Use std::string in mdebugread.c
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
CommitLineData
4aa995e1
PA
1/* Target-dependent code for GNU/Linux, architecture independent.
2
e2882c85 3 Copyright (C) 2009-2018 Free Software Foundation, Inc.
4aa995e1
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "gdbtypes.h"
2c0b251b 22#include "linux-tdep.h"
6c95b8df
PA
23#include "auxv.h"
24#include "target.h"
6432734d
UW
25#include "gdbthread.h"
26#include "gdbcore.h"
27#include "regcache.h"
28#include "regset.h"
6c95b8df 29#include "elf/common.h"
6432734d 30#include "elf-bfd.h" /* for elfcore_write_* */
a5ee0f0c 31#include "inferior.h"
3030c96e 32#include "cli/cli-utils.h"
451b7c33
TT
33#include "arch-utils.h"
34#include "gdb_obstack.h"
76727919 35#include "observable.h"
3bc3cebe
JK
36#include "objfiles.h"
37#include "infcall.h"
df8411da 38#include "gdbcmd.h"
db1ff28b 39#include "gdb_regex.h"
8d297bbf 40#include "common/enum-flags.h"
2d7cc5c7 41#include "common/gdb_optional.h"
3030c96e
UW
42
43#include <ctype.h>
4aa995e1 44
db1ff28b
JK
45/* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
8d297bbf 51enum filter_flag
db1ff28b
JK
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
8d297bbf 61DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
db1ff28b
JK
62
63/* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
df8411da
SDJ
91/* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94static int use_coredump_filter = 1;
95
afa840dc
SL
96/* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
99static int dump_excluded_mappings = 0;
100
eb14d406
SDJ
101/* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
06253dd3
JK
166static struct gdbarch_data *linux_gdbarch_data_handle;
167
168struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173static void *
174init_linux_gdbarch_data (struct gdbarch *gdbarch)
175{
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177}
178
179static struct linux_gdbarch_data *
180get_linux_gdbarch_data (struct gdbarch *gdbarch)
181{
9a3c8263
SM
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
06253dd3
JK
184}
185
cdfa0b0a
PA
186/* Per-inferior data key. */
187static const struct inferior_data *linux_inferior_data;
188
189/* Linux-specific cached data. This is used by GDB for caching
190 purposes for each inferior. This helps reduce the overhead of
191 transfering data from a remote target to the local host. */
192struct linux_info
193{
194 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
195 if VSYSCALL_RANGE_P is positive. This is cached because getting
196 at this info requires an auxv lookup (which is itself cached),
197 and looking through the inferior's mappings (which change
198 throughout execution and therefore cannot be cached). */
199 struct mem_range vsyscall_range;
200
201 /* Zero if we haven't tried looking up the vsyscall's range before
202 yet. Positive if we tried looking it up, and found it. Negative
203 if we tried looking it up but failed. */
204 int vsyscall_range_p;
205};
206
207/* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210static void
211invalidate_linux_cache_inf (struct inferior *inf)
212{
213 struct linux_info *info;
214
9a3c8263 215 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
cdfa0b0a
PA
216 if (info != NULL)
217 {
218 xfree (info);
219 set_inferior_data (inf, linux_inferior_data, NULL);
220 }
221}
222
223/* Handles the cleanup of the linux cache for inferior INF. ARG is
224 ignored. Callback for the inferior_appeared and inferior_exit
225 events. */
226
227static void
228linux_inferior_data_cleanup (struct inferior *inf, void *arg)
229{
230 invalidate_linux_cache_inf (inf);
231}
232
233/* Fetch the linux cache info for INF. This function always returns a
234 valid INFO pointer. */
235
236static struct linux_info *
237get_linux_inferior_data (void)
238{
239 struct linux_info *info;
240 struct inferior *inf = current_inferior ();
241
9a3c8263 242 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
cdfa0b0a
PA
243 if (info == NULL)
244 {
245 info = XCNEW (struct linux_info);
246 set_inferior_data (inf, linux_inferior_data, info);
247 }
248
249 return info;
250}
251
190b495d 252/* See linux-tdep.h. */
4aa995e1 253
190b495d 254struct type *
43564574
WT
255linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
256 linux_siginfo_extra_fields extra_fields)
4aa995e1 257{
06253dd3 258 struct linux_gdbarch_data *linux_gdbarch_data;
96b5c49f 259 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
4aa995e1
PA
260 struct type *uid_type, *pid_type;
261 struct type *sigval_type, *clock_type;
262 struct type *siginfo_type, *sifields_type;
263 struct type *type;
264
06253dd3
JK
265 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
266 if (linux_gdbarch_data->siginfo_type != NULL)
267 return linux_gdbarch_data->siginfo_type;
268
e9bb382b
UW
269 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
270 0, "int");
271 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
272 1, "unsigned int");
273 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
274 0, "long");
96b5c49f
WT
275 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
276 0, "short");
4aa995e1
PA
277 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
278
279 /* sival_t */
e9bb382b 280 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
281 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
282 append_composite_type_field (sigval_type, "sival_int", int_type);
283 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
284
285 /* __pid_t */
e3aa49af 286 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781 287 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
4aa995e1 288 TYPE_TARGET_TYPE (pid_type) = int_type;
e9bb382b 289 TYPE_TARGET_STUB (pid_type) = 1;
4aa995e1
PA
290
291 /* __uid_t */
e3aa49af 292 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781 293 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
4aa995e1 294 TYPE_TARGET_TYPE (uid_type) = uint_type;
e9bb382b 295 TYPE_TARGET_STUB (uid_type) = 1;
4aa995e1
PA
296
297 /* __clock_t */
e3aa49af 298 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781
UW
299 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
300 "__clock_t");
4aa995e1 301 TYPE_TARGET_TYPE (clock_type) = long_type;
e9bb382b 302 TYPE_TARGET_STUB (clock_type) = 1;
4aa995e1
PA
303
304 /* _sifields */
e9bb382b 305 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
306
307 {
308 const int si_max_size = 128;
309 int si_pad_size;
310 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
311
312 /* _pad */
313 if (gdbarch_ptr_bit (gdbarch) == 64)
314 si_pad_size = (si_max_size / size_of_int) - 4;
315 else
316 si_pad_size = (si_max_size / size_of_int) - 3;
317 append_composite_type_field (sifields_type, "_pad",
318 init_vector_type (int_type, si_pad_size));
319 }
320
321 /* _kill */
e9bb382b 322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (sifields_type, "_kill", type);
326
327 /* _timer */
e9bb382b 328 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
329 append_composite_type_field (type, "si_tid", int_type);
330 append_composite_type_field (type, "si_overrun", int_type);
331 append_composite_type_field (type, "si_sigval", sigval_type);
332 append_composite_type_field (sifields_type, "_timer", type);
333
334 /* _rt */
e9bb382b 335 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
336 append_composite_type_field (type, "si_pid", pid_type);
337 append_composite_type_field (type, "si_uid", uid_type);
338 append_composite_type_field (type, "si_sigval", sigval_type);
339 append_composite_type_field (sifields_type, "_rt", type);
340
341 /* _sigchld */
e9bb382b 342 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
343 append_composite_type_field (type, "si_pid", pid_type);
344 append_composite_type_field (type, "si_uid", uid_type);
345 append_composite_type_field (type, "si_status", int_type);
346 append_composite_type_field (type, "si_utime", clock_type);
347 append_composite_type_field (type, "si_stime", clock_type);
348 append_composite_type_field (sifields_type, "_sigchld", type);
349
350 /* _sigfault */
e9bb382b 351 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1 352 append_composite_type_field (type, "si_addr", void_ptr_type);
96b5c49f
WT
353
354 /* Additional bound fields for _sigfault in case they were requested. */
355 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
356 {
357 struct type *sigfault_bnd_fields;
358
359 append_composite_type_field (type, "_addr_lsb", short_type);
360 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
361 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
362 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
363 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
364 }
4aa995e1
PA
365 append_composite_type_field (sifields_type, "_sigfault", type);
366
367 /* _sigpoll */
e9bb382b 368 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
369 append_composite_type_field (type, "si_band", long_type);
370 append_composite_type_field (type, "si_fd", int_type);
371 append_composite_type_field (sifields_type, "_sigpoll", type);
372
373 /* struct siginfo */
e9bb382b 374 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
375 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
376 append_composite_type_field (siginfo_type, "si_signo", int_type);
377 append_composite_type_field (siginfo_type, "si_errno", int_type);
378 append_composite_type_field (siginfo_type, "si_code", int_type);
379 append_composite_type_field_aligned (siginfo_type,
380 "_sifields", sifields_type,
381 TYPE_LENGTH (long_type));
382
06253dd3
JK
383 linux_gdbarch_data->siginfo_type = siginfo_type;
384
4aa995e1
PA
385 return siginfo_type;
386}
6b3ae818 387
43564574
WT
388/* This function is suitable for architectures that don't
389 extend/override the standard siginfo structure. */
390
391static struct type *
392linux_get_siginfo_type (struct gdbarch *gdbarch)
393{
394 return linux_get_siginfo_type_with_fields (gdbarch, 0);
395}
396
c01cbb3d
YQ
397/* Return true if the target is running on uClinux instead of normal
398 Linux kernel. */
399
400int
401linux_is_uclinux (void)
6c95b8df 402{
6c95b8df 403 CORE_ADDR dummy;
6c95b8df 404
8b88a78e
PA
405 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
406 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
c01cbb3d 407}
6c95b8df 408
c01cbb3d
YQ
409static int
410linux_has_shared_address_space (struct gdbarch *gdbarch)
411{
412 return linux_is_uclinux ();
6c95b8df 413}
a5ee0f0c
PA
414
415/* This is how we want PTIDs from core files to be printed. */
416
7a114964 417static const char *
a5ee0f0c
PA
418linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
419{
420 static char buf[80];
421
e38504b3 422 if (ptid.lwp () != 0)
a5ee0f0c 423 {
e38504b3 424 snprintf (buf, sizeof (buf), "LWP %ld", ptid.lwp ());
a5ee0f0c
PA
425 return buf;
426 }
427
428 return normal_pid_to_str (ptid);
429}
430
db1ff28b
JK
431/* Service function for corefiles and info proc. */
432
433static void
434read_mapping (const char *line,
435 ULONGEST *addr, ULONGEST *endaddr,
436 const char **permissions, size_t *permissions_len,
437 ULONGEST *offset,
438 const char **device, size_t *device_len,
439 ULONGEST *inode,
440 const char **filename)
441{
442 const char *p = line;
443
444 *addr = strtoulst (p, &p, 16);
445 if (*p == '-')
446 p++;
447 *endaddr = strtoulst (p, &p, 16);
448
f1735a53 449 p = skip_spaces (p);
db1ff28b
JK
450 *permissions = p;
451 while (*p && !isspace (*p))
452 p++;
453 *permissions_len = p - *permissions;
454
455 *offset = strtoulst (p, &p, 16);
456
f1735a53 457 p = skip_spaces (p);
db1ff28b
JK
458 *device = p;
459 while (*p && !isspace (*p))
460 p++;
461 *device_len = p - *device;
462
463 *inode = strtoulst (p, &p, 10);
464
f1735a53 465 p = skip_spaces (p);
db1ff28b
JK
466 *filename = p;
467}
468
469/* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
470
471 This function was based on the documentation found on
472 <Documentation/filesystems/proc.txt>, on the Linux kernel.
