Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
CommitLineData
96309189
MS
1/* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3666a048 3 Copyright (C) 2004-2021 Free Software Foundation, Inc.
96309189
MS
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
96309189
MS
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
96309189
MS
19
20#include "defs.h"
96309189 21#include "gdb/sim-m32c.h"
96309189
MS
22#include "gdbtypes.h"
23#include "regcache.h"
24#include "arch-utils.h"
25#include "frame.h"
26#include "frame-unwind.h"
96309189
MS
27#include "symtab.h"
28#include "gdbcore.h"
29#include "value.h"
30#include "reggroups.h"
31#include "prologue-value.h"
77e371c0 32#include "objfiles.h"
96309189
MS
33
34\f
35/* The m32c tdep structure. */
36
37static struct reggroup *m32c_dma_reggroup;
38
96309189
MS
39/* The type of a function that moves the value of REG between CACHE or
40 BUF --- in either direction. */
6da660c7
SM
41typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
42 struct regcache *cache,
43 const gdb_byte *buf);
44
45typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
849d0ba8 46 readable_regcache *cache,
6da660c7 47 gdb_byte *buf);
96309189
MS
48
49struct m32c_reg
50{
51 /* The name of this register. */
52 const char *name;
53
54 /* Its type. */
55 struct type *type;
56
57 /* The architecture this register belongs to. */
58 struct gdbarch *arch;
59
60 /* Its GDB register number. */
61 int num;
62
63 /* Its sim register number. */
64 int sim_num;
65
66 /* Its DWARF register number, or -1 if it doesn't have one. */
67 int dwarf_num;
68
69 /* Register group memberships. */
70 unsigned int general_p : 1;
71 unsigned int dma_p : 1;
72 unsigned int system_p : 1;
73 unsigned int save_restore_p : 1;
74
75 /* Functions to read its value from a regcache, and write its value
76 to a regcache. */
6da660c7
SM
77 m32c_read_reg_t *read;
78 m32c_write_reg_t *write;
96309189
MS
79
80 /* Data for READ and WRITE functions. The exact meaning depends on
81 the specific functions selected; see the comments for those
82 functions. */
83 struct m32c_reg *rx, *ry;
84 int n;
85};
86
87
88/* An overestimate of the number of raw and pseudoregisters we will
89 have. The exact answer depends on the variant of the architecture
90 at hand, but we can use this to declare statically allocated
91 arrays, and bump it up when needed. */
92#define M32C_MAX_NUM_REGS (75)
93
94/* The largest assigned DWARF register number. */
95#define M32C_MAX_DWARF_REGNUM (40)
96
97
98struct gdbarch_tdep
99{
100 /* All the registers for this variant, indexed by GDB register
101 number, and the number of registers present. */
102 struct m32c_reg regs[M32C_MAX_NUM_REGS];
103
104 /* The number of valid registers. */
105 int num_regs;
106
107 /* Interesting registers. These are pointers into REGS. */
108 struct m32c_reg *pc, *flg;
109 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
110 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
111 struct m32c_reg *sb, *fb, *sp;
112
113 /* A table indexed by DWARF register numbers, pointing into
114 REGS. */
115 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
116
117 /* Types for this architecture. We can't use the builtin_type_foo
118 types, because they're not initialized when building a gdbarch
119 structure. */
120 struct type *voyd, *ptr_voyd, *func_voyd;
121 struct type *uint8, *uint16;
122 struct type *int8, *int16, *int32, *int64;
123
124 /* The types for data address and code address registers. */
125 struct type *data_addr_reg_type, *code_addr_reg_type;
126
127 /* The number of bytes a return address pushed by a 'jsr' instruction
128 occupies on the stack. */
129 int ret_addr_bytes;
130
131 /* The number of bytes an address register occupies on the stack
132 when saved by an 'enter' or 'pushm' instruction. */
133 int push_addr_bytes;
134};
135
136\f
137/* Types. */
138
139static void
140make_types (struct gdbarch *arch)
141{
142 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
143 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
144 int data_addr_reg_bits, code_addr_reg_bits;
145 char type_name[50];
146
147#if 0
148 /* This is used to clip CORE_ADDR values, so this value is
149 appropriate both on the m32c, where pointers are 32 bits long,
150 and on the m16c, where pointers are sixteen bits long, but there
151 may be code above the 64k boundary. */
152 set_gdbarch_addr_bit (arch, 24);
153#else
154 /* GCC uses 32 bits for addrs in the dwarf info, even though
155 only 16/24 bits are used. Setting addr_bit to 24 causes
156 errors in reading the dwarf addresses. */
157 set_gdbarch_addr_bit (arch, 32);
158#endif
159
160 set_gdbarch_int_bit (arch, 16);
161 switch (mach)
162 {
163 case bfd_mach_m16c:
164 data_addr_reg_bits = 16;
165 code_addr_reg_bits = 24;
166 set_gdbarch_ptr_bit (arch, 16);
167 tdep->ret_addr_bytes = 3;
168 tdep->push_addr_bytes = 2;
169 break;
170
171 case bfd_mach_m32c:
172 data_addr_reg_bits = 24;
173 code_addr_reg_bits = 24;
174 set_gdbarch_ptr_bit (arch, 32);
175 tdep->ret_addr_bytes = 4;
176 tdep->push_addr_bytes = 4;
177 break;
178
179 default:
f3574227 180 gdb_assert_not_reached ("unexpected mach");
96309189
MS
181 }
182
183 /* The builtin_type_mumble variables are sometimes uninitialized when
184 this is called, so we avoid using them. */
77b7c781 185 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b 186 tdep->ptr_voyd
88dfca6c 187 = arch_pointer_type (arch, gdbarch_ptr_bit (arch), NULL, tdep->voyd);
96309189
MS
188 tdep->func_voyd = lookup_function_type (tdep->voyd);
189
8c042590
PM
190 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
191 gdbarch_bfd_arch_info (arch)->printable_name);
96309189 192 tdep->data_addr_reg_type
88dfca6c 193 = arch_pointer_type (arch, data_addr_reg_bits, type_name, tdep->voyd);
96309189 194
8c042590
PM
195 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
196 gdbarch_bfd_arch_info (arch)->printable_name);
96309189 197 tdep->code_addr_reg_type
88dfca6c 198 = arch_pointer_type (arch, code_addr_reg_bits, type_name, tdep->func_voyd);
e9bb382b
UW
199
200 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
201 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
202 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
203 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
204 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
205 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
96309189
MS
206}
207
208
209\f
210/* Register set. */
211
212static const char *
d93859e2 213m32c_register_name (struct gdbarch *gdbarch, int num)
96309189 214{
d93859e2 215 return gdbarch_tdep (gdbarch)->regs[num].name;
96309189
MS
216}
217
218
219static struct type *
220m32c_register_type (struct gdbarch *arch, int reg_nr)
221{
222 return gdbarch_tdep (arch)->regs[reg_nr].type;
223}
224
225
226static int
e7faf938 227m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
96309189 228{
e7faf938 229 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
96309189
MS
230}
231
232
233static int
d3f73121 234m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
96309189 235{
d3f73121 236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96309189
MS
237 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
238 && tdep->dwarf_regs[reg_nr])
239 return tdep->dwarf_regs[reg_nr]->num;
240 else
241 /* The DWARF CFI code expects to see -1 for invalid register
242 numbers. */
243 return -1;
244}
245
246
63807e1d 247static int
96309189
MS
248m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
249 struct reggroup *group)
250{
40a6adc1 251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96309189
MS
252 struct m32c_reg *reg = &tdep->regs[regnum];
253
254 /* The anonymous raw registers aren't in any groups. */
255 if (! reg->name)
256 return 0;
257
258 if (group == all_reggroup)
259 return 1;
260
261 if (group == general_reggroup
262 && reg->general_p)
263 return 1;
264
265 if (group == m32c_dma_reggroup
266 && reg->dma_p)
267 return 1;
268
269 if (group == system_reggroup
270 && reg->system_p)
271 return 1;
272
273 /* Since the m32c DWARF register numbers refer to cooked registers, not
274 raw registers, and frame_pop depends on the save and restore groups
275 containing registers the DWARF CFI will actually mention, our save
276 and restore groups are cooked registers, not raw registers. (This is
277 why we can't use the default reggroup function.) */
278 if ((group == save_reggroup
279 || group == restore_reggroup)
280 && reg->save_restore_p)
281 return 1;
282
283 return 0;
284}
285
286
287/* Register move functions. We declare them here using
6da660c7
SM
288 m32c_{read,write}_reg_t to check the types. */
289static m32c_read_reg_t m32c_raw_read;
290static m32c_read_reg_t m32c_banked_read;
291static m32c_read_reg_t m32c_sb_read;
292static m32c_read_reg_t m32c_part_read;
293static m32c_read_reg_t m32c_cat_read;
294static m32c_read_reg_t m32c_r3r2r1r0_read;
295
296static m32c_write_reg_t m32c_raw_write;
297static m32c_write_reg_t m32c_banked_write;
298static m32c_write_reg_t m32c_sb_write;
299static m32c_write_reg_t m32c_part_write;
300static m32c_write_reg_t m32c_cat_write;
301static m32c_write_reg_t m32c_r3r2r1r0_write;
96309189
MS
302
303/* Copy the value of the raw register REG from CACHE to BUF. */
05d1431c 304static enum register_status
849d0ba8 305m32c_raw_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
96309189 306{
03f50fc8 307 return cache->raw_read (reg->num, buf);
96309189
MS
308}
309
310
311/* Copy the value of the raw register REG from BUF to CACHE. */
05d1431c 312static enum register_status
6da660c7
SM
313m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
314 const gdb_byte *buf)
96309189 315{
10eaee5f 316 cache->raw_write (reg->num, buf);
05d1431c
PA
317
318 return REG_VALID;
96309189
MS
319}
320
321
322/* Return the value of the 'flg' register in CACHE. */
323static int
849d0ba8 324m32c_read_flg (readable_regcache *cache)
96309189 325{
ac7936df 326 struct gdbarch_tdep *tdep = gdbarch_tdep (cache->arch ());
96309189 327 ULONGEST flg;
03f50fc8
YQ
328
329 cache->raw_read (tdep->flg->num, &flg);
96309189
MS
330 return flg & 0xffff;
331}
332
333
7830cb4f
CV
334/* Evaluate the real register number of a banked register. */
335static struct m32c_reg *
849d0ba8 336m32c_banked_register (struct m32c_reg *reg, readable_regcache *cache)
7830cb4f
CV
337{
338 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
339}
340
341
96309189
MS
342/* Move the value of a banked register from CACHE to BUF.
343 If the value of the 'flg' register in CACHE has any of the bits
344 masked in REG->n set, then read REG->ry. Otherwise, read
345 REG->rx. */
05d1431c 346static enum register_status
849d0ba8 347m32c_banked_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
96309189 348{
7830cb4f 349 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
03f50fc8 350 return cache->raw_read (bank_reg->num, buf);
96309189
MS
351}
352
353
354/* Move the value of a banked register from BUF to CACHE.
