Preparation for new siginfo on Linux
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
CommitLineData
4aa995e1
PA
1/* Target-dependent code for GNU/Linux, architecture independent.
2
618f726f 3 Copyright (C) 2009-2016 Free Software Foundation, Inc.
4aa995e1
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "gdbtypes.h"
2c0b251b 22#include "linux-tdep.h"
6c95b8df
PA
23#include "auxv.h"
24#include "target.h"
6432734d
UW
25#include "gdbthread.h"
26#include "gdbcore.h"
27#include "regcache.h"
28#include "regset.h"
6c95b8df 29#include "elf/common.h"
6432734d 30#include "elf-bfd.h" /* for elfcore_write_* */
a5ee0f0c 31#include "inferior.h"
3030c96e 32#include "cli/cli-utils.h"
451b7c33
TT
33#include "arch-utils.h"
34#include "gdb_obstack.h"
cdfa0b0a 35#include "observer.h"
3bc3cebe
JK
36#include "objfiles.h"
37#include "infcall.h"
df8411da 38#include "gdbcmd.h"
db1ff28b 39#include "gdb_regex.h"
8d297bbf 40#include "common/enum-flags.h"
3030c96e
UW
41
42#include <ctype.h>
4aa995e1 43
db1ff28b
JK
44/* This enum represents the values that the user can choose when
45 informing the Linux kernel about which memory mappings will be
46 dumped in a corefile. They are described in the file
47 Documentation/filesystems/proc.txt, inside the Linux kernel
48 tree. */
49
8d297bbf 50enum filter_flag
db1ff28b
JK
51 {
52 COREFILTER_ANON_PRIVATE = 1 << 0,
53 COREFILTER_ANON_SHARED = 1 << 1,
54 COREFILTER_MAPPED_PRIVATE = 1 << 2,
55 COREFILTER_MAPPED_SHARED = 1 << 3,
56 COREFILTER_ELF_HEADERS = 1 << 4,
57 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
58 COREFILTER_HUGETLB_SHARED = 1 << 6,
59 };
8d297bbf 60DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
db1ff28b
JK
61
62/* This struct is used to map flags found in the "VmFlags:" field (in
63 the /proc/<PID>/smaps file). */
64
65struct smaps_vmflags
66 {
67 /* Zero if this structure has not been initialized yet. It
68 probably means that the Linux kernel being used does not emit
69 the "VmFlags:" field on "/proc/PID/smaps". */
70
71 unsigned int initialized_p : 1;
72
73 /* Memory mapped I/O area (VM_IO, "io"). */
74
75 unsigned int io_page : 1;
76
77 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
78
79 unsigned int uses_huge_tlb : 1;
80
81 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
82
83 unsigned int exclude_coredump : 1;
84
85 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
86
87 unsigned int shared_mapping : 1;
88 };
89
df8411da
SDJ
90/* Whether to take the /proc/PID/coredump_filter into account when
91 generating a corefile. */
92
93static int use_coredump_filter = 1;
94
eb14d406
SDJ
95/* This enum represents the signals' numbers on a generic architecture
96 running the Linux kernel. The definition of "generic" comes from
97 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
98 tree, which is the "de facto" implementation of signal numbers to
99 be used by new architecture ports.
100
101 For those architectures which have differences between the generic
102 standard (e.g., Alpha), we define the different signals (and *only*
103 those) in the specific target-dependent file (e.g.,
104 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
105 tdep file for more information.
106
107 ARM deserves a special mention here. On the file
108 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
109 (and ARM-only) signal, which is SIGSWI, with the same number as
110 SIGRTMIN. This signal is used only for a very specific target,
111 called ArthurOS (from RISCOS). Therefore, we do not handle it on
112 the ARM-tdep file, and we can safely use the generic signal handler
113 here for ARM targets.
114
115 As stated above, this enum is derived from
116 <include/uapi/asm-generic/signal.h>, from the Linux kernel
117 tree. */
118
119enum
120 {
121 LINUX_SIGHUP = 1,
122 LINUX_SIGINT = 2,
123 LINUX_SIGQUIT = 3,
124 LINUX_SIGILL = 4,
125 LINUX_SIGTRAP = 5,
126 LINUX_SIGABRT = 6,
127 LINUX_SIGIOT = 6,
128 LINUX_SIGBUS = 7,
129 LINUX_SIGFPE = 8,
130 LINUX_SIGKILL = 9,
131 LINUX_SIGUSR1 = 10,
132 LINUX_SIGSEGV = 11,
133 LINUX_SIGUSR2 = 12,
134 LINUX_SIGPIPE = 13,
135 LINUX_SIGALRM = 14,
136 LINUX_SIGTERM = 15,
137 LINUX_SIGSTKFLT = 16,
138 LINUX_SIGCHLD = 17,
139 LINUX_SIGCONT = 18,
140 LINUX_SIGSTOP = 19,
141 LINUX_SIGTSTP = 20,
142 LINUX_SIGTTIN = 21,
143 LINUX_SIGTTOU = 22,
144 LINUX_SIGURG = 23,
145 LINUX_SIGXCPU = 24,
146 LINUX_SIGXFSZ = 25,
147 LINUX_SIGVTALRM = 26,
148 LINUX_SIGPROF = 27,
149 LINUX_SIGWINCH = 28,
150 LINUX_SIGIO = 29,
151 LINUX_SIGPOLL = LINUX_SIGIO,
152 LINUX_SIGPWR = 30,
153 LINUX_SIGSYS = 31,
154 LINUX_SIGUNUSED = 31,
155
156 LINUX_SIGRTMIN = 32,
157 LINUX_SIGRTMAX = 64,
158 };
159
06253dd3
JK
160static struct gdbarch_data *linux_gdbarch_data_handle;
161
162struct linux_gdbarch_data
163 {
164 struct type *siginfo_type;
165 };
166
167static void *
168init_linux_gdbarch_data (struct gdbarch *gdbarch)
169{
170 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
171}
172
173static struct linux_gdbarch_data *
174get_linux_gdbarch_data (struct gdbarch *gdbarch)
175{
9a3c8263
SM
176 return ((struct linux_gdbarch_data *)
177 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
06253dd3
JK
178}
179
cdfa0b0a
PA
180/* Per-inferior data key. */
181static const struct inferior_data *linux_inferior_data;
182
183/* Linux-specific cached data. This is used by GDB for caching
184 purposes for each inferior. This helps reduce the overhead of
185 transfering data from a remote target to the local host. */
186struct linux_info
187{
188 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
189 if VSYSCALL_RANGE_P is positive. This is cached because getting
190 at this info requires an auxv lookup (which is itself cached),
191 and looking through the inferior's mappings (which change
192 throughout execution and therefore cannot be cached). */
193 struct mem_range vsyscall_range;
194
195 /* Zero if we haven't tried looking up the vsyscall's range before
196 yet. Positive if we tried looking it up, and found it. Negative
197 if we tried looking it up but failed. */
198 int vsyscall_range_p;
199};
200
201/* Frees whatever allocated space there is to be freed and sets INF's
202 linux cache data pointer to NULL. */
203
204static void
205invalidate_linux_cache_inf (struct inferior *inf)
206{
207 struct linux_info *info;
208
9a3c8263 209 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
cdfa0b0a
PA
210 if (info != NULL)
211 {
212 xfree (info);
213 set_inferior_data (inf, linux_inferior_data, NULL);
214 }
215}
216
217/* Handles the cleanup of the linux cache for inferior INF. ARG is
218 ignored. Callback for the inferior_appeared and inferior_exit
219 events. */
220
221static void
222linux_inferior_data_cleanup (struct inferior *inf, void *arg)
223{
224 invalidate_linux_cache_inf (inf);
225}
226
227/* Fetch the linux cache info for INF. This function always returns a
228 valid INFO pointer. */
229
230static struct linux_info *
231get_linux_inferior_data (void)
232{
233 struct linux_info *info;
234 struct inferior *inf = current_inferior ();
235
9a3c8263 236 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
cdfa0b0a
PA
237 if (info == NULL)
238 {
239 info = XCNEW (struct linux_info);
240 set_inferior_data (inf, linux_inferior_data, info);
241 }
242
243 return info;
244}
245
43564574
WT
246/* This function is suitable for architectures that
247 extend/override the standard siginfo in a specific way. */
4aa995e1 248
5cd867b4 249static struct type *
43564574
WT
250linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
251 linux_siginfo_extra_fields extra_fields)
4aa995e1 252{
06253dd3 253 struct linux_gdbarch_data *linux_gdbarch_data;
4aa995e1
PA
254 struct type *int_type, *uint_type, *long_type, *void_ptr_type;
255 struct type *uid_type, *pid_type;
256 struct type *sigval_type, *clock_type;
257 struct type *siginfo_type, *sifields_type;
258 struct type *type;
259
06253dd3
JK
260 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
261 if (linux_gdbarch_data->siginfo_type != NULL)
262 return linux_gdbarch_data->siginfo_type;
263
e9bb382b
UW
264 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
265 0, "int");
266 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
267 1, "unsigned int");
268 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
269 0, "long");
4aa995e1
PA
270 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
271
272 /* sival_t */
e9bb382b 273 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
274 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
275 append_composite_type_field (sigval_type, "sival_int", int_type);
276 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
277
278 /* __pid_t */
e3aa49af
MS
279 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
280 TYPE_LENGTH (int_type), "__pid_t");
4aa995e1 281 TYPE_TARGET_TYPE (pid_type) = int_type;
e9bb382b 282 TYPE_TARGET_STUB (pid_type) = 1;
4aa995e1
PA
283
284 /* __uid_t */
e3aa49af
MS
285 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
286 TYPE_LENGTH (uint_type), "__uid_t");
4aa995e1 287 TYPE_TARGET_TYPE (uid_type) = uint_type;
e9bb382b 288 TYPE_TARGET_STUB (uid_type) = 1;
4aa995e1
PA
289
290 /* __clock_t */
e3aa49af
MS
291 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
292 TYPE_LENGTH (long_type), "__clock_t");
4aa995e1 293 TYPE_TARGET_TYPE (clock_type) = long_type;
e9bb382b 294 TYPE_TARGET_STUB (clock_type) = 1;
4aa995e1
PA
295
296 /* _sifields */
e9bb382b 297 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
298
299 {
300 const int si_max_size = 128;
301 int si_pad_size;
302 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
303
304 /* _pad */
305 if (gdbarch_ptr_bit (gdbarch) == 64)
306 si_pad_size = (si_max_size / size_of_int) - 4;
307 else
308 si_pad_size = (si_max_size / size_of_int) - 3;
309 append_composite_type_field (sifields_type, "_pad",
310 init_vector_type (int_type, si_pad_size));
