Introduce compiled_regex, eliminate make_regfree_cleanup
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
CommitLineData
4aa995e1
PA
1/* Target-dependent code for GNU/Linux, architecture independent.
2
61baf725 3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4aa995e1
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "gdbtypes.h"
2c0b251b 22#include "linux-tdep.h"
6c95b8df
PA
23#include "auxv.h"
24#include "target.h"
6432734d
UW
25#include "gdbthread.h"
26#include "gdbcore.h"
27#include "regcache.h"
28#include "regset.h"
6c95b8df 29#include "elf/common.h"
6432734d 30#include "elf-bfd.h" /* for elfcore_write_* */
a5ee0f0c 31#include "inferior.h"
3030c96e 32#include "cli/cli-utils.h"
451b7c33
TT
33#include "arch-utils.h"
34#include "gdb_obstack.h"
cdfa0b0a 35#include "observer.h"
3bc3cebe
JK
36#include "objfiles.h"
37#include "infcall.h"
df8411da 38#include "gdbcmd.h"
db1ff28b 39#include "gdb_regex.h"
8d297bbf 40#include "common/enum-flags.h"
2d7cc5c7 41#include "common/gdb_optional.h"
3030c96e
UW
42
43#include <ctype.h>
4aa995e1 44
db1ff28b
JK
45/* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
8d297bbf 51enum filter_flag
db1ff28b
JK
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
8d297bbf 61DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
db1ff28b
JK
62
63/* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
df8411da
SDJ
91/* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94static int use_coredump_filter = 1;
95
eb14d406
SDJ
96/* This enum represents the signals' numbers on a generic architecture
97 running the Linux kernel. The definition of "generic" comes from
98 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
99 tree, which is the "de facto" implementation of signal numbers to
100 be used by new architecture ports.
101
102 For those architectures which have differences between the generic
103 standard (e.g., Alpha), we define the different signals (and *only*
104 those) in the specific target-dependent file (e.g.,
105 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
106 tdep file for more information.
107
108 ARM deserves a special mention here. On the file
109 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
110 (and ARM-only) signal, which is SIGSWI, with the same number as
111 SIGRTMIN. This signal is used only for a very specific target,
112 called ArthurOS (from RISCOS). Therefore, we do not handle it on
113 the ARM-tdep file, and we can safely use the generic signal handler
114 here for ARM targets.
115
116 As stated above, this enum is derived from
117 <include/uapi/asm-generic/signal.h>, from the Linux kernel
118 tree. */
119
120enum
121 {
122 LINUX_SIGHUP = 1,
123 LINUX_SIGINT = 2,
124 LINUX_SIGQUIT = 3,
125 LINUX_SIGILL = 4,
126 LINUX_SIGTRAP = 5,
127 LINUX_SIGABRT = 6,
128 LINUX_SIGIOT = 6,
129 LINUX_SIGBUS = 7,
130 LINUX_SIGFPE = 8,
131 LINUX_SIGKILL = 9,
132 LINUX_SIGUSR1 = 10,
133 LINUX_SIGSEGV = 11,
134 LINUX_SIGUSR2 = 12,
135 LINUX_SIGPIPE = 13,
136 LINUX_SIGALRM = 14,
137 LINUX_SIGTERM = 15,
138 LINUX_SIGSTKFLT = 16,
139 LINUX_SIGCHLD = 17,
140 LINUX_SIGCONT = 18,
141 LINUX_SIGSTOP = 19,
142 LINUX_SIGTSTP = 20,
143 LINUX_SIGTTIN = 21,
144 LINUX_SIGTTOU = 22,
145 LINUX_SIGURG = 23,
146 LINUX_SIGXCPU = 24,
147 LINUX_SIGXFSZ = 25,
148 LINUX_SIGVTALRM = 26,
149 LINUX_SIGPROF = 27,
150 LINUX_SIGWINCH = 28,
151 LINUX_SIGIO = 29,
152 LINUX_SIGPOLL = LINUX_SIGIO,
153 LINUX_SIGPWR = 30,
154 LINUX_SIGSYS = 31,
155 LINUX_SIGUNUSED = 31,
156
157 LINUX_SIGRTMIN = 32,
158 LINUX_SIGRTMAX = 64,
159 };
160
06253dd3
JK
161static struct gdbarch_data *linux_gdbarch_data_handle;
162
163struct linux_gdbarch_data
164 {
165 struct type *siginfo_type;
166 };
167
168static void *
169init_linux_gdbarch_data (struct gdbarch *gdbarch)
170{
171 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
172}
173
174static struct linux_gdbarch_data *
175get_linux_gdbarch_data (struct gdbarch *gdbarch)
176{
9a3c8263
SM
177 return ((struct linux_gdbarch_data *)
178 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
06253dd3
JK
179}
180
cdfa0b0a
PA
181/* Per-inferior data key. */
182static const struct inferior_data *linux_inferior_data;
183
184/* Linux-specific cached data. This is used by GDB for caching
185 purposes for each inferior. This helps reduce the overhead of
186 transfering data from a remote target to the local host. */
187struct linux_info
188{
189 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
190 if VSYSCALL_RANGE_P is positive. This is cached because getting
191 at this info requires an auxv lookup (which is itself cached),
192 and looking through the inferior's mappings (which change
193 throughout execution and therefore cannot be cached). */
194 struct mem_range vsyscall_range;
195
196 /* Zero if we haven't tried looking up the vsyscall's range before
197 yet. Positive if we tried looking it up, and found it. Negative
198 if we tried looking it up but failed. */
199 int vsyscall_range_p;
200};
201
202/* Frees whatever allocated space there is to be freed and sets INF's
203 linux cache data pointer to NULL. */
204
205static void
206invalidate_linux_cache_inf (struct inferior *inf)
207{
208 struct linux_info *info;
209
9a3c8263 210 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
cdfa0b0a
PA
211 if (info != NULL)
212 {
213 xfree (info);
214 set_inferior_data (inf, linux_inferior_data, NULL);
215 }
216}
217
218/* Handles the cleanup of the linux cache for inferior INF. ARG is
219 ignored. Callback for the inferior_appeared and inferior_exit
220 events. */
221
222static void
223linux_inferior_data_cleanup (struct inferior *inf, void *arg)
224{
225 invalidate_linux_cache_inf (inf);
226}
227
228/* Fetch the linux cache info for INF. This function always returns a
229 valid INFO pointer. */
230
231static struct linux_info *
232get_linux_inferior_data (void)
233{
234 struct linux_info *info;
235 struct inferior *inf = current_inferior ();
236
9a3c8263 237 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
cdfa0b0a
PA
238 if (info == NULL)
239 {
240 info = XCNEW (struct linux_info);
241 set_inferior_data (inf, linux_inferior_data, info);
242 }
243
244 return info;
245}
246
190b495d 247/* See linux-tdep.h. */
4aa995e1 248
190b495d 249struct type *
43564574
WT
250linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
251 linux_siginfo_extra_fields extra_fields)
4aa995e1 252{
06253dd3 253 struct linux_gdbarch_data *linux_gdbarch_data;
96b5c49f 254 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
4aa995e1
PA
255 struct type *uid_type, *pid_type;
256 struct type *sigval_type, *clock_type;
257 struct type *siginfo_type, *sifields_type;
258 struct type *type;
259
06253dd3
JK
260 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
261 if (linux_gdbarch_data->siginfo_type != NULL)
262 return linux_gdbarch_data->siginfo_type;
263
e9bb382b
UW
264 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
265 0, "int");
266 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
267 1, "unsigned int");
268 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
269 0, "long");
96b5c49f
WT
270 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
271 0, "short");
4aa995e1
PA
272 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
273
274 /* sival_t */
e9bb382b 275 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
276 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
277 append_composite_type_field (sigval_type, "sival_int", int_type);
278 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
279
280 /* __pid_t */
e3aa49af
MS
281 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
282 TYPE_LENGTH (int_type), "__pid_t");
4aa995e1 283 TYPE_TARGET_TYPE (pid_type) = int_type;
e9bb382b 284 TYPE_TARGET_STUB (pid_type) = 1;
4aa995e1
PA
285
286 /* __uid_t */
e3aa49af
MS
287 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
288 TYPE_LENGTH (uint_type), "__uid_t");
4aa995e1 289 TYPE_TARGET_TYPE (uid_type) = uint_type;
e9bb382b 290 TYPE_TARGET_STUB (uid_type) = 1;
4aa995e1
PA
291
292 /* __clock_t */
e3aa49af
MS
293 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
294 TYPE_LENGTH (long_type), "__clock_t");
4aa995e1 295 TYPE_TARGET_TYPE (clock_type) = long_type;
e9bb382b 296 TYPE_TARGET_STUB (clock_type) = 1;
4aa995e1
PA
297
298 /* _sifields */
e9bb382b 299 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
300
301 {
302 const int si_max_size = 128;
303 int si_pad_size;
304 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
305
306 /* _pad */
307 if (gdbarch_ptr_bit (gdbarch) == 64)
308 si_pad_size = (si_max_size / size_of_int) - 4;
309 else
310 si_pad_size = (si_max_size / size_of_int) - 3;
311 append_composite_type_field (sifields_type, "_pad",
312 init_vector_type (int_type, si_pad_size));
313 }
314
315 /* _kill */
e9bb382b 316 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
317 append_composite_type_field (type, "si_pid", pid_type);
318 append_composite_type_field (type, "si_uid", uid_type);
319 append_composite_type_field (sifields_type, "_kill", type);
320
321 /* _timer */
e9bb382b 322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
323 append_composite_type_field (type, "si_tid", int_type);
324 append_composite_type_field (type, "si_overrun", int_type);
325 append_composite_type_field (type, "si_sigval", sigval_type);
326 append_composite_type_field (sifields_type, "_timer", type);
327
328 /* _rt */
e9bb382b 329 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
330 append_composite_type_field (type, "si_pid", pid_type);
331 append_composite_type_field (type, "si_uid", uid_type);
332 append_composite_type_field (type, "si_sigval", sigval_type);
333 append_composite_type_field (sifields_type, "_rt", type);
334
335 /* _sigchld */
e9bb382b 336 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
337 append_composite_type_field (type, "si_pid", pid_type);
338 append_composite_type_field (type, "si_uid", uid_type);
339 append_composite_type_field (type, "si_status", int_type);
340 append_composite_type_field (type, "si_utime", clock_type);
341 append_composite_type_field (type, "si_stime", clock_type);
342 append_composite_type_field (sifields_type, "_sigchld", type);
343
344 /* _sigfault */
e9bb382b 345 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1 346 append_composite_type_field (type, "si_addr", void_ptr_type);
96b5c49f
WT
347
348 /* Additional bound fields for _sigfault in case they were requested. */
349 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
350 {
351 struct type *sigfault_bnd_fields;
352
353 append_composite_type_field (type, "_addr_lsb", short_type);
