b84876c2
PA
2530/* Get the events stored in the pipe into the local queue, so they are
2531 accessible to queued_waitpid. We need to do this, since it is not
2532 always the case that the event at the head of the pipe is the event
2533 we want. */
2534
2535static void
2536pipe_to_local_event_queue (void)
2537{
2538 if (debug_linux_nat_async)
2539 fprintf_unfiltered (gdb_stdlog,
2540 "PTLEQ: linux_nat_num_queued_events(%d)\n",
2541 linux_nat_num_queued_events);
2542 while (linux_nat_num_queued_events)
2543 {
2544 int lwpid, status, options;
b84876c2 2545 lwpid = linux_nat_event_pipe_pop (&status, &options);
b84876c2
PA
2546 gdb_assert (lwpid > 0);
2547 push_waitpid (lwpid, status, options);
2548 }
2549}
2550
2551/* Get the unprocessed events stored in the local queue back into the
2552 pipe, so the event loop realizes there's something else to
2553 process. */
2554
2555static void
2556local_event_queue_to_pipe (void)
2557{
2558 struct waitpid_result *w = waitpid_queue;
2559 while (w)
2560 {
2561 struct waitpid_result *next = w->next;
2562 linux_nat_event_pipe_push (w->pid,
2563 w->status,
2564 w->options);
2565 xfree (w);
2566 w = next;
2567 }
2568 waitpid_queue = NULL;
2569
2570 if (debug_linux_nat_async)
2571 fprintf_unfiltered (gdb_stdlog,
2572 "LEQTP: linux_nat_num_queued_events(%d)\n",
2573 linux_nat_num_queued_events);
2574}
2575
d6b0e80f
AC
2576static ptid_t
2577linux_nat_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
2578{
2579 struct lwp_info *lp = NULL;
2580 int options = 0;
2581 int status = 0;
2582 pid_t pid = PIDGET (ptid);
2583 sigset_t flush_mask;
2584
b84876c2
PA
2585 if (debug_linux_nat_async)
2586 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2587
f973ed9c
DJ
2588 /* The first time we get here after starting a new inferior, we may
2589 not have added it to the LWP list yet - this is the earliest
2590 moment at which we know its PID. */
2591 if (num_lwps == 0)
2592 {
2593 gdb_assert (!is_lwp (inferior_ptid));
2594
2595 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2596 GET_PID (inferior_ptid));
2597 lp = add_lwp (inferior_ptid);
2598 lp->resumed = 1;
403fe197
PA
2599 /* Add the main thread to GDB's thread list. */
2600 add_thread_silent (lp->ptid);
f973ed9c
DJ
2601 }
2602
d6b0e80f
AC
2603 sigemptyset (&flush_mask);
2604
84e46146
PA
2605 /* Block events while we're here. */
2606 linux_nat_async_events (sigchld_sync);
d6b0e80f
AC
2607
2608retry:
2609
f973ed9c
DJ
2610 /* Make sure there is at least one LWP that has been resumed. */
2611 gdb_assert (iterate_over_lwps (resumed_callback, NULL));
d6b0e80f
AC
2612
2613 /* First check if there is a LWP with a wait status pending. */
2614 if (pid == -1)
2615 {
2616 /* Any LWP that's been resumed will do. */
2617 lp = iterate_over_lwps (status_callback, NULL);
2618 if (lp)
2619 {
710151dd
PA
2620 if (target_can_async_p ())
2621 internal_error (__FILE__, __LINE__,
2622 "Found an LWP with a pending status in async mode.");
2623
d6b0e80f
AC
2624 status = lp->status;
2625 lp->status = 0;
2626
2627 if (debug_linux_nat && status)
2628 fprintf_unfiltered (gdb_stdlog,
2629 "LLW: Using pending wait status %s for %s.\n",
2630 status_to_str (status),
2631 target_pid_to_str (lp->ptid));
2632 }
2633
b84876c2 2634 /* But if we don't find one, we'll have to wait, and check both
d6b0e80f
AC
2635 cloned and uncloned processes. We start with the cloned
2636 processes. */
2637 options = __WCLONE | WNOHANG;
2638 }
2639 else if (is_lwp (ptid))
2640 {
2641 if (debug_linux_nat)
2642 fprintf_unfiltered (gdb_stdlog,
2643 "LLW: Waiting for specific LWP %s.\n",
2644 target_pid_to_str (ptid));
2645
2646 /* We have a specific LWP to check. */
2647 lp = find_lwp_pid (ptid);
2648 gdb_assert (lp);
2649 status = lp->status;
2650 lp->status = 0;
2651
2652 if (debug_linux_nat && status)
2653 fprintf_unfiltered (gdb_stdlog,
2654 "LLW: Using pending wait status %s for %s.\n",
2655 status_to_str (status),
2656 target_pid_to_str (lp->ptid));
2657
2658 /* If we have to wait, take into account whether PID is a cloned
2659 process or not. And we have to convert it to something that
2660 the layer beneath us can understand. */
2661 options = lp->cloned ? __WCLONE : 0;
2662 pid = GET_LWP (ptid);
2663 }
2664
2665 if (status && lp->signalled)
2666 {
2667 /* A pending SIGSTOP may interfere with the normal stream of
2668 events. In a typical case where interference is a problem,
2669 we have a SIGSTOP signal pending for LWP A while
2670 single-stepping it, encounter an event in LWP B, and take the
2671 pending SIGSTOP while trying to stop LWP A. After processing
2672 the event in LWP B, LWP A is continued, and we'll never see
2673 the SIGTRAP associated with the last time we were
2674 single-stepping LWP A. */
2675
2676 /* Resume the thread. It should halt immediately returning the
2677 pending SIGSTOP. */
2678 registers_changed ();
10d6c8cd
DJ
2679 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2680 lp->step, TARGET_SIGNAL_0);
d6b0e80f
AC
2681 if (debug_linux_nat)
2682 fprintf_unfiltered (gdb_stdlog,
2683 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2684 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2685 target_pid_to_str (lp->ptid));
2686 lp->stopped = 0;
2687 gdb_assert (lp->resumed);
2688
2689 /* This should catch the pending SIGSTOP. */
2690 stop_wait_callback (lp, NULL);
2691 }
2692
b84876c2
PA
2693 if (!target_can_async_p ())
2694 {
2695 /* Causes SIGINT to be passed on to the attached process. */
2696 set_sigint_trap ();
2697 set_sigio_trap ();
2698 }
d6b0e80f
AC
2699
2700 while (status == 0)
2701 {
2702 pid_t lwpid;
2703
b84876c2
PA
2704 if (target_can_async_p ())
2705 /* In async mode, don't ever block. Only look at the locally
2706 queued events. */
2707 lwpid = queued_waitpid (pid, &status, options);
2708 else
2709 lwpid = my_waitpid (pid, &status, options);
2710
d6b0e80f
AC
2711 if (lwpid > 0)
2712 {
2713 gdb_assert (pid == -1 || lwpid == pid);
2714
2715 if (debug_linux_nat)
2716 {
2717 fprintf_unfiltered (gdb_stdlog,
2718 "LLW: waitpid %ld received %s\n",
2719 (long) lwpid, status_to_str (status));
2720 }
2721
02f3fc28 2722 lp = linux_nat_filter_event (lwpid, status, options);
d6b0e80f
AC
2723 if (!lp)
2724 {
02f3fc28 2725 /* A discarded event. */
d6b0e80f
AC
2726 status = 0;
2727 continue;
2728 }
2729
2730 break;
2731 }
2732
2733 if (pid == -1)
2734 {
2735 /* Alternate between checking cloned and uncloned processes. */
2736 options ^= __WCLONE;
2737
b84876c2
PA
2738 /* And every time we have checked both:
2739 In async mode, return to event loop;
2740 In sync mode, suspend waiting for a SIGCHLD signal. */
d6b0e80f 2741 if (options & __WCLONE)
b84876c2
PA
2742 {
2743 if (target_can_async_p ())
2744 {
2745 /* No interesting event. */
2746 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2747
2748 /* Get ready for the next event. */
2749 target_async (inferior_event_handler, 0);
2750
2751 if (debug_linux_nat_async)
2752 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
2753
2754 return minus_one_ptid;
2755 }
2756
2757 sigsuspend (&suspend_mask);
2758 }
d6b0e80f
AC
2759 }
2760
2761 /* We shouldn't end up here unless we want to try again. */
2762 gdb_assert (status == 0);
2763 }
2764
b84876c2
PA
2765 if (!target_can_async_p ())
2766 {
2767 clear_sigio_trap ();
2768 clear_sigint_trap ();
2769 }
d6b0e80f
AC
2770
2771 gdb_assert (lp);
2772
2773 /* Don't report signals that GDB isn't interested in, such as
2774 signals that are neither printed nor stopped upon. Stopping all
2775 threads can be a bit time-consuming so if we want decent
2776 performance with heavily multi-threaded programs, especially when
2777 they're using a high frequency timer, we'd better avoid it if we
2778 can. */
2779
2780 if (WIFSTOPPED (status))
2781 {
2782 int signo = target_signal_from_host (WSTOPSIG (status));
2783
d539ed7e
UW
2784 /* If we get a signal while single-stepping, we may need special
2785 care, e.g. to skip the signal handler. Defer to common code. */
2786 if (!lp->step
2787 && signal_stop_state (signo) == 0
d6b0e80f
AC
2788 && signal_print_state (signo) == 0
2789 && signal_pass_state (signo) == 1)
2790 {
2791 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
2792 here? It is not clear we should. GDB may not expect
2793 other threads to run. On the other hand, not resuming
2794 newly attached threads may cause an unwanted delay in
2795 getting them running. */
2796 registers_changed ();
10d6c8cd
DJ
2797 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2798 lp->step, signo);
d6b0e80f
AC
2799 if (debug_linux_nat)
2800 fprintf_unfiltered (gdb_stdlog,
2801 "LLW: %s %s, %s (preempt 'handle')\n",
2802 lp->step ?
