Fix problem building PE DLL test generator with compilers that do not support c99...
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
CommitLineData
4aa995e1
PA
1/* Target-dependent code for GNU/Linux, architecture independent.
2
42a4f53d 3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4aa995e1
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "gdbtypes.h"
2c0b251b 22#include "linux-tdep.h"
6c95b8df
PA
23#include "auxv.h"
24#include "target.h"
6432734d
UW
25#include "gdbthread.h"
26#include "gdbcore.h"
27#include "regcache.h"
28#include "regset.h"
6c95b8df 29#include "elf/common.h"
6432734d 30#include "elf-bfd.h" /* for elfcore_write_* */
a5ee0f0c 31#include "inferior.h"
3030c96e 32#include "cli/cli-utils.h"
451b7c33
TT
33#include "arch-utils.h"
34#include "gdb_obstack.h"
76727919 35#include "observable.h"
3bc3cebe
JK
36#include "objfiles.h"
37#include "infcall.h"
df8411da 38#include "gdbcmd.h"
db1ff28b 39#include "gdb_regex.h"
268a13a5
TT
40#include "gdbsupport/enum-flags.h"
41#include "gdbsupport/gdb_optional.h"
3030c96e
UW
42
43#include <ctype.h>
4aa995e1 44
db1ff28b
JK
45/* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
8d297bbf 51enum filter_flag
db1ff28b
JK
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
8d297bbf 61DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
db1ff28b
JK
62
63/* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
df8411da
SDJ
91/* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94static int use_coredump_filter = 1;
95
afa840dc
SL
96/* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
99static int dump_excluded_mappings = 0;
100
eb14d406
SDJ
101/* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
06253dd3
JK
166static struct gdbarch_data *linux_gdbarch_data_handle;
167
168struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173static void *
174init_linux_gdbarch_data (struct gdbarch *gdbarch)
175{
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177}
178
179static struct linux_gdbarch_data *
180get_linux_gdbarch_data (struct gdbarch *gdbarch)
181{
9a3c8263
SM
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
06253dd3
JK
184}
185
cdfa0b0a
PA
186/* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
189struct linux_info
190{
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
89fb8848 196 struct mem_range vsyscall_range {};
cdfa0b0a
PA
197
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
89fb8848 201 int vsyscall_range_p = 0;
cdfa0b0a
PA
202};
203
89fb8848
TT
204/* Per-inferior data key. */
205static const struct inferior_key<linux_info> linux_inferior_data;
206
cdfa0b0a
PA
207/* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210static void
211invalidate_linux_cache_inf (struct inferior *inf)
212{
89fb8848 213 linux_inferior_data.clear (inf);
cdfa0b0a
PA
214}
215
216/* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
218
219static struct linux_info *
220get_linux_inferior_data (void)
221{
222 struct linux_info *info;
223 struct inferior *inf = current_inferior ();
224
89fb8848 225 info = linux_inferior_data.get (inf);
cdfa0b0a 226 if (info == NULL)
89fb8848 227 info = linux_inferior_data.emplace (inf);
cdfa0b0a
PA
228
229 return info;
230}
231
190b495d 232/* See linux-tdep.h. */
4aa995e1 233
190b495d 234struct type *
43564574
WT
235linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
236 linux_siginfo_extra_fields extra_fields)
4aa995e1 237{
06253dd3 238 struct linux_gdbarch_data *linux_gdbarch_data;
96b5c49f 239 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
4aa995e1
PA
240 struct type *uid_type, *pid_type;
241 struct type *sigval_type, *clock_type;
242 struct type *siginfo_type, *sifields_type;
243 struct type *type;
244
06253dd3
JK
245 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
246 if (linux_gdbarch_data->siginfo_type != NULL)
247 return linux_gdbarch_data->siginfo_type;
248
e9bb382b
UW
249 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
250 0, "int");
251 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
252 1, "unsigned int");
253 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
254 0, "long");
96b5c49f
WT
255 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
256 0, "short");
4aa995e1
PA
257 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
258
259 /* sival_t */
e9bb382b 260 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
261 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
262 append_composite_type_field (sigval_type, "sival_int", int_type);
263 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
264
265 /* __pid_t */
e3aa49af 266 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781 267 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
4aa995e1 268 TYPE_TARGET_TYPE (pid_type) = int_type;
e9bb382b 269 TYPE_TARGET_STUB (pid_type) = 1;
4aa995e1
PA
270
271 /* __uid_t */
e3aa49af 272 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781 273 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
4aa995e1 274 TYPE_TARGET_TYPE (uid_type) = uint_type;
e9bb382b 275 TYPE_TARGET_STUB (uid_type) = 1;
4aa995e1
PA
276
277 /* __clock_t */
e3aa49af 278 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781
UW
279 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
280 "__clock_t");
4aa995e1 281 TYPE_TARGET_TYPE (clock_type) = long_type;
e9bb382b 282 TYPE_TARGET_STUB (clock_type) = 1;
4aa995e1
PA
283
284 /* _sifields */
e9bb382b 285 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
286
287 {
288 const int si_max_size = 128;
289 int si_pad_size;
290 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
291
292 /* _pad */
293 if (gdbarch_ptr_bit (gdbarch) == 64)
294 si_pad_size = (si_max_size / size_of_int) - 4;
295 else
296 si_pad_size = (si_max_size / size_of_int) - 3;
297 append_composite_type_field (sifields_type, "_pad",
298 init_vector_type (int_type, si_pad_size));
299 }
300
301 /* _kill */
e9bb382b 302 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
303 append_composite_type_field (type, "si_pid", pid_type);
304 append_composite_type_field (type, "si_uid", uid_type);
305 append_composite_type_field (sifields_type, "_kill", type);
306
307 /* _timer */
e9bb382b 308 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
309 append_composite_type_field (type, "si_tid", int_type);
310 append_composite_type_field (type, "si_overrun", int_type);
311 append_composite_type_field (type, "si_sigval", sigval_type);
312 append_composite_type_field (sifields_type, "_timer", type);
313
314 /* _rt */
e9bb382b 315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (type, "si_sigval", sigval_type);
319 append_composite_type_field (sifields_type, "_rt", type);
320
321 /* _sigchld */
e9bb382b 322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (type, "si_status", int_type);
326 append_composite_type_field (type, "si_utime", clock_type);
327 append_composite_type_field (type, "si_stime", clock_type);
328 append_composite_type_field (sifields_type, "_sigchld", type);
329
330 /* _sigfault */
e9bb382b 331 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1 332 append_composite_type_field (type, "si_addr", void_ptr_type);
96b5c49f
WT
333
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
336 {
337 struct type *sigfault_bnd_fields;
338
339 append_composite_type_field (type, "_addr_lsb", short_type);
340 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
341 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
342 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
343 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
344 }
4aa995e1
PA
345 append_composite_type_field (sifields_type, "_sigfault", type);
346
347 /* _sigpoll */
e9bb382b 348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
352
353 /* struct siginfo */
e9bb382b 354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
355 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
362
06253dd3
JK
363 linux_gdbarch_data->siginfo_type = siginfo_type;
364
4aa995e1
PA
365 return siginfo_type;
366}
6b3ae818 367
43564574
WT
368/* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
370
371static struct type *
372linux_get_siginfo_type (struct gdbarch *gdbarch)
373{
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
375}
376
c01cbb3d
YQ
377/* Return true if the target is running on uClinux instead of normal
378 Linux kernel. */
379
380int
381linux_is_uclinux (void)
6c95b8df 382{
6c95b8df 383 CORE_ADDR dummy;
6c95b8df 384
8b88a78e
PA
385 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
c01cbb3d 387}
6c95b8df 388
c01cbb3d
YQ
389static int
390linux_has_shared_address_space (struct gdbarch *gdbarch)
391{
392 return linux_is_uclinux ();
6c95b8df 393}
a5ee0f0c
PA
394
395/* This is how we want PTIDs from core files to be printed. */
396
a068643d 397static std::string
a5ee0f0c
PA
398linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
399{
e38504b3 400 if (ptid.lwp () != 0)
a068643d 401 return string_printf ("LWP %ld", ptid.lwp ());
a5ee0f0c
PA
402
403 return normal_pid_to_str (ptid);
404}
405
db1ff28b
JK
406/* Service function for corefiles and info proc. */
407
408static void
409read_mapping (const char *line,
410 ULONGEST *addr, ULONGEST *endaddr,
411 const char **permissions, size_t *permissions_len,
412 ULONGEST *offset,
413 const char **device, size_t *device_len,
414 ULONGEST *inode,
415 const char **filename)
416{
417 const char *p = line;
418
419 *addr = strtoulst (p, &p, 16);
420 if (*p == '-')
421 p++;
422 *endaddr = strtoulst (p, &p, 16);
423
f1735a53 424 p = skip_spaces (p);
db1ff28b
JK
425 *permissions = p;
426 while (*p && !isspace (*p))
427 p++;
428 *permissions_len = p - *permissions;
429
430 *offset = strtoulst (p, &p, 16);
431
f1735a53 432 p = skip_spaces (p);
db1ff28b
JK
433 *device = p;
434 while (*p && !isspace (*p))
435 p++;
436 *device_len = p - *device;
437
438 *inode = strtoulst (p, &p, 10);
439
f1735a53 440 p = skip_spaces (p);
db1ff28b
JK
441 *filename = p;
442}
443
444/* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
445
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
448
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
451 field on smaps. */
452
453static void
454decode_vmflags (char *p, struct smaps_vmflags *v)
455{
456 char *saveptr = NULL;
457 const char *s;
458
459 v->initialized_p = 1;
460 p = skip_to_space (p);
461 p = skip_spaces (p);
462
463 for (s = strtok_r (p, " ", &saveptr);
464 s != NULL;
465 s = strtok_r (NULL, " ", &saveptr))
466 {
467 if (strcmp (s, "io") == 0)
468 v->io_page = 1;
469 else if (strcmp (s, "ht") == 0)
470 v->uses_huge_tlb = 1;
471 else if (strcmp (s, "dd") == 0)
472 v->exclude_coredump = 1;
473 else if (strcmp (s, "sh") == 0)
474 v->shared_mapping = 1;
475 }
476}
477
2d7cc5c7
PA
478/* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
480
481struct mapping_regexes
482{
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
489 _("Could not compile regex to match /dev/zero filename")};
490
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
497 _("Could not compile regex to match shmem filenames")};
498
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
506
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
510 that. */
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB,
513 _("Could not compile regex to match '<file> (deleted)'")};
514};
515
db1ff28b
JK
516/* Return 1 if the memory mapping is anonymous, 0 otherwise.