311 }
312
313 /* _kill */
e9bb382b 314 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
315 append_composite_type_field (type, "si_pid", pid_type);
316 append_composite_type_field (type, "si_uid", uid_type);
317 append_composite_type_field (sifields_type, "_kill", type);
318
319 /* _timer */
e9bb382b 320 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
321 append_composite_type_field (type, "si_tid", int_type);
322 append_composite_type_field (type, "si_overrun", int_type);
323 append_composite_type_field (type, "si_sigval", sigval_type);
324 append_composite_type_field (sifields_type, "_timer", type);
325
326 /* _rt */
e9bb382b 327 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
328 append_composite_type_field (type, "si_pid", pid_type);
329 append_composite_type_field (type, "si_uid", uid_type);
330 append_composite_type_field (type, "si_sigval", sigval_type);
331 append_composite_type_field (sifields_type, "_rt", type);
332
333 /* _sigchld */
e9bb382b 334 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
335 append_composite_type_field (type, "si_pid", pid_type);
336 append_composite_type_field (type, "si_uid", uid_type);
337 append_composite_type_field (type, "si_status", int_type);
338 append_composite_type_field (type, "si_utime", clock_type);
339 append_composite_type_field (type, "si_stime", clock_type);
340 append_composite_type_field (sifields_type, "_sigchld", type);
341
342 /* _sigfault */
e9bb382b 343 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
344 append_composite_type_field (type, "si_addr", void_ptr_type);
345 append_composite_type_field (sifields_type, "_sigfault", type);
346
347 /* _sigpoll */
e9bb382b 348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
352
353 /* struct siginfo */
e9bb382b 354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
355 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
362
06253dd3
JK
363 linux_gdbarch_data->siginfo_type = siginfo_type;
364
4aa995e1
PA
365 return siginfo_type;
366}
6b3ae818 367
43564574
WT
368/* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
370
371static struct type *
372linux_get_siginfo_type (struct gdbarch *gdbarch)
373{
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
375}
376
c01cbb3d
YQ
377/* Return true if the target is running on uClinux instead of normal
378 Linux kernel. */
379
380int
381linux_is_uclinux (void)
6c95b8df 382{
6c95b8df 383 CORE_ADDR dummy;
6c95b8df 384
c01cbb3d
YQ
385 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
386 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
387}
6c95b8df 388
c01cbb3d
YQ
389static int
390linux_has_shared_address_space (struct gdbarch *gdbarch)
391{
392 return linux_is_uclinux ();
6c95b8df 393}
a5ee0f0c
PA
394
395/* This is how we want PTIDs from core files to be printed. */
396
397static char *
398linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
399{
400 static char buf[80];
401
402 if (ptid_get_lwp (ptid) != 0)
403 {
404 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
405 return buf;
406 }
407
408 return normal_pid_to_str (ptid);
409}
410
db1ff28b
JK
411/* Service function for corefiles and info proc. */
412
413static void
414read_mapping (const char *line,
415 ULONGEST *addr, ULONGEST *endaddr,
416 const char **permissions, size_t *permissions_len,
417 ULONGEST *offset,
418 const char **device, size_t *device_len,
419 ULONGEST *inode,
420 const char **filename)
421{
422 const char *p = line;
423
424 *addr = strtoulst (p, &p, 16);
425 if (*p == '-')
426 p++;
427 *endaddr = strtoulst (p, &p, 16);
428
429 p = skip_spaces_const (p);
430 *permissions = p;
431 while (*p && !isspace (*p))
432 p++;
433 *permissions_len = p - *permissions;
434
435 *offset = strtoulst (p, &p, 16);
436
437 p = skip_spaces_const (p);
438 *device = p;
439 while (*p && !isspace (*p))
440 p++;
441 *device_len = p - *device;
442
443 *inode = strtoulst (p, &p, 10);
444
445 p = skip_spaces_const (p);
446 *filename = p;
447}
448
449/* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
450
451 This function was based on the documentation found on
452 <Documentation/filesystems/proc.txt>, on the Linux kernel.
453
454 Linux kernels before commit
455 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
456 field on smaps. */
457
458static void
459decode_vmflags (char *p, struct smaps_vmflags *v)
460{
461 char *saveptr = NULL;
462 const char *s;
463
464 v->initialized_p = 1;
465 p = skip_to_space (p);
466 p = skip_spaces (p);
467
468 for (s = strtok_r (p, " ", &saveptr);
469 s != NULL;
470 s = strtok_r (NULL, " ", &saveptr))
471 {
472 if (strcmp (s, "io") == 0)
473 v->io_page = 1;
474 else if (strcmp (s, "ht") == 0)
475 v->uses_huge_tlb = 1;
476 else if (strcmp (s, "dd") == 0)
477 v->exclude_coredump = 1;
478 else if (strcmp (s, "sh") == 0)
479 v->shared_mapping = 1;
480 }
481}
482
483/* Return 1 if the memory mapping is anonymous, 0 otherwise.
484
485 FILENAME is the name of the file present in the first line of the
486 memory mapping, in the "/proc/PID/smaps" output. For example, if
487 the first line is:
488
489 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
490
491 Then FILENAME will be "/path/to/file". */
492
493static int
494mapping_is_anonymous_p (const char *filename)
495{
496 static regex_t dev_zero_regex, shmem_file_regex, file_deleted_regex;
497 static int init_regex_p = 0;
498
499 if (!init_regex_p)
500 {
501 struct cleanup *c = make_cleanup (null_cleanup, NULL);
502
503 /* Let's be pessimistic and assume there will be an error while
504 compiling the regex'es. */
505 init_regex_p = -1;
506
507 /* DEV_ZERO_REGEX matches "/dev/zero" filenames (with or
508 without the "(deleted)" string in the end). We know for
509 sure, based on the Linux kernel code, that memory mappings
510 whose associated filename is "/dev/zero" are guaranteed to be
511 MAP_ANONYMOUS. */
512 compile_rx_or_error (&dev_zero_regex, "^/dev/zero\\( (deleted)\\)\\?$",
513 _("Could not compile regex to match /dev/zero "
514 "filename"));
515 /* SHMEM_FILE_REGEX matches "/SYSV%08x" filenames (with or
516 without the "(deleted)" string in the end). These filenames
517 refer to shared memory (shmem), and memory mappings
518 associated with them are MAP_ANONYMOUS as well. */
519 compile_rx_or_error (&shmem_file_regex,
520 "^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$",
521 _("Could not compile regex to match shmem "
522 "filenames"));
523 /* FILE_DELETED_REGEX is a heuristic we use to try to mimic the
524 Linux kernel's 'n_link == 0' code, which is responsible to
525 decide if it is dealing with a 'MAP_SHARED | MAP_ANONYMOUS'
526 mapping. In other words, if FILE_DELETED_REGEX matches, it
527 does not necessarily mean that we are dealing with an
528 anonymous shared mapping. However, there is no easy way to
529 detect this currently, so this is the best approximation we
530 have.
531
532 As a result, GDB will dump readonly pages of deleted
533 executables when using the default value of coredump_filter
534 (0x33), while the Linux kernel will not dump those pages.
535 But we can live with that. */
536 compile_rx_or_error (&file_deleted_regex, " (deleted)$",
537 _("Could not compile regex to match "
538 "'<file> (deleted)'"));
539 /* We will never release these regexes, so just discard the
540 cleanups. */
541 discard_cleanups (c);
542
543 /* If we reached this point, then everything succeeded. */
544 init_regex_p = 1;
545 }
546
547 if (init_regex_p == -1)
548 {
549 const char deleted[] = " (deleted)";
550 size_t del_len = sizeof (deleted) - 1;
551 size_t filename_len = strlen (filename);
552
553 /* There was an error while compiling the regex'es above. In
554 order to try to give some reliable information to the caller,
555 we just try to find the string " (deleted)" in the filename.
556 If we managed to find it, then we assume the mapping is
557 anonymous. */
558 return (filename_len >= del_len
559 && strcmp (filename + filename_len - del_len, deleted) == 0);
560 }
561
562 if (*filename == '\0'
563 || regexec (&dev_zero_regex, filename, 0, NULL, 0) == 0
564 || regexec (&shmem_file_regex, filename, 0, NULL, 0) == 0
565 || regexec (&file_deleted_regex, filename, 0, NULL, 0) == 0)
566 return 1;
567
568 return 0;
569}
570
571/* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
572 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
573 greater than 0 if it should.
574
575 In a nutshell, this is the logic that we follow in order to decide
576 if a mapping should be dumped or not.
577
578 - If the mapping is associated to a file whose name ends with
579 " (deleted)", or if the file is "/dev/zero", or if it is
580 "/SYSV%08x" (shared memory), or if there is no file associated
581 with it, or if the AnonHugePages: or the Anonymous: fields in the
582 /proc/PID/smaps have contents, then GDB considers this mapping to
583 be anonymous. Otherwise, GDB considers this mapping to be a
584 file-backed mapping (because there will be a file associated with
585 it).
586
587 It is worth mentioning that, from all those checks described
588 above, the most fragile is the one to see if the file name ends
589 with " (deleted)". This does not necessarily mean that the
590 mapping is anonymous, because the deleted file associated with
591 the mapping may have been a hard link to another file, for
592 example. The Linux kernel checks to see if "i_nlink == 0", but
593 GDB cannot easily (and normally) do this check (iff running as
594 root, it could find the mapping in /proc/PID/map_files/ and
595 determine whether there still are other hard links to the
596 inode/file). Therefore, we made a compromise here, and we assume
597 that if the file name ends with " (deleted)", then the mapping is
598 indeed anonymous. FWIW, this is something the Linux kernel could
599 do better: expose this information in a more direct way.