354 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
355 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
356 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
357 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
358 }
4aa995e1
PA
359 append_composite_type_field (sifields_type, "_sigfault", type);
360
361 /* _sigpoll */
e9bb382b 362 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
363 append_composite_type_field (type, "si_band", long_type);
364 append_composite_type_field (type, "si_fd", int_type);
365 append_composite_type_field (sifields_type, "_sigpoll", type);
366
367 /* struct siginfo */
e9bb382b 368 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
369 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
370 append_composite_type_field (siginfo_type, "si_signo", int_type);
371 append_composite_type_field (siginfo_type, "si_errno", int_type);
372 append_composite_type_field (siginfo_type, "si_code", int_type);
373 append_composite_type_field_aligned (siginfo_type,
374 "_sifields", sifields_type,
375 TYPE_LENGTH (long_type));
376
06253dd3
JK
377 linux_gdbarch_data->siginfo_type = siginfo_type;
378
4aa995e1
PA
379 return siginfo_type;
380}
6b3ae818 381
43564574
WT
382/* This function is suitable for architectures that don't
383 extend/override the standard siginfo structure. */
384
385static struct type *
386linux_get_siginfo_type (struct gdbarch *gdbarch)
387{
388 return linux_get_siginfo_type_with_fields (gdbarch, 0);
389}
390
c01cbb3d
YQ
391/* Return true if the target is running on uClinux instead of normal
392 Linux kernel. */
393
394int
395linux_is_uclinux (void)
6c95b8df 396{
6c95b8df 397 CORE_ADDR dummy;
6c95b8df 398
c01cbb3d
YQ
399 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
400 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
401}
6c95b8df 402
c01cbb3d
YQ
403static int
404linux_has_shared_address_space (struct gdbarch *gdbarch)
405{
406 return linux_is_uclinux ();
6c95b8df 407}
a5ee0f0c
PA
408
409/* This is how we want PTIDs from core files to be printed. */
410
7a114964 411static const char *
a5ee0f0c
PA
412linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
413{
414 static char buf[80];
415
416 if (ptid_get_lwp (ptid) != 0)
417 {
418 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
419 return buf;
420 }
421
422 return normal_pid_to_str (ptid);
423}
424
db1ff28b
JK
425/* Service function for corefiles and info proc. */
426
427static void
428read_mapping (const char *line,
429 ULONGEST *addr, ULONGEST *endaddr,
430 const char **permissions, size_t *permissions_len,
431 ULONGEST *offset,
432 const char **device, size_t *device_len,
433 ULONGEST *inode,
434 const char **filename)
435{
436 const char *p = line;
437
438 *addr = strtoulst (p, &p, 16);
439 if (*p == '-')
440 p++;
441 *endaddr = strtoulst (p, &p, 16);
442
443 p = skip_spaces_const (p);
444 *permissions = p;
445 while (*p && !isspace (*p))
446 p++;
447 *permissions_len = p - *permissions;
448
449 *offset = strtoulst (p, &p, 16);
450
451 p = skip_spaces_const (p);
452 *device = p;
453 while (*p && !isspace (*p))
454 p++;
455 *device_len = p - *device;
456
457 *inode = strtoulst (p, &p, 10);
458
459 p = skip_spaces_const (p);
460 *filename = p;
461}
462
463/* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
464
465 This function was based on the documentation found on
466 <Documentation/filesystems/proc.txt>, on the Linux kernel.
467
468 Linux kernels before commit
469 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
470 field on smaps. */
471
472static void
473decode_vmflags (char *p, struct smaps_vmflags *v)
474{
475 char *saveptr = NULL;
476 const char *s;
477
478 v->initialized_p = 1;
479 p = skip_to_space (p);
480 p = skip_spaces (p);
481
482 for (s = strtok_r (p, " ", &saveptr);
483 s != NULL;
484 s = strtok_r (NULL, " ", &saveptr))
485 {
486 if (strcmp (s, "io") == 0)
487 v->io_page = 1;
488 else if (strcmp (s, "ht") == 0)
489 v->uses_huge_tlb = 1;
490 else if (strcmp (s, "dd") == 0)
491 v->exclude_coredump = 1;
492 else if (strcmp (s, "sh") == 0)
493 v->shared_mapping = 1;
494 }
495}
496
2d7cc5c7
PA
497/* Regexes used by mapping_is_anonymous_p. Put in a structure because
498 they're initialized lazily. */
499
500struct mapping_regexes
501{
502 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
503 string in the end). We know for sure, based on the Linux kernel
504 code, that memory mappings whose associated filename is
505 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
506 compiled_regex dev_zero
507 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
508 _("Could not compile regex to match /dev/zero filename")};
509
510 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
511 string in the end). These filenames refer to shared memory
512 (shmem), and memory mappings associated with them are
513 MAP_ANONYMOUS as well. */
514 compiled_regex shmem_file
515 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
516 _("Could not compile regex to match shmem filenames")};
517
518 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
519 0' code, which is responsible to decide if it is dealing with a
520 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
521 FILE_DELETED matches, it does not necessarily mean that we are
522 dealing with an anonymous shared mapping. However, there is no
523 easy way to detect this currently, so this is the best
524 approximation we have.
525
526 As a result, GDB will dump readonly pages of deleted executables
527 when using the default value of coredump_filter (0x33), while the
528 Linux kernel will not dump those pages. But we can live with
529 that. */
530 compiled_regex file_deleted
531 {" (deleted)$", REG_NOSUB,
532 _("Could not compile regex to match '<file> (deleted)'")};
533};
534
db1ff28b
JK
535/* Return 1 if the memory mapping is anonymous, 0 otherwise.
536
537 FILENAME is the name of the file present in the first line of the
538 memory mapping, in the "/proc/PID/smaps" output. For example, if
539 the first line is:
540
541 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
542
543 Then FILENAME will be "/path/to/file". */
544
545static int
546mapping_is_anonymous_p (const char *filename)
547{
2d7cc5c7 548 static gdb::optional<mapping_regexes> regexes;
db1ff28b
JK
549 static int init_regex_p = 0;
550
551 if (!init_regex_p)
552 {
db1ff28b
JK
553 /* Let's be pessimistic and assume there will be an error while
554 compiling the regex'es. */
555 init_regex_p = -1;
556
2d7cc5c7 557 regexes.emplace ();
db1ff28b
JK
558
559 /* If we reached this point, then everything succeeded. */
560 init_regex_p = 1;
561 }
562
563 if (init_regex_p == -1)
564 {
565 const char deleted[] = " (deleted)";
566 size_t del_len = sizeof (deleted) - 1;
567 size_t filename_len = strlen (filename);
568
569 /* There was an error while compiling the regex'es above. In
570 order to try to give some reliable information to the caller,
571 we just try to find the string " (deleted)" in the filename.
572 If we managed to find it, then we assume the mapping is
573 anonymous. */
574 return (filename_len >= del_len
575 && strcmp (filename + filename_len - del_len, deleted) == 0);
576 }
577
578 if (*filename == '\0'
2d7cc5c7
PA
579 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
580 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
581 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
db1ff28b
JK
582 return 1;
583
584 return 0;
585}
586
587/* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
588 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
589 greater than 0 if it should.
590
591 In a nutshell, this is the logic that we follow in order to decide
592 if a mapping should be dumped or not.
593
594 - If the mapping is associated to a file whose name ends with
595 " (deleted)", or if the file is "/dev/zero", or if it is
596 "/SYSV%08x" (shared memory), or if there is no file associated
597 with it, or if the AnonHugePages: or the Anonymous: fields in the
598 /proc/PID/smaps have contents, then GDB considers this mapping to
599 be anonymous. Otherwise, GDB considers this mapping to be a
600 file-backed mapping (because there will be a file associated with
601 it).
602
603 It is worth mentioning that, from all those checks described
604 above, the most fragile is the one to see if the file name ends
605 with " (deleted)". This does not necessarily mean that the
606 mapping is anonymous, because the deleted file associated with
607 the mapping may have been a hard link to another file, for
608 example. The Linux kernel checks to see if "i_nlink == 0", but
609 GDB cannot easily (and normally) do this check (iff running as
610 root, it could find the mapping in /proc/PID/map_files/ and
611 determine whether there still are other hard links to the
612 inode/file). Therefore, we made a compromise here, and we assume
613 that if the file name ends with " (deleted)", then the mapping is
614 indeed anonymous. FWIW, this is something the Linux kernel could
615 do better: expose this information in a more direct way.
616
617 - If we see the flag "sh" in the "VmFlags:" field (in
618 /proc/PID/smaps), then certainly the memory mapping is shared
619 (VM_SHARED). If we have access to the VmFlags, and we don't see
620 the "sh" there, then certainly the mapping is private. However,
621 Linux kernels before commit
622 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
623 "VmFlags:" field; in that case, we use another heuristic: if we
624 see 'p' in the permission flags, then we assume that the mapping
625 is private, even though the presence of the 's' flag there would
626 mean VM_MAYSHARE, which means the mapping could still be private.
627 This should work OK enough, however. */
628
629static int
8d297bbf 630dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
db1ff28b
JK
631 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
632 const char *filename)
633{
634 /* Initially, we trust in what we received from our caller. This
635 value may not be very precise (i.e., it was probably gathered
636 from the permission line in the /proc/PID/smaps list, which
637 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
638 what we have until we take a look at the "VmFlags:" field
639 (assuming that the version of the Linux kernel being used
640 supports it, of course). */
641 int private_p = maybe_private_p;
642
643 /* We always dump vDSO and vsyscall mappings, because it's likely that
644 there'll be no file to read the contents from at core load time.