517
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
520 the first line is:
521
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
523
524 Then FILENAME will be "/path/to/file". */
525
526static int
527mapping_is_anonymous_p (const char *filename)
528{
2d7cc5c7 529 static gdb::optional<mapping_regexes> regexes;
db1ff28b
JK
530 static int init_regex_p = 0;
531
532 if (!init_regex_p)
533 {
db1ff28b
JK
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
536 init_regex_p = -1;
537
2d7cc5c7 538 regexes.emplace ();
db1ff28b
JK
539
540 /* If we reached this point, then everything succeeded. */
541 init_regex_p = 1;
542 }
543
544 if (init_regex_p == -1)
545 {
546 const char deleted[] = " (deleted)";
547 size_t del_len = sizeof (deleted) - 1;
548 size_t filename_len = strlen (filename);
549
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
554 anonymous. */
555 return (filename_len >= del_len
556 && strcmp (filename + filename_len - del_len, deleted) == 0);
557 }
558
559 if (*filename == '\0'
2d7cc5c7
PA
560 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
561 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
562 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
db1ff28b
JK
563 return 1;
564
565 return 0;
566}
567
568/* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
57e5e645
SDJ
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
db1ff28b
JK
571
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
574
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
582 it).
583
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
597
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
57e5e645
SDJ
608 This should work OK enough, however.
609
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
db1ff28b
JK
614
615static int
8d297bbf 616dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
db1ff28b 617 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
57e5e645 618 const char *filename, ULONGEST addr, ULONGEST offset)
db1ff28b
JK
619{
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p = maybe_private_p;
57e5e645 628 int dump_p;
db1ff28b
JK
629
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename) == 0
634 || strcmp ("[vsyscall]", filename) == 0)
635 return 1;
636
637 if (v->initialized_p)
638 {
639 /* We never dump I/O mappings. */
640 if (v->io_page)
641 return 0;
642
643 /* Check if we should exclude this mapping. */
afa840dc 644 if (!dump_excluded_mappings && v->exclude_coredump)
db1ff28b
JK
645 return 0;
646
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p = !v->shared_mapping;
650
651 /* HugeTLB checking. */
652 if (v->uses_huge_tlb)
653 {
654 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
655 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
656 return 1;
657
658 return 0;
659 }
660 }
661
662 if (private_p)
663 {
664 if (mapping_anon_p && mapping_file_p)
665 {
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
668 pages. */
57e5e645
SDJ
669 dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0
670 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
db1ff28b
JK
671 }
672 else if (mapping_anon_p)
57e5e645 673 dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0;
db1ff28b 674 else
57e5e645 675 dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
db1ff28b
JK
676 }
677 else
678 {
679 if (mapping_anon_p && mapping_file_p)
680 {
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
683 pages. */
57e5e645
SDJ
684 dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0
685 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
db1ff28b
JK
686 }
687 else if (mapping_anon_p)
57e5e645 688 dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0;
db1ff28b 689 else
57e5e645 690 dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0;
db1ff28b 691 }
57e5e645
SDJ
692
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
697 dump this mapping.
698
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p && private_p && offset == 0
702 && (filterflags & COREFILTER_ELF_HEADERS) != 0)
703 {
704 /* Let's check if we have an ELF header. */
705 gdb::unique_xmalloc_ptr<char> header;
706 int errcode;
707
708 /* Useful define specifying the size of the ELF magical
709 header. */
710#ifndef SELFMAG
711#define SELFMAG 4
712#endif
713
714 /* Read the first SELFMAG bytes and check if it is ELFMAG. */
715 if (target_read_string (addr, &header, SELFMAG, &errcode) == SELFMAG
716 && errcode == 0)
717 {
718 const char *h = header.get ();
719
720 /* The EI_MAG* and ELFMAG* constants come from
721 <elf/common.h>. */
722 if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1
723 && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3)
724 {
725 /* This mapping contains an ELF header, so we
726 should dump it. */
727 dump_p = 1;
728 }
729 }
730 }
731
732 return dump_p;
db1ff28b
JK
733}
734
3030c96e
UW
735/* Implement the "info proc" command. */
736
737static void
7bc112c1 738linux_info_proc (struct gdbarch *gdbarch, const char *args,
3030c96e
UW
739 enum info_proc_what what)
740{
741 /* A long is used for pid instead of an int to avoid a loss of precision
742 compiler warning from the output of strtoul. */
743 long pid;
744 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
745 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
746 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
747 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
748 int status_f = (what == IP_STATUS || what == IP_ALL);
749 int stat_f = (what == IP_STAT || what == IP_ALL);
750 char filename[100];
3030c96e
UW
751 int target_errno;
752
753 if (args && isdigit (args[0]))
7bc112c1
TT
754 {
755 char *tem;
756
757 pid = strtoul (args, &tem, 10);
758 args = tem;
759 }
3030c96e
UW
760 else
761 {
762 if (!target_has_execution)
763 error (_("No current process: you must name one."));
764 if (current_inferior ()->fake_pid_p)
765 error (_("Can't determine the current process's PID: you must name one."));
766
767 pid = current_inferior ()->pid;
768 }
769
f1735a53 770 args = skip_spaces (args);
3030c96e
UW
771 if (args && args[0])
772 error (_("Too many parameters: %s"), args);
773
774 printf_filtered (_("process %ld\n"), pid);
775 if (cmdline_f)
776 {
777 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
26d6cec4
AA
778 gdb_byte *buffer;
779 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
780
781 if (len > 0)
782 {
783 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
784 ssize_t pos;
785
786 for (pos = 0; pos < len - 1; pos++)
787 {
788 if (buffer[pos] == '\0')
789 buffer[pos] = ' ';
790 }
791 buffer[len - 1] = '\0';
792 printf_filtered ("cmdline = '%s'\n", buffer);
793 }
3030c96e
UW
794 else
795 warning (_("unable to open /proc file '%s'"), filename);
796 }
797 if (cwd_f)
798 {
799 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
e0d3522b
TT
800 gdb::optional<std::string> contents
801 = target_fileio_readlink (NULL, filename, &target_errno);
802 if (contents.has_value ())
803 printf_filtered ("cwd = '%s'\n", contents->c_str ());
3030c96e
UW
804 else
805 warning (_("unable to read link '%s'"), filename);
806 }
807 if (exe_f)
808 {
809 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
e0d3522b
TT
810 gdb::optional<std::string> contents
811 = target_fileio_readlink (NULL, filename, &target_errno);
812 if (contents.has_value ())
813 printf_filtered ("exe = '%s'\n", contents->c_str ());
3030c96e
UW
814 else
815 warning (_("unable to read link '%s'"), filename);
816 }
817 if (mappings_f)
818 {
819 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
87028b87
TT
820 gdb::unique_xmalloc_ptr<char> map
821 = target_fileio_read_stralloc (NULL, filename);
822 if (map != NULL)
3030c96e 823 {
3030c96e
UW
824 char *line;
825
826 printf_filtered (_("Mapped address spaces:\n\n"));
827 if (gdbarch_addr_bit (gdbarch) == 32)
828 {
829 printf_filtered ("\t%10s %10s %10s %10s %s\n",
830 "Start Addr",
831 " End Addr",
832 " Size", " Offset", "objfile");
833 }
834 else
835 {
836 printf_filtered (" %18s %18s %10s %10s %s\n",
837 "Start Addr",
838 " End Addr",
839 " Size", " Offset", "objfile");
840 }
841
87028b87
TT
842 for (line = strtok (map.get (), "\n");
843 line;
844 line = strtok (NULL, "\n"))
3030c96e
UW
845 {
846 ULONGEST addr, endaddr, offset, inode;
b926417a 847 const char *permissions, *device, *mapping_filename;
3030c96e
UW
848 size_t permissions_len, device_len;
849
850 read_mapping (line, &addr, &endaddr,
851 &permissions, &permissions_len,
852 &offset, &device, &device_len,
b926417a 853 &inode, &mapping_filename);
3030c96e
UW
854
855 if (gdbarch_addr_bit (gdbarch) == 32)
856 {
857 printf_filtered ("\t%10s %10s %10s %10s %s\n",
858 paddress (gdbarch, addr),
859 paddress (gdbarch, endaddr),
860 hex_string (endaddr - addr),
861 hex_string (offset),
b926417a 862 *mapping_filename ? mapping_filename : "");
3030c96e
UW
863 }
864 else
865 {
866 printf_filtered (" %18s %18s %10s %10s %s\n",
867 paddress (gdbarch, addr),
868 paddress (gdbarch, endaddr),
869 hex_string (endaddr - addr),
870 hex_string (offset),
b926417a 871 *mapping_filename ? mapping_filename : "");
3030c96e
UW
872 }
873 }
3030c96e
UW
874 }
875 else
876 warning (_("unable to open /proc file '%s'"), filename);
877 }
878 if (status_f)
879 {
880 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
87028b87
TT
881 gdb::unique_xmalloc_ptr<char> status
882 = target_fileio_read_stralloc (NULL, filename);
883 if (status)
884 puts_filtered (status.get ());
3030c96e
UW
885 else
886 warning (_("unable to open /proc file '%s'"), filename);
887 }
888 if (stat_f)