600
601 - If we see the flag "sh" in the "VmFlags:" field (in
602 /proc/PID/smaps), then certainly the memory mapping is shared
603 (VM_SHARED). If we have access to the VmFlags, and we don't see
604 the "sh" there, then certainly the mapping is private. However,
605 Linux kernels before commit
606 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
607 "VmFlags:" field; in that case, we use another heuristic: if we
608 see 'p' in the permission flags, then we assume that the mapping
609 is private, even though the presence of the 's' flag there would
610 mean VM_MAYSHARE, which means the mapping could still be private.
611 This should work OK enough, however. */
612
613static int
8d297bbf 614dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
db1ff28b
JK
615 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
616 const char *filename)
617{
618 /* Initially, we trust in what we received from our caller. This
619 value may not be very precise (i.e., it was probably gathered
620 from the permission line in the /proc/PID/smaps list, which
621 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
622 what we have until we take a look at the "VmFlags:" field
623 (assuming that the version of the Linux kernel being used
624 supports it, of course). */
625 int private_p = maybe_private_p;
626
627 /* We always dump vDSO and vsyscall mappings, because it's likely that
628 there'll be no file to read the contents from at core load time.
629 The kernel does the same. */
630 if (strcmp ("[vdso]", filename) == 0
631 || strcmp ("[vsyscall]", filename) == 0)
632 return 1;
633
634 if (v->initialized_p)
635 {
636 /* We never dump I/O mappings. */
637 if (v->io_page)
638 return 0;
639
640 /* Check if we should exclude this mapping. */
641 if (v->exclude_coredump)
642 return 0;
643
644 /* Update our notion of whether this mapping is shared or
645 private based on a trustworthy value. */
646 private_p = !v->shared_mapping;
647
648 /* HugeTLB checking. */
649 if (v->uses_huge_tlb)
650 {
651 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
652 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
653 return 1;
654
655 return 0;
656 }
657 }
658
659 if (private_p)
660 {
661 if (mapping_anon_p && mapping_file_p)
662 {
663 /* This is a special situation. It can happen when we see a
664 mapping that is file-backed, but that contains anonymous
665 pages. */
666 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
667 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
668 }
669 else if (mapping_anon_p)
670 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
671 else
672 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
673 }
674 else
675 {
676 if (mapping_anon_p && mapping_file_p)
677 {
678 /* This is a special situation. It can happen when we see a
679 mapping that is file-backed, but that contains anonymous
680 pages. */
681 return ((filterflags & COREFILTER_ANON_SHARED) != 0
682 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
683 }
684 else if (mapping_anon_p)
685 return (filterflags & COREFILTER_ANON_SHARED) != 0;
686 else
687 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
688 }
689}
690
3030c96e
UW
691/* Implement the "info proc" command. */
692
693static void
7bc112c1 694linux_info_proc (struct gdbarch *gdbarch, const char *args,
3030c96e
UW
695 enum info_proc_what what)
696{
697 /* A long is used for pid instead of an int to avoid a loss of precision
698 compiler warning from the output of strtoul. */
699 long pid;
700 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
701 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
702 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
703 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
704 int status_f = (what == IP_STATUS || what == IP_ALL);
705 int stat_f = (what == IP_STAT || what == IP_ALL);
706 char filename[100];
001f13d8 707 char *data;
3030c96e
UW
708 int target_errno;
709
710 if (args && isdigit (args[0]))
7bc112c1
TT
711 {
712 char *tem;
713
714 pid = strtoul (args, &tem, 10);
715 args = tem;
716 }
3030c96e
UW
717 else
718 {
719 if (!target_has_execution)
720 error (_("No current process: you must name one."));
721 if (current_inferior ()->fake_pid_p)
722 error (_("Can't determine the current process's PID: you must name one."));
723
724 pid = current_inferior ()->pid;
725 }
726
7bc112c1 727 args = skip_spaces_const (args);
3030c96e
UW
728 if (args && args[0])
729 error (_("Too many parameters: %s"), args);
730
731 printf_filtered (_("process %ld\n"), pid);
732 if (cmdline_f)
733 {
734 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
07c138c8 735 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
736 if (data)
737 {
738 struct cleanup *cleanup = make_cleanup (xfree, data);
739 printf_filtered ("cmdline = '%s'\n", data);
740 do_cleanups (cleanup);
741 }
742 else
743 warning (_("unable to open /proc file '%s'"), filename);
744 }
745 if (cwd_f)
746 {
747 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
07c138c8 748 data = target_fileio_readlink (NULL, filename, &target_errno);
3030c96e
UW
749 if (data)
750 {
751 struct cleanup *cleanup = make_cleanup (xfree, data);
752 printf_filtered ("cwd = '%s'\n", data);
753 do_cleanups (cleanup);
754 }
755 else
756 warning (_("unable to read link '%s'"), filename);
757 }
758 if (exe_f)
759 {
760 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
07c138c8 761 data = target_fileio_readlink (NULL, filename, &target_errno);
3030c96e
UW
762 if (data)
763 {
764 struct cleanup *cleanup = make_cleanup (xfree, data);
765 printf_filtered ("exe = '%s'\n", data);
766 do_cleanups (cleanup);
767 }
768 else
769 warning (_("unable to read link '%s'"), filename);
770 }
771 if (mappings_f)
772 {
773 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
07c138c8 774 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
775 if (data)
776 {
777 struct cleanup *cleanup = make_cleanup (xfree, data);
778 char *line;
779
780 printf_filtered (_("Mapped address spaces:\n\n"));
781 if (gdbarch_addr_bit (gdbarch) == 32)
782 {
783 printf_filtered ("\t%10s %10s %10s %10s %s\n",
784 "Start Addr",
785 " End Addr",
786 " Size", " Offset", "objfile");
787 }
788 else
789 {
790 printf_filtered (" %18s %18s %10s %10s %s\n",
791 "Start Addr",
792 " End Addr",
793 " Size", " Offset", "objfile");
794 }
795
796 for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n"))
797 {
798 ULONGEST addr, endaddr, offset, inode;
799 const char *permissions, *device, *filename;
800 size_t permissions_len, device_len;
801
802 read_mapping (line, &addr, &endaddr,
803 &permissions, &permissions_len,
804 &offset, &device, &device_len,
805 &inode, &filename);
806
807 if (gdbarch_addr_bit (gdbarch) == 32)
808 {
809 printf_filtered ("\t%10s %10s %10s %10s %s\n",
810 paddress (gdbarch, addr),
811 paddress (gdbarch, endaddr),
812 hex_string (endaddr - addr),
813 hex_string (offset),
814 *filename? filename : "");
815 }
816 else
817 {
818 printf_filtered (" %18s %18s %10s %10s %s\n",
819 paddress (gdbarch, addr),
820 paddress (gdbarch, endaddr),
821 hex_string (endaddr - addr),
822 hex_string (offset),
823 *filename? filename : "");
824 }
825 }
826
827 do_cleanups (cleanup);
828 }
829 else
830 warning (_("unable to open /proc file '%s'"), filename);
831 }
832 if (status_f)
833 {
834 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
07c138c8 835 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
836 if (data)
837 {
838 struct cleanup *cleanup = make_cleanup (xfree, data);
839 puts_filtered (data);
840 do_cleanups (cleanup);
841 }
842 else
843 warning (_("unable to open /proc file '%s'"), filename);
844 }
845 if (stat_f)
846 {
847 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
07c138c8 848 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
849 if (data)
850 {
851 struct cleanup *cleanup = make_cleanup (xfree, data);
852 const char *p = data;
3030c96e
UW
853
854 printf_filtered (_("Process: %s\n"),
855 pulongest (strtoulst (p, &p, 10)));
856
529480d0 857 p = skip_spaces_const (p);
a71b5a38 858 if (*p == '(')
3030c96e 859 {
184cd072
JK
860 /* ps command also relies on no trailing fields
861 ever contain ')'. */
862 const char *ep = strrchr (p, ')');
a71b5a38
UW
863 if (ep != NULL)
864 {
865 printf_filtered ("Exec file: %.*s\n",
866 (int) (ep - p - 1), p + 1);
867 p = ep + 1;
868 }
3030c96e
UW
869 }
870
529480d0 871 p = skip_spaces_const (p);
3030c96e
UW
872 if (*p)
873 printf_filtered (_("State: %c\n"), *p++);
874
875 if (*p)
876 printf_filtered (_("Parent process: %s\n"),
877 pulongest (strtoulst (p, &p, 10)));
878 if (*p)
879 printf_filtered (_("Process group: %s\n"),
880 pulongest (strtoulst (p, &p, 10)));
881 if (*p)
882 printf_filtered (_("Session id: %s\n"),
883 pulongest (strtoulst (p, &p, 10)));
884 if (*p)
885 printf_filtered (_("TTY: %s\n"),
886 pulongest (strtoulst (p, &p, 10)));
887 if (*p)
888 printf_filtered (_("TTY owner process group: %s\n"),
889 pulongest (strtoulst (p, &p, 10)));
890
891 if (*p)
892 printf_filtered (_("Flags: %s\n"),
893 hex_string (strtoulst (p, &p, 10)));
894 if (*p)
895 printf_filtered (_("Minor faults (no memory page): %s\n"),
896 pulongest (strtoulst (p, &p, 10)));
897 if (*p)
898 printf_filtered (_("Minor faults, children: %s\n"),
899 pulongest (strtoulst (p, &p, 10)));
900 if (*p)
901 printf_filtered (_("Major faults (memory page faults): %s\n"),
902 pulongest (strtoulst (p, &p, 10)));
903 if (*p)
904 printf_filtered (_("Major faults, children: %s\n"),
905 pulongest (strtoulst (p, &p, 10)));
906 if (*p)
907 printf_filtered (_("utime: %s\n"),
908 pulongest (strtoulst (p, &p, 10)));
909 if (*p)
910 printf_filtered (_("stime: %s\n"),
911 pulongest (strtoulst (p, &p, 10)));
912 if (*p)
913 printf_filtered (_("utime, children: %s\n"),
914 pulongest (strtoulst (p, &p, 10)));
915 if (*p)
916 printf_filtered (_("stime, children: %s\n"),
917 pulongest (strtoulst (p, &p, 10)));
918 if (*p)
919 printf_filtered (_("jiffies remaining in current "
920 "time slice: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("'nice' value: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("jiffies until next timeout: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
931 if (*p)
932 printf_filtered (_("start time (jiffies since "
933 "system boot): %s\n"),
934 pulongest (strtoulst (p, &p, 10)));
935 if (*p)
936 printf_filtered (_("Virtual memory size: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("Resident set size: %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("rlim: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("Start of text: %s\n"),
946 hex_string (strtoulst (p, &p, 10)));
947 if (*p)
948 printf_filtered (_("End of text: %s\n"),
949 hex_string (strtoulst (p, &p, 10)));
950 if (*p)
951 printf_filtered (_("Start of stack: %s\n"),
952 hex_string (strtoulst (p, &p, 10)));
953#if 0 /* Don't know how architecture-dependent the rest is...