645 The kernel does the same. */
646 if (strcmp ("[vdso]", filename) == 0
647 || strcmp ("[vsyscall]", filename) == 0)
648 return 1;
649
650 if (v->initialized_p)
651 {
652 /* We never dump I/O mappings. */
653 if (v->io_page)
654 return 0;
655
656 /* Check if we should exclude this mapping. */
657 if (v->exclude_coredump)
658 return 0;
659
660 /* Update our notion of whether this mapping is shared or
661 private based on a trustworthy value. */
662 private_p = !v->shared_mapping;
663
664 /* HugeTLB checking. */
665 if (v->uses_huge_tlb)
666 {
667 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
668 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
669 return 1;
670
671 return 0;
672 }
673 }
674
675 if (private_p)
676 {
677 if (mapping_anon_p && mapping_file_p)
678 {
679 /* This is a special situation. It can happen when we see a
680 mapping that is file-backed, but that contains anonymous
681 pages. */
682 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
683 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
684 }
685 else if (mapping_anon_p)
686 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
687 else
688 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
689 }
690 else
691 {
692 if (mapping_anon_p && mapping_file_p)
693 {
694 /* This is a special situation. It can happen when we see a
695 mapping that is file-backed, but that contains anonymous
696 pages. */
697 return ((filterflags & COREFILTER_ANON_SHARED) != 0
698 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
699 }
700 else if (mapping_anon_p)
701 return (filterflags & COREFILTER_ANON_SHARED) != 0;
702 else
703 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
704 }
705}
706
3030c96e
UW
707/* Implement the "info proc" command. */
708
709static void
7bc112c1 710linux_info_proc (struct gdbarch *gdbarch, const char *args,
3030c96e
UW
711 enum info_proc_what what)
712{
713 /* A long is used for pid instead of an int to avoid a loss of precision
714 compiler warning from the output of strtoul. */
715 long pid;
716 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
717 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
718 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
719 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
720 int status_f = (what == IP_STATUS || what == IP_ALL);
721 int stat_f = (what == IP_STAT || what == IP_ALL);
722 char filename[100];
001f13d8 723 char *data;
3030c96e
UW
724 int target_errno;
725
726 if (args && isdigit (args[0]))
7bc112c1
TT
727 {
728 char *tem;
729
730 pid = strtoul (args, &tem, 10);
731 args = tem;
732 }
3030c96e
UW
733 else
734 {
735 if (!target_has_execution)
736 error (_("No current process: you must name one."));
737 if (current_inferior ()->fake_pid_p)
738 error (_("Can't determine the current process's PID: you must name one."));
739
740 pid = current_inferior ()->pid;
741 }
742
7bc112c1 743 args = skip_spaces_const (args);
3030c96e
UW
744 if (args && args[0])
745 error (_("Too many parameters: %s"), args);
746
747 printf_filtered (_("process %ld\n"), pid);
748 if (cmdline_f)
749 {
750 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
07c138c8 751 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
752 if (data)
753 {
754 struct cleanup *cleanup = make_cleanup (xfree, data);
755 printf_filtered ("cmdline = '%s'\n", data);
756 do_cleanups (cleanup);
757 }
758 else
759 warning (_("unable to open /proc file '%s'"), filename);
760 }
761 if (cwd_f)
762 {
763 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
07c138c8 764 data = target_fileio_readlink (NULL, filename, &target_errno);
3030c96e
UW
765 if (data)
766 {
767 struct cleanup *cleanup = make_cleanup (xfree, data);
768 printf_filtered ("cwd = '%s'\n", data);
769 do_cleanups (cleanup);
770 }
771 else
772 warning (_("unable to read link '%s'"), filename);
773 }
774 if (exe_f)
775 {
776 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
07c138c8 777 data = target_fileio_readlink (NULL, filename, &target_errno);
3030c96e
UW
778 if (data)
779 {
780 struct cleanup *cleanup = make_cleanup (xfree, data);
781 printf_filtered ("exe = '%s'\n", data);
782 do_cleanups (cleanup);
783 }
784 else
785 warning (_("unable to read link '%s'"), filename);
786 }
787 if (mappings_f)
788 {
789 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
07c138c8 790 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
791 if (data)
792 {
793 struct cleanup *cleanup = make_cleanup (xfree, data);
794 char *line;
795
796 printf_filtered (_("Mapped address spaces:\n\n"));
797 if (gdbarch_addr_bit (gdbarch) == 32)
798 {
799 printf_filtered ("\t%10s %10s %10s %10s %s\n",
800 "Start Addr",
801 " End Addr",
802 " Size", " Offset", "objfile");
803 }
804 else
805 {
806 printf_filtered (" %18s %18s %10s %10s %s\n",
807 "Start Addr",
808 " End Addr",
809 " Size", " Offset", "objfile");
810 }
811
812 for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n"))
813 {
814 ULONGEST addr, endaddr, offset, inode;
815 const char *permissions, *device, *filename;
816 size_t permissions_len, device_len;
817
818 read_mapping (line, &addr, &endaddr,
819 &permissions, &permissions_len,
820 &offset, &device, &device_len,
821 &inode, &filename);
822
823 if (gdbarch_addr_bit (gdbarch) == 32)
824 {
825 printf_filtered ("\t%10s %10s %10s %10s %s\n",
826 paddress (gdbarch, addr),
827 paddress (gdbarch, endaddr),
828 hex_string (endaddr - addr),
829 hex_string (offset),
830 *filename? filename : "");
831 }
832 else
833 {
834 printf_filtered (" %18s %18s %10s %10s %s\n",
835 paddress (gdbarch, addr),
836 paddress (gdbarch, endaddr),
837 hex_string (endaddr - addr),
838 hex_string (offset),
839 *filename? filename : "");
840 }
841 }
842
843 do_cleanups (cleanup);
844 }
845 else
846 warning (_("unable to open /proc file '%s'"), filename);
847 }
848 if (status_f)
849 {
850 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
07c138c8 851 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
852 if (data)
853 {
854 struct cleanup *cleanup = make_cleanup (xfree, data);
855 puts_filtered (data);
856 do_cleanups (cleanup);
857 }
858 else
859 warning (_("unable to open /proc file '%s'"), filename);
860 }
861 if (stat_f)
862 {
863 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
07c138c8 864 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
865 if (data)
866 {
867 struct cleanup *cleanup = make_cleanup (xfree, data);
868 const char *p = data;
3030c96e
UW
869
870 printf_filtered (_("Process: %s\n"),
871 pulongest (strtoulst (p, &p, 10)));
872
529480d0 873 p = skip_spaces_const (p);
a71b5a38 874 if (*p == '(')
3030c96e 875 {
184cd072
JK
876 /* ps command also relies on no trailing fields
877 ever contain ')'. */
878 const char *ep = strrchr (p, ')');
a71b5a38
UW
879 if (ep != NULL)
880 {
881 printf_filtered ("Exec file: %.*s\n",
882 (int) (ep - p - 1), p + 1);
883 p = ep + 1;
884 }
3030c96e
UW
885 }
886
529480d0 887 p = skip_spaces_const (p);
3030c96e
UW
888 if (*p)
889 printf_filtered (_("State: %c\n"), *p++);
890
891 if (*p)
892 printf_filtered (_("Parent process: %s\n"),
893 pulongest (strtoulst (p, &p, 10)));
894 if (*p)
895 printf_filtered (_("Process group: %s\n"),
896 pulongest (strtoulst (p, &p, 10)));
897 if (*p)
898 printf_filtered (_("Session id: %s\n"),
899 pulongest (strtoulst (p, &p, 10)));
900 if (*p)
901 printf_filtered (_("TTY: %s\n"),
902 pulongest (strtoulst (p, &p, 10)));
903 if (*p)
904 printf_filtered (_("TTY owner process group: %s\n"),
905 pulongest (strtoulst (p, &p, 10)));
906
907 if (*p)
908 printf_filtered (_("Flags: %s\n"),
909 hex_string (strtoulst (p, &p, 10)));
910 if (*p)
911 printf_filtered (_("Minor faults (no memory page): %s\n"),
912 pulongest (strtoulst (p, &p, 10)));
913 if (*p)
914 printf_filtered (_("Minor faults, children: %s\n"),
915 pulongest (strtoulst (p, &p, 10)));
916 if (*p)
917 printf_filtered (_("Major faults (memory page faults): %s\n"),
918 pulongest (strtoulst (p, &p, 10)));
919 if (*p)
920 printf_filtered (_("Major faults, children: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("utime: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("stime: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("utime, children: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
931 if (*p)
932 printf_filtered (_("stime, children: %s\n"),
933 pulongest (strtoulst (p, &p, 10)));
934 if (*p)
935 printf_filtered (_("jiffies remaining in current "
936 "time slice: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("'nice' value: %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("jiffies until next timeout: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947 if (*p)
948 printf_filtered (_("start time (jiffies since "
949 "system boot): %s\n"),
950 pulongest (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("Virtual memory size: %s\n"),
953 pulongest (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("Resident set size: %s\n"),
956 pulongest (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("rlim: %s\n"),
959 pulongest (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("Start of text: %s\n"),
962 hex_string (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("End of text: %s\n"),
965 hex_string (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("Start of stack: %s\n"),
968 hex_string (strtoulst (p, &p, 10)));
969#if 0 /* Don't know how architecture-dependent the rest is...
