Don't write to inferior_ptid in linux_get_siginfo_data
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
CommitLineData
4aa995e1
PA
1/* Target-dependent code for GNU/Linux, architecture independent.
2
b811d2c2 3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4aa995e1
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "gdbtypes.h"
2c0b251b 22#include "linux-tdep.h"
6c95b8df
PA
23#include "auxv.h"
24#include "target.h"
6432734d
UW
25#include "gdbthread.h"
26#include "gdbcore.h"
27#include "regcache.h"
28#include "regset.h"
6c95b8df 29#include "elf/common.h"
6432734d 30#include "elf-bfd.h" /* for elfcore_write_* */
a5ee0f0c 31#include "inferior.h"
3030c96e 32#include "cli/cli-utils.h"
451b7c33
TT
33#include "arch-utils.h"
34#include "gdb_obstack.h"
76727919 35#include "observable.h"
3bc3cebe
JK
36#include "objfiles.h"
37#include "infcall.h"
df8411da 38#include "gdbcmd.h"
db1ff28b 39#include "gdb_regex.h"
268a13a5
TT
40#include "gdbsupport/enum-flags.h"
41#include "gdbsupport/gdb_optional.h"
3030c96e
UW
42
43#include <ctype.h>
4aa995e1 44
db1ff28b
JK
45/* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
8d297bbf 51enum filter_flag
db1ff28b
JK
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
8d297bbf 61DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
db1ff28b
JK
62
63/* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
df8411da
SDJ
91/* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
491144b5 94static bool use_coredump_filter = true;
df8411da 95
afa840dc
SL
96/* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
491144b5 99static bool dump_excluded_mappings = false;
afa840dc 100
eb14d406
SDJ
101/* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
06253dd3
JK
166static struct gdbarch_data *linux_gdbarch_data_handle;
167
168struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173static void *
174init_linux_gdbarch_data (struct gdbarch *gdbarch)
175{
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177}
178
179static struct linux_gdbarch_data *
180get_linux_gdbarch_data (struct gdbarch *gdbarch)
181{
9a3c8263
SM
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
06253dd3
JK
184}
185
cdfa0b0a
PA
186/* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
189struct linux_info
190{
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
89fb8848 196 struct mem_range vsyscall_range {};
cdfa0b0a
PA
197
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
89fb8848 201 int vsyscall_range_p = 0;
cdfa0b0a
PA
202};
203
89fb8848
TT
204/* Per-inferior data key. */
205static const struct inferior_key<linux_info> linux_inferior_data;
206
cdfa0b0a
PA
207/* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210static void
211invalidate_linux_cache_inf (struct inferior *inf)
212{
89fb8848 213 linux_inferior_data.clear (inf);
cdfa0b0a
PA
214}
215
216/* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
218
219static struct linux_info *
220get_linux_inferior_data (void)
221{
222 struct linux_info *info;
223 struct inferior *inf = current_inferior ();
224
89fb8848 225 info = linux_inferior_data.get (inf);
cdfa0b0a 226 if (info == NULL)
89fb8848 227 info = linux_inferior_data.emplace (inf);
cdfa0b0a
PA
228
229 return info;
230}
231
190b495d 232/* See linux-tdep.h. */
4aa995e1 233
190b495d 234struct type *
43564574
WT
235linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
236 linux_siginfo_extra_fields extra_fields)
4aa995e1 237{
06253dd3 238 struct linux_gdbarch_data *linux_gdbarch_data;
96b5c49f 239 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
4aa995e1
PA
240 struct type *uid_type, *pid_type;
241 struct type *sigval_type, *clock_type;
242 struct type *siginfo_type, *sifields_type;
243 struct type *type;
244
06253dd3
JK
245 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
246 if (linux_gdbarch_data->siginfo_type != NULL)
247 return linux_gdbarch_data->siginfo_type;
248
e9bb382b
UW
249 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
250 0, "int");
251 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
252 1, "unsigned int");
253 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
254 0, "long");
96b5c49f
WT
255 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
256 0, "short");
4aa995e1
PA
257 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
258
259 /* sival_t */
e9bb382b 260 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
d0e39ea2 261 sigval_type->set_name (xstrdup ("sigval_t"));
4aa995e1
PA
262 append_composite_type_field (sigval_type, "sival_int", int_type);
263 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
264
265 /* __pid_t */
e3aa49af 266 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781 267 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
4aa995e1 268 TYPE_TARGET_TYPE (pid_type) = int_type;
e9bb382b 269 TYPE_TARGET_STUB (pid_type) = 1;
4aa995e1
PA
270
271 /* __uid_t */
e3aa49af 272 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781 273 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
4aa995e1 274 TYPE_TARGET_TYPE (uid_type) = uint_type;
e9bb382b 275 TYPE_TARGET_STUB (uid_type) = 1;
4aa995e1
PA
276
277 /* __clock_t */
e3aa49af 278 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781
UW
279 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
280 "__clock_t");
4aa995e1 281 TYPE_TARGET_TYPE (clock_type) = long_type;
e9bb382b 282 TYPE_TARGET_STUB (clock_type) = 1;
4aa995e1
PA
283
284 /* _sifields */
e9bb382b 285 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
286
287 {
288 const int si_max_size = 128;
289 int si_pad_size;
290 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
291
292 /* _pad */
293 if (gdbarch_ptr_bit (gdbarch) == 64)
294 si_pad_size = (si_max_size / size_of_int) - 4;
295 else
296 si_pad_size = (si_max_size / size_of_int) - 3;
297 append_composite_type_field (sifields_type, "_pad",
298 init_vector_type (int_type, si_pad_size));
299 }
300
301 /* _kill */
e9bb382b 302 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
303 append_composite_type_field (type, "si_pid", pid_type);
304 append_composite_type_field (type, "si_uid", uid_type);
305 append_composite_type_field (sifields_type, "_kill", type);
306
307 /* _timer */
e9bb382b 308 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
309 append_composite_type_field (type, "si_tid", int_type);
310 append_composite_type_field (type, "si_overrun", int_type);
311 append_composite_type_field (type, "si_sigval", sigval_type);
312 append_composite_type_field (sifields_type, "_timer", type);
313
314 /* _rt */
e9bb382b 315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (type, "si_sigval", sigval_type);
319 append_composite_type_field (sifields_type, "_rt", type);
320
321 /* _sigchld */
e9bb382b 322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (type, "si_status", int_type);
326 append_composite_type_field (type, "si_utime", clock_type);
327 append_composite_type_field (type, "si_stime", clock_type);
328 append_composite_type_field (sifields_type, "_sigchld", type);
329
330 /* _sigfault */
e9bb382b 331 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1 332 append_composite_type_field (type, "si_addr", void_ptr_type);
96b5c49f
WT
333
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
336 {
337 struct type *sigfault_bnd_fields;
338
339 append_composite_type_field (type, "_addr_lsb", short_type);
340 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
341 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
342 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
343 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
344 }
4aa995e1
PA
345 append_composite_type_field (sifields_type, "_sigfault", type);
346
347 /* _sigpoll */
e9bb382b 348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
352
353 /* struct siginfo */
e9bb382b 354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
d0e39ea2 355 siginfo_type->set_name (xstrdup ("siginfo"));
4aa995e1
PA
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
362
06253dd3
JK
363 linux_gdbarch_data->siginfo_type = siginfo_type;
364
4aa995e1
PA
365 return siginfo_type;
366}
6b3ae818 367
43564574
WT
368/* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
370
371static struct type *
372linux_get_siginfo_type (struct gdbarch *gdbarch)
373{
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
375}
376
c01cbb3d
YQ
377/* Return true if the target is running on uClinux instead of normal
378 Linux kernel. */
379
380int
381linux_is_uclinux (void)
6c95b8df 382{
6c95b8df 383 CORE_ADDR dummy;
6c95b8df 384
8b88a78e
PA
385 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
c01cbb3d 387}
6c95b8df 388
c01cbb3d
YQ
389static int
390linux_has_shared_address_space (struct gdbarch *gdbarch)
391{
392 return linux_is_uclinux ();
6c95b8df 393}
a5ee0f0c
PA
394
395/* This is how we want PTIDs from core files to be printed. */
396
a068643d 397static std::string
a5ee0f0c
PA
398linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
399{
e38504b3 400 if (ptid.lwp () != 0)
a068643d 401 return string_printf ("LWP %ld", ptid.lwp ());
a5ee0f0c
PA
402
403 return normal_pid_to_str (ptid);
404}
405
db1ff28b
JK
406/* Service function for corefiles and info proc. */
407
408static void
409read_mapping (const char *line,
410 ULONGEST *addr, ULONGEST *endaddr,
411 const char **permissions, size_t *permissions_len,
412 ULONGEST *offset,
413 const char **device, size_t *device_len,
414 ULONGEST *inode,
415 const char **filename)
416{
417 const char *p = line;
418
419 *addr = strtoulst (p, &p, 16);
420 if (*p == '-')
421 p++;
422 *endaddr = strtoulst (p, &p, 16);
423
f1735a53 424 p = skip_spaces (p);
db1ff28b
JK
425 *permissions = p;
426 while (*p && !isspace (*p))
427 p++;
428 *permissions_len = p - *permissions;
429
430 *offset = strtoulst (p, &p, 16);
431
f1735a53 432 p = skip_spaces (p);
db1ff28b
JK
433 *device = p;
434 while (*p && !isspace (*p))
435 p++;
436 *device_len = p - *device;
437
438 *inode = strtoulst (p, &p, 10);
439
f1735a53 440 p = skip_spaces (p);
db1ff28b
JK
441 *filename = p;
442}
443
444/* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
445
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
448
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
451 field on smaps. */
452
453static void
454decode_vmflags (char *p, struct smaps_vmflags *v)
455{
456 char *saveptr = NULL;
457 const char *s;
458
459 v->initialized_p = 1;
460 p = skip_to_space (p);
461 p = skip_spaces (p);
462
463 for (s = strtok_r (p, " ", &saveptr);
464 s != NULL;
465 s = strtok_r (NULL, " ", &saveptr))
466 {
467 if (strcmp (s, "io") == 0)
468 v->io_page = 1;
469 else if (strcmp (s, "ht") == 0)
470 v->uses_huge_tlb = 1;
471 else if (strcmp (s, "dd") == 0)
472 v->exclude_coredump = 1;
473 else if (strcmp (s, "sh") == 0)
474 v->shared_mapping = 1;
475 }
476}
477
2d7cc5c7
PA
478/* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
480
481struct mapping_regexes
482{
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
489 _("Could not compile regex to match /dev/zero filename")};
490
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
497 _("Could not compile regex to match shmem filenames")};
498
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
506
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
510 that. */
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB,
513 _("Could not compile regex to match '<file> (deleted)'")};
514};
515
db1ff28b
JK
516/* Return 1 if the memory mapping is anonymous, 0 otherwise.