889 {
890 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
87028b87
TT
891 gdb::unique_xmalloc_ptr<char> statstr
892 = target_fileio_read_stralloc (NULL, filename);
893 if (statstr)
3030c96e 894 {
87028b87 895 const char *p = statstr.get ();
3030c96e
UW
896
897 printf_filtered (_("Process: %s\n"),
898 pulongest (strtoulst (p, &p, 10)));
899
f1735a53 900 p = skip_spaces (p);
a71b5a38 901 if (*p == '(')
3030c96e 902 {
184cd072
JK
903 /* ps command also relies on no trailing fields
904 ever contain ')'. */
905 const char *ep = strrchr (p, ')');
a71b5a38
UW
906 if (ep != NULL)
907 {
908 printf_filtered ("Exec file: %.*s\n",
909 (int) (ep - p - 1), p + 1);
910 p = ep + 1;
911 }
3030c96e
UW
912 }
913
f1735a53 914 p = skip_spaces (p);
3030c96e
UW
915 if (*p)
916 printf_filtered (_("State: %c\n"), *p++);
917
918 if (*p)
919 printf_filtered (_("Parent process: %s\n"),
920 pulongest (strtoulst (p, &p, 10)));
921 if (*p)
922 printf_filtered (_("Process group: %s\n"),
923 pulongest (strtoulst (p, &p, 10)));
924 if (*p)
925 printf_filtered (_("Session id: %s\n"),
926 pulongest (strtoulst (p, &p, 10)));
927 if (*p)
928 printf_filtered (_("TTY: %s\n"),
929 pulongest (strtoulst (p, &p, 10)));
930 if (*p)
931 printf_filtered (_("TTY owner process group: %s\n"),
932 pulongest (strtoulst (p, &p, 10)));
933
934 if (*p)
935 printf_filtered (_("Flags: %s\n"),
936 hex_string (strtoulst (p, &p, 10)));
937 if (*p)
938 printf_filtered (_("Minor faults (no memory page): %s\n"),
939 pulongest (strtoulst (p, &p, 10)));
940 if (*p)
941 printf_filtered (_("Minor faults, children: %s\n"),
942 pulongest (strtoulst (p, &p, 10)));
943 if (*p)
944 printf_filtered (_("Major faults (memory page faults): %s\n"),
945 pulongest (strtoulst (p, &p, 10)));
946 if (*p)
947 printf_filtered (_("Major faults, children: %s\n"),
948 pulongest (strtoulst (p, &p, 10)));
949 if (*p)
950 printf_filtered (_("utime: %s\n"),
951 pulongest (strtoulst (p, &p, 10)));
952 if (*p)
953 printf_filtered (_("stime: %s\n"),
954 pulongest (strtoulst (p, &p, 10)));
955 if (*p)
956 printf_filtered (_("utime, children: %s\n"),
957 pulongest (strtoulst (p, &p, 10)));
958 if (*p)
959 printf_filtered (_("stime, children: %s\n"),
960 pulongest (strtoulst (p, &p, 10)));
961 if (*p)
962 printf_filtered (_("jiffies remaining in current "
963 "time slice: %s\n"),
964 pulongest (strtoulst (p, &p, 10)));
965 if (*p)
966 printf_filtered (_("'nice' value: %s\n"),
967 pulongest (strtoulst (p, &p, 10)));
968 if (*p)
969 printf_filtered (_("jiffies until next timeout: %s\n"),
970 pulongest (strtoulst (p, &p, 10)));
971 if (*p)
972 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
973 pulongest (strtoulst (p, &p, 10)));
974 if (*p)
975 printf_filtered (_("start time (jiffies since "
976 "system boot): %s\n"),
977 pulongest (strtoulst (p, &p, 10)));
978 if (*p)
979 printf_filtered (_("Virtual memory size: %s\n"),
980 pulongest (strtoulst (p, &p, 10)));
981 if (*p)
982 printf_filtered (_("Resident set size: %s\n"),
983 pulongest (strtoulst (p, &p, 10)));
984 if (*p)
985 printf_filtered (_("rlim: %s\n"),
986 pulongest (strtoulst (p, &p, 10)));
987 if (*p)
988 printf_filtered (_("Start of text: %s\n"),
989 hex_string (strtoulst (p, &p, 10)));
990 if (*p)
991 printf_filtered (_("End of text: %s\n"),
992 hex_string (strtoulst (p, &p, 10)));
993 if (*p)
994 printf_filtered (_("Start of stack: %s\n"),
995 hex_string (strtoulst (p, &p, 10)));
996#if 0 /* Don't know how architecture-dependent the rest is...
997 Anyway the signal bitmap info is available from "status". */
998 if (*p)
999 printf_filtered (_("Kernel stack pointer: %s\n"),
1000 hex_string (strtoulst (p, &p, 10)));
1001 if (*p)
1002 printf_filtered (_("Kernel instr pointer: %s\n"),
1003 hex_string (strtoulst (p, &p, 10)));
1004 if (*p)
1005 printf_filtered (_("Pending signals bitmap: %s\n"),
1006 hex_string (strtoulst (p, &p, 10)));
1007 if (*p)
1008 printf_filtered (_("Blocked signals bitmap: %s\n"),
1009 hex_string (strtoulst (p, &p, 10)));
1010 if (*p)
1011 printf_filtered (_("Ignored signals bitmap: %s\n"),
1012 hex_string (strtoulst (p, &p, 10)));
1013 if (*p)
1014 printf_filtered (_("Catched signals bitmap: %s\n"),
1015 hex_string (strtoulst (p, &p, 10)));
1016 if (*p)
1017 printf_filtered (_("wchan (system call): %s\n"),
1018 hex_string (strtoulst (p, &p, 10)));
1019#endif
3030c96e
UW
1020 }
1021 else
1022 warning (_("unable to open /proc file '%s'"), filename);
1023 }
1024}
1025
451b7c33
TT
1026/* Implement "info proc mappings" for a corefile. */
1027
1028static void
7bc112c1 1029linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
451b7c33
TT
1030{
1031 asection *section;
1032 ULONGEST count, page_size;
9f584b37 1033 unsigned char *descdata, *filenames, *descend;
451b7c33
TT
1034 size_t note_size;
1035 unsigned int addr_size_bits, addr_size;
451b7c33
TT
1036 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1037 /* We assume this for reading 64-bit core files. */
1038 gdb_static_assert (sizeof (ULONGEST) >= 8);
1039
1040 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1041 if (section == NULL)
1042 {
1043 warning (_("unable to find mappings in core file"));
1044 return;
1045 }
1046
1047 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1048 addr_size = addr_size_bits / 8;
1049 note_size = bfd_get_section_size (section);
1050
1051 if (note_size < 2 * addr_size)
1052 error (_("malformed core note - too short for header"));
1053
9f584b37
TT
1054 gdb::def_vector<unsigned char> contents (note_size);
1055 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1056 0, note_size))
451b7c33
TT
1057 error (_("could not get core note contents"));
1058
9f584b37 1059 descdata = contents.data ();
451b7c33
TT
1060 descend = descdata + note_size;
1061
1062 if (descdata[note_size - 1] != '\0')
1063 error (_("malformed note - does not end with \\0"));
1064
1065 count = bfd_get (addr_size_bits, core_bfd, descdata);
1066 descdata += addr_size;
1067
1068 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1069 descdata += addr_size;
1070
1071 if (note_size < 2 * addr_size + count * 3 * addr_size)
1072 error (_("malformed note - too short for supplied file count"));
1073
1074 printf_filtered (_("Mapped address spaces:\n\n"));
1075 if (gdbarch_addr_bit (gdbarch) == 32)
1076 {
1077 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1078 "Start Addr",
1079 " End Addr",
1080 " Size", " Offset", "objfile");
1081 }
1082 else
1083 {
1084 printf_filtered (" %18s %18s %10s %10s %s\n",
1085 "Start Addr",
1086 " End Addr",
1087 " Size", " Offset", "objfile");
1088 }
1089
1090 filenames = descdata + count * 3 * addr_size;
1091 while (--count > 0)
1092 {
1093 ULONGEST start, end, file_ofs;
1094
1095 if (filenames == descend)
1096 error (_("malformed note - filenames end too early"));
1097
1098 start = bfd_get (addr_size_bits, core_bfd, descdata);
1099 descdata += addr_size;
1100 end = bfd_get (addr_size_bits, core_bfd, descdata);
1101 descdata += addr_size;
1102 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1103 descdata += addr_size;
1104
1105 file_ofs *= page_size;
1106
1107 if (gdbarch_addr_bit (gdbarch) == 32)
1108 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1109 paddress (gdbarch, start),
1110 paddress (gdbarch, end),
1111 hex_string (end - start),
1112 hex_string (file_ofs),
1113 filenames);
1114 else
1115 printf_filtered (" %18s %18s %10s %10s %s\n",
1116 paddress (gdbarch, start),
1117 paddress (gdbarch, end),
1118 hex_string (end - start),
1119 hex_string (file_ofs),
1120 filenames);
1121
1122 filenames += 1 + strlen ((char *) filenames);
1123 }
451b7c33
TT
1124}
1125
1126/* Implement "info proc" for a corefile. */
1127
1128static void
7bc112c1 1129linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
451b7c33
TT
1130 enum info_proc_what what)
1131{
1132 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1133 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1134
1135 if (exe_f)
1136 {
1137 const char *exe;
1138
1139 exe = bfd_core_file_failing_command (core_bfd);
1140 if (exe != NULL)
1141 printf_filtered ("exe = '%s'\n", exe);
1142 else
1143 warning (_("unable to find command name in core file"));
1144 }
1145
1146 if (mappings_f)
1147 linux_core_info_proc_mappings (gdbarch, args);
1148
1149 if (!exe_f && !mappings_f)
1150 error (_("unable to handle request"));
1151}
1152
382b69bb
JB
1153/* Read siginfo data from the core, if possible. Returns -1 on
1154 failure. Otherwise, returns the number of bytes read. READBUF,
1155 OFFSET, and LEN are all as specified by the to_xfer_partial
1156 interface. */
1157
1158static LONGEST
1159linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1160 ULONGEST offset, ULONGEST len)
1161{
1162 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1163 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1164 if (section == NULL)
1165 return -1;
1166
1167 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1168 return -1;
1169
1170 return len;
1171}
1172
db1ff28b
JK
1173typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1174 ULONGEST offset, ULONGEST inode,
1175 int read, int write,
1176 int exec, int modified,
1177 const char *filename,
1178 void *data);
451b7c33 1179
db1ff28b 1180/* List memory regions in the inferior for a corefile. */
451b7c33
TT
1181
1182static int
db1ff28b
JK
1183linux_find_memory_regions_full (struct gdbarch *gdbarch,
1184 linux_find_memory_region_ftype *func,
1185 void *obfd)
f7af1fcd 1186{
db1ff28b
JK
1187 char mapsfilename[100];
1188 char coredumpfilter_name[100];