473
474 Linux kernels before commit
475 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
476 field on smaps. */
477
478static void
479decode_vmflags (char *p, struct smaps_vmflags *v)
480{
481 char *saveptr = NULL;
482 const char *s;
483
484 v->initialized_p = 1;
485 p = skip_to_space (p);
486 p = skip_spaces (p);
487
488 for (s = strtok_r (p, " ", &saveptr);
489 s != NULL;
490 s = strtok_r (NULL, " ", &saveptr))
491 {
492 if (strcmp (s, "io") == 0)
493 v->io_page = 1;
494 else if (strcmp (s, "ht") == 0)
495 v->uses_huge_tlb = 1;
496 else if (strcmp (s, "dd") == 0)
497 v->exclude_coredump = 1;
498 else if (strcmp (s, "sh") == 0)
499 v->shared_mapping = 1;
500 }
501}
502
2d7cc5c7
PA
503/* Regexes used by mapping_is_anonymous_p. Put in a structure because
504 they're initialized lazily. */
505
506struct mapping_regexes
507{
508 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
509 string in the end). We know for sure, based on the Linux kernel
510 code, that memory mappings whose associated filename is
511 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
512 compiled_regex dev_zero
513 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
514 _("Could not compile regex to match /dev/zero filename")};
515
516 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
517 string in the end). These filenames refer to shared memory
518 (shmem), and memory mappings associated with them are
519 MAP_ANONYMOUS as well. */
520 compiled_regex shmem_file
521 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
522 _("Could not compile regex to match shmem filenames")};
523
524 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
525 0' code, which is responsible to decide if it is dealing with a
526 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
527 FILE_DELETED matches, it does not necessarily mean that we are
528 dealing with an anonymous shared mapping. However, there is no
529 easy way to detect this currently, so this is the best
530 approximation we have.
531
532 As a result, GDB will dump readonly pages of deleted executables
533 when using the default value of coredump_filter (0x33), while the
534 Linux kernel will not dump those pages. But we can live with
535 that. */
536 compiled_regex file_deleted
537 {" (deleted)$", REG_NOSUB,
538 _("Could not compile regex to match '<file> (deleted)'")};
539};
540
db1ff28b
JK
541/* Return 1 if the memory mapping is anonymous, 0 otherwise.
542
543 FILENAME is the name of the file present in the first line of the
544 memory mapping, in the "/proc/PID/smaps" output. For example, if
545 the first line is:
546
547 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
548
549 Then FILENAME will be "/path/to/file". */
550
551static int
552mapping_is_anonymous_p (const char *filename)
553{
2d7cc5c7 554 static gdb::optional<mapping_regexes> regexes;
db1ff28b
JK
555 static int init_regex_p = 0;
556
557 if (!init_regex_p)
558 {
db1ff28b
JK
559 /* Let's be pessimistic and assume there will be an error while
560 compiling the regex'es. */
561 init_regex_p = -1;
562
2d7cc5c7 563 regexes.emplace ();
db1ff28b
JK
564
565 /* If we reached this point, then everything succeeded. */
566 init_regex_p = 1;
567 }
568
569 if (init_regex_p == -1)
570 {
571 const char deleted[] = " (deleted)";
572 size_t del_len = sizeof (deleted) - 1;
573 size_t filename_len = strlen (filename);
574
575 /* There was an error while compiling the regex'es above. In
576 order to try to give some reliable information to the caller,
577 we just try to find the string " (deleted)" in the filename.
578 If we managed to find it, then we assume the mapping is
579 anonymous. */
580 return (filename_len >= del_len
581 && strcmp (filename + filename_len - del_len, deleted) == 0);
582 }
583
584 if (*filename == '\0'
2d7cc5c7
PA
585 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
586 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
587 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
db1ff28b
JK
588 return 1;
589
590 return 0;
591}
592
593/* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
594 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
595 greater than 0 if it should.
596
597 In a nutshell, this is the logic that we follow in order to decide
598 if a mapping should be dumped or not.
599
600 - If the mapping is associated to a file whose name ends with
601 " (deleted)", or if the file is "/dev/zero", or if it is
602 "/SYSV%08x" (shared memory), or if there is no file associated
603 with it, or if the AnonHugePages: or the Anonymous: fields in the
604 /proc/PID/smaps have contents, then GDB considers this mapping to
605 be anonymous. Otherwise, GDB considers this mapping to be a
606 file-backed mapping (because there will be a file associated with
607 it).
608
609 It is worth mentioning that, from all those checks described
610 above, the most fragile is the one to see if the file name ends
611 with " (deleted)". This does not necessarily mean that the
612 mapping is anonymous, because the deleted file associated with
613 the mapping may have been a hard link to another file, for
614 example. The Linux kernel checks to see if "i_nlink == 0", but
615 GDB cannot easily (and normally) do this check (iff running as
616 root, it could find the mapping in /proc/PID/map_files/ and
617 determine whether there still are other hard links to the
618 inode/file). Therefore, we made a compromise here, and we assume
619 that if the file name ends with " (deleted)", then the mapping is
620 indeed anonymous. FWIW, this is something the Linux kernel could
621 do better: expose this information in a more direct way.
622
623 - If we see the flag "sh" in the "VmFlags:" field (in
624 /proc/PID/smaps), then certainly the memory mapping is shared
625 (VM_SHARED). If we have access to the VmFlags, and we don't see
626 the "sh" there, then certainly the mapping is private. However,
627 Linux kernels before commit
628 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
629 "VmFlags:" field; in that case, we use another heuristic: if we
630 see 'p' in the permission flags, then we assume that the mapping
631 is private, even though the presence of the 's' flag there would
632 mean VM_MAYSHARE, which means the mapping could still be private.
633 This should work OK enough, however. */
634
635static int
8d297bbf 636dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
db1ff28b
JK
637 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
638 const char *filename)
639{
640 /* Initially, we trust in what we received from our caller. This
641 value may not be very precise (i.e., it was probably gathered
642 from the permission line in the /proc/PID/smaps list, which
643 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
644 what we have until we take a look at the "VmFlags:" field
645 (assuming that the version of the Linux kernel being used
646 supports it, of course). */
647 int private_p = maybe_private_p;
648
649 /* We always dump vDSO and vsyscall mappings, because it's likely that
650 there'll be no file to read the contents from at core load time.
651 The kernel does the same. */
652 if (strcmp ("[vdso]", filename) == 0
653 || strcmp ("[vsyscall]", filename) == 0)
654 return 1;
655
656 if (v->initialized_p)
657 {
658 /* We never dump I/O mappings. */
659 if (v->io_page)
660 return 0;
661
662 /* Check if we should exclude this mapping. */
afa840dc 663 if (!dump_excluded_mappings && v->exclude_coredump)
db1ff28b
JK
664 return 0;
665
666 /* Update our notion of whether this mapping is shared or
667 private based on a trustworthy value. */
668 private_p = !v->shared_mapping;
669
670 /* HugeTLB checking. */
671 if (v->uses_huge_tlb)
672 {
673 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
674 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
675 return 1;
676
677 return 0;
678 }
679 }
680
681 if (private_p)
682 {
683 if (mapping_anon_p && mapping_file_p)
684 {
685 /* This is a special situation. It can happen when we see a
686 mapping that is file-backed, but that contains anonymous
687 pages. */
688 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
689 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
690 }
691 else if (mapping_anon_p)
692 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
693 else
694 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
695 }
696 else
697 {
698 if (mapping_anon_p && mapping_file_p)
699 {
700 /* This is a special situation. It can happen when we see a
701 mapping that is file-backed, but that contains anonymous