970 Anyway the signal bitmap info is available from "status". */
971 if (*p)
972 printf_filtered (_("Kernel stack pointer: %s\n"),
973 hex_string (strtoulst (p, &p, 10)));
974 if (*p)
975 printf_filtered (_("Kernel instr pointer: %s\n"),
976 hex_string (strtoulst (p, &p, 10)));
977 if (*p)
978 printf_filtered (_("Pending signals bitmap: %s\n"),
979 hex_string (strtoulst (p, &p, 10)));
980 if (*p)
981 printf_filtered (_("Blocked signals bitmap: %s\n"),
982 hex_string (strtoulst (p, &p, 10)));
983 if (*p)
984 printf_filtered (_("Ignored signals bitmap: %s\n"),
985 hex_string (strtoulst (p, &p, 10)));
986 if (*p)
987 printf_filtered (_("Catched signals bitmap: %s\n"),
988 hex_string (strtoulst (p, &p, 10)));
989 if (*p)
990 printf_filtered (_("wchan (system call): %s\n"),
991 hex_string (strtoulst (p, &p, 10)));
992#endif
993 do_cleanups (cleanup);
994 }
995 else
996 warning (_("unable to open /proc file '%s'"), filename);
997 }
998}
999
451b7c33
TT
1000/* Implement "info proc mappings" for a corefile. */
1001
1002static void
7bc112c1 1003linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
451b7c33
TT
1004{
1005 asection *section;
1006 ULONGEST count, page_size;
1007 unsigned char *descdata, *filenames, *descend, *contents;
1008 size_t note_size;
1009 unsigned int addr_size_bits, addr_size;
1010 struct cleanup *cleanup;
1011 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1012 /* We assume this for reading 64-bit core files. */
1013 gdb_static_assert (sizeof (ULONGEST) >= 8);
1014
1015 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1016 if (section == NULL)
1017 {
1018 warning (_("unable to find mappings in core file"));
1019 return;
1020 }
1021
1022 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1023 addr_size = addr_size_bits / 8;
1024 note_size = bfd_get_section_size (section);
1025
1026 if (note_size < 2 * addr_size)
1027 error (_("malformed core note - too short for header"));
1028
224c3ddb 1029 contents = (unsigned char *) xmalloc (note_size);
451b7c33
TT
1030 cleanup = make_cleanup (xfree, contents);
1031 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size))
1032 error (_("could not get core note contents"));
1033
1034 descdata = contents;
1035 descend = descdata + note_size;
1036
1037 if (descdata[note_size - 1] != '\0')
1038 error (_("malformed note - does not end with \\0"));
1039
1040 count = bfd_get (addr_size_bits, core_bfd, descdata);
1041 descdata += addr_size;
1042
1043 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1044 descdata += addr_size;
1045
1046 if (note_size < 2 * addr_size + count * 3 * addr_size)
1047 error (_("malformed note - too short for supplied file count"));
1048
1049 printf_filtered (_("Mapped address spaces:\n\n"));
1050 if (gdbarch_addr_bit (gdbarch) == 32)
1051 {
1052 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1053 "Start Addr",
1054 " End Addr",
1055 " Size", " Offset", "objfile");
1056 }
1057 else
1058 {
1059 printf_filtered (" %18s %18s %10s %10s %s\n",
1060 "Start Addr",
1061 " End Addr",
1062 " Size", " Offset", "objfile");
1063 }
1064
1065 filenames = descdata + count * 3 * addr_size;
1066 while (--count > 0)
1067 {
1068 ULONGEST start, end, file_ofs;
1069
1070 if (filenames == descend)
1071 error (_("malformed note - filenames end too early"));
1072
1073 start = bfd_get (addr_size_bits, core_bfd, descdata);
1074 descdata += addr_size;
1075 end = bfd_get (addr_size_bits, core_bfd, descdata);
1076 descdata += addr_size;
1077 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1078 descdata += addr_size;
1079
1080 file_ofs *= page_size;
1081
1082 if (gdbarch_addr_bit (gdbarch) == 32)
1083 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1084 paddress (gdbarch, start),
1085 paddress (gdbarch, end),
1086 hex_string (end - start),
1087 hex_string (file_ofs),
1088 filenames);
1089 else
1090 printf_filtered (" %18s %18s %10s %10s %s\n",
1091 paddress (gdbarch, start),
1092 paddress (gdbarch, end),
1093 hex_string (end - start),
1094 hex_string (file_ofs),
1095 filenames);
1096
1097 filenames += 1 + strlen ((char *) filenames);
1098 }
1099
1100 do_cleanups (cleanup);
1101}
1102
1103/* Implement "info proc" for a corefile. */
1104
1105static void
7bc112c1 1106linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
451b7c33
TT
1107 enum info_proc_what what)
1108{
1109 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1110 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1111
1112 if (exe_f)
1113 {
1114 const char *exe;
1115
1116 exe = bfd_core_file_failing_command (core_bfd);
1117 if (exe != NULL)
1118 printf_filtered ("exe = '%s'\n", exe);
1119 else
1120 warning (_("unable to find command name in core file"));
1121 }
1122
1123 if (mappings_f)
1124 linux_core_info_proc_mappings (gdbarch, args);
1125
1126 if (!exe_f && !mappings_f)
1127 error (_("unable to handle request"));
1128}
1129
db1ff28b
JK
1130typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1131 ULONGEST offset, ULONGEST inode,
1132 int read, int write,
1133 int exec, int modified,
1134 const char *filename,
1135 void *data);
451b7c33 1136
db1ff28b 1137/* List memory regions in the inferior for a corefile. */
451b7c33
TT
1138
1139static int
db1ff28b
JK
1140linux_find_memory_regions_full (struct gdbarch *gdbarch,
1141 linux_find_memory_region_ftype *func,
1142 void *obfd)
f7af1fcd 1143{
db1ff28b
JK
1144 char mapsfilename[100];
1145 char coredumpfilter_name[100];
1146 char *data, *coredumpfilterdata;
f7af1fcd
JK
1147 pid_t pid;
1148 /* Default dump behavior of coredump_filter (0x33), according to
1149 Documentation/filesystems/proc.txt from the Linux kernel
1150 tree. */
8d297bbf
PA
1151 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1152 | COREFILTER_ANON_SHARED
1153 | COREFILTER_ELF_HEADERS
1154 | COREFILTER_HUGETLB_PRIVATE);
f7af1fcd 1155
db1ff28b 1156 /* We need to know the real target PID to access /proc. */
f7af1fcd 1157 if (current_inferior ()->fake_pid_p)
db1ff28b 1158 return 1;
f7af1fcd
JK
1159
1160 pid = current_inferior ()->pid;
1161
1162 if (use_coredump_filter)
1163 {
f7af1fcd
JK
1164 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1165 "/proc/%d/coredump_filter", pid);
1166 coredumpfilterdata = target_fileio_read_stralloc (NULL,
1167 coredumpfilter_name);
1168 if (coredumpfilterdata != NULL)
1169 {
8d297bbf
PA
1170 unsigned int flags;
1171
1172 sscanf (coredumpfilterdata, "%x", &flags);
1173 filterflags = (enum filter_flag) flags;
f7af1fcd
JK
1174 xfree (coredumpfilterdata);
1175 }
1176 }
1177
db1ff28b
JK
1178 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1179 data = target_fileio_read_stralloc (NULL, mapsfilename);
1180 if (data == NULL)
1181 {
1182 /* Older Linux kernels did not support /proc/PID/smaps. */
1183 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1184 data = target_fileio_read_stralloc (NULL, mapsfilename);
1185 }
1186
1187 if (data != NULL)
1188 {
1189 struct cleanup *cleanup = make_cleanup (xfree, data);
1190 char *line, *t;
1191
1192 line = strtok_r (data, "\n", &t);
1193 while (line != NULL)
1194 {
1195 ULONGEST addr, endaddr, offset, inode;
1196 const char *permissions, *device, *filename;
1197 struct smaps_vmflags v;
1198 size_t permissions_len, device_len;
1199 int read, write, exec, priv;
1200 int has_anonymous = 0;
1201 int should_dump_p = 0;
1202 int mapping_anon_p;
1203 int mapping_file_p;
1204
1205 memset (&v, 0, sizeof (v));
1206 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1207 &offset, &device, &device_len, &inode, &filename);
1208 mapping_anon_p = mapping_is_anonymous_p (filename);
1209 /* If the mapping is not anonymous, then we can consider it
1210 to be file-backed. These two states (anonymous or
1211 file-backed) seem to be exclusive, but they can actually
1212 coexist. For example, if a file-backed mapping has
1213 "Anonymous:" pages (see more below), then the Linux
1214 kernel will dump this mapping when the user specified
1215 that she only wants anonymous mappings in the corefile
1216 (*even* when she explicitly disabled the dumping of
1217 file-backed mappings). */
1218 mapping_file_p = !mapping_anon_p;
1219
1220 /* Decode permissions. */
1221 read = (memchr (permissions, 'r', permissions_len) != 0);
1222 write = (memchr (permissions, 'w', permissions_len) != 0);
1223 exec = (memchr (permissions, 'x', permissions_len) != 0);
1224 /* 'private' here actually means VM_MAYSHARE, and not
1225 VM_SHARED. In order to know if a mapping is really
1226 private or not, we must check the flag "sh" in the
1227 VmFlags field. This is done by decode_vmflags. However,
1228 if we are using a Linux kernel released before the commit
1229 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1230 not have the VmFlags there. In this case, there is
1231 really no way to know if we are dealing with VM_SHARED,
1232 so we just assume that VM_MAYSHARE is enough. */
1233 priv = memchr (permissions, 'p', permissions_len) != 0;
1234
1235 /* Try to detect if region should be dumped by parsing smaps
1236 counters. */
1237 for (line = strtok_r (NULL, "\n", &t);
1238 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1239 line = strtok_r (NULL, "\n", &t))
1240 {
1241 char keyword[64 + 1];
1242
1243 if (sscanf (line, "%64s", keyword) != 1)
1244 {
1245 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1246 break;
1247 }
1248
1249 if (strcmp (keyword, "Anonymous:") == 0)
1250 {
1251 /* Older Linux kernels did not support the
1252 "Anonymous:" counter. Check it here. */
1253 has_anonymous = 1;
1254 }
1255 else if (strcmp (keyword, "VmFlags:") == 0)
1256 decode_vmflags (line, &v);
1257
1258 if (strcmp (keyword, "AnonHugePages:") == 0
1259 || strcmp (keyword, "Anonymous:") == 0)
1260 {
1261 unsigned long number;
1262
1263 if (sscanf (line, "%*s%lu", &number) != 1)
1264 {
1265 warning (_("Error parsing {s,}maps file '%s' number"),
1266 mapsfilename);
1267 break;
1268 }
1269 if (number > 0)
1270 {
1271 /* Even if we are dealing with a file-backed
1272 mapping, if it contains anonymous pages we
1273 consider it to be *also* an anonymous
1274 mapping, because this is what the Linux
1275 kernel does:
1276
1277 // Dump segments that have been written to.
1278 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1279 goto whole;
1280
1281 Note that if the mapping is already marked as
1282 file-backed (i.e., mapping_file_p is
1283 non-zero), then this is a special case, and
1284 this mapping will be dumped either when the
1285 user wants to dump file-backed *or* anonymous
1286 mappings. */
1287 mapping_anon_p = 1;
1288 }
1289 }
1290 }
1291
1292 if (has_anonymous)
1293 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1294 mapping_anon_p, mapping_file_p,
1295 filename);
1296 else
1297 {
1298 /* Older Linux kernels did not support the "Anonymous:" counter.