954 Anyway the signal bitmap info is available from "status". */
955 if (*p)
956 printf_filtered (_("Kernel stack pointer: %s\n"),
957 hex_string (strtoulst (p, &p, 10)));
958 if (*p)
959 printf_filtered (_("Kernel instr pointer: %s\n"),
960 hex_string (strtoulst (p, &p, 10)));
961 if (*p)
962 printf_filtered (_("Pending signals bitmap: %s\n"),
963 hex_string (strtoulst (p, &p, 10)));
964 if (*p)
965 printf_filtered (_("Blocked signals bitmap: %s\n"),
966 hex_string (strtoulst (p, &p, 10)));
967 if (*p)
968 printf_filtered (_("Ignored signals bitmap: %s\n"),
969 hex_string (strtoulst (p, &p, 10)));
970 if (*p)
971 printf_filtered (_("Catched signals bitmap: %s\n"),
972 hex_string (strtoulst (p, &p, 10)));
973 if (*p)
974 printf_filtered (_("wchan (system call): %s\n"),
975 hex_string (strtoulst (p, &p, 10)));
976#endif
977 do_cleanups (cleanup);
978 }
979 else
980 warning (_("unable to open /proc file '%s'"), filename);
981 }
982}
983
451b7c33
TT
984/* Implement "info proc mappings" for a corefile. */
985
986static void
7bc112c1 987linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
451b7c33
TT
988{
989 asection *section;
990 ULONGEST count, page_size;
991 unsigned char *descdata, *filenames, *descend, *contents;
992 size_t note_size;
993 unsigned int addr_size_bits, addr_size;
994 struct cleanup *cleanup;
995 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
996 /* We assume this for reading 64-bit core files. */
997 gdb_static_assert (sizeof (ULONGEST) >= 8);
998
999 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1000 if (section == NULL)
1001 {
1002 warning (_("unable to find mappings in core file"));
1003 return;
1004 }
1005
1006 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1007 addr_size = addr_size_bits / 8;
1008 note_size = bfd_get_section_size (section);
1009
1010 if (note_size < 2 * addr_size)
1011 error (_("malformed core note - too short for header"));
1012
224c3ddb 1013 contents = (unsigned char *) xmalloc (note_size);
451b7c33
TT
1014 cleanup = make_cleanup (xfree, contents);
1015 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size))
1016 error (_("could not get core note contents"));
1017
1018 descdata = contents;
1019 descend = descdata + note_size;
1020
1021 if (descdata[note_size - 1] != '\0')
1022 error (_("malformed note - does not end with \\0"));
1023
1024 count = bfd_get (addr_size_bits, core_bfd, descdata);
1025 descdata += addr_size;
1026
1027 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1028 descdata += addr_size;
1029
1030 if (note_size < 2 * addr_size + count * 3 * addr_size)
1031 error (_("malformed note - too short for supplied file count"));
1032
1033 printf_filtered (_("Mapped address spaces:\n\n"));
1034 if (gdbarch_addr_bit (gdbarch) == 32)
1035 {
1036 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1037 "Start Addr",
1038 " End Addr",
1039 " Size", " Offset", "objfile");
1040 }
1041 else
1042 {
1043 printf_filtered (" %18s %18s %10s %10s %s\n",
1044 "Start Addr",
1045 " End Addr",
1046 " Size", " Offset", "objfile");
1047 }
1048
1049 filenames = descdata + count * 3 * addr_size;
1050 while (--count > 0)
1051 {
1052 ULONGEST start, end, file_ofs;
1053
1054 if (filenames == descend)
1055 error (_("malformed note - filenames end too early"));
1056
1057 start = bfd_get (addr_size_bits, core_bfd, descdata);
1058 descdata += addr_size;
1059 end = bfd_get (addr_size_bits, core_bfd, descdata);
1060 descdata += addr_size;
1061 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1062 descdata += addr_size;
1063
1064 file_ofs *= page_size;
1065
1066 if (gdbarch_addr_bit (gdbarch) == 32)
1067 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1068 paddress (gdbarch, start),
1069 paddress (gdbarch, end),
1070 hex_string (end - start),
1071 hex_string (file_ofs),
1072 filenames);
1073 else
1074 printf_filtered (" %18s %18s %10s %10s %s\n",
1075 paddress (gdbarch, start),
1076 paddress (gdbarch, end),
1077 hex_string (end - start),
1078 hex_string (file_ofs),
1079 filenames);
1080
1081 filenames += 1 + strlen ((char *) filenames);
1082 }
1083
1084 do_cleanups (cleanup);
1085}
1086
1087/* Implement "info proc" for a corefile. */
1088
1089static void
7bc112c1 1090linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
451b7c33
TT
1091 enum info_proc_what what)
1092{
1093 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1094 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1095
1096 if (exe_f)
1097 {
1098 const char *exe;
1099
1100 exe = bfd_core_file_failing_command (core_bfd);
1101 if (exe != NULL)
1102 printf_filtered ("exe = '%s'\n", exe);
1103 else
1104 warning (_("unable to find command name in core file"));
1105 }
1106
1107 if (mappings_f)
1108 linux_core_info_proc_mappings (gdbarch, args);
1109
1110 if (!exe_f && !mappings_f)
1111 error (_("unable to handle request"));
1112}
1113
db1ff28b
JK
1114typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1115 ULONGEST offset, ULONGEST inode,
1116 int read, int write,
1117 int exec, int modified,
1118 const char *filename,
1119 void *data);
451b7c33 1120
db1ff28b 1121/* List memory regions in the inferior for a corefile. */
451b7c33
TT
1122
1123static int
db1ff28b
JK
1124linux_find_memory_regions_full (struct gdbarch *gdbarch,
1125 linux_find_memory_region_ftype *func,
1126 void *obfd)
f7af1fcd 1127{
db1ff28b
JK
1128 char mapsfilename[100];
1129 char coredumpfilter_name[100];
1130 char *data, *coredumpfilterdata;
f7af1fcd
JK
1131 pid_t pid;
1132 /* Default dump behavior of coredump_filter (0x33), according to
1133 Documentation/filesystems/proc.txt from the Linux kernel
1134 tree. */
8d297bbf
PA
1135 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1136 | COREFILTER_ANON_SHARED
1137 | COREFILTER_ELF_HEADERS
1138 | COREFILTER_HUGETLB_PRIVATE);
f7af1fcd 1139
db1ff28b 1140 /* We need to know the real target PID to access /proc. */
f7af1fcd 1141 if (current_inferior ()->fake_pid_p)
db1ff28b 1142 return 1;
f7af1fcd
JK
1143
1144 pid = current_inferior ()->pid;
1145
1146 if (use_coredump_filter)
1147 {
f7af1fcd
JK
1148 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1149 "/proc/%d/coredump_filter", pid);
1150 coredumpfilterdata = target_fileio_read_stralloc (NULL,
1151 coredumpfilter_name);
1152 if (coredumpfilterdata != NULL)
1153 {
8d297bbf
PA
1154 unsigned int flags;
1155
1156 sscanf (coredumpfilterdata, "%x", &flags);
1157 filterflags = (enum filter_flag) flags;
f7af1fcd
JK
1158 xfree (coredumpfilterdata);
1159 }
1160 }
1161
db1ff28b
JK
1162 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1163 data = target_fileio_read_stralloc (NULL, mapsfilename);
1164 if (data == NULL)
1165 {
1166 /* Older Linux kernels did not support /proc/PID/smaps. */
1167 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1168 data = target_fileio_read_stralloc (NULL, mapsfilename);
1169 }
1170
1171 if (data != NULL)
1172 {
1173 struct cleanup *cleanup = make_cleanup (xfree, data);
1174 char *line, *t;
1175
1176 line = strtok_r (data, "\n", &t);
1177 while (line != NULL)
1178 {
1179 ULONGEST addr, endaddr, offset, inode;
1180 const char *permissions, *device, *filename;
1181 struct smaps_vmflags v;
1182 size_t permissions_len, device_len;
1183 int read, write, exec, priv;
1184 int has_anonymous = 0;
1185 int should_dump_p = 0;
1186 int mapping_anon_p;
1187 int mapping_file_p;
1188
1189 memset (&v, 0, sizeof (v));
1190 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1191 &offset, &device, &device_len, &inode, &filename);
1192 mapping_anon_p = mapping_is_anonymous_p (filename);
1193 /* If the mapping is not anonymous, then we can consider it
1194 to be file-backed. These two states (anonymous or
1195 file-backed) seem to be exclusive, but they can actually
1196 coexist. For example, if a file-backed mapping has
1197 "Anonymous:" pages (see more below), then the Linux
1198 kernel will dump this mapping when the user specified
1199 that she only wants anonymous mappings in the corefile
1200 (*even* when she explicitly disabled the dumping of
1201 file-backed mappings). */
1202 mapping_file_p = !mapping_anon_p;
1203
1204 /* Decode permissions. */
1205 read = (memchr (permissions, 'r', permissions_len) != 0);
1206 write = (memchr (permissions, 'w', permissions_len) != 0);
1207 exec = (memchr (permissions, 'x', permissions_len) != 0);
1208 /* 'private' here actually means VM_MAYSHARE, and not
1209 VM_SHARED. In order to know if a mapping is really
1210 private or not, we must check the flag "sh" in the
1211 VmFlags field. This is done by decode_vmflags. However,
1212 if we are using a Linux kernel released before the commit
1213 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1214 not have the VmFlags there. In this case, there is
1215 really no way to know if we are dealing with VM_SHARED,
1216 so we just assume that VM_MAYSHARE is enough. */
1217 priv = memchr (permissions, 'p', permissions_len) != 0;
1218
1219 /* Try to detect if region should be dumped by parsing smaps
1220 counters. */
1221 for (line = strtok_r (NULL, "\n", &t);
1222 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1223 line = strtok_r (NULL, "\n", &t))
1224 {
1225 char keyword[64 + 1];
1226
1227 if (sscanf (line, "%64s", keyword) != 1)
1228 {
1229 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1230 break;
1231 }
1232
1233 if (strcmp (keyword, "Anonymous:") == 0)
1234 {
1235 /* Older Linux kernels did not support the
1236 "Anonymous:" counter. Check it here. */
1237 has_anonymous = 1;
1238 }
1239 else if (strcmp (keyword, "VmFlags:") == 0)
1240 decode_vmflags (line, &v);
1241
1242 if (strcmp (keyword, "AnonHugePages:") == 0
1243 || strcmp (keyword, "Anonymous:") == 0)
1244 {
1245 unsigned long number;
1246
1247 if (sscanf (line, "%*s%lu", &number) != 1)
1248 {
1249 warning (_("Error parsing {s,}maps file '%s' number"),
1250 mapsfilename);
1251 break;
1252 }
1253 if (number > 0)
1254 {
1255 /* Even if we are dealing with a file-backed
1256 mapping, if it contains anonymous pages we
1257 consider it to be *also* an anonymous
1258 mapping, because this is what the Linux
1259 kernel does:
1260
1261 // Dump segments that have been written to.