517
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
520 the first line is:
521
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
523
524 Then FILENAME will be "/path/to/file". */
525
526static int
527mapping_is_anonymous_p (const char *filename)
528{
2d7cc5c7 529 static gdb::optional<mapping_regexes> regexes;
db1ff28b
JK
530 static int init_regex_p = 0;
531
532 if (!init_regex_p)
533 {
db1ff28b
JK
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
536 init_regex_p = -1;
537
2d7cc5c7 538 regexes.emplace ();
db1ff28b
JK
539
540 /* If we reached this point, then everything succeeded. */
541 init_regex_p = 1;
542 }
543
544 if (init_regex_p == -1)
545 {
546 const char deleted[] = " (deleted)";
547 size_t del_len = sizeof (deleted) - 1;
548 size_t filename_len = strlen (filename);
549
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
554 anonymous. */
555 return (filename_len >= del_len
556 && strcmp (filename + filename_len - del_len, deleted) == 0);
557 }
558
559 if (*filename == '\0'
2d7cc5c7
PA
560 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
561 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
562 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
db1ff28b
JK
563 return 1;
564
565 return 0;
566}
567
568/* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
57e5e645
SDJ
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
db1ff28b
JK
571
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
574
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
582 it).
583
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
597
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
57e5e645
SDJ
608 This should work OK enough, however.
609
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
db1ff28b
JK
614
615static int
8d297bbf 616dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
db1ff28b 617 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
57e5e645 618 const char *filename, ULONGEST addr, ULONGEST offset)
db1ff28b
JK
619{
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p = maybe_private_p;
57e5e645 628 int dump_p;
db1ff28b
JK
629
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename) == 0
634 || strcmp ("[vsyscall]", filename) == 0)
635 return 1;
636
637 if (v->initialized_p)
638 {
639 /* We never dump I/O mappings. */
640 if (v->io_page)
641 return 0;
642
643 /* Check if we should exclude this mapping. */
afa840dc 644 if (!dump_excluded_mappings && v->exclude_coredump)
db1ff28b
JK
645 return 0;
646
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p = !v->shared_mapping;
650
651 /* HugeTLB checking. */
652 if (v->uses_huge_tlb)
653 {
654 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
655 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
656 return 1;
657
658 return 0;
659 }
660 }
661
662 if (private_p)
663 {
664 if (mapping_anon_p && mapping_file_p)
665 {
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
668 pages. */
57e5e645
SDJ
669 dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0
670 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
db1ff28b
JK
671 }
672 else if (mapping_anon_p)
57e5e645 673 dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0;
db1ff28b 674 else
57e5e645 675 dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
db1ff28b
JK
676 }
677 else
678 {
679 if (mapping_anon_p && mapping_file_p)
680 {
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
683 pages. */
57e5e645
SDJ
684 dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0
685 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
db1ff28b
JK
686 }
687 else if (mapping_anon_p)
57e5e645 688 dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0;
db1ff28b 689 else
57e5e645 690 dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0;
db1ff28b 691 }
57e5e645
SDJ
692
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
697 dump this mapping.
698
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p && private_p && offset == 0
702 && (filterflags & COREFILTER_ELF_HEADERS) != 0)
703 {
57e5e645
SDJ
704 /* Useful define specifying the size of the ELF magical
705 header. */
706#ifndef SELFMAG
707#define SELFMAG 4
708#endif
709
a5d871dd
TT
710 /* Let's check if we have an ELF header. */
711 gdb_byte h[SELFMAG];
712 if (target_read_memory (addr, h, SELFMAG) == 0)
57e5e645 713 {
57e5e645
SDJ
714 /* The EI_MAG* and ELFMAG* constants come from
715 <elf/common.h>. */
716 if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1
717 && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3)
718 {
719 /* This mapping contains an ELF header, so we
720 should dump it. */
721 dump_p = 1;
722 }
723 }
724 }
725
726 return dump_p;
db1ff28b
JK
727}
728
3030c96e
UW
729/* Implement the "info proc" command. */
730
731static void
7bc112c1 732linux_info_proc (struct gdbarch *gdbarch, const char *args,
3030c96e
UW
733 enum info_proc_what what)
734{
735 /* A long is used for pid instead of an int to avoid a loss of precision
736 compiler warning from the output of strtoul. */
737 long pid;
738 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
739 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
740 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
741 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
742 int status_f = (what == IP_STATUS || what == IP_ALL);
743 int stat_f = (what == IP_STAT || what == IP_ALL);
744 char filename[100];
3030c96e
UW
745 int target_errno;
746
747 if (args && isdigit (args[0]))
7bc112c1
TT
748 {
749 char *tem;
750
751 pid = strtoul (args, &tem, 10);
752 args = tem;
753 }
3030c96e
UW
754 else
755 {
756 if (!target_has_execution)
757 error (_("No current process: you must name one."));
758 if (current_inferior ()->fake_pid_p)
759 error (_("Can't determine the current process's PID: you must name one."));
760
761 pid = current_inferior ()->pid;
762 }
763
f1735a53 764 args = skip_spaces (args);
3030c96e
UW
765 if (args && args[0])
766 error (_("Too many parameters: %s"), args);
767
768 printf_filtered (_("process %ld\n"), pid);
769 if (cmdline_f)
770 {
771 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
26d6cec4
AA
772 gdb_byte *buffer;
773 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
774
775 if (len > 0)
776 {
777 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
778 ssize_t pos;
779
780 for (pos = 0; pos < len - 1; pos++)
781 {
782 if (buffer[pos] == '\0')
783 buffer[pos] = ' ';
784 }
785 buffer[len - 1] = '\0';
786 printf_filtered ("cmdline = '%s'\n", buffer);
787 }
3030c96e
UW
788 else
789 warning (_("unable to open /proc file '%s'"), filename);
790 }
791 if (cwd_f)
792 {
793 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
e0d3522b
TT
794 gdb::optional<std::string> contents
795 = target_fileio_readlink (NULL, filename, &target_errno);
796 if (contents.has_value ())
797 printf_filtered ("cwd = '%s'\n", contents->c_str ());
3030c96e
UW
798 else
799 warning (_("unable to read link '%s'"), filename);
800 }
801 if (exe_f)
802 {
803 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
e0d3522b
TT
804 gdb::optional<std::string> contents
805 = target_fileio_readlink (NULL, filename, &target_errno);
806 if (contents.has_value ())
807 printf_filtered ("exe = '%s'\n", contents->c_str ());
3030c96e
UW
808 else
809 warning (_("unable to read link '%s'"), filename);
810 }
811 if (mappings_f)
812 {
813 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
87028b87
TT
814 gdb::unique_xmalloc_ptr<char> map
815 = target_fileio_read_stralloc (NULL, filename);
816 if (map != NULL)
3030c96e 817 {
3030c96e
UW
818 char *line;
819
820 printf_filtered (_("Mapped address spaces:\n\n"));
821 if (gdbarch_addr_bit (gdbarch) == 32)
822 {
823 printf_filtered ("\t%10s %10s %10s %10s %s\n",
824 "Start Addr",
825 " End Addr",
826 " Size", " Offset", "objfile");
827 }
828 else
829 {
830 printf_filtered (" %18s %18s %10s %10s %s\n",
831 "Start Addr",
832 " End Addr",
833 " Size", " Offset", "objfile");
834 }
835
ca3a04f6
CB
836 char *saveptr;
837 for (line = strtok_r (map.get (), "\n", &saveptr);
87028b87 838 line;
ca3a04f6 839 line = strtok_r (NULL, "\n", &saveptr))