702 pages. */
703 return ((filterflags & COREFILTER_ANON_SHARED) != 0
704 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
705 }
706 else if (mapping_anon_p)
707 return (filterflags & COREFILTER_ANON_SHARED) != 0;
708 else
709 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
710 }
711}
712
3030c96e
UW
713/* Implement the "info proc" command. */
714
715static void
7bc112c1 716linux_info_proc (struct gdbarch *gdbarch, const char *args,
3030c96e
UW
717 enum info_proc_what what)
718{
719 /* A long is used for pid instead of an int to avoid a loss of precision
720 compiler warning from the output of strtoul. */
721 long pid;
722 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
723 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
724 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
725 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
726 int status_f = (what == IP_STATUS || what == IP_ALL);
727 int stat_f = (what == IP_STAT || what == IP_ALL);
728 char filename[100];
3030c96e
UW
729 int target_errno;
730
731 if (args && isdigit (args[0]))
7bc112c1
TT
732 {
733 char *tem;
734
735 pid = strtoul (args, &tem, 10);
736 args = tem;
737 }
3030c96e
UW
738 else
739 {
740 if (!target_has_execution)
741 error (_("No current process: you must name one."));
742 if (current_inferior ()->fake_pid_p)
743 error (_("Can't determine the current process's PID: you must name one."));
744
745 pid = current_inferior ()->pid;
746 }
747
f1735a53 748 args = skip_spaces (args);
3030c96e
UW
749 if (args && args[0])
750 error (_("Too many parameters: %s"), args);
751
752 printf_filtered (_("process %ld\n"), pid);
753 if (cmdline_f)
754 {
755 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
26d6cec4
AA
756 gdb_byte *buffer;
757 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
758
759 if (len > 0)
760 {
761 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
762 ssize_t pos;
763
764 for (pos = 0; pos < len - 1; pos++)
765 {
766 if (buffer[pos] == '\0')
767 buffer[pos] = ' ';
768 }
769 buffer[len - 1] = '\0';
770 printf_filtered ("cmdline = '%s'\n", buffer);
771 }
3030c96e
UW
772 else
773 warning (_("unable to open /proc file '%s'"), filename);
774 }
775 if (cwd_f)
776 {
777 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
e0d3522b
TT
778 gdb::optional<std::string> contents
779 = target_fileio_readlink (NULL, filename, &target_errno);
780 if (contents.has_value ())
781 printf_filtered ("cwd = '%s'\n", contents->c_str ());
3030c96e
UW
782 else
783 warning (_("unable to read link '%s'"), filename);
784 }
785 if (exe_f)
786 {
787 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
e0d3522b
TT
788 gdb::optional<std::string> contents
789 = target_fileio_readlink (NULL, filename, &target_errno);
790 if (contents.has_value ())
791 printf_filtered ("exe = '%s'\n", contents->c_str ());
3030c96e
UW
792 else
793 warning (_("unable to read link '%s'"), filename);
794 }
795 if (mappings_f)
796 {
797 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
87028b87
TT
798 gdb::unique_xmalloc_ptr<char> map
799 = target_fileio_read_stralloc (NULL, filename);
800 if (map != NULL)
3030c96e 801 {
3030c96e
UW
802 char *line;
803
804 printf_filtered (_("Mapped address spaces:\n\n"));
805 if (gdbarch_addr_bit (gdbarch) == 32)
806 {
807 printf_filtered ("\t%10s %10s %10s %10s %s\n",
808 "Start Addr",
809 " End Addr",
810 " Size", " Offset", "objfile");
811 }
812 else
813 {
814 printf_filtered (" %18s %18s %10s %10s %s\n",
815 "Start Addr",
816 " End Addr",
817 " Size", " Offset", "objfile");
818 }
819
87028b87
TT
820 for (line = strtok (map.get (), "\n");
821 line;
822 line = strtok (NULL, "\n"))
3030c96e
UW
823 {
824 ULONGEST addr, endaddr, offset, inode;
b926417a 825 const char *permissions, *device, *mapping_filename;
3030c96e
UW
826 size_t permissions_len, device_len;
827
828 read_mapping (line, &addr, &endaddr,
829 &permissions, &permissions_len,
830 &offset, &device, &device_len,
b926417a 831 &inode, &mapping_filename);
3030c96e
UW
832
833 if (gdbarch_addr_bit (gdbarch) == 32)
834 {
835 printf_filtered ("\t%10s %10s %10s %10s %s\n",
836 paddress (gdbarch, addr),
837 paddress (gdbarch, endaddr),
838 hex_string (endaddr - addr),
839 hex_string (offset),
b926417a 840 *mapping_filename ? mapping_filename : "");
3030c96e
UW
841 }
842 else
843 {
844 printf_filtered (" %18s %18s %10s %10s %s\n",
845 paddress (gdbarch, addr),
846 paddress (gdbarch, endaddr),
847 hex_string (endaddr - addr),
848 hex_string (offset),
b926417a 849 *mapping_filename ? mapping_filename : "");
3030c96e
UW
850 }
851 }
3030c96e
UW
852 }
853 else
854 warning (_("unable to open /proc file '%s'"), filename);
855 }
856 if (status_f)
857 {
858 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
87028b87
TT
859 gdb::unique_xmalloc_ptr<char> status
860 = target_fileio_read_stralloc (NULL, filename);
861 if (status)
862 puts_filtered (status.get ());
3030c96e
UW
863 else
864 warning (_("unable to open /proc file '%s'"), filename);
865 }
866 if (stat_f)
867 {
868 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
87028b87
TT
869 gdb::unique_xmalloc_ptr<char> statstr
870 = target_fileio_read_stralloc (NULL, filename);
871 if (statstr)
3030c96e 872 {
87028b87 873 const char *p = statstr.get ();
3030c96e
UW
874
875 printf_filtered (_("Process: %s\n"),
876 pulongest (strtoulst (p, &p, 10)));
877
f1735a53 878 p = skip_spaces (p);
a71b5a38 879 if (*p == '(')
3030c96e 880 {
184cd072
JK
881 /* ps command also relies on no trailing fields
882 ever contain ')'. */
883 const char *ep = strrchr (p, ')');
a71b5a38
UW
884 if (ep != NULL)
885 {
886 printf_filtered ("Exec file: %.*s\n",
887 (int) (ep - p - 1), p + 1);
888 p = ep + 1;
889 }
3030c96e
UW
890 }
891
f1735a53 892 p = skip_spaces (p);
3030c96e
UW
893 if (*p)
894 printf_filtered (_("State: %c\n"), *p++);
895
896 if (*p)
897 printf_filtered (_("Parent process: %s\n"),
898 pulongest (strtoulst (p, &p, 10)));
899 if (*p)
900 printf_filtered (_("Process group: %s\n"),
901 pulongest (strtoulst (p, &p, 10)));
902 if (*p)
903 printf_filtered (_("Session id: %s\n"),
904 pulongest (strtoulst (p, &p, 10)));
905 if (*p)
906 printf_filtered (_("TTY: %s\n"),
907 pulongest (strtoulst (p, &p, 10)));
908 if (*p)
909 printf_filtered (_("TTY owner process group: %s\n"),
910 pulongest (strtoulst (p, &p, 10)));
911
912 if (*p)
913 printf_filtered (_("Flags: %s\n"),
914 hex_string (strtoulst (p, &p, 10)));
915 if (*p)
916 printf_filtered (_("Minor faults (no memory page): %s\n"),
917 pulongest (strtoulst (p, &p, 10)));
918 if (*p)
919 printf_filtered (_("Minor faults, children: %s\n"),
920 pulongest (strtoulst (p, &p, 10)));
921 if (*p)
922 printf_filtered (_("Major faults (memory page faults): %s\n"),
923 pulongest (strtoulst (p, &p, 10)));
924 if (*p)
925 printf_filtered (_("Major faults, children: %s\n"),
926 pulongest (strtoulst (p, &p, 10)));
927 if (*p)
928 printf_filtered (_("utime: %s\n"),
929 pulongest (strtoulst (p, &p, 10)));
930 if (*p)
931 printf_filtered (_("stime: %s\n"),
932 pulongest (strtoulst (p, &p, 10)));
933 if (*p)
934 printf_filtered (_("utime, children: %s\n"),
935 pulongest (strtoulst (p, &p, 10)));
936 if (*p)
937 printf_filtered (_("stime, children: %s\n"),
938 pulongest (strtoulst (p, &p, 10)));
939 if (*p)
940 printf_filtered (_("jiffies remaining in current "
941 "time slice: %s\n"),
942 pulongest (strtoulst (p, &p, 10)));
943 if (*p)
944 printf_filtered (_("'nice' value: %s\n"),
945 pulongest (strtoulst (p, &p, 10)));
946 if (*p)
947 printf_filtered (_("jiffies until next timeout: %s\n"),
948 pulongest (strtoulst (p, &p, 10)));
949 if (*p)
950 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
951 pulongest (strtoulst (p, &p, 10)));
952 if (*p)
953 printf_filtered (_("start time (jiffies since "
954 "system boot): %s\n"),
955 pulongest (strtoulst (p, &p, 10)));
956 if (*p)
957 printf_filtered (_("Virtual memory size: %s\n"),
958 pulongest (strtoulst (p, &p, 10)));
959 if (*p)
960 printf_filtered (_("Resident set size: %s\n"),
961 pulongest (strtoulst (p, &p, 10)));
962 if (*p)
963 printf_filtered (_("rlim: %s\n"),
964 pulongest (strtoulst (p, &p, 10)));
965 if (*p)
966 printf_filtered (_("Start of text: %s\n"),
967 hex_string (strtoulst (p, &p, 10)));
968 if (*p)
969 printf_filtered (_("End of text: %s\n"),
970 hex_string (strtoulst (p, &p, 10)));
971 if (*p)
972 printf_filtered (_("Start of stack: %s\n"),
973 hex_string (strtoulst (p, &p, 10)));
974#if 0 /* Don't know how architecture-dependent the rest is...