2803 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2804 target_pid_to_str (lp->ptid),
2805 signo ? strsignal (signo) : "0");
2806 lp->stopped = 0;
2807 status = 0;
2808 goto retry;
2809 }
2810
2811 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
2812 {
2813 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
2814 forwarded to the entire process group, that is, all LWP's
2815 will receive it. Since we only want to report it once,
2816 we try to flush it from all LWPs except this one. */
2817 sigaddset (&flush_mask, SIGINT);
2818 }
2819 }
2820
2821 /* This LWP is stopped now. */
2822 lp->stopped = 1;
2823
2824 if (debug_linux_nat)
2825 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
2826 status_to_str (status), target_pid_to_str (lp->ptid));
2827
2828 /* Now stop all other LWP's ... */
2829 iterate_over_lwps (stop_callback, NULL);
2830
2831 /* ... and wait until all of them have reported back that they're no
2832 longer running. */
2833 iterate_over_lwps (stop_wait_callback, &flush_mask);
2834 iterate_over_lwps (flush_callback, &flush_mask);
2835
2836 /* If we're not waiting for a specific LWP, choose an event LWP from
2837 among those that have had events. Giving equal priority to all
2838 LWPs that have had events helps prevent starvation. */
2839 if (pid == -1)
2840 select_event_lwp (&lp, &status);
2841
2842 /* Now that we've selected our final event LWP, cancel any
2843 breakpoints in other LWPs that have hit a GDB breakpoint. See
2844 the comment in cancel_breakpoints_callback to find out why. */
2845 iterate_over_lwps (cancel_breakpoints_callback, lp);
2846
d6b0e80f
AC
2847 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2848 {
d6b0e80f
AC
2849 if (debug_linux_nat)
2850 fprintf_unfiltered (gdb_stdlog,
4fdebdd0
PA
2851 "LLW: trap ptid is %s.\n",
2852 target_pid_to_str (lp->ptid));
d6b0e80f 2853 }
d6b0e80f
AC
2854
2855 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2856 {
2857 *ourstatus = lp->waitstatus;
2858 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
2859 }
2860 else
2861 store_waitstatus (ourstatus, status);
2862
b84876c2
PA
2863 /* Get ready for the next event. */
2864 if (target_can_async_p ())
2865 target_async (inferior_event_handler, 0);
2866
2867 if (debug_linux_nat_async)
2868 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
2869
f973ed9c 2870 return lp->ptid;
d6b0e80f
AC
2871}
2872
2873static int
2874kill_callback (struct lwp_info *lp, void *data)
2875{
2876 errno = 0;
2877 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
2878 if (debug_linux_nat)
2879 fprintf_unfiltered (gdb_stdlog,
2880 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
2881 target_pid_to_str (lp->ptid),
2882 errno ? safe_strerror (errno) : "OK");
2883
2884 return 0;
2885}
2886
2887static int
2888kill_wait_callback (struct lwp_info *lp, void *data)
2889{
2890 pid_t pid;
2891
2892 /* We must make sure that there are no pending events (delayed
2893 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
2894 program doesn't interfere with any following debugging session. */
2895
2896 /* For cloned processes we must check both with __WCLONE and
2897 without, since the exit status of a cloned process isn't reported
2898 with __WCLONE. */
2899 if (lp->cloned)
2900 {
2901 do
2902 {
58aecb61 2903 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
e85a822c 2904 if (pid != (pid_t) -1)
d6b0e80f 2905 {
e85a822c
DJ
2906 if (debug_linux_nat)
2907 fprintf_unfiltered (gdb_stdlog,
2908 "KWC: wait %s received unknown.\n",
2909 target_pid_to_str (lp->ptid));
2910 /* The Linux kernel sometimes fails to kill a thread
2911 completely after PTRACE_KILL; that goes from the stop
2912 point in do_fork out to the one in
2913 get_signal_to_deliever and waits again. So kill it
2914 again. */
2915 kill_callback (lp, NULL);
d6b0e80f
AC
2916 }
2917 }
2918 while (pid == GET_LWP (lp->ptid));
2919
2920 gdb_assert (pid == -1 && errno == ECHILD);
2921 }
2922
2923 do
2924 {
58aecb61 2925 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
e85a822c 2926 if (pid != (pid_t) -1)
d6b0e80f 2927 {
e85a822c
DJ
2928 if (debug_linux_nat)
2929 fprintf_unfiltered (gdb_stdlog,
2930 "KWC: wait %s received unk.\n",
2931 target_pid_to_str (lp->ptid));
2932 /* See the call to kill_callback above. */
2933 kill_callback (lp, NULL);
d6b0e80f
AC
2934 }
2935 }
2936 while (pid == GET_LWP (lp->ptid));
2937
2938 gdb_assert (pid == -1 && errno == ECHILD);
2939 return 0;
2940}
2941
2942static void
2943linux_nat_kill (void)
2944{
f973ed9c
DJ
2945 struct target_waitstatus last;
2946 ptid_t last_ptid;
2947 int status;
d6b0e80f 2948
b84876c2
PA
2949 if (target_can_async_p ())
2950 target_async (NULL, 0);
2951
f973ed9c
DJ
2952 /* If we're stopped while forking and we haven't followed yet,
2953 kill the other task. We need to do this first because the
2954 parent will be sleeping if this is a vfork. */
d6b0e80f 2955
f973ed9c 2956 get_last_target_status (&last_ptid, &last);
d6b0e80f 2957
f973ed9c
DJ
2958 if (last.kind == TARGET_WAITKIND_FORKED
2959 || last.kind == TARGET_WAITKIND_VFORKED)
2960 {
2961 ptrace (PT_KILL, last.value.related_pid, 0, 0);
2962 wait (&status);
2963 }
2964
2965 if (forks_exist_p ())
b84876c2
PA
2966 {
2967 linux_fork_killall ();
2968 drain_queued_events (-1);
2969 }
f973ed9c
DJ
2970 else
2971 {
2972 /* Kill all LWP's ... */
2973 iterate_over_lwps (kill_callback, NULL);
2974
2975 /* ... and wait until we've flushed all events. */
2976 iterate_over_lwps (kill_wait_callback, NULL);
2977 }
2978
2979 target_mourn_inferior ();
d6b0e80f
AC
2980}
2981
2982static void
2983linux_nat_mourn_inferior (void)
2984{
d6b0e80f
AC
2985 /* Destroy LWP info; it's no longer valid. */
2986 init_lwp_list ();
2987
f973ed9c 2988 if (! forks_exist_p ())
b84876c2
PA
2989 {
2990 /* Normal case, no other forks available. */
2991 if (target_can_async_p ())
2992 linux_nat_async (NULL, 0);
2993 linux_ops->to_mourn_inferior ();
2994 }
f973ed9c
DJ
2995 else
2996 /* Multi-fork case. The current inferior_ptid has exited, but
2997 there are other viable forks to debug. Delete the exiting
2998 one and context-switch to the first available. */
2999 linux_fork_mourn_inferior ();
d6b0e80f
AC
3000}
3001
10d6c8cd
DJ
3002static LONGEST
3003linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3004 const char *annex, gdb_byte *readbuf,
3005 const gdb_byte *writebuf,
3006 ULONGEST offset, LONGEST len)
d6b0e80f
AC
3007{
3008 struct cleanup *old_chain = save_inferior_ptid ();
10d6c8cd 3009 LONGEST xfer;
d6b0e80f
AC
3010
3011 if (is_lwp (inferior_ptid))
3012 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3013
10d6c8cd
DJ
3014 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3015 offset, len);
d6b0e80f
AC
3016
3017 do_cleanups (old_chain);
3018 return xfer;
3019}
3020
3021static int
3022linux_nat_thread_alive (ptid_t ptid)
3023{
3024 gdb_assert (is_lwp (ptid));
3025
3026 errno = 0;
3027 ptrace (PTRACE_PEEKUSER, GET_LWP (ptid), 0, 0);
3028 if (debug_linux_nat)
3029 fprintf_unfiltered (gdb_stdlog,
3030 "LLTA: PTRACE_PEEKUSER %s, 0, 0 (%s)\n",
3031 target_pid_to_str (ptid),
3032 errno ? safe_strerror (errno) : "OK");
9c0dd46b 3033
155bd5d1
AC
3034 /* Not every Linux kernel implements PTRACE_PEEKUSER. But we can
3035 handle that case gracefully since ptrace will first do a lookup
3036 for the process based upon the passed-in pid. If that fails we
3037 will get either -ESRCH or -EPERM, otherwise the child exists and
3038 is alive. */
a529be7c 3039 if (errno == ESRCH || errno == EPERM)
d6b0e80f
AC
3040 return 0;
3041
3042 return 1;
3043}
3044
3045static char *
3046linux_nat_pid_to_str (ptid_t ptid)
3047{
3048 static char buf[64];
3049
a0ef4274
DJ
3050 if (is_lwp (ptid)
3051 && ((lwp_list && lwp_list->next)
3052 || GET_PID (ptid) != GET_LWP (ptid)))
d6b0e80f
AC
3053 {
3054 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3055 return buf;
3056 }
3057
3058 return normal_pid_to_str (ptid);