3030c96e
UW
840 {
841 ULONGEST addr, endaddr, offset, inode;
b926417a 842 const char *permissions, *device, *mapping_filename;
3030c96e
UW
843 size_t permissions_len, device_len;
844
845 read_mapping (line, &addr, &endaddr,
846 &permissions, &permissions_len,
847 &offset, &device, &device_len,
b926417a 848 &inode, &mapping_filename);
3030c96e
UW
849
850 if (gdbarch_addr_bit (gdbarch) == 32)
851 {
852 printf_filtered ("\t%10s %10s %10s %10s %s\n",
853 paddress (gdbarch, addr),
854 paddress (gdbarch, endaddr),
855 hex_string (endaddr - addr),
856 hex_string (offset),
b926417a 857 *mapping_filename ? mapping_filename : "");
3030c96e
UW
858 }
859 else
860 {
861 printf_filtered (" %18s %18s %10s %10s %s\n",
862 paddress (gdbarch, addr),
863 paddress (gdbarch, endaddr),
864 hex_string (endaddr - addr),
865 hex_string (offset),
b926417a 866 *mapping_filename ? mapping_filename : "");
3030c96e
UW
867 }
868 }
3030c96e
UW
869 }
870 else
871 warning (_("unable to open /proc file '%s'"), filename);
872 }
873 if (status_f)
874 {
875 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
87028b87
TT
876 gdb::unique_xmalloc_ptr<char> status
877 = target_fileio_read_stralloc (NULL, filename);
878 if (status)
879 puts_filtered (status.get ());
3030c96e
UW
880 else
881 warning (_("unable to open /proc file '%s'"), filename);
882 }
883 if (stat_f)
884 {
885 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
87028b87
TT
886 gdb::unique_xmalloc_ptr<char> statstr
887 = target_fileio_read_stralloc (NULL, filename);
888 if (statstr)
3030c96e 889 {
87028b87 890 const char *p = statstr.get ();
3030c96e
UW
891
892 printf_filtered (_("Process: %s\n"),
893 pulongest (strtoulst (p, &p, 10)));
894
f1735a53 895 p = skip_spaces (p);
a71b5a38 896 if (*p == '(')
3030c96e 897 {
184cd072
JK
898 /* ps command also relies on no trailing fields
899 ever contain ')'. */
900 const char *ep = strrchr (p, ')');
a71b5a38
UW
901 if (ep != NULL)
902 {
903 printf_filtered ("Exec file: %.*s\n",
904 (int) (ep - p - 1), p + 1);
905 p = ep + 1;
906 }
3030c96e
UW
907 }
908
f1735a53 909 p = skip_spaces (p);
3030c96e
UW
910 if (*p)
911 printf_filtered (_("State: %c\n"), *p++);
912
913 if (*p)
914 printf_filtered (_("Parent process: %s\n"),
915 pulongest (strtoulst (p, &p, 10)));
916 if (*p)
917 printf_filtered (_("Process group: %s\n"),
918 pulongest (strtoulst (p, &p, 10)));
919 if (*p)
920 printf_filtered (_("Session id: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("TTY: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("TTY owner process group: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928
929 if (*p)
930 printf_filtered (_("Flags: %s\n"),
931 hex_string (strtoulst (p, &p, 10)));
932 if (*p)
933 printf_filtered (_("Minor faults (no memory page): %s\n"),
934 pulongest (strtoulst (p, &p, 10)));
935 if (*p)
936 printf_filtered (_("Minor faults, children: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("Major faults (memory page faults): %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("Major faults, children: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("utime: %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947 if (*p)
948 printf_filtered (_("stime: %s\n"),
949 pulongest (strtoulst (p, &p, 10)));
950 if (*p)
951 printf_filtered (_("utime, children: %s\n"),
952 pulongest (strtoulst (p, &p, 10)));
953 if (*p)
954 printf_filtered (_("stime, children: %s\n"),
955 pulongest (strtoulst (p, &p, 10)));
956 if (*p)
957 printf_filtered (_("jiffies remaining in current "
958 "time slice: %s\n"),
959 pulongest (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("'nice' value: %s\n"),
962 pulongest (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("jiffies until next timeout: %s\n"),
965 pulongest (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
968 pulongest (strtoulst (p, &p, 10)));
969 if (*p)
970 printf_filtered (_("start time (jiffies since "
971 "system boot): %s\n"),
972 pulongest (strtoulst (p, &p, 10)));
973 if (*p)
974 printf_filtered (_("Virtual memory size: %s\n"),
975 pulongest (strtoulst (p, &p, 10)));
976 if (*p)
977 printf_filtered (_("Resident set size: %s\n"),
978 pulongest (strtoulst (p, &p, 10)));
979 if (*p)
980 printf_filtered (_("rlim: %s\n"),
981 pulongest (strtoulst (p, &p, 10)));
982 if (*p)
983 printf_filtered (_("Start of text: %s\n"),
984 hex_string (strtoulst (p, &p, 10)));
985 if (*p)
986 printf_filtered (_("End of text: %s\n"),
987 hex_string (strtoulst (p, &p, 10)));
988 if (*p)
989 printf_filtered (_("Start of stack: %s\n"),
990 hex_string (strtoulst (p, &p, 10)));
991#if 0 /* Don't know how architecture-dependent the rest is...
992 Anyway the signal bitmap info is available from "status". */
993 if (*p)
994 printf_filtered (_("Kernel stack pointer: %s\n"),
995 hex_string (strtoulst (p, &p, 10)));
996 if (*p)
997 printf_filtered (_("Kernel instr pointer: %s\n"),
998 hex_string (strtoulst (p, &p, 10)));
999 if (*p)
1000 printf_filtered (_("Pending signals bitmap: %s\n"),
1001 hex_string (strtoulst (p, &p, 10)));
1002 if (*p)
1003 printf_filtered (_("Blocked signals bitmap: %s\n"),
1004 hex_string (strtoulst (p, &p, 10)));
1005 if (*p)
1006 printf_filtered (_("Ignored signals bitmap: %s\n"),
1007 hex_string (strtoulst (p, &p, 10)));
1008 if (*p)
1009 printf_filtered (_("Catched signals bitmap: %s\n"),
1010 hex_string (strtoulst (p, &p, 10)));
1011 if (*p)
1012 printf_filtered (_("wchan (system call): %s\n"),
1013 hex_string (strtoulst (p, &p, 10)));
1014#endif
3030c96e
UW
1015 }
1016 else
1017 warning (_("unable to open /proc file '%s'"), filename);
1018 }
1019}
1020
451b7c33
TT
1021/* Implement "info proc mappings" for a corefile. */
1022
1023static void
7bc112c1 1024linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
451b7c33
TT
1025{
1026 asection *section;
1027 ULONGEST count, page_size;
9f584b37 1028 unsigned char *descdata, *filenames, *descend;
451b7c33
TT
1029 size_t note_size;
1030 unsigned int addr_size_bits, addr_size;
451b7c33
TT
1031 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1032 /* We assume this for reading 64-bit core files. */
1033 gdb_static_assert (sizeof (ULONGEST) >= 8);
1034
1035 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1036 if (section == NULL)
1037 {
1038 warning (_("unable to find mappings in core file"));
1039 return;
1040 }
1041
1042 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1043 addr_size = addr_size_bits / 8;
fd361982 1044 note_size = bfd_section_size (section);
451b7c33
TT
1045
1046 if (note_size < 2 * addr_size)
1047 error (_("malformed core note - too short for header"));
1048
9f584b37
TT
1049 gdb::def_vector<unsigned char> contents (note_size);
1050 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1051 0, note_size))
451b7c33
TT
1052 error (_("could not get core note contents"));
1053
9f584b37 1054 descdata = contents.data ();
451b7c33
TT
1055 descend = descdata + note_size;
1056
1057 if (descdata[note_size - 1] != '\0')
1058 error (_("malformed note - does not end with \\0"));
1059
1060 count = bfd_get (addr_size_bits, core_bfd, descdata);
1061 descdata += addr_size;
1062
1063 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1064 descdata += addr_size;
1065
1066 if (note_size < 2 * addr_size + count * 3 * addr_size)
1067 error (_("malformed note - too short for supplied file count"));
1068
1069 printf_filtered (_("Mapped address spaces:\n\n"));
1070 if (gdbarch_addr_bit (gdbarch) == 32)
1071 {
1072 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1073 "Start Addr",
1074 " End Addr",
1075 " Size", " Offset", "objfile");
1076 }
1077 else
1078 {
1079 printf_filtered (" %18s %18s %10s %10s %s\n",
1080 "Start Addr",
1081 " End Addr",
1082 " Size", " Offset", "objfile");
1083 }
1084
1085 filenames = descdata + count * 3 * addr_size;
1086 while (--count > 0)
1087 {
1088 ULONGEST start, end, file_ofs;
1089
1090 if (filenames == descend)
1091 error (_("malformed note - filenames end too early"));
1092
1093 start = bfd_get (addr_size_bits, core_bfd, descdata);
1094 descdata += addr_size;