975 Anyway the signal bitmap info is available from "status". */
976 if (*p)
977 printf_filtered (_("Kernel stack pointer: %s\n"),
978 hex_string (strtoulst (p, &p, 10)));
979 if (*p)
980 printf_filtered (_("Kernel instr pointer: %s\n"),
981 hex_string (strtoulst (p, &p, 10)));
982 if (*p)
983 printf_filtered (_("Pending signals bitmap: %s\n"),
984 hex_string (strtoulst (p, &p, 10)));
985 if (*p)
986 printf_filtered (_("Blocked signals bitmap: %s\n"),
987 hex_string (strtoulst (p, &p, 10)));
988 if (*p)
989 printf_filtered (_("Ignored signals bitmap: %s\n"),
990 hex_string (strtoulst (p, &p, 10)));
991 if (*p)
992 printf_filtered (_("Catched signals bitmap: %s\n"),
993 hex_string (strtoulst (p, &p, 10)));
994 if (*p)
995 printf_filtered (_("wchan (system call): %s\n"),
996 hex_string (strtoulst (p, &p, 10)));
997#endif
3030c96e
UW
998 }
999 else
1000 warning (_("unable to open /proc file '%s'"), filename);
1001 }
1002}
1003
451b7c33
TT
1004/* Implement "info proc mappings" for a corefile. */
1005
1006static void
7bc112c1 1007linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
451b7c33
TT
1008{
1009 asection *section;
1010 ULONGEST count, page_size;
9f584b37 1011 unsigned char *descdata, *filenames, *descend;
451b7c33
TT
1012 size_t note_size;
1013 unsigned int addr_size_bits, addr_size;
451b7c33
TT
1014 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1015 /* We assume this for reading 64-bit core files. */
1016 gdb_static_assert (sizeof (ULONGEST) >= 8);
1017
1018 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1019 if (section == NULL)
1020 {
1021 warning (_("unable to find mappings in core file"));
1022 return;
1023 }
1024
1025 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1026 addr_size = addr_size_bits / 8;
1027 note_size = bfd_get_section_size (section);
1028
1029 if (note_size < 2 * addr_size)
1030 error (_("malformed core note - too short for header"));
1031
9f584b37
TT
1032 gdb::def_vector<unsigned char> contents (note_size);
1033 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1034 0, note_size))
451b7c33
TT
1035 error (_("could not get core note contents"));
1036
9f584b37 1037 descdata = contents.data ();
451b7c33
TT
1038 descend = descdata + note_size;
1039
1040 if (descdata[note_size - 1] != '\0')
1041 error (_("malformed note - does not end with \\0"));
1042
1043 count = bfd_get (addr_size_bits, core_bfd, descdata);
1044 descdata += addr_size;
1045
1046 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1047 descdata += addr_size;
1048
1049 if (note_size < 2 * addr_size + count * 3 * addr_size)
1050 error (_("malformed note - too short for supplied file count"));
1051
1052 printf_filtered (_("Mapped address spaces:\n\n"));
1053 if (gdbarch_addr_bit (gdbarch) == 32)
1054 {
1055 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1056 "Start Addr",
1057 " End Addr",
1058 " Size", " Offset", "objfile");
1059 }
1060 else
1061 {
1062 printf_filtered (" %18s %18s %10s %10s %s\n",
1063 "Start Addr",
1064 " End Addr",
1065 " Size", " Offset", "objfile");
1066 }
1067
1068 filenames = descdata + count * 3 * addr_size;
1069 while (--count > 0)
1070 {
1071 ULONGEST start, end, file_ofs;
1072
1073 if (filenames == descend)
1074 error (_("malformed note - filenames end too early"));
1075
1076 start = bfd_get (addr_size_bits, core_bfd, descdata);
1077 descdata += addr_size;
1078 end = bfd_get (addr_size_bits, core_bfd, descdata);
1079 descdata += addr_size;
1080 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1081 descdata += addr_size;
1082
1083 file_ofs *= page_size;
1084
1085 if (gdbarch_addr_bit (gdbarch) == 32)
1086 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1087 paddress (gdbarch, start),
1088 paddress (gdbarch, end),
1089 hex_string (end - start),
1090 hex_string (file_ofs),
1091 filenames);
1092 else
1093 printf_filtered (" %18s %18s %10s %10s %s\n",
1094 paddress (gdbarch, start),
1095 paddress (gdbarch, end),
1096 hex_string (end - start),
1097 hex_string (file_ofs),
1098 filenames);
1099
1100 filenames += 1 + strlen ((char *) filenames);
1101 }
451b7c33
TT
1102}
1103
1104/* Implement "info proc" for a corefile. */
1105
1106static void
7bc112c1 1107linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
451b7c33
TT
1108 enum info_proc_what what)
1109{
1110 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1111 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1112
1113 if (exe_f)
1114 {
1115 const char *exe;
1116
1117 exe = bfd_core_file_failing_command (core_bfd);
1118 if (exe != NULL)
1119 printf_filtered ("exe = '%s'\n", exe);
1120 else
1121 warning (_("unable to find command name in core file"));
1122 }
1123
1124 if (mappings_f)
1125 linux_core_info_proc_mappings (gdbarch, args);
1126
1127 if (!exe_f && !mappings_f)
1128 error (_("unable to handle request"));
1129}
1130
382b69bb
JB
1131/* Read siginfo data from the core, if possible. Returns -1 on
1132 failure. Otherwise, returns the number of bytes read. READBUF,
1133 OFFSET, and LEN are all as specified by the to_xfer_partial
1134 interface. */
1135
1136static LONGEST
1137linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1138 ULONGEST offset, ULONGEST len)
1139{
1140 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1141 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1142 if (section == NULL)
1143 return -1;
1144
1145 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1146 return -1;
1147
1148 return len;
1149}
1150
db1ff28b
JK
1151typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1152 ULONGEST offset, ULONGEST inode,
1153 int read, int write,
1154 int exec, int modified,
1155 const char *filename,
1156 void *data);
451b7c33 1157
db1ff28b 1158/* List memory regions in the inferior for a corefile. */
451b7c33
TT
1159
1160static int
db1ff28b
JK
1161linux_find_memory_regions_full (struct gdbarch *gdbarch,
1162 linux_find_memory_region_ftype *func,
1163 void *obfd)
f7af1fcd 1164{
db1ff28b
JK
1165 char mapsfilename[100];
1166 char coredumpfilter_name[100];
f7af1fcd
JK
1167 pid_t pid;
1168 /* Default dump behavior of coredump_filter (0x33), according to
1169 Documentation/filesystems/proc.txt from the Linux kernel
1170 tree. */
8d297bbf
PA
1171 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1172 | COREFILTER_ANON_SHARED
1173 | COREFILTER_ELF_HEADERS
1174 | COREFILTER_HUGETLB_PRIVATE);
f7af1fcd 1175
db1ff28b 1176 /* We need to know the real target PID to access /proc. */
f7af1fcd 1177 if (current_inferior ()->fake_pid_p)
db1ff28b 1178 return 1;
f7af1fcd
JK
1179
1180 pid = current_inferior ()->pid;
1181
1182 if (use_coredump_filter)
1183 {
f7af1fcd
JK
1184 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1185 "/proc/%d/coredump_filter", pid);
87028b87
TT
1186 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1187 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
f7af1fcd
JK
1188 if (coredumpfilterdata != NULL)
1189 {
8d297bbf
PA
1190 unsigned int flags;
1191
87028b87 1192 sscanf (coredumpfilterdata.get (), "%x", &flags);
8d297bbf 1193 filterflags = (enum filter_flag) flags;
f7af1fcd
JK
1194 }
1195 }
1196
db1ff28b 1197 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
87028b87
TT
1198 gdb::unique_xmalloc_ptr<char> data
1199 = target_fileio_read_stralloc (NULL, mapsfilename);
db1ff28b
JK
1200 if (data == NULL)
1201 {
1202 /* Older Linux kernels did not support /proc/PID/smaps. */
1203 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1204 data = target_fileio_read_stralloc (NULL, mapsfilename);
1205 }
1206
1207 if (data != NULL)
1208 {
db1ff28b
JK
1209 char *line, *t;
1210
87028b87 1211 line = strtok_r (data.get (), "\n", &t);
db1ff28b
JK
1212 while (line != NULL)
1213 {
1214 ULONGEST addr, endaddr, offset, inode;
1215 const char *permissions, *device, *filename;
1216 struct smaps_vmflags v;
1217 size_t permissions_len, device_len;
1218 int read, write, exec, priv;
1219 int has_anonymous = 0;
1220 int should_dump_p = 0;
1221 int mapping_anon_p;
1222 int mapping_file_p;
1223
1224 memset (&v, 0, sizeof (v));
1225 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1226 &offset, &device, &device_len, &inode, &filename);
1227 mapping_anon_p = mapping_is_anonymous_p (filename);
1228 /* If the mapping is not anonymous, then we can consider it
1229 to be file-backed. These two states (anonymous or
1230 file-backed) seem to be exclusive, but they can actually
1231 coexist. For example, if a file-backed mapping has
1232 "Anonymous:" pages (see more below), then the Linux
1233 kernel will dump this mapping when the user specified
1234 that she only wants anonymous mappings in the corefile
1235 (*even* when she explicitly disabled the dumping of
1236 file-backed mappings). */
1237 mapping_file_p = !mapping_anon_p;
1238
1239 /* Decode permissions. */
1240 read = (memchr (permissions, 'r', permissions_len) != 0);
1241 write = (memchr (permissions, 'w', permissions_len) != 0);
1242 exec = (memchr (permissions, 'x', permissions_len) != 0);
1243 /* 'private' here actually means VM_MAYSHARE, and not
1244 VM_SHARED. In order to know if a mapping is really
1245 private or not, we must check the flag "sh" in the
1246 VmFlags field. This is done by decode_vmflags. However,
1247 if we are using a Linux kernel released before the commit
1248 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1249 not have the VmFlags there. In this case, there is
1250 really no way to know if we are dealing with VM_SHARED,
1251 so we just assume that VM_MAYSHARE is enough. */
1252 priv = memchr (permissions, 'p', permissions_len) != 0;
1253
1254 /* Try to detect if region should be dumped by parsing smaps
1255 counters. */
1256 for (line = strtok_r (NULL, "\n", &t);
1257 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1258 line = strtok_r (NULL, "\n", &t))
1259 {
1260 char keyword[64 + 1];
1261
1262 if (sscanf (line, "%64s", keyword) != 1)
1263 {
1264 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1265 break;
1266 }
1267
1268 if (strcmp (keyword, "Anonymous:") == 0)
1269 {
1270 /* Older Linux kernels did not support the
1271 "Anonymous:" counter. Check it here. */
1272 has_anonymous = 1;
1273 }
1274 else if (strcmp (keyword, "VmFlags:") == 0)
1275 decode_vmflags (line, &v);
1276
1277 if (strcmp (keyword, "AnonHugePages:") == 0
1278 || strcmp (keyword, "Anonymous:") == 0)
1279 {
1280 unsigned long number;
1281
1282 if (sscanf (line, "%*s%lu", &number) != 1)
1283 {
1284 warning (_("Error parsing {s,}maps file '%s' number"),
1285 mapsfilename);
1286 break;
1287 }
1288 if (number > 0)
1289 {
1290 /* Even if we are dealing with a file-backed
1291 mapping, if it contains anonymous pages we
1292 consider it to be *also* an anonymous
1293 mapping, because this is what the Linux
1294 kernel does:
1295
1296 // Dump segments that have been written to.
1297 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1298 goto whole;
1299
1300 Note that if the mapping is already marked as
1301 file-backed (i.e., mapping_file_p is
1302 non-zero), then this is a special case, and
1303 this mapping will be dumped either when the
1304 user wants to dump file-backed *or* anonymous
1305 mappings. */
1306 mapping_anon_p = 1;
1307 }
1308 }
1309 }
1310
1311 if (has_anonymous)
1312 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1313 mapping_anon_p, mapping_file_p,
1314 filename);
1315 else
1316 {
1317 /* Older Linux kernels did not support the "Anonymous:" counter.