f7af1fcd
JK
1189 pid_t pid;
1190 /* Default dump behavior of coredump_filter (0x33), according to
1191 Documentation/filesystems/proc.txt from the Linux kernel
1192 tree. */
8d297bbf
PA
1193 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1194 | COREFILTER_ANON_SHARED
1195 | COREFILTER_ELF_HEADERS
1196 | COREFILTER_HUGETLB_PRIVATE);
f7af1fcd 1197
db1ff28b 1198 /* We need to know the real target PID to access /proc. */
f7af1fcd 1199 if (current_inferior ()->fake_pid_p)
db1ff28b 1200 return 1;
f7af1fcd
JK
1201
1202 pid = current_inferior ()->pid;
1203
1204 if (use_coredump_filter)
1205 {
f7af1fcd
JK
1206 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1207 "/proc/%d/coredump_filter", pid);
87028b87
TT
1208 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1209 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
f7af1fcd
JK
1210 if (coredumpfilterdata != NULL)
1211 {
8d297bbf
PA
1212 unsigned int flags;
1213
87028b87 1214 sscanf (coredumpfilterdata.get (), "%x", &flags);
8d297bbf 1215 filterflags = (enum filter_flag) flags;
f7af1fcd
JK
1216 }
1217 }
1218
db1ff28b 1219 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
87028b87
TT
1220 gdb::unique_xmalloc_ptr<char> data
1221 = target_fileio_read_stralloc (NULL, mapsfilename);
db1ff28b
JK
1222 if (data == NULL)
1223 {
1224 /* Older Linux kernels did not support /proc/PID/smaps. */
1225 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1226 data = target_fileio_read_stralloc (NULL, mapsfilename);
1227 }
1228
1229 if (data != NULL)
1230 {
db1ff28b
JK
1231 char *line, *t;
1232
87028b87 1233 line = strtok_r (data.get (), "\n", &t);
db1ff28b
JK
1234 while (line != NULL)
1235 {
1236 ULONGEST addr, endaddr, offset, inode;
1237 const char *permissions, *device, *filename;
1238 struct smaps_vmflags v;
1239 size_t permissions_len, device_len;
1240 int read, write, exec, priv;
1241 int has_anonymous = 0;
1242 int should_dump_p = 0;
1243 int mapping_anon_p;
1244 int mapping_file_p;
1245
1246 memset (&v, 0, sizeof (v));
1247 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1248 &offset, &device, &device_len, &inode, &filename);
1249 mapping_anon_p = mapping_is_anonymous_p (filename);
1250 /* If the mapping is not anonymous, then we can consider it
1251 to be file-backed. These two states (anonymous or
1252 file-backed) seem to be exclusive, but they can actually
1253 coexist. For example, if a file-backed mapping has
1254 "Anonymous:" pages (see more below), then the Linux
1255 kernel will dump this mapping when the user specified
1256 that she only wants anonymous mappings in the corefile
1257 (*even* when she explicitly disabled the dumping of
1258 file-backed mappings). */
1259 mapping_file_p = !mapping_anon_p;
1260
1261 /* Decode permissions. */
1262 read = (memchr (permissions, 'r', permissions_len) != 0);
1263 write = (memchr (permissions, 'w', permissions_len) != 0);
1264 exec = (memchr (permissions, 'x', permissions_len) != 0);
1265 /* 'private' here actually means VM_MAYSHARE, and not
1266 VM_SHARED. In order to know if a mapping is really
1267 private or not, we must check the flag "sh" in the
1268 VmFlags field. This is done by decode_vmflags. However,
1269 if we are using a Linux kernel released before the commit
1270 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1271 not have the VmFlags there. In this case, there is
1272 really no way to know if we are dealing with VM_SHARED,
1273 so we just assume that VM_MAYSHARE is enough. */
1274 priv = memchr (permissions, 'p', permissions_len) != 0;
1275
1276 /* Try to detect if region should be dumped by parsing smaps
1277 counters. */
1278 for (line = strtok_r (NULL, "\n", &t);
1279 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1280 line = strtok_r (NULL, "\n", &t))
1281 {
1282 char keyword[64 + 1];
1283
1284 if (sscanf (line, "%64s", keyword) != 1)
1285 {
1286 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1287 break;
1288 }
1289
1290 if (strcmp (keyword, "Anonymous:") == 0)
1291 {
1292 /* Older Linux kernels did not support the
1293 "Anonymous:" counter. Check it here. */
1294 has_anonymous = 1;
1295 }
1296 else if (strcmp (keyword, "VmFlags:") == 0)
1297 decode_vmflags (line, &v);
1298
1299 if (strcmp (keyword, "AnonHugePages:") == 0
1300 || strcmp (keyword, "Anonymous:") == 0)
1301 {
1302 unsigned long number;
1303
1304 if (sscanf (line, "%*s%lu", &number) != 1)
1305 {
1306 warning (_("Error parsing {s,}maps file '%s' number"),
1307 mapsfilename);
1308 break;
1309 }
1310 if (number > 0)
1311 {
1312 /* Even if we are dealing with a file-backed
1313 mapping, if it contains anonymous pages we
1314 consider it to be *also* an anonymous
1315 mapping, because this is what the Linux
1316 kernel does:
1317
1318 // Dump segments that have been written to.
1319 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1320 goto whole;
1321
1322 Note that if the mapping is already marked as
1323 file-backed (i.e., mapping_file_p is
1324 non-zero), then this is a special case, and
1325 this mapping will be dumped either when the
1326 user wants to dump file-backed *or* anonymous
1327 mappings. */
1328 mapping_anon_p = 1;
1329 }
1330 }
1331 }
1332
1333 if (has_anonymous)
1334 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1335 mapping_anon_p, mapping_file_p,
57e5e645 1336 filename, addr, offset);
db1ff28b
JK
1337 else
1338 {
1339 /* Older Linux kernels did not support the "Anonymous:" counter.
1340 If it is missing, we can't be sure - dump all the pages. */
1341 should_dump_p = 1;
1342 }
1343
1344 /* Invoke the callback function to create the corefile segment. */
1345 if (should_dump_p)
1346 func (addr, endaddr - addr, offset, inode,
1347 read, write, exec, 1, /* MODIFIED is true because we
1348 want to dump the mapping. */
1349 filename, obfd);
1350 }
1351
db1ff28b
JK
1352 return 0;
1353 }
1354
1355 return 1;
1356}
1357
1358/* A structure for passing information through
1359 linux_find_memory_regions_full. */
1360
1361struct linux_find_memory_regions_data
1362{
1363 /* The original callback. */
1364
1365 find_memory_region_ftype func;
1366
1367 /* The original datum. */
1368
1369 void *obfd;
1370};
1371
1372/* A callback for linux_find_memory_regions that converts between the
1373 "full"-style callback and find_memory_region_ftype. */
1374
1375static int
1376linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1377 ULONGEST offset, ULONGEST inode,
1378 int read, int write, int exec, int modified,
1379 const char *filename, void *arg)
1380{
9a3c8263
SM
1381 struct linux_find_memory_regions_data *data
1382 = (struct linux_find_memory_regions_data *) arg;
db1ff28b
JK
1383
1384 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
451b7c33
TT
1385}
1386
1387/* A variant of linux_find_memory_regions_full that is suitable as the
1388 gdbarch find_memory_regions method. */
1389
1390static int
1391linux_find_memory_regions (struct gdbarch *gdbarch,
db1ff28b 1392 find_memory_region_ftype func, void *obfd)
451b7c33
TT
1393{
1394 struct linux_find_memory_regions_data data;
1395
1396 data.func = func;
db1ff28b 1397 data.obfd = obfd;
451b7c33 1398
db1ff28b
JK
1399 return linux_find_memory_regions_full (gdbarch,
1400 linux_find_memory_regions_thunk,
1401 &data);
451b7c33
TT
1402}
1403
6432734d
UW
1404/* Determine which signal stopped execution. */
1405
1406static int
1407find_signalled_thread (struct thread_info *info, void *data)
1408{
a493e3e2 1409 if (info->suspend.stop_signal != GDB_SIGNAL_0
e99b03dc 1410 && info->ptid.pid () == inferior_ptid.pid ())
6432734d
UW
1411 return 1;
1412
1413 return 0;
1414}
1415
6432734d
UW
1416/* Generate corefile notes for SPU contexts. */
1417
1418static char *
1419linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1420{
1421 static const char *spu_files[] =
1422 {
1423 "object-id",
1424 "mem",
1425 "regs",
1426 "fpcr",
1427 "lslr",
1428 "decr",
1429 "decr_status",
1430 "signal1",
1431 "signal1_type",
1432 "signal2",
1433 "signal2_type",
1434 "event_mask",
1435 "event_status",
1436 "mbox_info",
1437 "ibox_info",
1438 "wbox_info",
1439 "dma_info",
1440 "proxydma_info",
1441 };
1442
f5656ead 1443 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
6432734d
UW
1444
1445 /* Determine list of SPU ids. */
9018be22 1446 gdb::optional<gdb::byte_vector>
8b88a78e
PA
1447 spu_ids = target_read_alloc (current_top_target (),
1448 TARGET_OBJECT_SPU, NULL);
9018be22
SM
1449
1450 if (!spu_ids)
07d28c77 1451 return note_data;
6432734d
UW
1452
1453 /* Generate corefile notes for each SPU file. */
9018be22 1454 for (size_t i = 0; i < spu_ids->size (); i += 4)
6432734d 1455 {
9018be22 1456 int fd = extract_unsigned_integer (spu_ids->data () + i, 4, byte_order);
6432734d 1457
9018be22 1458 for (size_t j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
6432734d
UW
1459 {
1460 char annex[32], note_name[32];
6432734d
UW
1461
1462 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
9018be22 1463 gdb::optional<gdb::byte_vector> spu_data
8b88a78e 1464 = target_read_alloc (current_top_target (), TARGET_OBJECT_SPU, annex);
9018be22
SM
1465
1466 if (spu_data && !spu_data->empty ())
6432734d
UW
1467 {
1468 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1469 note_data = elfcore_write_note (obfd, note_data, note_size,
1470 note_name, NT_SPU,
9018be22
SM
1471 spu_data->data (),
1472 spu_data->size ());
6432734d
UW
1473
1474 if (!note_data)
9018be22 1475 return nullptr;
6432734d
UW
1476 }
1477 }
1478 }
1479
6432734d
UW
1480 return note_data;
1481}
1482
451b7c33
TT