1095 end = bfd_get (addr_size_bits, core_bfd, descdata);
1096 descdata += addr_size;
1097 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1098 descdata += addr_size;
1099
1100 file_ofs *= page_size;
1101
1102 if (gdbarch_addr_bit (gdbarch) == 32)
1103 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1104 paddress (gdbarch, start),
1105 paddress (gdbarch, end),
1106 hex_string (end - start),
1107 hex_string (file_ofs),
1108 filenames);
1109 else
1110 printf_filtered (" %18s %18s %10s %10s %s\n",
1111 paddress (gdbarch, start),
1112 paddress (gdbarch, end),
1113 hex_string (end - start),
1114 hex_string (file_ofs),
1115 filenames);
1116
1117 filenames += 1 + strlen ((char *) filenames);
1118 }
451b7c33
TT
1119}
1120
1121/* Implement "info proc" for a corefile. */
1122
1123static void
7bc112c1 1124linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
451b7c33
TT
1125 enum info_proc_what what)
1126{
1127 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1128 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1129
1130 if (exe_f)
1131 {
1132 const char *exe;
1133
1134 exe = bfd_core_file_failing_command (core_bfd);
1135 if (exe != NULL)
1136 printf_filtered ("exe = '%s'\n", exe);
1137 else
1138 warning (_("unable to find command name in core file"));
1139 }
1140
1141 if (mappings_f)
1142 linux_core_info_proc_mappings (gdbarch, args);
1143
1144 if (!exe_f && !mappings_f)
1145 error (_("unable to handle request"));
1146}
1147
382b69bb
JB
1148/* Read siginfo data from the core, if possible. Returns -1 on
1149 failure. Otherwise, returns the number of bytes read. READBUF,
1150 OFFSET, and LEN are all as specified by the to_xfer_partial
1151 interface. */
1152
1153static LONGEST
1154linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1155 ULONGEST offset, ULONGEST len)
1156{
1157 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1158 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1159 if (section == NULL)
1160 return -1;
1161
1162 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1163 return -1;
1164
1165 return len;
1166}
1167
db1ff28b
JK
1168typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1169 ULONGEST offset, ULONGEST inode,
1170 int read, int write,
1171 int exec, int modified,
1172 const char *filename,
1173 void *data);
451b7c33 1174
db1ff28b 1175/* List memory regions in the inferior for a corefile. */
451b7c33
TT
1176
1177static int
db1ff28b
JK
1178linux_find_memory_regions_full (struct gdbarch *gdbarch,
1179 linux_find_memory_region_ftype *func,
1180 void *obfd)
f7af1fcd 1181{
db1ff28b
JK
1182 char mapsfilename[100];
1183 char coredumpfilter_name[100];
f7af1fcd
JK
1184 pid_t pid;
1185 /* Default dump behavior of coredump_filter (0x33), according to
1186 Documentation/filesystems/proc.txt from the Linux kernel
1187 tree. */
8d297bbf
PA
1188 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1189 | COREFILTER_ANON_SHARED
1190 | COREFILTER_ELF_HEADERS
1191 | COREFILTER_HUGETLB_PRIVATE);
f7af1fcd 1192
db1ff28b 1193 /* We need to know the real target PID to access /proc. */
f7af1fcd 1194 if (current_inferior ()->fake_pid_p)
db1ff28b 1195 return 1;
f7af1fcd
JK
1196
1197 pid = current_inferior ()->pid;
1198
1199 if (use_coredump_filter)
1200 {
f7af1fcd
JK
1201 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1202 "/proc/%d/coredump_filter", pid);
87028b87
TT
1203 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1204 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
f7af1fcd
JK
1205 if (coredumpfilterdata != NULL)
1206 {
8d297bbf
PA
1207 unsigned int flags;
1208
87028b87 1209 sscanf (coredumpfilterdata.get (), "%x", &flags);
8d297bbf 1210 filterflags = (enum filter_flag) flags;
f7af1fcd
JK
1211 }
1212 }
1213
db1ff28b 1214 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
87028b87
TT
1215 gdb::unique_xmalloc_ptr<char> data
1216 = target_fileio_read_stralloc (NULL, mapsfilename);
db1ff28b
JK
1217 if (data == NULL)
1218 {
1219 /* Older Linux kernels did not support /proc/PID/smaps. */
1220 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1221 data = target_fileio_read_stralloc (NULL, mapsfilename);
1222 }
1223
1224 if (data != NULL)
1225 {
db1ff28b
JK
1226 char *line, *t;
1227
87028b87 1228 line = strtok_r (data.get (), "\n", &t);
db1ff28b
JK
1229 while (line != NULL)
1230 {
1231 ULONGEST addr, endaddr, offset, inode;
1232 const char *permissions, *device, *filename;
1233 struct smaps_vmflags v;
1234 size_t permissions_len, device_len;
1235 int read, write, exec, priv;
1236 int has_anonymous = 0;
1237 int should_dump_p = 0;
1238 int mapping_anon_p;
1239 int mapping_file_p;
1240
1241 memset (&v, 0, sizeof (v));
1242 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1243 &offset, &device, &device_len, &inode, &filename);
1244 mapping_anon_p = mapping_is_anonymous_p (filename);
1245 /* If the mapping is not anonymous, then we can consider it
1246 to be file-backed. These two states (anonymous or
1247 file-backed) seem to be exclusive, but they can actually
1248 coexist. For example, if a file-backed mapping has
1249 "Anonymous:" pages (see more below), then the Linux
1250 kernel will dump this mapping when the user specified
1251 that she only wants anonymous mappings in the corefile
1252 (*even* when she explicitly disabled the dumping of
1253 file-backed mappings). */
1254 mapping_file_p = !mapping_anon_p;
1255
1256 /* Decode permissions. */
1257 read = (memchr (permissions, 'r', permissions_len) != 0);
1258 write = (memchr (permissions, 'w', permissions_len) != 0);
1259 exec = (memchr (permissions, 'x', permissions_len) != 0);
1260 /* 'private' here actually means VM_MAYSHARE, and not
1261 VM_SHARED. In order to know if a mapping is really
1262 private or not, we must check the flag "sh" in the
1263 VmFlags field. This is done by decode_vmflags. However,
1264 if we are using a Linux kernel released before the commit
1265 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1266 not have the VmFlags there. In this case, there is
1267 really no way to know if we are dealing with VM_SHARED,
1268 so we just assume that VM_MAYSHARE is enough. */
1269 priv = memchr (permissions, 'p', permissions_len) != 0;
1270
1271 /* Try to detect if region should be dumped by parsing smaps
1272 counters. */
1273 for (line = strtok_r (NULL, "\n", &t);
1274 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1275 line = strtok_r (NULL, "\n", &t))
1276 {
1277 char keyword[64 + 1];
1278
1279 if (sscanf (line, "%64s", keyword) != 1)
1280 {
1281 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1282 break;
1283 }
1284
1285 if (strcmp (keyword, "Anonymous:") == 0)
1286 {
1287 /* Older Linux kernels did not support the
1288 "Anonymous:" counter. Check it here. */
1289 has_anonymous = 1;
1290 }
1291 else if (strcmp (keyword, "VmFlags:") == 0)
1292 decode_vmflags (line, &v);
1293
1294 if (strcmp (keyword, "AnonHugePages:") == 0
1295 || strcmp (keyword, "Anonymous:") == 0)
1296 {
1297 unsigned long number;
1298
1299 if (sscanf (line, "%*s%lu", &number) != 1)
1300 {
1301 warning (_("Error parsing {s,}maps file '%s' number"),
1302 mapsfilename);
1303 break;
1304 }
1305 if (number > 0)
1306 {
1307 /* Even if we are dealing with a file-backed
1308 mapping, if it contains anonymous pages we
1309 consider it to be *also* an anonymous
1310 mapping, because this is what the Linux
1311 kernel does:
1312
1313 // Dump segments that have been written to.
1314 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1315 goto whole;
1316
1317 Note that if the mapping is already marked as
1318 file-backed (i.e., mapping_file_p is
1319 non-zero), then this is a special case, and
1320 this mapping will be dumped either when the
1321 user wants to dump file-backed *or* anonymous
1322 mappings. */
1323 mapping_anon_p = 1;
1324 }
1325 }
1326 }
1327
1328 if (has_anonymous)
1329 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1330 mapping_anon_p, mapping_file_p,
57e5e645 1331 filename, addr, offset);
db1ff28b
JK
1332 else
1333 {
1334 /* Older Linux kernels did not support the "Anonymous:" counter.