1318 If it is missing, we can't be sure - dump all the pages. */
1319 should_dump_p = 1;
1320 }
1321
1322 /* Invoke the callback function to create the corefile segment. */
1323 if (should_dump_p)
1324 func (addr, endaddr - addr, offset, inode,
1325 read, write, exec, 1, /* MODIFIED is true because we
1326 want to dump the mapping. */
1327 filename, obfd);
1328 }
1329
db1ff28b
JK
1330 return 0;
1331 }
1332
1333 return 1;
1334}
1335
1336/* A structure for passing information through
1337 linux_find_memory_regions_full. */
1338
1339struct linux_find_memory_regions_data
1340{
1341 /* The original callback. */
1342
1343 find_memory_region_ftype func;
1344
1345 /* The original datum. */
1346
1347 void *obfd;
1348};
1349
1350/* A callback for linux_find_memory_regions that converts between the
1351 "full"-style callback and find_memory_region_ftype. */
1352
1353static int
1354linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1355 ULONGEST offset, ULONGEST inode,
1356 int read, int write, int exec, int modified,
1357 const char *filename, void *arg)
1358{
9a3c8263
SM
1359 struct linux_find_memory_regions_data *data
1360 = (struct linux_find_memory_regions_data *) arg;
db1ff28b
JK
1361
1362 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
451b7c33
TT
1363}
1364
1365/* A variant of linux_find_memory_regions_full that is suitable as the
1366 gdbarch find_memory_regions method. */
1367
1368static int
1369linux_find_memory_regions (struct gdbarch *gdbarch,
db1ff28b 1370 find_memory_region_ftype func, void *obfd)
451b7c33
TT
1371{
1372 struct linux_find_memory_regions_data data;
1373
1374 data.func = func;
db1ff28b 1375 data.obfd = obfd;
451b7c33 1376
db1ff28b
JK
1377 return linux_find_memory_regions_full (gdbarch,
1378 linux_find_memory_regions_thunk,
1379 &data);
451b7c33
TT
1380}
1381
6432734d
UW
1382/* Determine which signal stopped execution. */
1383
1384static int
1385find_signalled_thread (struct thread_info *info, void *data)
1386{
a493e3e2 1387 if (info->suspend.stop_signal != GDB_SIGNAL_0
e99b03dc 1388 && info->ptid.pid () == inferior_ptid.pid ())
6432734d
UW
1389 return 1;
1390
1391 return 0;
1392}
1393
6432734d
UW
1394/* Generate corefile notes for SPU contexts. */
1395
1396static char *
1397linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1398{
1399 static const char *spu_files[] =
1400 {
1401 "object-id",
1402 "mem",
1403 "regs",
1404 "fpcr",
1405 "lslr",
1406 "decr",
1407 "decr_status",
1408 "signal1",
1409 "signal1_type",
1410 "signal2",
1411 "signal2_type",
1412 "event_mask",
1413 "event_status",
1414 "mbox_info",
1415 "ibox_info",
1416 "wbox_info",
1417 "dma_info",
1418 "proxydma_info",
1419 };
1420
f5656ead 1421 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
6432734d
UW
1422
1423 /* Determine list of SPU ids. */
9018be22 1424 gdb::optional<gdb::byte_vector>
8b88a78e
PA
1425 spu_ids = target_read_alloc (current_top_target (),
1426 TARGET_OBJECT_SPU, NULL);
9018be22
SM
1427
1428 if (!spu_ids)
07d28c77 1429 return note_data;
6432734d
UW
1430
1431 /* Generate corefile notes for each SPU file. */
9018be22 1432 for (size_t i = 0; i < spu_ids->size (); i += 4)
6432734d 1433 {
9018be22 1434 int fd = extract_unsigned_integer (spu_ids->data () + i, 4, byte_order);
6432734d 1435
9018be22 1436 for (size_t j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
6432734d
UW
1437 {
1438 char annex[32], note_name[32];
6432734d
UW
1439
1440 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
9018be22 1441 gdb::optional<gdb::byte_vector> spu_data
8b88a78e 1442 = target_read_alloc (current_top_target (), TARGET_OBJECT_SPU, annex);
9018be22
SM
1443
1444 if (spu_data && !spu_data->empty ())
6432734d
UW
1445 {
1446 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1447 note_data = elfcore_write_note (obfd, note_data, note_size,
1448 note_name, NT_SPU,
9018be22
SM
1449 spu_data->data (),
1450 spu_data->size ());
6432734d
UW
1451
1452 if (!note_data)
9018be22 1453 return nullptr;
6432734d
UW
1454 }
1455 }
1456 }
1457
6432734d
UW
1458 return note_data;
1459}
1460
451b7c33
TT
1461/* This is used to pass information from
1462 linux_make_mappings_corefile_notes through
1463 linux_find_memory_regions_full. */
1464
1465struct linux_make_mappings_data
1466{
1467 /* Number of files mapped. */
1468 ULONGEST file_count;
1469
1470 /* The obstack for the main part of the data. */
1471 struct obstack *data_obstack;
1472
1473 /* The filename obstack. */
1474 struct obstack *filename_obstack;
1475
1476 /* The architecture's "long" type. */
1477 struct type *long_type;
1478};
1479
1480static linux_find_memory_region_ftype linux_make_mappings_callback;
1481
1482/* A callback for linux_find_memory_regions_full that updates the
1483 mappings data for linux_make_mappings_corefile_notes. */
1484
1485static int
1486linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1487 ULONGEST offset, ULONGEST inode,
1488 int read, int write, int exec, int modified,
1489 const char *filename, void *data)
1490{
9a3c8263
SM
1491 struct linux_make_mappings_data *map_data
1492 = (struct linux_make_mappings_data *) data;
451b7c33
TT
1493 gdb_byte buf[sizeof (ULONGEST)];
1494
1495 if (*filename == '\0' || inode == 0)
1496 return 0;
1497
1498 ++map_data->file_count;
1499
1500 pack_long (buf, map_data->long_type, vaddr);
1501 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1502 pack_long (buf, map_data->long_type, vaddr + size);
1503 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1504 pack_long (buf, map_data->long_type, offset);
1505 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1506
1507 obstack_grow_str0 (map_data->filename_obstack, filename);
1508
1509 return 0;
1510}
1511
1512/* Write the file mapping data to the core file, if possible. OBFD is
1513 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1514 is a pointer to the note size. Returns the new NOTE_DATA and
1515 updates NOTE_SIZE. */
1516
1517static char *
1518linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1519 char *note_data, int *note_size)
1520{
451b7c33
TT
1521 struct linux_make_mappings_data mapping_data;
1522 struct type *long_type
1523 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1524 gdb_byte buf[sizeof (ULONGEST)];
1525
8268c778 1526 auto_obstack data_obstack, filename_obstack;
451b7c33
TT
1527
1528 mapping_data.file_count = 0;
1529 mapping_data.data_obstack = &data_obstack;
1530 mapping_data.filename_obstack = &filename_obstack;
1531 mapping_data.long_type = long_type;
1532
1533 /* Reserve space for the count. */
1534 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1535 /* We always write the page size as 1 since we have no good way to
1536 determine the correct value. */
1537 pack_long (buf, long_type, 1);
1538 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1539
db1ff28b
JK
1540 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1541 &mapping_data);
451b7c33
TT
1542
1543 if (mapping_data.file_count != 0)
1544 {
1545 /* Write the count to the obstack. */
51a5cd90
PA
1546 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1547 long_type, mapping_data.file_count);
451b7c33
TT
1548
1549 /* Copy the filenames to the data obstack. */
1550 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1551 obstack_object_size (&filename_obstack));
1552
1553 note_data = elfcore_write_note (obfd, note_data, note_size,
1554 "CORE", NT_FILE,
1555 obstack_base (&data_obstack),
1556 obstack_object_size (&data_obstack));
1557 }
1558
451b7c33
TT
1559 return note_data;
1560}
1561
5aa82d05
AA
1562/* Structure for passing information from
1563 linux_collect_thread_registers via an iterator to
1564 linux_collect_regset_section_cb. */
1565
1566struct linux_collect_regset_section_cb_data
1567{
1568 struct gdbarch *gdbarch;
1569 const struct regcache *regcache;
1570 bfd *obfd;
1571 char *note_data;
1572 int *note_size;
1573 unsigned long lwp;
1574 enum gdb_signal stop_signal;
1575 int abort_iteration;
1576};
1577
1578/* Callback for iterate_over_regset_sections that records a single
1579 regset in the corefile note section. */
1580
1581static void
a616bb94
AH
1582linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1583 int collect_size, const struct regset *regset,
5aa82d05
AA
1584 const char *human_name, void *cb_data)
1585{
5aa82d05 1586 char *buf;
7567e115
SM
1587 struct linux_collect_regset_section_cb_data *data
1588 = (struct linux_collect_regset_section_cb_data *) cb_data;
a616bb94
AH
1589 bool variable_size_section = (regset != NULL
1590 && regset->flags & REGSET_VARIABLE_SIZE);
1591
1592 if (!variable_size_section)
1593 gdb_assert (supply_size == collect_size);
5aa82d05
AA
1594
1595 if (data->abort_iteration)
1596 return;
1597
5aa82d05
AA
1598 gdb_assert (regset && regset->collect_regset);
1599
a616bb94
AH
1600 buf = (char *) xmalloc (collect_size);
1601 regset->collect_regset (regset, data->regcache, -1, buf, collect_size);
5aa82d05
AA
1602
1603 /* PRSTATUS still needs to be treated specially. */
1604 if (strcmp (sect_name, ".reg") == 0)
1605 data->note_data = (char *) elfcore_write_prstatus
1606 (data->obfd, data->note_data, data->note_size, data->lwp,
1607 gdb_signal_to_host (data->stop_signal), buf);
1608 else
1609 data->note_data = (char *) elfcore_write_register_note
1610 (data->obfd, data->note_data, data->note_size,
a616bb94 1611 sect_name, buf, collect_size);
5aa82d05
AA
1612 xfree (buf);
1613
1614 if (data->note_data == NULL)
1615 data->abort_iteration = 1;
1616}
1617
6432734d
UW
1618/* Records the thread's register state for the corefile note
1619 section. */
1620
1621static char *
1622linux_collect_thread_registers (const struct regcache *regcache,
1623 ptid_t ptid, bfd *obfd,
1624 char *note_data, int *note_size,
2ea28649 1625 enum gdb_signal stop_signal)
6432734d 1626{
ac7936df 1627 struct gdbarch *gdbarch = regcache->arch ();
5aa82d05 1628 struct linux_collect_regset_section_cb_data data;
6432734d 1629
5aa82d05
AA
1630 data.gdbarch = gdbarch;
1631 data.regcache = regcache;
1632 data.obfd = obfd;
1633 data.note_data = note_data;
1634 data.note_size = note_size;
1635 data.stop_signal = stop_signal;
1636 data.abort_iteration = 0;
6432734d
UW
1637
1638 /* For remote targets the LWP may not be available, so use the TID. */
e38504b3 1639 data.lwp = ptid.lwp ();
5aa82d05 1640 if (!data.lwp)
cc6bcb54 1641 data.lwp = ptid.tid ();
5aa82d05
AA
1642
1643 gdbarch_iterate_over_regset_sections (gdbarch,
