* defs.h (strlen_paddr, paddr, paddr_nz): Remove.
[deliverable/binutils-gdb.git] / gdb / lm32-tdep.c
CommitLineData
c28c63d8
JB
1/* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
3
4 Copyright (C) 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "frame.h"
23#include "frame-unwind.h"
24#include "frame-base.h"
25#include "inferior.h"
26#include "dis-asm.h"
27#include "symfile.h"
28#include "remote.h"
29#include "gdbcore.h"
30#include "gdb/sim-lm32.h"
31#include "gdb/callback.h"
32#include "gdb/remote-sim.h"
33#include "sim-regno.h"
34#include "arch-utils.h"
35#include "regcache.h"
36#include "trad-frame.h"
37#include "reggroups.h"
38#include "opcodes/lm32-desc.h"
39
40#include "gdb_string.h"
41
42/* Macros to extract fields from an instruction. */
43#define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
44#define LM32_REG0(insn) ((insn >> 21) & 0x1f)
45#define LM32_REG1(insn) ((insn >> 16) & 0x1f)
46#define LM32_REG2(insn) ((insn >> 11) & 0x1f)
47#define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
48
49struct gdbarch_tdep
50{
51 /* gdbarch target dependent data here. Currently unused for LM32. */
52};
53
54struct lm32_frame_cache
55{
56 /* The frame's base. Used when constructing a frame ID. */
57 CORE_ADDR base;
58 CORE_ADDR pc;
59 /* Size of frame. */
60 int size;
61 /* Table indicating the location of each and every register. */
62 struct trad_frame_saved_reg *saved_regs;
63};
64
65/* Add the available register groups. */
66
67static void
68lm32_add_reggroups (struct gdbarch *gdbarch)
69{
70 reggroup_add (gdbarch, general_reggroup);
71 reggroup_add (gdbarch, all_reggroup);
72 reggroup_add (gdbarch, system_reggroup);
73}
74
75/* Return whether a given register is in a given group. */
76
77static int
78lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
79 struct reggroup *group)
80{
81 if (group == general_reggroup)
82 return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
83 || (regnum == SIM_LM32_PC_REGNUM);
84 else if (group == system_reggroup)
85 return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
86 || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
87 return default_register_reggroup_p (gdbarch, regnum, group);
88}
89
90/* Return a name that corresponds to the given register number. */
91
92static const char *
93lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
94{
95 static char *register_names[] = {
96 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
97 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
98 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
99 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
100 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
101 };
102
103 if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
104 return NULL;
105 else
106 return register_names[reg_nr];
107}
108
109/* Return type of register. */
110
111static struct type *
112lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
113{
df4df182 114 return builtin_type (gdbarch)->builtin_int32;
c28c63d8
JB
115}
116
117/* Return non-zero if a register can't be written. */
118
119static int
120lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
121{
122 return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
123}
124
125/* Analyze a function's prologue. */
126
127static CORE_ADDR
128lm32_analyze_prologue (CORE_ADDR pc, CORE_ADDR limit,
129 struct lm32_frame_cache *info)
130{
131 unsigned long instruction;
132
133 /* Keep reading though instructions, until we come across an instruction
134 that isn't likely to be part of the prologue. */
135 info->size = 0;
136 for (; pc < limit; pc += 4)
137 {
138
139 /* Read an instruction. */
140 instruction = read_memory_integer (pc, 4);
141
142 if ((LM32_OPCODE (instruction) == OP_SW)
143 && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
144 {
145 /* Any stack displaced store is likely part of the prologue.
146 Record that the register is being saved, and the offset
147 into the stack. */
148 info->saved_regs[LM32_REG1 (instruction)].addr =
149 LM32_IMM16 (instruction);
150 }
151 else if ((LM32_OPCODE (instruction) == OP_ADDI)
152 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
153 {
154 /* An add to the SP is likely to be part of the prologue.