1335 If it is missing, we can't be sure - dump all the pages. */
1336 should_dump_p = 1;
1337 }
1338
1339 /* Invoke the callback function to create the corefile segment. */
1340 if (should_dump_p)
1341 func (addr, endaddr - addr, offset, inode,
1342 read, write, exec, 1, /* MODIFIED is true because we
1343 want to dump the mapping. */
1344 filename, obfd);
1345 }
1346
db1ff28b
JK
1347 return 0;
1348 }
1349
1350 return 1;
1351}
1352
1353/* A structure for passing information through
1354 linux_find_memory_regions_full. */
1355
1356struct linux_find_memory_regions_data
1357{
1358 /* The original callback. */
1359
1360 find_memory_region_ftype func;
1361
1362 /* The original datum. */
1363
1364 void *obfd;
1365};
1366
1367/* A callback for linux_find_memory_regions that converts between the
1368 "full"-style callback and find_memory_region_ftype. */
1369
1370static int
1371linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1372 ULONGEST offset, ULONGEST inode,
1373 int read, int write, int exec, int modified,
1374 const char *filename, void *arg)
1375{
9a3c8263
SM
1376 struct linux_find_memory_regions_data *data
1377 = (struct linux_find_memory_regions_data *) arg;
db1ff28b
JK
1378
1379 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
451b7c33
TT
1380}
1381
1382/* A variant of linux_find_memory_regions_full that is suitable as the
1383 gdbarch find_memory_regions method. */
1384
1385static int
1386linux_find_memory_regions (struct gdbarch *gdbarch,
db1ff28b 1387 find_memory_region_ftype func, void *obfd)
451b7c33
TT
1388{
1389 struct linux_find_memory_regions_data data;
1390
1391 data.func = func;
db1ff28b 1392 data.obfd = obfd;
451b7c33 1393
db1ff28b
JK
1394 return linux_find_memory_regions_full (gdbarch,
1395 linux_find_memory_regions_thunk,
1396 &data);
451b7c33
TT
1397}
1398
6432734d
UW
1399/* Determine which signal stopped execution. */
1400
1401static int
1402find_signalled_thread (struct thread_info *info, void *data)
1403{
a493e3e2 1404 if (info->suspend.stop_signal != GDB_SIGNAL_0
e99b03dc 1405 && info->ptid.pid () == inferior_ptid.pid ())
6432734d
UW
1406 return 1;
1407
1408 return 0;
1409}
1410
451b7c33
TT
1411/* This is used to pass information from
1412 linux_make_mappings_corefile_notes through
1413 linux_find_memory_regions_full. */
1414
1415struct linux_make_mappings_data
1416{
1417 /* Number of files mapped. */
1418 ULONGEST file_count;
1419
1420 /* The obstack for the main part of the data. */
1421 struct obstack *data_obstack;
1422
1423 /* The filename obstack. */
1424 struct obstack *filename_obstack;
1425
1426 /* The architecture's "long" type. */
1427 struct type *long_type;
1428};
1429
1430static linux_find_memory_region_ftype linux_make_mappings_callback;
1431
1432/* A callback for linux_find_memory_regions_full that updates the
1433 mappings data for linux_make_mappings_corefile_notes. */
1434
1435static int
1436linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1437 ULONGEST offset, ULONGEST inode,
1438 int read, int write, int exec, int modified,
1439 const char *filename, void *data)
1440{
9a3c8263
SM
1441 struct linux_make_mappings_data *map_data
1442 = (struct linux_make_mappings_data *) data;
451b7c33
TT
1443 gdb_byte buf[sizeof (ULONGEST)];
1444
1445 if (*filename == '\0' || inode == 0)
1446 return 0;
1447
1448 ++map_data->file_count;
1449
1450 pack_long (buf, map_data->long_type, vaddr);
1451 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1452 pack_long (buf, map_data->long_type, vaddr + size);
1453 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1454 pack_long (buf, map_data->long_type, offset);
1455 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1456
1457 obstack_grow_str0 (map_data->filename_obstack, filename);
1458
1459 return 0;
1460}
1461
1462/* Write the file mapping data to the core file, if possible. OBFD is
1463 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1464 is a pointer to the note size. Returns the new NOTE_DATA and
1465 updates NOTE_SIZE. */
1466
1467static char *
1468linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1469 char *note_data, int *note_size)
1470{
451b7c33
TT
1471 struct linux_make_mappings_data mapping_data;
1472 struct type *long_type
1473 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1474 gdb_byte buf[sizeof (ULONGEST)];
1475
8268c778 1476 auto_obstack data_obstack, filename_obstack;
451b7c33
TT
1477
1478 mapping_data.file_count = 0;
1479 mapping_data.data_obstack = &data_obstack;
1480 mapping_data.filename_obstack = &filename_obstack;
1481 mapping_data.long_type = long_type;
1482
1483 /* Reserve space for the count. */
1484 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1485 /* We always write the page size as 1 since we have no good way to
1486 determine the correct value. */
1487 pack_long (buf, long_type, 1);
1488 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1489
db1ff28b
JK
1490 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1491 &mapping_data);
451b7c33
TT
1492
1493 if (mapping_data.file_count != 0)
1494 {
1495 /* Write the count to the obstack. */
51a5cd90
PA
1496 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1497 long_type, mapping_data.file_count);
451b7c33
TT
1498
1499 /* Copy the filenames to the data obstack. */
3fba72f7 1500 int size = obstack_object_size (&filename_obstack);
451b7c33 1501 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
3fba72f7 1502 size);
451b7c33
TT
1503
1504 note_data = elfcore_write_note (obfd, note_data, note_size,
1505 "CORE", NT_FILE,
1506 obstack_base (&data_obstack),
1507 obstack_object_size (&data_obstack));
1508 }
1509
451b7c33
TT
1510 return note_data;
1511}
1512
5aa82d05
AA
1513/* Structure for passing information from
1514 linux_collect_thread_registers via an iterator to
1515 linux_collect_regset_section_cb. */
1516
1517struct linux_collect_regset_section_cb_data
1518{
1519 struct gdbarch *gdbarch;
1520 const struct regcache *regcache;
1521 bfd *obfd;
1522 char *note_data;
1523 int *note_size;
1524 unsigned long lwp;
1525 enum gdb_signal stop_signal;
1526 int abort_iteration;
1527};
1528
1529/* Callback for iterate_over_regset_sections that records a single
1530 regset in the corefile note section. */
1531
1532static void
a616bb94
AH
1533linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1534 int collect_size, const struct regset *regset,
5aa82d05
AA
1535 const char *human_name, void *cb_data)
1536{
7567e115
SM
1537 struct linux_collect_regset_section_cb_data *data
1538 = (struct linux_collect_regset_section_cb_data *) cb_data;
a616bb94
AH
1539 bool variable_size_section = (regset != NULL
1540 && regset->flags & REGSET_VARIABLE_SIZE);
1541
1542 if (!variable_size_section)
1543 gdb_assert (supply_size == collect_size);
5aa82d05
AA
1544
1545 if (data->abort_iteration)
1546 return;
1547
5aa82d05
AA
1548 gdb_assert (regset && regset->collect_regset);
1549
afde3032
PFC
1550 /* This is intentionally zero-initialized by using std::vector, so
1551 that any padding bytes in the core file will show as 0. */
1552 std::vector<gdb_byte> buf (collect_size);
1553
1554 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1555 collect_size);
5aa82d05
AA
1556
1557 /* PRSTATUS still needs to be treated specially. */
1558 if (strcmp (sect_name, ".reg") == 0)
1559 data->note_data = (char *) elfcore_write_prstatus
1560 (data->obfd, data->note_data, data->note_size, data->lwp,
afde3032 1561 gdb_signal_to_host (data->stop_signal), buf.data ());
5aa82d05
AA
1562 else
1563 data->note_data = (char *) elfcore_write_register_note
1564 (data->obfd, data->note_data, data->note_size,
afde3032 1565 sect_name, buf.data (), collect_size);
5aa82d05
AA
1566
1567 if (data->note_data == NULL)
1568 data->abort_iteration = 1;
1569}
1570
6432734d
UW
1571/* Records the thread's register state for the corefile note
1572 section. */
1573
1574static char *
1575linux_collect_thread_registers (const struct regcache *regcache,
1576 ptid_t ptid, bfd *obfd,
1577 char *note_data, int *note_size,
2ea28649 1578 enum gdb_signal stop_signal)
6432734d 1579{
ac7936df 1580 struct gdbarch *gdbarch = regcache->arch ();
5aa82d05 1581 struct linux_collect_regset_section_cb_data data;
6432734d 1582
5aa82d05
AA
1583 data.gdbarch = gdbarch;
1584 data.regcache = regcache;
1585 data.obfd = obfd;
1586 data.note_data = note_data;
1587 data.note_size = note_size;
1588 data.stop_signal = stop_signal;
1589 data.abort_iteration = 0;
6432734d
UW
1590
1591 /* For remote targets the LWP may not be available, so use the TID. */
e38504b3 1592 data.lwp = ptid.lwp ();
5aa82d05 1593 if (!data.lwp)
cc6bcb54 1594 data.lwp = ptid.tid ();
5aa82d05
AA
1595
1596 gdbarch_iterate_over_regset_sections (gdbarch,
1597 linux_collect_regset_section_cb,
1598 &data, regcache);
1599 return data.note_data;
6432734d
UW
1600}
1601
2989a365 1602/* Fetch the siginfo data for the specified thread, if it exists. If
9f584b37
TT
1603 there is no data, or we could not read it, return an empty
1604 buffer. */
1605
1606static gdb::byte_vector
1607linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
9015683b
TT
1608{
1609 struct type *siginfo_type;
9015683b 1610 LONGEST bytes_read;
9015683b
TT
1611
1612 if (!gdbarch_get_siginfo_type_p (gdbarch))
9f584b37
TT
1613 return gdb::byte_vector ();
1614
41792d68
PA
1615 scoped_restore_current_thread save_current_thread;
1616 switch_to_thread (thread);
2989a365 1617
9015683b
TT
1618 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1619
9f584b37 1620 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
9015683b 1621
8b88a78e 1622 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9f584b37
TT
1623 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1624 if (bytes_read != TYPE_LENGTH (siginfo_type))
1625 buf.clear ();
9015683b
TT
1626
1627 return buf;
1628}
1629
6432734d
UW
1630struct linux_corefile_thread_data
1631{
1632 struct gdbarch *gdbarch;
6432734d
UW
1633 bfd *obfd;
1634 char *note_data;
1635 int *note_size;
2ea28649 1636 enum gdb_signal stop_signal;
6432734d
UW
1637};
1638
050c224b
PA
1639/* Records the thread's register state for the corefile note
1640 section. */
6432734d 1641
050c224b
PA
1642static void
1643linux_corefile_thread (struct thread_info *info,
1644 struct linux_corefile_thread_data *args)
6432734d 1645{
050c224b 1646 struct regcache *regcache;
050c224b 1647
5b6d1e4f
PA
1648 regcache = get_thread_arch_regcache (info->inf->process_target (),
1649 info->ptid, args->gdbarch);
050c224b 1650
050c224b 1651 target_fetch_registers (regcache, -1);
9f584b37 1652 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
050c224b
PA
1653
1654 args->note_data = linux_collect_thread_registers
1655 (regcache, info->ptid, args->obfd, args->note_data,
1656 args->note_size, args->stop_signal);
1657
1658 /* Don't return anything if we got no register information above,
1659 such a core file is useless. */
1660 if (args->note_data != NULL)
9f584b37 1661 if (!siginfo_data.empty ())
050c224b
PA
1662 args->note_data = elfcore_write_note (args->obfd,
1663 args->note_data,
1664 args->note_size,
1665 "CORE", NT_SIGINFO,
9f584b37
TT
1666 siginfo_data.data (),
1667 siginfo_data.size ());
6432734d
UW
1668}
1669
b3ac9c77
SDJ
1670/* Fill the PRPSINFO structure with information about the process being
1671 debugged. Returns 1 in case of success, 0 for failures. Please note that
1672 even if the structure cannot be entirely filled (e.g., GDB was unable to
1673 gather information about the process UID/GID), this function will still
1674 return 1 since some information was already recorded. It will only return
1675 0 iff nothing can be gathered. */
1676
1677static int
1678linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1679{
1680 /* The filename which we will use to obtain some info about the process.