1644 linux_collect_regset_section_cb,
1645 &data, regcache);
1646 return data.note_data;
6432734d
UW
1647}
1648
2989a365 1649/* Fetch the siginfo data for the specified thread, if it exists. If
9f584b37
TT
1650 there is no data, or we could not read it, return an empty
1651 buffer. */
1652
1653static gdb::byte_vector
1654linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
9015683b
TT
1655{
1656 struct type *siginfo_type;
9015683b 1657 LONGEST bytes_read;
9015683b
TT
1658
1659 if (!gdbarch_get_siginfo_type_p (gdbarch))
9f584b37
TT
1660 return gdb::byte_vector ();
1661
2989a365
TT
1662 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1663 inferior_ptid = thread->ptid;
1664
9015683b
TT
1665 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1666
9f584b37 1667 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
9015683b 1668
8b88a78e 1669 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9f584b37
TT
1670 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1671 if (bytes_read != TYPE_LENGTH (siginfo_type))
1672 buf.clear ();
9015683b
TT
1673
1674 return buf;
1675}
1676
6432734d
UW
1677struct linux_corefile_thread_data
1678{
1679 struct gdbarch *gdbarch;
6432734d
UW
1680 bfd *obfd;
1681 char *note_data;
1682 int *note_size;
2ea28649 1683 enum gdb_signal stop_signal;
6432734d
UW
1684};
1685
050c224b
PA
1686/* Records the thread's register state for the corefile note
1687 section. */
6432734d 1688
050c224b
PA
1689static void
1690linux_corefile_thread (struct thread_info *info,
1691 struct linux_corefile_thread_data *args)
6432734d 1692{
050c224b 1693 struct regcache *regcache;
050c224b
PA
1694
1695 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1696
050c224b 1697 target_fetch_registers (regcache, -1);
9f584b37 1698 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
050c224b
PA
1699
1700 args->note_data = linux_collect_thread_registers
1701 (regcache, info->ptid, args->obfd, args->note_data,
1702 args->note_size, args->stop_signal);
1703
1704 /* Don't return anything if we got no register information above,
1705 such a core file is useless. */
1706 if (args->note_data != NULL)
9f584b37 1707 if (!siginfo_data.empty ())
050c224b
PA
1708 args->note_data = elfcore_write_note (args->obfd,
1709 args->note_data,
1710 args->note_size,
1711 "CORE", NT_SIGINFO,
9f584b37
TT
1712 siginfo_data.data (),
1713 siginfo_data.size ());
6432734d
UW
1714}
1715
b3ac9c77
SDJ
1716/* Fill the PRPSINFO structure with information about the process being
1717 debugged. Returns 1 in case of success, 0 for failures. Please note that
1718 even if the structure cannot be entirely filled (e.g., GDB was unable to
1719 gather information about the process UID/GID), this function will still
1720 return 1 since some information was already recorded. It will only return
1721 0 iff nothing can be gathered. */
1722
1723static int
1724linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1725{
1726 /* The filename which we will use to obtain some info about the process.
1727 We will basically use this to store the `/proc/PID/FILENAME' file. */
1728 char filename[100];
b3ac9c77
SDJ
1729 /* The basename of the executable. */
1730 const char *basename;
cbaaa0ca 1731 const char *infargs;
b3ac9c77
SDJ
1732 /* Temporary buffer. */
1733 char *tmpstr;
1734 /* The valid states of a process, according to the Linux kernel. */
1735 const char valid_states[] = "RSDTZW";
1736 /* The program state. */
1737 const char *prog_state;
1738 /* The state of the process. */
1739 char pr_sname;
1740 /* The PID of the program which generated the corefile. */
1741 pid_t pid;
1742 /* Process flags. */
1743 unsigned int pr_flag;
1744 /* Process nice value. */
1745 long pr_nice;
1746 /* The number of fields read by `sscanf'. */
1747 int n_fields = 0;
b3ac9c77
SDJ
1748
1749 gdb_assert (p != NULL);
1750
1751 /* Obtaining PID and filename. */
e99b03dc 1752 pid = inferior_ptid.pid ();
b3ac9c77 1753 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
87028b87
TT
1754 /* The full name of the program which generated the corefile. */
1755 gdb::unique_xmalloc_ptr<char> fname
1756 = target_fileio_read_stralloc (NULL, filename);
b3ac9c77 1757
87028b87 1758 if (fname == NULL || fname.get ()[0] == '\0')
b3ac9c77
SDJ
1759 {
1760 /* No program name was read, so we won't be able to retrieve more
1761 information about the process. */
b3ac9c77
SDJ
1762 return 0;
1763 }
1764
b3ac9c77
SDJ
1765 memset (p, 0, sizeof (*p));
1766
1767 /* Defining the PID. */
1768 p->pr_pid = pid;
1769
1770 /* Copying the program name. Only the basename matters. */
87028b87 1771 basename = lbasename (fname.get ());
b3ac9c77
SDJ
1772 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1773 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1774
1775 infargs = get_inferior_args ();
1776
87028b87
TT
1777 /* The arguments of the program. */
1778 std::string psargs = fname.get ();
b3ac9c77 1779 if (infargs != NULL)
87028b87 1780 psargs = psargs + " " + infargs;
b3ac9c77 1781
87028b87 1782 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
b3ac9c77
SDJ
1783 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1784
1785 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
87028b87
TT
1786 /* The contents of `/proc/PID/stat'. */
1787 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1788 = target_fileio_read_stralloc (NULL, filename);
1789 char *proc_stat = proc_stat_contents.get ();
b3ac9c77
SDJ
1790
1791 if (proc_stat == NULL || *proc_stat == '\0')
1792 {
1793 /* Despite being unable to read more information about the
1794 process, we return 1 here because at least we have its
1795 command line, PID and arguments. */
b3ac9c77
SDJ
1796 return 1;
1797 }
1798
1799 /* Ok, we have the stats. It's time to do a little parsing of the
1800 contents of the buffer, so that we end up reading what we want.
1801
1802 The following parsing mechanism is strongly based on the
1803 information generated by the `fs/proc/array.c' file, present in
1804 the Linux kernel tree. More details about how the information is
1805 displayed can be obtained by seeing the manpage of proc(5),
1806 specifically under the entry of `/proc/[pid]/stat'. */
1807
1808 /* Getting rid of the PID, since we already have it. */
1809 while (isdigit (*proc_stat))
1810 ++proc_stat;
1811
1812 proc_stat = skip_spaces (proc_stat);
1813
184cd072
JK
1814 /* ps command also relies on no trailing fields ever contain ')'. */
1815 proc_stat = strrchr (proc_stat, ')');
1816 if (proc_stat == NULL)
87028b87 1817 return 1;
184cd072 1818 proc_stat++;
b3ac9c77
SDJ
1819
1820 proc_stat = skip_spaces (proc_stat);
1821
1822 n_fields = sscanf (proc_stat,
1823 "%c" /* Process state. */
1824 "%d%d%d" /* Parent PID, group ID, session ID. */
1825 "%*d%*d" /* tty_nr, tpgid (not used). */
1826 "%u" /* Flags. */
1827 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1828 cmajflt (not used). */
1829 "%*s%*s%*s%*s" /* utime, stime, cutime,
1830 cstime (not used). */
1831 "%*s" /* Priority (not used). */
1832 "%ld", /* Nice. */
1833 &pr_sname,
1834 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1835 &pr_flag,
1836 &pr_nice);
1837
1838 if (n_fields != 6)
1839 {
1840 /* Again, we couldn't read the complementary information about
1841 the process state. However, we already have minimal
1842 information, so we just return 1 here. */
b3ac9c77
SDJ
1843 return 1;
1844 }
1845
1846 /* Filling the structure fields. */
1847 prog_state = strchr (valid_states, pr_sname);
1848 if (prog_state != NULL)
1849 p->pr_state = prog_state - valid_states;
1850 else
1851 {
1852 /* Zero means "Running". */
1853 p->pr_state = 0;
1854 }
1855
1856 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1857 p->pr_zomb = p->pr_sname == 'Z';
1858 p->pr_nice = pr_nice;
1859 p->pr_flag = pr_flag;
1860
1861 /* Finally, obtaining the UID and GID. For that, we read and parse the
1862 contents of the `/proc/PID/status' file. */
1863 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
87028b87
TT
1864 /* The contents of `/proc/PID/status'. */
1865 gdb::unique_xmalloc_ptr<char> proc_status_contents
1866 = target_fileio_read_stralloc (NULL, filename);
1867 char *proc_status = proc_status_contents.get ();
b3ac9c77
SDJ
1868
1869 if (proc_status == NULL || *proc_status == '\0')
1870 {
1871 /* Returning 1 since we already have a bunch of information. */
b3ac9c77
SDJ
1872 return 1;
1873 }
1874
1875 /* Extracting the UID. */
1876 tmpstr = strstr (proc_status, "Uid:");
1877 if (tmpstr != NULL)
1878 {
1879 /* Advancing the pointer to the beginning of the UID. */
1880 tmpstr += sizeof ("Uid:");
1881 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1882 ++tmpstr;
1883
1884 if (isdigit (*tmpstr))
1885 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1886 }
1887
1888 /* Extracting the GID. */
1889 tmpstr = strstr (proc_status, "Gid:");
1890 if (tmpstr != NULL)
1891 {
1892 /* Advancing the pointer to the beginning of the GID. */
1893 tmpstr += sizeof ("Gid:");
1894 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1895 ++tmpstr;
1896
1897 if (isdigit (*tmpstr))
1898 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1899 }
1900
b3ac9c77
SDJ
1901 return 1;
1902}
1903
f968fe80
AA
1904/* Build the note section for a corefile, and return it in a malloc
1905 buffer. */
6432734d 1906
f968fe80
AA
1907static char *
1908linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
6432734d
UW
1909{
1910 struct linux_corefile_thread_data thread_args;
b3ac9c77 1911 struct elf_internal_linux_prpsinfo prpsinfo;
6432734d 1912 char *note_data = NULL;
050c224b 1913 struct thread_info *curr_thr, *signalled_thr, *thr;
6432734d 1914
f968fe80
AA
1915 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1916 return NULL;
1917
b3ac9c77 1918 if (linux_fill_prpsinfo (&prpsinfo))
6432734d 1919 {
fe220226
MR
1920 if (gdbarch_ptr_bit (gdbarch) == 64)
1921 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1922 note_data, note_size,
1923 &prpsinfo);
b3ac9c77 1924 else
fe220226
MR
1925 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1926 note_data, note_size,
1927 &prpsinfo);
6432734d
UW
1928 }
1929
1930 /* Thread register information. */
492d29ea 1931 TRY
22fd09ae
JK
1932 {
1933 update_thread_list ();
1934 }
492d29ea
PA
1935 CATCH (e, RETURN_MASK_ERROR)
1936 {
1937 exception_print (gdb_stderr, e);
1938 }
1939 END_CATCH
1940
050c224b
PA
1941 /* Like the kernel, prefer dumping the signalled thread first.