1483/* This is used to pass information from
1484 linux_make_mappings_corefile_notes through
1485 linux_find_memory_regions_full. */
1486
1487struct linux_make_mappings_data
1488{
1489 /* Number of files mapped. */
1490 ULONGEST file_count;
1491
1492 /* The obstack for the main part of the data. */
1493 struct obstack *data_obstack;
1494
1495 /* The filename obstack. */
1496 struct obstack *filename_obstack;
1497
1498 /* The architecture's "long" type. */
1499 struct type *long_type;
1500};
1501
1502static linux_find_memory_region_ftype linux_make_mappings_callback;
1503
1504/* A callback for linux_find_memory_regions_full that updates the
1505 mappings data for linux_make_mappings_corefile_notes. */
1506
1507static int
1508linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1509 ULONGEST offset, ULONGEST inode,
1510 int read, int write, int exec, int modified,
1511 const char *filename, void *data)
1512{
9a3c8263
SM
1513 struct linux_make_mappings_data *map_data
1514 = (struct linux_make_mappings_data *) data;
451b7c33
TT
1515 gdb_byte buf[sizeof (ULONGEST)];
1516
1517 if (*filename == '\0' || inode == 0)
1518 return 0;
1519
1520 ++map_data->file_count;
1521
1522 pack_long (buf, map_data->long_type, vaddr);
1523 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1524 pack_long (buf, map_data->long_type, vaddr + size);
1525 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1526 pack_long (buf, map_data->long_type, offset);
1527 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1528
1529 obstack_grow_str0 (map_data->filename_obstack, filename);
1530
1531 return 0;
1532}
1533
1534/* Write the file mapping data to the core file, if possible. OBFD is
1535 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1536 is a pointer to the note size. Returns the new NOTE_DATA and
1537 updates NOTE_SIZE. */
1538
1539static char *
1540linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1541 char *note_data, int *note_size)
1542{
451b7c33
TT
1543 struct linux_make_mappings_data mapping_data;
1544 struct type *long_type
1545 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1546 gdb_byte buf[sizeof (ULONGEST)];
1547
8268c778 1548 auto_obstack data_obstack, filename_obstack;
451b7c33
TT
1549
1550 mapping_data.file_count = 0;
1551 mapping_data.data_obstack = &data_obstack;
1552 mapping_data.filename_obstack = &filename_obstack;
1553 mapping_data.long_type = long_type;
1554
1555 /* Reserve space for the count. */
1556 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1557 /* We always write the page size as 1 since we have no good way to
1558 determine the correct value. */
1559 pack_long (buf, long_type, 1);
1560 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1561
db1ff28b
JK
1562 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1563 &mapping_data);
451b7c33
TT
1564
1565 if (mapping_data.file_count != 0)
1566 {
1567 /* Write the count to the obstack. */
51a5cd90
PA
1568 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1569 long_type, mapping_data.file_count);
451b7c33
TT
1570
1571 /* Copy the filenames to the data obstack. */
3fba72f7 1572 int size = obstack_object_size (&filename_obstack);
451b7c33 1573 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
3fba72f7 1574 size);
451b7c33
TT
1575
1576 note_data = elfcore_write_note (obfd, note_data, note_size,
1577 "CORE", NT_FILE,
1578 obstack_base (&data_obstack),
1579 obstack_object_size (&data_obstack));
1580 }
1581
451b7c33
TT
1582 return note_data;
1583}
1584
5aa82d05
AA
1585/* Structure for passing information from
1586 linux_collect_thread_registers via an iterator to
1587 linux_collect_regset_section_cb. */
1588
1589struct linux_collect_regset_section_cb_data
1590{
1591 struct gdbarch *gdbarch;
1592 const struct regcache *regcache;
1593 bfd *obfd;
1594 char *note_data;
1595 int *note_size;
1596 unsigned long lwp;
1597 enum gdb_signal stop_signal;
1598 int abort_iteration;
1599};
1600
1601/* Callback for iterate_over_regset_sections that records a single
1602 regset in the corefile note section. */
1603
1604static void
a616bb94
AH
1605linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1606 int collect_size, const struct regset *regset,
5aa82d05
AA
1607 const char *human_name, void *cb_data)
1608{
7567e115
SM
1609 struct linux_collect_regset_section_cb_data *data
1610 = (struct linux_collect_regset_section_cb_data *) cb_data;
a616bb94
AH
1611 bool variable_size_section = (regset != NULL
1612 && regset->flags & REGSET_VARIABLE_SIZE);
1613
1614 if (!variable_size_section)
1615 gdb_assert (supply_size == collect_size);
5aa82d05
AA
1616
1617 if (data->abort_iteration)
1618 return;
1619
5aa82d05
AA
1620 gdb_assert (regset && regset->collect_regset);
1621
afde3032
PFC
1622 /* This is intentionally zero-initialized by using std::vector, so
1623 that any padding bytes in the core file will show as 0. */
1624 std::vector<gdb_byte> buf (collect_size);
1625
1626 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1627 collect_size);
5aa82d05
AA
1628
1629 /* PRSTATUS still needs to be treated specially. */
1630 if (strcmp (sect_name, ".reg") == 0)
1631 data->note_data = (char *) elfcore_write_prstatus
1632 (data->obfd, data->note_data, data->note_size, data->lwp,
afde3032 1633 gdb_signal_to_host (data->stop_signal), buf.data ());
5aa82d05
AA
1634 else
1635 data->note_data = (char *) elfcore_write_register_note
1636 (data->obfd, data->note_data, data->note_size,
afde3032 1637 sect_name, buf.data (), collect_size);
5aa82d05
AA
1638
1639 if (data->note_data == NULL)
1640 data->abort_iteration = 1;
1641}
1642
6432734d
UW
1643/* Records the thread's register state for the corefile note
1644 section. */
1645
1646static char *
1647linux_collect_thread_registers (const struct regcache *regcache,
1648 ptid_t ptid, bfd *obfd,
1649 char *note_data, int *note_size,
2ea28649 1650 enum gdb_signal stop_signal)
6432734d 1651{
ac7936df 1652 struct gdbarch *gdbarch = regcache->arch ();
5aa82d05 1653 struct linux_collect_regset_section_cb_data data;
6432734d 1654
5aa82d05
AA
1655 data.gdbarch = gdbarch;
1656 data.regcache = regcache;
1657 data.obfd = obfd;
1658 data.note_data = note_data;
1659 data.note_size = note_size;
1660 data.stop_signal = stop_signal;
1661 data.abort_iteration = 0;
6432734d
UW
1662
1663 /* For remote targets the LWP may not be available, so use the TID. */
e38504b3 1664 data.lwp = ptid.lwp ();
5aa82d05 1665 if (!data.lwp)
cc6bcb54 1666 data.lwp = ptid.tid ();
5aa82d05
AA
1667
1668 gdbarch_iterate_over_regset_sections (gdbarch,
1669 linux_collect_regset_section_cb,
1670 &data, regcache);
1671 return data.note_data;
6432734d
UW
1672}
1673
2989a365 1674/* Fetch the siginfo data for the specified thread, if it exists. If
9f584b37
TT
1675 there is no data, or we could not read it, return an empty
1676 buffer. */
1677
1678static gdb::byte_vector
1679linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
9015683b
TT
1680{
1681 struct type *siginfo_type;
9015683b 1682 LONGEST bytes_read;
9015683b
TT
1683
1684 if (!gdbarch_get_siginfo_type_p (gdbarch))
9f584b37
TT
1685 return gdb::byte_vector ();
1686
2989a365
TT
1687 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1688 inferior_ptid = thread->ptid;
1689
9015683b
TT
1690 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1691
9f584b37 1692 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
9015683b 1693
8b88a78e 1694 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9f584b37
TT
1695 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1696 if (bytes_read != TYPE_LENGTH (siginfo_type))
1697 buf.clear ();
9015683b
TT
1698
1699 return buf;
1700}
1701
6432734d
UW
1702struct linux_corefile_thread_data
1703{
1704 struct gdbarch *gdbarch;
6432734d
UW
1705 bfd *obfd;
1706 char *note_data;
1707 int *note_size;
2ea28649 1708 enum gdb_signal stop_signal;
6432734d
UW
1709};
1710
050c224b
PA
1711/* Records the thread's register state for the corefile note
1712 section. */
6432734d 1713
050c224b
PA
1714static void
1715linux_corefile_thread (struct thread_info *info,
1716 struct linux_corefile_thread_data *args)
6432734d 1717{
050c224b 1718 struct regcache *regcache;
050c224b
PA
1719
1720 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1721
050c224b 1722 target_fetch_registers (regcache, -1);
9f584b37 1723 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
050c224b
PA
1724
1725 args->note_data = linux_collect_thread_registers
1726 (regcache, info->ptid, args->obfd, args->note_data,
1727 args->note_size, args->stop_signal);
1728
1729 /* Don't return anything if we got no register information above,
1730 such a core file is useless. */
1731 if (args->note_data != NULL)
9f584b37 1732 if (!siginfo_data.empty ())
050c224b
PA
1733 args->note_data = elfcore_write_note (args->obfd,
1734 args->note_data,
1735 args->note_size,
1736 "CORE", NT_SIGINFO,
9f584b37
TT
1737 siginfo_data.data (),
1738 siginfo_data.size ());
6432734d
UW
1739}
1740
b3ac9c77
SDJ
1741/* Fill the PRPSINFO structure with information about the process being
1742 debugged. Returns 1 in case of success, 0 for failures. Please note that
1743 even if the structure cannot be entirely filled (e.g., GDB was unable to
1744 gather information about the process UID/GID), this function will still
1745 return 1 since some information was already recorded. It will only return
1746 0 iff nothing can be gathered. */
1747
1748static int
1749linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1750{
1751 /* The filename which we will use to obtain some info about the process.