1681 We will basically use this to store the `/proc/PID/FILENAME' file. */
1682 char filename[100];
b3ac9c77
SDJ
1683 /* The basename of the executable. */
1684 const char *basename;
cbaaa0ca 1685 const char *infargs;
b3ac9c77
SDJ
1686 /* Temporary buffer. */
1687 char *tmpstr;
1688 /* The valid states of a process, according to the Linux kernel. */
1689 const char valid_states[] = "RSDTZW";
1690 /* The program state. */
1691 const char *prog_state;
1692 /* The state of the process. */
1693 char pr_sname;
1694 /* The PID of the program which generated the corefile. */
1695 pid_t pid;
1696 /* Process flags. */
1697 unsigned int pr_flag;
1698 /* Process nice value. */
1699 long pr_nice;
1700 /* The number of fields read by `sscanf'. */
1701 int n_fields = 0;
b3ac9c77
SDJ
1702
1703 gdb_assert (p != NULL);
1704
1705 /* Obtaining PID and filename. */
e99b03dc 1706 pid = inferior_ptid.pid ();
b3ac9c77 1707 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
87028b87
TT
1708 /* The full name of the program which generated the corefile. */
1709 gdb::unique_xmalloc_ptr<char> fname
1710 = target_fileio_read_stralloc (NULL, filename);
b3ac9c77 1711
87028b87 1712 if (fname == NULL || fname.get ()[0] == '\0')
b3ac9c77
SDJ
1713 {
1714 /* No program name was read, so we won't be able to retrieve more
1715 information about the process. */
b3ac9c77
SDJ
1716 return 0;
1717 }
1718
b3ac9c77
SDJ
1719 memset (p, 0, sizeof (*p));
1720
1721 /* Defining the PID. */
1722 p->pr_pid = pid;
1723
1724 /* Copying the program name. Only the basename matters. */
87028b87 1725 basename = lbasename (fname.get ());
f67210ff 1726 strncpy (p->pr_fname, basename, sizeof (p->pr_fname) - 1);
b3ac9c77
SDJ
1727 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1728
1729 infargs = get_inferior_args ();
1730
87028b87
TT
1731 /* The arguments of the program. */
1732 std::string psargs = fname.get ();
b3ac9c77 1733 if (infargs != NULL)
87028b87 1734 psargs = psargs + " " + infargs;
b3ac9c77 1735
f67210ff 1736 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs) - 1);
b3ac9c77
SDJ
1737 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1738
1739 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
87028b87
TT
1740 /* The contents of `/proc/PID/stat'. */
1741 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1742 = target_fileio_read_stralloc (NULL, filename);
1743 char *proc_stat = proc_stat_contents.get ();
b3ac9c77
SDJ
1744
1745 if (proc_stat == NULL || *proc_stat == '\0')
1746 {
1747 /* Despite being unable to read more information about the
1748 process, we return 1 here because at least we have its
1749 command line, PID and arguments. */
b3ac9c77
SDJ
1750 return 1;
1751 }
1752
1753 /* Ok, we have the stats. It's time to do a little parsing of the
1754 contents of the buffer, so that we end up reading what we want.
1755
1756 The following parsing mechanism is strongly based on the
1757 information generated by the `fs/proc/array.c' file, present in
1758 the Linux kernel tree. More details about how the information is
1759 displayed can be obtained by seeing the manpage of proc(5),
1760 specifically under the entry of `/proc/[pid]/stat'. */
1761
1762 /* Getting rid of the PID, since we already have it. */
1763 while (isdigit (*proc_stat))
1764 ++proc_stat;
1765
1766 proc_stat = skip_spaces (proc_stat);
1767
184cd072
JK
1768 /* ps command also relies on no trailing fields ever contain ')'. */
1769 proc_stat = strrchr (proc_stat, ')');
1770 if (proc_stat == NULL)
87028b87 1771 return 1;
184cd072 1772 proc_stat++;
b3ac9c77
SDJ
1773
1774 proc_stat = skip_spaces (proc_stat);
1775
1776 n_fields = sscanf (proc_stat,
1777 "%c" /* Process state. */
1778 "%d%d%d" /* Parent PID, group ID, session ID. */
1779 "%*d%*d" /* tty_nr, tpgid (not used). */
1780 "%u" /* Flags. */
1781 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1782 cmajflt (not used). */
1783 "%*s%*s%*s%*s" /* utime, stime, cutime,
1784 cstime (not used). */
1785 "%*s" /* Priority (not used). */
1786 "%ld", /* Nice. */
1787 &pr_sname,
1788 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1789 &pr_flag,
1790 &pr_nice);
1791
1792 if (n_fields != 6)
1793 {
1794 /* Again, we couldn't read the complementary information about
1795 the process state. However, we already have minimal
1796 information, so we just return 1 here. */
b3ac9c77
SDJ
1797 return 1;
1798 }
1799
1800 /* Filling the structure fields. */
1801 prog_state = strchr (valid_states, pr_sname);
1802 if (prog_state != NULL)
1803 p->pr_state = prog_state - valid_states;
1804 else
1805 {
1806 /* Zero means "Running". */
1807 p->pr_state = 0;
1808 }
1809
1810 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1811 p->pr_zomb = p->pr_sname == 'Z';
1812 p->pr_nice = pr_nice;
1813 p->pr_flag = pr_flag;
1814
1815 /* Finally, obtaining the UID and GID. For that, we read and parse the
1816 contents of the `/proc/PID/status' file. */
1817 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
87028b87
TT
1818 /* The contents of `/proc/PID/status'. */
1819 gdb::unique_xmalloc_ptr<char> proc_status_contents
1820 = target_fileio_read_stralloc (NULL, filename);
1821 char *proc_status = proc_status_contents.get ();
b3ac9c77
SDJ
1822
1823 if (proc_status == NULL || *proc_status == '\0')
1824 {
1825 /* Returning 1 since we already have a bunch of information. */
b3ac9c77
SDJ
1826 return 1;
1827 }
1828
1829 /* Extracting the UID. */
1830 tmpstr = strstr (proc_status, "Uid:");
1831 if (tmpstr != NULL)
1832 {
1833 /* Advancing the pointer to the beginning of the UID. */
1834 tmpstr += sizeof ("Uid:");
1835 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1836 ++tmpstr;
1837
1838 if (isdigit (*tmpstr))
1839 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1840 }
1841
1842 /* Extracting the GID. */
1843 tmpstr = strstr (proc_status, "Gid:");
1844 if (tmpstr != NULL)
1845 {
1846 /* Advancing the pointer to the beginning of the GID. */
1847 tmpstr += sizeof ("Gid:");
1848 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1849 ++tmpstr;
1850
1851 if (isdigit (*tmpstr))
1852 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1853 }
1854
b3ac9c77
SDJ
1855 return 1;
1856}
1857
f968fe80
AA
1858/* Build the note section for a corefile, and return it in a malloc
1859 buffer. */
6432734d 1860
f968fe80
AA
1861static char *
1862linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
6432734d
UW
1863{
1864 struct linux_corefile_thread_data thread_args;
b3ac9c77 1865 struct elf_internal_linux_prpsinfo prpsinfo;
6432734d 1866 char *note_data = NULL;
08036331 1867 struct thread_info *curr_thr, *signalled_thr;
6432734d 1868
f968fe80
AA
1869 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1870 return NULL;
1871
b3ac9c77 1872 if (linux_fill_prpsinfo (&prpsinfo))
6432734d 1873 {
fe220226
MR
1874 if (gdbarch_ptr_bit (gdbarch) == 64)
1875 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1876 note_data, note_size,
1877 &prpsinfo);
b3ac9c77 1878 else
fe220226
MR
1879 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1880 note_data, note_size,
1881 &prpsinfo);
6432734d
UW
1882 }
1883
1884 /* Thread register information. */
a70b8144 1885 try
22fd09ae
JK
1886 {
1887 update_thread_list ();
1888 }
230d2906 1889 catch (const gdb_exception_error &e)
492d29ea
PA
1890 {
1891 exception_print (gdb_stderr, e);
1892 }
492d29ea 1893
050c224b
PA
1894 /* Like the kernel, prefer dumping the signalled thread first.
1895 "First thread" is what tools use to infer the signalled thread.