3059}
3060
d6b0e80f
AC
3061static void
3062sigchld_handler (int signo)
3063{
b84876c2 3064 if (linux_nat_async_enabled
84e46146 3065 && linux_nat_async_events_state != sigchld_sync
b84876c2
PA
3066 && signo == SIGCHLD)
3067 /* It is *always* a bug to hit this. */
3068 internal_error (__FILE__, __LINE__,
3069 "sigchld_handler called when async events are enabled");
3070
d6b0e80f
AC
3071 /* Do nothing. The only reason for this handler is that it allows
3072 us to use sigsuspend in linux_nat_wait above to wait for the
3073 arrival of a SIGCHLD. */
3074}
3075
dba24537
AC
3076/* Accepts an integer PID; Returns a string representing a file that
3077 can be opened to get the symbols for the child process. */
3078
6d8fd2b7
UW
3079static char *
3080linux_child_pid_to_exec_file (int pid)
dba24537
AC
3081{
3082 char *name1, *name2;
3083
3084 name1 = xmalloc (MAXPATHLEN);
3085 name2 = xmalloc (MAXPATHLEN);
3086 make_cleanup (xfree, name1);
3087 make_cleanup (xfree, name2);
3088 memset (name2, 0, MAXPATHLEN);
3089
3090 sprintf (name1, "/proc/%d/exe", pid);
3091 if (readlink (name1, name2, MAXPATHLEN) > 0)
3092 return name2;
3093 else
3094 return name1;
3095}
3096
3097/* Service function for corefiles and info proc. */
3098
3099static int
3100read_mapping (FILE *mapfile,
3101 long long *addr,
3102 long long *endaddr,
3103 char *permissions,
3104 long long *offset,
3105 char *device, long long *inode, char *filename)
3106{
3107 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3108 addr, endaddr, permissions, offset, device, inode);
3109
2e14c2ea
MS
3110 filename[0] = '\0';
3111 if (ret > 0 && ret != EOF)
dba24537
AC
3112 {
3113 /* Eat everything up to EOL for the filename. This will prevent
3114 weird filenames (such as one with embedded whitespace) from
3115 confusing this code. It also makes this code more robust in
3116 respect to annotations the kernel may add after the filename.
3117
3118 Note the filename is used for informational purposes
3119 only. */
3120 ret += fscanf (mapfile, "%[^\n]\n", filename);
3121 }
2e14c2ea 3122
dba24537
AC
3123 return (ret != 0 && ret != EOF);
3124}
3125
3126/* Fills the "to_find_memory_regions" target vector. Lists the memory
3127 regions in the inferior for a corefile. */
3128
3129static int
3130linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3131 unsigned long,
3132 int, int, int, void *), void *obfd)
3133{
3134 long long pid = PIDGET (inferior_ptid);
3135 char mapsfilename[MAXPATHLEN];
3136 FILE *mapsfile;
3137 long long addr, endaddr, size, offset, inode;
3138 char permissions[8], device[8], filename[MAXPATHLEN];
3139 int read, write, exec;
3140 int ret;
3141
3142 /* Compose the filename for the /proc memory map, and open it. */
3143 sprintf (mapsfilename, "/proc/%lld/maps", pid);
3144 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
8a3fe4f8 3145 error (_("Could not open %s."), mapsfilename);
dba24537
AC
3146
3147 if (info_verbose)
3148 fprintf_filtered (gdb_stdout,
3149 "Reading memory regions from %s\n", mapsfilename);
3150
3151 /* Now iterate until end-of-file. */
3152 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3153 &offset, &device[0], &inode, &filename[0]))
3154 {
3155 size = endaddr - addr;
3156
3157 /* Get the segment's permissions. */
3158 read = (strchr (permissions, 'r') != 0);
3159 write = (strchr (permissions, 'w') != 0);
3160 exec = (strchr (permissions, 'x') != 0);
3161
3162 if (info_verbose)
3163 {
3164 fprintf_filtered (gdb_stdout,
3165 "Save segment, %lld bytes at 0x%s (%c%c%c)",
3166 size, paddr_nz (addr),
3167 read ? 'r' : ' ',
3168 write ? 'w' : ' ', exec ? 'x' : ' ');
b260b6c1 3169 if (filename[0])
dba24537
AC
3170 fprintf_filtered (gdb_stdout, " for %s", filename);
3171 fprintf_filtered (gdb_stdout, "\n");
3172 }
3173
3174 /* Invoke the callback function to create the corefile
3175 segment. */
3176 func (addr, size, read, write, exec, obfd);
3177 }
3178 fclose (mapsfile);
3179 return 0;
3180}
3181
3182/* Records the thread's register state for the corefile note
3183 section. */
3184
3185static char *
3186linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
3187 char *note_data, int *note_size)
3188{
3189 gdb_gregset_t gregs;
3190 gdb_fpregset_t fpregs;
dba24537 3191 unsigned long lwp = ptid_get_lwp (ptid);
594f7785
UW
3192 struct regcache *regcache = get_thread_regcache (ptid);
3193 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4f844a66 3194 const struct regset *regset;
55e969c1 3195 int core_regset_p;
594f7785 3196 struct cleanup *old_chain;
17ea7499
CES
3197 struct core_regset_section *sect_list;
3198 char *gdb_regset;
594f7785
UW
3199
3200 old_chain = save_inferior_ptid ();
3201 inferior_ptid = ptid;
3202 target_fetch_registers (regcache, -1);
3203 do_cleanups (old_chain);
4f844a66
DM
3204
3205 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
17ea7499
CES
3206 sect_list = gdbarch_core_regset_sections (gdbarch);
3207
55e969c1
DM
3208 if (core_regset_p
3209 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3210 sizeof (gregs))) != NULL
3211 && regset->collect_regset != NULL)
594f7785 3212 regset->collect_regset (regset, regcache, -1,
55e969c1 3213 &gregs, sizeof (gregs));
4f844a66 3214 else
594f7785 3215 fill_gregset (regcache, &gregs, -1);
4f844a66 3216
55e969c1
DM
3217 note_data = (char *) elfcore_write_prstatus (obfd,
3218 note_data,
3219 note_size,
3220 lwp,
3221 stop_signal, &gregs);
3222
17ea7499
CES
3223 /* The loop below uses the new struct core_regset_section, which stores
3224 the supported section names and sizes for the core file. Note that
3225 note PRSTATUS needs to be treated specially. But the other notes are
3226 structurally the same, so they can benefit from the new struct. */
3227 if (core_regset_p && sect_list != NULL)
3228 while (sect_list->sect_name != NULL)
3229 {
3230 /* .reg was already handled above. */
3231 if (strcmp (sect_list->sect_name, ".reg") == 0)
3232 {
3233 sect_list++;
3234 continue;
3235 }
3236 regset = gdbarch_regset_from_core_section (gdbarch,
3237 sect_list->sect_name,
3238 sect_list->size);
3239 gdb_assert (regset && regset->collect_regset);
3240 gdb_regset = xmalloc (sect_list->size);
3241 regset->collect_regset (regset, regcache, -1,
3242 gdb_regset, sect_list->size);
3243 note_data = (char *) elfcore_write_register_note (obfd,
3244 note_data,
3245 note_size,
3246 sect_list->sect_name,
3247 gdb_regset,
3248 sect_list->size);
3249 xfree (gdb_regset);
3250 sect_list++;
3251 }
dba24537 3252
17ea7499
CES
3253 /* For architectures that does not have the struct core_regset_section
3254 implemented, we use the old method. When all the architectures have
3255 the new support, the code below should be deleted. */
4f844a66 3256 else
17ea7499
CES
3257 {
3258 if (core_regset_p
3259 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3260 sizeof (fpregs))) != NULL
3261 && regset->collect_regset != NULL)
3262 regset->collect_regset (regset, regcache, -1,
3263 &fpregs, sizeof (fpregs));
3264 else
3265 fill_fpregset (regcache, &fpregs, -1);
3266
3267 note_data = (char *) elfcore_write_prfpreg (obfd,
3268 note_data,
3269 note_size,
3270 &fpregs, sizeof (fpregs));
3271 }
4f844a66 3272
dba24537
AC
3273 return note_data;
3274}
3275
3276struct linux_nat_corefile_thread_data
3277{
3278 bfd *obfd;
3279 char *note_data;
3280 int *note_size;
3281 int num_notes;
3282};
3283
3284/* Called by gdbthread.c once per thread. Records the thread's
3285 register state for the corefile note section. */
3286
3287static int
3288linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3289{
3290 struct linux_nat_corefile_thread_data *args = data;
dba24537 3291
dba24537
AC
3292 args->note_data = linux_nat_do_thread_registers (args->obfd,
3293 ti->ptid,
3294 args->note_data,
3295 args->note_size);
3296 args->num_notes++;
56be3814 3297
dba24537
AC
3298 return 0;
3299}
3300