1752 We will basically use this to store the `/proc/PID/FILENAME' file. */
1753 char filename[100];
b3ac9c77
SDJ
1754 /* The basename of the executable. */
1755 const char *basename;
cbaaa0ca 1756 const char *infargs;
b3ac9c77
SDJ
1757 /* Temporary buffer. */
1758 char *tmpstr;
1759 /* The valid states of a process, according to the Linux kernel. */
1760 const char valid_states[] = "RSDTZW";
1761 /* The program state. */
1762 const char *prog_state;
1763 /* The state of the process. */
1764 char pr_sname;
1765 /* The PID of the program which generated the corefile. */
1766 pid_t pid;
1767 /* Process flags. */
1768 unsigned int pr_flag;
1769 /* Process nice value. */
1770 long pr_nice;
1771 /* The number of fields read by `sscanf'. */
1772 int n_fields = 0;
b3ac9c77
SDJ
1773
1774 gdb_assert (p != NULL);
1775
1776 /* Obtaining PID and filename. */
e99b03dc 1777 pid = inferior_ptid.pid ();
b3ac9c77 1778 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
87028b87
TT
1779 /* The full name of the program which generated the corefile. */
1780 gdb::unique_xmalloc_ptr<char> fname
1781 = target_fileio_read_stralloc (NULL, filename);
b3ac9c77 1782
87028b87 1783 if (fname == NULL || fname.get ()[0] == '\0')
b3ac9c77
SDJ
1784 {
1785 /* No program name was read, so we won't be able to retrieve more
1786 information about the process. */
b3ac9c77
SDJ
1787 return 0;
1788 }
1789
b3ac9c77
SDJ
1790 memset (p, 0, sizeof (*p));
1791
1792 /* Defining the PID. */
1793 p->pr_pid = pid;
1794
1795 /* Copying the program name. Only the basename matters. */
87028b87 1796 basename = lbasename (fname.get ());
b3ac9c77
SDJ
1797 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1798 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1799
1800 infargs = get_inferior_args ();
1801
87028b87
TT
1802 /* The arguments of the program. */
1803 std::string psargs = fname.get ();
b3ac9c77 1804 if (infargs != NULL)
87028b87 1805 psargs = psargs + " " + infargs;
b3ac9c77 1806
87028b87 1807 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
b3ac9c77
SDJ
1808 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1809
1810 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
87028b87
TT
1811 /* The contents of `/proc/PID/stat'. */
1812 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1813 = target_fileio_read_stralloc (NULL, filename);
1814 char *proc_stat = proc_stat_contents.get ();
b3ac9c77
SDJ
1815
1816 if (proc_stat == NULL || *proc_stat == '\0')
1817 {
1818 /* Despite being unable to read more information about the
1819 process, we return 1 here because at least we have its
1820 command line, PID and arguments. */
b3ac9c77
SDJ
1821 return 1;
1822 }
1823
1824 /* Ok, we have the stats. It's time to do a little parsing of the
1825 contents of the buffer, so that we end up reading what we want.
1826
1827 The following parsing mechanism is strongly based on the
1828 information generated by the `fs/proc/array.c' file, present in
1829 the Linux kernel tree. More details about how the information is
1830 displayed can be obtained by seeing the manpage of proc(5),
1831 specifically under the entry of `/proc/[pid]/stat'. */
1832
1833 /* Getting rid of the PID, since we already have it. */
1834 while (isdigit (*proc_stat))
1835 ++proc_stat;
1836
1837 proc_stat = skip_spaces (proc_stat);
1838
184cd072
JK
1839 /* ps command also relies on no trailing fields ever contain ')'. */
1840 proc_stat = strrchr (proc_stat, ')');
1841 if (proc_stat == NULL)
87028b87 1842 return 1;
184cd072 1843 proc_stat++;
b3ac9c77
SDJ
1844
1845 proc_stat = skip_spaces (proc_stat);
1846
1847 n_fields = sscanf (proc_stat,
1848 "%c" /* Process state. */
1849 "%d%d%d" /* Parent PID, group ID, session ID. */
1850 "%*d%*d" /* tty_nr, tpgid (not used). */
1851 "%u" /* Flags. */
1852 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1853 cmajflt (not used). */
1854 "%*s%*s%*s%*s" /* utime, stime, cutime,
1855 cstime (not used). */
1856 "%*s" /* Priority (not used). */
1857 "%ld", /* Nice. */
1858 &pr_sname,
1859 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1860 &pr_flag,
1861 &pr_nice);
1862
1863 if (n_fields != 6)
1864 {
1865 /* Again, we couldn't read the complementary information about
1866 the process state. However, we already have minimal
1867 information, so we just return 1 here. */
b3ac9c77
SDJ
1868 return 1;
1869 }
1870
1871 /* Filling the structure fields. */
1872 prog_state = strchr (valid_states, pr_sname);
1873 if (prog_state != NULL)
1874 p->pr_state = prog_state - valid_states;
1875 else
1876 {
1877 /* Zero means "Running". */
1878 p->pr_state = 0;
1879 }
1880
1881 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1882 p->pr_zomb = p->pr_sname == 'Z';
1883 p->pr_nice = pr_nice;
1884 p->pr_flag = pr_flag;
1885
1886 /* Finally, obtaining the UID and GID. For that, we read and parse the
1887 contents of the `/proc/PID/status' file. */
1888 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
87028b87
TT
1889 /* The contents of `/proc/PID/status'. */
1890 gdb::unique_xmalloc_ptr<char> proc_status_contents
1891 = target_fileio_read_stralloc (NULL, filename);
1892 char *proc_status = proc_status_contents.get ();
b3ac9c77
SDJ
1893
1894 if (proc_status == NULL || *proc_status == '\0')
1895 {
1896 /* Returning 1 since we already have a bunch of information. */
b3ac9c77
SDJ
1897 return 1;
1898 }
1899
1900 /* Extracting the UID. */
1901 tmpstr = strstr (proc_status, "Uid:");
1902 if (tmpstr != NULL)
1903 {
1904 /* Advancing the pointer to the beginning of the UID. */
1905 tmpstr += sizeof ("Uid:");
1906 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1907 ++tmpstr;
1908
1909 if (isdigit (*tmpstr))
1910 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1911 }
1912
1913 /* Extracting the GID. */
1914 tmpstr = strstr (proc_status, "Gid:");
1915 if (tmpstr != NULL)
1916 {
1917 /* Advancing the pointer to the beginning of the GID. */
1918 tmpstr += sizeof ("Gid:");
1919 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1920 ++tmpstr;
1921
1922 if (isdigit (*tmpstr))
1923 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1924 }
1925
b3ac9c77
SDJ
1926 return 1;
1927}
1928
f968fe80
AA
1929/* Build the note section for a corefile, and return it in a malloc
1930 buffer. */
6432734d 1931
f968fe80
AA
1932static char *
1933linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
6432734d
UW
1934{
1935 struct linux_corefile_thread_data thread_args;
b3ac9c77 1936 struct elf_internal_linux_prpsinfo prpsinfo;
6432734d 1937 char *note_data = NULL;
08036331 1938 struct thread_info *curr_thr, *signalled_thr;
6432734d 1939
f968fe80
AA
1940 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1941 return NULL;
1942
b3ac9c77 1943 if (linux_fill_prpsinfo (&prpsinfo))
6432734d 1944 {
fe220226
MR
1945 if (gdbarch_ptr_bit (gdbarch) == 64)
1946 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1947 note_data, note_size,
1948 &prpsinfo);
b3ac9c77 1949 else
fe220226
MR
1950 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1951 note_data, note_size,
1952 &prpsinfo);
6432734d
UW
1953 }
1954
1955 /* Thread register information. */
a70b8144 1956 try
22fd09ae
JK
1957 {
1958 update_thread_list ();
1959 }
230d2906 1960 catch (const gdb_exception_error &e)
492d29ea
PA
1961 {
1962 exception_print (gdb_stderr, e);
1963 }
492d29ea 1964
050c224b
PA
1965 /* Like the kernel, prefer dumping the signalled thread first.
1966 "First thread" is what tools use to infer the signalled thread.