355 If the value of the 'flg' register in CACHE has any of the bits
356 masked in REG->n set, then write REG->ry. Otherwise, write
357 REG->rx. */
05d1431c 358static enum register_status
6da660c7
SM
359m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
360 const gdb_byte *buf)
96309189 361{
7830cb4f 362 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
10eaee5f 363 cache->raw_write (bank_reg->num, buf);
05d1431c
PA
364
365 return REG_VALID;
96309189
MS
366}
367
368
369/* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
370 banked register; on bfd_mach_m16c, it's not. */
05d1431c 371static enum register_status
849d0ba8 372m32c_sb_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
96309189
MS
373{
374 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
05d1431c 375 return m32c_raw_read (reg->rx, cache, buf);
96309189 376 else
05d1431c 377 return m32c_banked_read (reg, cache, buf);
96309189
MS
378}
379
380
381/* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
382 banked register; on bfd_mach_m16c, it's not. */
05d1431c 383static enum register_status
6da660c7 384m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
96309189
MS
385{
386 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
387 m32c_raw_write (reg->rx, cache, buf);
388 else
389 m32c_banked_write (reg, cache, buf);
05d1431c
PA
390
391 return REG_VALID;
96309189
MS
392}
393
394
395/* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
396 and *LEN_P to the offset and length, in bytes, of the part REG
397 occupies in its underlying register. The offset is from the
398 lower-addressed end, regardless of the architecture's endianness.
399 (The M32C family is always little-endian, but let's keep those
400 assumptions out of here.) */
401static void
402m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
403{
404 /* The length of the containing register, of which REG is one part. */
405 int containing_len = TYPE_LENGTH (reg->rx->type);
406
407 /* The length of one "element" in our imaginary array. */
408 int elt_len = TYPE_LENGTH (reg->type);
409
410 /* The offset of REG's "element" from the least significant end of
411 the containing register. */
412 int elt_offset = reg->n * elt_len;
413
414 /* If we extend off the end, trim the length of the element. */
415 if (elt_offset + elt_len > containing_len)
416 {
417 elt_len = containing_len - elt_offset;
418 /* We shouldn't be declaring partial registers that go off the
419 end of their containing registers. */
420 gdb_assert (elt_len > 0);
421 }
422
423 /* Flip the offset around if we're big-endian. */
424 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
425 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
426
427 *offset_p = elt_offset;
428 *len_p = elt_len;
429}
430
431
432/* Move the value of a partial register (r0h, intbl, etc.) from CACHE
433 to BUF. Treating the value of the register REG->rx as an array of
434 REG->type values, where higher indices refer to more significant
435 bits, read the value of the REG->n'th element. */
05d1431c 436static enum register_status
849d0ba8 437m32c_part_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
96309189
MS
438{
439 int offset, len;
05d1431c 440
96309189
MS
441 memset (buf, 0, TYPE_LENGTH (reg->type));
442 m32c_find_part (reg, &offset, &len);
03f50fc8 443 return cache->cooked_read_part (reg->rx->num, offset, len, buf);
96309189
MS
444}
445
446
447/* Move the value of a banked register from BUF to CACHE.
448 Treating the value of the register REG->rx as an array of REG->type
449 values, where higher indices refer to more significant bits, write
450 the value of the REG->n'th element. */
05d1431c 451static enum register_status
6da660c7
SM
452m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
453 const gdb_byte *buf)
96309189
MS
454{
455 int offset, len;
05d1431c 456
96309189 457 m32c_find_part (reg, &offset, &len);
e4c4a59b 458 cache->cooked_write_part (reg->rx->num, offset, len, buf);
05d1431c
PA
459
460 return REG_VALID;
96309189
MS
461}
462
463
464/* Move the value of REG from CACHE to BUF. REG's value is the
465 concatenation of the values of the registers REG->rx and REG->ry,
466 with REG->rx contributing the more significant bits. */
05d1431c 467static enum register_status
849d0ba8 468m32c_cat_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
96309189
MS
469{
470 int high_bytes = TYPE_LENGTH (reg->rx->type);
471 int low_bytes = TYPE_LENGTH (reg->ry->type);
05d1431c 472 enum register_status status;
96309189
MS
473
474 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
475
476 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
477 {
11f57cb6 478 status = cache->cooked_read (reg->rx->num, buf);
05d1431c 479 if (status == REG_VALID)
11f57cb6 480 status = cache->cooked_read (reg->ry->num, buf + high_bytes);
96309189
MS
481 }
482 else
483 {
11f57cb6 484 status = cache->cooked_read (reg->rx->num, buf + low_bytes);
05d1431c 485 if (status == REG_VALID)
11f57cb6 486 status = cache->cooked_read (reg->ry->num, buf);
96309189 487 }
05d1431c 488 return status;
96309189
MS
489}
490
491
492/* Move the value of REG from CACHE to BUF. REG's value is the
493 concatenation of the values of the registers REG->rx and REG->ry,
494 with REG->rx contributing the more significant bits. */
05d1431c 495static enum register_status
6da660c7
SM
496m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
497 const gdb_byte *buf)
96309189
MS
498{
499 int high_bytes = TYPE_LENGTH (reg->rx->type);
500 int low_bytes = TYPE_LENGTH (reg->ry->type);
96309189
MS
501
502 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
503
504 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
505 {
b66f5587
SM
506 cache->cooked_write (reg->rx->num, buf);
507 cache->cooked_write (reg->ry->num, buf + high_bytes);
96309189
MS
508 }
509 else
510 {
b66f5587
SM
511 cache->cooked_write (reg->rx->num, buf + low_bytes);
512 cache->cooked_write (reg->ry->num, buf);
96309189 513 }
05d1431c
PA
514
515 return REG_VALID;
96309189
MS
516}
517
518
519/* Copy the value of the raw register REG from CACHE to BUF. REG is
520 the concatenation (from most significant to least) of r3, r2, r1,
521 and r0. */
05d1431c 522static enum register_status
849d0ba8 523m32c_r3r2r1r0_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
96309189
MS
524{
525 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
526 int len = TYPE_LENGTH (tdep->r0->type);
05d1431c 527 enum register_status status;
96309189 528
96309189
MS
529 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
530 {
11f57cb6 531 status = cache->cooked_read (tdep->r0->num, buf + len * 3);
05d1431c 532 if (status == REG_VALID)
11f57cb6 533 status = cache->cooked_read (tdep->r1->num, buf + len * 2);
05d1431c 534 if (status == REG_VALID)
11f57cb6 535 status = cache->cooked_read (tdep->r2->num, buf + len * 1);
05d1431c 536 if (status == REG_VALID)
11f57cb6 537 status = cache->cooked_read (tdep->r3->num, buf);
96309189
MS
538 }
539 else
540 {
11f57cb6 541 status = cache->cooked_read (tdep->r0->num, buf);
05d1431c 542 if (status == REG_VALID)
11f57cb6 543 status = cache->cooked_read (tdep->r1->num, buf + len * 1);
05d1431c 544 if (status == REG_VALID)
11f57cb6 545 status = cache->cooked_read (tdep->r2->num, buf + len * 2);
05d1431c 546 if (status == REG_VALID)
11f57cb6 547 status = cache->cooked_read (tdep->r3->num, buf + len * 3);
96309189 548 }
05d1431c
PA
549
550 return status;
96309189
MS
551}
552
553
554/* Copy the value of the raw register REG from BUF to CACHE. REG is
555 the concatenation (from most significant to least) of r3, r2, r1,
556 and r0. */
05d1431c 557static enum register_status
6da660c7
SM
558m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
559 const gdb_byte *buf)
96309189
MS
560{
561 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
562 int len = TYPE_LENGTH (tdep->r0->type);
563
96309189
MS
564 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
565 {
b66f5587
SM
566 cache->cooked_write (tdep->r0->num, buf + len * 3);
567 cache->cooked_write (tdep->r1->num, buf + len * 2);
568 cache->cooked_write (tdep->r2->num, buf + len * 1);
569 cache->cooked_write (tdep->r3->num, buf);
96309189
MS
570 }
571 else
572 {
b66f5587
SM
573 cache->cooked_write (tdep->r0->num, buf);
574 cache->cooked_write (tdep->r1->num, buf + len * 1);
575 cache->cooked_write (tdep->r2->num, buf + len * 2);
576 cache->cooked_write (tdep->r3->num, buf + len * 3);
96309189 577 }
05d1431c
PA
578
579 return REG_VALID;
96309189
MS
580}
581
582
05d1431c 583static enum register_status
96309189 584m32c_pseudo_register_read (struct gdbarch *arch,
849d0ba8 585 readable_regcache *cache,
96309189
MS
586 int cookednum,
587 gdb_byte *buf)
588{
589 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
590 struct m32c_reg *reg;
591
592 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
ac7936df 593 gdb_assert (arch == cache->arch ());
96309189
MS
594 gdb_assert (arch == tdep->regs[cookednum].arch);
595 reg = &tdep->regs[cookednum];
596
05d1431c 597 return reg->read (reg, cache, buf);
96309189
MS
598}
599
600
601static void
602m32c_pseudo_register_write (struct gdbarch *arch,
603 struct regcache *cache,
604 int cookednum,
605 const gdb_byte *buf)
606{
607 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
608 struct m32c_reg *reg;
609
610 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
ac7936df 611 gdb_assert (arch == cache->arch ());
96309189
MS
612 gdb_assert (arch == tdep->regs[cookednum].arch);
613 reg = &tdep->regs[cookednum];
614
6da660c7 615 reg->write (reg, cache, buf);
96309189
MS
616}
617
618
619/* Add a register with the given fields to the end of ARCH's table.
620 Return a pointer to the newly added register. */
621static struct m32c_reg *
622add_reg (struct gdbarch *arch,
623 const char *name,
624 struct type *type,
625 int sim_num,
6da660c7
SM
626 m32c_read_reg_t *read,
627 m32c_write_reg_t *write,
96309189
MS
628 struct m32c_reg *rx,
629 struct m32c_reg *ry,
630 int n)
631{
632 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
633 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
634
635 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
636
637 r->name = name;
638 r->type = type;
639 r->arch = arch;
640 r->num = tdep->num_regs;
641 r->sim_num = sim_num;
642 r->dwarf_num = -1;
643 r->general_p = 0;
644 r->dma_p = 0;
645 r->system_p = 0;
646 r->save_restore_p = 0;
647 r->read = read;
648 r->write = write;
649 r->rx = rx;
650 r->ry = ry;
651 r->n = n;
652
653 tdep->num_regs++;
654
655 return r;
656}
657
658
659/* Record NUM as REG's DWARF register number. */
660static void
661set_dwarf_regnum (struct m32c_reg *reg, int num)
662{
663 gdb_assert (num < M32C_MAX_NUM_REGS);
664
665 /* Update the reg->DWARF mapping. Only count the first number
666 assigned to this register. */
667 if (reg->dwarf_num == -1)
668 reg->dwarf_num = num;
669
670 /* Update the DWARF->reg mapping. */
671 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
672}
673
674
675/* Mark REG as a general-purpose register, and return it. */
676static struct m32c_reg *
677mark_general (struct m32c_reg *reg)
678{
679 reg->general_p = 1;
680 return reg;
681}
682
683
374fd1fd
TT
684/* Mark REG as a DMA register. */
685static void
96309189
MS
686mark_dma (struct m32c_reg *reg)
687{
688 reg->dma_p = 1;
96309189
MS
689}
690
691
692/* Mark REG as a SYSTEM register, and return it. */
693static struct m32c_reg *
694mark_system (struct m32c_reg *reg)
695{
696 reg->system_p = 1;
697 return reg;
698}
699
700
701/* Mark REG as a save-restore register, and return it. */
702static struct m32c_reg *
703mark_save_restore (struct m32c_reg *reg)
704{
705 reg->save_restore_p = 1;
706 return reg;
707}
708
709
710#define FLAGBIT_B 0x0010
711#define FLAGBIT_U 0x0080
712
713/* Handy macros for declaring registers. These all evaluate to
714 pointers to the register declared. Macros that define two
715 registers evaluate to a pointer to the first. */
716
717/* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
718#define R(name, type, sim_num) \
719 (add_reg (arch, (name), (type), (sim_num), \
720 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
721
722/* The simulator register number for a raw register named NAME. */
723#define SIM(name) (m32c_sim_reg_ ## name)
724
725/* A raw unsigned 16-bit data register named NAME.