155 Adjust stack size by whatever the instruction adds to the sp. */
156 info->size -= LM32_IMM16 (instruction);
157 }
158 else if ( /* add fp,fp,sp */
159 ((LM32_OPCODE (instruction) == OP_ADD)
160 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
161 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
162 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
163 /* mv fp,imm */
164 || ((LM32_OPCODE (instruction) == OP_ADDI)
165 && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
166 && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
167 {
168 /* Likely to be in the prologue for functions that require
169 a frame pointer. */
170 }
171 else
172 {
173 /* Any other instruction is likely not to be part of the prologue. */
174 break;
175 }
176 }
177
178 return pc;
179}
180
181/* Return PC of first non prologue instruction, for the function at the
182 specified address. */
183
184static CORE_ADDR
185lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
186{
187 CORE_ADDR func_addr, limit_pc;
188 struct symtab_and_line sal;
189 struct lm32_frame_cache frame_info;
190 struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
191
192 /* See if we can determine the end of the prologue via the symbol table.
193 If so, then return either PC, or the PC after the prologue, whichever
194 is greater. */
195 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
196 {
d80b854b
UW
197 CORE_ADDR post_prologue_pc
198 = skip_prologue_using_sal (gdbarch, func_addr);
c28c63d8
JB
199 if (post_prologue_pc != 0)
200 return max (pc, post_prologue_pc);
201 }
202
203 /* Can't determine prologue from the symbol table, need to examine
204 instructions. */
205
206 /* Find an upper limit on the function prologue using the debug
207 information. If the debug information could not be used to provide
208 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 209 limit_pc = skip_prologue_using_sal (gdbarch, pc);
c28c63d8
JB
210 if (limit_pc == 0)
211 limit_pc = pc + 100; /* Magic. */
212
213 frame_info.saved_regs = saved_regs;
214 return lm32_analyze_prologue (pc, limit_pc, &frame_info);
215}
216
217/* Create a breakpoint instruction. */
218
219static const gdb_byte *
220lm32_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
221 int *lenptr)
222{
223 static const gdb_byte breakpoint[4] = { OP_RAISE << 2, 0, 0, 2 };
224
225 *lenptr = sizeof (breakpoint);
226 return breakpoint;
227}
228
229/* Setup registers and stack for faking a call to a function in the
230 inferior. */
231
232static CORE_ADDR
233lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
234 struct regcache *regcache, CORE_ADDR bp_addr,
235 int nargs, struct value **args, CORE_ADDR sp,
236 int struct_return, CORE_ADDR struct_addr)
237{
238 int first_arg_reg = SIM_LM32_R1_REGNUM;
239 int num_arg_regs = 8;
240 int i;
241
242 /* Set the return address. */
243 regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
244
245 /* If we're returning a large struct, a pointer to the address to
246 store it at is passed as a first hidden parameter. */
247 if (struct_return)
248 {
249 regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
250 first_arg_reg++;
251 num_arg_regs--;
252 sp -= 4;
253 }
254
255 /* Setup parameters. */
256 for (i = 0; i < nargs; i++)
257 {
258 struct value *arg = args[i];
259 struct type *arg_type = check_typedef (value_type (arg));
260 gdb_byte *contents;
261 int len;
262 int j;
263 int reg;
264 ULONGEST val;
265
266 /* Promote small integer types to int. */
267 switch (TYPE_CODE (arg_type))
268 {
269 case TYPE_CODE_INT:
270 case TYPE_CODE_BOOL:
271 case TYPE_CODE_CHAR:
272 case TYPE_CODE_RANGE:
273 case TYPE_CODE_ENUM:
274 if (TYPE_LENGTH (arg_type) < 4)
275 {
df4df182 276 arg_type = builtin_type (gdbarch)->builtin_int32;
c28c63d8
JB
277 arg = value_cast (arg_type, arg);
278 }
279 break;
280 }
281
282 /* FIXME: Handle structures. */
283
284 contents = (gdb_byte *) value_contents (arg);
285 len = TYPE_LENGTH (arg_type);
286 val = extract_unsigned_integer (contents, len);
287
288 /* First num_arg_regs parameters are passed by registers,
289 and the rest are passed on the stack. */
290 if (i < num_arg_regs)
291 regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
292 else
293 {
294 write_memory (sp, (void *) &val, len);
295 sp -= 4;
296 }
297 }
298
299 /* Update stack pointer. */
300 regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
301
302 /* Return adjusted stack pointer. */
303 return sp;
304}
305
306/* Extract return value after calling a function in the inferior. */
307
308static void
309lm32_extract_return_value (struct type *type, struct regcache *regcache,
310 gdb_byte *valbuf)
311{
312 int offset;
313 ULONGEST l;
314 CORE_ADDR return_buffer;
315
316 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
317 && TYPE_CODE (type) != TYPE_CODE_UNION
318 && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
319 {
320 /* Return value is returned in a single register. */
321 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
322 store_unsigned_integer (valbuf, TYPE_LENGTH (type), l);
323 }
324 else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
325 {
326 /* 64-bit values are returned in a register pair. */
327 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
328 memcpy (valbuf, &l, 4);
329 regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
330 memcpy (valbuf + 4, &l, 4);
331 }
332 else
333 {
334 /* Aggregate types greater than a single register are returned in memory.