1967 In case there's more than one signalled thread, prefer the
1968 current thread, if it is signalled. */
1969 curr_thr = inferior_thread ();
1970 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1971 signalled_thr = curr_thr;
1972 else
1973 {
1974 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1975 if (signalled_thr == NULL)
1976 signalled_thr = curr_thr;
1977 }
1978
6432734d 1979 thread_args.gdbarch = gdbarch;
6432734d
UW
1980 thread_args.obfd = obfd;
1981 thread_args.note_data = note_data;
1982 thread_args.note_size = note_size;
050c224b
PA
1983 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1984
1985 linux_corefile_thread (signalled_thr, &thread_args);
08036331 1986 for (thread_info *thr : current_inferior ()->non_exited_threads ())
050c224b
PA
1987 {
1988 if (thr == signalled_thr)
1989 continue;
050c224b
PA
1990
1991 linux_corefile_thread (thr, &thread_args);
1992 }
1993
6432734d
UW
1994 note_data = thread_args.note_data;
1995 if (!note_data)
1996 return NULL;
1997
1998 /* Auxillary vector. */
9018be22 1999 gdb::optional<gdb::byte_vector> auxv =
8b88a78e 2000 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
9018be22 2001 if (auxv && !auxv->empty ())
6432734d
UW
2002 {
2003 note_data = elfcore_write_note (obfd, note_data, note_size,
9018be22
SM
2004 "CORE", NT_AUXV, auxv->data (),
2005 auxv->size ());
6432734d
UW
2006
2007 if (!note_data)
2008 return NULL;
2009 }
2010
2011 /* SPU information. */
2012 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
2013 if (!note_data)
2014 return NULL;
2015
451b7c33
TT
2016 /* File mappings. */
2017 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2018 note_data, note_size);
2019
6432734d
UW
2020 return note_data;
2021}
2022
eb14d406
SDJ
2023/* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2024 gdbarch.h. This function is not static because it is exported to
2025 other -tdep files. */
2026
2027enum gdb_signal
2028linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2029{
2030 switch (signal)
2031 {
2032 case 0:
2033 return GDB_SIGNAL_0;
2034
2035 case LINUX_SIGHUP:
2036 return GDB_SIGNAL_HUP;
2037
2038 case LINUX_SIGINT:
2039 return GDB_SIGNAL_INT;
2040
2041 case LINUX_SIGQUIT:
2042 return GDB_SIGNAL_QUIT;
2043
2044 case LINUX_SIGILL:
2045 return GDB_SIGNAL_ILL;
2046
2047 case LINUX_SIGTRAP:
2048 return GDB_SIGNAL_TRAP;
2049
2050 case LINUX_SIGABRT:
2051 return GDB_SIGNAL_ABRT;
2052
2053 case LINUX_SIGBUS:
2054 return GDB_SIGNAL_BUS;
2055
2056 case LINUX_SIGFPE:
2057 return GDB_SIGNAL_FPE;
2058
2059 case LINUX_SIGKILL:
2060 return GDB_SIGNAL_KILL;
2061
2062 case LINUX_SIGUSR1:
2063 return GDB_SIGNAL_USR1;
2064
2065 case LINUX_SIGSEGV:
2066 return GDB_SIGNAL_SEGV;
2067
2068 case LINUX_SIGUSR2:
2069 return GDB_SIGNAL_USR2;
2070
2071 case LINUX_SIGPIPE:
2072 return GDB_SIGNAL_PIPE;
2073
2074 case LINUX_SIGALRM:
2075 return GDB_SIGNAL_ALRM;
2076
2077 case LINUX_SIGTERM:
2078 return GDB_SIGNAL_TERM;
2079
2080 case LINUX_SIGCHLD:
2081 return GDB_SIGNAL_CHLD;
2082
2083 case LINUX_SIGCONT:
2084 return GDB_SIGNAL_CONT;
2085
2086 case LINUX_SIGSTOP:
2087 return GDB_SIGNAL_STOP;
2088
2089 case LINUX_SIGTSTP:
2090 return GDB_SIGNAL_TSTP;
2091
2092 case LINUX_SIGTTIN:
2093 return GDB_SIGNAL_TTIN;
2094
2095 case LINUX_SIGTTOU:
2096 return GDB_SIGNAL_TTOU;
2097
2098 case LINUX_SIGURG:
2099 return GDB_SIGNAL_URG;
2100
2101 case LINUX_SIGXCPU:
2102 return GDB_SIGNAL_XCPU;
2103
2104 case LINUX_SIGXFSZ:
2105 return GDB_SIGNAL_XFSZ;
2106
2107 case LINUX_SIGVTALRM:
2108 return GDB_SIGNAL_VTALRM;
2109
2110 case LINUX_SIGPROF:
2111 return GDB_SIGNAL_PROF;
2112
2113 case LINUX_SIGWINCH:
2114 return GDB_SIGNAL_WINCH;
2115
2116 /* No way to differentiate between SIGIO and SIGPOLL.
2117 Therefore, we just handle the first one. */
2118 case LINUX_SIGIO:
2119 return GDB_SIGNAL_IO;
2120
2121 case LINUX_SIGPWR:
2122 return GDB_SIGNAL_PWR;
2123
2124 case LINUX_SIGSYS:
2125 return GDB_SIGNAL_SYS;
2126
2127 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2128 therefore we have to handle them here. */
2129 case LINUX_SIGRTMIN:
2130 return GDB_SIGNAL_REALTIME_32;
2131
2132 case LINUX_SIGRTMAX:
2133 return GDB_SIGNAL_REALTIME_64;
2134 }
2135
2136 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2137 {
2138 int offset = signal - LINUX_SIGRTMIN + 1;
2139
2140 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2141 }
2142
2143 return GDB_SIGNAL_UNKNOWN;
2144}
2145
2146/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2147 gdbarch.h. This function is not static because it is exported to
2148 other -tdep files. */
2149
2150int
2151linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2152 enum gdb_signal signal)
2153{
2154 switch (signal)
2155 {
2156 case GDB_SIGNAL_0:
2157 return 0;
2158
2159 case GDB_SIGNAL_HUP:
2160 return LINUX_SIGHUP;
2161
2162 case GDB_SIGNAL_INT:
2163 return LINUX_SIGINT;
2164
2165 case GDB_SIGNAL_QUIT:
2166 return LINUX_SIGQUIT;
2167
2168 case GDB_SIGNAL_ILL:
2169 return LINUX_SIGILL;
2170
2171 case GDB_SIGNAL_TRAP:
2172 return LINUX_SIGTRAP;
2173
2174 case GDB_SIGNAL_ABRT:
2175 return LINUX_SIGABRT;
2176
2177 case GDB_SIGNAL_FPE:
2178 return LINUX_SIGFPE;
2179
2180 case GDB_SIGNAL_KILL:
2181 return LINUX_SIGKILL;
2182
2183 case GDB_SIGNAL_BUS:
2184 return LINUX_SIGBUS;
2185
2186 case GDB_SIGNAL_SEGV:
2187 return LINUX_SIGSEGV;
2188
2189 case GDB_SIGNAL_SYS:
2190 return LINUX_SIGSYS;
2191
2192 case GDB_SIGNAL_PIPE:
2193 return LINUX_SIGPIPE;
2194
2195 case GDB_SIGNAL_ALRM:
2196 return LINUX_SIGALRM;
2197
2198 case GDB_SIGNAL_TERM:
2199 return LINUX_SIGTERM;
2200
2201 case GDB_SIGNAL_URG:
2202 return LINUX_SIGURG;
2203
2204 case GDB_SIGNAL_STOP:
2205 return LINUX_SIGSTOP;
2206
2207 case GDB_SIGNAL_TSTP:
2208 return LINUX_SIGTSTP;
2209
2210 case GDB_SIGNAL_CONT:
2211 return LINUX_SIGCONT;
2212
2213 case GDB_SIGNAL_CHLD:
2214 return LINUX_SIGCHLD;
2215
2216 case GDB_SIGNAL_TTIN:
2217 return LINUX_SIGTTIN;
2218
2219 case GDB_SIGNAL_TTOU:
2220 return LINUX_SIGTTOU;
2221
2222 case GDB_SIGNAL_IO:
2223 return LINUX_SIGIO;
2224
2225 case GDB_SIGNAL_XCPU:
2226 return LINUX_SIGXCPU;
2227
2228 case GDB_SIGNAL_XFSZ:
2229 return LINUX_SIGXFSZ;
2230
2231 case GDB_SIGNAL_VTALRM:
2232 return LINUX_SIGVTALRM;
2233
2234 case GDB_SIGNAL_PROF:
2235 return LINUX_SIGPROF;
2236
2237 case GDB_SIGNAL_WINCH:
2238 return LINUX_SIGWINCH;
2239
2240 case GDB_SIGNAL_USR1:
2241 return LINUX_SIGUSR1;
2242
2243 case GDB_SIGNAL_USR2:
2244 return LINUX_SIGUSR2;
2245
2246 case GDB_SIGNAL_PWR:
2247 return LINUX_SIGPWR;
2248
2249 case GDB_SIGNAL_POLL:
2250 return LINUX_SIGPOLL;
2251
2252 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2253 therefore we have to handle it here. */
2254 case GDB_SIGNAL_REALTIME_32:
2255 return LINUX_SIGRTMIN;
2256
2257 /* Same comment applies to _64. */
2258 case GDB_SIGNAL_REALTIME_64:
2259 return LINUX_SIGRTMAX;
2260 }
2261
2262 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2263 if (signal >= GDB_SIGNAL_REALTIME_33
2264 && signal <= GDB_SIGNAL_REALTIME_63)
2265 {
2266 int offset = signal - GDB_SIGNAL_REALTIME_33;
2267
2268 return LINUX_SIGRTMIN + 1 + offset;
2269 }
2270
2271 return -1;
2272}
2273
cdfa0b0a
PA
2274/* Helper for linux_vsyscall_range that does the real work of finding
2275 the vsyscall's address range. */
3437254d
PA
2276
2277static int
cdfa0b0a 2278linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
3437254d 2279{
95e94c3f
PA
2280 char filename[100];
2281 long pid;
95e94c3f 2282
8b88a78e 2283 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
95e94c3f
PA
2284 return 0;
2285
6bb90213
PA
2286 /* It doesn't make sense to access the host's /proc when debugging a
2287 core file. Instead, look for the PT_LOAD segment that matches
2288 the vDSO. */
2289 if (!target_has_execution)
2290 {
6bb90213
PA
2291 long phdrs_size;
2292 int num_phdrs, i;
2293
2294 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2295 if (phdrs_size == -1)
2296 return 0;
2297
31aceee8
TV
2298 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2299 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2300 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
6bb90213
PA
2301 if (num_phdrs == -1)
2302 return 0;
2303
2304 for (i = 0; i < num_phdrs; i++)
31aceee8
TV
2305 if (phdrs.get ()[i].p_type == PT_LOAD
2306 && phdrs.get ()[i].p_vaddr == range->start)
6bb90213 2307 {
31aceee8 2308 range->length = phdrs.get ()[i].p_memsz;
6bb90213
PA
2309 return 1;
2310 }
2311
2312 return 0;
2313 }
2314
95e94c3f
PA
2315 /* We need to know the real target PID to access /proc. */
2316 if (current_inferior ()->fake_pid_p)
2317 return 0;
2318
95e94c3f 2319 pid = current_inferior ()->pid;
3437254d 2320
95e94c3f
PA
2321 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2322 reading /proc/PID/maps (2). The later identifies thread stacks
2323 in the output, which requires scanning every thread in the thread
2324 group to check whether a VMA is actually a thread's stack. With
2325 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2326 a few thousand threads, (1) takes a few miliseconds, while (2)
2327 takes several seconds. Also note that "smaps", what we read for
2328 determining core dump mappings, is even slower than "maps". */
2329 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