726 NAME should be an identifier, not a string. */
727#define R16U(name) \
728 (R(#name, tdep->uint16, SIM (name)))
729
730/* A raw data address register named NAME.
731 NAME should be an identifier, not a string. */
732#define RA(name) \
733 (R(#name, tdep->data_addr_reg_type, SIM (name)))
734
735/* A raw code address register named NAME. NAME should
736 be an identifier, not a string. */
737#define RC(name) \
738 (R(#name, tdep->code_addr_reg_type, SIM (name)))
739
740/* A pair of raw registers named NAME0 and NAME1, with type TYPE.
741 NAME should be an identifier, not a string. */
742#define RP(name, type) \
743 (R(#name "0", (type), SIM (name ## 0)), \
744 R(#name "1", (type), SIM (name ## 1)) - 1)
745
746/* A raw banked general-purpose data register named NAME.
747 NAME should be an identifier, not a string. */
748#define RBD(name) \
749 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
750 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
751
752/* A raw banked data address register named NAME.
753 NAME should be an identifier, not a string. */
754#define RBA(name) \
755 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
756 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
757
758/* A cooked register named NAME referring to a raw banked register
759 from the bank selected by the current value of FLG. RAW_PAIR
760 should be a pointer to the first register in the banked pair.
761 NAME must be an identifier, not a string. */
762#define CB(name, raw_pair) \
763 (add_reg (arch, #name, (raw_pair)->type, 0, \
764 m32c_banked_read, m32c_banked_write, \
dda83cd7 765 (raw_pair), (raw_pair + 1), FLAGBIT_B))
96309189
MS
766
767/* A pair of registers named NAMEH and NAMEL, of type TYPE, that
768 access the top and bottom halves of the register pointed to by
769 NAME. NAME should be an identifier. */
770#define CHL(name, type) \
771 (add_reg (arch, #name "h", (type), 0, \
772 m32c_part_read, m32c_part_write, name, NULL, 1), \
773 add_reg (arch, #name "l", (type), 0, \
774 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
775
776/* A register constructed by concatenating the two registers HIGH and
777 LOW, whose name is HIGHLOW and whose type is TYPE. */
778#define CCAT(high, low, type) \
779 (add_reg (arch, #high #low, (type), 0, \
780 m32c_cat_read, m32c_cat_write, (high), (low), 0))
781
782/* Abbreviations for marking register group membership. */
783#define G(reg) (mark_general (reg))
784#define S(reg) (mark_system (reg))
785#define DMA(reg) (mark_dma (reg))
786
787
788/* Construct the register set for ARCH. */
789static void
790make_regs (struct gdbarch *arch)
791{
792 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
793 int mach = gdbarch_bfd_arch_info (arch)->mach;
f79b9530
DJ
794 int num_raw_regs;
795 int num_cooked_regs;
796
797 struct m32c_reg *r0;
798 struct m32c_reg *r1;
799 struct m32c_reg *r2;
800 struct m32c_reg *r3;
801 struct m32c_reg *a0;
802 struct m32c_reg *a1;
803 struct m32c_reg *fb;
804 struct m32c_reg *sb;
805 struct m32c_reg *sp;
806 struct m32c_reg *r0hl;
807 struct m32c_reg *r1hl;
f79b9530
DJ
808 struct m32c_reg *r2r0;
809 struct m32c_reg *r3r1;
810 struct m32c_reg *r3r1r2r0;
811 struct m32c_reg *r3r2r1r0;
812 struct m32c_reg *a1a0;
96309189
MS
813
814 struct m32c_reg *raw_r0_pair = RBD (r0);
815 struct m32c_reg *raw_r1_pair = RBD (r1);
816 struct m32c_reg *raw_r2_pair = RBD (r2);
817 struct m32c_reg *raw_r3_pair = RBD (r3);
818 struct m32c_reg *raw_a0_pair = RBA (a0);
819 struct m32c_reg *raw_a1_pair = RBA (a1);
820 struct m32c_reg *raw_fb_pair = RBA (fb);
821
822 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
823 We always declare both raw registers, and deal with the distinction
824 in the pseudoregister. */
825 struct m32c_reg *raw_sb_pair = RBA (sb);
826
827 struct m32c_reg *usp = S (RA (usp));
828 struct m32c_reg *isp = S (RA (isp));
829 struct m32c_reg *intb = S (RC (intb));
830 struct m32c_reg *pc = G (RC (pc));
831 struct m32c_reg *flg = G (R16U (flg));
832
833 if (mach == bfd_mach_m32c)
834 {
374fd1fd
TT
835 S (R16U (svf));
836 S (RC (svp));
837 S (RC (vct));
838
839 DMA (RP (dmd, tdep->uint8));
840 DMA (RP (dct, tdep->uint16));
841 DMA (RP (drc, tdep->uint16));
842 DMA (RP (dma, tdep->data_addr_reg_type));
843 DMA (RP (dsa, tdep->data_addr_reg_type));
844 DMA (RP (dra, tdep->data_addr_reg_type));
96309189
MS
845 }
846
f79b9530 847 num_raw_regs = tdep->num_regs;
96309189 848
f79b9530
DJ
849 r0 = G (CB (r0, raw_r0_pair));
850 r1 = G (CB (r1, raw_r1_pair));
851 r2 = G (CB (r2, raw_r2_pair));
852 r3 = G (CB (r3, raw_r3_pair));
853 a0 = G (CB (a0, raw_a0_pair));
854 a1 = G (CB (a1, raw_a1_pair));
855 fb = G (CB (fb, raw_fb_pair));
96309189
MS
856
857 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
858 Specify custom read/write functions that do the right thing. */
f79b9530
DJ
859 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
860 m32c_sb_read, m32c_sb_write,
861 raw_sb_pair, raw_sb_pair + 1, 0));
96309189
MS
862
863 /* The current sp is either usp or isp, depending on the value of
864 the FLG register's U bit. */
f79b9530
DJ
865 sp = G (add_reg (arch, "sp", usp->type, 0,
866 m32c_banked_read, m32c_banked_write,
867 isp, usp, FLAGBIT_U));
96309189 868
f79b9530
DJ
869 r0hl = CHL (r0, tdep->int8);
870 r1hl = CHL (r1, tdep->int8);
ac298888
TT
871 CHL (r2, tdep->int8);
872 CHL (r3, tdep->int8);
873 CHL (intb, tdep->int16);
96309189 874
f79b9530
DJ
875 r2r0 = CCAT (r2, r0, tdep->int32);
876 r3r1 = CCAT (r3, r1, tdep->int32);
877 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
96309189 878
f79b9530 879 r3r2r1r0
96309189
MS
880 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
881 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
882
96309189
MS
883 if (mach == bfd_mach_m16c)
884 a1a0 = CCAT (a1, a0, tdep->int32);
885 else
886 a1a0 = NULL;
887
f79b9530 888 num_cooked_regs = tdep->num_regs - num_raw_regs;
96309189
MS
889
890 tdep->pc = pc;
891 tdep->flg = flg;
892 tdep->r0 = r0;
893 tdep->r1 = r1;
894 tdep->r2 = r2;
895 tdep->r3 = r3;
896 tdep->r2r0 = r2r0;
897 tdep->r3r2r1r0 = r3r2r1r0;
898 tdep->r3r1r2r0 = r3r1r2r0;
899 tdep->a0 = a0;
900 tdep->a1 = a1;
901 tdep->sb = sb;
902 tdep->fb = fb;
903 tdep->sp = sp;
904
905 /* Set up the DWARF register table. */
906 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
907 set_dwarf_regnum (r0hl + 1, 0x01);
908 set_dwarf_regnum (r0hl + 0, 0x02);
909 set_dwarf_regnum (r1hl + 1, 0x03);
910 set_dwarf_regnum (r1hl + 0, 0x04);
911 set_dwarf_regnum (r0, 0x05);
912 set_dwarf_regnum (r1, 0x06);
913 set_dwarf_regnum (r2, 0x07);
914 set_dwarf_regnum (r3, 0x08);
915 set_dwarf_regnum (a0, 0x09);
916 set_dwarf_regnum (a1, 0x0a);
917 set_dwarf_regnum (fb, 0x0b);
918 set_dwarf_regnum (sp, 0x0c);
919 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
920 set_dwarf_regnum (sb, 0x13);
921 set_dwarf_regnum (r2r0, 0x15);
922 set_dwarf_regnum (r3r1, 0x16);
923 if (a1a0)
924 set_dwarf_regnum (a1a0, 0x17);
925
926 /* Enumerate the save/restore register group.
927
928 The regcache_save and regcache_restore functions apply their read
929 function to each register in this group.
930
931 Since frame_pop supplies frame_unwind_register as its read
932 function, the registers meaningful to the Dwarf unwinder need to
933 be in this group.
934
935 On the other hand, when we make inferior calls, save_inferior_status
936 and restore_inferior_status use them to preserve the current register
937 values across the inferior call. For this, you'd kind of like to
938 preserve all the raw registers, to protect the interrupted code from
939 any sort of bank switching the callee might have done. But we handle
940 those cases so badly anyway --- for example, it matters whether we
941 restore FLG before or after we restore the general-purpose registers,
942 but there's no way to express that --- that it isn't worth worrying
943 about.
944
945 We omit control registers like inthl: if you call a function that
946 changes those, it's probably because you wanted that change to be
947 visible to the interrupted code. */
948 mark_save_restore (r0);
949 mark_save_restore (r1);
950 mark_save_restore (r2);
951 mark_save_restore (r3);
952 mark_save_restore (a0);
953 mark_save_restore (a1);
954 mark_save_restore (sb);
955 mark_save_restore (fb);
956 mark_save_restore (sp);
957 mark_save_restore (pc);
958 mark_save_restore (flg);
959
960 set_gdbarch_num_regs (arch, num_raw_regs);
961 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
962 set_gdbarch_pc_regnum (arch, pc->num);
963 set_gdbarch_sp_regnum (arch, sp->num);
964 set_gdbarch_register_name (arch, m32c_register_name);
965 set_gdbarch_register_type (arch, m32c_register_type);
966 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
967 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
968 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
969 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
96309189
MS
970 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
971 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
972
973 reggroup_add (arch, general_reggroup);
974 reggroup_add (arch, all_reggroup);
975 reggroup_add (arch, save_reggroup);
976 reggroup_add (arch, restore_reggroup);
977 reggroup_add (arch, system_reggroup);
978 reggroup_add (arch, m32c_dma_reggroup);
979}
980
981
982\f
983/* Breakpoints. */
04180708 984constexpr gdb_byte m32c_break_insn[] = { 0x00 }; /* brk */
96309189 985
04180708 986typedef BP_MANIPULATION (m32c_break_insn) m32c_breakpoint;
96309189
MS
987
988\f
989/* Prologue analysis. */
990
52059ffd
TT
991enum m32c_prologue_kind
992{
993 /* This function uses a frame pointer. */
994 prologue_with_frame_ptr,
995
996 /* This function has no frame pointer. */
997 prologue_sans_frame_ptr,
998
999 /* This function sets up the stack, so its frame is the first
1000 frame on the stack. */
1001 prologue_first_frame
1002};
1003
96309189
MS
1004struct m32c_prologue
1005{
1006 /* For consistency with the DWARF 2 .debug_frame info generated by
1007 GCC, a frame's CFA is the address immediately after the saved
1008 return address. */
1009
1010 /* The architecture for which we generated this prologue info. */
1011 struct gdbarch *arch;
1012
52059ffd 1013 enum m32c_prologue_kind kind;
96309189
MS
1014
1015 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1016 CFA to where the frame pointer points. This is always zero or
1017 negative. */
1018 LONGEST frame_ptr_offset;
1019
1020 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1021 the stack pointer --- always zero or negative.