335 FIXME: Unless they are only 2 regs?. */
336 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
337 return_buffer = l;
338 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
339 }
340}
341
342/* Write into appropriate registers a function return value of type
343 TYPE, given in virtual format. */
344static void
345lm32_store_return_value (struct type *type, struct regcache *regcache,
346 const gdb_byte *valbuf)
347{
348 ULONGEST val;
349 int len = TYPE_LENGTH (type);
350
351 if (len <= 4)
352 {
353 val = extract_unsigned_integer (valbuf, len);
354 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
355 }
356 else if (len <= 8)
357 {
358 val = extract_unsigned_integer (valbuf, 4);
359 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
360 val = extract_unsigned_integer (valbuf + 4, len - 4);
361 regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
362 }
363 else
364 error (_("lm32_store_return_value: type length too large."));
365}
366
367/* Determine whether a functions return value is in a register or memory. */
368static enum return_value_convention
369lm32_return_value (struct gdbarch *gdbarch, struct type *func_type,
370 struct type *valtype, struct regcache *regcache,
371 gdb_byte *readbuf, const gdb_byte *writebuf)
372{
373 enum type_code code = TYPE_CODE (valtype);
374
375 if (code == TYPE_CODE_STRUCT
376 || code == TYPE_CODE_UNION
377 || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
378 return RETURN_VALUE_STRUCT_CONVENTION;
379
380 if (readbuf)
381 lm32_extract_return_value (valtype, regcache, readbuf);
382 if (writebuf)
383 lm32_store_return_value (valtype, regcache, writebuf);
384
385 return RETURN_VALUE_REGISTER_CONVENTION;
386}
387
388static CORE_ADDR
389lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
390{
391 return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
392}
393
394static CORE_ADDR
395lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
396{
397 return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
398}
399
400static struct frame_id
401lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
402{
403 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
404
405 return frame_id_build (sp, get_frame_pc (this_frame));
406}
407
408/* Put here the code to store, into fi->saved_regs, the addresses of
409 the saved registers of frame described by FRAME_INFO. This
410 includes special registers such as pc and fp saved in special ways
411 in the stack frame. sp is even more special: the address we return
412 for it IS the sp for the next frame. */
413
414static struct lm32_frame_cache *
415lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
416{
417 CORE_ADDR prologue_pc;
418 CORE_ADDR current_pc;
419 ULONGEST prev_sp;
420 ULONGEST this_base;
421 struct lm32_frame_cache *info;
422 int prefixed;
423 unsigned long instruction;
424 int op;
425 int offsets[32];
426 int i;
427 long immediate;
428
429 if ((*this_prologue_cache))
430 return (*this_prologue_cache);
431
432 info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
433 (*this_prologue_cache) = info;
434 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
435
436 info->pc = get_frame_func (this_frame);
437 current_pc = get_frame_pc (this_frame);
438 lm32_analyze_prologue (info->pc, current_pc, info);
439
440 /* Compute the frame's base, and the previous frame's SP. */
441 this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
442 prev_sp = this_base + info->size;
443 info->base = this_base;
444
445 /* Convert callee save offsets into addresses. */
446 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
447 {
448 if (trad_frame_addr_p (info->saved_regs, i))
449 info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
450 }
451
452 /* The call instruction moves the caller's PC in the callee's RA register.