3301/* Records the register state for the corefile note section. */
3302
3303static char *
3304linux_nat_do_registers (bfd *obfd, ptid_t ptid,
3305 char *note_data, int *note_size)
3306{
dba24537
AC
3307 return linux_nat_do_thread_registers (obfd,
3308 ptid_build (ptid_get_pid (inferior_ptid),
3309 ptid_get_pid (inferior_ptid),
3310 0),
3311 note_data, note_size);
dba24537
AC
3312}
3313
3314/* Fills the "to_make_corefile_note" target vector. Builds the note
3315 section for a corefile, and returns it in a malloc buffer. */
3316
3317static char *
3318linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3319{
3320 struct linux_nat_corefile_thread_data thread_args;
3321 struct cleanup *old_chain;
d99148ef 3322 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
dba24537 3323 char fname[16] = { '\0' };
d99148ef 3324 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
dba24537
AC
3325 char psargs[80] = { '\0' };
3326 char *note_data = NULL;
3327 ptid_t current_ptid = inferior_ptid;
c6826062 3328 gdb_byte *auxv;
dba24537
AC
3329 int auxv_len;
3330
3331 if (get_exec_file (0))
3332 {
3333 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3334 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3335 if (get_inferior_args ())
3336 {
d99148ef
JK
3337 char *string_end;
3338 char *psargs_end = psargs + sizeof (psargs);
3339
3340 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3341 strings fine. */
3342 string_end = memchr (psargs, 0, sizeof (psargs));
3343 if (string_end != NULL)
3344 {
3345 *string_end++ = ' ';
3346 strncpy (string_end, get_inferior_args (),
3347 psargs_end - string_end);
3348 }
dba24537
AC
3349 }
3350 note_data = (char *) elfcore_write_prpsinfo (obfd,
3351 note_data,
3352 note_size, fname, psargs);
3353 }
3354
3355 /* Dump information for threads. */
3356 thread_args.obfd = obfd;
3357 thread_args.note_data = note_data;
3358 thread_args.note_size = note_size;
3359 thread_args.num_notes = 0;
3360 iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
3361 if (thread_args.num_notes == 0)
3362 {
3363 /* iterate_over_threads didn't come up with any threads; just
3364 use inferior_ptid. */
3365 note_data = linux_nat_do_registers (obfd, inferior_ptid,
3366 note_data, note_size);
3367 }
3368 else
3369 {
3370 note_data = thread_args.note_data;
3371 }
3372
13547ab6
DJ
3373 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
3374 NULL, &auxv);
dba24537
AC
3375 if (auxv_len > 0)
3376 {
3377 note_data = elfcore_write_note (obfd, note_data, note_size,
3378 "CORE", NT_AUXV, auxv, auxv_len);
3379 xfree (auxv);
3380 }
3381
3382 make_cleanup (xfree, note_data);
3383 return note_data;
3384}
3385
3386/* Implement the "info proc" command. */
3387
3388static void
3389linux_nat_info_proc_cmd (char *args, int from_tty)
3390{
3391 long long pid = PIDGET (inferior_ptid);
3392 FILE *procfile;
3393 char **argv = NULL;
3394 char buffer[MAXPATHLEN];
3395 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3396 int cmdline_f = 1;
3397 int cwd_f = 1;
3398 int exe_f = 1;
3399 int mappings_f = 0;
3400 int environ_f = 0;
3401 int status_f = 0;
3402 int stat_f = 0;
3403 int all = 0;
3404 struct stat dummy;
3405
3406 if (args)
3407 {
3408 /* Break up 'args' into an argv array. */
3409 if ((argv = buildargv (args)) == NULL)
3410 nomem (0);
3411 else
3412 make_cleanup_freeargv (argv);
3413 }
3414 while (argv != NULL && *argv != NULL)
3415 {
3416 if (isdigit (argv[0][0]))
3417 {
3418 pid = strtoul (argv[0], NULL, 10);
3419 }
3420 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
3421 {
3422 mappings_f = 1;
3423 }
3424 else if (strcmp (argv[0], "status") == 0)
3425 {
3426 status_f = 1;
3427 }
3428 else if (strcmp (argv[0], "stat") == 0)
3429 {
3430 stat_f = 1;
3431 }
3432 else if (strcmp (argv[0], "cmd") == 0)
3433 {
3434 cmdline_f = 1;
3435 }
3436 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
3437 {
3438 exe_f = 1;
3439 }
3440 else if (strcmp (argv[0], "cwd") == 0)
3441 {
3442 cwd_f = 1;
3443 }
3444 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
3445 {
3446 all = 1;
3447 }
3448 else
3449 {
3450 /* [...] (future options here) */
3451 }
3452 argv++;
3453 }
3454 if (pid == 0)
8a3fe4f8 3455 error (_("No current process: you must name one."));
dba24537
AC
3456
3457 sprintf (fname1, "/proc/%lld", pid);
3458 if (stat (fname1, &dummy) != 0)
8a3fe4f8 3459 error (_("No /proc directory: '%s'"), fname1);
dba24537 3460
a3f17187 3461 printf_filtered (_("process %lld\n"), pid);
dba24537
AC
3462 if (cmdline_f || all)
3463 {
3464 sprintf (fname1, "/proc/%lld/cmdline", pid);
d5d6fca5 3465 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
3466 {
3467 fgets (buffer, sizeof (buffer), procfile);
3468 printf_filtered ("cmdline = '%s'\n", buffer);
3469 fclose (procfile);
3470 }
3471 else
8a3fe4f8 3472 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3473 }
3474 if (cwd_f || all)
3475 {
3476 sprintf (fname1, "/proc/%lld/cwd", pid);
3477 memset (fname2, 0, sizeof (fname2));
3478 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3479 printf_filtered ("cwd = '%s'\n", fname2);
3480 else
8a3fe4f8 3481 warning (_("unable to read link '%s'"), fname1);
dba24537
AC
3482 }
3483 if (exe_f || all)
3484 {
3485 sprintf (fname1, "/proc/%lld/exe", pid);
3486 memset (fname2, 0, sizeof (fname2));
3487 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3488 printf_filtered ("exe = '%s'\n", fname2);
3489 else
8a3fe4f8 3490 warning (_("unable to read link '%s'"), fname1);
dba24537
AC
3491 }
3492 if (mappings_f || all)
3493 {
3494 sprintf (fname1, "/proc/%lld/maps", pid);
d5d6fca5 3495 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
3496 {
3497 long long addr, endaddr, size, offset, inode;
3498 char permissions[8], device[8], filename[MAXPATHLEN];
3499
a3f17187 3500 printf_filtered (_("Mapped address spaces:\n\n"));
17a912b6 3501 if (gdbarch_addr_bit (current_gdbarch) == 32)
dba24537
AC
3502 {
3503 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
3504 "Start Addr",
3505 " End Addr",
3506 " Size", " Offset", "objfile");
3507 }
3508 else
3509 {
3510 printf_filtered (" %18s %18s %10s %10s %7s\n",
3511 "Start Addr",
3512 " End Addr",
3513 " Size", " Offset", "objfile");
3514 }
3515
3516 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
3517 &offset, &device[0], &inode, &filename[0]))
3518 {
3519 size = endaddr - addr;
3520
3521 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
3522 calls here (and possibly above) should be abstracted
3523 out into their own functions? Andrew suggests using
3524 a generic local_address_string instead to print out
3525 the addresses; that makes sense to me, too. */
3526
17a912b6 3527 if (gdbarch_addr_bit (current_gdbarch) == 32)
dba24537
AC
3528 {
3529 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
3530 (unsigned long) addr, /* FIXME: pr_addr */
3531 (unsigned long) endaddr,
3532 (int) size,
3533 (unsigned int) offset,
3534 filename[0] ? filename : "");
3535 }
3536 else
3537 {
3538 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
3539 (unsigned long) addr, /* FIXME: pr_addr */
3540 (unsigned long) endaddr,
3541 (int) size,
3542 (unsigned int) offset,
3543 filename[0] ? filename : "");
3544 }
3545 }
3546
3547 fclose (procfile);
3548 }
3549 else
8a3fe4f8 3550 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3551 }
3552 if (status_f || all)
3553 {
3554 sprintf (fname1, "/proc/%lld/status", pid);
d5d6fca5 3555 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
3556 {
3557 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
3558 puts_filtered (buffer);
3559 fclose (procfile);
3560 }
3561 else
8a3fe4f8 3562 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3563 }
3564 if (stat_f || all)
3565 {
3566 sprintf (fname1, "/proc/%lld/stat", pid);
d5d6fca5 3567 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
3568 {
3569 int itmp;
3570 char ctmp;
a25694b4 3571 long ltmp;
dba24537
AC
3572