1299 If it is missing, we can't be sure - dump all the pages. */
1300 should_dump_p = 1;
1301 }
1302
1303 /* Invoke the callback function to create the corefile segment. */
1304 if (should_dump_p)
1305 func (addr, endaddr - addr, offset, inode,
1306 read, write, exec, 1, /* MODIFIED is true because we
1307 want to dump the mapping. */
1308 filename, obfd);
1309 }
1310
1311 do_cleanups (cleanup);
1312 return 0;
1313 }
1314
1315 return 1;
1316}
1317
1318/* A structure for passing information through
1319 linux_find_memory_regions_full. */
1320
1321struct linux_find_memory_regions_data
1322{
1323 /* The original callback. */
1324
1325 find_memory_region_ftype func;
1326
1327 /* The original datum. */
1328
1329 void *obfd;
1330};
1331
1332/* A callback for linux_find_memory_regions that converts between the
1333 "full"-style callback and find_memory_region_ftype. */
1334
1335static int
1336linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1337 ULONGEST offset, ULONGEST inode,
1338 int read, int write, int exec, int modified,
1339 const char *filename, void *arg)
1340{
9a3c8263
SM
1341 struct linux_find_memory_regions_data *data
1342 = (struct linux_find_memory_regions_data *) arg;
db1ff28b
JK
1343
1344 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
451b7c33
TT
1345}
1346
1347/* A variant of linux_find_memory_regions_full that is suitable as the
1348 gdbarch find_memory_regions method. */
1349
1350static int
1351linux_find_memory_regions (struct gdbarch *gdbarch,
db1ff28b 1352 find_memory_region_ftype func, void *obfd)
451b7c33
TT
1353{
1354 struct linux_find_memory_regions_data data;
1355
1356 data.func = func;
db1ff28b 1357 data.obfd = obfd;
451b7c33 1358
db1ff28b
JK
1359 return linux_find_memory_regions_full (gdbarch,
1360 linux_find_memory_regions_thunk,
1361 &data);
451b7c33
TT
1362}
1363
6432734d
UW
1364/* Determine which signal stopped execution. */
1365
1366static int
1367find_signalled_thread (struct thread_info *info, void *data)
1368{
a493e3e2 1369 if (info->suspend.stop_signal != GDB_SIGNAL_0
6432734d
UW
1370 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1371 return 1;
1372
1373 return 0;
1374}
1375
6432734d
UW
1376/* Generate corefile notes for SPU contexts. */
1377
1378static char *
1379linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1380{
1381 static const char *spu_files[] =
1382 {
1383 "object-id",
1384 "mem",
1385 "regs",
1386 "fpcr",
1387 "lslr",
1388 "decr",
1389 "decr_status",
1390 "signal1",
1391 "signal1_type",
1392 "signal2",
1393 "signal2_type",
1394 "event_mask",
1395 "event_status",
1396 "mbox_info",
1397 "ibox_info",
1398 "wbox_info",
1399 "dma_info",
1400 "proxydma_info",
1401 };
1402
f5656ead 1403 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
6432734d
UW
1404 gdb_byte *spu_ids;
1405 LONGEST i, j, size;
1406
1407 /* Determine list of SPU ids. */
1408 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1409 NULL, &spu_ids);
1410
1411 /* Generate corefile notes for each SPU file. */
1412 for (i = 0; i < size; i += 4)
1413 {
1414 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1415
1416 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1417 {
1418 char annex[32], note_name[32];
1419 gdb_byte *spu_data;
1420 LONGEST spu_len;
1421
1422 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1423 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1424 annex, &spu_data);
1425 if (spu_len > 0)
1426 {
1427 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1428 note_data = elfcore_write_note (obfd, note_data, note_size,
1429 note_name, NT_SPU,
1430 spu_data, spu_len);
1431 xfree (spu_data);
1432
1433 if (!note_data)
1434 {
1435 xfree (spu_ids);
1436 return NULL;
1437 }
1438 }
1439 }
1440 }
1441
1442 if (size > 0)
1443 xfree (spu_ids);
1444
1445 return note_data;
1446}
1447
451b7c33
TT
1448/* This is used to pass information from
1449 linux_make_mappings_corefile_notes through
1450 linux_find_memory_regions_full. */
1451
1452struct linux_make_mappings_data
1453{
1454 /* Number of files mapped. */
1455 ULONGEST file_count;
1456
1457 /* The obstack for the main part of the data. */
1458 struct obstack *data_obstack;
1459
1460 /* The filename obstack. */
1461 struct obstack *filename_obstack;
1462
1463 /* The architecture's "long" type. */
1464 struct type *long_type;
1465};
1466
1467static linux_find_memory_region_ftype linux_make_mappings_callback;
1468
1469/* A callback for linux_find_memory_regions_full that updates the
1470 mappings data for linux_make_mappings_corefile_notes. */
1471
1472static int
1473linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1474 ULONGEST offset, ULONGEST inode,
1475 int read, int write, int exec, int modified,
1476 const char *filename, void *data)
1477{
9a3c8263
SM
1478 struct linux_make_mappings_data *map_data
1479 = (struct linux_make_mappings_data *) data;
451b7c33
TT
1480 gdb_byte buf[sizeof (ULONGEST)];
1481
1482 if (*filename == '\0' || inode == 0)
1483 return 0;
1484
1485 ++map_data->file_count;
1486
1487 pack_long (buf, map_data->long_type, vaddr);
1488 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1489 pack_long (buf, map_data->long_type, vaddr + size);
1490 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1491 pack_long (buf, map_data->long_type, offset);
1492 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1493
1494 obstack_grow_str0 (map_data->filename_obstack, filename);
1495
1496 return 0;
1497}
1498
1499/* Write the file mapping data to the core file, if possible. OBFD is
1500 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1501 is a pointer to the note size. Returns the new NOTE_DATA and
1502 updates NOTE_SIZE. */
1503
1504static char *
1505linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1506 char *note_data, int *note_size)
1507{
1508 struct cleanup *cleanup;
1509 struct obstack data_obstack, filename_obstack;
1510 struct linux_make_mappings_data mapping_data;
1511 struct type *long_type
1512 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1513 gdb_byte buf[sizeof (ULONGEST)];
1514
1515 obstack_init (&data_obstack);
1516 cleanup = make_cleanup_obstack_free (&data_obstack);
1517 obstack_init (&filename_obstack);
1518 make_cleanup_obstack_free (&filename_obstack);
1519
1520 mapping_data.file_count = 0;
1521 mapping_data.data_obstack = &data_obstack;
1522 mapping_data.filename_obstack = &filename_obstack;
1523 mapping_data.long_type = long_type;
1524
1525 /* Reserve space for the count. */
1526 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1527 /* We always write the page size as 1 since we have no good way to
1528 determine the correct value. */
1529 pack_long (buf, long_type, 1);
1530 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1531
db1ff28b
JK
1532 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1533 &mapping_data);
451b7c33
TT
1534
1535 if (mapping_data.file_count != 0)
1536 {
1537 /* Write the count to the obstack. */
51a5cd90
PA
1538 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1539 long_type, mapping_data.file_count);
451b7c33
TT
1540
1541 /* Copy the filenames to the data obstack. */
1542 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1543 obstack_object_size (&filename_obstack));
1544
1545 note_data = elfcore_write_note (obfd, note_data, note_size,
1546 "CORE", NT_FILE,
1547 obstack_base (&data_obstack),
1548 obstack_object_size (&data_obstack));
1549 }
1550
1551 do_cleanups (cleanup);
1552 return note_data;
1553}
1554
5aa82d05
AA
1555/* Structure for passing information from
1556 linux_collect_thread_registers via an iterator to
1557 linux_collect_regset_section_cb. */
1558
1559struct linux_collect_regset_section_cb_data
1560{
1561 struct gdbarch *gdbarch;
1562 const struct regcache *regcache;
1563 bfd *obfd;
1564 char *note_data;
1565 int *note_size;
1566 unsigned long lwp;
1567 enum gdb_signal stop_signal;
1568 int abort_iteration;
1569};
1570
1571/* Callback for iterate_over_regset_sections that records a single
1572 regset in the corefile note section. */
1573
1574static void
1575linux_collect_regset_section_cb (const char *sect_name, int size,
8f0435f7 1576 const struct regset *regset,
5aa82d05
AA
1577 const char *human_name, void *cb_data)
1578{
5aa82d05 1579 char *buf;
7567e115
SM
1580 struct linux_collect_regset_section_cb_data *data
1581 = (struct linux_collect_regset_section_cb_data *) cb_data;
5aa82d05
AA
1582
1583 if (data->abort_iteration)
1584 return;
1585
5aa82d05
AA
1586 gdb_assert (regset && regset->collect_regset);
1587
224c3ddb 1588 buf = (char *) xmalloc (size);
5aa82d05
AA
1589 regset->collect_regset (regset, data->regcache, -1, buf, size);
1590
1591 /* PRSTATUS still needs to be treated specially. */
1592 if (strcmp (sect_name, ".reg") == 0)
1593 data->note_data = (char *) elfcore_write_prstatus
1594 (data->obfd, data->note_data, data->note_size, data->lwp,
1595 gdb_signal_to_host (data->stop_signal), buf);
1596 else
1597 data->note_data = (char *) elfcore_write_register_note
1598 (data->obfd, data->note_data, data->note_size,
1599 sect_name, buf, size);
1600 xfree (buf);
1601
1602 if (data->note_data == NULL)
1603 data->abort_iteration = 1;
1604}
1605
6432734d
UW
1606/* Records the thread's register state for the corefile note
1607 section. */
1608
1609static char *
1610linux_collect_thread_registers (const struct regcache *regcache,
1611 ptid_t ptid, bfd *obfd,
1612 char *note_data, int *note_size,
2ea28649 1613 enum gdb_signal stop_signal)
6432734d
UW
1614{
1615 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5aa82d05 1616 struct linux_collect_regset_section_cb_data data;
6432734d 1617
5aa82d05
AA
1618 data.gdbarch = gdbarch;
1619 data.regcache = regcache;
1620 data.obfd = obfd;
1621 data.note_data = note_data;
1622 data.note_size = note_size;
1623 data.stop_signal = stop_signal;
1624 data.abort_iteration = 0;
6432734d
UW
1625
1626 /* For remote targets the LWP may not be available, so use the TID. */
5aa82d05
AA
1627 data.lwp = ptid_get_lwp (ptid);
1628 if (!data.lwp)
1629 data.lwp = ptid_get_tid (ptid);
1630
1631 gdbarch_iterate_over_regset_sections (gdbarch,
1632 linux_collect_regset_section_cb,
1633 &data, regcache);
1634 return data.note_data;
6432734d
UW
1635}
1636
9015683b
TT
1637/* Fetch the siginfo data for the current thread, if it exists. If
1638 there is no data, or we could not read it, return NULL. Otherwise,
1639 return a newly malloc'd buffer holding the data and fill in *SIZE
1640 with the size of the data. The caller is responsible for freeing