1896 In case there's more than one signalled thread, prefer the
1897 current thread, if it is signalled. */
1898 curr_thr = inferior_thread ();
1899 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1900 signalled_thr = curr_thr;
1901 else
1902 {
1903 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1904 if (signalled_thr == NULL)
1905 signalled_thr = curr_thr;
1906 }
1907
6432734d 1908 thread_args.gdbarch = gdbarch;
6432734d
UW
1909 thread_args.obfd = obfd;
1910 thread_args.note_data = note_data;
1911 thread_args.note_size = note_size;
050c224b
PA
1912 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1913
1914 linux_corefile_thread (signalled_thr, &thread_args);
08036331 1915 for (thread_info *thr : current_inferior ()->non_exited_threads ())
050c224b
PA
1916 {
1917 if (thr == signalled_thr)
1918 continue;
050c224b
PA
1919
1920 linux_corefile_thread (thr, &thread_args);
1921 }
1922
6432734d
UW
1923 note_data = thread_args.note_data;
1924 if (!note_data)
1925 return NULL;
1926
1927 /* Auxillary vector. */
9018be22 1928 gdb::optional<gdb::byte_vector> auxv =
8b88a78e 1929 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
9018be22 1930 if (auxv && !auxv->empty ())
6432734d
UW
1931 {
1932 note_data = elfcore_write_note (obfd, note_data, note_size,
9018be22
SM
1933 "CORE", NT_AUXV, auxv->data (),
1934 auxv->size ());
6432734d
UW
1935
1936 if (!note_data)
1937 return NULL;
1938 }
1939
451b7c33
TT
1940 /* File mappings. */
1941 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1942 note_data, note_size);
1943
6432734d
UW
1944 return note_data;
1945}
1946
eb14d406
SDJ
1947/* Implementation of `gdbarch_gdb_signal_from_target', as defined in
1948 gdbarch.h. This function is not static because it is exported to
1949 other -tdep files. */
1950
1951enum gdb_signal
1952linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1953{
1954 switch (signal)
1955 {
1956 case 0:
1957 return GDB_SIGNAL_0;
1958
1959 case LINUX_SIGHUP:
1960 return GDB_SIGNAL_HUP;
1961
1962 case LINUX_SIGINT:
1963 return GDB_SIGNAL_INT;
1964
1965 case LINUX_SIGQUIT:
1966 return GDB_SIGNAL_QUIT;
1967
1968 case LINUX_SIGILL:
1969 return GDB_SIGNAL_ILL;
1970
1971 case LINUX_SIGTRAP:
1972 return GDB_SIGNAL_TRAP;
1973
1974 case LINUX_SIGABRT:
1975 return GDB_SIGNAL_ABRT;
1976
1977 case LINUX_SIGBUS:
1978 return GDB_SIGNAL_BUS;
1979
1980 case LINUX_SIGFPE:
1981 return GDB_SIGNAL_FPE;
1982
1983 case LINUX_SIGKILL:
1984 return GDB_SIGNAL_KILL;
1985
1986 case LINUX_SIGUSR1:
1987 return GDB_SIGNAL_USR1;
1988
1989 case LINUX_SIGSEGV:
1990 return GDB_SIGNAL_SEGV;
1991
1992 case LINUX_SIGUSR2:
1993 return GDB_SIGNAL_USR2;
1994
1995 case LINUX_SIGPIPE:
1996 return GDB_SIGNAL_PIPE;
1997
1998 case LINUX_SIGALRM:
1999 return GDB_SIGNAL_ALRM;
2000
2001 case LINUX_SIGTERM:
2002 return GDB_SIGNAL_TERM;
2003
2004 case LINUX_SIGCHLD:
2005 return GDB_SIGNAL_CHLD;
2006
2007 case LINUX_SIGCONT:
2008 return GDB_SIGNAL_CONT;
2009
2010 case LINUX_SIGSTOP:
2011 return GDB_SIGNAL_STOP;
2012
2013 case LINUX_SIGTSTP:
2014 return GDB_SIGNAL_TSTP;
2015
2016 case LINUX_SIGTTIN:
2017 return GDB_SIGNAL_TTIN;
2018
2019 case LINUX_SIGTTOU:
2020 return GDB_SIGNAL_TTOU;
2021
2022 case LINUX_SIGURG:
2023 return GDB_SIGNAL_URG;
2024
2025 case LINUX_SIGXCPU:
2026 return GDB_SIGNAL_XCPU;
2027
2028 case LINUX_SIGXFSZ:
2029 return GDB_SIGNAL_XFSZ;
2030
2031 case LINUX_SIGVTALRM:
2032 return GDB_SIGNAL_VTALRM;
2033
2034 case LINUX_SIGPROF:
2035 return GDB_SIGNAL_PROF;
2036
2037 case LINUX_SIGWINCH:
2038 return GDB_SIGNAL_WINCH;
2039
2040 /* No way to differentiate between SIGIO and SIGPOLL.
2041 Therefore, we just handle the first one. */
2042 case LINUX_SIGIO:
2043 return GDB_SIGNAL_IO;
2044
2045 case LINUX_SIGPWR:
2046 return GDB_SIGNAL_PWR;
2047
2048 case LINUX_SIGSYS:
2049 return GDB_SIGNAL_SYS;
2050
2051 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2052 therefore we have to handle them here. */
2053 case LINUX_SIGRTMIN:
2054 return GDB_SIGNAL_REALTIME_32;
2055
2056 case LINUX_SIGRTMAX:
2057 return GDB_SIGNAL_REALTIME_64;
2058 }
2059
2060 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2061 {
2062 int offset = signal - LINUX_SIGRTMIN + 1;
2063
2064 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2065 }
2066
2067 return GDB_SIGNAL_UNKNOWN;
2068}
2069
2070/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2071 gdbarch.h. This function is not static because it is exported to
2072 other -tdep files. */
2073
2074int
2075linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2076 enum gdb_signal signal)
2077{
2078 switch (signal)
2079 {
2080 case GDB_SIGNAL_0:
2081 return 0;
2082
2083 case GDB_SIGNAL_HUP:
2084 return LINUX_SIGHUP;
2085
2086 case GDB_SIGNAL_INT:
2087 return LINUX_SIGINT;
2088
2089 case GDB_SIGNAL_QUIT:
2090 return LINUX_SIGQUIT;
2091
2092 case GDB_SIGNAL_ILL:
2093 return LINUX_SIGILL;
2094
2095 case GDB_SIGNAL_TRAP:
2096 return LINUX_SIGTRAP;
2097
2098 case GDB_SIGNAL_ABRT:
2099 return LINUX_SIGABRT;
2100
2101 case GDB_SIGNAL_FPE:
2102 return LINUX_SIGFPE;
2103
2104 case GDB_SIGNAL_KILL:
2105 return LINUX_SIGKILL;
2106
2107 case GDB_SIGNAL_BUS:
2108 return LINUX_SIGBUS;
2109
2110 case GDB_SIGNAL_SEGV:
2111 return LINUX_SIGSEGV;
2112
2113 case GDB_SIGNAL_SYS:
2114 return LINUX_SIGSYS;
2115
2116 case GDB_SIGNAL_PIPE:
2117 return LINUX_SIGPIPE;
2118
2119 case GDB_SIGNAL_ALRM:
2120 return LINUX_SIGALRM;
2121
2122 case GDB_SIGNAL_TERM:
2123 return LINUX_SIGTERM;
2124
2125 case GDB_SIGNAL_URG:
2126 return LINUX_SIGURG;
2127
2128 case GDB_SIGNAL_STOP:
2129 return LINUX_SIGSTOP;
2130
2131 case GDB_SIGNAL_TSTP:
2132 return LINUX_SIGTSTP;
2133
2134 case GDB_SIGNAL_CONT:
2135 return LINUX_SIGCONT;
2136
2137 case GDB_SIGNAL_CHLD:
2138 return LINUX_SIGCHLD;
2139
2140 case GDB_SIGNAL_TTIN:
2141 return LINUX_SIGTTIN;
2142
2143 case GDB_SIGNAL_TTOU:
2144 return LINUX_SIGTTOU;
2145
2146 case GDB_SIGNAL_IO:
2147 return LINUX_SIGIO;
2148
2149 case GDB_SIGNAL_XCPU:
2150 return LINUX_SIGXCPU;
2151
2152 case GDB_SIGNAL_XFSZ:
2153 return LINUX_SIGXFSZ;
2154
2155 case GDB_SIGNAL_VTALRM:
2156 return LINUX_SIGVTALRM;
2157
2158 case GDB_SIGNAL_PROF:
2159 return LINUX_SIGPROF;
2160
2161 case GDB_SIGNAL_WINCH:
2162 return LINUX_SIGWINCH;
2163
2164 case GDB_SIGNAL_USR1:
2165 return LINUX_SIGUSR1;
2166
2167 case GDB_SIGNAL_USR2:
2168 return LINUX_SIGUSR2;
2169
2170 case GDB_SIGNAL_PWR:
2171 return LINUX_SIGPWR;
2172
2173 case GDB_SIGNAL_POLL:
2174 return LINUX_SIGPOLL;
2175
2176 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2177 therefore we have to handle it here. */
2178 case GDB_SIGNAL_REALTIME_32:
2179 return LINUX_SIGRTMIN;
2180
2181 /* Same comment applies to _64. */
2182 case GDB_SIGNAL_REALTIME_64:
2183 return LINUX_SIGRTMAX;
2184 }
2185
2186 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2187 if (signal >= GDB_SIGNAL_REALTIME_33
2188 && signal <= GDB_SIGNAL_REALTIME_63)
2189 {
2190 int offset = signal - GDB_SIGNAL_REALTIME_33;
2191
2192 return LINUX_SIGRTMIN + 1 + offset;
2193 }
2194
2195 return -1;
2196}
2197
cdfa0b0a
PA
2198/* Helper for linux_vsyscall_range that does the real work of finding
2199 the vsyscall's address range. */
3437254d
PA
2200
2201static int
cdfa0b0a 2202linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
3437254d 2203{
95e94c3f
PA
2204 char filename[100];
2205 long pid;
95e94c3f 2206
8b88a78e 2207 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
95e94c3f
PA
2208 return 0;
2209
6bb90213
PA
2210 /* It doesn't make sense to access the host's /proc when debugging a
2211 core file. Instead, look for the PT_LOAD segment that matches
2212 the vDSO. */
2213 if (!target_has_execution)
2214 {
6bb90213
PA
2215 long phdrs_size;
2216 int num_phdrs, i;
2217
2218 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2219 if (phdrs_size == -1)
2220 return 0;
2221
31aceee8
TV
2222 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2223 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2224 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
6bb90213
PA
2225 if (num_phdrs == -1)
2226 return 0;
2227
2228 for (i = 0; i < num_phdrs; i++)
31aceee8
TV
2229 if (phdrs.get ()[i].p_type == PT_LOAD
2230 && phdrs.get ()[i].p_vaddr == range->start)
6bb90213 2231 {
31aceee8 2232 range->length = phdrs.get ()[i].p_memsz;
6bb90213
PA
2233 return 1;
2234 }
2235
2236 return 0;
2237 }
2238
95e94c3f
PA
2239 /* We need to know the real target PID to access /proc. */
2240 if (current_inferior ()->fake_pid_p)
2241 return 0;
2242
95e94c3f 2243 pid = current_inferior ()->pid;
3437254d 2244
95e94c3f
PA
2245 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2246 reading /proc/PID/maps (2). The later identifies thread stacks
2247 in the output, which requires scanning every thread in the thread
2248 group to check whether a VMA is actually a thread's stack. With
2249 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2250 a few thousand threads, (1) takes a few miliseconds, while (2)
2251 takes several seconds. Also note that "smaps", what we read for
2252 determining core dump mappings, is even slower than "maps". */
2253 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
87028b87
TT
2254 gdb::unique_xmalloc_ptr<char> data
2255 = target_fileio_read_stralloc (NULL, filename);