3573 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3574 printf_filtered (_("Process: %d\n"), itmp);
a25694b4 3575 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
a3f17187 3576 printf_filtered (_("Exec file: %s\n"), buffer);
dba24537 3577 if (fscanf (procfile, "%c ", &ctmp) > 0)
a3f17187 3578 printf_filtered (_("State: %c\n"), ctmp);
dba24537 3579 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3580 printf_filtered (_("Parent process: %d\n"), itmp);
dba24537 3581 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3582 printf_filtered (_("Process group: %d\n"), itmp);
dba24537 3583 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3584 printf_filtered (_("Session id: %d\n"), itmp);
dba24537 3585 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3586 printf_filtered (_("TTY: %d\n"), itmp);
dba24537 3587 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3588 printf_filtered (_("TTY owner process group: %d\n"), itmp);
a25694b4
AS
3589 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3590 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
3591 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3592 printf_filtered (_("Minor faults (no memory page): %lu\n"),
3593 (unsigned long) ltmp);
3594 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3595 printf_filtered (_("Minor faults, children: %lu\n"),
3596 (unsigned long) ltmp);
3597 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3598 printf_filtered (_("Major faults (memory page faults): %lu\n"),
3599 (unsigned long) ltmp);
3600 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3601 printf_filtered (_("Major faults, children: %lu\n"),
3602 (unsigned long) ltmp);
3603 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3604 printf_filtered (_("utime: %ld\n"), ltmp);
3605 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3606 printf_filtered (_("stime: %ld\n"), ltmp);
3607 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3608 printf_filtered (_("utime, children: %ld\n"), ltmp);
3609 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3610 printf_filtered (_("stime, children: %ld\n"), ltmp);
3611 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3612 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
3613 ltmp);
3614 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3615 printf_filtered (_("'nice' value: %ld\n"), ltmp);
3616 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3617 printf_filtered (_("jiffies until next timeout: %lu\n"),
3618 (unsigned long) ltmp);
3619 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3620 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
3621 (unsigned long) ltmp);
3622 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3623 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
3624 ltmp);
3625 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3626 printf_filtered (_("Virtual memory size: %lu\n"),
3627 (unsigned long) ltmp);
3628 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3629 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
3630 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3631 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
3632 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3633 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
3634 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3635 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
3636 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3637 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
dba24537
AC
3638#if 0 /* Don't know how architecture-dependent the rest is...
3639 Anyway the signal bitmap info is available from "status". */
a25694b4
AS
3640 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3641 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
3642 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3643 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
3644 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3645 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
3646 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3647 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
3648 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3649 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
3650 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3651 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
3652 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3653 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
dba24537
AC
3654#endif
3655 fclose (procfile);
3656 }
3657 else
8a3fe4f8 3658 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3659 }
3660}
3661
10d6c8cd
DJ
3662/* Implement the to_xfer_partial interface for memory reads using the /proc
3663 filesystem. Because we can use a single read() call for /proc, this
3664 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3665 but it doesn't support writes. */
3666
3667static LONGEST
3668linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3669 const char *annex, gdb_byte *readbuf,
3670 const gdb_byte *writebuf,
3671 ULONGEST offset, LONGEST len)
dba24537 3672{
10d6c8cd
DJ
3673 LONGEST ret;
3674 int fd;
dba24537
AC
3675 char filename[64];
3676
10d6c8cd 3677 if (object != TARGET_OBJECT_MEMORY || !readbuf)
dba24537
AC
3678 return 0;
3679
3680 /* Don't bother for one word. */
3681 if (len < 3 * sizeof (long))
3682 return 0;
3683
3684 /* We could keep this file open and cache it - possibly one per
3685 thread. That requires some juggling, but is even faster. */
3686 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
3687 fd = open (filename, O_RDONLY | O_LARGEFILE);
3688 if (fd == -1)
3689 return 0;
3690
3691 /* If pread64 is available, use it. It's faster if the kernel
3692 supports it (only one syscall), and it's 64-bit safe even on
3693 32-bit platforms (for instance, SPARC debugging a SPARC64
3694 application). */
3695#ifdef HAVE_PREAD64
10d6c8cd 3696 if (pread64 (fd, readbuf, len, offset) != len)
dba24537 3697#else
10d6c8cd 3698 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
dba24537
AC
3699#endif
3700 ret = 0;
3701 else
3702 ret = len;
3703
3704 close (fd);
3705 return ret;
3706}
3707
3708/* Parse LINE as a signal set and add its set bits to SIGS. */
3709
3710static void
3711add_line_to_sigset (const char *line, sigset_t *sigs)
3712{
3713 int len = strlen (line) - 1;
3714 const char *p;
3715 int signum;
3716
3717 if (line[len] != '\n')
8a3fe4f8 3718 error (_("Could not parse signal set: %s"), line);
dba24537
AC
3719
3720 p = line;
3721 signum = len * 4;
3722 while (len-- > 0)
3723 {
3724 int digit;
3725
3726 if (*p >= '0' && *p <= '9')
3727 digit = *p - '0';
3728 else if (*p >= 'a' && *p <= 'f')
3729 digit = *p - 'a' + 10;
3730 else
8a3fe4f8 3731 error (_("Could not parse signal set: %s"), line);
dba24537
AC
3732
3733 signum -= 4;
3734
3735 if (digit & 1)
3736 sigaddset (sigs, signum + 1);
3737 if (digit & 2)
3738 sigaddset (sigs, signum + 2);
3739 if (digit & 4)
3740 sigaddset (sigs, signum + 3);
3741 if (digit & 8)
3742 sigaddset (sigs, signum + 4);
3743
3744 p++;
3745 }
3746}
3747
3748/* Find process PID's pending signals from /proc/pid/status and set
3749 SIGS to match. */
3750
3751void
3752linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
3753{
3754 FILE *procfile;
3755 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
3756 int signum;
3757
3758 sigemptyset (pending);
3759 sigemptyset (blocked);
3760 sigemptyset (ignored);
3761 sprintf (fname, "/proc/%d/status", pid);
3762 procfile = fopen (fname, "r");
3763 if (procfile == NULL)
8a3fe4f8 3764 error (_("Could not open %s"), fname);
dba24537
AC
3765
3766 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
3767 {
3768 /* Normal queued signals are on the SigPnd line in the status
3769 file. However, 2.6 kernels also have a "shared" pending
3770 queue for delivering signals to a thread group, so check for
3771 a ShdPnd line also.