1262 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1263 goto whole;
1264
1265 Note that if the mapping is already marked as
1266 file-backed (i.e., mapping_file_p is
1267 non-zero), then this is a special case, and
1268 this mapping will be dumped either when the
1269 user wants to dump file-backed *or* anonymous
1270 mappings. */
1271 mapping_anon_p = 1;
1272 }
1273 }
1274 }
1275
1276 if (has_anonymous)
1277 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1278 mapping_anon_p, mapping_file_p,
1279 filename);
1280 else
1281 {
1282 /* Older Linux kernels did not support the "Anonymous:" counter.
1283 If it is missing, we can't be sure - dump all the pages. */
1284 should_dump_p = 1;
1285 }
1286
1287 /* Invoke the callback function to create the corefile segment. */
1288 if (should_dump_p)
1289 func (addr, endaddr - addr, offset, inode,
1290 read, write, exec, 1, /* MODIFIED is true because we
1291 want to dump the mapping. */
1292 filename, obfd);
1293 }
1294
1295 do_cleanups (cleanup);
1296 return 0;
1297 }
1298
1299 return 1;
1300}
1301
1302/* A structure for passing information through
1303 linux_find_memory_regions_full. */
1304
1305struct linux_find_memory_regions_data
1306{
1307 /* The original callback. */
1308
1309 find_memory_region_ftype func;
1310
1311 /* The original datum. */
1312
1313 void *obfd;
1314};
1315
1316/* A callback for linux_find_memory_regions that converts between the
1317 "full"-style callback and find_memory_region_ftype. */
1318
1319static int
1320linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1321 ULONGEST offset, ULONGEST inode,
1322 int read, int write, int exec, int modified,
1323 const char *filename, void *arg)
1324{
9a3c8263
SM
1325 struct linux_find_memory_regions_data *data
1326 = (struct linux_find_memory_regions_data *) arg;
db1ff28b
JK
1327
1328 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
451b7c33
TT
1329}
1330
1331/* A variant of linux_find_memory_regions_full that is suitable as the
1332 gdbarch find_memory_regions method. */
1333
1334static int
1335linux_find_memory_regions (struct gdbarch *gdbarch,
db1ff28b 1336 find_memory_region_ftype func, void *obfd)
451b7c33
TT
1337{
1338 struct linux_find_memory_regions_data data;
1339
1340 data.func = func;
db1ff28b 1341 data.obfd = obfd;
451b7c33 1342
db1ff28b
JK
1343 return linux_find_memory_regions_full (gdbarch,
1344 linux_find_memory_regions_thunk,
1345 &data);
451b7c33
TT
1346}
1347
6432734d
UW
1348/* Determine which signal stopped execution. */
1349
1350static int
1351find_signalled_thread (struct thread_info *info, void *data)
1352{
a493e3e2 1353 if (info->suspend.stop_signal != GDB_SIGNAL_0
6432734d
UW
1354 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1355 return 1;
1356
1357 return 0;
1358}
1359
6432734d
UW
1360/* Generate corefile notes for SPU contexts. */
1361
1362static char *
1363linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1364{
1365 static const char *spu_files[] =
1366 {
1367 "object-id",
1368 "mem",
1369 "regs",
1370 "fpcr",
1371 "lslr",
1372 "decr",
1373 "decr_status",
1374 "signal1",
1375 "signal1_type",
1376 "signal2",
1377 "signal2_type",
1378 "event_mask",
1379 "event_status",
1380 "mbox_info",
1381 "ibox_info",
1382 "wbox_info",
1383 "dma_info",
1384 "proxydma_info",
1385 };
1386
f5656ead 1387 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
6432734d
UW
1388 gdb_byte *spu_ids;
1389 LONGEST i, j, size;
1390
1391 /* Determine list of SPU ids. */
1392 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1393 NULL, &spu_ids);
1394
1395 /* Generate corefile notes for each SPU file. */
1396 for (i = 0; i < size; i += 4)
1397 {
1398 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1399
1400 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1401 {
1402 char annex[32], note_name[32];
1403 gdb_byte *spu_data;
1404 LONGEST spu_len;
1405
1406 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1407 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1408 annex, &spu_data);
1409 if (spu_len > 0)
1410 {
1411 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1412 note_data = elfcore_write_note (obfd, note_data, note_size,
1413 note_name, NT_SPU,
1414 spu_data, spu_len);
1415 xfree (spu_data);
1416
1417 if (!note_data)
1418 {
1419 xfree (spu_ids);
1420 return NULL;
1421 }
1422 }
1423 }
1424 }
1425
1426 if (size > 0)
1427 xfree (spu_ids);
1428
1429 return note_data;
1430}
1431
451b7c33
TT
1432/* This is used to pass information from
1433 linux_make_mappings_corefile_notes through
1434 linux_find_memory_regions_full. */
1435
1436struct linux_make_mappings_data
1437{
1438 /* Number of files mapped. */
1439 ULONGEST file_count;
1440
1441 /* The obstack for the main part of the data. */
1442 struct obstack *data_obstack;
1443
1444 /* The filename obstack. */
1445 struct obstack *filename_obstack;
1446
1447 /* The architecture's "long" type. */
1448 struct type *long_type;
1449};
1450
1451static linux_find_memory_region_ftype linux_make_mappings_callback;
1452
1453/* A callback for linux_find_memory_regions_full that updates the
1454 mappings data for linux_make_mappings_corefile_notes. */
1455
1456static int
1457linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1458 ULONGEST offset, ULONGEST inode,
1459 int read, int write, int exec, int modified,
1460 const char *filename, void *data)
1461{
9a3c8263
SM
1462 struct linux_make_mappings_data *map_data
1463 = (struct linux_make_mappings_data *) data;
451b7c33
TT
1464 gdb_byte buf[sizeof (ULONGEST)];
1465
1466 if (*filename == '\0' || inode == 0)
1467 return 0;
1468
1469 ++map_data->file_count;
1470
1471 pack_long (buf, map_data->long_type, vaddr);
1472 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1473 pack_long (buf, map_data->long_type, vaddr + size);
1474 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1475 pack_long (buf, map_data->long_type, offset);
1476 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1477
1478 obstack_grow_str0 (map_data->filename_obstack, filename);
1479
1480 return 0;
1481}
1482
1483/* Write the file mapping data to the core file, if possible. OBFD is
1484 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1485 is a pointer to the note size. Returns the new NOTE_DATA and
1486 updates NOTE_SIZE. */
1487
1488static char *
1489linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1490 char *note_data, int *note_size)
1491{
1492 struct cleanup *cleanup;
1493 struct obstack data_obstack, filename_obstack;
1494 struct linux_make_mappings_data mapping_data;
1495 struct type *long_type
1496 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1497 gdb_byte buf[sizeof (ULONGEST)];
1498
1499 obstack_init (&data_obstack);
1500 cleanup = make_cleanup_obstack_free (&data_obstack);
1501 obstack_init (&filename_obstack);
1502 make_cleanup_obstack_free (&filename_obstack);
1503
1504 mapping_data.file_count = 0;
1505 mapping_data.data_obstack = &data_obstack;
1506 mapping_data.filename_obstack = &filename_obstack;
1507 mapping_data.long_type = long_type;
1508
1509 /* Reserve space for the count. */
1510 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1511 /* We always write the page size as 1 since we have no good way to
1512 determine the correct value. */
1513 pack_long (buf, long_type, 1);
1514 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1515
db1ff28b
JK
1516 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1517 &mapping_data);
451b7c33
TT
1518
1519 if (mapping_data.file_count != 0)
1520 {
1521 /* Write the count to the obstack. */
51a5cd90
PA
1522 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1523 long_type, mapping_data.file_count);
451b7c33
TT
1524
1525 /* Copy the filenames to the data obstack. */
1526 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1527 obstack_object_size (&filename_obstack));
1528
1529 note_data = elfcore_write_note (obfd, note_data, note_size,
1530 "CORE", NT_FILE,
1531 obstack_base (&data_obstack),
1532 obstack_object_size (&data_obstack));
1533 }
1534
1535 do_cleanups (cleanup);
1536 return note_data;
1537}
1538
5aa82d05
AA
1539/* Structure for passing information from
1540 linux_collect_thread_registers via an iterator to
1541 linux_collect_regset_section_cb. */
1542
1543struct linux_collect_regset_section_cb_data
1544{
1545 struct gdbarch *gdbarch;
1546 const struct regcache *regcache;
1547 bfd *obfd;
1548 char *note_data;
1549 int *note_size;