1942 "First thread" is what tools use to infer the signalled thread.
1943 In case there's more than one signalled thread, prefer the
1944 current thread, if it is signalled. */
1945 curr_thr = inferior_thread ();
1946 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1947 signalled_thr = curr_thr;
1948 else
1949 {
1950 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1951 if (signalled_thr == NULL)
1952 signalled_thr = curr_thr;
1953 }
1954
6432734d 1955 thread_args.gdbarch = gdbarch;
6432734d
UW
1956 thread_args.obfd = obfd;
1957 thread_args.note_data = note_data;
1958 thread_args.note_size = note_size;
050c224b
PA
1959 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1960
1961 linux_corefile_thread (signalled_thr, &thread_args);
1962 ALL_NON_EXITED_THREADS (thr)
1963 {
1964 if (thr == signalled_thr)
1965 continue;
e99b03dc 1966 if (thr->ptid.pid () != inferior_ptid.pid ())
050c224b
PA
1967 continue;
1968
1969 linux_corefile_thread (thr, &thread_args);
1970 }
1971
6432734d
UW
1972 note_data = thread_args.note_data;
1973 if (!note_data)
1974 return NULL;
1975
1976 /* Auxillary vector. */
9018be22 1977 gdb::optional<gdb::byte_vector> auxv =
8b88a78e 1978 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
9018be22 1979 if (auxv && !auxv->empty ())
6432734d
UW
1980 {
1981 note_data = elfcore_write_note (obfd, note_data, note_size,
9018be22
SM
1982 "CORE", NT_AUXV, auxv->data (),
1983 auxv->size ());
6432734d
UW
1984
1985 if (!note_data)
1986 return NULL;
1987 }
1988
1989 /* SPU information. */
1990 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
1991 if (!note_data)
1992 return NULL;
1993
451b7c33
TT
1994 /* File mappings. */
1995 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1996 note_data, note_size);
1997
6432734d
UW
1998 return note_data;
1999}
2000
eb14d406
SDJ
2001/* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2002 gdbarch.h. This function is not static because it is exported to
2003 other -tdep files. */
2004
2005enum gdb_signal
2006linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2007{
2008 switch (signal)
2009 {
2010 case 0:
2011 return GDB_SIGNAL_0;
2012
2013 case LINUX_SIGHUP:
2014 return GDB_SIGNAL_HUP;
2015
2016 case LINUX_SIGINT:
2017 return GDB_SIGNAL_INT;
2018
2019 case LINUX_SIGQUIT:
2020 return GDB_SIGNAL_QUIT;
2021
2022 case LINUX_SIGILL:
2023 return GDB_SIGNAL_ILL;
2024
2025 case LINUX_SIGTRAP:
2026 return GDB_SIGNAL_TRAP;
2027
2028 case LINUX_SIGABRT:
2029 return GDB_SIGNAL_ABRT;
2030
2031 case LINUX_SIGBUS:
2032 return GDB_SIGNAL_BUS;
2033
2034 case LINUX_SIGFPE:
2035 return GDB_SIGNAL_FPE;
2036
2037 case LINUX_SIGKILL:
2038 return GDB_SIGNAL_KILL;
2039
2040 case LINUX_SIGUSR1:
2041 return GDB_SIGNAL_USR1;
2042
2043 case LINUX_SIGSEGV:
2044 return GDB_SIGNAL_SEGV;
2045
2046 case LINUX_SIGUSR2:
2047 return GDB_SIGNAL_USR2;
2048
2049 case LINUX_SIGPIPE:
2050 return GDB_SIGNAL_PIPE;
2051
2052 case LINUX_SIGALRM:
2053 return GDB_SIGNAL_ALRM;
2054
2055 case LINUX_SIGTERM:
2056 return GDB_SIGNAL_TERM;
2057
2058 case LINUX_SIGCHLD:
2059 return GDB_SIGNAL_CHLD;
2060
2061 case LINUX_SIGCONT:
2062 return GDB_SIGNAL_CONT;
2063
2064 case LINUX_SIGSTOP:
2065 return GDB_SIGNAL_STOP;
2066
2067 case LINUX_SIGTSTP:
2068 return GDB_SIGNAL_TSTP;
2069
2070 case LINUX_SIGTTIN:
2071 return GDB_SIGNAL_TTIN;
2072
2073 case LINUX_SIGTTOU:
2074 return GDB_SIGNAL_TTOU;
2075
2076 case LINUX_SIGURG:
2077 return GDB_SIGNAL_URG;
2078
2079 case LINUX_SIGXCPU:
2080 return GDB_SIGNAL_XCPU;
2081
2082 case LINUX_SIGXFSZ:
2083 return GDB_SIGNAL_XFSZ;
2084
2085 case LINUX_SIGVTALRM:
2086 return GDB_SIGNAL_VTALRM;
2087
2088 case LINUX_SIGPROF:
2089 return GDB_SIGNAL_PROF;
2090
2091 case LINUX_SIGWINCH:
2092 return GDB_SIGNAL_WINCH;
2093
2094 /* No way to differentiate between SIGIO and SIGPOLL.
2095 Therefore, we just handle the first one. */
2096 case LINUX_SIGIO:
2097 return GDB_SIGNAL_IO;
2098
2099 case LINUX_SIGPWR:
2100 return GDB_SIGNAL_PWR;
2101
2102 case LINUX_SIGSYS:
2103 return GDB_SIGNAL_SYS;
2104
2105 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2106 therefore we have to handle them here. */
2107 case LINUX_SIGRTMIN:
2108 return GDB_SIGNAL_REALTIME_32;
2109
2110 case LINUX_SIGRTMAX:
2111 return GDB_SIGNAL_REALTIME_64;
2112 }
2113
2114 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2115 {
2116 int offset = signal - LINUX_SIGRTMIN + 1;
2117
2118 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2119 }
2120
2121 return GDB_SIGNAL_UNKNOWN;
2122}
2123
2124/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2125 gdbarch.h. This function is not static because it is exported to
2126 other -tdep files. */
2127
2128int
2129linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2130 enum gdb_signal signal)
2131{
2132 switch (signal)
2133 {
2134 case GDB_SIGNAL_0:
2135 return 0;
2136
2137 case GDB_SIGNAL_HUP:
2138 return LINUX_SIGHUP;
2139
2140 case GDB_SIGNAL_INT:
2141 return LINUX_SIGINT;
2142
2143 case GDB_SIGNAL_QUIT:
2144 return LINUX_SIGQUIT;
2145
2146 case GDB_SIGNAL_ILL:
2147 return LINUX_SIGILL;
2148
2149 case GDB_SIGNAL_TRAP:
2150 return LINUX_SIGTRAP;
2151
2152 case GDB_SIGNAL_ABRT:
2153 return LINUX_SIGABRT;
2154
2155 case GDB_SIGNAL_FPE:
2156 return LINUX_SIGFPE;
2157
2158 case GDB_SIGNAL_KILL:
2159 return LINUX_SIGKILL;
2160
2161 case GDB_SIGNAL_BUS:
2162 return LINUX_SIGBUS;
2163
2164 case GDB_SIGNAL_SEGV:
2165 return LINUX_SIGSEGV;
2166
2167 case GDB_SIGNAL_SYS:
2168 return LINUX_SIGSYS;
2169
2170 case GDB_SIGNAL_PIPE:
2171 return LINUX_SIGPIPE;
2172
2173 case GDB_SIGNAL_ALRM:
2174 return LINUX_SIGALRM;
2175
2176 case GDB_SIGNAL_TERM:
2177 return LINUX_SIGTERM;
2178
2179 case GDB_SIGNAL_URG:
2180 return LINUX_SIGURG;
2181
2182 case GDB_SIGNAL_STOP:
2183 return LINUX_SIGSTOP;
2184
2185 case GDB_SIGNAL_TSTP:
2186 return LINUX_SIGTSTP;
2187
2188 case GDB_SIGNAL_CONT:
2189 return LINUX_SIGCONT;
2190
2191 case GDB_SIGNAL_CHLD:
2192 return LINUX_SIGCHLD;
2193
2194 case GDB_SIGNAL_TTIN:
2195 return LINUX_SIGTTIN;
2196
2197 case GDB_SIGNAL_TTOU:
2198 return LINUX_SIGTTOU;
2199
2200 case GDB_SIGNAL_IO:
2201 return LINUX_SIGIO;
2202
2203 case GDB_SIGNAL_XCPU:
2204 return LINUX_SIGXCPU;
2205
2206 case GDB_SIGNAL_XFSZ:
2207 return LINUX_SIGXFSZ;
2208
2209 case GDB_SIGNAL_VTALRM:
2210 return LINUX_SIGVTALRM;
2211
2212 case GDB_SIGNAL_PROF:
2213 return LINUX_SIGPROF;
2214
2215 case GDB_SIGNAL_WINCH:
2216 return LINUX_SIGWINCH;
2217
2218 case GDB_SIGNAL_USR1:
2219 return LINUX_SIGUSR1;
2220
2221 case GDB_SIGNAL_USR2:
2222 return LINUX_SIGUSR2;
2223
2224 case GDB_SIGNAL_PWR:
2225 return LINUX_SIGPWR;
2226
2227 case GDB_SIGNAL_POLL:
2228 return LINUX_SIGPOLL;
2229
2230 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2231 therefore we have to handle it here. */
2232 case GDB_SIGNAL_REALTIME_32:
2233 return LINUX_SIGRTMIN;
2234
2235 /* Same comment applies to _64. */
2236 case GDB_SIGNAL_REALTIME_64:
2237 return LINUX_SIGRTMAX;
2238 }
2239
2240 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2241 if (signal >= GDB_SIGNAL_REALTIME_33
2242 && signal <= GDB_SIGNAL_REALTIME_63)
2243 {
2244 int offset = signal - GDB_SIGNAL_REALTIME_33;
2245
2246 return LINUX_SIGRTMIN + 1 + offset;
2247 }
2248
2249 return -1;
2250}
2251
cdfa0b0a
PA
2252/* Helper for linux_vsyscall_range that does the real work of finding
2253 the vsyscall's address range. */
3437254d
PA
2254
2255static int
cdfa0b0a 2256linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
3437254d 2257{
95e94c3f
PA
2258 char filename[100];
2259 long pid;
95e94c3f 2260
8b88a78e 2261 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
95e94c3f
PA
2262 return 0;
2263
6bb90213
PA
2264 /* It doesn't make sense to access the host's /proc when debugging a
2265 core file. Instead, look for the PT_LOAD segment that matches
2266 the vDSO. */
2267 if (!target_has_execution)
2268 {
2269 Elf_Internal_Phdr *phdrs;
2270 long phdrs_size;
2271 int num_phdrs, i;
2272
2273 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2274 if (phdrs_size == -1)
2275 return 0;
2276
2277 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
2278 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs);
2279 if (num_phdrs == -1)
2280 return 0;
2281
2282 for (i = 0; i < num_phdrs; i++)
2283 if (phdrs[i].p_type == PT_LOAD
2284 && phdrs[i].p_vaddr == range->start)
2285 {
2286 range->length = phdrs[i].p_memsz;
2287 return 1;
2288 }
2289
2290 return 0;
2291 }
2292
95e94c3f
PA
2293 /* We need to know the real target PID to access /proc. */
2294 if (current_inferior ()->fake_pid_p)
2295 return 0;
2296
95e94c3f 2297 pid = current_inferior ()->pid;
3437254d 2298
95e94c3f
PA
2299 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2300 reading /proc/PID/maps (2). The later identifies thread stacks
2301 in the output, which requires scanning every thread in the thread
2302 group to check whether a VMA is actually a thread's stack. With
2303 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2304 a few thousand threads, (1) takes a few miliseconds, while (2)
2305 takes several seconds. Also note that "smaps", what we read for