95e94c3f
PA
2256 if (data != NULL)
2257 {
95e94c3f
PA
2258 char *line;
2259 char *saveptr = NULL;
2260
87028b87 2261 for (line = strtok_r (data.get (), "\n", &saveptr);
95e94c3f
PA
2262 line != NULL;
2263 line = strtok_r (NULL, "\n", &saveptr))
2264 {
2265 ULONGEST addr, endaddr;
2266 const char *p = line;
2267
2268 addr = strtoulst (p, &p, 16);
2269 if (addr == range->start)
2270 {
2271 if (*p == '-')
2272 p++;
2273 endaddr = strtoulst (p, &p, 16);
2274 range->length = endaddr - addr;
95e94c3f
PA
2275 return 1;
2276 }
2277 }
95e94c3f
PA
2278 }
2279 else
2280 warning (_("unable to open /proc file '%s'"), filename);
2281
2282 return 0;
3437254d
PA
2283}
2284
cdfa0b0a
PA
2285/* Implementation of the "vsyscall_range" gdbarch hook. Handles
2286 caching, and defers the real work to linux_vsyscall_range_raw. */
2287
2288static int
2289linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2290{
2291 struct linux_info *info = get_linux_inferior_data ();
2292
2293 if (info->vsyscall_range_p == 0)
2294 {
2295 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2296 info->vsyscall_range_p = 1;
2297 else
2298 info->vsyscall_range_p = -1;
2299 }
2300
2301 if (info->vsyscall_range_p < 0)
2302 return 0;
2303
2304 *range = info->vsyscall_range;
2305 return 1;
2306}
2307
3bc3cebe
JK
2308/* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2309 definitions would be dependent on compilation host. */
2310#define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2311#define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2312
2313/* See gdbarch.sh 'infcall_mmap'. */
2314
2315static CORE_ADDR
2316linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2317{
2318 struct objfile *objf;
2319 /* Do there still exist any Linux systems without "mmap64"?
2320 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2321 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2322 struct value *addr_val;
08feed99 2323 struct gdbarch *gdbarch = objf->arch ();
3bc3cebe
JK
2324 CORE_ADDR retval;
2325 enum
2326 {
2a546367 2327 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
3bc3cebe 2328 };
2a546367 2329 struct value *arg[ARG_LAST];
3bc3cebe
JK
2330
2331 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2332 0);
2333 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2334 arg[ARG_LENGTH] = value_from_ulongest
2335 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2336 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2337 | GDB_MMAP_PROT_EXEC))
2338 == 0);
2339 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2340 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2341 GDB_MMAP_MAP_PRIVATE
2342 | GDB_MMAP_MAP_ANONYMOUS);
2343 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2344 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2345 0);
e71585ff 2346 addr_val = call_function_by_hand (mmap_val, NULL, arg);
3bc3cebe
JK
2347 retval = value_as_address (addr_val);
2348 if (retval == (CORE_ADDR) -1)
2349 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2350 pulongest (size));
2351 return retval;
2352}
2353
7f361056
JK
2354/* See gdbarch.sh 'infcall_munmap'. */
2355
2356static void
2357linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2358{
2359 struct objfile *objf;
2360 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2361 struct value *retval_val;
08feed99 2362 struct gdbarch *gdbarch = objf->arch ();
7f361056
JK
2363 LONGEST retval;
2364 enum
2365 {
2366 ARG_ADDR, ARG_LENGTH, ARG_LAST
2367 };
2368 struct value *arg[ARG_LAST];
2369
2370 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2371 addr);
2372 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2373 arg[ARG_LENGTH] = value_from_ulongest
2374 (builtin_type (gdbarch)->builtin_unsigned_long, size);
e71585ff 2375 retval_val = call_function_by_hand (munmap_val, NULL, arg);
7f361056
JK
2376 retval = value_as_long (retval_val);
2377 if (retval != 0)
2378 warning (_("Failed inferior munmap call at %s for %s bytes, "
2379 "errno is changed."),
2380 hex_string (addr), pulongest (size));
2381}
2382
906d60cf
PA
2383/* See linux-tdep.h. */
2384
2385CORE_ADDR
2386linux_displaced_step_location (struct gdbarch *gdbarch)
2387{
2388 CORE_ADDR addr;
2389 int bp_len;
2390
2391 /* Determine entry point from target auxiliary vector. This avoids
2392 the need for symbols. Also, when debugging a stand-alone SPU
2393 executable, entry_point_address () will point to an SPU
2394 local-store address and is thus not usable as displaced stepping
2395 location. The auxiliary vector gets us the PowerPC-side entry
2396 point address instead. */
8b88a78e 2397 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
16b41842
PA
2398 throw_error (NOT_SUPPORTED_ERROR,
2399 _("Cannot find AT_ENTRY auxiliary vector entry."));
906d60cf
PA
2400
2401 /* Make certain that the address points at real code, and not a
2402 function descriptor. */
2403 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
8b88a78e 2404 current_top_target ());
906d60cf
PA
2405
2406 /* Inferior calls also use the entry point as a breakpoint location.
2407 We don't want displaced stepping to interfere with those
2408 breakpoints, so leave space. */
2409 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2410 addr += bp_len * 2;
2411
2412 return addr;
2413}
2414
0f83012e
AH
2415/* See linux-tdep.h. */
2416
2417CORE_ADDR
2418linux_get_hwcap (struct target_ops *target)
2419{
2420 CORE_ADDR field;
2421 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2422 return 0;
2423 return field;
2424}
2425
2426/* See linux-tdep.h. */
2427
2428CORE_ADDR
2429linux_get_hwcap2 (struct target_ops *target)
2430{
2431 CORE_ADDR field;
2432 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2433 return 0;
2434 return field;
2435}
2436
df8411da
SDJ
2437/* Display whether the gcore command is using the
2438 /proc/PID/coredump_filter file. */
2439
2440static void
2441show_use_coredump_filter (struct ui_file *file, int from_tty,
2442 struct cmd_list_element *c, const char *value)
2443{
2444 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2445 " corefiles is %s.\n"), value);
2446}
2447
afa840dc
SL
2448/* Display whether the gcore command is dumping mappings marked with
2449 the VM_DONTDUMP flag. */
2450
2451static void
2452show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2453 struct cmd_list_element *c, const char *value)
2454{
2455 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2456 " flag is %s.\n"), value);
2457}
2458
a5ee0f0c
PA
2459/* To be called from the various GDB_OSABI_LINUX handlers for the
2460 various GNU/Linux architectures and machine types. */
2461
2462void
2463linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2464{
2465 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
3030c96e 2466 set_gdbarch_info_proc (gdbarch, linux_info_proc);
451b7c33 2467 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
382b69bb 2468 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
35c2fab7 2469 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
f968fe80 2470 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
33fbcbee
PA
2471 set_gdbarch_has_shared_address_space (gdbarch,
2472 linux_has_shared_address_space);
eb14d406
SDJ
2473 set_gdbarch_gdb_signal_from_target (gdbarch,
2474 linux_gdb_signal_from_target);
2475 set_gdbarch_gdb_signal_to_target (gdbarch,
2476 linux_gdb_signal_to_target);
3437254d 2477 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
3bc3cebe 2478 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
7f361056 2479 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
5cd867b4 2480 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
a5ee0f0c 2481}
06253dd3 2482
6c265988 2483void _initialize_linux_tdep ();
06253dd3 2484void
6c265988 2485_initialize_linux_tdep ()
06253dd3
JK
2486{
2487 linux_gdbarch_data_handle =
2488 gdbarch_data_register_post_init (init_linux_gdbarch_data);
cdfa0b0a 2489
cdfa0b0a 2490 /* Observers used to invalidate the cache when needed. */
76727919
TT
2491 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2492 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
df8411da
SDJ
2493
2494 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2495 &use_coredump_filter, _("\
2496Set whether gcore should consider /proc/PID/coredump_filter."),
2497 _("\
2498Show whether gcore should consider /proc/PID/coredump_filter."),
2499 _("\
2500Use this command to set whether gcore should consider the contents\n\
2501of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2502about this file, refer to the manpage of core(5)."),
2503 NULL, show_use_coredump_filter,
2504 &setlist, &showlist);
afa840dc
SL
2505
2506 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2507 &dump_excluded_mappings, _("\
2508Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2509 _("\
2510Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2511 _("\
2512Use this command to set whether gcore should dump mappings marked with the\n\
2513VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2514more information about this file, refer to the manpage of proc(5) and core(5)."),
2515 NULL, show_dump_excluded_mappings,
2516 &setlist, &showlist);
06253dd3 2517}
This page took 1.14291 seconds and 4 git commands to generate.