1550 unsigned long lwp;
1551 enum gdb_signal stop_signal;
1552 int abort_iteration;
1553};
1554
1555/* Callback for iterate_over_regset_sections that records a single
1556 regset in the corefile note section. */
1557
1558static void
1559linux_collect_regset_section_cb (const char *sect_name, int size,
8f0435f7 1560 const struct regset *regset,
5aa82d05
AA
1561 const char *human_name, void *cb_data)
1562{
5aa82d05 1563 char *buf;
7567e115
SM
1564 struct linux_collect_regset_section_cb_data *data
1565 = (struct linux_collect_regset_section_cb_data *) cb_data;
5aa82d05
AA
1566
1567 if (data->abort_iteration)
1568 return;
1569
5aa82d05
AA
1570 gdb_assert (regset && regset->collect_regset);
1571
224c3ddb 1572 buf = (char *) xmalloc (size);
5aa82d05
AA
1573 regset->collect_regset (regset, data->regcache, -1, buf, size);
1574
1575 /* PRSTATUS still needs to be treated specially. */
1576 if (strcmp (sect_name, ".reg") == 0)
1577 data->note_data = (char *) elfcore_write_prstatus
1578 (data->obfd, data->note_data, data->note_size, data->lwp,
1579 gdb_signal_to_host (data->stop_signal), buf);
1580 else
1581 data->note_data = (char *) elfcore_write_register_note
1582 (data->obfd, data->note_data, data->note_size,
1583 sect_name, buf, size);
1584 xfree (buf);
1585
1586 if (data->note_data == NULL)
1587 data->abort_iteration = 1;
1588}
1589
6432734d
UW
1590/* Records the thread's register state for the corefile note
1591 section. */
1592
1593static char *
1594linux_collect_thread_registers (const struct regcache *regcache,
1595 ptid_t ptid, bfd *obfd,
1596 char *note_data, int *note_size,
2ea28649 1597 enum gdb_signal stop_signal)
6432734d
UW
1598{
1599 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5aa82d05 1600 struct linux_collect_regset_section_cb_data data;
6432734d 1601
5aa82d05
AA
1602 data.gdbarch = gdbarch;
1603 data.regcache = regcache;
1604 data.obfd = obfd;
1605 data.note_data = note_data;
1606 data.note_size = note_size;
1607 data.stop_signal = stop_signal;
1608 data.abort_iteration = 0;
6432734d
UW
1609
1610 /* For remote targets the LWP may not be available, so use the TID. */
5aa82d05
AA
1611 data.lwp = ptid_get_lwp (ptid);
1612 if (!data.lwp)
1613 data.lwp = ptid_get_tid (ptid);
1614
1615 gdbarch_iterate_over_regset_sections (gdbarch,
1616 linux_collect_regset_section_cb,
1617 &data, regcache);
1618 return data.note_data;
6432734d
UW
1619}
1620
9015683b
TT
1621/* Fetch the siginfo data for the current thread, if it exists. If
1622 there is no data, or we could not read it, return NULL. Otherwise,
1623 return a newly malloc'd buffer holding the data and fill in *SIZE
1624 with the size of the data. The caller is responsible for freeing
1625 the data. */
1626
1627static gdb_byte *
1628linux_get_siginfo_data (struct gdbarch *gdbarch, LONGEST *size)
1629{
1630 struct type *siginfo_type;
1631 gdb_byte *buf;
1632 LONGEST bytes_read;
1633 struct cleanup *cleanups;
1634
1635 if (!gdbarch_get_siginfo_type_p (gdbarch))
1636 return NULL;
1637
1638 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1639
224c3ddb 1640 buf = (gdb_byte *) xmalloc (TYPE_LENGTH (siginfo_type));
9015683b
TT
1641 cleanups = make_cleanup (xfree, buf);
1642
1643 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1644 buf, 0, TYPE_LENGTH (siginfo_type));
1645 if (bytes_read == TYPE_LENGTH (siginfo_type))
1646 {
1647 discard_cleanups (cleanups);
1648 *size = bytes_read;
1649 }
1650 else
1651 {
1652 do_cleanups (cleanups);
1653 buf = NULL;
1654 }
1655
1656 return buf;
1657}
1658
6432734d
UW
1659struct linux_corefile_thread_data
1660{
1661 struct gdbarch *gdbarch;
6432734d
UW
1662 bfd *obfd;
1663 char *note_data;
1664 int *note_size;
2ea28649 1665 enum gdb_signal stop_signal;
6432734d
UW
1666};
1667
050c224b
PA
1668/* Records the thread's register state for the corefile note
1669 section. */
6432734d 1670
050c224b
PA
1671static void
1672linux_corefile_thread (struct thread_info *info,
1673 struct linux_corefile_thread_data *args)
6432734d 1674{
050c224b
PA
1675 struct cleanup *old_chain;
1676 struct regcache *regcache;
1677 gdb_byte *siginfo_data;
1678 LONGEST siginfo_size = 0;
1679
1680 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1681
1682 old_chain = save_inferior_ptid ();
1683 inferior_ptid = info->ptid;
1684 target_fetch_registers (regcache, -1);
1685 siginfo_data = linux_get_siginfo_data (args->gdbarch, &siginfo_size);
1686 do_cleanups (old_chain);
1687
1688 old_chain = make_cleanup (xfree, siginfo_data);
1689
1690 args->note_data = linux_collect_thread_registers
1691 (regcache, info->ptid, args->obfd, args->note_data,
1692 args->note_size, args->stop_signal);
1693
1694 /* Don't return anything if we got no register information above,
1695 such a core file is useless. */
1696 if (args->note_data != NULL)
1697 if (siginfo_data != NULL)
1698 args->note_data = elfcore_write_note (args->obfd,
1699 args->note_data,
1700 args->note_size,
1701 "CORE", NT_SIGINFO,
1702 siginfo_data, siginfo_size);
1703
1704 do_cleanups (old_chain);
6432734d
UW
1705}
1706
b3ac9c77
SDJ
1707/* Fill the PRPSINFO structure with information about the process being
1708 debugged. Returns 1 in case of success, 0 for failures. Please note that
1709 even if the structure cannot be entirely filled (e.g., GDB was unable to
1710 gather information about the process UID/GID), this function will still
1711 return 1 since some information was already recorded. It will only return
1712 0 iff nothing can be gathered. */
1713
1714static int
1715linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1716{
1717 /* The filename which we will use to obtain some info about the process.
1718 We will basically use this to store the `/proc/PID/FILENAME' file. */
1719 char filename[100];
1720 /* The full name of the program which generated the corefile. */
1721 char *fname;
1722 /* The basename of the executable. */
1723 const char *basename;
1724 /* The arguments of the program. */
1725 char *psargs;
1726 char *infargs;
1727 /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */
1728 char *proc_stat, *proc_status;
1729 /* Temporary buffer. */
1730 char *tmpstr;
1731 /* The valid states of a process, according to the Linux kernel. */
1732 const char valid_states[] = "RSDTZW";
1733 /* The program state. */
1734 const char *prog_state;
1735 /* The state of the process. */
1736 char pr_sname;
1737 /* The PID of the program which generated the corefile. */
1738 pid_t pid;
1739 /* Process flags. */
1740 unsigned int pr_flag;
1741 /* Process nice value. */
1742 long pr_nice;
1743 /* The number of fields read by `sscanf'. */
1744 int n_fields = 0;
1745 /* Cleanups. */
1746 struct cleanup *c;
1747 int i;
1748
1749 gdb_assert (p != NULL);
1750
1751 /* Obtaining PID and filename. */
1752 pid = ptid_get_pid (inferior_ptid);
1753 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
07c138c8 1754 fname = target_fileio_read_stralloc (NULL, filename);
b3ac9c77
SDJ
1755
1756 if (fname == NULL || *fname == '\0')
1757 {
1758 /* No program name was read, so we won't be able to retrieve more
1759 information about the process. */
1760 xfree (fname);
1761 return 0;
1762 }
1763
1764 c = make_cleanup (xfree, fname);
1765 memset (p, 0, sizeof (*p));
1766
1767 /* Defining the PID. */
1768 p->pr_pid = pid;
1769
1770 /* Copying the program name. Only the basename matters. */
1771 basename = lbasename (fname);
1772 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1773 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1774
1775 infargs = get_inferior_args ();
1776
1777 psargs = xstrdup (fname);
1778 if (infargs != NULL)
1779 psargs = reconcat (psargs, psargs, " ", infargs, NULL);
1780
1781 make_cleanup (xfree, psargs);
1782
1783 strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs));
1784 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1785
1786 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
07c138c8 1787 proc_stat = target_fileio_read_stralloc (NULL, filename);
b3ac9c77
SDJ
1788 make_cleanup (xfree, proc_stat);
1789
1790 if (proc_stat == NULL || *proc_stat == '\0')
1791 {
1792 /* Despite being unable to read more information about the
1793 process, we return 1 here because at least we have its
1794 command line, PID and arguments. */
1795 do_cleanups (c);
1796 return 1;
1797 }
1798
1799 /* Ok, we have the stats. It's time to do a little parsing of the
1800 contents of the buffer, so that we end up reading what we want.