1641 the data. */
1642
1643static gdb_byte *
1644linux_get_siginfo_data (struct gdbarch *gdbarch, LONGEST *size)
1645{
1646 struct type *siginfo_type;
1647 gdb_byte *buf;
1648 LONGEST bytes_read;
1649 struct cleanup *cleanups;
1650
1651 if (!gdbarch_get_siginfo_type_p (gdbarch))
1652 return NULL;
1653
1654 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1655
224c3ddb 1656 buf = (gdb_byte *) xmalloc (TYPE_LENGTH (siginfo_type));
9015683b
TT
1657 cleanups = make_cleanup (xfree, buf);
1658
1659 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1660 buf, 0, TYPE_LENGTH (siginfo_type));
1661 if (bytes_read == TYPE_LENGTH (siginfo_type))
1662 {
1663 discard_cleanups (cleanups);
1664 *size = bytes_read;
1665 }
1666 else
1667 {
1668 do_cleanups (cleanups);
1669 buf = NULL;
1670 }
1671
1672 return buf;
1673}
1674
6432734d
UW
1675struct linux_corefile_thread_data
1676{
1677 struct gdbarch *gdbarch;
6432734d
UW
1678 bfd *obfd;
1679 char *note_data;
1680 int *note_size;
2ea28649 1681 enum gdb_signal stop_signal;
6432734d
UW
1682};
1683
050c224b
PA
1684/* Records the thread's register state for the corefile note
1685 section. */
6432734d 1686
050c224b
PA
1687static void
1688linux_corefile_thread (struct thread_info *info,
1689 struct linux_corefile_thread_data *args)
6432734d 1690{
050c224b
PA
1691 struct cleanup *old_chain;
1692 struct regcache *regcache;
1693 gdb_byte *siginfo_data;
1694 LONGEST siginfo_size = 0;
1695
1696 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1697
1698 old_chain = save_inferior_ptid ();
1699 inferior_ptid = info->ptid;
1700 target_fetch_registers (regcache, -1);
1701 siginfo_data = linux_get_siginfo_data (args->gdbarch, &siginfo_size);
1702 do_cleanups (old_chain);
1703
1704 old_chain = make_cleanup (xfree, siginfo_data);
1705
1706 args->note_data = linux_collect_thread_registers
1707 (regcache, info->ptid, args->obfd, args->note_data,
1708 args->note_size, args->stop_signal);
1709
1710 /* Don't return anything if we got no register information above,
1711 such a core file is useless. */
1712 if (args->note_data != NULL)
1713 if (siginfo_data != NULL)
1714 args->note_data = elfcore_write_note (args->obfd,
1715 args->note_data,
1716 args->note_size,
1717 "CORE", NT_SIGINFO,
1718 siginfo_data, siginfo_size);
1719
1720 do_cleanups (old_chain);
6432734d
UW
1721}
1722
b3ac9c77
SDJ
1723/* Fill the PRPSINFO structure with information about the process being
1724 debugged. Returns 1 in case of success, 0 for failures. Please note that
1725 even if the structure cannot be entirely filled (e.g., GDB was unable to
1726 gather information about the process UID/GID), this function will still
1727 return 1 since some information was already recorded. It will only return
1728 0 iff nothing can be gathered. */
1729
1730static int
1731linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1732{
1733 /* The filename which we will use to obtain some info about the process.
1734 We will basically use this to store the `/proc/PID/FILENAME' file. */
1735 char filename[100];
1736 /* The full name of the program which generated the corefile. */
1737 char *fname;
1738 /* The basename of the executable. */
1739 const char *basename;
1740 /* The arguments of the program. */
1741 char *psargs;
1742 char *infargs;
1743 /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */
1744 char *proc_stat, *proc_status;
1745 /* Temporary buffer. */
1746 char *tmpstr;
1747 /* The valid states of a process, according to the Linux kernel. */
1748 const char valid_states[] = "RSDTZW";
1749 /* The program state. */
1750 const char *prog_state;
1751 /* The state of the process. */
1752 char pr_sname;
1753 /* The PID of the program which generated the corefile. */
1754 pid_t pid;
1755 /* Process flags. */
1756 unsigned int pr_flag;
1757 /* Process nice value. */
1758 long pr_nice;
1759 /* The number of fields read by `sscanf'. */
1760 int n_fields = 0;
1761 /* Cleanups. */
1762 struct cleanup *c;
b3ac9c77
SDJ
1763
1764 gdb_assert (p != NULL);
1765
1766 /* Obtaining PID and filename. */
1767 pid = ptid_get_pid (inferior_ptid);
1768 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
07c138c8 1769 fname = target_fileio_read_stralloc (NULL, filename);
b3ac9c77
SDJ
1770
1771 if (fname == NULL || *fname == '\0')
1772 {
1773 /* No program name was read, so we won't be able to retrieve more
1774 information about the process. */
1775 xfree (fname);
1776 return 0;
1777 }
1778
1779 c = make_cleanup (xfree, fname);
1780 memset (p, 0, sizeof (*p));
1781
1782 /* Defining the PID. */
1783 p->pr_pid = pid;
1784
1785 /* Copying the program name. Only the basename matters. */
1786 basename = lbasename (fname);
1787 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1788 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1789
1790 infargs = get_inferior_args ();
1791
1792 psargs = xstrdup (fname);
1793 if (infargs != NULL)
b36cec19 1794 psargs = reconcat (psargs, psargs, " ", infargs, (char *) NULL);
b3ac9c77
SDJ
1795
1796 make_cleanup (xfree, psargs);
1797
1798 strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs));
1799 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1800
1801 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
07c138c8 1802 proc_stat = target_fileio_read_stralloc (NULL, filename);
b3ac9c77
SDJ
1803 make_cleanup (xfree, proc_stat);
1804
1805 if (proc_stat == NULL || *proc_stat == '\0')
1806 {
1807 /* Despite being unable to read more information about the
1808 process, we return 1 here because at least we have its
1809 command line, PID and arguments. */
1810 do_cleanups (c);
1811 return 1;
1812 }
1813
1814 /* Ok, we have the stats. It's time to do a little parsing of the
1815 contents of the buffer, so that we end up reading what we want.
1816
1817 The following parsing mechanism is strongly based on the
1818 information generated by the `fs/proc/array.c' file, present in
1819 the Linux kernel tree. More details about how the information is
1820 displayed can be obtained by seeing the manpage of proc(5),
1821 specifically under the entry of `/proc/[pid]/stat'. */
1822
1823 /* Getting rid of the PID, since we already have it. */
1824 while (isdigit (*proc_stat))
1825 ++proc_stat;
1826
1827 proc_stat = skip_spaces (proc_stat);
1828
184cd072
JK
1829 /* ps command also relies on no trailing fields ever contain ')'. */
1830 proc_stat = strrchr (proc_stat, ')');
1831 if (proc_stat == NULL)
1832 {
1833 do_cleanups (c);
1834 return 1;
1835 }
1836 proc_stat++;
b3ac9c77
SDJ
1837
1838 proc_stat = skip_spaces (proc_stat);
1839
1840 n_fields = sscanf (proc_stat,
1841 "%c" /* Process state. */
1842 "%d%d%d" /* Parent PID, group ID, session ID. */
1843 "%*d%*d" /* tty_nr, tpgid (not used). */
1844 "%u" /* Flags. */
1845 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1846 cmajflt (not used). */
1847 "%*s%*s%*s%*s" /* utime, stime, cutime,
1848 cstime (not used). */
1849 "%*s" /* Priority (not used). */
1850 "%ld", /* Nice. */
1851 &pr_sname,
1852 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1853 &pr_flag,
1854 &pr_nice);
1855
1856 if (n_fields != 6)
1857 {
1858 /* Again, we couldn't read the complementary information about
1859 the process state. However, we already have minimal
1860 information, so we just return 1 here. */
1861 do_cleanups (c);
1862 return 1;
1863 }
1864
1865 /* Filling the structure fields. */
1866 prog_state = strchr (valid_states, pr_sname);
1867 if (prog_state != NULL)
1868 p->pr_state = prog_state - valid_states;
1869 else
1870 {
1871 /* Zero means "Running". */
1872 p->pr_state = 0;
1873 }
1874
1875 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1876 p->pr_zomb = p->pr_sname == 'Z';
1877 p->pr_nice = pr_nice;
1878 p->pr_flag = pr_flag;
1879
1880 /* Finally, obtaining the UID and GID. For that, we read and parse the
1881 contents of the `/proc/PID/status' file. */
1882 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
07c138c8 1883 proc_status = target_fileio_read_stralloc (NULL, filename);
b3ac9c77
SDJ
1884 make_cleanup (xfree, proc_status);
1885
1886 if (proc_status == NULL || *proc_status == '\0')
1887 {
1888 /* Returning 1 since we already have a bunch of information. */
1889 do_cleanups (c);
1890 return 1;
1891 }
1892
1893 /* Extracting the UID. */
1894 tmpstr = strstr (proc_status, "Uid:");
1895 if (tmpstr != NULL)
1896 {
1897 /* Advancing the pointer to the beginning of the UID. */
1898 tmpstr += sizeof ("Uid:");
1899 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1900 ++tmpstr;
1901
1902 if (isdigit (*tmpstr))
1903 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1904 }
1905
1906 /* Extracting the GID. */
1907 tmpstr = strstr (proc_status, "Gid:");
1908 if (tmpstr != NULL)
1909 {
1910 /* Advancing the pointer to the beginning of the GID. */
1911 tmpstr += sizeof ("Gid:");
1912 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1913 ++tmpstr;
1914
1915 if (isdigit (*tmpstr))
1916 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1917 }
1918
1919 do_cleanups (c);
1920
1921 return 1;
1922}
1923
f968fe80
AA
1924/* Build the note section for a corefile, and return it in a malloc
1925 buffer. */
6432734d 1926
f968fe80
AA
1927static char *
1928linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
6432734d
UW
1929{
1930 struct linux_corefile_thread_data thread_args;
b3ac9c77 1931 struct elf_internal_linux_prpsinfo prpsinfo;
6432734d
UW
1932 char *note_data = NULL;
1933 gdb_byte *auxv;
1934 int auxv_len;
050c224b 1935 struct thread_info *curr_thr, *signalled_thr, *thr;
6432734d 1936
f968fe80
AA
1937 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1938 return NULL;
1939
b3ac9c77 1940 if (linux_fill_prpsinfo (&prpsinfo))
6432734d 1941 {
b3ac9c77
SDJ
1942 if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch))
1943 {
1944 note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd,
1945 note_data, note_size,
1946 &prpsinfo);
1947 }
1948 else
1949 {
1950 if (gdbarch_ptr_bit (gdbarch) == 64)
1951 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1952 note_data, note_size,
1953 &prpsinfo);
1954 else
1955 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1956 note_data, note_size,
1957 &prpsinfo);
1958 }
6432734d
UW
1959 }
1960
1961 /* Thread register information. */
492d29ea 1962 TRY
22fd09ae
JK
1963 {
1964 update_thread_list ();
1965 }
492d29ea
PA
1966 CATCH (e, RETURN_MASK_ERROR)
1967 {
1968 exception_print (gdb_stderr, e);
1969 }
1970 END_CATCH
1971
050c224b
PA
1972 /* Like the kernel, prefer dumping the signalled thread first.