453 Since this is an unwind, do the reverse. Copy the location of RA register
454 into PC (the address / regnum) so that a request for PC will be
455 converted into a request for the RA register. */
456 info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
457
458 /* The previous frame's SP needed to be computed. Save the computed value. */
459 trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
460
461 return info;
462}
463
464static void
465lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
466 struct frame_id *this_id)
467{
468 struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
469
470 /* This marks the outermost frame. */
471 if (cache->base == 0)
472 return;
473
474 (*this_id) = frame_id_build (cache->base, cache->pc);
475}
476
477static struct value *
478lm32_frame_prev_register (struct frame_info *this_frame,
479 void **this_prologue_cache, int regnum)
480{
481 struct lm32_frame_cache *info;
482
483 info = lm32_frame_cache (this_frame, this_prologue_cache);
484 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
485}
486
487static const struct frame_unwind lm32_frame_unwind = {
488 NORMAL_FRAME,
489 lm32_frame_this_id,
490 lm32_frame_prev_register,
491 NULL,
492 default_frame_sniffer
493};
494
495static CORE_ADDR
496lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
497{
498 struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
499
500 return info->base;
501}
502
503static const struct frame_base lm32_frame_base = {
504 &lm32_frame_unwind,
505 lm32_frame_base_address,
506 lm32_frame_base_address,
507 lm32_frame_base_address
508};
509
510static CORE_ADDR
511lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
512{
513 /* Align to the size of an instruction (so that they can safely be
514 pushed onto the stack. */
515 return sp & ~3;
516}
517
518static struct gdbarch *
519lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
520{
521 struct gdbarch *gdbarch;
522 struct gdbarch_tdep *tdep;
523
524 /* If there is already a candidate, use it. */
525 arches = gdbarch_list_lookup_by_info (arches, &info);
526 if (arches != NULL)
527 return arches->gdbarch;
528
529 /* None found, create a new architecture from the information provided. */
530 tdep = XMALLOC (struct gdbarch_tdep);
531 gdbarch = gdbarch_alloc (&info, tdep);
532
533 /* Type sizes. */
534 set_gdbarch_short_bit (gdbarch, 16);
535 set_gdbarch_int_bit (gdbarch, 32);
536 set_gdbarch_long_bit (gdbarch, 32);
537 set_gdbarch_long_long_bit (gdbarch, 64);
538 set_gdbarch_float_bit (gdbarch, 32);
539 set_gdbarch_double_bit (gdbarch, 64);
540 set_gdbarch_long_double_bit (gdbarch, 64);
541 set_gdbarch_ptr_bit (gdbarch, 32);
542
543 /* Register info. */
544 set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
545 set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
546 set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
547 set_gdbarch_register_name (gdbarch, lm32_register_name);
548 set_gdbarch_register_type (gdbarch, lm32_register_type);
549 set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
550
551 /* Frame info. */
552 set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
553 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
554 set_gdbarch_decr_pc_after_break (gdbarch, 0);
555 set_gdbarch_frame_args_skip (gdbarch, 0);
556
557 /* Frame unwinding. */
558 set_gdbarch_frame_align (gdbarch, lm32_frame_align);
559 frame_base_set_default (gdbarch, &lm32_frame_base);
560 set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
561 set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
562 set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
563 frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
564
565 /* Breakpoints. */
566 set_gdbarch_breakpoint_from_pc (gdbarch, lm32_breakpoint_from_pc);
567 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
568
569 /* Calling functions in the inferior. */
570 set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
571 set_gdbarch_return_value (gdbarch, lm32_return_value);
572
573 /* Instruction disassembler. */
574 set_gdbarch_print_insn (gdbarch, print_insn_lm32);
575
576 lm32_add_reggroups (gdbarch);
577 set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
578
579 return gdbarch;
580}
581
582void
583_initialize_lm32_tdep (void)
584{
585 register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
586}
This page took 0.059523 seconds and 4 git commands to generate.