3772
3773 Unfortunately some Red Hat kernels include the shared pending
3774 queue but not the ShdPnd status field. */
3775
3776 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
3777 add_line_to_sigset (buffer + 8, pending);
3778 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
3779 add_line_to_sigset (buffer + 8, pending);
3780 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
3781 add_line_to_sigset (buffer + 8, blocked);
3782 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
3783 add_line_to_sigset (buffer + 8, ignored);
3784 }
3785
3786 fclose (procfile);
3787}
3788
10d6c8cd
DJ
3789static LONGEST
3790linux_xfer_partial (struct target_ops *ops, enum target_object object,
3791 const char *annex, gdb_byte *readbuf,
3792 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3793{
3794 LONGEST xfer;
3795
3796 if (object == TARGET_OBJECT_AUXV)
3797 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
3798 offset, len);
3799
3800 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
3801 offset, len);
3802 if (xfer != 0)
3803 return xfer;
3804
3805 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
3806 offset, len);
3807}
3808
e9efe249 3809/* Create a prototype generic GNU/Linux target. The client can override
10d6c8cd
DJ
3810 it with local methods. */
3811
910122bf
UW
3812static void
3813linux_target_install_ops (struct target_ops *t)
10d6c8cd 3814{
6d8fd2b7
UW
3815 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
3816 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
3817 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
3818 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
10d6c8cd 3819 t->to_post_startup_inferior = linux_child_post_startup_inferior;
6d8fd2b7
UW
3820 t->to_post_attach = linux_child_post_attach;
3821 t->to_follow_fork = linux_child_follow_fork;
10d6c8cd
DJ
3822 t->to_find_memory_regions = linux_nat_find_memory_regions;
3823 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
3824
3825 super_xfer_partial = t->to_xfer_partial;
3826 t->to_xfer_partial = linux_xfer_partial;
910122bf
UW
3827}
3828
3829struct target_ops *
3830linux_target (void)
3831{
3832 struct target_ops *t;
3833
3834 t = inf_ptrace_target ();
3835 linux_target_install_ops (t);
3836
3837 return t;
3838}
3839
3840struct target_ops *
7714d83a 3841linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
910122bf
UW
3842{
3843 struct target_ops *t;
3844
3845 t = inf_ptrace_trad_target (register_u_offset);
3846 linux_target_install_ops (t);
10d6c8cd 3847
10d6c8cd
DJ
3848 return t;
3849}
3850
b84876c2
PA
3851/* Controls if async mode is permitted. */
3852static int linux_async_permitted = 0;
3853
3854/* The set command writes to this variable. If the inferior is
3855 executing, linux_nat_async_permitted is *not* updated. */
3856static int linux_async_permitted_1 = 0;
3857
3858static void
3859set_maintenance_linux_async_permitted (char *args, int from_tty,
3860 struct cmd_list_element *c)
3861{
3862 if (target_has_execution)
3863 {
3864 linux_async_permitted_1 = linux_async_permitted;
3865 error (_("Cannot change this setting while the inferior is running."));
3866 }
3867
3868 linux_async_permitted = linux_async_permitted_1;
3869 linux_nat_set_async_mode (linux_async_permitted);
3870}
3871
3872static void
3873show_maintenance_linux_async_permitted (struct ui_file *file, int from_tty,
3874 struct cmd_list_element *c, const char *value)
3875{
3876 fprintf_filtered (file, _("\
3877Controlling the GNU/Linux inferior in asynchronous mode is %s.\n"),
3878 value);
3879}
3880
3881/* target_is_async_p implementation. */
3882
3883static int
3884linux_nat_is_async_p (void)
3885{
3886 /* NOTE: palves 2008-03-21: We're only async when the user requests
3887 it explicitly with the "maintenance set linux-async" command.
3888 Someday, linux will always be async. */
3889 if (!linux_async_permitted)
3890 return 0;
3891
3892 return 1;
3893}
3894
3895/* target_can_async_p implementation. */
3896
3897static int
3898linux_nat_can_async_p (void)
3899{
3900 /* NOTE: palves 2008-03-21: We're only async when the user requests
3901 it explicitly with the "maintenance set linux-async" command.
3902 Someday, linux will always be async. */
3903 if (!linux_async_permitted)
3904 return 0;
3905
3906 /* See target.h/target_async_mask. */
3907 return linux_nat_async_mask_value;
3908}
3909
3910/* target_async_mask implementation. */
3911
3912static int
3913linux_nat_async_mask (int mask)
3914{
3915 int current_state;
3916 current_state = linux_nat_async_mask_value;
3917
3918 if (current_state != mask)
3919 {
3920 if (mask == 0)
3921 {
3922 linux_nat_async (NULL, 0);
3923 linux_nat_async_mask_value = mask;
b84876c2
PA
3924 }
3925 else
3926 {
b84876c2
PA
3927 linux_nat_async_mask_value = mask;
3928 linux_nat_async (inferior_event_handler, 0);
3929 }
3930 }
3931
3932 return current_state;
3933}
3934
3935/* Pop an event from the event pipe. */
3936
3937static int
3938linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options)
3939{
3940 struct waitpid_result event = {0};
3941 int ret;
3942
3943 do
3944 {
3945 ret = read (linux_nat_event_pipe[0], &event, sizeof (event));
3946 }
3947 while (ret == -1 && errno == EINTR);
3948
3949 gdb_assert (ret == sizeof (event));
3950
3951 *ptr_status = event.status;
3952 *ptr_options = event.options;
3953
3954 linux_nat_num_queued_events--;
3955
3956 return event.pid;
3957}
3958
3959/* Push an event into the event pipe. */
3960
3961static void
3962linux_nat_event_pipe_push (int pid, int status, int options)
3963{
3964 int ret;
3965 struct waitpid_result event = {0};
3966 event.pid = pid;
3967 event.status = status;
3968 event.options = options;
3969
3970 do
3971 {
3972 ret = write (linux_nat_event_pipe[1], &event, sizeof (event));
3973 gdb_assert ((ret == -1 && errno == EINTR) || ret == sizeof (event));
3974 } while (ret == -1 && errno == EINTR);
3975
3976 linux_nat_num_queued_events++;
3977}
3978
3979static void
3980get_pending_events (void)
3981{
3982 int status, options, pid;
3983
84e46146
PA
3984 if (!linux_nat_async_enabled
3985 || linux_nat_async_events_state != sigchld_async)
b84876c2
PA
3986 internal_error (__FILE__, __LINE__,
3987 "get_pending_events called with async masked");
3988
3989 while (1)
3990 {
3991 status = 0;
3992 options = __WCLONE | WNOHANG;
3993
3994 do
3995 {
3996 pid = waitpid (-1, &status, options);
3997 }
3998 while (pid == -1 && errno == EINTR);
3999
4000 if (pid <= 0)
4001 {
4002 options = WNOHANG;
4003 do
4004 {
4005 pid = waitpid (-1, &status, options);
4006 }
4007 while (pid == -1 && errno == EINTR);
4008 }
4009
4010 if (pid <= 0)
4011 /* No more children reporting events. */
4012 break;
4013
4014 if (debug_linux_nat_async)
4015 fprintf_unfiltered (gdb_stdlog, "\
4016get_pending_events: pid(%d), status(%x), options (%x)\n",
4017 pid, status, options);
4018
4019 linux_nat_event_pipe_push (pid, status, options);
4020 }
4021
4022 if (debug_linux_nat_async)
4023 fprintf_unfiltered (gdb_stdlog, "\