1022
1023 Calling this a "size" is a bit misleading, but given that the
1024 stack grows downwards, using offsets for everything keeps one
1025 from going completely sign-crazy: you never change anything's
1026 sign for an ADD instruction; always change the second operand's
1027 sign for a SUB instruction; and everything takes care of
1028 itself.
1029
1030 Functions that use alloca don't have a constant frame size. But
1031 they always have frame pointers, so we must use that to find the
1032 CFA (and perhaps to unwind the stack pointer). */
1033 LONGEST frame_size;
1034
1035 /* The address of the first instruction at which the frame has been
1036 set up and the arguments are where the debug info says they are
1037 --- as best as we can tell. */
1038 CORE_ADDR prologue_end;
1039
1040 /* reg_offset[R] is the offset from the CFA at which register R is
1041 saved, or 1 if register R has not been saved. (Real values are
1042 always zero or negative.) */
1043 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1044};
1045
1046
1047/* The longest I've seen, anyway. */
1048#define M32C_MAX_INSN_LEN (9)
1049
1050/* Processor state, for the prologue analyzer. */
1051struct m32c_pv_state
1052{
1053 struct gdbarch *arch;
1054 pv_t r0, r1, r2, r3;
1055 pv_t a0, a1;
1056 pv_t sb, fb, sp;
1057 pv_t pc;
1058 struct pv_area *stack;
1059
1060 /* Bytes from the current PC, the address they were read from,
1061 and the address of the next unconsumed byte. */
1062 gdb_byte insn[M32C_MAX_INSN_LEN];
1063 CORE_ADDR scan_pc, next_addr;
1064};
1065
1066
1067/* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1068 all went well, or non-zero if simulating the action would trash our
1069 state. */
1070static int
1071m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1072{
f7b7ed97 1073 if (state->stack->store_would_trash (state->sp))
96309189
MS
1074 return 1;
1075
1076 state->sp = pv_add_constant (state->sp, -size);
f7b7ed97 1077 state->stack->store (state->sp, size, value);
96309189
MS
1078
1079 return 0;
1080}
1081
1082
52059ffd
TT
1083enum srcdest_kind
1084{
1085 srcdest_reg,
1086 srcdest_partial_reg,
1087 srcdest_mem
1088};
1089
96309189
MS
1090/* A source or destination location for an m16c or m32c
1091 instruction. */
1092struct srcdest
1093{
1094 /* If srcdest_reg, the location is a register pointed to by REG.
1095 If srcdest_partial_reg, the location is part of a register pointed
1096 to by REG. We don't try to handle this too well.
1097 If srcdest_mem, the location is memory whose address is ADDR. */
52059ffd 1098 enum srcdest_kind kind;
96309189
MS
1099 pv_t *reg, addr;
1100};
1101
1102
1103/* Return the SIZE-byte value at LOC in STATE. */
1104static pv_t
1105m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1106{
1107 if (loc.kind == srcdest_mem)
f7b7ed97 1108 return state->stack->fetch (loc.addr, size);
96309189
MS
1109 else if (loc.kind == srcdest_partial_reg)
1110 return pv_unknown ();
1111 else
1112 return *loc.reg;
1113}
1114
1115
1116/* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1117 all went well, or non-zero if simulating the store would trash our
1118 state. */
1119static int
1120m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1121 pv_t value, int size)
1122{
1123 if (loc.kind == srcdest_mem)
1124 {
f7b7ed97 1125 if (state->stack->store_would_trash (loc.addr))
96309189 1126 return 1;
f7b7ed97 1127 state->stack->store (loc.addr, size, value);
96309189
MS
1128 }
1129 else if (loc.kind == srcdest_partial_reg)
1130 *loc.reg = pv_unknown ();
1131 else
1132 *loc.reg = value;
1133
1134 return 0;
1135}
1136
1137
1138static int
1139m32c_sign_ext (int v, int bits)
1140{
1141 int mask = 1 << (bits - 1);
1142 return (v ^ mask) - mask;
1143}
1144
1145static unsigned int
1146m32c_next_byte (struct m32c_pv_state *st)
1147{
1148 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1149 return st->insn[st->next_addr++ - st->scan_pc];
1150}
1151
1152static int
1153m32c_udisp8 (struct m32c_pv_state *st)
1154{
1155 return m32c_next_byte (st);
1156}
1157
1158
1159static int
1160m32c_sdisp8 (struct m32c_pv_state *st)
1161{
1162 return m32c_sign_ext (m32c_next_byte (st), 8);
1163}
1164
1165
1166static int
1167m32c_udisp16 (struct m32c_pv_state *st)
1168{
1169 int low = m32c_next_byte (st);
1170 int high = m32c_next_byte (st);
1171
1172 return low + (high << 8);
1173}
1174
1175
1176static int
1177m32c_sdisp16 (struct m32c_pv_state *st)
1178{
1179 int low = m32c_next_byte (st);
1180 int high = m32c_next_byte (st);
1181
1182 return m32c_sign_ext (low + (high << 8), 16);
1183}
1184
1185
1186static int
1187m32c_udisp24 (struct m32c_pv_state *st)
1188{
1189 int low = m32c_next_byte (st);
1190 int mid = m32c_next_byte (st);
1191 int high = m32c_next_byte (st);
1192
1193 return low + (mid << 8) + (high << 16);
1194}
1195
1196
1197/* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1198static int
1199m32c_get_src23 (unsigned char *i)
1200{
1201 return (((i[0] & 0x70) >> 2)
1202 | ((i[1] & 0x30) >> 4));
1203}
1204
1205
1206/* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1207static int
1208m32c_get_dest23 (unsigned char *i)
1209{
1210 return (((i[0] & 0x0e) << 1)
1211 | ((i[1] & 0xc0) >> 6));
1212}
1213
1214
1215static struct srcdest
1216m32c_decode_srcdest4 (struct m32c_pv_state *st,
1217 int code, int size)
1218{
1219 struct srcdest sd;
1220
1221 if (code < 6)
1222 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1223 else
1224 sd.kind = srcdest_mem;
1225
d56874a7
DD
1226 sd.addr = pv_unknown ();
1227 sd.reg = 0;
1228
96309189
MS
1229 switch (code)
1230 {
a4497d2f 1231 case 0x0: sd.reg = &st->r0; break;
96309189
MS
1232 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1233 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1234 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1235
1236 case 0x4: sd.reg = &st->a0; break;
1237 case 0x5: sd.reg = &st->a1; break;
1238
1239 case 0x6: sd.addr = st->a0; break;
1240 case 0x7: sd.addr = st->a1; break;
1241
1242 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1243 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1244 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1245 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1246
1247 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1248 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1249 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1250 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1251
1252 default:
f3574227 1253 gdb_assert_not_reached ("unexpected srcdest4");
96309189
MS
1254 }
1255
1256 return sd;
1257}
1258
1259
1260static struct srcdest
1261m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1262{
1263 struct srcdest sd;
1264
d56874a7
DD
1265 sd.addr = pv_unknown ();
1266 sd.reg = 0;
1267
96309189
MS
1268 switch (code)
1269 {
1270 case 0x12:
1271 case 0x13:
1272 case 0x10:
1273 case 0x11:
1274 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1275 break;
1276
1277 case 0x02:
1278 case 0x03:
1279 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1280 break;
1281
1282 default:
1283 sd.kind = srcdest_mem;
1284 break;
1285
1286 }
1287
1288 switch (code)
1289 {
1290 case 0x12: sd.reg = &st->r0; break;
1291 case 0x13: sd.reg = &st->r1; break;
1292 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1293 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1294 case 0x02: sd.reg = &st->a0; break;
1295 case 0x03: sd.reg = &st->a1; break;
1296
1297 case 0x00: sd.addr = st->a0; break;
1298 case 0x01: sd.addr = st->a1; break;
1299 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1300 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1301 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1302 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1303 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1304 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1305 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1306 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1307 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1308 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1309 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1310 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1311 default:
f3574227 1312 gdb_assert_not_reached ("unexpected sd23");
96309189
MS
1313 }
1314
1315 if (ind)
1316 {
1317 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1318 sd.kind = srcdest_mem;
1319 }
1320
1321 return sd;
1322}
1323
1324
1325/* The r16c and r32c machines have instructions with similar
1326 semantics, but completely different machine language encodings. So
1327 we break out the semantics into their own functions, and leave
1328 machine-specific decoding in m32c_analyze_prologue.
1329
1330 The following functions all expect their arguments already decoded,
1331 and they all return zero if analysis should continue past this
1332 instruction, or non-zero if analysis should stop. */
1333
1334
1335/* Simulate an 'enter SIZE' instruction in STATE. */
1336static int
1337m32c_pv_enter (struct m32c_pv_state *state, int size)
1338{
1339 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1340
1341 /* If simulating this store would require us to forget
1342 everything we know about the stack frame in the name of
1343 accuracy, it would be better to just quit now. */
f7b7ed97 1344 if (state->stack->store_would_trash (state->sp))
96309189
MS
1345 return 1;
1346
1347 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1348 return 1;
1349 state->fb = state->sp;
1350 state->sp = pv_add_constant (state->sp, -size);
1351
1352 return 0;
1353}
1354
1355
1356static int
1357m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1358 int bit, int src, int size)
1359{
1360 if (bit & src)
1361 {
1362 if (m32c_pv_push (state, reg, size))
1363 return 1;
1364 }
1365
1366 return 0;
1367}
1368
1369
1370/* Simulate a 'pushm SRC' instruction in STATE. */
1371static int
1372m32c_pv_pushm (struct m32c_pv_state *state, int src)
1373{
1374 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1375
1376 /* The bits in SRC indicating which registers to save are:
1377 r0 r1 r2 r3 a0 a1 sb fb */
1378 return
1379 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1380 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1381 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1382 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1383 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1384 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1385 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1386 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1387}
1388
1389/* Return non-zero if VALUE is the first incoming argument register. */
1390
1391static int
1392m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1393{
1394 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1395 return (value.kind == pvk_register
dda83cd7 1396 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
96309189
MS
1397 ? (value.reg == tdep->r1->num)
1398 : (value.reg == tdep->r0->num))
dda83cd7 1399 && value.k == 0);
96309189
MS
1400}
1401
1402/* Return non-zero if VALUE is an incoming argument register. */
1403
1404static int
1405m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1406{
1407 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1408 return (value.kind == pvk_register
dda83cd7 1409 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
96309189
MS
1410 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1411 : (value.reg == tdep->r0->num))
dda83cd7 1412 && value.k == 0);
96309189
MS
1413}
1414
1415/* Return non-zero if a store of VALUE to LOC is probably spilling an
1416 argument register to its stack slot in STATE. Such instructions
1417 should be included in the prologue, if possible.