1801
1802 The following parsing mechanism is strongly based on the
1803 information generated by the `fs/proc/array.c' file, present in
1804 the Linux kernel tree. More details about how the information is
1805 displayed can be obtained by seeing the manpage of proc(5),
1806 specifically under the entry of `/proc/[pid]/stat'. */
1807
1808 /* Getting rid of the PID, since we already have it. */
1809 while (isdigit (*proc_stat))
1810 ++proc_stat;
1811
1812 proc_stat = skip_spaces (proc_stat);
1813
184cd072
JK
1814 /* ps command also relies on no trailing fields ever contain ')'. */
1815 proc_stat = strrchr (proc_stat, ')');
1816 if (proc_stat == NULL)
1817 {
1818 do_cleanups (c);
1819 return 1;
1820 }
1821 proc_stat++;
b3ac9c77
SDJ
1822
1823 proc_stat = skip_spaces (proc_stat);
1824
1825 n_fields = sscanf (proc_stat,
1826 "%c" /* Process state. */
1827 "%d%d%d" /* Parent PID, group ID, session ID. */
1828 "%*d%*d" /* tty_nr, tpgid (not used). */
1829 "%u" /* Flags. */
1830 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1831 cmajflt (not used). */
1832 "%*s%*s%*s%*s" /* utime, stime, cutime,
1833 cstime (not used). */
1834 "%*s" /* Priority (not used). */
1835 "%ld", /* Nice. */
1836 &pr_sname,
1837 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1838 &pr_flag,
1839 &pr_nice);
1840
1841 if (n_fields != 6)
1842 {
1843 /* Again, we couldn't read the complementary information about
1844 the process state. However, we already have minimal
1845 information, so we just return 1 here. */
1846 do_cleanups (c);
1847 return 1;
1848 }
1849
1850 /* Filling the structure fields. */
1851 prog_state = strchr (valid_states, pr_sname);
1852 if (prog_state != NULL)
1853 p->pr_state = prog_state - valid_states;
1854 else
1855 {
1856 /* Zero means "Running". */
1857 p->pr_state = 0;
1858 }
1859
1860 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1861 p->pr_zomb = p->pr_sname == 'Z';
1862 p->pr_nice = pr_nice;
1863 p->pr_flag = pr_flag;
1864
1865 /* Finally, obtaining the UID and GID. For that, we read and parse the
1866 contents of the `/proc/PID/status' file. */
1867 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
07c138c8 1868 proc_status = target_fileio_read_stralloc (NULL, filename);
b3ac9c77
SDJ
1869 make_cleanup (xfree, proc_status);
1870
1871 if (proc_status == NULL || *proc_status == '\0')
1872 {
1873 /* Returning 1 since we already have a bunch of information. */
1874 do_cleanups (c);
1875 return 1;
1876 }
1877
1878 /* Extracting the UID. */
1879 tmpstr = strstr (proc_status, "Uid:");
1880 if (tmpstr != NULL)
1881 {
1882 /* Advancing the pointer to the beginning of the UID. */
1883 tmpstr += sizeof ("Uid:");
1884 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1885 ++tmpstr;
1886
1887 if (isdigit (*tmpstr))
1888 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1889 }
1890
1891 /* Extracting the GID. */
1892 tmpstr = strstr (proc_status, "Gid:");
1893 if (tmpstr != NULL)
1894 {
1895 /* Advancing the pointer to the beginning of the GID. */
1896 tmpstr += sizeof ("Gid:");
1897 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1898 ++tmpstr;
1899
1900 if (isdigit (*tmpstr))
1901 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1902 }
1903
1904 do_cleanups (c);
1905
1906 return 1;
1907}
1908
f968fe80
AA
1909/* Build the note section for a corefile, and return it in a malloc
1910 buffer. */
6432734d 1911
f968fe80
AA
1912static char *
1913linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
6432734d
UW
1914{
1915 struct linux_corefile_thread_data thread_args;
b3ac9c77 1916 struct elf_internal_linux_prpsinfo prpsinfo;
6432734d
UW
1917 char *note_data = NULL;
1918 gdb_byte *auxv;
1919 int auxv_len;
050c224b 1920 struct thread_info *curr_thr, *signalled_thr, *thr;
6432734d 1921
f968fe80
AA
1922 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1923 return NULL;
1924
b3ac9c77 1925 if (linux_fill_prpsinfo (&prpsinfo))
6432734d 1926 {
b3ac9c77
SDJ
1927 if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch))
1928 {
1929 note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd,
1930 note_data, note_size,
1931 &prpsinfo);
1932 }
1933 else
1934 {
1935 if (gdbarch_ptr_bit (gdbarch) == 64)
1936 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1937 note_data, note_size,
1938 &prpsinfo);
1939 else
1940 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1941 note_data, note_size,
1942 &prpsinfo);
1943 }
6432734d
UW
1944 }
1945
1946 /* Thread register information. */
492d29ea 1947 TRY
22fd09ae
JK
1948 {
1949 update_thread_list ();
1950 }
492d29ea
PA
1951 CATCH (e, RETURN_MASK_ERROR)
1952 {
1953 exception_print (gdb_stderr, e);
1954 }
1955 END_CATCH
1956
050c224b
PA
1957 /* Like the kernel, prefer dumping the signalled thread first.
1958 "First thread" is what tools use to infer the signalled thread.
1959 In case there's more than one signalled thread, prefer the
1960 current thread, if it is signalled. */
1961 curr_thr = inferior_thread ();
1962 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1963 signalled_thr = curr_thr;
1964 else
1965 {
1966 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1967 if (signalled_thr == NULL)
1968 signalled_thr = curr_thr;
1969 }
1970
6432734d 1971 thread_args.gdbarch = gdbarch;
6432734d
UW
1972 thread_args.obfd = obfd;
1973 thread_args.note_data = note_data;
1974 thread_args.note_size = note_size;
050c224b
PA
1975 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1976
1977 linux_corefile_thread (signalled_thr, &thread_args);
1978 ALL_NON_EXITED_THREADS (thr)
1979 {
1980 if (thr == signalled_thr)
1981 continue;
1982 if (ptid_get_pid (thr->ptid) != ptid_get_pid (inferior_ptid))
1983 continue;
1984
1985 linux_corefile_thread (thr, &thread_args);
1986 }
1987
6432734d
UW
1988 note_data = thread_args.note_data;
1989 if (!note_data)
1990 return NULL;
1991
1992 /* Auxillary vector. */
1993 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
1994 NULL, &auxv);
1995 if (auxv_len > 0)
1996 {
1997 note_data = elfcore_write_note (obfd, note_data, note_size,
1998 "CORE", NT_AUXV, auxv, auxv_len);
1999 xfree (auxv);
2000
2001 if (!note_data)
2002 return NULL;
2003 }
2004
2005 /* SPU information. */
2006 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
2007 if (!note_data)
2008 return NULL;
2009
451b7c33
TT
2010 /* File mappings. */
2011 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2012 note_data, note_size);
2013
6432734d
UW
2014 return note_data;
2015}
2016
eb14d406
SDJ
2017/* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2018 gdbarch.h. This function is not static because it is exported to
2019 other -tdep files. */
2020
2021enum gdb_signal
2022linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2023{
2024 switch (signal)
2025 {
2026 case 0:
2027 return GDB_SIGNAL_0;
2028
2029 case LINUX_SIGHUP:
2030 return GDB_SIGNAL_HUP;
2031
2032 case LINUX_SIGINT:
2033 return GDB_SIGNAL_INT;
2034
2035 case LINUX_SIGQUIT:
2036 return GDB_SIGNAL_QUIT;
2037
2038 case LINUX_SIGILL:
2039 return GDB_SIGNAL_ILL;
2040
2041 case LINUX_SIGTRAP:
2042 return GDB_SIGNAL_TRAP;
2043
2044 case LINUX_SIGABRT:
2045 return GDB_SIGNAL_ABRT;
2046
2047 case LINUX_SIGBUS:
2048 return GDB_SIGNAL_BUS;
2049
2050 case LINUX_SIGFPE:
2051 return GDB_SIGNAL_FPE;
2052
2053 case LINUX_SIGKILL:
2054 return GDB_SIGNAL_KILL;
2055
2056 case LINUX_SIGUSR1:
2057 return GDB_SIGNAL_USR1;
2058
2059 case LINUX_SIGSEGV:
2060 return GDB_SIGNAL_SEGV;
2061
2062 case LINUX_SIGUSR2:
2063 return GDB_SIGNAL_USR2;
2064
2065 case LINUX_SIGPIPE:
2066 return GDB_SIGNAL_PIPE;
2067
2068 case LINUX_SIGALRM:
2069 return GDB_SIGNAL_ALRM;
2070
2071 case LINUX_SIGTERM:
2072 return GDB_SIGNAL_TERM;
2073
2074 case LINUX_SIGCHLD:
2075 return GDB_SIGNAL_CHLD;
2076
2077 case LINUX_SIGCONT:
2078 return GDB_SIGNAL_CONT;
2079
2080 case LINUX_SIGSTOP:
2081 return GDB_SIGNAL_STOP;
2082
2083 case LINUX_SIGTSTP:
2084 return GDB_SIGNAL_TSTP;
2085
2086 case LINUX_SIGTTIN:
2087 return GDB_SIGNAL_TTIN;
2088
2089 case LINUX_SIGTTOU:
2090 return GDB_SIGNAL_TTOU;
2091
2092 case LINUX_SIGURG:
2093 return GDB_SIGNAL_URG;
2094
2095 case LINUX_SIGXCPU:
2096 return GDB_SIGNAL_XCPU;
2097
2098 case LINUX_SIGXFSZ:
2099 return GDB_SIGNAL_XFSZ;
2100
2101 case LINUX_SIGVTALRM:
2102 return GDB_SIGNAL_VTALRM;
2103
2104 case LINUX_SIGPROF:
2105 return GDB_SIGNAL_PROF;
2106
2107 case LINUX_SIGWINCH:
2108 return GDB_SIGNAL_WINCH;
2109
2110 /* No way to differentiate between SIGIO and SIGPOLL.