2306 determining core dump mappings, is even slower than "maps". */
2307 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
87028b87
TT
2308 gdb::unique_xmalloc_ptr<char> data
2309 = target_fileio_read_stralloc (NULL, filename);
95e94c3f
PA
2310 if (data != NULL)
2311 {
95e94c3f
PA
2312 char *line;
2313 char *saveptr = NULL;
2314
87028b87 2315 for (line = strtok_r (data.get (), "\n", &saveptr);
95e94c3f
PA
2316 line != NULL;
2317 line = strtok_r (NULL, "\n", &saveptr))
2318 {
2319 ULONGEST addr, endaddr;
2320 const char *p = line;
2321
2322 addr = strtoulst (p, &p, 16);
2323 if (addr == range->start)
2324 {
2325 if (*p == '-')
2326 p++;
2327 endaddr = strtoulst (p, &p, 16);
2328 range->length = endaddr - addr;
95e94c3f
PA
2329 return 1;
2330 }
2331 }
95e94c3f
PA
2332 }
2333 else
2334 warning (_("unable to open /proc file '%s'"), filename);
2335
2336 return 0;
3437254d
PA
2337}
2338
cdfa0b0a
PA
2339/* Implementation of the "vsyscall_range" gdbarch hook. Handles
2340 caching, and defers the real work to linux_vsyscall_range_raw. */
2341
2342static int
2343linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2344{
2345 struct linux_info *info = get_linux_inferior_data ();
2346
2347 if (info->vsyscall_range_p == 0)
2348 {
2349 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2350 info->vsyscall_range_p = 1;
2351 else
2352 info->vsyscall_range_p = -1;
2353 }
2354
2355 if (info->vsyscall_range_p < 0)
2356 return 0;
2357
2358 *range = info->vsyscall_range;
2359 return 1;
2360}
2361
3bc3cebe
JK
2362/* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2363 definitions would be dependent on compilation host. */
2364#define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2365#define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2366
2367/* See gdbarch.sh 'infcall_mmap'. */
2368
2369static CORE_ADDR
2370linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2371{
2372 struct objfile *objf;
2373 /* Do there still exist any Linux systems without "mmap64"?
2374 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2375 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2376 struct value *addr_val;
2377 struct gdbarch *gdbarch = get_objfile_arch (objf);
2378 CORE_ADDR retval;
2379 enum
2380 {
2a546367 2381 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
3bc3cebe 2382 };
2a546367 2383 struct value *arg[ARG_LAST];
3bc3cebe
JK
2384
2385 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2386 0);
2387 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2388 arg[ARG_LENGTH] = value_from_ulongest
2389 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2390 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2391 | GDB_MMAP_PROT_EXEC))
2392 == 0);
2393 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2394 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2395 GDB_MMAP_MAP_PRIVATE
2396 | GDB_MMAP_MAP_ANONYMOUS);
2397 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2398 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2399 0);
7022349d 2400 addr_val = call_function_by_hand (mmap_val, NULL, ARG_LAST, arg);
3bc3cebe
JK
2401 retval = value_as_address (addr_val);
2402 if (retval == (CORE_ADDR) -1)
2403 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2404 pulongest (size));
2405 return retval;
2406}
2407
7f361056
JK
2408/* See gdbarch.sh 'infcall_munmap'. */
2409
2410static void
2411linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2412{
2413 struct objfile *objf;
2414 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2415 struct value *retval_val;
2416 struct gdbarch *gdbarch = get_objfile_arch (objf);
2417 LONGEST retval;
2418 enum
2419 {
2420 ARG_ADDR, ARG_LENGTH, ARG_LAST
2421 };
2422 struct value *arg[ARG_LAST];
2423
2424 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2425 addr);
2426 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2427 arg[ARG_LENGTH] = value_from_ulongest
2428 (builtin_type (gdbarch)->builtin_unsigned_long, size);
7022349d 2429 retval_val = call_function_by_hand (munmap_val, NULL, ARG_LAST, arg);
7f361056
JK
2430 retval = value_as_long (retval_val);
2431 if (retval != 0)
2432 warning (_("Failed inferior munmap call at %s for %s bytes, "
2433 "errno is changed."),
2434 hex_string (addr), pulongest (size));
2435}
2436
906d60cf
PA
2437/* See linux-tdep.h. */
2438
2439CORE_ADDR
2440linux_displaced_step_location (struct gdbarch *gdbarch)
2441{
2442 CORE_ADDR addr;
2443 int bp_len;
2444
2445 /* Determine entry point from target auxiliary vector. This avoids
2446 the need for symbols. Also, when debugging a stand-alone SPU
2447 executable, entry_point_address () will point to an SPU
2448 local-store address and is thus not usable as displaced stepping
2449 location. The auxiliary vector gets us the PowerPC-side entry
2450 point address instead. */
8b88a78e 2451 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
16b41842
PA
2452 throw_error (NOT_SUPPORTED_ERROR,
2453 _("Cannot find AT_ENTRY auxiliary vector entry."));
906d60cf
PA
2454
2455 /* Make certain that the address points at real code, and not a
2456 function descriptor. */
2457 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
8b88a78e 2458 current_top_target ());
906d60cf
PA
2459
2460 /* Inferior calls also use the entry point as a breakpoint location.
2461 We don't want displaced stepping to interfere with those
2462 breakpoints, so leave space. */
2463 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2464 addr += bp_len * 2;
2465
2466 return addr;
2467}
2468
df8411da
SDJ
2469/* Display whether the gcore command is using the
2470 /proc/PID/coredump_filter file. */
2471
2472static void
2473show_use_coredump_filter (struct ui_file *file, int from_tty,
2474 struct cmd_list_element *c, const char *value)
2475{
2476 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2477 " corefiles is %s.\n"), value);
2478}
2479
afa840dc
SL
2480/* Display whether the gcore command is dumping mappings marked with
2481 the VM_DONTDUMP flag. */
2482
2483static void
2484show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2485 struct cmd_list_element *c, const char *value)
2486{
2487 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2488 " flag is %s.\n"), value);
2489}
2490
a5ee0f0c
PA
2491/* To be called from the various GDB_OSABI_LINUX handlers for the
2492 various GNU/Linux architectures and machine types. */
2493
2494void
2495linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2496{
2497 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
3030c96e 2498 set_gdbarch_info_proc (gdbarch, linux_info_proc);
451b7c33 2499 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
382b69bb 2500 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
35c2fab7 2501 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
f968fe80 2502 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
33fbcbee
PA
2503 set_gdbarch_has_shared_address_space (gdbarch,
2504 linux_has_shared_address_space);
eb14d406
SDJ
2505 set_gdbarch_gdb_signal_from_target (gdbarch,
2506 linux_gdb_signal_from_target);
2507 set_gdbarch_gdb_signal_to_target (gdbarch,
2508 linux_gdb_signal_to_target);
3437254d 2509 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
3bc3cebe 2510 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
7f361056 2511 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
5cd867b4 2512 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
a5ee0f0c 2513}
06253dd3
JK
2514
2515void
2516_initialize_linux_tdep (void)
2517{
2518 linux_gdbarch_data_handle =
2519 gdbarch_data_register_post_init (init_linux_gdbarch_data);
cdfa0b0a
PA
2520
2521 /* Set a cache per-inferior. */
2522 linux_inferior_data
2523 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2524 /* Observers used to invalidate the cache when needed. */
76727919
TT
2525 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2526 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
df8411da
SDJ
2527
2528 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2529 &use_coredump_filter, _("\
2530Set whether gcore should consider /proc/PID/coredump_filter."),
2531 _("\
2532Show whether gcore should consider /proc/PID/coredump_filter."),
2533 _("\
2534Use this command to set whether gcore should consider the contents\n\
2535of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2536about this file, refer to the manpage of core(5)."),
2537 NULL, show_use_coredump_filter,
2538 &setlist, &showlist);
afa840dc
SL
2539
2540 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2541 &dump_excluded_mappings, _("\
2542Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2543 _("\
2544Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2545 _("\
2546Use this command to set whether gcore should dump mappings marked with the\n\
2547VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2548more information about this file, refer to the manpage of proc(5) and core(5)."),
2549 NULL, show_dump_excluded_mappings,
2550 &setlist, &showlist);
06253dd3 2551}
This page took 2.426402 seconds and 4 git commands to generate.