1418
1419 The store is a spill if:
1420 - the value being stored is the original value of an argument register;
1421 - the value has not already been stored somewhere in STACK; and
1422 - LOC is a stack slot (e.g., a memory location whose address is
1423 relative to the original value of the SP). */
1424
1425static int
1426m32c_is_arg_spill (struct m32c_pv_state *st,
1427 struct srcdest loc,
1428 pv_t value)
1429{
1430 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1431
1432 return (m32c_is_arg_reg (st, value)
1433 && loc.kind == srcdest_mem
dda83cd7
SM
1434 && pv_is_register (loc.addr, tdep->sp->num)
1435 && ! st->stack->find_reg (st->arch, value.reg, 0));
96309189
MS
1436}
1437
1438/* Return non-zero if a store of VALUE to LOC is probably
1439 copying the struct return address into an address register
1440 for immediate use. This is basically a "spill" into the
1441 address register, instead of onto the stack.
1442
1443 The prerequisites are:
1444 - value being stored is original value of the FIRST arg register;
1445 - value has not already been stored on stack; and
1446 - LOC is an address register (a0 or a1). */
1447
1448static int
1449m32c_is_struct_return (struct m32c_pv_state *st,
1450 struct srcdest loc,
1451 pv_t value)
1452{
1453 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1454
1455 return (m32c_is_1st_arg_reg (st, value)
f7b7ed97 1456 && !st->stack->find_reg (st->arch, value.reg, 0)
96309189
MS
1457 && loc.kind == srcdest_reg
1458 && (pv_is_register (*loc.reg, tdep->a0->num)
1459 || pv_is_register (*loc.reg, tdep->a1->num)));
1460}
1461
1462/* Return non-zero if a 'pushm' saving the registers indicated by SRC
1463 was a register save:
1464 - all the named registers should have their original values, and
1465 - the stack pointer should be at a constant offset from the
1466 original stack pointer. */
1467static int
1468m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1469{
1470 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1471 /* The bits in SRC indicating which registers to save are:
1472 r0 r1 r2 r3 a0 a1 sb fb */
1473 return
1474 (pv_is_register (st->sp, tdep->sp->num)
1475 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1476 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1477 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1478 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1479 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1480 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1481 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1482 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1483}
1484
1485
1486/* Function for finding saved registers in a 'struct pv_area'; we pass
f7b7ed97 1487 this to pv_area::scan.
96309189
MS
1488
1489 If VALUE is a saved register, ADDR says it was saved at a constant
1490 offset from the frame base, and SIZE indicates that the whole
1491 register was saved, record its offset in RESULT_UNTYPED. */
1492static void
1493check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1494{
1495 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1496 struct gdbarch *arch = prologue->arch;
1497 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1498
1499 /* Is this the unchanged value of some register being saved on the
1500 stack? */
1501 if (value.kind == pvk_register
1502 && value.k == 0
1503 && pv_is_register (addr, tdep->sp->num))
1504 {
1505 /* Some registers require special handling: they're saved as a
1506 larger value than the register itself. */
1507 CORE_ADDR saved_size = register_size (arch, value.reg);
1508
1509 if (value.reg == tdep->pc->num)
1510 saved_size = tdep->ret_addr_bytes;
7b9ee6a8 1511 else if (register_type (arch, value.reg)
96309189
MS
1512 == tdep->data_addr_reg_type)
1513 saved_size = tdep->push_addr_bytes;
1514
1515 if (size == saved_size)
1516 {
1517 /* Find which end of the saved value corresponds to our
1518 register. */
1519 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1520 prologue->reg_offset[value.reg]
1521 = (addr.k + saved_size - register_size (arch, value.reg));
1522 else
1523 prologue->reg_offset[value.reg] = addr.k;
1524 }
1525 }
1526}
1527
1528
1529/* Analyze the function prologue for ARCH at START, going no further
1530 than LIMIT, and place a description of what we found in
1531 PROLOGUE. */
63807e1d 1532static void
96309189
MS
1533m32c_analyze_prologue (struct gdbarch *arch,
1534 CORE_ADDR start, CORE_ADDR limit,
1535 struct m32c_prologue *prologue)
1536{
1537 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1538 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1539 CORE_ADDR after_last_frame_related_insn;
96309189
MS
1540 struct m32c_pv_state st;
1541
1542 st.arch = arch;
1543 st.r0 = pv_register (tdep->r0->num, 0);
1544 st.r1 = pv_register (tdep->r1->num, 0);
1545 st.r2 = pv_register (tdep->r2->num, 0);
1546 st.r3 = pv_register (tdep->r3->num, 0);
1547 st.a0 = pv_register (tdep->a0->num, 0);
1548 st.a1 = pv_register (tdep->a1->num, 0);
1549 st.sb = pv_register (tdep->sb->num, 0);
1550 st.fb = pv_register (tdep->fb->num, 0);
1551 st.sp = pv_register (tdep->sp->num, 0);
1552 st.pc = pv_register (tdep->pc->num, 0);
f7b7ed97
TT
1553 pv_area stack (tdep->sp->num, gdbarch_addr_bit (arch));
1554 st.stack = &stack;
96309189
MS
1555
1556 /* Record that the call instruction has saved the return address on
1557 the stack. */
1558 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1559
1560 memset (prologue, 0, sizeof (*prologue));
1561 prologue->arch = arch;
1562 {
1563 int i;
1564 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1565 prologue->reg_offset[i] = 1;
1566 }
1567
1568 st.scan_pc = after_last_frame_related_insn = start;
1569
1570 while (st.scan_pc < limit)
1571 {
1572 pv_t pre_insn_fb = st.fb;
1573 pv_t pre_insn_sp = st.sp;
1574
1575 /* In theory we could get in trouble by trying to read ahead
1576 here, when we only know we're expecting one byte. In
1577 practice I doubt anyone will care, and it makes the rest of
1578 the code easier. */
1579 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1580 /* If we can't fetch the instruction from memory, stop here
1581 and hope for the best. */
1582 break;
1583 st.next_addr = st.scan_pc;
1584
1585 /* The assembly instructions are written as they appear in the
1586 section of the processor manuals that describe the
1587 instruction encodings.
1588
1589 When a single assembly language instruction has several
1590 different machine-language encodings, the manual
1591 distinguishes them by a number in parens, before the
1592 mnemonic. Those numbers are included, as well.
1593
1594 The srcdest decoding instructions have the same names as the
1595 analogous functions in the simulator. */
1596 if (mach == bfd_mach_m16c)
1597 {
1598 /* (1) ENTER #imm8 */
1599 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1600 {
1601 if (m32c_pv_enter (&st, st.insn[2]))
1602 break;
1603 st.next_addr += 3;
1604 }
1605 /* (1) PUSHM src */
1606 else if (st.insn[0] == 0xec)
1607 {
1608 int src = st.insn[1];
1609 if (m32c_pv_pushm (&st, src))
1610 break;
1611 st.next_addr += 2;
1612
1613 if (m32c_pushm_is_reg_save (&st, src))
1614 after_last_frame_related_insn = st.next_addr;
1615 }
1616
1617 /* (6) MOV.size:G src, dest */
1618 else if ((st.insn[0] & 0xfe) == 0x72)
1619 {
1620 int size = (st.insn[0] & 0x01) ? 2 : 1;
f79b9530
DJ
1621 struct srcdest src;
1622 struct srcdest dest;
1623 pv_t src_value;
96309189
MS
1624 st.next_addr += 2;
1625
f79b9530 1626 src
96309189 1627 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
f79b9530 1628 dest
96309189 1629 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
f79b9530 1630 src_value = m32c_srcdest_fetch (&st, src, size);
96309189
MS
1631
1632 if (m32c_is_arg_spill (&st, dest, src_value))
1633 after_last_frame_related_insn = st.next_addr;
1634 else if (m32c_is_struct_return (&st, dest, src_value))
1635 after_last_frame_related_insn = st.next_addr;
1636
1637 if (m32c_srcdest_store (&st, dest, src_value, size))
1638 break;
1639 }
1640
1641 /* (1) LDC #IMM16, sp */
1642 else if (st.insn[0] == 0xeb
1643 && st.insn[1] == 0x50)
1644 {
1645 st.next_addr += 2;
1646 st.sp = pv_constant (m32c_udisp16 (&st));
1647 }
1648
1649 else
1650 /* We've hit some instruction we don't know how to simulate.
1651 Strictly speaking, we should set every value we're
1652 tracking to "unknown". But we'll be optimistic, assume
1653 that we have enough information already, and stop
1654 analysis here. */
1655 break;
1656 }
1657 else
1658 {
1659 int src_indirect = 0;
1660 int dest_indirect = 0;
1661 int i = 0;
1662
1663 gdb_assert (mach == bfd_mach_m32c);
1664
1665 /* Check for prefix bytes indicating indirect addressing. */
1666 if (st.insn[0] == 0x41)
1667 {
1668 src_indirect = 1;
1669 i++;
1670 }
1671 else if (st.insn[0] == 0x09)
1672 {
1673 dest_indirect = 1;
1674 i++;
1675 }
1676 else if (st.insn[0] == 0x49)
1677 {
1678 src_indirect = dest_indirect = 1;
1679 i++;
1680 }
1681
1682 /* (1) ENTER #imm8 */
1683 if (st.insn[i] == 0xec)
1684 {
1685 if (m32c_pv_enter (&st, st.insn[i + 1]))
1686 break;
1687 st.next_addr += 2;
1688 }
1689
1690 /* (1) PUSHM src */
1691 else if (st.insn[i] == 0x8f)
1692 {
1693 int src = st.insn[i + 1];
1694 if (m32c_pv_pushm (&st, src))
1695 break;
1696 st.next_addr += 2;
1697
1698 if (m32c_pushm_is_reg_save (&st, src))
1699 after_last_frame_related_insn = st.next_addr;
1700 }
1701
1702 /* (7) MOV.size:G src, dest */
1703 else if ((st.insn[i] & 0x80) == 0x80
1704 && (st.insn[i + 1] & 0x0f) == 0x0b
1705 && m32c_get_src23 (&st.insn[i]) < 20
1706 && m32c_get_dest23 (&st.insn[i]) < 20)
1707 {
f79b9530
DJ
1708 struct srcdest src;
1709 struct srcdest dest;
1710 pv_t src_value;
96309189
MS
1711 int bw = st.insn[i] & 0x01;
1712 int size = bw ? 2 : 1;
96309189
MS
1713 st.next_addr += 2;
1714
f79b9530 1715 src
96309189
MS
1716 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1717 size, src_indirect);
f79b9530 1718 dest
96309189
MS
1719 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1720 size, dest_indirect);
f79b9530 1721 src_value = m32c_srcdest_fetch (&st, src, size);
96309189
MS
1722
1723 if (m32c_is_arg_spill (&st, dest, src_value))
1724 after_last_frame_related_insn = st.next_addr;
1725
1726 if (m32c_srcdest_store (&st, dest, src_value, size))
1727 break;
1728 }
1729 /* (2) LDC #IMM24, sp */
1730 else if (st.insn[i] == 0xd5
1731 && st.insn[i + 1] == 0x29)
1732 {
1733 st.next_addr += 2;
1734 st.sp = pv_constant (m32c_udisp24 (&st));
1735 }
1736 else
1737 /* We've hit some instruction we don't know how to simulate.