2111 Therefore, we just handle the first one. */
2112 case LINUX_SIGIO:
2113 return GDB_SIGNAL_IO;
2114
2115 case LINUX_SIGPWR:
2116 return GDB_SIGNAL_PWR;
2117
2118 case LINUX_SIGSYS:
2119 return GDB_SIGNAL_SYS;
2120
2121 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2122 therefore we have to handle them here. */
2123 case LINUX_SIGRTMIN:
2124 return GDB_SIGNAL_REALTIME_32;
2125
2126 case LINUX_SIGRTMAX:
2127 return GDB_SIGNAL_REALTIME_64;
2128 }
2129
2130 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2131 {
2132 int offset = signal - LINUX_SIGRTMIN + 1;
2133
2134 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2135 }
2136
2137 return GDB_SIGNAL_UNKNOWN;
2138}
2139
2140/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2141 gdbarch.h. This function is not static because it is exported to
2142 other -tdep files. */
2143
2144int
2145linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2146 enum gdb_signal signal)
2147{
2148 switch (signal)
2149 {
2150 case GDB_SIGNAL_0:
2151 return 0;
2152
2153 case GDB_SIGNAL_HUP:
2154 return LINUX_SIGHUP;
2155
2156 case GDB_SIGNAL_INT:
2157 return LINUX_SIGINT;
2158
2159 case GDB_SIGNAL_QUIT:
2160 return LINUX_SIGQUIT;
2161
2162 case GDB_SIGNAL_ILL:
2163 return LINUX_SIGILL;
2164
2165 case GDB_SIGNAL_TRAP:
2166 return LINUX_SIGTRAP;
2167
2168 case GDB_SIGNAL_ABRT:
2169 return LINUX_SIGABRT;
2170
2171 case GDB_SIGNAL_FPE:
2172 return LINUX_SIGFPE;
2173
2174 case GDB_SIGNAL_KILL:
2175 return LINUX_SIGKILL;
2176
2177 case GDB_SIGNAL_BUS:
2178 return LINUX_SIGBUS;
2179
2180 case GDB_SIGNAL_SEGV:
2181 return LINUX_SIGSEGV;
2182
2183 case GDB_SIGNAL_SYS:
2184 return LINUX_SIGSYS;
2185
2186 case GDB_SIGNAL_PIPE:
2187 return LINUX_SIGPIPE;
2188
2189 case GDB_SIGNAL_ALRM:
2190 return LINUX_SIGALRM;
2191
2192 case GDB_SIGNAL_TERM:
2193 return LINUX_SIGTERM;
2194
2195 case GDB_SIGNAL_URG:
2196 return LINUX_SIGURG;
2197
2198 case GDB_SIGNAL_STOP:
2199 return LINUX_SIGSTOP;
2200
2201 case GDB_SIGNAL_TSTP:
2202 return LINUX_SIGTSTP;
2203
2204 case GDB_SIGNAL_CONT:
2205 return LINUX_SIGCONT;
2206
2207 case GDB_SIGNAL_CHLD:
2208 return LINUX_SIGCHLD;
2209
2210 case GDB_SIGNAL_TTIN:
2211 return LINUX_SIGTTIN;
2212
2213 case GDB_SIGNAL_TTOU:
2214 return LINUX_SIGTTOU;
2215
2216 case GDB_SIGNAL_IO:
2217 return LINUX_SIGIO;
2218
2219 case GDB_SIGNAL_XCPU:
2220 return LINUX_SIGXCPU;
2221
2222 case GDB_SIGNAL_XFSZ:
2223 return LINUX_SIGXFSZ;
2224
2225 case GDB_SIGNAL_VTALRM:
2226 return LINUX_SIGVTALRM;
2227
2228 case GDB_SIGNAL_PROF:
2229 return LINUX_SIGPROF;
2230
2231 case GDB_SIGNAL_WINCH:
2232 return LINUX_SIGWINCH;
2233
2234 case GDB_SIGNAL_USR1:
2235 return LINUX_SIGUSR1;
2236
2237 case GDB_SIGNAL_USR2:
2238 return LINUX_SIGUSR2;
2239
2240 case GDB_SIGNAL_PWR:
2241 return LINUX_SIGPWR;
2242
2243 case GDB_SIGNAL_POLL:
2244 return LINUX_SIGPOLL;
2245
2246 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2247 therefore we have to handle it here. */
2248 case GDB_SIGNAL_REALTIME_32:
2249 return LINUX_SIGRTMIN;
2250
2251 /* Same comment applies to _64. */
2252 case GDB_SIGNAL_REALTIME_64:
2253 return LINUX_SIGRTMAX;
2254 }
2255
2256 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2257 if (signal >= GDB_SIGNAL_REALTIME_33
2258 && signal <= GDB_SIGNAL_REALTIME_63)
2259 {
2260 int offset = signal - GDB_SIGNAL_REALTIME_33;
2261
2262 return LINUX_SIGRTMIN + 1 + offset;
2263 }
2264
2265 return -1;
2266}
2267
3437254d
PA
2268/* Rummage through mappings to find a mapping's size. */
2269
2270static int
2271find_mapping_size (CORE_ADDR vaddr, unsigned long size,
2272 int read, int write, int exec, int modified,
2273 void *data)
2274{
9a3c8263 2275 struct mem_range *range = (struct mem_range *) data;
3437254d
PA
2276
2277 if (vaddr == range->start)
2278 {
2279 range->length = size;
2280 return 1;
2281 }
2282 return 0;
2283}
2284
cdfa0b0a
PA
2285/* Helper for linux_vsyscall_range that does the real work of finding
2286 the vsyscall's address range. */
3437254d
PA
2287
2288static int
cdfa0b0a 2289linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
3437254d
PA
2290{
2291 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
2292 return 0;
2293
2294 /* This is installed by linux_init_abi below, so should always be
2295 available. */
2296 gdb_assert (gdbarch_find_memory_regions_p (target_gdbarch ()));
2297
2298 range->length = 0;
2299 gdbarch_find_memory_regions (gdbarch, find_mapping_size, range);
2300 return 1;
2301}
2302
cdfa0b0a
PA
2303/* Implementation of the "vsyscall_range" gdbarch hook. Handles
2304 caching, and defers the real work to linux_vsyscall_range_raw. */
2305
2306static int
2307linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2308{
2309 struct linux_info *info = get_linux_inferior_data ();
2310
2311 if (info->vsyscall_range_p == 0)
2312 {
2313 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2314 info->vsyscall_range_p = 1;
2315 else
2316 info->vsyscall_range_p = -1;
2317 }
2318
2319 if (info->vsyscall_range_p < 0)
2320 return 0;
2321
2322 *range = info->vsyscall_range;
2323 return 1;
2324}
2325
3bc3cebe
JK
2326/* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2327 definitions would be dependent on compilation host. */
2328#define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2329#define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2330
2331/* See gdbarch.sh 'infcall_mmap'. */
2332
2333static CORE_ADDR
2334linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2335{
2336 struct objfile *objf;
2337 /* Do there still exist any Linux systems without "mmap64"?
2338 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2339 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2340 struct value *addr_val;
2341 struct gdbarch *gdbarch = get_objfile_arch (objf);
2342 CORE_ADDR retval;
2343 enum
2344 {
2a546367 2345 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
3bc3cebe 2346 };
2a546367 2347 struct value *arg[ARG_LAST];
3bc3cebe
JK
2348
2349 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2350 0);
2351 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2352 arg[ARG_LENGTH] = value_from_ulongest
2353 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2354 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2355 | GDB_MMAP_PROT_EXEC))
2356 == 0);
2357 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2358 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2359 GDB_MMAP_MAP_PRIVATE
2360 | GDB_MMAP_MAP_ANONYMOUS);
2361 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2362 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2363 0);
2a546367 2364 addr_val = call_function_by_hand (mmap_val, ARG_LAST, arg);
3bc3cebe
JK
2365 retval = value_as_address (addr_val);
2366 if (retval == (CORE_ADDR) -1)
2367 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2368 pulongest (size));
2369 return retval;
2370}
2371
7f361056
JK
2372/* See gdbarch.sh 'infcall_munmap'. */
2373
2374static void
2375linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2376{
2377 struct objfile *objf;
2378 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2379 struct value *retval_val;
2380 struct gdbarch *gdbarch = get_objfile_arch (objf);
2381 LONGEST retval;
2382 enum
2383 {
2384 ARG_ADDR, ARG_LENGTH, ARG_LAST
2385 };
2386 struct value *arg[ARG_LAST];
2387
2388 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2389 addr);
2390 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2391 arg[ARG_LENGTH] = value_from_ulongest
2392 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2393 retval_val = call_function_by_hand (munmap_val, ARG_LAST, arg);
2394 retval = value_as_long (retval_val);
2395 if (retval != 0)
2396 warning (_("Failed inferior munmap call at %s for %s bytes, "
2397 "errno is changed."),
2398 hex_string (addr), pulongest (size));
2399}
2400
906d60cf
PA
2401/* See linux-tdep.h. */
2402
2403CORE_ADDR
2404linux_displaced_step_location (struct gdbarch *gdbarch)
2405{
2406 CORE_ADDR addr;
2407 int bp_len;
2408
2409 /* Determine entry point from target auxiliary vector. This avoids
2410 the need for symbols. Also, when debugging a stand-alone SPU
2411 executable, entry_point_address () will point to an SPU
2412 local-store address and is thus not usable as displaced stepping
2413 location. The auxiliary vector gets us the PowerPC-side entry
2414 point address instead. */
2415 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
2416 error (_("Cannot find AT_ENTRY auxiliary vector entry."));
2417
2418 /* Make certain that the address points at real code, and not a
2419 function descriptor. */
2420 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2421 &current_target);
2422
2423 /* Inferior calls also use the entry point as a breakpoint location.
2424 We don't want displaced stepping to interfere with those
2425 breakpoints, so leave space. */
2426 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2427 addr += bp_len * 2;
2428
2429 return addr;
2430}
2431
df8411da
SDJ
2432/* Display whether the gcore command is using the
2433 /proc/PID/coredump_filter file. */
2434
2435static void
2436show_use_coredump_filter (struct ui_file *file, int from_tty,
2437 struct cmd_list_element *c, const char *value)
2438{
2439 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2440 " corefiles is %s.\n"), value);
2441}
2442
a5ee0f0c
PA
2443/* To be called from the various GDB_OSABI_LINUX handlers for the
2444 various GNU/Linux architectures and machine types. */
2445
2446void
2447linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2448{
2449 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
3030c96e 2450 set_gdbarch_info_proc (gdbarch, linux_info_proc);
451b7c33 2451 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
35c2fab7 2452 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
f968fe80 2453 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
33fbcbee
PA
2454 set_gdbarch_has_shared_address_space (gdbarch,
2455 linux_has_shared_address_space);
eb14d406
SDJ
2456 set_gdbarch_gdb_signal_from_target (gdbarch,
2457 linux_gdb_signal_from_target);
2458 set_gdbarch_gdb_signal_to_target (gdbarch,
2459 linux_gdb_signal_to_target);
3437254d 2460 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
3bc3cebe 2461 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
7f361056 2462 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
5cd867b4 2463 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
a5ee0f0c 2464}
06253dd3 2465
70221824
PA
2466/* Provide a prototype to silence -Wmissing-prototypes. */
2467extern initialize_file_ftype _initialize_linux_tdep;
2468
06253dd3
JK
2469void
2470_initialize_linux_tdep (void)
2471{
2472 linux_gdbarch_data_handle =
2473 gdbarch_data_register_post_init (init_linux_gdbarch_data);
cdfa0b0a
PA
2474
2475 /* Set a cache per-inferior. */
2476 linux_inferior_data
2477 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2478 /* Observers used to invalidate the cache when needed. */
2479 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2480 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
df8411da
SDJ
2481
2482 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2483 &use_coredump_filter, _("\
2484Set whether gcore should consider /proc/PID/coredump_filter."),
2485 _("\
2486Show whether gcore should consider /proc/PID/coredump_filter."),
2487 _("\
2488Use this command to set whether gcore should consider the contents\n\
2489of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2490about this file, refer to the manpage of core(5)."),
2491 NULL, show_use_coredump_filter,
2492 &setlist, &showlist);
06253dd3 2493}
This page took 0.777294 seconds and 4 git commands to generate.