1973 "First thread" is what tools use to infer the signalled thread.
1974 In case there's more than one signalled thread, prefer the
1975 current thread, if it is signalled. */
1976 curr_thr = inferior_thread ();
1977 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1978 signalled_thr = curr_thr;
1979 else
1980 {
1981 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1982 if (signalled_thr == NULL)
1983 signalled_thr = curr_thr;
1984 }
1985
6432734d 1986 thread_args.gdbarch = gdbarch;
6432734d
UW
1987 thread_args.obfd = obfd;
1988 thread_args.note_data = note_data;
1989 thread_args.note_size = note_size;
050c224b
PA
1990 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1991
1992 linux_corefile_thread (signalled_thr, &thread_args);
1993 ALL_NON_EXITED_THREADS (thr)
1994 {
1995 if (thr == signalled_thr)
1996 continue;
1997 if (ptid_get_pid (thr->ptid) != ptid_get_pid (inferior_ptid))
1998 continue;
1999
2000 linux_corefile_thread (thr, &thread_args);
2001 }
2002
6432734d
UW
2003 note_data = thread_args.note_data;
2004 if (!note_data)
2005 return NULL;
2006
2007 /* Auxillary vector. */
2008 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
2009 NULL, &auxv);
2010 if (auxv_len > 0)
2011 {
2012 note_data = elfcore_write_note (obfd, note_data, note_size,
2013 "CORE", NT_AUXV, auxv, auxv_len);
2014 xfree (auxv);
2015
2016 if (!note_data)
2017 return NULL;
2018 }
2019
2020 /* SPU information. */
2021 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
2022 if (!note_data)
2023 return NULL;
2024
451b7c33
TT
2025 /* File mappings. */
2026 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2027 note_data, note_size);
2028
6432734d
UW
2029 return note_data;
2030}
2031
eb14d406
SDJ
2032/* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2033 gdbarch.h. This function is not static because it is exported to
2034 other -tdep files. */
2035
2036enum gdb_signal
2037linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2038{
2039 switch (signal)
2040 {
2041 case 0:
2042 return GDB_SIGNAL_0;
2043
2044 case LINUX_SIGHUP:
2045 return GDB_SIGNAL_HUP;
2046
2047 case LINUX_SIGINT:
2048 return GDB_SIGNAL_INT;
2049
2050 case LINUX_SIGQUIT:
2051 return GDB_SIGNAL_QUIT;
2052
2053 case LINUX_SIGILL:
2054 return GDB_SIGNAL_ILL;
2055
2056 case LINUX_SIGTRAP:
2057 return GDB_SIGNAL_TRAP;
2058
2059 case LINUX_SIGABRT:
2060 return GDB_SIGNAL_ABRT;
2061
2062 case LINUX_SIGBUS:
2063 return GDB_SIGNAL_BUS;
2064
2065 case LINUX_SIGFPE:
2066 return GDB_SIGNAL_FPE;
2067
2068 case LINUX_SIGKILL:
2069 return GDB_SIGNAL_KILL;
2070
2071 case LINUX_SIGUSR1:
2072 return GDB_SIGNAL_USR1;
2073
2074 case LINUX_SIGSEGV:
2075 return GDB_SIGNAL_SEGV;
2076
2077 case LINUX_SIGUSR2:
2078 return GDB_SIGNAL_USR2;
2079
2080 case LINUX_SIGPIPE:
2081 return GDB_SIGNAL_PIPE;
2082
2083 case LINUX_SIGALRM:
2084 return GDB_SIGNAL_ALRM;
2085
2086 case LINUX_SIGTERM:
2087 return GDB_SIGNAL_TERM;
2088
2089 case LINUX_SIGCHLD:
2090 return GDB_SIGNAL_CHLD;
2091
2092 case LINUX_SIGCONT:
2093 return GDB_SIGNAL_CONT;
2094
2095 case LINUX_SIGSTOP:
2096 return GDB_SIGNAL_STOP;
2097
2098 case LINUX_SIGTSTP:
2099 return GDB_SIGNAL_TSTP;
2100
2101 case LINUX_SIGTTIN:
2102 return GDB_SIGNAL_TTIN;
2103
2104 case LINUX_SIGTTOU:
2105 return GDB_SIGNAL_TTOU;
2106
2107 case LINUX_SIGURG:
2108 return GDB_SIGNAL_URG;
2109
2110 case LINUX_SIGXCPU:
2111 return GDB_SIGNAL_XCPU;
2112
2113 case LINUX_SIGXFSZ:
2114 return GDB_SIGNAL_XFSZ;
2115
2116 case LINUX_SIGVTALRM:
2117 return GDB_SIGNAL_VTALRM;
2118
2119 case LINUX_SIGPROF:
2120 return GDB_SIGNAL_PROF;
2121
2122 case LINUX_SIGWINCH:
2123 return GDB_SIGNAL_WINCH;
2124
2125 /* No way to differentiate between SIGIO and SIGPOLL.
2126 Therefore, we just handle the first one. */
2127 case LINUX_SIGIO:
2128 return GDB_SIGNAL_IO;
2129
2130 case LINUX_SIGPWR:
2131 return GDB_SIGNAL_PWR;
2132
2133 case LINUX_SIGSYS:
2134 return GDB_SIGNAL_SYS;
2135
2136 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2137 therefore we have to handle them here. */
2138 case LINUX_SIGRTMIN:
2139 return GDB_SIGNAL_REALTIME_32;
2140
2141 case LINUX_SIGRTMAX:
2142 return GDB_SIGNAL_REALTIME_64;
2143 }
2144
2145 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2146 {
2147 int offset = signal - LINUX_SIGRTMIN + 1;
2148
2149 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2150 }
2151
2152 return GDB_SIGNAL_UNKNOWN;
2153}
2154
2155/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2156 gdbarch.h. This function is not static because it is exported to
2157 other -tdep files. */
2158
2159int
2160linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2161 enum gdb_signal signal)
2162{
2163 switch (signal)
2164 {
2165 case GDB_SIGNAL_0:
2166 return 0;
2167
2168 case GDB_SIGNAL_HUP:
2169 return LINUX_SIGHUP;
2170
2171 case GDB_SIGNAL_INT:
2172 return LINUX_SIGINT;
2173
2174 case GDB_SIGNAL_QUIT:
2175 return LINUX_SIGQUIT;
2176
2177 case GDB_SIGNAL_ILL:
2178 return LINUX_SIGILL;
2179
2180 case GDB_SIGNAL_TRAP:
2181 return LINUX_SIGTRAP;
2182
2183 case GDB_SIGNAL_ABRT:
2184 return LINUX_SIGABRT;
2185
2186 case GDB_SIGNAL_FPE:
2187 return LINUX_SIGFPE;
2188
2189 case GDB_SIGNAL_KILL:
2190 return LINUX_SIGKILL;
2191
2192 case GDB_SIGNAL_BUS:
2193 return LINUX_SIGBUS;
2194
2195 case GDB_SIGNAL_SEGV:
2196 return LINUX_SIGSEGV;
2197
2198 case GDB_SIGNAL_SYS:
2199 return LINUX_SIGSYS;
2200
2201 case GDB_SIGNAL_PIPE:
2202 return LINUX_SIGPIPE;
2203
2204 case GDB_SIGNAL_ALRM:
2205 return LINUX_SIGALRM;
2206
2207 case GDB_SIGNAL_TERM:
2208 return LINUX_SIGTERM;
2209
2210 case GDB_SIGNAL_URG:
2211 return LINUX_SIGURG;
2212
2213 case GDB_SIGNAL_STOP:
2214 return LINUX_SIGSTOP;
2215
2216 case GDB_SIGNAL_TSTP:
2217 return LINUX_SIGTSTP;
2218
2219 case GDB_SIGNAL_CONT:
2220 return LINUX_SIGCONT;
2221
2222 case GDB_SIGNAL_CHLD:
2223 return LINUX_SIGCHLD;
2224
2225 case GDB_SIGNAL_TTIN:
2226 return LINUX_SIGTTIN;
2227
2228 case GDB_SIGNAL_TTOU:
2229 return LINUX_SIGTTOU;
2230
2231 case GDB_SIGNAL_IO:
2232 return LINUX_SIGIO;
2233
2234 case GDB_SIGNAL_XCPU:
2235 return LINUX_SIGXCPU;
2236
2237 case GDB_SIGNAL_XFSZ:
2238 return LINUX_SIGXFSZ;
2239
2240 case GDB_SIGNAL_VTALRM:
2241 return LINUX_SIGVTALRM;
2242
2243 case GDB_SIGNAL_PROF:
2244 return LINUX_SIGPROF;
2245
2246 case GDB_SIGNAL_WINCH:
2247 return LINUX_SIGWINCH;
2248
2249 case GDB_SIGNAL_USR1:
2250 return LINUX_SIGUSR1;
2251
2252 case GDB_SIGNAL_USR2:
2253 return LINUX_SIGUSR2;
2254
2255 case GDB_SIGNAL_PWR:
2256 return LINUX_SIGPWR;
2257
2258 case GDB_SIGNAL_POLL:
2259 return LINUX_SIGPOLL;
2260
2261 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2262 therefore we have to handle it here. */
2263 case GDB_SIGNAL_REALTIME_32:
2264 return LINUX_SIGRTMIN;
2265
2266 /* Same comment applies to _64. */
2267 case GDB_SIGNAL_REALTIME_64:
2268 return LINUX_SIGRTMAX;
2269 }
2270
2271 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2272 if (signal >= GDB_SIGNAL_REALTIME_33
2273 && signal <= GDB_SIGNAL_REALTIME_63)
2274 {
2275 int offset = signal - GDB_SIGNAL_REALTIME_33;
2276
2277 return LINUX_SIGRTMIN + 1 + offset;
2278 }
2279
2280 return -1;
2281}
2282
cdfa0b0a
PA
2283/* Helper for linux_vsyscall_range that does the real work of finding
2284 the vsyscall's address range. */
3437254d
PA
2285
2286static int
cdfa0b0a 2287linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
3437254d 2288{
95e94c3f
PA
2289 char filename[100];
2290 long pid;
2291 char *data;
2292
6bb90213 2293 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
95e94c3f
PA
2294 return 0;
2295
6bb90213
PA
2296 /* It doesn't make sense to access the host's /proc when debugging a
2297 core file. Instead, look for the PT_LOAD segment that matches
2298 the vDSO. */
2299 if (!target_has_execution)
2300 {
2301 Elf_Internal_Phdr *phdrs;
2302 long phdrs_size;
2303 int num_phdrs, i;
2304
2305 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2306 if (phdrs_size == -1)
2307 return 0;
2308
2309 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
2310 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs);
2311 if (num_phdrs == -1)
2312 return 0;
2313
2314 for (i = 0; i < num_phdrs; i++)
2315 if (phdrs[i].p_type == PT_LOAD
2316 && phdrs[i].p_vaddr == range->start)
2317 {
2318 range->length = phdrs[i].p_memsz;
2319 return 1;
2320 }
2321
2322 return 0;
2323 }
2324
95e94c3f
PA
2325 /* We need to know the real target PID to access /proc. */
2326 if (current_inferior ()->fake_pid_p)
2327 return 0;
2328
95e94c3f 2329 pid = current_inferior ()->pid;
3437254d 2330
95e94c3f
PA