1738 Strictly speaking, we should set every value we're
1739 tracking to "unknown". But we'll be optimistic, assume
1740 that we have enough information already, and stop
1741 analysis here. */
1742 break;
1743 }
1744
1745 /* If this instruction changed the FB or decreased the SP (i.e.,
dda83cd7
SM
1746 allocated more stack space), then this may be a good place to
1747 declare the prologue finished. However, there are some
1748 exceptions:
96309189 1749
dda83cd7
SM
1750 - If the instruction just changed the FB back to its original
1751 value, then that's probably a restore instruction. The
1752 prologue should definitely end before that.
96309189 1753
dda83cd7
SM
1754 - If the instruction increased the value of the SP (that is,
1755 shrunk the frame), then it's probably part of a frame
1756 teardown sequence, and the prologue should end before
1757 that. */
96309189
MS
1758
1759 if (! pv_is_identical (st.fb, pre_insn_fb))
dda83cd7
SM
1760 {
1761 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1762 after_last_frame_related_insn = st.next_addr;
1763 }
96309189 1764 else if (! pv_is_identical (st.sp, pre_insn_sp))
dda83cd7
SM
1765 {
1766 /* The comparison of the constants looks odd, there, because
1767 .k is unsigned. All it really means is that the SP is
1768 lower than it was before the instruction. */
1769 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1770 && pv_is_register (st.sp, tdep->sp->num)
1771 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1772 after_last_frame_related_insn = st.next_addr;
1773 }
96309189
MS
1774
1775 st.scan_pc = st.next_addr;
1776 }
1777
1778 /* Did we load a constant value into the stack pointer? */
1779 if (pv_is_constant (st.sp))
1780 prologue->kind = prologue_first_frame;
1781
1782 /* Alternatively, did we initialize the frame pointer? Remember
1783 that the CFA is the address after the return address. */
1784 if (pv_is_register (st.fb, tdep->sp->num))
1785 {
1786 prologue->kind = prologue_with_frame_ptr;
1787 prologue->frame_ptr_offset = st.fb.k;
1788 }
1789
1790 /* Is the frame size a known constant? Remember that frame_size is
1791 actually the offset from the CFA to the SP (i.e., a negative
1792 value). */
1793 else if (pv_is_register (st.sp, tdep->sp->num))
1794 {
1795 prologue->kind = prologue_sans_frame_ptr;
1796 prologue->frame_size = st.sp.k;
1797 }
1798
1799 /* We haven't been able to make sense of this function's frame. Treat
1800 it as the first frame. */
1801 else
1802 prologue->kind = prologue_first_frame;
1803
1804 /* Record where all the registers were saved. */
f7b7ed97 1805 st.stack->scan (check_for_saved, (void *) prologue);
96309189
MS
1806
1807 prologue->prologue_end = after_last_frame_related_insn;
96309189
MS
1808}
1809
1810
1811static CORE_ADDR
6093d2eb 1812m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
96309189 1813{
2c02bd72 1814 const char *name;
96309189
MS
1815 CORE_ADDR func_addr, func_end, sal_end;
1816 struct m32c_prologue p;
1817
1818 /* Try to find the extent of the function that contains IP. */
1819 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1820 return ip;
1821
1822 /* Find end by prologue analysis. */
6093d2eb 1823 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
96309189 1824 /* Find end by line info. */
d80b854b 1825 sal_end = skip_prologue_using_sal (gdbarch, ip);
96309189
MS
1826 /* Return whichever is lower. */
1827 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1828 return sal_end;
1829 else
1830 return p.prologue_end;
1831}
1832
1833
1834\f
1835/* Stack unwinding. */
1836
1837static struct m32c_prologue *
94afd7a6 1838m32c_analyze_frame_prologue (struct frame_info *this_frame,
96309189
MS
1839 void **this_prologue_cache)
1840{
1841 if (! *this_prologue_cache)
1842 {
94afd7a6
UW
1843 CORE_ADDR func_start = get_frame_func (this_frame);
1844 CORE_ADDR stop_addr = get_frame_pc (this_frame);
96309189
MS
1845
1846 /* If we couldn't find any function containing the PC, then
dda83cd7 1847 just initialize the prologue cache, but don't do anything. */
96309189 1848 if (! func_start)
dda83cd7 1849 stop_addr = func_start;
96309189
MS
1850
1851 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
94afd7a6 1852 m32c_analyze_prologue (get_frame_arch (this_frame),
9a3c8263
SM
1853 func_start, stop_addr,
1854 (struct m32c_prologue *) *this_prologue_cache);
96309189
MS
1855 }
1856
9a3c8263 1857 return (struct m32c_prologue *) *this_prologue_cache;
96309189
MS
1858}
1859
1860
1861static CORE_ADDR
94afd7a6 1862m32c_frame_base (struct frame_info *this_frame,
dda83cd7 1863 void **this_prologue_cache)
96309189
MS
1864{
1865 struct m32c_prologue *p
94afd7a6
UW
1866 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1867 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
96309189
MS
1868
1869 /* In functions that use alloca, the distance between the stack
1870 pointer and the frame base varies dynamically, so we can't use
1871 the SP plus static information like prologue analysis to find the
1872 frame base. However, such functions must have a frame pointer,
1873 to be able to restore the SP on exit. So whenever we do have a
1874 frame pointer, use that to find the base. */
1875 switch (p->kind)
1876 {
1877 case prologue_with_frame_ptr:
1878 {
1879 CORE_ADDR fb
94afd7a6 1880 = get_frame_register_unsigned (this_frame, tdep->fb->num);
96309189
MS
1881 return fb - p->frame_ptr_offset;
1882 }
1883
1884 case prologue_sans_frame_ptr:
1885 {
1886 CORE_ADDR sp
94afd7a6 1887 = get_frame_register_unsigned (this_frame, tdep->sp->num);
96309189
MS
1888 return sp - p->frame_size;
1889 }
1890
1891 case prologue_first_frame:
1892 return 0;
1893
1894 default:
f3574227 1895 gdb_assert_not_reached ("unexpected prologue kind");
96309189
MS
1896 }
1897}
1898
1899
1900static void
94afd7a6 1901m32c_this_id (struct frame_info *this_frame,
96309189
MS
1902 void **this_prologue_cache,
1903 struct frame_id *this_id)
1904{
94afd7a6 1905 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
96309189
MS
1906
1907 if (base)
94afd7a6 1908 *this_id = frame_id_build (base, get_frame_func (this_frame));
96309189
MS
1909 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1910}
1911
1912
94afd7a6
UW
1913static struct value *
1914m32c_prev_register (struct frame_info *this_frame,
1915 void **this_prologue_cache, int regnum)
96309189 1916{
94afd7a6 1917 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
96309189 1918 struct m32c_prologue *p
94afd7a6
UW
1919 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1920 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
96309189
MS
1921
1922 if (regnum == tdep->sp->num)
94afd7a6 1923 return frame_unwind_got_constant (this_frame, regnum, frame_base);
96309189
MS
1924
1925 /* If prologue analysis says we saved this register somewhere,
1926 return a description of the stack slot holding it. */
94afd7a6
UW
1927 if (p->reg_offset[regnum] != 1)
1928 return frame_unwind_got_memory (this_frame, regnum,
dda83cd7 1929 frame_base + p->reg_offset[regnum]);
96309189
MS
1930
1931 /* Otherwise, presume we haven't changed the value of this
1932 register, and get it from the next frame. */
94afd7a6 1933 return frame_unwind_got_register (this_frame, regnum, regnum);
96309189
MS
1934}
1935
1936
1937static const struct frame_unwind m32c_unwind = {
a154d838 1938 "m32c prologue",
96309189 1939 NORMAL_FRAME,
8fbca658 1940 default_frame_unwind_stop_reason,
96309189 1941 m32c_this_id,
94afd7a6
UW
1942 m32c_prev_register,
1943 NULL,
1944 default_frame_sniffer
96309189
MS
1945};
1946
96309189
MS
1947\f
1948/* Inferior calls. */
1949
1950/* The calling conventions, according to GCC:
1951
1952 r8c, m16c
1953 ---------
1954 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1955 HImode), (2) is named, and (3) is an integer or pointer type (no
1956 structs, floats, etc). Otherwise, it's passed on the stack.
1957
1958 Second arg may be passed in r2, same restrictions (but not QImode),
1959 even if the first arg is passed on the stack.
1960
1961 Third and further args are passed on the stack. No padding is
1962 used, stack "alignment" is 8 bits.
1963
1964 m32cm, m32c
1965 -----------
1966
1967 First arg may be passed in r0l or r0, same restrictions as above.
1968
1969 Second and further args are passed on the stack. Padding is used
1970 after QImode parameters (i.e. lower-addressed byte is the value,
1971 higher-addressed byte is the padding), stack "alignment" is 16
1972 bits. */
1973
1974
1975/* Return true if TYPE is a type that can be passed in registers. (We
1976 ignore the size, and pay attention only to the type code;
1977 acceptable sizes depends on which register is being considered to
1978 hold it.) */
1979static int
1980m32c_reg_arg_type (struct type *type)
1981{
78134374 1982 enum type_code code = type->code ();
96309189
MS
1983
1984 return (code == TYPE_CODE_INT
1985 || code == TYPE_CODE_ENUM
1986 || code == TYPE_CODE_PTR
aa006118 1987 || TYPE_IS_REFERENCE (type)
96309189
MS
1988 || code == TYPE_CODE_BOOL
1989 || code == TYPE_CODE_CHAR);
1990}
1991
1992
1993static CORE_ADDR
1994m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1995 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
cf84fa6b
AH
1996 struct value **args, CORE_ADDR sp,
1997 function_call_return_method return_method,
96309189
MS
1998 CORE_ADDR struct_addr)
1999{
2000 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 2001 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2002 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2003 CORE_ADDR cfa;
2004 int i;
2005
2006 /* The number of arguments given in this function's prototype, or
2007 zero if it has a non-prototyped function type. The m32c ABI
2008 passes arguments mentioned in the prototype differently from
2009 those in the ellipsis of a varargs function, or from those passed
2010 to a non-prototyped function. */
2011 int num_prototyped_args = 0;
2012
2013 {
2014 struct type *func_type = value_type (function);
2015
ed09d7da 2016 /* Dereference function pointer types. */
78134374 2017 if (func_type->code () == TYPE_CODE_PTR)
ed09d7da
KB
2018 func_type = TYPE_TARGET_TYPE (func_type);
2019
78134374
SM
2020 gdb_assert (func_type->code () == TYPE_CODE_FUNC ||
2021 func_type->code () == TYPE_CODE_METHOD);
96309189
MS
2022
2023#if 0
2024 /* The ABI description in gcc/config/m32c/m32c.abi says that
2025 we need to handle prototyped and non-prototyped functions
2026 separately, but the code in GCC doesn't actually do so. */
2027 if (TYPE_PROTOTYPED (func_type))
2028#endif
1f704f76 2029 num_prototyped_args = func_type->num_fields ();
96309189
MS
2030 }
2031
2032 /* First, if the function returns an aggregate by value, push a
2033 pointer to a buffer for it. This doesn't affect the way
2034 subsequent arguments are allocated to registers. */
cf84fa6b 2035 if (return_method == return_method_struct)
96309189
MS
2036 {
2037 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2038 sp -= ptr_len;
e17a4113 2039 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
96309189
MS
2040 }
2041
2042 /* Push the arguments. */
2043 for (i = nargs - 1; i >= 0; i--)
2044 {
2045 struct value *arg = args[i];
2046 const gdb_byte *arg_bits = value_contents (arg);
2047 struct type *arg_type = value_type (arg);
2048 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2049
2050 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2051 if (i == 0
2052 && arg_size <= 2
2053 && i < num_prototyped_args
2054 && m32c_reg_arg_type (arg_type))
2055 {
2056 /* Extract and re-store as an integer as a terse way to make
2057 sure it ends up in the least significant end of r1. (GDB
2058 should avoid assuming endianness, even on uni-endian
2059 processors.) */
e17a4113
UW
2060 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2061 byte_order);
96309189
MS
2062 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2063 regcache_cooked_write_unsigned (regcache, reg->num, u);
2064 }
2065
2066 /* Can it go in r2? */
2067 else if (mach == bfd_mach_m16c
2068 && i == 1
2069 && arg_size == 2
2070 && i < num_prototyped_args
2071 && m32c_reg_arg_type (arg_type))
b66f5587 2072 regcache->cooked_write (tdep->r2->num, arg_bits);
96309189
MS
2073
2074 /* Everything else goes on the stack. */
2075 else
2076 {
2077 sp -= arg_size;
2078
2079 /* Align the stack. */
2080 if (mach == bfd_mach_m32c)
2081 sp &= ~1;
2082
2083 write_memory (sp, arg_bits, arg_size);
2084 }
2085 }
2086
2087 /* This is the CFA we use to identify the dummy frame. */
2088 cfa = sp;
2089
2090 /* Push the return address. */
2091 sp -= tdep->ret_addr_bytes;
e17a4113
UW
2092 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2093 bp_addr);
96309189
MS
2094
2095 /* Update the stack pointer. */
2096 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2097
2098 /* We need to borrow an odd trick from the i386 target here.