4024get_pending_events: linux_nat_num_queued_events(%d)\n",
4025 linux_nat_num_queued_events);
4026}
4027
4028/* SIGCHLD handler for async mode. */
4029
4030static void
4031async_sigchld_handler (int signo)
4032{
4033 if (debug_linux_nat_async)
4034 fprintf_unfiltered (gdb_stdlog, "async_sigchld_handler\n");
4035
4036 get_pending_events ();
4037}
4038
84e46146 4039/* Set SIGCHLD handling state to STATE. Returns previous state. */
b84876c2 4040
84e46146
PA
4041static enum sigchld_state
4042linux_nat_async_events (enum sigchld_state state)
b84876c2 4043{
84e46146 4044 enum sigchld_state current_state = linux_nat_async_events_state;
b84876c2
PA
4045
4046 if (debug_linux_nat_async)
4047 fprintf_unfiltered (gdb_stdlog,
84e46146 4048 "LNAE: state(%d): linux_nat_async_events_state(%d), "
b84876c2 4049 "linux_nat_num_queued_events(%d)\n",
84e46146 4050 state, linux_nat_async_events_state,
b84876c2
PA
4051 linux_nat_num_queued_events);
4052
84e46146 4053 if (current_state != state)
b84876c2
PA
4054 {
4055 sigset_t mask;
4056 sigemptyset (&mask);
4057 sigaddset (&mask, SIGCHLD);
84e46146
PA
4058
4059 /* Always block before changing state. */
4060 sigprocmask (SIG_BLOCK, &mask, NULL);
4061
4062 /* Set new state. */
4063 linux_nat_async_events_state = state;
4064
4065 switch (state)
b84876c2 4066 {
84e46146
PA
4067 case sigchld_sync:
4068 {
4069 /* Block target events. */
4070 sigprocmask (SIG_BLOCK, &mask, NULL);
4071 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4072 /* Get events out of queue, and make them available to
4073 queued_waitpid / my_waitpid. */
4074 pipe_to_local_event_queue ();
4075 }
4076 break;
4077 case sigchld_async:
4078 {
4079 /* Unblock target events for async mode. */
4080
4081 sigprocmask (SIG_BLOCK, &mask, NULL);
4082
4083 /* Put events we already waited on, in the pipe first, so
4084 events are FIFO. */
4085 local_event_queue_to_pipe ();
4086 /* While in masked async, we may have not collected all
4087 the pending events. Get them out now. */
4088 get_pending_events ();
4089
4090 /* Let'em come. */
4091 sigaction (SIGCHLD, &async_sigchld_action, NULL);
4092 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4093 }
4094 break;
4095 case sigchld_default:
4096 {
4097 /* SIGCHLD default mode. */
4098 sigaction (SIGCHLD, &sigchld_default_action, NULL);
4099
4100 /* Get events out of queue, and make them available to
4101 queued_waitpid / my_waitpid. */
4102 pipe_to_local_event_queue ();
4103
4104 /* Unblock SIGCHLD. */
4105 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4106 }
4107 break;
b84876c2
PA
4108 }
4109 }
4110
4111 return current_state;
4112}
4113
4114static int async_terminal_is_ours = 1;
4115
4116/* target_terminal_inferior implementation. */
4117
4118static void
4119linux_nat_terminal_inferior (void)
4120{
4121 if (!target_is_async_p ())
4122 {
4123 /* Async mode is disabled. */
4124 terminal_inferior ();
4125 return;
4126 }
4127
4128 /* GDB should never give the terminal to the inferior, if the
4129 inferior is running in the background (run&, continue&, etc.).
4130 This check can be removed when the common code is fixed. */
4131 if (!sync_execution)
4132 return;
4133
4134 terminal_inferior ();
4135
4136 if (!async_terminal_is_ours)
4137 return;
4138
4139 delete_file_handler (input_fd);
4140 async_terminal_is_ours = 0;
4141 set_sigint_trap ();
4142}
4143
4144/* target_terminal_ours implementation. */
4145
4146void
4147linux_nat_terminal_ours (void)
4148{
4149 if (!target_is_async_p ())
4150 {
4151 /* Async mode is disabled. */
4152 terminal_ours ();
4153 return;
4154 }
4155
4156 /* GDB should never give the terminal to the inferior if the
4157 inferior is running in the background (run&, continue&, etc.),
4158 but claiming it sure should. */
4159 terminal_ours ();
4160
4161 if (!sync_execution)
4162 return;
4163
4164 if (async_terminal_is_ours)
4165 return;
4166
4167 clear_sigint_trap ();
4168 add_file_handler (input_fd, stdin_event_handler, 0);
4169 async_terminal_is_ours = 1;
4170}
4171
4172static void (*async_client_callback) (enum inferior_event_type event_type,
4173 void *context);
4174static void *async_client_context;
4175
4176static void
4177linux_nat_async_file_handler (int error, gdb_client_data client_data)
4178{
4179 async_client_callback (INF_REG_EVENT, async_client_context);
4180}
4181
4182/* target_async implementation. */
4183
4184static void
4185linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4186 void *context), void *context)
4187{
4188 if (linux_nat_async_mask_value == 0 || !linux_nat_async_enabled)
4189 internal_error (__FILE__, __LINE__,
4190 "Calling target_async when async is masked");
4191
4192 if (callback != NULL)
4193 {
4194 async_client_callback = callback;
4195 async_client_context = context;
4196 add_file_handler (linux_nat_event_pipe[0],
4197 linux_nat_async_file_handler, NULL);
4198
84e46146 4199 linux_nat_async_events (sigchld_async);
b84876c2
PA
4200 }
4201 else
4202 {
4203 async_client_callback = callback;
4204 async_client_context = context;
4205
84e46146 4206 linux_nat_async_events (sigchld_sync);
b84876c2
PA
4207 delete_file_handler (linux_nat_event_pipe[0]);
4208 }
4209 return;
4210}
4211
4212/* Enable/Disable async mode. */
4213
4214static void
4215linux_nat_set_async_mode (int on)
4216{
4217 if (linux_nat_async_enabled != on)
4218 {
4219 if (on)
4220 {
4221 gdb_assert (waitpid_queue == NULL);
b84876c2
PA
4222 if (pipe (linux_nat_event_pipe) == -1)
4223 internal_error (__FILE__, __LINE__,
4224 "creating event pipe failed.");
b84876c2
PA
4225 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4226 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4227 }
4228 else
4229 {
b84876c2 4230 drain_queued_events (-1);
b84876c2
PA
4231 linux_nat_num_queued_events = 0;
4232 close (linux_nat_event_pipe[0]);
4233 close (linux_nat_event_pipe[1]);
4234 linux_nat_event_pipe[0] = linux_nat_event_pipe[1] = -1;
4235
4236 }
4237 }
4238 linux_nat_async_enabled = on;
4239}
4240
f973ed9c
DJ
4241void
4242linux_nat_add_target (struct target_ops *t)
4243{
f973ed9c
DJ
4244 /* Save the provided single-threaded target. We save this in a separate
4245 variable because another target we've inherited from (e.g. inf-ptrace)
4246 may have saved a pointer to T; we want to use it for the final
4247 process stratum target. */
4248 linux_ops_saved = *t;
4249 linux_ops = &linux_ops_saved;
4250
4251 /* Override some methods for multithreading. */
b84876c2 4252 t->to_create_inferior = linux_nat_create_inferior;
f973ed9c
DJ
4253 t->to_attach = linux_nat_attach;
4254 t->to_detach = linux_nat_detach;
4255 t->to_resume = linux_nat_resume;
4256 t->to_wait = linux_nat_wait;
4257 t->to_xfer_partial = linux_nat_xfer_partial;
4258 t->to_kill = linux_nat_kill;
4259 t->to_mourn_inferior = linux_nat_mourn_inferior;
4260 t->to_thread_alive = linux_nat_thread_alive;
4261 t->to_pid_to_str = linux_nat_pid_to_str;
4262 t->to_has_thread_control = tc_schedlock;
4263
b84876c2
PA
4264 t->to_can_async_p = linux_nat_can_async_p;