2331 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2332 reading /proc/PID/maps (2). The later identifies thread stacks
2333 in the output, which requires scanning every thread in the thread
2334 group to check whether a VMA is actually a thread's stack. With
2335 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2336 a few thousand threads, (1) takes a few miliseconds, while (2)
2337 takes several seconds. Also note that "smaps", what we read for
2338 determining core dump mappings, is even slower than "maps". */
2339 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2340 data = target_fileio_read_stralloc (NULL, filename);
2341 if (data != NULL)
2342 {
2343 struct cleanup *cleanup = make_cleanup (xfree, data);
2344 char *line;
2345 char *saveptr = NULL;
2346
2347 for (line = strtok_r (data, "\n", &saveptr);
2348 line != NULL;
2349 line = strtok_r (NULL, "\n", &saveptr))
2350 {
2351 ULONGEST addr, endaddr;
2352 const char *p = line;
2353
2354 addr = strtoulst (p, &p, 16);
2355 if (addr == range->start)
2356 {
2357 if (*p == '-')
2358 p++;
2359 endaddr = strtoulst (p, &p, 16);
2360 range->length = endaddr - addr;
2361 do_cleanups (cleanup);
2362 return 1;
2363 }
2364 }
2365
2366 do_cleanups (cleanup);
2367 }
2368 else
2369 warning (_("unable to open /proc file '%s'"), filename);
2370
2371 return 0;
3437254d
PA
2372}
2373
cdfa0b0a
PA
2374/* Implementation of the "vsyscall_range" gdbarch hook. Handles
2375 caching, and defers the real work to linux_vsyscall_range_raw. */
2376
2377static int
2378linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2379{
2380 struct linux_info *info = get_linux_inferior_data ();
2381
2382 if (info->vsyscall_range_p == 0)
2383 {
2384 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2385 info->vsyscall_range_p = 1;
2386 else
2387 info->vsyscall_range_p = -1;
2388 }
2389
2390 if (info->vsyscall_range_p < 0)
2391 return 0;
2392
2393 *range = info->vsyscall_range;
2394 return 1;
2395}
2396
3bc3cebe
JK
2397/* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2398 definitions would be dependent on compilation host. */
2399#define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2400#define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2401
2402/* See gdbarch.sh 'infcall_mmap'. */
2403
2404static CORE_ADDR
2405linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2406{
2407 struct objfile *objf;
2408 /* Do there still exist any Linux systems without "mmap64"?
2409 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2410 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2411 struct value *addr_val;
2412 struct gdbarch *gdbarch = get_objfile_arch (objf);
2413 CORE_ADDR retval;
2414 enum
2415 {
2a546367 2416 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
3bc3cebe 2417 };
2a546367 2418 struct value *arg[ARG_LAST];
3bc3cebe
JK
2419
2420 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2421 0);
2422 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2423 arg[ARG_LENGTH] = value_from_ulongest
2424 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2425 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2426 | GDB_MMAP_PROT_EXEC))
2427 == 0);
2428 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2429 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2430 GDB_MMAP_MAP_PRIVATE
2431 | GDB_MMAP_MAP_ANONYMOUS);
2432 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2433 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2434 0);
2a546367 2435 addr_val = call_function_by_hand (mmap_val, ARG_LAST, arg);
3bc3cebe
JK
2436 retval = value_as_address (addr_val);
2437 if (retval == (CORE_ADDR) -1)
2438 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2439 pulongest (size));
2440 return retval;
2441}
2442
7f361056
JK
2443/* See gdbarch.sh 'infcall_munmap'. */
2444
2445static void
2446linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2447{
2448 struct objfile *objf;
2449 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2450 struct value *retval_val;
2451 struct gdbarch *gdbarch = get_objfile_arch (objf);
2452 LONGEST retval;
2453 enum
2454 {
2455 ARG_ADDR, ARG_LENGTH, ARG_LAST
2456 };
2457 struct value *arg[ARG_LAST];
2458
2459 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2460 addr);
2461 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2462 arg[ARG_LENGTH] = value_from_ulongest
2463 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2464 retval_val = call_function_by_hand (munmap_val, ARG_LAST, arg);
2465 retval = value_as_long (retval_val);
2466 if (retval != 0)
2467 warning (_("Failed inferior munmap call at %s for %s bytes, "
2468 "errno is changed."),
2469 hex_string (addr), pulongest (size));
2470}
2471
906d60cf
PA
2472/* See linux-tdep.h. */
2473
2474CORE_ADDR
2475linux_displaced_step_location (struct gdbarch *gdbarch)
2476{
2477 CORE_ADDR addr;
2478 int bp_len;
2479
2480 /* Determine entry point from target auxiliary vector. This avoids
2481 the need for symbols. Also, when debugging a stand-alone SPU
2482 executable, entry_point_address () will point to an SPU
2483 local-store address and is thus not usable as displaced stepping
2484 location. The auxiliary vector gets us the PowerPC-side entry
2485 point address instead. */
2486 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
16b41842
PA
2487 throw_error (NOT_SUPPORTED_ERROR,
2488 _("Cannot find AT_ENTRY auxiliary vector entry."));
906d60cf
PA
2489
2490 /* Make certain that the address points at real code, and not a
2491 function descriptor. */
2492 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2493 &current_target);
2494
2495 /* Inferior calls also use the entry point as a breakpoint location.
2496 We don't want displaced stepping to interfere with those
2497 breakpoints, so leave space. */
2498 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2499 addr += bp_len * 2;
2500
2501 return addr;
2502}
2503
df8411da
SDJ
2504/* Display whether the gcore command is using the
2505 /proc/PID/coredump_filter file. */
2506
2507static void
2508show_use_coredump_filter (struct ui_file *file, int from_tty,
2509 struct cmd_list_element *c, const char *value)
2510{
2511 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2512 " corefiles is %s.\n"), value);
2513}
2514
a5ee0f0c
PA
2515/* To be called from the various GDB_OSABI_LINUX handlers for the
2516 various GNU/Linux architectures and machine types. */
2517
2518void
2519linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2520{
2521 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
3030c96e 2522 set_gdbarch_info_proc (gdbarch, linux_info_proc);
451b7c33 2523 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
35c2fab7 2524 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
f968fe80 2525 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
33fbcbee
PA
2526 set_gdbarch_has_shared_address_space (gdbarch,
2527 linux_has_shared_address_space);
eb14d406
SDJ
2528 set_gdbarch_gdb_signal_from_target (gdbarch,
2529 linux_gdb_signal_from_target);
2530 set_gdbarch_gdb_signal_to_target (gdbarch,
2531 linux_gdb_signal_to_target);
3437254d 2532 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
3bc3cebe 2533 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
7f361056 2534 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
5cd867b4 2535 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
a5ee0f0c 2536}
06253dd3 2537
70221824
PA
2538/* Provide a prototype to silence -Wmissing-prototypes. */
2539extern initialize_file_ftype _initialize_linux_tdep;
2540
06253dd3
JK
2541void
2542_initialize_linux_tdep (void)
2543{
2544 linux_gdbarch_data_handle =
2545 gdbarch_data_register_post_init (init_linux_gdbarch_data);
cdfa0b0a
PA
2546
2547 /* Set a cache per-inferior. */
2548 linux_inferior_data
2549 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2550 /* Observers used to invalidate the cache when needed. */
2551 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2552 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
df8411da
SDJ
2553
2554 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2555 &use_coredump_filter, _("\
2556Set whether gcore should consider /proc/PID/coredump_filter."),
2557 _("\
2558Show whether gcore should consider /proc/PID/coredump_filter."),
2559 _("\
2560Use this command to set whether gcore should consider the contents\n\
2561of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2562about this file, refer to the manpage of core(5)."),
2563 NULL, show_use_coredump_filter,
2564 &setlist, &showlist);
06253dd3 2565}
This page took 1.049833 seconds and 4 git commands to generate.