2099
2100 The value we return from this function gets used as the stack
2101 address (the CFA) for the dummy frame's ID. The obvious thing is
2102 to return the new TOS. However, that points at the return
2103 address, saved on the stack, which is inconsistent with the CFA's
2104 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2105 .debug_frame info uses the address immediately after the saved
2106 return address. So you end up with a dummy frame whose CFA
2107 points at the return address, but the frame for the function
2108 being called has a CFA pointing after the return address: the
2109 younger CFA is *greater than* the older CFA. The sanity checks
2110 in frame.c don't like that.
2111
2112 So we try to be consistent with the CFA's used by DWARF 2.
2113 Having a dummy frame and a real frame with the *same* CFA is
2114 tolerable. */
2115 return cfa;
2116}
2117
2118
96309189
MS
2119\f
2120/* Return values. */
2121
2122/* Return value conventions, according to GCC:
2123
2124 r8c, m16c
2125 ---------
2126
2127 QImode in r0l
2128 HImode in r0
2129 SImode in r2r0
2130 near pointer in r0
2131 far pointer in r2r0
2132
2133 Aggregate values (regardless of size) are returned by pushing a
2134 pointer to a temporary area on the stack after the args are pushed.
2135 The function fills in this area with the value. Note that this
2136 pointer on the stack does not affect how register arguments, if any,
2137 are configured.
2138
2139 m32cm, m32c
2140 -----------
2141 Same. */
2142
2143/* Return non-zero if values of type TYPE are returned by storing them
2144 in a buffer whose address is passed on the stack, ahead of the
2145 other arguments. */
2146static int
2147m32c_return_by_passed_buf (struct type *type)
2148{
78134374 2149 enum type_code code = type->code ();
96309189
MS
2150
2151 return (code == TYPE_CODE_STRUCT
2152 || code == TYPE_CODE_UNION);
2153}
2154
2155static enum return_value_convention
2156m32c_return_value (struct gdbarch *gdbarch,
6a3a010b 2157 struct value *function,
96309189
MS
2158 struct type *valtype,
2159 struct regcache *regcache,
2160 gdb_byte *readbuf,
2161 const gdb_byte *writebuf)
2162{
2163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 2164 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2165 enum return_value_convention conv;
2166 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2167
2168 if (m32c_return_by_passed_buf (valtype))
2169 conv = RETURN_VALUE_STRUCT_CONVENTION;
2170 else
2171 conv = RETURN_VALUE_REGISTER_CONVENTION;
2172
2173 if (readbuf)
2174 {
2175 /* We should never be called to find values being returned by
2176 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2177 unless we made the call ourselves. */
2178 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2179
2180 gdb_assert (valtype_len <= 8);
2181
2182 /* Anything that fits in r0 is returned there. */
2183 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2184 {
2185 ULONGEST u;
2186 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
e17a4113 2187 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
96309189
MS
2188 }
2189 else
2190 {
2191 /* Everything else is passed in mem0, using as many bytes as
2192 needed. This is not what the Renesas tools do, but it's
2193 what GCC does at the moment. */
3b7344d5 2194 struct bound_minimal_symbol mem0
96309189
MS
2195 = lookup_minimal_symbol ("mem0", NULL, NULL);
2196
3b7344d5 2197 if (! mem0.minsym)
a73c6dcd
MS
2198 error (_("The return value is stored in memory at 'mem0', "
2199 "but GDB cannot find\n"
2200 "its address."));
77e371c0 2201 read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
96309189
MS
2202 }
2203 }
2204
2205 if (writebuf)
2206 {
2207 /* We should never be called to store values to be returned
2208 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2209 finding the buffer, unless we made the call ourselves. */
2210 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2211
2212 gdb_assert (valtype_len <= 8);
2213
2214 /* Anything that fits in r0 is returned there. */
2215 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2216 {
e17a4113
UW
2217 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2218 byte_order);
96309189
MS
2219 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2220 }
2221 else
2222 {
2223 /* Everything else is passed in mem0, using as many bytes as
2224 needed. This is not what the Renesas tools do, but it's
2225 what GCC does at the moment. */
3b7344d5 2226 struct bound_minimal_symbol mem0
96309189
MS
2227 = lookup_minimal_symbol ("mem0", NULL, NULL);
2228
3b7344d5 2229 if (! mem0.minsym)
a73c6dcd
MS
2230 error (_("The return value is stored in memory at 'mem0', "
2231 "but GDB cannot find\n"
2232 " its address."));
77e371c0 2233 write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
96309189
MS
2234 }
2235 }
2236
2237 return conv;
2238}
2239
2240
2241\f
2242/* Trampolines. */
2243
2244/* The m16c and m32c use a trampoline function for indirect function
2245 calls. An indirect call looks like this:
2246
2247 ... push arguments ...
2248 ... push target function address ...
2249 jsr.a m32c_jsri16
2250
2251 The code for m32c_jsri16 looks like this:
2252
2253 m32c_jsri16:
2254
dda83cd7 2255 # Save return address.
96309189
MS
2256 pop.w m32c_jsri_ret
2257 pop.b m32c_jsri_ret+2
2258
dda83cd7 2259 # Store target function address.
96309189
MS
2260 pop.w m32c_jsri_addr
2261
2262 # Re-push return address.
2263 push.b m32c_jsri_ret+2
2264 push.w m32c_jsri_ret
2265
2266 # Call the target function.
2267 jmpi.a m32c_jsri_addr
2268
2269 Without further information, GDB will treat calls to m32c_jsri16
2270 like calls to any other function. Since m32c_jsri16 doesn't have
2271 debugging information, that normally means that GDB sets a step-
2272 resume breakpoint and lets the program continue --- which is not
2273 what the user wanted. (Giving the trampoline debugging info
2274 doesn't help: the user expects the program to stop in the function
2275 their program is calling, not in some trampoline code they've never
2276 seen before.)
2277
e76f05fa 2278 The gdbarch_skip_trampoline_code method tells GDB how to step
96309189
MS
2279 through such trampoline functions transparently to the user. When
2280 given the address of a trampoline function's first instruction,
e76f05fa 2281 gdbarch_skip_trampoline_code should return the address of the first
96309189
MS
2282 instruction of the function really being called. If GDB decides it
2283 wants to step into that function, it will set a breakpoint there
2284 and silently continue to it.
2285
2286 We recognize the trampoline by name, and extract the target address
2287 directly from the stack. This isn't great, but recognizing by its
2288 code sequence seems more fragile. */
2289
2290static CORE_ADDR
52f729a7 2291m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
96309189 2292{
e17a4113
UW
2293 struct gdbarch *gdbarch = get_frame_arch (frame);
2294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2296
2297 /* It would be nicer to simply look up the addresses of known
2298 trampolines once, and then compare stop_pc with them. However,
2299 we'd need to ensure that that cached address got invalidated when
2300 someone loaded a new executable, and I'm not quite sure of the
2301 best way to do that. find_pc_partial_function does do some
2302 caching, so we'll see how this goes. */
2c02bd72 2303 const char *name;
96309189
MS
2304 CORE_ADDR start, end;
2305
2306 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2307 {
2308 /* Are we stopped at the beginning of the trampoline function? */
2309 if (strcmp (name, "m32c_jsri16") == 0
2310 && stop_pc == start)
2311 {
2312 /* Get the stack pointer. The return address is at the top,
2313 and the target function's address is just below that. We
2314 know it's a two-byte address, since the trampoline is
2315 m32c_jsri*16*. */
2316 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2317 CORE_ADDR target
e17a4113
UW
2318 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2319 2, byte_order);
96309189
MS
2320
2321 /* What we have now is the address of a jump instruction.
2322 What we need is the destination of that jump.
025bb325
MS
2323 The opcode is 1 byte, and the destination is the next 3 bytes. */
2324
e17a4113 2325 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
96309189
MS
2326 return target;
2327 }
2328 }
2329
2330 return 0;
2331}
2332
2333
2334/* Address/pointer conversions. */
2335
2336/* On the m16c, there is a 24-bit address space, but only a very few
2337 instructions can generate addresses larger than 0xffff: jumps,
2338 jumps to subroutines, and the lde/std (load/store extended)
2339 instructions.
2340
2341 Since GCC can only support one size of pointer, we can't have
2342 distinct 'near' and 'far' pointer types; we have to pick one size
2343 for everything. If we wanted to use 24-bit pointers, then GCC
2344 would have to use lde and ste for all memory references, which
2345 would be terrible for performance and code size. So the GNU
2346 toolchain uses 16-bit pointers for everything, and gives up the
2347 ability to have pointers point outside the first 64k of memory.
2348
2349 However, as a special hack, we let the linker place functions at
2350 addresses above 0xffff, as long as it also places a trampoline in
2351 the low 64k for every function whose address is taken. Each
2352 trampoline consists of a single jmp.a instruction that jumps to the
2353 function's real entry point. Pointers to functions can be 16 bits
2354 long, even though the functions themselves are at higher addresses:
2355 the pointers refer to the trampolines, not the functions.