4265 t->to_is_async_p = linux_nat_is_async_p;
4266 t->to_async = linux_nat_async;
4267 t->to_async_mask = linux_nat_async_mask;
4268 t->to_terminal_inferior = linux_nat_terminal_inferior;
4269 t->to_terminal_ours = linux_nat_terminal_ours;
4270
f973ed9c
DJ
4271 /* We don't change the stratum; this target will sit at
4272 process_stratum and thread_db will set at thread_stratum. This
4273 is a little strange, since this is a multi-threaded-capable
4274 target, but we want to be on the stack below thread_db, and we
4275 also want to be used for single-threaded processes. */
4276
4277 add_target (t);
4278
4279 /* TODO: Eliminate this and have libthread_db use
4280 find_target_beneath. */
4281 thread_db_init (t);
4282}
4283
9f0bdab8
DJ
4284/* Register a method to call whenever a new thread is attached. */
4285void
4286linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
4287{
4288 /* Save the pointer. We only support a single registered instance
4289 of the GNU/Linux native target, so we do not need to map this to
4290 T. */
4291 linux_nat_new_thread = new_thread;
4292}
4293
4294/* Return the saved siginfo associated with PTID. */
4295struct siginfo *
4296linux_nat_get_siginfo (ptid_t ptid)
4297{
4298 struct lwp_info *lp = find_lwp_pid (ptid);
4299
4300 gdb_assert (lp != NULL);
4301
4302 return &lp->siginfo;
4303}
4304
d6b0e80f
AC
4305void
4306_initialize_linux_nat (void)
4307{
b84876c2 4308 sigset_t mask;
dba24537 4309
1bedd215
AC
4310 add_info ("proc", linux_nat_info_proc_cmd, _("\
4311Show /proc process information about any running process.\n\
dba24537
AC
4312Specify any process id, or use the program being debugged by default.\n\
4313Specify any of the following keywords for detailed info:\n\
4314 mappings -- list of mapped memory regions.\n\
4315 stat -- list a bunch of random process info.\n\
4316 status -- list a different bunch of random process info.\n\
1bedd215 4317 all -- list all available /proc info."));
d6b0e80f 4318
b84876c2
PA
4319 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
4320 &debug_linux_nat, _("\
4321Set debugging of GNU/Linux lwp module."), _("\
4322Show debugging of GNU/Linux lwp module."), _("\
4323Enables printf debugging output."),
4324 NULL,
4325 show_debug_linux_nat,
4326 &setdebuglist, &showdebuglist);
4327
4328 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
4329 &debug_linux_nat_async, _("\
4330Set debugging of GNU/Linux async lwp module."), _("\
4331Show debugging of GNU/Linux async lwp module."), _("\
4332Enables printf debugging output."),
4333 NULL,
4334 show_debug_linux_nat_async,
4335 &setdebuglist, &showdebuglist);
4336
4337 add_setshow_boolean_cmd ("linux-async", class_maintenance,
4338 &linux_async_permitted_1, _("\
4339Set whether gdb controls the GNU/Linux inferior in asynchronous mode."), _("\
4340Show whether gdb controls the GNU/Linux inferior in asynchronous mode."), _("\
4341Tells gdb whether to control the GNU/Linux inferior in asynchronous mode."),
4342 set_maintenance_linux_async_permitted,
4343 show_maintenance_linux_async_permitted,
4344 &maintenance_set_cmdlist,
4345 &maintenance_show_cmdlist);
4346
84e46146
PA
4347 /* Get the default SIGCHLD action. Used while forking an inferior
4348 (see linux_nat_create_inferior/linux_nat_async_events). */
4349 sigaction (SIGCHLD, NULL, &sigchld_default_action);
4350
b84876c2
PA
4351 /* Block SIGCHLD by default. Doing this early prevents it getting
4352 unblocked if an exception is thrown due to an error while the
4353 inferior is starting (sigsetjmp/siglongjmp). */
4354 sigemptyset (&mask);
4355 sigaddset (&mask, SIGCHLD);
4356 sigprocmask (SIG_BLOCK, &mask, NULL);
4357
4358 /* Save this mask as the default. */
d6b0e80f
AC
4359 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4360
b84876c2
PA
4361 /* The synchronous SIGCHLD handler. */
4362 sync_sigchld_action.sa_handler = sigchld_handler;
4363 sigemptyset (&sync_sigchld_action.sa_mask);
4364 sync_sigchld_action.sa_flags = SA_RESTART;
4365
4366 /* Make it the default. */
4367 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
d6b0e80f
AC
4368
4369 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4370 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4371 sigdelset (&suspend_mask, SIGCHLD);
4372
b84876c2
PA
4373 /* SIGCHLD handler for async mode. */
4374 async_sigchld_action.sa_handler = async_sigchld_handler;
4375 sigemptyset (&async_sigchld_action.sa_mask);
4376 async_sigchld_action.sa_flags = SA_RESTART;
d6b0e80f 4377
b84876c2
PA
4378 /* Install the default mode. */
4379 linux_nat_set_async_mode (linux_async_permitted);
d6b0e80f
AC
4380}
4381\f
4382
4383/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4384 the GNU/Linux Threads library and therefore doesn't really belong
4385 here. */
4386
4387/* Read variable NAME in the target and return its value if found.
4388 Otherwise return zero. It is assumed that the type of the variable
4389 is `int'. */
4390
4391static int
4392get_signo (const char *name)
4393{
4394 struct minimal_symbol *ms;
4395 int signo;
4396
4397 ms = lookup_minimal_symbol (name, NULL, NULL);
4398 if (ms == NULL)
4399 return 0;
4400
8e70166d 4401 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
d6b0e80f
AC
4402 sizeof (signo)) != 0)
4403 return 0;
4404
4405 return signo;
4406}
4407
4408/* Return the set of signals used by the threads library in *SET. */
4409
4410void
4411lin_thread_get_thread_signals (sigset_t *set)
4412{
4413 struct sigaction action;
4414 int restart, cancel;
b84876c2 4415 sigset_t blocked_mask;
d6b0e80f 4416
b84876c2 4417 sigemptyset (&blocked_mask);
d6b0e80f
AC
4418 sigemptyset (set);
4419
4420 restart = get_signo ("__pthread_sig_restart");
17fbb0bd
DJ
4421 cancel = get_signo ("__pthread_sig_cancel");
4422
4423 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4424 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4425 not provide any way for the debugger to query the signal numbers -
4426 fortunately they don't change! */
4427
d6b0e80f 4428 if (restart == 0)
17fbb0bd 4429 restart = __SIGRTMIN;
d6b0e80f 4430
d6b0e80f 4431 if (cancel == 0)
17fbb0bd 4432 cancel = __SIGRTMIN + 1;
d6b0e80f
AC
4433
4434 sigaddset (set, restart);
4435 sigaddset (set, cancel);
4436
4437 /* The GNU/Linux Threads library makes terminating threads send a
4438 special "cancel" signal instead of SIGCHLD. Make sure we catch
4439 those (to prevent them from terminating GDB itself, which is
4440 likely to be their default action) and treat them the same way as
4441 SIGCHLD. */
4442
4443 action.sa_handler = sigchld_handler;
4444 sigemptyset (&action.sa_mask);
58aecb61 4445 action.sa_flags = SA_RESTART;
d6b0e80f
AC
4446 sigaction (cancel, &action, NULL);
4447
4448 /* We block the "cancel" signal throughout this code ... */
4449 sigaddset (&blocked_mask, cancel);
4450 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4451
4452 /* ... except during a sigsuspend. */
4453 sigdelset (&suspend_mask, cancel);
4454}
This page took 0.663039 seconds and 4 git commands to generate.