87028b87
TT
2330 gdb::unique_xmalloc_ptr<char> data
2331 = target_fileio_read_stralloc (NULL, filename);
95e94c3f
PA
2332 if (data != NULL)
2333 {
95e94c3f
PA
2334 char *line;
2335 char *saveptr = NULL;
2336
87028b87 2337 for (line = strtok_r (data.get (), "\n", &saveptr);
95e94c3f
PA
2338 line != NULL;
2339 line = strtok_r (NULL, "\n", &saveptr))
2340 {
2341 ULONGEST addr, endaddr;
2342 const char *p = line;
2343
2344 addr = strtoulst (p, &p, 16);
2345 if (addr == range->start)
2346 {
2347 if (*p == '-')
2348 p++;
2349 endaddr = strtoulst (p, &p, 16);
2350 range->length = endaddr - addr;
95e94c3f
PA
2351 return 1;
2352 }
2353 }
95e94c3f
PA
2354 }
2355 else
2356 warning (_("unable to open /proc file '%s'"), filename);
2357
2358 return 0;
3437254d
PA
2359}
2360
cdfa0b0a
PA
2361/* Implementation of the "vsyscall_range" gdbarch hook. Handles
2362 caching, and defers the real work to linux_vsyscall_range_raw. */
2363
2364static int
2365linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2366{
2367 struct linux_info *info = get_linux_inferior_data ();
2368
2369 if (info->vsyscall_range_p == 0)
2370 {
2371 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2372 info->vsyscall_range_p = 1;
2373 else
2374 info->vsyscall_range_p = -1;
2375 }
2376
2377 if (info->vsyscall_range_p < 0)
2378 return 0;
2379
2380 *range = info->vsyscall_range;
2381 return 1;
2382}
2383
3bc3cebe
JK
2384/* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2385 definitions would be dependent on compilation host. */
2386#define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2387#define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2388
2389/* See gdbarch.sh 'infcall_mmap'. */
2390
2391static CORE_ADDR
2392linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2393{
2394 struct objfile *objf;
2395 /* Do there still exist any Linux systems without "mmap64"?
2396 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2397 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2398 struct value *addr_val;
2399 struct gdbarch *gdbarch = get_objfile_arch (objf);
2400 CORE_ADDR retval;
2401 enum
2402 {
2a546367 2403 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
3bc3cebe 2404 };
2a546367 2405 struct value *arg[ARG_LAST];
3bc3cebe
JK
2406
2407 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2408 0);
2409 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2410 arg[ARG_LENGTH] = value_from_ulongest
2411 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2412 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2413 | GDB_MMAP_PROT_EXEC))
2414 == 0);
2415 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2416 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2417 GDB_MMAP_MAP_PRIVATE
2418 | GDB_MMAP_MAP_ANONYMOUS);
2419 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2420 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2421 0);
e71585ff 2422 addr_val = call_function_by_hand (mmap_val, NULL, arg);
3bc3cebe
JK
2423 retval = value_as_address (addr_val);
2424 if (retval == (CORE_ADDR) -1)
2425 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2426 pulongest (size));
2427 return retval;
2428}
2429
7f361056
JK
2430/* See gdbarch.sh 'infcall_munmap'. */
2431
2432static void
2433linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2434{
2435 struct objfile *objf;
2436 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2437 struct value *retval_val;
2438 struct gdbarch *gdbarch = get_objfile_arch (objf);
2439 LONGEST retval;
2440 enum
2441 {
2442 ARG_ADDR, ARG_LENGTH, ARG_LAST
2443 };
2444 struct value *arg[ARG_LAST];
2445
2446 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2447 addr);
2448 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2449 arg[ARG_LENGTH] = value_from_ulongest
2450 (builtin_type (gdbarch)->builtin_unsigned_long, size);
e71585ff 2451 retval_val = call_function_by_hand (munmap_val, NULL, arg);
7f361056
JK
2452 retval = value_as_long (retval_val);
2453 if (retval != 0)
2454 warning (_("Failed inferior munmap call at %s for %s bytes, "
2455 "errno is changed."),
2456 hex_string (addr), pulongest (size));
2457}
2458
906d60cf
PA
2459/* See linux-tdep.h. */
2460
2461CORE_ADDR
2462linux_displaced_step_location (struct gdbarch *gdbarch)
2463{
2464 CORE_ADDR addr;
2465 int bp_len;
2466
2467 /* Determine entry point from target auxiliary vector. This avoids
2468 the need for symbols. Also, when debugging a stand-alone SPU
2469 executable, entry_point_address () will point to an SPU
2470 local-store address and is thus not usable as displaced stepping
2471 location. The auxiliary vector gets us the PowerPC-side entry
2472 point address instead. */
8b88a78e 2473 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
16b41842
PA
2474 throw_error (NOT_SUPPORTED_ERROR,
2475 _("Cannot find AT_ENTRY auxiliary vector entry."));
906d60cf
PA
2476
2477 /* Make certain that the address points at real code, and not a
2478 function descriptor. */
2479 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
8b88a78e 2480 current_top_target ());
906d60cf
PA
2481
2482 /* Inferior calls also use the entry point as a breakpoint location.
2483 We don't want displaced stepping to interfere with those
2484 breakpoints, so leave space. */
2485 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2486 addr += bp_len * 2;
2487
2488 return addr;
2489}
2490
0f83012e
AH
2491/* See linux-tdep.h. */
2492
2493CORE_ADDR
2494linux_get_hwcap (struct target_ops *target)
2495{
2496 CORE_ADDR field;
2497 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2498 return 0;
2499 return field;
2500}
2501
2502/* See linux-tdep.h. */
2503
2504CORE_ADDR
2505linux_get_hwcap2 (struct target_ops *target)
2506{
2507 CORE_ADDR field;
2508 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2509 return 0;
2510 return field;
2511}
2512
df8411da
SDJ
2513/* Display whether the gcore command is using the
2514 /proc/PID/coredump_filter file. */
2515
2516static void
2517show_use_coredump_filter (struct ui_file *file, int from_tty,
2518 struct cmd_list_element *c, const char *value)
2519{
2520 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2521 " corefiles is %s.\n"), value);
2522}
2523
afa840dc
SL
2524/* Display whether the gcore command is dumping mappings marked with
2525 the VM_DONTDUMP flag. */
2526
2527static void
2528show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2529 struct cmd_list_element *c, const char *value)
2530{
2531 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2532 " flag is %s.\n"), value);
2533}
2534
a5ee0f0c
PA
2535/* To be called from the various GDB_OSABI_LINUX handlers for the
2536 various GNU/Linux architectures and machine types. */
2537
2538void
2539linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2540{
2541 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
3030c96e 2542 set_gdbarch_info_proc (gdbarch, linux_info_proc);
451b7c33 2543 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
382b69bb 2544 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
35c2fab7 2545 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
f968fe80 2546 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
33fbcbee
PA
2547 set_gdbarch_has_shared_address_space (gdbarch,
2548 linux_has_shared_address_space);
eb14d406
SDJ
2549 set_gdbarch_gdb_signal_from_target (gdbarch,
2550 linux_gdb_signal_from_target);
2551 set_gdbarch_gdb_signal_to_target (gdbarch,
2552 linux_gdb_signal_to_target);
3437254d 2553 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
3bc3cebe 2554 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
7f361056 2555 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
5cd867b4 2556 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
a5ee0f0c 2557}
06253dd3
JK
2558
2559void
2560_initialize_linux_tdep (void)
2561{
2562 linux_gdbarch_data_handle =
2563 gdbarch_data_register_post_init (init_linux_gdbarch_data);
cdfa0b0a 2564
cdfa0b0a 2565 /* Observers used to invalidate the cache when needed. */
76727919
TT
2566 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2567 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
df8411da
SDJ
2568
2569 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2570 &use_coredump_filter, _("\
2571Set whether gcore should consider /proc/PID/coredump_filter."),
2572 _("\
2573Show whether gcore should consider /proc/PID/coredump_filter."),
2574 _("\
2575Use this command to set whether gcore should consider the contents\n\
2576of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2577about this file, refer to the manpage of core(5)."),
2578 NULL, show_use_coredump_filter,
2579 &setlist, &showlist);
afa840dc
SL
2580
2581 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2582 &dump_excluded_mappings, _("\
2583Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2584 _("\
2585Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2586 _("\
2587Use this command to set whether gcore should dump mappings marked with the\n\
2588VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2589more information about this file, refer to the manpage of proc(5) and core(5)."),
2590 NULL, show_dump_excluded_mappings,
2591 &setlist, &showlist);
06253dd3 2592}
This page took 1.151583 seconds and 4 git commands to generate.