2356
2357 This complicates things for GDB, however: given the address of a
2358 function (from debug info or linker symbols, say) which could be
2359 anywhere in the 24-bit address space, how can we find an
2360 appropriate 16-bit value to use as a pointer to it?
2361
2362 If the linker has not generated a trampoline for the function,
2363 we're out of luck. Well, I guess we could malloc some space and
2364 write a jmp.a instruction to it, but I'm not going to get into that
2365 at the moment.
2366
2367 If the linker has generated a trampoline for the function, then it
2368 also emitted a symbol for the trampoline: if the function's linker
2369 symbol is named NAME, then the function's trampoline's linker
2370 symbol is named NAME.plt.
2371
2372 So, given a code address:
2373 - We try to find a linker symbol at that address.
2374 - If we find such a symbol named NAME, we look for a linker symbol
2375 named NAME.plt.
2376 - If we find such a symbol, we assume it is a trampoline, and use
2377 its address as the pointer value.
2378
2379 And, given a function pointer:
2380 - We try to find a linker symbol at that address named NAME.plt.
2381 - If we find such a symbol, we look for a linker symbol named NAME.
2382 - If we find that, we provide that as the function's address.
2383 - If any of the above steps fail, we return the original address
2384 unchanged; it might really be a function in the low 64k.
2385
2386 See? You *knew* there was a reason you wanted to be a computer
2387 programmer! :) */
2388
2389static void
9898f801
UW
2390m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2391 struct type *type, gdb_byte *buf, CORE_ADDR addr)
96309189 2392{
e17a4113 2393 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f79b9530 2394 enum type_code target_code;
78134374 2395 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
96309189 2396
78134374 2397 target_code = TYPE_TARGET_TYPE (type)->code ();
96309189
MS
2398
2399 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2400 {
0d5cff50 2401 const char *func_name;
f79b9530 2402 char *tramp_name;
3b7344d5 2403 struct bound_minimal_symbol tramp_msym;
f79b9530 2404
96309189 2405 /* Try to find a linker symbol at this address. */
7cbd4a93
TT
2406 struct bound_minimal_symbol func_msym
2407 = lookup_minimal_symbol_by_pc (addr);
96309189 2408
7cbd4a93 2409 if (! func_msym.minsym)
dda83cd7
SM
2410 error (_("Cannot convert code address %s to function pointer:\n"
2411 "couldn't find a symbol at that address, to find trampoline."),
2412 paddress (gdbarch, addr));
96309189 2413
c9d95fa3 2414 func_name = func_msym.minsym->linkage_name ();
224c3ddb 2415 tramp_name = (char *) xmalloc (strlen (func_name) + 5);
96309189
MS
2416 strcpy (tramp_name, func_name);
2417 strcat (tramp_name, ".plt");
2418
2419 /* Try to find a linker symbol for the trampoline. */
f79b9530 2420 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
96309189
MS
2421
2422 /* We've either got another copy of the name now, or don't need
dda83cd7 2423 the name any more. */
96309189
MS
2424 xfree (tramp_name);
2425
3b7344d5 2426 if (! tramp_msym.minsym)
d77b48cf
KB
2427 {
2428 CORE_ADDR ptrval;
2429
2430 /* No PLT entry found. Mask off the upper bits of the address
2431 to make a pointer. As noted in the warning to the user
2432 below, this value might be useful if converted back into
2433 an address by GDB, but will otherwise, almost certainly,
2434 be garbage.
2435
2436 Using this masked result does seem to be useful
2437 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2438 PASSes. These results appear to be correct as well.
2439
2440 We print a warning here so that the user can make a
2441 determination about whether the result is useful or not. */
2442 ptrval = addr & 0xffff;
2443
2444 warning (_("Cannot convert code address %s to function pointer:\n"
2445 "couldn't find trampoline named '%s.plt'.\n"
2446 "Returning pointer value %s instead; this may produce\n"
2447 "a useful result if converted back into an address by GDB,\n"
422186a9 2448 "but will most likely not be useful otherwise."),
d77b48cf
KB
2449 paddress (gdbarch, addr), func_name,
2450 paddress (gdbarch, ptrval));
2451
2452 addr = ptrval;
96309189 2453
d77b48cf
KB
2454 }
2455 else
2456 {
2457 /* The trampoline's address is our pointer. */
77e371c0 2458 addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
d77b48cf 2459 }
96309189
MS
2460 }
2461
e17a4113 2462 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
96309189
MS
2463}
2464
2465
2466static CORE_ADDR
9898f801
UW
2467m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2468 struct type *type, const gdb_byte *buf)
96309189 2469{
e17a4113 2470 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f79b9530
DJ
2471 CORE_ADDR ptr;
2472 enum type_code target_code;
2473
78134374 2474 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
96309189 2475
e17a4113 2476 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
96309189 2477
78134374 2478 target_code = TYPE_TARGET_TYPE (type)->code ();
96309189
MS
2479
2480 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2481 {
2482 /* See if there is a minimal symbol at that address whose name is
dda83cd7 2483 "NAME.plt". */
7cbd4a93 2484 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
96309189 2485
7cbd4a93 2486 if (ptr_msym.minsym)
dda83cd7
SM
2487 {
2488 const char *ptr_msym_name = ptr_msym.minsym->linkage_name ();
2489 int len = strlen (ptr_msym_name);
96309189 2490
dda83cd7
SM
2491 if (len > 4
2492 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2493 {
3b7344d5 2494 struct bound_minimal_symbol func_msym;
dda83cd7
SM
2495 /* We have a .plt symbol; try to find the symbol for the
2496 corresponding function.
2497
2498 Since the trampoline contains a jump instruction, we
2499 could also just extract the jump's target address. I
2500 don't see much advantage one way or the other. */
2501 char *func_name = (char *) xmalloc (len - 4 + 1);
2502 memcpy (func_name, ptr_msym_name, len - 4);
2503 func_name[len - 4] = '\0';
2504 func_msym
2505 = lookup_minimal_symbol (func_name, NULL, NULL);
2506
2507 /* If we do have such a symbol, return its value as the
2508 function's true address. */
2509 if (func_msym.minsym)
2510 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2511 }
2512 }
d77b48cf
KB
2513 else
2514 {
2515 int aspace;
2516
2517 for (aspace = 1; aspace <= 15; aspace++)
2518 {
2519 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2520
7cbd4a93 2521 if (ptr_msym.minsym)
d77b48cf
KB
2522 ptr |= aspace << 16;
2523 }
2524 }
96309189
MS
2525 }
2526
2527 return ptr;
2528}
2529
63807e1d 2530static void
a54fba4c 2531m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
7830cb4f
CV
2532 int *frame_regnum,
2533 LONGEST *frame_offset)
2534{
2c02bd72 2535 const char *name;
22e048c9 2536 CORE_ADDR func_addr, func_end;
7830cb4f
CV
2537 struct m32c_prologue p;
2538
594f7785 2539 struct regcache *regcache = get_current_regcache ();
a54fba4c 2540 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7830cb4f
CV
2541
2542 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
025bb325
MS
2543 internal_error (__FILE__, __LINE__,
2544 _("No virtual frame pointer available"));
7830cb4f 2545
a54fba4c 2546 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
7830cb4f
CV
2547 switch (p.kind)
2548 {
2549 case prologue_with_frame_ptr:
594f7785 2550 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
7830cb4f
CV
2551 *frame_offset = p.frame_ptr_offset;
2552 break;
2553 case prologue_sans_frame_ptr:
594f7785 2554 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
7830cb4f
CV
2555 *frame_offset = p.frame_size;
2556 break;
2557 default:
594f7785 2558 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
7830cb4f
CV
2559 *frame_offset = 0;
2560 break;
2561 }
2562 /* Sanity check */
a54fba4c 2563 if (*frame_regnum > gdbarch_num_regs (gdbarch))
025bb325
MS
2564 internal_error (__FILE__, __LINE__,
2565 _("No virtual frame pointer available"));
7830cb4f 2566}
96309189
MS
2567
2568\f
2569/* Initialization. */
2570
2571static struct gdbarch *
2572m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2573{
97ce08cb 2574 struct gdbarch *gdbarch;
96309189
MS
2575 struct gdbarch_tdep *tdep;
2576 unsigned long mach = info.bfd_arch_info->mach;
2577
2578 /* Find a candidate among the list of architectures we've created
2579 already. */
2580 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2581 arches != NULL;
2582 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2583 return arches->gdbarch;
2584
8d749320 2585 tdep = XCNEW (struct gdbarch_tdep);
97ce08cb 2586 gdbarch = gdbarch_alloc (&info, tdep);
96309189
MS
2587
2588 /* Essential types. */
97ce08cb 2589 make_types (gdbarch);
96309189
MS
2590
2591 /* Address/pointer conversions. */
2592 if (mach == bfd_mach_m16c)
2593 {
97ce08cb
YQ
2594 set_gdbarch_address_to_pointer (gdbarch, m32c_m16c_address_to_pointer);
2595 set_gdbarch_pointer_to_address (gdbarch, m32c_m16c_pointer_to_address);
96309189
MS
2596 }
2597
2598 /* Register set. */
97ce08cb 2599 make_regs (gdbarch);
96309189 2600
96309189 2601 /* Breakpoints. */
04180708
YQ
2602 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32c_breakpoint::kind_from_pc);
2603 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32c_breakpoint::bp_from_kind);
96309189
MS
2604
2605 /* Prologue analysis and unwinding. */
97ce08cb
YQ
2606 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2607 set_gdbarch_skip_prologue (gdbarch, m32c_skip_prologue);
96309189
MS
2608#if 0
2609 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2610 They may be in the dwarf2 cfi code in GDB, or they may be in
2611 the debug info emitted by the upstream toolchain. I don't
2612 know which, but I do know that the prologue analyzer works better.
025bb325 2613 MVS 04/13/06 */
97ce08cb 2614 dwarf2_append_sniffers (gdbarch);
96309189 2615#endif
97ce08cb 2616 frame_unwind_append_unwinder (gdbarch, &m32c_unwind);
96309189
MS
2617
2618 /* Inferior calls. */
97ce08cb
YQ
2619 set_gdbarch_push_dummy_call (gdbarch, m32c_push_dummy_call);
2620 set_gdbarch_return_value (gdbarch, m32c_return_value);
96309189
MS
2621
2622 /* Trampolines. */
97ce08cb 2623 set_gdbarch_skip_trampoline_code (gdbarch, m32c_skip_trampoline_code);
96309189 2624
97ce08cb 2625 set_gdbarch_virtual_frame_pointer (gdbarch, m32c_virtual_frame_pointer);
7830cb4f 2626
ed09d7da
KB
2627 /* m32c function boundary addresses are not necessarily even.
2628 Therefore, the `vbit', which indicates a pointer to a virtual
2629 member function, is stored in the delta field, rather than as
025bb325 2630 the low bit of a function pointer address.
ed09d7da
KB
2631
2632 In order to verify this, see the definition of
2633 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2634 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
97ce08cb 2635 set_gdbarch_vbit_in_delta (gdbarch, 1);
ed09d7da 2636
97ce08cb 2637 return gdbarch;
96309189
MS
2638}
2639
6c265988 2640void _initialize_m32c_tdep ();
96309189 2641void
6c265988 2642_initialize_m32c_tdep ()
96309189
MS
2643{
2644 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2645
2646 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2647}
This page took 1.568273 seconds and 4 git commands to generate.